NOTICE
No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. Please note that "EOC" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it now reads "EOC".

CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 Configuration 1
1.2 Features 2
1.3 Block Diagram 3
1.4 Pin Layout Diagram 4
1.5 Pin Description 5
CHAPTER 2 POWER SUPPLY AND INITIAL RESET 6
2.1 Power Supply 6
2.2 Initial Reset 8
Oscillation detection circuit 9
Reset pin (RESET) 9
Simultaneous high input to input ports (KOO-K03) 9
Internal register following initialization 10
2.3 Test Pin (TEST) 10
CHAPTER 3 CPU, ROM, RAM 11
3.1 CPU 11
3.2 ROM 12
3.3 RAM 12
CHAPTER 4 PERIPHERAL CIRCUITS AND OPERATION 13
4.1 Memory Map 13
4.2 Oscillation Circuit 16
Crystal oscillation circuit 16
CR oscillation circuit 17
4.3 Input Ports (K00-K03) 18
Configuration of input ports 18
Input comparison registers and interrupt function 19
Mask option 20
Control of input ports 20
4.4 Output Ports (R00-R03) 22
Configuration of output ports 22
Mask option 23
Control of output ports 25
4.5 I/O Ports (P00-P03) 28
Configuration of I/O ports 28
I/O control register and I/O mode 28
Mask option 29
Control of I/O ports 29
4.6 LCD Driver (COM0-COM3, SEG0-SEG19) 31
Configuration of LCD driver 31
Cadence adjustment of oscillation frequency 37
Mask option (segment allocation) 38
Control of LCD driver 40
4.7 Clock Timer 41
Configuration of clock timer 41
Interrupt function 42
Control of clock timer 43
4.8 A/D Converter 45
Configuration of A/D converter 45
Operation of A/D converter 46
Interrupt function 51
Usage example of the A/D converter 51
Control of A/D converter 53
4.9 Heavy Load Protection Function 57
Operation of heavy load protection function 57
Control of heavy load protection function 58
4.10 Interrupt and HALT 59
Interrupt factors 60
Specific masks and factor flags for interrupt 61
Interrupt vectors 61
Control of interrupt 62
CHAPTER 5 BASIC EXTERNAL WIRING DIAGRAM 63
CHAPTER 6 ELECTRICAL CHARACTERISTICS 65
6.1 Absolute Maximum Rating 65
6.2 Recommended Operating Conditions 66
6.3 DC Characteristics 67
6.4 Analog Circuit Characteristics and Power Current Consumption 69
6.5 Oscillation Characteristics 73
CHAPTER $7 \quad$ PACKAGE 75
7.1 Plastic Package 75
7.2 Ceramic Package for Test Samples 76
CHAPTER 8 PAD LAYOUT 77
8.1 Diagram of Pad Layout 77
8.2 Pad Coordinates 78
Appendices TECHNICAL INFORMATION 79
Appendix A Design Steps for Designing Thermometer 79
Thermometer design steps 79
How to obtain capacitor value and oscillation frequency 81
Setting up counter initial value 82
Computation method of displayed temperature by linear approximation 83
Appendix B Error Factors 85
Thermistor resistance dispersion 85
A/D converter error factors 85
Error by floating capacity 88
Software error 88
Appendix C AT Thermistor 89

CHAPTER 1

INTRODUCTION

Each member of the E0C6002 Series of single chip microcomputers feature a 4-bit E0C6200B core CPU, 1,024 words of ROM (12 bits per word), 80 words of RAM (4 bits per word), an LCD driver, 4 bits for input ports (KOO-KO3), 4 bits for output ports (ROO-R03), one 4-bit I/O port (POOP03), clock timer and A/D converter.

Because of their low voltage operation and low power consumption, the E0C6002 Series are ideal for a wide range of applications.

1.1 Configuration

The E0C6002 Series are configured as follows, depending on the supply voltage.

	Table 1.1.1	Model	Supply voltage
Configuration of the	Oscillation circuits		
E0C6002 Series	E0C6002	$1.8-3.5 \mathrm{~V}$	Crystal or CR
	E0C60L02	$1.2-2.0 \mathrm{~V}$	Crystal or CR

1.2 Features

Built-in oscillation circuit Instruction set

ROM capacity
RAM capacity (data RAM)
Input port
Output port

Input/output port
LCD driver
Timer
A/D converter Interrupts:

External interrupt
Input port interrupt
Timer interrupt
A/D converter interrupt

1 system
1 system
1 system

Supply voltage
1.5 V (1.2-2.0 V) E0C60L02 (During A/D conversion) $3.0 \mathrm{~V}(1.8-3.5 \mathrm{~V}) \mathrm{E} 0 \mathrm{C} 6002$

Current consumption (typ.) $\quad 1.0 \mu \mathrm{~A}$ (Crystal oscillation CLK $=32,768 \mathrm{~Hz}$, when halted) $2.5 \mu \mathrm{~A}$ (Crystal oscillation CLK $=32,768 \mathrm{~Hz}$, when executing)

Supply form

1.3 Block Diagram

Fig. 1.3.1
Block diagram

1.4 Pin Layout Diagram

QFP6-60pin

Pin No.	Pin name						
1	SEG0	16	N.C.	31	N.C.	46	N.C.
2	SEG1	17	TEST	32	VL3	47	K00
3	SEG2	18	RESET	33	VL2	48	K01
4	SEG3	19	SEG12	34	VL1	49	K02
5	SEG4	20	SEG13	35	CA	50	K03
6	SEG5	21	SEG14	36	CB	51	R00
7	SEG6	22	SEG15	37	Vss	52	R01
8	SEG7	23	SEG16	38	VDD	53	R02
9	SEG8	24	SEG17	39	OSC1	54	R03
10	SEG9	25	SEG18	40	OSC2	55	RS
11	SEG10	26	SEG19	41	VS1	56	TH
12	SEG11	27	COM0	42	P00	57	CS
13	N.C.	28	COM1	43	P01	58	ADOUT
14	N.C.	29	COM2	44	P02	59	N.C.
15	N.C.	30	COM3	45	P03	60	N.C.

Fig. 1.4.1
Pin assignment

1.5 Pin Description

Table 1.5.1 Pin description

Terminal name	Pin No.	Input/Output	Function
VDD	38	(I)	Power source (+) terminal
Vss	37	(I)	Power source (-) terminal
Vs1	41	O	Oscillation and internal logic system regulated voltage output terminal
VL1	34	O	LCD system regulated voltage output terminal
VL2	33	O	LCD system booster output terminal
VL3	32	O	LCD system booster output terminal
CA, CB	35,36	-	Booster capacitor connecting terminal
OSC1	39	I	Crystal or CR oscillation input terminal
OSC2	40	O	Crystal or CR oscillation output terminal
K00-K03	$47-50$	I	Input terminal
P00-P03	$42-45$	I/O	I/O terminal
R00-R03	$51-54$	O	Output terminal
SEG0-19	$1-12$	O	LCD segment output terminal
	$19-26$		(convertible to DC output terminal by mask option)
COM0-3	$27-30$	O	LCD common output terminal
CS	57	I	A/D converter CR oscillation input terminal
RS	55	O	A/D converter CR oscillation output terminal
TH	56	O	A/D converter CR oscillation output terminal
ADOUT	58	O	A/D converter oscillation frequency output terminal
RESET	18	I	Initial setting input terminal
TEST	17	I	Test input terminal

CHAPTER 2

POWER SUPPLY AND INITIAL RESET

2.1 Power Supply

With a single external power supply (*1) supplied to VDD through Vss, the E0C6002 Series generate the necessary internal voltages with the regulated voltage circuit (<Vsı for oscillators and internal circuit) and the voltage booster/ reducer (<VL2, VL3 or VL1, VL3> for LCDs).
When the E0C6002 LCD power is selected for 4.5 V LCD panel by mask option, the E0C6002 short-circuits between <VL2> and <VsS> in internally, and the voltage booster/ reducer generates <VL1> and <VL3>. When 3.0 V LCD panel is selected, the E0C6002 short-circuits between <VL3> and $<\mathrm{Vss}>$, and the voltage reducer generates <VL1> and <VL2>. The E0C60L02 short-circuits between <VLl> and <VsS>, and the voltage booster generates <VL2> and <VL3>.
The voltage $<\mathrm{Vs} 1>$ for the internal circuit that is generated by the regulated voltage circuit is -1.2 V (VDD standard). Figure 2.1 .1 shows the power supply configuration of the E0C6002 Series in each condition.
*1 Supply voltage: E0C6002 3.0 V
E0C60L02 1.5 V
Note - External loads cannot be driven by the output voltage of the regulated voltage circuit and the voltage booster/reducer.

- See Chapter 6, "ELECTRICAL CHARACTERISTICS", for voltage values.

-E0C6002

4.5 V LCD panel

1/4, 1/3, 1/2 duty, $1 / 3$ bias

Note: VL2 is shorted to Vss inside the IC.

Note: VL3 is shorted to Vss inside the IC.

- E0C60L02
4.5 V LCD panel

1/4, 1/3, 1/2 duty, $1 / 3$ bias

3 V LCD panel
$1 / 4,1 / 3,1 / 2$ duty, $1 / 2$ bias

Note: VL1 is shorted to Vss inside the IC.

Fig. 2.1.1 External element configuration of power system

2.2 Initial Reset

To initialize the E0C6002 Series circuits, an initial reset must be executed. There are three ways of doing this.
(1) Initial reset by the oscillation detection circuit (Note)
(2) External initial reset via the RESET pin
(3) External initial reset by simultaneous high input to pins K00-K03 (depending on mask option)

Figure 2.2.1 shows the configuration of the initial reset circuit.

Fig. 2.2.1

Configuration of initial reset circuit

Note Since the circuit may sometimes not operate normally with the initial resetting by the oscillation detection circuit indicated in number (1), depending on the method of making the power, you should utilize one of the initial resetting methods mentioned in numbers (2) and (3).

Oscillation detection circuit

When the oscillation circuit has been stopped until the oscillation circuit begins to oscillate when the power is turned on or for any other reason, the oscillation detection circuit will output an initial reset signal, but since the circuit may sometimes not operate normally with the initial resetting due to the oscillation detection circuit, depending on the method of making the power, you should utilize one of the initial resetting methods indicated hereafter.

An initial reset can be invoked externally by making the reset pin high. This high level must be maintained for at least 5 ms (when oscillating frequency, fosc $=32 \mathrm{kHz}$), because the initial reset circuit contains a noise rejection circuit. When the reset pin goes low the CPU begins to operate.

Another way of invoking an initial reset externally is to input a high signal simultaneously to the input ports (KOO-K03) selected with the mask option. The specified input port pins must be kept high for at least 4 sec (when oscillating frequency fosc $=32 \mathrm{kHz}$), because of the noise rejection circuit. Table 2.2.1 shows the combinations of input ports (KOOK03) that can be selected with the mask option.

A	Not used
B	K00*K01
C	$\mathrm{K} 00 * \mathrm{~K} 01 * \mathrm{~K} 02$
D	$\mathrm{K} 00 * \mathrm{~K} 01 * \mathrm{~K} 02 * \mathrm{~K} 03$

When, for instance, mask option D (K00*K01*K02*K03) is selected, an initial reset is executed when the signals input to the four ports K00-K03 are all high at the same time.

If you use this function, make sure that the specified ports do not go high at the same time during normal operation.

Internal register following initialization

An initial reset initializes the CPU as shown in the table below.

Table 2.2.2 Initial values	CPU Core			
	Name	Signal	Number of bits	Setting value
	Program counter step	PCS	8	00H
	Program counter page	PCP	4	1H
	New page pointer	NPP	4	1H
	Stack pointer	SP	8	Undefined
	Index register X	X	8	Undefined
	Index register Y	Y	8	Undefined
	Register pointer	RP	4	Undefined
	General register A	A	4	Undefined
	General register B	B	4	Undefined
	Interrupt flag	I	1	0
	Decimal flag	D	1	0
	Zero flag	Z	1	Undefined
	Carry flag	C	1	Undefined
	Peripheral circuits			
	Name		Number of bits	Setting value
	RAM Display memory Other peripheral circuit		80×4	Undefined
			20×4	Undefined
			-	*1

*1: See Section 4.1, "Memory Map"

2.3 Test Pin (TEST)

This pin is used when IC is inspected for shipment.
During normal operation connect it to Vss.

CHAPTER 3 CPU, ROM, RAM

3.1 CPU

The E0C6002 Series employs the E0C6200B core CPU, so that register configuration, instructions, and so forth are virtually identical to those in other processors in the family using the E0C6200B. Refer to the "E0C6200/6200A Core CPU Manual" for details of the E0C6200B.

Note the following points with regard to the E0C6002 Series:
(1) The SLEEP operation is not provided, so the SLP instruction cannot be used.
(2) Because the ROM capacity is 1,024 words, 12 bits per word, bank bits are unnecessary, and PCB and NBP are not used.
(3) The RAM page is set to 0 only, so the page part (XP, YP) of the index register that specifies addresses is invalid.

PUSH	XP	PUSH	YP
POP	XP	POP	YP
LD	XP,r	LD	YP,r
LD	$r, X P$	LD	$r, Y P$

3.2 ROM

The built-in ROM, a mask ROM for the program, has a capacity of $1,024 \times 12$-bit steps. The program area is 4 pages ($0-3$), each consisting of 256 steps ($00 \mathrm{H}-\mathrm{FFH}$). After an initial reset, the program start address is page 1, step 00 H . The interrupt vector is allocated to page 1 , steps $01 \mathrm{H}-$ 07H.

Fig. 3.2.1
ROM configuration

3.3 RAM

The RAM, a data memory for storing a variety of data, has a capacity of 80 words, 4 -bit words. When programming, keep the following points in mind:
(1) Part of the data memory is used as stack area when saving subroutine return addresses and registers, so be careful not to overlap the data area and stack area.
(2) Subroutine calls and interrupts take up three words on the stack.
(3) Data memory 000H-00FH is the memory area pointed by the register pointer (RP).

CHAPTER 4

PERIPHERAL CIRCUITS AND

 OPERATIONPeripheral circuits (timer, I/O, and so on) of the E0C6002 Series are memory mapped. Thus, all the peripheral circuits can be controlled by using memory operations to access the I/O memory. The following sections describe how the peripheral circuits operate.

4.1 Memory Map

The data memory of the E0C6002 Series has an address space of 154 words, of which 32 words are allocated to display memory and 26 words, to I/O memory. Figure 4.1.1 show the overall memory map for the E0C6002 Series, and Tables 4.1.1(a) and (b), the memory maps for the peripheral circuits (I/O space).

Fig. 4.1.1
Memory map

Note Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

Table 4.1.1(a) I/O memory map

Address	Register								Comment	
	D3	D2	D1	D0	Name	Init* ${ }^{* 1}$	1	0		
OEOH	K03	K02	K01	K00	K03	- *2	High	Low	Input port data K03	
					K02	- *2	High	Low	Input port data K02	
	R				K01	- *2	High	Low	Input port data K01	
					K00	- *2	High	Low	Input port data K00	
0E3H	TM3	TM2	TM1	TM0	тм3	- *3	High	Low	Clock timer data 2 Hz	
					тM2	- *3	High	Low	Clock timer data 4 Hz	
	R				TM1	-*3	High	Low	Clock timer data 8 Hz	
					тм0	- *3	High	Low	Clock timer data 16 Hz	
0E4H	TC3	TC2	TC1	TC0	TC3	-*3	1	0	Up/down counter data TC3	
					TC2	- *3	1	0	Up/down counter data TC2	
	R/W				TC1	- *3	1	0	Up/down counter data TC1	
					TCO	- *3	1	0	Up/down counter data TC0 (LSB)	
0E5H	TC7	TC6	TC5	TC4	TC7	- *3	1	0	Up/down counter data TC7	
					TC6	- *3	1	0	Up/down counter data TC6	
	R/W				TC5	- *3	1	0	Up/down counter data TC5	
					TC4	- *3	1	0	Up/down counter data TC4	
0E6H	TC11	TC10	TC9	TC8	TC11	- *3	1	0	Up/down counter data TC11	
					TC10	- *3	1	0	Up/down counter data TC10	
	R/W				TC9	- *3	1	0	Up/down counter data TC9	
					TC8	- *3	1	0	Up/down counter data TC8	
0E7H	TC15	TC14	TC13	TC12	TC15	-*3	1	0	Up/down counter data TC15 (MSB)	
					TC14	- *3	1	0	Up/down counter data TC14	
	R/W				TC13	- *3	1	0	Up/down counter data TC13	
					TC12	- *3	1	0	Up/down counter data TC12	
0E8H	ElK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register K03	
					EIK02	0	Enable	Mask	Interrupt mask register K02	
	R/W				EIK01	0	Enable	Mask	Interrupt mask register K01	
					EIK00	0	Enable	Mask	Interrupt mask register K00	
OEBH	0	EIT2	EIT8	EIT32	0					*5
					EIT2	0	Enable	Mask	Interrupt mask register (clock timer) 2 Hz	
	R	RW			EIT8	0	Enable	Mask	Interrupt mask register (clock timer) 8 Hz	
	R				EIT32	0	Enable	Mask	Interrupt mask register (clock timer) 32 Hz	
OECH	0	0	0	EIAD	0					*5
					0					*5
	R			RW	0					*5
				R	EIAD	0	Enable	Mask	Interrupt mask register (A/D)	
OEDH	0	0	0	IK0	0					*5
					0					*5
	R				0					*5
					IK0	0	Yes	No	Interrupt factor flag (K00-K03)	* 4
OEFH	0	IT2	IT8	IT32	0					*5
					IT2	0	Yes	No	Interrupt factor flag (clock timer) 2 Hz	* 4
	R				178	0	Yes	No	Interrupt factor flag (clock timer) 8 Hz	* 4
					IT32	0	Yes	No	Interrupt factor flag (clock timer) 32 Hz	*4

*1 Initial value following initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Always " 0 " when being read
*6 Refer to main manual

Table 4.1.1(b) I/O memory map

Address	Register								Comment			
	D3	D2	D1	D0	Name	Init * ${ }^{\text {* }}$	1	0				
OFOH	0	0	0	IAD	0					*5		
	R				$\begin{gathered} 0 \\ \text { IAD } \end{gathered}$	0	Yes	No	Interrupt factor flag (A/D)	*5		
0F1H	0	0	0	ADRUN	$\begin{aligned} & 0 \\ & 0 \end{aligned}$					*5		
	R			R/W	$\begin{gathered} 0 \\ \text { ADRUN } \end{gathered}$	0	Start	Stop	A/D conversion Start/Stop	*5		
OF3H	R03	R02	R01	R00	R03	0	High	Low	Output port data R03			
			BUZZER	FOUT	R02	0	High	Low	Output port data R02			
					R01	0	High	Low	Output port data R01			
	R/W				$\begin{array}{\|c\|} \hline \text { BUZZER } \\ \text { RO0 } \\ \text { FOUT } \\ \hline \end{array}$	0	On	Off	Buzzer On/Off control register			
					0	High	Low	Output port data R00				
					0	On	Off	Frequency output control register				
0F4H	P03	P02	P01	P00		$\begin{aligned} & \hline \text { P03 } \\ & \text { P02 } \\ & \text { P01 } \\ & \text { P00 } \\ & \hline \end{aligned}$	$\begin{aligned} & -{ }^{*} 2 \\ & -* 2 \\ & -\quad * 2 \\ & -* 2 \\ & \hline \end{aligned}$	High	Low	I/O port data P03 I/O port data P 02 I/O port data P01 I/O port data P00		
								High	Low			
	R/W				High			Low				
					High			Low				
0F5H	C3	C2	C1	CO	C3	- *3	1	0	Up-counter data C3			
						- *3	1	0	Up-counter data C2			
	R/W				$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{C} 1 \\ & \mathrm{C} 0 \\ & \hline \end{aligned}$	- *3	1	0	Up-counter data C1			
					- *3	1	0	Up-counter data C0 (LSB)				
OF6H	C7	C6	C5	C4		$\begin{aligned} & \mathrm{C} 7 \\ & \mathrm{C} 6 \end{aligned}$	$\begin{aligned} & -* 3 \\ & -* 3 \end{aligned}$	1	0	Up-counter data C7		
					1			0				
	R/W				C6C5	- *3	1	0				
					- *3	1	0					
0F7H	C11	C10	C9	C8		$\begin{aligned} & \mathrm{C} 11 \\ & \mathrm{C} 10 \end{aligned}$	$\begin{aligned} & -* 3 \\ & -* 3 \end{aligned}$	1	0			
					1			0	Up-counter data C10			
	R/W				$\begin{aligned} & \mathrm{C} 9 \\ & \mathrm{C} 8 \\ & \hline \end{aligned}$	$\begin{aligned} & -* 3 \\ & -* 3 \\ & -* 3 \end{aligned}$	1	0	Up-counter data C9			
					1		0	Up-counter data C8				
0F8H	C15	C14	C13	C12		$\begin{aligned} & \mathrm{C} 15 \\ & \mathrm{C} 14 \\ & \mathrm{C} 13 \\ & \mathrm{C} 12 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { - *3 } \\ & \text { - } * 3 \\ & -* 3 \\ & -* 3 \end{aligned}$	1	0	Up-counter data C15 (MSB) Up-counter data C14 Up-counter data C13 Up-counter data C12		
					1			0				
	R/W				1			0				
					1			0				
0F9H	0	0	0	TMRST	0	Reset	Reset	-	Clock timer reset	*5		
					0					*5		
	R			W	0					*5		
				W	TMRST					*5		
	HLMOD	0	0	0	HLMOD	0	Heavy	Normal	Heavy load protection mode register			
	R/W	R			$\begin{aligned} & 0 \\ & 0 \end{aligned}$					*5		
OFBH	CSDC	0	0	0	$\begin{gathered} \hline \text { CSDC } \\ 0 \\ 0 \\ 0 \end{gathered}$	0	Static	Dynamic	LCD drive switch			
	R/W	R								*5		
0FCH	0	0	0	IOC	0					*5		
	0	0	0	IOC	0					*5		
	R			R/W	$\begin{gathered} 0 \\ \text { IOC } \end{gathered}$	0	Out	In	I/O port I/O control register	*5		
OFDH	XBZR	0	XFOUT1	XFOUTO	XBZR	0	2 kHz	4 kHz	Buzzer frequency control	*5		
	R/W	R	R/W		XFOUT1	0			FOUT frequency control	*6		
	R/W	R				0			FOUT frequency control	*6		
OFEH	0	0	0	ADCLK	0					*5		
					0					*5		
	R			R/W	0					*5		
				R/W		0	65 kHz	32 kHz	A/D clock selection $65 \mathrm{kHz} / 32 \mathrm{kHz}$			

4.2 Oscillation Circuit

The E0C6002 Series have a built-in oscillation circuit. For the oscillation circuit, eiter crystal oscillation or CR oscillation may be selected by a mask option.

Crystal oscillation

 circuitThe crystal oscillation circuit generates the operating clock for the CPU and peripheral circuit on connection to an external crystal oscillator (typ. 32.768 kHz) and trimmer capacitor (5-25 pF).
Figure 4.2.1 is the block diagram of the crystal oscillation circuit.

As Figure 4.2.1 indicates, the crystal oscillation circuit can be configured simply by connecting the crystal oscillator (X'tal) between the OSC1 and OSC2 pins and the trimmer capacitor (CG) between the OSC1 and VDD pins.
$\overline{\text { CR oscillation circuit }}$ For the E0C6002 Series, CR oscillation circuit (typ. 65 kHz) may be selected by a mask option. Figure 4.2 .2 is the block diagram of the CR oscillation circuit.

As Figure 4.2.2 indicates, the CR oscillation circuit can be configured simply by connecting the register (RCR) between pins OSC1 and OSC2 since capacity (C) is built-in.
See Chapter 6, "ELECTRICAL CHARACTERISTICS" for RCR value.

4.3 Input Ports (KOO-KO3)

Configuration of input ports

The E0C6002 Series have a general-purpose input (4 bits). Each of the input port pins (K00-K03) has an internal pulldown resistance. The pull-down resistance can be selected for each bit with the mask option.
Figure 4.3.1 shows the configuration of input port.

Configuration of input port
Fig. 4.3.1

Mask option

Selecting "pull-down resistance enabled" with the mask option allows input from a push button, key matrix, and so forth. When "pull-down resistance disabled" is selected, the port can be used for slide switch input and interfacing with other LSIs.

Input comparison All four input port bits (KOO-KO3) provide the interrupt registers and interrupt function function. The conditions for issuing an interrupt can be set by the software for the four bits. Also, whether to mask the interrupt function can be selected individually for all four bits by the software. Figure 4.3 .2 shows the configuration of K00-K03.

Fig. 4.3.2
Input interrupt circuit configuration (K00-K03)

The interrupt mask registers (EIKOO-EIKO3) enable the interrupt mask to be selected individually for K00-K03. An interrupt occurs when the input value which are not masked change and the interrupt factor flag (IKO) is set to "1".

Mask option

The contents that can be selected with the input port mask option are as follows:
(1) An internal pull-down resistance can be selected for each of the four bits of the input ports (K00-K03). Having selected "pull-down resistance disabled", take care that the input does not float. Select "pull-down resistance enabled" for input ports that are not being used.
(2) The input interrupt circuit contains a noise rejection circuit to prevent interrupts form occurring through noise. The mask option enables selection of the noise rejection circuit for each separate pin series. When "use" is selected, a maximum delay of 0.5 ms (fosc $=32 \mathrm{kHz}$) occurs from the time an interrupt condition is established until the interrupt factor flag (IK) is set to " 1 ".

Control of input ports Table 4.3.1 list the input port control bits and their addresses.

Table 4.3.1 Input port control bits

Address	Register								Comment		
	D3	D2	D1	D0	Name	Init*1	1	0			
OEOH	K03	K02	K01	K00	$\begin{aligned} & \hline \text { K03 } \\ & \text { K02 } \\ & \text { K01 } \\ & \text { K00 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-*_{2} \\ & -*{ }_{2} \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$	High High High High	Low Low Low Low	Input port data K03 Input port data K02 Input port data K01 Input port data K00		
	R										
0E8H	EIK03	EIK02	EIK01	EIK00		EIK03 EIK02 EIK01 EIK00	0	Enable	Mask	Interrupt mask register K03	
					0		Enable	Mask	Interrupt mask register K02		
	R/W				0		Enable	Mask	Interrupt mask register K01		
					0		Enable	Mask	Interrupt mask register K00		
OEDH	0	0	0	IKO	0					*5	
					0					*5	
	R				0					*5	
					IKO	0	Yes	No	Interrupt factor flag (K00-K03)	*4	

*1 Initial value following initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Always " 0 " when being read
*6 Refer to main manual

K00-K03 Input port data (0EOH)
The input data of the input port pins can be read with these registers.

When " 1 " is read: High level
When " 0 " is read: Low level
Writing: Invalid
The value read is " 1 " when the pin voltage of the four bits of the input ports (K00-K03) goes high (VDD), and "O" when the voltage goes low (VSs). These bits are reading, so writing cannot be done.

EIK00-EIK03 Interrupt mask registers (0E8H)
Masking the interrupt of the input port pins can be done with these registers.

When " 1 " is written:	Enable
When " 0 " is written:	Mask
Reading:	Valid

With these registers, masking of the input port bits can be done for each of the four bits. After an initial reset, these registers are all set to " 0 ".

IKO Interrupt factor flags (0EDH D0)
These flags indicate the occurrence of an input interrupt.
When " 1 " is read: Interrupt has occurred
When " 0 " is read: Interrupt has not occurred
Writing: Invalid
The interrupt factor flag IKO is associated with KOO-K03, respectively. From the status of these flags, the software can decide whether an input interrupt has occurred. These flags are reset when the software has read them. Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. After an initial reset, these flags are set to " 0 ".

4.4 Output Ports (ROO-RO3)

Configuration of output ports

The E0C6002 Series have 4 bits for general output ports (R00-R03).
Output specifications of the output ports can be selected individually with the mask option. Three kinds of output specifications are available: complementary output and Pch open drain output. Also, the mask option enables the output ports R00 and R01 to be used as special output ports. Figure 4.4.1 shows the configuration of the output ports.

Fig. 4.4.1
Configuration of output ports

Mask option

The mask option enables the following output port selection.
(1) Output specifications of output ports The output specifications for the output ports (R00-R03) may be either complementary output or Pch open drain output for each of the four bits. However, even when Pch open drain output is selected, a voltage exceeding the source voltage must not be applied to the output port.

(2) Special output

In addition to the regular DC output, special output can be selected for output ports R00 and R01, as shown in Table 4.4.1. Figure 4.4 .2 shows the structure of output ports R00-R03.

Table 4.4.1 Special output

Pin name	When special output is selected
R00	FOUT or BUZZER
R01	BUZZER

Fig. 4.4.2

FOUT (R00) When output port R00 is set for FOUT output, this port will generate fosc (CPU operating clock frequency) or clock frequency divided into fosc. Clock frequency may be selected individually for F1-F4, from among 5 types by mask option; one among F1-F4 is selected by software and used. The types of frequency which may be selected are shown in Table 4.4.2.

Table 4.4.2
FOUT clock frequency

Setting value	Clock frequency (Hz)			fosc $=32,768$
	F1	F2	F3	F4
	(D1,D0) $=(0,0)$	$(\mathrm{D} 1, \mathrm{D} 0)=(0,1)$	(D1,D0)=(1,0)	(D1,D0)=(1,1)
1	$\begin{gathered} 256 \\ (\text { fosc/128) } \end{gathered}$	$\begin{gathered} 512 \\ (\text { fosc/64) } \end{gathered}$	$\begin{gathered} 1,024 \\ (\text { fosc/32) } \end{gathered}$	$\begin{gathered} 2,048 \\ (\mathrm{fosc} / 16) \end{gathered}$
2	$\begin{gathered} 512 \\ (\text { fosc/64) } \end{gathered}$	$\begin{gathered} 1,024 \\ (\text { fosc/32) } \end{gathered}$	$\begin{gathered} 2,048 \\ (\text { fosc/16) } \end{gathered}$	$\begin{gathered} 4,096 \\ (\mathrm{fosc} / 8) \end{gathered}$
3	$\begin{gathered} 1,024 \\ (\text { fosc/32) } \end{gathered}$	$\begin{gathered} 2,048 \\ (\mathrm{fosc} / 16) \end{gathered}$	$\begin{gathered} 4,096 \\ (\text { fosc/8) } \end{gathered}$	$\begin{gathered} 8,192 \\ (\text { fosc/4) } \end{gathered}$
4	$\begin{gathered} 2,048 \\ (\mathrm{fosc} / 16) \end{gathered}$	$\begin{gathered} 4,096 \\ (\mathrm{fosc} / 8) \end{gathered}$	$\begin{gathered} 8,192 \\ (\text { fosc/4) } \end{gathered}$	$\begin{gathered} 16,384 \\ (\text { fosc/2) } \end{gathered}$
5	$\begin{gathered} 4,096 \\ (\text { fosc/8) } \end{gathered}$	$\begin{gathered} 8,192 \\ (\text { fosc/4) } \end{gathered}$	$\begin{gathered} 16,384 \\ (\text { fosc/2) } \end{gathered}$	$\begin{gathered} 32,768 \\ (\mathrm{fosc} / 1) \end{gathered}$

$(\mathrm{D} 1, \mathrm{D} 0)=($ XFOUT1, XFOUT0 $)$
Note A hazard may occur when the FOUT signal is turned on or off.

BUZZER, BUZZER Output ports R01 and R00 may be set to BUZZER output (R01, R00) and BUZZER output (BUZZER reverse output), respectively, allowing for direct driving of the piezo-electric buzzer. BUZZER output (ROO) may only be set if R01 is set to BUZZER output. In such case, whether ON/OFF of the \bar{B} BUZZER output is done through R00 register or is controlled through R01 simultaneously with BUZZER output is also selected by mask option.
The frequency of buzzer output may be selected by software to be either 2 kHz or 4 kHz .

Control of output ports

Table 4.4.3 lists the output port control bits and their addresses.

Table 4.4.3 Control bits of output ports

Address	Register								Comment	
	D3	D2	D1	D0	Name	Init*1	1	0		
0F3H	R03	R02	R01	R00	R03	0	High	Low	Output port data R03	
					$\begin{aligned} & \text { R02 } \\ & \text { R01 } \end{aligned}$	0	High	Low	Output port data R02	
			BUZZER	FOUT		0	High	Low	Output port data R01	
	R/W				BUZZER	0	On	Off	Buzzer On/Off control register	
					R00	0	High	Low	Output port data R00	
					FOUT	0	On	Off	Frequency output control register	
OFDH	XBZR	0	XFOUT1	XFOUTO	$\begin{gathered} \text { XBZR } \\ 0 \\ \text { XFOUT1 } \\ \text { XFOUT0 } \\ \hline \end{gathered}$	0	2 kHz	4 kHz	Buzzer frequency control	
										*5
	R/W	R				0			FOUT frequency control	*6
	R/	R				0			FOUT frequency control	*6

*1 Initial value following initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Always " 0 " when being read
*6 Refer to main manual

R00-R03 Output port data (0F3H)
Sets the output data for the output ports.

When " 1 " is written:	High output
When " 0 " is written:	Low output
Reading:	Valid

The output port pins output the data written to the corresponding registers (R00-R03) without changing it. When " 1 " is written to the register, the output port pin goes high (VDD), and when " 0 " is written, the output port pin goes low (Vss). After an initial reset, all registers are set to " 0 ".

R00 (when FOUT Special output port data (0F3H D0)
is selected) Controls the FOUT (clock) output.
When " 1 " is written: Clock output
When " 0 " is written: Low level (DC) output
Reading: Valid
FOUT output can be controlled by writing data to R00. After an initial reset, this register is set to " 0 ".

Figure 4.4 .3 shows the output waveform for FOUT output.

Fig. 4.4.3
FOUT output waveform
FOUT output waveform

XFOUT0, XFOUT1 FOUT frequency control (OFDH D0, 0FDH D1)
Selects the output frequency when R00 port is set for FOUT output.

Table 4.4.4
FOUT frequency selection

XFOUT1	XFOUT0	Frequency selection
0	0	F1
0	1	F2
1	0	F3
1	1	F4

After an initial reset, these registers are set to " 0 ".

R00, R01 (when BUZZER Special output port data (0F3H D0, 0F3H D1)
and BUZZER Controls the buzzer output.
is selected)
When " 1 " is written: Buzzer output
When " 0 " is written: Low level (DC) output
Reading: Valid
$\overline{B U Z Z E R}$ and BUZZER output can be controlled by writing data to R00 and R01.
When $\overline{B U Z Z E R}$ output by R01 register control is selected by mask option, BUZZER output and BUZZER output can be controlled simultaneously by writing data to R01 register. After an initial reset, these registers are set to " 0 ".

Figure 4.4.4 shows the output waveform for buzzer output.

Fig. 4.4.4
Buzzer output waveform

XBZR Buzzer frequency control (0FDH D3)
Selects the frequency of the buzzer signal.
When " 1 " is written: 2 kHz
When " 0 " is written: $\quad 4 \mathrm{kHz}$
Reading: Valid
When R00 and R01 port is set to buzzer output, the frequency of the buzzer signal can be selected by this register. When " 1 " is written to this register, the frequency is set in 2 kHz , and in 4 kHz when " 0 " is written.
After an initial reset, this register is set to " 0 ".

4.5 I/O Ports (POO-PO3)

Configuration of I/O The E0C6002 Series have a 4 -bit general-purpose I/O port. ports Figure 4.5.1 shows the configuration of the I/O port. The four bits of the I/O port P00-P03 can be set to either input mode or output mode. The mode can be set by writing data to the I/O control register (IOC).

Fig. 4.5.1
Configuration of I/O port

I/O control register and I/O mode

Input or output mode can be set for the four bits of I/O port P00-P03 by writing data into I/O control register IOC. To set the input mode, " 0 " is written to the I/O control register. When an I/O port is set to input mode, its impedance becomes high and it works as an input port. However, the input line is pulled down when input data is read.

The output mode is set when " 1 " is written to the I/O control register (IOC). When an I/O port set to output mode works as an output port, it outputs a high signal (VDD) when the port output data is " 1 ", and a low signal (Vss) when the port output data is " 0 ".
After an initial reset, the I/O control register is set to " 0 ", and the I/O port enters the input mode.

The output specification during output mode (IOC = " 1 ") of the I/O port can be set with the mask option for either complementary output or Pch open drain output. This setting can be performed for each bit of the I/O port. However, when Pch open drain output has been selected, voltage in excess of the supply voltage must not be applied to the port.

Control of I/O ports
Table 4.5.1 lists the I/O port control bits and their addresses.

Table 4.5.1 I/O port control bits

Address	Register								Comment	
	D3	D2	D1	D0	Name	Init*1	1	0		
0F4H	P03	P02	P01	P00	P03	- *2	High	Low	I/O port data P03	
	PO3					- *2	High	Low	I/O port data P02	
	R/W				P01	- *2	High	Low	I/O port data P01	
					P00	- *2	High	Low	I/O port data P00	
OFCH	0	0	0	IOC	0	0	Out	In	*5	
									I/O port I/O control register	*5
	R			R/W	0					*5
				IOC						

*1 Initial value following initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Always "0" when being read
*6 Refer to main manual

P00-P03 I/O port data (0F4H)
I/O port data can be read and output data can be written through the port.

- When writing data

When " 1 " is written: High level
When " 0 " is written: Low level
When an I/O port is set to the output mode, the written data is output from the I/O port pin unchanged. When " 1 " is written as the port data, the port pin goes high (VDD), and when " 0 " is written, the level goes low (Vss). Port data can also be written in the input mode.

- When reading data

When " 1 " is read: High level
When " 0 " is read: Low level
The pin voltage level of the I/O port is read. When the I/ O port is in the input mode the voltage level being input to the port pin can be read; in the output mode the output voltage level can be read. When the pin voltage is high (VDD) the port data read is " 1 ", and when the pin voltage is low (Vss) the data is " 0 ". Also, the built-in pulldown resistance functions during reading, so the I/O port pin is pulled down.

Note - When the I/O port is set to the output mode and a low-impedance load is connected to the port pin, the data written to the register may differ from the data read.

- When the I/O port is set to the input mode and a low-level voltage (Vss) is input by the built-in pull-down resistance, an erroneous input results if the time constant of the capacitive load of the input line and the built-in pull-down resistance load is greater than the read-out time. When the input data is being read, the time that the input line is pulled down is equivalent to 0.5 cycles of the CPU system clock. Hence, the electric potential of the pins must settle within 0.5 cycles. If this condition cannot be met, some measure must be devised, such as arranging a pull-down resistance externally, or performing multiple read-outs.

IOC I/O control register (0 FCH DO)
The input or output I/O port mode can be set with this register.

When " 1 " is written: Output mode
When " 0 " is written: Input mode
Reading: Valid
The input or output mode of the I/O port is set in units of four bits. For instance, IOC sets the mode for P00-P03. Writing " 1 " to the I/O control register makes the I/O port enter the output mode, and writing " 0 ", the input mode. After an initial reset, the IOC register is set to " 0 ", so the I/O port is in the input mode.

4.6 LCD Driver (COMO-COM3, SEG0-SEG19)

Configuration of LCD The E0C6002 Series have four common pins and 20 (SEG0driver SEG19) segment pins, so that an LCD with a maximum of $80(20 \times 4)$ segments can be driven. The power for driving the LCD is generated by the CPU internal circuit, so there is no need to supply power externally.
The driving method is $1 / 4$ duty (or $1 / 3,1 / 2$ duty by mask option) dynamic drive, adopting the four types of potential ($1 / 3$ bias), VdD, VL1, VL2 and VL3. Moreover, the $1 / 2$ bias dynamic drive that uses three types of potential, VDD, VL1 = VL2 and VL3, can be selected by setting the mask option (drive duty can also be selected from $1 / 4,1 / 3$ or $1 / 2$). $1 / 2$ bias drive is effective when the LCD system regulated voltage circuit is not used. The VL1 terminal and the VL2 terminal should be connected outside of the IC.

The frame frequency is 32 Hz for $1 / 4$ duty and $1 / 2$ duty, and 42.7 Hz for $1 / 3$ duty (in the case of fosc $=32.768 \mathrm{kHz}$). Figure 4.6 .1 shows the drive waveform for $1 / 4$ duty ($1 / 3$ bias), Figure 4.6 .2 shows the drive waveform for $1 / 3$ duty ($1 / 3$ bias), Figure 4.6 .3 shows the drive waveform for $1 / 2$ duty ($1 / 3$ bias), Figure 4.6 .4 shows the drive waveform for $1 / 4$ duty ($1 / 2$ bias), Figure 4.6 .5 shows the drive waveform for $1 / 3$ duty ($1 / 2$ bias) and Figure 4.6 .6 shows the drive waveform for $1 / 2$ duty ($1 / 2$ bias).

Note fosc indicates the oscillation frequency of the oscillation circuit.

Fig. 4.6.1
Drive waveform for
1/4 duty (1/3 bias)

LCD lighting status

SEG0-19 - Not lit

- Lit

O
$=-\mathrm{O}$
O
-O
$=-0$
$=-0$
$=-0$
$=-0$
$=-8$
$=-0$
-0
$=-0$
$=-8$
-0
-8
$=-8$
-0
$=0$
-0
-0
-0
$=0$
-0
-0
-0
$=-0$
$=0$
-0
$=0$
$=0$

Fig. 4.6.4
Drive waveform for
1/4 duty (1/2 bias)

LCD lighting status

SEG

Fig. 4.6.5
Drive waveform for 1/3 duty (1/2 bias)

COM3

LCD lighting status
COM0-
COM1-
COM2-
SEG0-19

- Not lit
- Lit
$=8$
$=-8$
$=-8$
$=0$
$=-8$
$=-8$

$=8$

Fig. 4.6.6
Drive waveform for
1/2 duty (1/2 bias)

Cadence adjustment of oscillation frequency

In the E0C6002 Series, the LCD drive duty can be set to $1 / 1$ duty by software. This function enables easy adjustment (cadence adjustment) of the oscillation frequency of the OSC circuit.

The procedure to set to $1 / 1$ duty drive is as follows:
(1) Write " 1 " to the CSDC register at address "OFBH D3".
(2) Write the same value to all registers corresponding to COMs 0 through 3 of the display memory.

The frame frequency is $32 \mathrm{~Hz}(f 0 S C 1 / 1,024$, when fosc $1=$ 32.768 kHz).

Note - Even when I/3 or $1 / 2$ duty is selected by the mask option, the display data corresponding to all COM are valid during $1 / 1$ duty driving. Hence, for $1 / 1$ duty drive, set the same value for all display memory corresponding to COMs 0 through 3.

- For cadence adjustment, set the display data corresponding to COMs 0 through 3, so that all the LCD segments go on.

Figure 4.6 .7 shows the $1 / 1$ duty drive waveform ($1 / 3$ bias). Figure 4.6 .8 shows the $1 / 1$ duty drive waveform ($1 / 2$ bias).

Fig. 4.6.7
1/1 duty drive waveform ($1 / 3$ bias)

Mask option

 (segment allocation)(1) Segment allocation

As shown in Figure 4.1.1, the E0C6002 Series display data is decided by the display data written to the display memory (write-only) at address "090H-0AFH".

The address and bits of the display memory can be made to correspond to the segment pins (SEG0-SEG19) in any combination through mask option. This simplifies design by increasing the degree of freedom with which the liquid crystal panel can be designed.

Figure 4.6 .9 shows an example of the relationship between the LCD segments (on the panel) and the display memory in the case of $1 / 3$ duty.

Address	Data			
	D3	D2	D1	D0
09 AH	d	c	b	a
09 BH	p	g	f	e
09 CH	d^{\prime}	c^{\prime}	b^{\prime}	a^{\prime}
09 DH	p^{\prime}	g^{\prime}	f^{\prime}	e^{\prime}

	Common 0	Common 1	Common 2
SEG10	$9 \mathrm{~A}, \mathrm{D} 0$ (a)	$9 \mathrm{~B}, \mathrm{D} 1$ (f)	$9 \mathrm{~B}, \mathrm{D} 0$ (e)
SEG11	9A, D1 (b)	9B, D2 (g)	9A, D3 (d)
SEG12	$9 \mathrm{D}, \mathrm{D} 1$ (f')	9A, D2 (c)	$\begin{gathered} \hline 9 B, D 3 \\ (\mathrm{p}) \\ \hline \end{gathered}$

Pin address allocation

Fig. 4.6.9
Segment allocation
(2) Drive duty

According to the mask option, either $1 / 4,1 / 3$ or $1 / 2$ duty can be selected as the LCD drive duty.
Table 4.6.1 shows the differences in the number of segments according to the selected duty.

	Table 4.6.1			
Differences according to selected duty	Duty	Pins used in common	Maximum number of segments	Frame frequency (when fosc $=32 \mathrm{kHz}$)
	$1 / 4$	COM0-3	$80(20 \times 4)$	32 Hz
	$1 / 3$	COM0-2	$60(20 \times 3)$	42.7 Hz
$1 / 2$	COM0-1	$40(20 \times 2)$	32 Hz	

(3) Output specification

(1) The segment pins (SEG0-SEG19) are selected by mask option in pairs for either segment signal output or DC output (VdD and Vss binary output). When DC output is selected, the data corresponding to COMO of each segment pin is output.
(2) When DC output is selected, either complementary output or Pch open drain output can be selected for each pin by mask option.

The pin pairs are the combination of SEG $(2 * n)$ and SEG $(2 * n+$ 1) (where n is an integer from 0 to 12).
(4) Drive bias

For the drive bias of the E0C6002 or the E0C60L02, either $1 / 3$ bias or $1 / 2$ bias can be selected by the mask option.

Control of LCD driver

Table 4.6 .2 shows the control bits of the LCD driver and their addresses. Figure 4.6 .10 shows the display memory map.

Table 4.6.2 Control bits of LCD driver

*1 Initial value following initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Always "0" when being read
*6 Refer to main manual

	Address	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Fig. 4.6.10																	
Display memory map	090	Display memory (Write only)															
	0A0									$\times 4$							

CSDC LCD drive switch (0FBH D3)
The LCD drive format can be selected with this switch.
When " 1 " is written: Static drive
When "0" is written: Dynamic drive
Reading: Valid
After an initial reset, dynamic drive ($\mathrm{CSDC}=" 0$ ") is selected.

Display memory (090H-0AFH)
The LCD segments are turned on or off according to this data.

When " 1 " is written: On
When " 0 " is written: Off
Reading: Invalid
By writing data into the display memory allocated to the LCD segment (on the panel), the segment can be turned on or off. After an initial reset, the contents of the display memory are undefined.

4.7 Clock Timer

Configuration of clock timer

The E0C6002 Series have a built-in clock timer driven by the source oscillator. The clock timer is configured as a seven-bit binary counter that serves as a frequency divider taking a 256 Hz source clock from a prescaler. The four high-order bits ($16 \mathrm{~Hz}-2 \mathrm{~Hz}$) can be read by the software.
Figure 4.7 .1 is the block diagram of the clock timer.

Normally, this clock timer is used for all kinds of timing purpose, such as clocks.

Interrupt function
The clock timer can interrupt on the falling edge of the 32 $\mathrm{Hz}, 8 \mathrm{~Hz}$, and 2 Hz signals. The software can mask any of these interrupt signals.
Figure 4.7 .2 is the timing chart of the clock timer.

Fig. 4.7.2 Timing chart of the clock timer

As shown in Figure 4.7.2, an interrupt is generated on the falling edge of the $32 \mathrm{~Hz}, 8 \mathrm{~Hz}$, and 2 Hz frequencies. When this happens, the corresponding interrupt event flag (IT32, IT8, IT2) is set to " 1 ". Masking the separate interrupts can be done with the interrupt mask register (EIT32, EIT8, EIT2). However, regardless of the interrupt mask register setting, the interrupt event flags will be set to "1" on the falling edge of their corresponding signal (e.g. the falling edge of the 2 Hz signal sets the 2 Hz interrupt factor flag to "1").

Note Write to the interrupt mask register (EIT32, EIT8, EIT2) only in the DI status (interrupt flag = "0"). Otherwise, it causes malfunction.

Control of clock timer

Table 4.7.1 shows the clock timer control bits and their addresses.

Table 4.7.1 Control bits of clock timer

Address	Register				Name	Init*1	1	0	Comment	
	D3	D2	D1	D0						
0E3H	TM3	TM2	TM1	TM0	TM3	- *3	High	Low	Clock timer data 2 Hz	
	т	TM2	TM1	TMO	TM2	- *3	High	Low	Clock timer data 4 Hz	
	R				TM1	- *3	High	Low	Clock timer data 8 Hz	
					TM0	- *3	High	Low	Clock timer data 16 Hz	
OEBH	0	EIT2	EIT8	EIT32	0					*5
	0		¢1\%		EIT2	0	Enable	Mask	Interrupt mask register (clock timer) 2 Hz	
	R	R/W			EIT8	0	Enable	Mask	Interrupt mask register (clock timer) 8 Hz	
	R				EIT32	0	Enable	Mask	Interrupt mask register (clock timer) 32 Hz	
OEFH	0	IT2	IT8	IT32	0					*5
	0	1	178	132	IT2	0	Yes	No	Interrupt factor flag (clock timer) 2 Hz	*4
	R				IT8	0	Yes	No	Interrupt factor flag (clock timer) 8 Hz	*4
					IT32	0	Yes	No	Interrupt factor flag (clock timer) 32 Hz	*4
OF9H	0	0	0	TMRST	0					*5
		0		TMRST	0					*5
	R			W	0					*5
					TMRST	Reset	Reset	-	Clock timer reset	*5

*1 Initial value following initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Always " 0 " when being read
*6 Refer to main manual

TM0-TM3 Timer data (0E3H)
The 16 Hz to 2 Hz timer data of the clock timer can be read from this register. These four bits are read-only, and write operations are invalid.
After an initial reset, the timer data is initialized to " OH ".

EIT32, EIT8, EIT2 Interrupt mask registers (0EBH D0-D2)
These registers are used to mask the clock timer interrupt.

When " 1 " is written:	Enabled
When " 0 " is written:	Masked
Reading:	Valid

The interrupt mask register bits (EIT32, EIT8, EIT2) mask the corresponding interrupt frequencies ($32 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{~Hz}$). After an initial reset, these registers are all set to " 0 ".

IT32, IT8, IT2 Interrupt factor flags (0EFH D0-D2)
These flags indicate the status of the clock timer interrupt.
When " 1 " is read: Interrupt has occurred When " 0 " is read: Interrupt has not occurred Writing: Invalid

The interrupt factor flags (IT32, IT8, IT2) correspond to the clock timer interrupts ($32 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{~Hz}$). The software can determine from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to " 1 " on the falling edge of the signal. These flags can be reset when the register is read by the software. Reading of interrupt factor flags is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
After an initial reset, these flags are set to " 0 ".

TMRST Clock timer reset (OF9H D0)
This bit resets the clock timer.
When " 1 " is written: Clock timer reset
When " 0 " is written: No operation
Reading: Always "0"
The clock timer is reset by writing " 1 " to TMRST. The clock timer starts immediately after this. No operation results when " 0 " is written to TMRST.
This bit is write-only, and so is always " 0 " when read.

4.8 A/D Converter

Configuration of A/D The E0C6002 Series have a CR oscillation type A/D conconverter verter. This A/D converter is equipped with two CR oscillation circuit systems and a counter that measures their oscillation frequency. Counted values represent connected resistance values converted into digital values. Connect a reference resistance that does not change oscillation frequency according to temperature between the RS and CS terminals and a sensor that does change resistance values according to temperature between the TH and CS terminals. Then, oscillate them alternately. The difference in the counted value can be evaluated as the difference between the respective oscillation frequencies. Therefore, various sensor circuit such as a temperature-measuring circuit using a thermistor can be easily created, for example. The configuration of the A/D converter is shown in Figure 4.8.1.

Connect a reference resistance that only slightly changes resistance values according to environmental conditions between the oscillating I/O terminals RS and CS. Connect a sensor that changes resistance values between the TH and CS terminals. Furthermore, by connecting a condenser between the CS and Vss, a CR oscillation circuit is completed.

Operation of A/D converter

This A/D converter performs CR oscillation using one of the two resistances connected to external devices. Their oscillation frequency serves as a clock from which the oscillation frequency is counted. Difference in counted oscillation frequency can be evaluated in terms of the difference between the respective resistance values. Measurement results can be obtained from the changes in resistance values after correcting the difference according to the program.
(1) External resistances and condenser

Connect a sensor (a variable resistance element such as a thermistor) between the TH and CS terminals.

Next, set the reference value of the item to be measured (e.g. reference temperature in the case of temperature measurement) and connect the reference resistance equivalent to the sensor resistance value at the above reference value between the RS and CS terminals. An element that does not change due to temperature or other environmental conditions must be used as the reference resistance.
Connect an oscillating condenser that is used for CR oscillation of both the reference resistance and the sensor between the CS and Vss terminals.
(2) Oscillation circuit

The CR oscillation circuit is designed so that either the reference resistance side or the sensor side can be operated independently by the oscillation control circuit.
A/D conversion begins when " 1 " is written in the ADRUN register (0 F 1 H D 0). At the same time, the oscillation circuit also turns on. At first, the circuit of the reference resistance side (RS) is operated by the oscillation control circuit. Then, the circuit of the sensor side (TH) turns on when counting by the oscillation clock of the reference resistance is terminated.

Each circuit performs the same oscillating operation as follows:
The $\operatorname{Tr} 1$ (Tr2) turns on first, and the condenser connected between the CS and Vss terminals is charged through the reference resistance (sensor). If the voltage level of the CS terminal decreases, the $\operatorname{Tr} 1$ ($\operatorname{Tr} 2$) turns off and the $\operatorname{Tr} 3$ turns on. As a result, the condenser becomes discharged, and oscillation is performed according to CR time constant. The time constant changes as the sensor resistance value fluctuates, producing a difference from the oscillation frequency of the reference resistance.

Oscillation waveforms are shaped by the Schmitt trigger and transmitted to counter. The clock transmitted to the counter is also output from the ADOUT terminal. As a result, oscillation frequency can be identified by the oscilloscope. Since this monitor has no effect on oscillation frequency, it can be used to adjust CR oscillation frequency.

Oscillation waveforms and waveforms output from the ADOUT terminal are shown in Figure 4.8.2.

Fig. 4.8.2
Oscillation waveforms

(3) Counter

The A/D converter incorporates two types of 16-bit counters. One is the up-counter C0-C15 that counts the aforementioned oscillation clock, and the other is up/ down counter TCO-TC15 that counts the internal clock for reference counting. Each counter permits reading and writing on a 4-bit basis.
The input unit of the up/down counter TC0-TC15 incorporates a multiplying circuit so that either the OSC1 clock (Typ. 32.768 kHz) or its multiplication clock (Typ. 65.536 kHz) can be selected as an input clock.

When A/D conversion is initiated by the ADRUN register, oscillation by the reference resistance begins first, and the up-counter C0-C15 starts counting up according to the oscillation clock. At the same time, the up/down counter TC0-TC15 starts counting up.

Timing in starting oscillation and starting counting up are shown in Figure 4.8.3.
The up-counter becomes ENABLE at the falling edge of the first clock after CR oscillation is initiated and starts counting up from the falling edge of the next clock. The up/down counter becomes ENABLE at the falling edge of the internal clock which is input immediately after the first CR oscillation clock has fallen. Then, it starts counting up from the falling edge of the next internal clock.

Fig. 4.8.3 timing

If the up-counter $\mathrm{C} 0-\mathrm{C} 15$ becomes " 0000 H " due to overflow, the sensor side of the oscillation circuit turns on, and the up-counter starts counting up according to the oscillation clock on the sensor side.
The up/down counter TC0-TC15 shifts to the countingdown mode at this point and starts counting down from the value measured as a result of oscillation by the reference resistance.
Timing in starting counting when oscillation is switched, is same as Figure 4.8.3.

When the up/down counter TC0-TC15 has counted down to " 0000 H ", the counting operation of both counters and CR oscillation stops, and an interrupt occurs. At the same time, the ADRUN register is set to " 0 ", and the A/D converter circuit stops operation completely.

The sensor is oscillated for the same period of time as the reference resistance is oscillated after the up/down counter TC0-TC15 is set to " 0000 H " prior to A/D conversion. Therefore, the difference in oscillation frequency can be measured from the values counted by the up-counter C0-C15.

Since the reference resistance is oscillated until the upcounter C0-C15 overflows, an appropriate initial value needs to be set before A/D conversion is started. If a smaller initial value is set, a longer counting period is possible, thereby ensuring more accurate detection. Likewise, if the input clock of the up/down counter TC0TC15 is set at 65 kHz , the degree of precision is reduced. However, since CR oscillation frequency is normally set lower than the clock frequency of the up/down counter TC0-TC15 to ensure accurate measurement, the up/ down counter TC0-TC15 may overflow while counting the oscillation frequency of the reference resistance. If an overflow occurs, CR oscillation and A/D conversion is terminated immediately. Also in such cases, the up/ down counter indicates " 0000 H ", and interrupt occurs. However, it is impossible to judge whether the interrupt has occurred due to an overflow or normal termination.

Note that correct measurement is impossible if an overflow occurs. The initial value to be set depends on the measurable range by the sensor or where to set the reference resistance value within that range. The initial value must be set taking the above into consideration.
Convert the initial value into a complement (value subtracted from 0000 H) before setting it on the up-counter C0-C15. Since the data output from the up-counter C0C15 after A/D conversion matches data detected by the sensor, process the difference between that value and the initial value before it is converted into a complement according to the program and calculate the target value. The above operations are shown in Figure 4.8.4.

Fig. 4.8.4
Sequence of A/D conversion

Note - Set the initial value of the up-counter C0-C15 taking into account the measurable range and the overflow of the up/down counter TC0-TC15.

- If the up/down counter TC0-TC15 is measured after A/D conversion, it may not indicate "0000H". This is not due to incorrect timing in terminating A/D conversion but because the counting down clock is input after the control signal is output to the up-counter to terminate counting.

Interrupt function

The A/D converter has a function which allows interrupt to occur after A/D conversion.
When the up/down counter TC0-TC15 is counted down to " 0000 H ", both counters stop counting. The interrupt factor flag IAD is set to " 1 " at the falling edge of the next clock. If the up/down counter TC0-TC15 overflow during countingup operation, the interrupt factor flag is set to " 1 " at the rising edge of the clock immediately after the counter reaches "0000H".
This interrupt factor allows masking by the interrupt mask register EIAD. If the EIAD is set at " 1 ", an interrupt occurs in the CPU. If the EIAD is set at " 0 ", the interrupt factor flag is set to "1". However, no interrupt will occur in the CPU. The interrupt factor flag is reset to " 0 " by a reading operation.
Timing of interrupt by the A/D converter is shown in Figure 4.8.5.

Fig. 4.8.5

Timing of A / D
converter interrupt
conver interupt

Temperature measurement is possible with the A/D converter in which a thermistor is used as a sensor. Elements to be connected and counter setting in the case of temperature measurement are as follows:

Example: Temperature measurement at $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Reference resistance $49.8 \mathrm{k} \Omega$
Thermistor $50 \mathrm{k} \Omega$
Oscillating condenser 2,200 pF

When the above elements are connected, the oscillation frequency of the reference resistance becomes about 10 kHz , and the oscillation frequency of the thermistor varies within the range of about 1 kHz to 50 kHz at $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
Reference resistance is adjusted to the thermistor resistance value at $25^{\circ} \mathrm{C}$.

In addition, Figure 4.8.6 indicates the resistance and oscillation frequency ratio TYP at the time of A/D conversion.

Fig. 4.8.6
Resistance and oscillation frequency ratio

Control of A/D converter

Table 4.8.2 shows the A/D converter control bits and their addresses.

Table 4.8.2 Control bits of clock timer

Address	Register								Comment	
	D3	D2	D1	D0	Name	Init*1	1	0		
0E4H	TC3	TC2	TC1	TC0	TC3	- *3	1	0	Up/down counter data TC3	
					TC2	- *3	1	0	Up/down counter data TC2	
	R/W				TC1	- *3	1	0	Up/down counter data TC1	
					TCO	- *3	1	0	Up/down counter data TC0 (LSB)	
0E5H	TC7	TC6	TC5	TC4	TC7	- *3	1	0	Up/down counter data TC7	
	107	TC6			TC6	- *3	1	0	Up/down counter data TC6	
	R/W				TC5	- *3	1	0	Up/down counter data TC5	
					TC4	- *3	1	0	Up/down counter data TC4	
0E6H	TC11	TC10	TC9	TC8	TC11	- *3	1	0	Up/down counter data TC11	
	TC1	TC10	T09	TC8	TC10	- *3	1	0	Up/down counter data TC10	
	R/W				TC9	- *3	1	0	Up/down counter data TC9	
					TC8	- *3	1	0	Up/down counter data TC8	
0E7H	TC15	TC14	TC13	TC12	TC15	- *3	1	0	Up/down counter data TC15 (MSB)	
			TC13		TC14	- *3	1	0	Up/down counter data TC14	
	R/W				TC13	- *3	1	0	Up/down counter data TC13	
					TC12	-*3	1	0	Up/down counter data TC12	
0F5H	C3	C2	C1	CO	C3	- *3	1	0	Up-counter data C3	
					C2	- *3	1	0	Up-counter data C2	
	R/W				C1	- *3	1	0	Up-counter data C1	
					CO	- *3	1	0	Up-counter data C0 (LSB)	
0F6H	C7	C6	C5	C4	C7	- *3	1	0	Up-counter data C7	
		C6	Cs	C4	C6	- *3	1	0	Up-counter data C6	
	R/W				C5	- *3	1	0	Up-counter data C5	
					C4	- *3	1	0	Up-counter data C4	
0F7H	C11	C10	C9	C8	C11	- *3	1	0	Up-counter data C11	
	C1	0	O	C8	C10	- *3	1	0	Up-counter data C10	
	R/W				C9	- *3	1	0	Up-counter data C9	
					C8	- *3	1	0	Up-counter data C8	
0F8H	C15	C14	C13	C12	C15	- *3	1	0	Up-counter data C15 (MSB)	
					C14	- *3	1	0	Up-counter data C14	
	R/W				C13	- *3	1	0	Up-counter data C13	
					C12	- *3	1	0	Up-counter data C12	
0F1H	0	0	0	ADRUN	0					*5
					0					*5
	R			R/W	0					*5
						0	Start	Stop	A/D conversion Start/Stop	
OFEH	0	0	0	ADCLK	0					*5
	R			RW	0					*5
				R/W	ADCLK	0	65 kHz	32 kHz	A/D clock selection $65 \mathrm{kHz} / 32 \mathrm{kHz}$	
0ECH	0	0	0	EIAD	0					*5
					0					*5
	R			R/W	0					*5
				R/	EIAD	0	Enable	Mask	Interrupt mask register (A/D)	
OFOH	0	0	0	IAD	0					*5
					0					*5
	R				0					*5
					IAD	0	Yes	No	Interrupt factor flag (A/D)	*4

[^0]*4 Reset (0) immediately after being read
*5 Always " 0 " when being read
*6 Refer to main manual

TC0-TC15 Up/down counter (0E4H-0E7H)

Writing and reading is possible on a 4 -bit basis by the up/ down counter that is used to adjust the CR oscillation time between the reference resistance and the variable resistance elements.

The up/down counter counts up during oscillation of the reference resistance and counts down from the value it reached when counting up to "0000H" during oscillation of the sensor.
" 0000 H " needs to be entered in the counter prior to A/D conversion in order to adjust the counting time of both counts.

After an initial reset, data in this counter become indefinite.

C0-C15 Up-counter (0F5H-0F8H)
This counter counts up according to the CR oscillation clock. It permits writing and reading on a 4-bit basis. The complement of the number of clocks to be counted by the oscillation of the reference resistance, must be entered in this counter prior to A/D conversion.
If A / D conversion is initiated, the counter counts up from the set initial value, first according to the oscillation clock of the reference resistance. When the counter reaches " $0000 \mathrm{H}^{\prime}$ due to overflow, the oscillation of the reference resistance stops, and the sensor starts oscillating. The counter continues counting according to the sensor oscillation clock. Counting time during the oscillation of the reference resistance is calculated by the up/down counter TC0-TC15. Upcounter C0-C15 stops counting when the same period of time elapses. Difference from the reference resistance can be evaluated from the value indicated by the counter when it stops. Calculate the target value by processing the above difference according to the program.
Measurable range and the overflow of the up/down counter TC0-TC15 must be taken into account when setting an initial value to be entered prior to A/D conversion.
After an initial reset, data in this counter become indefinite.

ADCLK Input clock selection (0FEH D0)
Select the input clock of the up/down counter TC0-TC15.

When " 1 " is written:	65 kHz
When " 0 " is written:	32 kHz
Reading:	Valid

Select the output clock of the multiplying circuit for the counting operation of the up/down counter TC0-TC15. When " 1 " is written in the ADCLK, 65 kHz , a multitude of the OSC1 clock is selected. When " 0 " is written, the OSC1 clock is selected at 32 kHz .

If 65 kHz is selected, A / D conversion becomes more accurate. However, the initial value must be set on the upcounter C0-C15 so that the up/down counter TC0-TC15 will not overflow while CR oscillation is being counted. After an initial reset, ADCLK is set to " 0 ".

ADRUN A/D conversion START/STOP (0F1H D0) Start A/D conversion.

When " 1 " is written: A/D conversion starts
When " 0 " is written: A/D conversion stops Reading: Valid

When " 1 " is written in the ADRUN, A/D conversion begins. The register remains at " 1 " during A / D conversion and is set to " 0 " when A / D conversion is terminated. When " 0 " is written in the ADRUN during A/D conversion, A/D conversion is paused. ADRUN is set to " 0 " at initial reset, when the up/down counter overflows or when measurement is finished.

EIAD Interrupt mask register (0ECH D0)
Select whether to mask interrupt with the A/D converter.
When " 1 " is written: Enable
When " 0 " is written: Mask
Reading: Valid
The A/D converter interrupt is permitted when " 1 " is written in the EIAD. When " 0 " is written, interrupt is masked. After an initial reset, this register is set to " 0 ".

IAD Interrupt factor flag (0FOH D0)
This flag indicates interrupt caused by the A/D converter.
When " 1 " is read: Interrupt has occurred
When " 0 " is read: Interrupt has not occurred
Writing: Invalid
IAD is set to " 1 " when A/D conversion is terminated (when the up/down counter counted up or down to "0000H"). From the status of this flag, the software can decide whether an A/D converter interrupt has occurred.
This flag is reset when the software has read it.
Reading of interrupt factor flag is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to "1", an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated.
After an initial reset, this flag is set to " 0 ".

4.9 Heavy Load Protection Function

Operation of heavy load protection function

The E0C6002 Series have a heavy load protection function for when the battery load becomes heavy and the supply voltage drops, such as when an external buzzer sounds or an external lamp lights. This function works in the heavy load protection mode.

The normal mode changes to the heavy load protection mode in the following case:

- When the software changes the mode to the heavy load protection mode (HLMOD = "1")

In the heavy load protection mode, the internally regulated voltage is switched to the high-stability mode from the low current consumption mode. Consequently, more current is consumed in the heavy load protection mode than in the normal mode. Unless necessary, do not select the heavy load protection mode with the software.

Control of heavy

 load protection
function

Table 4.9.1 Control bits for heavy load protection function

Address	Register				Name	Init *1	1	0	Comment	
	D3	D2	D1	D0						
OFAH	HLMOD	0	0	0	$\begin{gathered} \hline \text { HLMOD } \\ 0 \end{gathered}$	0	Heavy	Normal	Heavy load protection mode register	*5
	R/W	R			$\begin{aligned} & 0 \\ & 0 \end{aligned}$					*5

*1 Initial value following initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Always " 0 " when being read
*6 Refer to main manual

HLMOD Heavy load protection mode on/off (OFAH D3)
When " 1 " is written: Heavy load protection mode on When " 0 " is written: Heavy load protection mode off Reading: Valid When HLMOD is set to " 1 ", the IC enters the heavy load protection mode.

In the heavy load protection mode, the consumed current becomes larger. Unless necessary, do not select the heavy load protection mode with the software.

4.10 Interrupt and HALT

The E0C6002 Series provide the following interrupt settings, each of which is maskable.

$$
\begin{array}{ll}
\text { External interrupt: } & \text { Input interrupt (one) } \\
\text { Internal interrupt: } & \text { Timer interrupt (one) } \\
& \text { A/D converter interrupt (one) }
\end{array}
$$

To enable interrupts, the interrupt flag must be set to " 1 " (EI) and the necessary related interrupt mask registers must be set to " 1 " (enable). When an interrupt occurs, the interrupt flag is automatically reset to "O" (DI) and interrupts after that are inhibited.

When a HALT instruction is input, the CPU operating clock stops and the CPU enters the halt state. The CPU is reactivated from the halt state when an interrupt request occurs. Figure 4.10 .1 shows the configuration of the interrupt circuit.

Fig. 4.10.1
Configuration of interrupt circuit

Table 4.10 .1 shows the factors that generate interrupt requests.

The interrupt factor flags are set to " 1 " depending on the corresponding interrupt factors.

The CPU is interrupted when the following two conditions occur and an interrupt factor flag is set to " 1 ".

- The corresponding mask register is " 1 " (enabled)
- The interrupt flag is " 1 " (EI)

The interrupt factor flag is a read-only register, but can be reset to " 0 " when the register data is read.
After an initial reset, the interrupt factor flags are reset to " 0 ".

Note Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

Table 4.10.1 Interrupt factors	Interrupt factor	Interrupt factor flag	
	Colck timer 2 Hz falling edge	IT2	(0EFH D2)
	Colck timer 8 Hz falling edge	IT8	(0EFH D1)
	Colck timer 32 Hz falling edge	IT32	(0EFH D0)
	A/D converter A/D conversion completion	IAD	(0F0H D0)
	Input data (K00-K03) Rising edge	IK0	(0EDH D0)

Specific masks and factor flags for interrupt

The interrupt factor flags can be masked by the corresponding interrupt mask registers. The interrupt mask registers are read/write registers. They are enabled (interrupt enabled) when " 1 " is written to them, and masked (interrupt disabled) when " 0 " is written to them. After an initial reset, the interrupt mask register is set to " 0 ".
Table 4.10.2 shows the correspondence between interrupt mask registers and interrupt factor flags.

Interrupt mask registers and interrupt factor flags	Interrupt mask register		Interrupt factor flag	
	EIT2	(0EBH D2)	IT2	(0EFH D2)
	EIT8	(0EBH D1)	IT8	(0EFH D1)
	EIT32	(0EBH D0)	IT32	(0EFH D0)
	EIAD	(0ECH D0)	IAD	(0F0H D0)
	EIK03*	(0E8H D3)	IK0	(0EDH D0)
	EIK02*	(0E8H D2)		
	EIK01*	(0E8H D1)		
	EIK00*	(0E8H D0)		

* There is an interrupt mask register for each input port pin.

Interrupt vectors

When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being executed is suspended, interrupt processing is executed in the following order:
(1) The address data (value of the program counter) of the program step to be executed next is saved on the stack (RAM).
(2) The interrupt request causes the value of the interrupt vector (page $1,01 \mathrm{H}-07 \mathrm{H}$) to be loaded into the program counter.
(3) The program at the specified address is executed (execution of interrupt processing routine).

Note The processing in steps 1 and 2, above, takes 12 cycles of the CPU system clock.

Control of interrupt

Table 4.10 .3 shows the interrupt control bits and their addresses.

Table 4.10.3 Interrupt control bits

Address	Register				Name	Init*1	1	0	Comment	
	D3	D2	D1	D0						
0E8H	FIK03	FIK02	FIK01	FIK00	EIK03	0	Enable	Mask	Interrupt mask register K03	
					EIK02	0	Enable	Mask	Interrupt mask register K02	
	R/W				EIK01	0	Enable	Mask	Interrupt mask register K01	
					EIK00	0	Enable	Mask	Interrupt mask register K00	
OEBH	0	EIT2	EIT8	EIT32	0					*5
					EIT2	0	Enable	Mask	Interrupt mask register (clock timer) 2 Hz	
	R	R/W			EIT8	0	Enable	Mask	Interrupt mask register (clock timer) 8 Hz	
	R				EIT32	0	Enable	Mask	Interrupt mask register (clock timer) 32 Hz	
0 ECH	0	0	0	EIAD	0					*5
					0					*5
	R			R/W	0					*5
					EIAD	0	Enable	Mask	Interrupt mask register (A/D)	
0EDH	0	0	0	IKO	0					*5
					0					*5
	R				0					*5
					IKO	0	Yes	No	Interrupt factor flag (K00-K03)	*4
0EFH	0	IT2	IT8	IT32						*5
					IT2	0	Yes	No	Interrupt factor flag (clock timer) 2 Hz	*4
	R				IT8	0	Yes	No	Interrupt factor flag (clock timer) 8 Hz	*4
					IT32	0	Yes	No	Interrupt factor flag (clock timer) 32 Hz	* 4
OFOH	0	0	0	IAD	0					*5
					0					*5
	R				0					*5
					IAD	0	Yes	No	Interrupt factor flag (A/D)	*4

*1 Initial value following initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Always " 0 " when being read
*6 Refer to main manual

EIT32, EIT8, EIT2 Interrupt mask registers (0EBH D0-D2)
IT32, IT8, IT2 Interrupt factor flags (0EFH D0-D2)
See 4.7, "Clock Timer".
EIAD Interrupt mask register (0ECH D0)
IAD Interrupt factor flag (0FOH D0)
See 4.8, "A/D Converter".
EIK00-EIK03 Interrupt mask registers (0E8H)
IK0 Interrupt factor flag (0EDH D0)
See 4.3, "Input Ports".

CHAPTER 5

BASIC EXTERNAL WIRING DIAGRAM

(1) Piezo Buzzer Single Terminal Driving

X'tal	Crystal oscillator	$32,768 \mathrm{~Hz} \quad \mathrm{Cl}(\mathrm{MAX})=35 \mathrm{k} \Omega$
CG	Trimmer capacitor	$5-25 \mathrm{pF}$
$\mathrm{C} 1, \mathrm{C} 2$	Capacitor	$0.1 \mu \mathrm{~F}$
Cp	Capacitor	$3.3 \mu \mathrm{~F}$
TH	Thermistor	$50 \mathrm{k} \Omega$
Rs	Resistor	$49.8 \mathrm{k} \Omega$
CAD	Capacitor	$2,200 \mathrm{pF}$

(2) Piezo Buzzer Direct Driving

X'tal	Crystal oscillator	$32,768 \mathrm{~Hz} \quad \mathrm{Cl}(\mathrm{MAX})=35 \mathrm{k} \Omega$
CG	Trimmer capacitor	$5-25 \mathrm{pF}$
$\mathrm{C} 1, \mathrm{C}_{2}$	Capacitor	$0.1 \mu \mathrm{~F}$
Cp	Capacitor	$3.3 \mu \mathrm{~F}$
TH	Thermistor	$50 \mathrm{k} \Omega$
Rs	Resistor	$49.8 \mathrm{k} \Omega$
CAD	Capacitor	$2,200 \mathrm{pF}$

CHAPTER 6

ELECTRICAL CHARACTERISTICS

6.1 Absolute Maximum Rating

E0C6002

Item	Symbol	Rated value	Unit
Power voltage	Vss	-5.0 to 0.5	V
Input voltage (1)	VI	Vss-0.3 to 0.5	V
Input voltage (2)	VIosc	Vss-0.3 to 0.5	V
Operating temperature	Topr	-20 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$
Soldering temperature / Time	Tsol	$260^{\circ} \mathrm{C}, 10 \sec ($ lead section $)$	-
Allowable dissipation ${ }^{* 1}$	PD	250	mW

*1 In case of QFP6-60 pin plastic package

E0C60L02

(VdD=0V)

Item	Symbol	Rated value	Unit
Power voltage	Vss	-5.0 to 0.5	V
Input voltage (1)	VI	Vss-0.3 to 0.5	V
Input voltage (2)	Viosc	Vss-0.3 to 0.5	V
Operating temperature	Topr	-20 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$
Soldering temperature / Time	Tsol	$260^{\circ} \mathrm{C}, 10 \sec ($ lead section $)$	-
Allowable dissipation ${ }^{* 1}$	PD	250	mW

*1 In case of QFP6-60 pin plastic package

6.2 Recommended Operating Conditions

E0C6002

($\mathrm{Ta}=-20$ to $70^{\circ} \mathrm{C}$)						
Item	Symbol	Condition	Min	Typ	Max	Unit
Power voltage	Vss	VdD=0V	-3.5	-3.0	-1.8	V
Oscillation frequency	fosc1	Crystal oscillation		32,768		Hz
Oscillation frequency	fosc1	Crystal oscillation		32,768		Hz
	fosc2	CR oscillation, $\mathrm{R}=420 \mathrm{k} \Omega$		65	80	kHz
Booster capacitor	C1		0.1			$\mu \mathrm{F}$
Capacitor between VdD and Vs1	C2		0.1			$\mu \mathrm{F}$

E0C60L02

Item	Symbol	Condition	Min	Typ	Max	Unit
Power voltage	Vss	VdD $=0 \mathrm{~V}^{* 3}$	-2.0	-1.5	-1.2	V
		VDD=0V, With software correspondence *1	-2.0	-1.5	$-0.9 * 2$	V
Oscillation frequency	fosc1	Crystal oscillation		32,768		Hz
Oscillation frequency	fosc1	Crystal oscillation		32,768		Hz
	fosc2	CR oscillation, $\mathrm{R}=420 \mathrm{k} \Omega$		65	80	kHz
Booster capacitor	C 1		0.1			$\mu \mathrm{F}$
Capacitor between VDD and Vs1	C2		0.1			$\mu \mathrm{F}$

* 1 When switching to the heavy load protection mode.
(For details, refer to Section 4.9).
*2 The voltage which can be displayed on the LCD panel will differ according to the characteristics of the LCD panel.
*3 When there is no software correspondence during CR oscillation or crystal oscillation.

6.3 DC Characteristics

E0C6002

Unless otherwise specified
Vdd $=0 \mathrm{~V}$, Vss $=-3.0 \mathrm{~V}$, fosc $=32,768 \mathrm{~Hz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Vs1, Vl1, Vl2 and Vl3 are internal voltages, and $\mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$

Item	Symbol	Condition		Min	Typ	Max	Unit
High level input voltage (1)	VIH1		K00-K03, P00-P03	$0.2 \bullet$ Vss		0	V
High level input voltage (2)	VIH2		RESET, TEST	$0.15 \cdot$ Vss		0	V
Low level input voltage (1)	VIL1		K00-K03, P00-P03	Vss		$0.8 \cdot$ Vss	V
Low level input voltage (2)	VIL2		RESET, TEST	Vss		$0.85 \cdot \mathrm{Vss}$	V
High level input current (1)	IIH1	VIH1=0V Without pull down resistor	K00-K03, P00-P03	0		0.5	$\mu \mathrm{A}$
High level input current (2)	IIH2	$\mathrm{V}_{\mathrm{IH} 2}=0 \mathrm{~V}$ With pull down resistor	K00-K03	5		16	$\mu \mathrm{A}$
High level input current (3)	ІІн3	$\mathrm{V}_{\mathrm{IH} 3}=0 \mathrm{~V}$ With pull down resistor	P00-P03 RESET, TEST	30		100	$\mu \mathrm{A}$
Low level input current	IIL	VIL=Vss	K00-K03, P00-P03 RESET, TEST	-0.5		0	$\mu \mathrm{A}$
High level output current (1)	IOH1	VoH1 $=0.1 \cdot$ Vss	R02, R03, P00-P03			-1.0	mA
High level output current (2)	IOH2	VOH2 $=0.1 \cdot$ Vss (built-in protection resistance)	R00, R01			-1.0	mA
High level output current (3)	IOH3	VOH3=-1.0V	ADOUT			-1.0	mA
Low level output current (1)	IoL1	VOL1 $=0.9 \cdot \mathrm{VSS}$	R02, R03, P00-P03	3.0			mA
Low level output current (2)	IoL2	VOL2 $=0.9 \cdot$ VSS (built-in protection resistance)	R00, R01	3.0			mA
Low level output current (3)	Iol3	VoL3=-2.0V	ADOUT	3.0			mA
Common output current	Ioh4	VOH4 $=-0.05 \mathrm{~V}$	COM0-COM3			-3	$\mu \mathrm{A}$
	Iol4	VoL4=VL3+0.05V		3			$\mu \mathrm{A}$
Segment output current (during LCD output)	Ioh5	VOH5 $=-0.05 \mathrm{~V}$	SEG0-SEG19			-3	$\mu \mathrm{A}$
	IoL5	VoL5 $=\mathrm{VL} 3+0.05 \mathrm{~V}$		3			$\mu \mathrm{A}$
Segment output current (during DC output)	IOH6	VOH6 $=0.1 \cdot \mathrm{VsS}$	SEG0-SEG19			-300	$\mu \mathrm{A}$
	IoL6	VOL6 $=0.9 \cdot \mathrm{VSS}$		300			$\mu \mathrm{A}$

E0C60L02

Unless otherwise specified
Vdd $=0 \mathrm{~V}$, Vss $=-1.5 \mathrm{~V}$, fosc $=32,768 \mathrm{~Hz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vs} 1, \mathrm{VL} 1, \mathrm{VL} 2$ and VL3 are internal
voltages, and $\mathrm{C}_{1}=\mathrm{C} 2=0.1 \mu \mathrm{~F}$

Item	Symbol	Condition		Min	Typ	Max	Unit
High level input voltage (1)	VIH1		K00-K03, P00-P03	$0.2 \cdot \mathrm{Vss}$		0	V
High level input voltage (2)	VIH2		RESET, TEST	$0.15 \cdot \mathrm{Vss}$		0	V
Low level input voltage (1)	VIL1		K00-K03, P00-P03	Vss		$0.8 \cdot$ Vss	V
Low level input voltage (2)	VIL2		RESET, TEST	Vss		$0.85 \cdot \mathrm{Vss}$	V
High level input current (1)	IIH1	$\mathrm{V}_{\mathrm{IH} 1}=0 \mathrm{~V}$ Without pull down resistor	K00-K03, P00-P03	0		0.5	$\mu \mathrm{A}$
High level input current (2)	IIH2	$\mathrm{V}_{\mathrm{IH} 2}=0 \mathrm{~V}$ With pull down resistor	K00-K03	2.0		16	$\mu \mathrm{A}$
High level input current (3)	IIH3	$\mathrm{V}_{\mathrm{IH} 3}=0 \mathrm{~V}$ With pull down resistor	P00-P03 RESET, TEST	9.0		100	$\mu \mathrm{A}$
Low level input current	IIL	VIL=VSS	K00-K03, P00-P03 RESET, TEST	-0.5		0	$\mu \mathrm{A}$
High level output current (1)	IOH1	VoH1 $=0.1 \cdot \mathrm{Vss}$	R02, R03, P00-P03			-200	$\mu \mathrm{A}$
High level output current (2)	IOH2	$\text { VOH2 }=0.1 \cdot \mathrm{VSS}$ (built-in protection resistance)	R00, R01			-200	$\mu \mathrm{A}$
High level output current (3)	IOH3	VOH3=-0.5V	ADOUT			-200	$\mu \mathrm{A}$
Low level output current (1)	Iol1	VOL1 $=0.9 \cdot \mathrm{VSS}$	R02, R03, P00-P03	700			$\mu \mathrm{A}$
Low level output current (2)	IoL2	VOL2 $=0.9 \cdot$ VSS (built-in protection resistance)	R00, R01	700			$\mu \mathrm{A}$
Low level output current (3)	Iol3	VoL3=-1.0V	ADOUT	700			$\mu \mathrm{A}$
Common output current	Ioh4	VOH4=-0.05V	COM0-COM3			-3	$\mu \mathrm{A}$
	IoL4	VoL4=VL3+0.05V		3			$\mu \mathrm{A}$
Segment output current (during LCD output)	Ioh5	Voh5=-0.05V	SEG0-SEG19			-3	$\mu \mathrm{A}$
	IoL5	VoL5=VL3+0.05V		3			$\mu \mathrm{A}$
Segment output current (during DC output)	Ioh6	VOH6 $=0.1 \cdot \mathrm{Vss}$	SEG0-SEG19			-100	$\mu \mathrm{A}$
	IoL6	VoL6 $=0.9 \cdot$ Vss		130			$\mu \mathrm{A}$

6.4 Analog Circuit Characteristics and Power Current Consumption

E0C6002 (Normal Operating Mode)

Unless otherwise specified
Vdd=0 V, Vss $=-3.0 \mathrm{~V}$, fosc $=32,768 \mathrm{~Hz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Cg}=25 \mathrm{pF}$, Vs1, Vlı, Vl2 and Vl3
are internal voltages, and $\mathrm{C}_{1}=\mathrm{C} 2=0.1 \mu \mathrm{~F}$
(During A/D conversion: $\mathrm{RS}=49.8 \mathrm{k} \Omega, \mathrm{TH}=50 \mathrm{k} \Omega, \mathrm{CAD}=2,200 \mathrm{pF}$)

Item	Symbol	Condition	Min	Typ	Max	Unit
Internal voltage	VL1	Connect 1M Ω load resistor between VDD and VL1 (without panel load)	$\begin{gathered} 1 / 2 \cdot \mathrm{VL}_{2} \\ -0.1 \\ \hline \end{gathered}$		$\begin{gathered} 1 / 2 \cdot \mathrm{VL}^{2} 2 \\ \times 0.9 \end{gathered}$	V
	VL2	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL2 (without panel load)		Vss		V
	VL3	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL3 (without panel load)	$\begin{gathered} 3 / 2 \cdot \mathrm{VL}_{2} \\ -0.1 \end{gathered}$		$\begin{gathered} 3 / 2 \cdot V_{\text {L2 }} \\ \times 0.9 \end{gathered}$	V
Power current consumption	Iop	During HALT		1.0	2.5	$\mu \mathrm{A}$
		During execution Without panel load		2.5	5.0	$\mu \mathrm{A}$
		During A/D conversion (HALT)		30	40	$\mu \mathrm{A}$

E0C6002 (Heavy Load Protection Mode)

Unless otherwise specified
Vdd=0 V, Vss $=-3.0 \mathrm{~V}$, fosc $=32,768 \mathrm{~Hz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Cg}=25 \mathrm{pF}$, Vs1, Vl1, Vl2 and Vl3 are internal voltages, and $\mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$
(During A/D conversion: $\mathrm{Rs}=49.8 \mathrm{k} \Omega, \mathrm{TH}=50 \mathrm{k} \Omega, \mathrm{CAD}=2,200 \mathrm{pF}$)

Item	Symbol	Condition		Min	Typ	Max	Unit
Internal voltage	VL1	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL1 (without panel load)		$\begin{gathered} 1 / 2 \cdot \text { VL2 }^{2} \\ \hline-0.1 \end{gathered}$		$\begin{gathered} 1 / 2 \cdot \mathrm{VL}_{\mathrm{L}} \\ \times 0.85 \end{gathered}$	V
	VL2	Connect 1M Ω load resistor between VDD and VL2 (without panel load)			Vss		V
	VL3	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL3 (without panel load)		$\begin{gathered} 3 / 2 \cdot \text { VL2 }^{2} \\ \hline \end{gathered}$		$\begin{gathered} 3 / 2 \cdot \mathrm{VL}_{2} \\ \times 0.85 \end{gathered}$	V
Power current consumption	Iop	During HALT	Without panel load		2.0	5.5	$\mu \mathrm{A}$
		During execution			5.5	10.0	$\mu \mathrm{A}$
		During A/D conversion (HALT)			31	41.5	$\mu \mathrm{A}$

E0C60L02 (Normal Operating Mode)

Unless otherwise specified
Vdd=0 V, Vss $=-1.5 \mathrm{~V}$, fosc $=32,768 \mathrm{~Hz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Cg}=25 \mathrm{pF}$, Vs1, Vl1, Vl2 and Vl3 are internal voltages, and $\mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$
(During A/D conversion: RS $=49.8 \mathrm{k} \Omega, \mathrm{TH}=50 \mathrm{k} \Omega, \mathrm{CAD}=2,200 \mathrm{pF}$)

Item	Symbol	Condition		Min	Typ	Max	Unit
Internal voltage	VL1	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL1 (without panel load)			Vss		V
	VL2	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL2 (without panel load)		$\begin{gathered} \hline 2 \cdot \mathrm{VL}_{1} \\ -0.1 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 2 \cdot \mathrm{~V}_{\mathrm{L} 1} \\ & \times 0.9 \\ & \hline \end{aligned}$	V
	VL3	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL3 (without panel load)		$\begin{gathered} 3 \cdot V_{L 1} \\ -0.1 \end{gathered}$		$\begin{aligned} & \hline 3 \cdot V_{L 1} \\ & \times 0.9 \\ & \hline \end{aligned}$	V
Power current consumption	IOP	During HALT	Without panel load		1.0	2.5	$\mu \mathrm{A}$
		During execution			2.5	5.0	$\mu \mathrm{A}$
		During A/D conversion (HALT)			30	40	$\mu \mathrm{A}$

E0C60L02 (Heavy Load Protection Mode)

Unless otherwise specified
Vdd=0 V, Vss $=-1.5 \mathrm{~V}$, fosc $=32,768 \mathrm{~Hz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Cg}=25 \mathrm{pF}$, Vs1, Vl1, Vl2 and Vl3 are internal voltages, and $\mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$
(During A/D conversion: $\mathrm{Rs}=49.8 \mathrm{k} \Omega, \mathrm{TH}=50 \mathrm{k} \Omega, \mathrm{CAD}=2,200 \mathrm{pF}$)

Item	Symbo	Condition	Min	Typ	Max	Unit
Internal voltage	VL1	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL1 (without panel load)		Vss		V
	VL2	Connect 1M Ω load resistor between VDD and VL2 (without panel load)	$\begin{gathered} \hline 2 \cdot V_{\mathrm{L} 1} \\ -0.1 \end{gathered}$		$\begin{array}{r} 2 \cdot V_{L 1} \\ \times 0.85 \\ \hline \end{array}$	V
	VL3	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL3 (without panel load)	$\begin{gathered} \hline 3 \cdot V_{L 1} \\ -0.1 \end{gathered}$		$\begin{array}{r} 3 \cdot \mathrm{VL1}^{1} \\ \times 0.85 \\ \hline \end{array}$	V
Power current consumption	Iop	During HALT		2.0	5.5	$\mu \mathrm{A}$
		During execution Without panel load		5.5	10.0	$\mu \mathrm{A}$
		During A/D conversion (HALT)		31	41.5	$\mu \mathrm{A}$

E0C6002 (CR, Normal Operating Mode)

Unless otherwise specified
Vdd $=0 \mathrm{~V}$, Vss $=-3.0 \mathrm{~V}$, fosc $=65 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Cg}=25 \mathrm{pF}, \mathrm{Vs} 1, \mathrm{Vl} 1, \mathrm{Vl} 2$ and Vl3 are internal voltages, and $\mathrm{C}_{1}=\mathrm{C} 2=0.1 \mu \mathrm{~F}$, Recommended external resistance for CR oscillation $=420 \mathrm{k} \Omega$
(During A/D conversion: $\mathrm{Rs}=49.8 \mathrm{k} \Omega, \mathrm{TH}=50 \mathrm{k} \Omega, \mathrm{CAD}=2,200 \mathrm{pF}$)

Item	Symbol	Condition	Min	Typ	Max	Unit
Internal voltage	VL1	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and V_{L} (without panel load)	$\begin{gathered} 1 / 2 \cdot \mathrm{~V}_{\mathrm{L} 2} \\ -0.1 \end{gathered}$		$\begin{gathered} 1 / 2 \cdot \mathrm{~V}_{\mathrm{L} 2} \\ \times 0.9 \end{gathered}$	V
	VL2	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL2 (without panel load)		Vss		V
	VL3	Connect 1M Ω load resistor between VDD and VL3 (without panel load)	$\begin{gathered} \hline 3 / 2 \cdot \mathrm{~V}_{\mathrm{L} 2} \\ -0.1 \end{gathered}$		$\begin{gathered} 3 / 2 \cdot \mathrm{~V}_{\mathrm{L} 2} \\ \times 0.9 \end{gathered}$	V
Power current consumption	Iop	During HALT		8.0	15.0	$\mu \mathrm{A}$
		During execution Without panel load		15.0	20.0	$\mu \mathrm{A}$
		During A/D conversion (HALT)		37	52.5	$\mu \mathrm{A}$

E0C6002 (CR, Heavy Load Protection Mode)

Unless otherwise specified
Vdd $=0 \mathrm{~V}$, Vss $=-3.0 \mathrm{~V}$, fosc $=65 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Cg}=25 \mathrm{pF}, \mathrm{Vs} 1, \mathrm{Vl} 1, \mathrm{Vl} 2$ and Vl3 are internal voltages, and $\mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$, Recommended external resistance for CR oscillation $=420 \mathrm{k} \Omega$
(During A/D conversion: $\mathrm{Rs}=49.8 \mathrm{k} \Omega, \mathrm{TH}=50 \mathrm{k} \Omega, \mathrm{CAD}=2,200 \mathrm{pF}$)

Item	Symbol	Condition		Min	Typ	Max	Unit
Internal voltage	VL1	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL1 (without panel load)		$\begin{gathered} 1 / 2 \cdot \mathrm{VL}^{2} \\ -0.1 \end{gathered}$		$\begin{gathered} 1 / 2 \cdot \mathrm{VL} 2 \\ \times 0.85 \end{gathered}$	V
	VL2	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL2 (without panel load)			Vss		V
	VL3	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL3 (without panel load)		$\begin{gathered} 3 / 2 \cdot \mathrm{VL}_{2} \\ -0.1 \\ \hline \end{gathered}$		$\begin{gathered} 3 / 2 \cdot \mathrm{VL} 2 \\ \times 0.85 \end{gathered}$	V
Power current consumption	IOP	During HALT	Without panel load		16.0	30.0	$\mu \mathrm{A}$
		During execution			30.0	40.0	$\mu \mathrm{A}$
		During A/D conversion (HALT)			45	57.5	$\mu \mathrm{A}$

E0C60L02 (CR, Normal Operating Mode)

Unless otherwise specified
Vdd $=0 \mathrm{~V}$, Vss $=-1.5 \mathrm{~V}$, fosc $=65 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Cg}=25 \mathrm{pF}, \mathrm{Vs} 1, \mathrm{Vl} 1, \mathrm{Vl} 2$ and Vl3 are internal voltages, and $\mathrm{C}_{1}=\mathrm{C} 2=0.1 \mu \mathrm{~F}$, Recommended external resistance for CR oscillation $=420 \mathrm{k} \Omega$
(During A/D conversion: $\mathrm{Rs}=49.8 \mathrm{k} \Omega, \mathrm{TH}=50 \mathrm{k} \Omega, \mathrm{CAD}=2,200 \mathrm{pF}$)

Item	Symbol	Condition		Min	Typ	Max	Unit
Internal voltage	VL1	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL1 (without panel load)			Vss		V
	VL2	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL2 (without panel load)		$\begin{gathered} \hline 2 \cdot V_{L 1} \\ -0.1 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 2 \cdot V_{L 1} \\ & \times 0.9 \\ & \hline \end{aligned}$	V
	VL3	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL3 (without panel load)		$\begin{gathered} 3 \cdot V_{L 1} \\ -0.1 \end{gathered}$		$\begin{gathered} 3 \cdot \mathrm{VL}_{1} \\ \times 0.9 \end{gathered}$	V
Power current consumption	IOP	During HALT	Without panel load		8.0	15.0	$\mu \mathrm{A}$
		During execution			15.0	20.0	$\mu \mathrm{A}$
		During A/D conversion (HALT)			37	52.5	$\mu \mathrm{A}$

E0C60L02 (CR, Heavy Load Protection Mode)

Unless otherwise specified
Vdd $=0 \mathrm{~V}$, Vss $=-1.5 \mathrm{~V}$, fosc $=65 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Vs} 1, \mathrm{Vl} 1, \mathrm{~V} 2$ and Vl3 are internal voltages, and $\mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}$, Recommended external resistance for CR oscillation $=420 \mathrm{k} \Omega$
(During A/D conversion: $\mathrm{Rs}=49.8 \mathrm{k} \Omega, \mathrm{TH}=50 \mathrm{k} \Omega, \mathrm{CAD}=2,200 \mathrm{pF}$)

Item	Symbol	Condition		Min	Typ	Max	Unit
Internal voltage	VL1	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL1 (without panel load)			Vss		V
	VL2	Connect $1 \mathrm{M} \Omega$ load resistor between VDD and VL2 (without panel load)		$\begin{gathered} \hline 2 \cdot \mathrm{VL}_{\mathrm{L}} \\ -0.1 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 2 \cdot V_{L 1} \\ & \times 0.85 \\ & \hline \end{aligned}$	V
	VL3	Connect 1M Ω load resistor between VdD and VL3 (without panel load)		$\begin{gathered} \hline 3 \cdot V_{L 1} \\ -0.1 \\ \hline \end{gathered}$		$\begin{aligned} & 3 \cdot \mathrm{VL1} \\ & \times 0.85 \\ & \hline \end{aligned}$	V
Power current consumption	IOP	During HALT	Without panel load		16.0	30.0	$\mu \mathrm{A}$
		During execution			30.0	40.0	$\mu \mathrm{A}$
		During A/D conversion (HALT)			45	57.5	$\mu \mathrm{A}$

6.5 Oscillation Characteristics

Oscillation characteristics will vary according to different conditions. Use the following characteristics are as reference values.

E0C6002

Unless otherwise specified
Vdd=0 V, Vss=-3.0 V, Crystal : C-002R (CI=35 k Ω), $\mathrm{CG}=25 \mathrm{pF}, \mathrm{Cd}=$ built-in, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Symbol	Condition	Min	Typ	Max	Unit
Oscillation start voltage	Vsta (Vss)	tsta 55 sec	-1.8			V
Oscillation stop voltage	Vstp (Vss)	tstp $\leq 10 \mathrm{sec}$	-1.8			V
Built-in capacity (drain)	CD	Including the parasitic capacity inside the IC		20		pF
Frequency voltage deviation	f/V	Vss=-1.8 to -3.5V			5	ppm
Frequency IC deviation	f/IC		-10		10	ppm
Frequency adjustment range	f/CG	CG=5-25pF	40		ppm	
Higher harmonic oscillation start voltage	Vhho (Vss)	CG=5pF			-3.6	V
Allowable leak resistance	Rleak	Between OSC1 and VDD, and between Vss and OSC1	200			$\mathrm{M} \Omega$

E0C60L02

Unless otherwise specified
Vdd=0 V, Vss=-1.5 V, Crystal : C-002R (CI=35 k Ω), $\mathrm{Cg}=25 \mathrm{pF}, \mathrm{Cd}=\mathrm{built}-\mathrm{in}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Symbol	Condition	Min	Typ	Max	Unit
Oscillation start voltage	Vsta (Vss)	tsta $\leq 5 \mathrm{sec}$	-1.2			V
Oscillation stop voltage	Vstp (Vss)	tstp ≤ 10 sec	-1.2			V
Built-in capacity (drain)	CD	Including the parasitic capacity inside the IC		20		pF
Frequency voltage deviation	f/V	Vss=-1.2 to -2.0V (-0.9)*1			5	ppm
Frequency IC deviation	f/IC		-10	10	ppm	
Frequency adjustment range	f/CG	CG=5-25pF	40		ppm	
Higher harmonic oscillation start voltage	Vhho (Vss)	CG=5pF		-2.0	V	
Allowable leak resistance	Rleak	Between OSC1 and VDD, and between Vss and OSC1	200			$\mathrm{M} \Omega$

[^1]
E0C6002 (CR)

Unless otherwise specified

$$
\mathrm{VDD}=0 \mathrm{~V}, \mathrm{VsS}=-3.0 \mathrm{~V}, \mathrm{RcR}=420 \mathrm{k} \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}
$$

Item	Symbol	Condition	Min	Typ	Max	Unit
Oscillation frequency dispersion	fosc		-20	65 kHz	20	$\%$
Oscillation start voltage	Vsta		-1.8			V
Oscillation start time	tsta	Vss=-1.8 to -3.5 V		3		ms
Oscillation stop voltage	Vstp		-1.8			V

E0C60L02 (CR)

Unless otherwise specified
VDD=0 V, Vss $=-1.5 \mathrm{~V}, \mathrm{RcR}=420 \mathrm{k} \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Symbol	Condition	Min	Typ	Max	Unit
Oscillation frequency dispersion	fosc		-20	65 kHz	20	$\%$
Oscillation start voltage	Vsta		-1.2			V
Oscillation start time	tsta	Vss=-1.2 to -2.0V		3		ms
Oscillation stop voltage	Vstp		-1.2			V

CHAPTER 7

PACKAGE

7.1 Plastic Package QFP6-60pin

(Unit: mm)

7.2 Ceramic Package for Test Samples

DIP-64pin

(Unit: mm)

CHAPTER 8 PAD LAYOUT

8.1 Diagram of Pad Layout

8.2 Pad Coordinates

Pad No	Pad name	X	Y	Pad No	Pad name	X	Y
1	SEG0	608	1,111	27	VL3	-1,162	-1,111
2	SEG1	478	1,111	28	VL2	-1,032	-1,111
3	SEG2	348	1,111	29	VL1	-902	-1,111
4	SEG3	218	1,111	30	CA	-771	-1,111
5	SEG4	88	1,111	31	CB	-641	-1,111
6	SEG5	-42	1,111	32	Vss	16	-1,111
7	SEG6	-172	1,111	33	VDD	147	-1,111
8	SEG7	-302	1,111	34	OSC1	281	-1,111
9	SEG8	-432	1,111	35	OSC2	434	-1,111
10	SEG9	-562	1,111	36	Vs1	587	-1,111
11	SEG10	-692	1,111	37	P00	766	-1,111
12	SEG11	-822	1,111	38	P01	896	-1,111
13	TEST	-1,209	978	39	P02	1,026	-1,111
14	RESET	-1,209	845	40	P03	1,156	-1,111
15	SEG12	-1,209	714	41	K00	1,209	-674
16	SEG13	-1,209	584	42	K01	1,209	-544
17	SEG14	-1,209	454	43	K02	1,209	-413
18	SEG15	-1,209	324	44	K03	1,209	-283
19	SEG16	-1,209	194	45	R00	1,209	-59
20	SEG17	-1,209	64	46	R01	1,209	71
21	SEG18	-1,209	-66	47	R02	1,209	301
22	SEG19	-1,209	-196	48	R03	1,209	431
23	COM0	-1,209	-361	49	RS	1,209	573
24	COM1	-1,209	-499	50	TH	1,209	711
25	COM2	-1,209	-629	51	CS	1,209	893
26	COM3	-1,209	-760	52	ADOUT	1,209	1,069

(Unit: $\mu \mathrm{m}$)

Appendices TECHNICAL INFORMATION

This chapter presents the information necessary for designing a thermometer using a Seiko Epson E0C6002 and a Thermistor manufactured by Ishizuka Denshi Inc.

Appendix A Design Steps for Designing Thermometer

This section describes the design steps for the thermometer using the E0C6002 and the Thermistor.

Thermometer design steps

The following shows the design steps:
(1) Obtain the external capacitor value and the oscillation frequency.
(2) Obtain the initial value that is set to the up-counter of the A/D converter.
(3) After A/D conversion, calculate the displayed temperature from the counter value that has been set in the up-counter.

Details of these steps are described in later sections.
Before designing the thermometer, the measured temperature range, standard temperature, and thermistor to be used have to be determined.

Measured temperature range
Determine for your application.
Standard temperature
The standard temperature is the most precise value. Determine the standard temperature as the temperature that you want to be the most precise.
Thermistor Select the thermistor considering the measured temperature range and the standard temperature. It also should match the IC.

Note that this document assumes the following:
Measured temperature range: $-30^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
Standard temperature: $20^{\circ} \mathrm{C}$
Thermistor: Thermistor 103AT (Compatibility with E0C6002)

The following A/D converter circuit diagram is shown for your reference.

How to obtain capacitor value and oscillation frequency

The standard resistor and the thermistor are oscillated according to E0C6002 A/D converter principles. It is necessary to determine the value of the external capacitor for the oscillation.
This section describes how to determine the standard resistor value, the external capacitor value and the CR oscillation frequency.

Table A. 1

Item	Description	Thermistor 103AT usage example
Standard resistor value (R1)	Thermistor resistance value at the standard temperature.	At $25^{\circ} \mathrm{C}$, the 103 AT resistance is $10 \mathrm{k} \Omega$. Thus the standard resistance is $10 \mathrm{k} \Omega$.
Computation of capacitor for oscillation	The relationship between the frequency, capacitor, and the resistor is as follows: $\mathrm{f}=\frac{\mathrm{K}}{\mathrm{CR}} \quad\left[\begin{array}{l} \mathrm{f}: \text { Oscillation frequency } \\ \mathrm{K}: \text { CR oscillation frequency } \\ \text { coefficient } \\ \text { C: Capacitor } \\ \mathrm{R}: \text { Resistance } \end{array}\right.$ From the equation above, C can be obtained based on f and K conditions of E0C6002. If the C value is smaller within the conditions, the precision is higher.	The f and K conditions of E0C6002 are as follows: $\mathrm{f}(\max)=85 \mathrm{kHz}$ (limit of IC operation) $1 \leq \mathrm{K} \leq 3$ (Oscillation coefficient in E0C6002) With these conditions, the following equation can be derived: $85 \mathrm{kHz} \geq \frac{\mathrm{K}}{\mathrm{CR} 2(\mathrm{TMAX})}$ R2(TMAX): Minimum resistance of Thermistor $\mathrm{K}=3$ is the worst condition, then $\mathrm{C} \geq \frac{3}{85 \times 10^{3} \times 2.23 \times 10^{3}}=15,800(\mathrm{pF})$ As a result, the following is determined: $\mathrm{C}=22,000(\mathrm{pF})$ (Value for general purpose product)
Computation of frequency from the standard resistance	If the C value is determined by the above equation, the frequency (fCR1) by the standard resistance can be obtained by the following equation: $\mathrm{fCR} 1(\mathrm{kHz})=\frac{\mathrm{K}}{\mathrm{CR} 1}$	The following is obtained: $\mathrm{fCR} 1=\frac{(1 \text { to } 3)}{22,000 \times 10^{-12} \times 10 \times 10^{3}}=4.5 \text { to } 13.5(\mathrm{kHz})$

By the above equations, the capacitor value $(22,000 \mathrm{pF})$ and the oscillation frequency ($4.5-13.5 \mathrm{kHz}$) by the standard resistance are determined.
For the details of 103AT, see Appendix C.

Setting up counter initial value

The capacitor value and the oscillation frequency by the standard resistance are determined in the previous section.
This section describes how to set the initial value of the A / D converter's up counter.
For A/D converter principals, see the technical manual for the E0C6002.

65535 - CupI: Up counter initial value
Cups: Thermistor count value
65535: MAX. counter value

tA: Count time

Fig. A. 2

Table A. 2
Figure A. 2 shows the relationship between the up counter and the up-down counter.
The following conditions should be satisfied:
Condition (A): The up-down counter should not overflow during an up-count
Condition (B): The up counter should not overflow during a downcount

With these conditions, the up counter initial value can be obtained with the following equations:

Item	Description	Thermistor 103AT usage example
Obtain the up counter initial value from the condition (A)	From the condition (A) the following equation is derived: $\begin{aligned} & 65535>\mathrm{t}_{\mathrm{A}} \bullet \mathrm{fx}^{\prime} \mathrm{tal}=\frac{65535-\mathrm{CUPI}}{\mathrm{fCR} 1} \times \mathrm{fx}^{\prime} \mathrm{tal} \\ & \text { CUPI }>\left(1-\frac{\mathrm{fCR} 1}{\mathrm{fx}^{\prime} \mathrm{tal}}\right) \times 65535 \\ & \text { Initial value } \leq 65535-\text { CUPI } \ldots \text { (a) } \end{aligned}$	From fx'tal $=65 \mathrm{kHz}$, fCR1 $=4.5-13.5 \mathrm{kHz}$ $\begin{aligned} & \text { CUPI }=\left(1-\frac{4.5 \times 10^{3}}{65 \times 10^{3}}\right) \times 65535 \approx 59571 \\ & \text { CUPI }=\left(1-\frac{13.5 \times 10^{3}}{65 \times 10^{3}}\right) \times 65535 \approx 50707 \end{aligned}$ Initial value $\leq 65535-59571=5964 \ldots($ a)'
Obtain the up counter initial value from the condition (B)	From the condition (B) the following equation is derived: $\begin{aligned} 65535>\text { CUPS } & =\text { t }_{\mathrm{A} \times \mathrm{fCR} 2} \\ & =\frac{\text { fCR } 2}{\text { fCR1 } 1} \times(65535-\mathrm{CUPI}) \end{aligned} \quad \begin{aligned} \text { CUPI }=\left(1-\frac{\mathrm{fCR} 1}{\text { fCR } 2}\right) \times 65535 \end{aligned}$ Initial value ≤ 65535 - CuPI ...(b) From the above equations (a) and (b) the initial value can be determined.	fCR1 $=4.5-13.5 \mathrm{kHz}$, $\mathrm{fCR} 2=85 \mathrm{kHz}$ (IC operational maximum) $\begin{aligned} & \text { CUPI }=\left(1-\frac{4.5 \times 10^{3}}{85 \times 10^{3}}\right) \times 65535 \approx 60608 \\ & \text { CUPI }=\left(1-\frac{13.5 \times 10^{3}}{85 \times 10^{3}}\right) \times 65535 \approx 53837 \end{aligned}$ Initial value $\leq 65535-60608=4927 \ldots($ b)' From (a)' and (b)', the initial value should be set less than 4927. Here, it is set to 3000 . (Under the conditions, if the initial value is smaller, the precision is higher.)

The initial value $(3,000)$ for the up counter is derived from the above equations.

Computation method of displayed temperature by linear approximation

The following shows the linear approximation equation to derive the displayed temperature.
Displayed temperature $\left({ }^{\circ} \mathrm{C}\right)=($ Count after A/D conversion - Count for minimum in the temperature range) \times linear approximation coefficient + minimum value of the temperature range

This equation derives the displayed temperature. The following shows the method. First, each value is described.

[Count value after A/D conversion]

This is the up counter value after an A/D conversion.

[Count for the minimum value of the temperature range] [Minimum value of the temperature range]

To derive the displayed temperature by the linear approximation, the temperature range must be determined for the linear approximation. In this example, the measured temperature range is -30 to $70^{\circ} \mathrm{C}$.
If the temperature range for the linear approximation is set for every $10^{\circ} \mathrm{C}$, the temperature range is -30 to $-20^{\circ} \mathrm{C},-20$ to $-10^{\circ} \mathrm{C}$, and so on. The smallest value of each temperature range segment is the minimum value of the temperature range. The largest value is the maximum value of the temperature range.
The count value for the minimum value for the temperature range is expressed by the following equation:

$$
\begin{aligned}
\text { A/D converter count value } & =\frac{\mathrm{fCR2}}{\mathrm{fCR1}} \times \text { up counter initial value } \\
& =\frac{(\mathrm{K} / \mathrm{CR} 2)}{(\mathrm{K} / \mathrm{CR} 1)} \times \text { up counter initial value } \\
& =\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \times \text { up counter initial value }
\end{aligned}
$$

By substituting R2 (Thermistor resistance), R1 (standard resistance), and the up counter initial value with actual values, the count value for the minimum of the temperature range is obtained.

[Linear approximation coefficient]

The linear approximation coefficient is the value that shows how many degrees (centigrade) for one count in the temperature range. The linear approximation coefficient is expressed by the following equation:

Linear approximation coefficient $=$
Temperature range
Count for max. of temperature range - Count for min. of temperature range
(As you can see, the temperature range is smaller, the precision is higher.)

The following table shows the various values for every $10^{\circ} \mathrm{C}$.
Table A. 3

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	103AT Thermistor R2 resistance $(\mathrm{k} \Omega)$	Linear approximation coefficient in the specified temperature range	Count value
-30	111.3	0.0575	269
-20	67.74	0.0380	443
-10	42.45	0.0254	706
0	27.28	0.0175	1099
10	17.96	0.0123	1670
20	12.09	0.00887	2481
30	8.313	0.00650	3608
40	5.828	0.00485	5147
50	4.161	0.00368	7209
60	3.021	0.00283	9930
70	2.229		13459

The following example derives a displayed temperature using the values in the above table.

Example: Assume the count value after an A/D conversion is 3200. Then, it is between 3608 and 2481 in the table. As a result the temperature range is 20° to $30^{\circ} \mathrm{C}$.

- The count value for the minimum value of the temperature range: 2481
- The count value for the maximum value of the temperature range: 3608
Then, the linear approximation coefficient of the temperature range is 0.00887 .
As a result, the displayed temperature is derived as follows:
Displayed temperature $=(3200-2481) \times 0.00887+20\left({ }^{\circ} \mathrm{C}\right)=26.377\left({ }^{\circ} \mathrm{C}\right)$

Appendix B Error Factors

When a temperature is computed using the E0C6002 A/D converter and the Thermistor, the following error factors should be taken in account:

Thermistor resistance dispersion

A/D converter error factors

Error (circuit) by A/D conversion in R1 (standard resistance) and R2 (Thermistor)

By the CR oscillation at the standard resistor (R 1), the up counter and the up-down counter increment the counter with the timing shown below.

ADRUN register

CS pin
ADOUT output

Clock (Up-down counter)
Up-down counter enable

Fig. B. $1 \quad$ Up-down counter (TC0)

After the A/D RUN, the first trailing edge of the CS pin triggers the up counter enable. From the next trailing edge, the up counter starts to count. In addition, the first trailing edge of the clock after the up counter is enabled, the up-down counter is enabled and it starts to count from the next trailing edge.
When the up counter value becomes 0 , the up counter is disabled. The next trailing edge of the clock disables the up-down counter. If this situation occurs, the error described below will result.

The same is true in the CR oscillation by Thermistor R2, and a similar error occurs. Exception: because the up-down counter is down-counted the following counting error occurs:

Started: Min. ≈ 0
Max. Up-down counter - 1 count
Stopped: $\mathrm{Min} \approx 0$
Max. Up-down counter - 1 count

Total up-down counter - 2 counts

Therefore, as for the error from the circuit, a maximum of 2 count errors results.

The effect of the maximum 2 count error is given below.

$$
\begin{aligned}
& \Delta 1 \text { MAX }(\%)=\frac{2}{(\text { fCLK/fCR1) } \times \text { CUPI1 }} \times 100---(1) \\
& \Delta 2 \text { MAX }(\%)=\frac{2}{(\text { fCLK/fCR2) } \times \text { CUPS }} \times 100---(2) \\
& \text { fcLk: } \quad \text { Clock frequency }(32 \mathrm{kHz} / 64 \mathrm{kHz}) \\
& \text { fCR1: } \quad \text { CR oscillation frequency by standard resistor } \\
& \text { CuPI1: Up counter initial value (times) } \\
& \Delta 1 \text { MAX:Maximum error (\%) at CR oscillation by standard resistor } \\
& \text { fCR2: CR oscillation frequency by Thermistor } \\
& \text { CuPs: Thermistor count (times) } \\
& \Delta 2 M A X: M a x i m u m ~ e r r o r ~(\%) ~ a t ~ C R ~ o s c i l l a t i o n ~ b y ~ T h e r m i s t o r ~
\end{aligned}
$$

In addition, the number of counts of the up-down counter should be the same. Then the following equation is true:
$\frac{f C L K}{f C R 1} \times$ CUPI1 $=\frac{\text { fCLK }}{\text { fCR2 }} \times$ CUPS --- (3)
Then, from (3), assume the up-down counter counts shifted 2 counts, the following equations are true:
$\frac{\text { fCLK }}{\text { fCR1 }} \times$ CUPI1 $=\frac{\text { fCLK }}{\text { fCR2 }} \times$ CUPS ± 2
$\frac{f C R 2}{f C R 1}=\frac{\text { CUPS } \pm 2 \times(\mathrm{fCR2} 2 \mathrm{fCLK})}{\text { CUPI1 }}--$ (3)'
(1) is the count error at the CR oscillation by the standard resistor.
(2) is the count error at the CR oscillation by Thermistor.

The total error is expressed by the equation (3)' with the ratio of fCR1 and fCR2.

The segment that represents the error in the equation (3)' is $\pm 2 \times$ (fCR2/fCLK). If the values CUPIl and CUPS are large, this error factor may be ignored.
For how to determine the initial value (Cupir) of the up counter, see the section describing thermometer design steps.

CR oscillation constant (K) error

The constant, K, is determined by the logic level of the internal Schmidt trigger of the IC. However, in E0C6002, the Schmidt trigger shares the circuit with the standard resistor and Thermistor. As a result, oscillation is canceled and no error occurs.

Error by transistor ON resistance

The transistor ON resistance is directly connected to the standard resistor and Thermistor; this may cause an error.
See the circuit shown next to Figure B. 2 below. In this circuit, the capacitor is charged by $\operatorname{Tr} 1, \mathrm{~T} 2 \mathrm{ON}$ and Tr 3 OFF . If the voltage at the CS pin changes to a certain level, the capacitor charge is drained by $\operatorname{Tr} 1, \operatorname{Tr} 2 \mathrm{OFF}$ and $\operatorname{Tr} 3 \mathrm{ON}$. As a result, the CR oscillation is generated as in Figure B.3.

Fig. B. 2

Fig. B. 3

At this time, if the ON resistance of $\operatorname{Tr} 1$ and $\operatorname{Tr} 2 \mathrm{ON}$ is tl and the ON resistance of $\operatorname{Tr} 3$ is t 2 , the constance may be effected.
The E0C6002 transistors are standardized to have a maximum of 100Ω.
This standard includes dispersion by temperature characteristics, Pch and Nch.
The EVA board transistor uses standard ICs and the actual resistance is about $1 \mathrm{k} \Omega$. (This is not guaranteed and should be regarded as just a reference.)
The error by ON resistance of this transistor is expressed by the following equations:

$$
\begin{aligned}
& \Delta 3(\%)=\frac{\text { Up counter count }- \text { Actual upcounter count }}{\text { Up counter count }} \times 100 \\
& =\frac{\text { CUPI1 }-\frac{\frac{\mathrm{K}}{\mathrm{C}\left(\mathrm{R}_{1}+\mathrm{RTTr}\right)}}{\text { fCR1 }} \times \text { CuPI1 }}{\text { CuPI1 }} \times 100=\left\{1-\frac{\mathrm{R}_{1}}{(\mathrm{R} 1+\mathrm{RTr})}\right\} \times 100 \\
& \Delta 4(\%)=\frac{\text { Up counter count }- \text { Actual upcounter count }}{U p \text { counter count }} \times 100 \\
& =\frac{\text { Cups }-\frac{\frac{\mathrm{K}(\mathrm{R} 2+\mathrm{RTr})}{\mathrm{fCR} 2}}{\text { CuPS }} \times \text { CuPI1 }}{} \times 100=\left\{1-\frac{\mathrm{R}_{2}}{(\mathrm{R} 2+\mathrm{RTr})}\right\} \times 100
\end{aligned}
$$

$\Delta 3$: Error (\%) by transistor ON resistance (CR oscillation by standard resistance)
$\Delta 4$: Error (\%) by transistor ON resistance (CR oscillation by Thermistor)
Cupl1: Up counter initial value (times)
Cups: Thermistor count value (times)
RTr: Transistor ON resistance (Ω)
fcr1: Oscillation frequency (Hz) (CR oscillation by standard resistance)
fcR2: Oscillation frequency (Hz) (CR oscillation by Thermistor)

Example: Transistor ON resistance error when Thermistor 103AT measures $60^{\circ} \mathrm{C}$
$\Delta 3=\left\{1-\frac{10 \times 10^{3}}{\left(10 \times 10^{3}+100\right)}\right\} \times 100 \approx 1 \%$
$\Delta 4=\left\{1-\frac{3.217 \times 10^{3}}{\left(3.217 \times 10^{3}+100\right)}\right\} \times 100 \approx 3 \%$
As a result, the following errors occur by directly connecting the transistor ON resistance:
1% at CR oscillation on the standard resistor
3% at CR oscillation on Thermistor
The transistor ON resistance effect is smaller if R1 and R2 are larger. (See Equation $\Delta 3$ and $\Delta 4$.)
In the high temperature range, the R2 value becomes small and $\Delta 4$ becomes large. This causes precision degradation. Compensation is needed to implement a user's required precision.

Error by floating capacity

The floating capacity of the inside of an IC, board, lead of a sensor and others may be an error factor. Floating capacity inside an IC may be several pF and it may be ignored by increasing the capacitor value.

In the software, it is normal to convert the counter value to an actual temperature by a linear approximation. In this method, an error may be caused by the linear approximation in the temperature measured range.
As shown in Figure B. 4 below, if the temperature range measured is $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$, the weight of 1 count differs between $20^{\circ} \mathrm{C}$ and $29^{\circ} \mathrm{C}$.

On the slope (1), the linear approximation coefficient in this segment for 1 count is large, and the slope (2) has a smaller coefficient.
For example, if this segment $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$ is calculated by the same linear approximation coefficient, and if the $20^{\circ} \mathrm{C}$ is the reference point, then, at $29^{\circ} \mathrm{C}$, the linear approximation coefficient becomes the largest and, at $29^{\circ} \mathrm{C}$, the error is maximum.
The error may differ depending on the temperature measured by the software, up counter initial value and Thermistor type.

Appendix C $\overline{\text { AT Thermistor }}$

High precision thermistor
Features The AT Thermistor has a high precision thermistor with small resistance and B constant error margin.
Using the AT Thermistor as a temperature sensor does not require adjustment between a control circuit and the sensor; and the AT Thermistor provides a temperature precision of $\pm 0.3^{\circ} \mathrm{C}$. As a result, a high precision temperature control and temperature display are possible.

- Error margins of resistance and temperature characteristics are very small.
- Small age-based change and high reliability
- Low price
- High durability

Usage Air conditioners, fan heaters, FF heaters, refrigerators, water heaters, boiler/kitchen appliances, copiers, printers, facsimiles, automatic vending machines, agricultural equipment, automobiles (for external temperature, internal temperature, air flow sensor), portable thermometers, medical equipment, thermos-type containers, solar heating system, automatic toilet seats, fire alarms, home automation

Type number 103 AT - 2

- External type

High precision AT Thermistor
Zero load resistance $\left(25^{\circ} \mathrm{C}\right) 103: 10 \mathrm{k} \Omega$
Resistance margin graph

Temperature precision
graph

Comparison between AT type and others

Thermistor	R25 margin	B margin	Temperature margine $\left(25^{\circ} \mathrm{C}\right)$	Temperature control (display) for every $1^{\circ} \mathrm{C}$
AT type	$\pm 1 \%$	$\pm 1 \%$	$\pm 0.3^{\circ} \mathrm{C}$	Circuit adhustment - not required
Other type	$\pm 5 \%$	$\pm 3 \%$	$\pm 1.3^{\circ} \mathrm{C}$	Circuit adjystment - required

Ratings

Type	R25	B constant	Thermal radiation constant (mW/ ${ }^{\circ} \mathrm{C}$)	Thermal constant (s)	Maximum power (mW) at $25^{\circ} \mathrm{C}$	Temperature range $\left({ }^{\circ} \mathrm{C}\right)$
102AT-1	$1 \mathrm{k} \Omega \pm 1 \%$	$3100 \mathrm{~K} \pm 1 \%$	Approx. 3	Approx. 75	15	-50 to 90
202AT-1	$2 \mathrm{k} \Omega \pm 1 \%$	$3182 \mathrm{~K} \pm 1 \%$	Approx. 3	Approx. 75	15	-50 to 90
502AT-1	$5 \mathrm{k} \Omega \pm 1 \%$	$3324 \mathrm{~K} \pm 1 \%$	Approx. 3	Approx. 75	15	-50 to 105
103AT-1	$10 \mathrm{k} \Omega \pm 1 \%$	$3435 \mathrm{~K} \pm 1 \%$	Approx. 3	Approx. 75	15	-50 to 105
102AT-2	$1 \mathrm{k} \Omega \pm 1 \%$	$3100 \mathrm{~K} \pm 1 \%$	Approx. 2	Approx. 15	10	-50 to 90
202AT-2	$2 \mathrm{k} \Omega \pm 1 \%$	$3182 \mathrm{~K} \pm 1 \%$	Approx. 2	Approx. 15	10	-50 to 90
502AT-2	$5 \mathrm{k} \Omega \pm 1 \%$	$3324 \mathrm{~K} \pm 1 \%$	Approx. 2	Approx. 15	10	-50 to 110
103AT-2	$10 \mathrm{k} \Omega \pm 1 \%$	$3435 \mathrm{~K} \pm 1 \%$	Approx. 2	Approx. 15	10	-50 to 110
203AT-2	$20 \mathrm{k} \Omega \pm 1 \%$	$4013 \mathrm{~K} \pm 1 \%$	Approx. 2	Approx. 15	10	-50 to 110
503AT-2	$50 \mathrm{k} \Omega \pm 1 \%$	$4060 \mathrm{~K} \pm 1 \%$	Approx. 2	Approx. 15	10	-50 to 110

External dimension

Thermal response

AT-2

Board soldering method

Proper usage example

Proper soldering conditions: $260^{\circ} \mathrm{C}, 10$ seconds or less

Resistance - Temperature characteristics

-50 to $29^{\circ} \mathrm{C}$

30 to110 ${ }^{\circ} \mathrm{C}$

Temp $\left({ }^{\circ} \mathrm{C}\right)$	103AT			Temp $\left({ }^{\circ} \mathrm{C}\right)$	103AT		
	Rmax (k ${ }^{\text {) }}$	Rst (k)	$\mathrm{Rmin}(\mathrm{k} \Omega$)		Rmax (k 2)	Rst (k Ω)	$R \mathrm{~min}(\mathrm{k} \Omega$)
-50	344.4	329.2	314.7	30	8.412	8.313	8.215
-49	324.7	310.7	297.2	31	8.113	8.015	7.917
-48	306.4	293.3	280.7	32	7.826	7.729	7.632
-47	289.2	277.0	265.3	33	7.551	7.455	7.359
-46	273.2	261.8	250.8	34	7.288	7.192	7.097
-45	258.1	247.5	237.3	35	7.036	6.941	6.846
-44	244.0	234.1	224.6	36	6.793	6.699	6.606
-43	230.8	221.6	212.7	37	6.561	6.468	6.375
-42	218.5	209.8	201.5	38	6.338	6.246	6.154
-41	206.8	198.7	191.0	39	6.124	6.033	5.942
-40	195.9	188.4	181.1	40	5.918	5.828	5.739
-39	185.4	178.3	171.5	41	5.719	5.630	5.541
-38	175.5	168.9	162.6	42	5.527	5.439	5.352
-37	166.2	160.1	154.2	43	5.343	5.256	5.170
-36	157.5	151.8	146.2	44	5.166	5.080	4.996
-35	149.3	144.0	138.8	45	4.996	4.912	4.828
-34	141.6	136.6	131.8	46	4.833	4.749	4.667
-33	134.4	129.7	125.2	47	4.676	4.594	4.512
-32	127.6	123.2	118.9	48	4.525	4.444	4.364
-31	121.2	117.1	113.1	49	4.380	4.300	4.221
-30	115.1	111.3	107.5	50	4.240	4.161	4.084
-29	109.3	105.7	102.2	51	4.104	4.026	3.950
-28	103.8	100.4	97.16	52	3.973	3.897	3.822
-27	98.63	95.47	92.41	53	3.847	3.772	3.698
-26	93.75	90.80	87.93	54	3.726	3.652	3.579
-25	89.15	86.39	83.70	55	3.609	3.537	3.465
-24	84.82	82.22	79.71	56	3.497	3.426	3.355
-23	80.72	78.29	75.93	57	3.389	3.319	3.249
-22	76.85	74.58	72.36	58	3.285	3.216	3.148
-21	73.20	71.07	68.99	59	3.184	3.116	3.049
-20	69.74	67.74	65.80	60	3.088	3.021	2.955
-19	66.42	64.54	62.72	61	2.994	2.928	2.863
-18	63.27	61.52	59.81	62	2.903	2.838	2.775
-17	60.30	58.66	57.05	63	2.816	2.752	2.690
-16	57.49	55.95	54.44	64	2.732	2.669	2.608
-15	54.83	53.39	51.97	65	2.650	2.589	2.529
-14	52.31	50.96	49.63	66	2.572	2.512	2.452
-13	49.93	48.66	47.42	67	2.496	2.437	2.379
-12	47.67	46.48	45.31	68	2.423	2.365	2.308
-11	45.53	44.41	43.32	69	2.353	2.296	2.240
-10	43.50	42.45	41.43	70	2.285	2.229	2.174
-9	41.54	40.56	39.59	71	2.219	2.163	2.109
-8	39.68	38.76	37.85	72	2.155	2.101	2.047
-7	37.91	37.05	36.20	73	2.093	2.040	1.987
-6	36.24	35.43	34.63	74	2.034	1.981	1.930
-5	34.65	33.89	33.14	75	1.976	1.924	1.874
-4	33.14	32.43	31.73	76	1.920	1.870	1.820
-3	31.71	31.04	30.39	77	1.866	1.817	1.768
-2	30.35	29.72	29.11	78	1.814	1.766	1.718
-1	29.06	28.47	27.89	79	1.764	1.716	1.669
0	27.83	27.28	26.74	80	1.716	1.669	1.622
1	26.64	26.13	25.62	81	1.668	1.622	1.577
2	25.51	25.03	24.55	82	1.623	1.577	1.533
3	24.44	23.99	23.54	83	1.578	1.534	1.490
4	23.42	22.99	22.57	84	1.536	1.492	1.449
5	22.45	22.05	21.66	85	1.494	1.451	1.409
6	21.52	21.15	20.78	86	4.454	1.412	1.371
7	20.64	20.29	19.95	87	1.415	1.374	1.333
8	19.80	19.48	19.15	88	1.378	1.337	1.297
9	19.00	18.70	18.40	89	1.341	1.301	1.262
10	18.24	17.96	17.67	90	1.306	1.266	1.228
11	17.51	17.24	16.97	91	1.271	1.233	1.195
12	16.80	16.55	16.31	92	1.238	1.200	1.163
13	16.13	15.90	15.67	93	1.206	1.169	1.132
14	15.50	15.28	15.06	94	1.175	1.138	1.102
15	14.89	14.68	14.48	95	1.144	1.108	1.073
16	14.31	14.12	13.93	96	1.115	1.080	1.045
17	13.75	13.57	13.40	97	1.087	1.052	1.018
18	13.22	13.06	12.89	98	1.059	1.025	0.9918
19	12.72	12.56	12.41	99	1.032	0.9988	0.9663
20	12.23	12.09	11.95	100	1.006	0.9735	0.9416
21	11.77	11.63	11.50	101	0.9812	0.9489	0.9175
22	11.32	11.20	11.07	102	0.9567	0.9250	0.8942
23	10.90	10.78	10.66	103	0.9330	0.9018	0.8716
24	10.49	10.38	10.27	104	0.9100	0.8793	0.8496
25	10.10	10.00	9.900	105	0.8877	0.8575	0.8284
26	9.732	9.632	9.533	106	0.8660	0.8364	0.8077
27	9.381	9.281	9.181	107	0.8456	0.8159	0.7877
28	9.044	8.944	8.845	108	0.8245	0.7960	0.7683
29	8.721	8.622	8.523	109	0.8047	0.7767	0.7495

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

1960 E. Grand Avenue
El Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -

Riesstrasse 15
80992 Muenchen, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

SALES OFFICE

Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE
2.4 Doncastle House, Doncastle Road

Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de I' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE

Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -

EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2\# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -

EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY \& TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, \#36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-Dong
Youngdeungpo-Ku, Seoul, 150-010, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
 IC Marketing \& Engineering Group
 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
 Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe \& U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564
ED International Marketing Department II (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "Saving" Technology, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams.

Epson IS energy savings.

EPSON

SEIKO EPSON CORPORATION

ELECTRONIC DEVICES MARKETING DIVISION

- Electronic devices information on Epson WWW server

[^0]: *1 Initial value following initial reset
 *2 Not set in the circuit
 *3 Undefined

[^1]: *1 Items enclosed in parentheses () are those used when operating at heavy load protection mode.

