# E0C6274 Technical Hardware E0C6274 Technical Software 

NOTICE
No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. Please note that "EOC" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it now reads "EOC".

## PREFACE

This manual is individualy described about the hardware and the software of the E0C6274.

## I. E0C6274 Technical Hardware

This part explains the function of the E0C6274, the circuit configurations, and details the controlling method.

## II. E0C6274 Technical Software

This part explains the programming method of the E0C6274.
I.

## E0C6274 <br> Technical Hardware

## CONIENTS

CHAPIER 1 OVERVIEW. ..... I-1
1.1 Features ..... I-2
1.2 Block Diagram ..... I-3
1.3 Pin Layout Diagram ..... I-4
1.4 Pin Description ..... I-6
CHAPIER 2 POWER SUPPLY AND INITIAL RESET ..... I-7
2.1 Power Supply ..... I-7
Voltage <VD1> for oscillation circuit and internal circuit ..... I-8
Voltage $<\mathrm{VC}_{1}, \mathrm{Vc} 2$ and $\mathrm{Vc} 3>$ for LCD driving ..... I-8
Reference voltage <VR1 and VR2> for A/D converter ..... I-8
Reference voltage <GND> for analog circuit ..... I-9
2.2 Initial Reset ..... I-9
Reset terminal ( $\overline{\mathrm{RESET}})$ ..... I-10
Simultaneous low input to terminals K00-K03 ..... I-10
Watchdog timer ..... I-11
Internal register at initial resetting ..... I-11
2.3 Test Terminals (TEST and CO) ..... I-11
CHAPIER 3 CPU, ROM, RAM ..... I-12
3.1 CPU ..... I-12
3.2 ROM ..... I-12
3.3 RAM ..... I-13
CHAPIER 4 PERIPHERALCIRCUITS AND OPERATION ..... I-14
4.1 Memory Map ..... I-14
4.2 Resetting Watchdog Timer ..... I-20
Configuration of watchdog timer ..... I-20
Control of watchdog timer ..... I-21
Programming note ..... I-21
4.3 Oscillation Circuit ..... I-22
Configuration of oscillation circuit ..... I-22
OSC1 oscillation circuit ..... I-22
OSC3 oscillation circuit ..... I-23
Control of oscillation circuit ..... I-24
Clock frequency and instruction execution time ..... I-25
Programming notes ..... I-25
4.4 Input Ports (K00-K03, K10) ..... I-26
Configuration of input ports ..... I-26
Interrupt function ..... I-27
Mask option ..... I-29
Control of input ports ..... I-30
Programming notes ..... I-32
4.5 Output Ports (R00-R03) ..... I-33
Configuration of output ports ..... I-33
Mask option ..... I-33
Special output ..... I-33
Control of output ports ..... I-36
Programming note ..... I-38
4.6 I/O Ports (P00-P03, P10-P13, P20-P23) ..... I-39
Configuration of I/O ports ..... I-39
I/O control registers and input/output mode ..... I-40
Pull up during input mode ..... I-40
Mask option ..... I-40
Control of I/O ports ..... I-41
Programming note ..... I-43
4.7 LCD Driver (COM0-COM3, SEG0-SEG31) ..... I-44
Configuration of LCD driver ..... I-44
LCD display ON/OFF control and duty switching ..... I-47
Mask option (segment allocation) ..... I-48
Control of LCD driver ..... I-49
Programming notes ..... I-50
4.8 Clock Timer ..... I-51
Configuration of clock timer ..... I-51
Data reading and hold function ..... I-51
Interrupt function ..... I-52
Control of clock timer ..... I-53
Programming notes ..... I-55
4.9 Stopwatch Timer ..... I-56
Configuration of stopwatch timer ..... I-56
Count-up pattern ..... I-57
Interrupt function ..... I-58
Control of stopwatch timer ..... I-59
Programming notes ..... I-61
4.10 Programmable Timer ..... I-62
Configuration of programmable timer ..... I-62
Input clock and pre-divider ..... I-62
Operation of programmable timer ..... I-63
Interrupt function ..... I-65
Control of programmable timer ..... I-66
Programming notes ..... I-69
4.11 Serial Interface (SIN, SOUT, SCLK, SRDY) ..... I-70
Configuration of serial interface ..... I-70
Master mode and slave mode of serial interface ..... I-71
Data input/output and interrupt function ..... I-72
Mask option ..... I-74
Control of serial interface ..... I-75
Programming notes ..... I-79
4.12 A/D Converter ..... I-80
Configuration of A/D converter ..... I-80
Measured input terminal and measurement items ..... I-81
Reference voltage generation circuit ..... I-84
Middle electric potential (GND) generation circuit ..... I-86
Operation of the dual slope type A/D converter ..... I-87
A/D conversion and interrupt ..... I-92
Control of the A/D converter ..... I-96
Programming notes ..... I-100
4.13 General-purpose Operation Amplifier (AMP) ..... I-101
Configuration of AMP circuit ..... I-101
Operation of AMP circuit ..... I-101
Control of AMP circuit ..... I-102
Programming notes ..... I-102
4.14 SVD (Supply Voltage Detection) Circuit ..... I-103
Configuration of SVD circuit ..... I-103
SVD operation ..... I-103
Control of SVD circuit ..... I-104
Programming notes ..... I-105
4.15 Interrupt and HALT/SLEEP ..... I-106
Interrupt factor ..... I-108
Interrupt mask ..... I-109
Interrupt vector ..... I-110
Control of interrupt ..... I-111
Programming notes ..... I-113
CHAPIER 5 SUMMARY OF NOTES. ..... I-114
5.1 Notes for Low Current Consumption ..... I-114
5.2 Summary of Notes by Function ..... I-115
CHAPIER 6 DIAGRAM OF BASC EXTERNALCONNECTIONS ..... I-119
CHAPTER 7 ELECTRICALCHARACTERISTICS ..... I-121
7.1 Absolute Maximum Rating ..... I-121
7.2 Recommended Operating Conditions ..... I-121
7.3 DC Characteristics ..... I-122
7.4 Analog Characteristics and Consumed Current ..... I-123
7.5 Oscillation Characteristics ..... I-129
CHAPIER 8 PACKAGE ..... I-130
8.1 Plastic Package ..... I-130
8.2 Ceramic Package for Test Samples ..... I-132
CHAPIER 9 PAD LAYOUT ..... I-133
9.1 Diagram of Pad Layout ..... I-133
9.2 Pad Coordinates ..... I-134

## CHAPIER 1 OVERVIEW

The E0C6274 is a single-chip microcomputer made up of the 4-bit core CPU EOC6200A, ROM ( 4,096 words, 12 bits to a word), RAM ( 512 words, 4 bits to a word) LCD driver, dual slope type A/D converter, general purpose operational amplifier, serial interface, watchdog timer, programmable timer and time base counter. Because of its low-voltage operation and low power consumption, this series is ideal for a wide range of applications, and is especially suitable for battery-driven systems.

```
1.1 Features
OSC1 oscillation circuit .... Crystal oscillation circuit: \(32,768 \mathrm{~Hz}\) (Typ.)
OSC3 oscillation circuit .... CR or ceramic oscillation circuit (*1): 1 MHz (Typ.) Instruction set .... 109 types
Instruction execution time .... During operation at \(32 \mathrm{kHz}: 153 \mu \mathrm{sec}, 214 \mu \mathrm{sec}, 366 \mu \mathrm{sec}\)
(differ depending on instruction) \(\quad\) During operation at \(1 \mathrm{MHz}: \quad 5 \mu \mathrm{sec}, 7 \mu \mathrm{sec}, 12 \mu \mathrm{sec}\)
ROM capacity .... 4,096 words \(\times 12\) bits
RAM capacity .... 512 words \(\times 4\) bits
Input port .... 5 bits (pull up resistors may be supplemented *1)
Output port .... 4 bits (buzzer and clock outputs are possible *2)
I/O port .... 12 bits (4 bits may be selected for serial input/output port *2)
Serial interface .... 1 port ( 8 bits serial, synchronous clock type)
A/D converter .... Dual slope type (operating temperature range: \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\) )
Resolution/Conversion time: 4 types, programmable (*3)
6,400 counts / \(500 \mathrm{msec} \quad 3,200\) counts \(/ 250 \mathrm{msec}\)
1,600 counts / \(125 \mathrm{msec} \quad 800\) counts \(/ 62.5 \mathrm{msec}\)
A/D conversion precision: \(\pm 0.2 \%\) ( 6,400 couns, voltage measuremant mode)
Measurement item: Voltage/Difference voltage/Resistance, programmable
Analog input: 5 terminals
Reference voltage generation circuit built-in
Middle electric potential (GND) generation circuit built-in
LCD driver .... 32 segments \(\times 4\) / 3 / 2 / 1 commons ( \({ }^{*} 2\) )
Regulated voltage circuit and booster voltage circuit built-in (compatible with 3-4.5 V LCD, VR adjustable)
Time base counter .... 2 systems (clock timer and stopwatch)
Watchdog timer .... Built-in
Programmable timer .... Built-in, with 1 input \(\times 8\) bits event counter function
AMP (general-purpose operational amplifier)
.... MOS input operational amplifier \(\times 2\)
SVD (supply voltage detection) circuit .... 2.3 / 2.4 / \(2.5 / 2.6 \mathrm{~V}\), programmable ( \(\pm 100 \mathrm{mV}\) )
External interrupt .... Input port interrupt: 2 systems
Internal interrupt .... Timer interrupt: 3 systems
Serial interface interrupt: 1 system
A/D interrupt: \(\quad 1\) system
Supply voltage .... During A/D operation: \(2.4-5.5 \mathrm{~V}\)
During A/D stop: \(\quad 2.2-5.5 \mathrm{~V}\)
Current consumption (Typ.) .... During SLEEP: \(\quad 0.7 \mu \mathrm{~A}\) ( 3 V , stop oscillation)
During HALT: \(\quad 2.0 \mu \mathrm{~A}(3 \mathrm{~V}, 32 \mathrm{kHz})\)
During operation: \(\quad 6.0 \mu \mathrm{~A}(3 \mathrm{~V}, 32 \mathrm{kHz})\)
\(200 \mu \mathrm{~A}(3 \mathrm{~V}, 1 \mathrm{MHz})\)
During A/D operation: \(\quad 306 \mu \mathrm{~A}(3 \mathrm{~V}, 32 \mathrm{kHz})\)
\(506 \mu \mathrm{~A}(3 \mathrm{~V}, 32 \mathrm{kHz}\), AMP circuit is ON status)
Package .... QFP5-100pin / QFP15-100pin (plastic) or chip
```

[^0]
### 1.2 Block Diagram

Fig. 1.2.1
Block diagram


### 1.3 Pin Layout Diagram

## QFP5-100pin



Fig. 1.3.1
Pin layout diagram (QFP5-100pin)

| Pin No. | Pin Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | K02 | 26 | P22 | 51 | SEG10 | 76 | AI3 |
| 2 | K01 | 27 | P23 | 52 | SEG11 | 77 | AI2 |
| 3 | K00 | 28 | $\overline{\text { RESET }}$ | 53 | SEG12 | 78 | Vssa |
| 4 | N.C. | 29 | TEST | 54 | SEG13 | 79 | AI1 |
| 5 | N.C. | 30 | CC | 55 | SEG14 | 80 | AI0 |
| 6 | Vss | 31 | CB | 56 | SEG15 | 81 | CI |
| 7 | OSC1 | 32 | CA | 57 | SEG16 | 82 | CAZ |
| 8 | OSC2 | 33 | Vc3 | 58 | SEG17 | 83 | BF |
| 9 | OSC3 | 34 | VC2 | 59 | SEG18 | 84 | RI |
| 10 | OSC4 | 35 | VC1 | 60 | SEG19 | 85 | CH |
| 11 | VDD | 36 | VCA | 61 | SEG20 | 86 | CL |
| 12 | R03 | 37 | COM3 | 62 | SEG21 | 87 | GND |
| 13 | R02 | 38 | COM2 | 63 | SEG22 | 88 | VdDa |
| 14 | R01 | 39 | COM1 | 64 | SEG23 | 89 | AOUT0 |
| 15 | R00 | 40 | COM0 | 65 | SEG24 | 90 | AIP0 |
| 16 | P00 | 41 | SEG0 | 66 | SEG25 | 91 | AIM0 |
| 17 | P01 | 42 | SEG1 | 67 | SEG26 | 92 | AIP1 |
| 18 | P02 | 43 | SEG2 | 68 | SEG27 | 93 | AIM1 |
| 19 | P03 | 44 | SEG3 | 69 | SEG28 | 94 | AOUT1 |
| 20 | P10 | 45 | SEG4 | 70 | SEG29 | 95 | VR1 |
| 21 | P11 | 46 | SEG5 | 71 | SEG30 | 96 | VR2 |
| 22 | P12 | 47 | SEG6 | 72 | SEG31 | 97 | VRA |
| 23 | P13 | 48 | SEG7 | 73 | CO | 98 | VD1 |
| 24 | P20 | 49 | SEG8 | 74 | AIF | 99 | K10 |
| 25 | P21 | 50 | SEG9 | 75 | AI4 | 100 | K03 |

N.C. $=$ No Connection

## QFP15-100pin



Fig. 1.3.2
Pin layout diagram (QFP15-100pin)

| Pin No. | Pin Name |
| :---: | :--- | :---: | :--- | :---: | :---: | :---: | :--- |
| 1 | K00 | 26 | $\overline{\text { RESET }}$ | 51 | SEG12 | 76 | VSSA |
| 2 | N.C. | 27 | $\overline{\text { TEST }}$ | 52 | SEG13 | 77 | AI1 |
| 3 | N.C. | 28 | CC | 53 | SEG14 | 78 | AI0 |
| 4 | Vss | 29 | CB | 54 | SEG15 | 79 | CI |
| 5 | OSC1 | 30 | CA | 55 | SEG16 | 80 | CAZ |
| 6 | OSC2 | 31 | VC3 | 56 | SEG17 | 81 | BF |
| 7 | OSC3 | 32 | VC2 | 57 | SEG18 | 82 | RI |
| 8 | OSC4 | 33 | VC1 | 58 | SEG19 | 83 | CH |
| 9 | VDD | 34 | VCA | 59 | SEG20 | 84 | CL |
| 10 | R03 | 35 | COM3 | 60 | SEG21 | 85 | GND |
| 11 | R02 | 36 | COM2 | 61 | SEG22 | 86 | VDDA |
| 12 | R01 | 37 | COM1 | 62 | SEG23 | 87 | AOUT0 |
| 13 | R00 | 38 | COM0 | 63 | SEG24 | 88 | AIP0 |
| 14 | P00 | 39 | SEG0 | 64 | SEG25 | 89 | AIM0 |
| 15 | P01 | 40 | SEG1 | 65 | SEG26 | 90 | AIP1 |
| 16 | P02 | 41 | SEG2 | 66 | SEG27 | 91 | AIM1 |
| 17 | P03 | 42 | SEG3 | 67 | SEG28 | 92 | AOUT1 |
| 18 | P10 | 43 | SEG4 | 68 | SEG29 | 93 | VR1 |
| 19 | P11 | 44 | SEG5 | 69 | SEG30 | 94 | VR2 |
| 20 | P12 | 45 | SEG6 | 70 | SEG31 | 95 | VRA |
| 21 | P13 | 46 | SEG7 | 71 | CO | 96 | VD1 |
| 22 | P20 | 47 | SEG8 | 72 | AIF | 97 | K10 |
| 23 | P21 | 48 | SEG9 | 73 | AI4 | 98 | K03 |
| 24 | P22 | 49 | SEG10 | 74 | AI3 | 99 | K02 |
| 25 | P23 | 50 | SEG11 | 75 | AI2 | 100 | K01 |
|  |  |  |  |  |  | C. | C |
| 14 |  |  |  |  |  |  |  |

N.C. $=$ No Connection

### 1.4 Pin Description

Table 1.4.1 Pin description

| Pin name | Pin No. |  | In/Out | Function |
| :---: | :---: | :---: | :---: | :---: |
|  | QFP5-100pin | QFP15-100pin |  |  |
| VDD | 11 | 9 | (I) | Power (+) |
| Vss | 6 | 4 | (I) | Power (-) |
| VdDa | 88 | 86 | (I) | Analog system power (+) |
| VsSA | 78 | 76 | (I) | Analog system power (-) |
| GND | 87 | 85 | (I/O) | Analog system ground |
| VD1 | 98 | 96 | - | Internal logic system regulated voltage output |
| VC1 | 35 | 33 | - | LCD system regulated voltage output |
| VC2 | 34 | 32 | - | LCD system booster voltage output ( $\mathrm{VC1} \times 2$ ) |
| Vc3 | 33 | 31 | - | LCD system booster voltage output ( $\mathrm{VC} 1 \times 3$ ) |
| VCA | 36 | 34 | - | LCD system voltage adjustment pin |
| CA-CC | 32-30 | 30-28 | - | LCD system voltage booster condenser connecting pin |
| OSC1 | 7 | 5 | I | Crystal oscillator input |
| OSC2 | 8 | 6 | O | Crystal oscillator output |
| OSC3 | 9 | 7 | I | Ceramic or CR oscillator input (selected by mask option) |
| OSC4 | 10 | 8 | O | Ceramic or CR oscillator output (selected by mask option) |
| K00-10 | 3-1, 100, 99 | 1,100-97 | I | Input port |
| P00-13 | 16-23 | 14-21 | I/O | I/O port |
| P20-23 | 24-27 | 22-25 | I/O | I/O port or serial interface I/O pin (selected by software) |
| R00-03 | 15-12 | 13-10 | O | Output port (buzzer and clock outputs are selected by software) |
| COM0-3 | 40-37 | 38-35 | O | LCD common output ( $1 / 4,1 / 3,1 / 2,1 / 1$ duty, programmable) |
| SEG0-31 | 41-72 | 39-70 | O | LCD segment output (DC output is selected by mask option) |
| AI0-4 | 80, 79, 77-75 | 78, 77, 75-73 | I | Analog input |
| AIF | 74 | 72 | - | Analog input filter condenser connecting pin |
| CAZ | 82 | 80 | - | Auto zero adjustment condenser connecting pin |
| CI | 81 | 79 | - | Integral condenser connecting pin |
| RI | 84 | 82 | - | Integral resistance connecting pin |
| BF | 83 | 81 | - | Buffer amplifier output |
| CO | 73 | 71 | - | Testing output pin |
| CH | 85 | 83 | - | Reference voltage control condenser connecting pin |
| CL | 86 | 84 | - | Reference voltage control condenser connecting pin |
| VR1 | 95 | 93 | (I) | Reference voltage for resistance measurement |
| VR2 | 96 | 94 | (I) | Reference voltage for voltage measurement |
| VRA | 97 | 95 | - | Reference voltage adjustment pin |
| AIP0 | 90 | 88 | I | AMP 0 non inverted input |
| AIM0 | 91 | 89 | I | AMP 0 inverted input |
| AOUT0 | 89 | 87 | O | AMP 0 output |
| AIP1 | 92 | 90 | I | AMP 1 non inverted input |
| AIM1 | 93 | 91 | I | AMP 1 inverted input |
| AOUT1 | 94 | 92 | O | AMP 1 output |
| $\overline{\text { RESET }}$ | 28 | 26 | I | System reset input pin |
| $\overline{\text { TEST }}$ | 29 | 27 | I | Testing input pin |

## CHAPIER 2

POWER SUPPIY AND INITIAL RESET

### 2.1 Power Supply

With a single external power supply ( $3 \mathrm{~V} * 1$ ) supplied to Vdd/Vdda through Vss/Vssa, the E0C6274 generates the necessary internal voltage with the regulated voltage circuit (<VD1> for oscillators, $<\mathrm{Vc} 1>$ for LCDs), the voltage booster circuit (<VC2, Vc3> for LCDs) and the voltage dividing circuit (<GND> $\approx$ VDDA/2, reference voltage for analog circuit).
Figure 2.1.1 shows the configuration of power supply.

$$
\begin{array}{rll}
\text { *1 Supply voltage: During A/D operation } & \ldots .2 .4 \text { to } 5.5 \mathrm{~V} \\
& \text { During A/D stop } & \ldots 2.2 \text { to } 5.5 \mathrm{~V}
\end{array}
$$

Note: • External loads cannot be driven by the regulated voltage and voltage booster circuit's output voltage.

- See Chapter 7, "ELECTRICAL CHARACTERISTICS" for voltage values.



## Voltage <VDi>for oscillation circ uit and intemal circuit

## Voltage <Vc1, Vc2

 and Vc3> for LCD drivingVD1 is the voltage of the oscillation circuit and the internal logic circuit, and is generated by the oscillation system regulated voltage circuit for stabilizing the oscillation.
Making Vss the standard (logic level 0), the oscillation system regulated voltage circuit generates VD1 from the supply voltage that is input from the VDD-Vss terminals.

Vc1, Vc2 and Vc3 are the voltages for LCD drive, and are generated by the LCD system regulated voltage circuit and the voltage booster circuit to stabilize the display quality.
VC1 is generated by the LCD system regulated voltage circuit with Vss as the standard from the supply voltage input from the VddVss terminals.
Vc2 and Vc3 are respectively double and triple obtained from the voltage booster circuit.
The Vcı voltage can be adjusted to match the LCD panel characteristics by applying feedback to the VCA terminal using resistances RA1 and RA2 as shown in Figure 2.1.2.
The voltage $\mathrm{VC}_{\mathrm{C}}(\approx \mathrm{VC} 1-\mathrm{Vss})$ of $\mathrm{VCl}_{1}$ at this time is shown by the following expression:

$$
\mathrm{VC} \approx 1 \times(\mathrm{RA} 1+\mathrm{RA} 2) / \mathrm{RA} 1
$$

Example:

| Vc | RA1 | RA2 |
| :---: | :---: | :---: |
| About 1 V | $\infty$ | $0 \Omega$ |
| About 1.5 V | 2 M | $1 \mathrm{M} \Omega$ |

See Chapter 7, "ELECTRICAL CHARACTERISTICS" for voltage values.

$\mathrm{Vc}=1.5 \mathrm{~V}$

$\mathrm{Vc}=1 \mathrm{~V}$

VR1 and VR2 are the reference voltage of the A/D converter. VR1 is generated by the regulated voltage circuit and VR2 by resistance splitting of VR1. VR1 and VR2 may also be adjusted from outside. Use of the external adjustment or the internal adjustment can be selected by the mask option. In addition, it is possible to impress VRi externally.
VR1 is used to generate VR2 and the reference voltage during resistance measurement using an A/D converter and VR2 becomes the reference voltage at the time of voltage measurement by the A/ D converter.

The GND (ground) explained here following becomes the standard for both VR1 and VR2 and becomes the electric potential of the Vss side.
Refer to the section "A/D Converter" for details such as circuit configuration.
Note: Since the built-in reference voltage generation circuit is under development, the reference voltage should be impressed from outside.

## Reference voltage <GND>for analog circuit

Since GND becomes the standard for the analog input voltage that performs the A/D conversion, inside the circuit it is obtained by voltage dividing the power voltage impressed between the VdDAVssA terminals to about $1 / 2$ by means of a resistance.
In addition, the GND (ground) level can also be impressed externally.

### 2.2 Initial Reset

To initialize the E0C6274 circuits, initial reset must be executed. There are three ways of doing this.
(1) External initial reset by the RESET terminal
(2) External initial reset by simultaneous low input to terminals K00-K03
(3) Initial reset by watchdog timer

Be sure to use reset functions (1) when making the power and be sure to initialize securely. In normal operation, the circuit may be initialized by any of the above three types.
Figure 2.2 .1 shows the configuration of the initial reset circuit.


Fig. 2.2.1
Configuration of the initial reset circuit

## Reset temminal (RESET)

Fig. 2.2.2 Initial reset at power on

## Simultaneous low input to terminals KOO-K03

Initial reset can be executed externally by setting the reset terminal to the low level.
Maintain a low level of 0.1 msec to securely perform the initial reset. When the reset terminal goes high, the CPU begins to operate
However, when turning the power on, the reset terminal should be set at a low level as in the timing shown in Figure 2.2.2.


The reset terminal should be set to $0.1 \cdot$ VDD or less (low level) until the supply voltage becomes 2.2 V or more.
After that, a level of $0.4 \cdot$ VDD or less should be maintained more than 2.0 msec .

Another way of executing initial reset externally is to input a low signal simultaneously to the input ports (KOO-K03) selected with the mask option.
Since this initial reset signal passes through the noise reject circuit, simultaneous low input of 0.4 msec or less is considered as noise. Maintain the specified input port terminals at a low level of 1.5 msec (when the oscillation frequency fosc $1=32 \mathrm{kHz}$ ) to securely perform the initial reset.
Table 2.2.1 shows the combinations of input ports (KOO-KO3) that can be selected with the mask option.

| A | Not use |
| :---: | :--- |
| B | K00*K01 |
| C | K $00 * \mathrm{~K} 01 * \mathrm{~K} 02$ |
| D | K $00 * \mathrm{~K} 01 * \mathrm{~K} 02 * \mathrm{~K} 03$ |

When, for instance, mask option D (KOO*KO1*K02*KO3) is selected, initial reset is executed when the signals input to the four ports K00-K03 are all low at the same time. The initial reset is done, even when a key entry including a combination of selected input ports is made.
Further, the time authorize circuit can be selected with the mask option. The time authorize circuit performs initial reset, when the input time of the simultaneous low input is authorized and found to be the same or more than the defined time ( 1 to 2 sec ). Since clock timer output is used for time authorization, when the clock timer is reset during time authorization, the authorization time is also reduced. (The shortest is 0.5 msec due to the noise reject circuit.)
In the SLEEP status, the noise reject circuit and the time authorize circuit are bypassed since the OSC1 oscillation circuit is off.

## Watchdog timer

## Intemal register at initial resetting

Table 2.2.2 Initial values

If you use this function, make sure that the specified ports do not go low at the same time during ordinary operation.
Furthermore, do not perform an initial reset when turning the power on by this function.

If the CPU runs away for some reason, the watchdog timer will detect this situation and output an initial reset signal. See Section 4.2, "Resetting Watchdog Timer" for details.

Furthermore, do not perform an initial reset when turning the power on by this function.

Initial reset initializes the CPU as shown in the table below.

| CPU Core |  |  |  |
| :--- | :---: | :---: | :---: |
| Name | Symbol | Number of bits | Setting value |
| Program counter step | PCS | 8 | 00 H |
| Program counter page | PCP | 4 | 1 H |
| New page pointer | NPP | 4 | 1 H |
| Stack pointer | SP | 8 | Undefined |
| Index register IX | IX | 10 | Undefined |
| Index register IY | IY | 10 | Undefined |
| Rejister pointer | RP | 4 | Undefined |
| General-purpose register A | A | 4 | Undefined |
| General-purpose register B | B | 4 | Undefined |
| Interrupt flag | I | 1 | 0 |
| Decimal flag | D | 1 | 0 |
| Zero flag | Z | 1 | Undefined |
| Carry flag | C | 1 | Undefined |


| Peripheral circuits |  |  |
| :--- | :---: | :---: |
| Name | Number of bits | Setting value |
| RAM | 4 | Undefined |
| Display memory | 4 | Undefined *2 |
| Other peripheral circuit | - | $* 1$ |

*1 See Section 4.1, "Memory Map".
*2 Bits corresponding to COM0 is set to 1 .

### 2.3 Test Temminals (TESTand CO)

This is the terminal that is used at the time of the factory inspection of the IC. During normal operation, connect the TEST to VDD and make the CO an N.C. (no connection).

## CHAPIER 3 CPU, ROM, RAM

## $3.1 \overline{\mathbf{C P U}}$

The E0C6274 employs the 4-bit core CPU E0C6200A for the CPU, so that register configuration, instructions and so forth are virtually identical to those in other family processors using the E0C6200A.
Refer to "E0C6200/6200A Core CPU Manual" for details about the E0C6200A.
Note the following points with regard to the EOC6274:
(1) Because the ROM capacity is 4,096 words, bank bits are unnecessary and PCB and NBP are not used.
(2) RAM is set up to three pages, so only the two low-order bits are valid for the page portion (XP, YP) of the index register that specifies addresses. (The two high-order bits are ignored.)

### 3.2 ROM

The built-in ROM, a mask ROM for loading the program, has a capacity of 4,096 steps, 12 bits each. The program area is 16 pages (0-15), each of 256 steps ( $00 \mathrm{H}-\mathrm{FFH}$ ). After initial reset, the program beginning address is page 1 , step 00 H . The interrupt vector is allocated to page 1 , steps $02 \mathrm{H}-0 \mathrm{FH}$.

Fig. 3.2.1
ROM configuration


### 3.3 RAM

The RAM, a data memory storing a variety of data, has a capacity of 512 words, each of four bits. When programming, keep the following points in mind.
(1) Part of the data memory can be used as stack area when subroutine calls and saving registers, so be careful not to overlap the data area and stack area.
(2) Subroutine calls and interrupts take up three words of the stack area.
(3) The data memory $000 \mathrm{H}-00 \mathrm{FH}$ is for the register pointers (RP), and is the addressable memory register area.

## CHAPIER 4 PERIPHERALCIRCUITS AND OPERATION

Peripheral circuits (timer, I/O, and so on) of the E0C6274 are memory mapped, and interfaced with the CPU. Thus, all the peripheral circuits can be controlled by using the memory operation command to access the I/O memory in the memory map. The following sections describe how the peripheral circuits operation.

### 4.1 Memory Map

Data memory of the E0C6274 has an address space of 600 words, of which 32 words are allocated to display memory and 56 words to I/O memory.
Figure 4.1 .1 present the overall memory maps of the E0C6274, and Tables 4.1.1(a)-(d) the peripheral circuits' (I/O space) memory maps.
In the E0C6274 the same I/O memory has been laid out for each page $\mathrm{COH}-\mathrm{FFH}$ and the same display memory for $80 \mathrm{H}-9 \mathrm{FH}$. As a result, the I/O memory and display memory can be accessed without changing over the data memory page. The same result is obtained for I/O memory and display memory changes and for readable/writable address references, no matter on what page it is done.

Note: Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these area.

| $\begin{array}{\|c\|} \hline \text { Address } \\ \text { Page } \\ \hline \end{array}$ | High | 0 | 1 | 2 | 3 |  | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | M0 | M1 | M2 | M3 |  | M4 | M5 | M6 | M7 | M8 | M9 | MA | MB | MC | MD | ME | MF |
|  | 1 | RAM (128 words $\times 4$ bits)R/W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 8 | Display memory (32 words $\times 4$ bits) W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A | Unused area |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C | I/O memory ( 56 words $\times 4$ bits) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | D |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 0 | RAM (128 words x 4 bits) R/W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 8 | Display memory (32 words $\times 4$ bits) W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A | Unused area |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | D |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | E | I/O memory ( 56 words $\times 4$ bits) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Fig. 4.1.1 Memory map

| Address Page | Low | 0 | 1 | 2 | 3 |  | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | RAM (128 words $\times 4$ bits)R/W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 8 |  | Display memory ( 32 words $\times 4$ bits) W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A |  | Unused area |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C |  | I/O memory ( 56 words $\times 4$ bits) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | D |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 8 |  | Display memory ( 32 words $\times 4$ bits) W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A |  | Unused area |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | D |  | I/O memory ( 56 words $\times 4$ bits) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 4.1.1(a) I/O memory map ( $\mathrm{COH}-\mathrm{CCH}$ )

| Address*7 | Register |  |  |  | Name | Init*1 | 1 | 0 | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |  |  |  |  |  |
| COH | R |  |  | IPT | $\begin{array}{\|rr\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \mathrm{IPT} & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { - }^{*} 2 \\ & -{ }^{*} 2 \\ & -{ }^{*} 2 \\ & 0 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (programmable timer) |
| C1H | 0 | R |  | ISIO | $\begin{array}{rr\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \mathrm{ISIO} & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { - }^{* 2} \\ & -{ }^{*} 2 \\ & -{ }^{* 2} \\ & 0 \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (serial interface) |
| C 2 H | R | 0 | 0 | IK1 | $\begin{array}{rr\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \mathrm{IK} 1 & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { - }^{* 2} \\ & -{ }^{*} 2 \\ & -{ }^{* 2} \\ & 0 \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (K10) |
| C 3 H | R |  |  | IK0 | $\begin{array}{rr} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IKO } & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline \mathbf{-}^{*} \\ & -{ }^{*} 2 \\ & -{ }^{* 2} \\ & 0 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (K00-K03) |
| C4H | R |  |  | IAD | $\begin{array}{\|rr\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \mathrm{IAD} & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { * }^{2} \\ & -* 2 \\ & -{ }^{*} 2 \\ & 0 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (A/D converter) |
| C 5 H | R |  |  |  | $\begin{array}{rr} \hline 0 & * 5 \\ 0 & * 5 \\ \text { ISW1 } * 4 \\ \text { ISW0 } * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { - }^{* 2} \\ & \text { - }^{*} 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$ | Unused <br> Unused <br> Interrupt factor flag (stopwatch 1 Hz ) <br> Interrupt factor flag (stopwatch 10 Hz ) |
| C6H | R |  |  |  | $\begin{aligned} & \hline \text { IT1 } * 4 \\ & \text { IT2 } * 4 \\ & \text { IT8 } * 4 \\ & \text { IT32 } 44 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Yes <br> Yes <br> Yes <br> Yes | $\begin{aligned} & \hline \text { No } \\ & \hline \end{aligned}$ | Interrupt factor flag (clock timer 1 Hz ) Interrupt factor flag (clock timer 2 Hz ) <br> Interrupt factor flag (clock timer 8 Hz ) <br> Interrupt factor flag (clock timer 32 Hz ) |
| C8H | 0 $R$ | EIAD | R/W | EIPT | $\begin{aligned} & 0^{* 5} \\ & \text { EIAD } \\ & \text { EISIO } \\ & \text { EIPT } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { - }^{* 2} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Enable <br> Enable <br> Enable | Mask <br> Mask <br> Mask | Unused <br> Interrupt mask register (A/D converter) <br> Interrupt mask register (serial interface) <br> Interrupt mask register (programmable timer) |
| C 9 H | R |  | R/W |  | $\begin{array}{cc} 0 & * 5 \\ 0 & * 5 \\ \text { EIK1 } \\ \text { EIK0 } \\ \hline \end{array}$ | $\begin{aligned} & -{ }^{* 2} \\ & -{ }^{*} 2 \\ & 0 \\ & 0 \end{aligned}$ | Enable Enable | Mask <br> Mask | Unused <br> Unused <br> Interrupt mask register (K10) <br> Interrupt mask register (K00-K03) |
| CAH | R/W |  |  |  | $\begin{aligned} & \text { SIK03 } \\ & \text { SIK02 } \\ & \text { SIK01 } \\ & \text { SIK00 } \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Enable <br> Enable <br> Enable <br> Enable | Disable <br> Disable <br> Disable <br> Disable | Interrupt selection register (K03) <br> Interrupt selection register (K02) <br> Interrupt selection register (K01) <br> Interrupt selection register (K00) |
| CBH | 0 | 0 | EISW1 | EISW0 | $0 \quad * 5$ 0 0 EIS EISW EISW0 | $\begin{aligned} & \text { - }^{* 2} \\ & \mathbf{-}^{*} 2 \\ & 0 \\ & 0 \end{aligned}$ | Enable <br> Enable | Mask <br> Mask | Unused <br> Unused <br> Interrupt mask register (stopwatch 1 Hz ) <br> Interrupt mask register (stopwatch 10 Hz ) |
| CCH | EIT1 | EIT2 | EIT8 | EIT32 | EIT1 <br> EIT2 <br> EIT8 <br> EIT32 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Enable <br> Enable <br> Enable <br> Enable | Mask <br> Mask <br> Mask <br> Mask | Interrupt mask register (clock timer 1 Hz ) Interrupt mask register (clock timer 2 Hz ) Interrupt mask register (clock timer 8 Hz ) Interrupt mask register (clock timer 32 Hz ) |

## Remarks

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read

[^1]Table 4.1.1(b) I/O memory map (DOH-DFH)


Table 4.1.1(c) I/O memory map (EOH-EFH)

| Address *7 | Register |  |  |  | Name | Init*1 | 1 | 0 | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |  |  |  |  |  |
|  | BZR03 | BZR02 | 0 | BZFQ | $\begin{aligned} & \hline \text { BZR03 } \\ & \text { BZR02 } \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\overline{\text { Buzzer }}$ <br> Buzzer | $\begin{aligned} & \hline \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$ | R03 port output selection R02 port output selection |
|  | R/W |  | R | R/W | $\begin{gathered} 0 * 5 \\ \text { BZFQ } \\ \hline \end{gathered}$ | $\begin{aligned} & -^{* 2} \\ & 0 \end{aligned}$ | 2 kHz | 4kHz | Unused <br> Buzzer frequency selection |
| E1H | FOR00 | 0 | FOFQ1 | FOFQ0 | $\begin{array}{rl} \text { FOROO } \\ 0 & * 5 \end{array}$ | $\begin{aligned} & \hline 0 \\ & -* 2 \end{aligned}$ | FOUT | DC | R00 port output selection Unused |
|  | R/W | R | R/W |  | FOFQ1 <br> FOFQ0 | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  |  | $\begin{aligned} & \text { FOUT frequency selection } \\ & 0: 512 \mathrm{~Hz}, 1: 4096 \mathrm{~Hz}, 2: \text { fosc1, 3: fosc3 } \end{aligned}$ |
| E2H | R |  | 0 | TMRST <br> $W$ | 0 $* 5$ <br> 0 $* 5$ <br> 0 $* 5$ <br> TMRST*5  | $\begin{aligned} & \text { - } *_{2} \\ & -*{ }_{2} \\ & -* 2 \\ & -* 2 \end{aligned}$ | Reset | - | Unused <br> Unused <br> Unused <br> Clock timer and watchdog timer reset |
| E3H | TM3 | TM2 | TM1 | TM0 | $\begin{aligned} & \hline \text { TM3 } \\ & \text { TM2 } \\ & \text { TM1 } \\ & \text { TM0 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { - *3 } \\ & -* 3 \\ & -* 3 \\ & -* 3 \end{aligned}$ |  |  | Clock timer data ( 16 Hz ) <br> Clock timer data ( 32 Hz ) <br> Clock timer data $(64 \mathrm{~Hz})$ <br> Clock timer data ( 128 Hz ) |
| E4H | R |  |  |  | $\begin{aligned} & \text { TM7 } \\ & \text { TM6 } \\ & \text { TM5 } \\ & \text { TM4 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline-* 3 \\ & -* 3 \\ & -* 3 \\ & -* 3 \\ & \hline \end{aligned}$ |  |  | Clock timer data ( 1 Hz ) <br> Clock timer data ( 2 Hz ) <br> Clock timer data ( 4 Hz ) <br> Clock timer data ( 8 Hz ) |
| E5H | WDRST W | 0 | WD1 R | WD0 | $\begin{array}{\|cc\|} \hline \text { WDRST*5 } \\ 0 & * 5 \\ \text { WD1 } \\ \text { WD0 } \\ \hline \end{array}$ | Reset $\begin{aligned} & \text { - }^{* 2} \\ & 0 \\ & 0 \end{aligned}$ | Reset | - | Watchdog timer reset <br> Unused <br> Watchdog timer data $(1 / 4 \mathrm{~Hz})$ <br> Watchdog timer data $(1 / 2 \mathrm{~Hz})$ |
| E6H | 0 | 0 | SWRUN R/W | SWRST W | 0 $* 5$ <br> 0 $* 5$ <br> SWRUN <br> SWRST*5 | $\begin{aligned} & -{ }^{-* 2} \\ & -{ }^{2} \\ & 0 \\ & \text { Reset } \end{aligned}$ | Run Reset | Stop | Unused <br> Unused <br> Stopwatch timer Run/Stop Stopwatch timer reset |
| E7H | R |  |  | SWLO | SWL3 <br> SWL2 <br> SWL1 <br> SWLO | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ |  |  | $]_{\text {LSB }} \int_{\text {Stopwatch timer data } 1 / 100 \sec (B C D)}^{\text {MSB }}$ |
| E8H | R |  |  |  | SWH3 <br> SWH2 <br> SWH1 <br> SWH0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\int_{\text {LSB }}^{\text {MSB }} \text { Stopwatch timer data } 1 / 10 \sec (B C D)$ |
| E9H | PTR01 <br> R/W | 0 $R$ | PTRUN R/W | PTRST <br> $W$ | PTR01 $0 \quad * 5$ PTRUN PTRST*5 | $\begin{aligned} & \hline 0 \\ & -*_{2} \\ & 0 \\ & -*_{2} \\ & \hline \end{aligned}$ | PTOVF <br> Run <br> Reset | $\mathrm{DC}$ <br> Stop | R01 port output selection <br> Unused <br> Programmable timer Run/Stop <br> Programmable timer reset (reload) |
| EAH | R/W |  |  |  | $\begin{aligned} & \text { PTD1 } \\ & \text { PTD0 } \\ & \text { PTC1 } \\ & \text { PTC0 } \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | Programmable timer pre-divider selection 0: $1 / 256,1: 1 / 32,2: 1 / 4,3: 1 / 1$ <br> Programmable timer clock source selection 0: K10 (NR), 1: K10, 2: fosC1, 3: fosc3 |
| EBH | R |  |  |  | PT3 <br> PT2 <br> PT1 <br> PT0 | $\begin{aligned} & \text { - } * 3 \\ & -* 3 \\ & -* 3 \\ & -* 3 \end{aligned}$ |  |  | $]_{\text {LSB }}^{\text {Programmable timer data (low-order } 4 \text { bits) }}$ |
| ECH | PT7 | R |  | PT4 | PT7 <br> PT6 <br> PT5 <br> PT4 | $\begin{aligned} & \hline \text { - *3 } \\ & -* 3 \\ & -* 3 \\ & -* 3 \\ & \hline \end{aligned}$ |  |  | $]^{\text {MSB }}$ Programmable timer data (high-order 4 bits) |
| EDH | RD3 | R/W |  | RD0 | $\begin{aligned} & \hline \text { RD3 } \\ & \text { RD2 } \\ & \text { RD1 } \\ & \text { RD0 } \\ & \hline \end{aligned}$ |  |  |  | $\int_{\text {LSB }}^{\text {Programmable timer reload data }} \begin{aligned} & \text { (low-order } 4 \text { bits) } \end{aligned}$ |
| EEH | RD7 | R/W |  | RD4 | $\begin{aligned} & \text { RD7 } \\ & \text { RD6 } \\ & \text { RD5 } \\ & \text { RD4 } \end{aligned}$ | $\begin{aligned} & \text { _ *3 } \\ & -* 3 \\ & -* 3 \\ & -* 3 \end{aligned}$ |  |  | $\left[\begin{array}{l} \text { MSB } \\ \text { Programmable timer reload data } \\ \quad \text { (high-order } 4 \text { bits) } \end{array}\right.$ |
| EFH | LDTY1 | LDTY0 | 0 $R$ | LCDON R/W | LDTY1 <br> LDTYO <br> 0 *5 <br> LCDON | $\begin{aligned} & 0 \\ & 0 \\ & \mathbf{-}^{*}{ }^{*} \\ & 0 \end{aligned}$ | On | Off | LCD drive duty selection $0: 1 / 4,1: 1 / 3,2: 1 / 2,3: 1 / 1$ Unused LCD display control (LCD display all off) |

Table 4.1.1(d) I/O memory map (FOH-FFH)

| Address | Register |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *7 | D3 | D2 | D1 | D0 | Name | Init *1 | 1 | 0 |  |
| FOH | GNDON1 | GNDONO | VRAON | VRON | GNDON1 <br> GNDONO <br> VRAON <br> VRON | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { On } \\ & \text { On } \end{aligned}$ | Off Off | $\square$ GND circuit On/Off and mode selection  <br> 0: Off, 1: On1, 2: On2, 3: On3 $* 6$ <br> VR output voltage adjustment On/Off  <br> VR circuit On/Off  |
|  | R/W |  |  |  |  |  |  |  |  |
| F1H | 0 | 0 | AMPON1 | AMPON0 | $0 * 5$$0 \quad * 5$AMPON1AMPON0 | $\begin{aligned} & \mathbf{-}^{*}{ }^{*} \\ & \mathbf{-}^{*} 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { On } \\ & \text { On } \end{aligned}$ | $\begin{aligned} & \text { On } \\ & \text { On } \end{aligned}$ | Unused <br> Unused <br> AMP1 On/Off <br> AMP0 On/Off |
|  | R |  | R/W |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| F2H | 0 | 0 | AMPDT1 | AMPDT0 | $0 * 5$00AMPDT1AMPDT0 | $\begin{aligned} & -{ }^{*} 2 \\ & -{ }^{*} 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | High <br> High | $\begin{aligned} & \text { Low } \\ & \text { Low } \end{aligned}$ | Unused <br> Unused <br> AMP1 output data AMP0 output data |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| F3H | 0 | 0 | ADRS1 | ADRS0 | 0 $* 5$ <br> 0 $* 5$ <br> ADRS1  <br> ADRS0  | $\begin{aligned} & -{ }^{*} 2 \\ & -{ }^{2} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ |  |  | UnusedUnusedA/D converter resolution selection0: $6400,1: 3200,2: 1600,3: 800$ |
|  | R |  | R/W |  |  |  |  |  |  |
| F4H | AIS3 | AIS2 | AIS1 | AISO | AIS3 <br> AIS2 <br> AIS1 <br> AISO | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Resistor <br> Resistor <br> Differ. V <br> Differ. V | V (to GND) | AI4/AI3 mode selection AI4/AI2 mode selection AI3/AI2 mode selection AI1/AI0 mode selection |
|  |  |  |  |  |  |  |  | V (to GND) |  |
|  | R/W |  |  |  |  |  |  | V (to GND) |  |
|  |  |  |  |  | V (to GND) |  |  |  |  |
| F5H | Al3 | Al2 | Al1 | AIO |  | $\begin{aligned} & \hline \text { Al3 } \\ & \text { Al2 } \\ & \text { Al1 } \\ & \text { Al0 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | On <br> On <br> On <br> On | Off | Analog input terminal AI3 On/Off Analog input terminal AI2 On/Off Analog input terminal AI1 On/Off Analog input terminal AI0 On/Off |
|  |  |  |  |  | Off |  |  |  |  |  |
|  | R/W |  |  |  | Off Off |  |  |  |  |  |
| F6H |  |  |  |  | $\begin{array}{rl} \hline \text { ADON } \\ 0 & * 5 \\ 0 & * 5 \\ \text { Al4 } & \\ \hline \end{array}$ | $\begin{aligned} & \hline 0 \\ & -*_{2} \\ & -*_{2} \\ & 0 \\ & \hline \end{aligned}$ | On <br> On | Off <br> Off | A/D converter clear and On/Off <br> Unused <br> Unused <br> Analog input terminal AI4 On/Off |  |
|  | ADON | 0 | 0 | Al4 |  |  |  |  |  |  |
|  | R/W |  | R | R/W |  |  |  |  |  |  |
|  | R/ |  |  |  |  |  |  |  |  |  |
| F7H | AD3 | AD2 | AD1 | ADO | $\begin{aligned} & \text { AD3 } \\ & \text { AD2 } \\ & \text { AD1 } \\ & \text { AD0 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ |  |  | $]_{\text {LSB }}$ |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | R |  |  |  |  |  |  |  |  |  |
| F8H | AD7 | AD6 | AD5 | AD4 | $\begin{aligned} & \text { AD7 } \\ & \text { AD6 } \\ & \text { AD5 } \\ & \text { AD4 } \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\square$ A/D converter count data |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | R |  |  |  |  |  |  |  |  |  |
| $\mathrm{F9H}$ | AD11 | AD10 | AD9 | AD8 | AD11 <br> AD10 <br> AD9 <br> AD8 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | A/D converter count data |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | R |  |  |  |  |  |  |  |  |  |
| FAH | 0 | 0 | ADP | AD12 | $\begin{array}{cc} \hline 0 & * 5 \\ 0 & * 5 \\ \text { ADP } \\ \text { AD12 } \\ \hline \end{array}$ | $\begin{aligned} & \hline{ }^{*}{ }^{2} \\ & -{ }^{*} 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | (+) | (-) | Unused <br> Unused <br> Input voltage polarity <br> A/D converter count data (MSB) |  |
|  | R |  |  |  |  |  |  |  |  |  |
| FBH | 0 | 0 |  | IDR | $\begin{array}{\|cc\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IDR } \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { - }^{* 2} \\ & -{ }^{*} 2 \\ & -{ }^{* 2} \\ & 0 \\ & \hline \end{aligned}$ | Invalid | Valid | Unused <br> Unused <br> Unused <br> Reading data status |  |
|  |  |  | 0 |  |  |  |  |  |  |  |
|  | R |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FFH | SVDS1 | SVDS0 | SVDDT | SVDON | $\begin{array}{\|l\|} \hline \text { SVDS1 } \\ \text { SVDS0 } \\ \text { SCDDT } \\ \text { SCDON } \\ \hline \end{array}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Low } \\ \text { On } \end{gathered}$ | Normal Off | SVD criteria voltage setting0: $2.6 \mathrm{~V}, 1: 2.5 \mathrm{~V}, 2: 2.4 \mathrm{~V}, 3: 2.3 \mathrm{~V}$Supply voltage evaluation dataSVD circuit On/Off |  |
|  | SVDS | SVDSo | SVDDT | SVDON |  |  |  |  |  |  |
|  | R/W |  |  |  |  |  |  |  |  |  |
|  |  |  | R | R/W |  |  |  |  |  |  |

### 4.2 Resetting Watchdog Timer

## Configuration of watchdog timer

Fig. 4.2.1
Watchdog timer block diagram

The E0C6274 incorporates a watchdog timer as the source oscillator for OSC1 (clock timer 1 Hz signal). The watchdog timer must be reset cyclically by the software. If reset is not executed in at least $3-4$ seconds, the initial reset signal is output automatically for the CPU.
Figure 4.2 .1 is the block diagram of the watchdog timer.


The watchdog timer, configured of a two-bit binary counter (WDO, WD1), generates the initial reset signal internally by overflow of the WD1 ( $1 / 4 \mathrm{~Hz}$ ).
Watchdog timer reset processing in the program's main routine enables detection of program overrun, such as when the main routine's watchdog timer processing is bypassed. Ordinarily this routine is incorporated where periodic processing takes place, just as for the timer interrupt routine.
The watchdog timer can also be reset by the resetting of the clock timer.
The watchdog timer operates in the HALT mode. If the watchdog timer is not reset within 3 or 4 seconds including the HALT status, the IC reactivates from initial reset status.
The time during which oscillation is stopped due to the SLEEP function is not included in the watchdog timer reset cycle. When the SLEEP status has been cancelled and it has begun oscillation, it successively restarts the count from the status at the time oscillation stopped.

Control of watchdog timer

Table 4.2.1 lists the watchdog timer's control bits and their addresses.

Table 4.2.1 Control bits of watchdog timer

| Address <br> *7 | Register |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 | Name | Init*1 | 1 | 0 |  |
| E2H | 0 | 0 | 0 | TMRST | 0 *5 | - *2 |  |  | Unused |
|  | 0 | 0 | 0 | TMRST | 0 *5 | - *2 |  |  | Unused |
|  | R |  |  | W | 0 *5 | - *2 |  |  | Unused |
|  |  |  |  |  | TMRST*5 | - *2 | Reset | - | Clock timer and watchdog timer reset |
| E5H | WDRST | 0 | WD1 | WD0 | WDRST*5 | Reset | Reset | - | Watchdog timer reset |
|  | WDRST | 0 | WD1 | WDO | 0 *5 | - *2 |  |  | Unused |
|  | W | R |  |  | WD1 | 0 |  |  | Watchdog timer data ( $1 / 4 \mathrm{~Hz}$ ) |
|  | W |  |  |  | WD0 | 0 |  |  | Watchdog timer data ( $1 / 2 \mathrm{~Hz}$ ) |


| *1 Initial value at the time of initial reset | *5 Constantly "0" when being read |
| :--- | :--- |
| *2 Not set in the circuit | *6 Refer to main manual |
| *3 Undefined | *7 Page switching in I/O memory is not necessary |
| *4 Reset $(0)$ immediately after being read |  |

WD0, WD1: The $1 / 2 \mathrm{~Hz}$ and $1 / 4 \mathrm{~Hz}$ data of the watchdog timer can be read Watchdog timer data out. These bits are read only, and writing operations are invalid.
(E5H•D0, D1) At initial reset, the watchdog timer data is initialized to "00B".
WDRST: This is the bit for resetting the watchdog timer.

Watchdog timer reset
( $\mathrm{E} 5 \mathrm{H} \cdot \mathrm{D} 3$ )

When " 1 " is written: Watchdog timer is reset
When " 0 " is written: No operation
Reading: Always " 0 "
When " 1 " is written to WDRST, the watchdog timer is reset, and the operation restarts immediately after this. When " O " is written to WDRST, no operation results.
This bit is dedicated for writing, and is always " 0 " for reading.
TMRST: This is the bit for resetting the clock timer and the watchdog timer.

Clock timer reset
( $\mathrm{E} 2 \mathrm{H} \cdot \mathrm{D} 0$ )

When " 1 " is written: Clock timer and watchdog timer are reset When " 0 " is written: No operation

Reading: Always "0"
When " 1 " is written to TMRST, the clock timer and the watchdog timer are reset, and the operation restarts immediately after this. When " 0 " is written to TMRST, no operation results. This bit is dedicated for writing, and is always " 0 " for reading.

## Programming note

The watchdog timer must be reset within 3-second cycles. Because of this, the watchdog timer data (WDO, WD1) cannot be used for clocking of 3 seconds or more.

### 4.3 Osc illation Circ uit

## Configuration of osc illation circ uit

Fig. 4.3.1
Oscillation system

The E0C6274 has two oscillation circuits (OSC1 and OSC3). OSC1 is a crystal oscillation circuit that supplies the operating clock the CPU and peripheral circuits. OSC3 is either a CR or ceramic oscillation circuit. When processing with the E0C6274 requires high-speed operation, the CPU operating clock can be switched from OSC1 to OSC3.
Figure 4.3 .1 is the block diagram of this oscillation system.


Selection of either OSC1 or OSC3 for the CPU's operating clock can be made through the software.

The E0C6274 has a built-in crystal oscillation circuit (OSC1 oscillation circuit). As an external element, the OSC1 oscillation circuit generates the operating clock for the CPU and peripheral circuitry by connecting the crystal oscillator (Typ. 32.768 kHz ) and trimmer capacitor (5-25 pF).
Figure 4.3.2 is the block diagram of the OSC1 oscillation circuit.

Fig. 4.3.2
OSC1 oscillation circuit

## OSC3 oscillation circuit

The E0C6274 has twin clock specification. The mask option enables selection of either the CR or ceramic oscillation circuit (OSC3 oscillation circuit) as the CPU's sub-clock. Because the oscillation circuit itself is built-in, it provides the resistance as an external element when CR oscillation is selected, but when ceramic oscillation is selected both the ceramic oscillator and two capacitors (gate and drain capacitance) are required.
Figure 4.3 .3 is the block diagram of the OSC3 oscillation circuit.

(a) CR oscillation circuit


As indicated in Figure 4.3.3, the CR oscillation circuit can be configured simply by connecting the resistor (RcR) between terminals OSC3 and OSC4 when CR oscillation is selected. When $39 \mathrm{k} \Omega$ is used for RCR, the oscillation frequency is about 900 kHz . When ceramic oscillation is selected, the ceramic oscillation circuit can be configured by connecting the ceramic oscillator (Typ. 1 MHz ) between terminals OSC3 and OSC4 to the two capacitors (CGC and CDC) located between terminals OSC3 and OSC4 and Vss. For both Cgc and CDC, connect capacitors that are about 100 pF . To lower current consumption of the OSC3 oscillation circuit, oscillation can be stopped through the software.

Control of oscillation circuit

Table 4.3.1 lists the control bits and their addresses for the oscillation circuit.

Table 4.3.1 Control bits of oscillation circuit

| Address |  |  | ster |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *7 | D3 | D2 | D1 | D0 | Name | Init*1 | 1 | 0 | Comment |
| DFH | 0 | 0 | CLKCHG | OSCC | 0 *5 | *2 |  |  | Unused |
|  |  |  |  |  | 0 *5 | - *2 |  |  | Unused |
|  | R |  | R/W |  | CLKCHG | 0 | OSC3 | OSC1 | CPU system clock switch |
|  |  |  | OSCC | 0 | On | Off | OSC3 oscillation On/Off |

[^2]OSCC: Controls oscillation ON/OFF for the OSC3 oscillation circuit.

OSC3 oscillation control
(DFH•DO)

When " 1 " is written: The OSC3 oscillation ON
When " 0 " is written: The OSC3 oscillation OFF Reading: Valid

When it is necessary to operate the CPU at high speed, set OSCC to " 1 ". At other times, set it to " 0 " to lessen the current consumption. When "Not Use" is selected for the mask option of the OSC3 oscillation circuit, keep OSCC set to " 0 ".
At initial reset, OSCC is set to " 0 ".

CLKCHG: The CPU's operation clock is selected with this register.
The CPU's clock switch
(DFH•D1)

When " 1 " is written: OSC3 clock is selected
When " 0 " is written: OSC1 clock is selected Reading: Valid
When the CPU clock is to be OSC3, set CLKCHG to " 1 "; for OSC1, set CLKCHG to " 0 ".
When "Not Use" is selected for the mask option of the OSC3 oscillation circuit, keep CLKCHG set to "O".
At initial reset, CLKCHG is set to " 0 ".

## Clock frequency and instruction exec ution time

Table 4.3.2
Clock frequency and instruction execution time

Table 4.3.2 shows the instruction execution time according to each frequency of the system clock.

| Clock frequency | Instruction execution time ( $\mu \mathrm{sec}$ ) |  |  |
| :--- | :---: | :---: | :---: |
|  | 5-clock instruction | 7-clock instruction | 12-clock instruction |
| OSC1: 32.768 kHz | 152.6 | 213.6 | 366.2 |
| OSC3: 1 MHz | 5.0 | 7.0 | 12.0 |

(1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON.
Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
(2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
(3) When shifting to the SLEEP status, the CPU clock must be set to OSC1 and the OSC3 oscillation circuit must be OFF.

### 4.4 Input Ports (K00-K03, K10)

## Configuration of input ports

The E0C6274 has five bits general-purpose input ports. Each of the input port terminals (K00-K03, K10) provides internal pull up resistor. Pull up resistor can be selected for each bit with the mask option.
Figure 4.4 . 1 shows the configuration of input port.


Selection of "With pull up resistor" with the mask option suits input from the push switch, key matrix, and so forth. When "Gate direct" is selected, the port can be used for slide switch input and interfacing with other LSIs.

Further, the input port terminal K 10 is used as the input terminal for the programmable timer/event counter and the interrupt port for the SLEEP mode cancellation. (See Section 4.10, "Programmable Timer", and Section 4.15, "Interrupt and HALT/SLEEP" for details.)

## Interupt function

All five bits of the input ports (K00-K03, K10) provide the interrupt function. The conditions for issuing an interrupt can be set by the software. Further, whether to mask the interrupt function can be selected individually for all five bits by the software.

## (1) K00-K03 interrupt

Figure 4.4.2 shows the configuration of K00-K03 interrupt circuit.

Fig. 4.4.2
Input interrupt circuit configuration (K00-K03)


The interrupt selection register (SIK) and input comparison register (DFK) are individually set for the input ports K00-K03 and can specify the terminal for generating interrupt and interrupt timing. The interrupt selection register (SIK00-SIK03) select what input of K00-K03 to use for the interrupt. Writing " 1 " into an interrupt selection register incorporates that input port into the interrupt generation conditions. The changing the input port where the interrupt selection register has been set to " 0 " does not affect the generation of the interrupt.
The input interrupt timing can select that the interrupt be generated at the rising edge of the input or that it be generated at the falling edge according to the set value of the input comparison register (DFK00-DFK03).
By setting these two conditions, the interrupt for K00-K03 is generated when an input port in which an interrupt has been enabled by the input selection register and the content of the input comparison register have been changed from matching to no matching.
When the interrupt is generated, the interrupt factor flag (IKO) is set to " 1 ".
The interrupt mask register (EIK0) enables the interrupt mask to be selected for K00-K03. However, the interrupt factor flag is set to " 1 " when the interrupt condition is established regardless of the interrupt mask register setting.
Figure 4.4 .3 shows an example of an interrupt for K00-K03.

Fig. 4.4.3
Example of interrupt of KOO-K03


With the above setting, the interrupt of $\mathrm{K} 00-\mathrm{K} 03$ is generated under the following condition:

(1) | K 03 | K 02 | K 01 | K 00 |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 | (Initial value)

(2) | K03 | K02 | K01 | K00 |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 |
| $\downarrow$ |  |  |  |

(3) | K03 | K02 | K01 | K00 |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 |  |
| $\downarrow$ |  |  |  |  |

$\rightarrow$ Interrupt generation
Because K00 interrupt is set to disable, interrupt will be generated when no matching occurs between the contents of the 3 bits K01-K03 and the 3 bits input comparison register DFK01-DFK03.

K00 interrupt is disabled by the interrupt selection register (SIKOO), so that an interrupt does not occur at (2). At (3), K03 changes to " 0 "; the data of the terminal that is interrupt enabled no longer matches the data of the input comparison register, so that interrupt occurs. As already explained, the condition for the interrupt to occur is the change in the port data and contents of the input comparison register from matching to no matching. Hence, in (4), when the no matching status changes to another no matching status, an interrupt does not occur. Further, terminals that have been masked for interrupt do not affect the conditions for interrupt generation.

## (2) K10 interrupt

Figure 4.4 .4 shows the configuration of K10 interrupt circuit.

Fig. 4.4.4 Input interrupt circuit configuration (K10)


The input port K10 can generate interrupts for systems other then K00-K03. The input comparison register (DFK10) is also set to the K10 port and can specify the timing for generating an interrupt. The interrupt generated timing is also the same as for K00-K03 and when the content of the K10 input and the input comparison register changes from matching to no matching an interrupt is generated.
When the interrupt is generated, the interrupt factor flag (IK1) is set to " 1 ".
The interrupt mask register (EIK1) enables the interrupt mask to be selected for K10. However, the interrupt factor flag is set to " 1 " when the interrupt condition is established regardless of the interrupt mask register setting.
The K10 input interrupt is also used for cancellation of the SLEEP mode.

Internal pull up resistor can be selected for each of the five bits of the input ports ( $\mathrm{K} 00-\mathrm{K} 03, \mathrm{~K} 10$ ) with the input port mask option. When you have selected "Gate direct", take care that the floating status does not occur for the input. Select "With pull up resistor" for input ports that are not being used.

Control of input ports
Table 4.4.1 lists the input ports control bits and their addresses.
Table 4.4.1 Input port control bits

| Address <br> *7 | Register |  |  |  | Name | Init*1 | 1 | 0 | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |  |  |  |  |  |
| C 2 H | 0 | 0 | 0 | IK1 | $\begin{array}{\|rr\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IK1 } & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline-{ }^{* 2} \\ & -* 2 \\ & -{ }^{*} 2 \\ & 0 \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (K10) |
| C 3 H | R |  |  |  | $\begin{array}{\|cc\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IKO } & * 4 \end{array}$ | $\begin{aligned} & -{ }^{*} 2 \\ & -* 2 \\ & -* 2 \\ & 0 \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (K00-K03) |
| $\mathrm{C9H}$ | R |  | R/W |  | $\begin{array}{cc} 0 & * 5 \\ 0 & * 5 \\ \text { EIK1 } \\ \text { EIK0 } \end{array}$ | $\begin{aligned} & -* 2 \\ & -* 2 \\ & 0 \\ & 0 \end{aligned}$ | Enable <br> Enable | Mask <br> Mask | Unused <br> Unused <br> Interrupt mask register (K10) <br> Interrupt mask register (K00-K03) |
| CAH | R/W |  |  |  | SIK03 <br> SIK02 <br> SIK01 <br> SIK00 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Enable <br> Enable <br> Enable <br> Enable | Disable <br> Disable <br> Disable <br> Disable | Interrupt selection register (K03) <br> Interrupt selection register (K02) <br> Interrupt selection register (K01) <br> Interrupt selection register (K00) |
| DOH | K03 | K02 | K01 | K00 | $\begin{aligned} & \hline \text { K03 } \\ & \text { K02 } \\ & \text { K01 } \\ & \text { K00 } \end{aligned}$ | $\begin{aligned} & \hline-{ }^{*} 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \end{aligned}$ | High <br> High <br> High <br> High | Low <br> Low <br> Low <br> Low | $]$ Input port (K00-K03) |
| D1H | 0 | 0 | 0 | K10 | $\begin{array}{cc\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \mathrm{~K} 10 \end{array}$ | $\begin{aligned} & \hline-{ }^{*} 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \end{aligned}$ | High | Low | Unused <br> Unused <br> Unused <br> Input port (K10) |
| D2H | DFK03 | DFK02 | DFK01 | DFK00 | $\begin{aligned} & \text { DFK03 } \\ & \text { DFK02 } \\ & \text { DFK01 } \\ & \text { DFK00 } \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$ | 7 7 7 7 7 |  | $\square$ Input comparison register (K00-K03) |
| D3H | 0 | 0 $R$ | 0 | DFK10 R/W | $\begin{array}{rr} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { DFK10 } \end{array}$ | $\begin{aligned} & -* 2 \\ & -* 2 \\ & -{ }^{*} 2 \\ & 1 \end{aligned}$ | 7 | $\uparrow$ | Unused <br> Unused <br> Unused <br> Input comparison register (K10) |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

K00-K03, K10: Input port data (D0H, D1H•D0)

Input data of the input port terminals can be read with these registers.

## When " 1 " is read: High level <br> When " 0 " is read: Low level <br> Writing: Invalid

The reading is " 1 " when the terminal voltage of the five bits of the input ports (K00-K03, K10) goes high (VDD), and " 0 " when the voltage goes low (Vss).
These bits are dedicated for reading, so writing cannot be done.

DFK00-DFK03, DFK10: Input comparison registers (D2H, D3H•D0)

Interrupt conditions for terminals $\mathrm{K} 00-\mathrm{KO3}$ and K 10 can be set with these registers.

```
When " 1 " is written: Falling edge
When " 0 " is written: Rising edge
    Reading: Valid
```

The interrupt conditions can be set for the rising or falling edge of input for each of the five bits (K00-K03 and K10), through the input comparison registers (DFK00-DFK03 and DFK10).
For DFK00-DFK03, a comparison is done only with the ports that are enabled by the interrupt among K00-K03 by means of the SIK register.
At initial reset, these registers are set to " 0 ".

SIK00-SIK03: Selects the port to be used for the K00-K03 input interrupt.
Interrupt selection register
(CAH)
When " 1 " is written: Enable
When " 0 " is written: Disable

Reading: Valid
Enables the interrupt for the input ports (K00-K03) for which "1" has been written into the interrupt selection register (SIKOOSIK03). The input port set for "0" does not affect the interrupt generation condition.
At initial reset, these registers are set to " 0 ".

EIK0, EIK1: Interrupt mask registers (C9H•D0, D1) registers

When " 1 " is written: Enable
When "0" is written: Mask
Reading: Valid
With these registers, masking of the input port can be selected for each of the two systems (K00-K03, K10).
Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0").
At initial reset, these registers are all set to " 0 ".

IK0, IK1: These flags indicate the occurrence of input interrupt.

Interrupt factor flags (C3H•D0, C2H•D0)

> When " 1 " is read: Interrupt has occurred
> When " 0 " is read: Interrupt has not occurred Writing: Invalid

The interrupt factor flags IK0 and IK1 are associated with K00-K03 and K10, respectively. From the status of these flags, the software can decide whether an input interrupt has occurred. However, these flags are set to " 1 " when the interrupt conditions are established even if the interrupts have been masked.

These flags are reset when the software reads them.
Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.
At initial reset, these flags are set to " 0 ".

## Programming notes

(1) When input ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration.
Make this waiting time the amount of time or more calculated by the following expression.

$$
10 \times \mathrm{C} \times \mathrm{R}
$$

C: terminal capacitance $5 \mathrm{pF}+$ parasitic capacitance ? pF R: pull up resistance $300 \mathrm{k} \Omega$
(2) Write the interrupt mask register (EIK) only in the DI status (interrupt flag $=$ " 0 "). Writing during EI status (interrupt flag $=$ "1") will cause malfunction.
(3) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

### 4.5 Output Ports (ROO-R03)

## Configuration of output ports

The E0C6274 has four bits general output ports.
Output specifications of the output ports can be selected individually with the mask option. Two kinds of output specifications are available: complementary output and Nch open drain output.
Further, each of the output port to be used as special output ports by the software setting.
Figure 4.5 .1 shows the configuration of the output port.


Mask option

## Mask option

## Special output

Table 4.5.1 Special output

Output specifications of the output ports can be selected with the mask option.
Output specifications for the output ports (R00-R03) enable selection of either complementary output or Nch open drain output for each of the four bits.
However, even when Nch open drain output is selected, voltage exceeding source voltage must not be applied to the output port.

In addition to the regular DC output, special output can be selected as shown in Table 4.5 . 1 with the software. Figure 4.5.2 shows the structure of the output ports R00-R03.

| Terminal | Special output | Output selection register |
| :---: | :---: | :---: |
| R00 | $\overline{\text { FOUT }}$ | FOR00 |
| R01 | $\overline{\text { PTOVF }}$ | PTR01 |
| R02 | BZ | BZR02 |
| R03 | $\overline{\text { BZ }}$ | BZR03 |

Fig. 4.5.2
Structure of the output ports R00-R03


- BZ and $\overline{\mathrm{BZ}} \mathrm{BZ}$ and $\overline{\mathrm{BZ}}$ are the buzzer signal output for driving the piezo(R02 and R03) electric buzzer.

By setting the register BZR02 to " 1 ", R02 is set to BZ (buzzer signal) output port and by setting the register BZR03 to " 1 ", R03 is set to $\overline{\mathrm{BZ}}$ (buzzer inverted signal) output port. When BZR02 and BZR03 are set to "0", R02 and R03 become the regular DC output ports.
When the buzzer output and the buzzer inverted output are selected, ON/OFF of the buzzer outputs can be controlled by the R02 and R03 registers, respectively.
The buzzer frequency may be selected as 2 kHz or 4 kHz by setting of the BZFO register.

Note: The BZ and BZ output signals could generate hazards during ON/OFF switching.

Figure 4.5 .3 shows the output waveform of $B Z$ and $\overline{B Z}$.

Fig. 4.5.3
Output waveform of BZ and BZ


- FOUT By setting the register FOR00 to " 1 ", R00 is set to FOUT (clock)
(R00) output port. When FOROO is set to " 0 ", R00 become the regular DC output port.
When the FOUT output is selected, ON/OFF of the signal output can be controlled by the R00 register.
The frequency of clock output signal may be selected from among 4 types as Table 4.5.2 by setting of the FOFOO and FOFQ1 registers.

Table 4.5.2 FOUT clock frequency

| FOFQ1 | FOFQ0 | Clock frequency $(\mathrm{Hz})$ |
| :---: | :---: | :---: |
| 1 | 1 | fosc3 |
| 1 | 0 | fosc1 |
| 0 | 1 | 4,096 |
| 0 | 0 | 512 |

Note: A hazard may occur when the FOUT signal is turned ON or OFF.
Figure 4.5 .4 shows the output waveform of $\overline{\text { FOUT. }}$

Fig. 4.5.4
Output waveform of FOUT


- PTOVF By setting the register PTR01 to "1", R01 is set to $\overline{\text { PTOVF }}$ (output
(R01) pulse of the programmable timer) output port. When PTR01 is set to " 0 ", R01 become the regular DC output port.
When the $\overline{\text { PTOVF }}$ output is selected, ON/OFF of the signal output can be controlled by the R01 register. However, control of the programmable timer is necessary.
Refer to Section 4.10, "Programmable Timer" for details of the programmable timer.

Note: A hazard may occur when the PTOVF signal is turned ON or OFF.
Figure 4.5 .5 shows the output waveform of $\overline{\text { PTOVF. }}$

Fig. 4.5.5
Output waveform of PTOVF


## Control of output ports

Table 4.5.3 lists the output ports' control bits and their addresses.

Table 4.5.3 Control bits of output ports

| Address *7 | Register |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 | Name | Init*1 | 1 | 0 |  |
| D4H | R03 | R02 | R01 | R00 | $\frac{\mathrm{R} 03}{\text { BZ }}$ | 0 | $\begin{aligned} & \hline \text { High } \\ & \text { On } \end{aligned}$ | Low Off | Output port (R03) <br> Buzzer inverted output |
|  | $\overline{\text { BZ }}$ | BZ | $\overline{\text { PTOVF }}$ | ---- | R02 | 0 | High | Low | Output port (R02) |
|  |  |  |  |  | BZ |  | On | Off | Buzzer output |
|  | RW |  |  |  | R01 | 1 | High | Low | Output port (R01) |
|  |  |  |  |  | $\overline{\text { PTOVF }}$ |  | Off | On | PTOVF output |
|  |  |  |  |  | R00 | 1 | High | Low | Output port (R00) |
|  |  |  |  |  | $\overline{\text { FOUT }}$ |  | Off | On | FOUT output |
| EOH | BZR03 | B7R02 | 0 | BZFQ | BZR03 | 0 | Buzzer | DC | R03 port output selection |
|  | BZRO3 | BZR02 | 0 | BZFQ | BZR02 | 0 | Buzzer | DC | R02 port output selection |
|  | RW |  | R | RW | $0 * 5$ | - *2 |  |  | Unused |
|  |  |  |  |  | BZFQ | 0 | 2kHz | 4 kHz | Buzzer frequency selection |
| E1H | FOROO | 0 | FOFQ1 | FOFQ0 | $\begin{array}{\|c\|} \hline \text { FOR00 } \\ 0 \quad * 5 \\ \text { FOFQ1 } \\ \text { FOFQ0 } \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & -\quad * 2 \end{aligned}$ | FOUT | DC | R00 port output selection Unused |
|  | R/W | R | R/W |  |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  |  | FOUT frequency selection $0: 512 \mathrm{~Hz}, 1: 4096 \mathrm{~Hz}, 2:$ foscl, 3: fosc3 |
| E9H | PTR01 | 0 | PTRUN | PTRST | $\begin{array}{\|c\|} \hline \text { PTRO1 } \\ 0 \quad * 5 \\ \text { PTRUN } \\ \text { PTRST*5 } \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & -\quad * 2 \end{aligned}$ | PTOVF | DC | R01 port output selection Unused |
|  | RW | R | RW | W |  | 0 | Run | Stop | Programmable timer Run/Stop |
|  | RN | R | RW | W |  | - | Reset | - | Programmable timer reset (reload) |
| *1 Initial value at the time of initial reset <br> *2 Not set in the circuit <br> *3 Undefined |  |  |  |  |  | *5 Constantly "0" when being read <br> *6 Refer to main manual <br> *7 Page switching in I/O memory is not necessary |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

*4 Reset (0) immediately after being read
FOR00: Selects the output type for the R00 terminal.

R00 output selection register
(E1H•D3)

When " 1 " is written: $\overline{\text { FOUT }}$ signal output
When " 0 " is written: DC output
Reading: Valid
By setting the register FOR00 to " 1 ", R00 is set to $\overline{\text { FOUT }}$ (clock) output port. When FOROO is set to " 0 ", ROO become the regular DC output port.
When the FOUT output is selected, ON/OFF of the signal output can be controlled by the R00 register. At initial reset, this register is set to " 0 ".

PTR01: Selects the output type for the R01 terminal.

R01 output selection register
(E9H•D3)

When " 1 " is written: $\overline{\text { PTOVF }}$ signal output
When " 0 " is written: DC output
Reading: Valid
By setting the register PTR01 to "1", R01 is set to $\overline{\text { PTOVF }}$ (output pulse of the programmable timer) output port. When PTR01 is set to " 0 ", R01 become the regular DC output port.

BZR02, BZR03:
R02, R03 output selection register (EOH•D2, D3)

R02, R03 (when BZ and $\overline{B Z}$ output is selected):
Special output port data
(D4H•D2, D3)

When the $\overline{\text { PTOVF }}$ output is selected, ON/OFF of the signal output can be controlled by the R01 register.
At initial reset, this register is set to " 0 ".
Selects the output type for the R02 and R03 terminals.
When " 1 " is written: Buzzer signal output
When " 0 " is written: DC output
Reading: Valid
By setting the register BZR02 to " 1 ", R02 is set to BZ (buzzer signal) output port and by setting the register BZR03 to " 1 ", R03 is set to $\overline{\mathrm{BZ}}$ (buzzer inverted signal) output port. When BZR02 and BZR03 are set to " 0 ", R02 and R03 become the regular DC output ports.
When the buzzer output and the buzzer inverted output are selected, ON/OFF of the buzzer outputs can be controlled by the R02 and R03 registers, respectively.
At initial reset, these register are set to " 0 ".
Sets the output data for the output ports.
When " 1 " is written: High output
When "0" is written: Low output
Reading: Valid
The output port terminals output the data written in the corresponding registers (R00-R03) without changing it. When " 1 " is written in the register, the output port terminal goes high (VDD), and when " 0 " is written, the output port terminal goes low (Vss). At initial reset, R00 and R01 are set to " 1 "; R02 and R03 are set to " 0 ".

These bits control the output of the buzzer signals ( $B Z, \overline{B Z}$ ).
When " 1 " is written: Buzzer signal is output
When " 0 " is written: Low level (DC) is output
Reading: Valid
BZ (buzzer signal) output is controlled by writing data to R10, and
$\overline{\mathrm{BZ}}$ (buzzer inverted signal) output is controlled by writing data to R13. At initial reset, R02 and R03 are set to " 0 ".

BZFQ: Selects the frequency of the buzzer signal.
Buzzer frequency selection
register
( $\mathrm{EOH} \cdot \mathrm{DO}$ )

When " 1 " is written: 2 kHz
When " 0 " is written: 4 kHz
Reading: Valid
When " 1 " is written to register BZFQ, the frequency of the buzzer signal is set in 2 kHz , and in 4 kHz when " O " is written.
At initial reset, this register is set to " 0 ".

R00 Controls the FOUT (clock) output.
(when FOUT is selected):
Special output port data
(D4H•D0)
When " 1 " is written: High level (DC) output When " 0 " is written: Clock output Reading: Valid
$\overline{\text { FOUT }}$ output can be controlled by writing data to R00. At initial reset, this register is set to " 1 ".

FOFQ0, FOFQ1: Selects the $\overline{\text { FOUT }}$ frequency.
$\overline{\mathrm{FOUT}}$ frequency selection
register
(E1H•D0, D1)

Table 4.5.4
FOUT clock frequency

| FOFQ1 | FOFQ0 | Clock frequency $(\mathrm{Hz})$ |
| :---: | :---: | :---: |
| 1 | 1 | fosc3 |
| 1 | 0 | fosc1 |
| 0 | 1 | 4,096 |
| 0 | 0 | 512 |

At initial reset, these registers are set to " 0 ".
R01 Controls the $\overline{\text { PTOVF }}$ (clock) output.
(when PTOVF is selected):
Special output port data
(D4H•D0)
When " 1 " is written: High level (DC) output
When " 0 " is written: Clock output
Reading: Valid
$\overline{\text { PTOVF }}$ output can be controlled by writing data to R01.
Refer to Section 4.10, "Programmable Timer" for details of PTOVF. At initial reset, this register is set to " 1 ".

## Programming note

When BZ, $\overline{\mathrm{BZ}}, \overline{\mathrm{FOUT}}$ and $\overline{\text { PTOVF }}$ are selected, a hazard may be observed in the output waveform when the data of the output register changes.

### 4.6 I/O Ports (P00-P03, P10-P13, P20-P23)

Configuration of I/O ports

The E0C6274 has 12 bits ( 4 bits $\times 3$ ) general-purpose I/O ports. Figure 4.6 .1 shows the configuration of the I/O port.
The four bits of each of the I/O ports P00-P03, P10-P13 and P20P23 can be set to either input mode or output mode. Modes can be set by writing data to the I/O control register.
Moreover, pull up resistor which is turned ON during input mode can be controlled through the software.


The I/O ports P20-P23 are common used with the input/output ports of the serial interface, and function of these ports can be selected through the software.
Refer to Section 4.11, "Serial Interface" for details of the serial interface.

## I/O control registers and input/ output mode

Input or output mode can be set for the four bits of I/O ports P00P03, P10-P13 and P20-P23 by writing data into the corresponding I/O control register IOCO, IOC1 and IOC2.

To set the input mode, " 0 " is written to the I/O control register. When an I/O port is set to input mode, it becomes high impedance status and works as an input port.
However, when the pull up explained in the following section has been set by software, the input line is pulled up only during this input mode.

The output mode is set when " 1 " is written to the I/O control register. When an I/O port set to output mode works as an output port, it outputs a high level (VDD) when the port output data is " 1 ", and a low level (Vss) when the port output data is " 0 ".

If perform the read out in each mode; when output mode, the register value is read out, and when input mode, the port value is read out.

At initial reset, the I/O control registers are set to " 0 ", and the I/O port enters the input mode.

When P20-P23 are used as the input/output ports of the serial interface, the I/O control of the IOC2 register becomes invalid and IOC2 can be used as a 1 bit general-purpose register.

## Pull up during input mode

A pull up resistor that operates during the input mode is built into the I/O ports of the E0C6274. Software can set the use or non-use of this pull up. The pull up resistor becomes effective by writing " 1 " into the pull up control registers PUPO, PUP1 and PUP2 that correspond to each 4 bits of P00-P03, P10-P13 and P20-P23, and the input line is pulled up during the input mode. When " 0 " has been written, no pull up is done.
At initial reset, the pull up control registers are set to " 0 ".

Output specifications during the output mode (IOC = "1") can be selected with the mask option.
Output specifications for the I/O ports (P00-P03, P10-P13, P20P23) enable selection of either complementary output or Nch open drain output for each of the 12 bits.
However, even when Nch open drain output is selected, voltage exceeding source voltage must not be applied to the output port.

Control of I/O ports Table 4.6.1 lists the I/O ports' control bits and their addresses.
Table 4.6.1 Control bits of I/O ports

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

P00-P03, P10-P13, P20-P23: I/O port data (D8H, D9H, DAH)

I/O port data can be read and output data can be set through these ports.

## - When writing data

When " 1 " is written: High level
When " 0 " is written: Low level
When an I/O port is set to the output mode, the written data is output unchanged from the I/O port terminal. When " 1 " is written as the port data, the port terminal goes high (VDD), and when " 0 " is written, the level goes low (Vss).
Port data can be written also in the input mode.

## - When reading data out

When " 1 " is read: High level
When " 0 " is read: Low level
The terminal voltage level of the I/O port is read out. When the I/O port is in the input mode the voltage level being input to the port terminal can be read out; in the output mode the register value can be read. When the terminal voltage is high (VDD) the port data that can be read is " 1 ", and when the terminal voltage is low (Vss) the data is " 0 ".

When PUP register is set to " 1 ", the built-in pull up resistor goes ON during input mode, so that the I/O port terminal is pulled up. Internal pull up resistors are only ON during input mode, but the gate floating has not occur even during output mode.

When the serial input/output function is selected for P20-P23 ports, registers P20-P23 can be used as a four bits general register having both read and write function, and data of this register exerts no affect on input/output signal.

Note: When in the input mode, I/O ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration.
Make this waiting time the amount of time or more calculated by the following expression.
$10 \times C \times R$
C: terminal capacitance $5 \mathrm{pF}+$ parasitic capacitance ? pF
R: pull up resistance $300 \mathrm{k} \Omega$

IOC0, IOC1, IOC2: I/O control register
(D6H•D0-D2)
registers.
When " 1 " is written: Output mode
When " 0 " is written: Input mode
Reading: Valid
The input and output modes of the I/O ports are set in units of four bits. IOCO, IOC1 and IOC2 set the mode for P00-P03, P10-P13 and P20-P23, respectively.
Writing " 1 " to the I/O control register makes the corresponding I/O port enter the output mode, and writing " 0 " induces the input mode.
At initial reset, these registers are set to " 0 ", so the I/O ports are in the input mode.

When the serial input/output function is selected for P20-P23 ports, register IOC2 can be used as a one bits general register having both read and write function, and data of this register exerts no affect on input/output control.

PUP0, PUP1, PUP2: The pull up during the input mode can be set with these registers.

Pull up control register (D7H•D0-D2)

When " 1 " is written: Pull up ON
When "0" is written: Pull up OFF
Reading: Valid
The built-in pull up resistor which is turned ON during input mode is set to enable in units of four bits. PUPO, PUP1 and PUP2 set the pull up for P00-P03, P10-P13 and P20-P23, respectively.
By writing " 1 " to the pull up control register, the corresponding I/O ports are pulled up (during input mode), while writing " 0 " turns the pull up function OFF.
At initial reset, these registers are set to " 0 ", so the pull up function is set to OFF.
When P20-P23 have been set to input/output ports of the serial interface, the terminal controlled by PUP2 differs from the case of the I/O ports. (See Section 4.11, "Serial Interface".)

When in the input mode, I/O ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration.
Make this waiting time the amount of time or more calculated by the following expression.
$10 \times C \times R$
C: terminal capacitance 5 pF + parasitic capacitance ? pF
R: pull up registance $300 \mathrm{k} \Omega$

### 4.7 LCD Driver (COMO-COM3, SEG 0-SEG31)

Configuration of LCD driver

The E0C6274 has four common terminals (COM0-COM3) and 32 segment terminals (SEGO-SEG31), so that it can drive an LCD with a maximum of $128(32 \times 4)$ segments.
The power for driving the LCD is generated by the CPU internal circuit so that there is no need to apply power especially from outside.
The driving method is $1 / 4$ duty dynamic drive depending on the four types of potential, Vss, Vc1, Vc2 and Vc3. In addition to the 1/ 4 duty, $1 / 3,1 / 2$ and $1 / 1$ drive duty can be selected through the software. The frame frequency is 32 Hz for $1 / 4,1 / 2$ and $1 / 1$ duty, and 42.7 Hz for $1 / 3$ duty ( $\mathrm{fosc} 1=32,768 \mathrm{~Hz}$ ).
LCD display ON/OFF may be controlled by the software.
Figures 4.7.1-4.7.3 show the drive waveform for $1 / 4$ duty, $1 / 3$ duty and $1 / 2$ duty.

Note: "fosc1" indicates the oscillation frequency of the OSC1 oscillation circuit.

Fig. 4.7.1 Drive waveform for $1 / 4$ duty


LCD lighting status


SEG0-31

- Not lit
- Lit


Fig. 4.7.2
Drive waveform for $1 / 3$ duty


LCD lighting status COM0-
COM1
COM2
SEGO-31

- Not lit
- Lit


LCD lighting status COM0 -
COM1 -SEG0-31

- Not lit
- Lit $=8$
$-8$


COM2 $\longrightarrow \square$


# LCD display ON/OF control and duty switching 

## (1) Display ON/OFF control

In the EOC6274, ON/OFF of the LCD display can be controlled by LCDON register.
At initial reset, LCDON is set to " 0 ", and the LCD display is set to the OFF status. In this time, the COM terminal and the SEG terminal goes to Vc1 level.
To set the LCD display ON, write " 1 " to register LCDON.

## (2) Switching of drive duty

By settings of registers LDTYO and LDTY1, the LCD drive duty can be selected from among 4 types, $1 / 4,1 / 3,1 / 2,1 / 1$ duty. Table 4.7 .1 shows the LCD drive duty setting.

Table 4.7.1 LCD drive duty setting

| LDTY1 | LDTY0 | Duty | Terminals used <br> in common | Maximum number <br> of segments | Frame frequency ${ }^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $1 / 4$ | COM0-COM3 | $128(32 \times 4)$ | fosC1/1,024 (32 Hz) |
| 0 | 1 | $1 / 3$ | COM0-COM2 | $96(32 \times 3)$ | fosC1/768 (42.7 Hz) |
| 1 | 0 | $1 / 2$ | COM0, COM1 | $64(32 \times 2)$ | fosc $1 / 1,024(32 \mathrm{~Hz})$ |
| 1 | 1 | $1 / 1$ | COM0 | $32(32 \times 1)$ | fosc $1 / 1,024(32 \mathrm{~Hz})$ |

Basically you should select the drive duty with the smallest drive segment number (for example, $1 / 3$ duty for 80 segments and $1 / 2$ duty for 40 segments) from among the drive duties permitting driving of the segment number of the LCD panel.

## (3) Cadence adjustment of oscillation frequency

By using the $1 / 1$ duty drive waveform, it enables easy adjustment (cadence adjustment) of the oscillation frequency of the OSC1 oscillation circuit (crystal oscillation circuit).
Note: For cadence adjustment, set the segment data so that all the LCDs light.
Figure 4.7 .4 shows the drive waveform for $1 / 1$ duty.

Fig. 4.7.4
Drive waveform for $1 / 1$ duty


## Mask option (segment allocation)

## (1) Segment allocation

The LCD driver has a segment decoder built-in, and the data bit of the optional address in the display memory area ( $80 \mathrm{H}-9 \mathrm{FH}$ ) can be allocated to the optional segment. This makes design easy by increasing the degree of freedom with which the liquid crystal panel can be designed.
The allocated segment displays when the bit for the display memory is set to " 1 ", and goes out when bit is set to " 0 ".

Figure 4.7 .5 shows an example of the relationship between the LCD segments (on the panel) and the display memory for the case of $1 / 3$ duty.

| Address | Data |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |
| 9 AH | d | c | b | a |
| 9 BH | p | g | f | e |
| 9 CH | $\mathrm{d}^{\prime}$ | $\mathrm{c}^{\prime}$ | $\mathrm{b}^{\prime}$ | $\mathrm{a}^{\prime}$ |
| 9 DH | $\mathrm{p}^{\prime}$ | $\mathrm{g}^{\prime}$ | $\mathrm{f}^{\prime}$ | $\mathrm{e}^{\prime}$ |

Display memory allocation

|  | Common 0 | Common 1 | Common 2 |
| :---: | :---: | :---: | :---: |
| SEG10 | $9 \mathrm{~A}, \mathrm{D} 0$ <br> (a) | $9 \mathrm{~B}, \mathrm{D} 1$ <br> (f) | 9B, D0 <br> (e) |
| SEG11 | $9 \mathrm{~A}, \mathrm{D} 1$ <br> (b) | 9B, D2 <br> (g) | 9A, D3 <br> (d) |
| SEG12 | $9 \mathrm{D}, \mathrm{D} 1$ <br> (f') | 9A, D2 (c) | $\begin{gathered} 9 \mathrm{~B}, \mathrm{D} 3 \\ (\mathrm{p}) \\ \hline \end{gathered}$ |

Pin address allocation


## (2) Output specification

(1) The segment terminals (SEG0-SEG31) are selected with the mask option in pairs for either segment signal output or DC output (VDD and Vss binary output).
When DC output is selected, the data corresponding to COMO of each segment terminal is output.
(2) When DC output is selected, either complementary output or Nch open drain output can be selected for each terminal with the mask option.

Note: The terminal pairs are the combination of SEG2 $\times n$ and SEG2 $\times n+1$ (where $n$ is an integer from 0 to 15).

## Control of LCD driver

Table 4.7.2 shows the LCD driver's control bits and their addresses. Figure 4.7 .6 shows the display memory map.

Table 4.7.2 LCD driver control bits

| Address*7 | Register |  |  |  | Name | Init*1 | 1 | 0 | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |  |  |  |  |  |
| EFH | LDTY1 | LDTY0 | 0 | LCDON | LDTY1 <br> LDTYO | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  |  | $\square \begin{aligned} & \text { LCD drive duty selection } \\ & 0: 1 / 4,1: 1 / 3,2: 1 / 2,3: 1 / 1\end{aligned}$ |
|  | R/W |  | R | R/W | $\begin{gathered} 0 \quad * 5 \\ \text { LCDON } \end{gathered}$ | $\begin{aligned} & -{ }^{*} 2 \\ & 0 \end{aligned}$ | On | Off | Unused <br> LCD display control (LCD display all off) |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

| Address <br> Page |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-3 | 8 | Display memory (32 words $\times 4$ bits) W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Fig. 4.7.6 Display memory map

LCDON: Controls the LCD display

Display control
(EFH•D0)

When " 1 " is written: Display ON
When " 0 " is written: Display OFF Reading: Valid

By writing " 1 " to LCDON, the LCD display goes ON, and goes OFF when " 0 " is written. The LCD display OFF setting does not affect the contents of the display memory.
At initial reset, this register is set to " 0 ".

LDTY1, LDTY0: Sets the LCD drive duty as shown in Table 4.7.3
LCD drive duty selection
(EFH•D3, D2)

Table 4.7.3
LCD drive duty setting

| LDTY1 | LDTY0 | Duty | Terminals used in common | Maximum number of segments | Frame frequency ${ }^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1/4 | COM0-COM3 | $128(32 \times 4)$ | foscl/1,024 (32 Hz) |
| 0 | 1 | 1/3 | COM0-COM2 | $96(32 \times 3)$ | fosc1/768 ( 42.7 Hz ) |
| 1 | 0 | 1/2 | COM0, COM1 | $64(32 \times 2)$ | fosc $1 / 1,024(32 \mathrm{~Hz})$ |
| 1 | 1 | 1/1 | COM0 | $32(32 \times 1)$ | fosc $1 / 1,024(32 \mathrm{~Hz})$ |

At initial reset, these registers are set to " 0 ".
Display memory ( $80 \mathrm{H}-9 \mathrm{FH}$ )

The LCD segments are lit or turned off depending on this data.
When " 1 " is written: Lit When " 0 " is written: Not lit

Reading: Invalid
By writing data into the display memory allocated to the LCD segment (on the panel), the segment can be lit or put out. At initial reset, the contents of the display memory for COMO is set to " 1 ", and COM1-COM3 are undefined. Accordingly, when DC output is selected, the output level at initial reset goes high (VDD).

## Programming notes

(1) The contents of the display memory are undefined until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
(2) Since the display memory area is write-only, display data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).

### 4.8 Clock Timer

## Configuration of clock timer

The E0C6274 has a built-in clock timer as the source oscillator for OSC1 (crystal oscillator). The clock timer is configured of a 8-bit binary counter that serves as the input clock, a 256 Hz signal output by the OSC1 oscillation circuit. Timer data (128-16 Hz and $8-1 \mathrm{~Hz}$ ) can be read out by the software.
Figure 4.8 . 1 is the block diagram for the clock timer.


Ordinarily, this clock timer is used for all types of timing functions such as clocks.

## Data reading and hold function

Block diagram for the clock timer

The 8 bits timer data are allocated to the address E3H and E4H. E3H D0: TM0 $(128 \mathrm{~Hz}) \quad$ D1: TM1 $(64 \mathrm{~Hz}) \quad$ D2: TM2 $(32 \mathrm{~Hz}) \quad$ D3: TM3 $(16 \mathrm{~Hz})$
E4H D0: TM4 (8 Hz) D1: TM5 (4 Hz) D2: TM6 (2 Hz) D3: TM7 (1 Hz)
Since the clock timer data has been allocated to two addresses, a carry is generated from the low-order data within the count (TMOTM3: 128-16 Hz) to the high-order data (TM4-TM7: 8-1 Hz). When this carry is generated between the reading of the low-order data and the high-order data, a content combining the two does not become the correct value (the low-order data is read as FFH and the high-order data becomes the value that is counted up 1 from that point).
The high-order data hold function in the E0C6274 is designed to operate to avoid this. This function temporarily stops the counting up of the high-order data (by carry from the low-order data) at the point where the low-order data has been read and consequently the time during which the high-order data is held is the shorter of the two indicated here following.

1. Period until it reads the high-order data.
2. $0.48-1.5 \mathrm{msec}$ (varies due to the timing of the reading)

Note: When the high-order data has previously been read, since the low-order data is not held, you should be sure to first read from the low-order data.

## Intemupt function

The clock timer can cause interrupts at the falling edge of $32 \mathrm{~Hz}, 8$ $\mathrm{Hz}, 2 \mathrm{~Hz}$ and 1 Hz signals. Software can set whether to mask any of these frequencies.
Figure 4.8 .2 is the timing chart of the clock timer.


Fig. 4.8.2 Timing chart of clock timer
As shown in Figure 4.8.2, interrupt is generated at the falling edge of the frequencies ( $32 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{~Hz}$ ). At this time, the corresponding interrupt factor flag (IT32, IT8, IT2, IT1) is set to " 1 ". Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (EIT32, EIT8, EIT2, EIT1). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to " 1 " at the falling edge of the corresponding signal.

Note: • Reading of interrupt factor flags is available at El, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

- Write the interrupt mask register only in the DI status (interrupt flag = "0"). Writing during El status (interrupt flag = "1") will cause malfunction.


## Control of clock timer

Table 4.8.1 shows the clock timer control bits and their addresses.

Table 4.8.1 Control bits of clock timer

| Address |  |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *7 | D3 | D2 | D1 | D0 | Name | Init*1 | 1 | 0 |  |
| C6H | IT1 | IT2 | IT8 | IT32 | IT1 $*_{4}$ <br> IT2 $*_{4}$ <br> IT8 $*_{4}$ <br> IT32 $*_{4}$ | 0 | Yes | No | Interrupt factor flag (clock timer 1 Hz ) Interrupt factor flag (clock timer 2 Hz ) Interrupt factor flag (clock timer 8 Hz ) Interrupt factor flag (clock timer 32 Hz ) |
|  | 171 |  |  |  |  | 0 | Yes | No |  |
|  | R |  |  |  |  | 0 | Yes | No |  |
|  |  |  |  |  | 0 | Yes | No |  |
| CCH | EIT1 | EIT2 | EIT8 | EIT32 |  | EIT1EIT2EIT8EIT32 | 0 | Enable | Mask | Interrupt mask register (clock timer 1 Hz ) |
|  |  |  |  |  | 0 |  | Enable | Mask | Interrupt mask register (clock timer 2 Hz ) |
|  | R/W |  |  |  | 0 |  | Enable | Mask | Interrupt mask register (clock timer 8 Hz ) |
|  |  |  |  |  | 0 |  | Enable | Mask | Interrupt mask register (clock timer 32 Hz ) |
| E2H | 0 | 0 | 0 | TMRST | $\begin{array}{\|rl\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { TMRST } & * 5 \\ \hline \end{array}$ | - *2 |  |  | Unused |
|  |  |  |  |  |  | - *2 |  |  | Unused |
|  | R |  |  | W |  | - *2 |  |  | Unused |
|  |  |  |  | W |  | - *2 | Reset | - | Clock timer and watchdog timer reset |
| E3H | TM3 | TM2 | TM1 | TM0 | $\begin{aligned} & \text { TM3 } \\ & \text { TM2 } \\ & \text { TM1 } \\ & \text { TM0 } \end{aligned}$ | - *3 |  |  | Clock timer data ( 16 Hz ) |
|  |  |  |  |  |  | - *3 |  |  | Clock timer data ( 32 Hz ) |
|  | R |  |  |  |  | - *3 |  |  | Clock timer data ( 64 Hz ) |
|  |  |  |  |  | - *3 |  |  | Clock timer data ( 128 Hz ) |  |
| E4H | TM7 | TM6 | TM5 | TM4 |  | $\begin{aligned} & \text { TM7 } \\ & \text { TM6 } \\ & \text { TM5 } \\ & \text { TM4 } \\ & \hline \end{aligned}$ | - *3 |  |  | Clock timer data ( 1 Hz ) |
|  |  |  |  |  | - *3 |  |  |  | Clock timer data ( 2 Hz ) |
|  | R |  |  |  | - *3 |  |  |  | Clock timer data ( 4 Hz ) |
|  |  |  |  |  | - *3 |  |  |  | Clock timer data (8 Hz) |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly "0" when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

TM0-TM7: The $128 \mathrm{~Hz}-1 \mathrm{~Hz}$ timer data of the clock timer can be read out with Timer data these registers. These eight bits are read only, and writing opera(E3H, E4H) tions are invalid.

At initial reset, the timer data is initialized to " 00 H ".
EIT32, EIT8, EIT2, EIT1: These registers are used to select whether to mask the clock timer Interrupt mask register interrupt.
(CCH)
When " 1 " is written: Enabled
When " 0 " is written: Masked
Reading: Valid
The interrupt mask registers (EIT32, EIT8, EIT2, EIT1) are used to select whether to mask the interrupt to the separate frequencies ( $32 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{~Hz}$ ).
Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0").
At initial reset, these registers are all set to " 0 ".

IT32, IT8, IT2, IT1: These flags indicate the status of the clock timer interrupt.

Interrupt factor flag
(C6H)

When " 1 " is read: Interrupt has occurred When " 0 " is read: Interrupt has not occurred Writing: Invalid

The interrupt factor flags (IT32, IT8, IT2, IT1) correspond to the clock timer interrupts of the respective frequencies ( $32 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2$ $\mathrm{Hz}, 1 \mathrm{~Hz}$ ). The software can judge from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to " 1 " at the falling edge of the signal.
These flags can be reset through being read out by the software. Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
At initial reset, these flags are set to " 0 ".
TMRST: This bit resets the clock timer.

When " 1 " is written: Clock timer reset
When " 0 " is written: No operation
Reading: Always " 0 "
The clock timer is reset by writing " 1 " to TMRST. The clock timer starts immediately after this. No operation results when " 0 " is written to TMRST.
TMRST also resets the watchdog timer.
This bit is write-only, and so is always " 0 " at reading.

## Programming notes

(1) Be sure to data reading in the order of low-order data (TMOTM3) then high-order data (TM4-TM7).
(2) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to " 1 ". Consequently, perform flag reading (reset the flag) as necessary at reset.
(3) When the clock timer has been reset, the watchdog timer is also reset.
(4) Write the interrupt mask register (EIT) only in the DI status (interrupt flag = "O"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.
(5) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

### 4.9 Stopwatch Timer

## Configuration of stopwatch timer

The E0C6274 has a $1 / 100 \mathrm{sec}$ and $1 / 10 \mathrm{sec}$ stopwatch timer. The stopwatch timer is configured of a two-stage, four-bit BCD counter serving as the input clock of an approximately 100 Hz signal (signal obtained by approximately demultiplying the 256 Hz signal output by the oscillation circuit). Data can be read out four bits at a time by the software.
Figure 4.9 .1 is the block diagram of the stopwatch timer.

Fig. 4.9.1 Block diagram of stopwatch timer


The stopwatch timer can be used as a separate timer from the clock timer. In particular, digital watch stopwatch functions can be realized easily with software.

During data reading, a hold function the same as the clock timer operates.
Refer to Section 4.8, "Clock Timer" for details of the hold function.

## Count-up pattem

The stopwatch timer is configured of four-bit BCD counters SWL and SWH.
The counter SWL, at the stage preceding the stopwatch timer, has an approximated 100 Hz signal for the input clock. It counts up every $1 / 100 \mathrm{sec}$, and generates an approximated 10 Hz signal. The counter SWH has an approximated 10 Hz signal generated by the counter SWL for the input clock. It count-up every $1 / 10 \mathrm{sec}$, and generated 1 Hz signal.
Figure 4.9 .2 shows the count-up pattern of the stopwatch timer.


SWL generates an approximated 10 Hz signal from the basic 256 Hz signal. The count-up intervals are $2 / 256 \mathrm{sec}$ and $3 / 256$ sec, so that finally two patterns are generated: $25 / 256 \mathrm{sec}$ and $26 / 256 \mathrm{sec}$ intervals. Consequently, these patterns do not amount to an accurate $1 / 100$ sec.
SWH counts the approximated 10 Hz signals generated by the 25/ 256 sec and $26 / 256$ sec intervals in the ratio of $4: 6$, to generate a 1 Hz signal. The count-up intervals are $25 / 256 \mathrm{sec}$ and $26 / 256 \mathrm{sec}$, which do not amount to an accurate $1 / 10 \mathrm{sec}$.

## Intemupt function

The 10 Hz (approximate 10 Hz ) and 1 Hz interrupts can be generated through the overflow of stopwatch timers SWL and SWH respectively. Also, software can set whether to separately mask the frequencies described earlier.
Figure 4.9.3 is the timing chart for the stopwatch timer.

Fig. 4.9.3
Timing chart for the stopwatch timer


As shown in Figure 4.9.3, the interrupts are generated by the overflow of their respective counters ("9" changing to "0"). Also, at this time the corresponding interrupt factor flags (ISW0, ISW1) are set to " 1 ".
The respective interrupts can be masked separately through the interrupt mask registers (EISW0, EISW1). However, regardless of the setting of the interrupt mask registers, the interrupt factor flags are set to " 1 " by the overflow of their corresponding counters.

Note: - Reading of interrupt factor flags is available at El, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

- Write the interrupt mask register only in the DI status (interrupt flag = "0"). Writing during El status (interrupt flag = "1") will cause malfunction.

Control of stopwatch timer

Table 4.9.1 list the stopwatch timer control bits and their addresses.

Table 4.9.1 Control bits of stopwatch timer

| Address | Register |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 | Name | Init*1 | 1 | 0 |  |
| C5H | 0 | 0 | ISW1 | ISW0 | $\begin{array}{r} \hline 0 * 5 \\ 0 \\ 0 \\ \text { ISW } 1 * 4 \\ \text { ISWO } * 4 \end{array}$ | $\begin{aligned} & \hline-{ }^{* 2} \\ & -{ }^{*} 2 \end{aligned}$ |  |  | Unused <br> Unused |
|  | R |  |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & \text { No } \\ & \text { No } \\ & \hline \end{aligned}$ | Interrupt factor flag (stopwatch 1 Hz ) <br> Interrupt factor flag (stopwatch 10 Hz ) |
| CBH | 0 | 0 | EISW1 | EISW0 | 0 $* 5$ <br> 0 $* 5$ <br> EISW1  <br> EISWO  | $\begin{aligned} & -{ }^{* 2} \\ & -{ }^{*} \end{aligned}$ |  |  | Unused <br> Unused |
|  | R |  | RW |  |  | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | Enable <br> Enable | Mask <br> Mask | Interrupt mask register (stopwatch 1 Hz ) <br> Interrupt mask register (stopwatch 10 Hz ) |
| E6H | 0 | 0 | SWRUN | SWRST | 0 $* 5$ <br> 0 $* 5$ <br> SWRUN  <br> SWRST*5  | $\begin{aligned} & -{ }^{* 2} \\ & -{ }^{*} \end{aligned}$ |  |  | Unused <br> Unused |
|  | R |  | RNW | W |  | $\begin{gathered} 0 \\ \text { Reset } \end{gathered}$ | Run Reset | Stop <br> - | Stopwatch timer Run/Stop <br> Stopwatch timer reset |
| E7H | R |  |  |  | SWL3 <br> SWL2 <br> SWL1 <br> SWLO | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ |  |  | $[]_{\text {LSB }} \begin{aligned} & \text { MSB } \\ & \text { Stopwatch timer data } 1 / 100 \sec (B C D) \end{aligned}$ |
| E8H | SWH3 | SWH2 | SWH1 | SWHO | SWH3 <br> SWH2 <br> SWH1 <br> SWHO | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\int_{\text {LSB }} \begin{aligned} & \text { MSB } \\ & \text { Stopwatch timer data } 1 / 10 \sec (B C D) \end{aligned}$ |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly "0" when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

SWLO-SWL3: Data (BCD) of the $1 / 100 \mathrm{sec}$ column of the stopwatch timer can be

Stopwatch timer 1/100 sec (E7H) read out. These four bits are read-only, and cannot be used for writing operations.
At initial reset, the timer data is set to " OH ".
SWH0-SWH3: Data (BCD) of the $1 / 10 \mathrm{sec}$ column of the stopwatch timer can be Stopwatch timer $1 / 10 \mathrm{sec}$ read out. These four bits are read-only, and cannot be used for (E8H) writing operations.

At initial reset, the timer data is set to " OH ".
Note: Be sure to data reading in the order of low-order data (SWLO-SWL3) then high-order data (SWHO-SWH3).

EISW0, EISW1: Interrupt mask register (CBH•D0, D1)

These registers are used to select whether to mask the stopwatch timer interrupt.

When " 1 " is written: Enabled
When " 0 " is written: Masked Reading: Valid

The interrupt mask registers (EISW0, EISW1) are used to separately select whether to mask the 10 Hz and 1 Hz interrupts. Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0").
At initial reset, these registers are both set to " 0 ".
ISW0, ISW1: These flags indicate the status of the stopwatch timer interrupt.
(C5H•D0, D1)
When " 1 " is read: Interrupt has occurred When " 0 " is read: Interrupt has not occurred

Writing: Invalid

The interrupt factor flags (ISWO, ISW1) correspond to the 10 Hz and 1 Hz interrupts respectively. With these flags, the software can judge whether a stopwatch timer interrupt has occurred. However, regardless of the interrupt mask register setting, these flags are set to " 1 " by the counter overflow.
These flags are reset when read out by the software.
Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
At initial reset, these flags are set to " 0 ".
SWRST: This bit resets the stopwatch timer.
Stopwatch timer reset
( $\mathrm{E} 6 \mathrm{H} \cdot \mathrm{DO}$ )

When " 1 " is written: Stopwatch timer reset
When " 0 " is written: No operation
Reading: Always " 0 "
The stopwatch timer is reset when " 1 " is written to SWRST. When the stopwatch timer is reset in the RUN status, operation restarts immediately. Also, in the STOP status the reset data is maintained. This bit is write-only, and is always " O " at reading.

SWRUN: This bit controls RUN/STOP of the stopwatch timer.

Stopwatch timer RUN/STOP
(E6H•D1)

When " 1 " is written: RUN
When " 0 " is written: STOP
Reading: Valid
The stopwatch timer enters the RUN status when " 1 " is written to SWRUN, and the STOP status when " 0 " is written.
In the STOP status, the timer data is maintained until the next RUN status or resets timer. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count.
At initial reset, this register is set to " 0 ".
(1) Be sure to data reading in the order of low-order data (SWLOSWL3) then high-order data (SWHO-SWH3).
(2) When the stopwatch timer has been reset, the interrupt factor flag (ISW) may sometimes be set to " 1 ". Consequently, perform flag reading (reset the flag) as necessary at reset.
(3) Write the interrupt mask register (EISW) only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.
(4) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

### 4.10 Programmable Timer

## Configuration of programmable timer

E0C6274 has a programmable timer which is configured with an 8 bits pre-settable down counter.
Aside from the count by the built-in clock (foscl/fosc 3 ), this programmable timer also possesses an event counter function that performs counting by making the signal input from the input port K10 the clock.
The initial value of count data can be set by software to the reload register; at the point where the down-counter value is " 0 ", the programmable timer reloads the initial value and continues to down-count.
In addition, the clock created by the underflow of the down counter can be output to the serial interface and to the output port R01.
Figure 4.10 .1 shows the configuration of the programmable timer.

Fig. 4.10.1
Configuration of the programmable timer


## Input clock and predivider

Table 4.10.1
Clock source selection

## (1) Clock source selection

The counter clock source can be selected among four types shown in Table 4.10 .1 by registers PTC0 and PTC1.

| PTC1 | PTC0 | Clock source |
| :---: | :---: | :--- |
| 0 | 0 | K10 input (with noise rejector) |
| 0 | 1 | K10 input (direct) |
| 1 | 0 | fosC1 (32 kHz) |
| 1 | 1 | fosc3 (1 MHz) |

The K10 input is an external input when used as an event counter and when K10 input (with noise rejecter) has been selected it passes through the noise reject circuit of the 256 Hz sampling.

Table 4.10.2
Clock dividing ratio selection

## Operation of

 programmable timerFig. 4.10.2 Timing of down-counts $($ predivider $=1 / 1)$

In case such as when counting by a key input, this causes it to eliminate noise of 2 msec or less such as chattering and to accept signals of 6 msec or more. (Acceptance of signals within the range from 2 msec to 6 msec is uncertain.) The K10 input (direct) is bypassed by this noise reject circuit. When it inputs a clock of 6 msec or less, you should select direct. fosc 1 and fosc3 are the respective output clocks of the OSC1 and OSC3 oscillation circuit.
When using fosc3, you must turn ON the OSC3 oscillation circuit in advance. If the OSC3 oscillation circuit is ON, counting can be done by fosc3, even when the CPU clock is fosc1.

## (2) Clock dividing ratio selection

For the programmable timer, the predivider that contains the down counter is set up after the selector for the above mentioned clock source. The input clock dividing ratio can be selected from four types. As shown in Table 4.10.2, this selection can be done by registers PTDO and PTD1.

| PTD1 | PTD0 | Dividing ratio |
| :---: | :---: | :---: |
| 0 | 0 | $1 / 256$ |
| 0 | 1 | $1 / 32$ |
| 1 | 0 | $1 / 4$ |
| 1 | 1 | $1 / 1$ |

## (1) Down-count

The 8-bit down counter counts down the divided input clock explained in the foregoing clause as the clock.
In case of K10 input, the down count timing becomes the falling edge of the clock and in fosc1 and fosc3 it becomes the rising edge.


Run/Stop of the programmable timer can be controlled by register PTRUN.
When initiating programmable timer count, perform programming by the following steps:

1. Set the initial data to RD0-RD7.
2. Reset the programmable timer by writing " 1 " to PTRST.
3. Start the down-count by writing " 1 " to PTRUN.

## (2) Data reload

The reload register ( 8 bits ) for the initial value setting of the down counter is built into the programmable timer. The data set into the reload register is loaded into the down counter in the following instances and the count down is done from that value.

1. When the programmable timer has been reset by software
2. When the count down advances and the down counter becomes 00H

## (3) Data reading

The low-order 4 bits of the down counter data is allocated to the address EBH and the high-order 4 bits are allocated to ECH and they can respectively be read.
At the time of this reading as well, the high-order data hold function operates the same as the clock timer. Refer to Section 4.8, "Clock Timer" for details of the hold function.

## (4) PTOVF signal

The programmable timer generates a PTOVF signal by inverting the level each time the down counter becomes 00H.

Fig. 4.10.3 PTOVF signal


The cycles (frequency) for this signal can be set according to the input clock, the dividing ratio and initial value that has been set for the reload register. The frequency of the output clock is indicated by the following expression.
fout $=$ fin $\times d v /(R D \times 2)$
fout: PTOVF frequency
fin: Input clock frequency
dv: $\quad$ Dividing ratio $(1 / 256,1 / 32,1 / 4,1 / 1)$
RD: Reload data (1 to 256 (0))
This PTOVF signal is input into the serial interface and can be used as the transfer clock. In addition, it can also be output externally through the output port R01.

Intemupt func tion

The programmable timer generates interrupt after the down-count from the initial setting is completed and the content of the downcounter indicates 00 H .
After interrupt generation, the programmable timer reloads the initial count value into the down-counter and resumes counting. Figure 4.10 .4 shows the timing chart of the programmable timer.


Note: • When " $\mathrm{A} 6 \mathrm{H}^{\prime}$ is set into the reload register.

- The count clock is output from the predivider.

Fig. 4.10.4 Timing chart of the programmable timer
When the down-counter values PTO-PT7 have become 00H the interrupt factor flag IPT is set to " 1 " and an interrupt is generated. The interrupt can be masked through the interrupt mask register EIPT. However, regardless of the setting of the interrupt mask register, the interrupt factor flag is set to " 1 " when the downcounter equals 00 H .

Control of programmable timer

Table 4.10.3 list the stopwatch timer control bits and their addresses.

Table 4.10.3 Control bits of stopwatch timer

| $\underset{* 7}{\substack{\text { Address } \\ \hline}}$ | Register |  |  |  | Name <br> 0${ }^{* 5}$ | $\begin{aligned} & \hline \text { Init }^{* 1} \\ & \hline-{ }^{* 2} \\ & -{ }^{* 2} \\ & -{ }^{* 2} \\ & 0 \\ & \hline \end{aligned}$ | 1 <br> Yes | $0$ <br> No | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |  |  |  |  |  |
| COH | 0 | R |  |  |  |  |  |  | Unused <br> Unused <br> Unused <br> Interrupt factor flag (programmable timer) |
| C8H | R | R/W |  |  | $\begin{gathered} 0 * 5 \\ \text { EIAD } \\ \text { EISIO } \\ \text { EIPT } \\ \hline \end{gathered}$ | $\begin{aligned} & \hline-{ }^{* 2} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Enable Enable Enable | Mask <br> Mask <br> Mask | Unused <br> Interrupt mask register (A/D converter) <br> Interrupt mask register (serial interface) <br> Interrupt mask register (programmable timer) |
| E9H | PTR01 <br> RW | 0 R | PTRUN <br> RW | PTRST <br> $W$ | $\begin{array}{\|c\|} \hline \text { PTRO1 } \\ 0 \\ 0 \\ \text { PTRUN } \\ \text { PTRST*5 } \\ \hline \end{array}$ | $\begin{aligned} & 0 \\ & -{ }^{*} 2 \\ & 0 \\ & -{ }^{2} 2 \\ & \hline \end{aligned}$ | PTOVF <br> Run <br> Reset | DC <br> Stop | R01 port output selection Unused <br> Programmable timer Run/Stop <br> Programmable timer reset (reload) |
| EAH | R/W |  |  |  | $\begin{aligned} & \text { PTD1 } \\ & \text { PTD0 } \\ & \text { PTC1 } \\ & \text { PTC0 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ |  |  | Programmable timer pre-divider selection $0: 1 / 256,1: 1 / 32,2: 1 / 4,3: 1 / 1$ Programmable timer clock source selection $0: \mathrm{K} 10(\mathrm{NR}), 1: \mathrm{K} 10,2$ : foscl, $3:$ fosc3 |
| EBH | PT3 | PT2 | PT1 | PTO | PT3 <br> PT2 <br> PT1 <br> PTO | $\begin{aligned} & -{ }^{* 3} \\ & -{ }^{* 3} \\ & -* 3 \\ & -\quad * 3 \\ & \hline \end{aligned}$ |  |  | $\int_{\text {LSB }}^{\text {Programmable timer data (low-order } 4 \text { bits) }}$ |
| ECH | PT7 | PT6 | PT5 | PT4 | PT7 <br> PT6 <br> PT5 <br> PT4 | $\begin{aligned} & \hline-* 3 \\ & -* 3 \\ & -* 3 \\ & -{ }^{*} 3 \\ & \hline \end{aligned}$ |  |  | $\downarrow]^{\text {MSB }}$ Programmable timer data (high-order 4 bits) |
| EDH | RD3 | RD2 | RD1 | RDO | $\begin{aligned} & \text { RD3 } \\ & \text { RD2 } \\ & \text { RD1 } \\ & \text { RD0 } \end{aligned}$ | $\begin{aligned} & -{ }_{-}^{* 3} \\ & -{ }^{* 3} \\ & -* 3 \\ & -{ }^{*} 3 \\ & \hline \end{aligned}$ |  |  | $\int_{\text {LSB }}^{\substack{\text { Programmable timer reload data } \\ \text { (low-order } 4 \text { bits) }}}$ |
| EEH | RD7 | RD6 | RD5 | RD4 | $\begin{aligned} & \text { RD7 } \\ & \text { RD6 } \\ & \text { RD5 } \\ & \text { RD4 } \end{aligned}$ | $\begin{aligned} & -{ }^{* 3} \\ & -{ }^{* 3} \\ & -* 3 \\ & -{ }^{*} 3 \end{aligned}$ |  |  | $]^{\begin{array}{l} \text { MSB } \\ \text { Programmable timer reload data } \\ \text { (high-order } 4 \text { bits) } \end{array}}$ |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

PTC0, PTC1: Selects the input clock for the programmable timer.

Clock source selection
(EAH•D0, D1)

Table 4.10.4
Clock source selection

| PTC1 | PTC0 | Clock source |
| :---: | :---: | :--- |
| 0 | 0 | K10 input (with noise rejector) |
| 0 | 1 | K10 input (direct) |
| 1 | 0 | fosC1 (32 kHz) |
| 1 | 1 | fosc3 (1 MHz) |

At initial reset, these registers are set to " 0 ".

PTD0, PTD1: Selects the dividing ratio in the predivider for the input clock.
Dividing ratio selection
(EAH•D2, D3)

Table 4.10.5
Clock dividing ratio selection

| PTD1 | PTD0 | Dividing ratio |
| :---: | :---: | :---: |
| 0 | 0 | $1 / 256$ |
| 0 | 1 | $1 / 32$ |
| 1 | 0 | $1 / 4$ |
| 1 | 1 | $1 / 1$ |

At initial reset, these registers are set to " 0 ".

RD0-RD3, RD4-RD7:
Reload register (EDH•EEH)

These are reload registers for setting the initial value of the timer. Sets the low-order 4 bits of the 8 bits timer data to RD0-RD3, and the high-order 4 bits to RD4-RD7.
The set timer data is loaded to the down-counter when the programmable timer is reset or when the content of the down-counter is " 00 H ".
When data of reload registers is set at " 00 H ", the down-counter becomes a 256 -value counter.
At initial reset, these registers will be undefined.
PTRST:
This bit resets the programmable timer.
When " 1 " is written: Programmable timer reset
When " 0 " is written: No operation
Reading: Always " 0 "
By writing " 1 " on PTRST, the programmable timer is reset.
The contents set in RD0-RD7 are loaded into the down-counter. When the programmable timer is reset in the RUN mode, it will restart counting immediately after loading and at STOP mode, the load data is maintained.
Because this bit is only for writing, it is always " 0 " during reading.
PTRUN:
This register controls RUN/STOP of the programmable timer.
When " 1 " is written: RUN
When " 0 " is written: STOP
Reading: Valid
By writing " 1 " on PTRUN, the programmable timer performs counting operation. Writing " 0 " will make the programmable timer stop counting.
Even if the programmable timer is stopped, the timer data at that point is kept.
At initial reset, PTRUN is set to " 0 ".

PT0-PT3, PT4-PT7: Will read the data from the down-counter of the programmable Programmable timer data timer.
(EBH, ECH) Will read the low-order 4 bits of the 8 bits counter data PTO-PT3, and the high-order 4 bits PT4-PT7.
Because these 8 bits are only for reading, writing operation is rendered invalid.
At initial reset, timer data will be undefined.
PTR01: Selects the output type for the R01 terminal.
R01 output selection register
(E9H•D3)

> When " 1 " is written: $\overline{\text { PTOVF signal output }}$
> When " 0 " is written: DC output Reading: Valid

By setting the register PTR01 to " 1 ", R01 is set to $\overline{\text { PTOVF }}$ (output pulse of the programmable timer) output port. When PTR01 is set to " 0 ", R01 become the regular DC output port.
When the PTOVF output is selected, ON/OFF of the signal output can be controlled by the R01 register. (See Section 4.5, "Output Ports".)
At initial reset, this register is set to " 0 ".
EIPT: This register is used to select whether to mask the programmable Interrupt mask register timer interrupt.
(C8H•D0) When " 1 " is written: Enabled
When " 0 " is written: Masked Reading: Valid
With this register, masking of the programmable timer can be selected.
Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0").
At initial reset, this register is set to " 0 ".

IPT: This is the interrupt factor flag of the programmable timer.

Interrupt factor flag (COH•DO)

When " 1 " is read: Interrupt has occurred
When " 0 " is read: Interrupt has not occurred Writing: Invalid
From the status of this flag, the software can decide whether the programmable timer interrupt. Note, however, that even if the interrupt is masked, this flag will be set to " 1 " by the counter value will become "OOH".
This flag is reset when read out by the software.
Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.
At initial reset, this flag is set to " 0 ".
(1) Be sure to data reading in the order of low-order data (PT0-PT3) then high-order data (PT4-PT7).
(2) When data of reload registers is set at " OOH ", the down-counter becomes a 256 -value counter.
(3) Write the interrupt mask register (EIPT) only in the DI status (interrupt flag = "O"). Writing during EI status (interrupt flag = "1") will cause malfunction.
(4) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.

### 4.11 Serial Interface (SIN, SOUT, SCLK, SRDY)

## Configuration of serial interface

The E0C6274 has a synchronous clock type 8 bits serial interface built-in.
The configuration of the serial interface is shown in Figure 4.11.1. The CPU, via the 8 bits shift register, can read the serial input data from the SIN terminal. Moreover, via the same 8 bits shift register, it can convert parallel data to serial data and output it to the SOUT terminal.
The synchronous clock for serial data input/output may be set by selecting by software any one of 3 types of master mode (internal clock mode: when the E0C6274 is to be the master for serial input/ output) and a type of slave mode (external clock mode: when the E0C6274 is to be the slave for serial input/output).
Also, when the serial interface is used at slave mode, $\overline{\text { SRDY }}$ signal which indicates whether or not the serial interface is available to transmit or receive can be output to the SRDY terminal.


The input/output ports of the serial interface are common used with the I/O ports P20-P23, and function of these ports can be selected through the software.
P20-P23 terminals and serial input/output correspondence are as follows:

$$
\text { P20 }=\text { SIN } \quad \text { P21 }=\text { SOUT } \quad \mathrm{P} 22=\overline{\text { SCLK }} \quad \mathrm{P} 23=\overline{\text { SRDY }}
$$

## Master mode and slave mode of serial interface

The serial interface of the E0C6274 has two types of operation mode: master mode and slave mode.

In the master mode, it uses an internal clock as synchronous clock of the built-in shift register, generates this internal clock at the SCLK (P22) terminal and controls the external (slave side) serial device.
In the slave mode, the synchronous clock output from the external (master side) serial device is input from the $\overline{\text { SCLK }}$ (P22) terminal and uses it as the synchronous clock to the built-in shift register. The master mode and slave mode are selected by writing data to registers SCS1 and SCSO.
When the master mode is selected, a synchronous clock may be selected from among 3 types as shown in Table 4.11.1.

| SCS1 | SCS0 | Mode | Synchronous clock |
| :---: | :---: | :---: | :---: |
| 1 | 1 |  | CLK |
| 1 | 0 | Master mode | CLK/2 |
| 0 | 1 |  | PTOVF |
| 0 | 0 | Slave mode | External clock |

CLK: CPU system clock
PTOVF: Programmable timer output clock (See Section 4.10.)
At initial reset, the slave mode (external clock mode) is selected. Moreover, the synchronous clock, along with the input/output of the 8 bits serial data, is controlled as follows:

- At master mode, after output of 8 clocks from the $\overline{\text { SCLK }}$ (P22) terminal, clock output is automatically suspended and $\overline{\text { SCLK }}$ (P22) terminal is fixed at high level.
- At slave mode, after input of 8 clocks to the $\overline{\mathrm{SCLK}}$ (P22) terminal, subsequent clock inputs are masked.

Note: When using the serial interface in the master mode, CPU system clock is used as the synchronous clock. Accordingly, when the serial interface is operating, system clock switching (fosc1 $\leftrightarrow$ fosc3) should not be performed.

A sample basic serial input/output portion connection is shown in Figure 4.11.2.


Sample basic connection of serial input/output section

## Data input/ output and interupt function

The serial interface of E0C6274 can input/output data via the internal 8 bits shift register. The shift register operates by synchronizing with either the synchronous clock output from SCLK (P22) terminal (master mode), or the synchronous clock input to $\overline{\text { SCLK }}$ (P22) terminal (slave mode).
The serial interface generates interrupt on completion of the 8 bits serial data input/output. Detection of serial data input/output is done by the counting of the synchronous clock $\overline{\text { SCLK }}$; the clock completes input/output operation when 8 counts (equivalent to 8 cycles) have been made and then generates interrupt.
The serial data input/output procedure data is explained below:

## (1) Serial data output procedure and interrupt

The E0C6274 serial interface is capable of outputting parallel data as serial data, in units of 8 bits.
By setting the parallel data to 4 bits registers SD0-SD3 (DDH) and SD4-SD7 (DEH) individually and writing " 1 " to SCTRG bit ( $\mathrm{DCH} \cdot \mathrm{D} 0$ ), it synchronizes with the synchronous clock and serial data is output at the SOUT (P21) terminal. The synchronous clock used here is as follows: in the master mode, internal clock which is output to the $\overline{\mathrm{SCLK}}$ (P22) terminal while in the slave mode, external clock which is input from the SCLK (P22) terminal. The serial output of the SOUT (P21) terminal changes with the falling edge of the clock that is input or output from the SCLK (P22) terminal.

When the output of the 8 bits data from SD0 to SD7 is completed, the interrupt factor flag ISIO $(\mathrm{C} 1 \mathrm{H} \bullet \mathrm{DO})$ is set to " 1 " and interrupt is generated. Moreover, the interrupt can be masked by the interrupt mask register EISIO $(\mathrm{C} 8 \mathrm{H} \bullet \mathrm{D} 1)$. Note, however, that regardless of the setting of the interrupt mask register, the interrupt factor flag is set to " 1 " after output of the 8 bits data.

## (2) Serial data input procedure and interrupt

The E0C6274 serial interface is capable of inputting serial data as parallel data, in units of 8 bits.
The serial data is input from the SIN (P20) terminal, synchronizes with the synchronous clock, and is sequentially read in the 8 bits shift register. As in the above item (1), the synchronous clock used here is as follows: in the master mode, internal clock which is output to the $\overline{\text { SCLK }}$ (P22) terminal while in the slave mode, external clock which is input from the SCLK (P22) terminal.

The serial data to the built-in shift register is read with the rising edge of the SCLK signal. Moreover, the shift register is sequentially shifted as the data is fetched.

When the input of the 8 bits data from SD0 to SD7 is completed, the interrupt factor flag ISIO is set to " 1 " and interrupt is generated. Moreover, the interrupt can be masked by the interrupt mask register EISIO. Note, however, that regardless of the setting of the interrupt mask register, the interrupt factor flag is set to " 1 " after input of the 8 bits data.

The data input in the shift register can be read from data registers SD0-SD7 by software.

## (3) Serial data input/output permutation

E0C6274 allows the input/output permutation of serial data to be selected by register SDP (DBH•D2) as to either LSB first or MSB first. The block diagram showing input/output permutation in case of LSB first and MSB first is provided in Figure 4.11.3.


Fig. 4.11.3
Serial data input/output permutation

(In case of MSB first)

## (4) SRDY signal

When the E0C6274 serial interface is used in the slave mode (external clock mode), $\overline{\mathrm{SRDY}}$ is used to indicate whether the internal serial interface is available to transmit or receive data for the master side (external) serial device. $\overline{\text { SRDY }}$ signal is output from $\overline{\mathrm{SRDY}}$ (P23) terminal.
$\overline{\text { SRDY signal becomes "O" (low) when the E0C6274 serial }}$ interface becomes available to transmit or receive data; normally, it is at " 1 " (high).
$\overline{\text { SRDY }}$ signal changes from " 1 " to " 0 " immediately after " 1 " is written to SCTRG and returns from " 0 " to " 1 " when " 0 " is input to $\overline{\text { SCLK }}$ (P22) terminal (i.e., when the serial input/output begins transmitting or receiving data). Moreover, when data is read from or written to SD4-SD7, the $\overline{\mathrm{SRDY}}$ signal returns to " 1 ".
(5) Timing chart

The E0C6274 serial interface timing chart is shown in Figure 4.11.4.


Since the input/output terminal of the serial interface is dual used with the I/O ports (P20-P23), the mask option that selects the output specification for the I/O port is also applied to the serial interface.

The output specification of the terminals SOUT, $\overline{\text { SCLK }}$ (during the master mode) and $\overline{\text { SRDY }}$ that is used as output in the input/ output port of the serial interface is respectively selected by the mask options of P21, P22 and P23.
Either complementary output or N channel (Nch) open drain as output specification may be selected. However, even if Nch open drain has been selected, application on the terminal of voltage exceeding power source voltage is not permitted.

## Control of serial interface

Table 4.11.2 list the serial interface control bits and their addresses.

Table 4.11.2 Control bits of serial interface

| Address <br> *7 | Register |  |  |  | $\begin{array}{r} \text { Name } \\ \begin{array}{rl} 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { ISIO } & * 4 \end{array} \end{array}$ | $\begin{aligned} & \hline \text { Init }^{* 1} \\ & \hline-{ }^{* 2} \\ & -{ }^{* 2} \\ & -{ }^{* 2} \\ & 0 \end{aligned}$ | Yes |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |  |  |  | 0 |  |
| C1H | 0 | R |  |  |  |  |  | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (serial interface) |
| C8H | R | EIAD | EISIO RW | EIPT | $\begin{aligned} & 0 * 5 \\ & \text { EIAD } \\ & \text { EISIO } \\ & \text { EIPT } \end{aligned}$ | $\begin{aligned} & { }^{* 2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Enable <br> Enable <br> Enable | Mask <br> Mask <br> Mask | Unused <br> Interrupt mask register (A/D converter) <br> Interrupt mask register (serial interface) <br> Interrupt mask register (programmable timer) |
| D7H | R | PUP2 | PUP1 RW | PUPO | $\begin{gathered} 0 * 5 \\ \text { PUP2 } \\ \text { PUP1 } \\ \text { PUP0 } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { - }^{* 2} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { On } \\ & \text { On } \\ & \text { On } \end{aligned}$ | $\begin{aligned} & \text { Off } \\ & \text { Off } \\ & \text { Off } \end{aligned}$ | Unused <br> Pull up control register 2 (P20-P23) <br> Pull up control register 1 (P10-P13) <br> Pull up control register 0 ( $\mathrm{P} 00-\mathrm{P} 03$ ) |
| DBH | PFS | SDP | SCS1 | SCSO | $\begin{aligned} & \hline \text { PFS } \\ & \text { SDP } \\ & \text { SCS1 } \\ & \text { SCSO } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{array}{\|l\|l\|l\|} \hline \text { Serial IIF } \\ \text { LSB first } \end{array}$ | I/O port MSB first | P2 port function selection Serial data input/output permutation $\square$ Serial interface clock mode selection 0: slave, 1: PTOVF, 2: CLK/2, 3: CLK |
| DCH | 0 | 0 R | SCRUN | SCTRG W | $\begin{gathered} 0 * 5 \\ 0 \quad * 5 \\ \text { SCRUN } \\ \text { SCTRG*5 } \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \text { * }_{2} \\ & -*_{2} \\ & 0 \\ & -{ }^{*} \\ & \hline \end{aligned}$ | Run Trigger | Stop | Unused <br> Unused <br> Serial interface status <br> Serial interface clock trigger |
| DDH | SD3 | SD2 | SD1 | SDO | $\begin{aligned} & \text { SD3 } \\ & \text { SD2 } \\ & \text { SD1 } \\ & \text { SD0 } \end{aligned}$ | $\begin{aligned} & \text { - }{ }^{* 2} \\ & -{ }^{* 2} \\ & -{ }^{*} \\ & -{ }^{*} \\ & \hline \end{aligned}$ |  |  | $\int_{\text {LSB }} \text { Serial interface data (low-order } 4 \text { bits) }$ |
| DEH | SD7 | SD6 | SD5 | SD4 | $\begin{aligned} & \hline \text { SD7 } \\ & \text { SD6 } \\ & \text { SD5 } \\ & \text { SD4 } \end{aligned}$ | $\begin{aligned} & \hline-{ }^{* 2} \\ & -* 2 \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$ |  |  | $]^{\text {MSB }}$ Serial interface data (high-order 4 bits) |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

PFS: Sets P20-P23 to the input/output port for the serial interface.

P2 port function selection (DBH•D3)

When " 1 " is written: Serial interface
When " 0 " is written: I/O port Reading: Valid

P20, P21, P22 and P23 will function as SIN, SOUT, $\overline{\text { SCLK }}, \overline{\text { SRDY }}$, respectively.
At initial reset, this register is set to " 0 ".

PUP2:
Pull up control register
(D7H•D2)

Sets the pull up of SIN terminal and $\overline{\text { SCLK }}$ terminal (in the slave mode).

When " 1 " is written: Pull up ON
When " 0 " is written: Pull up OFF
Reading: Valid
Sets the pull up resistor built into the SIN (P20) and $\overline{\text { SCLK }}$ (P22) ports to ON or OFF. $\overline{\text { SCLK }}$ pull up is effective during the slave mode.
At initial reset, this register is set to " 0 " and pull up goes OFF.
SCS0, SCS1:
Synchronous clock selection
(DBH•D0, D1)

Table 4.11.3 Synchronous clock selection Selects the synchronous clock for the serial interface ( $\overline{\mathrm{SCLK}})$.

| SCS1 | SCS0 | Mode | Synchronous clock |
| :---: | :---: | :---: | :---: |
| 1 | 1 |  | CLK |
| 1 | 0 | Master mode | CLK/2 |
| 0 | 1 |  | PTOVF |
| 0 | 0 | Slave mode | External clock |

CLK: CPU system clock

PTOVF: Programmable timer output clock (See Section 4.10.)
Synchronous clock ( $\overline{\mathrm{SCLK}}$ ) is selected from among the above 4 types: 3 types of internal clock and external clock.
When using the serial interface in the master mode, CPU system clock is used as the synchronous clock. Accordingly, when the serial interface is operating, system clock switching (foSC $1 \leftrightarrow$ fOSC3) should not be performed.
Also, when PTOVF is used, it is necessary to generate a clock on the programmable timer side prior to sending and receiving. At initial reset, external clock is selected.

SDP:
Data input/output permutation selection (DBH•D2)

Selects the serial data input/output permutation.
When " 1 " is written: LSB first
When " 0 " is written: MSB first
Reading: Valid
Select whether the data input/output permutation will be MSB first or LSB first.
At initial reset, this register is set to " 0 ".

SCTRG: This is a trigger to start input/output of synchronous clock.

Clock trigger
(DCH•DO)

When " 1 " is written: Trigger
When " 0 " is written: No operation
Reading: Always " 0 "
When this trigger is supplied to the serial interface activating circuit, the synchronous clock ( $\overline{\mathrm{SCLK}}$ ) input/output is started. As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Refrain from performing trigger input multiple times, as leads to malfunctioning.
Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.

SD0-SD3, SD4-SD7: These registers are used for writing and reading serial data.

Serial interface data register
(DDH, DEH)

## - During writing operation

When " 1 " is written: High level
When " 0 " is written: Low level
Writes serial data will be output to SOUT (P21) terminal. From the SOUT (P21) terminal, the data converted to serial data as high (VDD) level bit for bits set at "1" and as low (Vss) level bit for bits set at "0".

## - During reading operation

When " 1 " is read: High level
When " 0 " is read: Low level
The serial data input from the SIN (P20) terminal can be read by this register.
The data converted to parallel data, as high (VDD) level bit "1" and as low (Vss) level bit "0" input from SIN (P20) terminal. Perform data reading only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
At initial reset, these registers will be undefined.
SCRUN: Indicates the running status of the serial interface.
Serial interface running status
(DCH•D1)

When " 1 " is read: RUN status
When " 0 " is read:
Wrop status
Writing: Invalid
The RUN status is indicated from immediately after " 1 " is written to SCTRG bit through to the end of serial data input/output.

EISIO: This is the interrupt mask register of the serial interface.

Interrupt mask register
(C8H•D1)

When " 1 " is written: Enabled
When " 0 " is written: Masked
Reading: Valid
With this register, masking of the serial interface interrupt can be selected.
Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0").
At initial reset, this register is set to " 0 ".
ISIO: This is the interrupt factor flag of the serial interface.
Interrupt mask register
$(\mathrm{COH} \cdot \mathrm{DO})$

When " 1 " is read: Interrupt has occurred
When " 0 " is read: Interrupt has not occurred Writing: Invalid
From the status of this flag, the software can decide whether the serial interface interrupt.
The interrupt factor flag is reset when it has been read out.
Note, however, that even if the interrupt is masked, this flag will be set to " 1 " after the 8 bits data input/output.
Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.
At initial reset, this flag is set to " 0 ".

## Programming notes

(1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fOSC1 $\leftrightarrow$ fOSC3) while the serial interface is operating.
(2) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
(3) As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing " 1 " to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock $\overline{\text { SCLK }}$ is external clock, start to input the external clock after the trigger.
(4) Write the interrupt mask register (EISIO) only in the DI status (interrupt flag = "O"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.
(5) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.

### 4.12 A/DConverter

## Configuration of A/D converter

The E0C6274 has a built-in dual slope type A/D converter. This A/ D converter has 5 analog input terminals and voltage, differential voltage between two terminals and resistance can be measured by specifying combinations with those terminal functions using software. The resolution and conversion time of the four types indicated below can be set by programs. However, the integral resistance is installed outside, so it is necessary to modify it accordingly.

| Resolution (count) | Conversion time (msec) |
| :---: | :---: |
| 6,552 | 500.0 |
| 3,276 | 250.0 |
| 1,638 | 125.0 |
| 820 | 62.5 |

See Chapter 7, "ELECTRICAL CHARACTERISTICS", for the conversion precision.
Figure 4.12 .1 shows the configuration of the $\mathrm{A} / \mathrm{D}$ converter.


Fig. 4.12.1
Configuration of $A / D$ converter

## Measured input terminal and measurement items

Fig. 4.12.2
Analog input terminal configuration

Five analog input terminals AIO-AI4 have been set in the A/D converter.


It offers the following three type of measurements.

- Voltage measurement
(measurement of the voltage between the analog input terminal and the GND terminal)


## - Differential voltage measurement

(measurement of the voltage between two analog input terminals)

- Resistance measurement
(A/D conversion for thermistor and the like)
The analog input terminal to be used and the measurement items are specified by software.
(1) Voltage measurement
- Measurement terminal: AI0-AI4
- Input voltage: Max. $\pm 320 \mathrm{mV}$ (GND reference)

In this mode, one of the analog input terminal AIO-AI4 is specified by software and the voltage between the corresponding terminal and the GND terminal is measured.

Fig. 4.12.3
Voltage measurement


Fig. 4.12.4
Attenuator circuit when it exceeds $\pm 320 \mathrm{mV}$

Since the input voltage of each terminal is limited to a maximum of $\pm 320 \mathrm{mV}$, when measuring voltage that is likely to exceed this range, you should input a voltage that has been voltage divided to less than $\pm 320 \mathrm{mV}$.


## (2) Differential voltage measurement

- Measurement terminal: AIO-Al1 and AI2-AI3
- Input voltage: Max. $\pm 420 \mathrm{mV}$ (GND reference)
- Voltage between terminals: Max. $\pm 320 \mathrm{mV}$

In this mode, the A/D converter measures the voltage input between the terminals AIO and AI1 or between the terminals AI2 and AI3. The AIO or AI2 voltage levels are respectively input as the reference voltage of the integral AMP. As a result, the difference between the voltage level based on AIO or AI2 and the voltage level of AI1 or AI3 is measured. The voltage between the terminals AIO and AI1 and between the terminals AI2 and AI3 are limited to a maximum of $\pm 320 \mathrm{mV}$. However, even when the voltage between terminals is less than $\pm 320 \mathrm{mV}$, the voltage level based on the GND is limited to less than $\pm 420 \mathrm{mV}$ with any terminal.

Fig. 4.12.5
Differential voltage measurement


## (3) Resistance measurement

- Measurement terminal: $\mathrm{Al} 2-\mathrm{Al} 4$ and $\mathrm{Al} 3-\mathrm{Al} 4$
- Reference resistance: $1 / 2$ of maximum resistance value of the measured resistance ( $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ )
- Measured resistance: Thermistor, variable resistance, etc. (maximum resistance value : minimum resistance value $=4: 1$ )
- Resistance for stabilization: It is unnecessary when the reference resistance is $10 \mathrm{k} \Omega$ or less. ( $10 \mathrm{k} \Omega$ to $30 \mathrm{k} \Omega$ )

Fig. 4.12.6
Resistance measurement
In this mode, the A/D converter measures the resistance value by connecting elements as the follows:

1. Connects measured resistance such as a thermistor or other elements between AI2 and GND terminals or between AI3 and GND terminals
2. Connects a reference resistance where resistance value does not change due to such factors as the temperature between AI4 and AI2 terminals or between AI4 and AI3 terminals
3. Connects a resistance for stabilizing the AI4 output voltage between AI4 and GND terminals.
However, it is unnecessary to connect the resistance for stabilization when the reference resistance is $10 \mathrm{k} \Omega$ or less.


Table 4.12 .1 shows the analog input terminals to be used and measurement items and it specifies them by combinations of registers AIO-AI4 and registers AISO-AIS3.

Table 4.12.1 Specification of the analog input terminal and measurement items

| AIS3 | AIS2 | AIS1 | AIS0 | $\mathrm{Al4}$ | AI 3 | AI 2 | Al 1 | $\mathrm{AI0}$ | Measurement items |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | AI 0 voltage measurement (GND reference) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | AI1 voltage measurement (GND reference) |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | AI2 voltage measurement (GND reference) |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | AI3 voltage measurement (GND reference) |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | AI4 voltage measurement (GND reference) |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | AI1 differential voltage measurement (AI0 reference) |
| 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | AI3 differential voltage measurement (AI2 reference) |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | AI2 resistance measurement (AI4 reference) |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | AI3 resistance measurement (AI4 reference) |

Note: You should not use settings other than those in Table 4.12.1.
When measuring load (+ voltage) on the VDD side using a GND reference for voltage measurement and differential voltage measurement, you must set the load drive capacity of the middle electric potential generation circuit matched to that load.

## Reference voltage generation circuit

Fig. 4.12.7
Reference voltage generation circuit configuration (internal adjustment mode)

The A/D converter of the E0C6274 has a built-in reference voltage generation circuit and it generates a reference voltage VR1 for resistance measurement and a reference voltage VR2 for voltage measurement. VR1 and VR2 may also be adjusted from outside. Use of the external adjustment or the internal adjustment can be selected by the mask option.
In addition, VR1 can be impressed from outside.

(1) Reference voltage VR1

The reference voltage VR1 is generated by the internal voltage regulation circuit and is used as the reference voltage for resistance measurement and for the creation of reference voltage for voltage measurement. The output voltage of VR1 and the temperature characteristics are as follows.

- Output voltage: $\quad-475.0 \mathrm{mV}$ (GND reference, Typ.)
- Temperature characteristics: $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Typ.)

When the built-in VR1 is used, it is necessary to generate a reference voltage by writing " 1 " into the register VRON before doing A/D conversion. When not using the built-in VR1, you should turn the reference voltage generation circuit OFF by setting the VRON to "O" to reduce current consumption.
When the internal adjustment mode has been selected by the mask option, write " 1 " into the registers VRON and VRAON to turn the internal adjustment ON.
(2) Reference voltage VR2

The VR2 is the reference voltage for voltage measurement and is created by voltage dividing VR1 by means of a resistance. The VR2 output voltage and error are as follows.

- Output voltage: -163.8 mV (GND reference, Typ.)
- Error: $\pm 1.0 \%$ (during internal adjustment mode)


## (3) External adjustment for VR1 and VR2

When the external adjustment mode has been selected by the mask option, VR1 and VR2 can be adjusted from outside using external resistors. When adjusting externally, connect the resistance for adjustment as shown in Figure 4.12.8. Turn the internal adjustment OFF by setting the register VRAON to "O". You should set the VR1 and VR2 so that the result of measurement error of the A/D converter becomes a minimum value.

Fig. 4.12.8
External adjustment for $\mathrm{V}_{\mathrm{R} 1}$ and $\mathrm{V}_{\mathrm{R} 2}$


## (4) External impression on VR1

When a high precision voltage from a built-in reference voltage is necessary, you can impress an external voltage onto the VR1 terminal. In this case, select the external adjustment mode by the mask option.
You should set the voltage to be impressed on the VR1 terminal so that the result of measurement error of the A/D converter becomes a minimum value.
The voltage on the Vss side (negative) serves as the GND reference. When impressed from the outside, it is necessary to set the register VRON to " 0 " and to turn the built-in reference voltage generation circuit OFF. After an initial reset, the VRON is set to " 0 ".

Fig. 4.12.9
External impression of VR1

## (5) VR and -VR generation circuit

This circuit generates a reference voltage that is output to the A/D converter for the reverse integration period (described hereafter). At the time of voltage measurement and differential voltage measurement, VR2 is output by this circuit as the reference voltage. At the time of resistance measurement it outputs VR1 the voltage obtained by the external attached resistance.
Since an analog input voltage and a reverse polarity reference voltage is necessary for A/D conversion, it accordingly creates the reference voltages of both polarities, VR and -VR.

## Middle electric potential (GND) generation circuit

Fig. 4.12.10
Middle electric potential (GND) generation circuit configuration

Fig. 4.12.11
External impression of middle electric potential

Table 4.12.2
Control of the middle electric potential generation circuit

As shown in Figure 4.12.10, it outputs an middle electric potential (GND) through the operational amplifier buffer that divides the source voltage impressed between VDDA-VsSA into $1 / 2$ by means of a resistance. This GND becomes the reference potential of the A/D converter.


The load drive by GND generated on the inside, presumes a load connection between GND and Vss.
When connecting a load between VDD and GND, it is necessary to change over the driving capacity through the software. This changeover is done as shown in Table 4.12 .2 by registers GNDON 1 and GNDONO. When a large driving capacity has been set using this function, the current consumption of the operational amplifier also increases to beyond the current consumption of the load, so you should be careful of this.
When the load becomes large, you should externally impress the middle electric potential as shown in Figure 4.12.11. In this case set the built-in middle electric potential generation circuit to OFF using the GNDON1 and GNDONO registers.


| GNDON1 | GNDON0 | Middle electric potential generation circuit |
| :---: | :---: | :--- |
| 0 | 0 | OFF (external impression) |
| 0 | 1 | ON (VDD side load driving capacity - small) |
| 1 | 0 | ON (VDD side load driving capacity - medium) |
| 1 | 1 | ON (VDD side load driving capacity - large) |

Refer to Chapter 7, "ELECTRICAL CHARACTERISTICS", for the specific values of the load driving capacities.

Operation of the dual slope type A/D converter

Fig. 4.12.12
Circuit diagram of $A / D$ converter

Figure 4.12 .12 shows the circuit diagram of the dual slope type $A /$ D converter built into E0C6274.


This A/D converter performs A/D conversion according to the following three sequences.

- Auto zero adjustment period
- Input integration period
- Reference voltage reverse integration period

The respective periods become as shown in Table 4.12 .3 when software (setting of register ADRS1 and ADRS0) is used to set the resolution and conversion time.

Table 4.12.3 Conversion time

| ADRS1 | ADRS0 | Resolution | Auto zero <br> adjustment | Input <br> integration | Reverse <br> integration | Total <br> time |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 6,552 counts | 200 msec | 100 msec | 200 msec | 500 msec |
| 0 | 1 | 3,276 counts | 100 msec | 50 msec | 100 msec | 250 msec |
| 1 | 0 | 1,638 counts | 50 msec | 25 msec | 50 msec | 125 msec |
| 1 | 1 | 820 counts | 25 msec | 12.5 msec | 25 msec | 62.5 msec |

Here below is provided an explanation of the operations in the respective period. Refer to Figure 4.12 .13 for the output waveforms of each operational amplifier.

Fig. 4.12.13
Output waveform at the time A/D conversion

*1: This voltage is proportional to input
*2: Time is proportional to input voltage
*3: The gradient is fixed


## (1) Auto zero adjustment period

Auto zero adjustment is the sequence initially effected in order to compensate for error in the A/D conversion results, due to the offset voltage of the buffer AMP (BUF), the integral AMP (INT) and comparator (CMP).
The switch S1 in Figure 4.12 .12 is connected on the GND at the beginning of this period and switches S 2 and S 3 go ON.
Then switch S 2 goes OFF, and voltage is charged into CAZ to correct the offset.
The auto zero adjustment period becomes the time counted for only the number of resolution counts that have specified the 32 kHz clock.

## (2) Input integration period

When the auto zero adjustment period terminates, start the integration of the input voltage by connecting switch S 1 to the Vin side and turning switches S2 and S3 OFF. The input voltage of the integral AMP changes according to the time constant of the integral resistance RI and the condenser CI, and the waveform that indicated in Figure 4.12 .13 is output by the integral AMP.

The slope of this integral output waveform changes in proportion to the input voltage. The portion charged into the CAZ due to the previous auto zero adjustment is added to the input voltage of the integral AMP and negates the offset voltage. The input integration period becomes the time that has been counted for only $1 / 2$ the number resolution counts that have specified the 32 kHz clock. The integral AMP output voltage Vint at the point where this time has elapsed is indicated by the following expression.

Vint $=-\mathrm{VIN} *(\mathrm{~N} * \mathrm{~T} / \mathrm{CI} * \mathrm{RI})$
(Expression 4.12.1)
VIN: Input voltage
N : $1 / 2$ of the resolution (count number) specified by the software

|  | Resolution | N |
| :--- | :---: | :---: |
|  | 6,552 | 3,276 |
|  | 3,276 | 1,638 |
|  | 1,638 | 819 |
|  |  |  |
| $\mathrm{~T}:$ | 820 | 410 |
| $\mathrm{CI}:$ | OSC1 clock cycle | $1 / 32,768(\mathrm{sec})$ |
| $\mathrm{RI}:$ | Integrating capacity |  |
|  | Integrating resistance |  |

## (3) Reference voltage reverse integration period

When the input integration period is completed, the reference voltage causes it to shift to the reverse integration period. The switch S1 is connected to the VR or -VR side and switches S2 and S3 go OFF.
The side of opposite polarity to the input voltage that effected the integration in step (2) is selected for the polarity of the reference voltage VR.

- When the input voltage VIN is positive: Switch S1 connects to the -VR side
- When the input voltage VIN is negative: Switch S1 connects to the VR side

For this purpose, the polarity of the input voltage is checked by a comparator for the input integration period, and which of the polarities to be used is selected in advance.

At the same time as it begins the reverse integration by the reference voltage, the dual slope counter begins the count-up by the 32 kHz clock. The content of this counter is reset to the input integration period and hence counts up from " 0 ".
Reverse integration continues until the comparator detects that the output of the integral AMP has become " 0 " and at that point the dual slope counter stops, then shifts to the next A/D conversion sequence (auto zero adjustment period).

Fig. 4.12.14
Circuit diagram at the time of differential voltage measurement

Since the slope of the reverse integral waveform is fixed, the counter value according to the integral result of the input voltage in step (2) is obtained from the dual slope counter. The counter value $n$ at this time is indicated by the following expression.
$0=$ Vint $-(-\mathrm{VR} * \mathrm{n} * \mathrm{~T} / \mathrm{Cl} * \mathrm{RI}) \quad$ (Expression 4.12.2)
According to Expression 4.12.1 and Expression 4.12.2, it becomes
$\mathrm{n}=\mathrm{VIN}$ * $\mathrm{N} / \mathrm{VR}$
(Expression 4.12.3)

The value of the input voltage is determined by reading and processing this value using software.
VIN $=n * V R / N$
(Expression 4.12.4)
The reference voltage reverse integration period shown in Table 4.12.3 is the time for counting the full scale and, actually, the A/D conversions is completed at the point where the output of the integral AMP has become " 0 ".
(4) Circuit related differences due to measurement items The A/D conversion sequence does not differ depending on the items selected. It responds to the respective selected items by partially changing over the circuit.

## - Voltage measurement mode

For voltage measurement, the GND level is added to the noninverted input of the integral AMP and the specified analog input is A/D converted as opposite the GND level.
VR2 is used for the reference voltage VR. (Calculate as VR $=163.8 \mathrm{mV}$.)

## - Differential voltage measurement mode

For differential voltage measurement, the input level of AIO (for AI1-AIO measurement) or the input level of AI2 (for AI3-AI2 measurement) is added to the non-inverted input of the integral AMP and the specified analog input of AI1 or AI3 is respectively A/D converted as the opposite AIO or opposite AI2 level.
$\mathrm{V}_{\mathrm{R} 2}$ is used for the reference voltage VR. (Calculate as VR $=163.8 \mathrm{mV}$.)


## - Resistance measurement mode

At the time of resistance measurement, the non-inverted input of the integral AMP is set to the GND level.
As shown in Figure 4.12.15, a voltage drop of the reference resistance is obtained as the reference voltage at the time of resistance measurement by impressing a VR1 voltage from the AI4 terminal onto the reference resistance connected between the AI4-AI3 (or AI2) terminals. You can obtain an A/D conversion value according to the resistance value by A/D conversion of the voltage generated by the measured resistance connected between AI3 (or AI2) and GND, using the reference voltage generated by the reference resistance, VR.
For this reason, even when the resistance value of the measured resistance has been changed to the maximum/minimum, you should adjust the resistance, such that the voltage that is input into the A/D converter does not exceed $\pm 320 \mathrm{mV}$ (GND reference). When using an internally generated VR1, a resistance should be used such that the resistance variation range is within a maximum:minimum of $4: 1$ and this condition is met by setting the reference resistance at $1 / 2$ of the resistance variation range of the measured resistance.
However, you should configure the circuit such that the reference resistance becomes $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$. Also be careful of these conditions when externally impressing VR1.
When the measured resistance has been made R and the reference resistance has been made Rref, the voltage Vin input into the A/D converter and the reference voltage VR are expressed by the following expressions.

$$
\begin{array}{ll}
\mathrm{VIN}=\mathrm{V}_{\mathrm{R} 1} * \mathrm{R} /(\mathrm{R}+\mathrm{Rref}) & \text { (Expression 4.12.5) } \\
\mathrm{VR}=\mathrm{V}_{\mathrm{R} 1} * \mathrm{Rref} /(\mathrm{R}+\mathrm{Rref}) & \text { (Expression 4.12.6) }
\end{array}
$$

According to the Expressions 4.12.4, 4.12.5 and 4.12.6, it becomes

$$
\mathrm{R}=\mathrm{n} * \mathrm{Rref} / \mathrm{N} \quad \text { (Expression 4.12.7) }
$$



Fig. 4.12.15
Circuit diagram at the time of resistance measurement

## A/D conversion and intemupt

Here we will explain about the control and interrupt of the A/D conversion and reading of data.
Before beginning A/D conversion, it is necessary to set the analog input terminal and measurement items explained previously and set the reference voltage generation circuit and middle electric potential generation circuit.

## (1) Turning A/D converter ON/OFF

The power supply to the circuit of the A/D converter is normally kept OFF , in order to reduce current consumption. The A/D converter starts when " 1 " is written into the register ADON and continues to operate until a " 0 " has been written. It terminates A/D conversion when a " 0 " has been written into the ADON and the circuit also goes OFF.
The ADON can be read and is " 1 " while the circuit is operating and is " 0 " when it is stopped.
When " 1 " is written into the ADON, it resets the dual slope counter to " 0 " and executes the $\mathrm{A} / \mathrm{D}$ conversion sequence from auto zero adjustment. Writing " 1 " into ADON is also effective during A/D conversion and it terminates the sequence during the current execution and starts a new A/D conversion sequence.

Fig. 4.12.16
Control of A/D conversion by the ADON register


## (2) A/D interrupt

When it terminates the integration of the analog input and starts the reverse integration according to the reference voltage, the dual slope counter is counted up from " 0 ". At the point where the integral AMP output due to the reverse integration has crossed " 0 ", the count stops and the data of the dual slope counter is latched. When the reverse integration period has terminates, the A/D interrupt factor flag IAD is set to " 1 " and an interrupt occurs. The A/D interrupt can also be masked by writing a "0" into the interrupt mask register EIAD. When EIAD is set to " 1 ", an interrupt occurs.
The interrupt factor flag IAD is set to " 1 " when the reverse integration period has terminates, regardless of the setting of the interrupt mask register and is reset to " 0 " by reading.

## (3) Wait time for A/D conversion

To perform a stable A/D conversion, the following wait times are necessary.

## - In the case of voltage measurement mode and differential voltage measurement mode

Take 300 msec or more wait time from the beginning of the reference voltage VR1 generation or impressing from outside to the end of an input integration period. (Satisfy the regulation time by delaying the timing of the A/D converter ON.)

## - Resistance measurement mode

Take a time that is calculated by the following expression or more from turning the $A / D$ converter $O N$ to the end of the input integration period. (The A/D converted data until the calculated time has passed is invalid.)
$10 \times 0.1 \mu \mathrm{~F}$ (capacitance for VR, -VR generation circuit) $\times \mathrm{R}($ Rref $+130 \mathrm{k} \Omega)$

## (4) Reading of the A/D conversion result

The dual slope counter is a 13 -bit binary counter and is counted up from " 0 " to the reverse integration period. The result that has been counted is latched upon completion of the reverse integration period and the data from that latch can be read. This data ADOAD12 is allocated to the address F7H-FAH. The register ADP that indicates the polarity of the analog input voltage is allocated to FAH, in addition to the AD12 (MSB of the data).
When the analog input is positive ( + ) the ADP becomes " 1 " and when it is negative (-) it becomes " 0 ".
The latched data is effective until the next A/D conversion is completed and it is necessary to read up to that point. Basically you should process the read processing by the A/D interrupt. Moreover, you should read the data in order of F7H $\rightarrow$ F8H $\rightarrow$ F9H $\rightarrow$ FAH from the lower side. This is due to the following reason. When the following A/D conversion terminates during data reading, the latched data is just rewritten. For this reason, the IDR bit is set into the address FBH , so that it can decide whether the data read is effective or invalid, by reading the IDR bit following the reading of data. When the reading of the data in the above sequence has been completed prior to the termination of the next $A$ / D conversion, the IDR becomes " 0 ", indicating that the data is effective. When the following A/D conversion has been terminated and the latch rewritten before the reading terminates, the IDR becomes " 1 ", indicating that the data is invalid.
The circuit that sets this IDR decides whether the data has been read and the reading terminated by the above mentioned data read address. Consequently, you should read the data in the above mentioned sequence and then decide whether the data is effective or invalid by reading the IDR.

Take care that conversion data may sometime become invalid by turning the A/D converter OFF (including resetting). In this case, as it is " 0 " the IDR is not set. When reading data after turning the A/D converter OFF, the A/D converter should be OFF in the period from an interrupt generation to the beginning of a reverse integration.

You should process the read data using software, such that is becomes the object volume.
The voltage value (voltage measurement and differential voltage measurement) and resistance value (resistance measurement) for each count of read data becomes as follows according to the resolution.

| Resolution | Voltage value for each count | Resistance value for each count |
| :---: | :---: | :---: |
| 6,552 | $50 \mu \mathrm{~V}(163.8 \mathrm{mV} / 3,276)$ | Rref / 3,276 |
| 3,276 | $100 \mu \mathrm{~V}(163.8 \mathrm{mV} / 1,638)$ | Rref / 1,638 |
| 1,638 | $200 \mu \mathrm{~V}(163.8 \mathrm{mV} / 819)$ | Rref / 819 |
| 820 | $400 \mu \mathrm{~V}(163.8 \mathrm{mV} / 410)$ | Rref / 410 |

Correction is necessary when inputting voltage through the attenuator circuit. When A/D conversion is done by connecting a sensor or the like, it will have individual sensor characteristics between the sensor detection volume and the voltage or the resistance, so you should use software to do the conversion according to those characteristics.

Figure 4.12 .17 shows a flow chart of the data conversion and data reading and Figure 4.12 .18 shows a timing chart for the A/D conversion.

Fig. 4.12.17 A/D conversion flow chart

Integral AMP output
Interrupt
Data read <F7>
Data read <F8>
Data read <F9>
Data read <FA>
IDR read <FB>
IDR register


Fig. 4.12.18
A/D conversion timing chart


Control of the A/D
Table 4.12.4 shows the A/D converter control bit and its address. converter

Table 4.12.4 Control bits of A/D converter

| Address *7 | Register |  |  |  | Name | Init*1 | 1 | 0 | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |  |  |  |  |  |
| C 4 H | R |  |  |  | $\begin{array}{\|cc\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IAD } & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { * }^{*} \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (A/D converter) |
| C 8 H | 0 $R$ | EIAD | EISIO R/W | EIPT | $\begin{array}{cc} \hline 0 & * 5 \\ \text { EIAD } \\ \text { EISIO } \\ \text { EIPT } \\ \hline \end{array}$ | $\begin{aligned} & { }^{*}{ }^{* 2} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Enable <br> Enable <br> Enable | Mask <br> Mask <br> Mask | Unused <br> Interrupt mask register (A/D converter) <br> Interrupt mask register (serial interface) <br> Interrupt mask register (programmable timer) |
| FOH | GNDON1 | R/W |  | VRON | GNDON1 <br> GNDONO <br> VRAON <br> VRON | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { On } \\ & \text { On } \end{aligned}$ | $\begin{aligned} & \text { Off } \\ & \text { Off } \end{aligned}$ | GND circuit On/Off and mode selection 0: Off, 1: On1, 2: On2, 3: On3 VR output voltage adjustment On/Off *R circuit On/Off |
| F3H | R | 0 | R/W |  | 0 $* 5$ <br> 0 $* 5$ <br> ADRS1  <br> ADRS0  | $\begin{aligned} & -{ }^{* 2} \\ & -{ }^{* 2} \\ & 0 \\ & 0 \end{aligned}$ |  |  | Unused <br> Unused $\text { I A/D converter resolution selection } \begin{aligned} & \text { A: } 6400,1: 3200,2: 1600,3: 800 \end{aligned}$ |
| F4H | R/W |  |  |  | AIS3 <br> AIS2 <br> AIS1 <br> AISO | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Resistor <br> Resistor <br> Differ. V <br> Differ. V | V(to GND) <br> V(to GND) <br> V(to GND) <br> V(to GND) | AI4/AI3 mode selection AI4/AI2 mode selection AI3/AI2 mode selection AI1/AI0 mode selection |
| F5H | R/W |  |  |  | Al3 <br> Al2 <br> Al1 <br> AIO | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | On <br> On <br> On <br> On | $\begin{aligned} & \text { Off } \\ & \text { Off } \\ & \text { Off } \\ & \text { Off } \end{aligned}$ | Analog input terminal AI3 On/Off Analog input terminal AI2 On/Off Analog input terminal AI1 On/Off Analog input terminal AI0 On/Off |
| F6H | ADON R/W | R |  | Al4 R/W | $\begin{array}{cc} \hline \text { ADON } \\ 0 & * 5 \\ 0 & * 5 \\ \text { Al4 } & \\ \hline \end{array}$ | $\begin{aligned} & \hline 0 \\ & -{ }^{* 2} \\ & -{ }^{*} 2 \\ & 0 \end{aligned}$ | On <br> On | Off <br> Off | A/D converter clear and On/Off <br> Unused <br> Unused <br> Analog input terminal AI4 On/Off |
| F7H | R |  |  |  | $\begin{aligned} & \text { AD3 } \\ & \text { AD2 } \\ & \text { AD1 } \\ & \text { AD0 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\int_{\text {LSB }} \text { A/D converter count data }$ |
| F8H | R |  |  |  | $\begin{aligned} & \text { AD7 } \\ & \text { AD6 } \\ & \text { AD5 } \\ & \text { AD4 } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\square$ A/D converter count data |
| F9H | R |  |  |  | AD11 <br> AD10 <br> AD9 <br> AD8 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\square$ A/D converter count data |
| FAH | 0 | R |  |  | $\begin{array}{cc} 0 & * 5 \\ 0 & * 5 \\ \text { ADP } \\ \text { AD12 } \end{array}$ | $\begin{aligned} & \hline{ }^{* 2} \\ & -* 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | (+) | (-) | Unused <br> Unused <br> Input voltage polarity <br> A/D converter count data (MSB) |
| FBH | 0 | $\frac{0}{} \mathrm{O}^{0}$ | 0 | IDR | $\begin{array}{cc} 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IDR } \end{array}$ | $\begin{aligned} & \text { - *2 } \\ & -{ }^{*} 2 \\ & -{ }^{*} 2 \\ & 0 \end{aligned}$ | Invalid | Valid | Unused <br> Unused <br> Unused <br> Reading data status |

[^3]*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

GNDON0, GNDON1: Control the middle electric potential generation circuit as shown in

GND generation circuit control
(FOH•D3, D2)

Table 4.12.5
Control of the middle electric potential generation circuit Table 4.12.5.

| GNDON1 | GNDON0 | Middle electric potential generation circuit |
| :---: | :---: | :--- |
| 0 | 0 | OFF (external impression) |
| 0 | 1 | ON (VDD side load driving capacity - small) |
| 1 | 0 | ON (VDD side load driving capacity - medium) |
| 1 | 1 | ON (VDD side load driving capacity - large) |

When the externally impressing the GND level, set it to OFF and when using a built-in middle electric potential generation circuit set it according to the load connected to the VDD side.
When not using an A/D converter, set the circuit to OFF to reduce current consumption.
At initial reset, these registers are set to " 0 ".

VRON: Controls the reference voltage generation circuit.
Reference voltage generation circuit control
(FOH•D0)
When " 1 " is written: ON
When " 0 " is written: OFF
Reading: Valid
The built-in reference voltage generation circuit goes ON when " 1 " is written into the VRON and goes OFF when " 0 " is written into it. When the circuit goes ON, it generate VR1 for resistance measurement and VR2 for voltage measurement.
When the externally impressing the reference voltage VR1, set it to OFF.
Also, when an A/D converter is not used, you should set the circuit to OFF so as to reduce current consumption.
At initial reset, this register is set to " 0 ".

VRAON: Turns the internal adjustment of the reference voltage ON and
Reference voltage internal adjustment control (F0H•D1)

OFF.
When " 1 " is written: ON
When " 0 " is written: OFF
Reading: Valid
Internal adjustment of the reference voltage is done by writing " 1 " into the VRAON. When no external adjustment is done using a built-in reference voltage generation circuit, you should turn the internal adjustment ON.
When doing the adjustment from the outside, turn the internal adjustment OFF.
At initial reset, this register is set to " 0 ".

ADRSO, ADRS1:
Resolution selection
(F3H•D0, D1)

Table 4.12.6 Resolution selection

Selects the A/D conversion resolution (number of counts).

| ADRS1 | ADRS0 | Resolution | Conversion time |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 6,552 counts | 500 msec |
| 0 | 1 | 3,276 counts | 250 msec |
| 1 | 0 | 1,638 counts | 125 msec |
| 1 | 1 | 820 counts | 62.5 msec |

At initial reset, these registers are set to " 0 ".
AIS0-AIS3, AIO-AI4: Selects the measurement item and terminal that does the analog Measurement items selection, Analog input terminal selection (F4H•D0-D3), (F5H, F6H•D0)
input, by a combination of these registers.

Table 4.12.7 Specification of the analog input terminal and measurement items

| AIS3 | AIS2 | AIS1 | AIS0 | AI4 | AI3 | AI2 | AI1 | AI0 | Measurement items |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | AI0 voltage measurement (GND reference) |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | AI1 voltage measurement (GND reference) |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | AI2 voltage measurement (GND reference) |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | AI3 voltage measurement (GND reference) |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | AI4 voltage measurement (GND reference) |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | AI1 differential voltage measurement (AI0 reference) |
| 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | AI3 differential voltage measurement (AI2 reference) |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | AI2 resistance measurement (AI4 reference) |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | AI3 resistance measurement (AI4 reference) |

One combination can be selected from within Table 4.12.7. Do not set a value other than those indicated in Table 4.12.7.
At initial reset, these registers are set to " 0 ".
ADON: Turns the A/D converter ON/OFF and resets it.

When the A/D converter is in the stop status, the A/D converter goes ON and starts A/D conversion by writing " 1 " into the ADON. When it writes " 1 " into the ADON during the A/D conversion operation, it then stops the A/D conversion cycle and shifts to a new A/D conversion (from auto zero adjustment) cycle.
It terminates the A/D conversion at the point where it writes " 0 " into the ADON and turns the A/D converter circuit OFF. You should set the A/D converter to OFF when it is not necessary, in order to reduce current consumption.
At initial reset, this register is set to " 0 ".

AD0-AD12: The A/D conversion result counted by the dual slope counter is A/D conversion data binary data.
(F7H, F8H, F9H, FAH•D0) This data is effective from the time when the reverse integration period has terminated (when an interrupt has been generated) until the next reverse integration period has been terminated and during this time it reads in the order of the address $\mathrm{F} 7 \mathrm{H} \rightarrow \mathrm{F} 8 \mathrm{H} \rightarrow \mathrm{F} 9 \mathrm{H} \rightarrow \mathrm{FAH}$. At initial reset, these data is set to " 0 ".

ADP: Indicates the polarity of the analog input voltage.

Input voltage polarity
(FAH•D1)

$$
\begin{aligned}
& \text { When " } 1 \text { " is read: Positive }(+) \\
& \text { When " } 0 \text { " is read: Negative }(-) \\
& \text { Writing: Invalid }
\end{aligned}
$$

When the A/D converted analog input voltage is positive ( + ), the ADP becomes " 1 " and when it is negative ( - ), it becomes " 0 ". At initial reset, the ADP is set to " 0 ".

IDR: Indicates whether the data that has been read is effective or
(FBH•DO)
invalid.

> When " 1 " is read: Data invalid
> When " 0 " is read: Data effective
> Writing: Invalid

It can decide whether the data that has been read is effective or invalid by reading the IDR after data has been read.
When the reading of the data has completed before the next A/D conversion terminates, the IDR is set to " 1 " to indicate data invalid, so that the data will be rewritten. An IDR that has been set to " 1 " is reset to " 0 " by reading.
At initial reset, the IDR is set to " 0 ".
EIAD: Select whether to mask interrupt with the A/D converter.

Interrupt mask register
(C8H•D2)

When " 1 " is written: Enable
When " 0 " is written: Mask
Reading: Valid
The A/D interrupt is permitted when " 1 " is written in the EIAD. When " 0 " is written, interrupt is masked.
At initial reset, this register is set to " 0 ".

IAD: This flag indicates interrupt caused by the A/D converter.

Interrupt factor flag (C4H•D0)

When " 1 " is read: Interrupt has occurred When " 0 " is read: Interrupt has not occurred Writing: Invalid

From the status of this flag, the software can decide whether an A/ D interrupt has occurred.
This flag is reset when the software has read it.
Reading of interrupt factor flag is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated.
At initial reset, this flag is set to " 0 ".

## Programming notes

(1) To reduce current consumption, set the reference voltage generation circuit, the middle electric potential generation circuit and the A/D converter to OFF when it is not necessary.
(2) Do not fail to select the correct combinations for the analog input terminal and measurement items. (Refer to Table 4.12.1)
(3) To perform a stable A/D conversion, secure the decided wait time.
(4) Be sure to check whether the data is effective or invalid by reading the A/D conversion data in the order $\mathrm{F} 7 \mathrm{H} \rightarrow \mathrm{F} 8 \mathrm{H} \rightarrow$ $\mathrm{F} 9 \mathrm{H} \rightarrow$ FAH and immediately thereafter reading the IDR (FBH).
(5) When reading data after turning the $\mathrm{A} / \mathrm{D}$ converter OFF , the $\mathrm{A} /$ D converter should be OFF in the period from an interrupt generation to the beginning of a reverse integration.
(6) When the A/D converter is reset or turned OFF, the interrupt factor flag (IAD) may sometimes be set to " 1 ". Consequently, read the flag (reset the flag) as necessary at reset or at the turning OFF.
(7) Write the interrupt mask register (EIAD) only in the DI status (interrupt flag = "O"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.
(8) Reading of interrupt factor flag is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated.

### 4.13 General-purpose Operation Amplifier (AMP)

## Configuration of AMP circuit

## Operation of AMP circuit

The E0C6274 has an MOS input general-purpose operation amplifier built into two channels (AMPO and AMP1). The respective AMP, which has two differential input terminals (inverted input terminal AIM, noninverted input terminal AIP) and output terminal (AOUT), can be used for general purposes.
When using this circuit as a general-purpose operational amplifier, make sure that the output voltage does not exceed VDDA. In addition, use within the permitted range of the operating conditions on page I-128.
Figure 4.13 .1 shows the configuration of the AMP circuit.


## (1) AMP circuit ON/OFF control

The AMP circuit AMPO and AMP1 ON/OFF are controlled by register AMPONO and AMPON1, respectively. Writing " 1 " to the register turns ON the AMP circuit, and writing " 0 " turns OFF the circuit. Because the power current consumption of the IC becomes big when the AMP circuit is turned ON, set the AMP circuit to OFF unless otherwise necessary.
A waiting time of at least 3 msec is required for the AMP circuit to become stable after its power is turned ON.

## (2) AMP output

The outputs of AMPO and AMP1 are output to outside through AOUTO and AOUT1 terminals, respectively. When the AMP circuit is used in such a way that the comparator output takes binary form (" 0 " or " 1 "), the output data can be read through register AMPDTO (AMPO output data) or AMPDT1 (AMP1 output data).
When the AMP circuit is OFF (when AMPONO or AMPON 1 is set to "0"), AOUTO/AOUT1 shift into a high-impedance status and the read data AMPDTO/AMPDT1 goes " 0 ".

## Control of AMP circuit

Table 4.13.1 lists the analog comparator control bits and their addresses.

Table 4.13.1 Control bits of AMP circuit

| Address *7 | Register |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 | Name | Init*1 | 1 | 0 |  |
| F 1 H | 0 | 0 | AMPON1 | AMPON0 | $\begin{array}{lll} \hline 0 & * 5 \\ 0 & * 5 \end{array}$ | - *2 |  |  | Unused <br> Unused |
|  | R |  | R/W |  | AMPON1 <br> AMPONO | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { On } \\ & \text { On } \end{aligned}$ | $\begin{aligned} & \text { On } \\ & \text { On } \end{aligned}$ | AMP1 On/Off AMP0 On/Off |
| F2H | 0 | 0 | AMPDT1 | AMPDT0 | $\begin{aligned} & 0 \\ & 0 \end{aligned} * 5$ | $\begin{aligned} & -{ }^{*} 2 \\ & -* 2 \end{aligned}$ |  |  | Unused <br> Unused |
|  | R |  |  |  | AMPDT1 <br> AMPDTO | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | High <br> High | Low <br> Low | AMP1 output data AMP0 output data |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined $\quad$ *7 Page switching in I/O memory is not necessary
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual

AMPONO, AMPON1: AMP circuit ON/OFF (F1H•D0, D1)

Switches the AMP circuit ON and OFF.
When " 1 " is written: The AMP circuit goes ON
When " 0 " is written: The AMP circuit goes OFF
Reading: Valid
The AMPO (AMP1) circuit goes ON when " 1 " is written to AMPONO (AMPON1), and OFF when " 0 " is written.
At initial reset, these registers are set to " 0 ".
AMPDT0, AMPDT1: Reads out the output from the AMP circuit.
AMP data
(F2H•D0, D1)

When " 1 " is read: High
When " 0 " is read: Low Writing: Invalid

AMPDT0 (AMPDT1) is " 1 " when the output level of AMPO (AMP1) circuit is high, and " 0 " when the output level is low.
At initial reset, AMPDT0 and AMPDT1 are set to " 0 ".
(1) To reduce current consumption, set the AMP circuit to OFF when it is not necessary.
(2) After setting AMP circuit turns ON, wait at least 3 msec for the operation of the AMP circuit to stabilize before using the output of the AMP circuit.

### 4.14 SVD (Supply Voltage Detection) Circ uit

Configuration of SVD circuit

The E0C6274 has a built-in SVD (supply voltage detection) circuit, so that the software can find when the source voltage lowers. Turning the SVD circuit ON/OFF and the SVD criteria voltage setting can be controlled through the software.
Figure 4.14 .1 shows the configuration of the SVD circuit.


The SVD circuit compares the criteria voltage set by the software and the supply voltage (VDDA-Vssa) and sets its results into the SVDDT latch. By reading the data of this SVDDT latch, it can be determined by means of software whether the supply voltage is normal or has dropped.
The criteria voltage can be set for the four types shown in Table 4.14.1 by SVDS0 and SCDS1.

| SVD1 | SVD0 | Criteria voltage |
| :---: | :---: | :---: |
| 0 | 0 | 2.6 V |
| 0 | 1 | 2.5 V |
| 1 | 0 | 2.4 V |
| 1 | 1 | 2.3 V |

Set it to match the specifications, such as batteries, to be used. When the A/D converter is used, a supply voltage of 2.4 V or more is necessary for its operation. In this case, you should set the criteria voltage to 2.5 V or 2.6 V .

When SVDON is set to " 1 ", source voltage detection by the SVD circuit is executed. As soon as SVDON is reset to " 0 ", the result is loaded to in the SVDDT register and SVD circuit goes OFF.

To obtain a stable SVD detection result, the SVD circuit must be on for at least $100 \mu \mathrm{sec}$. So, to obtain the SVD detection result, follow the programming sequence below.
(1) Set SVDON to " 1 "
(2) Maintain for $100 \mu \mathrm{sec}$ minimum
(3) Set SVDON to "0"
(4) Read SVDDT

However, when fosc 1 is selected for CPU system clock, the instruction cycles are long enough, so there is no need to worry about maintaining $100 \mu \mathrm{sec}$ for $\operatorname{SVDON}=" 1 "$ in the software. When SVD is on, the IC draws a large current, so keep SVD off unless it is.

Control of SVD circuit

Table 4.14 .2 shows the control bits and their addresses for the SVD circuit.

Table 4.14.2 Control bits for SVD circuit

| Address *7 | Register |  |  |  | Name | Init*1 | 1 |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |  |  |  | 0 |  |
| FFH | SVDS1 | SVDS0 | SVDDT | SVDON | $\begin{aligned} & \hline \text { SVDS1 } \\ & \text { SVDS0 } \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  |  | $\begin{array}{\|l} \hline \\ \begin{array}{l} \text { SVD criteria voltage setting } \\ 0: 2.6 \mathrm{~V}, 1: 2.5 \mathrm{~V}, 2: 2.4 \mathrm{~V}, 3: 2.3 \mathrm{~V} \end{array} \end{array}$ |
|  | R/W |  | R | R/W | $\begin{aligned} & \text { SCDDT } \\ & \text { SCDON } \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{gathered} \text { Low } \\ \text { On } \end{gathered}$ | Normal Off | Supply voltage evaluation data SVD circuit On/Off |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined $\quad$ *7 Page switching in I/O memory is not necessary
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual

SVDS0, SVDS1: Criteria voltage for SVD is set as shown in Table 4.14.3.

SVD criteria voltage setting
(FFH•D2, D3)

Table 4.14.3
Criteria voltage setting

| SVD1 | SVD0 | Criteria voltage |
| :---: | :---: | :---: |
| 0 | 0 | 2.6 V |
| 0 | 1 | 2.5 V |
| 1 | 0 | 2.4 V |
| 1 | 1 | 2.3 V |

At initial reset, these registers are set to " 0 ".

SVDON: Turns the SVD circuit ON and OFF.

When " 1 " is written: SVD circuit ON
When " 0 " is written: SVD circuit OFF
Reading: Valid

When SVDON is set to " 1 ", source voltage detection by the SVD circuit is executed. As soon as SVDON is reset to " 0 ", the result is loaded to in the SVDDT register. To obtain a stable SVD detection result, the SVD circuit must be on for at least $100 \mu \mathrm{sec}$.
At initial reset, this register is set to " 0 ".

SVDDT: This is the result of supply voltage detection.

SVD data (FFH•D1)

When " 0 " is read: Supply voltage (VdDA-VssA) $\geq$ Criteria voltage When " 1 " is read: Supply voltage (Vdda-Vssa) < Criteria voltage Writing: Invalid

The result of supply voltage detection at time of SVDON is set to " 0 " can be read from this register.
At initial reset, SVDDT is set to " 0 ".

## Programming notes

(1) To obtain a stable SVD detection result, the SVD circuit must be on for at least $100 \mu \mathrm{sec}$. So, to obtain the SVD detection result, follow the programming sequence below.
(1) Set SVDON to "1"
(2) Maintain for $100 \mu \mathrm{sec}$ minimum
(3) Set SVDON to "0"
(4) Read SVDDT

However, when fosc 1 is selected for CPU system clock, the instruction cycles are long enough, so there is no need to worry about maintaining $100 \mu \mathrm{sec}$ for SVDON $=$ " 1 " in the software.
(2) The SVD circuit should normally be turned OFF as the consumption current of the IC becomes large when it is ON.

### 4.15 Intemupt and HALT SLEPP

## <Interrupt types>

The E0C6274 provides the following interrupt settings, each of which is maskable.

```
External interrupt: \bullet Input interrupt (2 system)
Internal interrupt: - Timer interrupt (4 system)
- Stopwatch interrupt (2 system)
- Programmable timer interrupt (1 system)
- Serial interface interrupt (1 system)
- A/D converter interrupt (1 system)
```

To authorize interrupt, the interrupt flag must be set to " 1 " (EI) and the necessary related interrupt mask registers must be set to "1" (enable).
When an interrupt occurs the interrupt flag is automatically reset to "O" (DI), and interrupts after that are inhibited.
Figure 4.15 .1 shows the configuration of the interrupt circuit.

## <HALT and SLEEP>

The E0C6274 has HALT and SLEEP functions that considerably reduce the current consumption when it is not necessary.

The CPU enters the HALT status when the HALT instruction is executed.

In the HALT status, the operation of the CPU is stopped. However, the oscillation circuit operates. Reactivating the CPU from the HALT status is done by generating an interrupt request. When it does not reactivate upon an interrupt request, the watchdog timer will cause it to restart from the initial reset status.

When shifted into the SLEEP as the result of a SLEEP instruction, the operation of the CPU is stopped, the same as for the HALT status, and the oscillation circuit also stops.
Reactivation from the SLEEP status can only be done by generation of K10 input interrupt request. Consequently, when it shifts to the SLEEP status, you must invariably set the K10 interrupt to enable. When the SLEEP status is canceled by a K10 input interrupt, wait for oscillation to stabilize, then restart the CPU operation.

When shifting to the SLEEP status, the CPU clock must be set to OSC1 and the OSC3 oscillation circuit must be off.

Refer to the "E0C6200/6200A Core CPU Manual" for transition to the HALT/SLEEP status and timing of its cancellation.


Program counter (low-order 4 bits)




| IAD |
| :---: |
| EIAD |

Interrupt flag


Interrupt factor flag


Fig. 4.15.1
Configuration of the interrupt circuit

## Intemupt factor

Table 4.15 .1 shows the factors for generating interrupt requests. The interrupt flags are set to " 1 " depending on the corresponding interrupt factors.
The CPU operation is interrupted when any of the conditions below set an interrupt factor flag to " 1 ".

- The corresponding mask register is "1" (enabled)
- The interrupt flag is "1" (EI)

The interrupt factor flag is a read-only register, but can be reset to " 0 " when the register data is read out.
At initial reset, the interrupt factor flags are reset to " 0 ".
Table 4.15.1 Interrupt factors

| Interrupt factor | Interrupt factor flag |  |
| :---: | :---: | :---: |
| Clock timer 1 Hz falling edge | IT1 | (C6H•D3) |
| Clock timer 2 Hz falling edge | IT2 | (C6H•D2) |
| Clock timer 8 Hz falling edge | IT8 | (C6H•D1) |
| Clock timer 32 Hz falling edge | IT32 | (C6H•D0) |
| Stopwatch timer 1 Hz falling edge | ISW1 | (C5H•D1) |
| Stopwatch timer 10 Hz falling edge | ISW0 | (C5H•D0) |
| A/D converter reverse integration has completed | IAD | $(\mathrm{C} 4 \mathrm{H} \cdot \mathrm{D} 0)$ |
| Input data (K00-K03) rising or falling edge | IK0 | $(\mathrm{C} 3 \mathrm{H} \cdot \mathrm{D} 0)$ |
| Input data (K10) rising or falling edge | IK1 | $(\mathrm{C} 2 \mathrm{H} \cdot \mathrm{D} 0)$ |
| Serial interface data (8 bits) input/output has completed | ISIO | $(\mathrm{C} 1 \mathrm{H} \cdot \mathrm{D} 0)$ |
| Programmable timer counter $=0$ | IPT | $(\mathrm{C} 0 \mathrm{H} \cdot \mathrm{D} 0)$ |

Note: Reading of interrupt factor flags is available at El, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

## Intemupt mask

Table 4.15.2
Interrupt mask registers and interrupt factor flags

The interrupt factor flags can be masked by the corresponding interrupt mask registers.
The interrupt mask registers are read/write registers. They are enabled (interrupt authorized) when " 1 " is written to them, and masked (interrupt inhibited) when " 0 " is written to them. At initial reset, the interrupt mask register is set to " 0 ". Table 4.15 .2 shows the correspondence between interrupt mask registers and interrupt factor flags.

| Interrupt mask register |  | Interrupt factor flag |  |
| :--- | :--- | :--- | :--- |
| EIT1 | $(\mathrm{CCH} \cdot \mathrm{D} 3)$ | IT1 | $(\mathrm{C} 6 \mathrm{H} \cdot \mathrm{D} 3)$ |
| EIT2 | $(\mathrm{CCH} \bullet \mathrm{D} 2)$ | IT2 | $(\mathrm{C} 6 \mathrm{H} \cdot \mathrm{D} 2)$ |
| EIT8 | $(\mathrm{CCH} \cdot \mathrm{D} 1)$ | IT8 | $(\mathrm{C} 6 \mathrm{H} \cdot \mathrm{D} 1)$ |
| EIT32 | $(\mathrm{CCH} \cdot \mathrm{D} 0)$ | IT32 | $(\mathrm{C} 6 \mathrm{H} \cdot \mathrm{D} 0)$ |
| EISW1 | $(\mathrm{CBH} \bullet \mathrm{D} 1)$ | ISW1 | $(\mathrm{C} 5 \mathrm{H} \cdot \mathrm{D} 1)$ |
| EISW0 | $(\mathrm{CBH} \cdot \mathrm{D} 0)$ | ISW0 | $(\mathrm{C} 5 \mathrm{H} \cdot \mathrm{D} 0)$ |
| EIAD | $(\mathrm{C} 8 \mathrm{H} \bullet \mathrm{D} 2)$ | IAD | $(\mathrm{C} 4 \mathrm{H} \cdot \mathrm{D} 0)$ |
| EIK0 | $(\mathrm{C} 9 \mathrm{H} \bullet \mathrm{D} 0)$ | IK0 | $(\mathrm{C} 3 \mathrm{H} \bullet \mathrm{D} 0)$ |
| EIK1 | $(\mathrm{C} 9 \mathrm{H} \bullet \mathrm{D} 1)$ | IK1 | $(\mathrm{C} 2 \mathrm{H} \cdot \mathrm{D} 0)$ |
| EISIO | $(\mathrm{C} 8 \mathrm{H} \bullet \mathrm{D} 1)$ | ISIO | $(\mathrm{C} 1 \mathrm{H} \cdot \mathrm{D} 0)$ |
| EIPT | $(\mathrm{C} 8 \mathrm{H} \bullet \mathrm{D} 0)$ | IPT | $(\mathrm{C} 0 \mathrm{H} \cdot \mathrm{D} 0)$ |

Note: Write the interrupt mask register only in the DI status (interrupt flag = "0"). Writing during El status (interrupt flag = "1") will cause malfunction.

## Intemupt vector

When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being executed is terminated, the interrupt processing is executed in the following order.
(1) The address data (value of program counter) of the program to be executed next is saved in the stack area (RAM).
(2) The interrupt request causes the value of the interrupt vector (page $1,02 \mathrm{H}-0 \mathrm{FH}$ ) to be set in the program counter.
(3) The program at the specified address is executed (execution of interrupt processing routine by software).

Table 4.15 .3 shows the correspondence of interrupt requests and interrupt vectors.

Note: The processing in (1) and (2) above take 12 cycles of the CPU system clock.
Table 4.15.3
Interrupt request and interrupt vectors

| Interrupt vector | Interrupt request | Priority |
| :---: | :---: | :---: |
| 102H | Clock timer | Low $\uparrow$ |
| 104H | Stopwatch timer |  |
| 106H | A/D converter |  |
| 108H | K00-K03 input |  |
| 10AH | K10 input |  |
| 10CH | Serial interface | $\downarrow$ |
| 10EH | Programmable timer | High |

The four low-order bits of the program counter are indirectly addressed through the interrupt request.

## Control of intemupt

Tables 4.15.4(a) and (b) show the interrupt control bits and their addresses.

Table 4.15.4(a) Control bits of interrupt (1)

| Address *7 | Register |  |  |  | Name | Init *1 | 1 | 0 | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |  |  |  |  |  |
| COH | R |  |  |  | $\begin{array}{\|rc\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IPT } & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline-*_{2} \\ & -*{ }^{2} \\ & -{ }^{* 2} \\ & 0 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (programmable timer) |
| C 1 H | R |  |  |  | $\begin{array}{\|rr\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \mathrm{ISIO} & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline-*_{2} \\ & -*_{2} \\ & -*_{2} \\ & 0 \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (serial interface) |
| C 2 H | R |  |  | IK1 | $\begin{array}{rr\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IK1 } & * 4 \end{array}$ | $\begin{aligned} & -{ }^{* 2} \\ & -{ }^{*} 2 \\ & -{ }^{* 2} \\ & 0 \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (K10) |
| C 3 H | R | 0 | 0 | IKO | $\begin{array}{\|cc\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IKO } & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline-*_{2} \\ & -*_{2} \\ & -{ }^{* 2} \\ & 0 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (K00-K03) |
| C 4 H | R |  |  | IAD | $\begin{array}{\|rc\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IAD } & * 4 \\ \hline \end{array}$ | $\begin{aligned} & -* 2 \\ & -* 2 \\ & -* 2 \\ & 0 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (A/D converter) |
| C5H | 0 | R |  | ISW0 | $\begin{array}{rr} \hline 0 & * 5 \\ 0 & * 5 \\ \text { ISW } 1 * 4 \\ \text { ISW0 } * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline{ }^{* 2} \\ & -{ }^{*} 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$ | Unused <br> Unused <br> Interrupt factor flag (stopwatch 1 Hz ) <br> Interrupt factor flag (stopwatch 10 Hz ) |
| C 6 H | R |  |  | IT32 | $\begin{aligned} & \text { IT1 } * 4 \\ & \text { IT2 } * 4 \\ & \text { IT8 } * 4 \\ & \text { IT32 } * 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Yes <br> Yes <br> Yes <br> Yes | No <br> No <br> No <br> No | Interrupt factor flag (clock timer 1 Hz ) <br> Interrupt factor flag (clock timer 2 Hz ) <br> Interrupt factor flag (clock timer 8 Hz ) <br> Interrupt factor flag (clock timer 32 Hz ) |
| C 8 H | 0 $R$ | R/W |  |  | $\begin{gathered} 0 \quad * 5 \\ \text { EIAD } \\ \text { EISIO } \\ \text { EIPT } \\ \hline \end{gathered}$ | $\begin{array}{ll}  & { }^{* 2} \\ 0 \\ 0 & \\ 0 & \\ \hline \end{array}$ | Enable <br> Enable <br> Enable | Mask <br> Mask <br> Mask | Unused <br> Interrupt mask register (A/D converter) <br> Interrupt mask register (serial interface) <br> Interrupt mask register (programmable timer) |
| $\mathrm{C9H}$ | R |  | R/W |  | $\begin{aligned} & 0 \\ & \hline \end{aligned}{ }^{* 5}$ | $\begin{aligned} & \text { - }^{* 2} \\ & -{ }^{*} 2 \\ & 0 \\ & 0 \end{aligned}$ | Enable <br> Enable | Mask <br> Mask | Unused <br> Unused <br> Interrupt mask register (K10) <br> Interrupt mask register (K00-K03) |
| CAH | R/W |  |  | SIK00 | SIK03 <br> SIK02 <br> SIK01 <br> SIKOO | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Enable <br> Enable <br> Enable <br> Enable | Disable <br> Disable <br> Disable <br> Disable | Interrupt selection register (K03) <br> Interrupt selection register (K02) <br> Interrupt selection register (K01) <br> Interrupt selection register (K00) |
| CBH | 0 | 0 | EISW1 | EISW0 | $\begin{array}{cc} 0 & * 5 \\ 0 & * 5 \\ \text { EISW1 } \\ \text { EISW0 } \end{array}$ | $\begin{aligned} & \hline{ }^{*} 2 \\ & -{ }^{*} 2 \\ & 0 \\ & 0 \end{aligned}$ | Enable Enable | Mask <br> Mask | Unused <br> Unused <br> Interrupt mask register (stopwatch 1 Hz ) <br> Interrupt mask register (stopwatch 10 Hz ) |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly "0" when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

Table 4.15.4(b) Control bits of interrupt (2)

| Address | Register |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 | Name | Init* ${ }^{*}$ | 1 | 0 |  |
| CCH | EIT1 | EIT2 | EIT8 | EIT32 | EIT1 | 0 | Enable | Mask | Interrupt mask register (clock timer 1 Hz ) |
|  |  |  |  |  | EIT2 | 0 | Enable | Mask | Interrupt mask register (clock timer 2 Hz ) |
|  | R/W |  |  |  | EIT8 | 0 | Enable | Mask | Interrupt mask register (clock timer 8 Hz ) |
|  |  |  |  |  | EIT32 | 0 | Enable | Mask | Interrupt mask register (clock timer 32 Hz ) |
| D2H |  |  |  |  | DFK03 | 1 | $\downarrow$ | 5 | Input comparison register (K00-K03) |
|  | DFK03 | DFK02 | DFK01 | DFKOO | DFK02 | 1 | 7 | 5 |  |
|  | R/W |  |  |  | DFK01 | 1 | 7 | 5 |  |
|  |  |  |  |  | DFK00 | 1 | 7 | 5 |  |
| D3H | 0 | 0 | 0 | DFK10 |  | - *2 |  |  | Unused |
|  |  |  |  |  | 0 *5 | - *2 |  |  | Unused |
|  | R |  |  | RW | 0 *5 | - *2 |  |  | Unused |
|  |  |  |  | RN |  | 1 | 7 | 5 | Input comparison register (K10) |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
EIT32, EIT8, EIT2, EIT1: Interrupt mask registers (CCH)
IT32, IT8, IT2, IT1: Interrupt factor flags (C6H)
See Section 4.8, "Clock Timer".
EISW0, EISW1: Interrupt mask registers (CBH•D0, D1)
ISW0, ISW1: Interrupt factor flags (C5H•D0, D1)
See Section 4.9, "Stopwatch Timer".
EIAD: Interrupt mask register (C8H•D2)
IAD: Interrupt factor flag ( $\mathrm{C} 4 \mathrm{H} \cdot \mathrm{D} 0$ )
See Section 4.12, "A/D Converter".
DFK00-DFK03: Input comparison registers (D2H)
SIK00-SIK03: Interrupt selection registers (CAH)
EIKO: Interrupt mask register (C9H•D0)
IK0: Interrupt factor flag ( $\mathrm{C} 3 \mathrm{H} \cdot \mathrm{D} 0$ )
See Section 4.4, "Input Ports".
DFK10: Input comparison register (D3H•D0)
EIK1: Interrupt mask register ( $\mathrm{C} 9 \mathrm{H} \cdot \mathrm{D} 0$ )
IK1: Interrupt factor flag (C3H•D0)
See Section 4.4, "Input Ports".
EISIO: Interrupt mask register (C8H•D1)
ISIO: Interrupt factor flag (C1H•D0)
See Section 4.11, "Serial Interface".
EIPT: Interrupt mask register (C8H•D0)
IPT: Interrupt factor flag (COH•D0)
See Section 4.10, "Programmable Timer".

## Programming notes

(1) When it shifts to the SLEEP status, you must invariably set the K10 interrupt to enable.
(2) When shifting to the SLEEP status, the CPU clock must be set to OSC1 and the OSC3 oscillation circuit must be off.
(3) The interrupt factor flags are set when the timing condition is established, even if the interrupt mask registers are set to "0".
(4) Write the interrupt mask register only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.
(5) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

## CHAPIER 5 SUMMARY OF NOTES

### 5.1 Notes for Low Curent Consumption

The E0C6274 contains control registers for each of the circuits so that current consumption can be lowered. These control registers lower the current consumption through programs that operate the circuits at the minimum levels.
The following text explains the circuits that can control operation and their control registers. Refer to these when putting programs together.

Table 5.1.1 Circuits and control registers

| Circuits (and items) | Control registers | Order of consumed current |
| :--- | :--- | :--- |
| CPU | HALT, SLEEP instructions | See electrical characteristics (Chapter 7) |
| CPU operating frequency | CLKCHG, OSCC | See electrical characteristics (Chapter 7) |
| A/D converter | ADON, GNDON0, GNDON1, VRON | See electrical characteristics (Chapter 7) |
| AMP circuit | AMPON0, AMPON1 | See electrical characteristics (Chapter 7) |
| SVD circuit | SVDON | See electrical characteristics (Chapter 7) |

Below are the circuit statuses at initial reset.
$\boldsymbol{C P U}$ : Operating status
$\boldsymbol{C P U}$ operating frequency: Low speed side (CLKCHG = "0"), OSC3 oscillation circuit OFF status (OSCC = "0")
$\boldsymbol{A} / \boldsymbol{D}$ converter: $\quad \mathrm{A} / \mathrm{D}$ converter $\quad$ OFF status ( $\mathrm{ADON}=" 0 "$ )
GND generation circuit OFF status (GNDON0, GNDON1 = "0")
Reference voltage generation circuit OFF status (VRON = "0")
AMP circuit: OFF status (AMPON0, AMPON1 = "0")
SVD circuit: OFF status (SVDON = "0")
Also, be careful about panel selection because the current consumption can differ by the order of several $\mu \mathrm{A}$ on account of the LCD panel characteristics.

### 5.2 Summary of Notes by Function

Here, the cautionary notes are summed up by function category. Keep these notes well in mind when programming.

Memory Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this reason, normal operation cannot be assured for programs that have been prepared with access to these area.

Watchdog timer The watchdog timer must be reset within 3-second cycles. Because of this, the watchdog timer data (WDO, WD1) cannot be used for clocking of 3 seconds or more.

Oscillation circuit (1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON.
Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
(2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
(3) When shifting to the SLEEP status, the CPU clock must be set to OSC1 and the OSC3 oscillation circuit must be OFF.

Input ports When input ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration.
Make this waiting time the amount of time or more calculated by the following expression.
$10 \times \mathrm{C} \times \mathrm{R}$
C: terminal capacitance $5 \mathrm{pF}+$ parasitic capacitance ? pF
R : pull up resistance $300 \mathrm{k} \Omega$

Output ports When BZ, $\overline{\mathrm{BZ}}, \overline{\mathrm{FOUT}}$ and $\overline{\text { PTOVF }}$ are selected, a hazard may be observed in the output waveform when the data of the output register changes.

I/O ports When in the input mode, I/O ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration.
Make this waiting time the amount of time or more calculated by the following expression.
$10 \times \mathrm{C} \times \mathrm{R}$
C: terminal capacitance $5 \mathrm{pF}+$ parasitic capacitance ? pF
R: pull up resistance $300 \mathrm{k} \Omega$
LCD driver (1) The contents of the display memory are undefined until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
(2) Since the display memory area is write-only, display data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).

Clock timer (1) Be sure to data reading in the order of low-order data (TMOTM3) then high-order data (TM4-TM7).
(2) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to " 1 ". Consequently, perform flag reading (reset the flag) as necessary at reset.
(3) When the clock timer has been reset, the watchdog timer is also reset.

Stopwatch timer (1) Be sure to data reading in the order of low-order data (SWLOSWL3) then high-order data (SWHO-SWH3).
(2) When the stopwatch timer has been reset, the interrupt factor flag (ISW) may sometimes be set to " 1 ". Consequently, perform flag reading (reset the flag) as necessary at reset.

Programmable timer (1) Be sure to data reading in the order of low-order data (PTO-PT3) then high-order data (PT4-PT7).
(2) When data of reload registers is set at " 00 H ", the down-counter becomes a 256 -value counter.

Serial interface (1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc $1 \leftrightarrow$ fosc 3 ) while the serial interface is operating.
(2) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
(3) As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing " 1 " to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock $\overline{\text { SCLK }}$ is external clock, start to input the external clock after the trigger.

A/D converter (1) To reduce current consumption, set the reference voltage generation circuit, the middle electric potential generation circuit and the A/D converter to OFF when it is not necessary.
(2) Do not fail to select the correct combinations for the analog input terminal and measurement items. (Refer to Table 4.12.1)
(3) To perform a stable A/D conversion, secure the decided wait time.
(4) Be sure to check whether the data is effective or invalid by reading the A/D conversion data in the order $\mathrm{F} 7 \mathrm{H} \rightarrow \mathrm{F} 8 \mathrm{H} \rightarrow$ $\mathrm{F} 9 \mathrm{H} \rightarrow$ FAH and immediately thereafter reading the IDR (FBH).
(5) When reading data after turning the A/D converter OFF, the A/ D converter should be OFF in the period from an interrupt generation to the beginning of a reverse integration.
(6) When the A/D converter is reset or turned OFF, the interrupt factor flag (IAD) may sometimes be set to " 1 ". Consequently, read the flag (reset the flag) as necessary at reset or at the turning OFF.

AMP circuit (1) To reduce current consumption, set the AMP circuit to OFF when it is not necessary.
(2) After setting AMP circuit turns ON, wait at least 3 msec for the operation of the AMP circuit to stabilize before using the output of the AMP circuit.

SVD circuit (1) To obtain a stable SVD detection result, the SVD circuit must be on for at least $100 \mu \mathrm{sec}$. So, to obtain the SVD detection result, follow the programming sequence below.
(1) Set SVDON to " 1 "
(2) Maintain for $100 \mu \mathrm{sec}$ minimum
(3) Set SVDON to "0"
(4) Read SVDDT

However, when fosc 1 is selected for CPU system clock, the instruction cycles are long enough, so there is no need to worry about maintaining $100 \mu \mathrm{sec}$ for SVDON $=$ " 1 " in the software.
(2) The SVD circuit should normally be turned OFF as the consumption current of the IC becomes large when it is ON.

Interrupt and HALT/ SLEEP
(1) When it shifts to the SLEEP status, you must invariably set the K10 interrupt to enable.
(2) When shifting to the SLEEP status, the CPU clock must be set to OSC1 and the OSC3 oscillation circuit must be off.
(3) The interrupt factor flags are set when the timing condition is established, even if the interrupt mask registers are set to " 0 ".
(4) Write the interrupt mask register only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.
(5) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

## CHAPIER 6 DIAGRAM OF BASIC EXIERNAL CONNECTIONS

- For temperature measurement by connecting thermistor
(VR1, VR2 and GND: internal voltage)


| X'tal | Crystal oscillator | $32.768 \mathrm{kHz}, \mathrm{CI}($ Max. $)=35 \mathrm{k} \Omega$ |
| :--- | :--- | :--- |
| CGX | Trimmer capacitor | $5-25 \mathrm{pF}$ |
| CR | Ceramic oscillator | 1 MHz |
| CGC | Gate capacitance | 100 pF |
| CDC | Drain capacitance | 100 pF |
| RCR | Resistance for CR oscillation | $39 \mathrm{k} \Omega($ fosC3 $\approx 900 \mathrm{kHz})$ |
| RA1 | Resistance for LCD drive voltage adjustment | $1 \mathrm{M} \Omega(\mathrm{VC} \approx 1.5 \mathrm{~V})$ |
| RA2 | Resistance for LCD drive voltage adjustment | $2 \mathrm{M} \Omega(\mathrm{VC} 1 \approx 1.5 \mathrm{~V})$ |
| TH | Thermistor | $10 \mathrm{k} \Omega(5 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega)$ |
| RREF | Reference resistance for resistance measurement | $10 \mathrm{k} \Omega$ |
| RI | Integral resistance | $680 \mathrm{k} \Omega(6400), 330 \mathrm{k} \Omega(3200), 180 \mathrm{k} \Omega(1600)$, |
|  |  | $82 \mathrm{k} \Omega(800) \ldots($ resolution $)$ |
| CI | Integral capacitor | $0.1 \mu \mathrm{~F}$ |
| CAZ | Capacitor for auto zero adjustment | $0.1 \mu \mathrm{~F}$ |
| CIF | Analog input filter capacitor | $0.01 \mu \mathrm{~F}$ |
| C1-C9 |  | $0.1 \mu \mathrm{~F}$ |
| CP1, CP2 |  | $3.3 \mu \mathrm{~F}$ |

Note: The above table is simply an example, and is not guaranteed to work.

- When the piezoelectric buzzer is driven directly



## CHAPIER 7 <br> EIECTRICALCHARACTERISIICS

### 7.1 Absolute Maximum Rating

| Item | Symbol | Rated value |  |
| :--- | :--- | :---: | :---: |
| Power voltage | VDD | -0.5 to 7.0 | Unit |
| Input voltage (1) | VI | -0.5 to VDD +0.3 | V |
| Input voltage (2) | VIosC | -0.5 to VD1 +0.3 | V |
| Permissible output current $* 1$ |  | IVDD | 10 |
| V |  |  |  |
| Operating temperature (1) | Topr1 | -20 to 70 | mA |
| Operating temperature $(2) * 2$ | Topr2 | 0 to 50 | ${ }^{\circ} \mathrm{C}$ |
| Strage temperature | Tstg | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| Soldering temperature $/$ Time | Tsol | $260^{\circ} \mathrm{C}, 10 \sec ($ lead section $)$ | ${ }^{\circ} \mathrm{C}$ |
| Allowable disspation $* 3$ | PD | 250 | - |

*1 The permissible total output current is the sum total of the current (average current) that simultaneously flows from the output pins (or is drawn in).
*2 The A/D converter and AMP circuit are ON status.
*3 For plastic package (QFP5-100pin, QFP15-100pin)

### 7.2 Recommended Operating Conditions

| Item | Symbol | Condition | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Power voltage | VDD | Vss $=0 \mathrm{~V}$ | 2.2 | 3.0 | 5.5 | V |
|  |  | Vss $=0 \mathrm{~V}$ <br> When A/D converter or AMP is used | 2.4 | 3.0 | 5.5 | V |
|  |  |  | - | 32.768 | - | kHz |
| Oscillation frequency (1) | fosc1 |  | 50 | 1000 | 1300 | kHz |
| Oscillation frequency (2) | fosc3 | duty $50 \pm 5 \%$ |  |  |  |  |

### 7.3 DC Characteristics

If no special requirement
VDD $=3 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, foscl $=32.768 \mathrm{kHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VD} 1, \mathrm{VCl}_{\mathrm{C}}, \mathrm{VC}_{2}$ and $\mathrm{VC3}$ are internal voltage,
C1-C6 $=0.1 \mu \mathrm{~F}$

| Item | Symbol | Condition <br> High level input voltage (1) | VIH1 |  | K00~03, K10 <br> P00~03, P10~13 <br> P20~23, SIN, $\overline{\text { SCLK }}$ | $0.8 \cdot$ VDD |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |

### 7.4 Analog Characteristics and Consumed Curent

If no special requirement
$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}$ DDA $=3 \mathrm{~V}$, VSS $=\mathrm{VSSA}=0 \mathrm{~V}$, fosc $1=32.768 \mathrm{kHz}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VD} 1, \mathrm{VC} 1, \mathrm{VCl}^{2}$ and $\mathrm{VC3}$ are internal voltage, $\mathrm{C} 1-\mathrm{C} 6=0.1 \mu \mathrm{~F}$

| Item | Symbol | Condition | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD drive voltage | Vc1 | $\mathrm{VCA}=\mathrm{VCl}, \mathrm{IC1}=-5 \mu \mathrm{~A}$ | 0.95 | 1.05 | 1.15 | V |
|  | Vc2 | Connect $1 \mathrm{M} \Omega$ load resistor between VSS and VC2 (without panel load) | $\begin{gathered} \hline 2 \cdot \mathrm{VCl}_{\mathrm{C}} \\ \mathrm{x} 0.9 \end{gathered}$ |  | $\begin{aligned} & \hline 2 \cdot \mathrm{VCl}_{\mathrm{C}} \\ & +0.1 \end{aligned}$ | V |
|  | Vc3 | Connect $1 \mathrm{M} \Omega$ load resistor between VSS and VC3 (without panel load) | $\begin{gathered} 3 \cdot \mathrm{VCl} \\ \times 0.9 \end{gathered}$ |  | $\begin{aligned} & \hline 3 \cdot \mathrm{VC} 1 \\ & +0.1 \end{aligned}$ | V |
| SVD voltage | Vsvd | SVDS = "0" | 2.5 | 2.6 | 2.7 | V |
|  |  | SVDS $=11$ | 2.4 | 2.5 | 2.6 | V |
|  |  | SVDS $=$ "2" | 2.3 | 2.4 | 2.5 | V |
|  |  | SVDS = "3" | 2.2 | 2.3 | 2.4 | V |
| SVD circuit response time | tsvd |  |  |  | 100 | $\mu \mathrm{S}$ |
| Power current consumption | Iop | During SLEEP |  | 0.7 | 2.0 | $\mu \mathrm{A}$ |
|  |  | During HALT ( 32 kHz ) Current that |  | 2.0 | 7.0 | $\mu \mathrm{A}$ |
|  |  | During execution ( 32 kHz ) *1 |  | 6.0 | 15.0 | $\mu \mathrm{A}$ |
|  |  | During execution (1 MHz) *1 ${ }^{\text {parts (oads) }}$ |  | 200 | 500 | $\mu \mathrm{A}$ |
|  |  | During execution ( 32 kHz ) ${ }^{\text {2 }}$ |  | 306 | 915 | $\mu \mathrm{A}$ |
|  |  | During execution ( 32 kHz ) ${ }^{\text {a }}$ |  | 506 | 1515 | $\mu \mathrm{A}$ |
|  |  | During execution ( 32 kHz ) ${ }^{\text {4 }}$ |  | 16.0 | 45.0 | $\mu \mathrm{A}$ |

*1 The SVD, A/D converter and AMP circuits are OFF status.
*2 The A/D converter (reference voltage VR1 and middle electric potential GND are impressed from outside) is ON status. The SVD and AMP circuits are OFF status.
*3 The A/D converter (reference voltage VR1 and middle electric potential GND are impressed from outside) and AMP circuits (2 systems) are ON status. The SVD circuit is OFF status.
*4 The SVD circuit is ON status. The A/D converter and AMP circuits are OFF status.

## A/D converter

If no special requirement
 internal voltage, $\mathrm{C} 1-\mathrm{C} 6=0.1 \mu \mathrm{~F}$

| Item | Symbol | Condition |  | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Absolute error | Ev1 | Voltage measurement mode | 6400 counts, $\mathrm{RI}=680 \mathrm{k} \Omega$ | 0 | $\pm 3$ | $\pm 13$ | Count |
|  | Ev2 |  | 3200 counts, $\mathrm{RI}=330 \mathrm{k} \Omega$ | 0 | $\pm 2$ | $\pm 7$ |  |
|  | Ev3 |  | 1600 counts, $\mathrm{RI}=180 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 4$ |  |
|  | Ev4 |  | 800 counts, $\mathrm{RI}=82 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 4$ |  |
|  | ED1 | Differential voltage measurement mode | 6400 counts, $\mathrm{RI}=680 \mathrm{k} \Omega$ | 0 | $\pm 4$ | $\pm 16$ | Count |
|  | ED2 |  | 3200 counts, $\mathrm{RI}=330 \mathrm{k} \Omega$ | 0 | $\pm 2$ | $\pm 8$ |  |
|  | Ed3 |  | 1600 counts, $\mathrm{RI}=180 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 5$ |  |
|  | ED4 |  | 800 counts, $\mathrm{RI}=82 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 5$ |  |
|  | ER1 | Resistance measurement mode | 6400 counts, $\mathrm{RI}=680 \mathrm{k} \Omega$ | 0 | $\pm 9$ | $\pm 20$ | Count |
|  | ER2 |  | 3200 counts, $\mathrm{RI}=330 \mathrm{k} \Omega$ | 0 | $\pm 4$ | $\pm 10$ |  |
|  | ER3 |  | 1600 counts, $\mathrm{RI}=180 \mathrm{k} \Omega$ | 0 | $\pm 2$ | $\pm 5$ |  |
|  | ER4 |  | 800 counts, $\mathrm{RI}=82 \mathrm{k} \Omega$ | 0 | $\pm 2$ | $\pm 5$ |  |
| Zero point error | Ezv1 | Voltage measurement mode | 6400 counts, $\mathrm{RI}=680 \mathrm{k} \Omega$ | 0 | 0 | $\pm 4$ | Count |
|  | Ezv2 |  | 3200 counts, $\mathrm{RI}=330 \mathrm{k} \Omega$ | 0 | 0 | $\pm 2$ |  |
|  | Ezv3 |  | 1600 counts, $\mathrm{RI}=180 \mathrm{k} \Omega$ | 0 | 0 | $\pm 2$ |  |
|  | Ezv4 |  | 800 counts, $\mathrm{RI}=82 \mathrm{k} \Omega$ | 0 | 0 | $\pm 2$ |  |
|  | Ezd1 | Differential voltage measurement mode | 6400 counts, $\mathrm{RI}=680 \mathrm{k} \Omega$ | 0 | 1 | $\pm 5$ | Count |
|  | Ezd2 |  | 3200 counts, $\mathrm{RI}=330 \mathrm{k} \Omega$ | 0 | 0 | $\pm 3$ |  |
|  | Ezd3 |  | 1600 counts, $\mathrm{RI}=180 \mathrm{k} \Omega$ | 0 | 0 | $\pm 3$ |  |
|  | Ezd4 |  | 800 counts, $\mathrm{RI}=82 \mathrm{k} \Omega$ | 0 | 0 | $\pm 3$ |  |
| Polarity error | Epv1 | Voltage measurement mode | 6400 counts, $\mathrm{RI}=680 \mathrm{k} \Omega$ | 0 | $\pm 4$ | $\pm 11$ | Count |
|  | Epv2 |  | 3200 counts, $\mathrm{RI}=330 \mathrm{k} \Omega$ | 0 | $\pm 2$ | $\pm 6$ |  |
|  | Epv3 |  | 1600 counts, $\mathrm{RI}=180 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 4$ |  |
|  | Epv4 |  | 800 counts, $\mathrm{RI}=82 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 4$ |  |
|  | Epd1 | Differential voltage measurement mode | 6400 counts, $\mathrm{RI}=680 \mathrm{k} \Omega$ | 0 | $\pm 4$ | $\pm 13$ | Count |
|  | Epd2 |  | 3200 counts, $\mathrm{RI}=330 \mathrm{k} \Omega$ | 0 | $\pm 2$ | $\pm 7$ |  |
|  | Epd3 |  | 1600 counts, $\mathrm{RI}=180 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 5$ |  |
|  | EpD4 |  | 800 counts, $\mathrm{RI}=82 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 5$ |  |
| Linearity error | Elv1 | Voltage measurement mode | 6400 counts, $\mathrm{RI}=680 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 8$ | Count |
|  | Elv2 |  | 3200 counts, $\mathrm{RI}=330 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 4$ |  |
|  | Elv3 |  | 1600 counts, $\mathrm{RI}=180 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 3$ |  |
|  | Elv4 |  | 800 counts, $\mathrm{RI}=82 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 3$ |  |
|  | Eld1 | Differential voltage measurement mode | 6400 counts, $\mathrm{RI}=680 \mathrm{k} \Omega$ | 0 | $\pm 2$ | $\pm 10$ | Count |
|  | Eld2 |  | 3200 counts, $\mathrm{RI}=330 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 5$ |  |
|  | Eld3 |  | 1600 counts, $\mathrm{RI}=180 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 3$ |  |
|  | Eld4 |  | 800 counts, $\mathrm{RI}=82 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 3$ |  |
|  | Elr1 | Resistance measurement mode | 6400 counts, $\mathrm{RI}=680 \mathrm{k} \Omega$ | 0 | $\pm 2$ | $\pm 10$ | Count |
|  | Elr2 |  | 3200 counts, $\mathrm{RI}=330 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 5$ |  |
|  | Elr3 |  | 1600 counts, $\mathrm{RI}=180 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 3$ |  |
|  | Elr4 |  | 800 counts, $\mathrm{RI}=82 \mathrm{k} \Omega$ | 0 | $\pm 1$ | $\pm 3$ |  |
| Power current consumption | Iad | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ <br> Current that flows in external parts is not included. |  |  | 300 | 900 | $\mu \mathrm{A}$ |

* In case of the voltage measurement mode or differential voltage measurement mode, the reference voltage VR2 is adjusted so that the measurement error (absolute error E ) of the $\mathrm{A} / \mathrm{D}$ converter becomes minimum when $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}$ $=$ VdDA $=3 \mathrm{~A}$, input voltage $\mathrm{VIN}=+320 \mathrm{mV}$.
Error and deviation by the reference voltage VR2 are not included.
See Chapter 6, "BASIC EXTERNAL CONNECTION DIAGRAM", for the circuit to be measured.
[Refference curves]


## Absolute error E



Zero point error Ez


* There is no standard in the resistance measurement mode because 0 mV input has been inhibited.

Porality error Ep


* There is no standard in the resistance measurement mode because it is - (minus) input only.

Linearity error EL
Input -320 mV
(-)
The straight line linked
two count values when
input was -320 mV and
mV .

* In the resistance measurement mode, the straight line linked two points at -6400 counts and 0 count.


## Reference voltage generation circuit

If no special requirement
VDD $=$ VdDA $=3 \mathrm{~V}, \mathrm{VSS}=\mathrm{VSSA}=0 \mathrm{~V}$, foscl $=32.768 \mathrm{kHz}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VD1}, \mathrm{VC1}, \mathrm{VC} 2$ and $\mathrm{VC3}$ are internal voltage, $\mathrm{C} 1-\mathrm{C} 6=0.1 \mu \mathrm{~F}$

| Item | Symbol | Condition |  | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output voltage (1) | Vrio | GND reference, Internal adjustment mode VRON $=$ VRAON $=" 1 "$ |  |  | -475 |  | mV |
| Output voltage (2) | VR2O | GND reference, Internal adjustment mode VRON $=$ VRAON $=" 1 "$ |  | -1.0 | (-163.8mV) | 1.0 | \% |
| Input voltage | VRII | GND reference, External adjustment mode VRON $=$ VRAON = " 0 ", (Input voltage when the measurement error becomes minimum) |  |  | -475 |  | mV |
| Input current | $\mid$ IvR1 $\mid$ | External adjustment mode <br> A/D related are all OFF. <br> VRON = VRAON = "0" <br> Current that flows in external parts is not included. |  | 0 |  | 1.0 | $\mu \mathrm{A}$ |
| Temperature characteristics | VR2/Ta | $\begin{aligned} & \mathrm{Ta}=0 \text { to } 50^{\circ} \mathrm{C} \\ & \left(25^{\circ} \mathrm{C} \text { standard }\right) \\ & \text { VRON }=" 1^{\prime \prime} \end{aligned}$ | Internal adjustment mode VRAON = "1" | -300 | 150 | 600 | ppm $/{ }^{\circ} \mathrm{C}$ |
|  |  |  | External adjustment mode VRAON = "0" | -300 | 150 | 600 |  |
| Supply voltage characteristics | $\mathrm{V}_{\mathrm{R} 2} / \mathrm{V}_{\text {DDA }}$ | $\begin{array}{r} \mathrm{VDDA}=2.4 \\ \text { to } 5.5 \mathrm{~V} \\ \mathrm{VRON}=" 1 " \end{array}$ | Internal adjustment mode VRAON = "1" | -0.30 | 0 | 0.30 | \%FS |
|  |  |  | External adjustment mode VRAON = "0" | -0.15 | 0 | 0.15 |  |
| Power current consumption | IAD1 | Internal adjustment mode VRON = VRAON = "1" |  |  | 10.0 | 30.0 | $\mu \mathrm{A}$ |
|  | IAD2 | External adjustment mode VRON $=$ " 1 ", VRAON $=" 0 "$ |  |  | 2.0 | 5.0 |  |

[^4]
## Middle electric potential (GND) generation circuit

If no special requirement
VDD $=$ VdDA $=3 \mathrm{~V}, \mathrm{VSS}=\mathrm{VSSA}=0 \mathrm{~V}$, foscl $=32.768 \mathrm{kHz}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VD} 1, \mathrm{VC1}, \mathrm{VC2}$ and $\mathrm{VC3}$ are internal voltage, $\mathrm{C} 1-\mathrm{C} 6=0.1 \mu \mathrm{~F}$

| Item | Symbol | Condition | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output voltage | GNDo | GNDON = "01, 10, 11 " | $\begin{gathered} \hline \text { VDDA/2 } \\ -0.05 \end{gathered}$ | VdDa/2 | $\begin{gathered} \mathrm{VDDA} / 2 \\ +0.05 \end{gathered}$ | V |
| Input voltage | GNDI | GNDON = "00" | $\begin{gathered} \hline \text { VDDA/2 } \\ -0.05 \end{gathered}$ | VdDa/2 | $\begin{gathered} \mathrm{VDDA} / 2 \\ +0.05 \end{gathered}$ | V |
| Input current | IGND $\mid$ | GNDON $=$ " 00 ", A/D related are all OFF. <br> Current that flows in external parts is not included. | 0 |  | 1.0 | $\mu \mathrm{A}$ |
| High level output current | IoH | $\begin{aligned} & \text { GNDON = "01, } 10,11 " \\ & \text { VoH = GND }-10 \mathrm{mV} \end{aligned}$ |  |  | -100 | $\mu \mathrm{A}$ |
| Low level output current (1) | Iolı | $\begin{aligned} & \text { GNDON = "01" } \\ & \text { VoL1 }=\text { GND }+10 \mathrm{mV} \end{aligned}$ | 10.0 |  |  | $\mu \mathrm{A}$ |
| Low level output current (2) | IoL2 | $\begin{aligned} & \text { GNDON }=\text { " } 10 " \\ & \text { VoL2 }=\text { GND }+10 \mathrm{mV} \end{aligned}$ | 20.0 |  |  | $\mu \mathrm{A}$ |
| Low level output current (3) | Iol3 | $\begin{array}{\|l\|} \hline \text { GNDON }=" 11 " \\ \text { Vol3 }=\text { GND }+10 \mathrm{mV} \\ \hline \end{array}$ | 40.0 |  |  | $\mu \mathrm{A}$ |
| Temperature characteristics | GND/Ta | $\begin{aligned} & \mathrm{Ta}=0 \text { to } 50^{\circ} \mathrm{C}\left(25^{\circ} \mathrm{C} \text { standard }\right) \\ & \text { GNDON }=" 01,10,11 " \end{aligned}$ | -30 |  | 30 | ppm $/{ }^{\circ} \mathrm{C}$ |
| Supply voltage characteristics | GND/ ${ }_{\text {dDa }}$ | $\begin{aligned} & \text { VDDA }=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { GNDON }=01,10,11 " \end{aligned}$ |  | 0.5 | 10.0 | $\mathrm{mV} / \mathrm{V}$ |
| Power current consumption | IGND1 | GNDON = "01" |  | 125 | 500 | $\mu \mathrm{A}$ |
|  | IGND2 | GNDON = "10" |  | 250 | 1000 |  |
|  | IGND3 | GNDON = "11" |  | 500 | 2000 |  |

[^5]
## General-purpose operational amplifier

If no special requirement
$\mathrm{VDD}=\mathrm{V}$ dDA $=3 \mathrm{~V}, \mathrm{VsS}=\mathrm{VSSA}=0 \mathrm{~V}, \mathrm{foSC} 1=32.768 \mathrm{kHz}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VD1}, \mathrm{VC1}, \mathrm{VC2}$ and $\mathrm{VC3}$ are internal voltage, C1-C6 $=0.1 \mu \mathrm{~F}$

| Item | Symbol | Condition | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| High level output voltage | VoHA | $\begin{array}{l}\text { AMPONx }=" 1 ", \text { VAIM }=\text { GND } \\ \text { VAIP }=\text { GND }+10 \mathrm{mV}, \text { IoHA }=-10 \mu \mathrm{~A}\end{array}$ | $0.9 \cdot$ VDDA |  |  |  |$)$

* AMPONx indicates AMPON0 or AMPON1.
[Diagram for explanation of general-purpose operational amplifier]
IOHA, IOLA and VOF measurement circuits

[Diagram for explanation of reference voltage generation circuit]
- Temperature characteristic VR2/Ta

- Supply voltage characteristic VR2/VDDA


[^6]
### 7.5 Oscillation Characteristics

The oscillation characteristics change depending on the conditions (components used, board pattern, etc.). Use the following characteristics as reference values.

## OSC1 crystal oscillation circuit

If no special requirement
VdD $=3$ V, Vss $=0$ V, Crystal: C-002R (CI $=35 \mathrm{k} \Omega), \mathrm{CG}=25 \mathrm{pF}, \mathrm{CD}=$ built-in, $\mathrm{Ta}=25^{\circ} \mathrm{C}$

| Item | Symbol | Condition | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Oscillation start voltage | Vsta | tsta $\leq 3 \mathrm{sec}$ | 2.2 |  |  | V |
| Oscillation stop voltage | Vstp | tstp $\leq 10 \mathrm{sec}$ | 2.2 |  |  | V |
| Built-in capacitance (drain) | CD | Including incidental capacitance inside IC |  | 20 |  | pF |
| Frequency/voltage deviation | f/V | VDD $=2.2$ to 5.5 V |  |  | 5 | ppm |
| Frequency/IC deviation | f/IC |  | -10 |  | 10 | ppm |
| Frequency adjustment range | f/CG | CG $=5$ to 25 pF | 35 | 45 |  | ppm |
| Harmonic oscillation start voltage | Vhho | CG $=5 \mathrm{pF}$ |  |  | 7.0 | V |
| Permitted leak resistance | Rleak | Between OSC1 and VDD, Vss | 200 |  |  | $\mathrm{M} \Omega$ |

## OSC3 CR oscillation circuit

If no special requirement
VDD $=3 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{RCR}=39 \mathrm{k} \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}$

| Item | Symbol | Condition | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Oscillation frequency dispersion | fosc3 |  | -30 | $(900 \mathrm{kHz})$ | 30 | $\%$ |
| Oscillation start voltage | Vsta | VDD $=2.2$ to 5.5 V | 2.2 |  |  | V |
| Oscillation start time | tsta |  |  |  | 3 | msec |
| Oscillation stop voltage | Vstp |  | 2.2 |  |  | V |

## OSC3 ceramic oscillation circuit

If no special requirement
VDD $=3$ V, Vss $=0$ V, Ceramic oscillator: $1 \mathrm{MHz}, \mathrm{CGC}=\mathrm{CDC}=100 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

| Item | Symbol | Condition | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Oscillation start voltage | Vsta |  | 2.2 |  |  | V |
| Oscillation start time | tsta | VDD $=2.2$ to 5.5 V |  |  | 3 | msec |
| Oscillation stop voltage | Vstp |  | 2.2 |  |  | V |

## CHAPIER 8 PACKAGE

### 8.1 Plastic Package

## QFP5-100pin

(Unit: mm)


## QFP15-100pin

(Unit: mm)


### 8.2 Ceramic Package for Test Samples

(Unit: mm)


Note: The ceramic package is fixed in this form regardless selecting of the plastic package form.

## CHAPIER 9 PAD LAYOUT

### 9.1 Diagram of Pad Layout



Chip thickness: $400 \mu \mathrm{~m}$
Pad opening: $100 \mu \mathrm{~m}$

### 9.2 Pad Coordinates

(Unit: $\mu \mathrm{m}$ )

| Pad No. | Pad name | X | Y | Pad No. | Pad name | X | Y | Pad No. | Pad name | x | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N.C. | 2,512 | 2,586 | 38 | SEG22 | -2,512 | 526 | 75 | VRA | 1,004 | -2,586 |
| 2 | N.C. | 2,214 | 2,586 | 39 | SEG23 | -2,512 | 366 | 76 | VD1 | 1,168 | -2,586 |
| 3 | $\overline{\text { RESET }}$ | 2,051 | 2,586 | 40 | SEG24 | -2,512 | 139 | 77 | K10 | 1,413 | -2,586 |
| 4 | $\overline{\text { TEST }}$ | 1,889 | 2,586 | 41 | SEG25 | -2,512 | -22 | 78 | K03 | 1,576 | -2,586 |
| 5 | CC | 1,693 | 2,586 | 42 | SEG26 | -2,512 | -182 | 79 | K02 | 1,739 | -2,586 |
| 6 | CB | 1,533 | 2,586 | 43 | SEG27 | -2,512 | -343 | 80 | K01 | 1,902 | -2,586 |
| 7 | CA | 1,372 | 2,586 | 44 | SEG28 | -2,512 | -503 | 81 | K00 | 2,065 | -2,586 |
| 8 | Vc3 | 1,212 | 2,586 | 45 | SEG29 | -2,512 | -663 | 82 | N.C. | 2,512 | -2,586 |
| 9 | VC2 | 1,051 | 2,586 | 46 | SEG30 | -2,512 | -824 | 83 | N.C. | 2,512 | -2,297 |
| 10 | VC1 | 891 | 2,586 | 47 | SEG31 | -2,512 | -984 | 84 | N.C. | 2,512 | -2,134 |
| 11 | Vca | 731 | 2,586 | 48 | CO | -2,512 | -1,349 | 85 | N.C. | 2,512 | -1,971 |
| 12 | COM3 | 570 | 2,586 | 49 | AIF | -2,512 | -1,512 | 86 | N.C. | 2,512 | -1,809 |
| 13 | COM2 | 410 | 2,586 | 50 | AI4 | -2,512 | -1,675 | 87 | Vss | 2,512 | -1,589 |
| 14 | COM1 | 249 | 2,586 | 51 | AI3 | -2,512 | -1,837 | 88 | OSC1 | 2,512 | -1,273 |
| 15 | COM0 | 89 | 2,586 | 52 | AI2 | -2,512 | -2,000 | 89 | OSC2 | 2,512 | -1,110 |
| 16 | SEG0 | -235 | 2,586 | 53 | Vssa | -2,512 | -2,165 | 90 | OSC3 | 2,512 | -947 |
| 17 | SEG1 | -396 | 2,586 | 54 | N.C. | -2,512 | -2,327 | 91 | OSC4 | 2,512 | -785 |
| 18 | SEG2 | -556 | 2,586 | 55 | N.C. | -2,512 | -2,586 | 92 | VdD | 2,512 | -623 |
| 19 | SEG3 | -717 | 2,586 | 56 | N.C. | -2,187 | -2,586 | 93 | R03 | 2,512 | -461 |
| 20 | SEG4 | -877 | 2,586 | 57 | AI1 | -2,025 | -2,586 | 94 | R02 | 2,512 | -299 |
| 21 | SEG5 | -1,037 | 2,586 | 58 | AI0 | -1,862 | -2,586 | 95 | R01 | 2,512 | -136 |
| 22 | SEG6 | -1,232 | 2,586 | 59 | CI | -1,699 | -2,586 | 96 | R00 | 2,512 | 27 |
| 23 | SEG7 | -1,392 | 2,586 | 60 | CAZ | -1,536 | -2,586 | 97 | P00 | 2,512 | 289 |
| 24 | SEG8 | -1,553 | 2,586 | 61 | BF | -1,373 | -2,586 | 98 | P01 | 2,512 | 451 |
| 25 | SEG9 | -1,713 | 2,586 | 62 | RI | -1,211 | -2,586 | 99 | P02 | 2,512 | 614 |
| 26 | SEG10 | -1,873 | 2,586 | 63 | CH | -1,048 | -2,586 | 100 | P03 | 2,512 | 777 |
| 27 | SEG11 | -2,034 | 2,586 | 64 | CL | -885 | -2,586 | 101 | P10 | 2,512 | 940 |
| 28 | SEG12 | -2,512 | 2,130 | 65 | GND | -722 | -2,586 | 102 | P11 | 2,512 | 1,103 |
| 29 | SEG13 | -2,512 | 1,970 | 66 | VdDa | -558 | -2,586 | 103 | P12 | 2,512 | 1,265 |
| 30 | SEG14 | -2,512 | 1,809 | 67 | AOUT0 | -397 | -2,586 | 104 | P13 | 2,512 | 1,428 |
| 31 | SEG15 | -2,512 | 1,649 | 68 | AIP0 | -234 | -2,586 | 105 | P20 | 2,512 | 1,591 |
| 32 | SEG16 | -2,512 | 1,489 | 69 | AIM0 | 27 | -2,586 | 106 | P21 | 2,512 | 1,754 |
| 33 | SEG17 | -2,512 | 1,328 | 70 | AIP1 | 190 | -2,586 | 107 | P22 | 2,512 | 1,917 |
| 34 | SEG18 | -2,512 | 1,168 | 71 | AIM1 | 353 | -2,586 | 108 | P23 | 2,512 | 2,079 |
| 35 | SEG19 | -2,512 | 1,007 | 72 | AOUT1 | 515 | -2,586 | 109 | N.C. | 2,512 | 2,286 |
| 36 | SEG20 | -2,512 | 847 | 73 | VR1 | 678 | -2,586 |  |  |  |  |
| 37 | SEG21 | -2,512 | 687 | 74 | VR2 | 841 | -2,586 |  |  |  |  |

II.

## E0C6274 Technical Software

## CONIENTS

CHAPIER 1 INIRODUCTION ..... II-1
CHAPIER 2 BLOCK DIAGRAM ..... II-2
CHAPIER 3 PROGRAM MEMORY (ROM) ..... II-3
3.1 Configuration of the ROM ..... II-3
3.2 Interrupt Vector ..... II-3
CHAPIER 4 DATA MEMORY ..... II-4
4.1 Configuration of the Data Memory ..... II-4
4.2 Detail Map of the I/O Memory ..... II-6
CHAPTER 5 INTIALRESET ..... II-10
5.1 Initialized Status ..... II-10
5.2 Example Program for the System Initialization ..... II-11
5.3 Programing Note for the System Initialization ..... II-12
CHAPIER 6 PERIPHERALCIRCUITS ..... II-13
6.1 Watchdog Timer ..... II-13
I/O data memory of the watchdog timer ..... II-13
Control of the watchdog timer ..... II-13
Example program for the watchdog timer ..... II-14
Programing notes ..... II-14
6.2 OSC3 ..... II-15
I/O data memory of the OSC3 ..... II-15
Control of the OSC3 ..... II-15
Example program for the OSC3 ..... II-15
Programming notes ..... II-16
6.3 Input Ports (K00-K03 and K10) ..... II-17
I/O data memory of the input ports ..... II-17
Control of the input ports ..... II-18
Example program for the input ports ..... II-20
Programming notes ..... II-21
6.4 Output Ports (R00-R03) ..... II-22
I/O data memory of the output ports ..... II-22
Control of the general output ports ..... II-22
Example program for the general output ports ..... II-23
Control of the special use output ports ..... II-24
Example program for the special use output ports ..... II-25
Programming notes ..... II-26
6.5 I/O Ports (P00-P03, P10-P13 and P20-P23) ..... II-27
I/O data memory of the I/O ports ..... II-27
Control of the I/O ports ..... II-27
Example program for the I/O ports ..... II-28
Serial I/O port ..... II-31
Programming notes ..... II-3 1
6.6 LCD Driver ..... II-32
I/O data memory of the LCD driver ..... II-32
Control of the LCD driver ..... II-32
Example program for the LCD driver ..... II-33
Programming notes ..... II-35
6.7 Clock Timer ..... II-36
I/O data memory of the clock timer ..... II-36
Control of the clock timer ..... II-36
Example program for the clock timer ..... II-37
Programming notes ..... II-38
6.8 Stopwatch Timer ..... II-39
I/O data memory of the stopwatch timer ..... II-39
Control of the stopwatch timer ..... II-39
Example program for the stopwatch timer ..... II-40
Programming notes ..... II-42
6.9 Programmable Timer ..... II-43
I/O data memory of the programmable timer ..... II-43
Control of the programmable timer ..... II-44
Example program for the programmable timer ..... II-46
Programming notes ..... II-48
6.10 Serial Interface Circuit ..... II-49
I/O data memory of the serial interface circuit ..... II-49
Control of the serial interface circuit ..... II-49
Example program for the serial interface circuit ..... II-51
Programming notes ..... II-54
6.11 Amplifier ..... II-55
I/O data memory of the amplifier circuit ..... II-55
Control of the amplifier circuit ..... II-55
Example program for the amplifier circuit ..... II-56
Programming notes ..... II-56
6.12 SVD (Supply Voltage Detection) Circuit ..... II-57
I/O data memory of the SVD circuit ..... II-57
Control of the SVD circuit ..... II-57
Example program for the SVD circuit ..... II-58
Programming notes ..... II-58
6.13 A/D Converter ..... II-59
I/O data memory of A/D converter ..... II-59
Feature of the A/D converter ..... II-60
Control of the A/D converter ..... II-60
Example program for the A/D converter ..... II-62
Programming notes ..... II-64
6.14 Sleep ..... II-65
I/O data memory of sleep function ..... II-65
Control of the sleep function ..... II-65
Example program for the sleep function ..... II-66
Programming notes ..... II-68
6.15 Interrupt ..... II-69
Interrupt vector, factor flag, and mask register ..... II-69
Example program for the interrupt ..... II-71
Programming notes ..... II-75
CHAPIER 7 SUMMARY OF NOTES ..... II-76
7.1 Notes for Low Current Consumption ..... II-76
7.2 Summary of Notes by Function ..... II-77
APPENDIX A EOC6274 DATA MEMORY (RAM) MAP ..... II-82
APPENDIX B EOC6274 INSIRUCTION SET. ..... II-87
APPENDIX C PSEUDO-INSTRUCTION TABLE OF THE CROSS ASSEMBLER ..... II-92
APPENDIX D COMMAND TABLE OF ICE6200 ..... II-93

## CHAPIER 1 INIRODUCTION

The E0C6274 is a microcomputer with a C-MOS 4-bit core CPU E0C6200A as main component, and dual slope A/D converter 4,096 steps $\times 12$ bits ROM, 512 words $\times 4$ bits RAM, programmable timer, clock timer, clock synchronous serial interface, etc. built-in. Because of its low-voltage operation and low power consumption, this series is ideal for a wide range of application, and is especially suitable for battery-driven system.

## CHAPIER 2 BLOCK DIAGRAM

The E0C6274 block diagram is shown in Figure 2.1.

Fig. 2.1
E0C6274 block diagram


## CHAPIER 3 PROGRAM MEMORY (ROM)

### 3.1 Configuration of the ROM

E0C6274 is built-in with 4,096 steps $\times 12$ bits mask ROM for program storage.
The program area is $16(0-15)$ pages, each $256(00 H-F F H)$ steps. After initial reset, the program beginning address is page 1 , step 00 H . The interrupt vector is allocated to page 1 , steps $02 \mathrm{H}-0 \mathrm{FH}$. The configuration of the ROM is as shown in Figure 3.1.1.

Fig. 3.1.1
Configuration of the ROM


### 3.2 Intemupt Vector

The interrupt vector and interrupt request correspondence is shown in Table 3.2.1.

Table 3.2.1 Interrupt request and interrupt vector

| Interrupt vector <br> (PCP and PCS) | Interrupt request | Priority |
| :---: | :--- | :---: |
| 102 H | Clock timer interrupt |  |
| 104 H | Stopwatch timer interrupt |  |
| 106 H | A/D converter interrupt |  |
| 108 H | Input (K00-K03) interrupt |  |
| 10 AH | Input (K10) interrupt | $\downarrow$ <br> High |
| 10 CH | Serial interface interrupt |  |
| 10 EH | Programmable timer interrupt |  |

$\begin{array}{ll}\text { * Sleep cancelled by: } & \text { 1. Input (K10) interrupt } \\ & \text { 2. System reset }\end{array}$
When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.

## CHAPIER 4 DATA MEMORY

### 4.1 Configuration of the Data Memory

The data memory consist of 512 words RAM, and I/O memory which controls the peripheral circuit.

Figure 4.1 .1 show the configuration of the data memory.
When you make your program, please take note of the following:
(1) Since the stack area is taken from the RAM area, take care that destruction of stack data due to data writing does not occur. Sub-routine calls or interrupts consume 3 words of the stack area.
(2) RAM address $000 \mathrm{H}-00 \mathrm{FH}$ are memory register areas that are addressed with register pointer RP.

Note: Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these area.

| Address Page | Low <br> High | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | M0 | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | MA | MB | MC | MD | ME | MF |
|  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 | RAM (128 words $\times 4$ bits) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5 | R/W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 8 | Display memory (32 words $\times 4$ bits) W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A | Unused area |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C | I/O memory (56 words x 4 bits) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | D |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | F |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 0 | RAM (128 words $\times 4$ bits) R/W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 8 | Display memory (32 words $\times 4$ bits) W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A | Unused area |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C | I/O memory (56 words $\times 4$ bits) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | D |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Unused area

Fig. 4.1.1 Data memory map

| Address Page | Ligh | 0 | 1 | 2 | 3 |  | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | RAM (128 words $\times 4$ bits) R/W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 8 | Display memory (32 words $\times 4$ bits) W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A | Unused area |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | D | I/O memory (56 words x 4 bits) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | F |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | RAM (128 words $\times 4$ bits)R/W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 8 | Display memory (32 words $\times 4$ bits) W |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | A | Unused area |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | C | I/O memory ( 56 words $\times 4$ bits) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | D |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | E |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.2 Detail Map of the I/O Memory

Tables 4.2.1(a)-(d) show the detail map of the I/O memory.
Table 4.2.1(a) I/O memory map (COH-CCH)

| Address |  | Reg |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *7 | D3 | D2 | D1 | D0 | Name | Init*1 | 1 | 0 |  |
| COH |  |  |  |  |  | - *2 | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (programmable timer) |
|  | 0 | 0 | 0 | IPT | $\begin{array}{rr} 0 & * 5 \\ 0 & * 5 \\ \text { IPT } & * 4 \end{array}$ | $\begin{aligned} & \mathbf{-}^{* 2} \\ & -{ }^{*} 2 \\ & 0 \\ & \hline \end{aligned}$ |  |  |  |
|  | R |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| C 1 H | 0 | 0 | 0 | ISIO | $\begin{array}{rr\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \mathrm{ISIO} & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline \mathbf{-}^{*} 2 \\ & -{ }^{*} 2 \\ & -{ }^{* 2} \\ & 0 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (serial interface) |
|  | 0 | 0 | 0 | ISIO |  |  |  |  |  |
|  | R |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| C 2 H | 0 | 0 | 0 | IK1 | $\begin{array}{rr} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IK1 } & * 4 \end{array}$ | $\begin{aligned} & \hline \text { - }^{* 2} \\ & -{ }^{*} 2 \\ & -{ }^{*} 2 \\ & 0 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (K10) |
|  |  |  |  |  |  |  |  |  |  |
|  | R |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| C 3 H | 0 | 0 | 0 | IKO | $\begin{array}{\|rr\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IK0 } & * 4 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { - *2 } \\ & -{ }^{*} 2 \\ & -{ }^{*} 2 \\ & 0 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (K00-K03) |
|  | 0 |  |  | , |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| C4H | 0 | 0 | 0 | IAD | $\begin{array}{rr} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \mathrm{IAD} & * 4 \end{array}$ | $\begin{aligned} & \hline \text { * }^{2} \\ & -{ }^{* 2} \\ & -{ }^{* 2} \\ & 0 \\ & \hline \end{aligned}$ | Yes | No | Unused <br> Unused <br> Unused <br> Interrupt factor flag (A/D converter) |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| C 5 H | 0 | 0 | ISW1 | ISW0 | $\begin{array}{rr} 0 & * 5 \\ 0 & * 5 \\ \text { ISW } 1 * 4 \\ \text { ISW0 } & 4 \end{array}$ | $\begin{aligned} & \mathbf{-}^{* 2} \\ & -{ }^{*} 2 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$ | Unused <br> Unused <br> Interrupt factor flag (stopwatch 1 Hz ) <br> Interrupt factor flag (stopwatch 10 Hz ) |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| C 6 H | IT1 | IT2 | IT8 | IT32 | $\begin{aligned} & \hline \text { IT1 } * 4 \\ & \text { IT2 } * 4 \\ & \text { IT8 } * 4 \\ & \text { IT32 } * 4 \\ & \hline \end{aligned}$ | 0000 | Yes <br> Yes <br> Yes <br> Yes | $\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \\ & \text { No } \end{aligned}$ | Interrupt factor flag (clock timer 1 Hz ) Interrupt factor flag (clock timer 2 Hz ) Interrupt factor flag (clock timer 8 Hz ) Interrupt factor flag (clock timer 32 Hz ) |
|  |  |  |  |  |  |  |  |  |  |
|  | R |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{C8H}$ | 0 | EIAD | EISIO | EIPT | $\begin{aligned} & 0^{* 5} \\ & \text { EIAD } \\ & \text { EISIO } \\ & \text { EIPT } \\ & \hline \end{aligned}$ | $\begin{aligned} & -^{* 2} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Enable <br> Enable <br> Enable | Mask <br> Mask <br> Mask | Unused <br> Interrupt mask register (A/D converter) <br> Interrupt mask register (serial interface) <br> Interrupt mask register (programmable timer) |
|  |  |  |  |  |  |  |  |  |  |
|  | R | R/W |  |  |  |  |  |  |  |
|  | R |  |  |  |  |  |  |  |  |  |  |
| C 9 H | 0 | 0 | EIK1 | EIKO | $\begin{array}{cc} \hline 0 & * 5 \\ 0 & * 5 \\ \text { EIK1 } \\ \text { EIK0 } \\ \hline \end{array}$ | $\begin{aligned} & \text { - }^{* 2} \\ & \mathbf{-}^{*}{ }^{*} \\ & 0 \\ & 0 \end{aligned}$ | Enable Enable | Mask <br> Mask | UnusedUnusedInterrupt mask register (K10)Interrupt mask register (K00-K03) |
|  |  | 0 | EIK |  |  |  |  |  |  |
|  | R |  | R/W |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CAH | SIK03 | SIK02 | SIK01 | SIK00 | $\begin{aligned} & \hline \text { SIK03 } \\ & \text { SIK02 } \\ & \text { SIK01 } \\ & \text { SIK00 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Enable <br> Enable <br> Enable <br> Enable | Disable <br> Disable <br> Disable <br> Disable | Interrupt selection register (K03) <br> Interrupt selection register (K02) <br> Interrupt selection register (K01) <br> Interrupt selection register (K00) |
|  |  |  |  |  |  |  |  |  |  |
|  | R/W |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| CBH | 0 | 0 | EISW1 | EISW0 | $0 \quad * 5$00EISW1EISW0 | $\begin{aligned} & \hline \text { - }^{*} \\ & -{ }^{*} 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Enable <br> Enable | Mask <br> Mask | Unused <br> Unused <br> Interrupt mask register (stopwatch 1 Hz ) <br> Interrupt mask register (stopwatch 10 Hz ) |
|  |  |  |  | EISW0 |  |  |  |  |  |
|  | R |  | R/W |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| CCH | EIT1 | EIT2 | EIT8 | EIT32 | EIT1 | 0 | Enable | Mask | Interrupt mask register (clock timer 1 Hz ) |
|  | ElT1 | EIT2 | Elt | ElT32 | EIT2 | 0 | Enable | Mask | Interrupt mask register (clock timer 2 Hz ) |
|  | R/W |  |  |  | EIT8 | 0 | Enable | Mask | Interrupt mask register (clock timer 8 Hz ) |
|  |  |  |  |  | EIT32 | 0 | Enable | Mask | Interrupt mask register (clock timer 32 Hz ) |

## Remarks

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read

[^7]Table 4.2.1(b) I/O memory map (DOH-DFH)

| Address*7 | Register |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 | Name | Init *1 | 1 | 0 |  |
| DOH | R |  |  |  | $\begin{aligned} & \text { K03 } \\ & \text { K02 } \\ & \text { K01 } \\ & \text { K00 } \\ & \hline \end{aligned}$ | $\begin{aligned} & -* 2 \\ & -* * 2 \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$ | High <br> High <br> High <br> High | Low <br> Low <br> Low <br> Low | $\square]$ Input port (K00-K03) |
| D1H | 0 | 0 | ${ }^{0}$ | K10 | $\begin{array}{\|cc\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { K10 } & \\ \hline \end{array}$ | $\begin{aligned} & -*_{2} \\ & -*{ }^{2} \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$ | High | Low | Unused <br> Unused <br> Unused <br> Input port (K10) |
| D2H | R/W |  |  |  | $\begin{aligned} & \text { DFK03 } \\ & \text { DFK02 } \\ & \text { DFK01 } \\ & \text { DFK00 } \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\frac{7}{2}$ | $\begin{gathered} f \\ f \\ 5 \end{gathered}$ | $[$ Input comparison register (K00-K03) |
| D3H | R |  | 0 | DFK10 <br> R/W | $\begin{array}{cc} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { DFK10 } \end{array}$ | $\begin{aligned} & \hline{ }^{*}{ }^{*} \\ & -*_{2} \\ & -{ }^{*} 2 \\ & 1 \end{aligned}$ | 7 | ${ }^{5}$ | Unused <br> Unused <br> Unused <br> Input comparison register (K10) |
| D4H | R/W |  |  | R00 <br> $\overline{\text { FOUT }}$ | R03 $\overline{B Z}$ R02 BZ $\frac{\text { R01 }}{\text { PTOVF }}$ $\frac{\text { R00 }}{\text { FOUT }}$ | 0 <br> 0 <br> 1 <br> 1 | $\begin{gathered} \text { High } \\ \text { On } \\ \text { High } \\ \text { On } \\ \text { High } \\ \text { Off } \\ \text { High } \\ \text { Off } \\ \hline \end{gathered}$ | Low <br> Off <br> Low <br> Off <br> Low <br> On <br> Low <br> On | Output port (R03) <br> Buzzer inverted output <br> Output port (R02) <br> Buzzer output <br> Output port (R01) <br> PTOVF output <br> Output port (R00) <br> FOUT output |
| D6H | 0 $R$ | R/W |  |  | $\begin{gathered} 0^{* 5} \\ \mathrm{IOC2} \\ \mathrm{IOC1} \\ \mathrm{IOCO} \end{gathered}$ | $\begin{aligned} & \hline \text { - }_{2} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Output Output | Input <br> Input <br> Input | Unused <br> I/O control register 2 ( $\mathrm{P} 20-\mathrm{P} 23$ ) <br> I/O control register 1 (P10-P13) <br> I/O control register 0 (P00-P03) |
| D7H | 0 $R$ | R/W |  |  | $\begin{gathered} 0^{0}{ }^{* 5} \\ \text { PUP2 } \\ \text { PUP1 } \\ \text { PUP0 } \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \text { - }^{*} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | On <br> On <br> On | Off <br> Off Off | Unused  <br> Pull up control register $2(\mathrm{P} 20-\mathrm{P} 23)$ $* 6$ <br> Pull up control register $1(\mathrm{P} 10-\mathrm{P} 13)$  <br> Pull up control register $0(\mathrm{P} 00-\mathrm{P} 03)$  |
| D8H | R/W |  |  |  | $\begin{aligned} & \hline \text { P03 } \\ & \text { P02 } \\ & \text { P01 } \\ & \text { P00 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { - } *_{2} \\ & -*{ }_{2} \\ & -* 2 \\ & - \\ & *_{2} \end{aligned}$ | High <br> High <br> High <br> High | Low <br> Low <br> Low <br> Low | $]$ I/O port (P00-P03) |
| D9H | R/W |  |  |  | $\begin{aligned} & \hline \text { P13 } \\ & \text { P12 } \\ & \text { P11 } \\ & \text { P10 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline-*_{2} \\ & -* 2 \\ & -* 2 \\ & -*_{2} \\ & \hline \end{aligned}$ | High <br> High <br> High <br> High | Low <br> Low <br> Low <br> Low | $[$ I/O port (P10-P13) |
| DAH | R/W |  |  |  | $\begin{aligned} & \text { P23 } \\ & \text { P22 } \\ & \text { P21 } \\ & \text { P20 } \end{aligned}$ | $\begin{aligned} & \text { - } *_{2} \\ & -* *_{2} \\ & -*{ }_{2} \\ & -* 2 \end{aligned}$ | High <br> High <br> High <br> High | Low <br> Low <br> Low <br> Low |  |
| DBH | R/W |  |  |  | $\begin{gathered} \text { PFS } \\ \text { SDP } \\ \text { SCS1 } \\ \text { SCS0 } \end{gathered}$ | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Serial I/F LSB first | I/O port MSB first | P2 port function selection <br> Serial data input/output permutation <br> Serial interface clock mode selection <br> 0: slave, 1: PTOVF, 2: CLK/2, 3: CLK <br>  |
| DCH | R |  |  | SCTRG W | 0 $* 5$ <br> 0 $* 5$ <br> SCRUN  <br> SCTRG*5  | $\begin{aligned} & -*_{2} \\ & -*_{2} \\ & 0 \\ & -*_{2} \\ & \hline \end{aligned}$ | $\begin{array}{\|c} \text { Run } \\ \text { Trigger } \end{array}$ | Stop | Unused <br> Unused <br> Serial interface status <br> Serial interface clock trigger |
| DDH | R/W |  |  |  | $\begin{aligned} & \hline \text { SD3 } \\ & \text { SD2 } \\ & \text { SD1 } \\ & \text { SD0 } \end{aligned}$ | $\begin{aligned} & \text { - } *_{2} \\ & -*{ }_{2} \\ & - \\ & -* 2 \\ & - \end{aligned}$ |  |  | $[]_{\text {LSB }} \text { Serial interface data (low-order } 4 \text { bits) }$ |
| DEH | R/W |  |  | SD4 | $\begin{aligned} & \hline \text { SD7 } \\ & \text { SD6 } \\ & \text { SD5 } \\ & \text { SD4 } \end{aligned}$ | $\begin{aligned} & \hline-*_{2} \\ & -* 2 \\ & -* 2 \\ & -* 2 \end{aligned}$ |  |  | $\square] \begin{aligned} & \text { MSB } \\ & \text { Serial interface data (high-order } 4 \text { bits) }\end{aligned}$ |
| DFH | 0 | 0 | CLKCHG | OSCC | 0 $* 5$ <br> 0 $* 5$ <br> CLKCHG  <br> OSCC  | $\begin{aligned} & \hline \text { * }_{2} \\ & -{ }^{*} 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{gathered} \text { OSC3 } \\ \text { On } \\ \hline \end{gathered}$ | $\begin{gathered} \text { OSC1 } \\ \text { Off } \end{gathered}$ | Unused <br> Unused <br> CPU system clock switch OSC3 oscillation On/Off |

Table 4.2.1(c) I/O memory map (EOH-EFH)

| Address *7 | Register |  |  |  | Name | Init*1 | 1 | 0 | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 |  |  |  |  |  |
|  | BZR03 | BZR02 | 0 | BZFQ | $\begin{aligned} & \hline \text { BZR03 } \\ & \text { BZR02 } \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\overline{\text { Buzzer }}$ <br> Buzzer | $\begin{aligned} & \hline \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$ | R03 port output selection R02 port output selection |
|  | R/W |  | R | R/W | $\begin{gathered} 0 * 5 \\ \text { BZFQ } \\ \hline \end{gathered}$ | $\begin{aligned} & -^{* 2} \\ & 0 \end{aligned}$ | 2 kHz | 4kHz | Unused <br> Buzzer frequency selection |
| E1H | FOR00 | 0 | FOFQ1 | FOFQ0 | $\begin{array}{rl} \text { FOROO } \\ 0 & * 5 \end{array}$ | $\begin{aligned} & \hline 0 \\ & -* 2 \end{aligned}$ | FOUT | DC | R00 port output selection Unused |
|  | R/W | R | R/W |  | FOFQ1 <br> FOFQ0 | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ |  |  | $\begin{aligned} & \text { FOUT frequency selection } \\ & 0: 512 \mathrm{~Hz}, 1: 4096 \mathrm{~Hz}, 2: \text { fosc1, 3: fosc3 } \end{aligned}$ |
| E2H | R |  | 0 | TMRST <br> $W$ | 0 $* 5$ <br> 0 $* 5$ <br> 0 $* 5$ <br> TMRST*5  | $\begin{aligned} & \text { - } *_{2} \\ & -*{ }_{2} \\ & -* 2 \\ & -* 2 \end{aligned}$ | Reset | - | Unused <br> Unused <br> Unused <br> Clock timer and watchdog timer reset |
| E3H | TM3 | TM2 | TM1 | TM0 | $\begin{aligned} & \hline \text { TM3 } \\ & \text { TM2 } \\ & \text { TM1 } \\ & \text { TM0 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { - *3 } \\ & -* 3 \\ & -* 3 \\ & -* 3 \end{aligned}$ |  |  | Clock timer data ( 16 Hz ) <br> Clock timer data ( 32 Hz ) <br> Clock timer data $(64 \mathrm{~Hz})$ <br> Clock timer data ( 128 Hz ) |
| E4H | R |  |  |  | $\begin{aligned} & \text { TM7 } \\ & \text { TM6 } \\ & \text { TM5 } \\ & \text { TM4 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline-* 3 \\ & -* 3 \\ & -* 3 \\ & -* 3 \\ & \hline \end{aligned}$ |  |  | Clock timer data ( 1 Hz ) <br> Clock timer data ( 2 Hz ) <br> Clock timer data ( 4 Hz ) <br> Clock timer data ( 8 Hz ) |
| E5H | WDRST W | 0 | WD1 R | WD0 | $\begin{array}{\|cc\|} \hline \text { WDRST*5 } \\ 0 & * 5 \\ \text { WD1 } \\ \text { WD0 } \\ \hline \end{array}$ | Reset $\begin{aligned} & \text { - }^{* 2} \\ & 0 \\ & 0 \end{aligned}$ | Reset | - | Watchdog timer reset <br> Unused <br> Watchdog timer data $(1 / 4 \mathrm{~Hz})$ <br> Watchdog timer data $(1 / 2 \mathrm{~Hz})$ |
| E6H | 0 | 0 | SWRUN R/W | SWRST W | 0 $* 5$ <br> 0 $* 5$ <br> SWRUN <br> SWRST*5 | $\begin{aligned} & -{ }^{-* 2} \\ & -{ }^{2} \\ & 0 \\ & \text { Reset } \end{aligned}$ | Run Reset | Stop | Unused <br> Unused <br> Stopwatch timer Run/Stop Stopwatch timer reset |
| E7H | R |  |  | SWLO | SWL3 <br> SWL2 <br> SWL1 <br> SWLO | $\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ |  |  | $]_{\text {LSB }} \int_{\text {Stopwatch timer data } 1 / 100 \sec (B C D)}^{\text {MSB }}$ |
| E8H | R |  |  |  | SWH3 <br> SWH2 <br> SWH1 <br> SWH0 | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\int_{\text {LSB }}^{\text {MSB }} \text { Stopwatch timer data } 1 / 10 \sec (B C D)$ |
| E9H | PTR01 <br> R/W | 0 $R$ | PTRUN R/W | PTRST <br> $W$ | PTR01 $0 \quad * 5$ PTRUN PTRST*5 | $\begin{aligned} & \hline 0 \\ & -*_{2} \\ & 0 \\ & -*_{2} \\ & \hline \end{aligned}$ | PTOVF <br> Run <br> Reset | $\mathrm{DC}$ <br> Stop | R01 port output selection <br> Unused <br> Programmable timer Run/Stop <br> Programmable timer reset (reload) |
| EAH | R/W |  |  |  | $\begin{aligned} & \text { PTD1 } \\ & \text { PTD0 } \\ & \text { PTC1 } \\ & \text { PTC0 } \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | Programmable timer pre-divider selection 0: $1 / 256,1: 1 / 32,2: 1 / 4,3: 1 / 1$ <br> Programmable timer clock source selection 0: K10 (NR), 1: K10, 2: fosC1, 3: fosc3 |
| EBH | R |  |  |  | PT3 <br> PT2 <br> PT1 <br> PT0 | $\begin{aligned} & \text { - } * 3 \\ & -* 3 \\ & -* 3 \\ & -* 3 \end{aligned}$ |  |  | $]_{\text {LSB }}^{\text {Programmable timer data (low-order } 4 \text { bits) }}$ |
| ECH | PT7 | R |  | PT4 | PT7 <br> PT6 <br> PT5 <br> PT4 | $\begin{aligned} & \hline \text { - *3 } \\ & -* 3 \\ & -* 3 \\ & -* 3 \\ & \hline \end{aligned}$ |  |  | $]^{\text {MSB }}$ Programmable timer data (high-order 4 bits) |
| EDH | RD3 | R/W |  | RD0 | $\begin{aligned} & \hline \text { RD3 } \\ & \text { RD2 } \\ & \text { RD1 } \\ & \text { RD0 } \\ & \hline \end{aligned}$ |  |  |  | $\int_{\text {LSB }}^{\text {Programmable timer reload data }} \begin{aligned} & \text { (low-order } 4 \text { bits) } \end{aligned}$ |
| EEH | RD7 | R/W |  | RD4 | $\begin{aligned} & \text { RD7 } \\ & \text { RD6 } \\ & \text { RD5 } \\ & \text { RD4 } \end{aligned}$ | $\begin{aligned} & \text { _ *3 } \\ & -* 3 \\ & -* 3 \\ & -* 3 \end{aligned}$ |  |  | $\left[\begin{array}{l} \text { MSB } \\ \text { Programmable timer reload data } \\ \quad \text { (high-order } 4 \text { bits) } \end{array}\right.$ |
| EFH | LDTY1 | LDTY0 | 0 $R$ | LCDON R/W | LDTY1 <br> LDTYO <br> 0 *5 <br> LCDON | $\begin{aligned} & 0 \\ & 0 \\ & \mathbf{-}^{*}{ }^{*} \\ & 0 \end{aligned}$ | On | Off | LCD drive duty selection $0: 1 / 4,1: 1 / 3,2: 1 / 2,3: 1 / 1$ Unused LCD display control (LCD display all off) |

Table 4.2.1(d) I/O memory map (FOH-FFH)


## CHAPIER 5 INITIALRESET

### 5.1 Initialized Status

The CPU core and peripheral circuits are initialized by initial resetting as follows:

Table 5.1.1 Initialized status

| CPU Core |  |  |  |
| :--- | :---: | :---: | :---: |
| Name | Symbol | Number of bits | Setting value |
| Program counter step | PCS | 8 | 00 H |
| Program counter page | PCP | 4 | 1 H |
| New page pointer | NPP | 4 | 1 H |
| Stack pointer | SP | 8 | Undefined |
| Index register IX | IX | 10 | Undefined |
| Index register IY | IY | 10 | Undefined |
| Rejister pointer | RP | 4 | Undefined |
| General-purpose register A | A | 4 | Undefined |
| General-purpose register B | B | 4 | Undefined |
| Interrupt flag | I | 1 | 0 |
| Decimal flag | D | 1 | 0 |
| Zero flag | Z | 1 | Undefined |
| Carry flag | C | 1 | Undefined |


| Peripheral circuits |  |  |
| :--- | :---: | :---: |
| Name | Number of bits | Setting value |
| RAM | 4 | Undefined |
| Display memory | 4 | Undefined *2 |
| Other peripheral circuit | - | $* 1$ |

*1 See Tables 4.2.1(a)-(d)
*2 Bits corresponding to COM0 is set to 1 .
Note: Undefined values must be defined by the program.

### 5.2 Example Program for the System Initialization

Following program shows the example of the procedure for system initialization.

```
Label Mnemonic/operand Comment
;*
;* INITIAL RESET PROGRAM
;*
;
    ORG 100H
    JP INIT
;
    ORG 110H
;
INIT:
;* INITIALIZE CPU CORE AT THE BEGINNING
;
    RST F,0000B ; CLEAR IDZC FLAGS
;
    LD A,08H ;SET STACK POINTER TO 080H
    LD SPH,A
    LD A,OOH
    LD SPL,A
;
;* CLEAR DATA MEMORY
;
CLR: LD A,0 ;CLEAR PAGE 0 AND 1
    LD XP,A
    LD A,1
    LD YP,A
    LD X,OOH
    LD Y,OOH
CLR1: LBPX MX,OH ;CLEAR RAMS
    LDPY MY,OH
    LDPY MY,OH
    CP XH,08H ;CONTINUE TILL 080H
    JP C,CLR1
;
    LD A,2 ;CLEAR PAGE 2 AND 3
    LD XP,A
    LD A,3
    LD YP,A
    LD X,OOH
    LD Y,OOH
CLR2: LBPX MX,OH ;CLEAR RAMS
```

```
        LDPY MY,OH
        LDPY MY,OH
        CP XH,08H ; CONTINUE TILL 080H
        JP C,CLR2
;
;* INITIALIZE PERIPHERAL CIRCUITS
;
RSTCM:LD X,OE2H ;RESET CLOCK TIMER
    OR MX,0001B
; :
i
```


### 5.3 Programing Note for the System Initialization

In some of initial registers and initial data memory area, the initial value is undefined after reset. Set them proper initial values by the program, as necessary.

## CHAPIER 6 PERIPHERALCIRCUITS

### 6.1 Watchdog Timer

## I/O data memory of the watchdog timer

Table 6.1.1 Control registers of watchdog timer

| Address <br> *7 | Register |  |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | D3 | D2 | D1 | D0 | Name | Init*1 | 1 | 0 |  |
| E2H | 0 | 0 | 0 | TMRST |  | - *2 |  |  | Unused |
|  |  |  |  |  | 0 *5 | - *2 |  |  | Unused |
|  | R |  |  | W | 0 *5 | - *2 |  |  | Unused |
|  |  |  |  | W | TMRST*5 | - *2 | Reset | - | Clock timer and watchdog timer reset |
| E5H | WDRST | 0 | WD1 | WDO | $\begin{gathered} \text { WDRST*5 } \\ 0 \quad * 5 \\ \text { WD1 } \\ \text { WD0 } \end{gathered}$ | $\begin{aligned} & \text { Reset } \\ & \mathbf{-}^{*} 2 \\ & 0 \\ & 0 \end{aligned}$ | Reset | - | Watchdog timer reset |
|  | WDRT | 0 | WD |  |  |  |  |  | Unused |
|  | W | R |  |  |  |  |  |  | Watchdog timer data ( $1 / 4 \mathrm{~Hz}$ ) |
|  | W |  |  |  | Watchdog timer data ( $1 / 2 \mathrm{~Hz}$ ) |  |  |  |  |
| *1 Initial value at the time of initial reset |  |  |  |  |  | *5 Constantly "0" when being read |  |  |  |
| *2 Not set in the circuit |  |  |  |  |  | *6 Refer to main manual |  |  |  |
| *3 Undefined |  |  |  |  |  | *7 Page switching in I/O memory is not necessary |  |  |  |
| *4 Reset (0) immediately after being read |  |  |  |  |  |  |  |  |  |  |  |  |

## Control of the watc hdog timer

The control registers of the watchdog timer is shown in Table 6.1.1.
rex
*1 Initial value at the time of initial reset $\quad$ 5 Constantly " 0 " when being read
*2 Not set in the circuit *6 Refer to main manual
*3 Undefined
*4 Reset (0) immediately after being read
*7 Page switching in I/O memory is not necessary

The watchdog timer must be reset cyclically by the software. If reset is not executed in at least $3-4$ seconds, the initial reset signal is output automatically for the CPU.

When " 1 " is written to WDRST, the watchdog timer is reset, and the operation restarts immediately after this. When " 0 " is written to WDRST, no operation results.
When " 1 " is written to TMRST, the watchdog timer is reset, same as the case of WDRST.

The watchdog timer operates in the HALT mode. If the watchdog timer is not reset within 3 or 4 seconds including the HALT status, the IC reactivates from initial reset status.

## Example program for the watc holog timer

Following program shows the reset procedure for watchdog timer.

```
Label Mnemonic/operand Comment
;*
;* RESET WATCHDOG TIMER
;*
ZWDOG EQU OE5H ;WATCHDOG ADDRESS
WDRST EQU 1000B ;WATCHDOG RESET BIT
;
    LD X,ZWDOG ; SET WATCHDOG ADDRESS
    OR MX,WDRST ; RESET WATCHDOG TIMER
;
```


## Programing notes

(1) The watchdog timer must be reset within 3-second cycles. Because of this, the watchdog timer data (WDO, WD1) cannot be used for clocking of 3 seconds or more.
(2) When clock timer resetting (TMRST $\leftarrow$ " 1 ") is performed, the watchdog timer is also reset.

## $6.2 \overline{\text { OSC3 }}$

E0C6274 has two built-in oscillation circuits (OSC1 and OSC3).

## I/O data memory of The control registers of the OSC3 are shown in Table 6.2.1. the OSC 3

Table 6.2.1 Control registers of OSC3

| Address |  |  | ster |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *7 | D3 | D2 | D1 | D0 | Name | Init* ${ }^{\text {* }}$ | 1 | 0 | 位 |
| DFH | 0 | 0 | CLKCHG | OSCC | $\begin{array}{ll}0 & * 5 \\ 0 & * 5\end{array}$ | - *2 |  |  | Unused |
|  |  |  |  |  | 0 -5 | 2 |  |  | Unused |
|  | R |  | R/W |  | CLKCHG | 0 | OSC3 | OSC1 | CPU system clock switch |
|  |  |  | OSCC | 0 | On | Off | OSC3 oscillation On/Off |

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

## Control of the OSC 3

When processing of the E0C6274 requires high-speed operations, the CPU's operating clock should be switched from OSC1 to OSC3.

When the E0C6274's CPU clock is to be OSC3, first set OSCC to " 1 " (OSC3 oscillation goes on), and then, after about 5 msec , set CLKCHG to " 1 " (switching from OSC1 to OSC3).
When switching the clock from OSC3 to OSC1, first set CLKCHG to " 0 ", and then set OSCC to " 0 ". In this case, use a separate instruction for switching the clock and OSC3 OFF.

## Example program

 for the OSC 3Following program shows the oscillation clock controlling procedure.

```
    OR MX,CLKCHG ; CHANGE CLOCK TO OSC3
    RET
;
OS1:
;* CHANGE CLOCK FRWQUENCY FROM OSC3 TO OSC1
    LD X,ZOSCC ;CHANGE CLOCK TO OSC1
    AND MX,(NOT CLKCHG) AND OFH
                                    ;CHANGE CLOCK TO OSC1
;
    AND MX,(NOT OSCC) AND OFH
                                ;SET OSC3 TO OFF
    RET
;
```


## Programming notes

(1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON.
Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
(2) When switching the clock from OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
(3) To lessen current consumption, keep OSC3 oscillation OFF except when the CPU must be run at high speed.
(4) When shifting to the SLEEP status, the CPU clock must be set to OSC1 and the OSC3 oscillation circuit must be OFF.

### 6.3 Input Ports (KOO-KO3 and K10)

## I/O data memory of The control registers of the input ports are shown in Table 6.3.1. the input ports

Table 6.3.1 Control registers of input ports

| Address |  | Reg |  |  |  |  |  |  | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *7 | D3 | D2 | D1 | D0 | Name | Init*1 | 1 | 0 |  |
| C 2 H | 0 | 0 | 0 | IK1 | $\begin{array}{rr\|l} \hline 0 & * 5 & -* 2 \\ 0 & * 5 & -* 2 \\ 0 & * 5 & -* 2 \\ \text { IK1 } & * 4 & 0 \\ \hline \end{array}$ |  |  |  | Unused |
|  |  | 0 | 0 |  |  |  |  |  | Unused |
|  | R |  |  |  |  |  |  |  | Unused |
|  |  |  |  |  | Yes | No | Interrupt factor flag (K10) |  |
| C3H | 0 | 0 | 0 | IKO |  |  | $\begin{array}{rr} 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { IK0 } & * 4 \end{array}$ | $\begin{aligned} & \hline{ }^{*}{ }^{*} \\ & -{ }^{*} 2 \\ & -{ }^{* 2} \\ & 0 \end{aligned}$ | Yes | No | Unused |
|  |  |  |  |  | Unused |  |  |  |  |
|  | R |  |  |  | Unused |  |  |  |  |
|  |  |  |  |  | Interrupt factor flag (K00-K03) |  |  |  |  |
| C 9 H | 0 | 0 | EIK1 | EIKO | $\begin{aligned} & 0 \quad{ }^{0} 5 \\ & 0 \\ & { }^{*} 5 \\ & \text { EIK1 } \\ & \text { EIK0 } \end{aligned}$ | $\begin{aligned} & -*_{2} \\ & -*_{2} \\ & 0 \\ & 0 \end{aligned}$ | Enable <br> Enable | Mask <br> Mask | Unused |  |
|  |  |  |  |  |  |  |  |  | Unused |  |
|  | R |  | R/W |  |  |  |  |  | Interrupt mask register (K10) |  |
|  |  |  | Interrupt mask register (K00-K03) |  |  |  |  |  |  |
| CAH | SIK03 | SIK02 |  |  | SIK01 | SIK00 | SIK03 | 0 | Enable | Disable | Interrupt selection register (K03) |
|  |  |  |  |  | SIK02 | 0 | Enable | Disable | Interrupt selection register (K02) |  |
|  | R/W |  |  |  | SIK01 | 0 | Enable | Disable | Interrupt selection register (K01) |  |
|  |  |  |  |  | SIK00 | 0 | Enable | Disable | Interrupt selection register (K00) |  |
| DOH | K03 | K02 | K01 | K00 | $\begin{aligned} & \hline \text { K03 } \\ & \text { K02 } \\ & \text { K01 } \\ & \text { K00 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { - } *_{2} \\ & -*{ }^{2} \\ & -* 2 \\ & -\quad * 2 \end{aligned}$ | High <br> High <br> High <br> High | Low <br> Low <br> Low <br> Low | $\square$ Input port (K00-K03) |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | R |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| D1H | 0 | 0 | 0 | K10 | $\begin{array}{\|rr\|} \hline 0 & * 5 \\ 0 & * 5 \\ 0 & * 5 \\ \text { K10 } & \\ \hline \end{array}$ | $\begin{aligned} & -*_{2} \\ & -* 2 \\ & -* 2 \\ & -* 2 \end{aligned}$ | High | Low | Unused <br> Unused <br> Unused <br> Input port (K10) |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | R |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| D2H | DFK03 | DFK02 | DFK01 | DFK00 | $\begin{aligned} & \text { DFK03 } \\ & \text { DFK02 } \\ & \text { DFK01 } \\ & \text { DFK00 } \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 7 \\ & 7^{2} \\ & 7^{2} \end{aligned}$ | $\underset{F}{F}$ | $]$ Input comparison register (K00-K03) |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | R/W |  |  |  |  |  |  |  |  |  |
| D3H |  |  |  |  |  | - *2 |  |  | Unused |  |
|  | 0 | 0 | 0 | DFK10 |  | - *2 |  |  | Unused |  |
|  | R |  |  |  | $0 * 5$ | - *2 |  |  | Unused |  |
|  |  |  |  | R/W |  |  | 7 | 5 | Input comparison register (K10) |  |

* 1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly "0" when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary


## Control of the input ports

## Reading of input data

Input data of the input port terminal may be read out with registers K00-K03 and K10. The terminal voltage of 5 bits input ports are each reading as " 1 " and " 0 " at high (VDD) level and low (Vss) level, respectively.

## Input interrupt (K00-K03)

The input interrupt timing of K00-K03 can be set to generate interrupt at the rising edge or falling edge of the input by the setting of input comparison registers DFK00-DFK03. When DFK register is set to " 1 ", the falling edge of the input becomes an interrupt generating condition, the rising edge when set to " 0 ". Moreover, the interrupt mask can be set with the interrupt mask register EIKO. And each K00-K03 inputs interrupt can be selected by the interrupt selection registers SIK00-SIK03. So if you want enable interrupt, for example K03, set EIK0 and SIK03 to "1". However, if the interrupt of any one of K00-K03 is enabled, interrupt will be generated when the content change from matched to no matched with the input comparison register.
When interrupt is generated, the interrupt factor flag IKO is set to "1".
Figure 6.3.1 shows an example of an interrupt for K00-K03.

## Input interrupt (K10)

The input interrupt timing of K10 can be set to generate interrupt at the rising edge or falling edge of the input by the setting of input comparison registers DFK10. When DFK10 register is set to " 1 ", the falling edge of the input becomes an interrupt generating condition, the rising edge when set to " 0 ".
The interrupt mask can be selected with the interrupt mask register EIK1. When interrupt is generated, the interrupt factor flag IK1 is set to " 1 ".
Figure 6.3 .2 shows an example of an interrupt for K10.

Fig. 6.3.1
Example of an interrupt for K00-K03

Interrupt mask register

| EIK0 |
| :---: |
| 1 |

Interrupt selection register

| SIK03 | SIK02 | SIK01 | SIK00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 |$\quad$| DFK03 | DFK02 | DFK01 | DFK00 |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 |

With the above setting, the interrupt of $\mathrm{K} 00-\mathrm{K} 03$ is generated under the following condition:
(1)

| Input ports |  |  |  |
| :--- | :---: | :---: | :---: |
| K03 K02 K01 K00 <br> 1 0 1 0 |  |  |  |

(Initial value)
(2)

| K 03 | K 02 | K 01 | K 00 |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 |

(3)

| K03 | K02 | K01 | K00 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 |

(4)

| K03 | K02 | K01 | K00 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 |

## $\rightarrow$ Interrupt generation

Because K00 is masked, interrupt will be generated when no matching occurs between the contents of the 3 bits K01-K03 and the 3 bits input comparison registers DFK01-DFK03.

Interrupt mask register Input comparison register

| EIK1 |
| :---: |
| 1 |


| DFK10 |
| :---: |
| 1 |

With the above setting, the interrupt of K10 is generated under the following condition:
(1)
(2)


Because K10 is not matched with DFK10.

Example program for the input ports

Following program shows the input ports controlling procedure.

```
; :
```

; :
LD X,ZKO ;STORE DIFFERENTIAL REGISTER
LD X,ZKO ;STORE DIFFERENTIAL REGISTER
LD Y,ZDFKO
LD Y,ZDFKO
LD MY,MX
LD MY,MX
EI
EI
RET
RET
;
;
K1INT:
K1INT:
;* K1 INTERRUPT SERVICE ROUTINE
;* K1 INTERRUPT SERVICE ROUTINE
;
;
LD X,ZIK1
LD X,ZIK1
LD A,MX
LD A,MX
; :
; :
; :
; :
LD X,ZK1 ; STORE DIFFERENTIAL REGISTER
LD X,ZK1 ; STORE DIFFERENTIAL REGISTER
LD Y,ZDFK1
LD Y,ZDFK1
LD MY,MX
LD MY,MX
EI
EI
RET
RET
;

```

\section*{Programming notes}
(1) When input ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration.
Make this waiting time the amount of time or more calculated by the following expression.
\(10 \times \mathrm{C} \times \mathrm{R}\)
C: terminal capacitance \(5 \mathrm{pF}+\) parasitic capacitance ? pF
R : pull up resistance \(300 \mathrm{k} \Omega\)
(2) Write the interrupt mask register (EIK) only in the DI status (interrupt flag \(=\) " 0 "). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.
(3) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

\subsection*{6.4 Output Ports (ROO-RO3)}

\section*{I/O data memory of The control registers of the output ports are shown in Table 6.4.1. the output ports}

Table 6.4.1 Control registers of output ports

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

Control of the general output ports

The E0C6274 has 4 bits (R00-R03) general output ports built-in. Output port terminals will generate the data written into the corresponding registers ( \(\mathrm{ROO}-\mathrm{RO} 3\) ) as it is. The output port terminal goes high (VDD) when " 1 " is written to the register, and goes low (Vss) when " 0 " is written. The output ports R03 and R02 are initialized to low level (0), R01 and R00 are initialized to high level (1) after an initial reset.

The output ports R00-R03 are all software programmable for special use output ports as shown in the later of this section. So please set the following registers to " 0 " when want to use R00-R03 as general output ports.
BZR03: E0H•D3, BZR02: E0H•D2, PTR01: E9H•D3, FOR00: E1H•D3

\section*{Example program for the general output ports}

Following program shows the output ports controlling procedure in ordinary DC output case.

\section*{Loading B register data into R00-R03}


As shown in Figure 6.4.1, the above program loads the data of the \(B\) register into the output ports.

Fig. 6.4.1
Correspondence between output ports (R00-R03) and B register

The output data can be taken from the A register, MX, or immediate data instead of \(B\) register.

\section*{Control of the special use output ports}

Table 6.4.2 Special output

Fig. 6.4.2
Structure of output ports (R00-R03)

In addition to the regular DC output, special output can be selected by software for output ports (R00-R03), as shown in Table 6.4.2.
\begin{tabular}{|c|l|}
\hline Pin name & When special output is selected \\
\hline R00 & \(\overline{\text { FOUT }}\) output \\
R01 & \(\overline{\text { PTOVF } \text { output }}\) \\
R02 & BZ (buzzer) output \\
R03 & \(\overline{\mathrm{BZ}}\) (buzzer inverted) output \\
\hline
\end{tabular}

Figure 6.4 .2 shows the structure of output ports (R00-R03).


\section*{Buzzer output}

BZR03 and BZR02 is to select R03 and R02 for \(\overline{\text { BZ }}\) (buzzer inverted) output and BZ (buzzer) output, respectively. So when you want to use R03 or R02 as buzzer inverted output or buzzer output, set BZR03 or BZR02 to "1" first.
When " 1 " is set on R02, buzzer signal is generated from R02 terminal. When " 0 " is set on R02, R02 terminal output goes low (Vss). The R03 control way is the same with R02. But the R03 is output the buzzer inverted signal to the terminal.
The buzzer frequency may be selected as 2 kHz or 4 kHz by software. When BZFQ \((\mathrm{EOH} \cdot \mathrm{DO})\) is set to " 0 ", the frequency of the buzzer signal is set in 4 kHz , and in 2 kHz when " 1 " is set.

\section*{FOUT output}

The FOR00 is to select R00 for FOUT output. So when you want to use R00 as FOUT output, set FOR00 to " 1 ", and R00 to "0".
When ROO is selected to FOUT output, it outputs the clock of fosc3, foscl or the demultiplied fosc 1 . The clock frequency can be selected by registers FOFQ 1 and FOFQ0, from the frequencies listed in Table 6.4.3.

Table 6.4.3 FOUT clock frequency
\begin{tabular}{|c|c|c|}
\hline FOFQ1 & FOFQ0 & Clock frequency \((\mathrm{Hz})\) \\
\hline 0 & 0 & 512 \\
0 & 1 & 4,096 \\
1 & 0 & fosc1 \\
1 & 1 & fosc3 \\
\hline
\end{tabular}

Note: A hazard may occur when the \(\overline{F O U T}\) signal is turned ON or OFF.

\section*{PTOVF output}

The PTR01 is to select R01 for PTOVF output. So when you want to use R01 as \(\overline{\text { PTOVF }}\) output, set PTR01 to " 1 ", and R01 to " 0 ".
The \(\overline{\text { PTOVF }}\) signal is come from programmable timer. See Section 6.9, "Programmable Timer".

Following program shows the special use output ports controlling procedure.
```

Label Mnemonic/operand Comment
;* SPECIAL USE OUTPUT PORT
;*
;
ZRO EQU OD4H ; RO OUTPUT PORT
ZBZCTL EQU OEOH ;BUZZER CONTROL REGISTER
ZFOCTL EQU OE1H ;FOUT CONTROL REGISTER
ZPTC1 EQU OE9H ;PROGRAMMABLE TIMER CONTROL REGISTER 1
ZPTC2 EQU OEAH ;PROGRAMMABLE TIMER CONTROL REGISTER 2
ZRDL EQU OEDH ; PROGRAMMABLE TIMER RELOAD REGISTER LOW
ZRDH EQU OEEH ;PROGRAMMABLE TIMER RELOAD REGISTER HIGH
;
;* BUZZER OUTPUT
;
BZON:
LD X,ZBZCTL ;SELECT R03 \& R02 AS BUZZER OUTPUT
LD MX,1101B ;SELECT 2 KHz FREQUENCY FOR BUZZER
;OUTPUT
LD X, ZR0
LD MX,1100B ;TURN ON RO3 \& RO2 OUTPUT PORT
;
;
;* FOUT OUTPUT
;
FOUT:

| LD | X, ZRO |
| :--- | :--- |
| AND | MX, 1110B |
| LD | X, TUROCTL |

```
```

    LD MX,1000B ; SELECT R00 FOR FOUT,
                        ;AND SET 512 Hz FREQUENCY
    ;
;
;* PTOVF OUTPUT
;
PTOVF:
LD X, ZRO
AND MX,1101B ; TURN OFF R01 OUTPUT PORT
LD X,ZPTC2
LD MX,1110B ; SELECT OSC1 = 32 KHz
LD X,ZRDL ; SET RELOAD REGISTER = (0,0)
LBPX MX,OOH
;
LD X,ZPTC1
OR MX,0001B ; RESTORE PROGRAMMABLE TIMER
OR MX,O010B ; RUN PROGRAMMABLE TIMER
OR MX,1000B ; SELECT R01 AS PTOVF OUTPUT

```
;

\section*{Programming notes}

Fig. 6.4.3 Output waveform
(1) When BZ, \(\overline{B Z}, \overline{\text { FOUT }}\) and PTOVF output are selected by software, a hazard may be observed in the output waveform when the data of the output register changes.

(2) When R00 is used for general output port, set FOR00 to "O". When R00 is used for FOUT output, set FOR00 to " 1 ".
(3) When R01 is used for general output port, set PTR01 to "0". When R01 is used for \(\overline{\text { PTOVF }}\) output, set PTR01 to " 1 ".
(4) When R02 is used for general output port, set BZR02 to "0". When R02 is used for buzzer output, set BZR02 to " 1 ".
(5) When R03 is used for general output port, set BZR03 to "0". When R03 is used for buzzer inverted output, set BZR03 to "1".

\subsection*{6.5 I/O Ports (P00-P03, P10-P13 and P20-P23)}

I/O data memory of The control registers of the I/O ports are shown in Table 6.5.1. the I/O ports

Table 6.5.1 Control registers of I/O ports
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Address
*7} & \multicolumn{4}{|c|}{Register} & & & & & \multirow[b]{2}{*}{Comment} \\
\hline & D3 & D2 & D1 & D0 & Name & Init * \({ }^{\text { }}\) & 1 & 0 & \\
\hline \multirow[b]{2}{*}{D6H} & 0 & IOC2 & IOC1 & IOC0 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0 * 5 \\
& \text { IOC2 } \\
& \text { IOC1 } \\
& \text { IOC0 }
\end{aligned}
\]} & \[
\begin{aligned}
& -^{* 2} \\
& 0
\end{aligned}
\] & Output & Input & Unused I/O control register 2 (P20-P23) \\
\hline & R & \multicolumn{3}{|c|}{R/W} & & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
Output \\
Output
\end{tabular} & \begin{tabular}{l}
Input \\
Input
\end{tabular} & I/O control register 1 (P10-P13) I/O control register 0 (P00-P03) \\
\hline \multirow{3}{*}{D7H} & 0 & PUP2 & PUP1 & PUP0 & \multirow[t]{3}{*}{\begin{tabular}{l}
0 *5 \\
PUP2 \\
PUP1 \\
PUPO
\end{tabular}} & \[
\begin{aligned}
& -^{* 2} \\
& 0
\end{aligned}
\] & On & Off & \begin{tabular}{l}
Unused \\
Pull up control register 2 ( \(\mathrm{P} 20-\mathrm{P} 23\) )
\end{tabular} \\
\hline & R & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{R/W}} & & 0 & On & Off & Pull up control register 1 (P10-P13) \\
\hline & R & & & & & 0 & On & Off & Pull up control register 0 (P00-P03) \\
\hline \multirow{3}{*}{D8H} & P03 & P02 & P01 & P00 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { P03 } \\
& \text { P02 } \\
& \text { P01 } \\
& \text { P00 } \\
& \hline
\end{aligned}
\]} & \[
\begin{aligned}
& -*_{2} \\
& -* * 2
\end{aligned}
\] & \begin{tabular}{l}
High \\
High
\end{tabular} & \begin{tabular}{l}
Low \\
Low
\end{tabular} & \\
\hline & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{R/W}} & & - *2 & High & Low & I/O port (P00-P03) \\
\hline & & & & & & _ *2 & High & Low & \\
\hline \multirow{4}{*}{D9H} & P13 & P12 & P11 & P10 & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { P13 } \\
& \text { P12 } \\
& \text { P11 } \\
& \text { P10 } \\
& \hline
\end{aligned}
\]} & - *2 & High & Low & \\
\hline & P & P12 & P1 & P10 & & - *2 & High & Low & port (P10-P13) \\
\hline & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{R/W}} & & - *2 & High & Low & (P10 \\
\hline & & & & & & - *2 & High & Low & \(\checkmark\) \\
\hline \multirow{4}{*}{DAH} & P23 & P22 & P21 & P20 & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { P23 } \\
& \text { P22 } \\
& \text { P21 } \\
& \text { P20 } \\
& \hline
\end{aligned}
\]} & - *2 & High & Low & I/O port (P20-P23) \\
\hline & & & & & & - *2 & High & Low & When P20-P23 is selected as SIO port, P20- \\
\hline & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{R/W}} & & - *2 & High & Low & P 23 registers will function as register only \\
\hline & & & & & & - *2 & High & Low & \\
\hline
\end{tabular}
*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

\section*{Control of the I/O ports}

The E0C6274 contains 3 sets of general I/O port ( 4 bits \(\times 3\) ). These ports can be use as input port or output port, according to I/O port control register IOC (D6H). When IOC is " 0 ", the port is set for input, when it is " 1 ", the port is set for output.

\section*{How to set as input}

Set "0" in the I/O port control register D6H, D0 (D1 for P1, D2 for P 2 ) and the I/O port (POO-PO3) is set as an input port. The state of the I/O port (P00-P03) is decided by the address D8H (D9H for P1, DAH for P2). (In the input mode, the port level is read directly.) The P0, P1 and P2 I/O ports can be pull up by software. Set "1" in the I/O pull up control register D7H, D0 (D1 for P1, D2 for P2) and the pull up register will directly connect to P00-P03 internally.

\section*{How to set as output}

Set "1" in the I/O port control register D6H, D0 (D1 for P1, D2 for P 2 ) and the I/O port (POO-PO3) is set as an output port. The state of the I/O port (P00-P03) is decided by the address D8H (D9H for P 1 , DAH for P2). This data is held by the register, and can be set regardless of the contents of the I/O control registers. (The data can be set whether I/O ports are input ports or output ports is read directly.)

If perform the read out I/O port in each mode; when output mode, the register value is read out, and when input mode, the port value (input voltage level) is read out.
The I/O control registers are cleared to "0" (input/output ports are set as input ports), and the data registers are also cleared to " 0 " after an initial reset.

Note: P2 port can be used as general I/O port or serial interface port. It is selected by PFS (DBH•D3). When PFS is set to " 0 ", then P2 port is an I/O port. When PFS is set to " 1 ", then P2 port is a serial interface port.

\section*{Example program for the I/O ports}

Following program shows the I/O ports controlling procedure.
Loading P00-P03 input data into A register
\begin{tabular}{|c|c|c|c|}
\hline Label & \multicolumn{2}{|l|}{Mnemonic/operand} & Comment \\
\hline \multicolumn{4}{|l|}{;*} \\
\hline \multicolumn{4}{|l|}{;* I/O PORT} \\
\hline \multicolumn{4}{|l|}{;*} \\
\hline \multicolumn{4}{|l|}{;* LOADING P00-P03 INPUT DATA INTO A REGISTER} \\
\hline \multicolumn{4}{|l|}{;} \\
\hline ZIOC & EQU & 0D6H & ; I/O PORT CONTROL REGISTER \\
\hline ZPUP & EQU & 0D7H & ;I/O PORT PULL-UP CONTROL REGISTER \\
\hline ZP0 & EQU & 0D8H & ; I/O PORT P00-P03 \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & LD & Y, ZIOC & ; SET I/O PORT CONTROL ADDRESS \\
\hline & AND & MY,1110B & ; SET P00-P03 AS INPUT PORT \\
\hline & LD & Y, ZPUP & ; SET PULL-UP CONTROL REGISTER ADDRESS \\
\hline & OR & MY, 0001B & ; PULL UP P00-P03 TO VDD \\
\hline & LD & Y, ZP0 & ; SET ADDRESS OF P00-P03 \\
\hline & LD & A, MY & ;LOAD DATA INTO A REGISTER \\
\hline \multicolumn{4}{|l|}{;} \\
\hline
\end{tabular}

As shown in Figure 6.5.1, the above program loads the data of the I/O ports into the A register.

Fig. 6.5.1
Loading into the A register
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{4}{*}{ A register } & \multicolumn{5}{|c|}{} \\
\cline { 2 - 5 } & D3 & D2 & D1 & D0 \\
\cline { 2 - 5 } & P03 & P02 & P01 & P00 \\
\hline
\end{tabular}

\section*{Loading P00-P03 output data into A register}
```

Label Mnemonic/operand Comment
;*
;* I/O PORT
;*
;* LOADING POO-P03 OUTPUT DATA INTO A REGISTER
;
ZIOC EQU OD6H ;I/O PORT CONTROL REGISTER
ZPUP EQU 0D7H ;I/O PORT PULL-UP CONTROL REGISTER
ZPO EQU OD8H ;I/O PORT P00-P03
;
LD Y,ZPUP ; SET PULL-UP CONTROL
;REGISTER ADDRESS
AND MY,1110B ;DISABLE P00-P03 PULL UP RESISTORS
LD Y,ZIOC ;SET I/O PORT CONTROL ADDRESS
OR MY,0001B ; SET P00-P03 AS OUTPUT PORT
LD Y,ZPO ;SET ADDRESS OF POO-PO3
LD A,MY ;LOAD DATA INTO A REGISTER

```
;

As shown in Figure 6.5.2, the fabove program loads the data of the I/O ports into the A register.

Fig. 6.5.2
Control of I/O port (Input)


Data can be loaded from the I/O port into the B register or MX instead of the A register.

\section*{Loading contents of B register into P00-P03}
```

Label Mnemonic/operand Comment
;*
;* I/O PORT
;*
;* LOADING CONTENTS OF B REGISTER INTO POO-P03
;
ZIOC EQU OD6H ;I/O PORT CONTROL REGISTER
ZPUP EQU OD7H ;I/O PORT PULL-UP CONTROL REGISTER
ZPO EQU OD8H ;I/O PORT P00-P03
;
LD Y,ZPUP ; SET PULL-UP CONTROL REGISTER ADDRESS
AND MY,1110B ;DISABLE P00-P03 PULL UP RESISTORS
LD Y,ZIOC ; SET I/O PORT CONTROL ADDRESS
OR MY,0001B ; SET P00-P03 AS OUTPUT PORT
LD Y,ZPO ;SET ADDRESS OF POO-P03
LD MY,B ;LOAD DATA INTO POO-PO3
;

```

As shown in Figure 6.5.3, the above program loads the data of the B register into the I/O ports.

Fig. 6.5.3


The output data can be taken from the A register, MX, or immediate data instead of the B register.

Serial I/O port
The I/O port P20-P23 may be set by software as serial I/O port for the serial interface.

P20: Serial interface data input port (SIN)
P21: Serial interface data output port (SOUT)
P22: Serial interface clock port ( \(\overline{\mathrm{SCLK}}\) )
P23: Serial interface inverted READY signal (SRDY)
The function of serial interface is explained in Section 6.10.

\section*{Programming notes}
(1) When P20-P23 is used as general I/O ports, set PFS to "O".
(2) When P20-P23 is used as serial I/O ports, set PFS to "1".
(3) When in the input mode, I/O ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration.
Make this waiting time the amount of time or more calculated by the following expression.
\(10 \times \mathrm{C} \times \mathrm{R}\)
C: terminal capacitance \(5 \mathrm{pF}+\) parasitic capacitance ? pF R : pull up registance \(300 \mathrm{k} \Omega\)

\subsection*{6.6 LCD Driver}

\section*{I/O data memory of The control registers of the LCD driver are shown in Table 6.6.1. the LCD driver}

Table 6.6.1 Control registers of LCD driver
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Address} & \multicolumn{4}{|c|}{Register} & & & & & \multirow[b]{2}{*}{Comment} \\
\hline & D3 & D2 & D1 & D0 & Name & Init *1 & 1 & 0 & \\
\hline \multirow[t]{2}{*}{EFH} & LDTY1 & LDTYO & 0 & LCDON & LDTY1 LDTYO & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & \(]^{\text {LCD drive duty selection }}\) 0:1/4, 1:1/3, \(2: 1 / 2,3: 1 / 1\) \\
\hline & \multicolumn{2}{|c|}{RW} & R & R/W & \[
\begin{gathered}
0{ }^{* 5} \\
\text { LCDON }
\end{gathered}
\] & \[
\begin{aligned}
& -^{* 2} \\
& 0
\end{aligned}
\] & On & Off & \begin{tabular}{l}
Unused \\
LCD display control (LCD display all off)
\end{tabular} \\
\hline
\end{tabular}
*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined *7 Page switching in I/O memory is not necessary
*5 Constantly " 0 " when being read
*6 Refer to main manual
*4 Reset (0) immediately after being read
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Address Page & Low High & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F \\
\hline \multirow[b]{2}{*}{0-3} & 8 & \multicolumn{16}{|c|}{\multirow[b]{2}{*}{Display memory (32 words x 4 bits) W}} \\
\hline & 9 & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Fig. 6.6.1 Display memory map

\section*{Control of the LCD driver}

Table 6.6.2
LCD drive duty selection

The E0C6274 contains 128 bits of display memory in addresses 80 H to 9 FH of the data memory.
It's LCD common can be software programmable for 4 COM, 3 COM, 2 COM or 1 COM. So each display memory can be assigned to any 128 bits ( \(32 \mathrm{SEG} \times 4 \mathrm{COM}\) ), 96 bits ( \(32 \mathrm{SEG} \times 3 \mathrm{COM}\) ), 64 bits ( \(32 \mathrm{SEG} \times 2 \mathrm{COM}\) ), or 32 bits ( \(32 \mathrm{SEG} \times 1 \mathrm{COM}\) ) of the 128 bits for the LCD driver by using a segment mask option. The remaining bits of display memory are not connected to the LCD driver, and are not output even when data is written. An LCD segment is on with " 1 " set in the display memory, and off with " 0 " set in the display memory. The display memory cannot be read because it is a write-only RAM.
- LCD drive duty selection is control by registers LDTY1 and LDTYO (EFH•D3, D2).
\begin{tabular}{|c|c|c|}
\hline LDTY1 & LDTY0 & LCD drive duty \\
\hline 0 & 0 & \(1 / 4\) (dynamic) \\
0 & 1 & \(1 / 3\) (dynamic) \\
1 & 0 & \(1 / 2\) (dynamic) \\
1 & 1 & \(1 / 1\) (dynamic) \\
\hline
\end{tabular}
- LCD display ON/OFF is controlled by register LCDON ( \(\mathrm{EFH} \cdot \mathrm{DO}\) ).

Set LCDON to " 1 " to turn on LCD.
Set LCDON to "0" to turn off LCD.
Figure 6.6 .2 is an example of the 7 -segment LCD assignment.

Fig. 6.6.2
7-segment LCD assignment

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Address } & \multicolumn{4}{|c|}{ Register } \\
\cline { 2 - 5 } & D3 & D2 & D1 & D0 \\
\hline 90 H & d & c & b & a \\
\hline 91 H & & g & f & e \\
\hline
\end{tabular}

In the assignment shown in Figure 6.6.2, the 7 -segment display pattern is controlled by writing data to display memory addresses 90 H and 91 H .

\section*{LCD common control and display ON/OFF}
;
```

```
Label Mnemonic/operand Comment
```

```
Label Mnemonic/operand Comment
;*
;*
;* LCD DRIVER
;* LCD DRIVER
;*
;*
;* TURN ON LCD AND USE 4 COMMONS
;* TURN ON LCD AND USE 4 COMMONS
;
;
ZLCDC EQU OEFH ;LCD CONTROL REGISTER
ZLCDC EQU OEFH ;LCD CONTROL REGISTER
    LD X,ZLCDC ;SET LCD CONTROL REGISTER ADDRESS
    LD X,ZLCDC ;SET LCD CONTROL REGISTER ADDRESS
    LD MX,0001B ;SET DUTY AS 1/4 (4 COMMONS)
    LD MX,0001B ;SET DUTY AS 1/4 (4 COMMONS)
                                ;SET LCD DISPLAY ON
```

```
                                ;SET LCD DISPLAY ON
```

```
;

Example program for the LCD driver

\section*{Displaying 7－segment}

The LCD display routine using the assignment of Figure 6．6．2 can be programmed as follows．
```

Label Mnemonic/operand
;
SEVENS:
LD B,0 ;PREPARE B AS 0 FOR JUMP
LD X,090H ; SET LCD DISPLAY MEMORY ADDRESS
JPBA ; JUMP TO TABLE
;

```

When the above routine is called（by the CALL or CALZ instruction） with any number from＂ 0 ＂to＂ 9 ＂set in the A register for the assign－ ment of Figure 6．6．3，seven segments are displayed according to the contents of the A register．

Fig．6．6．3 Data set in A register and display patterns
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline A resister & Display & A resister & Display \\
\hline 0 & ■i & 2 & 三 & 4 & － & 6 & E & 8 & 互 \\
\hline 1 & 1 & 3 & Э & 5 & 三 & 7 & 1 & 9 & 雨 \\
\hline
\end{tabular}

The RETD instruction can be used to write data to the display memory only if it is addressed using the X register．（Addressing using the Y register is invalid．）

Note that the stack pointer must be set to a proper value before the CALL（CALZ）instruction is executed．

\section*{Bit-unit operation of the display memory}

Fig. 6.6.4
Example of segment assignment
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ Address } & \multicolumn{4}{|c|}{ Data } \\
\cline { 2 - 5 } & D3 & D2 & D1 & D0 \\
\hline 90 H & & & \(\mathbf{\Delta}\) & \(\boldsymbol{}\) \\
\hline
\end{tabular}

A: SEG-A
: SEG-B


For manipulation of the display memory in bit-units for the assignment of Figure 6.6.4, a buffer must be provided in RAM to hold data. Note that, since the display memory is write-only, data cannot be changed directly using an ALU instruction (for example, AND or OR).

After manipulating the data in the buffer, write it into the corresponding display memory using the transfer command.

\section*{Programming notes}
(1) The contents of the display memory are undefined until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
(2) Since the display memory area is write-only, display data cannot be rewritten by arithmetic operations (such as AND, OR, \(\mathrm{ADD}, \mathrm{SUB}\) ).

\subsection*{6.7 Clock Timer}

\section*{I/O data memory of the clock timer}

Table 6.7.1 Control registers of clock timer
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Address
*7} & \multicolumn{4}{|c|}{Register} & & & & & \multirow[b]{2}{*}{Comment} \\
\hline & D3 & D2 & D1 & D0 & Name & Init*1 & 1 & 0 & \\
\hline \multirow{4}{*}{C6H} & IT1 & IT2 & IT8 & IT32 & \multirow[t]{4}{*}{\[
\begin{aligned}
& \hline \mathrm{IT} 1 * 4 \\
& \mathrm{IT} 2 * 4 \\
& \mathrm{IT} * *_{4} \\
& \mathrm{IT} 32 * 4 \\
& \hline
\end{aligned}
\]} & 0 & Yes & No & Interrupt factor flag (clock timer 1 Hz ) \\
\hline & & & & & & 0 & Yes & No & Interrupt factor flag (clock timer 2 Hz ) \\
\hline & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{R}} & & 0 & Yes & No & Interrupt factor flag (clock timer 8 Hz ) \\
\hline & & & & & & 0 & Yes & No & Interrupt factor flag (clock timer 32 Hz ) \\
\hline \multirow{4}{*}{CCH} & EIT1 & EIT2 & EIT8 & EIT32 & EIT1 & 0 & Enable & Mask & Interrupt mask register (clock timer 1 Hz ) \\
\hline & EIT & & & ET32 & EIT2 & 0 & Enable & Mask & Interrupt mask register (clock timer 2 Hz ) \\
\hline & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{R/W}} & EIT8 & 0 & Enable & Mask & Interrupt mask register (clock timer 8 Hz ) \\
\hline & & & & & EIT32 & 0 & Enable & Mask & Interrupt mask register (clock timer 32 Hz ) \\
\hline \multirow{4}{*}{E2H} & 0 & 0 & 0 & TMRST & & - *2 & & & Unused \\
\hline & & & & & 0 *5 & - *2 & & & Unused \\
\hline & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{R}} & & 0 * 5 & - *2 & & & Unused \\
\hline & & & & & TMRST*5 & - *2 & Reset & - & Clock timer and watchdog timer reset \\
\hline \multirow{4}{*}{E3H} & TM3 & TM2 & TM1 & TM0 & TM3 & - *3 & & & Clock timer data ( 16 Hz ) \\
\hline & & & & & TM2 & - *3 & & & Clock timer data ( 32 Hz ) \\
\hline & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{R}} & TM1 & - *3 & & & Clock timer data ( 64 Hz ) \\
\hline & & & & & тмо & - *3 & & & Clock timer data ( 128 Hz ) \\
\hline \multirow{4}{*}{E4H} & TM7 & TM6 & TM5 & TM4 & TM7 & - *3 & & & Clock timer data ( 1 Hz ) \\
\hline & & & & & TM6 & - *3 & & & Clock timer data ( 2 Hz ) \\
\hline & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{R}} & TM5 & - *3 & & & Clock timer data ( 4 Hz ) \\
\hline & & & & & TM4 & - *3 & & & Clock timer data (8 Hz) \\
\hline
\end{tabular}
*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

\section*{Control of the clock timer}

E0C6274 has a clock timer with OSC1 (crystal oscillation) as basic oscillation built-in.

\section*{Clock timer data}

The \(128-1 \mathrm{~Hz}\) timer data of the clock timer can be read out with TMO-TM7 registers ( E 3 H and E 4 H ).

\section*{Clock timer reset}

By writing " 1 " on TMRST ( \(\mathrm{E} 2 \mathrm{H} \bullet \mathrm{D} 0\) ), the clock timer is reset and all timer data are set to " 0 ".

\section*{Timer interrupt}

The clock timer interrupt is generated at the falling edge of the frequencies ( \(32 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{~Hz}\) and 1 Hz ). At this time, the corresponding interrupt factor flag (IT32, IT8, IT2 and IT1) is set to " 1 ". Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (EIT32, EIT8, EIT2 and EIT1).

However, regardless of the interrupt mask register setting, the interrupt factor flag is set to " 1 " at the falling edge of the corresponding signal.


Fig. 6.7.1 Timing chart of clock timer

\section*{Example program for the clock timer}

Following program shows the clock timer controlling procedure.
```

    LD A,MX
    ;
LD X,ZEIT ; SET TO TIMER MASK REGISTER
LD MX,0100B ; ENABLE TIMER 2 Hz INTERRUPT
EI
RET
;
;* CLOCK TIMER INTERRUPT
;
TMINT:
LD X,ZIT ; LOAD TIMER INTERRUPT FLAG
;TO B REGISTER
LD B,MX
FAN B,O100B ; CHECK TIMER 2 Hz INTERRUPT FLAG
JP Z,TMINT1 ; NO, THEN JMP
LD X,ZTML ;SET TO TIMER DATA ADDRESS
LDPX A,MX ;READ TIMER LOW INTO A REGISTER
LD B,MX ; READ TIMER HIGH INTO B REGISTER
; :
; DO THE PROCEDURE FOR 2 Hz INTERRUPT SERVICE
; :
TMINT1:
EI
RET
i

```

\section*{Programming notes}
(1) Be sure to data reading in the order of low-order data (TMOTM3) then high-order data (TM4-TM7).
(2) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to " 1 ". Consequently, perform flag reading (reset the flag) as necessary at reset.
(3) When the clock timer has been reset, the watchdog timer is also reset.
(4) Write the interrupt mask register (EIT) only in the DI status (interrupt flag = "O"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.
(5) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

\subsection*{6.8 Stopwatch Timer}

\section*{I/O data memory of} the stopwatch timer

The control registers of the stopwatch timer are shown in Table 6.8.1.

Table 6.8.1 Control registers of clock timer
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Address & & Reg & ter & & & & & & \multirow[b]{2}{*}{Comment} \\
\hline *7 & D3 & D2 & D1 & D0 & Name & |nit*1 & 1 & 0 & \\
\hline \multirow[b]{2}{*}{C5H} & 0 & 0 & ISW1 & ISW0 & \multirow[t]{2}{*}{\[
\begin{array}{rr}
0 & * 5 \\
0 & * 5 \\
\text { ISW1 } * 4 \\
\text { ISW0 } * 4 \\
\hline
\end{array}
\]} & - \({ }^{*}\) & & & \multirow[t]{2}{*}{\begin{tabular}{l}
Unused \\
Unused \\
Interrupt factor flag (stopwatch 1 Hz ) \\
Interrupt factor flag (stopwatch 10 Hz )
\end{tabular}} \\
\hline & \multicolumn{4}{|c|}{R} & & & \[
\begin{aligned}
& \text { Yes } \\
& \text { Yes }
\end{aligned}
\] & \[
\begin{aligned}
& \text { No } \\
& \text { No }
\end{aligned}
\] & \\
\hline \multirow[b]{2}{*}{CBH} & 0 & 0 & EISW1 & EISW0 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|rl|l|}
\hline 0 & \(* 5\) & \(-*^{2}\) \\
0 & \(* 5\) & \(-{ }^{*} 2\) \\
EISW1 & 0 \\
EISW0 & 0 \\
\hline
\end{tabular}}} & & & \begin{tabular}{l}
Unused \\
Unused
\end{tabular} \\
\hline & \multicolumn{2}{|c|}{R} & \multicolumn{2}{|r|}{R/W} & & & \begin{tabular}{l}
Enable \\
Enable
\end{tabular} & \begin{tabular}{l}
Mask \\
Mask
\end{tabular} & Interrupt mask register (stopwatch 1 Hz ) Interrupt mask register (stopwatch 10 Hz ) \\
\hline \multirow[t]{2}{*}{E6H} & 0 & 0 & SWRUN & SWRST & \multirow[t]{2}{*}{\begin{tabular}{|r|r|}
\hline 0 & \(* 5\) \\
0 & \(* 5\) \\
SWRUN \\
SWRST*5
\end{tabular}} & \[
\begin{aligned}
& -{ }^{* 2} \\
& -* 2
\end{aligned}
\] & & & \begin{tabular}{l}
Unused \\
Unused
\end{tabular} \\
\hline & \multicolumn{2}{|c|}{R} & R/W & W & & Reset & Run Reset & Stop - & \begin{tabular}{l}
Stopwatch timer Run/Stop \\
Stopwatch timer reset
\end{tabular} \\
\hline \multirow[t]{2}{*}{E7H} & SWL3 & SWL2 & SWL1 & SWLO & \multirow[t]{2}{*}{\begin{tabular}{l}
SWL3 \\
SWL2 \\
SWL1 \\
SWLO
\end{tabular}} & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & \(7 \begin{aligned} & \text { MSB } \\ & \text { Stopwatch timer data } 1 / 100 \sec (B C D)\end{aligned}\) \\
\hline & \multicolumn{4}{|c|}{R} & & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & \[
\int_{\text {LSB }}^{\text {stopwaten timer data } 1 / 100 \text { sec (BCD) }}
\] \\
\hline \multirow[b]{2}{*}{E8H} & SWH3 & SWH2 & SWH1 & SWHO & \multirow[t]{2}{*}{\begin{tabular}{l}
SWH3 \\
SWH2 \\
SWH1 \\
SWHO
\end{tabular}} & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & MSB \\
\hline & \multicolumn{4}{|c|}{R} & & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & \[
\int_{\text {LSB }}^{\text {Stopwatch timer data } 1 / 10 \sec (B C D)}
\] \\
\hline
\end{tabular}
* 1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

\section*{Control of the} stopwatch timer

The E0C6274 contains \(1 / 100 \mathrm{sec}\) and \(1 / 10 \mathrm{sec}\) stopwatch timers. Starting, stopping, and resetting the timer can be controlled by register.

\section*{Stopwatch timer data}

This timer can be loaded in 4-bit units. It can be read out with SWL (E7H) and SWH (E8H).

\section*{Stopwatch timer reset}

By writing " 1 " on SWRST ( \(\mathrm{E} 6 \mathrm{H} \bullet \mathrm{D} 0\) ), the stopwatch timer is reset and stopwatch timer data (SWH, SWL) are set to "0".

\section*{Stopwatch timer RUN/STOP}

By writing " 1 " on SWRUN \((\mathrm{E} 6 \mathrm{H} \bullet \mathrm{D} 1)\), the stopwatch timer is starting. By writing " 0 " on SWRUN, then it stop counting.

\section*{Stopwatch timer interrupt}

The stopwatch timer interrupt is generated at the falling edge of the frequencies ( 10 Hz and 1 Hz ). At this time, the corresponding interrupt factor flag (ISWO and ISW1) is set to " 1 ".
Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (EISW0 and EISW1). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to " 1 " at the falling edge of the corresponding signal.

Figure 6.8.1 shows the operation of the stopwatch timer.

Fig. 6.8.1
Stopwatch timer operating timing


\section*{Example program for the stopwatch timer}

Following program shows the stopwatch timer controlling procedure.
\begin{tabular}{lllll} 
Label & Mnemonic/operand & Comment \\
\hline ;* & & & \\
;* STOPWATCH & TIMER & \\
;* & & & \\
ZISW & EQU & OC5H & ;STOPWATCH & INTERRUPT FACTOR FLAG \\
ZEISW & EQU & OCBH & ;STOPWATCH & INTERRUPT MASK REGISTER \\
ZSWCTL EQU & 0E6H & ;STOPWATCH CONTROL REGISTER \\
ZSWL & EQU & OE7H & ;STOPWATCH TIMER DATA LOW \\
ZSWH & EQU & 0E8H & ;STOPWATCH TIMER DATA HIGH \\
; & & & \\
& ORG & 104H & \\
& JP & SWINT & ;STOPWATCH
\end{tabular}
```

SWINIT:
LD X,ZSWCTL ; SET STOPWATCH CONTROL
; REGISTER ADDRESS
OR MX,0001B ;WHEN RESET STOPWATCH
;THEN (SWL,SWH) WILL BECOME (0,0)
;
DI
LD X,ZISW ;RESET INTERRUPT FLAG
LD A,MX
;
LD X,ZEISW
LD MX,0001B ;ENABLE STOPWATCH 10 Hz INTERRUPT
LD X, ZSWCTL
OR MX,0010B ; START THE STOPWATCH TIMER
;
EI
RET
;
;* STOPWATCH TIMER INTERRUPT
;
SWINT:
LD X,ZISW ;LOAD STOPWATCH INTERRUPT FLAG
;TO B REGISTER
LD B,MX
;
FAN B,0001B ; CHECK STOPWATCH 10 Hz
;INTERRUPT FLAG
JP Z,SWINT1 ;NO, THEN JUMP
LD X,ZSWL ; SET TO STOPWATCH TIMER DATA ADDRESS
LDPX A,MX ;READ STOPWATCH LOW INTO A REGISTER
LD B,MX ;READ STOPWATCH HIGH INTO B REGISTER
; :
; DO THE PROCEDURE FOR 10 Hz INTERRUPT SERVICE
; :
SWINT1:
EI
RET
;
;* STOPWATCH TIMER STOP ROUTINE
;
SWSTOP :
LD X,ZSWCTL ; STOP STOPWATCH
AND MX, 1101B
RET
;

```

Programming notes
(1) Be sure to data reading in the order of low-order data (SWLOSWL3) then high-order data (SWHO-SWH3).
(2) When the stopwatch timer has been reset, the interrupt factor flag (ISW) may sometimes be set to " 1 ". Consequently, perform flag reading (reset the flag) as necessary at reset.
(3) Write the interrupt mask register (EISW) only in the DI status (interrupt flag = "O"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.
(4) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

\subsection*{6.9 Programmable Timer}
l/O data memory of the programmable

\section*{timer}

Table 6.9.1 Control registers of programmable timer
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Address
*7} & \multicolumn{4}{|c|}{Register} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Init*1} & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{Comment} \\
\hline & D3 & D2 & D1 & D0 & & & & & \\
\hline COH & \multicolumn{3}{|c|}{R} & IPT & \[
\begin{array}{|rr|}
\hline 0 & * 5 \\
0 & * 5 \\
0 & * 5 \\
\text { IPT } & * 4
\end{array}
\] & \[
\begin{aligned}
& \hline \text { - }^{*} \\
& -*_{2} \\
& -*_{2} \\
& 0
\end{aligned}
\] & Yes & No & \begin{tabular}{l}
Unused \\
Unused \\
Unused \\
Interrupt factor flag (programmable timer)
\end{tabular} \\
\hline C 8 H & 0
\(R\) & \multicolumn{3}{|c|}{R/W} & \[
\begin{aligned}
& 0 * 5 \\
& \text { EIAD } \\
& \text { EISIO } \\
& \text { EIPT } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{-}^{* 2} \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Enable \\
Enable \\
Enable
\end{tabular} & \begin{tabular}{l}
Mask \\
Mask \\
Mask
\end{tabular} & \begin{tabular}{l}
Unused \\
Interrupt mask register (A/D converter) \\
Interrupt mask register (serial interface) \\
Interrupt mask register (programmable timer)
\end{tabular} \\
\hline E9H & \begin{tabular}{c} 
PTR01 \\
\hline R/W
\end{tabular} & 0
\(R\) & PTRUN
R/W & \begin{tabular}{|c} 
PTRST \\
\hline\(W\)
\end{tabular} & \begin{tabular}{l}
PTR01 \\
0 *5 \\
PTRUN \\
PTRST*5
\end{tabular} & \[
\begin{aligned}
& 0 \\
& -*_{2} \\
& 0 \\
& -*_{2}
\end{aligned}
\] & \begin{tabular}{l}
PTOVF \\
Run \\
Reset
\end{tabular} & \begin{tabular}{l}
DC \\
Stop
\end{tabular} & \begin{tabular}{l}
R01 port output selection \\
Unused \\
Programmable timer Run/Stop \\
Programmable timer reset (reload)
\end{tabular} \\
\hline EAH & \multicolumn{4}{|c|}{R/W} & \begin{tabular}{l}
PTD1 \\
PTDO \\
PTC1 \\
PTC0
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & & & \(\square\)\begin{tabular}{l} 
Programmable timer pre-divider selection \\
\(0: 1 / 256,1: 1 / 32,2: 1 / 4,3: 1 / 1\)
\end{tabular}
\begin{tabular}{l} 
Programmable timer clock source selection \\
\(0: \mathrm{K} 10(\mathrm{NR}), 1: \mathrm{K} 10,2:\) fosc1, \(3:\) fosc3
\end{tabular} \\
\hline EBH & \multicolumn{4}{|c|}{R} & \begin{tabular}{l}
PT3 \\
PT2 \\
PT1 \\
PTO
\end{tabular} & \[
\begin{aligned}
& \hline \text { - } * 3 \\
& -* 3 \\
& -* 3 \\
& -* 3 \\
& \hline
\end{aligned}
\] & & & \[
\int_{\text {LSB }} \text { Programmable timer data (low-order } 4 \text { bits) }
\] \\
\hline ECH & \multicolumn{4}{|c|}{R} & \begin{tabular}{l}
PT7 \\
PT6 \\
PT5 \\
PT4
\end{tabular} & \[
\begin{aligned}
& -* 3 \\
& -* 3 \\
& -* 3 \\
& -* 3
\end{aligned}
\] & & & \(\left[\begin{array}{l}\text { Programmable timer data (high-order } 4 \text { bits) }\end{array}\right.\) \\
\hline EDH & \multicolumn{4}{|c|}{R/W} & \[
\begin{aligned}
& \hline \text { RD3 } \\
& \text { RD2 } \\
& \text { RD1 } \\
& \text { RD0 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline-* 3 \\
& -* 3 \\
& -* 3 \\
& -* 3 \\
& \hline
\end{aligned}
\] & & & \[
\int_{\text {LSB }}^{\begin{array}{c}
\text { Programmable timer reload data } \\
\text { (low-order } 4 \text { bits) }
\end{array}}
\] \\
\hline EEH & RD7 & RD6 & RD5 & RD4 & \[
\begin{aligned}
& \text { RD7 } \\
& \text { RD6 } \\
& \text { RD5 } \\
& \text { RD4 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { - *3 } \\
& \text { - } * 3 \\
& \text { - } * 3 \\
& -* 3
\end{aligned}
\] & & & \[
\int^{\text {MSB }} \begin{aligned}
& \text { Programmable timer reload data } \\
& \quad \text { (high-order } 4 \text { bits) }
\end{aligned}
\] \\
\hline
\end{tabular}
*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

\section*{Control of the programmable timer}

E0C6274 has a programmable timer with OSC1, OSC3 and external K10 input predivided.

\section*{Input clock selection}

Input clock may be selected by PTC1 and PTCO as shown in Table 6.9.2.

Table 6.9.2
Programmable timer input clock selection

Fig. 6.9.1 Timing of down-counts \((\) predivider \(=1 / 1)\)

Table 6.9.3
Programmable timer input clock predivided selection
\begin{tabular}{|c|c|l|}
\hline PTC1 & PTC0 & \multicolumn{1}{|c|}{ Input clock } \\
\hline 0 & 0 & K10 input with noise rejector \((256 \mathrm{~Hz})\) \\
0 & 1 & K10 input direct \\
1 & 0 & fosc1 \((32 \mathrm{kHz})\) \\
1 & 1 & fosc3 \((1 \mathrm{MHz})\) \\
\hline
\end{tabular}

In case of K10 input, the down count timing becomes the falling edge of the clock and in foscl and fosc3 it becomes the rising edge.


External clock of K10 input (with noise rejector) is for counting by key entry, the input signal from which passes the 256 Hz sampling noise reject circuit. With this, no more than 2 msec of chattering is purged, and at least 6 msec signal is received. (Acceptance of signals within the range from 2 msec to 6 msec is uncertain.)

\section*{Input clock predivided selection}

The input clock is predivided by the dividing ratio selection registers PTD1 and PDTO setting as shown in Table 6.9.3.
\begin{tabular}{|c|c|c|}
\hline PTC1 & PTC0 & Dividing ratio \\
\hline 0 & 0 & \(1 / 256\) \\
0 & 1 & \(1 / 32\) \\
1 & 0 & \(1 / 4\) \\
1 & 1 & \(1 / 1\) \\
\hline
\end{tabular}

\section*{Setting of initial value}

The initial value of count data can be set by software to the reload registers RD0-RD7; at the point where the down-counter value is " 0 ", the programmable timer reloads the initial value and continues to down-count.

\section*{Programmable timer control}

The PTRST bit resets the programmable timer.
By writing " 1 " on PTRST, the programmable timer is reset. The contents set in reload registers RD0-RD7 are loaded into the downcounter.

The PTRUN bit controls RUN/STOP of the programmable timer. By writing " 1 " on PTRUN, the programmable timer performs counting operation. Writing " 0 " will make the programmable timer stop counting.

When the programmable timer is reset in the RUN status, it will restart counting immediately after loading and at STOP status, the load data is maintained.

\section*{Programmable timer data}

The data from the down-counter of the programmable timer can be read out with PT0-PT3 (low-order 4 bits) and PT4-PT7 (high-order 4 bits).

\section*{Programmable timer interrupt}

When the down-counter values PT0-PT7 have become 00H the interrupt factor flag IPT is set to "1" and an interrupt is generated. The interrupt can be masked through the interrupt mask register EIPT. However, regardless of the setting of the interrupt mask register, the interrupt factor flag is set to " 1 " when the downcounter equals 00 H .


Fig. 6.9.2
Timing chart for programmable timer

\section*{Overflow signal output}

Overflow signal of programmable timer is generated to output port R01 if RTRO1 is set. This overflow output is toggled when programmable timer completes the down-counting (at the same time reload occurs).

Fig. 6.9.3
Programmable timer overflow output (PTR01 = "1", R01 register = "0")


Note: When R01 output port is set for PTOVF, set R01 to "0".

Example program for the
programmable timer

Following program shows the programmable timer controlling procedure.
```

Label Mnemonic/operand Comment
;* PROGRAMMABLE TIMER (PT)
;*
ZIPT EQU OCOH ;PROGRAMMABLE TIMER INTERRUPT FACTOR FLAG
ZEIAD EQU 0C8H ;A/D, SIO, PTM INTERRUPT MASK REGISTER
ZPTC1 EQU OE9H ;PROGRAMMABLE TIMER CONTROL REGISTER 1
ZPTC2 EQU OEAH ;PROGRAMMABLE TIMER CONTROL REGISTER 2
ZPTL EQU OEBH ;PROGRAMMABLE TIMER DATA LOW NIBBLE
ZPTH EQU OECH ;PROGRAMMABLE TIMER DATA HIGH
ZRDL EQU OEDH ;PROGRAMMABLE TIMER RELOAD LOW
ZRDH EQU OEEH ;PROGRAMMABLE TIMER RELOAD HIGH
ZRO EQU OD4H ;RO OUTPUT PORT
;
ORG 10EH
JP PTINT ;PT INTERRUPT SERVICE ROUTINE
;
PTINIT:
;* ENABLE INTERRUPT FOR PT, RESET AND START IT.
;
DI
LD X,ZIPT;RESET PT INTERRUPT FLAG
LD A,MX
LD X,ZEIAD ; ENABLE PT INTERRUPT
OR MX,0001B
;
LD X,ZRDL;SET RELOAD REGISTER AS OOH
LBPX MX,00H; (RDL,RDH) = (0,0)
;
LD ZR0

```
```

    AND MX,1101B ;DISABLE R01 REGISTER OUTPUT
    LD X,ZPTC2 ;SELECT PT INPUT FREQ. = 32 KHz/32
    LD MX,0110B ; = 1 KHz
    ;
LD X,ZPTC1 ;RESET PT AND
OR MX,1001B ; SET PTR01 AS PTOVF OUTPUT
;R01 WILL OUTPUT 1 KHz/(256*2) = 2 Hz
OR MX,0010B ; START PT
EI
RET
;
;* PT INTERRUPT SERVICE ROUTINE
PTINT:
LD X,ZIPT ;CHECK PT INTERRUPT FLAG
FAN MX,0001B
JP Z,PTINT1 ;NO, THEN JUMP
;
LD X,ZPTL ;READ PROGRAMMABLE TIMER
;INTO A,B REGISTER
LDPX A,MX
LD B,MX
; :
; DO THE PROCEDURE FOR PT SERVICE
; :
EI
RET
;

```

Programming notes
(1) When initiating programmable timer count, perform programming by the following steps:
1. Set the initial data to RDO-RD7.
2. Reset the programmable timer by writing "1" to PTRST.
3. Start the down-count by writing " 1 " to PTRUN.
(2) When the reload register (RDO-RD7) value is set at " \(00 \mathrm{H}^{\prime}\) ", the down-counter becomes a 256 -value counter.
(3) Be sure to data reading in the order of low-order data (PTO-PT3) then high-order data (PT4-PT7).
(4) Write the interrupt mask register (EIPT) only in the DI status (interrupt flag = "O"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.
(5) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.
(6) If R01 terminal is program for PTOVF output, then R01 register (D4H, D1) must be set as " 0 ", and R01 terminal output the frequency = (PT Input predivided frequency)/[(PT reload register) * 2]. If R01 terminal is program for DC output, then PTR01 (E9H, D3) must be set as " 0 ".

\subsection*{6.10 Serial Interface Circuit}

I/O data memory of the serial interface

\section*{circuit}

Table 6.10.1 Control registers of serial interface circuit
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Address } \\
* 7
\end{gathered}
\]} & \multicolumn{4}{|c|}{Register} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\begin{tabular}{r|r|} 
Name & Init \({ }^{* 1}\) \\
\hline 0 & \({ }^{*} 5\) \\
0 & \(-{ }^{*} 2\) \\
0 & \({ }^{*}\) \\
0 & \(*_{5}\) \\
ISIO & \(-{ }^{*} 4\) \\
\hline
\end{tabular}}} & \multirow[b]{3}{*}{Yes} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Comment}} \\
\hline & D3 & D2 & D1 & D0 & & & & & \\
\hline C 1 H & \multicolumn{4}{|c|}{R} & & & & No & \begin{tabular}{l}
Unused \\
Unused \\
Unused \\
Interrupt factor flag (serial interface)
\end{tabular} \\
\hline C8H & R & EIAD & EISIO
RW & EIPT & \[
\begin{gathered}
0 *^{*} \\
\text { EIAD } \\
\text { EISIO } \\
\text { EIPT }
\end{gathered}
\] & \[
\begin{aligned}
& { }^{* 2} \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
Enable \\
Enable \\
Enable
\end{tabular} & \begin{tabular}{l}
Mask \\
Mask \\
Mask
\end{tabular} & \begin{tabular}{l}
Unused \\
Interrupt mask register (A/D converter) \\
Interrupt mask register (serial interface) \\
Interrupt mask register (programmable timer)
\end{tabular} \\
\hline D7H & R & PUP2 & PUP1
R/W & PUPO & \[
\begin{gathered}
0 *^{*} \\
\text { PUP2 } \\
\text { PUP1 } \\
\text { PUP0 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { - *2 }^{2} \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { On } \\
& \text { On } \\
& \text { On } \\
& \hline
\end{aligned}
\] & Off
Off
Off & \begin{tabular}{lll|}
\hline Unused & \\
Pull up control register 2 (P20-P23) & \(* 6\) \\
Pull up control register 1 (P10-P13) & \\
Pull up control register 0 (P00-P03) & \\
\hline P2
\end{tabular} \\
\hline DBH & PFS & SDP & SCS1 & SCSO & \[
\begin{aligned}
& \hline \text { PFS } \\
& \text { SDP } \\
& \text { SCS1 } \\
& \text { SCSO } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & Serial I/F LSB first & \[
\begin{aligned}
& \text { I/O port } \\
& \text { MSB first }
\end{aligned}
\] & \begin{tabular}{ll} 
P2 port function selection & \\
Serial data input/output permutation & \\
Serial interface clock mode selection & \(* 6\) \\
0: slave, 1: PTOVF, 2: CLK/2, 3: CLK & \\
\hline
\end{tabular} \\
\hline DCH & 0 & 0
R & SCRUN & \begin{tabular}{c} 
SCTRG \\
\hline W
\end{tabular} & \[
\begin{array}{|r|}
\hline 0
\end{array} *^{*} 8 \left\lvert\, \begin{gathered}
0 \\
0 \\
\text { SCRUN } \\
\text { SCTRG*5 } \\
\hline
\end{gathered}\right.
\] & \[
\begin{aligned}
& \hline \mathbf{~ * ~}_{2} \\
& -{ }^{* 2} \\
& 0 \\
& -{ }^{*} \\
& \hline
\end{aligned}
\] & Run Trigger & Stop & \begin{tabular}{l}
Unused \\
Unused \\
Serial interface status \\
Serial interface clock trigger
\end{tabular} \\
\hline DDH & SD3 & SD2 & SD1 & SDO & \[
\begin{aligned}
& \text { SD3 } \\
& \text { SD2 } \\
& \text { SD1 } \\
& \text { SD0 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline{ }^{-* 2} \\
& -{ }^{* 2} \\
& -{ }^{*} \\
& -{ }^{*} \\
& \hline
\end{aligned}
\] & & & \[
\int_{\text {LSB }} \text { Serial interface data (low-order } 4 \text { bits) }
\] \\
\hline DEH & SD7 & SD6 & SD5 & SD4 & \[
\begin{aligned}
& \hline \text { SD7 } \\
& \text { SD6 } \\
& \text { SD5 } \\
& \text { SD4 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { - }^{2} \\
& -{ }^{*} \\
& -{ }^{*} \\
& -{ }^{*} \\
& \hline
\end{aligned}
\] & & & \(\square \begin{aligned} & \text { SSB } \\ & \text { Serial interface data (high-order } 4 \text { bits) }\end{aligned}\) \\
\hline
\end{tabular}
*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

\section*{Control of the serial} interface circuit

The control registers of the serial interface circuit are shown in Table 6.10.1.

The E0C6274 has a synchronous clock type 8 bits serial interface built-in.
Set P2 port as serial I/O port by PFS ( \(\mathrm{DBH} \bullet \mathrm{D} 3\) ) setting.
PFS = "1": P2 port becomes serial I/O port.
PFS = "0": P2 port become general I/O port.

\section*{Serial data permutation}

The serial data can be transmit for MSB or LSB first manner.
This setting can be done by register \(\mathrm{SDP}(\mathrm{DBH} \bullet \mathrm{D} 2)\).
SDP \(=\) " 1 ": LSB first
SDP = "0": MSB first

\section*{Master/slave mode and synchronous clock (SCLK)}

The serial interface of the E0C6274 has two types of operation mode: master mode and slave mode.
In the master mode, it uses an internal clock as synchronous clock. In the slave mode, the synchronous clock output from the external (master side) serial device is input.
The master mode and slave mode are selected through registers SCSO and SCS1; when the master mode is selected, a synchronous clock may be selected from among 3 types as shown in Table 6.10.2.

Table 6.10.2
Synchronous clock selection
\begin{tabular}{|c|c|c|c|}
\hline SCS1 & SCS0 & Mode & Synchronous clock \\
\hline 1 & 1 & & CLK \\
1 & 0 & Master mode & CLK/2 \\
0 & 1 & & PTOVF \\
\hline 0 & 0 & Slave mode & External clock \\
\hline \multicolumn{4}{c|}{ CLK: CPU system clock } \\
\multicolumn{4}{c|}{ PTOVF: Programmable timer overflow signal }
\end{tabular}

At initial reset, the slave mode (external clock mode) is selected. Moreover, the synchronous clock, along with the input/output of the 8 bits serial data, is controlled as follows:
- At master mode, after output of 8 clocks from the \(\overline{\text { SCLK }}\) (P22) terminal, clock output is automatically suspended and SCLK (P22) terminal is fixed at high level.
- At slave mode, after input of 8 clocks to the \(\overline{\text { SCLK }}\) (P22) terminal, subsequent clock inputs are masked.
- When using PTOVF signal selection, the synchronous clock is equal to [PT input predivided frequency / (PT reload register \(\times 2\) )].

\section*{Serial data output}

By setting the parallel data to data registers SD0-SD3 and SD4SD7 individually and writing " 1 " to SCTRG ( \(\mathrm{DCH} \cdot \mathrm{DO}\) ), it synchronizes with the synchronous clock and serial data is output at the SOUT (P21) terminal.
When the output of the 8 bits data from SD0-SD7 is completed, the interrupt factor flag ISIO is set to "1" and interrupt is generated. Moreover, the interrupt can be masked by the interrupt mask register EISIO. Note, however, that regardless of the setting of the interrupt mask register, the interrupt factor flag is set to " 1 " after output of the 8 bits data.

\section*{Serial data input}

By writing " 1 " to SCTRG, the serial data is input from the SIN (P20) terminal, synchronizes with the synchronous clock, and is sequentially read in the 8 bits shift register.

The input data will be fetched at the rising edge of \(\overline{\text { SCLK }}\). When the input of the 8 bits data from SD0-SD7 is completed, the interrupt factor flag ISIO is set to " 1 " and interrupt is generated. Moreover, the interrupt can be masked by the interrupt mask register EISIO. Note, however, that regardless of the setting of the interrupt mask register, the interrupt factor flag is set to " 1 " after input of the 8 bits data.
Also, the data input in the shift register can be read from data registers SD0-SD7 by software.

\section*{Example program for the serial interface circuit}

Serial interface timing chart


Following program shows the serial interface controlling procedure.
```

;*
;* SERIAL INTERFACE (SIO)
;*
ZISIO EQU 0C1H ;SIO INTERRUPT FACTOR FLAG
ZEIAD EQU 0C8H ;A/D,SIO,PTM INTERRUPT MASK REGISTER
ZKO EQU ODOH ;KO INPUT PORT
;(SLAVE MACHINE'S NSRDY IS CONNECT
; TO MASTER MACHINE'S KOO FOR CHECK
; SLAVE MACHINE READY OR NOT)
ZSIOC1 EQU ODBH ;SIO CONTROL REGISTER 1
ZSIOC2 EQU ODCH ;SIO CONTROL REGISTER 2
ZSDL EQU ODDH ;SERIAL INTERFACE DATA LOW
ZSDH EQU ODEH ; SERIAL INTERFACE DATA HIGH
ZPTC1 EQU OE9H ;PROGRAMMABLE TIMER CONTROL REGISTER 1
ZPTC2 EQU OEAH ;PROGRAMMABLE TIMER CONTROL REGISTER 2
ZRDL EQU OEDH ;PROGRAMMABLE TIMER RELOAD LOW
ZRDH EQU OEEH ; PROGRAMMABLE TIMER RELOAD HIGH
;
SENDL EQU 00H ;SENDING DATA BUFFER FOR SDL
SENDH EQU 01H ; SENDING DATA BUFFER FOR SDH
;
ORG 10CH
;

```

JP SIOINT ;SIO INTERRUPT ROUTINE
;
;* OUTPUT DATA TO SERIAL INTERFACE
;* USE MASTER MODE WITH PROGRAMMABLE TIMER PTOVF
;* INPUT FOR SERIAL SYNCHRONOUS CLOCK
OUTSIO:
    LD \(\mathrm{X}, \mathrm{ZSDL}\); RESET SERIAL INTERFACE CIRCUIT
    LDPX A, MX
    LD A, MX
;
    LD X,ZSIOC1
    LD MX,1101B;SET P20-P23 AS SERIAL INTERFACE PORT
                                    ; SET LSB FIRST
                                    ; SET MASTER MODE AND USE PTOVF FOR
                                    ;SERIAL CLOCK
    LD \(\mathrm{X}, \mathrm{ZRDL}\); SET PT RELOAD REGISTER
                                ; \((\mathrm{RDH}, \mathrm{RDL})=(0,0)\)
    LBPX MX, OOH
;
    LD \(\mathrm{X}, \mathrm{ZPTC2}\); SET PT INPUT FREQ. \(=32 \mathrm{KHz/1}\)
    LD MX,1110B ; \(=32 \mathrm{KHz}\)
;
    LD Z,ZPTC1 ; RESET PT THEN START IT
    OR MX,0001B ;RESET IT
    OR MX,0010B ; START IT
                                ;SO, SERIAL INPUT CLOCK
                                ; \(=32 \mathrm{KHz} /(256\) * 2)
                        ; \(=64 \mathrm{~Hz}\)
;
DI
LD X,ZISIO ;RESET SIO INTERRUPT FLAG
LD A, MX
LD \(X, Z E I A D\);ENABLE SIO INTERRUPT
OR MX,0010B
EI
;
    LD \(X, Z S D L\); LOAD SEND DATA BUFFER TO
    LD Y,SENDL ; SERIAL DATA REGISTER
    LDPY MX,MY
    INC X
    LD MX,MY
WAIT1: ;WAIT SLAVE MACHINE SEND NSRDY TO K00
    LD X,ZKO
    FAN MX,0001B
    JP NZ,WAIT1
;
    LD \(\mathrm{X}, \mathrm{ZSIOC} 2\); START SERIAL DATA TRANSFER
    OR MX,0001B
    RET
;
```

;* SERIAL INTERRUPT SERVICE ROUTINE
SIOINT:
LD X,ZISIO ;CHECK SIO INTERRUPT FLAG
FAN MX,0001B
JP Z,SIOIN1
;
LD X,ZSDL ;READ SERIAL DATA INTO A, B REGISTER
LDPX A,MX
LD B,MX
:
DO THE INTERRUPT SERVICE ROUTINE
:
SIOIN1:
EI
RET
;
;* INPUT DATA FROM SERIAL INTERFACE
;* USE SLAVE MODE WITH POLLING METHOD
RDSIO:
LD X,ZSDL
LDPX A,MX ;RESET SERIAL INTERFACE CIRCUIT
LD A,MX
;
LD X,ZSIOC1 ;SELECT SLAVE MODE
LD MX,1000B ; SELECT MSB FIRST
;SET P20-P23 AS SERIAL I/O PORT
LD X,ZEIAD ;DISABLE SIO INTERRUPT
AND MX,1101B
;
LD X,ZSIOC2 ;SET TRIGGER
OR MX,OOO1B ;FOR SENDING NSRDY TO MASTER MACHINE
;
WAIT2:
FAN MX,0010B ; CHECK MASTER SENDING COMPLETELY
JP NZ,WAIT2 ;IF NOT, THEN WAIT
;
LD X,ZSDL ;READ THE SERIAL DATA
LDPX A,MX
LDPX B,MX
RET
;

```
(1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc \(1 \leftrightarrow\) fosc 3 ) while the serial interface is operating.
(2) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
(3) As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing " 1 " to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
(4) Be sure that writing to the interrupt mask register is done with the interrupt in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag \(=\) " 1 ") may cause malfunction.
(5) Read the interrupt factor flag in the DI status (interrupt flag = "O"). Reading of interrupt factor flag is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.
(6) SCTRG can be read or write. After write "1" to SCTRG, it will still high until serial data been shift in or out completely.

\subsection*{6.11 Amplifier}

\section*{l/O data memory of the amplifier circ uit}

The control registers of the amplifier circuit are shown in Table 6.11.1.

Table 6.11.1 Control registers of clock timer
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Address & & & ster & & & & & & mment \\
\hline *7 & D3 & D2 & D1 & D0 & Name & Init*1 & 1 & 0 & 俍ment \\
\hline \multirow[b]{2}{*}{F 1 H} & 0 & 0 & AMPON1 & AMPON0 & \multirow[t]{2}{*}{\(0 \quad * 5\)
\(0 \quad * 5\)
AMPON1
AMPONO} & \[
\begin{aligned}
& \hline-* 2 \\
& -* 2
\end{aligned}
\] & & & \begin{tabular}{l}
Unused \\
Unused
\end{tabular} \\
\hline & \multicolumn{2}{|c|}{R} & \multicolumn{2}{|c|}{R/W} & & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { On } \\
& \text { On }
\end{aligned}
\] & \[
\begin{aligned}
& \text { On } \\
& \text { On }
\end{aligned}
\] & AMP1 On/Off AMP0 On/Off \\
\hline \multirow[b]{2}{*}{F 2 H} & 0 & 0 & AMPDT1 & AMPDT0 & \[
\begin{array}{ll}
0 & * 5 \\
0 & * 5
\end{array}
\] & \[
\begin{aligned}
& -* 2 \\
& -* 2
\end{aligned}
\] & & & \begin{tabular}{l}
Unused \\
Unused
\end{tabular} \\
\hline & & & & & AMPDT1 AMPDT0 & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
High \\
High
\end{tabular} & \[
\begin{aligned}
& \text { Low } \\
& \text { Low }
\end{aligned}
\] & AMP1 output data AMP0 output data \\
\hline
\end{tabular}
*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

\section*{Control of the amplifier circ uit}

There are two amplifiers (AMP1 and AMPO) build in the E0C6274 chip.
It can be performed as a comparator or amplifier depend on the application usages.
These circuits can be turned on and off to save power. The bit AMPON1 (AMPONO) controls the amplifier AMP1 (AMPO) power on/ off.
At initial reset, the AMP1 and AMPO are off while these circuit is not in use, keep these bits set to " 0 " to save power.
The output data of the amplifier appears on the chip's PAD and the internal register AMPDT1 for AMP1, AMPDT0 for AMP0.
(1) When AMPPO > AMPMO, AMPDTO will be set to " 1 ". When AMPPO < AMPMO, AMPDT0 will be set to " 0 ".
(2) When AMPP1 > AMPM1, AMPDT1 will be set to " 1 ". When AMPP1 < AMPM1, AMPDT1 will be set to " 0 ".

\section*{Example program for the amplifier circuit}

\section*{Programming notes}
(1) It takes about 3 msec for the AMPO or AMP1 output becomes stable when the circuit is turned on. Therefore, the program must include a wait time of at least 3 msec before the output data is loaded after the AMP1 or AMPO circuit has been turned on.
(2) The AMPDT1(0) is undefined when the AMPP1(0) or AMPM1(0) is disconnected, and is " 0 " when AMPON1(0) is " 0 ". After an initial reset, this bit is set to " 0 ".
(3) To reduce current consumption, set the AMP circuit to OFF when it is not necessary.

\title{
6.12 SVD (Supply Voltage Detection) Circ uit
}

\section*{I/O data memory of the SVD circ uit}

Table 6.12.1 Control registers of SVD circuit
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Address \\
*7
\end{tabular}} & \multicolumn{4}{|c|}{Register} & & & & & \multirow[t]{2}{*}{Comment} \\
\hline & D3 & D2 & D1 & D0 & Name & Init*1 & 1 & 0 & \\
\hline \multirow{2}{*}{FFH} & SVDS1 & SVDS0 & SVDDT & SVDON & \[
\begin{aligned}
& \text { SVDS1 } \\
& \text { SVDS0 }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \multirow[b]{2}{*}{Low} & \multirow[b]{2}{*}{Normal Off} & \[
\begin{aligned}
& \text { SVD criteria voltage setting } \\
& 0: 2.6 \mathrm{~V}, 1: 2.5 \mathrm{~V}, 2: 2.4 \mathrm{~V}, 3: 2.3 \mathrm{~V}
\end{aligned}
\] \\
\hline & \multicolumn{2}{|c|}{R/W} & R & R/W & \[
\begin{aligned}
& \text { SCDDT } \\
& \text { SCDON }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & Supply voltage evaluation data SVD circuit On/Off \\
\hline
\end{tabular}
*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

\section*{Control of the SVD circuit}

Table 6.12.2

Criteria voltage selection

The E0C6274 has a built-in SVD (supply voltage detection) circuit which allows detection of power voltage drop through software. Turning the SVD operation on and off can be controlled through the software (SVDON: \(\mathrm{FFH} \bullet \mathrm{DO}\) ). Because the IC consumes a large amount of current during SVD operation, it is recommended that the SVD operation be kept OFF unless it is otherwise necessary. Also, the SVD criteria voltage can be set by software. The criteria voltage can be set by SVDS1 and SVDSO (FFH•D3, D2) as follows:

Example program for the SVD circ uit

\section*{Programming notes}

Following program shows the SVD controlling procedure.
```

Label Mnemonic/operand Comment
;*
;* SVD (FOR OSC1 OPERATION)
;
ZSVDC EQU OFFH ;SVD CONTROL REGISTER
;
SCDCHK:
LD X, zSVDC
LD MX,0000B ; SET CRITERIA VOLTAGE = 2.6 V
;
OR MX,O001B ;START CHECK SUPPLY VOLTAGE
AND MX,1110B ;TURN OFF SVD
;
LD A,MX ; READ SVD DATA INTO A REGISTER'S BIT 1
RET

```
;
(1) The SVD circuit should normally be turned OFF (SVDON = "0") as the consumption current of the IC becomes large when it is ON (SVDON = "1").
(2) To obtain a stable result, the SVD circuit must be set to ON with at least \(100 \mu \mathrm{sec}\). Hence, to obtain the SVD detection result, follow the programming sequence below.
1. Set SVDON to " 1 " (ON)
2. Maintain at least \(100 \mu \mathrm{sec}\) minimum
3. Set SVDON to "O" (OFF)
4. Read out SVDDT

However, when a crystal oscillation clock (foscl) is selected for CPU system clock, the instruction cycle are long enough, so that there is no need for concern about maintaining \(100 \mu \mathrm{sec}\) for the \(\operatorname{SVDON}=" 1 "\) with the software.

\subsection*{6.13 A/D Converter}

I/O data memory of A/D converter

The control registers of the A/D converter are shown in Table 6.13.1.

Table 6.13.1 Control registers of A/D converter
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Address
\(\qquad\)} & \multicolumn{4}{|c|}{Register} & \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Init*1} & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{0} & \multirow[t]{2}{*}{Comment} \\
\hline & D3 & D2 & D1 & D0 & & & & & \\
\hline C 4 H & \multicolumn{3}{|c|}{R} & IAD & \[
\begin{array}{|cc|}
\hline 0 & * 5 \\
0 & * 5 \\
0 & * 5 \\
I A D & * 4
\end{array}
\] & \[
\begin{aligned}
& \hline \text { - }^{*} \\
& -{ }^{* 2} \\
& -{ }^{* 2} \\
& 0
\end{aligned}
\] & Yes & No & \begin{tabular}{l}
Unused \\
Unused \\
Unused \\
Interrupt factor flag (A/D converter)
\end{tabular} \\
\hline C 8 H & 0
\(R\) & EIAD & EISIO
R/W & EIPT & \[
\begin{aligned}
& 0{ }^{* 5} \\
& \text { EIAD } \\
& \text { EISIO } \\
& \text { EIPT }
\end{aligned}
\] & \[
\begin{aligned}
& { }^{* 2} \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
Enable \\
Enable \\
Enable
\end{tabular} & \begin{tabular}{l}
Mask \\
Mask \\
Mask
\end{tabular} & \begin{tabular}{l}
Unused \\
Interrupt mask register (A/D converter) \\
Interrupt mask register (serial interface) \\
Interrupt mask register (programmable timer)
\end{tabular} \\
\hline FOH & \multicolumn{4}{|c|}{R/W} & \begin{tabular}{l}
GNDON1 \\
GNDONO \\
VRAON \\
VRON
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { On } \\
& \text { On }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Off } \\
& \text { Off }
\end{aligned}
\] & \begin{tabular}{ll} 
GND circuit On/Off and mode selection & \\
0: Off, 1: On1, 2: On2, 3: On3 & \(* 6\) \\
VR output voltage adjustment On/Off & \\
VR circuit On/Off &
\end{tabular} \\
\hline F3H & \multicolumn{2}{|c|}{R} & \multicolumn{2}{|c|}{R/W} & \[
\begin{array}{rr}
0 & * 5 \\
0 & * 5 \\
\text { ADRS1 } \\
\text { ADRS0 } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline \text { - }^{* 2} \\
& -{ }^{*} 2 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & & & Unused
Unused
A/D converter resolution selection
0: 6400, 1:3200, 2: 1600, 3: 800 \\
\hline F4H & \multicolumn{4}{|c|}{R/W} & \begin{tabular}{l}
AIS3 \\
AIS2 \\
AIS1 \\
AISO
\end{tabular} & \[
\begin{aligned}
& \hline 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Resistor \\
Resistor \\
Differ. V \\
Differ. V
\end{tabular} & \begin{tabular}{l}
V(to GND) \\
V(to GND) \\
V(to GND) \\
V(to GND)
\end{tabular} & AI4/AI3 mode selection AI4/AI2 mode selection AI3/AI2 mode selection AI1/AI0 mode selection \\
\hline F5H & \multicolumn{3}{|c|}{R/W} & AIO & \begin{tabular}{l}
Al3 \\
Al2 \\
Al1 \\
AlO
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { On } \\
& \text { On } \\
& \text { On } \\
& \text { On }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Off } \\
& \text { Off } \\
& \text { Off } \\
& \text { Off }
\end{aligned}
\] & Analog input terminal AI3 On/Off Analog input terminal AI2 On/Off Analog input terminal AI1 On/Off Analog input terminal AI0 On/Off \\
\hline F6H & ADON
R/W & \multicolumn{2}{|c|}{R} & Al4
R/W & \[
\begin{array}{rl}
\hline \text { ADON } \\
0 & * 5 \\
0 & * 5 \\
\text { Al4 } & \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0 \\
& -*_{2} \\
& -{ }^{* 2} \\
& 0 \\
& \hline
\end{aligned}
\] & On
On & \begin{tabular}{l}
Off \\
Off
\end{tabular} & \begin{tabular}{l}
A/D converter clear and On/Off Unused \\
Unused \\
Analog input terminal AI4 On/Off
\end{tabular} \\
\hline F7H & \multicolumn{4}{|c|}{R} & \[
\begin{aligned}
& \text { AD3 } \\
& \text { AD2 } \\
& \text { AD1 } \\
& \text { AD0 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & & & \[
]_{\text {LSB }} \text { A/D converter count data }
\] \\
\hline F8H & \multicolumn{4}{|c|}{R} & \[
\begin{aligned}
& \text { AD7 } \\
& \text { AD6 } \\
& \text { AD5 } \\
& \text { AD4 }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & & & \(]\) A/D converter count data \\
\hline F9H & AD11 & AD10 & AD9 & AD8 & \begin{tabular}{l}
AD11 \\
AD10 \\
AD9 \\
AD8
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & & & \(\square]\) A/D converter count data \\
\hline FAH & 0 & \multicolumn{3}{|c|}{R} & \[
\begin{array}{cc}
0 & * 5 \\
0 & * 5 \\
\text { ADP } \\
\text { AD12 } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& -{ }^{* 2} \\
& \mathbf{z}^{*} \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & (+) & (-) & \begin{tabular}{l}
Unused \\
Unused \\
Input voltage polarity \\
A/D converter count data (MSB)
\end{tabular} \\
\hline FBH & \multicolumn{4}{|c|}{R} & \[
\begin{array}{cc}
\hline 0 & * 5 \\
0 & * 5 \\
0 & * 5 \\
\text { IDR } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline \text { - }^{* 2} \\
& -{ }^{*} 2 \\
& -{ }^{* 2} \\
& 0 \\
& \hline
\end{aligned}
\] & Invalid & Valid & \begin{tabular}{l}
Unused \\
Unused \\
Unused \\
Reading data status
\end{tabular} \\
\hline
\end{tabular}
*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Undefined
*4 Reset (0) immediately after being read
*5 Constantly " 0 " when being read
*6 Refer to main manual
*7 Page switching in I/O memory is not necessary

Feature of the A/D converter

The E0C6274 has a built-in A/D converter with following characteristics:
(1) Using dual-slope conversion method
(2) Conversion time and resolution can change by software
(3) Can measurement different voltage between two inputs, or between one input and GND
(4) Can measurement resistor between two inputs
(5) Can generate GND signal internally, also GND signal can be support by external circuit
(6) A/D converter reference voltage can be generated internally, or support by external
(7) Automatic detect the polarity and with 13 bits A/D converter

\section*{Control of the A/D converter}

Table 6.13.2 GND signal selection

\section*{Control the GND signal}

GND signal is controlled by GND1 and GNDO ( \(\mathrm{FOH} \cdot \mathrm{D} 3\), D2).
\begin{tabular}{|c|c|c|}
\hline GND1 & GND0 & Drivability \\
\hline 0 & 0 & OFF (support by external) \\
0 & 1 & ON \((\times 1)\) \\
1 & 0 & ON \((\times 2)\) \\
1 & 1 & ON \((\times 4)\) \\
\hline
\end{tabular}

\section*{Reference voltage (VR) control}

Reference voltage (VR) is controlled by VRAON and VRON (FOH•D1, D0)
- \(\mathrm{VRON}=\) " 1 ": VR reference voltage is generated internally VRON = " 0 ": VR reference voltage is generated externally
- VRAON = " 1 ": VR output voltage adjustment ON

VRAON = "O": VR output voltage adjustment OFF

\section*{Resolution/conversion time}

It is controlled by ADRS 1 and \(\operatorname{ADRS} 0(F 3 H \bullet D 1, D 0)\).
\begin{tabular}{|c|c|c|}
\hline ADRS1 & ADRS0 & Resolution/conversion time \\
\hline 0 & 0 & 6,552 counts \(/ 500 \mathrm{msec}\) \\
0 & 1 & 3,276 counts \(/ 250 \mathrm{msec}\) \\
1 & 0 & 1,638 counts \(/ 125 \mathrm{msec}\) \\
1 & 1 & 820 counts \(/ 62.5 \mathrm{msec}\) \\
\hline
\end{tabular}

\section*{Measurement mode selection}

The A/D converter can measurement the following mode:
- Terminal voltage vs GND
- Difference voltage between terminal
- Resistance between terminal

How to set the measurement mode and measurement terminals are shown as following:

Table 6.13.4 Measurement item selection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|l|}
\hline AIS3 & AIS2 & AIS1 & AIS0 & \(\mathrm{Al4}\) & AI 3 & Al 2 & Al 1 & AI 0 & Measurement items \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & AI0 voltage measurement (GND reference) \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & AI1 voltage measurement (GND reference) \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & AI2 voltage measurement (GND reference) \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & AI3 voltage measurement (GND reference) \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & AI4 voltage measurement (GND reference) \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & AI1 differential voltage measurement (AI0 reference) \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & AI3 differential voltage measurement (AI2 reference) \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & AI2 resistance measurement (AI4 reference) \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & AI3 resistance measurement (AI4 reference) \\
\hline
\end{tabular}

Note: It is inhibit to set other condition that is not shown on the above table.

\section*{A/D conversion}

When the above four stages is set properly, then can start the A/D conversion by set ADON \((\mathrm{F} 6 \mathrm{H} \bullet \mathrm{D} 3)=" 1\) ". When set ADON to " 1 ", it means to reset A/D converter and start converting.
Figure 6.13 .1 show the integration amplifier's output.


\section*{Readout the A/D converter and check valid}

There are 13 bits for the A/D converter counter data (AD12-AD0). And with a sign bit ADP for input polarity. It should be read the \(A / D\) converter counter data from the lowest word to highest word, then check the valid bit IDR. If IDR \(=\) " 1 ", means the data is invalid.

\section*{A/D converter interrupt}

When the reverse integration period has terminates, the A/D interrupt factor flag IAD is set to " 1 " and an interrupt occurs. The A/D interrupt can also be masked by writing a "O" into the interrupt mask register EIAD. When EIAD is set to " 1 ", an interrupt occurs.
The interrupt factor flag IAD is set to " 1 " when the reverse integration period has terminates, regardless of the setting of the interrupt mask register and is reset to " 0 " by reading.

Example program for the A/D converter

Following program shows the A/D converter controlling procedure.
\begin{tabular}{|c|c|c|c|}
\hline Label & \multicolumn{2}{|l|}{Mnemonic/operand} & Comment \\
\hline \multicolumn{4}{|l|}{;*} \\
\hline \multicolumn{4}{|l|}{;* A/D CONVERTER} \\
\hline \multicolumn{4}{|l|}{; *} \\
\hline ZIAD & EQU & 0 C 4 H & ;A/D CONVERTER INTERRUPT FACTOR FLAG \\
\hline ZEIAD & EQU & 0C8H & ;A/D,SIO, PT INTERRUPT MASK REGISTER \\
\hline ZGNDON & EQU & 0 FOH & ; GNDON1, GNDON0, VRAON, VRON \\
\hline ZADRS & EQU & OF3H & ;A/D CONVERTER RESOLVING POWER \\
\hline & & & ;/CONVERSION SPEED SELECTION \\
\hline ZAIS & EQU & 0F4H & ;A/D MODE SELECTION \\
\hline ZAI & EQU & 0F5H & ;A/D INPUT TERMINAL \\
\hline ZADON & EQU & 0F6H & ;A/D CONVERTER CLEAR AND ON/OFF \\
\hline ZAD0 & EQU & 0F7H & ;A/D CONVERTER COUNTER DATA 0 (LOWER) \\
\hline ZAD1 & EQU & 0F8H & ; A/D CONVERTER COUNTER DATA 1 \\
\hline ZAD2 & EQU & 0F9H & ;A/D CONVERTER COUNTER DATA 2 \\
\hline ZAD3 & EQU & OFAH & ;A/D CONVERTER COUNTER DATA 3 (HIGHER) \\
\hline ZIDR & EQU & 0 FBH & ;A/D CONVERTER READOUT VALID \\
\hline \multicolumn{4}{|l|}{;} \\
\hline DATA0 & EQU & OH & ; STORE A/D CONVERTER DATA \\
\hline DATA1 & EQU & 1H & \\
\hline DATA2 & EQU & 2H & \\
\hline DATA3 & EQU & 3H & \\
\hline VALID & EQU & 4H & ; STORE THE VALID FLAG \\
\hline \multicolumn{4}{|l|}{'} \\
\hline & ORG & 106H & \\
\hline & JP & ADINT & ;A/D INTERRUPT ROUTINE \\
\hline \multicolumn{4}{|l|}{;} \\
\hline \multicolumn{4}{|l|}{INITAD:} \\
\hline & LD & X, ZGNDON & J ; GND AND VR SIGNAL OFFER \\
\hline & & & ;BY EXTERNAL CIRCUIT \\
\hline & LD & MX, 0000B & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & LD & X, ZADRS & ; SET CONVERSION SPEED \(=500 \mathrm{mS}\) \\
\hline & LD & MX, 0 & \\
\hline \multicolumn{4}{|l|}{;} \\
\hline & LD & X, ZAIS & ; SET FOR MEASUREMENT TERMINAL \\
\hline & & & ;VOLTAGE VS GND \\
\hline
\end{tabular}
```

    LDPX MX,O
    LBPX MX,01H
    ;
LD X,ZADON ;RESET A/D CONVERTER,
;AND START A/D CONVERSION
OR MX,1000B
DI
LD X,ZIAD ;RESET INTERRUPT FLAG
LD A,MX
LD X,ZEIAD ;ENABLE A/D INTERRUPT
OR MX,0100B
EI
; :
; :
;
;* A/D INTERRUPT SERVICE ROUTINE
ADINT:
LD X,ZIAD
FAN MX,0001B ; CHECK INTERRUPT FLAG = 1 ?
JP Z,ADINT1 ;JUMP IF NOT
LD X,ZADO ;READ A/D CONVERTER COUNTER
;TO BUFFER
LD Y,DATAO
LDPX MY,MX
INC Y
LDPX MY,MX
INC Y
LDPX MY,MX
INC Y
LDPX MY,MX
INC Y
LD MY,MX
FAN MY,0001B
JP NZ,ADINT1
; :
; DO THE A/D SERVICE ROUTINE
; :
ADINT1:
EI
RET
;

```

Programming notes
(1) To reduce current consumption, set the reference voltage generation circuit, the middle electric potential generation circuit and the A/D converter to OFF when it is not necessary.
(2) Do not fail to select the correct combinations for the analog input terminal and measurement items. (Refer to Table 6.13.4)
(3) To perform a stable A/D conversion, secure the decided wait time.
(4) Be sure to check whether the data is effective or invalid by reading the A/D conversion data in the order \(\mathrm{F} 7 \mathrm{H} \rightarrow \mathrm{F} 8 \mathrm{H} \rightarrow\) \(\mathrm{F} 9 \mathrm{H} \rightarrow \mathrm{FAH}\) and immediately thereafter reading the IDR (FBH).
(5) When reading data after turning the A/D converter OFF, the A/ D converter should be OFF in the period from an interrupt generation to the beginning of a reverse integration.
(6) When the A/D converter is reset or turned OFF, the interrupt factor flag (IAD) may sometimes be set to " 1 ". Consequently, read the flag (reset the flag) as necessary at reset or at the turning OFF.
(7) Write the interrupt mask register (EIAD) only in the DI status (interrupt flag \(=\) "O"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.
(8) Reading of interrupt factor flag is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated.

\subsection*{6.14 Seep}

\section*{I/O data memory of sleep function}

The control registers of the sleep function are shown in Table 6.14.1.

Table 6.14.1 Control registers of sleep function
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Address \\
*7
\end{tabular}} & \multicolumn{4}{|c|}{Register} & & & & & \multirow[t]{2}{*}{Comment} \\
\hline & D3 & D2 & D1 & D0 & Name & Init*1 & 1 & 0 & \\
\hline \multirow{4}{*}{C 2 H} & 0 & 0 & 0 & IK1 & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\[
\begin{array}{rr|l}
\hline 0 & * 5 & -*_{2} \\
0 & * 5 & -*_{2} \\
0 & * 5 & -*_{2} \\
\text { |K1 } & *_{4} & 0 \\
\hline
\end{array}
\]}} & \multirow[b]{4}{*}{Yes} & \multirow[b]{4}{*}{No} & Unused \\
\hline & 0 & 0 & 0 & K1 & & & & & Unused \\
\hline & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{R}} & & & & & Unused \\
\hline & & & & & & & & & Interrupt factor flag (K10) \\
\hline \multirow{4}{*}{C 9 H} & 0 & 0 & EIK1 & EIKO & & - *2 & & & Unused \\
\hline & 0 & 0 & EIK1 & EIKO & \(0 * 5\) & - *2 & & & Unused \\
\hline & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{R}} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{R/W}} & EIK1 & 0 & Enable & Mask & Interrupt mask register (K10) \\
\hline & & & & & EIKO & 0 & Enable & Mask & Interrupt mask register (K00-K03) \\
\hline \multirow{4}{*}{D3H} & 0 & 0 & 0 & DFK10 & & - *2 & & & Unused \\
\hline & & & & & \(0 * 5\) & - *2 & & & Unused \\
\hline & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{R}} & R/W & \(0 * 5\) & - *2 & & & Unused \\
\hline & & & & R/W & DFK10 & 1 & 7 & 5 & Input comparison register (K10) \\
\hline \multirow{4}{*}{DFH} & 0 & 0 & CLKCHG & OSCC & & - *2 & & & Unused \\
\hline & & & & & \(0 * 5\) & - *2 & & & Unused \\
\hline & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{R}} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{R/W}} & CLKCHG & 0 & OSC3 & OSC1 & CPU system clock switch \\
\hline & & & & & OSCC & 0 & On & Off & OSC3 oscillation On/Off \\
\hline
\end{tabular}
*1 Initial value at the time of initial reset
*2 Not set in the circuit *6 Refer to main manual
*3 Undefined \(\quad\) *7 Page switching in I/O memory is not necessary
*4 Reset (0) immediately after being read

\section*{Control of the sleep function}

The E0C6274 has a sleep function. When it executes "SLP" instruction, then it sleeps. In the SLEEP mode, the core and all peripheral circuit are not working except the K10 input port and external system reset circuits. During the chip is sleeping, all RAM's data and I/O registers remain the same values. Because all output registers (like R00-R03, P00-P03, etc.) are keeping the same values. So before the chip go to sleep first turn on or turn off the necessary output pins.
When shifting to the SLEEP mode, the CPU clock must be set to OSC1 and the OSC3 oscillation circuit must be off.
The K10 input port and external system reset circuit are use to wakeup the E0C6274 chip while it is sleeping.

\section*{Use external system reset to wakeup}
- Set the proper RAM's data and I/O register's data if necessary.
- Executes "SLP" and the chip sleeps.
- Low input to external system reset pin.
- Hardware initial I/O registers as default values, and the program counter go to 100 H .
- Software initialize same procedures according the application necessaries.

\section*{Use K10 input port to wakeup}
- Set the proper RAM's data and I/O register's data if necessary.
- Set input comparison register (DFK10) to "1" or "0"; Set interrupt mask register EIK1 = " 1 "; Set interrupt flag (EI).
- Executes "SLP" and the chip sleeps.
- When K10 input port mismatch to DFK10, then the chip wakeup, and go to K10 interrupt service routine.
- After finishing the interrupt service routine then program counter jump to the next of "SLP" instruction.

Example program for the sleep function

Following program shows the sleep function controlling procedure.
```

Label Mnemonic/operand Comment
;* SLEEP
;*
ZIK1 EQU 0C2H ;K10 INTERRUPT FACTOR FLAG
ZEIK EQU 0C9H ;K00-K03, K10 INTERRUPT MASK REGISTER
ZK1 EQU OD1H ;K10 INPUT PORT
ZDFK1 EQU OD3H ;K10 DIFFERENTIAL REGISTER
;
CHDATA EQU 00H ;IF CPU IS SLEEPING, THEN
;IT STORE (5, A) IN RAMS 00H AND 01H
;
ORG 100H
JP INIT
;
ORG 10AH
JP K1INT ;K10 INTERRUPT ROUTINE
;
;* CPU IS GOING TO SLEEP
GOSLP:
; :
; SET AMP 1 \& O OFF, A/D CONVERTER OFF AND OTHERS
; FOR SAVING POWER IF NECESSARY
; :
DI
LD X,CHDATA;SET CPU SLEEPING FLAG
LBPX MX,5AH
;
LD X,ZK1 ;SET DIFFERENTIAL REGISTER THE SAME
LD Y,ZDFK1 ;AS K10 INPUT
LD MY,MX
;
LD X,ZIK1 ;RESET K10 INTERRUPT FLAG
LD A,MX

```
```

;
LD X,ZEIK ;ENABLE K10 INTERRUPT
OR MX,0010B
EI
;
SLP
(AFTER K10 INTERRUPT SERVICE FINISH, PROGRAM COUNTER
WILL COME HERE)
:
;
;* SYSTEM INITIALIZE ROUTINE
INIT:
; :
; DO SOME INITIALIZE PROCEDURE
; :
CALL CHKSLP ;CALL CHECK SLEEP ROUTINE
JP Z,INIT1 ;JUMP IF WAKEUP FROM SLEEP
:
DO NORMAL SYSTEM RESET ROUTINE
; :
INIT1:
; :
; DO WAKEUP SERVICE ROUTINE
; :
;
;* K10 INTERRUPT SERVICE ROUTINE
K1INT:
LD X,ZK1 ;READ INTERRUPT FLAG
LD A,MX
CALL CHKSLP ; CALL CHECK SLEEP ROUTINE
JP Z,K1INT1 ; JUMP IF WAKEUP FROM SLEEP
:
DO K10 NORMAL INTERRUPT SERVICE ROUTINE
JP K1INT2
K1INT1:
; :
; DO WAKEUP SERVICE ROUTINE
; :
K1INT2:
EI
RET
;
;* CHECK IF WAKEUP FROM SLEEP ROUTINE
;
CHKSLP:
LD X,CHDATA ; COMPARE RAM 00H \& 01H EQUAL (5, A)
CP MX,OAH
JP NZ,CHKSL1;IF EQUAL THEN

```
```

    INC X ;THIS ROUTINE RETURN
        ;WITH ZERO FLAG = 1
    CP MX,5H ;IF NOT EQUAL THEN
        ;THIS ROUTINE RETURN
        ;WITH ZERO FLAG = 0
    LD X,CHDATA ; CLEAR THE SLEEPING FLAG
    LBPX MX,0
    CHKSL1:
RET

```
;

\section*{Programming notes}
(1) Because all I/O registers remain the same values, so please set the proper values before execute "SLP" instruction.
(2) After the K10 input port or external system reset trigger to the chip, the chip should wait, then wakeup.
(3) When the chip is sleeping, there is no noise rejector for K10 input port all low system reset.
(4) When shifting to the SLEEP status, the CPU clock must be set to OSC1 and the OSC3 oscillation circuit must be off.
(5) Normally, the K10 interrupt is used to release the SLEEP mode. Because of this, the following settings must be done before shifting to the SLEEP mode.
- Set the K10 input interrupt condition using the DFK10 register.
- Enable the K10 input interrupt using the EIK1 register.
- Set the interrupt flag to EI (interrupt enable).

\subsection*{6.15 Intemupt}

\section*{Intemupt vector, factorflag, and mask register}

When an interrupt request is issued to the CPU, the CPU starts interrupt processing.
Interrupt processing is accomplished by the following steps after the instruction being executed is completed.
(1) The address (value of the program counter) of the program which should be run next is saved in the stack area (RAM).
(2) The vector address (1 page \(02 \mathrm{H}-0 \mathrm{FH}\) ) for each interrupt request is set to the program counter.
(3) Branch instruction written to the vector is effected (branch to software interrupt processing routine).

Note: Time equivalent to 12 cycles of CPU system clock is required for steps (1) and (2).

The interrupt request and interrupt vector correspondence is shown in Table 6.15.1.

Table 6.15.1 Interrupt request and interrupt vectors
\begin{tabular}{|c|c|c|}
\hline Interrupt vector (PCP and PCS) & Interrupt request & Priority \\
\hline 102H & Clock timer interrupt & \multirow[t]{5}{*}{\[
\begin{gathered}
\text { Low } \\
\uparrow
\end{gathered}
\]} \\
\hline 104H & Stopwatch timer interrupt & \\
\hline 106H & A/D converter interrupt & \\
\hline 108H & Input (K00-K03) interrupt & \\
\hline 10AH & Input (K10) interrupt & \\
\hline 10CH & Serial interface interrupt & \(\downarrow\) \\
\hline 10EH & Programmable timer interrupt & High \\
\hline
\end{tabular}

When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.

The interrupt factor flags and interrupt mask registers correspondence are shown in Table 6.15.2.
The configuration of the interrupt circuit is shown in Figure 6.15.1.


Fig. 6.15.1
Configuration of interrupt circuit

Table 6.15.2 Interrupt flags and interrupt mask registers
\begin{tabular}{|c|c|c|c|c|}
\hline Interrupt factor & \multicolumn{2}{|l|}{Interrupt factor flag} & \multicolumn{2}{|l|}{Interrupt mask register} \\
\hline Falling edge of clock timer ( 1 Hz ) & IT1 & (C6H•D3) & EIT1 & (CCH•D3) \\
\hline Falling edge of clock timer ( 2 Hz ) & IT2 & \((\mathrm{C} 6 \mathrm{H} \cdot \mathrm{D} 2)\) & EIT2 & \((\mathrm{CCH} \cdot \mathrm{D} 2)\) \\
\hline Falling edge of clock timer ( 8 Hz ) & IT8 & \((\mathrm{C} 6 \mathrm{H} \cdot \mathrm{D} 1)\) & EIT8 & ( \(\mathrm{CCH} \cdot \mathrm{D} 1)\) \\
\hline Falling edge of clock timer ( 32 Hz ) & IT32 & ( \(\mathrm{C} 6 \mathrm{H} \cdot \mathrm{D} 0\) ) & EIT32 & \((\mathrm{CCH} \cdot \mathrm{D} 0)\) \\
\hline Falling edge of stopwatch timer ( 1 Hz ) & ISW1 & (C5H•D1) & EISW1 & (CBH•D1) \\
\hline Falling edge of stopwatch timer ( 10 Hz ) & ISW0 & \((\mathrm{C} 5 \mathrm{H} \cdot \mathrm{D} 0)\) & EISW0 & (CBH•D0) \\
\hline A/D converter converting finish & IAD & (C4H•D0) & EIAD & (C8H•D2) \\
\hline No matching between input ports (K00-K03) & IK0 & \((\mathrm{C} 3 \mathrm{H} \cdot \mathrm{D} 0)\) & EIK0 & (C9H•D0) \\
\hline and input comparison registers (DFK00-DFK03) & & & SIK00 & \((\mathrm{CAH} \cdot \mathrm{D} 0)\) \\
\hline & & & SIK01 & \((\mathrm{CAH} \cdot \mathrm{D} 1)\) \\
\hline & & & SIK02 & \((\mathrm{CAH} \cdot \mathrm{D} 2)\) \\
\hline & & & SIK03 & (CAH•D3) \\
\hline No matching between input port K10 and input comparison register DFK10 & IK1 & \((\mathrm{C} 2 \mathrm{H} \cdot \mathrm{D} 0)\) & EIK1 & (C9H•D1) \\
\hline Data ( 8 bits) input/output of serial interface has completed & ISIO & \((\mathrm{C} 1 \mathrm{H} \cdot \mathrm{D} 0)\) & EISIO & (C8H•D1) \\
\hline Programmable timer down count to 00H & IPT & \((\mathrm{C} 0 \mathrm{H} \cdot \mathrm{D} 0)\) & EIPT & (C8H•D0) \\
\hline
\end{tabular}

\section*{Example program for the intemupt}
```

Following program shows the interrupt procedure.
Label Mnemonic/operand Comment
;*
;* INTERRUPT
;*
ZIPT EQU OCOH ;PTM INTERRUPT FACTOR FLAG
ZISIO EQU OC1H ;SIO INTERRUPT FACTOR FLAG
ZIK1 EQU 0C2H ;K10 INTERRUPT FACTOR FLAG
ZIK0 EQU 0C3H ;K00-K03 INTERRUPT FACTOR FLAG
ZIAD EQU 0C4H ; A/D CONVERTER INTERRUPT FACTOR FLAG
ZISW EQU 0C5H ;STW INTERRUPT FACTOR FLAG
ZIT EQU 0C6H ;TIMER INTERRUPT FACTOR FLAG
ZWDOG EQU 0E5H ;WATCHDOG REGISTER
;
ORG 102H
JP TMINT ;TIMER (7th PRIORITY)
;
ORG 104H
JP SWINT ;STOPWATCH (6th PRIORITY)
;
ORG 106H
JP ADINT ;A/D (5th PRIORITY)
;
ORG 108H
JP KOINT ;KO (4th PRIORITY)
;
ORG 10AH

```
```

;
ORG 10CH
JP SIOINT ;SIO (2nd PRIORITY)
;
ORG 10EH
JP PTINT ;PTM (1st PRIORITY)
;
;* APPLICATION MAIN ROUTINE
MAIN:
DI
; :
; (ENABLE TIMER. STOPWATCH, A/D CONVERTER, K0 INPUT,
; K10 INPUT, SIO, PROGRAMMABLE TIMER INTERRUPT)
; :
EI
MAIN1:
HALT
JP MAIN1
;
;* CLOCK TIMER INTERRUPT
TMINT:
LD X,ZIT ; LOAD TIMER INTERRUPT FLAG
;TO B REGISTER
LD B,MX
CHKT32:
FAN B,0001B ; CHECK TIMER 32 Hz INTERRUPT FLAG
JP Z,CHKT8 ;NO, THEN JUMP
CALL SERT32 ;TIMER 32 Hz SERVICE ROUTINE
CHKT8:
FAN B,OO10B ;CHECK TIMER 8 Hz INTERRUPT FLAG
JP Z,CHKT2 ;NO, THEN JUMP
CALL SERT8 ;TIMER 8 Hz SERVICE ROUTINE
CHKT2:
FAN B,0100B ; CHECK TIMER 2 Hz INTERRUPT FLAG
JP Z,CHKT1 ;NO, THEN JUMP
CALL SERT2 ;TIMER 2 Hz SERVICE ROUTINE
CHKT1:
FAN B,1000B ; CHECK TIMER 1 Hz INTERRUPT FLAG
JP Z,INTEND ; NO, THEN JUMP
CALL SERT1 ;TIMER 1 Hz SERVICE ROUTINE
;
LD X,ZWDOG ;RESET WATCHDOG IN EVERY ONE
;1 Hz INTERRUPT
OR MX,1000B
INTEND: ;END OF INTERRUPT
EI
RET
;
;* STOPWATCH TIMER INTERRUPT
SWINT:
LD X,ZISW ;LOAD STOPWATCH INTERRUPT FLAG
;TO B REGISTER
LD B,MX

```
```

CHKSWO:
FAN B,OOO1B ;CHECK STOPWATCH 1/10 Hz
;INTERRUPT FLAG
JP Z,CHKSW1 ;NO, THEN JUMP
CALL SERSWO ; STOPWATCH 1/10 Hz SERVICE ROUTINE
CHKSW1:
FAN B,O010B ; CHECK STOPWATCH 1 Hz INTERRUPT FLAG
JP Z,INTEND ; NO, THEN JUMP
CALL SERSW1 ;STOPWATCH 1 Hz SERVICE ROUTINE
JP INTEND
;
;* A/D CONVERTER INTERRUPT
ADINT:
LD X,ZIAD ;CHECK A/D INTERRUPT FLAG
FAN MX,0001B
JP Z,INTEND ;NO, THEN JUMP
CALL SERAD ;A/D SERVICE ROUTINE
JP INTEND
;
;* KO INTERRUPT SERVICE ROUTINE
KOINT:
LD X,ZIK0
FAN MX,0001B ; CHECK K0 INTERRUPT FLAG
JP Z,INTEND ; NO, THEN JUMP
CALL SERKO ;KO SERVICE ROUTINE
JP INTEND
;
;* K1 INTERRUPT SERVICE ROUTINE
K1INT:
LD X,ZIK1
FAN MX,0001B ;CHECK K1 INTERRUPT FLAG
JP Z,INTEND ; NO, THEN JUMP
CALL SERK1 ;K1 SERVICE ROUTINE
JP INTEND
;
;* SIO INTERRUPT SERVICE ROUTINE
SIOINT:
LD X,ZISIO
FAN MX,0001B ; CHECK SIO INTERRUPT FLAG
JP Z,INTEND ; NO, THEN JUMP
CALL SERSIO ;SIO SERVICE ROUTINE
JP INTEND
;
;* PROGRAMMABLE TIMER INTERRUPT SERVICE ROUTINE
PTINT:
LD X,ZIPT
FAN MX,0001B ; CHECK PT INTERRUPT FLAG
JP Z,INTEND ; NO, THEN JUMP
CALL SERPT ;PT SERVICE ROUTINE
JP INTEND
;
SERT32:
; :

```
```

; DO THE TIMER 32 Hz INTERRUPT
; SERVICE ROUTINE HERE
; :
RET
;
SERT8:
; :
; DO THE TIMER 8 Hz INTERRUPT
; SERVICE ROUTINE HERE
; :
RET
;
SERT2:
; :
; DO THE TIMER 2 Hz INTERRUPT
; SERVICE ROUTINE HERE
; :
RET
;
SERT1:
; :
; DO THE TIMER 1 Hz INTERRUPT
; SERVICE ROUTINE HERE
; :
RET
;
SERSW0:
; :
; DO THE STOPWATCH 1/10 Hz INTERRUPT
; SERVICE ROUTINE HERE
; :
RET
;
SERSW1:
; :
; DO THE STOPWATCH 1 Hz INTERRUPT
; SERVICE ROUTINE HERE
; :
RET
;
SERAD:
; :
; DO THE A/D CONVERTER INTERRUPT
; SERVICE ROUTINE HERE
; :
RET
;
SERKO :
; :
; DO THE INPUT KO INTERRUPT
; SERVICE ROUTINE HERE
; :
RET

```
```

;
SERK1:
; :
; DO THE INPUT K1 INTERRUPT
; SERVICE ROUTINE HERE
; :
RET
;
SERSIO:
; :
; DO THE SIO INTERRUPT
; SERVICE ROUTINE HERE
; :
RET
;
SERPT:
; :
; DO THE PROGRAMMABLE TIMER INTERRUPT
; SERVICE ROUTINE HERE
; :
RET

```

\section*{Programming notes}
(1) The interrupt factor flag is set when the interrupt conditions are established, regardless of the setting of the interrupt mask register.
(2) Read the interrupt factor flag in the DI status (interrupt flag \(=\) " 0 "). Reading of interrupt factor flag is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
(3) Be sure that writing to the interrupt mask register is done with the interrupt in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = " 1 ") may cause malfunction.
(4) When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.

\section*{CHAPIER 7 SUMMARY OF NOTES}

\subsection*{7.1 Notes for Low Curent Consumption}

The E0C6274 contains control registers for each of the circuits so that current consumption can be lowered. These control registers lower the current consumption through programs that operate the circuits at the minimum levels.
The following text explains the circuits that can control operation and their control registers. Refer to these when putting programs together.

Table 7.1.1 Circuits and control registers
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Circuits (and items) } & \multicolumn{1}{c|}{ Control registers } & Order of consumed current \\
\hline CPU & HALT, SLEEP instructions & See electrical characteristics \((*)\) \\
\hline CPU operating frequency & CLKCHG, OSCC & See electrical characteristics \((*)\) \\
\hline A/D converter & ADON, GNDON0, GNDON1, VRON & See electrical characteristics \(\left(^{*}\right)\) \\
\hline AMP circuit & AMPON0, AMPON1 & See electrical characteristics \((*)\) \\
\hline SVD circuit & SVDON & See electrical characteristics \((*)\) \\
\hline
\end{tabular}

\footnotetext{
* "I. E0C6274 Technical Hardware", Chapter 7
}

Below are the circuit statuses at initial reset.
CPU: Operating status
```

CPU operating frequency: Low speed side (CLKCHG = "0"),
OSC3 oscillation circuit OFF status (OSCC = "0")
A/D converter: A/D converter OFF status (ADON = "0")
GND generation circuit OFF status (GNDON0, GNDON1 = "0")
Reference voltage generation circuit OFF status (VRON = "0")
AMP circuit: OFF status (AMPON0, AMPON1 = "0")
SVD circuit: OFF status (SVDON = "0")

```

\subsection*{7.2 Summary of Notes by Function}

Here, the cautionary notes are summed up by function category. Keep these notes well in mind when programming.

System initialization In some of initial registers and initial data memory area, the initial value is undefined after reset. Set them proper initial values by the program, as necessary.

Memory Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this reason, normal operation cannot be assured for programs that have been prepared with access to these area.

SVD (Supply voltage
detection) circuit
(1) The SVD circuit should normally be turned OFF (SVDON = "0") as the consumption current of the IC becomes large when it is ON (SVDON = "1").
(2) To obtain a stable result, the SVD circuit must be set to ON with at least \(100 \mu \mathrm{sec}\). Hence, to obtain the SVD detection result, follow the programming sequence below.
1. Set SVDON to "1" (ON)
2. Maintain at least \(100 \mu \mathrm{sec}\) minimum
3. Set SVDON to "0" (OFF)
4. Read out SVDDT

However, when a crystal oscillation clock (foscl) is selected for CPU system clock, the instruction cycle are long enough, so that there is no need for concern about maintaining \(100 \mu \mathrm{sec}\) for the SVDON \(=" 1\) " with the software.

Watchdog timer (1) The watchdog timer must be reset within 3-second cycles. Because of this, the watchdog timer data (WDO, WD1) cannot be used for clocking of 3 seconds or more.
(2) When clock timer resetting (TMRST \(\leftarrow " 1 ")\) is performed, the watchdog timer is also reset.

Oscillation circuit (1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON.
Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
(2) When switching the clock from OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
(3) To lessen current consumption, keep OSC3 oscillation OFF except when the CPU must be run at high speed.
(4) When shifting to the SLEEP status, the CPU clock must be set to OSC1 and the OSC3 oscillation circuit must be OFF.

Input ports When input ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration.
Make this waiting time the amount of time or more calculated by the following expression.
\(10 \times \mathrm{C} \times \mathrm{R}\)
C : terminal capacitance \(5 \mathrm{pF}+\) parasitic capacitance ? pF
R : pull up resistance \(300 \mathrm{k} \Omega\)
Output ports (1) When \(\mathrm{BZ}, \overline{\mathrm{BZ}}, \overline{\mathrm{FOUT}}\) and \(\overline{\mathrm{PTOVF}}\) output are selected by software, a hazard may be observed in the output waveform when the data of the output register changes.
(2) When R00 is used for general output port, set FOR00 to "O". When R00 is used for FOUT output, set FOR00 to " 1 ".
(3) When R01 is used for general output port, set PTR01 to "O". When R01 is used for PTOVF output, set PTR01 to " 1 ".
(4) When R02 is used for general output port, set BZR02 to "0". When R02 is used for buzzer output, set BZR02 to " 1 ".
(5) When R03 is used for general output port, set BZR03 to "0". When R03 is used for buzzer inverted output, set BZR03 to "1".

I/O ports (1) When P20-P23 is used as general I/O ports, set PFS to "O".
(2) When P20-P23 is used as serial I/O ports, set PFS to "1".
(3) When in the input mode, I/O ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration.

Make this waiting time the amount of time or more calculated by the following expression.
\(10 \times \mathrm{C} \times \mathrm{R}\)
C: terminal capacitance \(5 \mathrm{pF}+\) parasitic capacitance ? pF
R: pull up registance \(300 \mathrm{k} \Omega\)
LCD driver (1) The contents of the display memory are undefined until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
(2) Since the display memory area is write-only, display data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).

Clock timer (1) Be sure to data reading in the order of low-order data (TMOTM3) then high-order data (TM4-TM7).
(2) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to "1". Consequently, perform flag reading (reset the flag) as necessary at reset.
(3) When the clock timer has been reset, the watchdog timer is also reset.

Stopwatch timer (1) Be sure to data reading in the order of low-order data (SWLOSWL3) then high-order data (SWHO-SWH3).
(2) When the stopwatch timer has been reset, the interrupt factor flag (ISW) may sometimes be set to " 1 ". Consequently, perform flag reading (reset the flag) as necessary at reset.

Programmable timer (1) When initiating programmable timer count, perform programming by the following steps:
1. Set the initial data to RD0-RD7.
2. Reset the programmable timer by writing " 1 " to PTRST.
3. Start the down-count by writing " 1 " to PTRUN.
(2) When the reload register (RDO-RD7) value is set at " 00 H ", the down-counter becomes a 256 -value counter.
(3) Be sure to data reading in the order of low-order data (PT0-PT3) then high-order data (PT4-PT7).
(4) If R01 terminal is program for PTOVF output, then R01 register (D4H, D1) must be set as " 0 ", and R01 terminal output the frequency = (PT Input predivided frequency)/[(PT reload register) * 2]. If R01 terminal is program for DC output, then PTR01 (E9H, D3) must be set as " 0 ".

Serial interface (1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc \(1 \leftrightarrow\) fosc 3 ) while the serial interface is operating.
(2) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
(3) As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
(4) SCTRG can be read or write. After write " 1 " to SCTRG, it will still high until serial data been shift in or out completely.

Amplifier (1) It takes about 3 msec for the AMPO or AMP1 output becomes stable when the circuit is turned on. Therefore, the program must include a wait time of at least 3 msec before the output data is loaded after the AMP1 or AMPO circuit has been turned on.
(2) The AMPDT1( 0 ) is undefined when the \(\operatorname{AMPP1}(0)\) or \(\operatorname{AMPM1}(0)\) is disconnected, and is " 0 " when \(\operatorname{AMPON} 1(0)\) is " 0 ". After an initial reset, this bit is set to " 0 ".
(3) To reduce current consumption, set the AMP circuit to OFF when it is not necessary.

A/D converter (1) To reduce current consumption, set the reference voltage generation circuit, the middle electric potential generation circuit and the A/D converter to OFF when it is not necessary.
(2) Do not fail to select the correct combinations for the analog input terminal and measurement items. (Refer to Table 6.13.4)
(3) To perform a stable A/D conversion, secure the decided wait time.
(4) Be sure to check whether the data is effective or invalid by reading the A/D conversion data in the order \(\mathrm{F} 7 \mathrm{H} \rightarrow \mathrm{F} 8 \mathrm{H} \rightarrow\) F9H \(\rightarrow\) FAH and immediately thereafter reading the IDR (FBH).
(5) When reading data after turning the A/D converter OFF, the A/ D converter should be OFF in the period from an interrupt generation to the beginning of a reverse integration.
(6) When the A/D converter is reset or turned OFF, the interrupt factor flag (IAD) may sometimes be set to " 1 ". Consequently, read the flag (reset the flag) as necessary at reset or at the turning OFF.

Sleep function (1) Because all I/O registers remain the same values, so please set the proper values before execute "SLP" instruction.
(2) After the K10 input port or external system reset trigger to the chip, the chip should wait, then wakeup.
(3) When the chip is sleeping, there is no noise rejector for K10 input port all low system reset.
(4) When shifting to the SLEEP status, the CPU clock must be set to OSC1 and the OSC3 oscillation circuit must be off.
(5) Normally, the K10 interrupt is used to release the SLEEP mode. Because of this, the following settings must be done before shifting to the SLEEP mode.
- Set the K10 input interrupt condition using the DFK10 register.
- Enable the K10 input interrupt using the EIK1 register.
- Set the interrupt flag to EI (interrupt enable).

Interrupt (1) The interrupt factor flag is set when the interrupt conditions are established, regardless of the setting of the interrupt mask register.
(2) Read the interrupt factor flag in the DI status (interrupt flag = "O"). Reading of interrupt factor flag is available at EI, but be careful in the following cases.
If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to " 1 ", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
(3) Be sure that writing to the interrupt mask register is done with the interrupt in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag \(=\) " 1 ") may cause malfunction.
(4) When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.

APPENDIX A EOC6274 DATA MEMORY (RAM) MAP
RAM map - 1 ( \(000 \mathrm{H}-07 \mathrm{FH}\) )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & น &  &  & ! &  & &  &  &  &  &  &  &  & & \[
\vdots
\] & & & &  & &  &  & + &  \\
\hline & ш &  &  &  &  & &  & &  &  & &  &  & &  & & & &  & &  &  & + &  \\
\hline & \(\bigcirc\) &  &  & i i &  & \[
\vdots
\] &  &  &  &  & &  &  & &  & & & &  & &  &  &  &  \\
\hline & 0 & \(\square\) &  &  & &  &  &  &  &  &  & &  & &  & & & &  & &  &  & 1 &  \\
\hline & \(\infty\) &  &  &  & & \[
:
\] &  & & &  & &  &  & &  & & & &  & &  &  &  &  \\
\hline & < &  &  &  & & &  & &  &  & & &  & &  & & & & ! & &  & & + & \\
\hline & の &  &  &  & &  &  &  & : &  & &  & , & &  & & & &  & &  &  & + &  \\
\hline & \(\infty\) &  &  &  & & &  & &  &  & & &  & & \[
\vdots
\] & & & &  & & &  & + &  \\
\hline & N & &  &  & &  &  & &  &  & &  & - & &  & & & &  & & & & + &  \\
\hline & \(\bullet\) &  &  &  &  &  &  & , &  &  &  &  &  & &  & & &  &  & &  &  & + &  \\
\hline & 1 & \(\square\) &  &  & &  &  & & &  & &  & & & & & & & : & & & & + &  \\
\hline & \(\checkmark\) & &  &  & & &  & &  &  & &  & & &  & & & &  & &  & & + &  \\
\hline & ๓ &  &  &  & &  &  &  &  &  &  &  & & &  & & &  &  & &  &  & + &  \\
\hline & \(\sim\) &  &  &  & &  &  & &  &  & & &  & &  & & & &  & & & & + & \\
\hline & - &  &  &  & & &  & & &  & & & & & & & & &  & & & & &  \\
\hline \[
\sum_{\sum}^{\rightleftarrows}
\] & \(\bigcirc\) &  &  &  &  &  &  & &  &  & &  & + & &  & & & &  & & &  & + & + \\
\hline \[
\begin{aligned}
& \underset{\sim}{\underset{\sim}{\underset{~}{\sim}}} \\
& \underset{\sim}{\underset{\sim}{0}}
\end{aligned}
\] & 工 & \[
\sum_{\substack{\omega \\ \sum_{<}^{n}}}^{\infty}
\] & \[
\begin{aligned}
& \infty \\
& 0
\end{aligned}
\] & \[
\sum_{\substack{\infty}}^{\sum_{<}^{\infty}} \sum_{-}^{\infty}
\] & & & \[
\begin{aligned}
& \sum_{i}^{\omega} \sum_{\Sigma}^{\infty} \sum_{N}^{\infty} \\
& N
\end{aligned}
\] & & \[
9
\] & \[
\begin{array}{|l|l|l|}
\hline \sum_{\sum}^{m} \sum_{\sum}^{\infty} \\
m
\end{array}
\] & & \[
\stackrel{\infty}{0}
\] &  & & & & & & & & & \[
\stackrel{\infty}{9}
\] & \[
\sum_{i}^{\infty} \sum_{i}^{\infty} \sum_{n}^{\infty}
\] & \[
0
\] \\
\hline \(\stackrel{\square}{\square}\) & Q & - & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

RAM map - 3 (200H-27FH)



Display memory ( \(80 \mathrm{H}-9 \mathrm{FH}\) ), I/O memory (COH-FFH)


\section*{APPENDIX B}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Classification} & \multirow[t]{2}{*}{Mnemonic} & \multirow[b]{2}{*}{Operand} & \multicolumn{3}{|c|}{Operation Code} & Flag & \multirow[b]{2}{*}{Clock} & \multirow[b]{2}{*}{Operation} \\
\hline & & & B A 988 & \(\begin{array}{lllll}7 & 6 & 5 & 4\end{array}\) & \(3 \quad 2 \begin{array}{llll}3 & 1 & 0\end{array}\) & I D Z C & & \\
\hline \multirow[t]{12}{*}{Branch instructions} & PSET & p & \(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\) & \(\begin{array}{llllll}0 & 1 & 0 & \mathrm{p} 4\end{array}\) & p3 p2 p1 p0 & & 5 & NBP \(\leftarrow \mathrm{p} 4, \mathrm{NPP} \leftarrow \mathrm{p} 3 \sim \mathrm{p} 0\) \\
\hline & \multirow[t]{5}{*}{JP} & S & \(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\) & s7 s6 s5 s4 & s3 s2 s1 s0 & & 5 & \(\mathrm{PCB} \leftarrow \mathrm{NBP}, \mathrm{PCP} \leftarrow \mathrm{NPP}, \mathrm{PCS} \leftarrow \mathrm{s} 7 \sim \mathrm{~s} 0\) \\
\hline & & C, s & \(\begin{array}{lllll}0 & 0 & 1 & 0\end{array}\) & s7 s6 s5 s4 & s3 s2 s1 s0 & & 5 & \(\mathrm{PCB} \leftarrow \mathrm{NBP}, \mathrm{PCP} \leftarrow \mathrm{NPP}, \mathrm{PCS} \leftarrow \mathrm{s} 7 \sim \mathrm{~s} 0\) if \(\mathrm{C}=1\) \\
\hline & & NC, s & \(\begin{array}{llll}0 & 0 & 1 & 1\end{array}\) & s7 s6 s5 s4 & s3 s2 s1 s0 & & 5 & \(\mathrm{PCB} \leftarrow \mathrm{NBP}, \mathrm{PCP} \leftarrow \mathrm{NPP}, \mathrm{PCS} \leftarrow \mathrm{s} 7 \sim \mathrm{~s} 0\) if \(\mathrm{C}=0\) \\
\hline & & Z, s & \(\begin{array}{llll}0 & 1 & 1 & 0\end{array}\) & s7 s6 s5 s4 & s3 s2 s1 s0 & & 5 & \(\mathrm{PCB} \leftarrow \mathrm{NBP}, \mathrm{PCP} \leftarrow \mathrm{NPP}, \mathrm{PCS} \leftarrow \mathrm{s} 7 \sim \mathrm{~s} 0\) if \(\mathrm{Z}=1\) \\
\hline & & NZ, s & \(\begin{array}{lllll}0 & 1 & 1 & 1\end{array}\) & s7 s6 s5 s4 & s3 s2 s1 s0 & & 5 & \(\mathrm{PCB} \leftarrow \mathrm{NBP}, \mathrm{PCP} \leftarrow \mathrm{NPP}, \mathrm{PCS} \leftarrow \mathrm{s} 7 \sim \mathrm{~s} 0\) if \(\mathrm{Z}=0\) \\
\hline & JPBA & & \(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\) & \(\begin{array}{lllll}1 & 1 & 1 & 0\end{array}\) & \(1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}\) & & 5 & \(\mathrm{PCB} \leftarrow \mathrm{NBP}, \mathrm{PCP} \leftarrow \mathrm{NPP}, \mathrm{PCSH} \leftarrow \mathrm{B}, \mathrm{PCSL} \leftarrow \mathrm{A}\) \\
\hline & CALL & S & \(\begin{array}{lllll}0 & 1 & 0 & 0\end{array}\) & s7 s6 s5 s4 & s3 s2 s1 s0 & & 7 & \[
\begin{aligned}
& \mathrm{M}(\mathrm{SP}-1) \leftarrow \mathrm{PCP}, \mathrm{M}(\mathrm{SP}-2) \leftarrow \mathrm{PCSH}, \mathrm{M}(\mathrm{SP}-3) \leftarrow \mathrm{PCSL}+1 \\
& \mathrm{SP} \leftarrow \mathrm{SP}-3, \mathrm{PCP} \leftarrow \mathrm{NPP}, \mathrm{PCS} \leftarrow \mathrm{~s} 7 \sim \mathrm{~s} 0
\end{aligned}
\] \\
\hline & CALZ & S & \(\begin{array}{llll}0 & 1 & 0 & 1\end{array}\) & s7 s6 s5 s4 & s3 s2 s1 s0 & & 7 & \[
\begin{aligned}
& \mathrm{M}(\mathrm{SP}-1) \leftarrow \mathrm{PCP}, \mathrm{M}(\mathrm{SP}-2) \leftarrow \mathrm{PCSH}, \mathrm{M}(\mathrm{SP}-3) \leftarrow \mathrm{PCSL}+1 \\
& \mathrm{SP} \leftarrow \mathrm{SP}-3, \mathrm{PCP} \leftarrow 0, \mathrm{PCS} \leftarrow \mathrm{~s} 7 \sim \mathrm{~s} 0
\end{aligned}
\] \\
\hline & RET & & \(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\) & \(1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}\) & \(1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}\) & & 7 & \[
\begin{aligned}
& \mathrm{PCSL} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{PCSH} \leftarrow \mathrm{M}(\mathrm{SP}+1), \mathrm{PCP} \leftarrow \mathrm{M}(\mathrm{SP}+2) \\
& \mathrm{SP} \leftarrow \mathrm{SP}+3
\end{aligned}
\] \\
\hline & RETS & & \(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\) & \(1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}\) & \(1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}\) & & 12 & \[
\begin{aligned}
& \mathrm{PCSL} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{PCSH} \leftarrow \mathrm{M}(\mathrm{SP}+1), \mathrm{PCP} \leftarrow \mathrm{M}(\mathrm{SP}+2) \\
& \mathrm{SP} \leftarrow \mathrm{SP}+3, \mathrm{PC} \leftarrow \mathrm{PC}+1
\end{aligned}
\] \\
\hline & RETD & \(l\) & 000001 & \(l 716 l 5 l 4\) & \(l 3 l 2 l 1 l 0\) & & 12 & \[
\begin{aligned}
& \mathrm{PCSL} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{PCSH} \leftarrow \mathrm{M}(\mathrm{SP}+1), \mathrm{PCP} \leftarrow \mathrm{M}(\mathrm{SP}+2) \\
& \mathrm{SP} \leftarrow \mathrm{SP}+3, \mathrm{M}(\mathrm{X}) \leftarrow l 3 \sim l 0, \mathrm{M}(\mathrm{X}+1) \leftarrow l 7 \sim l 4, \mathrm{X} \leftarrow \mathrm{X}+2
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{System control instructions} & NOP5 & & \begin{tabular}{lllll|}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{lllll|}
1 & 1 & 1 & 1 &
\end{tabular} & \(1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}\) & & 5 & No operation (5 clock cycles) \\
\hline & NOP7 & & \begin{tabular}{lllll|}
1 & 1 & 1 & 1 &
\end{tabular} & \begin{tabular}{lllll|}
1 & 1 & 1 & 1
\end{tabular} & \(\begin{array}{lllll}1 & 1 & 1 & 1\end{array}\) & & 7 & No operation (7 clock cycles) \\
\hline & HALT & & \(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\) & \(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\) & \(1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}\) & & 5 & Halt (stop clock) \\
\hline & SLP & & \begin{tabular}{llll|}
1 & 1 & 1 & 1
\end{tabular} & \(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\) & \(1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}\) & & 5 & SLEEP (stop oscillation) \\
\hline \multirow[t]{20}{*}{Index operation instructions} & \multirow[t]{2}{*}{INC} & X & \begin{tabular}{lllll|}
1 & 1 & 1 & 0
\end{tabular} & \(\begin{array}{lllll}1 & 1 & 1 & 0\end{array}\) & \(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\) & & 5 & \(\mathrm{X} \leftarrow \mathrm{X}+1\) \\
\hline & & Y & \(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\) & \(\begin{array}{lllll}1 & 1 & 1 & 1\end{array}\) & \(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\) & & 5 & \(\mathrm{Y} \leftarrow \mathrm{Y}+1\) \\
\hline & \multirow[t]{14}{*}{LD} & X, x & \begin{tabular}{llll|}
1 & 0 & 1 & 1
\end{tabular} & x7 x6 x5 x4 & x3 x2 x1 x0 & & 5 & \(\mathrm{XH} \leftarrow \mathrm{x} 7 \sim \mathrm{x} 4, \mathrm{XL} \leftarrow \mathrm{x} 3 \sim \mathrm{x} 0\) \\
\hline & & Y, y & \(1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}\) & y7 y6 y5 y4 & y3 y2 y 1 y0 & & 5 & \(\mathrm{YH} \leftarrow \mathrm{y} 7 \sim \mathrm{y} 4, \mathrm{YL} \leftarrow \mathrm{y} 3 \sim \mathrm{y} 0\) \\
\hline & & XP, r & \(\begin{array}{lllll}1 & 1 & 1 & 0\end{array}\) & \(1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}\) & \(0 \quad 0 \mathrm{rl} \mathrm{r} 0\) & & 5 & \(\mathrm{XP} \leftarrow \mathrm{r}\) \\
\hline & & XH, r & \(\begin{array}{lllll}1 & 1 & 1 & 0\end{array}\) & \(1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}\) & 0 1 rl r0 & & 5 & \(\mathrm{XH} \leftarrow \mathrm{r}\) \\
\hline & & XL, r & \begin{tabular}{llll|}
1 & 1 & 1 & 0
\end{tabular} & \(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\) & 10 rl r 0 & & 5 & \(\mathrm{XL} \leftarrow \mathrm{r}\) \\
\hline & & YP, r & \begin{tabular}{llll|}
1 & 1 & 1 & 0
\end{tabular} & \(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\) & \(00^{\text {r }}\) r0 & & 5 & \(\mathrm{YP} \leftarrow \mathrm{r}\) \\
\hline & & YH, r & \(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\) & \(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\) & 0 1 rl r0 & & 5 & \(\mathrm{YH} \leftarrow \mathrm{r}\) \\
\hline & & YL, r & \begin{tabular}{llll|}
1 & 1 & 1 & 0
\end{tabular} & \(1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}\) & \(10 \mathrm{rl} \mathrm{r0}\) & & 5 & \(\mathrm{YL} \leftarrow \mathrm{r}\) \\
\hline & & r, XP & \(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\) & \(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\) & \(00^{\text {r }}\) r r0 & & 5 & \(\mathrm{r} \leftarrow \mathrm{XP}\) \\
\hline & & r, XH & \(\begin{array}{lllll}1 & 1 & 1 & 0\end{array}\) & \(\begin{array}{lllll}1 & 0 & 1 & 0\end{array}\) & \(0 \mathrm{l}^{1} \mathrm{rl} \mathrm{r} 0\) & & 5 & \(\mathrm{r} \leftarrow \mathrm{XH}\) \\
\hline & & r, XL & \begin{tabular}{llll|}
1 & 1 & 1 & 0
\end{tabular} & \(\begin{array}{lllll}1 & 0 & 1 & 0\end{array}\) & 10 rl r 0 & & 5 & \(\mathrm{r} \leftarrow \mathrm{XL}\) \\
\hline & & r, YP & \(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\) & \(\begin{array}{lllll}1 & 0 & 1 & 1\end{array}\) & \(00^{\text {r }}\) r0 & & 5 & \(\mathrm{r} \leftarrow \mathrm{YP}\) \\
\hline & & r, YH & \(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\) & \(\begin{array}{lllll}1 & 0 & 1 & 1\end{array}\) & \(0 \mathrm{l}^{1} \mathrm{rl} \mathrm{r} 0\) & & 5 & \(\mathrm{r} \leftarrow \mathrm{YH}\) \\
\hline & & r, YL & \(\begin{array}{lllll}1 & 1 & 1 & 0\end{array}\) & \(\begin{array}{lllll}1 & 0 & 1 & 1\end{array}\) & \(10 \mathrm{rl} \mathrm{r0}\) & & 5 & \(\mathrm{r} \leftarrow \mathrm{YL}\) \\
\hline & \multirow[t]{4}{*}{ADC} & XH, i & \(1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}\) & \(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\) & i3 i2 i1 i0 & \(\downarrow \downarrow\) & 7 & \(\mathrm{XH} \leftarrow \mathrm{XH}+\mathrm{i} 3 \sim \mathrm{i} 0+\mathrm{C}\) \\
\hline & & XL, i & \(\begin{array}{lllll}1 & 0 & 1 & 0\end{array}\) & \(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\) & i3 i2 i1 i0 & \(\downarrow \downarrow\) & 7 & \(\mathrm{XL} \leftarrow \mathrm{XL}+\mathrm{i} 3 \sim \mathrm{i} 0+\mathrm{C}\) \\
\hline & & YH, i & \(1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}\) & \(\begin{array}{lllll}0 & 0 & 1 & 0\end{array}\) & i3 i2 i1 i0 & \(\downarrow \downarrow\) & 7 & \(\mathrm{YH} \leftarrow \mathrm{YH}+\mathrm{i} 3 \sim \mathrm{i} 0+\mathrm{C}\) \\
\hline & & YL, i & \(1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}\) & \(\begin{array}{lllll}0 & 0 & 1 & 1\end{array}\) & i3 i2 i1 i0 & \(\downarrow \downarrow\) & 7 & \(\mathrm{YL} \leftarrow \mathrm{YL}+\mathrm{i} 3 \sim \mathrm{i} 0+\mathrm{C}\) \\
\hline
\end{tabular}

Instruction set - 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Classification} & \multirow[t]{2}{*}{Mnemonic} & \multirow[b]{2}{*}{Operand} & \multicolumn{12}{|c|}{Operation Code} & & Flag & \multirow[b]{2}{*}{Clock} & \multirow[b]{2}{*}{Operation} \\
\hline & & & B & A & 98 & 8 & 7 & 6 & 5 & 4 & & 2 & 1 & 0 & & D Z C & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Index \\
operation \\
instructions
\end{tabular}} & \multirow[t]{4}{*}{CP} & XH, i & 1 & 0 & 10 & 0 & 0 & 1 & 0 & 0 & & i2 il & i1 & i0 & & \(\downarrow \downarrow\) & 7 & XH-i3~10 \\
\hline & & XL, i & 1 & 0 & 10 & 0 & 0 & 1 & 01 & 1 & i3 & i2 il & i1 & i0 & & \(\downarrow \downarrow\) & 7 & XL-i3~0 \\
\hline & & YH, i & 1 & 0 & 10 & 0 & 0 & 1 & 10 & 0 & & i2 il & i1 & i0 & & \(\downarrow \downarrow\) & 7 & YH-i3~i0 \\
\hline & & YL, i & 1 & 0 & 10 & 0 & 0 & 1 & 11 & 1 & & i2 il & i1 & i0 & & \(\downarrow \downarrow\) & 7 & YL-i3~i0 \\
\hline \multirow[t]{11}{*}{\begin{tabular}{l}
Data \\
transfer \\
instructions
\end{tabular}} & \multirow[t]{6}{*}{LD} & r, i & 1 & 1 & 10 & 0 & 0 & 0 & r1 r0 & & & i2 il & i1 & i0 & & & 5 & \(\mathrm{r} \leftarrow \mathrm{i} 3 \sim \mathrm{i} 0\) \\
\hline & & r, q & 1 & 1 & 10 & 0 & 1 & 1 & 00 & & & r0 & q1 & & & & 5 & \(\mathrm{r} \leftarrow \mathrm{q}\) \\
\hline & & A, Mn & 1 & 1 & 11 & 1 & 1 & 0 & 10 & 0 & & n 2 n & n 1 & & & & 5 & \(\mathrm{A} \leftarrow \mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0)\) \\
\hline & & B, Mn & 1 & 1 & 11 & 1 & 1 & 0 & 11 & & & n 2 n & n1 & & & & 5 & \(\mathrm{B} \leftarrow \mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0)\) \\
\hline & & Mn, A & 1 & 1 & 11 & 1 & 1 & 0 & 0 & & & n 2 n & n1 & & & & 5 & \(\mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0) \leftarrow \mathrm{A}\) \\
\hline & & Mn, B & 1 & 1 & 11 & 1 & 1 & 0 & 0 & 1 & & n 2 n & n1 & & & & 5 & \(\mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0) \leftarrow \mathrm{B}\) \\
\hline & \multirow[t]{2}{*}{LDPX} & MX, i & 1 & 1 & 10 & 0 & 0 & 1 & 10 & 0 & & i2 il & i1 & & & & 5 & \(\mathrm{M}(\mathrm{X}) \leftarrow \mathrm{i} 3 \sim \mathrm{i} 0, \mathrm{X} \leftarrow \mathrm{X}+1\) \\
\hline & & r, q & 1 & 1 & 10 & 0 & 1 & 1 & 10 & 0 & & r0 & q1 & & & & 5 & \(\mathrm{r} \leftarrow \mathrm{q}, \mathrm{X} \leftarrow \mathrm{X}+1\) \\
\hline & \multirow[t]{2}{*}{LDPY} & MY, i & 1 & 1 & 10 & 0 & 0 & 1 & 11 & 1 & & i2 i & i1 & & & & 5 & \(\mathrm{M}(\mathrm{Y}) \leftarrow \mathrm{i} 3 \sim \mathrm{i} 0, \mathrm{Y} \leftarrow \mathrm{Y}+1\) \\
\hline & & r, q & 1 & 1 & 10 & 0 & 1 & 1 & 1 & & & r0 & q1 & & & & 5 & \(\mathrm{r} \leftarrow \mathrm{q}, \mathrm{Y} \leftarrow \mathrm{Y}+1\) \\
\hline & LBPX & MX, \(l\) & 1 & 0 & \(0 \quad 1\) & 1 & 17 & 16 & 15 l & & & 121 & \(l 1\) & & & & 5 & \(\mathrm{M}(\mathrm{X}) \leftarrow l 3 \sim l 0, \mathrm{M}(\mathrm{X}+1) \leftarrow l 7 \sim l 4, \mathrm{X} \leftarrow \mathrm{X}+2\) \\
\hline \multirow[t]{10}{*}{\begin{tabular}{l}
Flag \\
operation \\
instructions
\end{tabular}} & SET & F, i & 1 & 1 & 11 & 1 & 0 & 1 & 0 & 0 & & i2 il & i1 & i0 & \(\uparrow\) & \(\uparrow \uparrow \uparrow\) & 7 & \(\mathrm{F} \leftarrow \mathrm{F} \backslash \mathrm{i} 3 \sim \mathrm{i} 0\) \\
\hline & RST & F, i & 1 & 1 & 11 & 1 & 0 & 1 & 01 & & & i2 il & i1 & & & \(\downarrow \downarrow \downarrow\) & 7 & \(\mathrm{F} \leftarrow \mathrm{F} \wedge\) ( \(3 \sim \mathrm{i} 0\) \\
\hline & SCF & & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & & 0 & 0 & & & \(\uparrow\) & 7 & \(\mathrm{C} \leftarrow 1\) \\
\hline & RCF & & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & & 1 & 1 & 0 & & \(\downarrow\) & 7 & \(\mathrm{C} \leftarrow 0\) \\
\hline & SZF & & 1 & 1 & 11 & 1 & 0 & 1 & 0 & 0 & & 0 & 1 & 0 & & \(\uparrow\) & 7 & \(\mathrm{Z} \leftarrow 1\) \\
\hline & RZF & & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & & 1 & 0 & & & \(\downarrow\) & 7 & \(\mathrm{Z} \leftarrow 0\) \\
\hline & SDF & & 1 & 1 & 11 & 1 & 0 & 1 & 0 0 & 0 & & 1 & 0 & 0 & & \(\uparrow\) & 7 & \(\mathrm{D} \leftarrow 1\) (Decimal Adjuster ON) \\
\hline & RDF & & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & & 0 & 1 & 1 & & \(\downarrow\) & 7 & \(\mathrm{D} \leftarrow 0\) (Decimal Adjuster OFF) \\
\hline & EI & & 1 & 1 & 11 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & \(\uparrow\) & & 7 & \(\mathrm{I} \leftarrow 1\) (Enables Interrupt) \\
\hline & DI & & 1 & 1 & 11 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & \(\downarrow\) & & 7 & \(\mathrm{I} \leftarrow 0\) (Disables Interrupt) \\
\hline \multirow[t]{15}{*}{\begin{tabular}{l}
Stack \\
operation \\
instructions
\end{tabular}} & INC & SP & 1 & 1 & 11 & 1 & 1 & 1 & 0 & 1 & & 0 & 1 & & & & 5 & \(\mathrm{SP} \leftarrow \mathrm{SP}+1\) \\
\hline & DEC & SP & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & & 0 & 1 & & & & 5 & \(\mathrm{SP} \leftarrow \mathrm{SP}-1\) \\
\hline & \multirow[t]{8}{*}{PUSH} & r & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & & 0 r & r1 & & & & 5 & \(\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{r}\) \\
\hline & & XP & 1 & 1 & 11 & 1 & 1 & 1 & 00 & 0 & & 1 & 0 & & & & 5 & \(\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{XP}\) \\
\hline & & XH & 1 & 1 & 11 & 1 & 1 & 1 & 0 & 0 & & 1 & 0 & & & & 5 & \(\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{XH}\) \\
\hline & & XL & 1 & 1 & 11 & 1 & 1 & 1 & 0 & 0 & & 1 & 1 & & & & 5 & \(\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{XL}\) \\
\hline & & YP & 1 & 1 & 11 & 1 & 1 & 1 & 0 & 0 & & 1 & 1 & & & & 5 & \(\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{YP}\) \\
\hline & & YH & 1 & 1 & 11 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & & & & 5 & \(\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{YH}\) \\
\hline & & YL & 1 & 1 & 11 & 1 & 1 & 1 & 0 & 0 & & 0 & 0 & & & & 5 & \(\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{YL}\) \\
\hline & & F & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & & 0 & 1 & & & & 5 & \(\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{F}\) \\
\hline & \multirow[t]{5}{*}{POP} & r & 1 & 1 & 11 & 1 & 1 & 1 & 0 & 1 & & 0 r & r1 & & & & 5 & \(\mathrm{r} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1\) \\
\hline & & XP & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & & 1 & 0 & & & & 5 & \(\mathrm{XP} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1\) \\
\hline & & XH & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & & 1 & 0 & & & & 5 & \(\mathrm{XH} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1\) \\
\hline & & XL & 1 & 1 & 11 & 1 & 1 & 1 & 0 & 1 & & 1 & 1 & & & & 5 & \(\mathrm{XL} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1\) \\
\hline & & YP & 1 & 1 & 11 & 1 & 1 & 1 & 0 & & & 1 & 1 & & & & 5 & \(\mathrm{YP} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1\) \\
\hline
\end{tabular}

Instruction set－ 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Classification} & \multirow[t]{2}{*}{Mne－ monic} & \multirow[b]{2}{*}{Operand} & \multicolumn{9}{|c|}{Operation Code} & Flag & \multirow[b]{2}{*}{Clock} & \multirow[b]{2}{*}{Operation} \\
\hline & & & B & A & 98 & 7 & & 5 & & 3 & 210 & I D Z C & & \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Stack \\
operation \\
instructions
\end{tabular}} & \multirow[t]{3}{*}{POP} & YH & 1 & 1 & 1 & 1 & & 0 & 1 & 1 & \(\begin{array}{llll}0 & 0 & 0\end{array}\) & & 5 & \(\mathrm{YH} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1\) \\
\hline & & YL & 1 & 1 & 11 & 1 & & 0 & 1 & 1 & \(\begin{array}{llll}0 & 0 & 1\end{array}\) & & 5 & \(\mathrm{YL} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1\) \\
\hline & & F & 1 & 1 & 11 & 1 & & 0 & 1 & 1 & \(\begin{array}{llll}0 & 1 & 0\end{array}\) & \(\downarrow \downarrow \downarrow \downarrow\) & 5 & \(\mathrm{F} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1\) \\
\hline & \multirow[t]{4}{*}{LD} & SPH，r & 1 & 1 & 11 & 1 & & 1 & 0 & 0 & 0 rl r0 & & 5 & \(\mathrm{SPH} \leftarrow \mathrm{r}\) \\
\hline & & SPL，r & 1 & 1 & 11 & 1 & & 1 & 1 & 0 & 0 rl r 0 & & 5 & SPL \(\leftarrow \mathrm{r}\) \\
\hline & & r，SPH & 1 & 1 & 11 & 1 & & 1 & 0 & 0 & \(1 \mathrm{rl} \mathrm{r0}\) & & 5 & \(\mathrm{r} \leftarrow\) SPH \\
\hline & & r，SPL & 1 & 1 & 11 & 1 & & 1 & 1 & 0 & 1 rl r 0 & & 5 & \(\mathrm{r} \leftarrow\) SPL \\
\hline \multirow[t]{26}{*}{Arithmetic instructions} & \multirow[t]{2}{*}{ADD} & r，i & 1 & 1 & 00 & 0 & & r1 & r0 & i3 & i2 i1 i0 & \(\star \downarrow \downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r}+\mathrm{i} 3 \sim \mathrm{i} 0\) \\
\hline & & r，q & 1 & 0 & 10 & 1 & & 0 & 0 & r1 & r0 q1 q0 & \(\star \downarrow \downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r}+\mathrm{q}\) \\
\hline & \multirow[t]{2}{*}{ADC} & r，i & 1 & 1 & 00 & 0 & & r1 & r0 & i3 & i2 i1 i0 & \(\star \downarrow \downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r}+\mathrm{i} 3 \sim \mathrm{i} 0+\mathrm{C}\) \\
\hline & & r，q & 1 & 0 & 10 & 1 & & 0 & 1 & r1 & r0 q1 q0 & \(\star \downarrow \downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r}+\mathrm{q}+\mathrm{C}\) \\
\hline & SUB & r，q & 1 & 0 & 10 & 1 & & 1 & 0 & r1 & r0 q1 q0 & \(\star \downarrow \downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r}-\mathrm{q}\) \\
\hline & \multirow[t]{2}{*}{SBC} & r，i & 1 & 1 & 01 & 0 & & r1 & & i3 & i2 i1 i0 & \(\star\) 卦 \(\downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r}-\mathrm{i} 3 \sim \mathrm{i} 0-\mathrm{C}\) \\
\hline & & r，q & 1 & 0 & 10 & 1 & & 1 & 1 & r1 & r0 q1 q0 & \(\star\) 的 \(\downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r}-\mathrm{q}-\mathrm{C}\) \\
\hline & \multirow[t]{2}{*}{AND} & r，i & 1 & 1 & 00 & 1 & & r1 & & i3 & i2 i1 i0 & \(\downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r} \wedge \mathrm{i} 3 \sim \mathrm{i} 0\) \\
\hline & & r，q & 1 & 0 & 10 & 1 & & 0 & 0 & r1 & r0 q1 q0 & \(\downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r} \wedge \mathrm{q}\) \\
\hline & \multirow[t]{2}{*}{OR} & r，i & 1 & 1 & 00 & 1 & & r1 & r0 & i3 & i2 i1 i0 & \(\downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r} \mathrm{V} \mathrm{i} 3 \sim \mathrm{i} 0\) \\
\hline & & r，q & 1 & 0 & 10 & 1 & & 0 & 1 & r1 & r0 q1 q0 & \(\downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r} \vee \mathrm{q}\) \\
\hline & \multirow[t]{2}{*}{XOR} & r，i & 1 & 1 & 01 & 0 & & r1 & r0 & i3 & i2 i1 i0 & \(\downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r} \forall \mathrm{i} 3 \sim \mathrm{i} 0\) \\
\hline & & r，q & 1 & 0 & 10 & 1 & & 1 & 0 & r1 & r0 q1 q0 & \(\downarrow\) & 7 & \(\mathrm{r} \leftarrow \mathrm{r} \forall \mathrm{q}\) \\
\hline & \multirow[t]{2}{*}{CP} & r，i & 1 & 1 & 01 & 1 & & r1 & r0 & i3 & i2 i1 i0 & \(\downarrow \downarrow\) & 7 & r－i3～i0 \\
\hline & & r，q & 1 & 1 & 11 & 0 & & 0 & 0 & r1 & r0 q1 q0 & \(\downarrow \downarrow\) & 7 & r－q \\
\hline & \multirow[t]{2}{*}{FAN} & r，i & 1 & 1 & 01 & 1 & & r1 & r0 & i3 & i2 i1 i0 & \(\downarrow\) & 7 & r \(\wedge\) i3 \(\mathrm{i}^{\text {i }}\) \\
\hline & & r，q & 1 & 1 & 11 & 0 & & 0 & 1 & r1 & r0 q1 q0 & \(\downarrow\) & 7 & \(\mathrm{r} \wedge \mathrm{q}\) \\
\hline & RLC & r & 1 & 0 & 10 & 1 & & 1 & 1 & r1 & r0 r1 r0 & \(\downarrow \downarrow\) & 7 & \(\mathrm{d} 3 \leftarrow \mathrm{~d} 2, \mathrm{~d} 2 \leftarrow \mathrm{~d} 1, \mathrm{~d} 1 \leftarrow \mathrm{~d} 0, \mathrm{~d} 0 \leftarrow \mathrm{C}, \mathrm{C} \leftarrow \mathrm{d} 3\) \\
\hline & RRC & r & 1 & 1 & 10 & 1 & & 0 & 0 & 1 & 1 rl r 0 & \(\downarrow \downarrow\) & 5 & \(\mathrm{d} 3 \leftarrow \mathrm{C}, \mathrm{d} 2 \leftarrow \mathrm{~d} 3, \mathrm{~d} 1 \leftarrow \mathrm{~d} 2, \mathrm{~d} 0 \leftarrow \mathrm{~d} 1, \mathrm{C} \leftarrow \mathrm{d} 0\) \\
\hline & INC & Mn & 1 & 1 & 11 & 0 & & 1 & & n3 & n 2 n 1 n 0 & \(\downarrow \downarrow\) & 7 & \(\mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0) \leftarrow \mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0)+1\) \\
\hline & DEC & Mn & 1 & 1 & 11 & 0 & & 1 & 1 & n3 & n 2 n 1 n 0 & \(\downarrow \downarrow\) & 7 & \(\mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0) \leftarrow \mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0)-1\) \\
\hline & ACPX & MX，r & 1 & 1 & 11 & 0 & & 1 & 0 & 1 & 0 rl r 0 & \(\star\) 的 \(\downarrow\) & 7 & \(\mathrm{M}(\mathrm{X}) \leftarrow \mathrm{M}(\mathrm{X})+\mathrm{r}+\mathrm{C}, \mathrm{X} \leftarrow \mathrm{X}+1\) \\
\hline & ACPY & MY，r & 1 & 1 & 11 & 0 & & ） 1 & 0 & 1 & 1 rl r 0 & \(\star\) 的 \(\downarrow\) & 7 & \(\mathrm{M}(\mathrm{Y}) \leftarrow \mathrm{M}(\mathrm{Y})+\mathrm{r}+\mathrm{C}, \mathrm{Y} \leftarrow \mathrm{Y}+1\) \\
\hline & SCPX & MX，r & 1 & 1 & 11 & 0 & & 1 & 1 & 1 & 0 rl r 0 & \(\star\) 1 \(\downarrow\) & 7 & \(\mathrm{M}(\mathrm{X}) \leftarrow \mathrm{M}(\mathrm{X})-\mathrm{r}-\mathrm{C}, \mathrm{X} \leftarrow \mathrm{X}+1\) \\
\hline & SCPY & MY，r & 1 & 1 & 11 & 0 & & 1 & 1 & 1 & 1 rl r 0 & \(\star\) \ \(\downarrow\) & 7 & \(\mathrm{M}(\mathrm{Y}) \leftarrow \mathrm{M}(\mathrm{Y})-\mathrm{r}-\mathrm{C}, \mathrm{Y} \leftarrow \mathrm{Y}+1\) \\
\hline & NOT & r & 1 & 1 & 01 & 0 & & r1 & r0 & 1 & 111 & \(\downarrow\) & 7 & \(\mathrm{r} \leftarrow \overline{\mathrm{r}}\) \\
\hline
\end{tabular}

Abbreviations used in the explanations have the following meanings.

\section*{Symbols associated with registers and memory}

A \(\qquad\)
B \(\qquad\)
X ................ XHL register (low order eight bits of index register IX)
Y ................ YHL register (low order eight bits of index register IY)
XH
XH register (high order four bits of XHL register)
XL .............. XL register (low order four bits of XHL register)
YH .............. YH register (high order four bits of YHL register)
YL .............. YL register (low order four bits of YHL register)
XP .............. XP register (high order four bits of index register IX)
YP .............. YP register (high order four bits of index register IY)
SP
Stack pointer SP
SPH ............ High-order four bits of stack pointer SP
SPL ............ Low-order four bits of stack pointer SP
\(\mathrm{MX}, \mathrm{M}(\mathrm{X}) \ldots\). Data memory whose address is specified with index register IX
MY, \(\mathrm{M}(\mathrm{Y}) \ldots\). Data memory whose address is specified with index register IY
\(\mathrm{Mn}, \mathrm{M}(\mathrm{n})\).... Data memory address \(000 \mathrm{H}-00 \mathrm{FH}\) (address specified with immediate data n of \(00 \mathrm{H}-\mathrm{OFH}\) )
M(SP) ......... Data memory whose address is specified with stack pointer SP
r, q............. Two-bit register code \(\mathrm{r}, \mathrm{q}\) is two-bit immediate data; according to the contents of these bits, they indicate registers A, B, and MX and MY (data memory whose addresses are specified with index registers IX and IY)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ r } & \multicolumn{2}{c|}{ q } & \multirow{2}{*}{ Registers specified } \\
\hline r1 & r0 & q1 & q0 & A \\
\hline 0 & 0 & 0 & 0 & B \\
0 & 1 & 0 & 1 & MX \\
1 & 0 & 1 & 0 & MY \\
1 & 1 & 1 & 1 & \\
\hline
\end{tabular}
\begin{tabular}{rl} 
Symbols associated with & NBP....... New bank pointer \\
program counter & NPP ...... New page pointer \\
& PCB ...... Program counter bank \\
& PCP ...... Program counter page \\
& PCS ...... Program counter step \\
& PCSH .... Four high order bits of PCS \\
& PCSL .... Four low order bits of PCS
\end{tabular}
\begin{tabular}{|c|c|}
\hline Symbols associated with flags & \begin{tabular}{l}
\(\qquad\) Flag register (I, D, Z, C) \\
C. \(\qquad\) Carry flag \\
Z \(\qquad\) Zero flag \\
D. \(\qquad\) Decimal flag \\
I \(\qquad\) Interrupt flag \\
\(\downarrow\) \(\qquad\) Flag reset \\
\(\uparrow\). \(\qquad\) Flag set \\
\(\hat{\imath}\) \(\qquad\) Flag set or reset
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Associated with & p ........... Five-bit immediate data or label 00H-1FH \\
\hline mediate data & s........... Eight-bit immediate data or label 00H-0FF \\
\hline & \(1 . . . . . . . . .\). Eight-bit immediate data \(00 \mathrm{H}-\mathrm{OFFH}\) \\
\hline & ........ Four-bit immediate data 00H-OFH \\
\hline
\end{tabular}

\footnotetext{
Associated with
\(+\) Add arithmetic and other operations
\(\qquad\)
^.............. Logical AND
\(\vee . . . . . . . . . . . . . ~ L o g i c a l ~ O R ~\)
\(\forall\).............. Exclusive-OR
ฝ .......... Add-subtract instruction for decimal operation when the D flag is set
}

\section*{APPENDIX C PSEUDO-INSTRUCTION TABLE OF THE CROSS ASSEMBLER}


\section*{APPENDIX D COMMAND TABLE OF ICE6200}

ICE6200 command table－ 1
\begin{tabular}{|c|c|c|c|}
\hline Item No． & Function & Command Format & Outine of Operation \\
\hline 1 & Assemble & \＃A，a \(\rfloor\) & Assemble command mnemonic code and store at address＂a＂ \\
\hline 2 & Disassemble & \＃L，a1，a2 \(\downarrow\) & Contents of addresses a1 to a2 are disassembled and displayed \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{Dump} & \＃DP，a1，a2 \(⿴ 囗 ⿰ 丿 ㇄\) & Contents of program area a1 to a2 are displayed \\
\hline & & \＃DD， \(\mathrm{a} 1, \mathrm{a} 2\) ■ & Content of data area a1 to a 2 are displayed \\
\hline \multirow[t]{2}{*}{4} & \multirow[t]{2}{*}{Fill} & \＃FP， \(\mathrm{a} 1, \mathrm{a} 2, \mathrm{~d}\) ■ & Data d is set in addresses a1 to a2（program area） \\
\hline & & \＃FD，a1，a2，d \(\square\) & Data d is set in addresses a1 to a2（data area） \\
\hline \multirow[t]{3}{*}{5} & \multirow[t]{3}{*}{\begin{tabular}{l}
Set \\
Run Mode
\end{tabular}} & \＃G，a】 \(\downarrow\) & Program is executed from the＂a＂address \\
\hline & & \＃TIM \(\downarrow\) & Execution time and step counter selection \\
\hline & & \＃OTF』 & On－the－fly display selection \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{Trace} & \＃T，a，n 】 & Executes program while displaying results of step instruction from＂a＂address \\
\hline & & \＃U，a，n \(⿴ 囗 ⿰ 丿 ㇄\) & Displays only the final step of \＃T，a，n \\
\hline \multirow[t]{10}{*}{7} & \multirow[t]{10}{*}{Break} & \[
\begin{aligned}
& \text { \#BA, } \square \\
& \text { \#BAR,a } \square
\end{aligned}
\] & Sets Break at program address＂a＂ Breakpoint is canceled \\
\hline & & \[
\begin{aligned}
& \hline \text { \#BD } \square \\
& \text { \#BDR』 } \\
& \hline
\end{aligned}
\] & Break condition is set for data RAM Breakpoint is canceled \\
\hline & & \＃BR \＃BRR［］ & Break condition is set for EVA62XX CPU internal registers Breakpoint is canceled \\
\hline & & \[
\begin{aligned}
& \text { \#BM』 } \\
& \text { \#BMR』 }
\end{aligned}
\] & \begin{tabular}{l}
Combined break conditions set for program data RAM address and registers \\
Cancel combined break conditions for program data ROM address and registers
\end{tabular} \\
\hline & & \＃BRES［］ & All break conditions canceled \\
\hline & & \＃BC \(\downarrow\) & Break condition displayed \\
\hline & & \＃BE \(\dagger\) & Enter break enable mode \\
\hline & & \＃BSYN \(\downarrow\) & Enter break disable mode \\
\hline & & \＃BT \({ }^{\text {d }}\) & Set break stop／trace modes \\
\hline & & \＃BRKSEL，REM \(\dagger\) & Set BA condition clear／remain modes \\
\hline \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Move} & \＃MP，a1，a2，a3■ & Contents of program area addresses a1 to a2 are moved to addresses a3 and after \\
\hline & & \＃MD，a1，a2，a3 \(\ddagger\) & Contents of data area addresses a1 to a 2 are moved to addresses a3 and after \\
\hline \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{Data Set} & \＃SP， & Data from program area address＂a＂are written to memory \\
\hline & & \＃SD，\(\downarrow\) ■ & Data from data area address＂a＂are written to memory \\
\hline \multirow[t]{5}{*}{10} & \multirow[t]{5}{*}{\begin{tabular}{l}
Change CPU \\
Internal \\
Registers
\end{tabular}} & \＃DR』 & Display EVA62XX CPU internal registers \\
\hline & & \＃SR［］ & Set EVA62XX CPU internal registers \\
\hline & & \＃I \({ }^{\text {d }}\) & Reset EVA62XX CPU \\
\hline & & \＃DXY■ & Display X，Y，MX and MY \\
\hline & & \＃SXY』 & Set data for X and Y display and MX，MY \\
\hline
\end{tabular}

ICE6200 command table－ 2
\begin{tabular}{|c|c|c|c|}
\hline Item No． & Function & Command Format & Outine of Operation \\
\hline \multirow[t]{11}{*}{11} & \multirow[t]{11}{*}{History} & \＃H，p1，p2】 & Display history data for pointer 1 and pointer 2 \\
\hline & & \＃HB \(\downarrow\) & Display upstream history data \\
\hline & & \＃HG \(\ddagger\) & Display 21 line history data \\
\hline & & \＃HP \(\ddagger\) & Display history pointer \\
\hline & & \＃HPS， a ■ & Set history pointer \\
\hline & & \＃HC，S／C／E \(\downarrow\) & Sets up the history information acquisition before（S）， before／after（C）and after（E） \\
\hline & & \＃HA， a 1 ，22 \(\downarrow\) & Sets up the history information acquisition from program area a1 to a2 \\
\hline & & \＃HAR，a1， \(\mathrm{a} 2 \mathrm{\square}\) & Sets up the prohibition of the history information acquisition from program area a1 to a2 \\
\hline & & \＃HAD』 & Indicates history acquisition program area \\
\hline & & \＃HS，\({ }^{\text {a }}\) ］ & Retrieves and indicates the history information which executed a program address＂a＂ \\
\hline & & \[
\begin{aligned}
& \text { \#HSW, a } \rrbracket \\
& \text { \#HSR,a } \rrbracket
\end{aligned}
\] & Retrieves and indicates the history information which wrote or read the data area address＂a＂ \\
\hline \multirow[t]{8}{*}{12} & \multirow[t]{8}{*}{File} & \＃RF，file \(\downarrow\) & Move program file to memory \\
\hline & & \＃RFD，file \(\square\) & Move data file to memory \\
\hline & & \＃VF，file \(\square\) & Compare program file and contents of memory \\
\hline & & \＃VFD，file \(⿴ 囗 ⿰ 丿 ㇄\) & Compare data file and contents of memory \\
\hline & & \＃WF，file \(\square\) & Save contents of memory to program file \\
\hline & & \＃WFD，file \(\square\) & Save contents of memory to data file \\
\hline & & \＃CL，file \(\rfloor\) & Load ICE6200 set condition from file \\
\hline & & \＃CS，file \(]\) & Save ICE6200 set condition to file \\
\hline \multirow[t]{2}{*}{13} & \multirow[t]{2}{*}{Coverage} & \＃CVD』 & Indicates coverage information \\
\hline & & \＃CVR】 & Clears coverage information \\
\hline \multirow[t]{3}{*}{14} & \multirow[t]{3}{*}{ROM Access} & \＃RP \(\ddagger\) & Move contents of ROM to program memory \\
\hline & & \＃VP■ & Compare contents of ROM with contents of program memory \\
\hline & & \＃ROM【 & Set ROM type \\
\hline 15 & Terminate ICE & \＃Q】 & Terminate ICE and return to operating system control \\
\hline 16 & Command Display & \＃HELP』 & Display ICE6200 instruction \\
\hline 17 & Self Diagnosis & \＃CHK】 & Report results of ICE6200 self diagnostic test \\
\hline
\end{tabular}
\(\square\) means press the RETURN key．

\section*{EPSON International Sales Operations}

\section*{AMERICA}

\section*{EPSON ELECTRONICS AMERICA, INC.}
- HEADQUARTERS -

1960 E. Grand Avenue
El Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

\section*{- SALES OFFICES -}

\section*{West}

150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

\section*{Central}

1450 East American Lane, Suite 1550
Schaumburg, IL 60173, U.S.A.
Phone: +1-847-517-7667 Fax: +1-847-517-7601
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633
Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

\section*{Southeast}

4300 Six Forks Road, Suite 430
Raleigh, NC 27609, U.S.A.
Phone: +1-919-781-7667 Fax: +1-919-781-6778
1700 Spinnaker Drive
Alpharetta, GA 30005, U.S.A.
Phone: +1-770-754-4872 Fax: +1-770-753-0601

\section*{EUROPE}

\section*{EPSON EUROPE ELECTRONICS GmbH}
- HEADQUARTERS -

Riesstrasse 15
80992 Muenchen, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110
- GERMANY -

\section*{SALES OFFICE}

Breidenbachstrasse 46
D-51373 Leverkusen, GERMANY
Phone: +49-(0)214-83070-0 Fax: +49-(0)214-83070-10

\section*{- UNITED KINGDOM -}

\section*{UK BRANCH OFFICE}

G6 Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

\section*{- FRANCE -}

\section*{FRENCH BRANCH OFFICE}

1 Avenue de I' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

\section*{ASIA}
- HONG KONG, CHINA -

EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX
- CHINA -

SHANGHAI EPSON ELECTRONICS CO., LTD.
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775
- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY \& TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB
HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.
Phone: 03-573-9900 Fax: 03-573-9169
- SINGAPORE -

EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, \#36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716
- KOREA -

SEIKO EPSON CORPORATION
KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-Dong
Youngdeungpo-Ku, Seoul, 150-010, KOREA
Phone: 02-784-6027 Fax: 02-767-3677
- JAPAN -

\section*{SEIKO EPSON CORPORATION}

ELECTRONIC DEVICES MARKETING DIVISION
Electronic Device Marketing Department IC Marketing \& Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624
ED International Marketing Department I
(Europe \& U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564
ED International Marketing Department II
(Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110


In pursuit of "Saving" Technology, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams.

Epson IS energy savings.

\section*{EPSON}

\section*{SEIKO EPSON CORPORATION}

ELECTRONIC DEVICES MARKETING DIVISION
- Electronic devices information on Epson WWW server```


[^0]:    *1 May be selected with mask option.
    *2 May be selected with software.
    *3 It is necessary to modify external parts.

[^1]:    *5 Constantly "0" when being read
    *6 Refer to main manual
    *7 Page switching in I/O memory is not necessary

[^2]:    *1 Initial value at the time of initial reset
    *5 Constantly " 0 " when being read
    *2 Not set in the circuit
    *6 Refer to main manual
    *3 Undefined
    *7 Page switching in I/O memory is not necessary
    *4 Reset (0) immediately after being read

[^3]:    *1 Initial value at the time of initial reset
    *2 Not set in the circuit
    *3 Undefined

[^4]:    * Error, deviation and power current consumption by external parts are not included.

[^5]:    * GNDON is mark of GNDON1 or GNDON0.

[^6]:    * $\mathrm{Ta}=25^{\circ} \mathrm{C}$ as the standard

[^7]:    *5 Constantly "0" when being read
    *6 Refer to main manual
    *7 Page switching in I/O memory is not necessary

