MF1112-01

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

E0C6004 Technical Hardware

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. Please note that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it now reads "E0C".

CONTENTS

CHAPTER 1	INT	RODUCTION									
	1.1	Features	1								
	1.2	Block Diagram									
	1.3	Pin Lavout									
	1.4	Pin Description									
CHAPTER 2	Pov	ver Supply and Initial Reset									
	2.1 Power Supply										
	2.1	Initial Pasat	1								
	2.2	2.2.1 Power-on reset circuit									
		2.2.2 Reset pin (RESET)									
		2.2.3 Simultaneous high input to input ports (K00-K03)	5								
		2.2.4 Internal register following initialization	5								
	2.3	Test Pin (TEST)									
CHAPTER 3	CP	U, ROM, RAM									
	3.1	CPU	6								
	3.2	<i>ROM</i>	6								
	3.3	RAM	6								
CHAPTER 4	PERIPHERAL CIRCUITS AND OPERATION 7										
	4.1	 Метогу Мар	7								
	4.2	Oscillation Circuit									
	4.3	Input Ports (K00–K03)									
		4.3.1 Configuration of input port									
		4.3.2 Interrupt function									
		4.3.3 Mask option									
		4.3.4 I/O memory of input port									
		4.3.5 Programming note									
	4.4	Output Ports (R00–R03)									
		4.4.1 Configuration of output port									
		4.4.2 Mask option									
		4.4.4 Programming note	15								
		0 0									
	45	I/O Ports (P00_P03)	16								
	4.5	I/O Ports (P00–P03) 4.5.1 Configuration of I/O port									
	4.5	I/O Ports (P00–P03) 4.5.1 Configuration of I/O port 4.5.2 I/O control register and I/O mode									
	4.5	I/O Ports (P00–P03) 4.5.1 Configuration of I/O port 4.5.2 I/O control register and I/O mode 4.5.3 Mask option									
	4.5	I/O Ports (P00–P03) 4.5.1 Configuration of I/O port 4.5.2 I/O control register and I/O mode 4.5.3 Mask option 4.5.4 I/O memory of I/O port									
	4.5	<i>I/O Ports (P00–P03)</i> 4.5.1 Configuration of <i>I/O port</i> 4.5.2 <i>I/O control register and I/O mode</i> 4.5.3 Mask option 4.5.4 <i>I/O memory of I/O port</i> 4.5.5 Programming note									
	<i>4.5</i> <i>4.6</i>	I/O Ports (P00–P03) 4.5.1 Configuration of I/O port 4.5.2 I/O control register and I/O mode 4.5.3 Mask option 4.5.4 I/O memory of I/O port 4.5.5 Programming note LCD Driver (COM0–COM3, SEG0–SEG25)									
	4.5 4.6	I/O Ports (P00–P03) 4.5.1 Configuration of I/O port 4.5.2 I/O control register and I/O mode 4.5.3 Mask option 4.5.4 I/O memory of I/O port 4.5.5 Programming note LCD Driver (COM0–COM3, SEG0–SEG25) 4.6.1 Configuration of LCD driver	16 16 16 16 16 16 16 17 17 18 18								
	4.5 4.6	I/O Ports (P00–P03)	16 16 16 16 16 16 16 17 17 18 18 23								

i

	4.7	Clock Timer		5
		4.7.1 Configuration of clock timer	25	
		4.7.2 Interrupt function	25	
		4.7.3 I/O memory of clock timer	26	
		4.7.4 Programming notes	27	
	4.8	Interrupt and HALT/SLEEP		3
		4.8.1 Interrupt factors	30	
		4.8.2 Specific masks for interrupt	30	
		4.8.3 Interrupt vectors	31	
		4.8.5 Programming notes	31	
CHAPTER 5	BAS	TIC EXTERNAL WIRING DIAGRAM		33
	20110			_ 00
CHAPTER 6	Ele	ECTRICAL CHARACTERISTICS		_ 34
	6.1	Absolute Maximum Rating		1
	6.2	Recommended Operating Conditions		1
	6.3	DC Characteristics		5
	6.4	Current Consumption		5
	6.5	Oscillation Characteristics		5
	6.6	LCD Characteristic		5
CHAPTER 7	PAC	CKAGE		_ 37
	7.1	Plastic Package		7
	7.2	Ceramic Package for Test Samples		3
CHAPTER 8	PAL	D LAYOUT		_ 39
	8.1	Diagram of Pad Layout)
	8.2	Pad Coordinates)
CHAPTER 9	Pre	ccautions on Mounting		40

CHAPTER 1 INTRODUCTION

The E0C6004 is a single-chip microcomputer which uses an E0C6200B CMOS 4-bit CPU as the core. It contains a 1,536 (words) \times 12 (bits) ROM, 144 (words) \times 4 (bits) RAM, LCD driver, 4-bit input port (K00–K03), 4-bit output port (R00–R03), 4-bit I/O port (P00–P03) and a timer.

1.1 Features

Core CPU	E0C6200B						
Built-in oscillation circuit	CR oscillation circuit, 2 MHz (Typ.) (Vss = -5 V)						
Instruction set	100 instructions						
ROM capacity	1,536 words \times 12 bits						
RAM capacity	144 words \times 4 bits						
Input port	4 bits (pull-down resistors are available by mask option)						
Output ports	4 bits (clock and buzzer outputs are possible by mask option R03 output port drivability: 15 mA (Vss = -4.5 V)						
I/O port	. 4 bits						
LCD driver							
Timer	. 1 system	built-in					
Interrupt	. External Internal:	: Input po Timer in	ort interrupt terrupt	1 system 1 system			
Supply voltage	. 2.7 V to 3	3.6 V, 4.5 V	7 to 5.5 V				
Current consumption (Typ.)	During S During F (LCD Ol During o (LCD Ol	ELEEP: IALT: N) operation: N)	100 nA (3 V) 100 nA (5 V) 330 μA (3 V) 1000 μA (5 V) 450 μA (3 V) 1100 μA (5 V)				
Supply form	. Die form	or QFP12	2-48pin plastic p	ackage			

1.2 Block Diagram

Fig. 1.2.1 E0C6004 block diagram

1.3 Pin Layout

QFP12-48pin

Fig. 1.3.1 E0C6004 pin layout (QFP12-48pin)

1.4 Pin Description

Table	1.4.1	Pin	descri	ntion
rubie	1.7.1	1 111	uescri	p_{ii0i}

Pin name	Pin No.	I/O	Function			
Vdd	44	(I)	Power supply pin (+)			
Vss	47	(I)	Power supply pin (-)			
OSC1	45	Ι	CR oscillation input pin			
OSC2	46	0	CR oscillation output pin			
K00-K03	3-1, 48	Ι	nput port pin			
P00-P03	7–4	I/O	I/O port pin			
R00	11	0	Output port pin, BUZZER or FOUT output pin *			
R01	10	0	Output port pin or BUZZER output pin *			
R02, R03	9, 8	0	Output port pin			
SEG0-25	37-12	0	LCD segment output pin or DC output pin *			
COM0-3	38–41	0	LCD common output pin (1/4 duty, 1/3 or 1/2 duty are selectable *)			
RESET	43	Ι	Initial reset input pin			
TEST	42	Ι	Input pin for test			

* Can be selected by mask option

CHAPTER 2 POWER SUPPLY AND INITIAL RESET

2.1 Power Supply

With a single external power supply (*) supplied to VDD through VSS, the E0C6004 generates the necessary internal voltages with the power divider.

 \ast Supply voltage: 2.7 to 3.6 V or 4.5 V to 5.5 V

The power divider generates the LCD drive voltages <VL1, VL2> by dividing the supply voltage as shown in Figure 2.1.1.

The circuit configuration is set according to the LCD drive bias selection with a mask option.

When 1/3 bias is selected, the supply voltage is divided by 3 to generate VL1 and VL2.

When 1/2 bias is selected, the supply voltage is divided by 2 and VL1 and VL2 is shorted internally.

Fig. 2.1.1 Configuration of power divider

2.2 Initial Reset

To initialize the E0C6004 circuits, an initial reset must be executed. There are three ways of doing this.

- (1) Initial reset by the power-on reset circuit
- (2) External initial reset via the RESET pin
- (3) External initial reset by simultaneous high input to pins K00-K03 (depending on mask option)

Figure 2.2.1 shows the configuration of the initial reset circuit.

Fig. 2.2.1 Configuration of initial reset circuit

2.2.1 Power-on reset circuit

The power-on reset circuit outputs the initial reset signal at power-on until the oscillation circuit starts oscillating.

Note: The power-on reset circuit may not work properly due to unstable or lower voltage input. The following two initial reset method are recommended to generate the initial reset signal.

2.2.2 Reset pin (RESET)

An initial reset can be invoked externally by making the reset pin high. When the reset pin goes low the CPU begins to operate.

2.2.3 Simultaneous high input to input ports (K00–K03)

Another way of invoking an initial reset externally is to input a high signal simultaneously to the input ports (K00–K03) selected with the mask option. The specified input port pins must be kept high for at least 1 sec (when oscillating frequency fosc = 2 MHz), tolerance is within 5%, because of the noise rejection circuit. Table 2.2.3.1 shows the combinations of input ports (K00–K03) that can be selected with the mask option.

When, for instance, mask option D (K00*K01*K02*K03) is selected, an initial reset is executed when the signals input to the four ports K00–K03 are all high at the same time.

When this function is used, make sure that the specified ports do not go high at the same time during normal operation.

2.2.4 Internal register following initialization

An initial reset initializes the CPU as shown in the table below.

CPU Core									
Name Symbol Bit size Initial val									
Program counter step	PCS	8	00H						
Program counter page	PCP	4	1H						
New page pointer	NPP	4	1H						
Stack pointer	SP	8	Undefined						
Index register X	Х	8	Undefined						
Index register Y	Y	8	Undefined						
Register pointer	RP	4	Undefined						
General-purpose register A	А	4	Undefined						
General-purpose register B	В	4	Undefined						
Interrupt flag	Ι	1	0						
Decimal flag	D	1	0						
Zero flag	Z	1	Undefined						
Carry flag	С	1	Undefined						
	•								

Table 2.2.4.1 Initial values

Peripheral Circuits								
Name	Bit size	Initial value						
RAM	144×4	Undefined						
Display memory	26×4	Undefined						
Other peripheral circuits	-	*						

* See Section 4.1, "Memory Map".

2.3 Test Pin (TEST)

This pin is used when IC is inspected for shipment. During normal operation connect it to Vss.

Table 2.2.3.1	Input port	combinations
---------------	------------	--------------

А	Not used
В	K00*K01
С	K00*K01*K02
D	K00*K01*K02*K03

CHAPTER 3 CPU, ROM, RAM

3.1 CPU

The E0C6004 employs the E0C6200B core CPU, so that register configuration, instructions, and so forth are virtually identical to those in other processors in the family using the E0C6200/6200A/6200B. Refer to the "E0C6200/6200A Core CPU Manual" for details of the E0C6200B, which is compatible with the E0C6200A.

Note the following points with regard to the E0C6004:

- (1) Since the E0C6004 provides the SLEEP function, the SLP instruction can be used.
- (2) Because the ROM capacity is 1,536 words, 12 bits per word, bank bits are unnecessary, and PCB and NBP are not used.
- (3) The RAM page is set to 0 only, so the page part (XP, YP) of the index register that specifies addresses is invalid.

PUSH	XP	POP	XP	LD	XP,r	LD	r,XP
PUSH	YP	POP	YP	LD	YP,r	LD	r,YP

3.2 ROM

The built-in ROM, a mask ROM for the program, has a capacity of $1,536 \times 12$ -bit steps. The program area is 6 pages (0–5), each consisting of 256 steps (00H–FFH). After an initial reset, the program start address is set to page 1, step 00H. The interrupt vectors are allocated to page 1, steps 01H–07H.

Fig. 3.2.1 ROM configuration

3.3 RAM

The RAM, a data memory for storing a variety of data, has a capacity of 144 words, 4-bit words. When programming, keep the following points in mind:

- (1) Part of the data memory is used as stack area when saving subroutine return addresses and registers, so be careful not to overlap the data area and stack area.
- (2) Subroutine calls and interrupts take up three words on the stack.
- (3) Data memory 000H–00FH is the memory area pointed by the register pointer (RP).

CHAPTER 4 PERIPHERAL CIRCUITS AND OPERATION

Peripheral circuits (timer, I/O, and so on) of the E0C6004 are memory mapped. Thus, all the peripheral circuits can be controlled by using memory operations to access the I/O memory. The following sections describe how the peripheral circuits operate.

4.1 Memory Map

The data memory of the E0C6004 has an address space of 188 words, of which 32 words are allocated to display memory and 12 words, to I/O memory. Figure 4.1.1 show the overall memory map for the E0C6004, and Table 4.1.1, the memory maps for the peripheral circuits (I/O space).

Address	Low																
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
Page	High 🔪																
	0	M0	M1	M2	М3	M4	M5	M6	M7	M8	M9	MA	MB	MC	MD	ME	MF
	1																
	2																
	3																
	4		RAM area (000H–08FH)														
	5	1	144 words \times 4 bits (R/W)														
	6																
	7																
0	8																
	9		Display memory area (090H–0AFH)														
	А	1	32 words × 4 bits (W only)														
	В																
	С	1															
	D																
	E					I	/O m	emor	y S	ee T	able 4	4.1.1					
	F																
														Ur	nused	larea	3

Fig. 4.1.1 Memory map

Note: Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

CHAPTER 4: PERIPHERAL CIRCUITS AND OPERATION (Memory Map)

Addroop		Reg	ister						Commont		
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment		
	K03	K02	K01	K00	K03	- *2 - *2	High High	Low			
0E0H	ЕОН				K02	_ *2	High	Low	K0 input port data		
		F	2		KOO	_ *2	High	Low			
					TM3	_ *2	riigii	2011	Clock timer data (2 Hz)		
	TM3	TM2	TM1	TM0	TM2	_ *2			Clock timer data (4 Hz)		
0E4H		-			TM1	_ *2			Clock timer data (8 Hz)		
		ł	र		TM0	- *2			Clock timer data (16 Hz)		
	FILLOO	FILLOO	FILLO	FILLOO	EIK03	0	Enable	Mask	Interrupt mask register (K03)		
05011	EIK03	EIK02	EIKUI	EIKUU	EIK02	0	Enable	Mask	Interrupt mask register (K02)		
UEOH		D	0.67		EIK01	0	Enable	Mask	Interrupt mask register (K01)		
		R/	VV		EIK00	0	Enable	Mask	Interrupt mask register (K00)		
	0	EIT2	EIT0	FIT22	0 *3	_ *2	-	-	Unused		
OEBH	0	EIIZ	EIIO	EII3Z	EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)		
ULDIT	D	DM			EIT8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)		
	ĸ		N/ W		EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)		
	0	0	0	IKO	0 *3	- *2	-	-	Unused		
0EDH	0	0	0	IKU	0 *3	_ *2	-	-	Unused		
0EBII		ŗ	2		0 *3	_ *2	-	-	Unused		
			、		IK0 *4	0	Yes	No	Interrupt factor flag (K00-K03)		
	0	IT2	IT8	IT32	0 *3	_ *2	-	-	Unused		
0EFH					IT2 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)		
		F	2		IT8 *4	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)		
					IT32 *4	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)		
	R03		R01	R00	R03	0	High	Low	R03 output port data		
		R02		FOUT	R02	0	High	Low	R02 output port data		
			BUZZER	BUZZER	R01	0	High	Low	R01 output port data		
0F3H			1		BUZZER	0	On	Off	Buzzer output On/Off control		
		R/	Ŵ		R00	0	High	Low	R00 output port data		
		10			FOUT	0	On	Off Off	FOUT output On/Off control		
					BUZZER	0	Un				
	P03	P02	P01	P00	P03	- *2 *2	High	Low			
0F6H					P02	= *2 *2	High	Low	P0 I/O port data		
		R/	'W			_ *2	High	Low			
					0 *3	_ *2		-	Unused		
	0	TMRST	0	0	TMRST*3	Reset	Reset	_	Clock timer reset		
0F9H					0 *3	- *2	-	_	Unused		
	R	W	F	२	0 *3	_ *2	_	_	Unused		
					0 *3	_ *2	_	_	Unused		
	0	0	0	PDON	0 *3	- *2	-	-	Unused		
0FBH		-	1		0 *3	_ *2	-	-	Unused		
		R		R/W	PDON	0	On	Off	LCD power supply On/Off control		
	_		_		0 *3	- *2	-	-	Unused		
05011	0	0	0	IOC	0 *3	_ *2	-	-	Unused		
UFCH		P		D/W	0 *3	_ *2	-	-	Unused		
		К		K/W	IOC	0	Output	Input	I/O port I/O control		
		0			XBZR	0	2 kHz	4 kHz	Buzzer frequency control		
	VDTK		U	U	0 *3	_ *2	-	-	Unused		
	D/\\/		P		0 *3	- *2	-	-	Unused		
R/W		K K			0 *3	_ *2	-	-	Unused		

Table 4.1.1 I/O memory map

*1 Initial value at initial reset

*3 Always "0" being read

*2 Not set in the circuit

*4 Reset (0) immediately after being read

4.2 Oscillation Circuit

The E0C6004 has a CR oscillation circuit.

The CR oscillation circuit generates the operating clock for the CPU and the peripheral circuits. The oscillation frequency is 2 MHz (Typ.). Figure 4.2.1 is the circuit diagram of the CR oscillation circuit.

Fig. 4.2.1 CR oscillation circuit

As shown in Figure 4.2.1, the CR oscillation circuit can be configured simply by connecting the resistor RCR between the OSC1 and OSC2 terminals.

See Chapter 6, "Electrical Characteristics" for resistance value of RCR.

4.3 Input Ports (K00–K03)

4.3.1 Configuration of input port

The E0C6004 has a 4-bit general-purpose input port. Each of the input port pins (K00–K03) has an internal pull-down resistor. The pull-down resistor can be selected for each bit with the mask option. Figure 4.3.1.1 shows the configuration of input port.

Fig. 4.3.1.1 Configuration of input port

Selecting "pull-down resistor enabled" with the mask option allows input from a push button, key matrix, and so forth. When "pull-down resistor disabled" is selected, the port can be used for slide switch input and interfacing with other LSIs.

4.3.2 Interrupt function

All four input port bits (K00–K03) provide the interrupt function. The conditions for issuing an interrupt can be set by the software for the four bits. Also, whether to mask the interrupt function can be selected individually for all four bits by the software. Figure 4.3.2.1 shows the configuration of K00–K03.

Fig. 4.3.2.1 Input interrupt circuit configuration (K00–K03)

The interrupt mask registers (EIK00–EIK03) enable the interrupt mask to be selected individually for K00–K03. An interrupt occurs when the input value which are not masked change and the interrupt factor flag (IK0) is set to 1.

Input interrupt programming related precautions

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flag is set at ①.

Fig. 4.3.2.2 Input interrupt timing

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status (input terminal = high status), the factor flag for input interrupt may be set.

For example, a factor flag is set with the timing of ① shown in Figure 4.3.2.2. However, when clearing the content of the mask register with the input terminal kept in the high status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (high status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the rising edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (low status).

4.3.3 Mask option

The contents that can be selected with the input port mask option are as follows:

- (1) An internal pull-down resistor can be selected for each of the four bits of the input ports (K00–K03). Having selected "pull-down resistor disabled", take care that the input does not float. Select "pull-down resistor enabled" for input ports that are not being used.
- (2) The input interrupt circuit contains a noise rejection circuit to prevent interrupts form occurring through noise. The mask option enables selection of the noise rejection circuit for each separate pin series. When "use" is selected, a maximum delay of 0.5 msec (fosc = 2 MHz), tolerance is within 5%, occurs from the time an interrupt condition is established until the interrupt factor flag (IK0) is set to 1.

4.3.4 I/O memory of input port

Table 4.3.4.1 list the input port control bits and their addresses.

A	Register								0t			
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment			
	KOD	KOD	K01	KOO	K03	_ *2	High	Low	7			
05011		KU2	KUT	KUU	K02	- *2	High	Low				
UEUH		r	D		K01	_ *2	High	Low	K0 input port data			
		ł	ζ.			_ *2	High	Low				
		FIKO2			EIK03	0	Enable	Mask	Interrupt mask register (K03)			
	EIKU3	EIKUZ	EIKUI	EIKUU	EIK02	0	Enable	Mask	Interrupt mask register (K02)			
UEOH		D	14/		EIK01	0	Enable	Mask	Interrupt mask register (K01)			
		K/	vv		EIK00	0	Enable	Mask	Interrupt mask register (K00)			
	_		0	IKO	0 *3	_ *2	-	-	Unused			
	0	0	0	IKU	0 *3	_ *2	-	-	Unused			
UEDH		r			0 *3	- *2	-	-	Unused			
R			۲		IK0 *4	0	Yes	No	Interrupt factor flag (K00–K03)			

Table 4.3.4.1 Input port control bits

*1 Initial value at initial reset

*3 Always "0" being read

*2 Not set in the circuit

*4 Reset (0) immediately after being read

K00–K03: Input port data (0E0H)

The input data of the input port pins can be read with these registers.

When 1 is read: High level When 0 is read: Low level Writing: Invalid

The value read is 1 when the pin voltage of the four bits of the input port (K00–K03) goes high (VDD), and 0 when the voltage goes low (Vss). These bits are reading, so writing cannot be done.

EIK00-EIK03: Interrupt mask registers (0E8H)

Masking the interrupt of the input port pins can be done with these registers.

When 1 is written: Enable When 0 is written: Mask Reading: Valid

With these registers, masking of the input port bits can be done for each of the four bits. After an initial reset, these registers are all set to 0.

IK0: Interrupt factor flag (0EDH•D0)

This flag indicates the occurrence of an input interrupt.

When 1 is read: Interrupt has occurred When 0 is read: Interrupt has not occurred Writing: Invalid

The interrupt factor flag IK0 is associated with K00-K03. From the status of this flag, the software can decide whether an input interrupt has occurred.

This flag is reset when the software has read it.

Reading of interrupt factor flag is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to 1, an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated.

After an initial reset, this flag is set to 0.

4.3.5 Programming note

When modifying the input port from high level to low level with pull-down resistor, a delay will occur at the fall of the waveform due to time constant of the pull-down resistor and input gate capacities. Provide appropriate waiting time in the program when performing input port reading.

4.4 Output Ports (R00–R03)

4.4.1 Configuration of output port

The E0C6004 has a 4-bit general output port (R00-R03).

Output specification of the output port can be selected in a bit units with the mask option. Two kinds of output specifications are available: complementary output and Pch open drain output. Also, the mask option enables the output ports R00 and R01 to be used as special output ports. Figure 4.4.1.1 shows the configuration of the output port.

Fig. 4.4.1.1 Configuration of output port

4.4.2 Mask option

The mask option enables the following output port selection.

(1) Output specification of output port

The output specifications for the output port (R00–R03) may be either complementary output or Pch open drain output for each bit. However, even when Pch open drain output is selected, a voltage exceeding the source voltage must not be applied to the output port.

(2) Special output

In addition to the regular DC output, special output can be selected for output ports R00 and R01, as shown in Table 4.4.2.1. Figure 4.4.2.1 shows the structure of output ports R00–R03.

Fig. 4.4.2.1 Structure of output ports R00-R03

EPSON

FOUT (R00)

When output port R00 is set for FOUT output, this port will generate fosc (CPU operating clock frequency) clock.

BUZZER, BUZZER (R01, R00)

Output ports R01 and R00 may be set to BUZZER output and BUZZER output (BUZZER reverse output), respectively, allowing for direct driving of the piezo-electric buzzer.

BUZZER output (R00) may only be set if R01 is set to BUZZER output. In such case, whether ON/OFF of the BUZZER output is done through R00 register or is controlled through R01 simultaneously with BUZZER output is also selected by mask option.

The frequency of buzzer output may be selected by software to be either 2 kHz or 4 kHz.

4.4.3 I/O memory of output port

Table 4.4.3.1 lists the output port control bits and their addresses.

A		Reg	ister						Comment	
Address	D3	D2	D1	D0 Name Init *1 1 0		0	Comment			
			R01	R00	R03	0	High	Low	R03 output port data	
R03	R03	R02		FOUT	R02	0	High	Low	R02 output port data	
			BUZZER		R01	0	High	Low	R01 output port data	
0F3H			DUZZER	BUZZER	0	On	Off	Buzzer output On/Off control		
					R00	0	High	Low	R00 output port data	
		R/W			FOUT	0	On	Off	FOUT output On/Off control	
					BUZZER	0	On	Off	Buzzer inverted output On/Off control	
	VD7D	0	0	0	XBZR	0	2 kHz	4 kHz	Buzzer frequency control	
			0	U	0 *3	_ *2	-	-	Unused	
		w D			0 *3	- *2	-	-	Unused	
R/W	R/W		к		0 *3	_ *2	-	-	Unused	

Table 4.4.3.1 Control bits of output port

*1 Initial value at initial reset*2 Not set in the circuit

*3 Always "0" being read

*4 Reset (0) immediately after being read

R00-R03: Output port data (0F3H)

Sets the output data for the output ports.

When 1 is written: High output When 0 is written: Low output Reading: Valid

The output port pins output the data written to the corresponding registers (R00–R03) without changing it. When 1 is written to the register, the output port pin goes high (VDD), and when 0 is written, the output port pin goes low (Vss).

After an initial reset, all the registers are set to 0.

R00 (when FOUT is selected): Special output port data (0F3H•D0)

Controls the FOUT (fosc clock) output.

When 1 is written: Clock output When 0 is written: Low level (DC) output Reading: Valid

FOUT output can be controlled by writing data to R00. After an initial reset, this register is set to 0. Figure 4.4.3.1 shows the output waveform for FOUT output.

CHAPTER 4: PERIPHERAL CIRCUITS AND OPERATION (Output Ports)

R00 register	0	1	
FOUT output waveform			
Fig. 4	4.3.1	FOUT output waveform	

Note: A hazard may occur when the FOUT signal is turned ON or OFF.

R00, R01 (when buzzer output is selected): Special output port data (0F3H•D0, D1)

Controls the buzzer output.

When 1 is written: Buzzer output When 0 is written: Low level (DC) output Reading: Valid

BUZZER and BUZZER output can be controlled by writing data to R00 and R01.

When BUZZER output by R01 register control is selected by mask option, BUZZER output and BUZZER output can be controlled simultaneously by writing data to R01 register.

After an initial reset, these registers are set to 0.

Figure 4.4.3.2 shows the output waveform for buzzer output.

R01 (R00) register	0		1		
BUZZER output waveform					
BUZZER output waveform					

Fig. 4.4.3.2 Buzzer output waveform

Note: A hazard may occur when the BUZZER or BUZZER signal is turned ON or OFF.

XBZR: Buzzer frequency control (0FDH•D3)

Selects the frequency of the buzzer signal.

When 1 is written: 2 kHz When 0 is written: 4 kHz Reading: Valid

When R00 and R01 port is set to buzzer output, the frequency of the buzzer signal can be selected by this register.

When 1 is written to this register, the frequency is set in 2 kHz, and in 4 kHz when 0 is written. After an initial reset, this register is set to 0.

4.4.4 Programming note

The buzzer output signal may produce hazards when the output ports R00 and R01 are turned on or off.

4.5 *I/O Ports (P00–P03)*

4.5.1 Configuration of I/O port

The E0C6004 has a 4-bit general-purpose I/O port. Figure 4.5.1.1 shows the configuration of the I/O port. The four bits of the I/O port P00–P03 can be set to either input mode or output mode. The mode can be set by writing data to the I/O control register (IOC).

Fig. 4.5.1.1 Configuration of I/O port

4.5.2 I/O control register and I/O mode

Input or output mode can be set for the four bits of I/O port P00–P03 by writing data into I/O control register IOC.

To set the input mode, 0 is written to the I/O control register. When an I/O port is set to input mode, its impedance becomes high and it works as an input port. However, the input line is pulled down when input data is read.

The output mode is set when 1 is written to the I/O control register (IOC). When an I/O port set to output mode works as an output port, it outputs a high signal (VDD) when the port output data is 1, and a low signal (VSS) when the port output data is 0.

After an initial reset, the I/O control register is set to 0, and the I/O port enters the input mode.

4.5.3 Mask option

The output specification during output mode (IOC = 1) of the I/O port can be set with the mask option for either complementary output or Pch open drain output. This setting can be performed for each bit of the I/O port. However, when Pch open drain output has been selected, voltage in excess of the supply voltage must not be applied to the port.

4.5.4 I/O memory of I/O port

Table 4.5.4.1 lists the I/O port control bits and their addresses.

Address		Reg	ister						Commont
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	002	P02	P01	DOO	P03	_ *2	High	Low	7
OFEL	P03	PUZ		100	P02	_ *2	High	Low	D0 I/O most data
UFON	-6H		14/		P01	- *2	High	Low	PO I/O port data
		R/	vv		P00	_ *2	High	Low	
	0	0	0	0 *3		_ *2	-	-	Unused
	0	U	0	IUC	0 *3	- *2	-	-	Unused
UFCH		р		DAV	0 *3	_ *2	-	-	Unused
	R		R/W	IOC	0	Output	Input	I/O port I/O control	
*1 Initial value at initial reset						*3 Alwa	ys "0" be	ing read	
*2 Not set in the circuit						*4 Reset	(0) imm	ediately a	fter being read

Table 4.5.4.1 I/O port control bits

P00-P03: I/O port data (0F6H)

I/O port data can be read and output data can be written through the port.

When writing data

When 1 is written: High level When 0 is written: Low level

When an I/O port is set to the output mode, the written data is output from the I/O port pin unchanged. When 1 is written as the port data, the port pin goes high (VDD), and when 0 is written, the level goes low (Vss). Port data can also be written in the input mode.

When reading data

When 1 is read: High level When 0 is read: Low level

The pin voltage level of the I/O port is read. When the I/O port is in the input mode the voltage level being input to the port pin can be read; in the output mode the output voltage level can be read. When the pin voltage is high (VDD) the port data read is 1, and when the pin voltage is low (Vss) the data is 0. Also, the built-in pull-down resistor functions during reading, so the I/O port pin is pulled down.

IOC: I/O control register (0FCH•D0)

The input or output I/O port mode can be set with this register.

When 1 is written: Output mode When 0 is written: Input mode Reading: Valid

The input or output mode of the I/O port is set in units of four bits. For instance, IOC sets the mode for P00–P03.

Writing 1 to the I/O control register makes the I/O port enter the output mode, and writing 0, the input mode.

After an initial reset, the IOC register is set to 0, so the I/O port is in the input mode.

4.5.5 Programming note

When in the input mode, I/O ports are changed from high to low by pull-down resistor, the fall of the waveform is delayed on account of the time constant of the pull-down resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.

Particular care needs to be taken of the key scan during key matrix configuration.

Make this waiting time the amount of time or more calculated by the following expression.

 $10 \times C \times R$

C: terminal capacitance 5 pF + parasitic capacitance ? pF

R: pull-down resistance 60 k Ω

4.6 LCD Driver (COM0–COM3, SEG0–SEG25)

4.6.1 Configuration of LCD driver

The E0C6004 has four common pins and 26 (SEG0–SEG25) segment pins, so that an LCD with a maximum of 104 (26×4) segments can be driven. The power for driving the LCD is generated by the CPU internal circuit, so there is no need to supply power externally.

The driving method is 1/4 duty (or 1/3, 1/2 duty by mask option) dynamic drive, adopting the four types of potential (1/3 bias), VDD, VL1, VL2 and Vss. Moreover, the 1/2 bias dynamic drive that uses three types of potential, VDD, VL1 = VL2 and Vss, can be selected by setting the mask option (drive duty can also be selected from 1/4, 1/3 or 1/2).

The LCD drive voltages VL1 and VL2 are generated by the power divider inside the IC. However it is necessary to turn the power divider on by writing 1 to the PDON register before starting LCD display. The frame frequency is about 30.5 Hz for 1/4 duty and 1/2 duty, and 40.7 Hz for 1/3 duty (in the case of fosc = 2 MHz), tolerance is within 5%.

Figures 4.6.1.1 to 4.6.1.6 show the drive waveform for each duty and bias.

Note: "fosc" indicates the oscillation frequency of the oscillation circuit.

Fig. 4.6.1.3 Drive waveform for 1/2 duty (1/3 bias)

Fig. 4.6.1.5 Drive waveform for 1/3 duty (1/2 bias)

Fig. 4.6.1.6 Drive waveform for 1/2 duty (1/2 bias)

4.6.2 Mask option

(1) Segment allocation

As shown in Figure 4.1.1, the E0C6004 display data is decided by the data written to the display memory (write-only) at address 090H–0AFH.

The address and bits of the display memory can be made to correspond to the segment pins (SEG0–SEG25) in any combination through mask option. This simplifies design by increasing the degree of freedom with which the liquid crystal panel can be designed.

Figure 4.6.2.1 shows an example of the relationship between the LCD segments (on the panel) and the display memory in the case of 1/3 duty.

Fig. 4.6.2.1 Segment allocation

(2) Drive duty

According to the mask option, either 1/4, 1/3 or 1/2 duty can be selected as the LCD drive duty. Table 4.6.2.1 shows the differences in the number of segments according to the selected duty.

	10010 4.0.2.1	Differences according to s	eiecieu uniy
Duty	COM used	Max. number of segments	Frame frequency *
1/4	COM0-COM3	$104(26 \times 4)$	30.5 Hz
1/3	COM0-COM2	78 (26 × 3)	40.7 Hz
1/2	COM0-COM1	$52(26 \times 2)$	30.5 Hz

Table 4.6.2.1 Differences according to selected duty

* When fosc = 2 MHz, tolerance is within 5%

Common 2

(3) Output specification

- ① The segment pins (SEG0–SEG25) are selected by mask option in pairs for either segment signal output or DC output (VDD and Vss binary output). When DC output is selected, the data corresponding to COM0 of each segment pin is output.
- ⁽²⁾ When DC output is selected, either complementary output or Pch open drain output can be selected for each pin by mask option.
- Note: The pin pairs are the combination of SEG (2*n) and SEG (2*n + 1) (where n is an integer from 0 to 12).

(4) Drive bias

For the drive bias of the E0C6004, either 1/3 bias or 1/2 bias can be selected by the mask option.

4.6.3 I/O memory of LCD driver

Table 4.6.3.1 shows the control bits of the LCD driver and their addresses. Figure 4.6.3.1 shows the display memory map.

Register			ister						Commont			
Address	S D3 D2 D1		D1	D0	Name Init *1 1 0		0	Comment				
	0	0	0		0 *3	- *2	-	-	Unused			
OFBH	U	0	0	PDUN	0 *3	_ *2	-	-	Unused			
0 DI				D/M	0 *3	_ *2	-	-	Unused			
		ĸ		FC/ VV	PDON	0	On	Off	LCD power supply on/off control			
*1 Initial	value at	initial res	set			*3 Always "0" being read						
*2 Not se		*4 Reset (0) immediately after being read										

BCDE

F

9 A

Table 4.6.3.1 Control bits of LCD driver

Display memory (Write only) 32 words x 4 bits Fig. 4.6.3.1 Display memory map

6 7

5

PDON: LCD power supply On/Off control (0FBH•D0)

 $0 \mid 1$

2 3 4

Controls the power supply for LCD display.

Address

090

0A0

When 1 is written: LCD power On When 0 is written: LCD power Off Reading: Valid

By writing 1 to PDON, the LCD display can work normally. When 0 is written, all the segment and common signals will go to the same voltage level, and the LCD display goes off. This control dose not affect the contents of display memory.

After an initial reset, this register is set to 0.

Display memory (090H–0AFH)

The LCD segments are turned on or off according to this data.

When 1 is written: On When 0 is written: Off Reading: Invalid

By writing data into the display memory allocated to the LCD segment (on the panel), the segment can be turned on or off.

After an initial reset, the contents of the display memory are undefined.

4.6.4 Programming note

Because the display memory is for writing only, re-writing the contents with computing instructions (e.g., AND, OR, etc.) which come with read-out operations is not possible. To perform bit operations, a buffer to hold the display data is required on the RAM.

4.7 Clock Timer

4.7.1 Configuration of clock timer

The E0C6004 has a built-in clock timer that uses the oscillation circuit as the clock source. The clock timer is configured as a 7-bit binary counter that counts with a 256 Hz source clock from the divider. The high-order 4 bits of the counter (16 Hz–2 Hz) can be read by the software.

Figure 4.7.1.1 is the block diagram of the clock timer.

Normally, this clock timer is used for all kinds of timing purpose, such as clocks.

4.7.2 Interrupt function

The clock timer can generate interrupts at the falling edge of the 32 Hz, 8 Hz, and 2 Hz signals. The software can mask any of these interrupt signals.

Figure 4.7.2.1 is the timing chart of the clock timer.

Address	Register bits	Frequency											(Clo	ck	tin	ner	tir	nin	ig o	cha	rt												
	D0	16 Hz																																
0E4H	D1	8 Hz								[
02411	D2	4 Hz																																
	D3	2 Hz																																
Occur 32 Hz	rrence of interrupt	request	t	t	t	t	t	t	† .	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
Occui 8 Hz i	rrence of nterrupt re	equest				t				t				t				t				t				t				t				t
Occur 2 Hz i	rrence of nterrupt re	equest																t																t

Fig. 4.7.2.1 Timing chart of the clock timer

As shown in Figure 4.7.2.1, an interrupt is generated at the falling edge of the 32 Hz, 8 Hz, and 2 Hz signals. At this point, the corresponding interrupt factor flag (IT32, IT8, IT2) is set to 1. The interrupts can be masked individually with the interrupt mask register (EIT32, EIT8, EIT2). However, regardless of the interrupt mask register setting, the interrupt factor flags will be set to 1 at the falling edge of their corresponding signal (e.g. the falling edge of the 2 Hz signal sets the 2 Hz interrupt factor flag to 1).

4.7.3 I/O memory of clock timer

Table 4.7.3.1 shows the clock timer control bits and their addresses.

Addroso		Reg	ister	-					Commont			
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment			
	TM2	TMO	TM1	TMO	TM3	- *2			Clock timer data (2 Hz)			
			TIVIT	TIVIU	TM2	_ *2			Clock timer data (4 Hz)			
02411		r	r			_ *2			Clock timer data (8 Hz)			
		1	۲		TM0	- *2			Clock timer data (16 Hz)			
	0	EIT2	EITO	EIT22	0 *3	_ *2	-	-	Unused			
	0	EIIZ	EIIO	EII3Z	EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)			
ULDIT	р		D/M		EIT8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)			
	к		R/W		EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)			
	0	172	ITO	1722	0 *3	_ *2	-	-	Unused			
	0	112	110	1132	IT2 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)			
VEFI		r	r		IT8 *4	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)			
		r	х —		IT32 *4	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)			
	_	TMDCT			0 *3	- *2	-	-	Unused			
	0	TIVIRST	0	0	TMRST*3	Reset	Reset	-	Clock timer reset			
0190	р		W D		0 *3	_ *2	-	-	Unused			
	ĸ	vv		7	0 *3	- *2	-	-	Unused			

Table 4.7.3.1 Control bits of clock timer

*1 Initial value at initial reset

*3 Always "0" being read

*2 Not set in the circuit

*4 Reset (0) immediately after being read

TM0–TM3: Timer data (0E4H)

The l6 Hz to 2 Hz timer data of the clock timer can be read from this register. These four bits are readonly, and write operations are invalid.

At initial reset, the timer data is initialized to "0H".

EIT32, EIT8, EIT2: Interrupt mask registers (0EBH•D0–D2)

These registers are used to mask the clock timer interrupt.

When 1 is written: Enabled When 0 is written: Masked Reading: Valid

The interrupt mask registers (EIT32, EIT8, EIT2) mask the corresponding interrupt frequencies (32 Hz, 8 Hz, 2 Hz).

At initial reset, these registers are all set to 0.

IT32, IT8, IT2: Interrupt factor flags (0EFH•D0–D2)

These flags indicate the status of the clock timer interrupt.

When 1 is read: Interrupt has occurred When 0 is read: Interrupt has not occurred Writing: Invalid

The interrupt factor flags (IT32, IT8, IT2) correspond to the clock timer interrupts (32 Hz, 8 Hz, 2 Hz). The software can determine from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to 1 at the falling edge of the signal. These flags can be reset when the register is read by the software.

Reading of interrupt factor flags is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to 1, an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address. At initial reset, these flags are set to 0.

TMRST: Clock timer reset (0F9H•D2)

This bit resets the clock timer.

When 1 is written: Clock timer reset When 0 is written: No operation Reading: Always 0

The clock timer is reset by writing 1 to TMRST. The clock timer starts immediately after this. No operation results when 0 is written to TMRST.

This bit is write-only, and so is always 0 when read.

4.7.4 Programming notes

- (1) Note that the frequencies and times differ from the description in this section when the oscillation frequency is not 2 MHz. In the case of E0C6004, tolerance is within 5%.
- (2) Reading of interrupt factor flags is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to 1, an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

4.8 Interrupt and HALT/SLEEP

Interrupt types

The E0C6004 provides the following interrupt settings, each of which is maskable.

External interrupt: Input port interrupt (one) Internal interrupt: Timer interrupt (one)

To enable interrupts, the interrupt flag must be set to 1 (EI) and the necessary related interrupt mask registers must be set to 1 (enable). When an interrupt occurs, the interrupt flag is automatically reset to 0 (DI) and interrupts after that are inhibited.

Figure 4.8.1 shows the configuration of the interrupt circuit.

Fig. 4.8.1 Configuration of interrupt circuit

HALT and SLEEP modes

When the HALT instruction is executed, the CPU stops operating and enters the HALT mode. The oscillation circuit and the peripheral circuits operate in the HALT mode. By an interrupt, the CPU exits the HALT mode and resumes operating.

Executing the SLP instruction set the IC in the SLEEP mode that stops operations of the CPU and oscillation circuit. The SLEEP mode will be canceled by an input interrupt request from the input port K00–K03. Consequently, at least one input port (K00, K01, K02 or K03) interrupt must be enabled before shifting to the SLEEP status. When the SLEEP status is canceled by a K0n input interrupt, the CPU waits for oscillation to stabilize then restarts operating.

Refer to the "E0C6200/6200A Core CPU Manual" for transition to the HALT/SLEEP status and timing of its cancellation.

Figures 4.8.2, 4.8.3 and 4.8.4 show the sequence to enter and cancel the SLEEP mode, respectively.

Program counter	PC	PC+1	PC+2		PC+3	_X	PC+4
USLP (controlled by softw	are						
CLK		บบบ	תתת	ЛЛ	UUU		
K input							
Interrupt mask register							
		Fig.	4.8.2 Enter	ing SL	EEP mo	de	
			Key interru	upt vecte	Interrupt s	ervice routing start addres	e Interrupt service routine s end address
Program counter	PC+4	(<u> </u>	PC+	4	104H		× PC+4 X PC+5
USLP (controlled by softw command "SLP") CLK	are						
K input							
Interrupt mask register		ļ <u> </u>					
Wa	iting for cloc	k stabilizat	ion		Execute	K-input inter	rrupt service routine
	Fig.	4.8.3 W	akeup from	SLEE	P mode l	by K-input	
Program counter	F	PC+4	100	1	1	01H	102H 103H
USLP (controlled b command " CLK	oy software 'SLP")						
RESET input							
Interrupt mask re	gister						
	Fig. 4	.8.4 Wal	keup from SI	LEEP	mode by	RESET pa	ad and a second s

4.8.1 Interrupt factors

Table 4.8.1.1 shows the factors that generate interrupt requests.

The interrupt factor flags are set to 1 depending on the corresponding interrupt factors. The CPU is interrupted when the following two conditions occur and an interrupt factor flag is set to 1.

- The corresponding mask register is 1 (enabled)
- The interrupt flag is 1 (EI)

The interrupt factor flag is a read-only register, but can be reset to 0 when the register data is read. At initial reset, the interrupt factor flags are reset to 0.

Note: Reading of interrupt factor flag is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to 1, an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

	·r·J·····
Interrupt factor	Interrupt factor flag
Clock timer 2 Hz falling edge	IT2 (0EFH•D2)
Clock timer 8 Hz falling edge	IT8 (0EFH•D1)
Clock timer 32 Hz falling edge	IT32 (0EFH•D0)
Input (K00–K03) port rising edge	IK0 (0EDH•D0)

Table 4.8.1.1 Interrupt factors

4.8.2 Specific masks for interrupt

The interrupt factor flags can be masked by the corresponding interrupt mask registers. The interrupt mask registers are read/write registers. The interrupts are enabled when 1 is written to them, and masked (interrupt disabled) when 0 is written to them.

At initial reset, the interrupt mask register is set to 0.

Table 4.8.2.1 shows the correspondence between interrupt mask registers and interrupt factor flags.

Interrupt r	nask register	Interrupt factor flag					
EIT2	(0EBH•D2)	IT2	(0EFH•D2)				
EIT8	(0EBH•D1)	IT8	(0EFH•D1)				
EIT32	(0EBH•D0)	IT32	(0EFH•D0)				
EIK03*	(0E8H•D3)						
EIK02*	(0E8H•D2)	IVO					
EIK01*	(0E8H•D1)						
EIK00*	(0E8H•D0)						

 Table 4.8.2.1
 Interrupt mask registers and interrupt factor flags

* There is an interrupt mask register for each input port pin.

4.8.3 Interrupt vectors

When an interrupt request is input to the CPU, the CPU starts interrupt processing. After the program being executed is suspended, interrupt processing is executed in the following order:

- ① The address data (value of the program counter) of the program step to be executed next is saved on the stack (RAM).
- ^② The interrupt request causes the value of the interrupt vector (page 1, 01H–07H) to be loaded into the program counter.
- ③ The program at the specified address is executed (execution of interrupt processing routine).

Note: The processing in steps 1 and 2, above, takes 12 cycles of the CPU system clock.

Page	Step	Interrupt vector					
1	00H	Initial reset					
	01H	ock timer interrupt					
	04H	Input (K00–K03) interrupt					
	05H	Clock timer & Input (K00-K03) interrupt					

Table 4.8.3.1 Interrupt vector addresses

4.8.4 I/O memory of interrupt

Table 4.8.4.1 shows the interrupt control bits and their addresses.

A		Reg	ister						0
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	FIKO2	FIKOD			EIK03	0	Enable	Mask	Interrupt mask register (K03)
	EIKUS	EIKUZ	EIKUI	EIKUU	EIK02	0	Enable	Mask	Interrupt mask register (K02)
UEON		D	\A/		EIK01	0	Enable	Mask	Interrupt mask register (K01)
		K/	vv		EIK00	0	Enable	Mask	Interrupt mask register (K00)
		EIT2	ГІТО	FIT22	0 *3	- *2	-	-	Unused
	0	EIIZ	EII8	EII32	EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
			DM		EIT8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
	к		K/W		EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	0	0	IKO	0 *3	_ *2	-	-	Unused
	0	0	0	IKU	0 *3	_ *2	-	-	Unused
		,			0 *3	- *2	-	-	Unused
		ł	K		IK0 *4	0	Yes	No	Interrupt factor flag (K00-K03)
		ITO	ITO	1722	0 *3	_ *2	-	-	Unused
	0	112	118	1132	IT2 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
					IT8 *4	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
		ł	ς		IT32 *4	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)

1

Table 4.8.4.1 Control bits of interrupt

*1 Initial value at initial reset

*3 Always "0" being read

*2 Not set in the circuit

*4 Reset (0) immediately after being read

EIT32, EIT8, EIT2: Interrupt mask registers (0EBH•D0–D2) IT32, IT8, IT2: Interrupt factor flags (0EFH•D0–D2)

...See Section 4.7, "Clock Timer".

EIK00–EIK03: Interrupt mask registers (0E8H) IK0: Interrupt factor flag (0EDH•D0)

...See Section 4.3, "Input Port".

4.8.5 Programming notes

- (1) Restart from the HALT mode is performed by an interrupt. The return address after completion of the interrupt processing will be the address following the HALT instruction.
- (2) Restart from the SLEEP mode is performed by an input interrupt from the input port (K00–K03). The return address after completion of the interrupt processing will be the address following the SLP instruction. At least one input port interrupt must be enabled before shifting to the SLEEP mode.
- (3) When an interrupt occurs, the interrupt flag will be reset by the hardware and it will become DI status. After completion of the interrupt processing, set to the EI status through the software as needed.

Moreover, the nesting level may be set to be programmable by setting to the EI state at the beginning of the interrupt processing routine.

- (4) The interrupt factor flags must always be reset before setting the EI status. When the interrupt mask register has been set to 1, the same interrupt will occur again if the EI status is set unless of resetting the interrupt factor flag.
- (5) The interrupt factor flag will be reset by reading through the software. Because of this, when multiple interrupt factor flags are to be assigned to the same address, perform the flag check after the contents of the address has been stored in the RAM. Direct checking with the FAN instruction will cause all the interrupt factor flag to be reset.
- (6) Reading of interrupt factor flag is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to 1, an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

CHAPTER 5 BASIC EXTERNAL WIRING DIAGRAM

Piezo Buzzer Single Terminal Driving

Piezo Buzzer Direct Driving

Rcr	Resistor	50 kΩ (Vss = -5.0 V), 39 kΩ (Vss = -3.0 V)
C1	Capacitor	0.1 μF
Ср	Capacitor	3.3 μF
R1, R2	Resistor	100 Ω

Note: The above table is simply an example, and is not guaranteed to work.

CHAPTER 6 ELECTRICAL CHARACTERISTICS

6.1 Absolute Maximum Rating

		(VI	DD=0V)
Item	Symbol	Rated value	Unit
Supply voltage	Vss	-7.0 to 0.5	V
Input voltage (1)	VI	Vss - 0.3 to 0.5	V
Input voltage (2)	VIOSC	Vs1 - 0.3 to 0.5	V
Permissible total output current *1	ΣIvss	40	mA
Operating temperature	Topr	-20 to 70	°C
Storage temperature	Tstg	-65 to 150	°C
Soldering temperature / time	Tsol	260°C, 10sec (lead section)	-
Permissible dissipation *2	PD	250	mW

*1 The permissible total output current is the sum total of the current (average current) that simultaneously flows from the output pin (or is drawn in).

*2 In case of plastic package (QFP12-48pin).

6.2 Recommended Operating Conditions

				(]	a=-20 to	70°C)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vss	3 V system, VDD=0V	-3.6	-3.0	-2.7	V
		5 V system, VDD=0V	-5.5	-5.0	-4.5	V
Oscillation frequency	fosc	CR oscillation, RcR=50kΩ, Vss=-5V		2		MHz

6.3 DC Characteristics

Unless otherwise specified:

VDD=0V, Vss=-5.0V, fosc=2MHz, Ta=25°C

Item	Symbol	Conc	lition	Min.	Тур.	Max.	Unit
High level input voltage (1)	VIH1		K00-03, P00-03	0.2·Vss		0	V
High level input voltage (2)	VIH2		RESET	0.1·Vss		0	V
Low level input voltage (1)	VIL1		K00-03, P00-03	Vss		0.8-Vss	V
Low level input voltage (2)	VIL2		RESET	Vss		0.9·Vss	V
High level input current (1)	IIH1	VIH1=0V, No pull-down	K00-03, P00-P03	0		0.5	μA
High level input current (2)	IIH2	VIH2=0V, Pull-down	K00-03	20	40	70	μA
High level input current (3)	IIH3	VIH3=0V, Pull-down	P00-03, RESET	50	100	150	μA
Low level input current	IIL	VIL=VSS	K00-03, P00-03,	-0.5		0	μA
			RESET, TEST				
High level output current (1)	Іон1	VOH1=0.1·VSS	R02, R03, P00-03			-3.0	mA
High level output current (2)	Іон2	Voh2=0.1·Vss	R00, R01			-3.0	mA
		(with protection resistor)					
High level output current (3)	Іонз	Voh3=0.1·Vss, Vss=-4.5V	R03			-15	mA
Low level output current (1)	IOL1	Vol1=0.9·Vss	R02, R03, P00-03	3.0			mA
Low level output current (2)	IOL2	Vol2=0.9·Vss	R00, R01	3.0			mA
		(with protection resistor)					
Common output current	IOH4	Voh4=-0.05V	COM0-3			-3	μA
	IOL4	Vol4=Vss+0.05V		3			μA
Segment output current	IOH5	Voh5=-0.05V	SEG0-25			-3	μA
(during LCD output)	IOL5	Vol5=Vss+0.05V		3			μA
Segment output current	Іон6	Voh6=0.1·Vss	SEG0-25			-450	μA
(during DC output)	IOL6	Vol6=0.9.Vss		450			μA

Unless otherwise specified:

VDD=0V, Vss=-3.0V, fosc=2MHz, Ta=25°C

Item	Symbol	Conc	lition	Min.	Тур.	Max.	Unit
High level input voltage (1)	VIH1		K00-03, P00-03	0.2·Vss		0	V
High level input voltage (2)	VIH2		RESET	0.1.Vss		0	V
Low level input voltage (1)	VIL1		K00-03, P00-03	Vss		0.8·Vss	V
Low level input voltage (2)	VIL2		RESET	Vss		0.9·Vss	V
High level input current (1)	IIH1	VIH1=0V, No pull-down	K00-03, P00-P03	0		0.5	μA
High level input current (2)	IIH2	VIH2=0V, Pull-down	K00-03	10	25	40	μA
High level input current (3)	IIH3	VIH3=0V, Pull-down	P00-03, RESET	30	60	100	μA
Low level input current	IIL	VIL=VSS	K00-03, P00-03,	-0.5		0	μA
			RESET, TEST				
High level output current (1)	Іон1	Voh1=0.1·Vss	R02, R03, P00-03			-1.0	mA
High level output current (2)	IOH2	Voh2=0.1·Vss	R00, R01			-1.0	mA
		(with protection resistor)					
High level output current (3)	Іонз	Voh3=0.1·Vss, Vss=-2.7V	R03			-5	mA
Low level output current (1)	IOL1	Vol1=0.9·Vss	R02, R03, P00-03	3.0			mA
Low level output current (2)	IOL2	Vol2=0.9·Vss	R00, R01	3.0			mA
		(with protection resistor)					
Common output current	IOH4	Voh4=-0.05V	COM0-3			-3	μA
	IOL4	VOL4=VSS+0.05V		3			μA
Segment output current	Іон5	Voh5=-0.05V	SEG0-25			-3	μA
(during LCD output)	IOL5	Vol5=Vss+0.05V		3			μA
Segment output current	Іон6	VOH6=0.1·Vss	SEG0-25			-200	μA
(during DC output)	IOL6	VOL6=0.9·VSS		200			μA

6.4 Current Consumption

Unless otherwise specified:

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
Current consumption	ISLP2	During SLEEP, LCD off	Vss=-3.0V			100	nA
	IHALT2	During HALT, LCD off	no panel load		300	800	μA
	IHALT4	During HALT, LCD on	Rcr=39kΩ		330	800	μA
	IEXE2	During operation, LCD off			420	1000	μA
	IEXE4	During operation, LCD on			450	1000	μA
	ISLP1	During SLEEP, LCD off	Vss=-5.0V			100	nA
	IHALT1	During HALT, LCD off	no panel load		950	1500	μA
	IHALT3	During HALT, LCD on	Rcr=50kΩ		1000	1500	μA
	IEXE1	During operation, LCD off			1050	1800	μA
	IEXE3	During operation, LCD on			1100	1800	μA

6.5 Oscillation Characteristics

Oscillation characteristics will vary according to different conditions (elements used, board pattern). Use the following characteristics are as reference values.

CR Oscillation

Unless otherwise specified:

VDD=0V, Vss=-5.0V, Rcr=50Ω, Ta=25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Frequency voltage dispersion	$\Delta f / \Delta V_1$	Vss=-4.5 to -5.5V			20	%
Frequency IC dispersion	$\Delta f / \Delta IC_1$	Vss=-5V	-20	(2MHz)	20	%
Oscillation start time	tsta	Vss=-4.5 to -5.5V		3		mS

Unless otherwise specified:

VDD=0V, Vss=-3.0V, Rcr=39 Ω , Ta=25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Frequency voltage dispersion	$\Delta f / \Delta V_2$	Vss=-2.7 to -3.6V			30	%
Frequency IC dispersion	$\Delta f/\Delta IC_2$	Vss=-3V	-20	(2MHz)	20	%
Oscillation start time	tsta	Vss=-2.7 to -3.6V		3		mS

6.6 LCD Characteristic

Unless otherwise specified: VDD-0V_VSS-VL3_Ta-25°C

$v_{DD}=0v, v_{SS}=v_{LS}, 1a=25 C$						
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connect 1 M Ω load resistor between VDD and	(Vss/3)	Vss/3	(Vss/3)	V
		common pad (without panel load)	-0.1		×0.9	

CHAPTER 7 PACKAGE

7.1 Plastic Package

QFP12-48pin

(Unit: mm)

7.2 Ceramic Package for Test Samples

(Unit: mm)

No.	Pin name						
1	SEG5	17	RESET	33	P01	49	SEG18
2	SEG4	18	VDD	34	P00	50	SEG17
3	SEG3	19	OSC1	35	R03	51	SEG16
4	SEG2	20	OSC2	36	R02	52	SEG15
5	SEG1	21	Vss	37	R01	53	SEG14
6	SEG0	22	K03	38	R00	54	SEG13
7	N.C.	23	N.C.	39	N.C.	55	SEG12
8	N.C.	24	N.C.	40	N.C.	56	N.C.
9	N.C.	25	N.C.	41	N.C.	57	N.C.
10	N.C.	26	N.C.	42	SEG25	58	N.C.
11	N.C.	27	N.C.	43	SEG24	59	SEG11
12	COM0	28	K02	44	SEG23	60	SEG10
13	COM1	29	K01	45	SEG22	61	SEG9
14	COM2	30	K00	46	SEG21	62	SEG8
15	COM3	31	P03	47	SEG20	63	SEG7
16	TEST	32	P02	48	SEG19	64	SEG6

N.C. = No Connection

CHAPTER 8 PAD LAYOUT

8.1 Diagram of Pad Layout

8.2	Pad	Coordinates
-----	-----	--------------------

										U	nıt: µm
No.	Pad name	Х	Y	No.	Pad name	Х	Y	No.	Pad name	Х	Y
1	SEG25	885	1053	17	SEG9	-1226	410	33	VDD	667	-1053
2	SEG24	755	1053	18	SEG8	-1226	280	34	OSC1	797	-1053
3	SEG23	625	1053	19	SEG7	-1226	150	35	OSC2	927	-1053
4	SEG22	495	1053	20	SEG6	-1226	20	36	Vss	1057	-1053
5	SEG21	365	1053	21	SEG5	-1226	-109	37	K03	1187	-1053
6	SEG20	211	1053	22	SEG4	-1226	-240	38	K02	1226	-776
7	SEG19	82	1053	23	SEG3	-1226	-370	39	K01	1226	-646
8	SEG18	-48	1053	24	SEG2	-1226	-500	40	K00	1226	-516
9	SEG17	-178	1053	25	SEG1	-1226	-630	41	P03	1226	-67
10	SEG16	-308	1053	26	SEG0	-1226	-760	42	P02	1226	63
11	SEG15	-438	1053	27	COM0	-1054	-1053	43	P01	1226	193
12	SEG14	-568	1053	28	COM1	-924	-1053	44	P00	1226	323
13	SEG13	-698	1053	29	COM2	-794	-1053	45	R03	1226	469
14	SEG12	-828	1053	30	COM3	-664	-1053	46	R02	1226	603
15	SEG11	-1226	670	31	TEST	-14	-1053	47	R01	1226	742
16	SEG10	-1226	540	32	RESET	116	-1053	48	R00	1226	960

CHAPTER 9 PRECAUTIONS ON MOUNTING

<Oscillation Circuit>

- Oscillation characteristics change depending on conditions (board pattern, components used, etc.). In particular, when a ceramic oscillator or crystal oscillator is used, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance.
- Disturbances of the oscillation clock due to noise may cause a malfunction. Consider the following points to prevent this:
 - Components which are connected to the OSC1 and OSC2 terminals, such as oscillators, resistors and capacitors, should be connected in the shortest line.
 - (2) As shown in the right hand figure, make a VDD pattern as large as possible at circumscription of the OSC1 and OSC2 terminals and the components connected to these terminals. Furthermore, do not use this VDD pattern for any purpose other than the oscillation system.

• In order to prevent unstable operation of the oscillation circuit due to current leak between OSC1 and Vss, please keep enough distance between OSC1 and Vss or other signals on the board pattern.

<Reset Circuit>

 The power-on reset signal which is input to the RESET terminal changes depending on conditions (power rise time, components used, board pattern, etc.).

Decide the time constant of the capacitor and resistor after enough tests have been completed with the application product.

When the built-in pull-down resistor of the RESET terminal, take into consideration dispersion of the resistance for setting the constant.

• In order to prevent any occurrences of unnecessary resetting caused by noise during operating, components such as capacitors and resistors should be connected to the RESET terminal in the shortest line.

<Power Supply Circuit>

- Sudden power supply variation due to noise may cause malfunction. Consider the following points to prevent this:
 - (1) The power supply should be connected to the VDD and VSS terminal with patterns as short and large as possible.
 - (2) When connecting between the VDD and VSS terminals with a bypass capacitor, the terminals should be connected as short as possible.

<Arrangement of Signal Lines>

- In order to prevent generation of electromagnetic induction noise caused by mutual inductance, do not arrange a large current signal line near the circuits that are sensitive to noise such as the oscillation unit.
- When a signal line is parallel with a high-speed line in long distance or intersects a high-speed line, noise may generated by mutual interference between the signals and it may cause a malfunction. Do not arrange a high-speed signal line especially near circuits that are sensitive to noise such as the oscillation unit.

<Precautions for Visible Radiation (when bare chip is mounted)>

- Visible radiation causes semiconductor devices to change the electrical characteristics. It may cause this IC to malfunction. When developing products which use this IC, consider the following precautions to prevent malfunctions caused by visible radiations.
 - (1) Design the product and implement the IC on the board so that it is shielded from visible radiation in actual use.
 - (2) The inspection process of the product needs an environment that shields the IC from visible radiation.
 - (3) As well as the face of the IC, shield the back and side too.

EPSON International Sales Operations

AMERICA

S-MOS SYSTEMS, INC.

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 Fax: +1-408-922-0238 Telex: 176079 SMOS SNJUD

S-MOS SYSTEMS, INC. EASTERN AREA SALES AND TECHNOLOGY CENTER 301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-617-246-3600 Fax: +1-617-246-5443

S-MOS SYSTEMS, INC.

SOUTH EASTERN AREA SALES AND TECHNOLOGY CENTER 4300 Six Forks Road, Suite 430 Raleigh, NC 27609, U.S.A. Phone: +1-919-781-7667 Fax: +1-919-781-6778

S-MOS SYSTEMS, INC.

CENTRAL AREA SALES AND TECHNOLOGY CENTER 1450 E.American Lane, Suite 1550 Schaumburg, IL 60173, U.S.A. Phone: +1-847-517-7667 Fax: +1-847-517-7601

EUROPE

- HEADQUARTERS -

EPSON EUROPE ELECTRONICS GmbH Riesstrasse 15

80992 Muenchen, GERMANY Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

EPSON EUROPE ELECTRONICS GmbH SALES OFFICE

Breidenbachstrasse 46 D-51373 Leverkusen, GERMANY Phone: +49-(0)214-83070-0 Fax: +49-(0)214-83070-10

- UNITED KINGDOM -

EPSON EUROPE ELECTRONICS GmbH UK BRANCH OFFICE

G6 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

EPSON EUROPE ELECTRONICS GmbH FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- HONG KONG, CHINA -EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

- CHINA -

SHANGHAI EPSON ELECTRONICS CO., LTD.

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone: 21-6485-5552 Fax: 21-6485-0775

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

10F, No. 287, Nanking East Road, Sec. 3 Taipei, TAIWAN, R.O.C. Phone: 02-2717-7360 Fax: 02-2712-9164 Telex: 24444 EPSONTB

EPSON TAIWAN TECHNOLOGY & TRADING LTD. HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2 HsinChu 300, TAIWAN, R.O.C. Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192 Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE 10F, KLI 63 Bldg., 60 Yoido-Dong

Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.)

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "**Saving**" **Technology**, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings**.

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic devices information on the Epson WWW server