MF697-04

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

E0C62T3 Technical Hardware E0C62T3 Technical Software

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. Please note that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it now reads "E0C".

PREFACE

This manual is individually described about the hardware and the software of the E0C62T3.

I. E0C62T3 Technical Hardware

This part explains the function of the E0C62T3, the circuit configurations, and details the controlling method.

II. E0C62T3 Technical Software

This part explains the programming method of the E0C62T3.

E0C62T3 • Technical Hardware

CONTENTS

CHAPTER 1	OVERVIEW I-						
	1.1	FeaturesI-1					
	1.2	Block DiagramI-2					
	1.3	Pin Layout DiagramI-3					
	1.4	Pin DescriptionI-5					
CHAPTER 2	PO	WER SUPPLY AND INITIAL RESET I-6					
	2.1	Power Supply I-6 Voltage <vd1> for oscillation circuit and internal circuit I-7 Voltage <vc1, and="" vc2="" vc3=""> for LCD driving</vc1,></vd1>					
	2.2	Initial Reset I-8 Reset terminal (RESET) I-8 Simultaneous low input to terminals K00–K03 I-9 Oscillation detection circuit I-9 Watchdog timer I-9 Internal register at initial resetting I-10					
	2.3	Test Terminals (TEST) I-10					
CHAPTER 3	CPL	J, ROM, RAM I-11					
	3.1	CPU I-11					
	3.2	ROM I-11					
	3.3	RAM I-12					
CHAPTER 4	PER	IPHERAL CIRCUITS AND OPERATION I-13					
	4.1	Memory Map I-13					
	4.2	Watchdog TimerI-25Configuration of watchdog timerI-25Control of watchdog timerI-26Programming noteI-27					
	4.3	Oscillation CircuitI-28Configuration of oscillation circuitI-28OSC1 oscillation circuitI-28OSC3 oscillation circuitI-29Control of oscillation circuitI-30Clock frequency and instruction execution timeI-31Programming notesI-31					
	4.4	Input Ports (K00–K03, K10–K13, K20–K22) I-32 Configuration of input ports					

4.5	Output Ports (R00–R03, R10–R13) I-42 Configuration of output ports I-42 Mask option I-42 Special output I-42 Control of output ports I-42 Programming notes I-42	22259
4.6	I/O Ports (P00–P03)I-50Configuration of I/O portI-50I/O control registers and input/output modeI-51Pull up during input modeI-51Mask optionI-51Control of I/O portI-52Programming noteI-54)) 1 1 2 1
4.7	LCD Driver (COM0–COM3, SEG0–SEG31) I-55 Configuration of LCD driver I-58 LCD display ON/OFF control and duty switching I-58 Mask option (segment allocation) I-59 Control of LCD driver I-60 Programming notes I-61	53901
4.8	Clock Timer I-62 Configuration of clock timer I-62 Data reading and hold function I-62 Interrupt function I-63 Control of clock timer I-64 Programming notes I-64	223343
4.9	SVD (Supply Voltage Detection) Circuit I-67 Configuration of SVD circuit I-67 SVD operation I-67 Control of SVD circuit I-68 Programming notes I-68	7 7 3 9
4.10	Telephone FunctionI-70Configuration of telephone functionI-70Mask optionI-71Operation of telephone functionI-71Dialing toneI-74Dialing pulse (DP)I-77PauseI-76FlashI-81Hold-lineI-82Telephone function and interruptI-84Control of telephone functionI-85Programming notesI-97)) 179 3157
4.11	Interrupt and HALTI-98Interrupt factorI-10Interrupt maskI-10Interrupt vectorI-10Control of interruptI-10Programming notesI-10	3 0 1 2 3 6

CHAPTER 5	SUN	I-107	
	5.1	Notes for Low Current Consumption	I-107
	5.2	Summary of Notes by Function	I-108
CHAPTER 6	DIA	GRAM OF TYPICAL APPLICATION	I-111
CHAPTER 7	ELE	CTRICAL CHARACTERISTICS	I-113
	7.1	Absolute Maximum Rating	l-113
	7.2	Recommended Operating Conditions	l-113
	7.3	DC Characteristics	l-114
	7.4	Analog Characteristics and Consumed Current	I-115
	7.5	Oscillation Characteristics	I-116
	7.6	Telephone Function Characteristics	I-117
CHAPTER 8	PAC	CKAGE	I-119
	8.1	Plastic Package	I-119
	8.2	Ceramic Package for Test Samples	I-121
CHAPTER 9	PA	D LAYOUT	I-122
	9.1	Diagram of Pad Layout	I-122
	9.2	Pad Coordinates	I-123

CHAPTER 1

OVERVIEW

The E0C62T3 is a single-chip microcomputer made up of the 4-bit core CPU E0C6200A, ROM (3,072 words, 12 bits to a word), RAM (640 words, 4 bits to a word), LCD driver, watchdog timer, time base counter, SVD circuit and DTMF/DP generator. The E0C62T3 can be applied to telephone set which has feature as DTMF/DP switchable, repertory dial, ON/OFF hook dial, etc.

1.1 Features

OSC1 oscillation circuit	Crystal oscillation circuit:	32,768	Hz (Typ.)
OSC3 oscillation circuit	Crystal or ceramic oscillati	on circu	it (selected by mask option):
		3.57954	5 MHz (Typ.)
Instruction set	108 types		
Instruction execution time	During operation at 32 kHz	z:	153 µsec, 214 µsec, 366 µsec
(depending on instruction)	During operation at 3.58 M	IHz:	11.1 µsec, 15.6 µsec, 26.7 µsec
ROM capacity	3,072 words \times 12 bits		
RAM capacity	640 words \times 4 bits		
Input port	11 bits (pull up resistors av	ailable b	y mask option)
Output port	8 bits (buzzer, hold-line an	d handfr	ee output available by software control)
<i>I/O port</i>	4 bits (pull up resistors ava	ilable by	v software control)
LCD driver	32 segments × 4 / 3 / 2 / 1 o	common	S
	(the drive duty can be selec	cted by s	oftware)
	Regulated voltage circuit a	nd boost	er voltage circuit built-in
	(compatible with 3-4.5 V I	LCD, VF	R adjustable)
DTMF generator	Built-in		
DP generator	Built-in		
Time base counter	Built-in		
Watchdog timer	Built-in		
SVD (supply voltage detection)	1.8 V		
External interrupt	Input port interrupt:	4 system	ns
Internal interrupt	Timer interrupt:	1 system	n
	Dialling interrupt:	1 system	n
Supply voltage	1.6 V to 5.5 V (32 kHz)		
	2.5 V to 5.5 V (OSC3 = O)	N, DTM	IF)
Current consumption (Typ.)	During HALT:	2 μΑ	(3 V, 32 kHz)
	During operation:	5 μΑ	(3 V, 32 kHz)
		200 µA	(3 V, 3.58 MHz)
	During DTMF operation:	1.3 mA	(3 V, 3.58 MHz)
Package	QFP5-80pin / QFP14-80pi	n (plastic	c) or die form

1.2 Block Diagram

Fig. 1.2.1 E0C62T3 block diagram

1.3 Pin Layout Diagram

Fig. 1.3.1 Pin layout diagram (QFP5-80pin)

Table 1.3.1

Pin name (QFP5-80pin)

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	SEG14	21	P02	41	R12	61	V _{C3}
2	SEG15	22	P03	42	R13	62	V _{C2}
3	SEG16	23	TEST	43	RESET	63	COM0
4	SEG17	24	K00	44	V _{DD}	64	COM1
5	SEG18	25	K01	45	RMUTE	65	COM2
6	SEG19	26	K02	46	TMUTE	66	COM3
7	SEG20	27	K03	47	DP	67	SEG0
8	SEG21	28	K10	48	Vss	68	SEG1
9	SEG22	29	K11	49	OSC1	69	SEG2
10	SEG23	30	K12	50	OSC2	70	SEG3
11	SEG24	31	K13	51	OSC3	71	SEG4
12	SEG25	32	K20	52	OSC4	72	SEG5
13	SEG26	33	K21	53	VDI	73	SEG6
14	SEG27	34	K22	54	TONE	74	SEG7
15	SEG28	35	R00	55	N.C.	75	SEG8
16	SEG29	36	R01	56	N.C.	76	SEG9
17	SEG30	37	R02	57	CA	77	SEG10
18	SEG31	38	R03	58	СВ	78	SEG11
19	P00	39	R10	59	VC1	79	SEG12
20	P01	40	R11	60	VCA	80	SEG13

N.C. = No Connection

QFP14-80pin

Fig. 1.3.2 Pin layout diagram (QFP14-80pin)

Pin name (QFP14-80pin)

Table 1.3.2

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
1	N.C.	21	COM0	41	SEG16	61	TEST
2	RESET	22	COM1	42	SEG17	62	K00
3	V _{DD}	23	COM2	43	SEG18	63	K01
4	RMUTE	24	COM3	44	SEG19	64	K02
5	TMUTE	25	SEG0	45	SEG20	65	K03
6	DP	26	SEG1	46	SEG21	66	K10
7	Vss	27	SEG2	47	SEG22	67	K11
8	OSC1	28	SEG3	48	SEG23	68	K12
9	OSC2	29	SEG4	49	SEG24	69	K13
10	OSC3	30	SEG5	50	SEG25	70	K20
11	OSC4	31	SEG6	51	SEG26	71	K21
12	V _{D1}	32	SEG7	52	SEG27	72	K22
13	TONE	33	SEG8	53	SEG28	73	R00
14	N.C.	34	SEG9	54	SEG29	74	R01
15	CA	35	SEG10	55	SEG30	75	R02
16	CB	36	SEG11	56	SEG31	76	R03
17	V _{C1}	37	SEG12	57	P00	77	R10
18	VCA	38	SEG13	58	P01	78	R11
19	V _{C3}	39	SEG14	59	P02	79	R12
20	V _{C2}	40	SEG15	60	P03	80	R13

N.C. = No Connection

1.4 Pin Description

Table 1.4.1 Pin description

Pin Name	QFP5-80	QFP14-80	I/O	Function
Vdd	44	3		Power supply terminal (+)
Vss	48	7		Power supply terminal (-)
V _{D1}	53	12	0	Internal logic system regulated voltage output terminal
VCA	60	18	I	LCD system voltage adjustment terminal
Vc1	59	17	0	LCD system regulated voltage output terminal
Vc2	62	20	0	LCD system booster voltage output terminal (Vc1 x 2)
V _{C3}	61	19	0	LCD system booster voltage output terminal (Vci x 3)
CA,CB	57,58	15,16	-	LCD system voltage booster capacitor connecting terminals
OSC1	49	8	Ι	32.768 kHz crystal oscillator input terminal
OSC2	50	9	0	32.768 kHz crystal oscillator output terminal
OSC3	51	10	I	3.58 MHz crystal or ceramic oscillator input terminal (selected by mask option)
OSC4	52	11	0	3.58 MHz crystal or ceramic oscillator output terminal (selected by mask option)
K00~K03	24~27	62~65	Ι	Input terminals
K10~K13	28~31	66~69	Ι	Input terminals
K20~K22	32~34	70~72	Ι	Input terminals
P00~P03	19~22	57~60	I/O	I/O terminals (at input mode, pull-up resistors are selected by software)
R00~R03	35~38	73~76	0	Output terminals
R10~R13	39~42	77~80	0	Output terminals (buzzer, hold-line and handfree are selected by software)
SEG0~SEG31	67~18	25~56	0	LCD segment output terminals (DC output is selected by mask option)
COM0~COM3	63~66	21~24	0	LCD common output terminals (1/4, 1/3, 1/2, 1/1 duty programmable)
RESET	43	2	Ι	Initial setting input terminal
TEST	23	61	Ι	Test input terminal
RMUTE	45	4	0	Receiver mute output terminal
TMUTE	46	5	0	Transmitter mute output terminal
DP	47	6	0	Dialing pulse output terminal
TONE	54	13	0	DTMF output terminal

CHAPTER 2 POWER SUPPLY AND INITIAL RESET

2.1 Power Supply

With a single external power supply (2 V to 5.5 V) supplied to VDD through Vss, the EOC62T3 generates the necessary internal voltage with the regulated voltage circuit (<VD1> for oscillators and internal circuit, <VC1> for LCDs) and the voltage booster circuit (<VC2, VC3> for LCDs).

A voltage reduction can be detected by the on-chip supply voltage detection circuit. (See Section 4.9, "SVD Circuit".) Figure 2.1.1 shows the configuration of power supply.

- **Note:** External loads cannot be driven by the regulated voltage and voltage booster circuit's output voltage.
 - See Chapter 7, "ELECTRICAL CHARACTERISTICS" for voltage values.

VD1 is the voltage of the oscillation circuit and the internal logic Voltage <VD1> for circuit, and is generated by the VD1 regulated voltage circuit for oscillation circuit stabilizing the oscillation. and internal circuit Making Vss the standard (logic level 0), the VD1 regulated voltage circuit generates VD1 from the supply voltage that is input from the VDD-VSS terminals. See Chapter 7, "ELECTRICAL CHARACTERISTICS" for voltage values. VC1, VC2 and VC3 are the voltages for LCD drive, and are generated Voltage <Vc1, Vc2 by the LCD system regulated voltage circuit and the voltage booster and Vc3> for LCD circuit to stabilize the display quality. driving VC1 is generated by the LCD system regulated voltage circuit with Vss as the standard from the supply voltage input from the VDD-Vss terminals. Vc2 and Vc3 are respectively double and triple obtained from the voltage booster circuit. The Vc1 voltage can be adjusted to match the LCD panel characteristics by applying feedback to the VCA terminal using resistances RA1 and RA2 as shown in Figure 2.1.2. The voltage Vc (~Vc1–Vss) of Vc1 at this time is shown by the following expression: $VC \approx 1 \times (RA1 + RA2) / RA1$ Example: Vc R_{A1} R_{A2} See Chapter 7, "ELECTRICAL CHARAC-About 1 V 0Ω TERISTICS" for voltage values. ∞ About 1.5 V $2 M\Omega$ $1 M\Omega$ V_{C1} $(1 M\Omega)$ Vca Vcr R_{A1} $(2 M\Omega)$

Vc = 1.5 V

Vss

Fig. 2.1.2 Vc adjustment circuit

2.2 Initial Reset

To initialize the E0C62T3 circuits, initial reset must be executed. There are four ways of doing this.

- (1) External initial reset by the RESET terminal
- (2) External initial reset by simultaneous low input to terminals K00-K03
- (3) Initial reset by the oscillation detection circuit
- (4) Initial reset by watchdog timer

Be sure to use reset functions (1) or (2) when making the power and be sure to initialize securely. In normal operation, the circuit may be initialized by any of the above four types.

Figure 2.2.1 shows the configuration of the initial reset circuit.

Fig. 2.2.1 Configuration of the initial reset circuit

Reset terminal (RESET)

Initial reset can be executed externally by setting the reset terminal to the low level.

The initial resetting can be done by externally setting the reset terminal to a low level. However, be sure to observe the following precautions, because the $\overrightarrow{\text{RESET}}$ signal passes through the noise reject circuit.

When the reset terminal is used for initial resetting during operation, a pulse (low level) of 0.4 msec or less is considered to be noise by the noise reject circuit. Maintain a low level of 1.5 msec (when the oscillation frequency fosc1 = 32 kHz) to securely perform the initial reset. When the reset terminal goes high, the CPU begins to operate.

Since the noise reject circuit does not operate when oscillation is stopped, the noise reject circuit is bypassed until it starts oscillation. For this reason, be sure to maintain a low level the reset input in the oscillation stopped status, such as at the time of power making, until starting oscillation.

Simultaneous low input to terminals K00-K03

Another way of executing initial reset externally is to input a low signal simultaneously to the input ports (K00–K03) selected with the mask option.

Since this initial reset also passes through the same noise reject circuit as the reset terminal, you should maintain the specified input port terminal at low level for 1.5 msec (when oscillation frequency fosc1 = 32 kHz) or more during operation and until it begins oscillation at times such as when making power. Table 2.2.1 shows the combinations of input ports (K00–K03) that can be selected with the mask option.

Table 2.2.1 Combinations of input ports

А	Not use
В	K00*K01
С	K00*K01*K02
D	K00*K01*K02*K03

When, for instance, mask option D (K00*K01*K02*K03) is selected, initial reset is executed when the signals input to the four ports K00-K03 are all low at the same time. The initial reset is done, even when a key entry including a combination of selected input ports is made. Further, the time authorize circuit can be selected with the mask option. The time authorize circuit performs initial reset, when the input time of the simultaneous low input is authorized and found to be the same or more than the defined time (1 to 2 sec). Since clock timer output is used for time authorization, when the clock timer is reset during time authorization, the authorization time is also reduced. (The shortest is 1.5 msec due to the noise reject circuit.) If you use this function, make sure that the specified ports do not go low at the same time during ordinary operation. When the oscillation detection circuit detects the stoppage of Oscillation detection oscillation of the crystal oscillation circuit (OSC1), it generates an circuit initial reset within 10 seconds. This is a reset function in cases where oscillation is stopped due to such things as a drop in the supply voltage. In addition, it uses a simultaneous low input of the input ports (K00-K03) or reset terminal for the initial reset at the time of making power and you should not execute it by this function alone. If the CPU runs away for some reason, the watchdog timer will Watchdog timer detect this situation and output an initial reset signal. See Section 4.2, "Watchdog Timer" for details. As with the oscillation detection circuit, you should not do an initial reset at the time of making power using this function.

Internal register at initial resetting

Table 2.2.2 Initial values

C	CPU core						
Name	Symbol	Number of bits	Setting value				
Program counter step	PCS	8	00H				
Program counter page	PCP	4	1H				
New page pointer	NPP	4	1H				
Stack pointer	SP	8	Undefined				
Index register IX	IX	11	Undefined				
Index register IY	IY	11	Undefined				
Register pointer	RP	4	Undefined				
General-purpose register A	A	4	Undefined				
General-purpose register B	В	4	Undefined				
Interrupt flag	Ι	1	0				
Decimal flag	D	1	0				
Zero flag	Z	1	Undefined				
Carry flag	C	1	Undefined				

Peripheral circuits						
Name	Number of bits	Setting value				
RAM	640 x 4	Undefined				
Display memory	32 x 4	Undefined				
Other peripheral circuits	—	*1				

*1 See Section 4.1, "Memory Map".

2.3 Test Terminals (TEST)

This is the terminal that is used at the time of the factory inspection of the IC. During normal operation, make the $\overline{\text{TEST}}$ an N.C. (no connection).

CHAPTER 3

CPU, ROM, RAM

3.1 CPU

The E0C62T3 employs the 4-bit core CPU E0C6200A for the CPU, so that register configuration, instructions and so forth are virtually identical to those in other family processors using the E0C6200A.

Refer to "E0C6200/6200A Core CPU Manual" for details about the E0C6200A.

Note the following points with regard to the E0C62T3:

- (1) The SLEEP operation is not provided, so the SLP instruction cannot be used.
- (2) Because the ROM capacity is 3,072 words, bank bits are unnecessary and PCB and NBP are not used.
- (3) RAM is set up to five pages, so the three low-order bits are valid for the page portion (XP, YP) of the index register that specifies addresses. (The most high-order bit is ignored.)

3.2 ROM

The built-in ROM, a mask ROM for loading the program, has a capacity of 3,072 steps, 12 bits each. The program area is 12 pages (0–11), each of 256 steps (00H–FFH). After initial reset, the program beginning address is page 1, step 00H. The interrupt vector is allocated to page 1, steps 02H–0DH.

Fig. 3.2.1 ROM configuration

3.3 RAM

The RAM, a data memory storing a variety of data, has a capacity of 640 words, each of four bits. When programming, keep the following points in mind.

- Part of the data memory can be used as stack area when subroutine calls and saving registers, so be careful not to overlap the data area and stack area.
- (2) Subroutine calls and interrupts take up three words of the stack area.
- (3) The data memory 000H–00FH is for the register pointers (RP), and is the addressable memory register area.

CHAPTER 4

PERIPHERAL CIRCUITS AND OPERATION

Peripheral circuits (timer, I/O, and so on) of the EOC62T3 are memory mapped, and interfaced with the CPU. Thus, all the peripheral circuits can be controlled by using the memory operation command to access the I/O memory in the memory map. The following sections describe how the peripheral circuits operation.

4.1 Memory Map

Data memory of the E0C62T3 has an address space of 731 words, of which 48 words are allocated to display memory and 43 words to I/O memory.

Figures 4.1.1(a)–(b) present the overall memory maps of the EOC62T3, and Tables 4.1.1(a)–(i) the peripheral circuits' (I/O space) memory maps.

In the EOC62T3 the same I/O memory has been laid out for each page 0C0H–0EBH and the same display memory for 080H–0AFH. As a result, the I/O memory and display memory can be accessed without changing over the data memory page. The same result is obtained for I/O memory and display memory changes and for readable/writable address references, no matter on what page it is done.

Unused area

Memory map

E0C62T3 TECHNICAL HARDWARE

Note: Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

Table 4.1.1(a) I/O memory map (C0H–C4H)

Address		Reg	jister						Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	0	IK22	0	- *2			Unused	*5
		I	R		0	- *2			Unused	*5
COH					0	- *2			Unused	*5
					IK22	0	Yes	No	Interrupt factor flag (K22) Clear to 0 after read out	
	0	0	0	IK2	0	- *2			Unused	*5
			R	1	0	- *2			Unused	*5
C1H					0	- *2			Unused	*5
					IK2	0	Yes	No	Interrupt factor flag (K20, K21) Clear to 0 after read out	
	0	0	0	IK1	0	- *2			Unused	*5
	R				0	- *2			Unused	*5
C2H					0	- *2			Unused	*5
					IK1	0	Yes	No	Interrupt factor flag (K10 ~ K13) Clear to 0 after read out	
	0	0	0	IK0	0	- *2			Unused	*5
		1	R		0	- *2			Unused	*5
СЗН					0	- *2			Unused	*5
					IKO	0	Yes	No	Interrupt factor flag (K00 ~ K03) Clear to 0 after read out	
	IT1	IT2	IT16	IT32	IT1	0	Yes	No	Interrupt factor flag (clock timer 1 Hz)	
	R				IT2	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)	
C4H					IT16	0	Yes	No	Interrupt factor flag (clock timer 16 Hz)	
					IT32	0	Yes	No	Interrupt factor flag (clock timer 32 Hz) Clear to 0 after read out	

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

Address		Reg	ister						Commont	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	0	ID	0	- *2			Unused	*5
		I	R		0	- *2			Unused	*5
C5H					0	- *2			Unused	*5
					ID	0	Yes	No	Interrupt factor flag (dialing) Clear to 0 after read out	
	0	0	SIK21	SIK20	0	- *2			Unused	*5
	R R/W				0	- *2			Unused	*5
C6H			I		SIK21	0	Enable	Disable	Interrupt selection register (K21)	
					SIK20	0	Enable	Disable	Interrupt selection register (K20)	
	SIK13	SIK12	SIK11	SIK10	SIK13	0	Enable	Disable	Interrupt selection register (K13)	
		R	/W	•	SIK12	0	Enable	Disable	Interrupt selection register (K12)	
C7H					SIK11	0	Enable	Disable	Interrupt selection register (K11)	
					SIK10	0	Enable	Disable	Interrupt selection register (K10)	
	SIK03	SIK02	SIK01	SIK00	SIK03	0	Enable	Disable	Interrupt selection register (K03)	
		R	/W		SIK02	0	Enable	Disable	Interrupt selection register (K02)	
C8H					SIK01	0	Enable	Disable	Interrupt selection register (K01)	
					SIK00	0	Enable	Disable	Interrupt selection register (K00)	
	0	K22	K21	K20	0	- *2			Unused	*5
		I	R		К22	- *2	High	Low	Input port (K20 ~ K22)	
C9H					K21	- *2	High	Low		
					K20	- *2	High	Low		

Table 4.1.1(b) I/O memory map (C5H–C9H)

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*2 Not set in the circuit

*3 Undefined

Table 4.1.1(c)	I/O memory map	(CAH-CEH)
----------------	----------------	-----------

Address		Reg	ister						Commont
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	K13	K12	K11	K10	К13	- *2	High	Low	
			R	I	К12	- *2	High	Low	Input port (K10 ~ K13)
CAH					К11	- *2	High	Low	
					K10	- *2	High	Low	
	K03	K02	K01	K00	К03	- *2	High	Low	
			R	L	К02	- *2	High	Low	Input port (K00 ~ K03)
CBH					К01	- *2	High	Low	
					К00	- *2	High	Low	
	0	DFK22	DFK21	DFK20	0	- *2			Unused *5
	R		R/W		DFK22	1	₹	_	
					DFK21	1	Ţ	_	Input comparison register (K20 ~ K22)
					DFK20	1	Ţ	_	
	DFK13	DFK12	DFK11	DFK10	DFK13	1	Ţ	_	
		R	/W		DFK12	1	₹	_	
CDH					DFK11	1	₹	_	Input comparison register (K10 ~ K13)
					DFK10	1	₹	_	
	DFK03	DFK02	DFK01	DFK00	DFK03	1	Ţ	_	
		R	/W		DFK02	1	Ţ	₫	
CEH					DFK01	1	₹	_	Input comparison register (K00 ~ K03)
					DFK00	1	₹	_	
	1				1				

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*3 Undefined

Address		Reg	ister						Commont	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
CFH									Unused	
	EIK22	EIK2	EIK1	EIK0	EIK22	0	Enable	Mask	Interrupt mask register (K22)	
D0H		R	/W		EIK2	0	Enable	Mask	Interrupt mask register (K20, K21)	
Don					EIK1	0	Enable	Mask	Interrupt mask register (K10 ~ K13)	
					EIK0	0	Enable	Mask	Interrupt mask register (K00 ~ K03)	
	EIT1	EIT2	EIT16	EIT32	EIT1	0	Enable	Mask	Interrupt mask register (clcok timer 1 Hz)	
		R	/W		EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)	
					EIT16	0	Enable	Mask	Interrupt mask register (clock timer 16 Hz)	
					EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)	
	0	0	0	EID	0	- *2			Unused	*5
		R		R/W	0	- *2			Unused	*5
DZIT					0	- *2			Unused	*5
					EID	0	Enable	Mask	Interrupt mask register (dialing)	
	R13	R12	R11	R10	R13	0	High _ *4	Low ON	Output port (R13) Handfree output (HFO)	
	HFO	HDO	BZ	BZ	R12 HDO	0	High _ ^{*4}	Low ON	Output port (R12) Hold-line output (HDO)	
		R	/W		R11 BZ R10 BZ	0 0	High _ *4 High _ *4	Low ON Low ON	Output port (R11) Buzzer output (BZ) Output port (R10) Buzzer inverted output (BZ)	

Table 4.1.1(d) I/O memory map (CFH–D3H)

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

Table 4.1.1(e) I/O memory map (D4H–D8H)

Address		Reg	ister						Commont
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	R03	R02	R01	R00	R03	0	High	Low	
DAL		R	W		R02	0	High	Low	Comment Output port (R00 ~ R03) I/O control register Pull up control register I/O port Unused *5 Unused *5 CPU system clock switch *5 OSC3 oscillation ON/OFF *1
D4H					R01	0	High	Low	
					R00	0	High	Low	
	IOC3	IOC2	IOC1	IOC0	IOC3	0	Output	Input	
		R	W		IOC2	0	Output	Input	
D5H					IOC1	0	Output	Input	I/O control register
					IOC0	0	Output	Input	
	PUP3	PUP2	PUP1	PUP0	PUP3	0	ON	OFF	
		R	W		PUP2	0	ON	OFF	
D6H					PUP1	0	ON	OFF	Pull up control register
					PUP0	0	ON	OFF	
	P03	P02	P01	P00	P03	1	High	Low	
		R	W		P02	1	High	Low	
D7H					P01	1	High	Low	I/O port
					P00	1	High	Low	
	0	0	CLKCHG	OSCC	0	- *2			Unused *5
	I	2	R	/W	0	- *2			Unused *5
D8H			I		CLKCHG	0	OSC3	OSC1	CPU system clock switch
					oscc	0	ON	OFF	OSC3 oscillation ON/OFF
•					1				

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*6 Page switching in I/O memory is not necessary

*3 Undefined

Address		Reg	ister						Commont	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	0	TMRST	0	- *2			Unused	*5
		R		w	0	- *2			Unused	*5
D9H					0	- *2			Unused	*5
					TMRST	- *2	Reset	Invalid	Clock timer reset	*5
	TM3	TM2	TM1	TM0	TM3	- *3			Clock timer data (low-order) 16 Hz	
			R	I	TM2	- *3			Clock timer data (low-order) 32 Hz	
DAH						- *3			Clock timer data (low-order) 64 Hz	
					TM0	- *3			Clock timer data (low-order) 128 Hz	
	TM7	TM6	TM5	TM4	TM7	- *3			Clock timer data (high-order) 1 Hz	
			R		TM6	- *3			Clock timer data (high-order) 2 Hz	
DBH					TM5	- *3			Clock timer data (high-order) 4 Hz	
					TM4	- *3			Clock timer data (high-order) 8 Hz	
	WDON	WDRST	WD1	WD0	WDON	0	ON	OFF	Watchdog timer ON/OFF	
	R/W	w	I	2	WDRST	Reset	Reset	Invalid	Watchdog timer reset	*5
DCH					WD1	0			Watchdog timer data 1/4 Hz	
					WD0	0			Watchdog timer data 1/2 Hz	
	BZR11	BZR10	0	BZFQ	BZR11	0	Buzzer	DC	R11 port output selection	
	R	R/W R R/W				0	Buzzer	DC	R10 port output selection	
DDH			1	I	0	- *2			Unused	*5
					BZFQ	0	2 kHz	4 kHz	Buzzer frequency selection	

Table 4.1.1(f) I/O memory map (D9H–DDH)

*1 Initial value at initial reset

*2 Not set in the circuit *3 Undefined *4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

Table 4.1.1(g) I/O memory map (DEH-E2H)

Address		Reg	ister						Commont
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	LDTY1	LDTY0	0	LCDON	LDTY1	0			LCD drive duty selection
	R	/W	R	R/W	LDTY0	0			
DEH					0	- *2			Unused *5
					LCDON	0	ON	OFF	LCD display control (LCD display all off)
	0	0	SVDDT	SVDON	0	- *2			Unused *5
		R		R/W	0	- *2			Unused *5
DFH					SVDDT	0	Supply voltage Low	Supply voltage Normal	Supply votage detector data
					SVDON	0	ON	OFF	SVD circuit ON/OFF
	TPS	0	MB	DRS	TPS	0	PULSE	TONE	Tone / pulse mode selection
FOH	R/W	R	R	/W	0	- *2			Unused *5
EUH					MB	0	33.3:66.6	40:60	Make : Break ratio selection
					DRS	0	20 pps	10 pps	Dialing pulse rate selection
	PTS3	PTS2	PTS1	PTS0	PTS3	0			Pause time selection
		R/	W		PTS2	1			1: 1 sec 9: 9 sec 2: 2 sec A: 10 sec
E1H					PTS1	0			3 : 3 sec B : 11 sec 4 : 4 sec C : 12 sec
	Defa	ult value : 4	seconds		PTS0	0			5 : 5 sec D : 13 sec 6 : 6 sec E : 14 sec 7 : 7 sec F : 15 sec
	FTS3	FTS2	FTS1	FTS0	FTS3	0			Flash time selection 0 : Use inhibited 8 : 750 ms
		R/	W		FTS2	1			1: 94 ms 9: 844 ms 2: 188 ms A: 938 ms
E2H					FTS1	1			3 : 281 ms B : 1031 ms 4 : 375 ms C : 1125 ms
DEH - DFH - E0H - E1H -	Defa	ult value : 5	63 ms		FTS0	0			5:409 ms D:1219 ms 6:563 ms E:1313 ms 7:656 ms F:1406 ms

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

Address		Reg	ister						Commont
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	0	HOLD	PAUSE	FLASH	0	- *2			Unused *5
	R	R/W	v	V	HOLD	0	On	Off	Hold-line function
E3H					PAUSE	0	Yes	No	Pause function *5
					FLASH	0	Yes	No	Flash function *5
	HF	0	0	0	HF	0	Yes	No	Hand free
	R/W		R		0	- *2			Unused *5
E4H		1			0	- *2			Unused *5
					0	- *2			Unused *5
IDP3		IDP2	IDP1	IDP0	IDP3	1			Inter-digit pause selection for dial pulse 0 : Use inhibited 8 : 750 ms
EGU		R	/W		IDP2	0			1: 94 ms 2: 188 ms 9: 844 ms A: 938 ms
E5H		I I 0: Use inhibited 8: 750 R/W IDP2 0 1: 94 ms 9: 844 2: 188 ms A: 938 3: 281 ms B: 1031 4: 375 ms C: 1122 5: 140 ms P: 1211	3 : 281 ms B : 1031 ms 4 : 375 ms C : 1125 ms						
	Defa	ult value : 7	50 ms		IDP0	0			5 : 469 ms D : 1219 ms 6 : 563 ms E : 1313 ms 7 : 656 ms F : 1406 ms
	0	0	SINR	SINC	0	- *2			Unused *5
	1	R	R/	/W	0	- *2			Unused *5
E6H					SINR	1	Enable	Disable	DTMF row frequency output enable
					SINC	1	Enable	Disable	DTMF column frequency output enable
	TCD3	TCD2	TCD1	TCD0	TCD3	0			Telephone code for dialing TCD DTMF DP TCD DTMF DP
		R	w		TCD2	0			0: (R_1C_4) Use inhibited 8: (R_3C_2) 8 1: (R_1C_1) 1 9: (R_3C_3) 9 2: (R_1C_2) 2 A: (R_4C_2) 10
E7H					TCD1	0			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
					TCD0	0			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 4.1.1((h) I/C	memory	/ map	(F3H-F7H)
10010 4.1.1	(11) "	memor	, map	

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*2 Not set in the circuit

*6 Page switching in I/O memory is not necessary

*3 Undefined

Table 4.1.1(i) I/O memory map (E8H-EBH)

Address		Reg	ister						Commont	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	CRMUT	СТМИТ	0	- *2			Unused	*5
	F	2	R	/W	0	- *2			Unused	*5
E8H			1		CRMUT	1	Receive mute	0	Receive mute control	
			-		СТМИТ	1	Transmit mute output	0	Transmit mute control	
	0	0	0	HSON	0	- *2			Unused	*5
5011		R		R/W	0	- *2			Unused	*5
E9H					0	- *2				
					HSON	0	Hook Off	Hook On	Hook switch ON/OFF	
	CHFO	CHDO	0	0	CHFO	0	Handfree	DC	R13 output selection	
	R/	W	ſ	2	0 $-$ *2UnusedCRMUT1 $\begin{array}{c} \operatorname{Receive} \\ \operatorname{output} \\ \operatorname{Transmit} \\ \operatorname{mute} \\ \operatorname{output} \end{array}$ 0Receive mute condent to the condent to t	(R13 data register has to be "0") R12 output selection				
EAH					0	- *2	output		(R12 data register has to be "0") Unused	*5
					0	- *2			Unused	*5
	СТО	0	0	0	СТО	0	Continuous tone output ON	Continuous tone output OFF	Tone duration time control	
ЕВЦ	R/W		R		0	- *2			Unused	*5
					0	- *2			Unused	*5
					0	- *2			Unused	*5
									Laurad	
									Unused	

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

4.2 Watchdog Timer

Configuration of watchdog timer

The EOC62T3 incorporates a watchdog timer as the source oscillator for OSC1 (clock timer 1 Hz signal). The watchdog timer can be controlled by WDON register. The watchdog timer has to be turned on when it is being used.

When the watchdog timer is used, it must be reset cyclically by the software. If reset is not executed in at least 3 seconds, the initial reset signal is output automatically for the CPU.

Figure 4.2.1 is the block diagram of the watchdog timer.

The watchdog timer, configured of a two-bit binary counter (WD0–WD1), generates the initial reset signal internally by overflow of the WD1 (1/4 Hz).

Watchdog timer reset processing in the program's main routine enables detection of program overrun, such as when the main routine's watchdog timer processing is bypassed. Ordinarily this routine is incorporated where periodic processing takes place, just as for the timer interrupt routine.

The watchdog timer can also be reset by the resetting of the clock timer.

The watchdog timer operates in the HALT mode. If the HALT status continues for 3 or 4 seconds, the initial reset signal restarts operation.

Control of watchdog timer

Table 4.2.1 lists the watchdog timer's control bits and their addresses.

Table 4.2.1	Control	bits	of	watchdog	timer
-------------	---------	------	----	----------	-------

Address		Regi	ister						Comment			
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment			
	0	0	0	TMRST	0	- *2			Unused	*5		
DOLL		R		w	0	- *2			Unused	*5		
D9H					0	- *2			Unused	*5		
					TMRST	- *2	Reset	Invalid	Clock timer reset	*5		
	WDON	WDRST	WD1	WD0	WDON	0	ON	OFF	Watchdog timer ON/OFF			
DOLL	R/W	w	F	२	WDRST	Reset	Reset	Invalid	Watchdog timer reset	*5		
DCH					WD1	0			Watchdog timer data 1/4 Hz			
					WD0	0			Watchdog timer data 1/2 Hz			
					1							

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (Output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

*6 Page switching in I/O memory is not necessary

TMRST: This is the bit for resetting the clock timer and the watchdog timer. Clock timer reset When "1" is written: Clock timer and watchdog timer are reset (D9H•D0)

When "0" is written: No operation

Reading: Always "0"

When "1" is written to TMRST, the clock timer and the watchdog timer are reset, and the operation restarts immediately after this. When "0" is written to TMRST, no operation results. This bit is dedicated for writing, and is always "0" for reading.

WDON: Watchdog timer ON/OFF (DCH•D3)

This bit is used to turn the watchdog timer ON/OFF.

When "1" is written: ON When "0" is written: OFF Reading: Valid

At initial reset, WDON is set to "0" and the watchdog timer is turned OFF. When watchdog timer is being used, it has to be turned ON, firstly.

WDRST:	This is the bit for resetting the watchdog timer.
vvatchdog timer reset (DCH•D2)	When "1" is written: Watchdog timer is reset When "0" is written: No operation Reading: Always "0"
	When "1" is written to WDRST, the watchdog timer is reset, and the operation restarts immediately after this. When "0" is written to WDRST, no operation results. This bit is dedicated for writing, and is always "0" for reading.
Programming note	When the watchdog timer is being used, the software must reset it within 3-second cycles, and timer data (WD0 and WD1) cannot be used for timer applications.

4.3 Oscillation Circuit

Configuration of oscillation circuit

OSC1 oscillation

circuit

The EOC62T3 has two oscillation circuits (OSC1 and OSC3). OSC1 is a crystal oscillation circuit that supplies the operating clock the CPU and peripheral circuits. OSC3 is either a crystal or ceramic oscillation circuit that supplies the operating clock the CPU and DTMF circuit. When processing with the EOC62T3 requires high-speed operation, the CPU source clock can be switched from OSC1 to OSC3.

Figure 4.3.1 is the block diagram of this oscillation system.

Fig. 4.3.1 Oscillation system

Selection of either OSC1 or OSC3 for the CPU's operating clock can be made through the software.

The E0C62T3 has a built-in crystal oscillation circuit (OSC1 oscillation circuit). As an external element, the OSC1 oscillation circuit generates the operating clock for the CPU and peripheral circuitry by connecting the crystal oscillator (Typ. 32.768 kHz) and trimmer capacitor (5–25 pF).

Figure 4.3.2 is the block diagram of the OSC1 oscillation circuit.

Fig. 4.3.2 OSC1 oscillation circuit

As Figure 4.3.2 indicates, the crystal oscillation circuit can be configured simply by connecting the crystal oscillator (X'tal) between terminals OSC1 and OSC2 to the trimmer capacitor (CGX) between terminals OSC1 and VSS.

OSC3 oscillation circuit

The EOC62T3 has twin clock specification. The mask option enables selection of either the crystal or ceramic oscillation circuit (OSC3 oscillation circuit) as the CPU's sub-clock and DTMF's operating clock.

Figure 4.3.3 is the block diagram of the OSC3 oscillation circuit.

Fig. 4.3.3 OSC3 oscillation circuit

As Figure 4.3.3(a) indicates, the crystal oscillation circuit can be configured simply by connecting the crystal oscillator (Typ. 3.579545 MHz) between terminals OSC3 and OSC4 to the trimmer capacitor (CGX) between terminals OSC3 and Vss. When ceramic oscillation is selected, the ceramic oscillation circuit can be configured by connecting the ceramic oscillator (Typ. 3.579545 MHz) and feedback resistor (RF) between terminals OSC3 and OSC4 to the two capacitors (CGc and CDC) located between terminals OSC3 and OSC4 and Vss. To lower current consumption of the OSC3 oscillation circuit, oscillation can be stopped through the software.
Control of oscillation circuit

Table 4.3.1 lists the control bits and their addresses for the oscillation circuit.

Table 4.3.1 Control bits of oscillation circuit

Address		Reg	ister						Commont	
*6	D3	D2	D1 D0		Name	Init *1	1	0	Comment	
	0	0	CLKCHG	OSCC	0	- *2			Unused	*5
		R	R	/W	0	- *2			Unused	*5
D8H					CLKCHG	0	OSC3	OSC1	CPU system clock switch	
					oscc	0	ON	OFF	OSC3 oscillation ON/OFF	
1	1									

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*6 Page switching in I/O memory is not necessary

OSCC: Controls oscillation ON/OFF for the OSC3 oscillation circuit.

OSC3 oscillation control (D8H•D0) When "1" is written: The OSC3 oscillation ON When "0" is written: The OSC3 oscillation OFF Reading: Valid

When it is necessary to activate DTMF generator or to operate the CPU at high speed, set OSCC to "1". At other times, set it to "0" to lessen the current consumption. When "Not Use" is selected for the mask option of the OSC3 oscillation circuit, keep OSCC set to "0".

At initial reset, OSCC is set to "0".

CLKCHG:	The CPU's operation clock is selected with this register.
The CPU's clock switch (D8H•D1)	When "1" is written: OSC3 clock is selected
(201121)	When "0" is written: OSC1 clock is selected
	Reading: Valid
	When the CPU clock is to be OSC3, set CLKCHG to "1"; for OSC1
	set CLKCHG to "0".
	At initial reset, CLKCHG is set to "0".

Clock frequency and instruction execution time

Table 4.3.2 Clock frequency and instruction execution time

Programming notes

Table 4.3.2 shows the instruction execution time according to each frequency of the system clock.

Clock frequency	Instruction execution time (µsec)							
Clock frequency	5-clock instruction	7-clock instruction	12-clock instruction					
OSC1: 32.768 kHz	152.6	213.6	366.2					
OSC3: 3.58 MHz	11.1	15.6	26.7					

(1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON.

Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.

(2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.

4.4 Input Ports (K00-K03, K10-K13, K20-K22)

Configuration of input ports

The EOC62T3 has two 4 bits and one 3 bits general-purpose input ports. Each of the input port terminals (K00–K03, K10–K13, K20– K22) provides internal pull up resistor. Pull up resistor can be selected for each bit with the mask option.

Figure 4.4.1 shows the configuration of input port.

Fig. 4.4.1 Configuration of input port

Selection of "With pull up resistor" with the mask option suits input from the push switch, key matrix, and so forth. When "Gate direct" is selected, the port can be used for slide switch input and interfacing with other LSIs.

Interrupt function

All 11 bits of the input ports (K00–K03, K10–K13, K20–K22) provide the interrupt function and are divided into four interrupt systems. The conditions for issuing an interrupt can be set by the software. Further, whether to mask the interrupt function can be selected individually for all 11 bits by the software.

(1) K00–K03, K10–K13 and K20–K21 interrupts Figure 4.4.2 shows the configuration of K00–K03, K10–K13 and K20–K21 interrupts circuit.

The interrupt selection register (SIK) and input comparison register (DFK) are individually set for the input ports K00–K03, K10–K13 and K20–K21, and can specify the terminal for generating interrupt and interrupt timing.

The interrupt selection register (SIK) select what input terminal of input port to use for the interrupt. Writing "1" into an interrupt selection register incorporates that input port into the interrupt generation conditions. The changing the input port where the interrupt selection register has been set to "0" does not affect the generation of the interrupt.

The input interrupt timing can select that the interrupt be generated at the rising edge of the input or that it be generated at the falling edge according to the set value of the input comparison register (DFK).

By setting these two conditions, the interrupt for input ports are generated when an input port in which an interrupt has been enabled by the input selection register and the content of the input comparison register have been changed from matching to no matching.

The interrupt mask register (EIK) enables the interrupt mask to be selected for K00–K03, K10–K13, K20–K21 and K22.

When the interrupt is generated, the interrupt factor flag (IK) is set to "1".

Figure 4.4.3 shows an example of an interrupt for K00–K03.

K00 interrupt is disabled by the interrupt selection register (SIK00), so that an interrupt does not occur at (2). At (3), K03 changes to "0"; the data of the terminal that is interrupt enabled no longer matches the data of the input comparison register, so that interrupt occurs. As already explained, the condition for the interrupt to occur is the change in the port data and contents of the input comparison register from matching to no matching. Hence, in (4), when the no matching status changes to another no matching status, an interrupt does not occur. Further, terminals that have been masked for interrupt do not affect the conditions for interrupt generation.

(2) K22 interrupt

Figure 4.4.4 shows the configuration of K22 interrupt circuit.

The input port K22 can generate interrupts for systems other then K00–K03, K10–K13 and K20–K21. The input comparison register (DFK22) is also set to the K22 port and can specify the timing for generating an interrupt. The interrupt generated timing is also the same as for K00–K03, K10–K13 and K20–K21, and when the content of the K22 input and the input comparison register changes from matching to no matching an interrupt is generated. The interrupt mask register (EIK22) enables the interrupt mask to be selected for K22.

When the interrupt is generated, the interrupt factor flag (IK22) is set to "1".

Mask option

Internal pull up resistor can be selected for each of the 11 bits of the input ports (K00–K03, K10–K13, K20–K22) with the input port mask option. When you have selected "Gate direct", take care that the floating

status does not occur for the input. Select "With pull up resistor" for input ports that are not being used.

Control of input ports

Tables 4.4.1(a), (b) and (c) list the input ports control bits and their addresses.

Address	Register							Comment		
*6	D3	D2	D1	D0	Name	Init *1	1	0	Common	
	0	0	0	IK22	0	- *2			Unused	*5
			R		0	- *2			Unused	*5
COH					0	- *2			Unused	*5
					IK22	0	Yes	No	Interrupt factor flag (K22) Clear to 0 after read out	
	0	0	0	IK2	0	- *2			Unused	*5
			R	-	0	- *2			Unused	*5
C1H					0	- *2			Unused	*5
					IK2	0	Yes	No	Interrupt factor flag (K20, K21) Clear to 0 after read out	
	0	0	0	IK1	0	- *2			Unused	*5
		I	R		0	- *2			Unused	*5
C2H					0	- *2			Unused	*5
				_	IK1	0	Yes	No	Interrupt factor flag (K10 ~ K13) Clear to 0 after read out	
	0	0	0	IK0	0	- *2			Unused	*5
		L	R		0	- *2			Unused	*5
СЗН					0	- *2			Unused	*5
			-		IK0	0	Yes	No	Interrupt factor flag (K00 ~ K03) Clear to 0 after read out	
	0	0	SIK21	SIK20	0	- *2			Unused	*5
	I	R	R/	W	0	- *2			Unused	*5
C6H			1		SIK21	0	Enable	Disable	Interrupt selection register (K21)	
					SIK20	0	Enable	Disable	Interrupt selection register (K20)	

Table 4.4.1(a) Input port control bits (1)

*1 Initial value at initial reset

*4 Inhibit state (output port will be set to "1")

*2 Not set in the circuit

*5 Constantly "0" when being read

*3 Undefined

Table 4.4.1(b) Input port control bits (2)

Address	Register							Commont	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	SIK13	SIK12	SIK11	SIK10	SIK13	0	Enable	Disable	Interrupt selection register (K13)
	R/W				SIK12	0	Enable	Disable	Interrupt selection register (K12)
C7H					SIK11	0	Enable	Disable	Interrupt selection register (K11)
					SIK10	0	Enable	Disable	Interrupt selection register (K10)
	SIK03	SIK02	SIK01	SIK00	SIK03	0	Enable	Disable	Interrupt selection register (K03)
		R	/W		SIK02	0	Enable	Disable	Interrupt selection register (K02)
C8H					SIK01	0	Enable	Disable	Interrupt selection register (K01)
					SIK00	0	Enable	Disable	Interrupt selection register (K00)
	0	K22	K21	K20	0	- *2			Unused *5
		I	R	•	К22	- *2	High	Low	Input port (K20 ~ K22)
C9H					K21	- *2	High	Low	
					K20	- *2	High	Low	
	K13	K12	K11	K10	K13	- *2	High	Low	
		l	R		K12	- *2	High	Low	Input port (K10 ~ K13)
CAH					К11	- *2	High	Low	
					K10	- *2	High	Low	
	K03	K02	K01	К00	K03	- *2	High	Low	
			R		К02	- *2	High	Low	Input port (K00 ~ K03)
СВН					К01	- *2	High	Low	
					К00	- *2	High	Low	
1	1				1	1			

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*3 Undefined

Address	Register							Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	0	DFK22	DFK21	DFK20	0	- *2			Unused *5
	R		R/W		DFK22	1	Ŧ	₫	
CCH					DFK21	1	Ŧ	Ŀ	Input comparison register (K20 ~ K22)
					DFK20	1	Ł	₫	
	DFK13	DFK12	DFK11	DFK10	DFK13	1	Ŧ	ſ	
		R	/W		DFK12	1	Ŧ		
CDH					DFK11	1	₹		Input comparison register (K10 ~ K13)
					DFK10	1	Ł	1	
	DFK03	DFK02	DFK01	DFK00	DFK03	1	Ŧ	ſ	
		R	/W		DFK02	1	Ŧ	₫	
CEH					DFK01	1	Ŧ	₫	Input comparison register (K00 ~ K03)
					DFK00	1	₹	₫	
	EIK22	EIK2	EIK1	EIK0	EIK22	0	Enable	Mask	Interrupt mask register (K22)
		R	/W		EIK2	0	Enable	Mask	Interrupt mask register (K20, K21)
					EIK1	0	Enable	Mask	Interrupt mask register (K10 ~ K13)
					EIK0	0	Enable	Mask	Interrupt mask register (K00 ~ K03)

Table 4.4.1(c) Input port control bits (3)

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

IK22, IK2, IK1, IK0: Interrupt factor flags (C0H•D0, C1H•D0, C2H•D0, C3H•D0)	These flags indicate the occurrence of input interrupt. When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred Writing: Invalid
	The interrupt factor flags IK0, IK1, IK2 and IK22 are associated with K00–K03, K10–K13, K20–K21 and K22, respectively. From the status of these flags, the software can decide whether an input interrupt has occurred. Reading of interrupt factor flags is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. These flags are reset when the software reads them. At initial reset, these flags are set to "0".
SIK21–SIK20: SIK13–SIK10: SIK03–SIK00: Interrupt selection registers (C6H•D1, D0, C7H, C8H)	Selects the port to be used for the K00–K03, K10–K13 and K20– K21 input interrupts. When "1" is written: Enable When "0" is written: Disable Reading: Valid
	Enables the interrupt for the input ports (K00–K03, K10–K13, K20–K21) for which "1" has been written into the interrupt selection register (SIK). The input port set for "0" does not affect the interrupt generation condition. At initial reset, these registers are set to "0".
K22–K20: K13–K10: K03–K00: Input port data (C9H•D2–D0, CAH, CBH)	Input data of the input port terminals can be read with these registers. When "1" is read: High level When "0" is read: Low level Writing: Invalid
	The reading is "1" when the terminal voltage of the 11 bits of the input ports (K00–K03, K10–K13, K20–K22) goes high (VDD), and "0"

when the voltage goes low (Vss).

These bits are dedicated for reading, so writing cannot be done.

DFK22–DFK20: DFK13–DFK10: DFK03–DFK00: Input comparison registers (CCH•D2–D0, CDH, CEH)	Interrupt conditions for terminals K00–K03, K10–K13 and K20– K22 can be set with these registers. When "1" is written: Falling edge When "0" is written: Rising edge Reading: Valid						
	The interrupt conditions can be set for the rising or falling edge of input for each of the 11 bits, through the input comparison regis- ters (DFK). Comparison is done only with the ports that are enabled by the interrupt among input terminals by means of the SIK register. At initial reset, these registers are set to "0".						
EIK22, EIK2, EIK1, EIK0: Interrupt mask registers (D0H)	Masking the interrupt of the input port can be selected with these registers. When "1" is written: Enable When "0" is written: Mask Reading: Valid						
	With these registers, masking of the input port can be selected for each of the four systems (K00–K03, K10–K13, K20–K21, K22). Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0"). At initial reset, these registers are all set to "0".						
Programming notes	(1) When input ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration. Make this waiting time the amount of time or more calculated by the following expression. $10 \times C \times R$ C: terminal capacitance 5 pF + parasitic capacitance ? pF R: pull up resistance 300 k Ω						
	(2) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.						
	(3) Write the interrupt mask register (EIK) only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.						

4.5 Output Ports (R00-R03, R10-R13)

Configuration of output ports

The EOC62T3 has two 4 bits general output ports. Output specifications of the output ports can be selected individually with the mask option. Two kinds of output specifications are available: complementary output and Nch open drain output. Further, R10–R13 of the output port to be used as special output port by the software setting.

Figure 4.5.1 shows the configuration of the output port.

Mask option

Output specifications of the output ports can be selected with the mask option.

Output specifications for the output ports enable selection of either complementary output or Nch open drain output for each of the eight bits.

However, even when Nch open drain output is selected, voltage exceeding source voltage must not be applied to the output port.

Special output

In addition to the regular DC output, special output can be selected as shown in Table 4.5.1 with the software. Figure 4.5.2 shows the structure of the output ports R10–R13.

Table 4.5.1 Special output

Terminal	Special output	Output selection register
R10	BZ	BZR10
R11	BZ	BZR11
R12	HDO	CHDO
R13	HFO	CHFO

Fig. 4.5.2 Structure of the output ports R10–R13

• BZ and BZ (R11 and R10)

BZ and $\overline{\text{BZ}}$ are the buzzer signal output for driving the piezo-electric buzzer.

By setting the register BZR11 to "1", R11 terminal is set to BZ (buzzer signal) output port and by setting the register BZR10 to "1", R10 terminal is set to $\overline{\text{BZ}}$ (buzzer inverted signal) output port. When BZR10 and BZR11 are set to "0", R10 terminal and R11 terminal become the regular DC output ports.

When the buzzer output and the buzzer inverted output are selected, ON/OFF of the buzzer outputs can be controlled by the BZR10/R10 and BZR11/R11 registers, respectively.

Figures 4.5.3(a) and (b) show the output waveform of BZ and $\overline{\text{BZ}}$. The buzzer frequency may be selected as 2 kHz or 4 kHz by setting of the BZFQ register.

Note: The BZ and \overline{BZ} output signals could generate hazards during ON/OFF switching.

• HDO HDO is hold-line signal output for telephone function.

(R12) By setting the register CHDO (EAH•D2) to "1", R12 terminal is set to HDO (Hold-line output) output port. At meanwhile, R12 register (D3H•D2) must be set to "0"; otherwise R12 terminal is set to high level (VDD). When CHDO is set to "0", R12 terminal becomes the regular DC output port.

When the HDO output is selected, the R12 terminal outputs the data which is written in the register HOLD (E3H•D2). See Section 4.10, "Telephone Function" for detail of HDO.

• **HFO** HFO is handfree signal output for telephone function.

(R13) By setting the register CHFO (EAH•D3) to "1", R13 terminal is set to HFO (Handfree output) output port. At meantime, R13 register (D3H•D3) must be set to "0"; otherwise R13 terminal is set to high level (VDD). When CHFO is set to "0", R13 terminal becomes the regular DC output port.

> When the HFO output is selected, the R13 terminal outputs the data which is written in the register HF (E4H•D3).

Control of output ports

Tables 4.5.2(a) and (b) list the output ports' control bits and their addresses.

Table 4.5.2(a) Control bits of output ports (1)

Address	s Register							Comment		
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
D3H	R13 HFO	R12 HDO	R11 BZ	R10 BZ	R13 HFO R12	0 0	High - ^{*4} High	Low ON Low	Output port (R13) Handfree output (HFO) Output port (R12)	
		R	/W		HDO R11 BZ R10 BZ	0 0	- *4 High - *4 High - *4	ON Low ON Low ON	Hold-line output (HDO) Output port (R11) Buzzer output (BZ) Output port (R10) Buzzer inverted output (BZ)	
	R03	R02	R01	R00	R03	0	High	Low		
DALL		R	/W		R02	0	High	Low	Output port (R00 - R03)	
D4H					R01	0	High	Low	Supul port (Koo ~ Kos)	
					R00	0	High	Low		
	BZR11	BZR10	0	BZFQ	BZR11	0	Buzzer	DC	R11 port output selection	
	R/W R			R/W	BZR10	0	Buzzer (inverted)	DC	R10 port output selection	
					0	- *2			Unused	*5
					BZFQ	0	2 kHz	4 kHz	Buzzer frequency selection	
	0	HOLD	PAUSE	FLASH	0	- *2			Unused	*5
	R	R/W	v	V	HOLD	0	On	Off	Hold – line function	
E3H					PAUSE	0	Yes	No	Pause function	*5
		_			FLASH	0	Yes	No	Flash function	*5
	HF	0	0	0	HF	0	Yes	No	Hand free	
EAU	R/W	R/W R			0	- *2			Unused	*5
					0	- *2			Unused	*5
					0	- *2			Unused	*5

*1 Initial value at initial reset

*4 Inhibit state (output port will be set to "1")

*2 Not set in the circuit

*5 Constantly "0" when being read

*3 Undefined

	. ,			•	, 					
Address		Reg	ister						Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0		
	CHFO	CHDO	0	0	CHFO	0	Handfree output	DC	R13 output selection (R13 data register has to be "0")	
	R/W R			CHDO	0	Hold output	DC	(R12 data register has to be "0") R12 output selection (R12 data register has to be "0")		
					0	- *2			Unused	*5
					0	- *2			Unused	*5
*1 *2 *3	*1 Initial value at initial reset*4 Inhibit state (output port will be set to "1")*2 Not set in the circuit*5 Constantly "0" when being read*3 Undefined*6 Page switching in I/O memory is not necessary									
R10–R1	R10–R13 (when DC output): Sets the output data for the output ports. Output port data (D3H) When "1" is written: High output When "0" is written: Low output Reading: Valid									

Table 4.5.2(b) Control bits of output ports (2)

The output port terminals output the data written in the corresponding registers (R10–R13) without changing it. When "1" is written in the register, the output port terminal goes high (VDD), and when "0" is written, the output port terminal goes low (Vss). At initial reset, R10–R13 are set to "0".

R13 Controls the HFO (Handfree Output) output and acts as HFO ted): output terminal.

(when HFO is selected): Special output port data (D3H•D3)

When "1" is written: High level (DC) output When "0" is written: Handfree signal output Reading: Valid

R13 terminal can be used as HFO signal output terminal, by writing "1" into register CHFO (EAH•D3), "0" into register R13 (D3H•D3).

When HFO output is selected, the R13 terminal outputs the data which is written in the register HF (E4H•D3).

At initial reset, this register is set to "0".

R12 (when HDO is selected):	Controls the HDO (Hold-Line Output) output and acts as HDO output terminal.								
Special output port data (D3H•D2)	When "1" is written: High level (DC) output When "0" is written: Hold-line signal output Reading: Valid								
	R12 terminal can be used as HDO signal output terminal, by writing "1" into register CHDO (EAH•D2), "0" into register R12 (D3H•D2).								
	When HDO output is selected, the R12 terminal outputs the data which is written in the register HOLD (E3H•D2). At initial reset, this register is set to "0".								
R10, R11 (when \overline{BZ} and \overline{BZ}	These bits control the output of the buzzer signals (BZ, $\overline{\text{BZ}}$).								
Special output is selected): Special output port data (D3H•D0, D1)	When "1" is written: High level (DC) output When "0" is written: Buzzer signals output Reading: Valid								
	BZ (buzzer signal) output is controlled by writing data to BZR11/R11, and $\overline{\text{BZ}}$ (buzzer inverted signal) output is controlled by writing data to BZR10/R10. At initial reset, R10 and R11 are set to "0".								
R00–R03:	Sets the output data for the output ports.								
Output port data (D4H)	When "1" is written: High output When "0" is written: Low output Reading: Valid								
	The output port terminals output the data written in the corre- sponding registers (R00–R03) without changing it. When "1" is written in the register, the output port terminal goes high (VDD), and when "0" is written, the output port terminal goes low (VSS). At initial reset, R00–R03 are set to "0".								
BZR10, BZR11:	Selects the output type for the R10 and R11 terminals.								
(DDH•D2, D3)	When "1" is written: Buzzer signal output When "0" is written: DC output Reading: Valid								
	By setting the register BZR11 to "1", R11 is set to BZ (buzzer signal) output port and by setting the register BZR10 to "1", R10 is set to $\overline{\text{BZ}}$ (buzzer inverted signal) output port. When BZR10 and BZR11 are set to "0", R10 and R11 become the regular DC output ports. When the buzzer output and the buzzer inverted output are selected, ON/OFF of the buzzer outputs can be controlled by the R10								
	At initial reset, these register are set to "0".								

BZFQ: Selects the frequency of the buzzer signal.

Buzzer frequency selection
register
(DDH•D0)

When "1" is written: 2 kHz When "0" is written: 4 kHz Reading: Valid

When "1" is written to register BZFQ, the frequency of the buzzer signal is set in 2 kHz, and in 4 kHz when "0" is written. At initial reset, this register is set to "0".

HOLD: Hold-line function

Executes the hold function ON/OFF and outputs data from register HOLD to R12 terminal.

(E3H•D2)

When "1" is written: ON (High level output on R12 terminal) When "0" is written: OFF (Low level output on R12 terminal) Reading: Valid

HDO (Hold-Line Output) is output terminal for hold-line function. When HDO output is selected, the R12 terminal outputs the data which is written in the register HOLD (E3H•D2).

When R12 terminal is used as HDO output port, the register CHDO (EAH•D2) must be written "1" and register R12 (D3H•D2) must be written "0".

When HOLD (E3H•D2) register is turned ON, TMUTE terminal goes low level (VSS) and HDO (R12) terminal goes high level (VDD). When HOLD register is turned OFF, TMUTE terminal goes high level (VDD) and HDO (R12) terminal goes low level (Vss). Hold-line function is a toggle selection and it does not generate interrupt.

At initial reset, this register is set to "0".

HF: Handfree (E4H•D3)

Executes the handfree function ON/OFF and outputs data from register HF to HFO (R13) terminal.

> When "1" is written: ON (High level output on R13 terminal) When "0" is written: OFF (Low level output on R13 terminal) Reading: Valid

HFO (HandFree Output) is output terminal for handfree function. When HFO output is selected, the R13 terminal outputs the data which is written in the register HF (E4H•D3).

When R13 terminal is used as HFO output port, the register CHFO (EAH•D3) must be written "1" and register R13 (D3H•D3) must be written "0".

Handfree function is a toggle selection and it does not generate interrupt.

At initial reset, this register is set to "0".

CHFO: R13 output selection register (EAH•D3)	Selects the output type for the R13 terminal. When "1" is written: Handfree signal output When "0" is written: DC output Reading: Valid					
	By setting the register CHFO to "1", R13 is set to HFO (HandFree Output) output port. When CHFO is set to "0", R13 becomes the regular DC output port. See Section 4.10, "Telephone Function". At initial reset, this register is set to "0".					
CHDO R12 output selection register (EAH•D2)	Selects the output type for the R12 terminal. When "1" is written: Hold-line signal output When "0" is written: DC output Reading: Valid					
	By setting the register CHDO to "1", R12 is set to HDO (Hold-Line Output) output port. When CHDO is set to "0", R12 becomes the regular DC output port. See Section 4.10, "Telephone Function". At initial reset, this register is set to "0".					
Programming notes	(1) When output ports (R10–R13) are selected as special output, the corresponding output port data (R10–R13) must be set to "0".					
	(2) When BZ and $\overline{\text{BZ}}$ are selected, a hazard may be observed in the output waveform when the data of control registers (BZR11 and BZR10) change.					

4.6 I/O Ports (P00-P03)

Configuration of I/O port

The EOC62T3 has a 4 bits general-purpose I/O port. Figure 4.6.1 shows the configuration of I/O port. The each bit of the I/O port POO–PO3 can be set to either input mode or output mode, individually. Modes can be set by writing data to the I/O control register.

During input mode, the pull up resistors can be controlled through the software by writing data into the pull up control register.

I/O control registers and input/output	Input or output mode can be set for the each bit of I/O port P00– P03 by writing data into the corresponding I/O control register IOC0, IOC1, IOC2 and IOC3.							
mode	To set the input mode, "0" is written to the I/O control register. When an I/O port is set to input mode, it becomes high impedance status and works as an input port. However, when the pull up explained in the following section has been set by software, the input line is pulled up only during this input mode.							
	The output mode is set when "1" is written to the I/O control register. When an I/O port set to output mode works as an output port, it outputs a high level (VDD) when the port output data is "1", and a low level (VSS) when the port output data is "0".							
	If perform the read out in each mode; when output mode, the register value is read out, and when input mode, the port value is read out.							
	At initial reset, the I/O control registers are set to "0", and the I/O port enters the input mode.							
Pull up during input mode	A pull up resistor that operates during the input mode is built into the I/O port of the E0C62T3. Software can set the use or non-use of this pull up. The pull up resistor becomes effective by writing "1" into the pull up control registers PUP0, PUP1, PUP2 and PUP3 that correspond to each bit of P00–P03, and the input line is pulled up during the input mode. When "0" has been written, no pull up is done. At initial reset, the pull up control registers are set to "0".							
Mask option	 Output specifications during the output mode (IOC = "1") can be selected with the mask option. Output specifications for the I/O port (P00–P03) enable selection of either complementary output or Nch open drain output for each of the 4 bits. However, even when Nch open drain output is selected, voltage exceeding source voltage must not be applied to the output port. 							

Control of I/O port

Table 4.6.1 lists the I/O port's control bits and their addresses.

Table 4.6.1 Control bits of I/O port

Address					Comment						
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment		
	IOC3	IOC2	IOC1	IOC0	IOC3	0	Output	Input			
Dell		R	/W		IOC2	0	Output	Input			
D5H					IOC1	0	Output	Input	I/O control register		
					IOC0	0	Output	Input			
	PUP3	PUP2	PUP1	PUP0	PUP3	0	ON	OFF			
		R	/W		PUP2	0	ON	OFF			
D6H					PUP1	0	ON	OFF	Pull up control register		
					PUP0	0	ON	OFF			
	P03	P02	P01	P00	P03	1	High	Low			
		R	/W		P02	1	High	Low			
D7H					P01	1	High	Low	1/O pon		
					P00	1	High	Low			
	1				1						

*1 Initial value at initial reset

*4 Inhibit state (output port will be set to "1")

*2 Not set in the circuit

IOC0, IOC1, IOC2, IOC3:

*3 Undefined

*5 Constantly "0" when being read *6 Page switching in I/O memory is not necessary

The input and output modes of the I/O port can be set with these

I/O control register (D5H)

registers.

When "1" is written: Output mode When "0" is written: Input mode Reading: Valid

The input and output modes of the I/O port is set in each bit. IOC0, IOC1, IOC2 and IOC3 set the mode for P00, P01, P02 and P03, respectively.

Writing "1" to the I/O control register makes the corresponding bit of I/O port enter the output mode, and writing "0" induces the input mode.

At initial reset, these registers are set to "0", so the I/O port is in the input mode.

PUP0, PUP1, PUP2, PUP3: Pull up control register (D6H)

The pull up during the input mode can be set with these registers.

When "1" is written: Pull up ON When "0" is written: Pull up OFF Reading: Valid

The built-in pull up resistor which is turned ON during input mode is set to enable in each bit. PUP0, PUP1, PUP2 and PUP3 set the pull up for P00, P01, P02 and P03, respectively.

By writing "1" to the pull up control register, the corresponding bit of I/O port is pulled up (during input mode), while writing "0" turns the pull up function OFF.

At initial reset, these registers are set to "0", so the pull up function is set to OFF.

P00–P03: I/O port data can be read and output data can be set through this I/O port data (D7H)

• When writing data

When "1" is written: High level When "0" is written: Low level

When an I/O port is set to the output mode, the written data is output unchanged from the I/O port terminal. When "1" is written as the port data, the port terminal goes high (VDD), and when "0" is written, the level goes low (VSS).

Port data can be written also in the input mode.

• When reading data out

When "1" is read: High level When "0" is read: Low level

The terminal voltage level of the I/O port is read out. When the I/O port is in the input mode the voltage level being input to the port terminal can be read out; in the output mode the register value can be read. When the terminal voltage is high (VDD) the port data that can be read is "1", and when the terminal voltage is low (VSS) the data is "0".

When PUP register is set to "1", the built-in pull up resistor goes ON during input mode, so that the I/O port terminal is pulled up. Internal pull up resistors are only ON during input mode, but the gate floating has not occur even during output mode.

Programming note	 When in the input mode, I/O port is changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration. Make this waiting time the amount of time or more calculated by the following expression. 10 x C x R
	10 x C x R C: terminal capacitance 5 pF + parasitic capacitance ? pF R: pull up resistance 300 k Ω

4.7 LCD Driver (COM0-COM3, SEG0-SEG31)

Configuration of LCD driver	The E0C62T3 has four common terminals (COM0–COM3) and 32 segment terminals (SEG0–SEG31), so that it can drive an LCD with a maximum of 128 (32×4) segments. The power for driving the LCD is generated by the CPU internal circuit so that there is no need to apply power especially from outside. The driving method is 1/4 duty dynamic drive depending on the four types of potential, VSS, VC1, VC2 and VC3. In addition to the 1/4 duty, 1/3, 1/2 and 1/1 drive duty can be selected through the software. The frame frequency is 32 Hz for 1/4, 1/2 and 1/1 duty, and 42.7 Hz for 1/3 duty (fosc1 = 32,768 Hz). LCD display ON/OFF may be controlled by the software. Figures 4.7.1–4.7.3 show the drive waveform for 1/4 duty, 1/3 duty and 1/2 duty.
Note:	"fosc1" indicates the oscillation frequency of the OSC1 oscillation circuit.

E0C62T3 TECHNICAL HARDWARE

LCD display ON/OFF control and duty switching

(1) Display ON/OFF control

In the E0C62T3, ON/OFF of the LCD display can be controlled by LCDON register.

At initial reset, LCDON is set to "0", and the LCD display is set to the OFF status. In this time, the COM terminal and the SEG terminal goes to VC1 level.

To set the LCD display ON, write "1" to register LCDON.

(2) Switching of drive duty

By settings of registers LDTY0 and LDTY1, the LCD drive duty can be selected from among 4 types, 1/4, 1/3, 1/2, 1/1 duty. Table 4.7.1 shows the LCD drive duty setting.

Table 4.7.1 LCD drive duty setting

		Duty	Terminals used	Maximum number	Eromo froquency
LUITI	LDTTU	Duty	in common of segments		Frame frequency
0	0	1/4	COM0-COM3	128 (32 × 4)	fosc1/1,024 (32 Hz)
0	1	1/3	COM0–COM2	96 (32 × 3)	fosc1/768 (42.7 Hz)
1	0	1/2	COM0, COM1	$64(32 \times 2)$	fosc1/1,024 (32 Hz)
1	1	1/1	COM0	$32(32 \times 1)$	fosc1/1,024 (32 Hz)
					22 5 40 11

* In case of fosc1 = 32,768 Hz

Basically you should select the drive duty with the smallest drive segment number (for example, 1/3 duty for 80 segments and 1/2 duty for 40 segments) from among the drive duties permitting driving of the segment number of the LCD panel.

(3) Cadence adjustment of oscillation frequency

By using the 1/1 duty drive waveform, it enables easy adjustment (cadence adjustment) of the oscillation frequency of the OSC1 oscillation circuit (crystal oscillation circuit).

Note: For cadence adjustment, set the segment data so that all the LCDs light.

Figure 4.7.4 shows the drive waveform for 1/1 duty.

Mask option (segment allocation)

(1) Segment allocation

The LCD driver has a segment decoder built-in, and the data bit of the optional address in the display memory area (80H–AFH) can be allocated to the optional segment. This makes design easy by increasing the degree of freedom with which the liquid crystal panel can be designed.

The allocated segment displays when the bit for the display memory is set to "1", and goes out when bit is set to "0".

Figure 4.7.5 shows an example of the relationship between the LCD segments (on the panel) and the display memory for the case of 1/3 duty.

		Da	ata	
Address	D3	D2	D1	D0
9AH	d	с	b	а
9BH	р	g	f	е
9CH	ď	c'	b'	a'
9DH	p'	g'	f	e'

Display memory allocation

Fig. 4.7.5 Segment allocation

(2) Output specification

- The segment terminals (SEG0–SEG31) are selected with the mask option in pairs for either segment signal output or DC output (VDD and Vss binary output).
 When DC output is selected, the data corresponding to COM0 of each segment terminal is output.
- ② When DC output is selected, either complementary output or Nch open drain output can be selected for each terminal with the mask option.
- **Note:** The terminal pairs are the combination of SEG2*n and SEG2*n + 1 (where n is an integer from 0 to 15).

Table 4.7.2 shows the LCD driver's control bits and their addresses. Figure 4.7.6 shows the display memory map.

Table 4.7.2 LCD driver control bits

Control of LCD driver

Address		Reg	ister							Comment	
*6	D3	D2	D1	D0	Name	Init *1	1		0	Comment	
	LDTY1	LDTY0	0	LCDON	LDTY1	0				LCD drive duty selection	
	R	/W	R	R/W	LDTY0	0				0: 1/4, 1: 1/3, 2: 1/2, 3: 1/1	
					0	- *2				Unused *5	
					LCDON	0	ON		OFF	LCD display control (LCD display all off)	
*1	Initial v	alue at ir	nitial res	et		*	4 Inhi	bit sta	ate (o	utput port will be set to "1")	
*2	*2 Not set in the circuit						5 Con	stantl	ly "Ò"	when being read	
*3	Undefin	ed			*6 Page switching in I/O memory is not necessary						

Address Page *1	Low High	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	8																
0-4	9																
	A		48 words x 4 bits (Write only)														

*1 Page switching in display memory is not necessary

Fig. 4.7.6 Display memory map

LCDON: Controls the LCD display

Display control (DEH•D0) When "1" is written: Display ON When "0" is written: Display OFF

Reading: Valid

By writing "1" to LCDON, the LCD display goes ON, and goes OFF when "0" is written. The LCD display OFF setting does not affect the contents of the display memory. At initial reset, this register is set to "0". LDTY1, LDTY0: LCD drive duty selection (DEH•D3, D2)

LDTY1, LDTY0: Sets the LCD drive duty as shown in Table 4.7.3.

LDTY1	LDTY0	Duty	Terminals used in common	Maximum number of segments	Frame frequency
0	0	1/4	COM0–COM3	128 (32 × 4)	fosc1/1,024 (32 Hz)
0	1	1/3	COM0–COM2	96 (32 × 3)	fosc1/768 (42.7 Hz)
1	0	1/2	COM0, COM1	$64(32 \times 2)$	fosc1/1,024 (32 Hz)
1	1	1/1	COM0	32 (32 × 1)	fosc1/1,024 (32 Hz)

Table 4.7.3 LCD drive duty setting

* In case of fosc1 = 32,768 Hz

At initial reset, these registers are set to "0".

Display memory The LCD segments are lit or turned off depending on this data. (80H–AFH)

When "1" is written: Lit When "0" is written: Not lit Reading: Invalid

By writing data into the display memory allocated to the LCD segment (on the panel), the segment can be lit or put out. At initial reset, the contents of the display memory for COMO is set to "1", and COM1–COM3 are undefined. Accordingly, when DC output is selected, the output level at initial reset goes high (VDD).

Programming notes (1) Th

- (1) The contents of the display memory are undefined until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
 - (2) Since the display memory area is write-only, display data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).

4.8 Clock Timer

Configuration of clock timer

The EOC62T3 has a built-in clock timer as the source oscillator for OSC1 (crystal oscillator). The clock timer is configured of a 8-bit binary counter that serves as the input clock, a 256 Hz signal output by the OSC1 oscillation circuit. Timer data (128–16 Hz and 8–1 Hz) can be read out by the software.

Figure 4.8.1 is the block diagram for the clock timer.

Ordinarily, this clock timer is used for all types of timing functions such as clocks.

	T 1 (11 / 1 /	1 11 D							
Data readina and	The 8 bits timer data are allocated to the address DAH and DBH.										
hold function	DAH	D0: TM0 (128 Hz)	D1: TM1 (64 Hz)	D2: TM2 (32 Hz)	D3: TM3 (16 Hz)						
	DBH	D0: TM4 (8 Hz)	D1: TM5 (4 Hz)	D2: TM6 (2 Hz)	D3: TM7 (1 Hz)						
	Since carry TM3: this o and t become	the clock timer is generated fro 128–16 Hz) to t carry is generate he high-order da ne the correct va igh order data h	data has been om the low-orde he high-order d d between the r ata, a content c alue (the low-or	allocated to two r data within th ata (TM4–TM7: reading of the lo ombining the tw der data is read	addresses, a e count (TMO– 8–1 Hz). When w-order data vo does not as FFH and od up 1 from						
	that	that point).									
	The h opera up of point time two is	high-order data h the to avoid this. the high-order where the low-o during which th ndicated here fo	hold function in This function t data (by carry fi order data has h e high-order da llowing.	the EOC62T3 i emporarily stop com the low-ord been read and c ta is held is the	s designed to os the counting er data) at the onsequently the shorter of the						
	1. Pe 2. 0.	eriod until it read 48–1.5 msec (va	ds the high-orde ries due to the	er data. timing of the rea	ading)						
Note:	Wher data i	h the high-order da s not held, you sh	ata has previously ould be sure to fi	/ been read, sinco rst read from the	e the low-order low-order data.						

Interrupt function

The clock timer can cause interrupts at the falling edge of 32 Hz, 16 Hz, 2 Hz and 1 Hz signals. Software can set whether to mask any of these frequencies.

Figure 4.8.2 is the timing chart of the clock timer.

Address	Register	Frequency												С	locl	< t	ime	er ti	mi	ng	ch	art												
DAH	D0	128 Hz															UNI						W											
	D1	64 Hz	ЛЛ	111	W		Л	\square	ЛЛ	Л	W		M				M	ЛЛ	ЛЛ	ЛЛ		11		Л	W	W	111	W	W	W		ЛЛ		
	D2	32 Hz	Л							1								IJ				U				Π			Π					1
	D3	16 Hz												1_																				
DBH	D0	8 Hz												l		Γ																		L
	D1	4 Hz																																1
	D2	2 Hz																																1
	D3	1 Hz																																1
32 Hz interrupt request			t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
16 Hz interrupt request				t		t		t		t		t		t		t		t		t		t		t		t		t		t		t		t
2 Hz interrupt request																		t																t
1 Hz interrupt request																																		t

Fig. 4.8.2 Timing chart of clock timer

As shown in Figure 4.8.2, interrupt is generated at the falling edge of the frequencies (32 Hz, 16 Hz, 2 Hz, 1 Hz). At this time, the corresponding interrupt factor flag (IT32, IT16, IT2, IT1) is set to "1". Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (EIT32, EIT16, EIT2, EIT1). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to "1" at the falling edge of the corresponding signal.

Note: • Reading of interrupt factor flags is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor

flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

• Write the interrupt mask register only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.

Control of clock Table 4.8.1 shows the clock timer control bits and their addresses. timer Table 4.8.1 shows the clock timer control bits and their addresses.

Table 4.8.1 Control bits of clock timer

Address		Reg	ister						Commont					
*6	D3 D2		D1	D0	Name	Init *1	1	0	Comment					
	IT1	IT2 IT16		IT32	IT1	0	Yes	No	Interrupt factor flag (clock timer 1 Hz) Clear to 0 after read out					
C4H			R		IT2	0	Yes	No	Interrupt factor flag (clock timer 2 Hz) Clear to 0 after read out					
					IT16	0	Yes	No	Interrupt factor flag (clock timer 16 Hz) Clear to 0 after read out					
					IT32	0	Yes	No	Interrupt factor flag (clock timer 32 Hz) Clear to 0 after read out					
	EIT1 EIT2 EIT16			EIT32	EIT1	0	Enable	Mask	Interrupt mask register (clcok timer 1 Hz)					
п1н		R	/W		EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)					
					EIT16	0	Enable	Mask	Interrupt mask register (clock timer 16 Hz)					
					EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)					
	0	0	0	TMRST	0	- *2			Unused	*5				
DOLL		R		W	0	- *2			Unused	*5				
Dau					0	- *2			Unused	*5				
					TMRST	- *2	Reset	Invalid	Clock timer reset	*5				
	TM3	TM2	TM1	TM0	TM3	- *3			Clock timer data (low-order) 16 Hz					
			R		TM2	- *3			Clock timer data (low-order) 32 Hz					
DAH					TM1	- *3			Clock timer data (low-order) 64 Hz					
					TM0	- *3			Clock timer data (low-order) 128 Hz					
	TM7	TM6	TM5	TM4	TM7	- *3			Clock timer data (high-order) 1 Hz					
			R		TM6	- *3			Clock timer data (high-order) 2 Hz					
DBH					TM5	TM5 – *3 Clock timer data (high-order)								
					TM4	- *3			Clock timer data (high-order) 8 Hz					

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

IT32, IT16, IT2, IT1:	These flags indicate the status of the clock timer interrupt.							
Interrupt factor flag (C4H)	When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred Writing: Invalid							
	The interrupt factor flags (IT32, IT16, IT2, IT1) correspond to the clock timer interrupts of the respective frequencies (32 Hz, 16 Hz, 2 Hz, 1 Hz). The software can judge from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to "1" at the falling edge of the signal. These flags can be reset through being read out by the software. Reading of interrupt factor flags is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address. At initial reset, these flags are set to "0".							
EIT32, EIT16, EIT2, EIT1: Interrupt mask register	These registers are used to select whether to mask the clock timer interrupt.							
	When "1" is written: Enabled When "0" is written: Masked Reading: Valid							
	The interrupt mask registers (EIT32, EIT16, EIT2, EIT1) are used to select whether to mask the interrupt to the separate frequencies (32 Hz, 16 Hz, 2 Hz, 1 Hz). Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0"). At initial reset, these registers are all set to "0".							
TMRST:	This bit resets the clock timer.							
Clock timer reset (D9H•D0)	When "1" is written: Clock timer reset When "0" is written: No operation Reading: Always "0"							
	The clock timer is reset by writing "1" to TMRST. The clock timer starts immediately after this. No operation results when "0" is written to TMRST. TMRST also resets the watchdog timer. This bit is write-only, and so is always "0" at reading.							
TM0–TM7: Timer data (DAH, DBH)	The 128 Hz–1 Hz timer data of the clock timer can be read out with these registers. These eight bits are read only, and writing operations are invalid.							

At initial reset, the timer data is initialized to "00H".
Programming notes	(1) Be sure to data reading in the order of low-order data (TMO-
	1M3) then high-order data (IM4–1M7).
	(2) When the clock timer has been reset, the interrupt factor flag(IT) may sometimes be set to "1". Consequently, perform flagreading (reset the flag) as necessary at reset.
	(3) When the clock timer has been reset, the watchdog timer is also reset. (If watchdog timer is ON, WDON = "1")
	(4) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
	If the interrupt mask register value corresponding to the inter- rupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
	(5) Write the interrupt mask register (EIT) only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.

4.9 SVD (Supply Voltage Detection) Circuit

Configuration of SVD circuit

The EOC62T3 has a built-in SVD (supply voltage detection) circuit, so that the software can find when the source voltage lowers. Turning the SVD circuit ON/OFF can be controlled through the software.

Figure 4.9.1 shows the configuration of the SVD circuit.

Fig. 4.9.1 Configuration of the SVD circuit

SVD operation

The SVD circuit compares the detecting voltage level of the SVD circuit (1.8 V) with the supply voltage (VDD–VSS) and sets its results into the SVDDT latch. By reading the data of this SVDDT latch, it can be determined by means of software whether the supply voltage is normal or has dropped.

When SVDON is set to "1", source voltage detection by the SVD circuit is executed. As soon as SVDON is reset to "0", the result is loaded to in the SVDDT register and SVD circuit goes OFF. To obtain a stable SVD detection result, the SVD circuit must be on for at least 100 µsec. So, to obtain the SVD detection result, follow the programming sequence below.

- ① Set SVDON to "1"
- 3 Set SVDON to "0"
- ④ Read SVDDT

However, when fosc1 is selected for CPU system clock, the instruction cycles are long enough, so there is no need to worry about maintaining 100 μ sec for SVDON = "1" in the software. When SVD is on, the IC draws a large current, so keep SVD off unless it is.

Control of SVD circuit

Table 4.9.1 shows the control bits and their addresses for the SVD circuit.

Table 4.9.1 Control bits for SVD circuit

	Address		Reg	ister	-				_	Comment	
	*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
		0	0	SVDDT	SVDON	0	- *2			Unused	*5
	DFH		R		R/W	0	- *2			Unused	*5
					I	SVDDT	0	Supply voltage Low	Supply voltage Normal	Supply votage detector data	
						SVDON	0	ON	OFF	SVD circuit ON/OFF	

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read *6 Page switching in I/O memory is not necessary

*3 Undefined

SVDON: Turns the SVD circuit ON and OFF.

SVD ON/OFF

(DFH•D0)

When "1" is written: SVD circuit ON When "0" is written: SVD circuit OFF Reading: Valid

When SVDON is set to "1", source voltage detection by the SVD circuit is executed. As soon as SVDON is reset to "0", the result is loaded to in the SVDDT register. To obtain a stable SVD detection result, the SVD circuit must be on for at least 100 usec. At initial reset, this register is set to "0".

SVDDT: This is the result of supply voltage detection.

SVD data When "0" is read: Supply voltage (VDD–VSS) ≥ 1.8 V (DFH•D1) When "1" is read: Supply voltage (VDD-VSS) < 1.8 V Writing: Invalid

> The result of supply voltage detection at time of SVDON is set to "0" can be read from this register. At initial reset, SVDDT is set to "0".

Programming notes

- (1) To obtain a stable SVD detection result, the SVD circuit must be on for at least 100 µsec. So, to obtain the SVD detection result, follow the programming sequence below.
 - ① Set SVDON to "1"
 - $\ @$ Maintain for 100 µsec minimum
 - 3 Set SVDON to "0"
 - ④ Read SVDDT

However, when fosc1 is selected for CPU system clock, the instruction cycles are long enough, so there is no need to worry about maintaining 100 μ sec for SVDON = "1" in the software.

(2) The SVD circuit should normally be turned OFF as the consumption current of the IC becomes large when it is ON.

4.10 Telephone Function

Configuration of telephone function

The EOC62T3 has a telephone function built-in. This function includes about DTMF (Dual Tone Multi-Frequency), DP (Dialing pulse), Pause, Flash, Hold-line, Mute control, Hook switch control and Handfree.

The configuration of the telephone function is shown in Figure 4.10.1. First of all, the CPU reads or writes these functions through data bus. And the control registers transmit the instructions of CPU to each blocks.

According to the instructions, telephone timing generator will generate the timing to associated circuits. And mute generator perform mute function to the associated output terminals (RMUTE and TMUTE).

When telephone function operates at DTMF mode, DTMF generator use a 3.58 MHz oscillator as source clock to generate the tone signal (signal tone or dual tone) and outputs tone signal to TONE terminal.

When telephone function works at DP mode, DP generator use a 32 kHz oscillator as source clock to produce the dialing pulses and outputs pulses signal to $\overline{\text{DP}}$ terminal.

CPU will be informed by the interrupt circuit when the function (DTMF, DP, Pause, Flash) is over.

Input port K22, it is better to be used as $\overline{\text{HS}}$ (Hook-Switch) terminal. Because K22 has the highest interrupt priority.

Output port R12 and R13 can be selected as the output terminals or HFO and HDO terminals through the software.

See Section 4.5, "Output Ports".

Output specifications for the \overline{DP} , \overline{RMUTE} and \overline{TMUTE} are selected Mask option with the mask option in pairs of either complementary output or Nch open drain output. Output specifications for the HDO and HFO are selected with the mask option in pairs of either complementary output or Nch open drain output. See Section 4.5, "Output Ports".

However, even when Nch open drain output is selected, voltage exceeding source voltage must not be applied to the output port.

To realize the operation of the telephone function, dialing procedure is the most important concept. This procedure contains three telephone function steps: (1) setting, (2) executing and (3) interrupt.

(1) Setting

Every function has its control registers. It is necessary to set the appropriate control registers before execution.

Table 4.10.1 lists the relations of functions and control registers.

Table 4.10.1 Control registers and default settina

Operation of

Functions	Control registers	Default setting
DTMF	TPS (E0H•D3) SINC, SINR (E6H)	Tone mode Dual tone
DP	TPS (E0H•D3) MB (E0H•D1) DRS (E0H•D0) IDP3–IDP0 (E5H)	Tone mode 40 : 60 10 pps 750 ms
PAUSE	PTS3-PTS0 (E1H)	4 sec
FLASH	FTS3-FTS0 (E2H)	563 ms

See "Control of telephone function".

(2) Executing

After setting, writing the corresponding control register to start the execution.

Table 4.10.2 lists control registers for executing.

Table 4.10.2 Control registers and executing function

Functions	Control registers	Executing function
DTMF	TCD3–TCD0 (E7H) CTO (EBH•D3) HSON (E9H•D0)	Dialing tone Continuous tone output ON/OFF Hook switch ON/OFF
DP	TCD3–TCD0 (E7H) HSON (E9H•D0)	Dialing pulse Hook switch ON/OFF
Pause	PAUSE (E3H•D1)	Pause
Flash	FLASH (E3H•D0)	Flash
Hold-line	HOLD (E3H•D2)	Hold-line
Handfree	HF (E4H•D3)	Handfree

See "Control of telephone function".

Hook switch control (HSON), continuous tone output (CTO), holdline (HOLD) and handfree (HF) are toggle selection. These functions don't generate interrupts.

HSON must be turned ON before executing the telephone function.

Dialing number (TCD), Pause (PAUSE) and Flash (FLASH) will be executed immediately when the corresponding control registers are written. These function will generate interrupts after it is finished.

For handfree function, R13 port can be used as HFO (handfree output) signal output terminal.

The register CHFO (EAH•D3) can control the R13 port as HFO or DC output terminal.

When HFO output is selected, R13 terminal outputs the data which is written in the register HF (E4H•D3). See Section 4.5, "Output Ports".

(3) Interrupt

After executing cycle has been finished, the CPU will be informed by an interrupt.

The register ID (C5H•D0) has to be clear "0", before start next executing cycle.

By reading register ID to check the executing function has been finished or not. The register ID will be clear to "0" after read out. Interrupt mask register EID (D2H•D0) can be selected to mask or enable interrupt.

See "Telephone function and interrupt".

Figure 4.10.2 is an example of dialing pulse.

When it is at the setting step. It can be selected as DP mode, M/B ratio = 40:60, dialing rate = 10 pps, by writing "1000" into address EOH. To write data into IDP (E5H), PTS (E1H) and FTS (E2H) can set inter-digit pause time, pause time and flash time, respectively. If IDP, PTS and FTS do not change, they will use default value.

When it is during executing step.

To write "0001" into address E9H, enable the dialing function. At the same time, \overline{DP} terminal will be pulled to high level (VDD). By writing "0101" into TCD, it will start the dialing pulse function and outputs the five pulses at \overline{DP} terminal. TMUTE and \overline{RMUTE} terminals are also concurrently activated.

After pulse sending has been finished, it will generate an interrupt. Next operation can be started from executing step, but ID has to be cleared to "0" before next operation.

Dialing tone

The operation of dialing tone, which uses different composition of frequencies to represent the dialing number and transmits it, is activated by TCD3–TCD0 (E7H) and tone duration time is controlled by register CTO (EBH•D3).

A complete dialing tone cycle is including tone duration time (minimum 94 msec) and tone inter-digit pause time (94 msec). When dialing tone is over, CPU will be informed by an interrupt.

DTMF (Dual Tone Multi-Frequency) is used to generate a compound frequency or single frequency. DTMF generator can compose two kind of frequency to represent the dialing number. Tone frequency, which is generated from DTMF generator, are classified into two groups. One is the Column group (high group), the other is the Row group (low group).

Table 4.10.3 lists the comparisons of Standard vs Actual tone frequency.

Table 4.10.3		Tone output fr	Error (%) *		
Standard VS Actual tone		Standard	Actual		
irequency	ROW1	697	701.32	+0.62	
	ROW2	770	771.45	+0.19	
	ROW3	852	857.17	+0.61	
	ROW4	941	935.10	-0.63	
	COL1	1209	1215.88	+0.57	
	COL2	1336	1331.68	-0.32	
	COL3	1477	1471.85	-0.35	
	COL4	1633	1645.01	+0.74	

* Error (%) does not include oscillator drift

Figure 4.10.3 is the block diagram of DTMF generator.

In Figure 4.10.3, 3.58 MHz oscillator is used as source clock for DTMF generator (it has to be turned on before activated DTMF generator). Programmable divider is controlled by registers SINR (E6H•D1) and SINC (E6H•D0) to select the tone output as single tone (Row or Column) or dual tone output.

Sine-wave ROM and D/A converter are used to convert the data, which comes from programmable divider, to generate a tone waveform. The dual tone signal is composed with an addition of two frequencies and each signal is selected from different group. When uses dialing tone, it is needed to understand the relations of control registers and I/O terminals. There are explained as below.

The dialing tone signal is output on TONE terminal. At standby state, the terminal TONE is Vss level.

The terminals $\overline{\text{RMUTE}}$ and $\overline{\text{TMUTE}}$ are used for mute, and both terminals can be controlled by the registers CRMUT (E8H•D1) and CTMUT (E8H•D0).

The register HSON (E9H•D0) is used to set HOOK state. By writing data into register HSON can set HOOK-ON or HOOK-OFF status. When HSON is set to HOOK-OFF state, terminal $\overline{\text{DP}}$ will go high level (VDD).

The default setting of HSON is HOOK-ON (HSON = "0").

The Tone/Pulse (T/P) mode is software-selectable to be either tone or pulse mode. By writing data into register TPS (E0H•D3) can select tone or pulse mode.

The default setting of T/P is tone mode (TPS = "0").

The registers of SINR (E6H•D1) and SINC (E6H•D0) are used for selecting tone output frequencies.

The default selection is dual tone output.

Table 4.10.4 lists the selection of tone output.

Table 4.10.4 Selection of tone output

Control	registers	Tone output				
SINR	SINC					
0	0	DC level : $\frac{1}{2}$ (VDD–Vss)				
0	1	Column frequencies				
1	0	Row frequencies				
1	1	Dual tone output				

By writing code into registers TCD (E7H), a dialing tone cycle has being started and outputs tone at TONE terminal. The tone frequencies and code has a relationship.

Table 4.10.5 lists the relationship of code and tone frequencies.

Table 4.10.5	TCD's code			le	Tone	Key's	TCD's code				Tone	Key's
Relationship of code and tone		D2	D1	D0	frequencies	symbol	D3	D2	D1	D0	frequencies	symbol
frequencies	0	0	0	0	(ROW1, COL4)		1	0	0	0	(ROW3, COL2)	"8"
	0	0	0	1	(ROW1, COL1)	"1"	1	0	0	1	(ROW3, COL3)	"9"
	0	0	1	0	(ROW1, COL2)	"2"	1	0	1	0	(ROW4, COL2)	"0"
	0	0	1	1	(ROW1, COL3)	"3"	1	0	1	1	(ROW4, COL3)	"#"
	0	1	0	0	(ROW2, COL1)	"4"	1	1	0	0	(ROW4, COL1)	"*"
	0	1	0	1	(ROW2, COL2)	"5"	1	1	0	1	(ROW2, COL4)	
	0	1	1	0	(ROW2, COL3)	"6"	1	1	1	0	(ROW4, COL4)	
	0	1	1	1	(ROW3, COL1)	"7"	1	1	1	1	(ROW3, COL4)	

At initial reset, these registers (TCD) are set to "0".

The register CTO (EBH•D3) is used to decide the tone duration time. The minimum value of tone duration time is 94 msec. When CTO is set to "0", tone duration time will be output with the minimum time (94 msec).

When CTO is set to "1", tone duration time will be output until the CTO is changed to "0". If the period (CTO is changed from "1" to "0"), which is controlled by CTO, is less than 94 msec. The duration time will be prolonged to 94 msec.

Figure 4.10.4 is the timing diagram of dialing tone. The DTMF generator produces the dialing tone on terminal TONE. At the same time, TMUTE terminal will go low level (Vss) during the tone duration time and tone inter-digit pause time periods. TMUTE terminal will be continuously kept on low level (Vss), if next dialing number is coming within Tmh (4 msec). Otherwise, they will go high level (VDD) after passed a period of time Tmh (4 msec).

Fig. 4.10.4 Timing diagram of dialing tone

 T_{TD} : Tone duration time T_{TIP} : Tone inter-digit pause time T_{MH} : Mute hold time

Dialing pulse (DP)

The operation of dialing pulse, which uses pulse numbers to represent the dialing number, is activated by writing data into registers TCD3–TCD0 (E7H). A complete dialing pulse cycle includes dialing number period and inter-digit pause time period. When dialing pulse cycle is finished, CPU will be informed by an interrupt.

Figure 4.10.5 is the block diagram of the DP generator.

Fig. 4.10.5 Block diagram of DP generator

The CPU can select Tone/Pulse mode, Make/Break ratio and dialing pulse rate by writing data into control registers (EOH) TPS, MB and DRS, respectively.

32 kHz oscillator is used to generate the dialing pulses through the frequency divider, programmable down counter and timing control. Basically, the dialing number will be loaded into programmable down counter. Then, the programmable down counter will produce pulses to $\overline{\text{DP}}$ terminal until the counter is equal to zero. The dialing pulse signal is output on $\overline{\text{DP}}$ terminal.

At initial, terminal \overrightarrow{DP} is low level (Vss) and number dialing can not be executed.

When uses dialing pulse, it is needed to understand the relations of control registers and I/O terminals. There are explained as below.

When the control register HSON (E9H•D0) is set to "HOOK-OFF" state, terminal $\overline{\text{DP}}$ will go high level (VDD) and number dialing can be executed.

The terminals $\overline{\text{TMUTE}}$ and $\overline{\text{RMUTE}}$ are used for mute, and both terminals can be controlled by registers CTMUT (E8H•D0) and CRMUT (E8H•D1).

The Tone/Pulse (T/P) mode is software-selectable to be either Tone or Pulse mode. By writing data into register TPS (E0H•D3) can select Tone or Pulse mode.

The default setting of T/P is Tone mode. So it is needed to set TPS = "1", during DP mode.

The Make/Break ratio (M/B) is software-selectable to be either 40/ 60 or 33.3/66.6. By writing data into register MB (E0H•D1) can select 40/60 or 33.3/66.6. During dialing number period, the "Make" is before the "Break".

The default value of M/B is 40/60 (MB = "0").

The dialing pulse rate (DR) is software-selectable to be either 10 or 20 pps (pulse per second). By writing data into register DRS (E0H•D0) can select 10 or 20 pps. The default value of DR is 10 pps (DRS = "0").

When dialing number at DP mode, it need to give an inter-digit pause time (IDP) between two numbers. The value of IDP can be selected from 94 msec to 1406 msec by writing data into registers IDP3–IDP0 (E5H).

The default value of IDP is 750 msec.

By writing code into registers TCD (E7H), a dialing pulse cycle has being started and outputs pulses at $\overline{\text{DP}}$ terminal. The count of pulse has a relationship with code.

Table 4.10.6 lists the relationship of code and pulse's counts.

Table 4.10.6 Relationship of code and pulse's counts

Т	CD's	coc	le	Counts of pulse	Т	CD's	coc	le	Counts of pulse
D3	D2	D1	D0	(pulses)	D3	D2	D1	D0	(pulses)
0	0	0	0	Use inhibited *	1	0	0	0	8
0	0	0	1	1	1	0	0	1	9
0	0	1	0	2	1	0	1	0	10
0	0	1	1	3	1	0	1	1	11
0	1	0	0	4	1	1	0	0	12
0	1	0	1	5	1	1	0	1	13
0	1	1	0	6	1	1	1	0	14
0	1	1	1	7	1	1	1	1	15

* If software program writes a code of "OH" into TCD register, it will cause a malfunction.

At initial reset, these registers (TCD) are set to "0".

Figure 4.10.6 is the timing diagram of DP function. When DP generator produces the dialing pulse, Make period is before Break period and outputs pulses on $\overline{\text{DP}}$ terminal. At the same time, $\overline{\text{RMUTE}}$ and $\overline{\text{TMUTE}}$ terminals will go low level (Vss) during the dialing pulses and inter-digit pause time. Both terminal ($\overline{\text{RMUTE}}$ and $\overline{\text{TMUTE}}$) will be continuously kept on low level, if next dialing number is coming within Tmh (4 msec). Otherwise, they ($\overline{\text{RMUTE}}$ and $\overline{\text{TMUTE}}$) will go high level (VDD) after passed a period of time Tmh (4 msec).

Pause

The pause operation, which causes a pre-determined period of pause time in data transmission, is activated by writing "1" into the control register PAUSE (E3H•D1). When the pause operation is finished, CPU will be informed by an interrupt and the control register PAUSE is cleared to "0", automatically.

Pause time can be selected by the control registers PTS3–PTS0 (E1H) through CPU. The value of Pause Time is from 1 sec to 15 sec.

	P	ΓS		Pause time		P	ΓS		Pause time
D3	D2	D1	D0	(sec)	D3	D2	D1	D0	(sec)
0	0	0	0	Use inhibited *	1	0	0	0	8
0	0	0	1	1	1	0	0	1	9
0	0	1	0	2	1	0	1	0	10
0	0	1	1	3	1	0	1	1	11
0	1	0	0	4	1	1	0	0	12
0	1	0	1	5	1	1	0	1	13
0	1	1	0	6	1	1	1	0	14
0	1	1	1	7	1	1	1	1	15

Table 4.10.7 lists pause times.

* If software program writes a code of "0H" into PTS register, it will cause a malfunction.

Figure 4.10.7 and Figure 4.10.8 show the timing diagram of pause function at DP (Dialing Pulse) and DTMF (Dual Tone Multi-Frequency) mode, respectively.

Table 4.10.7 Selection of pause times

Flash

The flash operation, which restores the device to the on-hook state for a pre-determined period of time, is activated by writing "1" into the control register FLASH (E3H•D0). A complete flash function cycle is including flash time period and flash pause time period. When the flash function cycle is finished, CPU will be informed by an interrupt and the control register FLASH is cleared to "0", automatically.

Flash time can be selected by the control registers FTS3–FTS0 (E2H) through CPU. The range of flash time period is from 94 msec to 1406 msec and flash pause time period is fixed to 938 msec. Table 4.10.8 lists the flash times.

Table 4.10.8 Selection of flash times

	F٦	ſS		Flash time		F٦	ΓS		Flash time				
D3	D2	D1	D0	(ms)	D3	D2	D1	D0	(ms)				
0	0	0	0	Use inhibited *	1	0	0	0	750				
0	0	0	1	94	1	0	0	1	844				
0	0	1	0	188	1	0	1	0	938				
0	0	1	1	281	1	0	1	1	1031				
0	1	0	0	375	1	1	0	0	1125				
0	1	0	1	469	1	1	0	1	1219				
0	1	1	0	563	1	1	1	0	1313				
0	1	1	1	656	1	1	1	1	1406				

* If software program writes a code of "OH" into FTS register, it will cause a malfunction.

Figure 4.10.9 is the timing diagram of flash function.

When executing flash function, the $\overline{\text{DP}}$ terminal goes low level (Vss) during the flash time period. $\overline{\text{RMUTE}}$ and $\overline{\text{TMUTE}}$ terminals go low level (Vss) during the flash time and flash pause time periods. Following the flash time period, there is a 938 msec Flash Pause Time before further data is transmitted.

Fig. 4.10.9 Timing diagram of flash function $\begin{array}{l} T_{\text{FL}}: \text{Flash time} \\ T_{\text{FLP}}: \text{Flash pause time} \\ T_{\text{IDP}}: \text{Inter-digit pause time} \\ T_{\text{MH}}: \text{Mute hold time} \end{array}$

Hold-line

The hold-line operation, which is used to keep current telephone communication, is turned ON/OFF by writing "1"/"0" into control register HOLD (E3H•D2).

HDO (Hold-Line Output) is output terminal for hold-line function. R12 terminal can be selected for HDO output terminal by setting the register CHDO (EAH•D2) to "1". At the same time, R12 register (D3H•D2) must be set to "0", otherwise R12 terminal goes high level (VDD).

See Section 4.5, "Output Ports".

When the HDO output is selected, the R12 terminal outputs the data which is written in the register HOLD (E3H•D2).

Figure 4.10.10 shows the timing diagram of hold-line function. When register HOLD (E3H•D2) is turned ON, TMUTE terminal goes low level (Vss) and HDO (R12) terminal goes high level (VDD). When register HOLD (E3H•D2) is turned OFF, TMUTE goes high level (VDD) and HDO (R12) terminal goes low level (Vss).

elephone function and interrupt	There are three kinds of telephone function can generate interrupt. Which are number dialing, pause, and flash.						
•	(1) Number dialing has two modes.						
	<i>a. DTMF mode</i> This mode will wait a period of time that contains the tone duration period (minimum 94 msec) and tone inter-digit pause period (94 msec), then generates an interrupt. See Figure 4.10.4, "Timing diagram of dialing tone".						
	 <i>b. DP mode</i> This mode will wait a period of time that contains the dialing number period and inter-digit pause period, then generates an interrupt. See Figure 4.10.6, "Timing diagram of DP function". 						
	(2) Pause function will wait a period of pause time (software-selectable: 1 sec to 15 sec), then generates an interrupt. See Figure 4.10.7, "Timing diagram of pause function at DP mode", and Figure 4.10.8, "Timing diagram of pause function at DTMF mode".						
	(3) Flash function will wait a period of flash time (software- selectable: 94 msec to 1406 msec), then generates an interrupt. See Figure 4.10.9, "Timing diagram of flash function".						
	The register ID (C5H•D0) is set by an interrupt of telephone func- tion. By reading register ID, can check the executing cycle has been finished or not. The register ID has to be clear "0", before starts next executing cycle. Interrupt mask register EID (D2H•D0) can be selected to mask or enable interrupt.						

Control of telephone function

Tables 4.10.9(a)–(d) list the telephone function's control bits and their address.

Table 4.10.9(a) Control bits of telephone function

Address		Reg	ister						Comment	Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment		
	0	0	0	ID	0	- *2			Unused	*5	
			R		0	- *2			Unused	*5	
C5H					0	- *2			Unused	*5	
					ID	0	Yes	No	Interrupt factor flag (dialing) Clear to 0 after read out		
	0	0	0	EID	0	- *2			Unused	*5	
Doll		R		R/W	0	- *2			Unused	*5	
D2H					0	- *2			Unused	*5	
					EID	0	Enable	Mask	Interrupt mask register (dialing)		
	R13	R12	R11	R10	R13	0	High *4	Low	Output port (R13) Handfree output (HEQ)		
	HFO	HDO	BZ	BZ	R12	0	High +4	Low	Output port (R12) Hold-line output (HDO)		
D3H					R11	0	High	Low	Output port (R11)		
		R	/W		BZ	0	- *4 Lliab	ON	Buzzer output (BZ) Output port (B10)		
					BZ	U	- *4	ON	Buzzer inverted output (\overline{BZ})		
	0	0	CLKCHG	OSCC	0	- *2			Unused	*5	
		R	R	/W	0	- *2			Unused	*5	
D8H					CLKCHG	0	OSC3	OSC1	CPU system clock switch		
					oscc	0	ON	OFF	OSC3 oscillation ON/OFF		
	TPS	0	MB	DRS	TPS	0	PULSE	TONE	Tone / pulse mode selection		
	R/W	R/W R R/W			0	- *2			Unused	*5	
E0H		1	1		МВ	0	33.3:66.6	40:60	Make : Break ratio selection		
					DRS	0	20 pps	10 pps	Dialing pulse rate selection		

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

*6 Page switching in I/O memory is not necessary

Address		Reg	ister						Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Common	
	PTS3	PTS2	PTS1	PTS0	PTS3	0			Pause time selection 0 : Use inhibited 8 : 8 sec	
		R/	W		PTS2	1			2 : 2 sec A : 10 sec	
E1H					PTS1	0			3:3 sec B:11 sec 4:4 sec C:12 sec	
	Defa	ult value · 4	seconds		DTSU	0			5 : 5 sec D : 13 sec	
					1130				6 : 6 sec E : 14 sec 7 : 7 sec F : 15 sec	
	FTS3	FTS2	FTS1	FTS0	FTS3	0			Flash time selection 0 : Use inhibited 8 : 750 ms	
		R	W		FTS2	1			1: 94 ms 9: 844 ms	
E2H					FTS1	1			2:100 ms A: 500 ms 3:281 ms B:1031 ms 4:275 C: 1125	
					1131				4 : 375 ms C : 1125 ms 5 : 469 ms D : 1219 ms	
	Defa	ult value : 5	63 ms		FTS0	0			6 : 563 ms E : 1313 ms 7 : 656 ms F : 1406 ms	
						*1				
	0	HOLD	PAUSE	FLASH	0	- '2			Unused	*5
E3H	R	R/W	V	N	HOLD	0	On	Off	Hold-line function	
2011					PAUSE	0	Yes	No	Pause function	*5
					FLASH	0	Yes	No	Flash function	*5
	HF	0	0	0	HF	0	Yes	No	Hand free	
	R/W		R	·	0	- *2			Unused	*5
E4H					0	- *2			Unused	*5
					0	- *2			Unused	*5
	IDP3	IDP2	IDP1	IDP0	IDP3	1			Inter-digit pause selection for dial pulse 0 : Use inhibited 8 : 750 ms	
		R	/W		IDP2	0			1: 94 ms 9: 844 ms	
E5H			-		IDP1	0			2.100 ms A. 950 ms 3:281 ms B:1031 ms	
	Defa	ult value : 7	50 ms		IDP0	0			4 : 375 ms C : 1125 ms 5 : 469 ms D : 1219 ms 6 : 563 ms E : 1313 ms	
									7:656 ms F:1406 ms	

Table 4.10.9(b) Control bits of telephone function

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

*6 Page switching in I/O memory is not necessary

Address		Reg	ister					-	Comment
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	0	0	SINR	SINC	0	- *2			Unused *5
	I	R	R/	W	0	- *2			Unused *5
E6H			I		SINR	1	Enable	Disable	DTMF row frequency output enable
					SINC	1	Enable	Disable	DTMF column frequency output enable
	TCD3	TCD2	TCD1	TCD0	TCD3	0			Telephone code for dialing TCD DTMF DP TCD DTMF DP
		R	W		TCD2	0			0: (R_1C_4) Use inhibited 8: (R_3C_2) 8 1: (R_1C_1) 1 9: (R_3C_3) 9 2: (R_1C_2) 2 A: (R_4C_2) 10
E7H					TCD1	0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			_		TCD0	0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0	0	CRMUT	CTMUT	0	_ *2			Unused *5
=	ſ	3	R	/W	0	- *2			Unused *5
E8H					CRMUT	1	Receive mute	0	Receive mute control
					СТМИТ	1	Transmit mute output	0	Transmit mute control
	0	0	0	HSON	0	_ *2			Unused *5
		R		R/W	0	- *2			Unused *5
E9H				1	0	- *2			
					HSON	0	Hook Off	Hook On	Hook switch ON/OFF
	CHFO	CHDO	0	0	CHFO	0	Handfree output	DC	R13 output selection (R13 data register has to be "0")
R/W R				CHDO	0	Hold output	DC	(R12 output selection (R12 data register has to be "0")	
EAH					0	- *2			Unused *5
					0	- *2			Unused *5

Table 4.10.9(c) Control bits of telephone function

*1 Initial value at initial reset

*4 Inhibit state (output port will be set to "1")
*5 Constantly "0" when being read
*6 Page switching in I/O memory is not necessary

*2 Not set in the circuit

*3 Undefined

Address		Reg	ister						Comment			
*6	D3	D2	D1	D0	Name	Init *1	1	0				
	СТО	0	0	0	СТО	0	Continuous tone output ON	Continuous tone output OFF	Tone duration time control			
FRH	R/W		R		0	- *2			Unused	*5		
					0	- *2			Unused	*5		
					0	- *2			Unused	*5		
*1	Initial v	alue at i	nitial re	set		*	4 Inhib	it state (putput port will be set to "1")			
*2 Not set in the circuit *3 Undefined						*	5 Const 6 Page	switchin	g in I/O memory is not necessary			
Interrup	ot factor	flag (di	ID: aling)	This fl	ag indi 7 numb	cates t	he stat	us of tl I flash	ne dialing interrupt, that is for function			
		(C5I	H•D0)	V	When "1	l" is rea	ad: Int	errupt	has occurred			
When "1" is read: Interrupt has occurred When "0" is read: Interrupt has not occurred Writing: Invalid												
				After e needs can no The so interru to "1" a This fl Readir the fol If the i factor genera At init	xecutin to read to read the ex ftware upt. Ho at the f ag can ng of in lowing nterruj flag to ted by ial rese	ng a dia l the II cecuted can ju wever, alling o be rese terrupt cases. pt mas be reac the int t, this	aling fu) (C5H l. dge fro even if edge of et throo t factor k regis d is set terrupt flag is	nction DD). O m this the in the sig ugh be flag is ter valu to "1", factor set to "	(dialing number, pause, flash) therwise, the next dialing funct flag whether there is a dialing terrupt is masked, the flag is se mal. Ing read out by the software. available at EI, but be careful to the corresponding to the interru an interrupt request will be flag set timing. 0".	, it tion et in pt		
Int	terrupt r	nask re (di (D2l	EID: gister aling) H•D0)	This register is used to select whether to mask the dialing inter- rupt. When "1" is written: Enabled When "0" is written: Masked Reading: Valid								
				Writing to the interrupt mask register can be done only in the DI status (interrupt flag = "0"). At initial reset, this register is set to "0".								

Table 4.10.9(d) Control bits of telephone function

R13: (When HFO is selected)	Controls the HFO (HandFree Output) output and acts as HFO output terminal.
(D3H•D3)	When "1" is written: High level (DC) output When "0" is written: Handfree signal output Reading: Valid
	R13 terminal can be used as HFO signal output terminal, by writing "1" into register CHFO (EAH•D3), "0" into register R13 (D3H•D3). When HFO output is selected, the R13 terminal outputs the data which is written in the register HF (E4H•D3). At initial reset, this register is set to "0".
R12: (When HDO is selected)	Controls the HDO (Hold-Line Output) output and acts as HDO output terminal.
Special output port data (D3H•D2)	When "1" is written: High level (DC) output When "0" is written: Hold-line signal output Reading: Valid
	R12 terminal can be used as HDO signal output terminal, by writing "1" into register CHDO (EAH•D2), "0" into register R12 (D3H•D2). When HDO output is selected, the R12 terminal outputs the data which is written in the register HOLD (E3H•D2). At initial reset, this register is set to "0".
OSCC: OSC3 oscillation control (D8H•D0)	Controls oscillation ON/OFF for the OSC3 oscillation circuit. When "1" is written: The OSC3 oscillation ON When "0" is written: The OSC3 oscillation OFF Reading: Valid
	When it is necessary to activate DTMF generator or to operate the CPU at high speed, set OSCC to "1". At other times, set it to "0" to lessen the current consumption. When "Not Use" is selected for the mask option of the OSC3 oscillation circuit, keep OSCC set to "0". At initial reset, OSCC is set to "0".
TPS: Tone/Pulse mode selection (E0H•D3)	Selects the dialing mode to dual tone multi-frequency mode or dialing pulse mode. When "1" is written: Pulse mode When "0" is written: Tone mode Reading: Valid
	At initial reset, this register is set to "0".

MB: Selects the Make/Break ratio for dialing pulse mode.

Make/Break ratio selection (E0H•D1)

When "1" is written: 33.3/66.6 When "0" is written: 40.0/60.0 Reading: Valid

When DP generator produces the dialing pulse, "Make" period is before "Break" period. At initial reset, this register is set to "0".

DRS: Selects the dialing pulse rate for dialing pulse mode.

Dialing pulse rate selection (E0H•D0)

When "1" is written: 20 pps (pulses per second) When "0" is written: 10 pps (pulses per second) Reading: Valid

At initial reset, this register is set to "0".

Pause time selection Table 4.10.10 lists the pause times. (E1H)

Table 4.10.10 Selection of pause times

	P	rs		Pause time		P	ГS	Pause time	
D3	D2	D1	D0	(sec)	D3	D2	D1	D0	(sec)
0	0	0	0	Use inhibited *	1	0	0	0	8
0	0	0	1	1	1	0	0	1	9
0	0	1	0	2	1	0	1	0	10
0	0	1	1	3	1	0	1	1	11
0	1	0	0	4	1	1	0	0	12
0	1	0	1	5	1	1	0	1	13
0	1	1	0	6	1	1	1	0	14
0	1	1	1	7	1	1	1	1	15

* If software program writes a code of "OH" into PTS register, it will cause a malfunction.

At initial reset, the pause time is set to 4 seconds.

FTS0-FTS3: Flash time selection (E2H)

These registers are used to select flash time. Table 4.10.11 lists the flash times.

	Table 4.	10.11
Selection	of flash	times

	F	ΓS		Flash time		F	ГS	Flash time	
D3	D2	D1	D0	(ms)	D3	D2	D1	D0	(ms)
0	0	0	0	Use inhibited *	1	0	0	0	750
0	0	0	1	94	1	0	0	1	844
0	0	1	0	188	1	0	1	0	938
0	0	1	1	281	1	0	1	1	1031
0	1	0	0	375	1	1	0	0	1125
0	1	0	1	469	1	1	0	1	1219
0	1	1	0	563	1	1	1	0	1313
0	1	1	1	656	1	1	1	1	1406

* If software program writes a code of "OH" into FTS register, it will cause a malfunction.

At initial reset, the flash time is set to 563 msec.

PTS0–PTS3: These registers are used to select pause time.

HOLD: Executes the hold function ON/OFF and outputs data from register Hold-line function HOLD to R12 terminal. (E3H•D2)

When "1" is written: ON (High level output on R12 terminal) When "0" is written: OFF (Low level output on R12 terminal) Reading: Valid

HDO (Hold-Line Output) is output terminal for hold-line function. When HDO output is selected, the R12 terminal outputs the data which is written in the register HOLD (E3H•D2).

When R12 terminal is used as HDO output port. The register CHDO (EAH•D2) must be written "1" and register R12 (D3H•D2) must be written "0".

When HOLD (E3H•D2) register is turned ON, TMUTE terminal goes low level (Vss) and HDO (R12) terminal goes high level (VDD). When HOLD register is turned OFF, TMUTE terminal goes high level (VDD) and HDO (R12) terminal goes low level (Vss). Hold-line function is a toggle selection and it does not generate interrupt. At initial reset, this register is set to "0".

Pause function (E3H•D1)

PAUSE: Executes the pause function.

When "1" is written: Execute pause function When "0" is written: No operation Reading: Always "0"

By writing "1" into register PAUSE (E3H•D1), can start the execution of pause function.

When the operation of pause function has been finished, CPU will be informed by an interrupt and register PAUSE is cleared to "0", automatically.

When pause function is executing, \overline{DP} terminal will output a predetermined pause time.

At initial reset, this register is set to "0".

Flash function

(E3H•D0)

FLASH: Executes the flash function.

When "1" is written: Execute flash function When "0" is written: No operation Reading: Always "0"

By writing "1" into register FLASH (E3H•D0), can start the execution of flash function.

When the operation of flash function has been finished, CPU will be informed by an interrupt and register FLASH is cleared to "0", automatically.

When flash function is executing, DP terminal goes low level (Vss) during the flash time period. RMUTE and TMUTE terminals go low level (Vss) during the flash time and flash pause time periods. At initial reset, this register is set to "0".

HF: Executes the handfree function ON/OFF and outputs data from Handfree register HF to HFO (R13) terminal.

(E4H•D3)

When "1" is written: ON (High level output on R13 terminal) When "0" is written: OFF (Low level output on R13 terminal) Reading: Valid

HFO (HandFree Output) is output terminal for handfree function. When HFO output is selected, the R13 terminal outputs the data which is written in the register HF (E4H•D3).

When R13 terminal is used as HFO output port. The register CHFO (EAH•D3) must be written "1" and register R13 (D3H•D3) must be written "0".

Handfree function is a toggle selection and it does not generate interrupt.

At initial reset, this register is set to "0".

IDP0–IDP3: Inter-digit pause time selection (E5H)

These registers are used to select inter-digit pause time for dialing pulse mode.

Table 4.10.12 lists the inter-digit pause times.

		ID	PΡ		Inter-digit		ID	P		Inter-digit
	D3	D2	D1	D0	pause (ms)	D3	D2	D1	D0	pause (ms)
Table 4.10.12	0	0	0	0	Use inhibited *	1	0	0	0	750
Selection of inter-digit pause	0	0	0	1	94	1	0	0	1	844
times	0	0	1	0	188	1	0	1	0	938
	0	0	1	1	281	1	0	1	1	1031
	0	1	0	0	375	1	1	0	0	1125
	0	1	0	1	469	1	1	0	1	1219
	0	1	1	0	563	1	1	1	0	1313
	0	1	1	1	656	1	1	1	1	1406

* If software program writes a code of "OH" into IDP, it will cause a malfunction.

A complete dialing pulse cycle includes a dialing number period and following an inter-digit pause time period. At initial reset, the inter-digit pause time is set to 750 msec.

SINR: DTMF row frequencies output enable (E6H•D1)

SINR: Selects DTMF row frequencies output enable or disable.

When "1" is written: Enabled When "0" is written: Disabled Reading: Valid

See "Register SINC (E6H•D0)". At initial reset, this register is set to "1". Selects DTMF column frequencies output enable or disable.

SINC: S DTMF column frequencies output enable (E6H•D0)

When "1" is written: Enabled When "0" is written: Disabled Reading: Valid

SINR and SINC can be composed to control tone output as DC level, single tone (Row or Column) and dual tone output. The default selection is dual tone output. At initial reset, these registers are set to "1".

Table 4.10.13(a) lists the selection of tone output.

Table 4.10.13(a) Selection of tone output

Control	registers	
SINR	SINC	Tone output
0	0	DC level : $\frac{1}{2}$ (VDD–Vss)
0	1	Column frequencies
1	0	Row frequencies
1	1	Dual tone output

When single tone is selected, by writing code into registers TCD (E7H), the terminal of TONE will output relative frequency. Tables 4.10.13(b) and (c) list the relationship of code and frequency.

	Table 4.10.13(b)
Relationship	of TCD's code and
	column frequency

TCD's code			le	Column froquency (Hz) *			CD's	coc	le	Column frequency (Hz) *			
D3	D2	D1	D0	Columnieq	uency (nz)	D3	D2	D1	D0	Columnie	quericy (Hz)		
0	0	0	0	COL4 :	1645.01	1	0	0	0	COL2 :	1331.68		
0	0	0	1	COL1 :	1215.88	1	0	0	1	COL3 :	1471.85		
0	0	1	0	COL2 :	1331.68	1	0	1	0	COL2 :	1331.68		
0	0	1	1	COL3 :	1471.85	1	0	1	1	COL3 :	1471.85		
0	1	0	0	COL1 :	1215.88	1	1	0	0	COL1 :	1215.88		
0	1	0	1	COL2 :	1331.68	1	1	0	1	COL4 :	1645.01		
0	1	1	0	COL3 :	1471.85	1	1	1	0	COL4 :	1645.01		
0	1	1	1	COL1 :	1215.88	1	1	1	1	COL4 :	1645.01		
							1				111 1 1 10		

Table 4.10.13(c)	Т	CD's	coc	le	Pow froquo	Т	CD's	coc	le	Row frequency (Hz) *			
Relationship of TCD's code and	D3	D2	D1	D0	Row frequency (Hz) *			D2	D1	D0	Now nequency (112)		
row frequency	0	0	0	0	ROW1 :	701.32	1	0	0	0	ROW3 :	857.17	
	0	0	0	1	ROW1 :	701.32	1	0	0	1	ROW3 :	857.17	
	0	0	1	0	ROW1 :	701.32	1	0	1	0	ROW4 :	935.10	
	0	0	1	1	ROW1 :	701.32	1	0	1	1	ROW4 :	935.10	
	0	1	0	0	ROW2 :	771.45	1	1	0	0	ROW4 :	935.10	
	0	1	0	1	ROW2 :	771.45	1	1	0	1	ROW2 :	771.45	
	0	1	1	0	ROW2 :	771.45	1	1	1	0	ROW4 :	935.10	
	0	1	1	1	ROW3 :	857.17	1	1	1	1	ROW3 :	857.17	

* It does not include oscillator drift

* It does not include oscillator drift

TCD0–TCD3: Telephone code for dialing

Telephone code for dialing.

By writing code into registers TCD (E7H), starts the dialing number (E7H)
by writing code into registers TCD (E7H), starts the dialing number cycle and outputs signal to appropriate terminals. When dialing number cycle is finished, CPU will be informed by an interrupt. Depending the status of register TPS (E0H•D3), TCD is separated into two mode DP mode (TPS = "1") and DTMF mode (TPS = "0").

(1) DP mode

By writing code into registers TCD (E7H), a dialing pulse cycle has being started and outputs pulses at $\overline{\text{DP}}$ terminal. The counts of pulse has a relationship with code.

Table 4.10.14 lists the relationship of code and pulse's counts.

Table 4.10.14 Relationship of code and pulse's count

TCD's code				Counts of pulse	TCD's code				Counts of pulse
D3	D2	D1	D0	(pulses)	D3	D2	D1	D0	(pulses)
0	0	0	0	Use inhibited *	1	0	0	0	8
0	0	0	1	1	1	0	0	1	9
0	0	1	0	2	1	0	1	0	10
0	0	1	1	3	1	0	1	1	11
0	1	0	0	4	1	1	0	0	12
0	1	0	1	5	1	1	0	1	13
0	1	1	0	6	1	1	1	0	14
0	1	1	1	7	1	1	1	1	15

* If software program writes a code of "0H" into TCD register, it will cause a malfunction.

At initial reset, these registers (TCD) are set to "0".

(2) DTMF mode

By writing code into registers TCD (E7H), a dialing tone cycle has being started and outputs tone signal at TONE terminal. The tone frequencies and code has a relationship.

Table 4.10.15 lists the relationship of code and tone frequencies.

TCD's code			le	Tone	Key's	TCD's code			le	Tone	Key's
D3	D2	D1	D0	frequencies	symbol	D3	D2	D1	D0	frequencies	symbol
0	0	0	0	(ROW1, COL4)		1	0	0	0	(ROW3, COL2)	"8"
0	0	0	1	(ROW1, COL1)	"1"	1	0	0	1	(ROW3, COL3)	"9"
0	0	1	0	(ROW1, COL2)	"2"	1	0	1	0	(ROW4, COL2)	"0"
0	0	1	1	(ROW1, COL3)	"3"	1	0	1	1	(ROW4, COL3)	"#"
0	1	0	0	(ROW2, COL1)	"4"	1	1	0	0	(ROW4, COL1)	"*"
0	1	0	1	(ROW2, COL2)	"5"	1	1	0	1	(ROW2, COL4)	
0	1	1	0	(ROW2, COL3)	"6"	1	1	1	0	(ROW4, COL4)	
0	1	1	1	(ROW3, COL1)	"7"	1	1	1	1	(ROW3, COL4)	

At initial reset, these registers (TCD) are set to "0".

Table 4.10.15 Relationship of code and tone frequencies

CRMUT:	Controls the receive mute.			
Receive mute control (E8H•D1)	When "1" is written: Receive mute output When "0" is written: Low level output on RMUTE terminal Reading: Valid			
	The receive mute signal is output on terminal RMUTE and terminal RMUTE can be controlled by register CRMUT. By writing the register CRMUT to "0", terminal RMUTE is set to low level (Vss), forever. When the register CRMUT is written to "1", the output terminal of RMUTE will be controlled by telephone function (Terminal RMUTE will go low level (Vss) during dialing pulse cycle or flash function cycle). At initial reset, this register is set to "1".			
CTMUT: Transmit mute control (E8H•D0)	Controls the transmit mute. When "1" is written: Transmit mute output When "0" is written: Low level output on TMUTE terminal Reading: Valid			
	The transmit mute signal is output on terminal TMUTE and termi- nal TMUTE can be controlled by register CTMUT. By writing the register CTMUT to "0", terminal TMUTE is set to low level (Vss), forever. When the register CTMUT is written to "1", the output terminal of TMUTE will be controlled by telephone function (Terminal TMUTE will go low level (Vss) during dialing pulse cycle, flash function cycle, dialing tone cycle or hold-line function). At initial reset, this register is set to "1".			
HSON: Hook switch ON/OFF (E9H•D0)	Controls the hook switch ON/OFF. When "1" is written: Hook off When "0" is written: Hook on Reading: Valid			
	When the register HSON is set to "1", \overline{DP} terminal will be pulled to high level (VDD), immediately.			

At initial reset, this register is set to "0".

CHFO:	Selects the output type for the R13 terminal.
R13 output selection register (EAH•D3)	When "1" is written: Handfree signal output When "0" is written: DC output Reading: Valid
	By setting the register CHFO to "1", R13 is set to HFO (HandFree Output) output port. When CHFO is set to "0", R13 becomes the regular DC output port. See Section 4.5, "Output Ports". At initial reset, this register is set to "0".
CHDO:	Selects the output type for the R12 terminal.
R12 output selection register (EAH•D2)	When "1" is written: Hold-line signal output When "0" is written: DC output Reading: Valid
	By setting the register CHDO to "1", R12 is set to HDO (Hold-Line Output) output port. When CHDO is set to "0", R12 becomes the regular DC output port. See Section 4.5, "Output Ports". At initial reset, this register is set to "0".
CTO:	Selects the tone duration time to be continuous output or not.
Continuous output tone selection (EBH•D3)	When "1" is written: Continuous When "0" is written: Uncontinuous Reading: Valid
	The register CTO (EBH•D3) is used to decide the tone duration time. The minimum value of tone duration time is 94 msec. When CTO is set to "0", tone duration time will be output with the minimum time (94 msec). When CTO is set to "1", tone duration time will be output until the CTO is changed to "0". If the period (CTO is changed from "1" to "0"), which is controlled by CTO, is less than 94 msec. The duration time will be prolonged to 94 msec. At initial reset, this register is set to "0".

Programming notes	(1) When uses the DTMF, it is necessary to turn ON the 3.58 MHz oscillator. This function needs big current. Therefore, using DTMF dialing at off-hook or handfree status is the best.
	(2) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.
	(3) Write the interrupt mask register (EID) only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.
	(4) If software program writes a code of "OH" into TCD register in pulse mode, IDP, FTS or PTS registers, it will cause a malfunc- tion.
	(5) Because pause function control register (E3H•D1) and flash function control register (E3H•D0) are write-only, software cannot use ALU instructions (AND, OR) on E3H resisters while dialing a pause or flash function cycle.

4.11 Interrupt and HALT

<Interrupt types>

The E0C62T3 provides the following interrupt settings, each of which is maskable.

External interrupt:	• Input interrupt (4 systems)
Internal interrupt:	Timer interrupt (1 system)Dialing interrupt (1 system)
Internal interrupt:	Timer interrupt (1 system)Dialing interrupt (1 system)

To authorize interrupt, the interrupt flag must be set to "1" (EI) and the necessary related interrupt mask registers must be set to "1" (enable).

When an interrupt occurs the interrupt flag is automatically reset to "0" (DI), and interrupts after that are inhibited.

Figure 4.11.1 shows the configuration of the interrupt circuit.

<HALT>

The E0C62T3 has HALT function. The function can considerably reduce the current consumption, when it is used.

The CPU enters the HALT status when the HALT instruction is executed.

In the HALT status, the operation of the CPU is stopped. However, the oscillation circuit operates. Reactivating the CPU from the HALT status is done by generating an interrupt request. When it does not reactivate upon an interrupt request, the watchdog timer (watchdog timer must be in "ON" status) will cause it to restart from the initial reset status.

Refer to the "E0C6200/6200A Core CPU Manual" for transition to the HALT status and timing of its cancellation.

Interrupt factor	Table 4.11.1 shows the factors for generating interrupt requests.
	The interrupt flags are set to "1" depending on the corresponding interrupt factors. The CPU operation is interrupted when any of the conditions below set an interrupt factor flag to "1".
	 The corresponding mask register is "1" (enabled) The interrupt flag is "1" (EI)

The interrupt factor flag is a read-only register, but can be reset to "0" when the register data is read out.

At initial reset, the interrupt factor flags are reset to "0".

Table 4.11.1 Interrupt factors

Interrupt factor	Interrupt factor flag
Input data (K22) rising or falling edge	IK22 (C0H•D0)
Input data (K20, K21) rising or falling edge	IK2 (C1H•D0)
Input data (K10–K13) rising or falling edge	IK1 (C2H•D0)
Input data (K00–K03) rising or falling edge	IK0 (C3H•D0)
Clock timer 1 Hz falling edge	IT1 (C4H•D3)
Clock timer 2 Hz falling edge	IT2 (C4•D2)
Clock timer 16 Hz falling edge	IT16 (C4H•D1)
Clock timer 32 Hz falling edge	IT32 (C4H•D0)
Dialing cycle completion	ID (C5H•D0)

Note: Reading of interrupt factor flags is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

Interrupt maskThe interrupt factor flags can be masked by the corresponding
interrupt mask registers.
The interrupt mask registers are read/write registers. They are
enabled (interrupt authorized) when "1" is written to them, and
masked (interrupt inhibited) when "0" is written to them.
At initial reset, the interrupt mask register is set to "0".
Table 4.11.2 shows the correspondence between interrupt mask
registers and interrupt factor flags.Table 4.11.2Interrupt mask register

Table 4.11.2 Interrupt mask registers and interrupt factor flags

Interrupt mask register	Interrupt factor flag
EIK22 (D0H•D3)	IK22 (C0H•D0)
EIK2 (D0H•D2)	IK2 (C1H•D0)
EIK1 (D0H•D1)	IK1 (C2H•D0)
EIK0 (D0H•D0)	IK0 (C3H•D0)
EIT1 (D1H•D3)	IT1 (C4H•D3)
EIT2 (D1H•D2)	IT2 (C4H•D2)
EIT16 (D1H•D1)	IT16 (C4H•D1)
EIT32 (D1H•D0)	IT32 (C4H•D0)
EID (D2H•D0)	ID (C5H•D0)

Note: Write the interrupt mask register only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.
Interrupt vector	When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being executed is termi- nated, the interrupt processing is executed in the following order.								
	① The ad be exe	① The address data (value of program counter) of the program to be executed next is saved in the stack area (RAM).							
	⁽²⁾ The interrupt request causes the value of the interrupt vector (page 1, 02H–0DH) to be set in the program counter.								
	③ The program at the specified address is executed (execution of interrupt processing routine by software).								
	Table 4.11.3 shows the correspondence of interrupt requests a interrupt vectors.								
Note:	The proce	ssing in ① and ②	above take 12 cycles o	f the CPU s	system clock.				
Table 4.11.3		Interrupt vector	Interrupt request	Priority					
Interrupt request and interrupt		102H	Clock timer	Low					
vectors		104H	Dialing cycle completion						
		106H	K00–K03 input	'					
		108H	K10–K13 input						
		10AH	K20-K21 input	*					
		10CH	K22 input	High					

The four low-order bits of the program counter are indirectly addressed through the interrupt request.

Control of interrupt

Tables 4.11.4(a)–(c) show the interrupt control bits and their addresses.

Table 4.11.4(a)	Control bits of interrupt (1)	
-----------------	-------------------------------	--

Address		Reg	ister						Comment		
*6	D3	D2	D1	D0	Name	Init *1	1	0	Gomment		
	0	0	0	IK22	0	- *2			Unused	*5	
			R		0	- *2			Unused	*5	
COH					0	- *2			Unused	*5	
					IK22	0	Yes	No	Interrupt factor flag (K22) Clear to 0 after read out		
	0	0	0	IK2	0	- *2			Unused	*5	
			R		0	- *2			Unused	*5	
C1H					0	- *2			Unused	*5	
					IK2	0	Yes	No	Interrupt factor flag (K20, K21) Clear to 0 after read out		
	0	0	0	IK1	0	- *2			Unused	*5	
			R		0	- *2			Unused	*5	
C2H					0	- *2			Unused	*5	
					IK1	0	Yes	No	Interrupt factor flag (K10 ~ K13) Clear to 0 after read out		
	0	0	0	IK0	0	- *2			Unused	*5	
		L	R		0	- *2			Unused	*5	
СЗН					0	- *2			Unused	*5	
					IK0	0	Yes	No	Interrupt factor flag (K00 ~ K03) Clear to 0 after read out		
	IT1	IT2	IT16	IT32	IT1	0	Yes	No	Interrupt factor flag (clock timer 1 Hz)		
		1	R		IT2	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)		
C4H					IT16	0	Yes	No	Interrupt factor flag (clock timer 16 Hz)		
					IT32	0	Yes	No	Interrupt factor flag (clock timer 32 Hz) Clear to 0 after read out		

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

Table 4.11.4(b) Control bits of interrupt (2)

Address		Reg	ister			_			Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0		
	0	0	0	ID	0	- *2			Unused	*5
			R		0	- *2			Unused	*5
C5H					0	- *2			Unused	*5
					ID	0	Yes	No	Interrupt factor flag (dialing) Clear to 0 after read out	
	0	0	SIK21	SIK20	0	- *2			Unused	*5
	I	2	R	Ŵ	0	- *2			Unused	*5
C6H					SIK21	0	Enable	Disable	Interrupt selection register (K21)	
					SIK20	0	Enable	Disable	Interrupt selection register (K20)	
	SIK13	SIK12	SIK11	SIK10	SIK13	0	Enable	Disable	Interrupt selection register (K13)	
	R/W			SIK12	0	Enable	Disable	Interrupt selection register (K12)		
C7H				SIK11	0	Enable	Disable	Interrupt selection register (K11)		
					SIK10	0	Enable	Disable	Interrupt selection register (K10)	
	SIK03	SIK02	SIK01	SIK00	SIK03	0	Enable	Disable	Interrupt selection register (K03)	
		R	/W		SIK02	0	Enable	Disable	Interrupt selection register (K02)	
C8H					SIK01	0	Enable	Disable	Interrupt selection register (K01)	
					SIK00	0	Enable	Disable	Interrupt selection register (K00)	
	0	DFK22	DFK21	DFK20	0	- *2			Unused	*5
	R		R/W		DFK22	1	Ţ	_		
		I			DFK21	1	Ţ	_	Input comparison register (K20 ~ K22)	
					DFK20	1	Ţ	ſ		

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

Address		Reg	ister				Comment			
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	DFK13	DFK12	DFK11	DFK10	DFK13	1	Ţ	₫		
		R	/W		DFK12	1	⊸	₫		
CDH					DFK11	1	⊸	₫	Input comparison register (K10 ~ K13)	
					DFK10	1	₹	₫		
	DFK03	DFK02	DFK01	DFK00	DFK03	1	Ţ	ſ		
		R	/W	<u> </u>	DFK02	1	Ţ	₫		
CEH					DFK01	1	⊸	_	Input comparison register (K00 ~ K03)	
					DFK00	1	₹	₫		
	EIK22	EIK2	EIK1	EIK0	EIK22	0	Enable	Mask	Interrupt mask register (K22)	
Doll	R/W				EIK2	0	Enable	Mask	Interrupt mask register (K20, K21)	
DOH				EIK1	0	Enable	Mask	Interrupt mask register (K10 ~ K13)		
					EIK0	0	Enable	Mask	Interrupt mask register (K00 ~ K03)	
	EIT1	EIT2	EIT16	EIT32	EIT1	0	Enable	Mask	Interrupt mask register (clcok timer 1 Hz)	
		R	/W		EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)	
D1H					EIT16	0	Enable	Mask	Interrupt mask register (clock timer 16 Hz)	
					EIT32	0	Enable	Mask	Interrupt mask register (clxok timer 32 Hz)	
	0	0	0	EID	0	- *2			Unused *	*5
Dali		R	-	R/W	0	- *2			Unused *	*5
					0	- *2			Unused *	*5
					EID	0	Enable	Mask	Interrupt mask register (dialing)	

Table $4 11 4(c)$	Control hits	of interrupt (3)
Table 4.11.4(C)	CONTROLDIES	or interrupt (3)

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*2 Not set in the circuit *3 Undefined

*6 Page switching in I/O memory is not necessary

E0C62T3 TECHNICAL HARDWARE

IK22: DFK22: EIK22:	Interrupt factor flag (C0H•D0) Input comparison register (CCH•D2) Interrupt mask register (D0H•D3) See Section 4.4, "Input Ports".
IK2: SIK20, SIK21: DFK20, DFK21: EIK2:	Interrupt factor flag (C1H•D0) Interrupt selection register (C6H•D0, D1) Input comparison register (CCH•D0, D1) Interrupt mask register (D0H•D2) See Section 4.4, "Input Ports".
IK1: SIK10–SIK13: DFK10–DFK13: EIK1:	Interrupt factor flag (C2H•D0) Interrupt selection register (C7H) Input comparison register (CDH) Interrupt mask register (D0H•D1) See Section 4.4, "Input Ports".
IK0: SIK00–SIK03: DFK00–DFK03: EIK0:	Interrupt factor flag (C3H•D0) Interrupt selection register (C8H) Input comparison register (CEH) Interrupt mask register (D0H•D0) See Section 4.4, "Input Ports".
IT32, IT16, IT2, IT1: EIT32, EIT16, EIT2, EIT1:	Interrupt factor flag (C4H) Interrupt mask register (D1H) See Section 4.8, "Clock Timer".
ID: EID:	Interrupt factor flag (C5H•D0) Interrupt mask register (D2H•D0) See Section 4.10, "Telephone Function".
Programming notes	(1) The interrupt factor flags are set when the timing condition is established, even if the interrupt mask registers are set to "0".
	(2) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
	(3) Write the interrupt mask register only in the DI status (inter- rupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.

CHAPTER 5 SUMMARY OF NOTES

5.1 Notes for Low Current Consumption

The EOC62T3 contains control registers for each of the circuits so that current consumption can be lowered. These control registers lower the current consumption through programs that operate the circuits at the minimum levels.

The following text explains the circuits that can control operation and their control registers. Refer to these when putting programs together.

```
Table 5.1.1
Circuits and control registers
```

Circuits (and items)	Control registers	Order of consumed current
CPU	HALT instruction	See electrical characteristics (chapter 7)
CPU operating frequency	CLKCHG, OSCC	See electrical characteristics (chapter 7)
SVD circuit	SVDON	Several tens µA

Below are the circuit statuses at initial reset.

- CPU: Operating status
- *CPU operating frequency:* Low speed (CLKCHG = "0"), OSC3 oscillation circuit OFF status (OSCC = "0")
 - *SVD circuit:* OFF status (SVDON = "0")

Also, be careful about panel selection because the current consumption can differ by the order of several μA on account of the LCD panel characteristics.

5.2 Summary of Notes by Function

Here, the cautionary notes are summed up by function category. Keep these notes well in mind when programming.

- **Memory** Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.
- **Watchdog timer** When the watchdog timer is being used, the software must reset it within 3-second cycles, and timer data (WD0 and WD1) cannot be used for timer applications.

Oscillation circuit (1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON. Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.

- (2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
- **Input ports** When input ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration.

Make this waiting time the amount of time or more calculated by the following expression.

 $10 \times C \times R$

C: terminal capacitance 5 pF + parasitic capacitance ? pF R: pull up resistance 300 k Ω

- **Output ports** (1) When output ports (R10–R13) are selected as special output, the corresponding output port data (R10–R13) must be set to "0".
 - (2) When BZ and BZ are selected, a hazard may be observed in the output waveform when the data of control registers (BZR11 and BZR10) change.

I/O ports When in the input mode, I/O port is changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration.

Make this waiting time the amount of time or more calculated by the following expression.

 $10\times C\times R$

C: terminal capacitance 5 pF + parasitic capacitance ? pF R: pull up resistance 300 k Ω

- **LCD driver** (1) The contents of the display memory are undefined until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
 - (2) Since the display memory area is write-only, display data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).
- **Clock timer** (1) Be sure to data reading in the order of low-order data (TM0– TM3) then high-order data (TM4–TM7).
 - (2) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to "1". Consequently, perform flag reading (reset the flag) as necessary at reset.
 - (3) When the clock timer has been reset, the watchdog timer is also reset. (If watchdog timer is ON, WDON = "1")
- **SVD circuit** (1) To obtain a stable SVD detection result, the SVD circuit must be on for at least 100 µsec. So, to obtain the SVD detection result, follow the programming sequence below.
 - ① Set SVDON to "1"

 - 3 Set SVDON to "0"
 - ④ Read SVDDT

However, when fosc1 is selected for CPU system clock, the instruction cycles are long enough, so there is no need to worry about maintaining 100 μ sec for SVDON = "1" in the software.

(2) The SVD circuit should normally be turned OFF as the consumption current of the IC becomes large when it is ON.

- **Telephone function**(1) When uses the DTMF, it is necessary to turn ON the 3.58 MHz
oscillator. This function needs big current. Therefore, using
DTMF dialing at off-hook or handfree status is the best.
 - (2) If software program writes a code of "0H" into TCD register in pulse mode, IDP, FTS or PTS registers, it will cause a malfunction.
 - (3) Because pause function control register (E3H•D1) and flash function control register (E3H•D0) are write-only, software cannot use ALU instructions (AND, OR ...) on E3H resisters while dialing a pause or flash function cycle.
- **Interrupt and HALT** (1) The interrupt factor flags are set when the timing condition is established, even if the interrupt mask registers are set to "0".
 - (2) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
 - (3) Write the interrupt mask register only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.

CHAPTER 6 DIAGRAM OF TYPICAL APPLICATION

Table 6.1	X'tal1	Crystal oscillator	32,768 Hz CI (MAX)=35 kΩ
Components	CGX1	Trimmer capacitor	5–25 pF
	X'tal2	Crystal oscillator	3.579545 MHz
	CGX2	Trimmer capacitor	5–25 pF
	CR	Ceramic oscillator	3.579545 MHz
	Rf	Feedback resistor	1 MΩ
	Cgc	Gate capacitor	30 pF
	Cdc	Drain capacitor	30 pF
	RAI	Resistance for LCD drive voltage adjustment	$2 M\Omega (V_{C1} = 1.5 V)$
	RA2	Resistance for LCD drive voltage adjustment	$1 \text{ M}\Omega (\text{Vc1} = 1.5\text{V})$
	C1–C6	Capacitor	0.1 µF

Note: The above table is simply an example, and is not guaranteed to work.

Fig. 6.2 Connection of directly driving buzzer

R1	Protection resistance	100 Ω
R2	Protection resistance	100 Ω

CHAPTER 7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Rating

		(Vs:	s = 0 V
Item	Symbol	Rated value	Unit
Power voltage	VDD	-0.5 to 7.0	V
Input voltage (1)	VI	-0.5 to VDD + 0.3	V
Input voltage (2)	VIOSC	-0.5 to VD1 + 0.3	V
Permissible total output current *1	ΣIVDD	10	mA
Operating temperature	Topr	-20 to 70	°C
Storage temperature	Tstg	-65 to 150	°C
Soldering temperature / Time	Tsol	260°C, 10sec (lead section)	_
Allowable dissipation *2	PD	250	mW

*1 The permissible total output current is the sum total of the current (average current) that simultaneously flows from the output pins (or is drawn in).

*2 For plastic package (QFP5-80pin, QFP14-80pin)

7.2 Recommended Operating Conditions

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Power voltage	Vdd	Vss = 0 V, OSC1 = 32 kHz, OSC3 = stop	1.6	3.0	5.5	V
		Vss = 0 V	2.5		5.5	V
		When DTMF is used				
Oscillation frequency (1)	fosc1			32,768		Hz
Oscillation frequency (2)	fosc3			3.579545		MHz

7.3 DC Characteristics

If no special requirement

VDD = 3 V, VSS = 0 V, fosc1 = 32.768 kHz, Ta = 25°C, VD1, VC1, VC2 and VC3 are internal voltage,

 $C1-C5 = 0.1 \ \mu F$

Item	Symbol	Cond	ition	Min.	Тур.	Max.	Unit
High level input voltage (1)	VIH1		K00-K03, K10-K13	0.8-Vdd		VDD	V
			K20-K22, P00-P03				
High level input voltage (2)	VIH2		RESET, TEST	0.9-Vdd		VDD	V
Low level input voltage (1)	VIL1		K00-K03, K10-K13	0		0.2-VDD	V
			K20-K22, P00-P03				
Low level input voltage (2)	VIL2		RESET, TEST	0		0.1.VDD	V
High level input current (1)	IIH1	VIH = 3.0 V	K00-K03, K10-K13	0		0.5	μΑ
		Without pull up resistor	K20-K22, P00-P03				
High level input current (2)	IIH2	Vih = 3.0 V	K00-K03, K10-K13			0.5	μΑ
		With pull up resistor	K20-K22, P00-P03				
			RESET, TEST				
Low level input current (1)	IIL1	VIL = VSS	K00-K03, K10-K13	-0.5		0	μΑ
		Without pull up resistor	K20-K22, P00-P03				
			RESET, TEST				
Low level input current (2)	IIL2	VIL = VSS	K00-K03, K10-K13	-20	-10	-5	μΑ
		With pull up resistor	K20-K22, P00-P03				
			RESET, TEST				
High level output current (1)	Іоні	$VOH1 = 0.9 \cdot VDD$	R00-R03, R10-R13			-1	mA
			P00-P03				
High level output current (2)	IOH2	$VOH2 = 0.9 \cdot VDD$	$\overline{\text{DP}}, \overline{\text{TMUTE}}, \overline{\text{RMUTE}}$			-1	mA
Low level output current (1)	IOL1	$VOL1 = 0.1 \cdot VDD$	R00-R03, R10-R13	3			mA
			P00-P03				
Low level output current (2)	IOL2	$VOL2 = 0.1 \cdot VDD$	DP, TMUTE, RMUTE	3			mA
Common output current	Іонз	Voh3 = Vc3 - 0.05 V	COM0~3			-3	μΑ
	IOL3	VOL3 = VSS + 0.05 V		3			μΑ
Segment output current	IOH4	Voh4 = Vc3 - 0.05 V	SEG0~31			-3	μΑ
(during LCD output)	IOL4	VOL4 = VSS + 0.05 V		3			μΑ
Segment output current	Іон5	$V_{OH5} = 0.9 \cdot V_{DD}$	SEG0~31			-300	μΑ
(during DC output)	IOL5	$VOL5 = 0.1 \cdot VDD$		300			μΑ

7.4 Analog Characteristics and Consumed Current

If no special requirement

 $V_{DD} = 3 V, V_{SS} = 0 V, fosc_1 = 32.768 \text{ kHz}, fosc_3 = 3.579545 \text{ MHz} \text{ (crystal)}, C_G = 25 \text{ pF}, T_a = 25^{\circ}\text{C}, V_{D1}, V_{C1}, V_{C2} \text{ and } V_{C3} \text{ are internal voltage}, C_1-C_5 = 0.1 \ \mu\text{F}$

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
LCD drive voltage	VC1	VCA = VC1		0.95	1.05	1.15	V
		Connect $1M\Omega$ load resistor between	en VSS and VC1				
		(without panel load)					
	VC2	Connect $2M\Omega$ load resistor between	en VSS and VC2	2·Vc1		2.VC1	v
		(without panel load)		x 0.9		+ 0.1	
	VC3	Connect $3M\Omega$ load resistor between	en VSS and VC3	3-Vc1		3.VC1	V
		(without panel load)		x 0.9		+ 0.1	
SVD voltage	VSVD			1.65	1.8	1.95	V
SVD circuit response time	tsvd					100	μS
Power current consumption	Іор	During HALT (32 kHz)			2	5	μΑ
		During execution (32 kHz) *1	Without		5	12	μΑ
		During execution (3.58 MHz) *1	panel load		200	500	μΑ
		During execution (3.58 MHz) *2			1.3	4	mA

*1 The SVD and DTMF generator are OFF status.

*2 The DTMF generator is ON status. The SVD is OFF status.

7.5 Oscillation Characteristics

The oscillation characteristics change depending on the conditions (components used, board pattern, etc.). Use the following characteristics as reference values.

OSC1 crystal oscillation circuit

If no special requirement

VDD = 3 V, Vss = 0 V, Crystal: C-002R ($CI = 35 k\Omega$), CG = 25 pF, CD = built-in, $Ta = 25^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start voltage	Vsta	$tsta \le 3 sec$	1.6			V
Oscillation stop voltage	Vstp	$tstp \le 10 sec$	1.6			V
Built-in capacitance (drain)	Cd	Including the parasitic capacitance inside the IC		18.5		pF
Frequency/voltage deviation	f/V	VDD = 2 to 5.5 V			5	ppm
Frequency/IC deviation	f/IC		-10		10	ppm
Frequency adjustment range	f/CG	CG = 5 to 25 pF	35			ppm
Harmonic oscillation start voltage	Vhho	CG = 5 pF			5.5	v
Permitted leak resistance *	Rleak	Between OSC1 and Vss	200			MΩ

* The shielding plate for OSC1 and OSC2 should be connected to Vss.

OSC3 crystal oscillation circuit

If no special requirement

VDD = 3 V, Vss = 0 V, Crystal: CA-301, CG = 5 pF, CD = built-in, Ta = 25°C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start voltage	Vsta	tsta ≤ 30 msec	1.6			V
Oscillation stop voltage	Vstp	$tstp \le 10 sec$	1.6			v
Built-in capacitance (drain)	CD	Including the parasitic capacitance inside the IC		14		pF
Frequency/voltage deviation	f/V	VDD = 2 to 5.5 V			5	ppm
Frequency/IC deviation	f/IC		-10		10	ppm
Frequency adjustment range	f/CG	CG = 5 to 55 pF		35		ppm
Harmonic oscillation start voltage	Vhho	CG = 5 pF			5.5	V
Permitted leak resistance	Rleak	Between OSC3 and VDD, VSS	200			MΩ

OSC3 ceramic oscillation circuit

If no special requirement

 $VDD = 3 V, Vss = 0 V, Ceramic oscillator: 3.579545 MHz, CGC = CDC = 30 pF, RF = 1 M\Omega, Ta = 25^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Oscillation start voltage	Vsta		2.0			V
Oscillation start time	tsta				3	ms
Oscillation stop voltage	Vstp		2.0			V

7.6 Telephone Function Characteristics

If no special requirement

VDD = 3 V, Vss = 0 V, fosc1 = 32.768 kHz, fosc3 = 3.579545 MHz, Ta = 25° C, VD1, Vc1, Vc2 and Vc3 are internal voltage, C1–C5 = $0.1 \,\mu$ F

Item	Symbol	Cor	ndition			Min.	Тур.	Max.	Unit
Flash time	tfl	FTS3	FTS2	FTS1	FTS0		_		
		0	0	0	1		94		
		0	0	1	0		188		
		0	0	1	1		281		
		0	1	0	0		375		
		0	1	0	1		469		
		0	1	1	0		563		
		0	1	1	1		656		ms
		1	0	0	0		750		111.5
		1	0	0	1		844		
		1	0	1	0		938		
		1	0	1	1		1031		
		1	1	0	0		1125		
		1	1	0	1		1219		
		1	1	1	0		1313		
		1	1	1	1		1406		
Flash pause time	tFLP tpc	DTC2	DTCO	DTC1	DIEO		938		ms
I ause time	trs	0	0	0	1		-		
		0	0	1	0		2		
		0	0	1	1		3		
		0	1	0	0		4		
		0	1	0	1		5		
		0	1	1	0		6		
		0	1	1	1		7		
		1	0	0	0		8		sec
		1	0	0	1		9		
		1	0	1	0		10		
		1	0	1	1		11		
		1	1	0	0		12		
		1	1	0	1		13		
		1	1	1	0		14		
		1	1	1	1		15		
Mute hold-time	tмн		-			-	4	-	ms
Inter-digit pause time	tidp	IDP3	IDP2	IDP1	IDP0		-		
		0	0	0	1		94		
		0	0	1	0		188		
		0	0	1	1		281		
		0	1	0	0		375		
		0	1	0	1		469		
		0	1	1	0		563		
		0	1	1	1		656		ms
			0	0	0		750		
		1	0	0	1		844		
					0		938		
		1	1				1031		
			1		0		1125		
		1	1	1	0		1219		
		1	1	1	1		1406		

If no special requirement

VDD = 3 V, Vss = 0 V, fosc1 = 32.768 kHz, fosc3 = 3.579545 MHz, Ta = 25° C, VD1, Vc1, Vc2 and Vc3 are internal voltage, C1–C5 = 0.1μ F

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Make/Break ratio	M/B	Software-selected		1/2		
			-	2/3	-	-
Dialing pulse rate	DR	Software-selected		10		
			-	20	-	pps
Make time	tм	10 pps, M/B = 1/2	-	33.2	-	
		20 pps, M/B = 1/2	-	16.6	-	
		10 pps, $M/B = 2/3$	-	39.1	-	ms
		20 pps, $M/B = 2/3$	-	19.5	-	
Break time	tв	10 pps, M/B = 1/2	-	66.4	-	
		20 pps, M/B = 1/2	_	33.2	-	
		10 pps, $M/B = 2/3$	_	58.6	-	ms
		20 pps, M/B = 2/3	-	29.3	_	
Tone output DC level	VTDC		_	0.5(VDD-VSS)	-	V
Single Row tone	VR	$V_{DD} = 3 V, R_L = 10 k\Omega$	-	92	-	mVrms
output amplitude		$V_{DD} = 5.5 \text{ V}, \text{RL} = 10 \text{ k}\Omega$	_	168	-	mVrms
Single Column tone	Vc	$V_{DD} = 3 V$, $R_L = 10 k\Omega$	-	122	-	mVrms
output amplitude		$V_{DD} = 5.5 \text{ V}, \text{RL} = 10 \text{ k}\Omega$	-	224	-	mVrms
Tone output voltage ratio	dBcr	$V_{DD} = 3 V$, $R_L = 10 k\Omega$	-	2.5	-	dB
		$V_{DD} = 5.5 \text{ V}, \text{RL} = 10 \text{ k}\Omega$	-	2.5	-	dB
Tone load impedance	RTL	VDD = 2 to 5.5 V	7	-	-	kΩ
Total harmonic distortion	THD	$V_{DD} = 2 \text{ to } 5.5 \text{ V}, \text{ RL} = 10 \text{ k}\Omega$	-	-	6	%
Tone output frequency	fROW1		-	701.32	-	
	fROW2		-	771.45	-	1
	fROW3		-	857.17	-	
	frow4		_	935.10	-	
	fcol1		_	1215.88	-	HZ
	fCOL2		-	1331.68	_	1
	fcol3		_	1471.85	-	1
	fCOL4		-	1645.01	-	1
Tone duration time	t TD		94	-	-	ms
Tone inter-digit pause	t TIP		-	94	-	ms
Maximum dial rate	tт	ttd + ttip	188	-	-	ms

CHAPTER 8

PACKAGE

8.1 Plastic Package

QFP5-80pin

(Unit: mm)

QFP14-80pin

(Unit: mm)

8.2 Ceramic Package for Test Samples

(Unit: mm)

Note: The ceramic package is fixed in this form regardless selecting of the plastic package form.

CHAPTER 9 F

PAD LAYOUT

9.1 Diagram of Pad Layout

E0C62T3 TECHNICAL HARDWARE

9.2 Pad Coordinates

	PAD	Coord	inates		PAD	Coord	inates
No.	Name	X [μm]	Υ [μm]	No.	Name	X [μm]	Υ [μm]
1	RESET	1,513	2,335	40	SEG17	-1,699	-2,335
2	VDD	1,332	2,335	41	SEG18	-1,539	-2,335
3	RMUTE	1,133	2,335	42	SEG19	-1,378	-2,335
4	TMUTE	973	2,335	43	SEG20	-1,218	-2,335
5	DP	774	2,335	44	SEG21	-1,058	-2,335
6	Vss	613	2,335	45	SEG22	-580	-2,335
7	OSC1	359	2,335	46	SEG23	-419	-2,335
8	OSC2	198	2,335	47	SEG24	-259	-2,335
9	OSC3	38	2,335	48	SEG25	-98	-2,335
10	OSC4	-122	2,335	49	SEG26	62	-2,335
11	VD1	-326	2,335	50	SEG27	223	-2,335
12	TONE	-535	2,335	51	SEG28	383	-2,335
13	CA	-1,223	2,335	52	SEG29	544	-2,335
14	CB	-1,383	2,335	53	SEG30	704	-2,335
15	VC1	-1,544	2,335	54	SEG31	864	-2,335
16	VCA	-1,711	2,335	55	P00	1,262	-2,335
17	VC3	-1,865	2,335	56	P01	1,423	-2,335
18	VC2	-2,046	2,335	57	P02	1,583	-2,335
19	COM0	-2,315	2,056	58	P03	1,744	-2,335
20	COM1	-2,315	1,896	59	TEST	2,002	-2,335
21	COM2	-2,315	1,735	60	K00	2,315	-1,626
22	COM3	-2,315	1,575	61	K01	2,315	-1,465
23	SEG0	-2,315	752	62	K02	2,315	-1,305
24	SEG1	-2,315	591	63	K03	2,315	-1,144
25	SEG2	-2,315	431	64	K10	2,315	-984
26	SEG3	-2,315	270	65	K11	2,315	-824
27	SEG4	-2,315	110	66	K12	2,315	-664
28	SEG5	-2,315	-50	67	K13	2,315	-503
29	SEG6	-2,315	-437	68	K20	2,315	-343
30	SEG7	-2,315	-596	69	K21	2,315	-182
31	SEG8	-2,315	-756	70	K22	2,315	-22
32	SEG9	-2,315	-917	71	R00	2,315	869
33	SEG10	-2,315	-1,077	72	R01	2,315	1,030
34	SEG11	-2,315	-1,238	73	R02	2,315	1,190
35	SEG12	-2,315	-1,398	74	R03	2,315	1,350
36	SEG13	-2,315	-1,559	75	R10	2,315	1,510
37	SEG14	-2,315	-1,719	76	R11	2,315	1,671
38	SEG15	-2,315	-1,880	77	R12	2,315	1,831
39	SEG16	-1,860	-2,335	78	R13	2,315	1,992

II. E0C62T3 Technical Software

CONTENTS

CHAPTER 1	INTI	RODUCTION	-1
CHAPTER 2	BLC	OCK DIAGRAM	II-2
CHAPTER 3	PRC 3.1 3.2	OGRAM MEMORY (ROM) Configuration of the ROM Interrupt Vector	II-3 II-3 II-3
CHAPTER 4	DA		II-4
	4.1 4.2	Configuration of the Data Memory Detail Map of the I/O Memory	II-4 II-7
CHAPTER 5	INIT	IAL RESET	II-16
	5.1	Initialized Status	II-16
	5.2 5.3	Programming Note for the System Initialization	II-17 II-17
CHAPTER 6	PER	IPHERAL CIRCUITS	II-18
	6.1	Watchdog Timer I/O data memory of the watchdog timer Control of the watchdog timer Example program for the watchdog timer Programming notes	II-18 II-18 II-18 II-19 II-19
	6.2	OSC3 I/O data memory of the OSC3 Control of the OSC3 Example program for the OSC3 Programming notes	II-20 II-20 II-20 II-21 II-21
	6.3	Input Ports (K00–K03, K10–K13, K20–K22) I/O data memory of the input ports Control of the input ports Example program for the input ports Programming notes	II-22 II-22 II-25 II-29 II-31
	6.4	Output Ports (R00–R03, R10–R13) I/O data memory of the output ports Control of the general output ports Example program for the general output ports Control of the special use output ports Example program for the special use output ports Programming notes	II-32 II-32 II-33 II-34 II-36 II-38 II-39
	6.5	I/O Ports (P00–P03) I/O data memory of the I/O port Control of the I/O port Example program for the I/O port Programming note	II-40 II-40 II-40 II-41 II-42

		6.6	LCD DriverII-43I/O data memory of the LCD driverII-43Control of the LCD driverII-43Example program for the LCD driverII-44Programming notesII-46
		6.7	Clock TimerII-47I/O data memory of the clock timerII-47Control of the clock timerII-48Example program for the clock timerII-49Programming notesII-50
		6.8	SVD (Supply Voltage Detection) CircuitII-51I/O data memory of the SVD circuitII-51Control of the SVD circuitII-51Example program for the SVD circuitII-52Programming notesII-52
		6.9	Telephone FunctionII-53I/O data memory of the telephone functionII-53Features of the telephone functionII-56Control of the hook switchII-57Example program for the hook switch controlII-57Control of the mute functionII-58Example program for the mute functionII-58Control of the dialing tone (DTMF)II-59Example program for the dialing toneII-61Control of the dialing pulse (DP)II-63Example program for the dialing pulseII-65Control of the pause functionII-66Example program for the pause functionII-67Control of the flash functionII-67Control of the flash functionII-67Control of the hold-line functionII-70Example program for the flash functionII-71Programple program for the hold-line functionII-71Example program for the handfree functionII-71Programming notesII-73InterruptII-73Programming notesII-73Programming notesII-73Programming notesII-73Programming notesII-73
CHAPTER	7	SUM	MARY OF NOTES II-80
		7.1	Notes for Low Current Consumption II-80
		7.2	Summary of Notes by Function II-81
APPENDIX	Α	E0C6	2T3 DATA MEMORY (RAM) MAP II-84
APPENDIX	В	E0C6	2T3 INSTRUCTION SET II-90
APPENDIX	С	PSEU	DO-INSTRUCTION TABLE OF THE CROSS ASSEMBLER II-95
APPENDIX	D	сом	MAND TABLE OF ICE6200 II-96

CHAPTER 1

INTRODUCTION

The EOC62T3 is a single-chip microcomputer made up of the 4-bit core CPU EOC6200A, ROM (3,072 words, 12 bits to a word), RAM (640 words, 4 bits to a word), LCD driver, watchdog timer, time base counter, SVD circuit and DTMF/DP generator. The EOC62T3 can be applied to telephone set which has feature as DTMF/DP switchable, repertory dial, ON/OFF hook dial, etc.

CHAPTER 2

BLOCK DIAGRAM

The E0C62T3 block diagram is shown in Figure 2.1.

Fig. 2.1 E0C62T3 block diagram

CHAPTER 3 PROGRAM MEMORY (ROM)

3.1 Configuration of the ROM

E0C62T3 is built-in with 3,072 steps \times 12 bits mask ROM for program storage.

The program area is 12 pages (0-11), each 256 steps (00H-FFH). After initial reset, the program beginning address is page 1, step 00H. The interrupt vector is allocated to page 1, steps 02H-0DH. The configuration of the ROM is as shown in Figure 3.1.1.

Fig. 3.1.1 Configuration of the ROM

3.2 Interrupt Vector

The interrupt vector and interrupt request correspondence is shown in Table 3.2.1.

Table 3.2.1 Interrupt request and interrupt vector

Interrupt vector (PCP and PCS)	Interrupt request	Priority
102H	Clock timer interrupt	Low
104H	Dialing cycle completion interrupt	. ▲
106H	Input (K00-K03) interrupt	•
108H	Input (K10–K13) interrupt	1
10AH	Input (K20-K21) interrupt	*
10CH	Input (K22) interrupt	High

When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.

CHAPTER 4 DATA MEMORY

4.1 Configuration of the Data Memory

The data memory consist of 640 words RAM, and I/O memory which controls the peripheral circuit.

Figures 4.1.1(a) and (b) show the configuration of the data memory.

When you make your program, please take note of the following:

- Since the stack area is taken from the RAM area, take care that destruction of stack data due to data writing does not occur. Sub-routine calls or interrupts consume 3 words of the stack area.
- (2) RAM address 000H–00FH are memory register areas that are addressed with register pointer RP.

Address	Low	0	1	2	3	1	5	6	7	8	٩	Δ	в	C	П	F	F
Page	High	U U	· ·	2	5	-		0	ľ '	0	3			U			
	0	M0	M1	M2	M3	M4	M5	M6	M7	M8	M9	MA	MB	MC	MD	ME	MF
	1																
	2																
	3						D۸	Mar	~~ (C	ากกม		спλ					
	4						Γ.A	ivi ai	ea (t								
	5						128	3 wor	ds x	4 bi	ts (R	/W)					
	7																
0	8					D'					(0.01						
	9					Disp	biay	mem	ory a	area	(80F	1-AF	·H)				
	Å					48	B wo	rds x	: 4 bi	ts (V	Vrite	only)				
	В																
	С																
	D			I/O memory (43 words x 4 bits)													
	E							-	·				·				
	F																
	0																
	2																
	2						P۸	Ma	·02 ('	1006	-17	ЕН)					
	4							ivi ai			1-17						
	5						128	3 wo	rds x	4 bi	ts (R	:/VV)					
	6																
	7	1															
1	8					Disr	lav	mem	orv a	area	(801	I_AF	:н)				
	9					2101			:	4- ()/	(001		,				
	A					40	5 WO	ras x	4 DI	ts (v	vrite	oniy)				
	B																1
) mo	mon	(12	wor	de v	1 hite	-)				
						I/C	me	mory	(43	word	15 X -		5)				
	F													J			
	0																
	1																
	2	1															
	3						RA	M ar	ea (2	200H	I–27I	FH)					
	4						128	3 wor	ds x	4 bit	ts (R	/W)					
	5										(,					
	6																
2	/																
	8					Disp	olay r	nem	ory a	irea	(80⊢	I–AF	H)				
	<u>9</u> Δ					48	B wo	rds x	4 bi	ts (V	Vrite	onlv)				
	B				_							y	,				
	C]
	D					I/C) me	mory	[,] (43	word	ds x	4 bits	s)				
	E								``				<u>´</u>		_	_	
	F																

Unused area

Fig. 4.1.1(a) Data memory map

Fig. 4.1.1(b) Data memory map

- Unused area
- Note: Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

4.2 Detail Map of the I/O Memory

Tables 4.2.1(a)–(i) show the detail map of the I/O memory.

Table 4.2.1(a)	I/O memory map	(C0H-C4H)
----------------	----------------	-----------

Address	Register								Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	0	IK22	0	- *2			Unused	*5
			R		0	- *2			Unused	*5
COH					0	- *2			Unused	*5
					IK22	0	Yes	No	Interrupt factor flag (K22) Clear to 0 after read out	
	0	0	0	IK2	0	- *2			Unused	*5
R				1	0	- *2			Unused	*5
C1H					0	- *2			Unused	*5
					IK2	0	Yes	No	Interrupt factor flag (K20, K21) Clear to 0 after read out	
	0	0	0	IK1	0	- *2			Unused	*5
		1	R	1	0	- *2			Unused	*5
C2H					0	- *2			Unused	*5
					IK1	0	Yes	No	Interrupt factor flag (K10 ~ K13) Clear to 0 after read out	
	0	0	0	КО	0	- *2			Unused	*5
			R		0	- *2			Unused	*5
C3H					0	- *2			Unused	*5
					IK0	0	Yes	No	Interrupt factor flag (K00 ~ K03) Clear to 0 after read out	
	IT1	IT2	IT16	IT32	IT1	0	Yes	No	Interrupt factor flag (clock timer 1 Hz)	
		I	R		IT2	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)	
C4H					IT16	0	Yes	No	Interrupt factor flag (clock timer 16 Hz)	
					IT32	0	Yes	No	Interrupt factor flag (clock timer 32 Hz) Clear to 0 after read out	

*1 Initial value at initial reset

*2 Not set in the circuit *3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read *6 Page switching in I/O memory is not necessary

Table 4.2.1(b) I/O memory map (C5H–C9H)

Address	s Register								Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	0	ID	0	- *2			Unused	*5
			R	1	0	- *2			Unused	*5
C5H					0	- *2			Unused	*5
					ID	0	Yes	No	Interrupt factor flag (dialing) Clear to 0 after read out	
	0	0	SIK21	SIK20	0	- *2			Unused	*5
	R R/W		0	- *2			Unused	*5		
C6H			I		SIK21	0	Enable	Disable	Interrupt selection register (K21)	
					SIK20	0	Enable	Disable	Interrupt selection register (K20)	
	SIK13	SIK12	SIK11	SIK10	SIK13	0	Enable	Disable	Interrupt selection register (K13)	
		R	/W		SIK12	0	Enable	Disable	Interrupt selection register (K12)	
C7H					SIK11	0	Enable	Disable	Interrupt selection register (K11)	
					SIK10	0	Enable	Disable	Interrupt selection register (K10)	
	SIK03	SIK02	SIK01	SIK00	SIK03	0	Enable	Disable	Interrupt selection register (K03)	
		R	/W		SIK02	0	Enable	Disable	Interrupt selection register (K02)	
C8H					SIK01	0	Enable	Disable	Interrupt selection register (K01)	
					SIK00	0	Enable	Disable	Interrupt selection register (K00)	
	0	K22	K21	K20	0	- *2			Unused	*5
			R		К22	- *2	High	Low	Input port (K20 ~ K22)	
C9H					К21	- *2	High	Low		
					К20	- *2	High	Low		

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*2 Not set in the circuit *3 Undefined

Address		Reg	ister						Commont
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	K13	K12	K11	К10	K13	- *2	High	Low	
		1	R	1	K12	- *2	High	Low	Input port (K10 ~ K13)
CAH					K11	- *2	High	Low	
					K10	- *2	High	Low	
	K03	K02	K01	К00	K03	- *2	High	Low	
			R		K02	- *2	High	Low	Input port (K00 ~ K03)
СВН					К01	- *2	High	Low	
					K00	- *2	High	Low	
	0	DFK22	DFK21	DFK20	0	- *2			Unused *5
	R		R/W		DFK22	1	₹	£	
ССН					DFK21	1	↓	Ŀ	Input comparison register (K20 ~ K22)
					DFK20	1	Ŧ	_	
	DFK13	DFK12	DFK11	DFK10	DFK13	1	Ŧ	ſ	
		R	/W		DFK12	1	₹	£	
					DFK11	1	₹	<u> </u>	Input comparison register (K10 ~ K13)
					DFK10	1	Ŧ	1	
	DFK03	DFK02	DFK01	DFK00	DFK03	1	Ŧ	Ŀ	
		R	/W		DFK02	1	↓	<u> </u>	
CEH					DFK01	1	↓	Ŀ	Input comparison register (K00 ~ K03)
					DFK00	1	↓	<u> </u>	
	1				1	1		1	1

Table 4.2.1(c) I/O memory map (CAH–CEH)

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*2 Not set in the circuit

*3 Undefined

Table 4.2.1(d) I/O memory map (CFH–D3H)

Address		Reg	ister	_					Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
CFH									Unused	
	EIK22	EIK2	EIK1	EIK0	EIK22	0	Enable	Mask	Interrupt mask register (K22)	
DOH		R	/W		EIK2	0	Enable	Mask	Interrupt mask register (K20, K21)	
2011					EIK1	0	Enable	Mask	Interrupt mask register (K10 ~ K13)	
						0	Enable	Mask	Interrupt mask register (K00 ~ K03)	
	EIT1	EIT2	EIT16	EIT32	EIT1	0	Enable	Mask	Interrupt mask register (clcok timer 1 Hz)	
		R	/W		EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)	
					EIT16	0	Enable	Mask	Interrupt mask register (clock timer 16 Hz)	
					EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)	
	0	0	0	EID	0	- *2			Unused	*5
		R		R/W	0	- *2			Unused	*5
DZIT					0	- *2			Unused	*5
					EID	0	Enable	Mask	Interrupt mask register (dialing)	
	R13	R12	R11	R10	R13	0	High	Low	Output port (R13) Handfree output (HEQ)	
	HFO	HDO	BZ	BZ	R12 HDO	0	High _ *4	Low	Output port (R12) Hold-line output (HDO)	
D3H		R	/W		R11 BZ R10 BZ	0 0	High _ *4 High _ *4	Low ON Low ON	Output port (R11) Buzzer output (BZ) Output port (R10) Buzzer inverted output (BZ)	

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

Table 4.2.1(e)	I/O memory map (D4H–D8H)
----------------	--------------------------

Address		Reg	ister		Comment						
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment		
	R03	R02	R01	R00	R03	0	High	Low			
DALL		R	ſW		R02	0	High	Low	Output port (R00 \sim R03)		
D4H					R01	0	High	Low	Output port (Koo ~ Kos)		
					R00	0	High	Low			
	IOC3	IOC2	IOC1	IOC0	IOC3	0	Output	Input			
		R	/W		IOC2	0	Output	Input			
D5H					IOC1	0	Output	Input	I/O control register		
					IOC0	0	Output	Input			
	PUP3	PUP2	PUP1	PUP0	PUP3	0	ON	OFF			
		R	/W		PUP2	0	ON	OFF	Pull up control register		
D6H					PUP1	0	ON	OFF			
					PUP0	0	ON	OFF			
	P03	P02	P01	P00	P03	1	High	Low			
		R	/W		P02	1	High	Low			
D7H					P01	1	High	Low	1/O port		
					P00	1	High	Low			
	0	0	CLKCHG	oscc	0	- *2			Unused *5		
		R	R	/W	0	- *2			Unused *5		
			1		СLКСНG	0	OSC3	OSC1	CPU system clock switch		
					oscc	0	ON	OFF	OSC3 oscillation ON/OFF		
1					1						

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")*5 Constantly "0" when being read*6 Page switching in I/O memory is not necessary

*3 Undefined
Table 4.2.1(f) I/O memory map (D9H–DDH)

Address	Register							Comment		
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	0	TMRST	0	- *2			Unused	*5
		R		w	0	- *2			Unused	*5
D9H					0	- *2			Unused	*5
					TMRST	- *2	Reset	Invalid	Clock timer reset	*5
	TM3	TM2	TM1	TM0	TM3	- *3			Clock timer data (low-order) 16 Hz	
		l	R		TM2	- *3			Clock timer data (low-order) 32 Hz	
DAH					TM1	- *3			Clock timer data (low-order) 64 Hz	
					TM0	- *3			Clock timer data (low-order) 128 Hz	
	TM7	TM6	TM5	TM4	TM7	- *3			Clock timer data (high-order) 1 Hz	
	R			TM6	- *3			Clock timer data (high-order) 2 Hz		
DBH					TM5	- *3			Clock timer data (high-order) 4 Hz	
					TM4	- *3			Clock timer data (high-order) 8 Hz	
	WDON	WDRST	WD1	WD0	WDON	0	ON	OFF	Watchdog timer ON/OFF	
	R/W	w	F	र	WDRST	Reset	Reset	Invalid	Watchdog timer reset	*5
DCH					WD1	0			Watchdog timer data 1/4 Hz	
					WD0	0			Watchdog timer data 1/2 Hz	
	BZR11	BZR10	0	BZFQ	BZR11	0	Buzzer	DC	R11 port output selection	
	R/W R R/W				BZR10	0	Buzzer	DC	R10 port output selection	
					0	- *2	(inventeu)		Unused	*5
					BZFQ	0	2 kHz	4 kHz	Buzzer frequency selection	

*1 Initial value at initial reset

*4 Inhibit state (output port will be set to "1")

*2 Not set in the circuit

*5 Constantly "0" when being read

*3 Undefined

Address		Register							Commont	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	LDTY1	LDTY0	0	LCDON	LDTY1	0			LCD drive duty selection 0 : 1/4, 1 : 1/3, 2 : 1/2, 3 : 1/1	
DEH	R	/ VV	R	R/W		Ŭ			_	
					0	- *2			Unused	*5
					LCDON	0	ON	OFF	LCD display control (LCD display all off)	
	0	0	SVDDT	SVDON	0	- *2			Unused	*5
DELL		R		R/W	0	- *2			Unused	*5
DFH	DFH		SVDDT	0	Supply voltage Low	Supply voltage Normal	Supply votage detector data			
				SVDON	0	ON	OFF	SVD circuit ON/OFF		
	TPS	0	MB	DRS	TPS	0	PULSE	TONE	Tone / pulse mode selection	
Foll	R/W	R	R	/W	0	- *2			Unused	*5
EOH					МВ	0	33.3:66.6	40:60	Make : Break ratio selection	
					DRS	0	20 pps	10 pps	Dialing pulse rate selection	
	PTS3	PTS2	PTS1	PTS0	PTS3	0			Pause time selection	
		R/	W		PTS2	1			1:1 sec 9:9 sec 2:2 sec A:10 sec	
E1H					PTS1	0			3:3 sec B:11 sec 4:4 sec C:12 sec	
	Default value : 4 seconds			PTS0	0			5 : 5 sec D : 13 sec 6 : 6 sec E : 14 sec 7 : 7 sec F : 15 sec		
	FTS3	FTS2	FTS1	FTS0	FTS3	0			Flash time selection 0 · Use inhibited 8 · 750 ms	
		R	W		FTS2	1			1: 94 ms 9: 844 ms 2:188 ms A: 938 ms	
E2H					FTS1	1			3:281 ms B:1031 ms 4:375 ms C:1125 ms 5:469 ms D:1210 ms	
	Defa	ult value : 5	63 ms		FTS0	0			5:407 ms D:1219 ms 6:563 ms E:1313 ms 7:656 ms F:1406 ms	

Table 4.2.1(g) I/O memory map (DEH-E2H)

*1 Initial value at initial reset

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*2 Not set in the circuit

*3 Undefined

Table 4.2.1(h) I/O memory map (E3H–E7H)

Address		Register							Comment
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	0	HOLD	PAUSE	FLASH	0	- *2			Unused *5
5011	R	R/W	v	V	HOLD	0	On	Off	Hold-line function
E3H			1		PAUSE	0	Yes	No	Pause function *5
					FLASH	0	Yes	No	Flash function *5
	HF	0	0	0	HF	0	Yes	No	Hand free
	R/W		R		0	- *2			Unused *5
E4H					0	- *2			Unused *5
					0	- *2			Unused *5
	IDP3	IDP2	IDP1	IDP0	IDP3	1			Inter-digit pause selection for dial pulse 0 : Use inhibited 8 : 750 ms
	R/W			IDP2	0			1: 94 ms 2:188 ms A: 938 ms	
E5H					IDP1	0			3 : 281 ms B : 1031 ms 4 : 375 ms C : 1125 ms
	Defa	ult value : 7	50 ms		IDP0	0			5 : 469 ms D : 1219 ms 6 : 563 ms E : 1313 ms 7 : 656 ms F : 1406 ms
	0	0	SINR	SINC	0	- *2			Unused *5
	ŀ	2	R/	W	0	- *2			Unused *5
E6H			1		SINR	1	Enable	Disable	DTMF row frequency output enable
					SINC	1	Enable	Disable	DTMF column frequency output enable
	TCD3	TCD2	TCD1	TCD0	TCD3	0			Telephone code for dialing TCD DTMF DP TCD DTMF DP
		R/	W		TCD2	0			0: (R_1C_4) Use inhibited 8: (R_3C_2) 8 1: (R_1C_1) 1 9: (R_3C_3) 9 2: (R_1C_2) 2 A: (R_4C_2) 10
E7H					TCD1	0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
					TCD0	0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")
*5 Constantly "0" when being read
*6 Page switching in I/O memory is not necessary

Address	Register						Comment			
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	CRMUT	СТМИТ	0	- *2			Unused	*5
	I	R	R	2/W	0	- *2			Unused	*5
E8H			1		CRMUT	1	Receive mute	0	Receive mute control	
					СТМИТ	1	Transmit mute output	0	Transmit mute control	
	0	0	0	HSON	0	- *2			Unused	*5
		R	•	R/W	0	- *2			Unused	*5
E9H					0	- *2				
					HSON	0	Hook Off	Hook On	Hook switch ON/OFF	
	CHFO	CHDO	0	0	CHFO	0	Handfree	DC	R13 output selection	
	R/W R				CHDO	0	Hold	DC	(R13 data register has to be "0") R12 output selection (R12 data register has to be "0")	
EAH					0	- *2			Unused	*5
					0	- *2			Unused	*5
	СТО	0	0	0	СТО	0	Continuous tone output ON	Continuous tone output OFF	Tone duration time control	
	R/W		R		0	- *2			Unused	*5
					0	- *2			Unused	*5
					0	- *2			Unused	*5
					-				Unused	

Table 4.2.1(i) I/O memory map (E8H–EBH)

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

CHAPTER 5

INITIAL RESET

5.1 Initialized Status

The CPU core and peripheral circuits are initialized by initial resetting as follows:

Table 5.1.1 Initialized status

CPU core									
Name	Symbol	Number of bits	Setting value						
Program counter step	PCS	8	00H						
Program counter page	PCP	4	1H						
New page pointer	NPP	4	1H						
Stack pointer	SP	8	Undefined						
Index register IX	IX	11	Undefined						
Index register IY	IY	11	Undefined						
Register pointer	RP	4	Undefined						
General-purpose register A	А	4	Undefined						
General-purpose register B	В	4	Undefined						
Interrupt flag	Ι	1	0						
Decimal flag	D	1	0						
Zero flag	Z	1	Undefined						
Carry flag	C	1	Undefined						

Peripheral circuits						
Name	Number of bits	Setting value				
RAM	640 x 4	Undefined				
Display memory	32 x 4	Undefined				
Other peripheral circuits	_	*1				

*1 See Tables 4.2.1(a)-(i)

Note: Undefined values must be defined by the program.

5.2 Example Program for the System Initialization

Following program shows the example of the procedure for system initialization.

Label	Mnemo	nic/operand	Comment					
;*								
;* INI	TIAL RE	SET PROGRA	AM					
;*								
	ORG	100H						
;								
	JP	INIT						
;								
	ORG	110H						
;								
INIT:								
;* INI	TIALIZE	CPU CORE	AT THE BEGINNING					
i	DOM	E 0000D	CLEAD IDEA DIAGO					
	RSI	F,0000B	CLEAR IDZC FLAGS					
'	τD	7 084	SET STACK DOINTED TO 0804					
	תם תו	SDH A	75EI SIACK FOINIER 10 0000					
	LD	A.00H						
	LD	SPL,A						
;								
;* CLE	AR DATA	MEMORY						
;								
	LD	A,0						
CLLO:								
	LD	XP,A						
	LD	Х,ООН	;CLEAR RAMS					
CLL1	LBPX	МХ,ОН	;					
	CP	ХН,8	;CONTINUE TILL 080H					
	JP	C,CLL1						
	ADD	A,1						
	CP	A,5						
	JΡ	С,СЦГО						
' :* TNT	יד אד. ד ק ד	י סקסדסטקס						
;			AL CIRCOTIS					
, RSTCM:								
10101	LD	х,0D9н	RESET CLOCK TIMER					
	OR	MX,0001B						
;	:							

5.3 Programming Note for the System Initialization

In some of initial registers and initial data memory area, the initial value is undefined after reset. Set them proper initial values by the program, as necessary.

CHAPTER 6 PERIPHERAL CIRCUITS

6.1 Watchdog Timer

I/O data memory of the watchdog timer

The control registers of the watchdog timer is shown in Table 6.1.1.

Table 6.1.1	Control	registers of	watchdog timer
-------------	---------	--------------	----------------

Address		Reg	ister						Commont	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	0	TMRST	0	- *2			Unused	*5
DOLL	D9H W		0	- *2			Unused	*5		
D9H				0	_ *2			Unused	*5	
			TMRST	- *2	Reset	Invalid	Clock timer reset	*5		
	WDON	WDRST	WD1	WD0	WDON	0	ON	OFF	Watchdog timer ON/OFF	
	R/W	w	F	2	WDRST	Reset	Reset	Invalid	Watchdog timer reset	*5
DCH		I			WD1	0			Watchdog timer data 1/4 Hz	
					WD0	0			Watchdog timer data 1/2 Hz	

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")

*3 Undefined

*5 Constantly "0" when being read

*6 Page switching in I/O memory is not necessary

Control of the watchdog timer

The watchdog timer can be turned ON or OFF by writing "1" or "0" to WDON.

The watchdog timer must be reset cyclically by the software if the WDON is "1". If reset is not executed in at least 3 or 4 seconds, the initial reset signal is output automatically for the CPU.

When "1" is written to WDRST, the watchdog timer is reset, and the operation restarts immediately after this. When "0" is written to WDRST, no operation results.

When "1" is written to TMRST, the watchdog timer is reset, same as the case of WDRST.

The watchdog timer operates in the halt mode. If the halt status continues for 3 seconds, the initial reset signal restarts operation.

Example proaram	Follow	Following program shows the reset procedure for watchdog timer.								
for the watchdog	Label	Mnemo	onic/operand	Comment						
timer	;*									
	;* RES	SET WAT	CHDOG TIMEF	र						
	;*									
	ZWDOG	EQU	0DCH	;WATCHDOG ADDRESS						
	WDON	EQU	1000B	;WATCHDOG ON/OFF BIT						
	WDRST	EQU	0100B	;WATCHDOG RESET BIT						
	;									
	;*									
	;* AT	INITIA	L ROUTINE S	SET WATCHDOG TIMER ON						
	; *									
	INIT:									
	;	:								
		LD	X,ZWDOG	;SET WATCHDOG ADDRESS						
		OR	MX,WDON	;SET WATCHDOG ON						
	;	:								
	;									
	; *									
	;* AT	MAIN R	OUTINE RESE	ET THE WATCHDOG TIMER WITHIN 3 SECONDS						
	;*									
	MAIN:									
	;	:								
		LD	X,ZWDOG	;SET WATCHDOG ADDRESS						
		OR	MX,WDRST	;RESET WATCHDOG TIMER						
	;	:								
		JP	MAIN							
	;									

Programming notes

- (1) The watchdog timer must reset within 3-second cycles by the software. In this case, timer data (WD1 and WD0) cannot be used for timer applications.
- (2) When clock timer resetting (TMRST←"1") is performed, the watchdog timer is also reset.

6.2 OSC3

E0C62T3 has two built-in oscillation circuits (OSC1 and OSC3).

I/O data memory of The control registers of the OSC3 are shown in Table 6.2.1. the OSC3

Table 6.2.1 Control registers of OSC3

Address		Reg	Register						Commont
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	0	0	CLKCHG	OSCC	0	- *2			Unused *5
		R	R	/W	0	- *2			Unused *5
D8H			1		СІКСНС	0	OSC3	OSC1	CPU system clock switch
					oscc	0	ON	OFF	OSC3 oscillation ON/OFF

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*6 Page switching in I/O memory is not necessary

Control of the OSC3

When processing of the E0C62T3 requires high-speed operations, the CPU's operating clock should be switched from OSC1 to OSC3.

When the EOC62T3's CPU clock is to be OSC3, first set OSCC to "1" (OSC3 oscillation goes ON), and then, after about 5 msec, set CLKCHG to "1" (switching from OSC1 to OSC3).

When switching the clock from OSC3 to OSC1, first set CLKCHG to "0", and then set OSCC to "0". In this case, use a separate instruction for switching the clock and OSC3 OFF.

When DTMF is used, OSC3 also should be turned on firstly, but no need change CPU clock to OSC3.

Example program for the OSC3	Following program shows the oscillation clock controlling proce- dure.									
	Label	Mnemo	nic/operand	Comment						
	;*									
	;* OSC3 CLOCK CONTROL ;*									
	ZOSCC	EQU	0D8H	;CPU CLOCK CONTROL						
	CLKCHG	EQU	0010B	CPU SYSTEM CLOCK SWITCH						
	OSCC	EQU	0001B	;OSC3 OSCILLATION ON/OFF						
	, 0S3:									
	;* CHANGE CLOCK FREQUENCY FROM OSC1 TO OSC3									
		LD	X,ZOSCC	;SET OSC3 ON						
		OR	MX,OSCC							
	,	Ъ	A OEH	:WATT 5mS						
	OS3DLP	:	11,0111							
		ADD	A,OFH							
		JP	NZ,OS3DLP							
	;	OD								
		RET	MA, CLACHG	CHANGE CLOCK TO USC3						
	;									
	OS1:		OF EDEOLEN	av FRAM ASA2 TA ASA1						
	;^ CHANGE CLOCK FREQUENCY FROM OSC3 TO OSC1 LD X,ZOSCC ;CHANGE CLOCK TO OSC1									
		AND	MX, (NOT CI	LKCHG) AND OFH						
	;									
		AND	MX,(NOT OS	SCC) AND OFH						
		RET		SET OSC3 TO OFF						
	;	101								
Programming notes	 (1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON. 									
	Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.									
	(2) When switching the clock from OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.									
	(3) To l exce	essen o ept whe	current cons en the CPU	sumption, keep OSC3 oscillation OFF must be run at high speed, or when						

DTMF is used.

6.3 Input Ports (K00-K03, K10-K13, K20-K22)

I/O data memory of the input ports

The control registers of the input ports are shown in Tables 6.3.1(a)–(c).

Table 6.3.1(a) Control registers of input ports

Address		Reg	ister						Commont	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	0	IK22	0	- *2			Unused	*5
			R		0	- *2			Unused	*5
COH					0	- *2			Unused	*5
				2	IK22	0	Yes	No	Interrupt factor flag (K22) Clear to 0 after read out	
	0	0	0	IK2	0	- *2			Unused	*5
			R		0	- *2			Unused	*5
C1H					0	- *2			Unused	*5
					IK2	0	Yes	No	Interrupt factor flag (K20, K21) Clear to 0 after read out	
	0	0	0	IK1	0	- *2			Unused	*5
			R		0	- *2			Unused	*5
C2H					0	- *2			Unused	*5
					IK1	0	Yes	No	Interrupt factor flag (K10 ~ K13) Clear to 0 after read out	
	0	0	0	IK0	0	- *2			Unused	*5
			R		0	- *2			Unused	*5
СЗН					0	- *2			Unused	*5
			-		IK0	0	Yes	No	Interrupt factor flag (K00 ~ K03) Clear to 0 after read out	
	0	0	SIK21	SIK20	0	- *2			Unused	*5
		R	R/	/W	0	- *2			Unused	*5
C6H			1		SIK21	0	Enable	Disable	Interrupt selection register (K21)	
					SIK20	0	Enable	Disable	Interrupt selection register (K20)	
					1	1			1	

*1 Initial value at initial reset

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*2 Not set in the circuit *3 Undefined

Address	s Register						Comment		
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	SIK13	SIK12	SIK11	SIK10	SIK13	0	Enable	Disable	Interrupt selection register (K13)
		R	/W		SIK12	0	Enable	Disable	Interrupt selection register (K12)
C7H					SIK11	0	Enable	Disable	Interrupt selection register (K11)
					SIK10	0	Enable	Disable	Interrupt selection register (K10)
	SIK03	SIK02	SIK01	SIK00	SIK03	0	Enable	Disable	Interrupt selection register (K03)
		R	/W		SIK02	0	Enable	Disable	Interrupt selection register (K02)
C8H					SIK01	0	Enable	Disable	Interrupt selection register (K01)
					SIK00	0	Enable	Disable	Interrupt selection register (K00)
	0	K22	K21	K20	0	- *2			Unused *5
			R		K22	- *2	High	Low	Input port (K20 ~ K22)
C9H					K21	- *2	High	Low	
					K20	- *2	High	Low	
	K13	K12	K11	K10	K13	- *2	High	Low	
			R		K12	- *2	High	Low	Input port (K10 ~ K13)
CAH					K11	- *2	High	Low	
					K10	- *2	High	Low	
	K03	K02	K01	K00	K03	- *2	High	Low	
			R		К02	- *2	High	Low	Input port (K00 ~ K03)
CBH					K01	- *2	High	Low	
					K00	- *2	High	Low	
1	1				1	1		1	

Table 6.3.1(b) Control registers of input ports

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

Address		Reg	ister						Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0		
	0	DFK22	DFK21	DFK20	0	- *2			Unused *5	
	R		R/W		DFK22	1	Ŧ	Ŀ		
CCH		1			DFK21	1	Ţ	_	Input comparison register (K20 ~ K22)	
					DFK20	1	ł	₫		
	DFK13	DFK12	DFK11	DFK10	DFK13	1	Ţ	₫		
		R	/W		DFK12	1	Ŧ	_		
CDH					DFK11	1	₹		Input comparison register (K10 ~ K13)	
					DFK10	1	Ł	₫		
	DFK03	DFK02	DFK01	DFK00	DFK03	1	Ţ	₫		
		R	/W		DFK02	1	Ŧ	_		
CEH					DFK01	1	Ŧ	_	Input comparison register (K00 ~ K03)	
					DFK00	1	Ŧ	₫		
	EIK22	EIK2	EIK1	EIKO	EIK22	0	Enable	Mask	Interrupt mask register (K22)	
		R	/W		EIK2	0	Enable	Mask	Interrupt mask register (K20, K21)	
					EIK1	0	Enable	Mask	Interrupt mask register (K10 ~ K13)	
					EIK0	0	Enable	Mask	Interrupt mask register (K00 ~ K03)	

Table 6.3.1(c) Control registers of input ports

*1 Initial value at initial reset *2 Not set in the circuit *4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

Control of the input ports	Reading of input data Input data of the input port terminal may be read out with regis- ters K00–K03, K10–K13 and K20–K22. The terminal voltage of 11 bits input ports are each reading as "1" and "0" at high (VDD) level and low (Vss) level, respectively.
	 Input interrupt (K00–K03) The input interrupt timing of K00–K03 can be set to generate interrupt at the rising edge or falling edge of the input by the setting of input comparison registers DFK00–DFK03. When DFK register is set to "1", the falling edge of the input becomes an interrupt generating condition, the rising edge when set to "0". Moreover, the interrupt mask can be set with the interrupt mask register EIK0. And each K00–K03 inputs interrupt can be selected by the interrupt, for example K03, set EIK0 and SIK03 to "1". However, if the interrupt of any one of K00–K03 is enabled, interrupt will be generated when the content change from matched to no matched with the input comparison register. When interrupt is generated, the interrupt factor flag IK0 is set to "1". Figure 6.3.1 shows an example of an interrupt for K00–K03.
	 Input interrupt (K10–K13) The input interrupt timing of K10–K13 can be set to generate interrupt at the rising edge or falling edge of the input by the setting of input comparison registers DFK10–DFK13. When DFK register is set to "1", the falling edge of the input becomes an interrupt generating condition, the rising edge when set to "0". Moreover, the interrupt mask can be set with the interrupt mask register EIK1. And each K10–K13 inputs interrupt can be selected by the interrupt, for example K13, set EIK1 and SIK13 to "1". However, if the interrupt of any one of K10–K13 is enabled, interrupt will be generated when the content change from matched to no matched with the input comparison register. When interrupt is generated, the interrupt factor flag IK1 is set to "1". Figure 6.3.2 shows an example of an interrupt for K10–K13.

Input interrupt (K20–K21)

The input interrupt timing of K20–K21 can be set to generate interrupt at the rising edge or falling edge of the input by the setting of input comparison registers DFK20–DFK21. When DFK register is set to "1", the falling edge of the input becomes an interrupt generating condition, the rising edge when set to "0". Moreover, the interrupt mask can be set with the interrupt mask register EIK2. And each K20–K21 inputs interrupt can be selected by the interrupt selection registers SIK20–SIK21. So if you want enable interrupt, for example K20, set EIK2 and SIK20 to "1". However, if the interrupt of any one of K20–K21 is enabled, interrupt will be generated when the content change from matched to no matched with the input comparison register.

When interrupt is generated, the interrupt factor flag IK2 is set to "1".

Figure 6.3.3 shows an example of an interrupt for K20–K21.

Input interrupt (K22)

The input interrupt timing of K22 can be set to generate interrupt at the rising edge or falling edge of the input by the setting of input comparison registers DFK22. When DFK22 register is set to "1", the falling edge of the input becomes an interrupt generating condition, the rising edge when set to "0".

The interrupt mask can be selected with the interrupt mask register EIK22. When interrupt is generated, the interrupt factor flag IK22 is set to "1".

Figure 6.3.4 shows an example of an interrupt for K22.

Example program for the input ports

Following program shows the input ports controlling procedure.

Label	Mnemor	nic/operand	Comment
;*			
;* INPU	T PORT		
;*			
ZIK22	EQU	0C0H	;K22 INTERRUPT FACTOR FLAG
ZIK2	EQU	0C1H	;K20-K21 INTERRUPT FACTOR FLAG
ZIK1	EQU	0C2H	;K10-K13 INTERRUPT FACTOR FLAG
ZIK0	EQU	0С3Н	;K00-K03 INTERRUPT FACTOR FLAG
ZSIK2	EQU	0С6Н	;K20-K21 INTERRUPT SELECTION REGISTER
ZSIK1	EQU	0C7H	;K10-K13 INTERRUPT SELECTION REGISTER
ZSIK0	EQU	0C8H	;K00-K03 INTERRUPT SELECTION REGISTER
ZK2	EQU	0С9Н	;K20-K22 INPUT PORT
ZK1	EQU	0CAH	;K10-K13 INPUT PORT
ZK0	EQU	0CBH	;K00-K03 INPUT PORT
ZDFK2	EQU	0CCH	;K20-K22 INPUT COMPARISON REGISTER
ZDFK1	EQU	0CDH	;K10-K13 INPUT COMPARISON REGISTER
ZDFK0	EQU	0CEH	;K00-K03 INPUT COMPARISON REGISTER
ZEIK	EQU	0D0H	;K22,K20-K21,K1,K0
			;INTERRUPT MASK REGISTER
;			
	ORG	106H	
	JP	KOINT	;K0 INTERRUPT ROUTINE
;			
	ORG	108H	
	JP	K1INT	;K1 INTERRUPT ROUTINE
;			
	ORG	10AH	
	JP	K2INT	;K2 INTERRUPT ROUTINE
;			
	ORG	10CH	
	JP	K22INT	;K22 INTERRUPT ROUTINE
;			
INITK:			
;* INPU	T PORT	K0, K1, K2	0-K21 & K22 INITIAL ROUTINE
;			
	LD	X,ZK2	; INITIALIZE FOR INPUT COMPARISON
	LD	Y,ZDFK2	; REGISTERS
	LDPY	MY,MX	;DFK2 <- K2
	INC	X	
	LDPY	MY,MX	;DFK1 <- K1
	INC	X	
	LDPY	MY,MX	;DFK0 <- K0
;			
	DI		
	LD	X,ZEIK	
	LD	, MX.1111В	ENABLE KO.K1.K20-K21.K22 INPUT INTERRUPT
	LD	, X,ZSIK2	
	LDPX	, MX,03H	;SELECT K20,K21 INTERRUPT
	LDPX	MX.0FH	SELECT K10.K11.K12.K13 INTERRIPT
	LD	MX.OFH	SELECT K00.K01.K02.K03 INTERRUPT
;		,	
	LD	X.ZIK22	RESET INTERRUPT FACTOR FLAG
	LDPX	A, MX	RESET IK22 INTERRUPT FACTOR FLAG
	LDPX	A.MX	RESET IK2 INTERRIDT FACTOR FLAG
	LDPX	A MX	RESET IKI INTERRIDT FACTOR FLAG
	LD	A.MX	RESET IKO INTERRIPT FACTOR FLAG
	ET		ALE IN INTERNET FACTOR FERG
	RET		

; K0INT: ;* KO INTERRUPT SERVICE ROUTINE LD X,ZIKO ;READ INTERRUPT FACTOR FLAG LD A,MX ; : : ; LD X,ZKO ;STORE INPUT COMPARISON REGISTER LD Y,ZDFK0 LD MY,MX ΕI RET ; K1INT: ;* K1 INTERRUPT SERVICE ROUTINE LD X,ZIK1 ;READ INTERRUPT FACTOR FLAG LDA,MX ; : : ; LD X,ZK1 ;STORE INPUT COMPARISON REGISTER LDY,ZDFK1 LD MY,MX ΕI RET ; K2INT: ;* K2 INTERRUPT SERVICE ROUTINE X,ZIK2 ;READ INTERRUPT FACTOR FLAG LD LD A,MX : ; : ; X,ZK2 ;STORE INPUT COMPARISON REGISTER LDY,ZDFK2 LD LD MY,MX ΕI RET ; K22INT: ;* K22 INTERRUPT SERVICE ROUTINE X,ZIK22 ;READ INTERRUPT FACTOR FLAG LD LDA,MX ; : ; : LDX,ZK2 ;STORE INPUT COMPARISON REGISTER LDY,ZDFK2 MY,MX LD ΕI RET ;

Programming notes	 (1) When input ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 msec.
	(2) When an interrupt occurs, for example, a key been pressed, software must has the debounce routine, to insure the input port interrupt stable, then to read out the interrupt flag for resetting interrupt flag. If no debounce routine, the input might interrupt many times.
	 (3) Read the interrupt factor flag in the DI status (interrupt flag = "0"). Reading of interrupt factor flag is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
	 (4) Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.

6.4 Output Ports (R00-R03, R10-R13)

I/O data memory of the output ports

The control registers of the output ports are shown in Tables 6.4.1(a) and (b).

Table 6.4.1(a) Control registers of output ports

Address		Reg	ister						Commont	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
D3H	R13 HFO	R12 HDO	R11 BZ	R10 BZ	R13 HFO R12 HDO R11 BZ R10 BZ	0 0 0 0	High _ *4 High _ *4 High _ *4 High _ *4	Low ON Low ON Low ON Low ON	Output port (R13) Handfree output (HFO) Output port (R12) Hold-line output (HDO) Output port (R11) Buzzer output (BZ) Output port (R10) Buzzer inverted output (BZ)	
	R03	R02	R01	R00	R03	0	High	Low		
		R	/W		R02	0	High	Low		
D4H					R01	0	High	Low	Output port (R00 ~ R03)	
					R00	0	High	Low		
	BZR11	BZR10	0	BZFQ	BZR11	0	Buzzer	DC	R11 port output selection	
	R/W R R/W			R/W	BZR10	0	Buzzer	DC	R10 port output selection	
DDH					0	- *2	(inventeu)		Unused	*5
					BZFQ	0	2 kHz	4 kHz	Buzzer frequency selection	
	0	HOLD	PAUSE	FLASH	0	- *2			Unused	*5
	R	R/W	v	V	HOLD	0	On	Off	Hold – line function	
E3H		I	I		PAUSE	0	Yes	No	Pause function	*5
				FLASH	0	Yes	No	Flash function	*5	
	HF	0	0	0	HF	0	Yes	No	Hand free	
	R/W		R		0	- *2			Unused	*5
E4H		1			0	- *2			Unused	*5
					0	- *2			Unused	*5

*1 Initial value at initial reset

*4 Inhibit state (output port will be set to "1")

*2 Not set in the circuit

*5 Constantly "0" when being read

*3 Undefined

Table 6.4.1(b) Control registers of output ports

Address		Reg	ister						Commont	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Collinient	
	CHFO	CHDO	0	0	CHFO	0	Handfree output	DC	R13 output selection (R13 data register has to be "0")	
	R/W R			CHDO	0	Hold output	DC	(R12 data register has to be "0") R12 output selection (R12 data register has to be "0")		
					0	- *2			Unused *	⊧5
					0	- *2			Unused *	⊧5

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

*6 Page switching in I/O memory is not necessary

Control of the
general output portsThe E0C62T3 has 8 bits (R00-R03, R10-R13) general output ports
built-in.
Output port terminals will generate the data written into the

Output port terminals will generate the data written into the corresponding registers (R00–R03, R10–R13) as it is. The output port terminal goes high (VDD) when "1" is written to the register, and goes low (Vss) when "0" is written. The output ports R00–R03 and R10–R13 are initialized to low level (Vss) after an initial reset. The output ports (R00–R03, R10–R13) can also be read, and output control is possible using the bit operation instruction (AND, OR, etc.).

The output ports R10–R13 are all software programmable for special use output ports as shown in the later of this section. So please set the following registers to "0" when want to use R10–R13 as general output ports.

for R10 port: set BZR10 (DDH•D2) to "0". for R11 port: set BZR11 (DDH•D3) to "0". for R12 port: set CHDO (EAH•D2) to "0". for R13 port: set CHFO (EAH•D3) to "0".

At initial reset, R10–R13 output ports are set to general output ports.

Example program for the general output ports

Following program shows the output ports controlling procedure in ordinary DC output case.

Bit-unit operation of R00-R03 output ports

```
Label
       Mnemonic/operand Comment
;*
;* R00-R03 OUTOUT PORTS
;*
;* BIT-UNIT OPERATION OF R00-R03 OUTPUT PORTS
;
       EQU
             0D4H
                       ;R0 OUTPUT PORT
ZR0
;
       LD
             Y,ZRO
                       ;SET OUTPUT PORT ADDRESS
             MY,0010B ;SET R01 TO "1"
       OR
             MY,1011B ;SET R02 TO "0"
       AND
;
```

The three instruction steps above cause the output port to be set, as shown in Figure 6.4.1.

Loading B register data into R10-R13

Label	Mnem	onic/operand	Comment
;*			
;* R10-	-R13 OU	JTOUT PORTS	
;*			
;* LOAI	DING DA	ATA OF B REG	JISTER TO R10-R13
;			
ZR1	EQU	0D3H	;R1 OUTPUT PORT
ZBZCTL	EQU	0DDH	;BUZZER CONTROL REGISTER
BZR11	EQU	1000B	;R11 PORT SELECTION
BZR10	EQU	0100B	;R10 PORT SELECTION
ZCHFO	EQU	0EAH	;HANDFREE & HOLD OUTPUT CONTROL REGISTER
CHFO	EQU	1000B	;R13 PORT SELECTION
CHDO	EQU	0100B	;R12 PORT SELECTION
;			
	LD	X,ZBZCTL	;DISABLE BUZZER OUTPUT TO R10 & R11
	AND	MX,(NOT B	ZR11 AND NOT BZR10) AND 0FH
	LD	X,ZCHFO	;DISABLE HANDFREE
			;& HOLD OUTPUT TO R12 & R13
	AND	MX,(NOT CI	hfo and not chdo) and 0fh
;			
	LD	X,ZR1	;SET OUTPUT PORT ADDRESS
	LD	MX,B	;OUTPUT B REGISTER TO R1 PORT
;			

As shown in Figure 6.4.2, the above program loads the data of the B register into the output ports.

Fig. 6.4.2 Correspondence between output ports (R10–R13) and B register

Control of the special use output ports

Table 6.4.2 Special output

In addition to the regular DC output, special output can be se-
lected by software program for output ports (R10–R13), as shown
in Table 6.4.2.

Terminal	Special output	Output selection register
R10	ΒZ	BZR10
R11	BZ	BZR11
R12	HDO	CHDO
R13	HFO	CHFO

	Figure 6.4.3 shows	the structure of	output ports	(R10-R13).
--	--------------------	------------------	--------------	------------

Fig. 6.4.3 Structure of output ports (R10–R13)

Buzzer output The R10/R11 terminal can be controlled to generate \overline{BZ} (buzzer

(R10 and R11) inverted) output/BZ (buzzer) output. By writing R10 register and BZR10 register, software program can control the BZ output to R10 terminal. By writing R11 register and BZR11 register, software program can control the BZ output to R11 terminal. There are two methods can be used for output the buzzer frequency.

method 1:

BZR10 and BZR11 is to select R10 and R11 for $\overline{\text{BZ}}$ (buzzer inverted) output and BZ (buzzer) output, respectively. So when you want to use R10 or R11 as buzzer inverted output or buzzer output, set BZR10 or BZR11 to "1" first.

When "0" is set on R11, buzzer signal is generated from R11 terminal. <u>When "1" is set on R11, R11 terminal output goes high</u> (VDD). The R10 control way is the same with R11. But the R10 is output the buzzer inverted signal to the terminal.

method 2:

Writes R10/R11 register to "0", firstly. Then writes BZR10/BZR11 register to "1", the BZ/BZ output to R10/R11 terminal. When writing BZR10/BZR11 register to "0", the R10/R11 terminal will go to low level (Vss).

The buzzer frequency may be selected as 2 kHz or 4 kHz by software. When BZFQ (DDH•D0) is set to "0", the frequency of the buzzer signal is set in 4 kHz, and in 2 kHz when "1" is set.

Hold output (R12) HDO is hold-line signal output for telephone function. By setting the register CHDO (EAH•D2) to "1", R12 terminal is set to HDO (Hold-line output) output port. At meanwhile, R12 register (D3H•D2) must be set to "0"; otherwise R12 terminal is set to high level (VDD). When CHDO is set to "0", R12 terminal becomes the regular DC output port. When the HDO output is selected, the R12 terminal outputs the data which is written in the register HOLD (E3H•D2). See Section 6.9, "Telephone Function" for detail of HDO.

Handfree output (R13)
HFO is handfree signal output for telephone function. By setting the register CHFO (EAH•D3) to "1", R13 terminal is set to HFO (Handfree output) output port. At meantime, R13 register (D3H•D3) must be set to "0"; otherwise R13 terminal is set to high level (VDD). When CHFO is set to "0", R13 terminal becomes the regular DC output port. When the HFO output is selected, the R13 terminal outputs the data which is written in the register HF (E4H•D3). See Section 6.9, "Telephone Function" for detail of HFO.

Example program for the special use output ports

Following program shows the special use output ports controlling procedure.

Label	Mnem	onic/operand	Comment
;*			
;* SPEC	CIAL U	JSE R10-R13	OUTOUT PORT
;*			
;			
ZR1	EQU	0D3H	;R1 OUTPUT PORT
ZBZCTL	EQU	0 DDH	;BUZZER CONTROL REGISTER
BZR11	EQU	1000B	;R11 PORT SELECTION
BZR10	EQU	0100B	;R10 PORT SELECTION
BZFQ	EQU	0001B	;BUZZER FREQUENCY SELECTION
ZHOLD	EQU	0E3H	;HOLD, PAUSE, FLASH OUTPUT CONTROL ; ADDRESS
ZHF	EOU	0E4H	HANDEREE OUTPUT CONTROL ADDRESS
ZCHEO	FOII	052111 0524	:P13 & P12 TERMINALS SELECTION ADDRES
:	БÕО	ULAII	TRIS & RIZ TERMINALS SELECTION ADDREC
, •*			
י * ידיזס		ייידמייי	
, " BUZZ	LER UU	JIPUI	
/ "	τD	Y 7D1	יסות ג סוו פרדם אתופיד פדיד ייר "ו" דרס:
		A, 2K1 MV 1100D	· DUZZED OUTDUT
	AND	MA, IIOOB	, BUZZER OUIPUI
'	TD	V RDROWI	
	ТР	A, ZBZCIL	, IORN ON RIU & RII AS BUZZER OUIPUI,
	U	MA,IIUUB	, AND SEI FREQUENCY = 4 KHZ
i	:		
	LD	X,ZBZCTL	TURN OFF RIU & RII BUZZER OUTPUT
	AND	MX,UUIIB	i
; ^ . + 1101 1			
, * HOLI	D-LINE	5 FUNCTION	
/ ^	TD	V RD1	
		X, 4R1	RIZ MUSI SEI IU "U"
	AND	MX,IUIIB	; FOR HOLD-LINE FUNCTION
i			
	LD	X,ZCHFO	SET RIZ TERMINAL AS HOLD-LINE OUTPUT
	OR	MX,0100B	
;			
	LD	X,ZHOLD	SET HOLD CONTROL ADDRESS
	OR	MX,0100B	;EXECUTING HOLD-LINE FUNCTION
;	:		
;	:		
	LD	X,ZHOLD	;SET HOLD CONTROL ADDRESS
	AND	MX,1011B	;CANCELLING HOLD-LINE FUNCTION
;			
;*			
;* HANI	DFREE	FUNCTION	
;*			
	LD	X,ZR1	;R13 MUST SET TO "0"
	AND	MX,0111B	; FOR HANDFREE FUNCTION
;			
	LD	X,ZCHFO	;SET R13 TERMINAL AS HANDFREE OUTPUT
	OR	MX.1000B	

; LD X,ZHF ;SET HANDFREE OUTPUT CONTROL ADDRESS OR MX,1000B ;SET HFO (R13) TERMINAL TO VDD : ; : ; ;SET HANDFREE OUTPUT CONTROL ADDRESS X,ZHF LD MX,0111B AND ;SET HFO TERMINAL TO VSS

Programming notes

 When BZ and BZ output are selected by software, a hazard may be observed in the output waveform when the data of the output register changes.

Fig. 6.4.4 Output waveform

- (2) When R10 terminal is used for general output port, set BZR10 register to "0". When R10 terminal is used for $\overline{\text{BZ}}$ output port, set R10 register to "0".
- (3) When R11 terminal is used for general output port, set BZR11 register to "0". When R11 terminal is used for BZ output port, set R11 register to "0".
- (4) When R12 terminal is used for general output port, set CHDO register to "0". When R12 terminal is used for HOLD output port, set R12 register to "0".
- (5) When R13 terminal is used for general output port, set CHFO register to "0". When R13 terminal is used for HANDFREE output port, set R13 register to "0".

6.5 I/O Ports (P00-P03)

I/O data memory of The control registers of the I/O port are shown in Table 6.5.1. the I/O port

Table 6.5.1 Control registers of I/O port

Address		Reg	ister						Comment		
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment		
	IOC3	IOC2	IOC1	IOC0	IOC3	0	Output	Input			
DELL		R	W		IOC2	0	Output	Input			
D5H					IOC1	0	Output	Input	I/O control register		
					IOC0	0	Output	Input			
	PUP3	PUP2	PUP1	PUP0	PUP3	0	ON	OFF			
		R	W		PUP2	0	ON	OFF			
D6H					PUP1	0	ON	OFF	Pull up control register		
					PUP0	0	ON	OFF			
	P03	P02	P01	P00	P03	1	High	Low			
		R	W		P02	1	High	Low			
D7H				P01 1 High Low		1/O port					
					P00	1	High	Low			
1									1		

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*6 Page switching in I/O memory is not necessary

Control of the I/O port

The E0C62T3 contains 4 bits general I/O port.

Each terminal of the I/O port can be used as input or output port individually, according to the I/O control registers IOC3–IOC0 (D5H). When the I/O control register is "0", the I/O port is set as input port, and when it is "1", the I/O port is set as output port. Each terminal of the I/O port can be operated with connecting or unconnecting pull-up resistor by software while in the input mode. These 4 pull-up resistors are controlled by pull-up control registers PUP3–PUP0 (D6H).

How to set as input

Set "0" in the I/O port control register IOC0 (IOC1 for P01, IOC2 for P02, IOC3 for P03) and the I/O port P00 is set as an input port. The state of the I/O port P00–P03 are decided by the address D7H. (In the input mode, the port level is read directly.) The P00–P03 I/O port can be pull up by software in each bit. Set "1" in the I/O pull up control register PUP0 (PUP1 for P01, PUP2 for P02, PUP3 for P03) and the pull-up resistor will directly connect to

P00 internally.

How to set as output

Set "1" in the I/O port control register IOCO (IOC1 for P01, IOC2 for P02, IOC3 for P03) and the I/O port P00 is set as an output port. In the output mode, the I/O port terminals are decided by P00–P03 (D7H) registers. These registers can be set regardless the each bit of the I/O port is in the input mode or output mode.

If perform the read-out I/O port in each mode; <u>when output mode</u>, <u>the register value is read out</u>, and when input mode, the port value (input voltage level) is read out.

After an initial reset, $\ensuremath{\mathrm{I/O}}$ port is set as input port and without pull-up resistor.

Following program shows the L/O port controlling procedure

Example program	1 01101	mig pro	gram snow	S the	, o port controlling procedure.
for the I/O port	Label	Mnemo	onic/operand	Comn	nent
	;*				
	;* I/() PORT			
	;*				
	;				
	ZIOC	EQU	0D5H	;I/0	PORT CONTROL REGISTER
	IOC3	EQU	1000B	;P03	PORT CONTROL BIT
	IOC2	EQU	0100B	; P02	PORT CONTROL BIT
	IOC1	EQU	0010B	;P01	PORT CONTROL BIT
	IOC0	EQU	0001B	;P00	PORT CONTROL BIT
	;				
	ZPUP	EQU	0D6H	;I/0	PORT PULL-UP CONTROL REGISTER
	PUP3	EQU	1000B	; P03	PULL-UP CONTROL BIT
	PUP2	EQU	0100B	; P02	PULL-UP CONTROL BIT
	PUP1	EQU	0010B	;P01	PULL-UP CONTROL BIT
	PUP0	EQU	0001B	; P00	PULL-UP CONTROL BIT
	;				
	ZP0	EQU	0D7H	;I/0	PORT P00-P03
	P03	EQU	1000B	;P03	
	P02	EQU	0100B	;P02	
	P01	EQU	0010B	;P01	
	P00	EQU	0001B	;P00	
	:				

;* ;* SET POO & PO1 AS INPUT WITH PULL-UP RESISTOR ;* AND READ POO & PO1 INTO A REG. ;* LD X,ZIOC ;SET POO & PO1 AS INPUT MX, (NOT (IOC0 OR IOC1)) AND 0FH AND ; LD X,ZPUP ; CONNECTING PULL-UP RESISTORS ; TO POO & PO1 OR MX, PUP0 OR PUP1 ; LD X,ZPO ;READ IN POO & PO1 INTO Areg's DO & D1 ΤD A, MX AND A,PO0 OR PO1 ;MASK PO2 & PO3 PORT REGISTER'S DATA ; ;* ;* SET PO2 & PO3 AS OUTPUT ;* AND OUTPUT B REGISTER TO P02-P03 TERMINALS ;* LD X,ZIOC ;SET PO2 & PO3 AS OUTPUT OR MX, IOC2 OR IOC3 ; LD X,ZPO ;SET I/O PORT ADDRESS MX,B LD ;LOAD B TO I/O PORT REGISTER ;ONLY P02 & P03 TERMINALS CAN OUTPUT DATA

Programming note

When in the input mode, I/O port is changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input port, set an appropriate wait time.

6.6 LCD Driver

I/O data memory of The control registers of the LCD driver are shown in Table 6.6.1. **the LCD driver**

Table 6.6.1 Control registers of LCD driver

Address		Reg	ister										C	ommo	nt		
*6	D3	D2	D1	D0	Name	Init *	1	1		0			U	omme	m		
	LDTY1	LDTY0	0	LCDON	LDTY1	0					LC	D drive	e duty s	electio	n		
	R	:/W	R	R/W	LDTY0	0					0:	1/4, 1	: 1/3, 2	2:1/2,	3:1/1		
					0	- *2	2				Unus	ed					*5
					LCDON	0		ON	C)FF	LCD display control (LCD display all off)			Ŧ)			
*1 Initial value at initial reset *2 Not set in the circuit *3 Undefined							*4 *5 *6	Inhibi Const Page s	t sta antl swit	ate (c y "0' chin	output '' whe g in I/	port v n bein O me	will b g read mory	e set t d is not	o "1")) ssary	
Addres Page	s *1 Hig	Low h	0 1	2	3	4 5	6	6 7	7	8	9	А	В	С	D	Е	F
0-4		8 9 A			I	Display 48 w	m ord	emoi ls x 4	ry a bit	area ts (V	(80H Vrite	H–AF only	=H) ′)				

*1 Page switching in display memory is not necessary

Fig. 6.6.1 Display memory map

Control of the LCD driver

The E0C62T3 contains 192 bits of display memory in addresses 80H to AFH of the data memory.

It's LCD common can be software programmable for 4 COM, 3 COM, 2 COM or 1 COM. So each display memory can be assigned to any 128 bits of the 192 bits for the LCD driver (32 SEG \times 4 COM), 96 bits of 192 bits (32 SEG \times 3 COM), 64 bits of 192 bits (32 SEG \times 2 COM), or 32 bits of the 192 bits (32 SEG \times 1 COM) by using a segment mask option. The remaining 64 bits, 96 bits, 128 bits or 160 bits of display memory are not connected to the LCD driver, and are not output even when data is written. An LCD segment is on with "1" set in the display memory, and off with "0" set in the display memory. Note that the display memory is a write-only RAM.

• LCD drive duty selection is control by registers LDTY1 and LDTY0 (DEH•D3, D2).

Table 6.6.2 LCD drive duty selection

LDTY1	LDTY0	LCD drive duty
0	0	1/4 (dynamic)
0	1	1/3 (dynamic)
1	0	1/2 (dynamic)
1	1	1/1 (dynamic)

- LCD display ON/OFF is controlled by register LCDON (DEH•D0).
 - Set LCDON to "1" to turn on LCD. Set LCDON to "0" to turn off LCD.

Figure 6.6.2 is an example of the 7-segment LCD assignment.

A .1.1	Register								
Address	D3	D2	D1	D0					
090H	d	с	b	а					
091H		g	f	e					

Fig. 6.6.2 7-segment LCD assignment

In the assignment shown in Figure 6.6.2, the 7-segment display pattern is controlled by writing data to display memory addresses 90H and 91H.

Example program	LCD co	LCD common control and display ON/OFF									
for the LCD driver	Label	Mnem	onic/operand	Comm	nent						
	;*										
for the LCD driver	;* LCD DRIVER										
	;*	;*									
	;* TURN ON LCD AND USE 4 COMMONS										
	;										
	ZLCDC	EQU	0 deh	;LCD	CONTROL REGISTER						
	;										
		LD	X,ZLCDC	;SET	LCD CONTROL REGISTER ADDRESS						
		LD	MX,0001B	;SET	DUTY AS 1/4 (4 COMMONS)						
				;SET	LCD DISPLAY ON						
	;										

ICD common control and display ON/OFF

Displaying 7-segment

The LCD display routine using the assignment of Figure 6.6.2 can be programmed as follows.

Label	Mnemo	nic/operand	Comment								
; *											
;* LCD	DRIVEF	2									
; *											
;* SEV	EN SEGN	IENT CHARAC	TER GENERATOR								
;											
	ORG	000H									
	RETD	3FH	;0 IS DISPLAYED								
	RETD	06H	;1 IS DISPLAYED								
	RETD	5BH	;2 IS DISPLAYED								
	RETD	4FH	;3 IS DISPLAYED								
	RETD	66H	;4 IS DISPLAYED								
	RETD	6DH	;5 IS DISPLAYED								
	RETD	7DH	;6 IS DISPLAYED								
	RETD	07H	;7 IS DISPLAYED								
	RETD	7FH	;8 IS DISPLAYED								
	RETD	бғн	;9 IS DISPLAYED								
;											
SEVENS	:										
	LD	в,0	;prepare b as 0 for jump								
	LD	Х,090Н	;SET LCD DISPLAY MEMORY ADDRESS								
	JPBA		;JUMP TO TABLE								

When the above routine is called (by the CALL or CALZ instruction) with any number from "0" to "9" set in the A register for the assignment of Figure 6.6.3, seven segments are displayed according to the contents of the A register.

	A register	Display								
Fig. 6.6.3	0		2		4	Ĺ	6	6	8	8
Data set in A register and display patterns	1		3	Ξ	5	5	7	7	9	9

The RETD instruction can be used to write data to the display memory only if it is addressed using the X register. (Addressing using the Y register is invalid.)

Note that the stack pointer must be set to a proper value before the CALL (CALZ) instruction is executed.

Bit-unit operation of the display memory

ment of Figure 6.6.4, a buffer must be provided in RAM to hold data. Note that, since the display memory is write-only, data cannot be changed directly using an ALU instruction (for example, AND or OR).

After manipulating the data in the buffer, write it into the corresponding display memory using the transfer command.

Programming notes

- (1) The contents of the display memory are undefined until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
 - (2) Since the display memory area is write-only, display data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).

6.7 Clock Timer

I/O data memory of The control registers of the clock timer are shown in Table 6.7.1. **the clock timer**

Table 6.7.1 Control registers of clock timer

Address		Reg	ister						Commont			
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment			
	IT1	IT2	IT16	IT32	IT1	0	Yes	No	Interrupt factor flag (clock timer 1 Hz) Clear to 0 after read out			
			R		IT2	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)			
C4H					IT16	0	Yes	No	Interrupt factor flag (clock timer 16 Hz)			
					IT32	0	Yes	No	Clear to 0 after read out Interrupt factor flag (clock timer 32 Hz) Clear to 0 after read out			
	EIT1	EIT2	EIT16	EIT32	EIT1	0	Enable	Mask	Interrupt mask register (clcok timer 1 Hz)			
DALL		R	/W		EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)			
					EIT16	0	Enable	Mask	Interrupt mask register (clock timer 16 Hz)	I		
					EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)	I.		
	0	0	0	TMRST	0	- *2			Unused	*5		
Dall		R		w	0	- *2			Unused	*5		
D9H					0	- *2			Unused	*5		
					TMRST	- *2	Reset	Invalid	Clock timer reset	*5		
	TM3	TM2	TM1	TM0	TM3	- *3			Clock timer data (low-order) 16 Hz			
			R		TM2	- *3			Clock timer data (low-order) 32 Hz			
DAH					TM1	- *3			Clock timer data (low-order) 64 Hz			
					ТМО	- *3			Clock timer data (low-order) 128 Hz			
	TM7	TM6	TM5	TM4	TM7	- *3			Clock timer data (high-order) 1 Hz			
			R		TM6	- *3			Clock timer data (high-order) 2 Hz			
DBH					TM5	- *3			Clock timer data (high-order) 4 Hz			
					TM4	- *3			Clock timer data (high-order) 8 Hz			

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read
Control of the clock timer

 ${\tt E0C62T3}$ has a clock timer with OSC1 (crystal oscillation) as basic oscillation built-in.

Clock timer data

The 128–1 Hz timer data of the clock timer can be read out with TM0–TM7 registers (DAH and DBH).

Clock timer reset

By writing "1" on TMRST (D9H•D0), the clock timer is reset and all timer data are set to "0".

Timer interrupt

The clock timer interrupt is generated at the falling edge of the frequencies (32 Hz, 16 Hz, 2 Hz and 1 Hz). At this time, the corresponding interrupt factor flag (IT32, IT16, IT2 and IT1) is set to "1". Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (EIT32, EIT16, EIT2 and EIT1). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to "1" at the falling edge of the corresponding signal.

Address	Register	Frequency	Clock timer timing chart
	D0	128 Hz	
DAH	D1	64 Hz	
	D2	32 Hz	
	D3	16 Hz	
	D0	8 Hz	
ПВП	D1	4 Hz	
	D2	2 Hz	
	D3	1 Hz	
32 Hz	interrup	t request	* * * * * * * * * * * * * * * * * * * *
16 Hz interrupt request			t t t t t t t t t t t t t t t t
2 Hz	interrup	t request	t t
1 Hz	interrup	t request	t

Fig. 6.7.1 Timing chart of clock timer

Example program for the clock timer

Following program shows the clock timer controlling procedure.

Label	Mnemor	nic/operand	Comment
;*			
;* CLOC	K TIMER	2	
;*			
ZIT	EQU	0C4H	CLOCK TIMER INTERRUPT FACTOR FLAG
ZEIT	EQU	OD1H	CLOCK TIMER INTERRUPT MASK REGISTER
ZTMRST	EQU	0D9H	CLOCK TIMER RESET
ZTML	EQU	0DAH	CLOCK TIMER DATA LOW
ZTMH	EQU	0DBH	CLOCK TIMER DATA HIGH
;			
	ORG	102H	
	JP	TMINIT	;TIMER INTERRUPT ROUTINE
;			
TMINIT:			
	LD	X,ZTMRST	RESET CLOCK TIMER
	OR	MX,0001B	
;			
	DI		
	LD	X,ZIT	;RESET IT FLAGS
	LD	A,MX	
;			
	LD	X,ZEIT	;SET ADDRESS TO TIMER MASK REGISTER
	LD	MX,0100B	;ENABLE TIMER 2 Hz INTERRUPT
	EI		
	RET		
;			
;* CLOC	K TIMER	INTERRUPT	
TMINT:			
	LD	X,ZIT	;LOAD TIMER INTERRUPT FLAG TO B REGISTER
	LD	B,MX	
;	:		
;	DO THE	PROCEDURE	FOR 2 Hz INTERRUPT SERVICE
;	:		
	EI		
	RET		
;			
;*			
;* READ	TIMER	DATA TO (B	A) REGISTERS
;*			
READTM:			
	LD	X,ZTML	;SET TO TIMER DATA ADDRESS
	LDPX	A,MX	;READ TIMER LOW INTO A REGISTER
	LD	B,MX	;READ TIMER HIGH INTO B REGISTER
	RET		
;			

Programming notes	(1) Clock timer data is not reset at initial reset. It can be reset by software, writing "1" to TMRST.
	(2) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to "1". Consequently, perform flag read (reset the flag) as necessary at reset.
	(3) When reading both timer data, TMH (DBH) and TML (DAH), after reading TML, TMH should be read within 0.5 msec, other- wise, the hardware can not guarantee the readout is correct.
	(4) Be sure that writing to the interrupt mask register is done with the interrupt in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause malfunction.
	(5) Read the interrupt factor flag in the DI status (interrupt flag = "0"). Reading of interrupt factor flag is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the inter-
	rupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing or an
	interrupt request will not be generated. Be very careful when
	interrupt factor flags are in the same address.

6.8 SVD (Supply Voltage Detection) Circuit

I/O data memory of The control registers of the SVD circuit are shown in Table 6.8.1. **the SVD circuit**

Table 6.8.1 Control registers of SVD circuit

Address		Reg	ister				-		Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	SVDDT	SVDON	0	- *2			Unused	*5
		R		R/W	0	- *2			Unused	*5
DFH					SVDDT	0	Supply voltage Low	Supply voltage Normal	Supply votage detector data	
					SVDON	0	ON	OFF	SVD circuit ON/OFF	

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*6 Page switching in I/O memory is not necessary

Control of the SVD circuit

The E0C62T3 has a built-in SVD (supply voltage detection) circuit which allows detection of power voltage drop through software. Turning the SVD operation on and off can be controlled through the software (SVDON: DFH•D0). Because the IC consumes a large amount of current during SVD operation, it is recommended that the SVD operation be kept OFF unless it is otherwise necessary. The SVD criteria voltage is 1.8 V.

When SVDON is set to "1", SVD detection is executed. As soon as SVDON is set to "0" the detection result is loaded to the SVDDT register. To obtain a stable result, the SVD circuit must be set to ON with at least 100 µsec. Hence, to obtain the SVD detection result, follow the programming sequence below.

- 1. Set SVDON to "1" (ON)
- 2. Maintain at least 100 μ sec minimum
- 3. Set SVDON to "0" (OFF)
- 4. Read out SVDDT

However, when a crystal oscillation clock (fosc1) is selected for CPU system clock, the instruction cycle are long enough, so that there is no need for concern about maintaining 100 μ sec for the SVDON = "1" with the software.

Example proaram	Following program shows the SVD controlling procedure.								
for the SVD circuit	Label	Mnemo	onic/operand	Comment					
	; *								
	;* SVD ;*	(CPU	CLOCK IS OS	SC1)					
	ZSVDC	EQU	0 dfh	;SVD CONTROL REGISTER					
	;								
	SVDCHK	:							
		LD	X,ZSVDC						
	;								
		OR	MX,0001B	;START CHECK SUPPLY VOLTAGE					
		AND	MX,1110B	;TURN OFF SVD					
	;								
		LD RET	A,MX	;READ SVD DATA INTO A REGISTER'S BIT 1					

Programming notes	(1) The SVD circuit should normally be turned OFF (SVDON = "0") as the consumption current of the IC becomes large when it is ON (SVDON = "1").
	(2) To obtain a stable result, the SVD circuit must be set to ON with at least 100 µsec. Hence, to obtain the SVD detection result, follow the programming sequence below.
	 Set SVDON to "1" (ON) Maintain at least 100 µsec minimum Set SVDON to "0" (OFF) Read out SVDDT
	However, when a crystal oscillation clock (fosc1) is selected for CPU system clock, the instruction cycle are long enough, so that there is no need for concern about maintaining 100 µsec

for the SVDON = "1" with the software.

E0C62T3 TECHNICAL SOFTWARE

6.9 Telephone Function

I/O data memory of the telephone function

The control registers of the telephone function are shown in Tables 6.9.1(a)–(d).

Table 6.9.1(a) Control registers of telephone function

Address		Register							Comment	
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	0	0	0	ID	0	- *2			Unused	*5
			R		0	- *2			Unused	*5
C5H					0	- *2			Unused	*5
					ID	0	Yes	No	Interrupt factor flag (dialing) Clear to 0 after read out	
	0	0	0	EID	0	- *2			Unused	*5
Dout		R		R/W	0	- *2			Unused	*5
D2H					0	- *2			Unused	*5
			_		EID	0	Enable	Mask	Interrupt mask register (dialing)	
	R13	R12	R11	R10	R13	0	High *4	Low	Output port (R13)	
	HFO	HDO	BZ	BZ	R12	0	– High *4	Low	Output port (R12)	
D3H					R11	0	High	Low	Output port (R11)	
		R	/W		BZ	0	- *4 Lliab	ON	Buzzer output (BZ) Output port (B10)	
					BZ	0	- *4	ON	Buzzer inverted output (\overline{BZ})	
	0	0	CLKCHG	OSCC	0	- *2			Unused	*5
		R	R	/W	0	- *2			Unused	*5
D8H					CLKCHG	0	OSC3	OSC1	CPU system clock switch	
					OSCC	0	ON	OFF	OSC3 oscillation ON/OFF	
	TPS	0	MB	DRS	TPS	0	PULSE	TONE	Tone / pulse mode selection	
	R/W	R	R	/W	0	- *2			Unused	*5
E0H			1		МВ	0	33.3:66.6	40:60	Make : Break ratio selection	
					DRS	0	20 pps	10 pps	Dialing pulse rate selection	
1	1				1		1	1	1	

*1 Initial value at initial reset

*2 Not set in the circuit

*3 Undefined

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*6 Page switching in I/O memory is not necessary

Address	D 2	Reg	ister	DO	Nome	In:it *1	4	0	Comment	
.0	PTS3	PTS2	PTS1	PTS0	PTS3	0	1	0	Pause time selection	
 	1100	R/	W	1100	PTS2	1			0 : Use inhibited 8 : 8 sec 1 : 1 sec 9 : 9 sec 2 : 2 sec A : 10 sec	
	Defa	ult value : 4	seconds		PTS1 PTS0	0			3 : 5 sec B : 11 sec 4 : 4 sec C : 12 sec 5 : 5 sec D : 13 sec 6 : 6 sec E : 14 sec 7 : 7 sec F : 15 sec	
	FTS3	FTS2	FTS1	FTS0	FTS3	0			Flash time selection 0 : Use inhibited 8 : 750 ms	
		R/	W		FTS2	1			1: 94 ms 9: 844 ms 2:188 ms A: 938 ms	
E2H					FTS1	1			3 : 281 ms B : 1031 ms 4 : 375 ms C : 1125 ms	
	Defa	ult value : 5	63 ms		FTS0	0			5 : 469 ms D : 1219 ms 6 : 563 ms E : 1313 ms 7 : 656 ms F : 1406 ms	
	0	HOLD	PAUSE	FLASH	0	- *2			Unused	*5
5011	R	R/W W			HOLD	0	On	Off	Hold-line function	
E3H		1	1		PAUSE	0	Yes	No	Pause function	*5
					FLASH	0	Yes	No	Flash function	*5
	HF	0	0	0	HF	0	Yes	No	Hand free	
	R/W		R		0	- *2			Unused	*5
E4H		1			0	- *2			Unused	*5
					0	- *2			Unused	*5
	IDP3	IDP2	IDP1	IDP0	IDP3	1			Inter-digit pause selection for dial pulse 0 : Use inhibited 8 : 750 ms	
		R	/W		IDP2	0			1: 94 ms 9: 844 ms 2: 188 ms A: 938 ms	
E5H	Defa	ult value : 7	50 ms		IDP1 IDP0	0			3:281 ms B:1031 ms 4:375 ms C:1125 ms 5:469 ms D:1219 ms 6:563 ms E:1313 ms 7:656 ms F:1406 ms	

Table 6.9.1(b) Control registers of telephone function

*1 Initial value at initial reset

*2 Not set in the circuit

*4 Inhibit state (output port will be set to "1")

*5 Constantly "0" when being read

*3 Undefined

*6 Page switching in I/O memory is not necessary

Address	Register				Comment						
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment		
	0	0	SINR	SINC	0	- *2			Unused	*5	
	I	2	R/	W	0	- *2			Unused	*5	
E6H					SINR	1	Enable	Disable	DTMF row frequency output enable		
					SINC	1	Enable	Disable	DTMF column frequency output enable		
	TCD3	TCD2	TCD1	TCD0	TCD3	0			Telephone code for dialing TCD DTMF DP TCD DTMF	DP	
		R/W				0			0: (R_1C_4) Use inhibited 8: (R_3C_2) 1: (R_1C_1) 1 9: (R_3C_3) 2: (R_1C_2) 2 A (R_4C_2)	8 9 10	
E7H					TCD1	0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 12	
					TCD0	0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 14 15	
	0	0	CRMUT	CTMUT	0	- *2			Unused	*5	
5011	R R/W			0	- *2			Unused	*5		
E8H					CRMUT	1	Receive mute output	0	Receive mute control		
					СТМИТ	1	Transmit mute output	0	Transmit mute control		
	0	0	0	HSON	0	- *2			Unused	*5	
		R		R/W	0	- *2			Unused	*5	
E9H				1	0	- *2					
					HSON	0	Hook Off	Hook On	Hook switch ON/OFF		
	CHFO	CHDO	0	0	CHFO	0	Handfree	DC	R13 output selection		
	R	W		R	CHDO	0	Hold	DC	(R13 data register has to be "0") R12 output selection		
EAH			1		0	- *2	σαιραι		(K12 data register has to be "0") Unused	*5	
					0	- *2			Unused	*5	

Table 6.9.1(c) Control registers of telephone function

*1 Initial value at initial reset

*4 Inhibit state (output port will be set to "1") *5 Constantly "0" when being read

*2 Not set in the circuit

*3 Undefined

*6 Page switching in I/O memory is not necessary

Address		Reg	ister			Comment					
*6	D3	D2	D1	D0	Name	Init *1	1	0	Comment		
	СТО	0	0	0	сто	0	Continuous tone output ON	Continuous tone output OFF	Tone duration time control		
	R/W		R		0	- *2			Unused	*5	
					0	- *2			Unused	*5	
					0	- *2			Unused	*5	

Table 6.9.1(d) Control registers of telephone function

*1 Initial value at initial reset

*4 Inhibit state (output port will be set to "1")

*2 Not set in the circuit

*3 Undefined

*5 Constantly "0" when being read

*6 Page switching in I/O memory is not necessary

Features of the telephone function

The E0C62T3 has a built-in telephone function. It includes the following functions:

- (1) Hook switch control
- (2) Mute function
- (3) Dialing tone (DTMF)
- (4) Dialing pulse (DP)
- (5) Pause function
- (6) Flash function
- (7) Hold-line
- (8) Handfree

Tone/Pulse selection

Before dialing a number, software program should select DP or DTMF mode by writing TPS register. When writing TPS (E0H•D3) to "1", it will be dialed in DP mode. When writing TPS to "0", it will be dialed in DTMF mode.

At initial reset, TPS is set to "0" (DTMF mode).

Interrupt

The telephone function also provides an interrupt when each of the following condition occurs:

- End of a dialing number cycle by DP mode.
- End of a dialing number cycle by DTMF mode.
- End of a pause function dialing cycle.
- End of a flash function dialing cycle.

At the end of each above cycle, the interrupt factor flag ID (C5H•D0) will be set to "1". <u>For activating next dialing function</u>, software program should perform a reading of ID register in order to clear it. Otherwise, the next dialing (dialing number by DP or DTMF, dialing a pause function or flash function) can not be executed.

	The telephone dialing interrupt can be enabled or masked by writing interrupt mask register EID (D2H•D0). When writing "1" to EID register, the dialing interrupt is enabled. When writing "0" to EID register, the dialing interrupt is masked.							
Control of the hook switch	The hook switch control register HSON (E9H•D0) is to set the elephone in OFF-HOOK state or ON-HOOK state. When writing "1" to HSON register, the telephone will become OFF-HOOK state (DP terminal goes high level). When writing "0" to HSON, telephone will become ON-HOOK state (DP terminal goes low level). Before using the telephone, software program should set HSON to '1" for OFF-HOOK state. At initial reset, HSON is set to "0".							
Example program for the hook switch control	Following program shows the hook switch controlling procedure. Label Mnemonic/operand Comment ;* ;* ;*							
	;* ZHSON EQU 0E9H ;HOOK SWITCH REGISTER ; ;*							
	;* SET TO OFF-HOOK STATE ;* LD X,ZHSON LD MX,1 ; : ; :							
	;* SET TO ON-HOOK STATE ;* LD X,ZHSON LD MX,0 ; : ; : ;							

Control of the mute function	There are two terminals (RMUTE and TMUTE) for telephone mute function. The RMUTE terminal is used for receiving mute; the TMUTE terminal is used for transmitting mute. Software program can force RMUTE terminal to low level (Vss) by writing "0" to CRMUT register (E8H•D1). When writing "1" to CRMUT register, the RMUTE terminal can be controlled by tel- ephone function (during dialing pulse cycle or flash function cycle, it will go to low level).									
	Software program can force $\overline{\text{TMUTE}}$ terminal to low level (Vss) by writing "0" to CTMUT register (E8H•D0). When writing "1" to CTMUT register, the $\overline{\text{TMUTE}}$ terminal can be controlled by telephone function (during dialing pulse cycle, flash function cycle, dialing tone cycle or hold-line function).									
	At initial reset, both of CTMUT and CRMUT registers are set to "1".									
Example program	Following program shows the mute function controlling procedure.									
for the mute function	Label Winemonic/operand Comment									
	, ;* MUT ;*	E FUNC	TION							
	ZMUT	EQU	0E8H	;MUTE CONTROL ADDRESS						
	CRMUT	EQU	0010B	;RECEIVE MUTE CONTROL BIT						
	CTMUT	EQU	0001B	;TRANSMIT MUTE CONTROL BIT						
	i	LD	Y 7MTTT							
		AND	MX, (NOT	CRMUT) AND OFH						
	;	:								
	;	:								
		LD	X,ZMUT	;SET /TMUTE TERMINAL TO LOW LEVEL						
		AND	MX,(NOT	CTMUT) AND OFH						
	;	:								
	i	: LD	X,ZMUT	;SET /RMUTE & /TMUTE TERMINALS CONTROLLED						
		OR	MX,(CRM	UT OR CTMUT)						
	;	:								
	;	:								

;

Control of the dialing tone (DTMF)

For dialing a number in tone mode, software program should give appropriate values for the following registers.

- (1) TPS (E0H•D3): Tone/Pulse mode selection register Writes "0" to TPS for selecting dialing tone mode.
- (2) EID (D2H•D0): Interrupt mask registerWrites "1" to EID for enable dialing interrupt.Writes "0" to EID for mask dialing interrupt.
- (3) SINR (E6H•D1) and SINC (E6H•D0):

DTMF row and column frequency output enable register The signal of DTMF, it includes two frequencies, row and column frequencies. On the output of DTMF, the row frequency can be controlled by SINR and the column frequency can be controlled by SINC. The SINR and SINC registers can be arranged to control DTMF's output as DC level, single tone or dual tone output.

Table 6.9.2 lists the selection of tone output.

Table 6.9.2 Selection of tone output

Control	registers	Tone output					
SINR	SINC						
0	0	DC level : $\frac{1}{2}$ (VDD–Vss)					
0	1	Column frequencies					
1	0	Row frequencies					
1	1	Dual tone output					

The default selection is dual tone output. At initial reset, these registers are set to "1".

(4) CTO (EBH•D3): Tone duration time control register

A complete dialing tone cycle includes tone duration time period and tone inter-digit pause time period.

When finishing this cycle, it will generate an interrupt.

The tone inter-digit pause time is always fixed to 94 msec.

The tone duration time is controlled by CTO register.

The minimum value of tone duration time is 94 msec.

When CTO is set to "0", tone duration time will be output with the minimum time (94 msec).

When CTO is set to "1", tone duration time will be output until the CTO is changed to "0". If the period (CTO is changed from "1" to "0"), which is controlled by CTO, is less than 94 msec.

The duration time will be prolonged to 94 msec.

At initial reset, this register is set to "0".

(5) OSCC (D8H•D0): OSC3 oscillation ON/OFF control register Because the DTMF's frequencies are based on 3.58 MHz frequency, so before output DTMF's signal, software program should turn on OSC3 oscillator. By writing "1" to OSCC register, and waiting about 5 msec, the OSC3 will be turned on and stable.

After setting the above registers, then software program can start dialing a digit in tone mode by writing a code into telephone code register TCD (E7H). Table 6.9.3(a) shows the dual tone frequencies related to the TCD register when both SINR and SINC registers are set to "1" (dual tone mode).

Table 6.9.3(b) shows the single column frequency related to the TCD register when SINC register is set to "1" and SINR register is set to "0".

Table 6.9.3(c) shows the single row frequency related to the TCD register when SINR register is set to "1" and SINC register is set to "0".

Table 6.9.3(a) Relationship of code and tone frequencies

Т	'CD's	COC	le	Tone	Key's	TCD's code			le	Tone	Key's
D3	D2	D1	D0	frequencies	symbol	D3	D2	D1	D0	frequencies	symbol
0	0	0	0	(ROW1, COL4)		1	0	0	0	(ROW3, COL2)	"8"
0	0	0	1	(ROW1, COL1)	"1"	1	0	0	1	(ROW3, COL3)	"9"
0	0	1	0	(ROW1, COL2)	"2"	1	0	1	0	(ROW4, COL2)	"0"
0	0	1	1	(ROW1, COL3)	"3"	1	0	1	1	(ROW4, COL3)	"#"
0	1	0	0	(ROW2, COL1)	"4"	1	1	0	0	(ROW4, COL1)	"*"
0	1	0	1	(ROW2, COL2)	"5"	1	1	0	1	(ROW2, COL4)	
0	1	1	0	(ROW2, COL3)	"6"	1	1	1	0	(ROW4, COL4)	
0	1	1	1	(ROW3, COL1)	"7"	1	1	1	1	(ROW3, COL4)	

	Table 6.9.3(b)
Relationship of	TCD's code and
С	olumn frequency

Т	CD's	coc	le	Column froquency	Т	CD's	COC	le	
D3	D2	D1	D0	Column frequency	D3	D2	D1	D0	Column nequency
0	0	0	0	COL4	1	0	0	0	COL2
0	0	0	1	COL1	1	0	0	1	COL3
0	0	1	0	COL2	1	0	1	0	COL2
0	0	1	1	COL3	1	0	1	1	COL3
0	1	0	0	COL1	1	1	0	0	COL1
0	1	0	1	COL2	1	1	0	1	COL4
0	1	1	0	COL3	1	1	1	0	COL4
0	1	1	1	COL1	1	1	1	1	COL4

Table 6.9.3	(C)
Relationship of TCD's code a	nd
row frequen	су

	TCD's	s coc	le	Row froquency	TCD's code			le	Row frequency	
D3	D2	D1	D0	Row frequency	D3	D2	D1	D0	Row frequency	
0	0	0	0	ROW1	1	0	0	0	ROW3	
0	0	0	1	ROW1	1	0	0	1	ROW3	
0	0	1	0	ROW1	1	0	1	0	ROW4	
0	0	1	1	ROW1	1	0	1	1	ROW4	
0	1	0	0	ROW2	1	1	0	0	ROW4	
0	1	0	1	ROW2	1	1	0	1	ROW2	
0	1	1	0	ROW2	1	1	1	0	ROW4	
0	1	1	1	ROW3	1	1	1	1	ROW3	

	When signal. durati TMUT msec f p <u>urpos</u> level if	writing TMUT on time E termi From the se of th next n	a code to 7 E terminal period and nal will be e end of the e extra 4 m umber is di	TCD, TONE terminal will output DTMF's will go to low level (Vss) during tone I tone inter-digit pause time period. continuously kept on low level about 4 e tone inter-digit pause time period. <u>The</u> usec is for the <u>TMUTE</u> terminal remain low ialed within 4 msec.					
	When (C5H•) softwa to clea DTMF execut	comple D0) will <u>re prog</u> <u>r it. Ot</u> <u>, dialin</u> g <u>ed</u> .	ting tone d: be set to " <u>ram should</u> <u>herwise, th</u> <u>g a pause fi</u>	ialing cycle, the interrupt factor flag ID 1". <u>For activating next dialing function,</u> <u>1 perform a reading of ID register in order</u> <u>e next dialing (dialing number by DP or</u> unction or flash function) can not be					
Example program	Follow	ing pro	gram show	s the dialing tone controlling procedure.					
for the dialing tone	Label	Mnemo	onic/operand	Comment					
-	;* ;* DIA ;*	;* ;* DIALING DTMF EXAMPLE .*							
	ZID ZEID ZOSCC ZTPS ZSIN ZTCD ZHSON ZCTO ; ; * ;* ;* USI	EQU EQU EQU EQU EQU EQU EQU ORG JP NG INTE	OCSH OD2H OD8H OE0H OE6H OE9H OEBH 104H DILINT RRUPT AND F	;DIALING INTERRUPT MASK REGISTER ;CPU CLOCK CONTROL ;TONE/PULSE SELECTION ADDRESS ;DTMF ROW, COLUMN FREQ. CONTROL REGISTERS ;TELEPHONE CODE DIALING REGISTER ;HOOK SWITCH CONTROL REGISTER ;CONTINUOUS TONE OUTPUT CONTROL REGISTER ;DIALING INTERRUPT VECTOR ADDRESS FIX TONE OUTPUT DURATION					
		DI LD LD LD LD EI	X,ZID A,MX X,ZEID MX,1H	CLEAR NULL INTERRUPT FLAG					
	,	11 11 11 11 11 11 11 11 11 11 11 11 11	X,ZTPS MX,0 X,ZSIN MX,0011B X,ZHSON MX,1	; SET TO TONE MODE ; SET TO DUAL TONE ; TURN ON HOOK SWITCH					
		LD CALL	X, ZCTO MX, 0 OSC3ON	; SET NO CONTINUOUS TONE OUTPUT ; (FIX TONE OUTPUT DURATION) ; THEN ON OSC3					

;

X,ZTCD ;DIALING CODE "3" LD LD MX,3 HALT ;CPU HALT AND WAITING DIALING INTERRUPT ;DIALING CODE "9" ΤD X,ZTCD LD MX,9 ;CPU HALT AND WAITING DIALING INTERRUPT HALT ; : ; : ; : DILINT: X,ZID ;READING INTERRUPT FACTOR FLAG LDA,MX LDΕT RET ;* ;* USING POLLING AND CONTINUOUS OUTPUT (WITH SINGLE ROW FREQUENCY) ;* LD X,ZEID ;DISABLE DIALING INTERRUPT LD MX,0 ; LDX, ZTPS ; SET TO TONE MODE MX,0 ТD X,ZSIN ;SET TO SINGLE ROW TONE LD LDMX,0010B LD X,ZHSON ;TURN ON HOOK SWITCH LD MX,1 CALL OSC30N ;TURN ON OSC3 ; ;SET TO CONTINUOUS TONE OUTPUT LD X,ZCTO LD MX,1000B ;DIALING CODE "6" LD X,ZTCD LDMX,6 ; : (SOME PROCEDURE OR WAITING KEY RELEASE) ; ; : LD X,ZCTO ; TURN OFF CONTINUOUS TONE OUTPUT LD MX,0 ; X,ZID ;WAITING ID = 1 LD WAIT1: MX,0001B ;(IT ALSO CLEAR ID TO "0" WHEN ID IS "1") FAN JP Z,WAIT1 ; LDX,ZCTO ;SET TO CONTINUOUS TONE OUTPUT LD MX,1000B LD X,ZTCD ; DIALING ANOTHER CODE "8" LD MX,8 ; : (SOME PROCEDURE OR WAITING KEY RELEASE) ; ; : LD X,ZCTO ;TURN OFF CONTINUOUS TONE OUTPUT MX,0 LD ; ;WAITING ID = 1 LD X,ZID

```
WAIT2:
        FAN
               MX,0001B ;(IT ALSO CLEAR ID TO "0" WHEN ID IS "1")
        JP
               Z,WAIT2
        :
;
        :
;
;*
;* TURN ON OSC3
;*
OSC3ON:
                         ;SET OSC3 ON
        ΤD
               X,ZOSCC
        OR
               MX,0001B
;
               A,OEH
                          WATT 5mS
        ΤD
OS3DLP:
               A,OFH
        ADD
        JP
               NZ,OS3DLP
;
        RET
;
```

Control of the dial	ing
pulse (DP)	

For dialing a number in pulse mode, software program should give appropriate values for the following registers.

- TPS (E0H•D3): Tone/Pulse mode selection register Writes "1" to TPS for selecting dialing pulse mode.
- (2) EID (D2H•D0): Interrupt mask registerWrites "1" to EID for enable dialing interruptWrites "0" to EID for mask dialing interrupt
- (3) MB (E0H•D1): Make:Break ratio selection register When writing "1" to MB, the ratio will be set to 33.3:66.6. When writing "0" to MB, the ratio will be set to 40:60. At initial reset, it is set to 40:60 ratio.
- (4) DRS (E0H•D0): Dialing pulse rate selection register When writing "1" to DRS, it will be set to 20 pps (pulse per second).When writing "0" to DRS, it will be set to 10 pps. At initial reset, it is set to 10 pps.
- (5) IDP (E5H): Inter-digit pause time selection registers A complete dialing pulse cycle includes dialing number period and inter-digit pause time period. When finishing this cycle, it will generate an interrupt. The inter-digit pause time is selected by IDP registers as shown in Table 6.9.4.

Table 6.9.4

	IC	P		Inter-digit		IC	P	Inter-digit	
D3	D2	D1	D0	pause (ms)	D3	D2	D1	D0	pause (ms)
0	0	0	0	Use inhibited *	1	0	0	0	750
0	0	0	1	94	1	0	0	1	844
0	0	1	0	188	1	0	1	0	938
0	0	1	1	281	1	0	1	1	1031
0	1	0	0	375	1	1	0	0	1125
0	1	0	1	469	1	1	0	1	1219
0	1	1	0	563	1	1	1	0	1313
0	1	1	1	656	1	1	1	1	1406

* If software program writes a code of "OH" into IDP, it will cause a malfunction.

After setting the above registers, then software program can start to dial a number in pulse mode by writing a code into telephone code register TCD (E7H). Table 6.9.5 shows the counts of pulse related to the TCD register.

Table 6.9.5 Relationship of code and pulse's count

Selection of inter-digit pause time

Т	CD's	coc	le	Counts of pulse	TCD's code				Counts of pulse
D3	D2	D1	D0	(pulses)	D3	D2	D1	D0	(pulses)
0	0	0	0	Use inhibited *	1	0	0	0	8
0	0	0	1	1	1	0	0	1	9
0	0	1	0	2	1	0	1	0	10
0	0	1	1	3	1	0	1	1	11
0	1	0	0	4	1	1	0	0	12
0	1	0	1	5	1	1	0	1	13
0	1	1	0	6	1	1	1	0	14
0	1	1	1	7	1	1	1	1	15

* If software program writes a code of "OH" into TCD register, it will cause a malfunction.

When writing a code into TCD register, DP terminal will output dialing pulses (make period is before break period). RMUTE and TMUTE terminals will go to low level (Vss) during dialing number period and inter-digit pause time period. Both terminals (RMUTE and TMUTE) will be continuously kept on low level about 4 msec from the end of the inter-digit pause time period. The purpose of the extra 4 msec is for the TMUTE and RMUTE terminals to remain low level if next number is dialed within 4 msec.

When completing the dialing pulse cycle, the interrupt factor flag ID (C5H•D0) will be set to "1". <u>For activating next dialing function</u>, software program should perform a reading of ID register in order to clear it. Otherwise, the next dialing (dialing number by DP or DTMF, dialing a pause function or flash function) can not be <u>executed</u>.

Example program for the dialing pulse

Following program shows the dialing pulse controlling procedure.

Label	Mnemo	onic/operand	Comment						
;*									
;* DIAI	LING PU	JLSE EXAMPLE	2						
;*									
ZID	EQU	0С5н	; DIALING INTERRUPT FACTOR FLAG						
ZEID	EQU	0D2H	; DIALING INTERRUPT MASK REGISTER						
ZTPS	EQU	0E0H	;TONE/PULSE, MB, DRS SELECTIONS ADDRESS						
ZIDP	EQU	0E5H	;INTER-DIGIT PAUSE SELECTION REGISTER						
ZTCD	EQU	0E7H	;TELEPHONE CODE DIALING REGISTER						
ZHSON	EQU	0E9H	HOOK SWITCH CONTROL REGISTER						
;									
	LD	X,ZEID	;DISABLE DIALING INTERRUPT						
	LD	MX,0							
;									
	LD	X,ZTPS	;SET TO PAUSE MODE						
	LD	MX,1000B	;SET MB IS 40:60						
			;SET DIALING PULSE RATE IS 10 PPS						
	LD	X,ZIDP	;SET INTER-DIGIT PAUSE IS 750 mS						
	LD	MX,8H							
	LD	X,ZHSON	TURN ON FOOK SWITCH						
	LD	MX,1							
;									
	LD	X,ZTCD	;DIALING CODE "6"						
	LD	МХ,6							
;	:								
	LD	X,ZID	;WAITING ID = 1						
WAIT1:									
	FAN	MX,0001B	;(IT ALSO CLEAR ID TO "0" WHEN ID IS "1")						
	JP	Z,WAIT1							
;	:								
;	:								
;									

Control of the pause function

For starting a pause function, software program should give appropriate values for the following registers.

- (1) EID (D2H•D0): Interrupt mask register
 Writes "1" to EID for enable dialing interrupt
 Writes "0" to EID for mask dialing interrupt
- (2) PTS (E1H): Pause time selection registers The time interval of pause function can be set by software program from 1 second to 15 seconds as shown in Table 6.9.6.

Table 6.9.6 Selection of pause time

	P	ΓS		Pause time	PTS				Pause time
D3	D2	D1	D0	(sec)	D3	D2	D1	D0	(sec)
0	0	0	0	Use inhibited *	1	0	0	0	8
0	0	0	1	1	1	0	0	1	9
0	0	1	0	2	1	0	1	0	10
0	0	1	1	3	1	0	1	1	11
0	1	0	0	4	1	1	0	0	12
0	1	0	1	5	1	1	0	1	13
0	1	1	0	6	1	1	1	0	14
0	1	1	1	7	1	1	1	1	15

* If software program writes a code of "OH" into PTS register, it will cause a malfunction.

At initial reset, the pause time is set to 4 seconds.

After writing the above registers, the software program can start dialing a pause function by writing "1" to PAUSE register (E3H•D1).

When writing "1" to PAUSE, it will pause a few seconds which is set by PTS register. During the pause time it will not affect any hardware terminals.

When completing the pause function, the interrupt factor flag ID (C5H•D0) will be set to "1". For activating next dialing function, software program should perform a reading of ID register in order to clear it. Otherwise, the next dialing (dialing number by DP or DTMF, dialing a pause function or flash function) can not be executed.

Example proaram	Following program shows the pause function controlling procedure.					
for the pause	Label	Mnemo	nic/operand	Comment		
function	;*					
	;* PAU	JSE TIME	FUNCTION	(USING INTERRUPT)		
	;*	BOIL	0.051	DIALING INTERDUCE DAGED DIAG		
	ZID	EQU	UC5H	DIALING INTERRUPT FACTOR FLAG		
	ZEID	EQU	UD2H	DIALING INTERRUPT MASK REGISTER		
	ZPTS	EQU	OEIH	PAUSE TIME SELECTION REGISTER		
	ZHOLD	EQU	UE3H	; HOLD, PAUSE, FLASH OUTPUT CONTROL ; ADDRESS		
	;					
		ORG	104H			
		JP	DILINT	; DIALING INTERRUPT VACTOR ADDRESS		
	;					
		DI				
		LD	X,ZID	CLEAR NULL INTERRUPT FLAG		
		LD	A,MX			
		LD	X,ZEID	;ENABLE DIALING INTERRUPT		
		LD	MX,1H			
		EI				
	;					
		LD	X,ZPTS	;SET PAUSE TIME SELECTION ADDRESS		
		LD	MX,6	;SET PAUSE TIME = 6 SECONDS		
	i					
		LD	X,ZHOLD	SET PAUSE CONTROL ADDRESS		
		ЪD	MX,0010B	STARTING PAUSE FUNCTION		
	'	יי דעד		CON UNTER AND WATETIC DIALING INTERDIDE		
		·		CPU HALI AND WAITING DIALING INTERCOPT		
	;					
	;	•				
	;*					
	;* DIA	LING IN	TERRUPT SI	ERVICE ROUTINE		
	;*					
	DILINI	:				
		LD	X,ZID	;READING INTERRUPT FACTOR FLAG		
		LD	A,MX			
		EI				
		RET				
	;					

Following program shows the pause function controlling procedure

Control of the flash function

For starting a flash function, software program should give appropriate values for the following register.

- EID (D2H•D0): Interrupt mask register
 Writes "1" to EID for enable dialing interrupt
 Writes "0" to EID for mask dialing interrupt
- (2) FTS (E2H): Flash time selection registers

The time interval of flash time can be set by software program from 94 msec to 1406 msec as shown in Table 6.9.7.

Table 6.9.7 Selection of flash times

	F	ΓS		Flash time		F	ΓS	Flash time	
D3	D2	D1	D0	(ms)	D3	D2	D1	D0	(ms)
0	0	0	0	Use inhibited *	1	0	0	0	750
0	0	0	1	94	1	0	0	1	844
0	0	1	0	188	1	0	1	0	938
0	0	1	1	281	1	0	1	1	1031
0	1	0	0	375	1	1	0	0	1125
0	1	0	1	469	1	1	0	1	1219
0	1	1	0	563	1	1	1	0	1313
0	1	1	1	656	1	1	1	1	1406

* If software program writes a code of "OH" into FTS register, it will cause a malfunction.

At initial reset, the flash time is set to 563 msec.

After setting the above registers, the software program can start dialing a flash function by writing "1" to FLASH register (E3H•D0). When writing "1" to FLASH, DP terminal will go to low level (Vss) for a few hundreds milliseconds which is set by FTS register. RMUTE and TMUTE terminals will go to low level during the flash time and flash pause time periods. Both terminals (RMUTE and TMUTE) will be continuously kept on low level about 4 msec from the end of flash pause time period. The purpose of the extra 4 msec is for the TMUTE and RMUTE terminals to remain low level if next number is dialed within 4 msec.

When completing the flash function, the interrupt factor flag ID (C5H•D0) will be set to "1". For activating next dialing function, software program should perform a reading of ID register in order to clear it. Otherwise, the next dialing (dialing number by DP or DTMF, dialing a pause function or flash function) cannot be executed.

Example program for the flash function

Following program shows the flash function controlling procedure.

Label	Mnemor	nic/operand	Comment
;*			
;* FLAS ;*	SH TIME	FUNCTION	(USING INTERRUPT)
ZID	EOU	0С5н	; DIALING INTERRUPT FACTOR FLAG
ZEID	EQU	0D2H	; DIALING INTERRUPT MASK REGISTER
ZFTS	EQU	0E2H	;FLASH TIME SELECTION REGISTER
ZHOLD	EQU	0E3H	;HOLD, PAUSE, FLASH OUTPUT CONTROL ; ADDRESS
ZHSON ;	EQU	0E9H	;HOOK SWITCH CONTROL REGISTER
	ORG	104H	
;	JP	DILINT	; DIALING INTERRUPT VACTOR ADDRESS
	DI		
	LD	X,ZID	CLEAR NULL INTERRUPT FLAG
	LD	A,MX	
	LD	X,ZEID	;ENABLE DIALING INTERRUPT
	LD	MX,1H	
	EI		
;			
	LD LD	X,ZHSON MX,1	;TURN ON HOOK SWITCH
;			
	LD	X,ZFTS	;SET FLASH TIME SELECTION ADDRESS
	LD	MX,8	;SET FLASH TIME = 750 mS
;			
	LD	X,ZHOLD	;SET FLASH CONTROL ADDRESS
	LD	MX,0001B	;STARTING FLASH FUNCTION
;			
	HALT		;CPU HALT AND WAITING DIALING INTERRUPT
;	:		
;	:		
;			
;*			
;* DIAL	ING IN	FERRUPT SEP	RVICE ROUTINE
;*			
DILINI:		W RTD	
	ТЪ	X,ZID	FREADING INTERRUPT FACTOR FLAG
	цр Бт	A,MX	
	ьт Dea		
	ΓĽ1		

Control of the hold- line function	 The E0C62T3 also has a built-in telephone hold-line function. Software program can set R12 terminal to hold-line output (HDO) terminal by writing "1" to CHDO register (EAH•D2) and writing "0" to R12 register. When R12 terminal is used as HDO output, it outputs the data which is written in the register HOLD (E3H•D2). When HOLD (E3H•D2) register is turned ON, TMUTE terminal goes low level (VSS) and HDO (R12) terminal goes high level (VDD). When HOLD register is turned OFF, TMUTE terminal goes high level (VDD) and HDO (R12) terminal goes low level (VSS). Hold-line function is a toggle selection and it does not generate interrupt. 					
Example program	Following program shows the hold-line function controlling proce- dure.					
function	Label	Mnemo	onic/operand	Comment		
	;* ;* HOL ;*	D-LINE	FUNCTION			
	ZR1 ZHOLD	EQU EQU	0D3H 0E3H	<pre>;R10-R13 REGISTERS ADDRESS ;HOLD, PAUSE, FLASH OUTPUT CONTROL ; ADDRESS</pre>		
	ZCHFO	EQU	0EAH	;R13 & R12 TERMINALS SELECTION ADDRESS		
	ì	LD AND	X,ZR1 MX,1011B	;R12 MUST SET TO "0" FOR HOLD-LINE ; FUNCTION		
	;	LD OR	X,ZCHFO MX,0100B	;SET R12 TERMINAL AS HOLD-LINE OUTPUT		
	;					
	;	LD LD :	X,ZHOLD MX,0100B	;SET HOLD CONTROL ADDRESS ;EXECUTING HOLD-LINE FUNCTION		
	;	: LD	X,ZHOLD	;SET HOLD CONTROL ADDRESS		
		LD	MX,0000B	;CANCELLING HOLD-LINE FUNCTION		

Control of the handfree function	For ha output termin and w When which When high le When low lev	 For handfree function, R13 terminal can be used as HFO (handfree output) signal output terminal. Software program can set R13 terminal to HFO output by writing "1" to CHFO register (EAH•D3) and writing "0" to R13 register. When R13 terminal is used as HFO output, it outputs the data which is written in the register HF (E4H•D3). When writing "1" to HF register, the HFO (R13) terminal output high level (VDD). When writing "0" to HF register, then HFO (R13) terminal output low level (Vss). 					
Example program for the handfree	Follow dure.	ving pro	ogram show	s the handfree function controlling proce-			
function	Label Mnemonic/operand Comment						
	;*						
	;* HAN ;*	IDFREE	FUNCTION				
	ZR1	EQU	0D3H	;R10-R13 REGISTERS ADDRESS			
	ZHF	EQU	0E4H	;HANDFREE OUTPUT CONTROL ADDRESS			
	ZCHFO	EQU	0 EAH	;R13 & R12 TERMINALS SELECTION ADDRESS			
	;						
		LD	X,ZR1	;R13 MUST SET TO "0" FOR HANDFREE			
		AND	MX,0111B	; FUNCTION			
	;	TD	V ROUTO				
		OD UD	X,ZCHFU	SEI RIS IERMINAL AS HANDFREE OUIPUI			
	;	OR	MA,1000B				
	,	ΓD	X.ZHF	SET HANDEREE CONTROL ADDRESS			
		OR	MX,1000B	SET HFO (R13) TERMINAL TO VDD			
	;	:	,				
	;	:					
		LD	X,ZHF	;SET HANDFREE CONTROL ADDRESS			
		AND	MX,0111B	;SET HFO TERMINAL TO VSS			
	;						

Programming notes	(1) When uses the DTMF, it is necessary to turn ON the 3.58 MHz oscillator. This function needs big current. Therefore, using DTMF dialing at off-hook or handfree status is the best.
	 (2) Read the interrupt factor flag in the DI status (interrupt flag = "0"). Reading of interrupt factor flag is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
	(3) Be sure that writing to the interrupt mask register is done with the interrupt in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause malfunction.
	(4) Before using the telephone, software program should set HSON (E9H•D0) register to "1" for OFF-HOOK state (DP terminal goes high level).
	(5) If software program writes a code of "0H" into TCD register in pulse mode, IDP, FTS or PTS registers, it will cause a malfunction.
	(6) Because pause function control register (E3H•D1) and flash function control register (E3H•D0) are write-only, software cannot use ALU instructions (AND, OR) on E3H resisters while dialing a pause or flash function cycle.

6.10 Interrupt

Interrupt vector, factor flag, and mask register When an interrupt request is issued to the CPU, the CPU starts interrupt processing.

Interrupt processing is accomplished by the following steps after the instruction being executed is completed.

- ① The address (value of the program counter) of the program which should be run next is saved in the stack area (RAM).
- ^② The vector address (1 page 02H–0DH) for each interrupt request is set to the program counter.
- ③ Branch instruction written to the vector is effected (branch to software interrupt processing routine).
- **Note:** Time equivalent to 12 cycles of CPU system clock is required for steps ① and ②.

The interrupt request and interrupt vector correspondence is shown in Table 6.10.1.

Table 6.10.1 Interrupt request and interrupt vectors

Interrupt vector	Interrupt request	Priority
102H	Clock timer	Low
104H	Dialing cycle completion	. ▲
106H	K00-K03 input	
108H	K10-K13 input	1
10AH	K20-K21 input	*
10CH	K22 input	High

When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.

The interrupt factor flags and interrupt mask registers correspondence are shown in Table 6.10.2.

The configuration of the interrupt circuit is shown in Figure 6.10.1.

Table 6.10.2	
Interrupt flags and interrupt mask	
registers	

Interrupt factor	Interrupt factor flag	Interrupt mask register
Falling edge of clock timer (1 Hz)	IT1(C4H•D3)	EIT1(D1H•D3)
Falling edge of clock timer (2 Hz)	IT2(C4H•D2)	EIT2(D1H•D2)
Falling edge of clock timer (16 Hz)	IT16(C4H•D1)	EIT16(D1H•D1)
Falling edge of clock timer (32 Hz)	IT32(C4H•D0)	EIT32(D1H•D0)
Dialing cycle completion	ID(C5H•D0)	EID(D2H•D0)
No matching between input	IK0(C3H•D0)	EIK0(D0H•D0)
ports (K00-K03) and input		SIK00(C8H•D0)
comparison registers (DFK00-		SIK01(C8H•D1)
DFK03)		SIK02(C8H•D2)
		SIK03(C8H•D3)
No matching between input	IK1(C2H•D0)	EIK1(D0H•D1)
ports (K10-K13) and input		SIK10(C7H•D0)
comparison registers (DFK10-		SIK11(C7H•D1)
DFK13)		SIK12(C7H•D2)
		SIK13(C7H•D3)
No matching between input	IK2(C1H•D0)	EIK2(D0H•D2)
ports (K20-K21) and input		SIK20(C6H•D0)
comparison registers (DFK20-		SIK21(C6H•D1)
DFK21)		
No matching between input ports (K22) and input comparison registers (DFK22)	IK22(C0H•D0)	EIK22(D0H•D3)

Example program for the interrupt

Following program shows the interrupt procedure.

Label	Mnem	onic/operand	Comment
;*			
;* INI	ERRUPI	1	
; *			
ZIK22	EQU	OCOH	;K22 INTERRUPT FACTOR FLAG ADDRESS
IK22	EQU	0001B	;K22 INTERRUPT FACTOR FLAG BIT
;			
ZIK2	EQU	OC1H	;K20-K21 INTERRUPT FACTOR FLAG ADDRESS
IK2	EQU	0001B	;K20-K21 INTERRUPT FACTOR FLAG BIT
;			
ZIK1	EQU	0C2H	;K10-K13 INTERRUPT FACTOR FLAG ADDRESS
IK1	EQU	0001B	;K10-K13 INTERRUPT FACTOR FLAG BIT
;			
ZIK0	EQU	0C3H	;K00-K03 INTERRUPT FACTOR FLAG ADDRESS
IK0	EQU	0001B	;K00-K03 INTERRUPT FACTOR FLAG BIT
;			
ZIT	EQU	0C4H	;TIMER INTERRUPT FACTOR FLAG ADDRESS
IT1	EQU	1000B	;1 Hz INTERRUPT FACTOR FLAG BIT
IT2	EQU	0100B	;2 Hz INTERRUPT FACTOR FLAG BIT
IT16	EQU	0010B	;16 Hz INTERRUPT FACTOR FLAG BIT
IT32	EQU	0001B	;32 Hz INTERRUPT FACTOR FLAG BIT
;			
ZID	EQU	UC5H	; DIALING INTERRUPT FACTOR FLAG ADDRESS
ID	EOU	0001B	DIALING INTERRUPT FACTOR FLAG BIT

; ZWDOG EOU 0DCH ;WATCHDOG ADDRESS WDON EOU 1000B ;WATCHDOG ON/OFF BIT WDRST EQU 0100B ;WATCHDOG RESET BIT ; ORG 102H ;TIMER (6th PRIORITY) JP TMINT ; ORG 104H DILINT ; DIALING (5th PRIORITY) JP ; ORG 106H JP KOINT ;K0 (4th PRIORITY) ; ORG 108H JP Klint ;K1 (3rd PRIORITY) ; ORG 10AH ;K2 (2nd PRIORITY) JP K2INT ; ORG 10CH JP K22INT ;K22 (1st PRIORITY) ; ;* APPLICATION MAIN ROUTINE MAIN: DI ; : (ENABLE TIMER, DIALING, K00-K03 INPUT, ; K10-K13 INPUT, K20-K21 INPUT, K22 INPUT) ; (DIALING A NUMBER FOR TRIGGER DIALING INTERRUPT) ; ; : ;TURN ON WATCHDOG TIMER LD X,ZWDOG MX,WDON LD ΕI MAIN1: HALT JP MAIN1 ; ;* CLOCK TIMER INTERRUPT TMINT: LD X,ZIT ;LOAD TIMER INTERRUPT FLAG TO B REGISTER LD B,MX CHKT32: FAN B,IT32 ;CHECK TIMER 32 Hz INTERRUPT FLAG JP Z,CHKT16 ;NO, THEN JUMP ;TIMER 32 Hz SERVICE ROUTINE CALL SERT32 CHKT16: FAN B,IT16 ;CHECK TIMER 16 Hz INTERRUPT FLAG Z,CHKT2 ;NO, THEN JUMP JP CALL SERT16 ;TIMER 16 Hz SERVICE ROUTINE CHKT2: B,IT2 ;CHECK TIMER 2 Hz INTERRUPT FLAG FAN JP Z,CHKT1 ;NO, THEN JUMP CALL SERT2 ;TIMER 2 Hz SERVICE ROUTINE

```
CHKT1:
      FAN B,IT1
                     ;CHECK TIMER 1 Hz INTERRUPT FLAG
      JP
            Z, INTEND ; NO, THEN JUMP
                     ;TIMER 1 Hz SERVICE ROUTINE
      CALL SERT1
;
      LD X, ZWDOG ; RESET WATCHDOG
                      ; IN EVERY ONE 1 HZ INTERRUPT
      OR
            MX,WDON
INTEND:
                     ;END OF INTERRUPT
      ΕI
      RET
;
;* DIALING INTERRUPT SERVICE ROUTINE
DILINT:
          X,ZID
      LD
      FAN MX, ID
      JP
            Z,INTEND
      CALL SERDIL
      JP
            INTEND
;
;* KO INTERRUPT SERVICE ROUTINE
K0INT:
          X,ZIKO
      LD
      FAN MX,IKO
                   CHECK K0 INTERRUPT FLAG
            Z,INTEND ;NO, THEN JUMP
      JP
      CALL SERKO ;KO SERVICE ROUTINE
      JP
            INTEND
;
;* K1 INTERRUPT SERVICE ROUTINE
K1INT:
      LD
          X,ZIK1
      FAN MX,IK1
                     ;CHECK K1 INTERRUPT FLAG
      JP
           Z, INTEND ; NO, THEN JUMP
      CALL SERK1
                    ;K1 SERVICE ROUTINE
      JP
           INTEND
;
;* K20-K21 INTERRUPT SERVICE ROUTINE
K2INT:
      LD
            X,ZIK2
      FAN MX,IK2
                     ;CHECK K2 INTERRUPT FLAG
            Z, INTEND ; NO, THEN JUMP
      JP
      CALL SERK2
                      ;K2 SERVICE ROUTINE
      JP
            INTEND
;
;* K22 INTERRUPT SERVICE ROUTINE
K22INT:
      LD
            X,ZIK22
      FAN MX, IK22 ; CHECK K22 INTERRUPT FLAG
            Z, INTEND ; NO, THEN JUMP
      JP
      CALL SERK22 ;K22 SERVICE ROUTINE
      JP
            INTEND
```

;

```
SERT32:
; :
    DO THE TIMER 32 Hz INTERRUPT
;
     SERVICE ROUTINE HERE
;
     :
;
    RET
;
SERT16:
;
     :
  DO THE TIMER 16 Hz INTERRUPT
;
    SERVICE ROUTINE HERE
;
;
     :
     RET
;
SERT2:
;
     :
    DO THE TIMER 2 Hz INTERRUPT
;
;
    SERVICE ROUTINE HERE
     :
;
     RET
;
SERT1:
;
      :
     DO THE TIMER 1 Hz INTERRUPT
;
     SERVICE ROUTINE HERE
;
     :
;
     RET
;
SERDIL:
;
     :
;
     DO THE DIALING INTERRUPT
;
    SERVICE ROUTINE HERE
;
     :
     RET
;
SERK0:
;
     :
     DO THE INPUT KO INTERRUPT
;
    SERVICE ROUTINE HERE
;
;
      :
     RET
;
SERK1:
;
     :
    DO THE INPUT K1 INTERRUPT
;
;
     SERVICE ROUTINE HERE
;
     :
     RET
;
```

```
SERK2:
;
       :
       DO THE INPUT K2 INTERRUPT
;
       SERVICE ROUTINE HERE
;
;
       •
       RET
;
SERK22:
        :
;
       DO THE INPUT K22 INTERRUPT
;
       SERVICE ROUTINE HERE
;
;
       :
       RET
;
```

Programming notes

- (1) The interrupt factor flag is set when the interrupt conditions are established, regardless of the setting of the interrupt mask register.
- (2) Read the interrupt factor flag in the DI status (interrupt flag = "0"). Reading of interrupt factor flag is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the inter-

rupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

- (3) Be sure that writing to the interrupt mask register is done with the interrupt in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause malfunction.
- (4) When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.

CHAPTER 7 SUMMARY OF NOTES

7.1 Notes for Low Current Consumption

The EOC62T3 contains control registers for each of the circuits so that current consumption can be lowered. These control registers lower the current consumption through programs that operate the circuits at the minimum levels.

The following text explains the circuits that can control operation and their control registers. Refer to these when putting programs together.

Table 7.1.1 Circuits and control registers

Circuits (and items)	Control registers	Order of consumed current
СРИ	HALT instruction	See electrical characteristics (*)
CPU operating frequency	CLKCHG, OSCC	See electrical characteristics (*)
SVD circuit	SVDON	Several tens µA

* "E0C62T3 Technical Hardware", Chapter 7

Below are the circuit statuses at initial reset.

- CPU: Operating status
- *CPU operating frequency:* Low speed side (CLKCHG = "0"), OSC3 oscillation circuit OFF status (OSCC = "0")

SVD circuit: OFF status (SVDON = "0")

7.2 Summary of Notes by Function

Here, the cautionary notes are summed up by function category. Keep these notes well in mind when programming.

- **System initialization** In some of initial registers and initial data memory area, the initial value is undefined after reset. Set them proper initial values by the program, as necessary.
 - **Memory** Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.
 - **Watchdog timer** (1) The watchdog timer must reset within 3-second cycles by the software. In this case, timer data (WD1 and WD0) cannot be used for timer applications.
 - (2) When clock timer resetting (TMRST ← "1") is performed, the watchdog timer is also reset.
 - Oscillation circuit (1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON. Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
 - (2) When switching the clock from OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
 - (3) To lessen current consumption, keep OSC3 oscillation OFF except when the CPU must be run at high speed, or when DTMF is used.
 - **Input ports** (1) When input ports are changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.

Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 msec.

(2) When an interrupt occurs, for example, a key been pressed, software must has the debounce routine, to insure the input port interrupt stable, then to read out the interrupt flag for resetting interrupt flag. If no debounce routine, the input might interrupt many times.

- **Output ports** (1) When BZ and $\overline{\text{BZ}}$ output are selected by software, a hazard may be observed in the output waveform when the data of the output register changes.
 - (2) When R10 terminal is used for general output port, set BZR10 register to "0". When R10 terminal is used for $\overline{\text{BZ}}$ output port, set R10 register to "0".
 - (3) When R11 terminal is used for general output port, set BZR11 register to "0". When R11 terminal is used for BZ output port, set R11 register to "0".
 - (4) When R12 terminal is used for general output port, set CHDO register to "0". When R12 terminal is used for HOLD output port, set R12 register to "0".
 - (5) When R13 terminal is used for general output port, set CHFO register to "0". When R13 terminal is used for HANDFREE output port, set R13 register to "0".
 - **I/O ports** When in the input mode, I/O port is changed from low to high by pull up resistor, the rise of the waveform is delayed on account of the time constant of the pull up resistor and input gate capacitance. Hence, when fetching input port, set an appropriate wait time.
 - **LCD driver** (1) The contents of the display memory are undefined until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
 - (2) Since the display memory area is write-only, display data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).
 - **Clock timer** (1) Clock timer data is not reset at initial reset. It can be reset by software, writing "1" to TMRST.
 - (2) When the clock timer has been reset, the interrupt factor flag (IT) may sometimes be set to "1". Consequently, perform flag read (reset the flag) as necessary at reset.
 - (3) When reading both timer data, TMH (DBH) and TML (DAH), after reading TML, TMH should be read within 0.5 msec, otherwise, the hardware can not guarantee the readout is correct.
- SVD (Supply voltage (1) The SVD circuit should normally be turned OFF (SVDON = "0") as the consumption current of the IC becomes large when it is ON (SVDON = "1").

- (2) To obtain a stable result, the SVD circuit must be set to ON with at least 100 $\mu sec.$ Hence, to obtain the SVD detection result, follow the programming sequence below.
 - 1. Set SVDON to "1" (ON)
 - 2. Maintain at least 100 μsec minimum
 - 3. Set SVDON to "0" (OFF)
 - 4. Read out SVDDT

However, when a crystal oscillation clock (fosc1) is selected for CPU system clock, the instruction cycle are long enough, so that there is no need for concern about maintaining 100 μ sec for the SVDON = "1" with the software.

Telephone function(1) When uses the DTMF, it is necessary to turn ON the 3.58 MHz
oscillator. This function needs big current. Therefore, using
DTMF dialing at off-hook or handfree status is the best.

- (2) Before using the telephone, software program should set HSON (E9H•D0) register to "1" for OFF-HOOK state (DP terminal goes high level).
- (3) If software program writes a code of "0H" into TCD register in pulse mode, IDP, FTS or PTS registers, it will cause a malfunction.
- (4) Because pause function control register (E3H•D1) and flash function control register (E3H•D0) are write-only, software cannot use ALU instructions (AND, OR ...) on E3H resisters while dialing a pause or flash function cycle.
- **Interrupt** (1) The interrupt factor flag is set when the interrupt conditions are established, regardless of the setting of the interrupt mask register.
 - (2) Read the interrupt factor flag in the DI status (interrupt flag = "0"). Reading of interrupt factor flag is available at EI, but be careful in the following cases.
 If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
 - (3) Be sure that writing to the interrupt mask register is done with the interrupt in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause malfunction.
 - (4) When multiple interrupts simultaneously occur, the high priority vector address is set to the program counter.
APPENDIX A

E0C62T3 DATA MEMORY (RAM) MAP

RAM map - 1 (000H-07FH)

PROGRAI	M NAME:															
РН	0	~	2	ю	4	5	9	7	8	ი	A	В	U	D	ш	LL.
1 0 NAME MSB																
LSB						 			-	-					-	
1 NAME																
MSE																
LSE																
2 NAME MSB																
												I I I I I I I I I I I I I I I I I I I I I I I I I I				
2 NAME													T			
3 MSB										 						
A NAME																
4 MSB										- - - - - - - - -						
-				-												
5 NAME MSB				-									- - - - - - - - -			
R NAME																
C MSB					- - - - - -					 	-			- - - - - -		
				-	1		- - - - - - - - - - - - - - - - - - -	1	 	1	1		1			
LSE																
7 NAME																
MSE																
LSB						 			 	/ 						

Ř	OGRAN	M NAME															
0	H H	0	-	2	З	4	5	9	7	8	6	A	В	ပ	D	ш	ш
2	0 NAME MSB																
	-																
	1 NAME MSB																
	LSB																
I	2 NAME																
	MSB				-					- - - - - - - -							
	-																
	3 NAME MSR													-			
														-	-	-	
	LSB																
	4 NAME		1						1		1			1			
	MSB													 			
	LSB																
1	5 NAME																
	MSB																
														-		-	-
	LSB				-	-	- - - - - - -					- - - - - -	 		-		
1	6 NAME																
	MSB																
	LSB																
I	7 NAME				-												
	LSB																

RAM map - 3 (200H-27FH)

APPENDIX A: E0C62T3 DATA MEMORY (RAM) MAP

PR	COGRAN	1 NAME:															
٩	Г Н	0	-	2	З	4	5	9	7	8	6	A	В	ပ	۵	ш	ш
4	0 NAME MSB																
	LSB																
	1 NAME									-							
	MSB																
	LSB																
	2 NAME MSB																
	av I																
	3 MAINE MSB																
	ао Г			1		- - - - - -											
	A NAME																
	T MSB																
	LSB			 					 				 		 		
	5 NAME																
	MSB																
		-															
	LSB													- - - - - - - - -		- - - - - - - - -	
	6 NAME																
	MSB														- - - - -	- - - - - - -	
	I SB																
	7 NAME																
	MSB																
	LSB																

RAM map - 5 (400H-47FH)

			;			;				-	, 	1						с, С			F	Z					
	L								1		 	 	I	I	I		Ι	ZSVD	0	0	SVDD	SVDOI	I	I	1	I	I
	ш												ZDFK0	DFK03	DFK02	DFK01	DFK00	ZLCDC	LDTY1	LDTY0	0	LCDON	I	I	I	I	I
	۵												ZDFK1	DFK13	DFK12	DFK11	DFK10	ZBZCTL	BZR11	BZR10	0	BZFQ	I	I	I	I	I
	ပ												ZDFK2	0	DFK22	DFK21	DFK20	ZWDOG	WDON	WDRST	WD1	WD0	I	I	I	I	I
	В												ZKO	K03	K02	K01	K00	ZTMH	TM7	TM6	TM5	TM4	ZCTO	СТО	0	0	0
	A										 		ZK1	K13	K12	K11	K10	ZTML	TM3	TM2	TM1	TM0	ZCHFO	CHFO	CHDO	0	0
	6												ZK2	0	K22	<u></u>	K20	ZTMRST	0	0	0	TMRST	ZHSON	0	0	0	NOSH
	8											1	ZSIKO	SIK03	SIK02	SIK01	SIK00	ZOSCC	0	0	CLKCHG	oscc	ZMUT	0	0	CRMUT	CTMUT
	7										- - - - - - -		ZSIK1	SIK13	SIK12	SIK11	SIK10	ZPO	P03	P02	P01	P00	ZTCD	TCD3	TCD2	TCD1	TCD0
	9		1										ZSIK2	0	0	SIK21	SIK20	ZPUP	PUP3	PUP2	PUP1	PUP0	ZSIN	0	0	SINR	SINC
	5												ZID	0	0	0	D	ZIOC	1003	10C2	<u>0</u>	1000	ZIDP	IDP3	IDP2	IDP1	IDP0
	4												ZIT	E	IT2	IT16	IT32	ZRO	R03	R02	R01	R00	ZHF	노	0	0	0
	с												ZIKO	0	0	0	IK0	ZR1	R13	R12	R11	R10	ZHOLD	0	НОГР	PAUSE	FLASH
	2												ZIK1	0	0	0	IK1	ZEID	0	0	0	EID	ZFTS	FTS3	FTS2	FTS1	FTS0
	-										- - - - - -		ZIK2	0	0	0	IK2	ZEIT	EIT1	EIT2	EIT16	ЕП32	ZPTS	PTS3	PTS2	PTS1	PTS0
NAME:	0												ZIK22	0	0	0	IK22	ZEIK	EIK22	EIK2	ШҚ 1	EIKO	ZTPS	TPS	0	MB	DRS
JGRAM		NAME			L N N N L	MSR		 LSB	NAME	MSB		LSB	NAME	MSB		1	LSB	NAME	MSB			LSB	NAME	MSB			LSB
RC	/ I	8			•	ກ			∣∢				C))				ш				\square
	٩	0		2	10	3	4																				

Display memory (80H–AFH), I/O memory (C0H–EFH)

APPENDIX **B**

E0C62T3 INSTRUCTION SET

Instruction set - 1

Olevelfiertier	Mne-	0					Operation	n Code)				Flag		Orentlar
Classification	monic	Operand	В	А	9	8	76	54	3	2	1	0	IDZC	CIOCK	Operation
Branch	PSET	р	1	1	1	0	0 1	0 p4	p3	p2	p1	p0		5	NBP \leftarrow p4, NPP \leftarrow p3~p0
instructions	JP	s	0	0	0	0	s7 s6 s	s5 s4	s3	s2	s1	s0		5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0
		C, s	0	0	1	0	s7 s6 s	s5 s4	s3	s2	s1	s0		5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if C=1
		NC, s	0	0	1	1	s7 s6 s	s5 s4	s3	s2	s1	s0		5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if C=0
		Z, s	0	1	1	0	s7 s6 s	s5 s4	s3	s2	s1	s0		5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if Z=1
		NZ, s	0	1	1	1	s7 s6 s	s5 s4	s3	s2	s1	s0		5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if Z=0
	JPBA		1	1	1	1	1 1	1 0	1	0	0	0		5	$\text{PCB} \leftarrow \text{NBP}, \text{PCP} \leftarrow \text{NPP}, \text{PCSH} \leftarrow \text{B}, \text{PCSL} \leftarrow \text{A}$
	CALL	s	0	1	0	0	s7 s6 s	s5 s4	s3	s2	s1	s0		7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
															$SP \leftarrow SP-3$, $PCP \leftarrow NPP$, $PCS \leftarrow s7 \sim s0$
	CALZ	s	0	1	0	1	s7 s6 s	s5 s4	s3	s2	s1	s0		7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
															$SP \leftarrow SP-3$, $PCP \leftarrow 0$, $PCS \leftarrow s7 \sim s0$
	RET		1	1	1	1	1 1	0 1	1	1	1	1		7	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
															$SP \leftarrow SP+3$
	RETS		1	1	1	1	1 1	0 1	1	1	1	0		12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
															$SP \leftarrow SP+3, PC \leftarrow PC+1$
	RETD	l	0	0	0	1	17161	514	13	12	<i>l</i> 1	10		12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
															$SP \leftarrow SP+3$, $M(X) \leftarrow l3 \sim l0$, $M(X+1) \leftarrow l7 \sim l4$, $X \leftarrow X+2$
System	NOP5		1	1	1	1	1 1	1 1	1	0	1	1		5	No operation (5 clock cycles)
control	NOP7		1	1	1	1	1 1	1 1	1	1	1	1		7	No operation (7 clock cycles)
instructions	HALT		1	1	1	1	1 1	1 1	1	0	0	0		5	Halt (stop clock)
Index	INC	Х	1	1	1	0	1 1	1 0	0	0	0	0		5	X←X+1
operation		Y	1	1	1	0	1 1	1 1	0	0	0	0		5	$Y \leftarrow Y+1$
instructions	LD	X, x	1	0	1	1	x7 x6 x	(5 x4	x3	x2	x1	x0		5	$XH \leftarrow x7 \sim x4, XL \leftarrow x3 \sim x0$
		Ү, у	1	0	0	0	у7 уб у	/5 y4	y3	y2	y1	y0		5	YH← y7~y4, YL← y3~y0
		XP, r	1	1	1	0	1 0	0 0	0	0	r1	r0		5	XP←r
		XH, r	1	1	1	0	1 0	0 0	0	1	r1	r0		5	XH←r
		XL, r	1	1	1	0	1 0	0 0	1	0	r1	r0		5	XL←r
		YP, r	1	1	1	0	1 0	0 1	0	0	r1	r0		5	YP←r
		YH, r	1	1	1	0	1 0	0 1	0	1	r1	r0		5	YH←r
		YL, r	1	1	1	0	1 0	0 1	1	0	r1	r0		5	YL←r
		r, XP	1	1	1	0	1 0	1 0	0	0	r1	r0		5	r←XP
		r, XH	1	1	1	0	1 0	1 0	0	1	r1	r0		5	r←XH
		r, XL	1	1	1	0	1 0	1 0	1	0	r1	r0		5	r←XL
		r, YP	1	1	1	0	1 0	1 1	0	0	r1	r0		5	r←YP
		r, YH	1	1	1	0	1 0	1 1	0	1	r1	r0		5	r←YH
		r, YL	1	1	1	0	1 0	1 1	1	0	r1	r0		5	r←YL
	ADC	XH, i	1	0	1	0	0 0	0 0	i3	i2	i1	i0	\$\$	7	XH←XH+i3~i0+C
		XL, i	1	0	1	0	0 0	0 1	i3	i2	i1	i0	\$\$	7	XL←XL+i3~i0+C
		YH, i	1	0	1	0	0 0	1 0	i3	i2	i1	i0	\$\$	7	YH←YH+i3~i0+C
		YL, i	1	0	1	0	0 0	1 1	i3	i2	i1	i0	11	7	YL←YL+i3~i0+C

Instruction set - 2

	Mne-						Operation (Code					Flag			0
Classification	monic	Operand	В	Α	9	8	765	4	3	2	1	0	IDZ	С	CIOCK	Operation
Index	СР	XH, i	1	0	1	0	0 1 0	0	i3	i2	i1	i0	\$	\uparrow	7	XH-i3~i0
operation		XL, i	1	0	1	0	0 1 0	1	i3	i2	i1	i0	\uparrow	\uparrow	7	XL-i3~i0
instructions		YH, i	1	0	1	0	0 1 1	0	i3	i2	i1	i0	\uparrow	\uparrow	7	YH-i3~i0
		YL, i	1	0	1	0	0 1 1	1	i3	i2	i1	i0	\uparrow	\uparrow	7	YL-i3~i0
Data	LD	r, i	1	1	1	0	0 0 r1	r0	i3	i2	i1	i0			5	r ←i3~i0
transfer		r, q	1	1	1	0	1 1 0	0	r1	r0	q1	q0			5	$r \leftarrow q$
instructions		A, Mn	1	1	1	1	1 0 1	0	n3	8 n2	n1	n0			5	$A \leftarrow M(n3 \sim n0)$
		B, Mn	1	1	1	1	1 0 1	1	n3	n2	n1	n0			5	$B \leftarrow M(n3 \sim n0)$
		Mn, A	1	1	1	1	1 0 0	0	n3	n2	n1	n0			5	$M(n3 \sim n0) \leftarrow A$
		Mn, B	1	1	1	1	1 0 0	1	n3	8 n2	n1	n0			5	$M(n3 \sim n0) \leftarrow B$
	LDPX	MX, i	1	1	1	0	0 1 1	0	i3	i2	i1	i0			5	$M(X) \leftarrow i3 \sim i0, X \leftarrow X+1$
		r, q	1	1	1	0	1 1 1	0	r1	r0	q1	q0			5	$r \leftarrow q, X \leftarrow X+1$
	LDPY	MY, i	1	1	1	0	0 1 1	1	i3	i2	i1	i0			5	$M(Y) \leftarrow i3 \sim i0, Y \leftarrow Y+1$
		r, q	1	1	1	0	1 1 1	1	r1	r0	q1	q0			5	$r \leftarrow q, Y \leftarrow Y+1$
	LBPX	MX, l	1	0	0	1	17 16 15	<i>l</i> 4	13	12	l1	10			5	$\mathbf{M}(\mathbf{X}) \leftarrow l 3 \sim l 0, \mathbf{M}(\mathbf{X}{+}1) \leftarrow l 7 \sim l 4, \mathbf{X} \leftarrow \mathbf{X}{+}2$
Flag	SET	F, i	1	1	1	1	0 1 0	0	i3	i2	i1	i0	$\uparrow \uparrow \uparrow$	\uparrow	7	F←F∀i3~i0
operation	RST	F, i	1	1	1	1	0 1 0	1	i3	i2	i1	i0	$\downarrow \downarrow \downarrow \downarrow$	\leftarrow	7	F←F^i3~i0
instructions	SCF		1	1	1	1	0 1 0	0	0	0	0	1		\uparrow	7	C←1
	RCF		1	1	1	1	0 1 0	1	1	1	1	0		\downarrow	7	C←0
	SZF		1	1	1	1	0 1 0	0	0	0	1	0	\uparrow		7	Z←1
	RZF		1	1	1	1	0 1 0	1	1	1	0	1	\downarrow		7	Z←0
	SDF		1	1	1	1	0 1 0	0	0	1	0	0	↑		7	D←1 (Decimal Adjuster ON)
	RDF		1	1	1	1	0 1 0	1	1	0	1	1	\downarrow		7	D←0 (Decimal Adjuster OFF)
	EI		1	1	1	1	0 1 0	0	1	0	0	0	↑		7	$I \leftarrow 1$ (Enables Interrupt)
	DI		1	1	1	1	0 1 0	1	0	1	1	1	\downarrow		7	$I \leftarrow 0$ (Disables Interrupt)
Stack	INC	SP	1	1	1	1	1 1 0	1	1	0	1	1			5	$SP \leftarrow SP+1$
operation	DEC	SP	1	1	1	1	1 1 0	0	1	0	1	1			5	SP← SP-1
instructions	PUSH	r	1	1	1	1	1 1 0	0	0	0	r1	r0			5	$SP \leftarrow SP-1, M(SP) \leftarrow r$
		ХР	1	1	1	1	1 1 0	0	0	1	0	0			5	$SP \leftarrow SP-1, M(SP) \leftarrow XP$
		XH	1	1	1	1	1 1 0	0	0	1	0	1			5	$SP \leftarrow SP-1, M(SP) \leftarrow XH$
		XL	1	1	1	1	1 1 0	0	0	1	1	0			5	$SP \leftarrow SP-1, M(SP) \leftarrow XL$
		YP	1	1	1	1	1 1 0	0	0	1	1	1			5	$SP \leftarrow SP-1, M(SP) \leftarrow YP$
		YH	1	1	1	1	1 1 0	0	1	0	0	0			5	$SP \leftarrow SP-1, M(SP) \leftarrow YH$
		YL	1	1	1	1	1 1 0	0	1	0	0	1			5	$SP \leftarrow SP-1, M(SP) \leftarrow YL$
		F	1	1	1	1	1 1 0	0	1	0	1	0			5	$SP \leftarrow SP-1, M(SP) \leftarrow F$
	POP	r	1	1	1	1	1 1 0	1	0	0	r1	r0			5	$r \leftarrow M(SP), SP \leftarrow SP+1$
		XP	1	1	1	1	1 1 0	1	0	1	0	0			5	$XP \leftarrow M(SP), SP \leftarrow SP+1$
		XH	1	1	1	1	1 1 0	1	0	1	0	1			5	$XH \leftarrow M(SP), SP \leftarrow SP+1$
		XL	1	1	1	1	1 1 0	1	0	1	1	0			5	$XL \leftarrow M(SP), SP \leftarrow SP+1$
		YP	1	1	1	1	1 1 0	1	0	1	1	1			5	$YP \leftarrow M(SP), SP \leftarrow SP+1$

Instruction set - 3

Oleralfication	Mne-	0					Ope	ratio	n Co	de						Flaç	3	0.	.1.	Quanting
Classification	monic	Operand	В	Α	9	8	7	6	5	4	3	2	1	0	I	D	z c		СК	Operation
Stack	POP	YH	1	1	1	1	1	1	0	1	1	0	0	0				5		$YH \leftarrow M(SP), SP \leftarrow SP+1$
operation		YL	1	1	1	1	1	1	0	1	1	0	0	1				5		$YL \leftarrow M(SP), SP \leftarrow SP+1$
instructions		F	1	1	1	1	1	1	0	1	1	0	1	0	↕	1	11	5		$F \leftarrow M(SP), SP \leftarrow SP+1$
	LD	SPH, r	1	1	1	1	1	1	1	0	0	0	r1	r0				5		SPH← r
		SPL, r	1	1	1	1	1	1	1	1	0	0	r1	r0				5		$SPL \leftarrow r$
		r, SPH	1	1	1	1	1	1	1	0	0	1	r1	r0				5		r←SPH
		r, SPL	1	1	1	1	1	1	1	1	0	1	r1	r0				5		$r \leftarrow SPL$
Arithmetic	ADD	r, i	1	1	0	0	0	0	r1 1	r0	i3	i2	i1	i0		*:	Î	7	'	r←r+i3~i0
instructions		r, q	1	0	1	0	1	0	0	0	r1	r0	q1	q0		*:	11	7	'	r←r+q
	ADC	r, i	1	1	0	0	0	1	r1 1	r0	i3	i2	i1	i0		*:	11	7	'	$r \leftarrow r+i3\sim i0+C$
		r, q	1	0	1	0	1	0	0	1	r1	r0	q1	q0		*:	11	7	'	$r \leftarrow r + q + C$
	SUB	r, q	1	0	1	0	1	0	1	0	r1	r0	q1	q0		*:	11	7	'	r←r-q
	SBC	r, i	1	1	0	1	0	1	r1 1	r0	i3	i2	i1	i0		*:	11	7	,	r←r-i3~i0-C
		r, q	1	0	1	0	1	0	1	1	r1	r0	q1	q0		*:	11	7	,	r←r-q-C
	AND	r, i	1	1	0	0	1	0	r1 1	r0	i3	i2	i1	i0			Ĵ	7	'	r←r∧i3~i0
		r, q	1	0	1	0	1	1	0	0	r1	r0	q1	q0		~	Ĵ	7		$r \leftarrow r \land q$
	OR	r, i	1	1	0	0	1	1	r1 1	r0	i3	i2	i1	i0		ĺ	Ĵ	7	,	r←r∀i3~i0
		r, q	1	0	1	0	1	1	0	1	r1	r0	q1	q0			Ĵ	7	'	$r \leftarrow r \lor q$
	XOR	r, i	1	1	0	1	0	0	r1 1	r0	i3	i2	i1	i0		~	Ĵ	7		r←r∀i3~i0
		r, q	1	0	1	0	1	1	1	0	r1	r0	q1	q0			Ĵ	7	'	$r \leftarrow r \forall q$
	СР	r, i	1	1	0	1	1	1	r1 1	r0	i3	i2	i1	i0		~	11	7	'	r-i3~i0
		r, q	1	1	1	1	0	0	0	0	r1	r0	q1	q0			î	7	'	r-q
	FAN	r, i	1	1	0	1	1	0	r1 1	r0	i3	i2	i1	i0			Ĵ	7	,	r∧i3~i0
		r, q	1	1	1	1	0	0	0	1	r1	r0	q1	q0		~	Ĵ	7	,	r∧q
	RLC	r	1	0	1	0	1	1	1	1	r1	r0	r1	r0			11	7	'	$d3 \leftarrow d2, d2 \leftarrow d1, d1 \leftarrow d0, d0 \leftarrow C, C \leftarrow d3$
	RRC	r	1	1	1	0	1	0	0	0	1	1	r1	r0		~	11	5		$d3 \leftarrow C, d2 \leftarrow d3, d1 \leftarrow d2, d0 \leftarrow d1, C \leftarrow d0$
	INC	Mn	1	1	1	1	0	1	1	0 1	n3	n2	n1	n0		~	11	7	,	$M(n3 \sim n0) \leftarrow M(n3 \sim n0) + 1$
	DEC	Mn	1	1	1	1	0	1	1	1	n3	n2	n1	n0			11	7	'	$M(n3 \sim n0) \leftarrow M(n3 \sim n0)-1$
	ACPX	MX, r	1	1	1	1	0	0	1	0	1	0	r1	r0		*:	11	7		$M(X)\!\leftarrow\!M(X)\!+\!r\!+\!C,X\!\leftarrow\!X\!+\!1$
	ACPY	MY, r	1	1	1	1	0	0	1	0	1	1	r1	r0		*:	11	7	,	$M(Y) \leftarrow M(Y) + r + C, Y \leftarrow Y + 1$
	SCPX	MX, r	1	1	1	1	0	0	1	1	1	0	r1	r0		*:	11	7		$M(X) \leftarrow M(X)$ -r-C, $X \leftarrow X+1$
	SCPY	MY, r	1	1	1	1	0	0	1	1	1	1	r1	r0		*	11	7		$M(Y) \leftarrow M(Y)$ -r-C, $Y \leftarrow Y$ +1
	NOT	r	1	1	0	1	0	0	r1 i	r0	1	1	1	1			1	7		r←r

Abbreviations used in the explanations have the following meanings.

Symbols associated with	AA register
registers and memory	BB register
	XXHL register (low order eight bits of index register IX)
	Y YHL register (low order eight bits of index
	register IY)
	XHXH register (high order four bits of XHL register)
	XLXL register (low order four bits of XHL register)
	YH YH register (high order four bits of YHL register)
	YLYL register (low order four bits of YHL register)
	XP XP register (high order four bits of index
	register IX)
	YP YP register (high order four bits of index
	register IY)
	SP Stack pointer SP
	SPH High-order four bits of stack pointer SP
	SPL Low-order four bits of stack pointer SP
	MX, M(X) Data memory whose address is specified with index
	register IX
	MY, M(Y) Data memory whose address is specified with index
	register IY
	Mn, M(n) Data memory address 000H-00FH (address specified
	with immediate data n of 00H–0FH)
	M(SP) Data memory whose address is specified with stack
	pointer SP
	r, q Two-bit register code
	r, q is two-bit immediate data; according to the con-
	tents of these bits, they indicate registers A, B, and
	MX and MY (data memory whose addresses are
	specified with index registers IX and IY)
	r a

	r		7	Degisters encoified
r1	r0	q1	q0	Registers specified
0	0	0	0	А
0	1	0	1	В
1	0	1	0	MX
1	1	1	1	MY

Symbols associated with program counter	NBP New bank pointer NPP New page pointer PCB Program counter bank PCP Program counter page PCS Program counter step PCSH Four high order bits of PCS PCSL Four low order bits of PCS
Symbols associated with flags	F Flag register (I, D, Z, C) C Carry flag Z Zero flag D Decimal flag I Interrupt flag ↓ Flag reset ↑ Flag set t Flag set or reset
Associated with immediate data	p Five-bit immediate data or label 00H–1FH s Eight-bit immediate data or label 00H–0FFH l Eight-bit immediate data 00H–0FFH i Four-bit immediate data 00H–0FH
Associated with arithmetic and other operations	 + Add Subtract ∧ Logical AND ∨ Logical OR ∀ Exclusive-OR ★ Add-subtract instruction for decimal operation when the D flag is set

APPENDIX C PSEUDO-INSTRUCTION TABLE OF THE CROSS ASSEMBLER

Item No.	Pseudo-instruction	Meaning		Example of Us	se
1	EQU	To allocate data to label	ABC	EQU	9
	(Equation)		BCD	EQU	ABC+1
2	ORG	To define location counter		ORG	100H
	(Origin)			ORG	256
3	SET	To allocate data to label	ABC	SET	0001H
	(Set)	(data can be changed)	ABC	SET	0002H
4	DW	To define ROM data	ABC	DW	'AB'
	(Define Word)		BCD	DW	0FFBH
5	PAGE	To define boundary of page		PAGE	1H
	(Page)			PAGE	3
6	SECTION (Section)	To define boundary of section		SECTION	
7	END (End)	To terminate assembly		END	
8	MACRO (Macro)	To define macro			
			CHECK	MACRO	DATA
9	LOCAL	To make local specification of label	LOCAL	LOOP	
	(Local)	during macro definition	LOOP	CP	MX,DATA
10				JP	NZ,LOOP
10	ENDM (End Maarc)	to end macro definition		ENDM	
	(End Macro)			CHECK	1

APPENDIX D

COMMAND TABLE OF ICE6200

ICE6200 command table - 1

Item No.	Function	Command Format	Outline of Operation
1	Assemble	#A,a 🖵	Assemble command mnemonic code and store at address "a"
2	Disassemble	#L,a1,a2 🖵	Contents of addresses a1 to a2 are disassembled and displayed
3	Dump	#DP,a1,a2 🖵	Contents of program area a1 to a2 are displayed
		#DD,a1,a2 🖵	Content of data area a1 to a2 are displayed
4	Fill	#FP,a1,a2,d 🖵	Data d is set in addresses a1 to a2 (program area)
		#FD,a1,a2,d 🖵	Data d is set in addresses a1 to a2 (data area)
5	Set	#G,aJ	Program is executed from the "a" address
	Run Mode	#TIM 🖵	Execution time and step counter selection
		#OTF J	On-the-fly display selection
6	Trace	#T,a,n ↓	Executes program while displaying results of step instruction
			from "a" address
		#U,a,n 🖵	Displays only the final step of #T,a,n
7	Break	#BA,a 🖵	Sets Break at program address "a"
		#BAR,a 🖵	Breakpoint is canceled
		#BD J	Break condition is set for data RAM
		#BDR ┛	Breakpoint is canceled
		#BR J	Break condition is set for EVA62XXCPU internal registers
		#BRR J	Breakpoint is canceled
		#BM 🖵	Combined break conditions set for program data RAM address
			and registers
		#BMR J	Cancel combined break conditions for program data ROM
			address and registers
		#BRES J	All break conditions canceled
		#BC J	Break condition displayed
		#BE J	Enter break enable mode
		#BSYN 🖵	Enter break disable mode
		#BT 🖵	Set break stop/trace modes
		#BRKSEL,REM 🖵	Set BA condition clear/remain modes
8	Move	#MP,a1,a2,a3 🖵	Contents of program area addresses a1 to a2 are moved to
			addresses a3 and after
		#MD,a1,a2,a3 🖵	Contents of data area addresses a1 to a2 are moved to addresses
			a3 and after
9	Data Set	#SP,a 🖵	Data from program area address "a" are written to memory
		#SD,a	Data from data area address "a" are written to memory
10	Change CPU	#DR J	Display EVA62XXCPU internal registers
	Internal	#SR J	Set EVA62XXCPU internal registers
	Registers	#I 🖵	Reset EVA62XXCPU
		#DXY J	Display X, Y, MX and MY
		#SXYJ	Set data for X and Y display and MX, MY

ICE6200 command table - 2

Item No.	Function	Command Format	Outline of Operation
11	History	#H,p1,p2 J	Display history data for pointer 1 and pointer 2
		#HB J	Display upstream history data
		#HG J	Display 21 line history data
		#HP J	Display history pointer
		#HPS,a 🖵	Set history pointer
		#HC,S/C/EJ	Sets up the history information acquisition before (S),
			before/after (C) and after (E)
		#HA,a1,a2 🚽	Sets up the history information acquisition from program area
			al to a2
		#HAR,a1,a2 🖵	Sets up the prohibition of the history information acquisition
			from program area a1 to a2
		#HAD J	Indicates history acquisition program area
		#HS,a 🖵	Retrieves and indicates the history information which executed
			a program address "a"
		#HSW,a 🖵	Retrieves and indicates the history information which wrote or
		#HSR,a 🖵	read the data area address "a"
12	File	#RF,file 🖵	Move program file to memory
		#RFD,file 🖵	Move data file to memory
		#VF,file 🖵	Compare program file and contents of memory
		#VFD,file 🖵	Compare data file and contents of memory
		#WF,file 🖵	Save contents of memory to program file
		#WFD,file 🖵	Save contents of memory to data file
		#CL,file 🖵	Load ICE6200 set condition from file
		#CS,file 🖵	Save ICE6200 set condition to file
13	Coverage	#CVDJ	Indicates coverage information
		#CVR 🖵	Clears coverage information
14	ROM Access	#RP J	Move contents of ROM to program memory
		#VPJ	Compare contents of ROM with contents of program memory
		#ROM J	Set ROM type
15	Terminate	#Q 🖵	Terminate ICE and return to operating system control
	ICE		
16	Command	#HELP J	Display ICE6200 instruction
	Display		
17	Self	#CHK J	Report results of ICE6200 self diagnostic test
	Diagnosis		

I means press the RETURN key.

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A. Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -Riesstrasse 15 80992 Muenchen, GERMANY Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

SALES OFFICE Altstadtstrasse 176

51379 Leverkusen, GERMANY Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

2.4 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -

EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

 10F, No. 287, Nanking East Road, Sec. 3

 Taipei, TAIWAN, R.O.C.

 Phone: 02-2717-7360

 Fax: 02-2712-9164

 Telex: 24444

 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2 HsinChu 300, TAIWAN, R.O.C. Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD. No. 1 Temasek Avenue. #36-00

Millenia Tower, SINGAPORE 039192 Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-Dong Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "**Saving**" **Technology**, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings**.

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic devices information on Epson WWW server