MF855-02

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

E0C63000 CORE CPU MANUAL

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. Please note that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it now reads "E0C".

E0C63000 Core CPU MANUAL

PREFACE

This manual explains the architecture, operation and instruction of the core CPU E0C63 of the CMOS 4-bit single chip microcomputer E0C63 Family.

Also, since the memory configuration and the peripheral circuit configuration is different for each device of the E0C63 Family, you should refer to the respective manuals for specific details other than the basic functions.

CONTENTS

CHAPTER 1	O U1	TLINE	•••••	1
	1.1	Features		. 1
	1.2	Instruction Set Features		. 1
	1.3	Block Diagram		. 2
	1.4	Input-Output Signals		. 2
CHAPTER 2	Arc	CHITECTURE	•••••	4
	2.1	ALU and Registers		. 4
		2.1.1 ALU	4	
		2.1.2 Register configuration	4	
		2.1.5 Flugs	5	
		2.1.5 EXT register and data extension	8	
	2.2	Program Memory		11
		2.2.1 Configuration of program memory	. 11	
		2.2.2 PC (program counter)	. 11	
		2.2.3 Branch instructions	. 12	
		2.2.4 Table look-up instruction	. 16	
	2.3	Data Memory		17
		2.3.1 Configuration of data memory	. 17	
		2.3.2 Addressing for data memory 2.3.3 Stack and stack pointer	10	
		2.3.4 Memory mapped I/O	21	
CHAPTER 3	CP	U Operation		22
	31	Timing Generator and Rus Cycle		22
	3.2	Instruction Fetch and Execution		22
	33	Data Bus (Data Memory) Control		23
	0.0	3.3.1 Data bus status	23	20
		3.3.2 High-impedance control	. 23	
		3.3.3 Interrupt vector read	. 24	
		3.3.4 Memory write	. 24	
		3.3.5 Memory read	. 25	
	3.4	Initial Reset		25
		3.4.1 Initial reset sequence	. 25	
		5.4.2 Initial setting of internal registers	. 26	

CONTENTS

	3.5	Interrupts	26
		3.5.1 Interrupt vectors	26 27 30
	3.6	Standby Status	31 31 31
CHAPTER 4	INST	TRUCTION SET	33
	4.1	Addressing Mode 4 4.1.1 Basic addressing modes 4 4.1.2 Extended addressing mode 4	33 33 35
	4.2	Instruction List 4.2.1 Function classification 4.2.2 Symbol meanings 4.2.3 Instruction list by function 4.2.4 List in alphabetical order 4.2.5 List of extended addressing instructions	37 37 38 40 48 55
	4.3	Instruction Formats	59
	4.4	Detailed Explanation of Instructions	60

CHAPTER 1 OUTLINE

The E0C63000 is the core CPU of the 4-bit single chip microcomputer E0C63 Family that utilizes original EPSON architecture. It has a large and linear addressable space, maximum 64K words (13 bits/ word) program memory (code ROM area) and maximum 64K words (4 bits/word) data memory (RAM, data ROM and I/O area), and high speed, abundant instruction sets. It operates in a wide range of supply voltage and features low power consumption. Furthermore, modularization of programs can be done easily because the program memory does not need bank and page management and relocatable programming is possible.

In addition, it has adopted a unified architecture and a peripheral circuit interface in memory mapped I/O method to flexibly meet future expansion of the E0C63 Family.

1.1 Features

Program memory	Maximum 64K × 13 bits (lir	near address, non-page method)			
Data memory	Maximum $64K \times 4$ bits				
Basic instruction set	47 types with 5 types of bas addressing modes	sic addressing modes and 3 types of extended			
Instruction cycle	1 cycle (2 clocks), 2 cycles (4 clocks) and 3 cycles (6 clocks)			
Register configuration	Data register	2×4 bits			
	Index register	2×16 bits			
	Address extension register	8 bits			
	Program counter	16 bits			
	Stack pointer	2×8 bits			
	Condition flag	4 bits			
	Queue register	16 bits			
Interrupt function	NMI (Non Maskable Interrupt) vector 1				
	Hardware interrupt vector	Maximum 15 vectors			
	Software interrupt vector	Maximum 63 vectors			
Standby function	HALT/SLEEP				
Peripheral circuit interface	Memory mapped I/O meth	nod			
Pipeline processing	2 stages (fetch and execution	on) pipeline processing			

The E0C63000 boasts the below features.

1.2 Instruction Set Features

- (1) It adopts high efficiency machine cycles, high speed and abundant instruction set. Almost all standard instructions operate in 1 cycle (2 clock).
- (2) Both the program space and the data space are designed as a 64K-word linear space without page concept and can be addressed with 1 instruction.
- (3) The instruction system includes relocatable jump instructions and allows a relocatable programming. Thus modular programming and software library development can be realized easily, and it increases an efficiency for developing applications.
- (4) Memory management can be done easily by 5 types of basic addressing modes, 3 types of extended addressing modes with the address extension register and 16-bit operation function that is useful in address calculations.
- (5) 8-bit data processing is possible using the table look-up instruction and other instructions.
- (6) Some instructions support a numbering system, thus binary to hexadecimal software counters can be made easily.

1.3 Block Diagram

Figure 1.3.1 shows the E0C63000 block diagram.

Fig. 1.3.1 E0C63000 block diagram

1.4 Input-Output Signals

Tables 1.4.1 (a) and 1.4.1 (b) show the input/output signals between the E0C63000 and peripheral circuits.

Table 1.4.1(a)	Input/output	signal	list (1)
----------------	--------------	--------	----------

Туре	Terminal name	I/O	Function
Power supply	Vdd (Vd1)	Ι	Power supply (+)
			Inputs a plus supply voltage.
	VSS (VS1)	I	Power supply (-)
			Inputs a minus supply voltage.
Clock	CLK	I	Clock input
			Inputs the system clock from the peripheral circuit.
	2-phase divided clock output		
	PL		Outputs the 2-phase divided signals to be generated from the system clock
			input to the CLK terminal as following phase.
			PK
			→ 1 cycle <
Address bus	IA00–IA15	0	Instruction address output
Outputs an instruction (code ROM) add		Outputs an instruction (code ROM) address.	
	DA00-DA15	0	Data address output
			Outputs a data (RAM, I/O) address.

Data bus I00–I12 I Instruction bus Inputs an instruction code.			
Inputs an instruction code.	I		
M00–M15 I/O 16-bit data bus			
A bidirectional data bus to connect to the RAM (stack RAM) for 16-1	it accessing.		
D0–D3 I/O 4-bit data bus			
A bidirectional data bus to connect to the RAM and I/O.			
Bus control RD O Data read			
signal Goes to a low level when the CPU reads data (from RAM, I/O).			
WR O Data write			
Goes to a low level when the CPU writes data (to RAM, I/O).			
RDIV O Read interrupt vector			
Goes to a low level when the CPU reads an interrupt vector.			
System control SR I Reset input			
signal A low level input resets the CPU.			
USLP O Micro sleep			
Goes to a low level when the CPU executes the SLP instruction.			
The peripheral circuit stops oscillation on the basis of this signal.			
Interrupt signal NMI I Non-maskable interrupt request			
An interrupt request terminal for an interrupt that cannot be masked	y software.		
It is accepted at the falling edge of an input signal to this terminal.			
IRQ I Interrupt request			
An interrupt request terminal for interrupts that can be masked by s	oftware.		
It is accepted by a low level signal input to this terminal.			
IACK O Interrupt acknowledge			
Goes to a low level while executing an NMI or IRQ interrupt respo	nse cycle.		
NACK O Non-maskable interrupt acknowledge			
Goes to a low level while executing a non-maskable interrupt response	nse cycle.		
Status signal FETCH O Fetch cycle			
Goes to a low level when the CPU fetches an instruction.	Goes to a low level when the CPU fetches an instruction.		
STOP O Stop signal	Stop signal		
Goes to a low level when the CPU is in stop status after executing t	he HALT		
or SLP instruction, or in reset status (SR is low).			
IF O Interrupt flag			
Outputs a status (inverted value) of the interrupt flag in the flag (F)	register.		
BS16 O 16-bit access			
Goes to a low level when the CPU accesses to a 16-bit RAM.			
DBS0 O Data bus status			
DBS1 Outputs data bus status (for both the 4-bit and 16-bit data bus).			
DBS1 DBS0 State			
0 1 Interrunt vec	or read		
1 0 Memory write			
1 1 Memory read			

Table 1.4.1(b) Input/output signal list (2)

See Chapter 3, "CPU OPERATION", for the timing of the signals.

CHAPTER 2 ARCHITECTURE

This chapter explains the E0C63000 ALU, registers, configuration of the program memory area and data memory area, and addressing.

2.1 ALU and Registers

2.1.1 ALU

The ALU (Arithmetic and Logic Unit) loads 4-bit data from a memory or a register and operates the data according to the instruction. Table 2.1.1.1 shows the ALU operation functions.

Function classification	Mnemonic	Operation
Arithmetic	ADD	Addition
	ADC	Addition with carry
	SUB	Subtraction
	SBC	Subtraction with carry
	CMP	Comparison
	INC	Increment (adds 1)
	DEC	Decrement (subtracts 1)
Logic	AND	Logical product
	OR	Logical sum
	XOR	Exclusive OR
	BIT	Bit test
	CLR	Bit clear
	SET	Bit set
	TST	Bit test
Rotate / shift	RL	Rotate to left with carry
	RR	Rotate to right with carry
	SLL	Logical shift to left
	SRL	Logical shift to right

Table 2.1.1.1 ALU operation functions

The operation result is stored to a register or memory according to the instruction. In addition, the Z (zero) flag and C (carry) flag are set/reset according to the operation result.

2.1.2 Register configuration

Figure 2.1.2.1 shows the register configuration of the E0C63000.

A and B registers

The A and B registers are respective 4-bit data registers that are used for data transfer and operation with other registers, data memories or immediate data. They are used independently for 4-bit transfer/operations and used in a BA pair that makes the B register the high-order 4 bits for 8-bit transfer/operations.

• X and Y registers

The X and Y registers are respective 16-bit index registers that are used for indirect addressing of the data memory. These registers are configured as an 8-bit register pair (high-order 8 bits: XH/YH, low-order 8 bits: XL/YL) and data transfer/operations can be done in an 8-bit unit or a 16-bit unit.

• PC (program counter)

The PC is a 16-bit counter to address a program memory and indicates the following address to be executed.

• SP1 and SP2 (stack pointers)

The SP1 and SP2 are respective 8-bit registers that indicate a stack address in the data memory. 8 bits of the SP1 correspond to the DA02 to DA09 bits of the address bus for 16-bit data accessing (address stacking) and it is used to operate the stack in a 4-word (16-bit) unit. 8 bits of the SP2 correspond to the low-order 8 bits (DA01 to DA07) of the address bus for 4-bit data accessing and it is used to operate stack in 1-word (4-bit) unit.

See Section 2.3.3, "Stack and stack pointer" for details of the stack operation.

• EXT register

The EXT register is an 8-bit data register that is used when an address or data is extended into 16 bits. See Section 2.1.5, "EXT register and data extension", for details.

• F register

The F register includes 4 bits of flags; Z and C flags that are changed by operation results, I flag that is used to enable/disable interrupts, and E flag that indicates extended addressing mode.

• Queue register

The queue register is used as a queue buffer for data when the SP1 processes 16-bit stack operations. This register is provided in order to process 16-bit data pop operations from the SP1 stack at high-speed. The queue register is accessed by the hardware, so it is not necessary to be aware of the register operation when programming.

2.1.3 Flags

The E0C63000 contains a 4-bit flag register (F register) that indicates such things as the operation result status within the CPU.

Fig. 2.1.3.1 F (flag) register

• Z (zero) flag

The Z flag is set to "1" when the execution result of an arithmetic instruction or a shift/rotate instruction has become "0" and is reset to "0" when the result is other than "0".

Arithmetic instructions that change the Z flag:

ADD, ADC, SUB, SBC, CMP, INC, DEC, AND, OR, XOR, BIT, CLR, SET, TST

CHAPTER 2: ARCHITECTURE

Shift/Rotate instructions that change the Z flag:

SLL, SRL, RL, RR

The Z flag is used for condition judgments when executing the conditional jump ("JRZ sign8" and "JRNZ sign8") instructions, thus it is possible to branch processing to a routine according to the operation result.

C (carry) flag

The C flag is set to "1" when a carry (carry from the most significant bit) or a borrow (the most significant bit borrows) has been generated by the execution of an arithmetic instruction and a shift/rotate instruction, otherwise the flag is set to "0".

Arithmetic instructions that change the C flag:

ADD, ADC, SUB, SBC, CMP, INC, DEC

(It is different from the Z flag, the logic operation instructions except for the instruction that operates the F register does not change the C flag. In addition, the ADD instructions for the X and Y register operations and the INC and DEC instructions for the stack pointer operation does not change the C flag.)

Shift/Rotate instructions that change the C flag:

SLL, SRL, RL, RR

The C flag is used for condition judgments when executing the conditional jump ("JRC sign8" and "JRNC sign8") instructions, thus it is possible to branch processing to a routine according to the operation result.

I flag

The I flag permits and forbids the hardware interrupts except for the NMI. By setting the I flag to "1", the CPU enters in the EI (enable interrupts) status and the hardware interrupts are enabled. When the I flag is set to "0", the CPU is in the DI (disable interrupts) and the interrupts except for NMI are disabled. Furthermore, when a hardware interrupt (including the NMI) is generated, the I flag is reset to "0" and interrupts after that point are disabled. The multiple interrupts can be accepted by setting the I flag to "1" in the interrupt processing routine.

The NMI (non-maskable interrupt) is accepted regardless of the I flag setting.

The software interrupts are accepted regardless of the I flag and do not reset the I flag.

The I flag is set to "0" (DI status) at an initial reset, therefore it is necessary to set "1" before using interrupts by software.

See Section 3.5, "Interrupts" for details.

E (extension mode) flag

The E flag indicates whether an extended addressing that uses the EXT (extension) register is valid or invalid. When data is loaded into the EXT register, this flag is set to "1" and the data of the instruction immediately after that (extended addressable instructions only) is extended with the EXT register. Then the instruction is executed and the E flag is reset to "0".

See Section 2.1.5, "EXT register and data extension" for details.

Flag operations

As described above, the flags are automatically set/reset by the hardware. However, it is necessary to set by software, especially the I flag. The following instructions are provided in order to operate the F flag.

LD	%A,%F	Reads all the flag data	XOR	%F,imm4	Inverts flag(s)
LD	%F,%A	Writes all the flag data	PUSH	%F	Evacuates the F register
LD	%F,imm4	Writes all the flag data	POP	%F	Returns the F register
AND	%F,imm4	Resets flag(s)	RETI		Returns the F register*
OR	%F,imm4	Sets flag(s)			-

* The RETI instruction is used to return from interrupt processing routines (including software interrupts), and returns the F register data that was evacuated when the interrupt was generated.

2.1.4 Arithmetic operations with numbering system

In the E0C63000, some instructions support a numbering system. These instructions are indicated with the following notations in the instruction list.

ADC operand,n4 SBC operand,n4 INC operand, n4 DEC operand, n4

(See "Instruction List" or "Detailed Explanation of Instructions" for the contents of the operand.)

"n4" is a radix, and can be specified from 1 to 16. The additions/subtractions are done in the numbering system with n4 as the radix. Various counters (such as binary, octal, decimal and hexadecimal) can be realized easily by software.

The Z flag indicates that an operation result is "0" or not in arithmetics with any numbering system. The C flag indicates a carry/borrow according to the radix.

The following shows examples of these operation.

-										
	Setting	g value	Result	F register						
	B register	er A register B register E I C		С	Z					
	0010B(2)	0111B(7)	0001B(1)	0	-	1	0			
	0101B(5)	0011B(3)	0000B(0)	0	—	1	1			

Example 1) Octal addition ADC %B, %A, 8 (C flag is "0" before operation)

Example 2) Decimal subtractio SBC %B, %A, 10 (C flag is "0" before operation)

Setting	g value	Result		F register			
B register	A register	B register	Е	Ι	С	Z	
1001B(9)	0111B(7)	0010B(2)	0	-	0	0	
0001B(1)	0010B(2)	1001B(9)	0	-	1	0	

Example 3) 3-digit BCD down counter

	LDB LD	%EXT,0 %XL,0x10	;	Counter base address [0010H]
	LDB	[%X]+,0	;	Initial value setting [100]
	LDB	[%X]+,0		
	LDB	[%X]+,1		
	:			
	:			
CTDOW	IN:		;	Count down subroutine
	LDB	%EXT,0	;	Counter base address [0010H]
	LD	%XL,0x10		
	DEC	[%x]+ 10	;	Decrements digit 1
	SBC	[%X]+,0,10	;	Decrements carry from digit 2
	SBC	[%X],0,10	;	Decrements carry from digit 3
	CALR	CTDISP	;	Count number display routine
	LD	%A,0	;	Zero check
	ADD	%A,[%X]		
	ADD	%X,−1		
	ADD	%A,[%X]		
	ADD	%X,−1		
	JRNZ	CTEXIT	;	Return if counter is not zero
	CALR	CTOVER	;	Count over processing routine
CTEXI	T:			
	RET			

This routine constructs a 3-digit BCD counter using the decimal operation instructions underlined. Calling the CTDOWN subroutine decrements the counter, and then returns to the main routine. If the counter has to be zero, the CTOVER subroutine is called before returning to the main routine to process the end of counting.

CHAPTER 2: ARCHITECTURE

• Notes in numbering operations

When performing a numbering operation, set operands in correct notation according to the radix before operation.

For example, if a decimal operation is done for hexadecimal values (AH to FH), the correct operation result is not obtained as shown in the following example.

	Setting	g value	Result	F register				
	B register	A register	B register	E	Ι	С	Z	
1	1001B(9)	1001B(9)	1000B(8)	0	-	1	0	0
2	0101B(AH)	1001B(9)	1001B(9)	0	-	1	0	\triangle
3	1010B(AH)	1010B(AH)	1010B(AH)	0	-	1	0	×
4	1010B(AH)	1111B(FH)	1111B(FH)	0	-	1	0	×

Exam	ole: ADC	%₿.	%Α.	10
LAGIN			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- U

Example 1 operates correctly because a decimal value is loaded in the B and A registers. Examples 3 and 4 do not operate correctly.

Example 2 operates correctly even though it is a wrong setting.

2.1.5 EXT register and data extension

The E0C63000 has a linear 64K-word addressable space, therefore it is required to handle 16-bit address data. The EXT register and the F flag that extend 8-bit data into 16-bit data permit 16-bit data processing. The EXT register is an 8-bit register for storing extension data. The E flag indicates that the EXT register data is valid (extended addressing mode), and is set to "1" by writing data to the EXT register. The E flag is reset at 1 cycle after setting (during executing the next instruction), therefore an EXT register data is valid only for the executable instruction immediately after writing. However, that executable instruction must be a specific instruction which permits the extended addressing to extend the data using the EXT register. These instructions are specified in "Instruction List" and "Detailed Explanation of Instructions". Make sure of the instructions when programming.

Note: Do not use instructions (see Instruction List) which are invalid for the extended addressing when the E flag is set to "1". (Do not use them following instructions that write data to the EXT register or that set the E flag.) Normal operations cannot be guaranteed if such instructions are used.

(1) Operation for EXT register and E flag (flag register)

The following explains the operation for the EXT register and the E flag (flag register).

• Data setting to the EXT register

The following two instructions are provided to set data in the EXT register.

LDB	%EXT,imm8	Loads an 8-bit immediate data to the EXT register
LDB	%EXT,%BA	Loads the content of the BA register to the EXT register

By executing the instruction, the EXT flag is set to "1" and it indicates that the content of the EXT register is valid (the content of the EXT register will be used for data extension in the following instructions).

Furthermore, the content of the EXT register can be read using the instruction below.

LDB %BA, %EXT Loads the content of the EXT register to the BA register

• Setting/resetting the E flag

As mentioned above, the E flag is set to "1" by data setting to the EXT register and reset to "0" while executing the next instruction.

In addition, the E flag can be set/reset using the following instructions that operate the flags.

LD	%F,%A	Writes all the flag data
LD	%F,imm4	Writes all the flag data
AND	%F,imm4	Resets flag(s)
OR	%F,imm4	Sets flag(s)
XOR	%F,imm4	Inverts flag(s)

The EXT register maintains the data set previously until new data is written or an initial reset. In other words, the content of the EXT register becomes valid by only setting the E flag using an above instruction without the register writing and is used for an extended addressing. However, the EXT register is undefined at an initial reset, therefore, do not directly set the E flag except when the content of the EXT register has been set for certain.

The following shows the other instructions related to flag data transfer.

LD	%A,%F	Reads all the flag data
PUSH	%F	Evacuates the F register
POP	%F	Returns the F register
RETI		Returns the F register *

* The RETI instruction is used to return from interrupt processing routines (including software interrupts), and returns the F register data that was evacuated when the interrupt was generated. If an interrupt (including NMI) is generated while fetching an instruction, such as a "LDB %EXT, ••" instruction or an instruction which writes data to the flag register (the E flag may be set), the interrupt is accepted after fetching (and executing) the next instruction. In normal processing, data extension processing is not performed after returning from the interrupt service routine because the interrupt processing including the F register evacuation is performed after the data extension has finished (E flag is reset). However, if the stack data in the memory is directly changed in the interrupt service routine, the F register in which the E flag is set may return. In this case, the instruction immediately after returning by the RETI instruction is executed in the extended addressing mode by the E flag set to "1". Pay attention to the F register setting except when consciously describing such a processing. It is necessary to pay the same attention when returning the F register using the "POP %F" instruction.

(2) Extension with E flag

The following explains the instructions that can be executed when the E flag is set to "1" and its operation.

• Modifying the indirect addressing with the X and Y registers (for 4-bit data access)

The indirect addressing instructions, which contain [%X] or [%Y] as an operand and accesses 4-bit data using the X or Y register, functions as an absolute addressing that uses the EXT register data together with the E flag (= "1").

When an 8-bit immediate data (imm8) is written to the EXT register and the E flag is set immediately before these instructions, the instruction is modified executing as [%X] = [0000H + imm8] or [%Y] = [FF00H + imm8]. Therefore, the addressable space with this function is data memory address from 0000H to 00FFH when [%X] is used, and from FF00H to FFFFH when [%Y] is used. Generally, data that are often used are allocated to the data memory from 0000H to 00FFH and the area from FF00H to FFFFH is assigned to the I/O memory area (for peripheral circuit control), so these areas are frequently accessed. To access these areas by a normal indirect addressing (if the E flag has not been set) using the X or Y register, two or three steps of instructions are necessary for setting an address data. In other words, using this function promotes efficiency of the entire program. See Section 2.3, "Data Memory" for details of the data memory.

Examples:

LDB	%EXT,0x37	
LD	%A,[%X]	Works as "LD %A, [0x0037]"
LDB	%EXT,0x9C	
ADD	[%Y],5	Works as "ADD [0xFF9C], 5"

- Note: This function can be used by only the specific instructions which permits the extended addressing (see "Instruction List"). Be aware that the operation cannot be guaranteed if the instructions indicated below are used.
 - 1. Instructions which have a source and /or a destination operand with the post-increment function, [%X]+ and [%Y]+.
 - 2. Instructions which have [%X] and/or [%Y] in both the source and destination operands.
 - 3. The RETD instruction and the LDB instructions which transfers 8-bit data.

CHAPTER 2: ARCHITECTURE

• 16-bit data transfer/arithmetic for the index registers X and Y

The following six instructions, which handle the X or Y register and have an 8-bit immediate data as the operand, permit the extended addressing.

LDB	%XL,imm8	LDB	%YL,imm8
ADD	%X,sign8	ADD	%Y,sign8
CMP	%X,imm8	CMP	%Y,imm8

When data is written to the EXT register and the E flag is set immediately before these instructions, the data is processed after extending into 16-bit; imm8 (sign8) is used as the low-order 8 bits and the content of the EXT register is used as the high-order 8 bits.

Examples:

LDB LDB	%EXT,0x15 %XL,0x7D	Works as "LD %X,0x157D"
LDB ADD	%EXT,0xB8 %X,0x4F	Works as "ADD %X, 0xB84F"
LDB CMP	%EXT,0xE6 %X,0xA2	Works as "CMP %X, 0x19A2" * 19H = FFH - [EXT] (E6H)

Above examples use the X register, but work the same even when the Y register is used.

Note: The CMP instruction performs a subtraction with a complement, therefore it is necessary to set the complement (1's complement) of the high-order 8-bit data in the EXT register. EXT register ← [FFH - High-order 8-bit data]

• Extending branch addresses

The following PC relative branch instructions, which have a signed 8-bit relative address as the operand, permit extended addressing.

JR	sign8	JRC	sign8	JRNC	sign8	JRZ	sign8	JRNZ	sign8
CALR	sign8								

When data is written to the EXT register and the E flag is set immediately before these instructions, the relative address is processed after extending into signed 16-bit; sign8 is used as the low-order 8 bits and the content of the EXT register is as the high-order 8 bits.

Examples:

%EXT,0x64 0x29	Works as "JR 0x6429"
%EXT,0x00 127	Works as "JR 127"
%EXT,0xFF -128	Works as "JR -128"
%EXT,0x3A 0x88	Works as "JR* 0x3A88" (* = C, NC, Z, or NZ)
%EXT,0xF8 0x62	Works as "CALR 0xF862"
	<pre>%EXT,0x64 0x29 %EXT,0x00 127 %EXT,0xFF -128 %EXT,0x3A 0x88 %EXT,0xF8 0x62</pre>

See Section 2.2.3, "Branch instructions" for the branch instructions.

2.2 Program Memory

2.2.1 Configuration of program memory

The E0C63000 can access a maximum 64K-word (\times 13 bits) program memory space. In the individual model of the E0C63 Family, the ROM of which size is decided depending on the model is connected to this space to write a program and static data.

Figure 2.2.1.1 shows the program memory map of the E0C63000.

Fig. 2.2.1.1 E0C63000 program memory map

The E0C63000 can access 64K-word space linearly without any page management used in current 4-bit microcomputers.

As shown in Figure 2.2.1.1, the program start address after an initial reset is fixed at 0110H independent of the E0C63 Family models. Programming should be done so that the execution program starts from that address.

The address 0100H to 010FH is the hardware interrupt vector's area in which up to 16 interrupt vectors can be assigned. Address 0100H is for the exclusive use of NMI (non-maskable interrupt). The number of interrupt vectors is dependent on the interrupt function of the E0C63 Family models. Branch instructions to the interrupt service routines should be written in this area. See Section 3.5, "Interrupts" for details of the interrupts.

The address 0111H to 013FH is the software interrupt vector's area. Up to 63 software interrupts can be set up together with the hardware interrupt vector area. Set branch instructions to the interrupt service routines in this area similarly to the hardware interrupts.

Addresses from 0000H to 00FFH and from 0140H to FFFFH are program area. A call instruction (CALZ) that is for the exclusive use of the area from 0000H to 00FFH is provided so that the area is useful to store common subroutines that are called from relocatable modules.

2.2.2 PC (program counter)

The PC (program counter) is a 16-bit counter that keeps the program address to be executed next. The PC is incremented by executing every instruction step to execute a program sequentially. When a branch instruction is executed or an interrupt is generated, the content of the PC is modified to branch the process flow.

The PC covers the entire program memory space alone, therefore processing such as page management are unnecessary.

At initial reset, the PC is initialized to 0110H and the program starts executing from that address.

2.2.3 Branch instructions

Various branch instructions are provided for program repeat and subroutine calls that change a sequential program flow controlled with the PC. The branch instruction modifies the PC to branch the program to an optional address. The types of the branch instructions are classified as follows, according to their operation differences.

Туре	Condition	Instruction
PC relative jump	Unconditional	JR
PC relative jump	Conditional	JRC, JRNC, JRZ, JRNZ
Indirect jump	Unconditional	JP
Absolute call	Unconditional	CALZ
PC relative call	Unconditional	CALR
Return	Unconditional	RET, RETS, RETD, RETI
Software interrupt	Unconditional	INT

Table 2.2.3.1 Types of branch instructions

• PC relative jump instructions (JR)

The PC relative jump instruction adds the relative address specified in the operand to the PC that has indicated the next address, and branches to that address. It permits relocatable programming. The relative address to be specified in the operand is a displacement from the PC value (address of the next instruction) when the branch instruction is executed to the branch destination address. When programming using the E0C63 Family assembler, it is not necessary to calculate displacements because a branch destination address can be defined as a label and it can be used as an operand. However, the range of branch destination addresses is different depending on the number of data bits that are handled as relative addresses.

The following explains the PC relative jump instructions and the relative addresses.

(1) Instructions with a signed 8-bit immediate data sign8 that specifies a relative address

Unconditional jump JR sign8 Conditional jump JRC sign8 JRNC sign8 JRZ sign8 JRNZ sign8

These instructions branch the program sequence with the sign8 specified in the operand as a signed 8-bit relative address. The range that can be branched is from the next instruction address - 128 to +127. A value within the range from -128 to +127 should be used if specifying a value for jumping in the assembler. Generally branch destination labels such as "JR LABEL" are used, and they are expanded into the actual address by the assembler.

These instructions permit the extended addressing with the E flag, and the 8-bit relative address can be extended into 16 bits (the contents of the EXT register become the high-order 8 bits). In this case, the range that can be branched is from the next instruction address -32768 to +32767. Consequently, in the extended addressing mode these instructions can branch the entire 64K program memory.

Examples:

JR	-100	Jumps to the instruction 99 steps before
LDB	%EXT,100	$\dots(100 \times 256) = 25600$
JR	100	Jumps to the instruction 25701 steps after

The unconditional jump instruction "JR sign8" jumps to the branch destination unconditionally when it is executed.

The conditional jump instructions jump according to the status of C flag or the Z flag.

JRC	sign8	Jumps if the C flag is "1", or executes the next instruction if the C flag is "0"
JRNC	sign8	Jumps if the C flag is "0", or executes the next instruction if the C flag is "1"
JRZ	sign8	Jumps if the Z flag is "1", or executes the next instruction if the Z flag is "0"
JRNZ	sign8	Jumps if the Z flag is "0", or executes the next instruction if the Z flag is "1" $$

(2) Instruction with a 4-bit A register data that specifies a relative address

JR %A

This instruction branches the program sequence with the content of the A register as an unsigned 4-bit relative address. The range that can be branched is from the next instruction address +0 to +15 (absolute value in the A register). This instruction is useful when operation results are used as the 4-bit relative addresses.

Example: LD %A,4 JR %A ...Jumps to the instruction 5 steps after

(3) Instruction with an 8-bit BA register data that specifies a relative address

JR %BA

This instruction branches the program sequence with the content of the BA register as an unsigned 8-bit relative address (the B register data becomes the high-order 4 bits). The range that can be branched is from the next instruction address +0 to +255 (absolute value in the BA register). This instruction is useful when operation results are used as the 8-bit relative addresses.

Example: LDB %BA, 29 JR %BA ...Jumps to the instruction 30 steps after

(4) Instruction with a data memory address within 0000H to 003FH in which the content specifies a 4-bit relative address

JR [addr6]

This instruction branches the program sequence with the content of the data memory specified by the [addr6] as an unsigned 4-bit relative address. The operand [addr6] can specify a data memory address within 0000H to 003FH. The range that can be branched is from the next instruction address +0 to +15 (absolute value in the specified data memory). For the data memory area that is specified with [addr6], bit operation instructions (CLR, SET, TST) are provided so that various flags can be set simply. This jump instruction can be used as a conditional jump according to these flags.

Example: When the content of the address 0010H is 4 (0100B).SET[0x0010],0...Sets the bit 0 in the address 0010H to "1" ([0010H] = 5)JR[0x0010]...Jumps to the instruction 6 steps after

• Indirect jump instruction (JP)

The indirect jump instruction "JP %Y" loads the content of the Y register into the PC to branch to that address unconditionally. This instruction can branch entire 64K program memory because the 16-bit data in the Y register becomes a branch destination address as it is.

Example:

LDB	%EXT,0x24	
LDB	%YL,0x00	Y = 2400H
JP	%Y	Jumps to the address 2400H

Figure 2.2.3.1 shows the operation of the jump instructions and the branch range.

Fig. 2.2.3.1 Operation of jump instructions

Absolute call instruction (CALZ)

The absolute call instruction "CALZ imm8" calls a subroutine within addresses 0000H to 00FFH. A subroutine start address (absolute address) should be specified to imm8. When the call instruction is executed, the PC value (address of the next instruction) is saved into the stack for return, then it branches to the specified address.

Generally common subroutines that are called from two or more modules are placed in this area when the program is developed as multiple modules.

Example:

CALZ 0x50 ...Calls the subroutine located at the address 0050H

See Section 2.3.3, "Stack and stack pointer" for stack.

• PC relative call instructions (CALR)

The PC relative call instruction adds the relative address specified in the operand to the PC that has indicated the next address, and calls a subroutine started from that address. It permits relocatable programming.

The relative address to be specified in the operand is same as the PC related jump instruction. The PC value (address of the next instruction) is saved into the stack before branching.

(1) Instructions with a signed 8-bit immediate data sign8 that specifies a relative address

CALR sign8

This instruction branches the program sequence with the sign8 specified in the operand as a signed 8-bit relative address. The range that can be branched is from the next instruction address - 128 to +127. A value within the range from -128 to +127 should be used if specifying a value for calling in the assembler. Generally branch destination labels such as "CALR LABEL" are used, and they are expanded into the actual address by the assembler.

This instruction permits the extended addressing with the E flag, and the 8-bit relative address can be extended into 16 bits (the contents of the EXT register becomes the high-order 8 bits). In this case, the range that can be branched is from the next instruction address -32768 to +32767. Consequently, in the extended addressing mode this instruction can call subroutines over a 64K program memory.

-		
Exa	amp	Dies:

-namp	5100.	
CALR	-50	Calls the subroutine 49 steps before
LDB	%EXT,50	$(50 \times 256) = 17800$
CALR	50	Calls the subroutine 17851 steps after

(2) Instruction with a data memory address within 0000H to 003FH in which the content specifies a 4-bit relative address

CALR [addr6]

This instruction branches the program sequence with the content of the data memory specified by the [addr6] as an unsigned 4-bit relative address. The operand [addr6] can specify a data memory address within 0000H to 003FH. The range that can be branched is from the next instruction address +0 to +15. Same with the "JR [addr6]", this call instruction can be used as a conditional call according to the flags that are set in the memory specified with [addr6].

Example: When the content of the address 0010H is 4 (0100B).

SET [0x0010], 0 ...Sets the bit 0 in the address 0010H to "1" ([0010H] = 5) CALR [0x0010] ...Calls the subroutine 6 steps after

Figure 2.2.3.2 shows the operation of the call instructions and the branch range.

Fig. 2.2.3.2 Operation of call instructions

• Return instructions (RET, RETS, RETD, RETI)

A return instruction is used to return from a subroutine called by the call instruction to the routine that called the subroutine. Return operation is done by loading the PC value (address next to the call instruction) that was stored in the stack when the subroutine was called into the PC.

The RET instruction operates only to return the PC value in the stack, and the processing is continued from the address next to the call instruction.

The RETS instruction returns the PC value then adds "1" to the PC. It skips executing an instruction next to the call instruction.

Figure 2.2.3.3 shows return operations from a subroutine.

Fig. 2.2.3.3 Return from subroutine

The RETD instruction performs the same operation as the RET instruction, then stores the 8-bit data specified in the operand into the memory specified with the X register. This function is useful to create data tables that will be explained in the next section.

The RETI instruction is for the exclusive use of hardware and software interrupt service routines. When an interrupt is generated, the content of the F register is saved into the stack with the current PC value. The RETI instruction returns them.

• Software interrupt instruction (INT)

The software interrupt instruction "INT imm6" specifies a vector address within the addresses from 0111H to 013FH to execute its interrupt service routine. It can also call a hardware interrupt service routine because it can specify an address from 0100H. It performs the same operation with the call instruction, but the F register is also saved into the stack before branching. Consequently, the RETI instruction must be used for returning from interrupt service routines. See Section 3.5, "Interrupts" for details of the interrupt.

2.2.4 Table look-up instruction

The RETD instruction, one of the return instructions, has an 8-bit data in the operand, and stores the data in the memory specified with the X register (the low-order 8 bits are stored in [X] and the high-order 8 bits are stored in [X+1]) immediately after returning.

By using the RETD instruction combined with the "JR %BA" or "JR %A" instructions, an 8-bit data table for an LCD segment data conversion or similar can simply be constructed in the code ROM.

Example: The following is an example of a table for converting a BCD data (0 to 9) in the A register into an ASCII code (30H to 39H). The conversion result is stored in the addresses 0040H (low-order 4 bits) and 0041H (high-order 4 bits).

```
LD %A,3 ;Sets data to be converted
CALR TOASCII ;Calls converting routine
LDB %BA,[%X]+ ;Loads result from memory to BA register
:
```

```
TOASCII:
                       ;BCD to ASCII conversion
           %EXT,0x00 ;Sets address 0040H
     LDB
     LDB
           %XL,0x40
     JR
           %А
     RETD 0x30
                       ;"0"
     RETD 0x31
                       ;"1"
                       ;"2"
     RETD 0x32
     RETD 0x33
                       ;"3"
                       ; "4"
     RETD 0x34
     RETD 0x35
                       : "5"
     RETD 0x36
                       ; "6"
                       ; "7"
     RETD 0x37
     RETD 0x38
                       ;"8"
     RETD 0x39
                       ;"9"
```

As shown in the example, operation results in the A or BA register can simply be converted into other formats.

2.3 Data Memory

2.3.1 Configuration of data memory

In addition to the program memory space, the E0C63000 can also access 64K-word (\times 4 bits) data memory. In the individual model of the E0C63 Family, RAM of which size is decided depending on the model and I/O memory are connected to this space.

Figure 2.3.1.1 shows the data memory map of the E0C63000.

Fig. 2.3.1.1 E0C63000 data memory map

The E0C63000 can access 64K-word space linearly without any of the page management commonly used in current 4-bit microcomputers.

The E0C63000 has a built-in 16-bit data bus for the address stack (SP1), and a RAM that permits 16-bit data accessing can be connected to the addresses 0000H to 03FFH. The 16-bit accessible area is different depending on the individual models. That area permits normal 4-bit accessing. Switching between 4-bit accessing and 16-bit accessing is done according to the instruction by the hardware. A normal 4-bit data stack (SP2) is assigned within the addresses 0000H to 00FFH.

The addresses FF00H to FFFFH are used for an I/O memory area to control the peripheral circuits.

2.3.2 Addressing for data memory

For addressing to access the data memory, the index registers X and Y, and stack pointers SP1 and SP2 are used. (The next section will explain the stack pointers.)

Index registers X and Y are both 16-bit registers and cover the entire 64K data memory space. The data memory is accessed by setting an address in the register.

Example:

LDB	%EXT,0x00	
LDB	%XL,0x10	Sets 0010H in the X register
LD	A,[%X]	Loads the content of the memory address 0010H into the A register

The indirect addressing with the X or Y register permits use of the post-increment function and processing for continuous addresses can be done efficiently. This function can be used in the instruction with [%X]+ or [%Y]+ as an operand. [%X]+ indicates that the content of the X register is incremented after end of transfer or operation, therefore the next address can be accessed without the X register re-setting. It is the same in case of the Y register.

Example: To copy the 3-word data from the address specified with the X register to the area specified

```
with the Y register
LD [%Y]+,[%X]+
LD [%Y]+,[%X]+
LD [%Y],[%X]
```

In addition, the E0C63000 has also provided instructions in order to efficiently access only the area which is accessed frequently such as the I/O memory and lower addresses.

One of that is the addressing using the EXT register explained in Section 2.1.5.

Accessing for addresses 0000H to 00FFH

For absolute addressing in this area, the EXT register and an indirect instruction with the X register ([%X]) are used. To access this area, first write an 8-bit low-order address (00H to FFH) in the EXT register, then execute an indirect addressing instruction with an operand [%X] (only the instruction that permits the extended addressing). In this case, the content of the X register does not affect the address to be accessed. Also the content of the X register is not changed.

Example:

```
LDB %EXT, 0x37
LD %A, [%X] ...Works as "LD %A, [0x0037]"
```

Accessing for addresses FF00H to FFFFH (I/O memory area)

For absolute addressing in this area, the EXT register and an indirect instruction with the Y register ([%Y]) are used. To access this area, first write an 8-bit low-order address (00H to FFH) in the EXT register, then execute an indirect addressing instruction with an operand [%Y] (only the instruction that permits the extended addressing). In this case, the content of the Y register does not affect the address to be accessed. Also the content of the Y register is not changed.

Example:

```
LDB %EXT,0x9C
ADD [%Y],5 ....Works as "ADD [0xFF9C],5"
```

Note: The extended addressing function using the EXT register is effective only for the instruction following immediately after writing data to the EXT register or setting the E flag to "1". For that instruction, do not use instructions other than the instructions that permit the extended addressing. Operation cannot be guaranteed if used.

In addition to the above functions, some 6-bit addressing instructions are provided to directly access that area. These instructions have a [addr6] as the operand and can alone directly access the area 0000H to 003FH or FFC0H to FFFFH.

Accessing for addresses 0000H to 003FH

Data in this area is used for a relative address by the "JR [addr6]" and "CALR [addr6]" explained in Section 2.2.3. This area is suitable for setting up various flags and counters since the bit operation instructions (CLR, SET, TST) and increment/decrement instructions (INC, DEC) are provided for accessing this area.

Accessing for addresses FFC0H to FFFFH (I/O memory area)

The bit operation instructions (CLR, SET, TST) are provided for accessing this area. Therefore, control bits in the I/O memory can be operated simply.

```
Examples:
```

```
CLR [0xFFC0],0 ...Clears the D0 bit in the I/O memory address FFC0H to "0"
SET [0xFFD2],3 ...Sets the D3 bit in the I/O memory address FFD2H to "1"
```

2.3.3 Stack and stack pointer

The stack is a memory that is accessed in the LIFO (Last In, First Out) format and is allocated to the RAM area of the address 0000H to 03FFH. The stack area can be set from an optional address (toward the lower address) using the stack pointer.

The E0C63000 contains two stack pointers SP1 and SP2.

(1) Stack pointer SP1

The SP1 is used for the address data stack, and permits 16-bit data accessing.

Fig. 2.3.3.1 SP1 configuration

As shown in the figure, the D0, D1 and D10–D15 within the 16 bits are fixed at "0". 8 bits of the D2–D9 can be set by software. Furthermore, the hardware also operates for this 8-bit field. Therefore, addressing by the SP1 is done in 4-word units, and a 16-bit address data can be transferred in one accessing. Since the SP1 performs 16-bit data accessing, this stack area is limited to the 16-bit accessible RAM area even though it is within the addresses 0000H to 03FFH.

This stack is used to evacuate return addresses when the call instructions are executed or the interrupts are generated. It is also used when the 16-bit data in the X or Y register is evacuated using the PUSH instruction. The return address data is written into the stack as shown in Figure 2.3.3.2. The SP1 is decremented after the data is evacuated and is incremented when a return instruction is executed or after returning data by executing the POP instruction.

Fig. 2.3.3.2 Address stack operation

CHAPTER 2: ARCHITECTURE

The SP1 increment/decrement affects only the 8-bit field shown in Figure 2.3.3.1, and its operation is performed cyclically. In other words, if the SP1 is decremented by the PUSH instruction or other conditions when the SP1 is 00H (indicating the memory address 0000H), the SP1 becomes FFH (indicating the memory address 03FCH). Similarly, if the SP1 is incremented by the POP instruction or other conditions when the SP1 is FFH (indicating the memory address 03FCH), the SP1 becomes 00H (indicating the memory address 0000H).

• Queue register

The queue register is provided in order to reduce the process time of the 16-bit data transfer by the SP1. The queue register retains 16-bit data in the RAM indicated with the SP1. It is accessed when the following instructions are executed, not by programs directly.

- 1. When the call instruction or the PUSH instruction is executed, and when an interrupt is generated When the CALR or CALZ instruction is executed, a software interrupt by the INT instruction is generated, and a hardware interrupt is generated, the PC value for returning is written in the memory [SP1-1]. When the "PUSH %X" or "PUSH %Y" instruction is executed, the content of the X register or Y register is written in the memory [SP1-1]. At this time, the same data which is written in the memory [SP1-1] is also written to the queue register.
- 2. When the return instruction or the POP instruction is executed When the RET, RETS, RETD, RETI, "POP %X" or "POP %Y" instructions are executed, the data retained in the queue register is returned to the PC, X register or Y register. Since the SP1 is incremented, the content of the queue register is renewed (it generates a bus cycle to load the content of the memory [SP1+1] to the queue register).
- 3. When the "LDB %SP1, %BA", "INC SP1" or "DEC SP1" instructions are executed When these instructions are executed, the content of the queue register is also renewed (it generates a bus cycle to load the content of the memory [SP1] to the queue register).
- Note: As shown above, the memory content that is indicated by the SP1 is written to the queue register according to the SP1 changes. Therefore, the queue register is not renewed even if the memory [SP1] is directly modified when the SP1 is not changed. Be aware that intended return and POP operations cannot be performed if such an operation is done.

(2) Stack pointer SP2

The SP2 is used for the normal 4-bit data stack.

Fig. 2.3.3.3 SP2 configuration

In the case of the SP1, the D8–D15 within the 16 bits are fixed at "0". 8 bits of the D0–D7 can be set by software. Furthermore, the hardware also operates for this 8-bit field. The address range that can be used for the data stack is limited to within 0000H to 00FFH. Data evacuation/return is done in 1-word units.

This stack is used to evacuate the F register data when an interrupt is generated. It is also used when the 4-bit register data (A, B, F) is evacuated using the PUSH instruction. The register data is written into the stack as shown in Figure 2.3.3.4.

The SP2 is decremented after the data is evacuated and is incremented when the data is returned.

Fig. 2.3.3.4 4-bit stack operation

The SP2 increment/decrement affects only the 8-bit field shown in Figure 2.3.3.3, and its operation is performed cyclically. In other words, if the SP2 is decremented by the PUSH instruction or other conditions when the SP2 is 00H (indicating the memory address 0000H), the SP2 becomes FFH (indicating the memory address 00FFH). Similarly, if the SP2 is incremented by the POP instruction or other conditions when the SP2 is FFH (indicating the memory address 00FFH), the SP2 becomes 00H (indicating the memory address 000H).

(3) Notes for using the stack pointer

• The SP1 and SP2 are undefined at an initial reset. Therefore, both the stack pointers must be initialized by software.

For safety, all the interrupts including NMI are masked until both the SP1 and SP2 are set by software. Furthermore, if either the SP1 or SP2 is re-set, all the interrupts are masked again until the other is re-set. Therefore be sure to set the SP1 and SP2 as a pair.

- The increment/decrement for the SP1 and SP2 is operated cyclically from 0000H to 03FFH (SP1) and from 0000H to 00FFH (SP2) regardless of the memory capacity/allocation set up in each model. Control with the program so that the stacks do not cross over the upper/lower limits of the mounted memory.
- The SP1 must be set in the RAM area that permits 16-bit accessing depending on the model. The SP1 address stack cannot be allocated to other than the 16-bit accessible area even if the address is less than 03FFH.
- The area management for the SP1 stack, SP2 stack and data RAM should be done by the user. Pay attention to these areas so that they do not overlap in the same addresses.

2.3.4 Memory mapped I/O

The E0C63 Family contains the E0C63000 as the core CPU and various types of peripheral circuits, such as input/output ports. The E0C63000 has adopted a memory mapped I/O system for controlling the peripheral circuits, and the control bits and the registers for exchanging data are arranged in the data memory area.

The I/O memory for controlling the peripheral circuits is assigned to the area from FF00H to FFFFH, and is distinguished from RAM and others. However, the accessing method is the same as RAM, so indirect addressing can be done using the X or Y register. In addition, since the I/O memory is accessed frequently, the exclusive instructions for this area are also provided. (See Section 2.3.2.)

Refer to the manual for the individual model of the E0C63 Family for the I/O memory and the peripheral circuits.

CHAPTER 3 CPU OPERATION

This section explains the CPU operations and the operation timings.

3.1 Timing Generator and Bus Cycle

The E0C63000 has a built-in timing generator. The timing generator of the E0C63000 generates the twophase divided signals PK and PL based on the clock (CLK) input externally (*) to make states. One state is a 1/2 cycle of the CLK and the one bus cycle that becomes the instruction execution unit is composed of four states.

* The clock that is input to the E0C63000 is generated by an oscillation circuit provided outside of the CPU. The E0C63 Family models have a built-in oscillation circuit.

Fig. 3.1.1 State and bus cycle

The number of cycles which is stated in the instruction list indicates the number of bus cycles.

3.2 Instruction Fetch and Execution

The E0C63000 executes the instructions indicated with the PC (program counter) one by one. That operation for an instruction is divided into two stages; one is a fetch cycle to read an instruction, and another is an execution cycle to execute the instruction that has been read.

All the E0C63000 instructions are composed of one step (word), and are fetched in one bus cycle. An instruction code that is written in the ROM is read out during the fetch cycle and is analyzed by the instruction decoder. The FETCH signal goes to a low level during that time. In addition, the PC is incremented at the end of each fetch.

The analyzed instruction is executed from the next bus cycle. The number of execution cycles is shown in the instruction list and it is one, two or three bus cycles depending on the instruction.

The E0C63000 contains two different buses for the program memory and the data memory. Consequently, a fetch cycle for the next instruction can be executed to overlap with the last execution cycle, and it increases the processing speed. In the one-cycle instructions, the next instruction is fetched at the same time an instruction is executed.

3.3.1 Data bus status

The E0C63000 output the data bus status in each bus cycle externally on the DBS0 and DBS1 signals as a 2-bit status. The peripheral circuits perform the direction control of the bus driver and other controls with these signals. The data bus statuses indicated by the DBS0 and DBS1 are as shown in Table 3.3.1.1.

DBS1	DBS0	State		
0	0	High impedance		
0	1	Interrupt vector read		
1	0	Memory write		
1	1	Memory read		

Table 3.3.1.1 Data bus status

3.3.2 High-impedance control

The data bus goes to a high-impedance during an execution cycle (*) that accesses only the internal registers in the CPU. During the bus cycle period, both the read signal $\overline{\text{RD}}$ and write signal $\overline{\text{WR}}$ are fixed at a high level and a dummy address is output on the address bus.

Fig. 3.3.2.1 Bus cycle during accessing internal register

* Data is output on the data bus only when the stack pointer SP1 is accessed because a data transfer is performed between the queue register and the data memory. In this case, the data bus status becomes a memory write or a memory read depending on the instruction that accesses the SP1.

3.3.3 Interrupt vector read

When an interrupt is generated, the CPU reads the interrupt vector output to the data bus by the peripheral circuit that has generated the interrupt. The interrupt vector read status indicates this bus cycle. The peripheral circuit outputs the interrupt vector to the data bus during this status, and the CPU reads the data between the T2 and T3 states. At this time, the CPU outputs the RDIV signal (for exclusive use of the interrupt vector read) as a read signal, not the RD signal that is used for normal data memory read. The address bus outputs a dummy address during this bus cycle. See Section 3.5 for the operation when an interrupt is generated.

Fig. 3.3.3.1 Bus cycle during reading interrupt vector

3.3.4 Memory write

In an execution cycle that writes data to the data memory, the writing data is output to the data bus between the T2 and T4 states and the write signal \overline{WR} is output in the T3 state. The address bus outputs the target address during this bus cycle.

The E0C63000 contains a 4-bit data bus (D0–D3) and a 16-bit data bus (M00–M15) for an address stacking. The CPU switches the data bus according to the instruction. The $\overline{BS16}$ signal is provided for this switching.

Fig. 3.3.4.1 Bus cycle during memory write

3.3.5 Memory read

In an execution cycle that reads data from the data memory, the read signal $\overline{\text{RD}}$ is output between the T2 and T3 states and data is read from the data bus. The address bus outputs the target address during this bus cycle.

The 4-bit/16-bit access is the same as the memory write.

Fig. 3.3.5.1 Bus cycle during memory read

3.4 Initial Reset

The E0C63000 has a reset (\overline{SR}) terminal in order to start the program after initializing the circuit when the power is turned on or other situations. The following explains the operation at an initial reset and the initial setting of the internal registers.

3.4.1 Initial reset sequence

The E0C63000 enters into an initial reset status immediately after setting the \overline{SR} terminal to a low level, and the internal circuits are initialized. During an initial reset, the data bus goes to a high-impedance and the \overline{RD} and \overline{WR} signals go to a high level.

When the \overline{SR} terminal goes to a high level, the initial reset is released and the program starts executing from address 0110H. The release of an initial reset (the \overline{SR} terminal goes a high level) is accepted at the rising edge of the CPU operation clock (CLK), and the first bus cycle (fetching the instruction of the address 0110H) starts from 1 clock after.

Fig. 3.4.1.1 Initial reset status and sequence after releasing

After an initial reset, all the interrupts including NMI are masked until both the stack pointers SP1 and SP2 are set by software.

3.4.2 Initial setting of internal registers

An initial reset initializes the internal registers in the CPU as shown in Table 3.4.2.1.

Name	Symbol	Number of bits	Setting value
Data register A	А	4	Undefined
Data register B	В	4	Undefined
Extension register EXT	EXT	8	Undefined
Index register X	Х	16	Undefined
Index register Y	Y	16	Undefined
Program counter	PC	16	0110H
Stack pointer SP1	SP1	8	Undefined
Stack pointer SP2	SP2	8	Undefined
Zero flag	Z	1	Undefined
Carry flag	С	1	Undefined
Interrupt flag	Ι	1	0
Extension flag	Е	1	0
Queue register	Q	16	Undefined

Table 3.4.2.1 Initial setting of internal registers

The registers and flags which are not initialized at an initial reset should be initialized in the program if necessary.

Be sure to set both the stack pointers SP1 and SP2. All the interrupts cannot be accepted if they are not set as a pair.

3.5 Interrupts

Interrupt is a function to process factors, that generate asynchronously with program execution, such as a key entry and an end of a peripheral circuit operation. When the CPU accepts an interrupt request that is sent by the hardware, the CPU stops executing the current sequence of the program and shifts into the interrupt processing. When all the interrupt processing has finished, the interrupted program is resumed.

The E0C63000 has the hardware interrupt function for the peripheral circuits including an NMI (nonmaskable interrupt) and the hardware interrupt function. The hardware interrupts excluding the NMI can be set to the DI (disable interrupts) status by setting the I (interrupt) flag.

I flag = "1": EI (enable interrupts) status	The CPU accepts interrupt requests from the peripheral
	circuits.
I flag = "0": DI (disable interrupts) status	The CPU does not accept interrupt requests from the periph
	eral circuits. (excluding NMI and software interrupts)

The I flag is set to "0" at an initial reset. Furthermore, all the interrupts including NMI are masked and cannot be accepted regardless of the I flag setting until both the stack pointers SP1 and SP2 are set in the program after an initial reset.

3.5.1 Interrupt vectors

Interrupt vectors are provided to execute a interrupt service routine corresponding to the interrupt generated.

The interrupt vectors are assigned to the following addresses in the ROM.

NMI interrupt vector:	0100H
Hardware interrupt vectors:	0101H to 010FH
Software interrupt vectors:	0111H to 013FH

Each of the addresses listed above corresponds to an interrupt factor individually. A branch (jump) instruction to the interrupt service routine should be written to these addresses.

Up to 15 hardware interrupt vectors are available, however, the number of vectors is different depending on the E0C63 Family models. The addresses, that are not assigned to the hardware interrupt vector within the addresses 0101H to 010FH, can be used as software interrupt vectors. In addition, since the hardware interrupt service routines can be executed using the software interrupt, up to 63 software interrupts can be used (excluding the address 0110H because it is the program start address).

3.5.2 Interrupt sequence

• Hardware interrupts

Hardware interrupts including NMI are generated by the peripheral circuits. The peripheral circuit that contains the interrupt function outputs an interrupt request to the CPU when the interrupt factor is generated. The $\overline{\text{NMI}}$ terminal for NMI or $\overline{\text{IRQ}}$ terminal for other interrupts goes low. Sampling the $\overline{\text{NMI}}$ signal is done at the falling edge by the CPU. Sampling the $\overline{\text{IRQ}}$ signal is done at the rising edge of the T3 state in the bus cycle. The CPU executes the following process after accepting an interrupt request.

Bus cycle 0 Sampling the interrupt request.

- Bus cycle 1 The last execution cycle of the instruction under execution becomes a dummy fetch cycle. This cycle turns the interrupt acknowledge signal low (both NACK and IACK for NMI, IACK only for a normal interrupt), which indicates that the interrupt has been accepted.
- Bus cycle 2 Saves the F register into the stack indicated by the SP2, then resets the I flag to "0" to prohibit following interrupts (excluding NMI).
- Bus cycle 3 Sets the data bus status DBS1/DBS0 to "01B". Then, turns the vector read signal RDIV low and reads the interrupt vector (4 bits) output from the peripheral circuit to the data bus.

When NMI is generated, this cycle becomes a dummy cycle because the interrupt vector is fixed at 0100H.

The $\overline{\text{NACK}}$ and/or $\overline{\text{IACK}}$ are returned to high at the end of this cycle.

- Bus cycle 4 Fetches the instruction in the interrupt vector (data that is read in Bus cycle 3 becomes the low-order 4 bits of the vector) and saves the content of the PC (address immediately after the instruction that is executed in Bus cycle 0 or branch destination address when it is a branch instruction) to the stack indicated by the SP1.
- Bus cycle 5 Executes the instruction fetched in Bus cycle 4. (If it is 1-cycle instruction, the next instruction is fetched at the same time.)

• Exceptional acceptance of interrupt

For all the interrupts including NMI that are generated during fetching the following instructions are accepted after the next instruction is fetched (it is executed) even in the EI (enable interrupts) status.

1. Instructions that set the E flag

LDB %EXT,imm8 LDB %EXT,%BA

2. Instructions that write data in the F (flag) register

LD	%F,%A	LD	%F,imm4	AND %F,imm4	OR	%F,imm4
XOR	%F,imm4	POP	۶F	RETI		

These instructions set the E flag or may set it. Therefore, if an extended addressing instruction follows them, it is executed previous to the interrupt processing.

Further, these instructions may modify the content of the I flag. If these instructions set the I flag (EI status), the interrupt processing is done after executing the next instruction. If these instructions reset the I flag (DI status), interrupts generated after the instruction fetch cycle are masked.

3. Instructions that set the stack pointer

LDB %SP1,%BA LDB %SP2,%BA

These two instructions are also accepted after fetching the next instruction. However, these instructions must be executed as a pair. When one of them is fetched at first, all the interrupts including NMI are masked (interrupts cannot be accepted). Then, when the other instruction is fetched, that mask is released and interrupts can be accepted after the next instruction is fetched.

• Software interrupts

The software interrupts are generated by the INT instruction. Time of the interrupt generation is determined by the software, so the I flag setting does not affect the interrupt. That processing is the same as the subroutine that evacuates the F register into the stack.

This interrupt does not change the interrupt control signals between the CPU and the peripheral circuits, or the I flag either. An address that is specified with the operand of the INT instruction is used as it is as the interrupt vector.

Fig. 3.5.2.5 Software interrupt sequence

3.5.3 Notes for interrupt processing

(1) After an initial reset, all the interrupts including NMI are masked and cannot be accepted regardless of the I flag setting until both the stack pointers SP1 and SP2 are set in the program. Be sure to set the SP1 and SP2 in the initialize routine.

Further, when re-setting the stack pointer, the SP1 and SP2 must be set as a pair. When one of them is set, all the interrupts including NMI are masked and interrupts cannot be accepted until the other one is set.

- (2) The interrupt processing is the same as a subroutine call that branches to the interrupt vector address. At that time, the F register is evacuated into the stack. Therefore, the interrupt service routine should be made as a subroutine and the RETI instruction that returns the F register must be used for return.
- (3) If an interrupt (including NMI) is generated while fetching an instruction, that sets the E flag or writes data to the F (flag) register, the interrupt is accepted after fetching (and executing) the next instruction. Therefore, the extended addressing with the EXT register is processed before executing the interrupt processing. However, if the stack data in the memory is directly changed in the interrupt service routine, the F register in which the E flag is set may return. In this case, the instruction immediately after returning by the RETI instruction is executed in the extended addressing mode by the E flag that is set to "1". Pay attention to the F register setting except when describing such a processing consciously.

3.6 Standby Status

The E0C63000 has a function that stops the CPU operation and it can greatly reduce power consumption. This function should be used to stop the CPU when there is no processing to be executed in the CPU, example while the application program waits an interrupt. This is a standby status where the CPU has been stopped to shift it to low power consumption.

This status is available in two types, a HALT status and a SLEEP status.

3.6.1 HALT status

The HALT status is the status in which only the CPU stops and shifting to it can be done using the HALT instruction. The HALT status is released by a hardware interrupt including NMI, and the program sequence returns to the step immediately after the HALT instruction by the RETI instruction in the interrupt service routine. The peripheral circuits including the oscillation circuit and timer operate all through the HALT status. Moreover during HALT status, the contents of the registers in the CPU that have been set before shifting are maintained.

Figure 3.6.1.1 shows the sequence of shifting to the HALT status and restarting.

In the HALT status the Th1 and Th2 states are continuously inserted. During this period, interrupt sampling is done at the falling edge of the Th2 state and the generation of an interrupt factor causes it to shift to the interrupt processing.

Fig. 3.6.1.1 Sequence of shifting to HALT status and restarting

3.6.2 SLEEP status

The SLEEP status is the status in which the CPU and the peripheral circuits within the MCU stop operating and shifting it can be done using the SLP instruction.

The SLEEP status is released by a reset or a specific interrupt (it differs depending on the model). When the SLEEP status is released by a reset, the program restarts from the program start address (0110H). When it is released by an interrupt, the program sequence returns to the step immediately after the SLP instruction by the RETI instruction in the interrupt service routine.

Power consumption in the SLEEP status can be greatly reduced in comparison with the HALT status, because such peripheral circuits as the oscillation circuit are also stopped. However, since stabilization time is needed for the oscillation circuit when restarting, it is effective when used for extended standby where instantaneous restarting is not necessary.

CHAPTER 3: CPU OPERATION

During SLEEP status, as in the HALT status, the contents of the registers in the CPU that have been set before shifting are maintained if rated voltage is supplied.

Figure 3.6.2.1 shows the sequence of shifting to the SLEEP status and restarting.

When an interrupt that releases the SLEEP status is generated, the oscillation circuit begins to oscillate. When the oscillation starts, the CLK input to the CPU is masked by the peripheral circuit and the input to the CPU begins after stabilization waiting time (several 10 msec–several msec) has elapsed. The CPU samples the interrupt at the falling edge of the initially input CLK and starts the interrupt processing.

Fig. 3.6.2.1 Sequence of the shift to SLEEP status and restarting
The E0C63000 offers high machine cycle efficiency and a high speed instruction set. It has 47 basic instructions (412 instructions in all) that are designed as an instruction system permitting relocatable programming.

This chapter explains about the addressing modes for memory management and about the details of each instruction.

4.1 Addressing Mode

The E0C63000 has the following 8 types of addressing modes and the address specifications corresponding to the various statuses are done concisely and accurately.

• Types of addressing modes

Basic addressing modes (5 types)

- 1) Immediate data addressing
- 2) Register direct addressing
- 3) Register indirect addressing
- 4) 6-bit absolute addressing
- 5) Signed 8-bit PC relative addressing

Extended addressing modes (3 types)

- 1) 16-bit immediate data addressing
- 2) 8-bit absolute addressing
- 3) Signed 16-bit PC relative addressing

4.1.1 Basic addressing modes

The basic addressing mode is an addressing function independent of the instruction.

• Immediate data addressing

The immediate data addressing is the addressing mode in which the immediate data is used for operations and is used as transfer data. Values that are specified in the operand are directly used as data or addresses. In the instruction list, the following symbols are used to write immediate data.

Symbol	Use	Size	Specifiable range
imm2	Specifying a bit No. in 4-bit data	2 bits	0–3
imm4	4-bit general-purpose data	4 bits	0–15
imm6	Specifying a software interrupt vector	6 bits	0–63
imm8	8-bit general-purpose data	8 bits	0–255
sign8	sign8 Signed 8-bit general-purpose data		-128–127
n4	Specifying a radix	4 bits	1–16

Table 4.1.1.1 Symbol and size of immediate data

Examples:

CLR	[addr6],imm2	Clears a bit specified with imm2 within a 4-bit data in an address [addr6]
LD	%A,imm4	Loads a 4-bit data imm4 into the A register
INT	imm6	A software interrupt of which the vector address is specified with imm6
LDB	%BA,imm8	Loads an 8-bit data imm8 into the BA register
CALZ	imm8	Calls a subroutine that starts from an address imm8
		(Address specifiable range is 0000H to 00FFH.)
ADD	%X,sign8	Adds a signed 8-bit data sign8 to the X register
ADC	%B,%A,n4	Adds data in the A register to the B register with a radix n4 specification

Register direct addressing

The register direct addressing is the addressing mode when specifying a register for the source and / or destination. Register names should be written with % in front.

Instructions in which the operand has the following register name operate in this addressing mode.

4-bit registers:%A,%B,%F8-bit registers:%BA,%XH,%XL,%EXT,%SP1,%SP216-bit registers:%X,%Y

Examples:

ADD	%A,%B	Adds the data in the B register to the A register
LDB	%BA,%XL	Loads the data in the XL register into the BA register
DEC	%SP1	Decrements the stack pointer SP1
JR	%A	Jumps using the content of the A register as a relative address
JP	%Y	Jumps to the address indicated with the Y register

Register indirect addressing

The register indirect addressing is the addressing mode for accessing the data memory and it indirectly specifies the data memory address with the index register X or Y. To write the instructions, place % in front of the index register name and enclose them with [].

Indirect addressing with the X register: Instructions which have [%X] or [%X]+ as the operand Indirect addressing with the Y register: Instructions which have [%Y] or [%Y]+ as the operand

The content of the X register or Y register regarded as an address, and operations and transfers are performed for the data stored in the address or the address.

"+" in the [%X]+ and [%Y]+ indicates a post-increment function. Instructions that have these operands increment the content of the X register or Y register after executing the transfer or operation. This function is useful to access a continuous addresses in the data memory.

Examples:

SUB	%A,[%X]	Subtracts the content of a memory specified with the X register from the A
		register
LD	[%X]+,[%Y]+	Transfers the content of a memory specified with the Y register to a memory specified with the X register. Then increments the contents of the X register
		and Y register

6-bit absolute addressing

The 6-bit absolute addressing is the addressing mode for accessing within the 6-bit address range from 0000H or FFC0H. Instructions that have [addr6] as the operand operate in this addressing mode. The address range that can be specified with the addr6 is 0000H to 003FH or FFC0H to FFFFH.

(1) Instructions that access from 0000H to 003FH

For this area, the following instructions, which are used in this area as counters and flags, are provided. An address within 0000H to 003FH is specified with the addr6.

INC	[addr6]	Increments the content of a memory specified with the addr6
DEC	[addr6]	Decrements the content of a memory specified with the addr6
CLR	[addr6],imm2	Clears a bit specified with the imm2 in a memory specified with the addr6
SET	[addr6],imm2	Sets a bit specified with the imm2 in a memory specified with the addr6
TST	[addr6],imm2	Tests a bit specified with the imm2 in a memory specified with the addr6

In addition, the following branch instructions, which permit a conditional branch according to the contents of this area, are provided.

JR	[addr6]	PC relative jump instruction that uses the content of a memory specified
		with addr6 as a relative address
CALR	[addr6]	PC relative call instruction that uses the content of a memory specified with
		addr6 as a relative address

These instructions perform a PC relative branch using the content (4 bits) of a memory specified with the [addr6] as a relative address. The branch destination address is [the address next to the branch instruction] + [the contents (0 to 15) of the memory specified with the addr6].

(2) Instructions that access from FFC0H to FFFFH

This area is reserved for the I/O memory in the E0C63 Family and the following instructions are provided to operate the control bits of the peripheral circuits.

An address within FFC0H to FFFFH is specified with the addr6. However the addr6 is handled as 0 to 3FH in the machine codes.

CLR [addr6], imm2 ...Clears a bit specified with the imm2 in a memory specified with the addr6 SET [addr6], imm2 ...Sets a bit specified with the imm2 in a memory specified with the addr6 TST [addr6], imm2 ...Tests a bit specified with the imm2 in a memory specified with the addr6

Write only or read only control bits may have been assigned depending on the peripheral circuit. Pay attention when using the above-mentioned instructions for such bits or addresses containing such bits.

Signed 8-bit PC relative addressing

The signed 8-bit PC relative addressing is the addressing mode used for the branch instructions. The signed 8-bit relative address (-128 to 127) that is specified in the operand is added to the address next to the branch instruction to branch to that address.

The following instructions operate in this addressing mode.

Jump instructions:	JR	sign8
	JRC	sign8
	JRNC	sign8
	JRZ	sign8
	JRNZ	sign8
Call instruction:	CALR	sign8

4.1.2 Extended addressing mode

In the E0C63000, when data is written to the EXT register (the E flag is set) and a specific instruction follows, the data specified by that instruction is extended with the EXT register data (see Section 2.1.5). When the E flag is set, instructions are extended in an addressing mode different from the mode that is specified in each instruction. This is the extended addressing mode that will be explained below. However, instructions that can operate in the extended addressing mode are limited to those indicated in the instruction list, so check it when programming.

Further the extended addressing mode is effective only for the instruction following immediately after writing data to the EXT register and setting the E flag to "1" (the E flag is reset to "0" by executing that instruction). When using an instruction in the extended addressing mode, write data to be extended to the EXT register or set the E flag (when the E register has already been set).

• 16-bit immediate data addressing

The addressing mode of the following instructions, which have an 8-bit immediate data as the operand, change to the 16-bit immediate data addressing when the E flag is set to "1". Consequently, it is possible to transfer and operate a 16-bit immediate data to the X or Y register.

Instructions that operate in the 16-bit immediate data addressing mode with the E flag

LDB	%XL,imm8	LDB	%Y,imm8
ADD	%X,sign8	ADD	%Y,sign8
CMP	%X,imm8	CMP	%X,imm8

The data is extended into 16 bits in which the E register data is the high-order 8 bits and the immediate data specified with the above instruction is the low-order 8 bit.

Exam	oles:	
LDB	%EXT,0x15	
LDB	%XL,0x7D	Works as "LD %X, 0157D"
LDB	%EXT,0xB8	
ADD	%X,0x4F	Works as "ADD %X, 0xB84F"
LDB	%EXT,0xE6	
CMP	%X,0xA2	Works as "CMP %X, 0x19A2"
		* 19H = FFH - [EXT] (E6H)

Above examples use the X register, but they work the same even when the Y register is used.

Note: The CMP instruction performs a subtraction with a complement, therefore it is necessary to set the complement (1's complement) of the high-order 8-bit data in the EXT register. EXT register ← [FFH - High-order 8-bit data]

8-bit absolute addressing

The 8-bit absolute addressing is the addressing mode for accessing within the 8-bit address range from 0000H or FF00H. To enter this mode, write the low-order 8 bits (00H to FFH) of the address to the EXT register, then execute an indirect addressing instruction which has [%X] or [%Y] as the source operand or the destination operand. When [%X] is used, the memory from 0000H to 00FFH can be accessed, and when [%Y] is used, FF00H to FFFFH can be accessed.

Instructions that operate in the 8-bit absolute addressing mode with the E flag

Instruction	Operand					
LD	%r,[%X]	%r,[%Y]	[%X],%r	[%Y],%r	[%X],imm4	[%Y],imm4
EX	%r,[%X]	%r,[%Y]				
ADD	%r,[%X]	%r,[%Y]	[%X],%r	[%Y],%r	[%X],imm4	[%Y],imm4
ADC	%r,[%X]	%r,[%Y]	[%X],%r	[%Y],%r	[%X],imm4	[%Y],imm4
	%B,[%X],1	n4 %B,[%}	[],n4 [%]	K],%B,n4	[%Y],%B,n4	
	[%X],0,n4	4 [%Y],0,	n4			
SUB	%r,[%X]	%r,[%Y]	[%X],%r	[%Y],%r	[%X],imm4	[%Y],imm4
SBC	%r,[%X]	%r,[%Y]	[%X],%r	[%Y],%r	[%X],imm4	[%Y],imm4
	%B,[%X],1	n4 %B,[%}	[],n4 [%]	K],%B,n4	[%Y],%B,n4	
	[%X],0,n4	4 [%Y],0,	n4			
INC	[%X],n4	[%Y],n4				
DEC	[%X],n4	[%Y],n4				
CMP	%r,[%X]	%r,[%Y]	[%X],%r	[%Y],%r	[%X],imm4	[%Y],imm4
AND	%r,[%X]	%r,[%Y]	[%X],%r	[%Y],%r	[%X],imm4	[%Y],imm4
OR	%r,[%X]	%r,[%Y]	[%X],%r	[%Y],%r	[%X],imm4	[%Y],imm4
XOR	%r,[%X]	%r,[%Y]	[%X],%r	[%Y],%r	[%X],imm4	[%Y],imm4
BIT	%r,[%X]	%r,[%Y]	[%X],%r	[%Y],%r	[%X],imm4	[%Y],imm4
SLL	[%X] [%]	r]				
SRL	[%X] [%]	Y]				
RL	[%X] [%]	Y]				
RR	[%X] [%]	Y]				

* "r" indicates the A or B register. Instructions with an operand other than above or the post-increment function do not have the extended addressing function.

Examples:

LDB LD	%EXT,0x37 %A,[%X]	Works as "LD %A, [0x0037]"
LDB ADD	%EXT,0x9C [%Y],5	Works as "ADD [0xFF9C]"

• Signed 16-bit PC relative addressing

The addressing mode of the following branch instructions, which have an 8-bit relative address as the operand, change to the signed 16-bit PC relative addressing with the E flag set to "1". Consequently, it is possible to extend the branch range to the next address -32768 to +32767. (In this mode these instructions can branch the entire 64K program memory.)

Instructions that operate in the signed 16-bit PC relative addressing mode with the E flag

```
JRC
                       sign8
                                   JRNC sign8
                                                     JRZ
                                                           sign8
JR
      sign8
                                                                       JRNZ sign8
CALR sign8
Examples:
LDB
     %EXT,0x64
                          ...Works as "JR 0x6429"
JR
      0x29
LDB
     %EXT,0x3A
JR*
      0x88
                          ...Works as "JR* 0x3A88" (* = C, NC, Z, or NZ)
     %EXT,0xF8
LDB
                          ...Works as "CALR 0xF862"
CALR 0x62
```

4.2 Instruction List

4.2.1 Function classification

Table 4.2.1.1 lists the function classifications of the instructions.

Function classification	Mnemonic	Operation	Function classification	Mnemonic	Operation
Arithmetic	ADD	Addition	Rotate / shift	RL	Rotate to left with carry
	ADC	Addition with carry		RR	Rotate to right with carry
	SUB	Subtraction		SLL	Logical shift to left
	SBC	Subtraction with carry		SRL	Logical shift to right
	CMP	Comparison	Stack control	PUSH	Push
	INC	Increment (adds 1)		POP	Рор
	DEC	Decrement (subtracts 1)	Branch	JR	Relative jump
Logic	AND	Logical product		JP	Indirect jump
	OR	Logical sum		CALZ	Absolute call
	XOR	Exclusive OR		CALR	Rrelative call
	BIT	Bit test		RET	Return
	CLR	Bit clear		RETS	Return and skip
	SET	Bit set		RETD	Return and data set
	TST	Bit test		RETI	Interrupt return
Transfer	LD	Load (4-bit data)		INT	Software interrupt
	LDB	Load (8-bit data)	System control	NOP	No operation
	EX	Exchange (4-bit data)		HALT	Shift to HALT status
				SLP	Shift to SLEEP status

Table 1 2 1 1	Instruction	function	alassifications
10010 4.2.1.1	instruction	junction	classifications

4.2.2 Symbol meanings

The following indicates the meanings of the symbols used in the instruction list.

Register names

A	. Data register A (4 bits)
В	. Data register B (4 bits)
ВА	. BA register pair (8 bits, the B register is the high-order 4 bits)
Х	. Index register X (16 bits)
ХН	. XH register (high-order 8 bits of the X register)
XL	. XL register (low-order 8 bits of the X register)
Υ	. Index register Y (16 bits)
YH	. YH register (high-order 8 bits of the Y register)
YL	. YL register (low-order 8 bits of the Y register)
F	. Flag register F (4 bits)
ЕХТ	. Extension register EXT (8 bits)
SP1	. Stack pointer SP1 (16 bits, however the setting data is 8 bits of D2 to D9)
SP2	. Stack pointer SP2 (16 bits, however the setting data is 8 bits of D0 to D7)
РС	. Program counter PC (16 bits)

In the notation with mnemonics, the register names should be written with a % placed in front of them, according to the E0C63 Family assembler source format.

Immediate data

imm2	. 2-bit immediate data (0 to 3)
imm4	. 4-bit immediate data (0 to 15)
imm6	. Software interrupt vector (0100H to 013FH)
imm8	. 8-bit immediate data (0 to 255)
i7–i0	. Each bit in immX
n4	. 4-bit radix specification data (1 to 16)
n3–n0	. Each bit in n4
sign8	. Signed 8-bit immediate data (-128 to 127)
s7–s0	. Each bit in sign8
addr6	. 6-bit address (00H to 3FH)
a5–a0	. Each bit in addr6
00addr6	. addr6 which specifies an address within 0000H to 003FH
FFaddr6	. addr6 which specifies an address within FFC0H to FFFFH

Memory

[%X], [X] Memory where the X register specifies
[%Y], [Y] Memory where the Y register specifies
[00addr6] Memory within 0000H to 003FH where the addr6 specifies
[FFaddr6] Memory within FFC0H to FFFFH where the addr6 specifies
[%SP1], [SP1] 16-bit address stack where the SP1 specifies
[%SP2], [SP2] 4-bit data stack where the SP2 specifies

Flags

ZZero flag CCarry flag IInterrupt flag EFlag is set ↓Flag is reset ↓Flag is reset -Flag is not changed

Operations and others

- + Addition
-Subtraction
- \wedge Logical product
- ∨Logical sum
- ∀Exclusive OR
- \leftarrow Data load
- $\leftrightarrow Data \ exchange$

Extended addressing mode (EXT.mode)

0	Can be used
×	Cannot be used (prohibit use)

4.2.3 Instruction list by function

4-bit data transfer

		Machine code			Flag	EXT.	_
	Minemonic	12 11 10 9 8 7 6 5 4 3 2 1 0	Operation	Cycle	EICZ	mode	Page
LD	%A,%A	1 1 1 1 0 1 1 1 1 0 0 0 0	$A \leftarrow A$	1	↓	×	99
	%A,%B	1 1 1 1 0 1 1 1 1 0 0 1 0	$A \leftarrow B$	1	↓	×	99
	%A,%F	1 1 1 1 1 1 1 1 1 1 0 1 1 0	A←F	1	↓	×	99
	%A,imm4	1 1 1 1 0 1 1 0 0 i3 i2 i1 i0	$A \leftarrow imm4$	1	↓	×	100
	%A,[%X]	1 1 1 1 0 1 1 1 0 0 0 0 0	$A \leftarrow [X]$	1	↓	0	100
	%A,[%X]+	1 1 1 1 0 1 1 1 0 0 0 0 1	$A \leftarrow [X], X \leftarrow X+1$	1	↓	×	101
	%A,[%Y]	1 1 1 1 0 1 1 1 0 0 0 1 0	$A \leftarrow [Y]$	1	↓	0	100
	%A,[%Y]+	1 1 1 1 0 1 1 1 0 0 0 1 1	$A \leftarrow [Y], Y \leftarrow Y+1$	1	↓	×	101
LD	%B,%A	1 1 1 1 0 1 1 1 1 0 1 0 0	$B \leftarrow A$	1	↓	×	99
	%B,%B	1 1 1 1 0 1 1 1 1 0 1 1 0	$B \leftarrow B$	1	↓	×	99
	%B,imm4	1 1 1 1 0 1 1 0 1 i3 i2 i1 i0	B ← imm4	1	↓	×	100
	%B,[%X]	1 1 1 1 0 1 1 1 0 0 1 0 0	$B \leftarrow [X]$	1	↓	0	100
	%B,[%X]+	1 1 1 1 0 1 1 1 0 0 1 0 1	$B \leftarrow [X], X \leftarrow X+1$	1	↓	×	101
	%B,[%Y]	1 1 1 1 0 1 1 1 0 0 1 1 0	$B \leftarrow [Y]$	1	↓	0	100
	%B,[%Y]+	1 1 1 1 0 1 1 1 0 0 1 1 1	$B \leftarrow [Y], Y \leftarrow Y+1$	1	↓	×	101
LD	%F,%A	1 1 1 1 1 1 1 1 1 1 0 1 0 1	$F \leftarrow A$	1	$\uparrow \uparrow \uparrow \uparrow \uparrow$	×	99
	%F,imm4	1 0 0 0 0 1 0 1 1 i3 i2 i1 i0	F ← imm4	1	1111	×	100
LD	[%X],%A	1 1 1 1 0 1 1 1 0 1 0 0 0	$[X] \leftarrow A$	1	\downarrow	0	101
	[%X],%B	1 1 1 1 0 1 1 1 0 1 1 0 0	$[X] \leftarrow B$	1	↓	0	101
	[%X],imm4	1 1 1 1 0 1 0 0 0 i3 i2 i1 i0	$[X] \leftarrow imm4$	1	↓	0	102
	[%X],[%Y]	1 1 1 1 0 1 1 1 1 1 0 1 0	$[X] \leftarrow [Y]$	2	↓	×	103
	[%X],[%Y]+	1 1 1 1 0 1 1 1 1 1 0 1 1	$[X] \leftarrow [Y], Y \leftarrow Y+1$	2	↓	×	104
	[%X]+,%A	1 1 1 1 0 1 1 1 0 1 0 0 1	$[X] \leftarrow A, X \leftarrow X+1$	1	↓	×	102
	[%X]+,%B	1 1 1 1 0 1 1 1 0 1 1 0 1	$[X] \leftarrow B, X \leftarrow X+1$	1	↓	×	102
	[%X]+,imm4	1 1 1 1 0 1 0 0 1 i3 i2 i1 i0	$[X] \leftarrow imm4, X \leftarrow X+1$	1	↓	Х	103
	[%X]+,[%Y]	1 1 1 1 0 1 1 1 1 1 1 1 0	$[X] \leftarrow [Y], X \leftarrow X+1$	2	↓	×	104
	[%X]+,[%Y]+	1 1 1 1 0 1 1 1 1 1 1 1 1	$[X] \leftarrow [Y], X \leftarrow X+1, Y \leftarrow Y+1$	2	↓	×	105
LD	[%Y],%A	1 1 1 1 0 1 1 1 0 1 0 1 0	$[Y] \leftarrow A$	1	↓	0	101
	[%Y],%B	1 1 1 1 0 1 1 1 0 1 1 1 0	$[Y] \leftarrow B$	1	↓	0	101
	[%Y],imm4	1 1 1 1 0 1 0 1 0 i3 i2 i1 i0	$[Y] \leftarrow imm4$	1	\downarrow	0	102
	[%Y],[%X]	1 1 1 1 0 1 1 1 1 1 0 0 0	$[Y] \leftarrow [X]$	2	\downarrow	×	103
	[%Y],[%X]+	1 1 1 1 0 1 1 1 1 1 0 0 1	$[Y] \leftarrow [X], X \leftarrow X+1$	2	\downarrow	х	104
	[%Y]+,%A	1 1 1 1 0 1 1 1 0 1 0 1 1	$[Y] \leftarrow A, Y \leftarrow Y+1$	1	\downarrow	х	102
	[%Y]+,%B	1 1 1 1 0 1 1 1 0 1 1 1 1	$[Y] \leftarrow B, Y \leftarrow Y \text{+} 1$	1	\downarrow	×	102
	[%Y]+,imm4	1 1 1 1 0 1 0 1 1 i3 i2 i1 i0	$[Y] \leftarrow imm4, Y \leftarrow Y+1$	1	\downarrow	×	103
	[%Y]+,[%X]	1 1 1 1 0 1 1 1 1 1 1 0 0	$[Y] \leftarrow [X], Y \leftarrow Y+1$	2	\downarrow	х	104
	[%Y]+,[%X]+	1 1 1 1 0 1 1 1 1 1 1 0 1	$[Y] \leftarrow [X], Y \leftarrow Y+1, X \leftarrow X+1$	2	\downarrow	×	105
EX	%A,%B	1 1 1 1 1 1 1 1 1 1 0 1 1 1	$A \leftrightarrow B$	1	\downarrow	×	90
EX	%A,[%X]	1 0 0 0 0 1 1 1 1 1 0 0 0	$A \leftrightarrow [X]$	2	\downarrow	0	91
	%A,[%X]+	1 0 0 0 0 1 1 1 1 1 0 0 1	$A \leftrightarrow [X], X \leftarrow X {+} 1$	2	\downarrow	×	91
	%A,[%Y]	1 0 0 0 0 1 1 1 1 1 0 1 0	$A \leftrightarrow [Y]$	2	\downarrow	0	91
	%A,[%Y]+	1 0 0 0 0 1 1 1 1 1 0 1 1	$A \leftrightarrow [Y], Y \leftarrow Y {+} 1$	2	\downarrow	×	91
EX	%B,[%X]	1 0 0 0 0 1 1 1 1 1 1 0 0	$B \leftrightarrow [X]$	2	\downarrow	0	91
	%B,[%X]+	1 0 0 0 0 1 1 1 1 1 1 0 1	$B \leftrightarrow [X], X \leftarrow X{+}1$	2	\downarrow	×	91
	%B,[%Y]	1 0 0 0 0 1 1 1 1 1 1 0	$B \leftrightarrow [Y]$	2	\downarrow	0	91
	%B,[%Y]+	1 0 0 0 0 1 1 1 1 1 1 1 1	$B \leftrightarrow [Y], Y \leftarrow Y \text{+} 1$	2	\downarrow	×	91

Machine code Flag EXT. Page Mnemonic Operation Cycle 12 11 10 9 8 7 6 5 4 3 2 1 0 EICZ mode ADD %A,%A 1 1 0 0 1 0 1 1 1 0 0 0 X A ← A+A 1 ↓ - ↓ ↓ 68 х %A,%B 1 1 0 0 1 0 1 1 1 0 0 1 X A ← A+B $\downarrow - \uparrow \uparrow$ 68 1 × 1 1 0 0 1 0 1 0 0 i3 i2 i1 i0 A ← A+imm4 %A,imm4 1 $\downarrow - \uparrow \uparrow$ 69 × %A,[%X] $1 | 1 0 0 1 | 0 1 1 0 | 0 0 0 0 | A \leftarrow A+[X]$ 1 $\downarrow - \uparrow \uparrow$ 0 69 1 1 0 0 1 0 1 1 0 0 0 0 1 A ← A+[X], X ← X+1 %A,[%X]+ 1 $\downarrow - \uparrow \uparrow$ 70 × %A,[%Y] $1 | 1 0 0 1 | 0 1 1 0 | 0 0 1 0 | A \leftarrow A+[Y]$ 1 $\downarrow - \uparrow \uparrow$ Ο 69 %A,[%Y]+ $1 | 1 0 0 1 | 0 1 1 0 | 0 0 1 1 | A \leftarrow A+[Y], Y \leftarrow Y+1$ 1 ↓ - ↓ ↓ × 70 ADD 1 1 0 0 1 0 1 1 1 0 1 0 X B ← B+A $\downarrow - \uparrow \uparrow$ %B,%A 1 68 × 1 1 0 0 1 0 1 1 1 0 1 1 X B ← B+B $\downarrow - \uparrow \uparrow$ %B,%B 1 68 × %B,imm4 1 1 0 0 1 0 1 0 1 i3 i2 i1 i0 B ← B+imm4 1 ↓ - ↓ ↓ 69 × 1 1 0 0 1 0 1 1 0 0 1 0 0 $B \leftarrow B+[X]$ ↓ - ↓ ↓ 0 %B,[%X] 1 69 1 1 0 0 1 0 1 1 0 0 1 0 1 $B \leftarrow B+[X], X \leftarrow X+1$ $\downarrow - \uparrow \uparrow$ %B,[%X]+ 1 70 × $\downarrow - \uparrow \uparrow$ %B,[%Y] $1 | 1 0 0 1 | 0 1 1 0 | 0 1 1 0 | B \leftarrow B+[Y]$ 1 0 69 1 1 0 0 1 0 1 1 0 0 1 1 1 $B \leftarrow B+[Y], Y \leftarrow Y+1$ ↓ - ↓ 1 %B,[%Y]+ 1 70 × ADD ↓ - ↓ \$ [%X],%A 1 1 0 0 1 0 1 1 0 1 0 0 0 [X] ← [X]+A 2 0 70 1 1 0 0 1 0 1 1 0 1 1 0 0 [X] ← [X]+B $\downarrow - \uparrow$ 1 [%X],%B 2 Ο 70 [%X],imm4 1 1 0 0 1 0 0 0 0 i3 i2 i1 i0 [X] ← [X]+imm4 2 $\downarrow - \uparrow$ \$ \cap 71 2 [%X]+,%A 1 1 0 0 1 0 1 1 0 1 0 0 1 [X] ← [X]+A, X ← X+1 Ť - 1 71 1 × 1 1 0 0 1 0 1 1 0 1 1 0 1 [X] ← [X]+B, X ← X+1 [%X]+,%B 2 $\downarrow - \uparrow$ 1 71 × 72 [%X]+,imm4 1 1 0 0 1 0 0 0 1 i3 i2 i1 i0 $[X] \leftarrow [X]$ +imm4, $X \leftarrow X$ +1 2 $\downarrow - \uparrow \uparrow$ × ADD 1 1 0 0 1 0 1 1 0 1 0 1 0 [Y] ← [Y]+A [%Y],%A 2 $\downarrow - \uparrow \uparrow$ 70 Ο [%Y],%B 1 1 0 0 1 0 1 1 0 1 1 1 0 [Y] ← [Y]+B 2 $\downarrow - \uparrow \uparrow$ \bigcirc 70 [%Y],imm4 1 1 0 0 1 0 0 1 0 i3 i2 i1 i0 [Y] ← [Y]+imm4 2 $\downarrow - \uparrow \uparrow$ Ο 71 [%Y]+,%A $1 | 1 0 0 1 | 0 1 1 0 | 1 0 1 1 | [Y] \leftarrow [Y]+A, Y \leftarrow Y+1$ 2 $\downarrow - \uparrow \uparrow$ 71 × [%Y]+,%B $1 | 1 \ 0 \ 0 \ 1 | 0 \ 1 \ 1 \ 0 | 1 \ 1 \ 1 \ 1 | [Y] \leftarrow [Y]+B, Y \leftarrow Y+1$ 2 $\downarrow - \uparrow \uparrow$ 71 × [%Y]+,imm4 $1 | 1 0 0 1 | 0 0 1 1 | i3 i2 i1 i0 | [Y] \leftarrow [Y]+imm4, Y \leftarrow Y+1$ 2 $\downarrow - \uparrow \uparrow$ 72 × ADC %A,%A $1 | 1 0 0 1 | 1 1 1 1 | 0 0 0 X | A \leftarrow A+A+C$ 1 $\downarrow - \uparrow \uparrow$ 61 × %A,%B 1 1 0 0 1 1 1 1 1 1 0 0 1 X A ← A+B+C 1 ↓ - ↓ ↓ 61 × %A.imm4 1 1 0 0 1 1 1 0 0 i3 i2 i1 i0 A ← A+imm4+C ↓ - ↓ ↓ 1 61 1 1 0 0 1 1 1 1 0 0 0 0 0 A ← A+[X]+C ↓ - ↓ ↓ %A,[%X] 1 0 62 $\downarrow - \uparrow \uparrow$ %A,[%X]+ 1 1 0 0 1 1 1 1 0 0 0 0 1 A ← A+[X]+C, X ← X+1 1 62 1 - 1 %A,[%Y] $1 | 1 0 0 1 | 1 1 1 0 | 0 0 1 0 | A \leftarrow A+[Y]+C$ 1 Ο 62 $\downarrow - \uparrow$ \$ %A,[%Y]+ $1 | 1 \ 0 \ 0 \ 1 | 1 \ 1 \ 0 | 0 \ 0 \ 1 \ 1 | A \leftarrow A+[Y]+C, Y \leftarrow Y+1$ 1 62 × ADC %B,%A $1 | 1 \ 0 \ 0 \ 1 | 1 \ 1 \ 1 \ 1 \ 0 \ X | B \leftarrow B+A+C$ 1 ↓ - \$ \$ 61 × %B,%B 1 1 0 0 1 1 1 1 1 1 0 1 1 X B ← B+B+C 1 - 1 1 61 × %B.imm4 1 1 0 0 1 1 1 0 1 i3 i2 i1 i0 B ← B+imm4+C 1 Ť - 1 \$ 61 × %B,[%X] 1 ↓ - ↓ ↓ 0 62 1 1 0 0 1 1 1 1 0 0 1 0 1 B ← B+[X]+C, X ← X+1 1 $\downarrow - \uparrow \uparrow$ 62 %B,[%X]+ × $1 | 1 0 0 1 | 1 1 1 0 | 0 1 1 0 | B \leftarrow B+[Y]+C$ 1 $\downarrow - \uparrow \uparrow$ 62 %B,[%Y] Ο %B,[%Y]+ $1 | 1 \ 0 \ 0 \ 1 | 1 \ 1 \ 0 | 0 \ 1 \ 1 \ 1 | B \leftarrow B+[Y]+C, Y \leftarrow Y+1$ 1 $\downarrow - \uparrow \uparrow$ 62 × ADC [%X],%A $1 | 1 0 0 1 | 1 1 1 0 | 1 0 0 0 | [X] \leftarrow [X] + A + C$ 2 $\downarrow - \uparrow \uparrow$ Ο 63 [%X],%B 1 1 0 0 1 1 1 1 0 1 1 0 0 [X] ← [X]+B+C 2 $\downarrow - \uparrow \uparrow$ 63 Ο [%X].imm4 $1 | 1 0 0 1 | 1 0 0 0 | i3 i2 i1 i0 [X] \leftarrow [X]+imm4+C$ 2 ↓ - ↓ ↓ \bigcirc 64 [%X]+,%A 1 1 0 0 1 1 1 1 0 1 0 0 1 [X] ← [X]+A+C, X ← X+1 2 ↓ - ↓ ↓ 63 × [%X]+,%B 1 1 0 0 1 1 1 1 0 1 1 0 1 [X] ← [X]+B+C, X ← X+1 2 $\downarrow - \uparrow \uparrow$ 63 × 1 1 0 0 1 1 0 0 1 i3 i2 i1 i0 [X] ← [X]+imm4+C, X ← X+1 2 ↓ - ↑ ↑ 64 [%X]+,imm4 × ADC ↓ - ↑ ↑ 1 1 0 0 1 1 1 1 0 1 0 1 0 [Y] ← [Y]+A+C 2 \cap [%Y],%A 63 1 1 0 0 1 1 1 1 0 1 1 1 0 [Y] ← [Y]+B+C 2 ↓ - ↑ ↑ 0 63 [%Y],%B $\downarrow - \downarrow$ 1 [%Y],imm4 1 1 0 0 1 1 0 1 0 i3 i2 i1 i0 [Y] ← [Y]+imm4+C 2 Ο 64 $\downarrow - \uparrow$ \$ [%Y]+,%A $1 | 1 0 0 1 | 1 1 1 0 | 1 0 1 1 | [Y] \leftarrow [Y] + A + C, Y \leftarrow Y + 1$ 2 63 × [%Y]+,%B $1 | 1 0 0 1 | 1 1 1 0 | 1 1 1 1 | [Y] \leftarrow [Y] + B + C, Y \leftarrow Y + 1$ 2 $\downarrow - \uparrow$ \$ 63 × [%Y]+,imm4 1 1 0 0 1 1 0 1 1 i3 i2 i1 i0 $[Y] \leftarrow [Y]$ +imm4+C, $Y \leftarrow Y$ +1 2 $\downarrow - \uparrow$ 1 64 × SUB %A.%A 1 1 0 0 0 0 1 1 1 0 0 0 X A ← A-A $\downarrow - \downarrow$ Î 135 1 Х %A.%B 1 1 0 0 0 0 1 1 1 0 0 1 X A ← A-B $\downarrow - \uparrow \uparrow$ 135 1 Х %A,imm4 1 1 0 0 0 0 1 0 0 i3 i2 i1 i0 A ← A-imm4 1 $\downarrow - \uparrow \uparrow$ 135 х $1 | 1 0 0 0 | 0 1 1 0 | 0 0 0 0 | A \leftarrow A-[X]$ 136 %A,[%X] 1 $\downarrow - \uparrow \uparrow$ \cap $1 | 1 0 0 0 | 0 1 1 0 | 0 0 0 1 | A \leftarrow A-[X], X \leftarrow X+1$ $\downarrow - \uparrow \uparrow$ 136 %A,[%X]+ 1 × %A,[%Y] $1 | 1 0 0 0 | 0 1 1 0 | 0 0 1 0 | A \leftarrow A-[Y]$ 1 $\downarrow - \uparrow \uparrow$ 136 %A,[%Y]+ $1 | 1 0 0 0 | 0 1 1 0 | 0 0 1 1 | A \leftarrow A-[Y], Y \leftarrow Y+1$ 1 $\downarrow - \uparrow \uparrow$ × 136

ALU alithmetic operation (1/3)

ALU alithmetic operation (2/3)

		Machine code			Flag	EXT.	_
	Minemonic	12 11 10 9 8 7 6 5 4 3 2 1 0	Operation	Cycle	EICZ	mode	Page
SUB	%B.%A	1 1 0 0 0 0 1 1 1 0 1 0 X	B ← B-A	1	↓ – ↑ ↑	×	135
	%B %B	1 1 0 0 0 0 1 1 1 0 1 1 X	B ← B-B	1	$\downarrow - \downarrow \uparrow$	×	135
	%B.imm4		$B \leftarrow B \text{-imm}/$	1		~	135
	70D,IIIIII4			1	$\psi = \psi \psi$	$\hat{}$	100
	70D,[70A]		$\mathbf{D} \leftarrow \mathbf{D} \left[\mathbf{X} \right]$	1	$\psi = \psi \psi$		130
	%D,[%∧]+		$B \leftarrow B \cdot [\Lambda], \Lambda \leftarrow \Lambda + 1$	1	$\downarrow - \downarrow \downarrow$	~	130
	%B,[%Y]	1 1 0 0 0 0 1 1 0 0 1 1 0	$B \leftarrow B-[Y]$	1	$\downarrow - \downarrow \downarrow$	0	136
	%B,[%Y]+	1 1 0 0 0 0 1 1 0 0 1 1 1	$B \leftarrow B-[Y], Y \leftarrow Y+1$	1	$\downarrow - \downarrow \downarrow$	×	136
SUB	[%X],%A	1 1 0 0 0 0 1 1 0 1 0 0 0	$[X] \leftarrow [X] \rightarrow$	2	$\downarrow - \downarrow \downarrow$	0	137
	[%X],%B	1 1 0 0 0 0 1 1 0 1 1 0 0	[X] ← [X]-B	2	$\downarrow - \uparrow \uparrow$	0	137
	[%X],imm4	1 1 0 0 0 0 0 0 0 i3 i2 i1 i0	$[X] \leftarrow [X]$ -imm4	2	$\downarrow - \uparrow \uparrow$	0	138
	[%X]+,%A	1 1 0 0 0 0 1 1 0 1 0 0 1	$[X] \leftarrow [X]\text{-}A, X \leftarrow X\text{+}1$	2	$\downarrow - \uparrow \uparrow$	×	137
	[%X]+,%B	1 1 0 0 0 0 1 1 0 1 1 0 1	$[X] \leftarrow [X]$ -B, X \leftarrow X+1	2	$\downarrow - \uparrow \uparrow$	×	137
	[%X]+,imm4	1 1 0 0 0 0 0 0 1 i3 i2 i1 i0	$[X] \leftarrow [X]$ -imm4, X \leftarrow X+1	2	$\downarrow - \uparrow \uparrow$	×	138
SUB	[%Y],%A	1 1 0 0 0 0 1 1 0 1 0 1 0	[Y] ← [Y]-A	2	$\downarrow - \uparrow \uparrow$	0	137
	[%Y],%B	1 1 0 0 0 0 1 1 0 1 1 1 0	[Y] ← [Y]-B	2	$\downarrow - \uparrow \uparrow$	0	137
	[%Y],imm4	1 1 0 0 0 0 0 1 0 i3 i2 i1 i0	$[Y] \leftarrow [Y]$ -imm4	2	↓ - ↑ ↑	0	138
	[%Y]+.%A	1 1 0 0 0 0 1 1 0 1 0 1 1	$[Y] \leftarrow [Y]$ -A, $Y \leftarrow Y$ +1	2	$\downarrow - \uparrow \uparrow$	×	137
	[%Y]+ %B	1 1 0 0 0 0 1 1 0 1 1 1 1	$[Y] \leftarrow [Y]$ -B $Y \leftarrow Y$ +1	2	$\downarrow - \uparrow \uparrow$	×	137
	[%Y]+ imm4	1 1 0 0 0 0 0 1 1 13 12 11 10	$[Y] \leftarrow [Y]$ -imm4 $Y \leftarrow Y+1$	2	$\downarrow - \uparrow \uparrow$	×	138
SBC	%Δ %Δ		$\Delta \leftarrow \Delta - \Delta - C$	1	$\downarrow = \uparrow \uparrow$	×	123
000	%A %B	1 1 0 0 0 1 1 1 1 0 0 1 X		1		~	123
	% A imm4		$A \leftarrow A = 0$	1	$\psi = \psi \psi$	~	120
	0/ A [0/ V]			1	$\psi = \psi \psi$	$\hat{}$	124
	76A,[76A]		$A \leftarrow A \cdot [X] \circ V = Y \cdot A$	1	$\downarrow - \downarrow \downarrow$	0	124
	%A,[%X]+		$A \leftarrow A - [X] - C, X \leftarrow X + 1$	1	$\downarrow - \downarrow \downarrow$	×	125
	%A,[%Y]	1 1 0 0 0 1 1 1 0 0 0 1 0	$A \leftarrow A-[Y]-C$	1	$\downarrow - \downarrow \downarrow$	0	124
	%A,[%Y]+	1 1 0 0 0 1 1 1 0 0 0 1 1	$A \leftarrow A-[Y]-C, Y \leftarrow Y+1$	1	$\downarrow - \downarrow \downarrow$	×	125
SBC	%B,%A	1 1 0 0 0 1 1 1 1 0 1 0 X	B ← B-A-C	1	$\downarrow - \uparrow \uparrow$	×	123
	%B,%B	1 1 0 0 0 1 1 1 1 0 1 1 X	B ← B-B-C	1	$\downarrow - \uparrow \uparrow$	×	123
	%B,imm4	1 1 0 0 0 1 1 0 1 i3 i2 i1 i0	B ← B-imm4-C	1	$\downarrow - \uparrow \uparrow$	×	124
	%B,[%X]	1 1 0 0 0 1 1 1 0 0 1 0 0	$B \leftarrow B-[X]-C$	1	$\downarrow - \uparrow \uparrow$	0	124
	%B,[%X]+	1 1 0 0 0 1 1 1 0 0 1 0 1	$B \leftarrow B-[X]-C, X \leftarrow X+1$	1	$\downarrow - \uparrow \uparrow$	×	125
	%B,[%Y]	1 1 0 0 0 1 1 1 0 0 1 1 0	$B \leftarrow B\text{-}[Y]\text{-}C$	1	$\downarrow - \uparrow \uparrow$	0	124
	%B,[%Y]+	1 1 0 0 0 1 1 1 0 0 1 1 1	$B \leftarrow B\text{-}[Y]\text{-}C, Y \leftarrow Y\text{+}1$	1	$\downarrow - \uparrow \uparrow$	×	125
SBC	[%X],%A	1 1 0 0 0 1 1 1 0 1 0 0 0	[X] ← [X]-A-C	2	$\downarrow - \uparrow \uparrow$	0	125
	[%X],%B	1 1 0 0 0 1 1 1 0 1 1 0 0	[X] ← [X]-B-C	2	$\downarrow - \uparrow \uparrow$	0	125
	[%X],imm4	1 1 0 0 0 1 0 0 0 i3 i2 i1 i0	[X] ← [X]-imm4-C	2	$\downarrow - \uparrow \uparrow$	0	126
	[%X]+,%A	1 1 0 0 0 1 1 1 0 1 0 0 1	$[X] \leftarrow [X]$ -A-C, X \leftarrow X+1	2	$\downarrow - \uparrow \uparrow$	×	126
	[%X]+.%B	1 1 0 0 0 1 1 1 0 1 1 0 1	$[X] \leftarrow [X]$ -B-C, $X \leftarrow X+1$	2	$\downarrow - \uparrow \uparrow$	×	126
	[%X]+ imm4	1 1 0 0 0 1 0 0 1 i3 i2 i1 i0	$[X] \leftarrow [X]$ -imm4-C $X \leftarrow X+1$	2	$\downarrow - \uparrow \uparrow$	×	127
SBC	[%Y] %A		$[Y] \leftarrow [Y]-A-C$	2	$\downarrow - \uparrow \uparrow$	0	125
020	[%Y] %B		$[Y] \leftarrow [Y] - [Y] - B - C$	2	$\downarrow = \uparrow \uparrow$	0	125
	[%V] imm4		$[Y] \leftarrow [Y]_{imm4-C}$	2		0	126
	[701],IIIII+			2	$\psi = \psi \psi$ $\downarrow \qquad \uparrow \uparrow$	~	120
	[/01]+,/0A			2	$\psi = \psi \psi$	<u></u>	120
	[% f]+, %D		$[1] \leftarrow [1]$ -B-C, $1 \leftarrow 1+1$	2	$\downarrow - \downarrow \downarrow$	×	120
ONE			$[1] \leftarrow [1]$ -IIIIIII4-C, $1 \leftarrow 1+1$	2	$\downarrow - \downarrow \downarrow$	×	127
CMP	%A,%A		A-A	1	$\downarrow - \downarrow $	X	84
	%А,%В	1 1 1 1 0 0 1 1 1 X 0 1 0	А-В	1	$\downarrow - \downarrow \downarrow$	×	84
	%A,imm4	1 1 1 1 0 0 1 0 0 13 12 11 10	A-imm4	1	$\downarrow - \downarrow \downarrow$	×	84
	%A,[%X]	1 1 1 1 0 0 1 1 0 0 0 0 0	A-[X]	1	$\downarrow - \uparrow \uparrow$	0	85
	%A,[%X]+	1 1 1 1 0 0 1 1 0 0 0 1	A-[X], X ← X+1	1	$\downarrow - \uparrow \uparrow$	×	85
	%A,[%Y]	1 1 1 1 0 0 1 1 0 0 0 1 0	A-[Y]	1	$\downarrow - \uparrow \uparrow$	0	85
	%A,[%Y]+	1 1 1 1 0 0 1 1 0 0 0 1 1	A-[Y], Y ← Y+1	1	$\downarrow - \uparrow \uparrow$	×	85
CMP	%B,%A	1 1 1 1 0 0 1 1 1 X 1 0 0	B-A	1	$\downarrow - \uparrow \uparrow$	×	84
	%B,%B	1 1 1 1 0 0 1 1 1 X 1 1 0	В-В	1	$\downarrow - \downarrow \uparrow$	×	84
	%B,imm4	1 1 1 1 0 0 1 0 1 i3 i2 i1 i0	B-imm4	1	$\downarrow - \uparrow \uparrow$	×	84
	%B,[%X]	1 1 1 1 0 0 1 1 0 0 1 0 0	B-[X]	1	$\downarrow - \uparrow \uparrow$	0	85
	%B,[%X]+	1 1 1 1 0 0 1 1 0 0 1 0 1	B-[X], X ← X+1	1	$\downarrow - \uparrow \uparrow$	×	85
	%B,[%Y]	1 1 1 1 0 0 1 1 0 0 1 1 0	B-[Y]	1	$\downarrow - \uparrow \uparrow$	0	85
	%B,[%Y]+	1 1 1 1 0 0 1 1 0 0 1 1 1	B-[Y], Y ← Y+1	1	$\downarrow - 11$	×	85
L			<u> </u>				

	Mnemonic	Machine code	Operation	Cycle	Flag E I C Z	EXT. mode	Page
CMP	[%X],%A	1 1 1 1 0 0 1 1 0 1 0 0 0	[X]-A	1	↓ - ↓ ↓	0	86
	[%X],%B	1 1 1 1 0 0 1 1 0 1 1 0 0	[X]-B	1	$\downarrow - \uparrow \uparrow$	0	86
	[%X],imm4	1 1 1 1 0 0 0 0 0 13 12 11 10	[X]-imm4	1	$\downarrow - \uparrow \uparrow$	0	87
	[%X]+,%A	1 1 1 1 0 0 1 1 0 1 0 0 1	[X]-A, X ← X+1	1	$\downarrow - \uparrow \uparrow$	×	86
	[%X]+,%B	1 1 1 1 0 0 1 1 0 1 1 0 1	[X]-B, X ← X+1	1	$\downarrow - \uparrow \uparrow$	×	86
	[%X]+,imm4	1 1 1 1 0 0 0 0 1 13 12 11 10	[X]-imm4, X ← X+1	1	$\downarrow - \uparrow \uparrow$	×	87
CMP	[%Y],%A	1 1 1 1 0 0 1 1 0 1 0 1 0	[Y]-A	1	$\downarrow - \uparrow \uparrow$	0	86
	[%Y],%B	1 1 1 1 0 0 1 1 0 1 1 1 0	[Y]-B	1	$\downarrow - \uparrow \uparrow$	0	86
	[%Y],imm4	1 1 1 1 0 0 0 1 0 i3 i2 i1 i0	[Y]-imm4	1	$\downarrow - \uparrow \uparrow$	0	87
	[%Y]+,%A	1 1 1 1 0 0 1 1 0 1 0 1 1	[Y]-A, Y ← Y+1	1	$\downarrow - \uparrow \uparrow$	×	86
	[%Y]+,%B	1 1 1 1 0 0 1 1 0 1 1 1 1	[Y]-B, Y ← Y+1	1	$\downarrow - \uparrow \uparrow$	×	86
	[%Y]+,imm4	1 1 1 1 0 0 0 1 1 i3 i2 i1 i0	[Y]-imm4, $Y \leftarrow Y+1$	1	$\downarrow - \uparrow \uparrow$	×	87
INC	[00addr6]	1 0 0 0 0 0 1 a5a4a3a2a1a0	[00addr6] ← [00addr6]+1	2	$\downarrow - \uparrow \uparrow$	Х	92
DEC	[00addr6]	1 0 0 0 0 0 0 a5a4a3a2a1a0	[00addr6] ← [00addr6]-1	2	$\downarrow - \uparrow \uparrow$	×	88
ADC	%B,%A,n4	1 0 0 0 0 1 1 0 1 [10H-n4]	$B \leftarrow N$'s adjust (B+A+C)	2	$\downarrow - \uparrow \uparrow$	×	65
*1	%B,[%X],n4	1 1 1 0 1 1 1 0 0 [10H-n4]	$B \leftarrow N$'s adjust (B+[X]+C)	2	$\downarrow - \uparrow \uparrow$	0	65
	%B,[%X]+,n4	1 1 1 0 1 1 1 0 1 [10H-n4]	$B \leftarrow N$'s adjust (B+[X]+C), X \leftarrow X+1	2	$\downarrow - \uparrow \uparrow$	×	66
	%B,[%Y],n4	1 1 1 0 1 1 1 1 0 [10H-n4]	$B \leftarrow N$'s adjust (B+[Y]+C)	2	$\downarrow - \uparrow \uparrow$	0	65
	%B,[%Y]+,n4	1 1 1 0 1 1 1 1 1 [10H-n4]	$B \leftarrow N$'s adjust (B+[Y]+C), $Y \leftarrow Y$ +1	2	$\downarrow - \uparrow \uparrow$	Х	66
ADC	[%X],%B,n4	1 1 1 0 1 0 1 0 0 [10H-n4]	$[X] \leftarrow N$'s adjust ($[X]$ +B+C)	2	$\downarrow - \uparrow \uparrow$	0	66
*1	[%X],0,n4	1 1 1 0 1 0 0 0 0 [10H-n4]	$[X] \leftarrow N$'s adjust ($[X]$ +0+C)	2	$\downarrow - \uparrow \uparrow$	0	67
	[%X]+,%B,n4	1 1 1 0 1 0 1 0 1 [10H-n4]	$[X] \leftarrow N$'s adjust ($[X]$ +B+C), X \leftarrow X+1	2	$\downarrow - \uparrow \uparrow$	×	67
	[%X]+,0,n4	1 1 1 0 1 0 0 0 1 [10H-n4]	$[X] \leftarrow N$'s adjust ($[X]$ +0+C), X \leftarrow X+1	2	$\downarrow - \uparrow \uparrow$	Х	68
ADC	[%Y],%B,n4	1 1 1 0 1 0 1 1 0 [10H-n4]	$[Y] \leftarrow N's adjust ([Y]+B+C)$	2	$\downarrow - \uparrow \uparrow$	0	66
*1	[%Y],0,n4	1 1 1 0 1 0 0 1 0 [10H-n4]	$[Y] \leftarrow N's adjust ([Y]+0+C)$	2	$\downarrow - \uparrow \uparrow$	0	67
	[%Y]+,%B,n4	1 1 1 0 1 0 1 1 1 [10H-n4]	$[Y] \leftarrow N's adjust ([Y]+B+C), Y \leftarrow Y+1$	2	$\downarrow - \uparrow \uparrow$	×	67
	[%Y]+,0,n4	1 1 1 0 1 0 0 1 1 [10H-n4]	$[Y] \leftarrow N$'s adjust ($[Y]$ +0+C), Y \leftarrow Y+1	2	$\downarrow - \uparrow \uparrow$	×	68
SBC	%B,%A,n4	1 0 0 0 0 1 1 0 0 n3n2n1n0	$B \leftarrow N$'s adjust (B-A-C)	2	$\downarrow - \uparrow \uparrow$	Х	127
*1	%B,[%X],n4	1 1 1 0 0 1 1 0 0 n3n2n1n0	$B \leftarrow N$'s adjust (B-[X]-C)	2	$\downarrow - \uparrow \uparrow$	0	128
	%B,[%X]+,n4	1 1 1 0 0 1 1 0 1 n3n2n1n0	$B \leftarrow N$'s adjust (B-[X]-C), $X \leftarrow X+1$	2	$\downarrow - \uparrow \uparrow$	X	128
	%B,[%Y],n4	1 1 1 0 0 1 1 1 0 n3n2n1n0	$B \leftarrow N$'s adjust (B-[Y]-C)	2	$\downarrow - \uparrow \uparrow$	0	128
	%B,[%Y]+,n4	1 1 1 0 0 1 1 1 1 n3n2n1n0	$B \leftarrow N$'s adjust (B-[Y]-C), $Y \leftarrow Y+1$	2	$\downarrow - \uparrow \uparrow$	×	128
SBC	[%X],%B,n4	1 1 1 0 0 0 1 0 0 n3n2n1n0	$[X] \leftarrow N$'s adjust ($[X]$ -B-C)	2	$\downarrow - \uparrow \uparrow$	0	129
*1	[%X],0,n4	1 1 1 0 0 0 0 0 0 n3n2n1n0	$[X] \leftarrow N$'s adjust ($[X]$ -0-C)	2	$\downarrow - \downarrow \downarrow$	0	130
	[%X]+,%B,n4	1 1 1 0 0 0 1 0 1 n3n2n1n0	$[X] \leftarrow N$'s adjust ($[X]$ -B-C), $X \leftarrow X$ +1	2	$\downarrow - \downarrow \downarrow$	X	129
000	[%X]+,0,n4		$[X] \leftarrow N's$ adjust ($[X]$ -0-C), $X \leftarrow X+1$	2	$\downarrow - \downarrow \downarrow$	×	130
SBC	[%Y],%B,N4		$[Y] \leftarrow N s adjust ([Y]-B-C)$	2	$\downarrow - \downarrow \downarrow$	0	129
*1	[%Y],U,N4		$[Y] \leftarrow N s adjust ([Y]-0-C)$	2	$\downarrow - \downarrow \downarrow$	0	130
	[%Y]+,%B,N4		$[Y] \leftarrow N s$ adjust ($[Y]$ -B-C), $Y \leftarrow Y+1$	2	$\downarrow - \downarrow \downarrow$	X	129
INIC	[%Y]+,0,n4		$[Y] \leftarrow NS$ adjust ($[Y]$ -0-C), $Y \leftarrow Y+1$	2	$\downarrow - \downarrow \downarrow$	×	130
1NC	[70A],[14		$[\Lambda] \leftarrow \text{INS adjust}([\Lambda]+1)$	2	$ \downarrow - \downarrow \downarrow $ $ \uparrow \uparrow \uparrow$		93
* I	[/0/]+,114		$[\Lambda] \leftarrow \Pi S aujust ([\Lambda]+1), \Lambda \leftarrow \Lambda+1$ [V] \leftarrow N's adjust ([V]+1)	2	$ \underbrace{+}{} - \underbrace{+}{} \downarrow \\ \underbrace{-}{} \uparrow \uparrow $	\vdash^{\times}	33
*1	[/0]],114		$[1] \leftarrow N = aujust ([1] + 1)$ $[V] \leftarrow N' = adjust ([V] + 1) V \leftarrow V + 1$	2	$\psi = \psi \psi$	\vdash	33
	[/0]]T,114	1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$[1] \leftarrow N = aujust ([1]+1), T \leftarrow T+1$ $[X] \leftarrow N = adjust ([X]-1)$	2		$\stackrel{\wedge}{\vdash}$	80
*1	[%X]+ n/	1 1 1 0 0 1 0 0 1 0 0 1000	$[\Lambda] \leftarrow N = adjust ([\Lambda]^{-1})$ $[X] \leftarrow N' = adjust ([X]^{-1}) X \leftarrow X^{-1}$	2	$\psi = \psi \psi$	\vdash	80
DEC	[%Y] n4	1 1 1 0 0 1 0 1 0 1 0 1 0 3 n 2 n 1 n 0	$[X] \leftarrow N'_{s}$ adjust ([X]-1), $X \leftarrow X+1$	2	$\frac{\Psi}{\Psi} = \Psi \Psi$	$\hat{\mathbf{a}}$	89
*1	[%Y]+ n/	1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0	$[Y] \leftarrow N'_{e}$ adjust ([Y]-1) $V \leftarrow V_{\pm}1$	2	$\frac{\Psi}{\Psi} = \Psi \Psi$		80
1 ° 1	[[/01]],+		[1], $[1]$, $[1]$, $[1]$, $[1]$, $[1]$		$ \bullet \psi \downarrow$		03

ALU alithmetic operation (3/3)

*1 "n4" should be specified with a value between 1 and 16 that indicates a radix.

In the ADC and INC instructions, the assembler converts the "n4" into a complement, and places it at the low-order 4 bits in the machine code.

In the SBC and DEC instructions, the "n4" is placed as it is at the low-order 4 bits in the machine code.

(However, when 16 is specified to n4, the machine code is generated with 0000H as the low-order 4 bits.)

ALU logic operation (1/2)

	Mnemonic	Machine code	Operation	Cycle	Flag	EXT.	Page
AND	%A.%A	1 1 0 1 0 0 1 1 1 0 0 0 X	$A \leftarrow A \land A$	1	$\downarrow 1$	X	73
/	%A %B	1 1 0 1 0 0 1 1 1 0 0 1 X	$A \leftarrow A \land B$	1	$\downarrow \uparrow$	×	73
	%A imm4		$A \leftarrow A \land imm4$	1	$\downarrow \uparrow$	×	74
	%A.[%X]		$A \leftarrow A \land [X]$	1	$\downarrow \uparrow$	0	75
	%A.[%X]+		$A \leftarrow A \land [X], X \leftarrow X+1$	1	$\downarrow \uparrow$	x	75
	%A.[%Y]	1 1 0 1 0 0 1 1 0 0 0 1 0	$A \leftarrow A \land [Y]$	1	↓ ↓	0	75
	%A.[%Y]+	1 1 0 1 0 0 1 1 0 0 0 1 1	$A \leftarrow A \land [Y], Y \leftarrow Y+1$	1	$\downarrow \uparrow$	×	75
AND	%B,%A	1 1 0 1 0 0 1 1 1 0 1 0 X	$B \leftarrow B \land A$	1	↓ ↓	×	73
	%B.%B	110100111011X	B ← B∧B	1	↓ ↓	×	73
	%B,imm4	1 1 0 1 0 0 1 0 1 i3 i2 i1 i0	B ← B∧imm4	1	$\downarrow \uparrow$	×	74
	%B,[%X]	1 1 0 1 0 0 1 1 0 0 1 0 0	$B \leftarrow B \land [X]$	1	↓ ↓	0	75
	%B,[%X]+	1 1 0 1 0 0 1 1 0 0 1 0 1	$B \leftarrow B \land [X], X \leftarrow X+1$	1	$\downarrow \uparrow$	×	75
	%B,[%Y]	1 1 0 1 0 0 1 1 0 0 1 1 0	$B \leftarrow B \land [Y]$	1	$\downarrow \uparrow$	0	75
	%B,[%Y]+	1 1 0 1 0 0 1 1 0 0 1 1 1	$B \leftarrow B \land [Y], Y \leftarrow Y+1$	1	$\downarrow \uparrow$	×	75
AND	%F,imm4	1 0 0 0 0 1 0 0 0 i3 i2 i1 i0	$F \leftarrow F \land imm4$	1	$\downarrow \downarrow \downarrow \downarrow \downarrow$	×	74
AND	[%X],%A	1 1 0 1 0 0 1 1 0 1 0 0 0	$[X] \leftarrow [X] \land A$	2	$\downarrow \uparrow$	0	76
	[%X],%B	1 1 0 1 0 0 1 1 0 1 1 0 0	$[X] \leftarrow [X] \land B$	2	$\downarrow \uparrow$	0	76
	[%X],imm4	1 1 0 1 0 0 0 0 0 i3 i2 i1 i0	$[X] \leftarrow [X] \land imm4$	2	$\downarrow \uparrow$	0	77
	[%X]+,%A	1 1 0 1 0 0 1 1 0 1 0 0 1	$[X] \leftarrow [X] \land A, X \leftarrow X+1$	2	$\downarrow \uparrow$	×	76
	[%X]+,%B	1 1 0 1 0 0 1 1 0 1 1 0 1	$[X] \leftarrow [X] \land B, X \leftarrow X+1$	2	$\downarrow \uparrow$	×	76
	[%X]+,imm4	1 1 0 1 0 0 0 0 1 i3 i2 i1 i0	$[X] \leftarrow [X] \land imm4, X \leftarrow X+1$	2	$\downarrow \uparrow$	×	77
AND	[%Y],%A	1 1 0 1 0 0 1 1 0 1 0 1 0	$[Y] \leftarrow [Y] \land A$	2	$\downarrow \uparrow$	0	76
	[%Y],%B	1 1 0 1 0 0 1 1 0 1 1 1 0	$[Y] \leftarrow [Y] \land B$	2	$\downarrow \uparrow$	0	76
	[%Y],imm4	1 1 0 1 0 0 0 1 0 i3 i2 i1 i0	$[Y] \leftarrow [Y] \land imm4$	2	$\downarrow \uparrow$	0	77
	[%Y]+,%A	1 1 0 1 0 0 1 1 0 1 0 1 1	$[Y] \leftarrow [Y] \land A, Y \leftarrow Y+1$	2	$\downarrow \uparrow$	×	76
	[%Y]+,%B	1 1 0 1 0 0 1 1 0 1 1 1 1	$[Y] \leftarrow [Y] \land B, Y \leftarrow Y+1$	2	$\downarrow \uparrow$	×	76
	[%Y]+,imm4	1 1 0 1 0 0 0 1 1 i3 i2 i1 i0	$[Y] \leftarrow [Y] \land imm4, Y \leftarrow Y+1$	2	$\downarrow \uparrow$	×	77
OR	%A,%A	1 1 0 1 1 0 1 1 1 0 0 0 X	$A \leftarrow A \lor A$	1	$\downarrow \uparrow$	×	112
	%A,%B	1 1 0 1 1 0 1 1 1 0 0 1 X	$A \leftarrow A \lor B$	1	$\downarrow \uparrow$	×	112
	%A,imm4	1 1 0 1 1 0 1 0 0 i3 i2 i1 i0	$A \leftarrow A \lor imm4$	1	$\downarrow \updownarrow$	×	112
	%A,[%X]	1 1 0 1 1 0 1 1 0 0 0 0 0	$A \gets A {\lor} [X]$	1	\downarrow \updownarrow	0	113
	%A,[%X]+	1 1 0 1 1 0 1 1 0 0 0 0 1	$A \gets A \lor [X], X \gets X \textbf{+} 1$	1	\downarrow \updownarrow	×	114
	%A,[%Y]	1 1 0 1 1 0 1 1 0 0 0 1 0	$A \gets A \lor [Y]$	1	\downarrow \updownarrow	0	113
	%A,[%Y]+	1 1 0 1 1 0 1 1 0 0 0 1 1	$A \leftarrow A \lor [Y], Y \leftarrow Y + 1$	1	\downarrow \updownarrow	×	114
OR	%B,%A	1 1 0 1 1 0 1 1 1 0 1 0 X	$B \leftarrow B \lor A$	1	$\downarrow \uparrow$	×	112
	%B,%B	1 1 0 1 1 0 1 1 1 0 1 1 X	$B \gets B {\lor} B$	1	\downarrow \updownarrow	×	112
	%B,imm4	1 1 0 1 1 0 1 0 1 i3 i2 i1 i0	$B \leftarrow B \lor imm4$	1	\downarrow \updownarrow	×	112
	%B,[%X]	1 1 0 1 1 0 1 1 0 0 1 0 0	$B \leftarrow B {\lor} [X]$	1	$\downarrow \uparrow$	0	113
	%B,[%X]+	1 1 0 1 1 0 1 1 0 0 1 0 1	$B \leftarrow B \lor [X], X \leftarrow X \textbf{+} 1$	1	$\downarrow \uparrow$	×	114
	%B,[%Y]	1 1 0 1 1 0 1 1 0 0 1 1 0	$B \gets B {\lor} [Y]$	1	$\downarrow \downarrow$	0	113
	%B,[%Y]+	1 1 0 1 1 0 1 1 0 0 1 1 1	$B \leftarrow B \lor [Y], Y \leftarrow Y \texttt{+}1$	1	$\downarrow \uparrow$	×	114
OR	%F,imm4	1 0 0 0 0 1 0 0 1 i3 i2 i1 i0	$F \leftarrow F \lor imm4$	1	$\uparrow\uparrow\uparrow\uparrow\uparrow$	×	113
OR	[%X],%A	1 1 0 1 1 0 1 1 0 1 0 0 0	$[X] \leftarrow [X] \lor A$	2	$\downarrow \uparrow$	0	114
	[%X],%B	1 1 0 1 1 0 1 1 0 1 1 0 0	$[X] \leftarrow [X] \lor B$	2	$\downarrow \uparrow$	0	114
	[%X],imm4	1 1 0 1 1 0 0 0 0 i3 i2 i1 i0	$[X] \leftarrow [X] \lor imm4$	2	$\downarrow \uparrow$	0	115
	[%X]+,%A	1 1 0 1 1 0 1 1 0 1 0 0 1	$[X] \leftarrow [X] \lor A, X \leftarrow X + 1$	2	$\downarrow \uparrow$	×	115
	[%X]+,%B	1 1 0 1 1 0 1 1 0 1 1 0 1	$[X] \leftarrow [X] \lor B, X \leftarrow X+1$	2	$\downarrow \uparrow$	×	115
	[%X]+,imm4	1 1 0 1 1 0 0 0 1 i3 i2 i1 i0	$[X] \leftarrow [X] \lor imm4, X \leftarrow X+1$	2	$\downarrow \uparrow$	×	116
OR	[%Y],%A	1 1 0 1 1 0 1 1 0 1 0 1 0	$[Y] \leftarrow [Y] \lor A$	2	$\downarrow \uparrow$		114
	[%Y],%B		$[Y] \leftarrow [Y] \lor B$	2	$ \downarrow \uparrow$		114
	[%Y],imm4		$[Y] \leftarrow [Y] \lor imm4$	2	$ \downarrow \uparrow$		115
	[%Y]+,%A		$[Y] \leftarrow [Y] \lor A, Y \leftarrow Y+1$	2	$ \downarrow \downarrow$	×	115
	[%Y]+,%B		$[Y] \leftarrow [Y] \lor B, Y \leftarrow Y+1$	2	$\downarrow \uparrow$	×	115
1	[% ĭ]+,imm4	ו 1ו 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[t] ← [t]∨IMM4, t ← t+1	2	↓ ↓	×	116

ALU logic operation (2/2)

		Machine code		Flag	EXT.	_
	Mnemonic	12111109876543210 Operation	Cycle	FICZ	mode	Page
XOR	%Δ %Δ		1		×	130
	9/ A 9/ P	1 1 0 1 1 1 1 1 1 0 0 1 X A (AVR	1		~	120
	70A, 70D	$1 1 0 1 1 1 1 1 1 0 0 1 \land \land \land \land \land \lor \land \lor $	1	$\downarrow = - \downarrow$	<u>^</u>	1.09
	%A,IMM4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	$\downarrow \downarrow$	×	140
	%A,[%X]	$\begin{array}{c} 1 1 0 1 1 1 1 1 1 0 0 0 0 0 A \leftarrow A \forall [X] \\ \hline \end{array}$	1	$ \downarrow \downarrow$	0	141
	%A,[%X]+	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$\downarrow \downarrow$	×	141
	%A,[%Y]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$\downarrow \uparrow$	0	141
	%A,[%Y]+	$1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ $	1	$\downarrow \downarrow$	×	141
XOR	%B,%A	$1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ $	1	$ \downarrow \downarrow$	×	139
	%B,%B	1 1 0 1 1 1 1 1 1 0 1 1 X B ← B∀B	1	↓ ↑	×	139
	%B,imm4	1 1 0 1 1 1 1 0 1 i3 i2 i1 i0 B ← B∀imm4	1	$\downarrow \downarrow$	×	140
	%B,[%X]	1 1 0 1 1 1 1 1 0 0 1 0 0 B ← B∀[X]	1	$\downarrow \uparrow$	0	141
	%B.[%X]+	1 1 0 1 1 1 1 1 0 0 1 0 1 $B \leftarrow B \forall [X], X \leftarrow X+1$	1	↓ ↓	×	141
	%B [%Y]	$1 1 0 1 1 1 1 1 0 0 1 1 0 B \leftarrow B\forall [Y]$	1	<u>↓</u> – – <u>↑</u>	0	141
	%B.[%Y]+	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1	↓ <u> </u>	×	141
VOP	%E imm4	$1 0 0 0 0 1 0 1 0 3 i2 i1 i0 E < E \forall imm4$	1	$\uparrow \uparrow \uparrow \uparrow \uparrow$	~	140
XOR	70F,IIIIII4		1		*	140
XUR	[%X],%A	$\frac{1}{1} \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	2	$\downarrow \downarrow$	0	142
	[%X],%B	1 1 0 1 1 1 1 1 0 1 1 0 0 [X] ← [X]∀B	2	$\downarrow \downarrow$	0	142
	[%X],imm4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$\downarrow \uparrow$	0	143
	[%X]+,%A	$1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0$	2	$\downarrow \uparrow$	×	142
	[%X]+,%B	$1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1$	2	$\downarrow \uparrow$	×	142
	[%X]+,imm4	1 1 0 1 1 1 0 0 1 i3 i2 i1 i0 $[X] \leftarrow [X] \forall imm4, X \leftarrow X+1$	2	$ \downarrow \downarrow$	×	143
XOR	[%Y],%A	1 1 0 1 1 1 1 1 0 1 0 1 0 [Y] ← [Y]∀A	2	$\downarrow \uparrow$	0	142
	[%Y],%B	1 1 0 1 1 1 1 1 0 1 1 1 0 [Y] ← [Y]∀B	2	↓ ↓	0	142
	[%Y],imm4	1 1 0 1 1 1 0 1 0 i3 i2 i1 i0 [Y] ← [Y]∀imm4	2	$\downarrow \uparrow$	0	143
	[%Y]+ %A	$1 1 0 1 1 1 1 1 0 1 0 1 1 Y \leftarrow Y \forall A Y \leftarrow Y+1$	2	↓	×	142
	[%Y]+ %B	$1 1 0 1 1 1 1 1 0 1 1 1 1 [Y] \leftarrow [Y] \forall B Y \leftarrow Y+1$	2	↓ ↑	×	142
	[%Y]+ imm4	$1 1 0 1 1 1 0 1 1 1 3 i2 i1 i0 [Y] \leftarrow [Y] \forall imm4 Y \leftarrow Y+1$	2		×	143
DIT	0/ 0 0/ 0			$ \psi \psi $	$\hat{}$	70
	%A,%A		1	$\downarrow \downarrow$	×	70
	70A,70D			$\downarrow \downarrow$	×	70
	%A,Imm4	1 1 0 1 0 1 1 0 0 3 12 11 10 AAImm4	1	$\downarrow \downarrow$	×	78
	%A,[%X]	1 1 0 1 0 1 1 1 0 0 0 0 0 A^[X]	1	$\downarrow \downarrow$	0	79
	%A,[%X]+	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$\downarrow \uparrow$	×	79
	%A,[%Y]	1 1 0 1 0 1 1 1 0 0 0 1 0 A^[Y]	1	$\downarrow \uparrow$	0	79
	%A,[%Y]+	1 1 0 1 0 1 1 1 0 0 0 1 1 A∧[Y], Y ← Y+1	1	↓ ↓	×	79
BIT	%B,%A	1 1 0 1 0 1 1 1 1 0 1 0 X BAA	1	$\downarrow \uparrow$	×	78
	%B,%B	1 1 0 1 0 1 1 1 1 0 1 1 X BAB	1	$ \downarrow \uparrow$	×	78
	%B,imm4	1 1 0 1 0 1 1 0 1 i3 i2 i1 i0 B∧imm4	1	$ \downarrow \downarrow$	×	78
	%B,[%X]	1 1 0 1 0 1 1 1 0 0 1 0 0 B^[X]	1	$\downarrow \uparrow$	0	79
	%B,[%X]+	1 1 0 1 0 1 1 1 0 0 1 0 1 B∧[X], X ← X+1	1	$\downarrow \downarrow$	×	79
	%B,[%Y]	1 1 0 1 0 1 1 1 0 0 1 1 0 B _{\[Y]}	1	$\downarrow \uparrow$	0	79
	%B.[%Y]+	1 1 0 1 0 1 1 1 0 0 1 1 1 $B_{\Lambda}[Y], Y \leftarrow Y+1$	1	↓ 1	×	79
BIT	[%X1.%A	1 1 0 1 0 1 1 1 0 1 0 0 0 IXIA	1	↓ 1	0	80
	[%X] %B	1 1 0 1 0 1 1 1 0 1 1 0 0 [X] _A B	1	↓ <u> </u>	0	80
	[%X] imm/	1 1 0 1 0 1 0 0 0 i3 i2 i1 i0 [X] a imm4	1	$\downarrow \uparrow$	0	81
			1	$ \psi \psi $		01
	[/0/]+, /0/	$1 1 0 1 0 1 1 1 0 1 0 0 1 [X] R, X \leftarrow X + 1$	1	$\downarrow = = \downarrow$	- Â	00
	[%X]+,%B	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$ \downarrow \downarrow$	×	80
	[%X]+,imm4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$\downarrow \downarrow$	×	81
BIT	[%Y],%A	1 1 0 1 0 1 1 1 0 1 0 1 0 [Y]^A	1	$\downarrow \downarrow$	0	80
	[%Y],%B	1 1 0 1 0 1 1 1 0 1 1 1 0 [Y]^B	1	$\downarrow \uparrow$	0	80
	[%Y],imm4	1 1 0 1 0 1 0 1 0 i3 i2 i1 i0 [Y]^imm4	1	$\downarrow \uparrow$	0	81
	[%Y]+,%A	1 1 0 1 0 1 1 1 0 1 0 1 1 [Y]∧A, Y ← Y+1	1	$\downarrow \uparrow$	×	80
	[%Y]+,%B	1 1 0 1 0 1 1 1 0 1 1 1 1 [Y]∧B, Y ← Y+1	1	$\downarrow \uparrow$	×	80
	[%Y]+,imm4	1 1 0 1 0 1 0 1 1 i3 i2 i1 i0 [Y]∧imm4, Y ← Y+1	1	$ \overline{\downarrow} \downarrow$	×	81
CLR	[00addr6],imm2	1 0 1 0 0 i1 i0 a5 a4 a3 a2 a1 a0 [00addr6] ← [00addr6]∧no	t (2 ^{imm2}) 2	$\downarrow \uparrow$	×	83
	[FFaddr61.imm2	1 0 1 0 1 i1 i0 a5 a4 a3 a2 a1 a0 [FFaddr6] ← [FFaddr6] ∧nc	t (2 ^{imm2}) 2	$\downarrow \uparrow$	×	83
SET	[00addr61.imm2	1 0 1 1 0 i1 i0 a5 a4 a3 a2 a1 a0 $[00addr6] \leftarrow [00addr6] \land (2ii)$	mm2) 2	$\downarrow \uparrow$	×	131
	[FFaddr6] imm2	1 0 1 1 1 i1 i0 a5a4a3a2a1a0 [FFaddr6] \leftarrow [FFaddr6] \land (2)	, <u> </u>	$\downarrow \uparrow$	×	131
TST	[00addr61 imm?	1 0 0 1 0 i1 i0 a5a4a3a2a1a0 [00addr6]^(2imm2)	,1	↓ ↑	×	139
	[FFaddr6] imm?	1 0 0 1 1 i1 i0 a5 a4 a3 a2 a1 a0 [FE addr6] (2 imm2)	1	<u>↓</u> ↑	Ŷ	139
1			1 1	I* ↓		1.00

ALU shift and rotate operation

	NA	Machine code	On another	0	Flag	EXT.	Dama
	Minemonic	12 11 10 9 8 7 6 5 4 3 2 1 0	Operation	Cycle	EICZ	mode	Page
SLL	%A	10000111110000	A (C←D3←D2←D1←D0←0)	1	$\downarrow - \uparrow \uparrow$	×	131
	%В	1000011110100	B (C←D3←D2←D1←D0←0)	1	$\downarrow - \uparrow \uparrow$	×	131
	[%X]	1 0 0 0 0 1 1 1 0 0 0 0 0	[X] (C←D3←D2←D1←D0←0)	2	$\downarrow - \updownarrow \updownarrow$	0	132
	[%X]+	1 0 0 0 0 1 1 1 0 0 0 0 1	$[X] (C \leftarrow D3 \leftarrow D2 \leftarrow D1 \leftarrow D0 \leftarrow 0), X \leftarrow X+1$	2	$\downarrow - \updownarrow \updownarrow$	×	132
	[%Y]	1 0 0 0 0 1 1 1 0 0 0 1 0	[Y] (C←D3←D2←D1←D0←0)	2	$\downarrow - \uparrow \uparrow$	0	132
	[%Y]+	1 0 0 0 0 1 1 1 0 0 0 1 1	[Y] (C←D3←D2←D1←D0←0), Y ← Y+1	2	$\downarrow - \updownarrow \updownarrow$	×	132
SRL	%A	1 0 0 0 0 1 1 1 1 0 0 0 1	A $(0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	1	$\downarrow - \updownarrow \updownarrow$	×	133
	%В	100001111010101	$B (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	1	$\downarrow - \uparrow \uparrow$	×	133
	[%X]	1 0 0 0 0 1 1 1 0 0 1 0 0	$[X] (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	2	$\downarrow - \updownarrow \updownarrow$	0	134
	[%X]+	1000011100101	$[X] (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C), X \leftarrow X+1$	2	$\downarrow - \updownarrow \updownarrow$	×	134
	[%Y]	1000011100110	$[Y] (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	2	$\downarrow - \uparrow \uparrow$	0	134
	[%Y]+	1 0 0 0 0 1 1 1 0 0 1 1 1	$[Y] (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C), Y \leftarrow Y+1$	2	$\downarrow - \updownarrow \updownarrow$	×	134
RL	%A	1 0 0 0 0 1 1 1 1 0 0 1 0	A (C←D3←D2←D1←D0←C)	1	$\downarrow - \updownarrow \updownarrow$	×	120
	%В	1 0 0 0 0 1 1 1 1 0 1 1 0	B (C←D3←D2←D1←D0←C)	1	$\downarrow - \uparrow \uparrow$	×	120
	[%X]	1 0 0 0 0 1 1 1 0 1 0 0 0	[X] (C←D3←D2←D1←D0←C)	2	$\downarrow - \uparrow \uparrow$	0	121
	[%X]+	1 0 0 0 0 1 1 1 0 1 0 0 1	$[X] (C \leftarrow D3 \leftarrow D2 \leftarrow D1 \leftarrow D0 \leftarrow C), X \leftarrow X+1$	2	$\downarrow - \updownarrow \updownarrow$	×	121
	[%Y]	1 0 0 0 0 1 1 1 0 1 0 1 0	[Y] (C←D3←D2←D1←D0←C)	2	$\downarrow - \uparrow \uparrow$	0	121
	[%Y]+	1 0 0 0 0 1 1 1 0 1 0 1 1	$[Y] (C \leftarrow D3 \leftarrow D2 \leftarrow D1 \leftarrow D0 \leftarrow C), Y \leftarrow Y+1$	2	$\downarrow - \uparrow \uparrow$	×	121
RR	%A	1 0 0 0 0 1 1 1 1 0 0 1 1	A (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)	1	$\downarrow - \updownarrow \updownarrow$	×	122
	%В	1 0 0 0 0 1 1 1 1 0 1 1 1	$ B (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C) $	1	$\downarrow - \uparrow \uparrow$	×	122
	[%X]	1 0 0 0 0 1 1 1 0 1 1 0 0	$[X] (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	2	$\downarrow - \uparrow \uparrow$	0	122
	[%X]+	1 0 0 0 0 1 1 1 0 1 1 0 1	$[X] (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C), X \leftarrow X+1$	2	\downarrow - \updownarrow \updownarrow	×	123
	[%Y]	1 0 0 0 0 1 1 1 0 1 1 1 0	$[Y] (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	2	$\downarrow - \uparrow \uparrow$	0	122
	[%Y]+	1000011101111	$[Y] (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C), Y \leftarrow Y+1$	2	$\downarrow - \updownarrow \updownarrow$	×	123

8/16-bit operation

	N 4	Machine code	On continue	0	Flag	EXT.	Deser
	Minemonic	12 11 10 9 8 7 6 5 4 3 2 1 0	Operation	Cycle	EICZ	mode	Page
LDB	%BA,%XL	1 1 1 1 1 1 1 0 0 1 0 0 0	$BA \leftarrow XL$	1	\rightarrow	×	107
	%BA,%XH	1 1 1 1 1 1 1 0 0 1 0 0 1	$BA \gets XH$	1	\downarrow	×	107
	%BA,%YL	1 1 1 1 1 1 1 0 0 1 0 1 0	$BA \gets YL$	1	\downarrow	×	107
	%BA,%YH	1 1 1 1 1 1 1 0 0 1 0 1 1	$BA \leftarrow YH$	1	\downarrow – – –	×	107
	%BA,%EXT	1 1 1 1 1 1 1 1 0 1 0 1 1 X	$BA \leftarrow EXT$	1	\downarrow	×	106
	%BA,%SP1	1 1 1 1 1 1 1 1 0 0 1 1 0 X	$BA \leftarrow SP1$	1	\downarrow	×	107
	%BA,%SP2	1 1 1 1 1 1 1 1 0 0 1 1 1 X	$BA \leftarrow SP2$	1	\downarrow – – –	×	107
	%BA,imm8	0 1 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0	BA ← imm8	1	\downarrow	×	105
	%BA,[%X]+	1 1 1 1 1 1 1 0 1 1 0 0 0	$A \leftarrow [X], B \leftarrow [X+1], X \leftarrow X+2$	2	\downarrow	×	106
	%BA,[%Y]+	1 1 1 1 1 1 1 0 1 1 0 1 0	$A \leftarrow [Y], B \leftarrow [Y+1], Y \leftarrow Y+2$	2	\downarrow – – –	×	106
LDB	%XL,%BA	1 1 1 1 1 1 1 0 0 0 0 0 0	$XL \leftarrow BA$	1	\downarrow	×	110
	%XL,imm8	0 1 0 1 0 i7 i6 i5 i4 i3 i2 i1 i0	$XL \leftarrow imm8$	1	\downarrow	0	110
	%XH,%BA	1 1 1 1 1 1 1 0 0 0 0 1	$XH \leftarrow BA$	1	\downarrow	×	110
LDB	%YL,%BA	1 1 1 1 1 1 1 0 0 0 0 1 0	$YL \leftarrow BA$	1	\downarrow	×	110
	%YL,imm8	0 1 0 1 1 1 17 16 15 14 13 12 11 10	$YL \leftarrow imm8$	1	\downarrow	0	110
	%YH,%BA	1 1 1 1 1 1 1 0 0 0 0 1 1	$YH \leftarrow BA$	1	\downarrow – – –	×	110
LDB	%EXT,%BA	1 1 1 1 1 1 1 1 0 1 0 1 0 X	$EXT \leftarrow BA$	1	1	×	109
	%EXT,imm8	0 1 0 0 0 i7 i6 i5 i4 i3 i2 i1 i0	EXT ← imm8	1	1	×	109
LDB	%SP1,%BA	1 1 1 1 1 1 1 1 0 0 0 1 0 X	SP1 ← BA	1	\downarrow	×	111
	%SP2,%BA	1 1 1 1 1 1 1 1 0 0 0 1 1 X	$SP2 \leftarrow BA$	1	\downarrow	×	111
LDB	[%X]+,%BA	1 1 1 1 1 1 1 0 1 1 0 0 1	$[X] \leftarrow A, [X+1] \leftarrow B, X \leftarrow X+2$	2	\downarrow	×	108
	[%X]+,imm8	0 0 0 0 1 17 16 15 14 13 12 11 10	[X] ← i3~0, [X+1] ← i7~4, X ← X+2	2	\downarrow – – –	×	108
LDB	[%Y]+,%BA	1 1 1 1 1 1 1 0 1 1 0 1 1	$[Y] \leftarrow A, [Y+1] \leftarrow B, Y \leftarrow Y+2$	2	\downarrow	×	108
ADD	%X,%BA	1 1 1 1 1 1 1 1 0 1 0 0 0 X	$X \leftarrow X + BA$	1	\downarrow \Leftrightarrow	×	72
	%X,sign8	0 1 1 0 0 s7 s6 s5 s4 s3 s2 s1 s0	X ← X+sign8 (sign8=-128~127)	1	$\downarrow \uparrow$	0	72
	%Y,%BA	1 1 1 1 1 1 1 1 0 1 0 0 1 X	$Y \leftarrow Y + BA$	1	$\downarrow \updownarrow$	×	72
	%Y,sign8	0 1 1 0 1 s7 s6 s5 s4 s3 s2 s1 s0	Y ← Y+sign8 (sign8=-128~127)	1	$\downarrow \uparrow$	0	72
CMP	%X,imm8	0 1 1 1 0 [FFH - imm8]	X-imm8 (imm8=0~255)	1	$\downarrow - \uparrow \uparrow$	0	88
	%Y,imm8	0 1 1 1 1 [FFH - imm8]	Y-imm8 (imm8=0~255)	1	$\downarrow - \uparrow \uparrow$	0	88
INC	%SP1	1 1 1 1 1 1 1 1 0 1 0 0 0	$SP1 \leftarrow SP1+1$	1	$\downarrow \uparrow$	×	94
	%SP2	1 1 1 1 1 1 1 1 0 1 1 0 0	$SP2 \leftarrow SP2+1$	1	$\downarrow \uparrow$	×	94
DEC	%SP1	1 1 1 1 1 1 1 1 0 0 0 0 0	$SP1 \leftarrow SP1-1$	1	$\downarrow \uparrow$	×	90
	%SP2	1 1 1 1 1 1 1 1 0 0 1 0 0	$SP2 \leftarrow SP2-1$	1	$\downarrow \uparrow$	×	90

Stack operation

Na i -			Machine code													On another	Cuala		Flag			EXT.	D
	winemonic	12	11	10) 9	8	7	6	5 !	5	4	3	2	1	0	Operation	Cycle	Е	I	С	Ζ	mode	Page
PUSH	%A	1	1	1	1	1	1	1	· ۱	1 (D	0	1	1	1	[SP2-1] ← A, SP2 ← SP2-1	1	\downarrow	-	-	-	×	117
	%В	1	1	1	1	1	1	1	ا	1 (D	0	1	1	0	$[SP2-1] \leftarrow B, SP2 \leftarrow SP2-1$	1	\downarrow	-	-	Ι	×	117
	%F	1	1	1	1	1	1	1	1	1 (D	0	1	0	1	[SP2-1] ← F, SP2 ← SP2-1	1	\downarrow	-	-	Ι	×	117
	%X	1	1	1	1	1	1	1	· ۱	1 (D	0	0	0	1	([(SP1-1)*4+3]~[(SP1-1)*4]) ← X, SP1 ← SP1-1	1	\downarrow	-	-	-	×	118
	%Y	1	1	1	1	1	1	1	1	(D	0	0	1	Х	$([(SP1-1)*4+3]\sim[(SP1-1)*4]) \leftarrow Y, SP1 \leftarrow SP1-1$	1	\downarrow	-	-	Ι	×	118
POP	%A	1	1	1	1	1	1	1	1	1 (D	1	1	1	1	$A \leftarrow [SP2], SP2 \leftarrow SP2+1$	1	\downarrow	-	-	I	×	116
	%В	1	1	1	1	1	1	1	1	1 (D	1	1	1	0	$B \leftarrow [SP2], SP2 \leftarrow SP2+1$	1	\downarrow	-	-	Ι	×	116
	%F	1	1	1	1	1	1	1	۱	1 (D	1	1	0	1	$F \leftarrow [SP2], SP2 \leftarrow SP2+1$	1	\uparrow	\uparrow	\uparrow	\Leftrightarrow	×	116
	%X	1	1	1	1	1	1	1	1	1 (D	1	0	0	1	$X \leftarrow ([SP1*4+3]\sim [SP1*4]), SP1 \leftarrow SP1+1$	1	\downarrow	-	-	I	×	117
	%Y	1	1	1	1	1	1	1	1	(D	1	0	1	Х	$Y \leftarrow ([SP1*4+3] \sim [SP1*4]), SP1 \leftarrow SP1+1$	1	\downarrow	-	-	-	×	117

Branch control

Mnemonic			Machine code										Operation	<u> </u>		FI	laç	3	EXT.	_		
	winemonic	12	11	10	9	8	7	6	5	4	3	2	1	0	Operation	Cycle	E	T	C	Z	mode	Page
JR	sign8	0	0	0	0	0	s7	s6	s5	s4	s3	s2	s1	s0	PC ← PC+sign8+1 (sign8=-128~127)	1	\downarrow	-	-		0	97
JR	%A	1	1	1	1	1	1	1	1	1	0	0	0	1	$PC \leftarrow PC+A+1$	1	\downarrow	-	-		×	95
	%BA	1	1	1	1	1	1	1	1	1	0	0	0	0	$PC \leftarrow PC+BA+1$	1	\downarrow	-	-		×	96
JR	[00addr6]	1	1	1	1	1	0	1	a5	a4	a3	a2	a1	a0	$PC \leftarrow PC+[00addr6]+1$	2	\downarrow	-	-		×	96
JRC	sign8	0	0	1	0	0	s7	s6	s5	s4	s3	s2	s1	s0	If C=1 then PC \leftarrow PC+sign8+1 (sign8=-128~127)	1	\downarrow	-	-		0	97
JRNC	sign8	0	0	1	0	1	s7	s6	s5	s4	s3	s2	s1	s0	If C=0 then PC \leftarrow PC+sign8+1 (sign8=-128~127)	1	\downarrow	-	-		0	98
JRZ	sign8	0	0	1	1	0	s7	s6	s5	s4	s3	s2	s1	s0	If Z=1 then PC \leftarrow PC+sign8+1 (sign8=-128~127)	1	\downarrow	-	-		0	99
JRNZ	sign8	0	0	1	1	1	s7	s6	s5	s4	s3	s2	s1	s0	If Z=0 then PC \leftarrow PC+sign8+1 (sign8=-128~127)	1	\downarrow	-	-		0	98
JP	%Y	1	1	1	1	1	1	1	1	1	0	0	1	Х	$PC \gets Y$	1	\downarrow	-	-		×	95
CALZ	imm8	0	0	0	1	1	i7	i6	i5	i4	i3	i2	i1	i0	$([(SP1-1)*4+3]~[(SP1-1)*4]) \leftarrow PC+1,$	1	\downarrow	-	-		×	83
															$SP1 \leftarrow SP1-1, PC \leftarrow imm8$							
CALR	sign8	0	0	0	1	0	s7	s6	s5	s4	s3	s2	s1	s0	$([(SP1-1)*4+3]~[(SP1-1)*4]) \leftarrow PC+1,$	1	\downarrow	-	-		0	82
															$SP1 \leftarrow SP1\text{-}1, PC \leftarrow PC\text{+}sign8\text{+}1 \text{ (sign8\text{=-}128\text{-}127)}$							
CALR	[00addr6]	1	1	1	1	1	0	0	a5	a4	a3	a2	a1	a0	$([(SP1-1)*4+3]~[(SP1-1)*4]) \leftarrow PC+1,$	2	\downarrow	-	-		×	82
															$SP1 \leftarrow SP1-1, PC \leftarrow PC+[00addr6]+1$							
INT	imm6	1	1	1	1	1	1	0	i5	i4	i3	i2	i1	i0	$[SP2-1] \leftarrow F, SP2 \leftarrow SP2-1$	3	\downarrow	-	-		×	94
															$([(SP1-1)*4+3]~[(SP1-1)*4]) \leftarrow PC+1,$							
															$\text{SP1} \leftarrow \text{SP1-1}, \text{PC} \leftarrow \text{imm6} \text{ (imm6=0100H}{\sim}\text{013FH})$							
RET		1	1	1	1	1	1	1	1	1	1	0	Х	0	$PC \leftarrow ([SP1*4+3]\sim[SP1*4]), SP1 \leftarrow SP1+1$	1	\downarrow	-	-		×	118
RETS		1	1	1	1	1	1	1	1	1	1	0	1	1	$PC \leftarrow ([SP1*4+3]\sim[SP1*4]), SP1 \leftarrow SP1+1$	2	\downarrow	-	-		×	120
															$PC \leftarrow PC+1$							
RETD	imm8	1	0	0	0	1	i7	i6	i5	i4	i3	i2	i1	i0	$PC \leftarrow ([SP1*4+3]\sim[SP1*4]), SP1 \leftarrow SP1+1$	3	\downarrow	-	-		×	119
															$[X] \leftarrow i3\text{-}0, [X\text{+}1] \leftarrow i7\text{-}4, X \leftarrow X\text{+}2$							
RETI		1	1	1	1	1	1	1	1	1	1	0	0	1	$PC \leftarrow ([SP1*4+3]\sim[SP1*4]), SP1 \leftarrow SP1+1$	2	\uparrow		1	\$	×	119
															$F \leftarrow [SP2], SP2 \leftarrow SP2+1$							

System control

Mnemonic		12	Machine code									2	1		_	Operation	Cycle	Flag	EXT.	Page
HALT		1	1	1	1	0 1	1	1	1	1	1	1	0) (D C	Halt	2	\downarrow	×	92
SLP		1	1	1	1	1	1	1	1	1	1	1	С)	1	Sleep	2	\downarrow	×	133
NOP		1	1	1	1	1	1	1	1	1	1	1	1		X	No operation (PC \leftarrow PC+1)	1	\downarrow	×	111

- Note: The extended addressing (combined with the E flag) is available only for the instructions indicated with ○ in the EXT. mode row. Operation of other instructions (indicated with ×) cannot be guaranteed, therefore do not write data to the EXT register or do not set the E flag immediately before those instructions.
 - X in the machine code row indicates that the bit is valid even though it is "0" or "1", but the assembler generates it as "0". When entering the code directly, such as for debugging, "0" should be entered.

4.2.4 List in alphabetical order

		Machine code			Flag	EXT.	
	Mnemonic	1211109876543210	Operation	Cycle	FICZ	mode	Page
	0/ A 0/ A		ΔζΔιΔιΟ	1		- Mode	61
ADC	70A,70A			1	$\downarrow - \downarrow \downarrow$	×	61
	%A,%D				$\downarrow - \downarrow \downarrow$	×	01
	%A,imm4	1 1 0 0 1 1 1 0 0 13 12 11 10	$A \leftarrow A + imm4 + C$	1	$\downarrow - \downarrow \downarrow$	×	61
	%A,[%X]	1 1 0 0 1 1 1 1 0 0 0 0 0	$A \leftarrow A+[X]+C$	1	$\downarrow - \uparrow \uparrow$	0	62
	%A,[%X]+	1 1 0 0 1 1 1 1 0 0 0 0 1	$A \leftarrow A+[X]+C, X \leftarrow X+1$	1	$\downarrow - \uparrow \uparrow$	×	62
	%A,[%Y]	1 1 0 0 1 1 1 1 0 0 0 1 0	$A \leftarrow A+[Y]+C$	1	$\downarrow - \uparrow \uparrow$	0	62
	%A,[%Y]+	1 1 0 0 1 1 1 1 0 0 0 1 1	$A \leftarrow A+[Y]+C, Y \leftarrow Y+1$	1	$\downarrow - \uparrow \uparrow$	×	62
	%B,%A	1 1 0 0 1 1 1 1 1 0 1 0 X	$B \leftarrow B+A+C$	1	$\downarrow - \uparrow \uparrow$	×	61
	%B,%A,n4	1 0 0 0 0 1 1 0 1 [10H-n4]	$B \leftarrow N$'s adjust (B+A+C)	2	$\downarrow - \uparrow \uparrow$	×	65
	%B.%B	1 1 0 0 1 1 1 1 1 0 1 1 X	B ← B+B+C	1	↓ - ↑ ↑	×	61
	%B imm4	1 1 0 0 1 1 1 0 1 i3 i2 i1 i0	$B \leftarrow B + imm4 + C$	1	$\downarrow = \uparrow \uparrow$	×	61
	%B [%X]		$B \leftarrow B+[X]+C$	1		$\hat{\mathbf{o}}$	62
	0/D [0/V] p4		$B \leftarrow B + [X] + C$	2	$\Psi = \Psi \Psi$		65
	70D,[70A],114		$\mathbf{B} \leftarrow \mathbf{N} \mathbf{S} \text{ adjust} (\mathbf{B} + [\mathbf{A}] + \mathbf{C})$	2	$\downarrow - \downarrow \downarrow$		60
	%B,[%X]+		$B \leftarrow B+[X]+U, X \leftarrow X+1$	1	$\downarrow - \downarrow \downarrow$	×	62
	%B,[%X]+,n4	1 1 1 0 1 1 1 0 1 [10H-n4]	$B \leftarrow N$'s adjust (B+[X]+C), X \leftarrow X+1	2	$\downarrow - \downarrow \downarrow$	×	66
	%B,[%Y]	1 1 0 0 1 1 1 1 0 0 1 1 0	B ← B+[Y]+C	1	$\downarrow - \uparrow \uparrow$	0	62
	%B,[%Y],n4	1 1 1 0 1 1 1 1 0 [10H-n4]	$B \leftarrow N's adjust (B+[Y]+C)$	2	$\downarrow - \uparrow \uparrow$	0	65
	%B,[%Y]+	1 1 0 0 1 1 1 1 0 0 1 1 1	$B \leftarrow B+[Y]+C,Y \leftarrow Y+1$	1	$\downarrow - \uparrow \uparrow$	×	62
	%B,[%Y]+,n4	1 1 1 0 1 1 1 1 1 [10H-n4]	$B \leftarrow N$'s adjust (B+[Y]+C), Y \leftarrow Y+1	2	$\downarrow - \uparrow \uparrow$	×	66
	[%X],%A	1 1 0 0 1 1 1 1 0 1 0 0 0	$[X] \leftarrow [X] + A + C$	2	$\downarrow - \uparrow \uparrow$	0	63
	[%X],%B	1 1 0 0 1 1 1 1 0 1 1 0 0	[X] ← [X]+B+C	2	$\downarrow - \uparrow \uparrow$	0	63
	[%X],%B,n4	1 1 1 0 1 0 1 0 0 [10H-n4]	$[X] \leftarrow N's adjust ([X]+B+C)$	2	↓ - ↑ ↑	0	66
	[%X].imm4	1 1 0 0 1 1 0 0 0 i3 i2 i1 i0	$[X] \leftarrow [X] + imm4 + C$	2	↓ - î î	0	64
	[%X] 0 n4	1 1 1 0 1 0 0 0 0 [10H-p4]	$[X] \leftarrow N's adjust ([X]+0+C)$	2		0	67
	[%X],0,114		$[X] \leftarrow [X] + \Delta + C$ $X \leftarrow X + 1$	2			63
	[/0/]+,/0/P		$[X] \leftarrow [X]_{PLC}, X \leftarrow X+1$	2	$\psi = \psi \psi$ $\psi = \psi \psi$	$\hat{}$	62
	[⁷⁰ ∧]+, ⁷⁰ D		$[\Lambda] \leftarrow [\Lambda] + D + C, \ \Lambda \leftarrow \Lambda + 1$	2	$\psi = \psi \psi$	×	03
	[%X]+,%B,N4		$[X] \leftarrow NS$ adjust $([X]+B+C), X \leftarrow X+1$	2	$\downarrow - \downarrow \downarrow$	×	67
	[%X]+,IMM4	1 1 0 0 1 1 0 0 1 13 12 11 10	$[X] \leftarrow [X] + imm4 + C, X \leftarrow X + 1$	2	$\downarrow - \downarrow \downarrow$	×	64
	[%X]+,0,n4	1 1 1 0 1 0 0 0 1 [10H-n4]	$[X] \leftarrow N$'s adjust ($[X]$ +0+C), $X \leftarrow X$ +1	2	$\downarrow - \downarrow \downarrow$	×	68
	[%Y],%A	1 1 0 0 1 1 1 1 0 1 0 1 0	[Y] ← [Y]+A+C	2	$\downarrow - \uparrow \uparrow$	0	63
	[%Y],%B	1 1 0 0 1 1 1 1 0 1 1 1 0	[Y] ← [Y]+B+C	2	$\downarrow - \uparrow \uparrow$	0	63
	[%Y],%B,n4	1 1 1 0 1 0 1 1 0 [10H-n4]	[Y] ← N's adjust ([Y]+B+C)	2	$\downarrow - \uparrow \uparrow$	0	66
	[%Y],imm4	1 1 0 0 1 1 0 1 0 i3 i2 i1 i0	$[Y] \leftarrow [Y]$ +imm4+C	2	$\downarrow - \uparrow \uparrow$	0	64
	[%Y],0,n4	1 1 1 0 1 0 0 1 0 [10H-n4]	[Y] ← N's adjust ([Y]+0+C)	2	$\downarrow - \uparrow \uparrow$	0	67
	[%Y]+,%A	1 1 0 0 1 1 1 1 0 1 0 1 1	$[Y] \leftarrow [Y]+A+C, Y \leftarrow Y+1$	2	$\downarrow - \uparrow \uparrow$	×	63
	[%Y]+,%B	1 1 0 0 1 1 1 1 0 1 1 1 1	$[Y] \leftarrow [Y]+B+C, Y \leftarrow Y+1$	2	↓ - ↓ ↓	×	63
	[%Y]+.%B.n4	1 1 1 0 1 0 1 1 1 [10H-n4]	$[Y] \leftarrow N's adjust ([Y]+B+C), Y \leftarrow Y+1$	2	↓ - î î	×	67
	[%Y]+ imm4	1 1 0 0 1 1 0 1 1 i3 i2 i1 i0	$[Y] \leftarrow [Y] + imm4 + C, Y \leftarrow Y + 1$	2	$\downarrow - \uparrow \uparrow$	×	64
	[%V]+ 0 p4		$[V] \leftarrow N'_{e}$ adjust $([V]_{\pm}0_{\pm}C)$ $V \leftarrow V_{\pm}1$	2			67
	<u>[/01]1,0,114</u> %Δ %Δ		$\Delta \leftarrow \Delta \pm \Delta$	1			68
	0/ A 0/ P			1	$ \begin{array}{c} & - & \downarrow \\ & \downarrow \\ & \uparrow & \uparrow \end{array} $		60
	70A,70D		$A \leftarrow A + D$		$\psi = \psi \downarrow$ $\downarrow \qquad \uparrow \uparrow$	×	00
	%A,IMM4		$A \leftarrow A + IMM4$	1		×	69
	%A,[%X]	1100101100000	$A \leftarrow A + [X]$	1	$\downarrow - \downarrow \downarrow$		69
	%A,[%X]+	1 1 0 0 1 0 1 1 0 0 0 0 1	$A \leftarrow A+[X], X \leftarrow X+1$	1	$\downarrow - \downarrow \downarrow$	×	70
	%A,[%Y]	1 1 0 0 1 0 1 1 0 0 0 1 0	$A \leftarrow A+[Y]$	1	$\downarrow - \uparrow \uparrow$	0	69
	%A,[%Y]+	1 1 0 0 1 0 1 1 0 0 0 1 1	$A \leftarrow A+[Y], Y \leftarrow Y+1$	1	$\downarrow - \uparrow \uparrow$	×	70
	%B,%A	1 1 0 0 1 0 1 1 1 0 1 0 X	$B \gets B\text{+}A$	1	$\downarrow - \uparrow \uparrow$	×	68
	%B,%B	1 1 0 0 1 0 1 1 1 0 1 1 X	$B \leftarrow B + B$	1	$\downarrow - \uparrow \uparrow$	×	68
	%B,imm4	1 1 0 0 1 0 1 0 1 i3 i2 i1 i0	$B \leftarrow B+imm4$	1	$\downarrow - \uparrow \uparrow$	×	69
	%B,[%X]	1 1 0 0 1 0 1 1 0 0 1 0 0	$B \leftarrow B+[X]$	1	$\downarrow - \uparrow \uparrow$	0	69
	%B,[%X1+	1 1 0 0 1 0 1 1 0 0 1 0 1	$B \leftarrow B+[X], X \leftarrow X+1$	1	$\downarrow - \uparrow \uparrow$	×	70
	%B.[%Y1		$B \leftarrow B+[Y]$	1	↓ <u> </u>	0	69
	%B [%V]+		$B \leftarrow B+[Y], Y \leftarrow Y+1$	1	$\downarrow _ \uparrow \uparrow$		70
	%Y%PA			1	✓ ↓ ↓ ↓ _ ↑		72
	%X cigo?		X X X+cian9 (sian9 409 407)	1		$\hat{}$	72
					$\psi \downarrow$		70
	%Y,%BA			1	$\psi \downarrow$	×	12
	%Y,sign8	U 1 1 U 1 s/ s6 s5 s4 s3 s2 s1 s0	$\uparrow \land \leftarrow \uparrow +$ sign8 (sign8=-128~127)	1	$\downarrow \downarrow$		/3
	[%X],%A	1 1 0 0 1 0 1 1 0 1 0 0 0	$[X] \leftarrow [X] + A$	2	$\downarrow - \downarrow \downarrow$		70
	[%X],%B	1 1 0 0 1 0 1 1 0 1 1 0 0	[X] ← [X]+B	2	$ \downarrow - \uparrow \uparrow$	0	70

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mnemonic	Machine code 12 1 10 9 8 7 6 5 4 3 2 1 0 Operation	Cycle	Flag	EXT.	Page
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[%X] imm4	1 1 0 0 1 0 0 0 13 2 1 0 14 4 10 14 - 14 10 14 11 10 14 11 10 14 10 10	2			71
$ \begin{bmatrix} \log_{1}, \log_{1} & \log_$		[/0/X],IIIIII4	1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	2	$\Psi = \Psi \Psi$		71
$ \begin{bmatrix} [x_{k1}, y_{k0}] \\ [(x_{k1}, y_{k0}] \\ ((x_{k1}, y_{k0}) \\ (($		[%A]+,%A	$1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 [X] \leftarrow [X] + X \leftarrow X + 1$	2	$\downarrow - \downarrow \downarrow$	×	71
$ \begin{bmatrix} [x_1, y_1, mn_4] & 1 & 0 & 0 & 0 & 0 & 0 & $		[%A]+,%D	1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	2	$\downarrow - \downarrow \downarrow$	×	71
		[%X]+,IMM4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$\downarrow - \downarrow \downarrow$	×	72
$ \begin{bmatrix} Y 1 XB \\ X 1 XB \\ $		[%Y],%A	1 1 0 0 1 0 1 1 0 1 0 1 0 [Y] ← [Y]+A	2	$\downarrow - \downarrow \downarrow$	0	70
$ \begin{bmatrix} [\$V]_{1}mm4 & 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 [V] \leftarrow [V]_{4} V, V + V + 1 & 2 & l = 2 3 & N \\ \hline \\ \begin{bmatrix} [\$V]_{1}, \$\& B & 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 [V] \leftarrow [V]_{4} V, V + V + 1 & 2 & l = 2 3 & N \\ \hline \\ \begin{bmatrix} [\$V]_{1}, \$\& B & 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 X A \leftarrow AAA & 1 & l = -2 & X & 71 \\ \hline \\ \begin{bmatrix} \$V]_{1}, \$\& B & 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 X A \leftarrow AAA & 1 & l = -2 & X & 73 \\ \hline \\ \end{bmatrix} \\ \hline \\ \hline$		[%Y],%B	$1 1 0 0 1 0 1 1 0 1 1 0 [Y] \leftarrow [Y] + B$	2	$\downarrow - \uparrow \uparrow$	0	70
$ \begin{bmatrix} \mathbb{W}_1^+, \mathbb{S}_A & 1 \mid 1 \ 0 \ 1 \mid 0 \ 1 \mid 0 \ 1 \mid 0 \ 1 \mid 1 \mid 1 \mid (Y_1 \leftarrow [Y_1 + X_1 \leftarrow Y_1 + 1] \\ \mathbb{W}_1^+, \mathbb{I}_1^+, \mathbb{S}_A & 1 \mid 1 \ 0 \ 0 \mid 0 \ 1 \mid 0 \ 1 \mid 1 \mid 1 \mid (Y_1 \leftarrow [Y_1 + X_1 + Y_1 + 1] \\ \mathbb{W}_1^+, \mathbb{I}_1^+, I$		[%Y],imm4	$1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ i3 \ i2 \ i1 \ i0 \ [Y] \leftarrow [Y] + imm4$	2	$\downarrow - \uparrow \uparrow$	0	71
		[%Y]+,%A	1 1 0 0 1 0 1 1 0 1 1 [Y] ← [Y]+A, Y ← Y+1	2	$\downarrow - \uparrow \uparrow$	×	71
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[%Y]+,%B	1 1 0 0 1 0 1 1 0 1 1 1 1 [Y] ← [Y]+B, Y ← Y+1	2	$\downarrow - \uparrow \uparrow$	×	71
AND 84,84 1 1 0 1 0 0 1 1 1 0 0 1 X A - AAB 1 1 2 X 73 84,781 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 X A - AAB 1 1 2 X 73 94,41mm4 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 A - AAmm4 1 1 1 2 X 73 94,41mm4 1 1 0 1 0 0 1 1 0 0 0 1 0 0 A - AAM X X X X + 1 1 1 1 2 X 73 94,41%X1 1 1 0 1 0 0 1 1 0 0 0 1 0 A - AAM X X X + X + 1 1 1 1 2 X 75 94,42%Y1 1 1 0 1 0 0 1 1 0 0 0 1 1 A - AAM X X X + X + 1 1 1 1 2 X 75 94,42%Y1 1 1 0 1 0 0 1 1 0 0 0 1 1 A - AAM Y Y Y + 1 1 1 1 2 X 75 94,42%Y1 1 1 0 1 0 0 1 1 0 0 1 1 0 A - AAM Y Y Y + 1 1 1 1 2 X 75 94,842%Y1 1 1 0 1 0 0 1 1 0 0 1 1 0 A - AAM Y Y Y + 1 1 1 1 2 X 75 94,843% 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 X B - BAB 1 1 1 2 X 74 94,843% 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 B - BAM Y Y + Y + 1 1 1 1 2 X 74 94,843% 1 1 0 1 0 0 1 1 0 0 1 1 0 B - BAM Y Y + Y + 1 1 1 1 2 X 74 94,843% 1 1 0 1 0 0 1 1 0 0 1 1 0 B - BAM Y Y + Y + 1 1 1 1 2 X 74 94,843% 1 1 0 1 0 0 1 1 0 0 1 1 0 B - BAM Y Y + Y + 1 1 1 1 2 X 74 94,843% 1 1 0 1 0 0 1 1 0 0 1 1 0 B - BAM Y Y + Y + 1 1 1 1 2 X 75 94,843% 1 1 0 1 0 0 1 1 0 0 1 1 0 B - BAM Y Y + Y + 1 1 1 1 2 X 75 94,843% 1 1 0 1 0 0 1 1 0 0 1 1 0 B - BAM Y Y + Y + 1 1 1 1 2 X 75 94,940 1 0 0 0 1 0 0 0 1 0 2 0 1 0 2 0 1 0 2 - 2 M M M M M M M M M M M M M M M M M		[%Y]+,imm4	1 1 0 0 1 0 0 1 1 i3 i2 i1 i0 [Y] ← [Y]+imm4, Y ← Y+1	2	$\downarrow - \uparrow \uparrow$	×	72
%A,%B 1 0 1 0 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	AND	%A,%A	1 1 0 1 0 0 1 1 1 0 0 0 X A ← A^A	1	$\downarrow \uparrow$	×	73
SAJmm4 1 0 1 0 0 0 0 0 A </td <td></td> <td>%A,%B</td> <td>1 1 0 1 0 0 1 1 1 0 0 1 X A ← A∧B</td> <td>1</td> <td>↓ ↓</td> <td>×</td> <td>73</td>		%A,%B	1 1 0 1 0 0 1 1 1 0 0 1 X A ← A∧B	1	↓ ↓	×	73
SAL [95:4] 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 <th1< th=""> 1 1 <th1< td=""><td></td><td>%A.imm4</td><td>$1 1 0 1 0 0 1 0 0 i3 i2 i1 i0 A \leftarrow A \land imm4$</td><td>1</td><td>↓ ↓</td><td>×</td><td>74</td></th1<></th1<>		%A.imm4	$1 1 0 1 0 0 1 0 0 i3 i2 i1 i0 A \leftarrow A \land imm4$	1	↓ ↓	×	74
$ \begin{array}{c} 5 & 4 & 4 \\ 5 & 4 & 4 $		%A [%X]	$1 1 0 1 0 0 1 1 0 0 0 0 A \leftarrow A \land [X]$	1	↓ ↑	0	75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%Δ [%X]+	$1 1 0 1 0 0 1 1 0 0 0 0 1 A \leftarrow A \land [X] X \leftarrow X + 1$	1	• • •) ×	75
$ \begin{array}{ c c c c c } \hline c c c c c c c c c c c c c c c c c c $		96 A [96 V]		1		Ô	75
$ \begin{array}{c} 2 k_{1} (y_{1} y_{1} + (y_{1} y_{1} + (y_{1} y_{1} + (y_{1} y_{1} + (y_{1} + $		70A,[701]	$1 1 0 1 0 0 1 1 0 0 0 1 0 A \leftarrow A \land [Y]$	1	$\psi = - \psi$		75
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		%A,[%1]+	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1$	1	$\downarrow \downarrow$	×	75
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		%B,%A	$1 1 0 1 0 0 1 1 1 0 1 0 X B \leftarrow B \land A$	1	$\downarrow \downarrow$	×	73
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		%B,%B	1 1 0 1 0 0 1 1 1 0 1 1 X B ← B∧B	1	$\downarrow \downarrow$	×	73
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%B,imm4	1 1 0 1 0 0 1 0 1 i3 i2 i1 i0 B ← B∧imm4	1	$\downarrow \uparrow$	×	74
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%B,[%X]	$1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ $	1	$\downarrow \downarrow$	0	75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%B,[%X]+	$1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$	1	$\downarrow \downarrow$	×	75
94B [98/]+1100111BBPPPP1111-2X75%6 Finm41100 </td <td></td> <td>%B,[%Y]</td> <td>$1 1 0 1 0 0 1 1 0 0 1 1 0 B \leftarrow B \land [Y]$</td> <td>1</td> <td>$\downarrow \uparrow$</td> <td>0</td> <td>75</td>		%B,[%Y]	$1 1 0 1 0 0 1 1 0 0 1 1 0 B \leftarrow B \land [Y]$	1	$\downarrow \uparrow$	0	75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%B,[%Y]+	1 1 0 1 0 0 1 1 0 0 1 1 1 B ← B∧[Y], Y ← Y+1	1	$\downarrow \uparrow$	×	75
$ \begin{bmatrix} [\%\lambda], \%A & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0$		%F,imm4	1 0 0 0 0 1 0 0 0 i3 i2 i1 i0 F ← F∧imm4	1	$\downarrow \downarrow \downarrow \downarrow \downarrow$	×	74
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[%X].%A	$1 1 0 1 0 0 1 1 0 1 0 0 0 [X] \leftarrow [X] \land A$	2	↓ ↓	0	76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[%X].%B	$1 1 0 1 0 0 1 1 0 1 1 0 0 [X] \leftarrow [X] \land B$	2	$\downarrow \uparrow$	0	76
$ \begin{bmatrix} 104, 1, 36, 1 \\ [\%X]_{+}, \%A \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$		[%X] imm4	$1 1 0 1 0 0 0 0 0 3 2 1 0 X \rightarrow mm4$	2		0	77
$ \begin{bmatrix} 126[Y_1, 36] & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0$		[%X]+ %A	$1 1 0 1 0 0 1 1 0 1 0 0 1 [X] \leftarrow [X] \land A X \leftarrow X + 1$	2	• • ↑	~	76
$ \begin{bmatrix} 128, Y, BD \\ F(Y), SA \\ F(Y)$		[/0/]+,/0/	$1 1 0 1 0 0 1 1 0 1 1 0 1 [X] \leftarrow [X] \land R X \leftarrow X+1$	2	$\psi = -\psi$	~	76
$ \begin{bmatrix} 128,1+,11114 \\ [%Y],8A \\ 1 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 7 3 2 1 0 [Y] \leftarrow [Y],AA \\ [%Y],8B \\ 1 1 0 1 0 0 1 1 0 1 1 0 [Y] \leftarrow [Y],AA \\ 2 J 1 0 76 \\ [%Y],8M \\ 1 1 0 1 0 0 1 1 0 1 1 1 0 [Y] \leftarrow [Y],AB \\ 2 J 1 0 76 \\ [%Y],8M \\ 1 1 0 1 0 0 1 1 0 1 1 1 1 [Y] \leftarrow [Y],AB Y \leftarrow Y+1 \\ 2 J 1 x 76 \\ [%Y],8B \\ 1 1 0 1 0 0 1 1 0 1 1 1 1 [Y] \leftarrow [Y],A, Y \leftarrow Y+1 \\ 2 J 1 x 76 \\ [%Y],8B \\ 1 1 0 1 0 0 0 1 1 0 1 1 1 1 [Y] \leftarrow [Y],A, Y \leftarrow Y+1 \\ 2 J 1 x 76 \\ [%Y],8M \\ 1 1 0 1 0 0 0 1 1 0 1 1 1 1 [Y] \leftarrow [Y],A, Y \leftarrow Y+1 \\ 2 J 1 x 76 \\ [%Y],8M \\ 1 1 0 1 0 0 0 1 1 3 2 1 1 0 [Y] \leftarrow [Y],A, Y \leftarrow Y+1 \\ 2 J 1 x 76 \\ [%X],8M \\ 1 1 0 1 0 0 0 1 1 3 2 1 1 0 [Y] \leftarrow [Y],A, Y \leftarrow Y+1 \\ 2 J 1 x 78 \\ [%A,%B \\ 1 1 0 1 0 1 1 1 1 0 0 0 X A,A \\ 1 J 1 x 78 \\ [%A,%B \\ (A,MM \\ 1 1 0 1 0 1 1 1 1 0 0 0 A,AX \\ (A,MM \\ 1 J 1 x 78 \\ [%A,[%X]] \\ 1 1 0 1 0 1 1 1 1 0 0 0 0 A,AX \\ 1 J 1 x 78 \\ [%A,[%X]] \\ 1 1 0 1 0 1 1 1 1 0 0 0 0 A,AX \\ 1 J 1 x 78 \\ [%A,[%X]] \\ 1 1 0 1 0 1 1 1 1 0 0 0 0 A,AX \\ 1 J 1 x 78 \\ [%B,%A \\ 1 1 0 1 0 1 1 1 1 0 0 0 1 A,AY \\ (A,[X], X \leftarrow X+1 \\ 1 J 1 x 78 \\ [%B,%B \\ (A,[%Y]] \\ 1 1 0 1 0 1 1 1 0 0 0 A,AY \\ 1 J 1 x 78 \\ [%B,%B \\ 1 1 0 1 0 1 1 1 1 0 0 A,AY \\ 1 J 1 x 78 \\ [%B,%B \\ (A,[%Y]] \\ 1 1 0 1 0 1 1 1 0 0 A,AY \\ 1 J 1 x 78 \\ [%B,[\%X] \\ 1 1 0 1 0 1 1 1 0 0 A A,A \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 1 0 1 0 1 1 1 0 0 A A,A \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 1 0 1 0 1 1 1 0 0 A A,A \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 1 0 1 0 1 1 1 0 0 A A,A \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 1 0 1 0 1 1 1 0 0 A A,A \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 1 0 1 0 1 1 1 0 0 A A,A \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 1 0 1 0 1 1 1 0 0 A A,A \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 1 0 1 0 1 1 1 0 0 A A,A \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 1 0 1 0 1 1 1 0 0 A A,A \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 1 0 1 0 1 1 1 0 0 A A,A \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 J 1 x 78 \\ [\%B,[\%X]] \\ 1 1 0 $		[/0A]+, /0D	$1 1 0 1 0 0 1 1 0 1 1 0 1 [X] \leftarrow [X] \land b \land h \leftarrow X + 1$	2	$\downarrow \downarrow$	~	70
$ \begin{bmatrix} [194], S_{A} & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1$		[%]+,111114	$1 1 0 1 0 0 0 0 1 13 12 11 10 [X] \leftarrow [X] \land 10 14, X \leftarrow X+1$	2	$\downarrow \downarrow$	×	70
$ \begin{bmatrix} [\%Y], \%B & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1$		[%Y],%A	$\frac{1}{1} \frac{1}{0} \frac{1}{1} \frac{1}$	2	$\downarrow \downarrow$	0	76
$ \begin{bmatrix} [\%], \text{imm4} & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & $		[%Y],%B	1 1 0 1 0 0 1 1 0 1 1 1 0 [Y] ← [Y]∧B	2	$\downarrow \downarrow$	0	76
$ \begin{bmatrix} [\%]+, \%A & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1$		[%Y],imm4	$1 1 0 1 0 0 0 1 0 i3 i2 i1 i0 [Y] \leftarrow [Y] \land imm4$	2	$\downarrow \downarrow$	0	77
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[%Y]+,%A	$1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ $	2	$\downarrow \uparrow$	×	76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[%Y]+,%B	$1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ $	2	$\downarrow \uparrow$	×	76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[%Y]+,imm4	$1 1 0 1 0 0 0 1 1 i3 i2 i1 i0 [Y] \leftarrow [Y] \land imm4, Y \leftarrow Y+1$	2	$\downarrow \downarrow$	×	77
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BIT	%A,%A	1 1 0 1 0 1 1 1 1 0 0 0 X A^A	1	$\downarrow \uparrow$	×	78
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%A,%B	1 1 0 1 0 1 1 1 1 0 0 1 X AAB	1	$\downarrow \uparrow$	×	78
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%A,imm4	1 1 0 1 0 1 1 0 0 i3 i2 i1 i0 A∧imm4	1	$\downarrow \uparrow$	×	78
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%A,[%X]	1 1 0 1 0 1 1 1 0 0 0 0 0 A _{\[X]}	1	↓ ↓	0	79
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%A.[%X1+	1 1 0 1 0 1 1 1 0 0 0 0 1 A∧[X]. X ← X+1	1	<u>↓</u>	×	79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		%A [%Y]		1	↓ <u> </u>	0	79
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		%A [%Y]+	$1 1 0 1 0 1 1 1 0 0 0 1 1 A (Y) Y \leftarrow Y+1$	1	↓ ↑	×	79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		%B %A	1 1 0 1 0 1 1 1 1 0 1 0 X BAA	1	• • ↑	~	78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		% B % B	1 1 0 1 0 1 1 1 1 0 1 1 X BAR	1	$\psi = - \psi$	~	70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		76D, 76D		1	$\psi = - \psi$		70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%D,IIIIII4		1	$\downarrow \downarrow$	×	70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%B,[%X]	1 1 0 1 0 1 1 1 0 0 1 0 0 BA[X]	1	$\downarrow \downarrow$	0	79
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%B,[%X]+	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	$\downarrow \downarrow$	×	79
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		%B,[%Y]	1 1 0 1 0 1 1 1 0 0 1 1 0 B^[Y]	1	$\downarrow \uparrow$	0	79
$ \begin{bmatrix} [\%X],\%A & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0$		%B,[%Y]+	1 1 0 1 0 1 1 1 0 0 1 1 1 B∧[Y], Y ← Y+1	1	↓ ↓	×	79
$ \begin{bmatrix} [\%X],\%B & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & [X], B & 1 & \downarrow \downarrow & \bigcirc & 80 \\ [\%X],imm4 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & i3 & i2 & i1 & i0 & [X], imm4 & 1 & \downarrow \downarrow & \bigcirc & 81 \\ [\%X], +,\%A & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & [X], A, X \leftarrow X+1 & 1 & \downarrow \downarrow & \times & 80 \\ [\%X], +,\%B & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & [X], A, X \leftarrow X+1 & 1 & \downarrow \downarrow & \times & 80 \\ [\%X], +,imm4 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & [X], B, X \leftarrow X+1 & 1 & \downarrow \downarrow & \times & 80 \\ [\%X], +,imm4 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & [X], A, X \leftarrow X+1 & 1 & \downarrow \downarrow & \times & 81 \\ [\%Y], \%A & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & [Y], A & 1 & \downarrow \downarrow & \bigcirc & 80 \\ [\%Y], \%B & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & [Y], A & 1 & \downarrow \downarrow & \bigcirc & 80 \\ \end{bmatrix} $		[%X],%A	1 1 0 1 0 1 1 1 0 1 0 0 0 [X]^A	1	$\downarrow \uparrow$	0	80
$ \begin{bmatrix} [\%X], imm4 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & i & i & 2 & i & 1 & 0 & X] \land imm4 & 1 & 1 & 1 & 0 & 81 \\ \hline [\%X]_{+,\%A} & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0$		[%X],%B	1 1 0 1 0 1 1 1 0 1 1 0 0 [X]^B	1	$\downarrow \downarrow$	0	80
$ \begin{bmatrix} [\%X]+,\%A & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0$		[%X],imm4	1 1 0 1 0 1 0 0 0 i3 i2 i1 i0 [X]^imm4	1	↓ ↓	0	81
$ \begin{bmatrix} [\%X]_{+},\%B & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1$		[%X]+,%A	1 1 0 1 0 1 1 1 0 1 0 0 1 [X]∧A, X ← X+1	1	$\downarrow \uparrow$	×	80
$ \begin{bmatrix} [\%X]+,imm4 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 3 & i2 & i1 & i0 \\ [\%Y],\%A & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ [\%Y],\%B & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0$		[%X]+,%B	1 1 0 1 0 1 1 1 0 1 1 0 1 [X]∧B, X ← X+1	1	$\downarrow \uparrow$	×	80
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[%X]+,imm4	1 1 0 1 0 1 0 0 1 i3 i2 i1 i0 [X]∧imm4, X ← X+1	1	$\downarrow \uparrow$	×	81
$[\%Y],\%B \qquad 1 1 0 1 0 1 1 1 0 1 1 1 0 [Y] \land B \qquad 1 \downarrow 1 0 80 1 \downarrow 1 0 80 1 \downarrow 1 0 1 1 0 1 1 0 1 1 0 1 1$		[%Y],%A	1 1 0 1 0 1 1 1 0 1 0 1 0 [Y]^A	1	$\downarrow \uparrow$	0	80
		[%Y],%B	1 1 0 1 0 1 1 1 0 1 1 1 0 [Y]∧B	1	↓ ↓	0	80

		Machine code		_	Flag	EXT.	_
	Mnemonic		Operation	Cycle	FLCZ	mode	Page
DIT	[0/ V1 imm4		[V] + imm4	1			01
ы	[%1],111114				$\downarrow \downarrow$	0	01
	[%Y]+,%A	1 1 0 1 0 1 1 1 0 1 0 1 1	$[Y] \land A, Y \leftarrow Y+1$	1	$\downarrow \downarrow$	×	80
	[%Y]+,%B	1 1 0 1 0 1 1 1 0 1 1 1 1	[Y]∧B, Y ← Y+1	1	$\downarrow \downarrow$	×	80
	[%Y]+,imm4	1 1 0 1 0 1 0 1 1 i3 i2 i1 i0	$[Y] \land imm4, Y \leftarrow Y+1$	1	$\downarrow \uparrow$	×	81
CALR	[00addr6]	1 1 1 1 1 1 0 0 a5 a4 a3 a2 a1 a0	([(SP1-1)*4+3]~[(SP1-1)*4]) ← PC+1,	2	$ \downarrow$	×	82
			SP1 \leftarrow SP1-1, PC \leftarrow PC+[00addr6]+1				
CALR	sian8	0 0 0 1 0 s7 s6 s5 s4 s3 s2 s1 s0	([(SP1-1)*4+3]~[(SP1-1)*4]) ← PC+1.	1	↓	0	82
	Ŭ		SP1 \leftarrow SP1-1 PC \leftarrow PC+sign8+1 (sign8=-128~127)				
CALZ	imm8		$([(SP1_1)*4+3]_{-1}(SP1_1)*4]) \leftarrow PC+1$	1		~	83
UALZ			$([(01 + 1)*++0]*[(01 + 1)*+]) \leftarrow 1 + 0 + 1,$		↓	^	05
01.0							
CLR	[00addr6],imm2	1 0 1 0 0 11 10 a5 a4 a3 a2 a1 a0	$[00addr6] \leftarrow [00addr6] \land not (2^{imm2})$	2	$\downarrow \downarrow$	×	83
	[FFaddr6],imm2	1 0 1 0 1 11 10 a5 a4 a3 a2 a1 a0	[FFaddr6] ← [FFaddr6]∧not (2 ^{imm2})	2	$\downarrow \downarrow$	×	83
CMP	%A,%A	1 1 1 1 0 0 1 1 1 X 0 0 0	A-A	1	$\downarrow - \downarrow \uparrow$	×	84
	%A,%B	1 1 1 1 0 0 1 1 1 X 0 1 0	A-B	1	$ \downarrow - \uparrow \uparrow$	×	84
	%A,imm4	1 1 1 1 0 0 1 0 0 i3 i2 i1 i0	A-imm4	1	$\downarrow - \uparrow \uparrow$	×	84
	%A,[%X]	1 1 1 1 0 0 1 1 0 0 0 0	A-[X]	1	$\downarrow - \uparrow \uparrow$	0	85
	%A.[%X]+	1 1 1 1 0 0 1 1 0 0 0 1	A-[X]. $X \leftarrow X+1$	1	↓ – ↑ ↑	×	85
	%A [%Y]		A-[Y]	1	$\downarrow = \uparrow \uparrow$	0	85
	96 A [96 V]			1	+ $+$ $+$ $+$ $+$	~	95
	70A,[701]+			1	$\psi = \psi \psi$	~	05
	%B,%A		B-A	1	$\downarrow - \downarrow \downarrow$	×	84
	%B,%B	1 1 1 1 0 0 1 1 1 X 1 1 0	В-В	1	$\downarrow - \downarrow \uparrow$	×	84
	%B,imm4	1 1 1 1 0 0 1 0 1 i3 i2 i1 i0	B-imm4	1	$\downarrow - \uparrow \uparrow$	×	84
	%B,[%X]	1 1 1 1 0 0 1 1 0 0 1 0 0	B-[X]	1	$\downarrow - \uparrow \uparrow$	0	85
	%B,[%X]+	1 1 1 1 0 0 1 1 0 0 1 0 1	B-[X], X ← X+1	1	$\downarrow - \uparrow \uparrow$	×	85
	%B,[%Y]	1 1 1 1 0 0 1 1 0 0 1 1 0	B-[Y]	1	$\downarrow - \uparrow \uparrow$	0	85
	%B.[%Y]+	1 1 1 1 0 0 1 1 0 0 1 1 1	B-IYI. $Y \leftarrow Y+1$	1	$\downarrow - \uparrow \uparrow$	×	85
	%X imm8	0 1 1 1 0 [FEH-imm8]	X-imm8 (imm8=0~255)	1	$\downarrow = \uparrow \uparrow$	0	88
	%V imm8		X imm8 (imm8-0.255)	1	$ \begin{array}{ccc} \Psi & \Psi \Psi \\ \downarrow & \uparrow \uparrow \\ \end{array} $	0	00
				1	$\psi = \psi \psi$		00
	[%X],%A			1	$\downarrow - \downarrow \downarrow$	0	86
	[%X],%B	1 1 1 1 0 0 1 1 0 1 1 0 0	[Х]-В	1	$\downarrow - \downarrow \downarrow$	0	86
	[%X],imm4	1 1 1 1 0 0 0 0 0 i3 i2 i1 i0	[X]-imm4	1	$\downarrow - \uparrow \uparrow$	0	87
	[%X]+,%A	1 1 1 1 0 0 1 1 0 1 0 0 1	[X]-A, X ← X+1	1	$\downarrow - \uparrow \uparrow$	×	86
	[%X]+,%B	1 1 1 1 0 0 1 1 0 1 1 0 1	[X]-B, X ← X+1	1	$ \downarrow - \uparrow \uparrow$	×	86
	[%X]+,imm4	1 1 1 1 0 0 0 0 1 i3 i2 i1 i0	[X]-imm4, $X \leftarrow X+1$	1	$\downarrow - \uparrow \uparrow$	×	87
	[%Y].%A	1 1 1 1 0 0 1 1 0 1 0 1 0	[Y]-A	1	↓ – ‡ ‡	0	86
	[%Y] %B	1 1 1 1 0 0 1 1 0 1 1 1 0	IYI-B	1	$\downarrow - \uparrow \uparrow$	0	86
	[%V] imm4		[Y]-imm4	1		0	87
	[/01],iiiiii+			1	$\Psi \Psi \Psi$	~	07
	[%]]+,%A		$[1]-A, 1 \leftarrow 1+1$	1	$\downarrow - \downarrow \downarrow$	X	00
	[%Y]+,%B		$[Y]-B, Y \leftarrow Y+1$	1	$\downarrow - \downarrow \downarrow$	X	86
L	[%Y]+,IMM4	1 1 1 1 0 0 0 1 1 i3 i2 i1 i0	$[Y]-IMM4, Y \leftarrow Y+1$	1	↓ - ↓ ↓	×	87
DEC	%SP1	1 1 1 1 1 1 1 1 0 0 0 0 0	SP1 ← SP1-1	1	↓ ↓	Х	90
	%SP2	1 1 1 1 1 1 1 1 0 0 1 0 0	SP2 ← SP2-1	1	↓ ↓	Х	90
	[%X],n4	1 1 1 0 0 1 0 0 0 n3n2n1n0	$[X] \leftarrow N$'s adjust ($[X]$ -1)	2	$\downarrow - \uparrow \uparrow$	0	89
	[%X]+,n4	1 1 1 0 0 1 0 0 1 n3n2n1n0	[X] ← N's adjust ([X]-1), X ← X+1	2	$\downarrow - \uparrow \uparrow$	×	89
	[%Y].n4	1 1 1 0 0 1 0 1 0 n3n2n1n($[Y] \leftarrow N's adjust ([Y]-1)$	2	↓ - ↓ ↓	0	89
	[%Y]+ n4	1 1 1 0 0 1 0 1 1 n3n2n1n($[Y] \leftarrow N$'s adjust ($[Y]$ -1) $Y \leftarrow Y$ +1	2	$\downarrow - \uparrow \uparrow$	×	89
	[00addr6]		[0]	2		~	88
EV					$\Psi = \Psi \Psi$	~	00
					₩		30
	%A,[%X]		$[A \leftrightarrow [\lambda]]$	2	↓		91
	%A,[%X]+	10000111111001	$A \leftrightarrow [X], X \leftarrow X+1$	2	↓	Х	91
	%A,[%Y]	10000111111010	$A \leftrightarrow [Y]$	2	↓	0	91
	%A,[%Y]+	1 0 0 0 0 1 1 1 1 1 0 1 1	$A \leftrightarrow [Y], Y \leftarrow Y \textbf{+} 1$	2	↓	×	91
	%B,[%X]	10000111111100	$B \leftrightarrow [X]$	2	↓	0	91
	%B,[%X]+	1000011111101	$B \leftrightarrow [X], X \leftarrow X+1$	2	↓	×	91
	%B.[%Y1	1000011111110	$B \leftrightarrow [Y]$	2	↓	0	91
	%B [%Y1+		$B \leftrightarrow [Y] Y \leftarrow Y+1$	2	¥	×	91
нлі т	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Halt	2		~	02
	0/ 004			4	<u> </u>	×	32
INC	%SP1			1	$ \downarrow \downarrow$	×	94
	%SP2	1 1 1 1 1 1 1 1 0 1 1 0 0	$SP2 \leftarrow SP2+1$	1	↓ ↓	×	94

	Mnemonic	12	11	111	n c	M		nine 6	e c	cod	e	2 1	0	Operation	Cycle	Flag	EXT.	Page
INC	[%X] n/	1	1	<u>יייי</u> 1	0	1	1	0		0	1	10H-n	11	$[X] \leftarrow N'_{e}$ adjust ($[X] + 1$)	2			03
	[%X]+ n/	1	1	1) 1	1	0		1		10H-n	- <u>1</u> / 1	$[X] \leftarrow N'_{s}$ adjust $([X]+1)$ $X \leftarrow X+1$	2	$\downarrow - \uparrow \uparrow$		03
	[%Y] n4	1	1	1) 1	1	0	1	0	I I	10H-n	4] 4 1	$[X] \leftarrow N's$ adjust $([X]+1), X \leftarrow X+1$	2	$\psi = \psi \psi$	$\hat{}$	93
	[%Y]+ n4	1	1	-1) 1	1	0	1	1	I I	10H-n	41 41	$[Y] \leftarrow N's$ adjust $([Y]+1)$ $Y \leftarrow Y+1$	2	$\psi \psi \psi \psi \psi \psi \psi \psi \psi \psi $		93
	[/01]1,114	1				, , , ,		1	2	- 5 a/	1 1 2 ?	39291	- <u>1</u> 20	$[1] \land 113 adjust ([1] 1), 1 \land 111$	2		× ×	92
INT	imm6	1	1	1	1	1	1	0	i.	5 i4	i3	3 i2 i1	iO	$[SP2-1] \leftarrow F SP2 \leftarrow SP2-1$	3	↓ <u> </u>	×	94
		Ľ	1.					Ŭ				, , , , , , , , , , , , , , , , , , , ,	10	$((SP1-1)*4+3) \sim ((SP1-1)*4) \leftarrow PC+1$	ľ	ľ		
														$([(OI + I)^{+}]) \leftarrow OI = ([(OI + I)^{+}]) \leftarrow OI = (I) = (I) $				
JP	%Y	1	1	1	1	1	1	1	1	1	0	0 1	x	$PC \leftarrow Y$	1	1	×	95
JR	%A	1	1		1	1	1	1	1	1	0	0 0	1	$PC \leftarrow PC + A + 1$	1	¥	×	95
	%BA	1	1		1	1	1	1	1	1	0	0 0	0	$PC \leftarrow PC+BA+1$	1	¥	×	96
	sign8	0	0) 57	' ' SF	5 5	5 54	1 5.7	3 \$ 2 \$ 1	s0	$PC \leftarrow PC+sign8+1 (sign8=-128~127)$	1	¥	Ô	97
	[00addr6]	1	1		1	1	0	1	a	5 a4	1 a?	3a2a1	a0	$PC \leftarrow PC+[00]addr6]+1$	2	¥	×	96
IRC	sign8	0		1	-			' ? cF	i ci	5 s/	103	3 62 61	<u>دە</u>	If C-1 then PC \leftarrow PC+sign8+1 (sign8128-127)	1	↓ 	$\hat{\circ}$	97
IRNC	sign8	0		1		1	5	30 7 sF	3 01	5 s4	102	3 62 61	30 s0	If C=0 then PC \leftarrow PC+sign8+1 (sign8128-127)	1	↓ <u> </u>		98
IRNZ	sign8	0		1	1	1	57	7 66	3 64	5 s/	100	3 62 61	s0	If $7-0$ then PC \leftarrow PC+sign8+1 (sign8128-127)	1	↓ ↓		98
IR7	sign8	0	0	1	1) 57	7 66	3 64	5 s/	102	3 62 61	s0	If 7-1 then PC \leftarrow PC+sign8+1 (sign8128~127)	1	↓ ↓		90
	%A %A	1	1		1) 1	1	1	1	0	0 0	0	$A \leftarrow A$	1	¥	×	99
	%A %B	1	1		1) 1	1	1	1	0	0 1	0		1	↓ ↓		90
	%A %E	1	1	1	1	1	1	1	1	1	0	1 1	0		1	↓ ↓	×	90
	%A imm4	1	1		1) 1	1	- -	0 0	13	i2 i1	iO	$A \leftarrow imm4$	1	¥	×	100
	%A [%X]	1	1		1) 1	1	1	0	0		0	$A \leftarrow [X]$	1	¥	$\hat{0}$	100
	%A [%X]+	1	1	1	1) 1	1	1	0	0	0 0	1	$A \leftarrow [X] X \leftarrow X+1$	1	• ↓	×	101
	%Δ [%Y]	1	1	1	1) 1	1	1	0	0	0 1	0	$\Delta \leftarrow [Y]$	1	↓ ↓	Â	100
	%Δ [%Y]+	1	1	-1	1) 1	1	1	0	0	0 1	1	$\Delta \leftarrow [Y] Y \leftarrow Y+1$	1	↓ ↓		101
	%R %A	1	1		1) 1	1	1	1	0	1 0	0	$B \leftarrow A$	1	¥	×	99
	%B%B	1	1	- 1	1) 1	1	1	1	0		0	B∠B	1	·		90
	%B,%B	1	1	-1	1) 1	1	- -	1	13	1 1	iO	$B \leftarrow imm4$	1	↓ ↓		100
	%B,MMI4	1	1	1	1) 1	1	1	0	0		0	$B \leftarrow [X]$	1	↓ ↓	Ô	100
	%B,[%X]+	1	1		1) 1	1	1	0	0	1 0	1	$B \leftarrow [X] X \leftarrow X+1$	1	¥	×	101
	%B,[%Y]	1	1		1) 1	1	1	0	0	1 1	0	$B \leftarrow [Y]$	1	↓ ↓	$\hat{\circ}$	100
	%B,[%Y]+	1	1	1	1) 1	1	1	0	0	1 1	1	$B \leftarrow [Y] Y \leftarrow Y+1$	1	↓ ↓	×	101
	%E %A	1	1		1	1	1	1	1	1	0	1 0	1	$F \leftarrow A$	1	$\uparrow \uparrow \uparrow \uparrow$	×	99
	%F imm4	1	0) 1	0	1	1	13	1 1 1	iO	$F \leftarrow imm4$	1	$\uparrow \uparrow \uparrow \uparrow \uparrow$	×	100
	[%X] %A	1	1	1	1) 1	1	1	0	1	0.0	0	$[X] \leftarrow A$	1	\downarrow	$\hat{0}$	101
	[%X] %B	1	1		1) 1		1	0	1	1 0	0	$[X] \leftarrow B$	1	J	0	101
	[%X] imm4	1	1		1) 1	0	0	0 (i3	3 i2 i1	i0	$[X] \leftarrow imm4$	1	J	0	102
	[%X] [%Y]	1	1	1	1) 1	1	1	1	1	0 1	0	$[X] \leftarrow [Y]$	2	¥	×	102
	[%X][%Y]+	1	1	1	1) 1	. 1	1	. 1	1	0 1	1	$[X] \leftarrow [Y]$ $Y \leftarrow Y+1$	2	J	x	104
	[%X]+ %A	1	1		1) 1	. 1	1	0	1	0.0	1	$[X] \leftarrow A X \leftarrow X+1$	1	J	x	102
	[%X]+.%B	1	1		1) 1	1	1	0	1	1 0	1	$[X] \leftarrow B, X \leftarrow X+1$	1	↓	x	102
	[%X]+.imm4	1	1	1	1) 1	0	0) 1	i3	3 i2 i1	iO	$[X] \leftarrow imm4. X \leftarrow X+1$	1	↓	×	103
	[%X]+.[%Y]	1	1	1	1) 1	1	1	1	1	1 1	0	$[X] \leftarrow [Y], X \leftarrow X+1$	2	↓	×	104
	[%X]+.[%Y]+	1	1	1	1) 1	1	1	1	1	1 1	1	$[X] \leftarrow [Y], X \leftarrow X+1, Y \leftarrow Y+1$	2	↓	×	105
	[%Y].%A	1	1	1	1) 1	1	1	0	1	0 1	0	$[Y] \leftarrow A$	1	↓	0	101
	[%Y].%B	1	1	1	1	0) 1	1	1	0	1	1 1	0	IY1 ← B	1	↓	0	101
	[%Y],imm4	1	1	1	1	0) 1	0	1	0	i3	3 i2 i1	i0	$[Y] \leftarrow imm4$	1	↓	0	102
	[%Y].[%X]	1	1	1	1	0) 1	1	1	1	1	0 0	0	$[Y] \leftarrow [X]$	2	↓	×	103
	[%Y].[%X]+	1	1	1	1	0) 1	1	1	1	1	0 0	1	$[Y] \leftarrow [X], X \leftarrow X+1$	2	↓	×	104
	[%Y]+,%A	1	1	1	1	0) 1	1	1	0	1	0 1	1	$[Y] \leftarrow A, Y \leftarrow Y+1$	1	↓	×	102
	[%Y]+,%B	1	1	1	1	0) 1	1	1	0	1	1 1	1	$[Y] \leftarrow B, Y \leftarrow Y+1$	1	↓	×	102
	[%Y]+.imm4	1	1	1	1) 1	0	1	1	i3	3 i2 i1	i0	$[Y] \leftarrow imm4, Y \leftarrow Y+1$	1	↓	×	103
	[%Y]+,[%X]	1	1	1	1) 1	1	1	1	1	1 0	0	$[Y] \leftarrow [X], Y \leftarrow Y+1$	2	\downarrow	×	104
	[%Y]+,[%X]+	1	1	1	1	0) 1	1	1	1	1	1 0	1	$[Y] \leftarrow [X], Y \leftarrow Y+1, X \leftarrow X+1$	2	↓	×	105
LDB	%BA,%EXT	1	1	1	1	1	1	1	C) 1	0	1 1	Х	$BA \leftarrow EXT$	1	\downarrow	×	106
	%BA,%SP1	1	1	1	1	1	1	1	C	0 (1	1 0	Х	$BA \leftarrow SP1$	1	\downarrow	×	107
	%BA,%SP2	1	1	1	1	1	1	1	С	0 (1	1 1	Х	$BA \leftarrow SP2$	1	\downarrow	×	107
	%BA,%XH	1	1	1	1	1	1	1	C	0 (1	0 0	1	$BA \leftarrow XH$	1	↓	×	107
	%BA,%XL	1	1	1	1	1	1	1	C	0 (1	0 0	0	$BA \leftarrow XL$	1	↓	×	107

	Mnemonic	Machine code	Operation	Cycle	Flag E I C Z	EXT. mode	Page
LDB	%BA,%YH	1 1 1 1 1 1 1 0 0 1 0 1	1 BA ← YH	1	\downarrow	×	107
	%BA,%YL	1 1 1 1 1 1 1 0 0 1 0 1) BA ← YL	1	↓	×	107
	%BA,imm8	0 1 0 0 1 i7 i6 i5 i4 i3 i2 i1 i	0 BA ← imm8	1	↓	×	105
	%BA,[%X]+	1 1 1 1 1 1 1 0 1 1 0 0	$A \leftarrow [X], B \leftarrow [X+1], X \leftarrow X+2$	2	↓	×	106
	%BA,[%Y]+	1 1 1 1 1 1 1 0 1 1 0 1	$A \leftarrow [Y], B \leftarrow [Y+1], Y \leftarrow Y+2$	2	↓	×	106
	%EXT.%BA	1 1 1 1 1 1 1 0 1 0 1 0 1	K EXT ← BA	1	1	×	109
	%EXT.imm8	0 1 0 0 0 i7 i6 i5 i4 i3 i2 i1 i	$0 \text{ EXT} \leftarrow \text{imm8}$	1	1	×	109
	%SP1.%BA	1 1 1 1 1 1 1 0 0 0 1 0	<pre>SP1 ← BA</pre>	1	↓	x	111
	%SP2.%BA	1 1 1 1 1 1 1 0 0 0 1 1	SP2 ← BA	1	↓	x	111
	%XH.%BA		$1 XH \leftarrow BA$	1	↓	×	110
	%XI %BA		$X \leftarrow BA$	1	J	×	110
	%XL imm8	0 1 0 1 0 17 16 15 14 13 12 11 1	$0 \times 1 \leftarrow imm8$	1	- 	0	110
	%YH %BA		I YH ← BA	1	¥	×	110
	%YL %BA		$Y \leftarrow BA$	1	¥	×	110
	%YL imm8	0 1 0 1 1 17 16 15 14 13 12 11 1	$1 \times 1 \times 10^{10}$	1		Ô	110
	[%X]+ %BΔ		$1 [X] \leftarrow A [X+1] \leftarrow B X \leftarrow X+2$	2	v .l	~	108
	[%X]+ imm8		$\begin{bmatrix} [X] \leftarrow i3_{2}0 [X+1] \leftarrow i7_{2}4 X \leftarrow X+2 \end{bmatrix}$	2	v 	~	108
	[%V]+,IIIII0		$[X] \leftarrow A [Y+1] \leftarrow B Y \leftarrow Y+2$	2	↓	~	100
NOP	[/01]+,/00A		$(N_0 \text{ operation } (PC \leftarrow PC + 1))$	1	↓	~	111
	0/ A 0/ A			1	$\psi +$	~	112
	70A, 70A			1	$\downarrow \downarrow$	~	112
	%A imm4			1	$\downarrow \downarrow$	~	112
	0/ A [0/ V]			1	$\downarrow \downarrow$	$\hat{}$	112
	70A,[70A]		$A \leftarrow A \lor [A]$	1	$\downarrow \downarrow$	0	113
	%A,[%X]+		$A \leftarrow A \lor [X], X \leftarrow X + 1$		$\downarrow \downarrow$	×	114
	70A,[70T]		$A \leftarrow A \lor [1]$		$\downarrow \downarrow$	0	113
	%A,[% I]+		$(P \leftarrow A \lor [f], f \leftarrow f + f)$		$\downarrow \downarrow$	X	114
	%B,%A		$(B \leftarrow B \lor A)$	1	$\downarrow \downarrow$	X	112
	%D,%D		$B \leftarrow B \lor B$		$\downarrow \downarrow$	X	112
	%B,IMM4		$B \leftarrow B \lor ImIm4$	1	$\downarrow \downarrow$	×	112
	%B,[%X]		$\mathbf{B} \leftarrow \mathbf{B} \lor [\mathbf{X}]$	1	$\downarrow \downarrow$	0	113
	%D,[%A]+		$ B \leftarrow B \lor [X], X \leftarrow X + 1$		$\downarrow \downarrow$	×	114
	%D,[%1]		$B \leftarrow B \lor [f]$		$\downarrow \downarrow$	0	113
	%B,[%Y]+		$ B \leftarrow B \lor [Y], Y \leftarrow Y+1$	1	$\downarrow \downarrow$ $\uparrow \uparrow \uparrow \uparrow \uparrow$	X	114
	%F,IIIIII4		$ \downarrow \downarrow \downarrow \leftarrow \downarrow $			×	113
	[%A],%A		$[X] \leftarrow [X] \lor R$	2	$\downarrow \downarrow$	0	114
	[%A],%D		$[\Lambda] \leftarrow [\Lambda] \lor D$	2	$\downarrow \downarrow$	0	114
	[⁷ 0∧],IIIIII4		$[\Lambda] \leftarrow [\Lambda] \lor [\Lambda] \lor [\Lambda] \lor [\Lambda]$	2	$\downarrow \downarrow$	0	115
	[%A]+,%A		$[[\Lambda] \leftarrow [\Lambda] \lor \Lambda, \Lambda \leftarrow \Lambda + 1$	2	$\downarrow \downarrow$	X	115
	[%A]+,%D		$[[\Lambda] \leftarrow [\Lambda] \lor B, \Lambda \leftarrow \Lambda + 1$	2	$\downarrow \downarrow$	×	115
	[%A]+,IMM4		$[\lambda] \leftarrow [\lambda] \lor [\lambda] \lor [\lambda] \lor [\lambda]$	2	$\downarrow \downarrow$	×	110
	[% Y],%A			2	$\downarrow \downarrow$	0	114
	[% Y],%D		$[1] \leftarrow [1] \lor D$	2	$\downarrow \downarrow$	0	114
	[% Y],IIIIII4		$[1] \leftarrow [1] \lor [n] \\ (n) \lor (n) $	2	$\downarrow \downarrow$	0	115
	[%Y]+,%A		$[[Y] \leftarrow [Y] \lor A, Y \leftarrow Y+1$	2	$\downarrow \downarrow$	X	115
	[% Y]+,%D		$[[1] \leftarrow [1] \lor D, 1 \leftarrow 1+1$	2	$\downarrow \downarrow$	X	115
DOD	[% Y]+,IMM4		$[1] \leftarrow [1] \lor [1] \lor [1] \land 14, 1 \leftarrow 1+1$	2	$\downarrow \downarrow$	X	110
POP	%A		$ A \leftarrow [SP2], SP2 \leftarrow SP2+1$	1	↓ 	X	116
	%В		$B \leftarrow [SP2], SP2 \leftarrow SP2+1$	1	\downarrow	×	116
	%F		$ F \leftarrow [SP2], SP2 \leftarrow SP2+1$		$\downarrow \downarrow \downarrow \downarrow \downarrow$	X	116
	%X		$[X \leftarrow ([SP1*4+3]\sim[SP1*4]), SP1 \leftarrow SP1+1$	1	↓	X	117
DUCU	%Υ 		$(17 \leftarrow ([SP1*4+3] \sim [SP1*4]), SP1 \leftarrow SP1+1$		↓ 	×	
PUSH	%A		$[SP2-1] \leftarrow A, SP2 \leftarrow SP2-1$	1	↓	×	117
	<u>%В</u>		$J [SP2-1] \leftarrow B, SP2 \leftarrow SP2-1$	1	↓ 	×	117
	%F		$[] [SP2-1] \leftarrow F, SP2 \leftarrow SP2-1$		↓ 	×	117
	70X		$([(OP1 - 1)*4+3] \sim [(OP1 - 1)*4]) \leftarrow X, SP1 \leftarrow SP1 - 1$		↓	×	118
DET	70 Y		$([(OP1-1)*4+3] \sim [(OP1-1)*4]) \leftarrow Y, SP1 \leftarrow SP1-1$		↓	×	118
REI	imm 0		$ \begin{array}{c} F_{1} \leftarrow ([SP1*4+3] \sim [SP1*4]), SP1 \leftarrow SP1+1 \\ \hline \\ PO \leftarrow ([SP1*4+2] \mid [SP1*4]), SP1 \leftarrow SP1+1 \\ \hline \\ \end{array} $		↓	×	118
REID			$[Y] \leftarrow ([SF 1*4+3] \sim [SF 1*4]), SF 1 \leftarrow SF [+1]$	3	*	×	119
1	1		[1, 1, 1, 1, 1, 2]	1			1

		Machine code		Flag	EXT.	_
	Mnemonic	21110 9 8 7 6 5 4 3 2 1 0 Operation	Cycl	FICZ	mode	Page
RETI		$1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 PC \leftarrow ([SP1*4+3]~[SP1*4]) SP1 \leftarrow SP$	1+1 2		×	119
						115
DETO				1		100
REIS		1 1 1 1 1 1 1 1 1 1	1+1 2	↓	×	120
		$PC \leftarrow PC+1$				
RL	%A	1 0 0 0 0 1 1 1 1 0 0 1 0 A (C←D3←D2←D1←D0←C)	1	$\downarrow - \uparrow \uparrow$	×	120
	%B	1 0 0 0 0 1 1 1 1 0 1 1 0 B (C←D3←D2←D1←D0←C)	1	$\downarrow - \uparrow \uparrow$	×	120
	[%X]	1 0 0 0 0 1 1 1 0 1 0 0 0 [X] (C←D3←D2←D1←D0←C)	2	$\downarrow - \uparrow \uparrow$	0	121
	[%X]+	1 0 0 0 0 1 1 1 0 1 0 0 1 IXI (C←D3←D2←D1←D0←C). X ← X+	1 2	↓ - 1 1	×	121
	[%Y]	1 0 0 0 0 1 1 1 0 1 0 1 0 [Y] (C - D3 - D2 - D1 - D0 - C)	2	$\downarrow = \uparrow \uparrow$		121
	[%]	1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0	1 2		<u> </u>	121
DD		1 0 0 0 0 1 1 1 0 1 0 1 1 [1] (C = D3 = D2 = D1 = D0 = C), 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +		$\psi = \psi \psi$		121
RR	%A	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & A \\ (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C) \\ \hline \end{bmatrix}$	1	$\downarrow - \downarrow \downarrow$	×	122
	%B	$1 0 0 0 0 1 1 1 1 0 1 1 1 B (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	1	$\downarrow - \downarrow \downarrow$	×	122
	[%X]	$1 0 0 0 0 1 1 1 0 1 1 0 0 [X] (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	2	$\downarrow - \uparrow \uparrow$	0	122
	[%X]+	$1 0 0 0 0 1 1 1 0 1 0 1 $ (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C), X \leftarrow X+	1 2	$\downarrow - \uparrow \uparrow$	×	123
	[%Y]	$1 0 0 0 0 1 1 1 0 1 1 1 0 [Y] (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	2	↓ - ↓ ↓	0	122
	[%Y]+	$1 0 0 0 0 1 1 1 0 1 1 1 1 [Y] (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C), Y \leftarrow Y+$	1 2	↓ - î î	×	123
SBC	0/Δ 0/Δ	$1 1 0 0 0 1 1 1 1 0 0 0 X A \leftarrow A-A-C$	1		~	123
300	70A, 70A		1	$\psi = \psi \psi$		123
	%A,%B	1 1 0 0 0 1 1 1 1 0 0 1 X A ← A-B-C	1	$\downarrow - \downarrow \downarrow$	×	123
	%A,imm4	$1 1 0 0 0 1 1 0 0 3 2 1 0 A \leftarrow A - imm4 - C$	1	$\downarrow - \downarrow \downarrow$	×	124
	%A,[%X]	1 1 0 0 0 1 1 1 0 0 0 0 0 A ← A-[X]-C	1	$\downarrow - \uparrow \uparrow$	0	124
	%A,[%X]+	1 1 0 0 0 1 1 1 0 0 0 0 1 A ← A-[X]-C, X ← X+1	1	$\downarrow - \uparrow \uparrow$	×	125
	%A,[%Y]	1 1 0 0 0 1 1 1 0 0 0 1 0 A ← A-[Y]-C	1	↓ - ↓ ↓	0	124
	%A [%Y]+	$1 1 0 0 0 1 1 1 0 0 0 1 1 A \leftarrow A-[Y]-C Y \leftarrow Y+1$	1	$\downarrow = \uparrow \uparrow$	×	125
0/ 00/ 1	707 ([701])		1	↓ ↓ ↓ ↓		100
70D, 70A			1	$\psi = \psi \psi$	×	123
	%B,%A,n4	$1 0 0 0 0 1 1 0 0 0 3 n2 n1 n0 B \leftarrow N's adjust (B-A-C)$	2	$\downarrow - \downarrow \downarrow$	×	127
	%B,%B	1 1 0 0 0 1 1 1 1 0 1 1 X B ← B-B-C	1	$\downarrow - \downarrow \downarrow$	×	123
	%B,imm4	1 1 0 0 0 1 1 0 1 i3 i2 i1 i0 B ← B-imm4-C	1	$\downarrow - \uparrow \uparrow$	×	124
	%B,[%X]	1 1 0 0 0 1 1 1 0 0 1 0 0 B ← B-[X]-C	1	$\downarrow - \uparrow \uparrow$	0	124
	%B,[%X],n4	1 1 1 0 0 1 1 0 0 n3n2n1n0 B ← N's adjust (B-[X]-C)	2	↓ - ↓ ↓	0	128
	%B [%X]+	$1 1 0 0 0 1 1 1 0 0 1 0 1 B \leftarrow B-IXI-C X \leftarrow X+1$	1	$\downarrow - \uparrow \uparrow$	×	125
	%B [%X]+ n4	1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0	2			128
			4			120
	70D,[701]			$\psi = \psi \psi$		124
	%B,[%Y],n4	$1 1 1 0 0 1 1 1 0 0 3 n2 n1 n0 B \leftarrow N's adjust (B-[Y]-C)$	2	$\downarrow - \downarrow \downarrow$	0	128
	%B,[%Y]+	$1 1 0 0 0 1 1 1 0 0 1 1 1 B \leftarrow B-[Y]-C, Y \leftarrow Y+1$	1	$\downarrow - \uparrow \uparrow$	×	125
	%B,[%Y]+,n4	1 1 1 0 0 1 1 1 1 n3n2n1n0 B ← N's adjust (B-[Y]-C), Y ← Y+1	2	$ \downarrow - \uparrow \uparrow$	×	128
	[%X],%A	1 1 0 0 0 1 1 1 0 1 0 0 0 [X] ← [X]-A-C	2	$\downarrow - \uparrow \uparrow$	0	125
	[%X],%B	1 1 0 0 0 1 1 1 0 1 1 0 0 [X] ← [X]-B-C	2	↓ - ↓ ↓	0	125
	[%X] %B n4	$1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ n^{3}n^{2}n^{1}n^{0}$ [X] \leftarrow N's adjust ([X]-B-C)	2	$\downarrow = \uparrow \uparrow$	0	129
	[/0/1],/02,/11	1 1 0 0 0 1 0 0 0 2 1 2 1 10 [X] (10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	↓ ↓ ↓ ↓		120
	[%],IIIII4	1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	$\psi = \psi \psi$		120
	[70],0,114	[1] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	$\downarrow \downarrow - \downarrow \downarrow$	\vdash	130
	[%X]+,%A	1 1 0 0 0 1 1 1 0 1 0 0 1 [X] ← [X]-A-C, X ← X+1	2	↓ - ↓ ↓	×	126
	[%X]+,%B	1 1 0 0 0 1 1 1 0 1 1 0 1 [X] ← [X]-B-C, X ← X+1	2	$\downarrow - \uparrow \uparrow$	×	126
	[%X]+,%B,n4	1 1 1 0 0 0 1 0 1 n3n2n1n0 [X] ← N's adjust ([X]-B-C), X ← X+1	2	$\downarrow - \uparrow \uparrow$	×	129
	[%X]+,imm4	1 1 0 0 0 1 0 0 1 i3 i2 i1 i0 [X] ← [X]-imm4-C, X ← X+1	2	$\downarrow - \uparrow \uparrow$	×	127
	[%X]+,0.n4	1 1 1 0 0 0 0 1 n3n2n1n0 [X] ← N's adjust ([X]-0-C), X ← X+1	2	$\downarrow - \uparrow \uparrow$	×	130
	[%Y] %A	$1 1 0 0 0 1 1 1 0 1 0 1 0 [Y] \leftarrow [Y] - A-C$	2	$\downarrow - \uparrow \uparrow$	0	125
	[% V] % P		2			125
	[/01], /0D		2	$\psi = \psi \psi$		125
	[%Y],%B,N4	$[1]$ 1 0 0 0 1 1 0 n3n2 n1 n0 [Y] \leftarrow N's adjust ([Y]-B-C)	2	$\downarrow - \downarrow \downarrow$		129
	[%Y],imm4	$1 1 0 0 1 0 1 0 3 2 1 0 [Y] \leftarrow [Y]-imm4-C$	2	$\downarrow \downarrow - \downarrow \downarrow$		126
	[%Y],0,n4	1 1 1 0 0 0 0 1 0 n3n2n1n0 [Y] ← N's adjust ([Y]-0-C)	2	$\downarrow - \uparrow \uparrow$	0	130
	[%Y]+,%A	1 1 0 0 0 1 1 1 0 1 0 1 1 [Y] ← [Y]-A-C, Y ← Y+1	2	↓ - ↓ ↓	×	126
	[%Y]+,%B	1 1 0 0 0 1 1 1 0 1 1 1 1 [Y] ← [Y]-B-C, Y ← Y+1	2	$\downarrow - \uparrow \uparrow$	×	126
	[%Y]+.%B.n4	$1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ n3n2n1n0$ [Y] \leftarrow N's adjust ([Y]-B-C) Y \leftarrow Y+1	2	$\downarrow = \uparrow \uparrow$	×	130
	[%Y]+ imm4	1 1 0 0 0 1 0 1 1 13 i2 i1 i0 [Y] ~ [Y] - [Y] - imm 4 - C V ~ V + 1	2		Ê	127
	[///]+,IIIIII4	1 + 1 + 0 + 0 + 1 + 1 + 1 + 1 + 1 + 1 +		$ \stackrel{\vee}{} \stackrel{-}{} \stackrel{\vee}{} \stackrel{\vee}{$		120
057	[70 T]+,U,N4	$\frac{1}{1} + \frac{1}{2} + \frac{1}$	- 2	$\downarrow \downarrow - \downarrow \downarrow$	⊢×	130
SET	[UUaddr6],imm2	$1 \cup 1 \cup$	2	↓ ↓	×	131
	[FFaddr6],imm2	$1 0 1 1 1 1 0 a5a4 a3a2a1a0 [FFaddr6] \leftarrow [FFaddr6] \lor (2^{imm2})$	2	↓ ↓	×	131
SLL	%A	1 0 0 0 0 1 1 1 1 0 0 0 0 A (C←D3←D2←D1←D0←0)	1	<u>↓ -</u> ↓ ↓	×	131
	%B	1 0 0 0 0 1 1 1 1 0 1 0 0 B (C←D3←D2←D1←D0←0)	1	$\downarrow - \uparrow \uparrow$	×	131

	Mnemonic	Machine code	Operation	Cycle	Flag	EXT.	Page
	Informer I	12 11 10 9 8 7 6 5 4 3 2 1 0		Oycic	EICZ	mode	r age
SLL	[%X]	1000011100000	[X] (C←D3←D2←D1←D0←0)	2	$\downarrow - \uparrow \uparrow$	0	132
	[%X]+	1 0 0 0 0 1 1 1 0 0 0 0 1	[X] (C←D3←D2←D1←D0←0), X ← X+1	2	$\downarrow - \uparrow \uparrow$	×	132
	[%Y]	1000011100010	[Y] (C←D3←D2←D1←D0←0)	2	$\downarrow - \uparrow \uparrow$	0	132
	[%Y]+	1000011100011	[Y] (C←D3←D2←D1←D0←0), Y ← Y+1	2	$\downarrow - \uparrow \uparrow$	×	132
SLP		1 1 1 1 1 1 1 1 1 1 1 0 1	Sleep	2	\downarrow	×	133
SRL	%A	1000011110001	$ A (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C) $	1	$\downarrow - \downarrow \downarrow$	×	133
	%B	1000011110101	$ \begin{array}{c} B (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C) \\ \hline \end{array} $	1	$\downarrow - \downarrow \downarrow$	×	133
	[%X]	1000011100100	$[X] (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	2	$\downarrow - \downarrow \downarrow$	0	134
	[%X]+		$\begin{bmatrix} X \end{bmatrix} (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C), X \leftarrow X+1$	2	$\downarrow - \downarrow \downarrow$	×	134
	[%Y]	1000011100110	$\begin{bmatrix} Y \end{bmatrix} (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	2	$\downarrow - \downarrow \downarrow$	0	134
	[%Y]+		$\begin{bmatrix} Y \end{bmatrix} (0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C), Y \leftarrow Y+1$	2	$\downarrow - \downarrow \downarrow$	×	134
SOB	%A,%A	1 1 0 0 0 0 1 1 1 0 0 0 X	$A \leftarrow A - A$	1	$\downarrow - \downarrow $	×	135
	%A,%B	1 1 0 0 0 0 1 1 1 0 0 1 X	$A \leftarrow A \cdot B$	1	$\downarrow - \downarrow \downarrow$	×	135
	%A,IMM4		$A \leftarrow A \cdot IMM4$	1	$\downarrow - \downarrow \downarrow$	×	135
	%A,[%X]		$A \leftarrow A \cdot [X]$	1	$\downarrow - \downarrow \downarrow$	0	136
	%A,[%X]+		$A \leftarrow A \cdot [X], X \leftarrow X + 1$	1	$\downarrow - \downarrow \downarrow$	×	136
	%A,[%Y]		$A \leftarrow A[Y]$	1	$\downarrow - \downarrow \downarrow$	0	130
	%A,[%Y]+		$A \leftarrow A-[1], 1 \leftarrow 1+1$		$\downarrow - \downarrow \downarrow$	×	130
	%B,%A				$\downarrow - \downarrow \downarrow$	×	135
	%B,%B		B ← B-B		$\downarrow - \downarrow $	×	135
	%B,IMM4			1	$\downarrow - \downarrow \downarrow$	×	135
	%B,[%X]		$B \leftarrow B[X]$	1	$\downarrow - \downarrow \downarrow$	0	136
	%B,[%X]+		$B \leftarrow B \cdot [X], X \leftarrow X + 1$	1	$\downarrow - \downarrow \downarrow$	×	136
	%B,[%Y]		$B \leftarrow B[Y]$	1	$\downarrow - \downarrow \downarrow$	0	136
	%B,[%Y]+		$B \leftarrow B-[1], 1 \leftarrow 1+1$	1	$\downarrow - \downarrow \downarrow$	×	130
	[%X],%A		$[X] \leftarrow [X] - A$	2	$\downarrow - \downarrow \downarrow$		137
	[%X],%B		$[X] \leftarrow [X] - B$	2	$\downarrow - \downarrow \downarrow$		137
	[%],111114		$[\Lambda] \leftarrow [\Lambda]^{-111114}$	2	$\downarrow - \downarrow \downarrow$		100
	[%/]+,%A		$[\Lambda] \leftarrow [\Lambda] - \Lambda, \Lambda \leftarrow \Lambda + 1$	2	$\downarrow - \downarrow \downarrow$	×	107
	[%/]+,%D		$[\Lambda] \leftarrow [\Lambda] - D, \Lambda \leftarrow \Lambda + 1$	2	$\downarrow - \downarrow \downarrow$	×	137
	[/0/]+,IIIII4		$[\Lambda] \leftarrow [\Lambda]^{-111114}, \Lambda \leftarrow \Lambda^{+1}$	2	$\psi = \psi \psi$		130
	[/01], /0A			2	$\psi = \psi \psi$ $\psi = \psi \psi$	0	137
	[%], %D		$[1] \leftarrow [1] - D$	2	$\psi = \psi \psi$		137
	[%Y]+ %A		$[Y] \leftarrow [Y]_{\Delta} Y \leftarrow Y_{\pm}1$	2	$\psi = \psi \psi$		137
	[%Y]+ %B		$[Y] \leftarrow [Y]_B Y \leftarrow Y_1$	2		~	137
	[%Y]+ imm4		$[Y] \leftarrow [Y]_{imm4}$ $Y \leftarrow Y_{\pm 1}$	2	$\psi = \psi \psi$	~	138
TST	[/01]+,iiiiii4	1 0 0 1 0 1 10 25 24 23 22 21 20	$[1] \leftarrow [1]$ - $[1]$	1		~	130
	[EEaddr6],imm2	1 0 0 1 1 i1 i0 a5 a4 a3 a2 a1 a0	[FEaddr6]^(2)	1	<u>↓</u>	×	139
XOR	%A %A	1 1 0 1 1 1 1 1 1 0 0 0 X	$A \leftarrow A \forall A$	1	$\downarrow \uparrow$	×	139
	%A %B	1 1 0 1 1 1 1 1 0 0 1 X	$A \leftarrow A \forall B$	1	$\downarrow \uparrow$	×	139
	%A imm4	1 1 0 1 1 1 1 0 0 i3 i2 i1 i0	$A \leftarrow A \forall imm4$	1	$\downarrow \uparrow$	×	140
	%A [%X]		$A \leftarrow A \forall [X]$	1	↓ î	Ô	141
	%A [%X]+		$A \leftarrow A \forall [X] X \leftarrow X+1$	1	$\frac{1}{\sqrt{1-1}}$	×	141
	%A.[%Y]	1 1 0 1 1 1 1 1 0 0 0 1 0	$A \leftarrow A \forall [Y]$	1	$\downarrow \uparrow$	0	141
	%A.[%Y]+	1 1 0 1 1 1 1 1 0 0 0 1 1	$A \leftarrow A \forall [Y], Y \leftarrow Y+1$	1	$\downarrow \uparrow$	×	141
	%B,%A	1 1 0 1 1 1 1 1 1 0 1 0 X	$B \leftarrow B \forall A$	1	$\downarrow \uparrow$	×	139
	%B,%B	1 1 0 1 1 1 1 1 1 0 1 1 X	$B \leftarrow B \forall B$	1	$\downarrow \uparrow$	×	139
	%B,imm4	1 1 0 1 1 1 1 0 1 i3 i2 i1 i0	B ← B∀imm4	1	$\downarrow 1$	×	140
	%B,[%X]	1 1 0 1 1 1 1 1 0 0 1 0 0	$B \leftarrow B \forall [X]$	1	↓ ↓	0	141
	%B,[%X]+	1 1 0 1 1 1 1 1 0 0 1 0 1	$B \leftarrow B \forall [X], X \leftarrow X+1$	1	$\downarrow \uparrow$	×	141
	%B,[%Y]	1 1 0 1 1 1 1 1 0 0 1 1 0	$B \leftarrow B \forall [Y]$	1	$\downarrow \uparrow$	0	141
	%B,[%Y]+	1 1 0 1 1 1 1 1 0 0 1 1 1	$B \leftarrow B \forall [Y], Y \leftarrow Y+1$	1	$\downarrow \uparrow$	×	141
	%F,imm4	1 0 0 0 0 1 0 1 0 i3 i2 i1 i0	$F \leftarrow F \forall imm4$	1	$\uparrow \uparrow \uparrow \uparrow \uparrow$	×	140
	[%X],%A	1 1 0 1 1 1 1 1 0 1 0 0 0	$[X] \leftarrow [X] \forall A$	2	$\downarrow \uparrow$	0	142
	[%X],%B	1 1 0 1 1 1 1 1 0 1 1 0 0	$[X] \leftarrow [X] \forall B$	2	$\downarrow \uparrow$	0	142
	[%X],imm4	1 1 0 1 1 1 0 0 0 i3 i2 i1 i0	$[X] \leftarrow [X] \forall imm4$	2	$\downarrow \uparrow$	0	143
	[%X]+,%A	1 1 0 1 1 1 1 1 0 1 0 0 1	$[X] \leftarrow [X] orall A, X \leftarrow X+1$	2	$\downarrow \uparrow$	×	142
	[%X]+,%B	1 1 0 1 1 1 1 1 0 1 1 0 1	$[X] \leftarrow [X] \forall B, X \leftarrow X+1$	2	\downarrow \updownarrow	×	142
	[%X]+,imm4	1 1 0 1 1 1 0 0 1 i3 i2 i1 i0	$[X] \leftarrow [X] \forall imm4, X \leftarrow X+1$	2	\downarrow – – \updownarrow	×	143
	[%Y],%A	1 1 0 1 1 1 1 1 0 1 0 1 0	$[Y] \leftarrow [Y] \rightarrow [Y]$	2	$\downarrow \uparrow$	0	142
	[%Y],%B	1 1 0 1 1 1 1 1 0 1 1 1 0	[Y] ← [Y]∀B	2	$\downarrow \uparrow$	0	142
	[%Y],imm4	1 1 0 1 1 1 0 1 0 i3 i2 i1 i0	$[Y] \leftarrow [Y] \forall imm4$	2	\downarrow \updownarrow	0	143
	[%Y]+,%A	1 1 0 1 1 1 1 1 0 1 0 1 1	$[Y] \leftarrow [Y] \forall A, Y \leftarrow Y+1$	2	$\downarrow \uparrow$	×	142
	[%Y]+,%B	1 1 0 1 1 1 1 1 0 1 1 1 1	$[Y] \leftarrow [Y] \forall B, Y \leftarrow Y+1$	2	\downarrow \updownarrow	×	142
	[%Y]+,imm4	1 1 0 1 1 1 0 1 1 i3 i2 i1 i0	$[Y] \leftarrow [Y] \forall imm4, Y \leftarrow Y+1$	2	$\downarrow \uparrow$	×	143

4.2.5 List of extended addressing instructions

8-bit absolute addressing (1/4)

	Mnemonic	Operation	Flag EICZ
LDB	%EXT,imm8		
LD	%A,[%X]	A ← [00imm8] (00imm8 = 0000H ~ 00FFH)	\downarrow
LDB	%EXT,imm8		
LD	%A,[%Y]	$A \leftarrow [FFimm8]$ (FFimm8 = FF00H + 00H ~ FFH)	\downarrow
LDB	%EXT,imm8		
LD	%B,[%X]	B ← [00imm8]	\downarrow
LDB	%EXT,imm8		
LD	%B,[%Y]	$B \leftarrow [FFimm8]$	\downarrow
LDB	%EXT,imm8		
LD	[%X],%A	[00imm8] ← A	\downarrow
LDB	%EXT,imm8		
LD	[%X],%B	[00imm8] ← B	\downarrow
LDB	%EXT,imm8		
LD	[%X],imm4	[00imm8] ← imm4	\downarrow
LDB	%EXT,imm8		
LD	[%Y],%A	[FFimm8] ← A	\downarrow
LDB	%EXT,imm8		
LD	[%Y],%B	[FFimm8] ← B	\downarrow
LDB	%EXT,imm8		
	[%Y],imm4	[FFimm8] ← imm4	\downarrow
LDB	%EXT,imm8		
EX	%A,[%X]	A ↔ [00imm8]	\downarrow
LDB	%EXT,imm8		
EX	%A,[%Y]	$A \leftrightarrow [FFimm8]$	\downarrow
	%EXT,imm8		
EX	%B,[%X]	B ↔ [00imm8]	\downarrow
EX		B ↔ [FFImm8]	\downarrow
LDB		A A [00]	
ADD			$\downarrow - \downarrow \downarrow$
	%A,[%T]		$\uparrow - \uparrow \uparrow$
		R (R [00imm9]	
	%EYT imm8		+ - + +
	%EXT,IIIII0		
IDB	%EXT imm8		$\Psi = \Psi \Psi$
	[%X] %A	$[00]$ mm81 \leftarrow $[00]$ mm81 + A	$\downarrow = \uparrow \uparrow$
IDB	%EXT imm8		* * *
ADD	[%X1.%B	[00imm8] ← [00imm8] + B	$\downarrow - \uparrow \uparrow$
LDB	%EXT.imm8		
ADD	[%X].imm4	[00imm8] ← [00imm8] + imm4	↓ - 1 1
LDB	%EXT,imm8		
ADD	[%Y],%A	[FFimm8] ← [FFimm8] + A	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADD	[%Y],%B	FFimm8] ← [FFimm8] + B	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADD	[%Y],imm4	[FFimm8] ← [FFimm8] + imm4	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC	%A,[%X]	$A \leftarrow A + [00imm8] + C$	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC	%A,[%Y]	$A \leftarrow A + [FFimm8] + C$	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC	%B,[%X]	B ← B + [00imm8] + C	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC	%B,[%Y]	$B \leftarrow B + [FFimm8] + C$	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC	[%X],%A	[00imm8] ← [00imm8] + A + C	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC	[%X],%B	[00imm8] ← [00imm8] + B + C	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC	[%X],imm4	[00imm8] ← [00imm8] + imm4 + C	$ \downarrow - \downarrow \downarrow]$

8-bit absolute addressing (2/4)

	Mnemonic	Operation	Flag EICZ
LDB	%EXT,imm8		
ADC	[%Y],%A	$[FFimm8] \leftarrow [FFimm8] + A + C$	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC	[%Y],%B	[FFimm8] ← [FFimm8] + B + C	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC		$[FFimm8] \leftarrow [FFimm8] + imm4 + C$	$\uparrow - \uparrow \uparrow$
SUB	%A,[%X]		$\uparrow - \uparrow \uparrow$
SUB	%Δ [%Y]	$A \leftarrow A = [FFimm8] (FFimm8 = FF00H + 00H = FFH)$	
LDB	%EXT.imm8		* * *
SUB	%B,[%X]	B ← B - [00imm8]	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
SUB	%B,[%Y]	$B \leftarrow B$ - [FFimm8]	$\downarrow - \updownarrow \updownarrow$
LDB	%EXT,imm8		
SUB	[%X],%A	[00imm8] ← [00imm8] - A	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
SUB	[%X],%B	[00imm8] ← [00imm8] - B	$\downarrow - \downarrow \downarrow$
	/₀⊑∧ I ,IIIIIIð [%X1 imm4	$[00]$ mm81 \leftarrow $[00]$ mm81 \cdot mm4	
LDR	%EXT.imm8		- + +
SUB	[%Y],%A	[FFimm8] ← [FFimm8] - A	↓ - \$ \$
LDB	%EXT,imm8		* *
SUB	[%Y],%B	[FFimm8] ← [FFimm8] - B	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
SUB	[%Y],imm4	[FFimm8] ← [FFimm8] - imm4	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
SBC	%A,[%X]	A ← A - [00imm8] - C	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
SBC	%A,[%Y] %EXT imm8		$\uparrow - \uparrow \uparrow$
SBC	%B [%X]	$B \leftarrow B - [00]mm8] - C$	$\downarrow - \uparrow \uparrow$
LDB	%EXT.imm8		* * *
SBC	%B,[%Y]	$B \leftarrow B - [FFimm8] - C$	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
SBC	[%X],%A	[00imm8] ← [00imm8] - A - C	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
SBC	[%X],%B	[00imm8] ← [00imm8] - B - C	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
SBC	[%X],imm4	[00imm8] ← [00imm8] - imm4 - C	$\uparrow - \uparrow \uparrow$
SBC	70ΕΛΤ,ΙΠΙΠΟ [0/ V] 0/ Δ	$[EFimm8] \leftarrow [EFimm8] = \mathbf{A} = \mathbf{C}$	
I DB	%FXT imm8		$\psi = \psi \psi$
SBC	[%Y],%B	[FFimm8] ← [FFimm8] - B - C	↓ - 1 1
LDB	%EXT,imm8		Ť
SBC	[%Y],imm4	[FFimm8] ← [FFimm8] - imm4 - C	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
CMP	%A,[%X]	A - [00imm8]	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
	%A,[%Y]	A - [FFimm8]	$\downarrow - \uparrow \uparrow$
		B - [00imm8]	
	%EXT imm8		$* - \uparrow \downarrow$
CMP	%B,[%Y]	B - [FFimm8]	↓ - 1 1
LDB	%EXT,imm8		
CMP	[%X],%A	[00imm8] - A	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
CMP	[%X],%B	[00imm8] - B	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
	[%X],imm4	[00imm8] - imm4	$\downarrow - \uparrow \uparrow$
	%EXI,IMM8 ™V1%A	[EFimm8] - A	
	[/0 I], /0A %EXT imm8	[[1] mmoj - A	$\star - \downarrow \downarrow$
CMP	[%Y].%B	IFFimm81 - B	$\downarrow = \uparrow \uparrow$
LDB	%EXT,imm8		
CMP	[%Y],imm4	[FFimm8] - imm4	$\downarrow - \uparrow \uparrow$

8-bit absolute addressing (3/4)

	Mnemonic	Operation	Flag E I C Z
LDB	%EXT,imm8		
	%B,[%X],N4 %EXT imm8	$B \leftarrow N's adjust (B + [000mm8] + C) (000mm8 = 0000H ~ 00FFH)$	$\downarrow - \downarrow \downarrow$
ADC	%B [%Y] n4	$B \leftarrow N$'s adjust (B + [FFimm8] + C) (FFimm8 = FF00H + 00H ~ FFH)	$\downarrow = \uparrow \uparrow$
LDB	%EXT,imm8		• • •
ADC	[%X],%B,n4	[00imm8] ← N's adjust ([00imm8] + B + C)	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC	[%X],0,n4	[00imm8]	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
ADC	[%Y],%B,n4	$[FFimm8] \leftarrow N's adjust ([FFimm8] + B + C)$	$\downarrow - \downarrow \downarrow$
	%EX1,IMM8	$[EFim R] \land N = rdiuet ([EFim R] + 0 + 0)$	
I DB	%FXT imm8		$\psi = \psi \psi$
SBC	%B,[%X],n4	$B \leftarrow N$'s adjust (B - [00imm8] - C)	↓ - ↓ ↓
LDB	%EXT,imm8		
SBC	%B,[%Y],n4	$B \leftarrow N$'s adjust (B - [FFimm8] - C)	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
SBC	[%X],%B,n4	[00imm8] ← N's adjust ([00imm8] - B - C)	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
SBC	[%X],U,n4	$[UUImm8] \leftarrow N's adjust ([UUImm8] - 0 - C)$	$\downarrow - \downarrow \downarrow$
SBC	%EAI,IIIIIIδ [%Y] %R n4	$[FEimm8] \leftarrow N's adjust ([FEimm8] - B - C)$	
I DB	%FXT imm8		$\psi = \psi \psi$
SBC	[%Y],0,n4	[FFimm8] ← N's adjust ([FFimm8] - 0 - C)	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
INC	[%X],n4	[00imm8] ← N's adjust ([00imm8] + 1)	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8		
INC	[%Y],n4	[FFimm8] ← N's adjust ([FFimm8] + 1)	$\downarrow - \uparrow \uparrow$
LDB	%EXT,imm8	[00]	
DEC	[%X],n4	$[00 \text{ mm8}] \leftarrow \text{N's adjust (} [00 \text{ mm8}] - 1)$	$\downarrow - \downarrow \downarrow$
	%E⊼T,IIIIII0 [%Y] n4	$[FEimm8] \leftarrow N's adjust ([FEimm8] -1)$	
LDB	%EXT.imm8		* * *
AND	%A,[%X]	$A \leftarrow A \land [00imm8]$	$\downarrow \uparrow$
LDB	%EXT,imm8		
AND	%A,[%Y]	$A \leftarrow A \land [FFimm8]$	\downarrow \updownarrow
LDB	%EXT,imm8		
AND	%B,[%X]	$B \leftarrow B \land [00imm8]$	$\downarrow \downarrow$
			↑
	%EXT imm8		↓ ↓
AND	[%X],%A	[00imm8] ← [00imm8] ∧ A	↓ ↓
LDB	%EXT,imm8		
AND	[%X],%B	[00imm8] ← [00imm8] ∧ B	\downarrow \updownarrow
LDB	%EXT,imm8		
AND	[%X],imm4	[00imm8] ← [00imm8] ∧ imm4	$\downarrow \uparrow$
	%EXI,IMM8		
	%FXT imm8		+ +
AND	[%Y].%B	 [FFimm8] ← [FFimm8] ∧ B	$\downarrow = - \uparrow$
LDB	%EXT,imm8		¥
AND	[%Y],imm4	[FFimm8] ← [FFimm8] ∧ imm4	\downarrow \updownarrow
LDB	%EXT,imm8		
OR	%A,[%X]	$A \leftarrow A \lor [00imm8]$	$\downarrow \uparrow$
LDB	%EXT,imm8		
	%A,[%Y] %EXT imm9		$\downarrow \downarrow$
OR	%B.[%X]	$B \leftarrow B \lor [00imm8]$	↓
LDB	%EXT,imm8		- *
OR	%B,[%Y]	$B \leftarrow B \lor [FFimm8]$	$\downarrow \uparrow$
LDB	%EXT,imm8		
OR	[%X],%A	[00imm8] ← [00imm8] ∨ A	$\downarrow \uparrow$
LDB	%EXT,imm8		
	[%X],%B	[UUIIMM8] ← [UUIIMM8] ∨ B	$\downarrow \downarrow$
OR	/∞⊑∧1,⊞⊞18 [%X] imm4	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	↓ ↑
, ~··	[,],		I. ↓

8-bit absolute addressing (4/4)

	Mnemonic	Operation	Flag E I C Z
LDB	%EXT,imm8		
OR	[%Y],%A	$[FFimm8] \leftarrow [FFimm8] \lor A (FFimm8 = FF00H + 00H \sim FFH)$	$\downarrow \updownarrow$
LDB	%EXT,imm8		
OR	[%Y],%B	$[FFimm8] \leftarrow [FFimm8] \lor B$	$\downarrow \uparrow$
LDB	%EXT,imm8		
OR	[%Y],imm4	$[FFimm8] \leftarrow [FFimm8] \lor imm4$	$\downarrow \updownarrow$
LDB	%EXT,imm8		
XOR	%A,[%X]	A ← A ∀ [00imm8] (00imm8 = 0000H ~ 00FFH)	$\downarrow \updownarrow$
LDB	%EXT,imm8		
XOR	%A,[%Y]	$A \leftarrow A \forall [FFimm8]$	↓ ↓
LDB	%EXT,imm8		
XOR	%B,[%X]	B ← B ∀ [00imm8]	↓ ↓
LDB	%EXT,imm8		
XOR	%B,[%Y]	$B \leftarrow B \forall [FFimm8]$	$\downarrow \downarrow$
LDB	%EXT,imm8		
XOR	[%X],%A	[00imm8] ← [00imm8] ∀ A	$\downarrow \downarrow$
LDB	%EXT,imm8		
XOR	[%X],%B	[00imm8] ← [00imm8] ∀ B	$\downarrow \downarrow$
LDB	%EXT,imm8		
XOR	[%X],imm4	[00imm8] ← [00imm8] ∀ imm4	↓ ↓
LDB	%EXT,imm8		
XOR	[%Y],%A	[FFimm8] ← [FFimm8] ∀ A	↓ ↓
LDB	%EXT,imm8		
XOR	[%Y],%B	$[FFimm8] \leftarrow [FFimm8] \forall B$	$\downarrow \downarrow$
LDB	%EXT,imm8		
XOR	[%Y],imm4	[FFimm8] ← [FFimm8] ∀ imm4	$\downarrow \downarrow$
LDB	%EXT,imm8		
BIT	%A,[%X]	A ^ [00imm8]	$\downarrow \downarrow$
LDB	%EXT,imm8		
BII	%A,[%Y]		$\downarrow \downarrow$
LDB	%EXT,imm8		
BII	%B,[%X]	B ^ [00imm8]	$\downarrow \downarrow$
	%EXT,IMM8		I ∧
BII	%B,[%Y]	B ~ [FFIMM8]	$\downarrow \downarrow$
		[00:mm0] . A	I ∧
BII	[%X],%A		$\downarrow \downarrow$
		[00imm0] . D	
	[⁷⁰ Λ], ⁷⁰ D		$\downarrow \downarrow$
	70EA1,IIIIII0	[00imm9] + imm4	1 ↑
	% EVT imm9		$\psi = - \psi$
	%EXT imm8		$\Psi = - \psi$
BIT	[%Y] %B	[FFimm8] ^ B	↓ ↑
	%FXT imm8		* +
BIT	[%Y] imm4	[FFimm8] ^ imm4	↓ ↑
I DB	%FXT imm8		* •
SLL	[%X]	[00imm8] (C \leftarrow D3 \leftarrow D2 \leftarrow D1 \leftarrow D0 \leftarrow 0)	$\downarrow - \uparrow \uparrow$
LDB	%EXT.imm8		· • • •
SU	[%Y]	$[FFimm8] (C \leftarrow D3 \leftarrow D2 \leftarrow D1 \leftarrow D0 \leftarrow 0)$	$\downarrow = \uparrow \uparrow$
I DB	%EXT imm8		• • •
SRL	[%X]	[00imm8] $(0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	$\downarrow - \uparrow \uparrow$
LDB	%EXT.imm8		• • •
SRL	[%Y]	[FFimm8] $(0 \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	$\downarrow - \uparrow \uparrow$
LDB	%EXT.imm8		* * *
RL	[%X]	[00imm8] (C \leftarrow D3 \leftarrow D2 \leftarrow D1 \leftarrow D0 \leftarrow C)	↓
LDB	%EXT.imm8		· • • •
RL	[%Y]	[FFimm8] (C \leftarrow D3 \leftarrow D2 \leftarrow D1 \leftarrow D0 \leftarrow C)	↓ - 1 1
LDB	%EXT.imm8		· · · ·
RR	[%X]	[00imm8] (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)	↓ - 1 1
LDB	%EXT,imm8		
RR	[%Y]	$[FFimm8] (C \rightarrow D3 \rightarrow D2 \rightarrow D1 \rightarrow D0 \rightarrow C)$	↓ – ☆ ☆
L	611 J	· · · · · · · · · · · · · · · · · · ·	· * *

16-bit immediate data addressing

		-	
	Maamania	Operation	Flag
	whemonic	Operation	EICZ
LDB	%EXT,imm8 *1		
LDB	%XL,imm8 *2	$X \leftarrow \text{imm16}$ (*1 is upper 8-bit, *2 is lower 8-bit)	\downarrow
LDB	%EXT,imm8 *1		
LDB	%YL,imm8 *2	$Y \leftarrow imm16$ (*1 is upper 8-bit, *2 is lower 8-bit)	\downarrow
LDB	%EXT,imm8 *1		
ADD	%X,sign8 *2	$X \leftarrow X + imm16$ (*1 is upper 8-bit, *2 is lower 8-bit)	$\downarrow \updownarrow$
LDB	%EXT,imm8 *1		
ADD	%Y,sign8 *2	$Y \leftarrow Y + imm16$ (*1 is upper 8-bit, *2 is lower 8-bit)	$\downarrow \uparrow$
LDB	%EXT,imm8 *1		
CMP	%X,imm8 *2	X - imm16 (FFH - *1 is upper 8-bit, *2 is lower 8-bit)	$\downarrow - \updownarrow \updownarrow$
LDB	%EXT,imm8 *1		
CMP	%X,imm8 *2	Y - imm16 (FFH - *1 is upper 8-bit, *2 is lower 8-bit)	$\downarrow - \uparrow \uparrow$

signed 16-bit PC relative addressing

	Mnemonic	Operation	Flag E I C Z
LDB	%EXT,imm8	(sign16 : imm8 is upper 8-bit, sign8 is lower 8-bit)	
JR	sign8	PC ← PC + sign16 + 1 (sign16 = 32767~-32768)	\downarrow
LDB	%EXT,imm8		
JRC	sign8	If C = 1 then PC \leftarrow PC + sign16 + 1 (sign16 = 32767 \sim -32768)	\downarrow
LDB	%EXT,imm8		
JRNC	sign8	If C = 0 then PC \leftarrow PC + sign16 + 1 (sign16 = 32767 \sim -32768)	\downarrow
LDB	%EXT,imm8		
JRZ	sign8	If Z = 1 then PC \leftarrow PC + sign16 + 1 (sign16 = 32767 \sim -32768)	\downarrow
LDB	%EXT,imm8		
JRNZ	sign8	If Z = 0 then PC \leftarrow PC + sign16 + 1 (sign16 = 32767 \sim -32768)	$ \downarrow $
LDB	%EXT,imm8	([SP1 - 1 ∗4 + 3] ~ [(SP1 - 1) ∗4]) ← PC + 1, SP1 ← SP1 - 1	
CALR	sign8	PC ← PC + sign16 + 1 (sign16 = 32767 ~ -32768)	$ \downarrow $

4.3 Instruction Formats

All the instructions of the E0C63000 are configured with 1 word (13 bits) as follows:

I 13-bit operation code

4.4 Detailed Explanation of Instructions

This section explains the individual instructions in alphabetic order according to the following format.

The meaning of the symbols are the same as for the instruction list. The following symbols are used to explain two or more registers as aggregations.

r Data registers A, B, or flag register F

ir Index registers X or Y

rr Index registers XL, XH, YL or YH

sp Stack pointers SP1 or SP2

ADC %r,%r' Add with carry r' reg. to r reg.

1 cycle

$\textit{Function:} \ r \leftarrow r + r' + C$

Adds the content of the r' register (A or B) and carry (C) to the r register (A or B).

Code:	Mnemonic	MSB								LSB	
	ADC %A,%A	1 1	0 0 1	1 1	1	1	0	0	0	Х	19F0H, (19F1H)
	ADC %A,%B	1 1	0 0 1	1 1	1	1	0	0	1	Х	19F2H, (19F3H)
	ADC %B,%A	1 1	0 0 1	1 1	1	1	0	1	0	Х	19F4H, (19F5H)
	ADC %B,%B	1 1	0 0 1	1 1	1	1	0	1	1	Х	19F6H, (19F7H)
Flags:		Z									
	\downarrow – \uparrow	\$									
Mode:	Src: Register direc Dst: Register direc	et St									

Extended addressing: Invalid

ADC %r,imm4 Add with carry immediate data imm4 to r reg.

1 cycle

Function: $r \leftarrow r + imm4 + C$

Adds the 4-bit immediate data imm4 and carry (C) to the r register (A or B).

Code:	Mnemonic	MSE												LSB	
	ADC %A,imm4	1	1	0	0	1	1	1	0	0	i3	i2	i1	i0	19C0H-19CFH
	ADC %B,imm4	1	1	0	0	1	1	1	0	1	i3	i2	i1	i0	19D0H–19DFH

Flags: E

Mode: Src: Immediate data Dst: Register direct Extended addressing: Invalid

L

_

С

1

ADC %r,[%ir] Add with carry location [ir reg.] to r reg.

1 cycle

Function: $r \leftarrow r + [ir] + C$

Adds the content of the data memory addressed by the ir register (X or Y) and carry (C) to the r register (A or B).

Code:	Mnem	onic	1	MSB												LSB	
	ADC	%A,[%)	(]	1	1	0	0	1	1	1	1	0	0	0	0	0	19E0H
	ADC	%A,[%\	<u>/]</u>	1	1	0	0	1	1	1	1	0	0	0	1	0	19E2H
	ADC	%B,[%)	<]	1	1	0	0	1	1	1	1	0	0	1	0	0	19E4H
	ADC	%B,[%\	/]	1	1	0	0	1	1	1	1	0	0	1	1	0	19E6H
Flags: Mode:	E ↓ Src: R	I –	C ¢ ndirect		7												
	Dst: R	legister o	direct	x 7													
	Extend	ded add	ressing	: Va	lıd												
Extended operation:	LDB ADC	%EXT,i %r,[%X	mm8 []	r	← r	+ [(00ir	nm8	3] +	С	(00i	mm	18 =	00	00H	I + (00H to FFH)
	LDB ADC	%EXT,i %r,[%Y	mm8]	r	← r	+ [FFir	nma	8] +	с	(FF	imn	n8 =	= FF	- 100	- - + +	00H to FFH)

ADC	%r,[%ir]+	Add with carry location [ir reg.] to r reg. and increment ir reg.	1 cycle
-----	-----------	---	---------

Function: $r \leftarrow r + [ir] + C$, $ir \leftarrow ir + 1$

Adds the content of the data memory addressed by the ir register (X or Y) and carry (C) to the r register (A or B). Then increments the ir register (X or Y). The flags change due to the operation result of the r register and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3				-					_		LSB	
	ADC %A,[%X]+	1	1	0	0	1	1	1	1	0	0	0	0	1	19E1H
	ADC %A,[%Y]+	1	1	0	0	1	1	1	1	0	0	0	1	1	19E3H
	ADC %B,[%X]+	1	1	0	0	1	1	1	1	0	0	1	0	1	19E5H
	ADC %B,[%Y]+	1	1	0	0	1	1	1	1	0	0	1	1	1	19E7H

Flags:	Е	Ι	С	Z
	\downarrow	-	\$	\$

Mode: Src: Register indirect Dst: Register direct Extended addressing: Invalid

ADC [%ir],%r Add with carry r reg. to location [ir reg.]

2 cycles

Function: $[ir] \leftarrow [ir] + r + C$

Adds the content of the r register (A or B) and carry (C) to the data memory addressed by the ir register (X or Y).

Code:	Mnemo	onic	1	MSB]	LSB	
	ADC	[%X],%A	1	1	1	0	0	1	1	1	1	0	1	0	0	0	19E8H
	ADC	[%X],%E	3	1	1	0	0	1	1	1	1	0	1	1	0	0	19ECH
	ADC	[%Y],%A	1	1	1	0	0	1	1	1	1	0	1	0	1	0	19EAH
	ADC	[%Y],%E	3	1	1	0	0	1	1	1	1	0	1	1	1	0	19EEH
Flags: Mode:	E ↓ Src: R Dst: R	I – egister d egister ir	C ↓ irect	Z	2												
	Extend	ied addre	essing	: va	na												
Extended operation:	LDB ADC	%EXT,ir [%X],%r	nm8	[0	0im	1m8]	←	[00)imr	n8]	+ r	+ C	(0	0im	m8	= 0	000H + 00H to FFH)
	LDB ADC	%EXT,ir [%Y],%r	nm8	(F	Fim	nm8]←	FF	- imi	m8]	+ r	+ C) (F	Fin	nm8	6 = F	F00H + 00H to FFH)

ADC [%ir]+,%r Add with carry r reg. to location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir] + r + C$, $ir \leftarrow ir + 1$

Adds the content of the r register (A or B) and carry (C) to the data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	8											LSB	
	ADC [%X]+,%A	1	1	0	0	1	1	1	1	0	1	0	0	1	19E9H
	ADC [%X]+,%B	1	1	0	0	1	1	1	1	0	1	1	0	1	19EDH
	ADC [%Y]+,%A	1	1	0	0	1	1	1	1	0	1	0	1	1	19EBH
	ADC [%Y]+,%B	1	1	0	0	1	1	1	1	0	1	1	1	1	19EFH

Flags:

Е	_	С	Z
\leftarrow	-	\$	¢

Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

ADC [%ir],imm4 Add with carry immediate data imm4 to location [ir reg.]

Function: [ir] ← [ir] + imm4 + C Adds the 4-bit immediate data imm4 and carry (C) to the data memory addressed by the ir register (X or Y).

Code:	Mnemo	onic	MSE	8											LSB	
	ADC	[%X],imm4	1	1	0	0	1	1	0	0	0	i3	i2	i1	i0	1980H–198FH
	ADC	[%Y],imm4	1	1	0	0	1	1	0	1	0	i3	i2	i1	i0	19A0H–19AFH
Flags:	E ↓	I C - ↓	2	<u>Z</u>												
Mode:	Src: In	nmediate data														
	Dst: R	egister indirec	t													
	Extend	ded addressing	g: Va	lid												
Extended operation:	LDB ADC	%EXT,imm8 [%X],imm4	[()0im	ım8	-)[→	[00)imr	n8]	+ in	nm4	4 + 0	С (00ir	nm8	3 = 0000H + 00H to FFH)
	LDB ADC	%EXT,imm8 [%Y],imm4	[F	Fin	nm8	8] ←	FF	-im	m8]	+ ir	nm	4 +	C((FFi	mm	8 = FF00H + 00H to FFH)

ADC [%ir]+, imm4 Add with carry immediate data imm4 to location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir] + imm4 + C, ir \leftarrow ir + 1$

Adds the immediate data imm4 and carry (C) to the data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSB	5											LSB	
	ADC [%X]+,imm4	1	1	0	0	1	1	0	0	1	i3	i2	i1	i0	1990H–199FH
	ADC [%Y]+,imm4	1	1	0	0	1	1	0	1	1	i3	i2	i1	i0	19B0H–19BFH

Flags:	E	I	С	Z
	\rightarrow	_	\$	\$

Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid 2 cycles

ADC %B,%A,n4 Add with carry A reg. to B reg. in specified radix

2 cycles

Function: $B \leftarrow N$'s adjust (B + A + C)Adds the content of the A register and carry (C) to the B register. The operation result is
adjusted with n4 as the radix. The C flag is set by a carry according to the radix.

Code:	Mnemonic	MSB		LSB	
	ADC %B,%A,n4	1 0 0 0	0 1 1 0 1	[10H-n4]	10D0H-10DFH
Flags:	E I C ↓ − ↓	Z ↓			
Mode:	Src: Register direct Dst: Register direct Extended addressir	ıg: Invalid			
Note:	n4 should be specif	ied with a value	e from 1 to 16.		

ADC %B,[%ir],n4 Add with carry location [ir reg.] to B reg. in specified radix 2 cycles

Function: $B \leftarrow N$'s adjust (B + [ir] + C)

Adds the content of the data memory addressed by the ir register (X or Y) and carry (C) to the B register. The operation result is adjusted with n4 as the radix. The C flag is set by a carry according to the radix.

Code:	Mnem	onic		MSB	3									LSB				
	ADC	%B,[%)	K],n4	1	1	1	0	1	1	1	0	0	[10H	-n4]	1DC0F	I–1DCF	ΞH	
	ADC	%B,[%`	Y],n4	1	1	1	0	1	1	1	1	0	[10H	-n4]	1DE0H	I–1DEF	Ή	
Flags:	E ↓	 -	C ¢		<u>z</u>													
Mode:	Src: F Dst: F Exten	Register i Register o ded add	indirec direct ressing	t g: Va	lid													
Extended operation:	LDB ADC	%EXT,i %B,[%)	imm8 X],n4	В	\leftarrow	N's	adj	ust	(B +	F [00	Dimi	m8]	+ C) (00imm	8 = 0000)H + 00)H to F	FH)
	LDB ADC	%EXT,i %B,[%`	imm8 Y],n4	В	\leftarrow	N's	adj	ust	(B -	⊦ [FI	Fim	m8]	+C) (FFimm	າ8 = FF0	0H + 0(0H to	FFH)
NT . 4	. 4 . 1.			1.	- 1.		. 1	6	1		17							

Note: n4 should be specified with a value from 1 to 16.

ADC %B,[%ir]+,n4 Add with carry location [ir reg.] to B reg. in specified radix and increment ir reg. 2 cycles

Function: $B \leftarrow N$'s adjust (B + [ir] + C), ir \leftarrow ir + 1

Adds the content of the data memory addressed by the ir register (X or Y) and carry (C) to the B register. The operation result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The flags change due to the operation result of the B register and the increment result of the ir register does not affect the flags. The C flag is set by a carry according to the radix.

Code:	Mnemo	onic]	MSE	3								LSB	
	ADC	%B,[%)	K]+ ,n4	1	1	1	0	1	1	1	0	1	[10H-n4]	1DD0H-1DDFH
	ADC	%B,[%`	Y]+ ,n4	1	1	1	0	1	1	1	1	1	[10H-n4]	1DF0H–1DFFH
			-											
Flags:	E		С	4	<u> </u>									
	\downarrow	—	\leftrightarrow		\$									
Mode:	Src: R	egister i	indirec	t										
	Dst. R	eoister (lirect											
	D 50. 10			Ŧ	1.									
	Extenc	ied add	ressing	: In	valı	a								
	4 1			,	•.1			<i>c</i>			1/			
Note:	n4 sho	uld be s	pecifie	d w	1th	a va	alue	e tro	m 1	to.	16.			

ADC [%ir],%B,n4 Add with carry B reg. to location [ir reg.] in specified radix 2 cycles

Function: $[ir] \leftarrow N's adjust ([ir] + B + C)$

Adds the content of the B register and carry (C) to the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix. The C flag is set by a carry according to the radix.

Code:	Mnem	onic		MSB	5										LSB	
	ADC	[%X],%	B,n4	1	1	1	0	1	0	1	0	0	[10	0H-n	4]	1D40H–1D4FH
	ADC	[%Y],%	B,n4	1	1	1	0	1	0	1	1	0	[10	0H-n	4]	1D60H–1D6FH
Flags:	E ↓	 -	C ¢	Z	2											
Mode:	Src: R	legister d	lirect													
	Dst: R	legister i	ndirec	t												
	Extend	ded addı	ressing	: Va	lid											
Extended	LDB	%EXT,i	mm8													
operation:	ADC	[%X],%	B,n4	[0	00im	nm8	8] ←	N's	s ad	just	. ([0	0im	m8] -	+ B +	⊦ C)	
							(00i	mm	18 =	00	00H	+(00H t	o FF	H)	
	LDB	%EXT,i	mm8													
	ADC	[%Y],%	B,n4	[F	Fin	٥m	3] ←	- N':	s ad	ljus	t ([F	Fim	nm8]	+ B -	+ C)	
							(FF	imn	18 =	FF	100	+ +	00H 1	to FF	FH)	

Note: n4 should be specified with a value from 1 to 16.

ADC [%ir]+,%B,n4 Add with carry B reg. to location [ir reg.] in specified radix and increment ir reg. 2 cycles

Function: $[ir] \leftarrow N's adjust ([ir] + B + C), ir \leftarrow ir + 1$ Adds the content of the B register and carry (C) to the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags. The C flag is set by a carry according to the radix. Code: Mnemonic MSB LSB ADC [%X]+,%B,n4 [10H-n4] 1D50H-1D5FH 1 1 1 0 1 0 1 0 1 1 1 1 1 1 ADC [%Y]+,%B,n4 1 0 0 1 [10H-n4] 1D70H-1D7FH Ζ Flags: E С \downarrow _ Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16.

ADC	[%ir],0,n4	Add carry to location [ir reg.] in specified radi
-----	------------	---

2 cycles

Function: $[ir] \leftarrow N's adjust ([ir] + 0 + C)$

Adds the carry (C) to the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix. The C flag is set by a carry according to the radix. This instruction is useful for a carry processing to the highest digit of n based counters.

Code:	Mnemo	onic]	MSB										J	LSB	
	ADC	[%X],0,	n4	1	1	1	0	1	0	0	0	0	[10)H-n4]	1D00H–1D0FH
	ADC	[%Y],0,	n4	1	1	1	0	1	0	0	1	0	[10)H-n4	·]	1D20H–1D2FH
Flags:	E ↓	 _	C ¢	Z	<u>7</u>											
Mode:	Src: R Dst: R Extenc	egister o egister i led add	direct indirect ressing	t : Va	lid											
Extended	LDB	%EXT,i	imm8													
operation:	ADC	[%X],0,	n4,	[0	00im	nm8) ← (00i	N's mm	s ad 18 =	just 00	: ([0 00H	0im l + (m8] +)0H to	+ 0 + (o FFH	C) I)	
	LDB ADC	%EXT,i [%Y],0,	imm8 .n4	[F	Fin	٥m٤	8] ← (FF	- N's imn	s ad 18 =	ljust : FF	t ([F 00F	Fim H +	1m8] - 00H t	+ 0 + :o FFI	C) H)	

Note: n4 should be specified with a value from 1 to 16.

ADC [%ir]+,0,n4 Add carry to location [ir reg.] in specified radix and increment ir reg. 2 cycles

Function: $[ir] \leftarrow N's adjust ([ir] + 0 + C), ir \leftarrow ir + 1$

Adds the carry (C) to the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags. The C flag is set by a carry according to the radix. This instruction is useful for a carry processing of n based counters.

Code:	Mnemonic	Ν	1SB									LSB	
	ADC [%X]+,0,	n4	1	1	1	0	1	0	0	0	1	[10H-n4]	1D10H–1D1FH
	ADC [%Y]+,0,	n4	1	1	1	0	1	0	0	1	1	[10H-n4]	1D30H–1D3FH
Flags: Mode:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C ↓ irect	<u>Z</u> ↓										
	Extended addre	essing:	Inv	valio	d								

Note: n4 should be specified with a value from 1 to 16.

ADD %r,%r' Add r' reg. to r reg.

1 cycle

Function: $r \leftarrow r + r'$

Adds the content of the r' register (A or B) to the r register (A or B).

Code:	Mnemonic	MSE	3											LSB	
	ADD %A,%A	1	1	0	0	1	0	1	1	1	0	0	0	Х	1970H, (1971H)
	ADD %A,%B	1	1	0	0	1	0	1	1	1	0	0	1	Х	1972H, (1973H)
	ADD %B,%A	1	1	0	0	1	0	1	1	1	0	1	0	Х	1974H, (1975H)
	ADD %B,%B	1	1	0	0	1	0	1	1	1	0	1	1	Х	1976H, (1977H)

Flags:	Е	I	С	Z
	\downarrow	-	\$	\$

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid
ADD %r,imm4 Add immediate data imm4 to r reg.

1 cycle

Function: $r \leftarrow r + imm4$

Adds the 4-bit immediate data imm4 to the r register (A or B).

Code:	Mnemonic	MSB		LSB
	ADD %A,imm4	1 1 (0 0 1 0 '	1 0 0 i3 i2 i1 i0 1940H–194FH
	ADD %B,imm4	1 1 (0 0 1 0 '	1 0 1 i3 i2 i1 i0 1950H–195FH
Flags:	E I C ↓ − ↓	Z ↓		
Mode:	Src: Immediate data Dst: Register direct Extended addressing	: Invalid		

ADD %r,[%ir]

Add location [ir reg.] to r reg.

1 cycle

Function: $r \leftarrow r + [ir]$

Adds the content of the data memory addressed by the ir register (X or Y) to the r register (A or B).

Code:	Mnem	onic]	MSB												LSB	
	ADD	%A,[%>	(]	1	1	0	0	1	0	1	1	0	0	0	0	0	1960H
	ADD	%A,[%\	[]	1	1	0	0	1	0	1	1	0	0	0	1	0	1962H
	ADD	%B,[%>	(]	1	1	0	0	1	0	1	1	0	0	1	0	0	1964H
	ADD	%B,[%\	[]	1	1	0	0	1	0	1	1	0	0	1	1	0	1966H
Flags:	E ↓	 _	C ¢	Z	7												
Mode:	Src: R	egister i	ndirect														
	Dst: R	legister o	direct														
	Extend	ded add	ressing	: Va	lid												
Extended operation:	LDB ADD	%EXT,i %r,[%X	mm8]	r	← r	+ [(00ir	nm8	8] (00ir	nm	8 =	000	ЮH	+ 0	0H 1	to FFH)
	LDB ADD	%EXT,i %r,[%Y	mm8]	r	← r	+ [FFir	nm8	3] (FFi	mm	8 =	FF(00H	+(00H	to FFH)

ADD %r,[%ir]+ Add location [ir reg.] to r reg. and increment ir reg.

Function: $r \leftarrow r + [ir]$, $ir \leftarrow ir + 1$

Adds the content of the data memory addressed by the ir register (X or Y) to the r register (A or B). Then increments the ir register (X or Y). The flags change due to the operation result of the r register and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	ADD %A,[%X]+	1	1	0	0	1	0	1	1	0	0	0	0	1	1961H
	ADD %A,[%Y]+	1	1	0	0	1	0	1	1	0	0	0	1	1	1963H
	ADD %B,[%X]+	1	1	0	0	1	0	1	1	0	0	1	0	1	1965H
	ADD %B,[%Y]+	1	1	0	0	1	0	1	1	0	0	1	1	1	1967H
															•

Flags:	Е		С	Z	
	\rightarrow	Ι	\Rightarrow	\leftrightarrow	

Mode: Src: Register indirect Dst: Register direct Extended addressing: Invalid

ADD [%ir],%r

Add r reg. to location [ir reg.]

2 cycles

Function: $[ir] \leftarrow [ir] + r$

Adds the content of the r register (A or B) to the data memory addressed by the ir register (X or Y).

Code:	Mnem	onic		MSE	3											LSB	
	ADD	[%X],%	A	1	1	0	0	1	0	1	1	0	1	0	0	0	1968H
	ADD	[%X],%	В	1	1	0	0	1	0	1	1	0	1	1	0	0	196CH
	ADD	[%Y],%	A	1	1	0	0	1	0	1	1	0	1	0	1	0	196AH
	ADD	[%Y],%	В	1	1	0	0	1	0	1	1	0	1	1	1	0	196EH
		1.			_	1											
Flags:	<u> </u>		C	4	<u> </u>												
	\downarrow	-	↓ ↓														
Mode	Src. F	Perister (direct														
moue.	Det I	Pogistar i	indiroc	ł													
	DSt. F	legister i	munec	ι													
	Exten	ded add	ressing	: Va	lid												
Extanded	ם ח	0/ EVT	imme														
Extended	LDD	/06/1,1															
operation:	ADD	[%X],%	r	[()0in	nm8	8] ←	[00)imr	n8]	+ r	(00)imr	n8 :	= 00)00ł	H + 00H to FFH)
	LDB	%EXT,i	imm8														
		[%Y] %	r	ſF	Fin	nm۶	RI ∠		=im	m81	+ r	(F	Fim	m8	– F	FOC	H + 00H to FEH)
	1.00	[/01],/0		լյ		inne	ハー	լու		uioj		1		110		1 00	

ADD [%ir]+,%r Add r reg. to location [ir reg.] and increment ir reg.

2 cycles

Function: $[ir] \leftarrow [ir] + r$, $ir \leftarrow ir + 1$

Adds the content of the r register (A or B) to the data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	8		-				-	_	_	-		LSB	
	ADD [%X]+,%A	1	1	0	0	1	0	1	1	0	1	0	0	1	1969H
	ADD [%X]+,%B	1	1	0	0	1	0	1	1	0	1	1	0	1	196DH
	ADD [%Y]+,%A	1	1	0	0	1	0	1	1	0	1	0	1	1	196BH
	ADD [%Y]+,%B	1	1	0	0	1	0	1	1	0	1	1	1	1	196FH

Flags:EICZ \downarrow - \updownarrow \updownarrow

ADD [%ir],imm4Add immediate data imm4 to location [ir reg.]

2 cycles

Function: $[ir] \leftarrow [ir] + imm4$

Adds the 4-bit immediate data imm4 to the data memory addressed by the ir register (X or Y).

Code:	Mnem	onic	Μ	SB			-								LSB	
	ADD	[%X],imm4		·	0	0	1	0	0	0	0	i3	i2	i1	i0	1900H–190FH
	ADD	[%Y],imm4		'	0	0	1	0	0	1	0	i3	i2	i1	i0	1920H–192FH
Flags:	E ↓	I C - ↓		Z ¢												
Mode:	Src: In	nmediate da	ta													
	Dst: R	legister indir	ect													
	Extend	ded addressi	ng: `	Vali	d											
Extended operation:	LDB ADD	%EXT,imm8 [%X],imm4	3	[00	imm	8] ←	- [00)imr	n8]	+ in	nm4	4 (C)0in	nm8	5 = C	0000H + 00H to FFH)
	LDB ADD	%EXT,imm8 [%Y],imm4	3	[FF	imm	8] ←	- [FI	-im	m8]	+ ir	nm	4 (I	FFir	nm	8 =	FF00H + 00H to FFH)

Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

ADD [%ir]+,imm4 Add immediate data imm4 to location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir] + imm4$, $ir \leftarrow ir + 1$

Adds the 4-bit immediate data imm4 to the data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemo	nic		MSE	3											LSB	
	ADD	[%X]+,i	mm4	1	1	0	0	1	0	0	0	1	i3	i2	i1	i0	1910H–191FH
	ADD	[%Y]+,i	mm4	1	1	0	0	1	0	0	1	1	i3	i2	i1	i0	1930H–193FH
Elaga		1	6	-	7	I											
Flags:		1	 	<u>^</u> †													
		_	+		ł												
Mode:	Src: In	nmedia	te data														
	Dst: Re	egister i	ndirec	t													
	Extend	led add	ressing	: In	vali	d											

ADD %ir,%BA

1 cycle

Function: ir \leftarrow ir + BA

Adds the content of the BA register to the ir register (X or Y). This instruction does not affect the C flag regardless of the operation result.

Code:	Mnemonic	MSB											LSB	
	ADD %X,%BA	1 1	1	1	1	1	1	0	1	0	0	0	Х	1FD0H, (1FD1H)
	ADD %Y,%BA	1 1	1	1	1	1	1	0	1	0	0	1	Х	1FD2H, (1FD3H)
Flags		7	1											

Add BA reg. to ir reg.

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

Flags:EICZ \downarrow -- \updownarrow

ADD %ir,sign8 Add immediate data sign8 to ir reg.

Function: ir \leftarrow ir + sign8

Adds the signed 8-bit immediate data sign8 (-128 to 127) to the ir register (X or Y). This instruction does not affect the C flag regardless of the operation result.

Code:	Mnemo	nic	1	MSB												LSB	
	ADD	%X,sigr	า8	0	1	1	0	0	s7	s6	s5	s4	s3	s2	s1	s0	0C00H-0CFFH
	ADD	%Y,sign	18	0	1	1	0	1	s7	s6	s5	s4	s3	s2	s1	s0	0D00H-0DFFH
Flags:	E ↓	 _	C -	Z	-												
Mode:	Src: In Dst: Re Extend	nmediat egister c ed addi	e data lirect ressing	: Va	lid												
Extended operation:	LDB ADD	%EXT,i %ir,sigr	mm8 18	ir	← i	ir +	sigr	n16	(up	opei	r 8-I	bit: i	imm	18, I	owe	ər 8-	bit: sign8)

AND %r,%r'

Logical AND of r' reg. and r reg.

1 cycle

Function: $r \leftarrow r \land r'$

Performs a logical AND operation of the content of the r' register (A or B) and the content of the r register (A or B), and stores the result in the r register.

Code:	Mnemonic	MSE						-	-	_		-	-	LSB	
	AND %A,%A	1	1	0	1	0	0	1	1	1	0	0	0	Х	1A70H, (1A71H)
	AND %A,%B	1	1	0	1	0	0	1	1	1	0	0	1	Х	1A72H, (1A73H)
	AND %B,%A	1	1	0	1	0	0	1	1	1	0	1	0	Х	1A74H, (1A75H)
	AND %B,%B	1	1	0	1	0	0	1	1	1	0	1	1	Х	1A76H, (1A77H)

Flags:	E	I	С	Z
	\downarrow	_	_	\$

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

AND %r, imm4 Logical AND of immediate data imm4 and r reg.

Function: $r \leftarrow r \land imm4$

Performs a logical AND operation of the 4-bit immediate data imm4 and the content of the r register (A or B), and stores the result in the r register.

Code:	Mnemonic	MS	В											LSB	
	AND %A,imm4	1	1	0	1	0	0	1	0	0	i3	i2	i1	i0	1A40H–1A4FH
	AND %B,imm4	1	1	0	1	0	0	1	0	1	i3	i2	i1	i0	1A50H–1A5FH
Flags:	E I 0 ↓ - -	-	Z ¢]											
Mode:	Src: Immediate d Dst: Register dire Extended address	ata ct sing: Ir	ivali	d											

AND %F,imm4

Logical AND of immediate data imm4 and F reg.

1 cycle

Function: $F \leftarrow F \land imm4$

Performs a logical AND operation of the 4-bit immediate data imm4 and the content of the F (flag) register, and stores the result in the r register. It is possible to reset any flag.

Code:	Mnemo	onic	1	MSE	3	-	-					-	-			LSB	
	AND	%F,imm	า4	1	0	0	0	0	1	0	0	0	i3	i2	i1	i0	1080H–108FH
T1			0	- 1	7												
Flags:	E			4	<u> </u>												
	\downarrow	\downarrow	\downarrow	,	L												

Mode: Src: Immediate data Dst: Register direct Extended addressing: Invalid

AND %r,[%ir] Logical AND of location [ir reg.] and r reg.

Function: $r \leftarrow r \land [ir]$

Performs a logical AND operation of the content of the data memory addressed by the ir register (X or Y) and the content of the r register (A or B), and stores the result in the r register.

Code:	Mnem	onic]	MSB]	LSB	
	AND	%A,[%>	(]	1	1	0	1	0	0	1	1	0	0	0	0	0	1A60H
	AND	%A,[%\	′]	1	1	0	1	0	0	1	1	0	0	0	1	0	1A62H
	AND	%B,[%>	(]	1	1	0	1	0	0	1	1	0	0	1	0	0	1A64H
	AND	AND %B,[%Y] 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1A66H $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															1A66H
Flags: Mode:	E ↓ Src: R Dst: R	I – Register i Register o	C – ndirect	Z 1	2												
	Extend	ded add	ressing	: Va	lid												
Extended operation:	LDB AND LDB AND	%EXT,i %r,[%X %EXT,i %r,[%Y	mm8] mm8]	r r	← r ← r	~ [(00ir FFir	nm8 nm8	3] (3] (00ir FFii	nm{ mm	8 = 8 =	000 FF(0H 00H	+ 0 + (он рон	to FFH) to FFH)

AND %r,[%ir]+ Logical AND of location [ir reg.] and r reg. and increment ir reg. 1 cycle

Function: $r \leftarrow r \land [ir]$, $ir \leftarrow ir + 1$

Performs a logical AND operation of the content of the data memory addressed by the ir register (X or Y) and the content of the r register (A or B), and stores the result in the r register. Then increments the ir register (X or Y). The flags change due to the operation result of the r register and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	8											LSB	
	AND %A,[%X]+	1	1	0	1	0	0	1	1	0	0	0	0	1	1A61H
	AND %A,[%Y]+	1	1	0	1	0	0	1	1	0	0	0	1	1	1A63H
	AND %B,[%X]+	1	1	0	1	0	0	1	1	0	0	1	0	1	1A65H
	AND %B,[%Y]+	1	1	0	1	0	0	1	1	0	0	1	1	1	1A67H

Flags:	Е	С	Z
			1

Mode: Src: Register indirect Dst: Register direct Extended addressing: Invalid

AND [%ir],%r Logical AND of r reg. and location [ir reg.]

Function: $[ir] \leftarrow [ir] \land r$

Performs a logical AND operation of the content of the r register (A or B) and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address.

Code:	Mnemo	onic]	MSB												LSB	
	AND	[%X],%	A	1	1	0	1	0	0	1	1	0	1	0	0	0	1A68H
	AND	[%X],%	В	1	1	0	1	0	0	1	1	0	1	1	0	0	1A6CH
	AND	[%Y],%	A	1	1	0	1	0	0	1	1	0	1	0	1	0	1A6AH
	AND	[%Y],%	В	1	1	0	1	0	0	1	1	0	1	1	1	0	1A6EH
Flags:	E ↓	 _	C -	Z	2												
Mode:	Src: R Dst: R Extend	egister o egister i led add	direct ndirect ressing	: : Va	lid												
Extended operation:	LDB AND	%EXT,i [%X],%	mm8 r	[C)0im	nm8	6] ←	[00)imr	n8]	∧ r	(00)imr	n8 :	= 00)00ł	H + 00H to FFH)
	LDB AND	%EXT,i [%Y],%	mm8 r	[F	Fin	nm8	8] ←	· [Ff	Fimi	m8]	∧ r	(F	Fim	m8	= F	FOC	0H + 00H to FFH)

AND [%ir]+,%r Logical AND of r reg. and location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir] \land r$, $ir \leftarrow ir + 1$

Performs a logical AND operation of the content of the r register (A or B) and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address. Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	AND [%X]+,%A	1	1	0	1	0	0	1	1	0	1	0	0	1	1A69H
	AND [%X]+,%B	1	1	0	1	0	0	1	1	0	1	1	0	1	1A6DH
	AND [%Y]+,%A	1	1	0	1	0	0	1	1	0	1	0	1	1	1A6BH
	AND [%Y]+,%B	1	1	0	1	0	0	1	1	0	1	1	1	1	1A6FH

Flags:	E	I	С	Z
	\rightarrow	-	-	\$

Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

AND [%ir],imm4 Logical AND of immediate data imm4 and location [ir reg.] 2 cycles

Function: [ir] ← [ir] ∧ imm4
Performs a logical AND operation of the 4-bit immediate data imm4 and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address.

Code:	Mnem	onic	MSE]	LSB	
	AND	[%X],imm4	1	1	0	1	0	0	0	0	0	i3	i2	i1	i0	1A00H–1A0FH
	AND	[%Y],imm4	1	1	0	1	0	0	0	1	0	i3	i2	i1	i0	1A20H–1A2FH
Flags:	E ↓	I C 		2												
Mode:	Src: Ii	nmediate data														
	Dst: R	legister indirec	t													
	Extend	ded addressing	g: Va	lid												
Extended operation:	LDB AND	%EXT,imm8 [%X],imm4	[0)0im	nm8]←	[00	imr	n8]	∧ in	nm4	4 (C)0im	ım8	5 = C	0000H + 00H to FFH)
	LDB AND	%EXT,imm8 [%Y],imm4	[F	Fin	nm8	6] ←	FF	-imi	m8]	∧ ir	nm	4 (FFir	nma	8 =	FF00H + 00H to FFH)

AND [%ir]+, imm4 Logical AND of immediate data imm4 and location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir] \land imm4, ir \leftarrow ir + 1$

Performs a logical AND operation of the 4-bit immediate data imm4 and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address. Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	AND [%X]+,imm4	1	1	0	1	0	0	0	0	1	i3	i2	i1	i0	1A10H–1A1FH
	AND [%Y]+,imm4	1	1	0	1	0	0	0	1	1	i3	i2	i1	i0	1A30H–1A3FH

Ζ

Flags: $E \mid C$

Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid

BIT %r,%r' Test bit of r reg. with r' reg.

Function: $r \wedge r'$

Performs a logical AND of the content of the r' register (A or B) and the content of the r register (A or B) to check the bits of the r register. The Z flag is changed due to the operation result, but the content of the register is not changed.

Code:	Mnen	noni	ic	1	MSB	5								-			LSB	
	BIT	%A	A,%A		1	1	0	1	0	1	1	1	1	0	0	0	Х	1AF0H, (1AF1H)
	BIT	%A	А,%В		1	1	0	1	0	1	1	1	1	0	0	1	Х	1AF2H, (1AF3H)
	BIT	%E	3,%A		1	1	0	1	0	1	1	1	1	0	1	0	Х	1AF4H, (1AF5H)
	BIT	%E	3,%B		1	1	0	1	0	1	1	1	1	0	1	1	Х	1AF6H, (1AF7H)
Flags:	E		Ι	С	Z	2												
	\downarrow		_	-														

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

BIT %r,imm4

Test bit of r reg. with immediate data imm4

1 cycle

Function: r ∧ imm4

Performs a logical AND of the 4-bit immediate data imm4 and the content of the r register (A or B) to check the bits of the r register. The Z flag is changed due to the operation result, but the content of the register is not changed.

Code:	Mnemonic	MSB	5											LSB	
	BIT %A,imm4	1	1	0	1	0	1	1	0	0	i3	i2	i1	i0	1AC0H-1ACFH
	BIT %B,imm4	1	1	0	1	0	1	1	0	1	i3	i2	i1	i0	1AD0H–1ADFH

Flags:	E	I	С	Z
	\downarrow	-	Ι	\$

Mode: Src: Immediate data Dst: Register direct Extended addressing: Invalid

BIT %r,[%ir]

Test bit of r reg. with location [ir reg.]

1 cycle

Function: $r \wedge [ir]$

Performs a logical AND of the content of the data memory addressed by the ir register (X or Y) and the content of the r register (A or B) to check the bits of the r register. The Z flag is changed due to the operation result, but the content of the register is not changed.

Code:	Mnemo	onic]	MSB												LSB	
	BIT %	6A,[%X]		1	1	0	1	0	1	1	1	0	0	0	0	0	1AE0H
	BIT %	%A,[%Y]		1	1	0	1	0	1	1	1	0	0	0	1	0	1AE2H
	BIT 9	6B,[%X]		1	1	0	1	0	1	1	1	0	0	1	0	0	1AE4H
	BIT 9	6B,[%Y]		1	1	0	1	0	1	1	1	0	0	1	1	0	1AE6H
Flags:	E	I	С	Z	<u>z</u>												
	\downarrow	-	-	1													
Mode:	Src: R	egister i	ndirect	:													
	Dst: R	egister d	lirect														
	Extend	led addı	ressing	: Va	lid												
Extended	LDB	%EXT.i	mm8														
operation:	BIT	%r,[%X]	r	^ [C	0im	nm8] (C	0im	nm8	= 0	000	он -	+ 00)H t	o Fl	FH)
	LDB	%EXT,i	mm8														
	BIT	%r,[%Y]	r	∧ [F	Fin	nm8	5] (F	Fir	nm8	3 =	FFC	0H	+ 0	0H	to F	FH)

BIT %r,[%ir]+ Test bit of r reg. with location [ir reg.] and increment ir reg. 1 cycle

Function: $r \land [ir]$, $ir \leftarrow ir + 1$

Performs a logical AND of the content of the data memory addressed by the ir register (X or Y) and the content of the r register (A or B) to check the bits of the r register. The Z flag is changed due to the operation result, but the content of the register is not changed. Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	BIT %A,[%X]+	1	1	0	1	0	1	1	1	0	0	0	0	1	1AE1H
	BIT %A,[%Y]+	1	1	0	1	0	1	1	1	0	0	0	1	1	1AE3H
	BIT %B,[%X]+	1	1	0	1	0	1	1	1	0	0	1	0	1	1AE5H
	BIT %B,[%Y]+	1	1	0	1	0	1	1	1	0	0	1	1	1	1AE7H

Flags: E ↓

Mode:	Src: Register indirect
	Dst: Register direct
	Extended addressing: Invalid

С

BIT [%ir],%r Test bit of location [ir reg.] with r reg.

Function: $[ir] \land r$

Performs a logical AND of the content of the r register (A or B) and the content of the data memory addressed by the ir register (X or Y) to check the bits of the memory. The Z flag is changed due to the operation result, but the content of the memory is not changed.

Code:	Mnem	onic	1	MSB												LSB	
	BIT [%X],%A		1	1	0	1	0	1	1	1	0	1	0	0	0	1AE8H
	BIT [%X],%B		1	1	0	1	0	1	1	1	0	1	1	0	0	1AECH
	BIT [%Y],%A		1	1	0	1	0	1	1	1	0	1	0	1	0	1AEAH
	BIT [%Y],%B		1	1	0	1	0	1	1	1	0	1	1	1	0	1AEEH
Flags:	E ↓	 -	C -	2	<u>7</u>												
Mode:	Src: R Dst: R Extend	legister d legister i ded addr	lirect ndirect ressing	t : Va	lid												
Extended operation:	LDB BIT	%EXT,ii [%X],%	mm8 r	[0)0in	nm8] ^ [r (C	00im	nm8	5 = C	000	DH -	+ 00)H t	o Fl	FH)
	LDB BIT	%EXT,ii [%Y],%i	mm8 r	[F	Fin	nm8	8] ^	r (F	Fir	nm8	3 =	FFC	0H	+ 0	OН	to F	FH)

BIT [%ir]+,%r Test bit of location [ir reg.] with r reg. and increment ir reg. 1 cycle

Function: $[ir] \land r, ir \leftarrow ir + 1$

Е

 \downarrow

Performs a logical AND of the content of the r register (A or B) and the content of the data memory addressed by the ir register (X or Y) to check the bits of the memory. The Z flag is changed due to the operation result, but the content of the memory is not changed. Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	BIT [%X]+,%A	1	1	0	1	0	1	1	1	0	1	0	0	1	1AE9H
	BIT [%X]+,%B	1	1	0	1	0	1	1	1	0	1	1	0	1	1AEDH
	BIT [%Y]+,%A	1	1	0	1	0	1	1	1	0	1	0	1	1	1AEBH
	BIT [%Y]+,%B	1	1	0	1	0	1	1	1	0	1	1	1	1	1AEFH

Flags:

I C

Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

BIT [%ir],imm4 Test bit of location [ir reg.] with immediate data imm4

1 cycle

Function: [ir] \land imm4

Performs a logical AND of the 4-bit immediate data imm4 and the content of the data memory addressed by the ir register (X or Y) to check the bits of the memory. The Z flag is changed due to the operation result, but the content of the memory is not changed.

Code:	Mnemo	onic	MSE	3]	LSB	
	BIT [%X],imm4	1	1	0	1	0	1	0	0	0	i3	i2	i1	i0	1A80H–1A8FH
	BIT [%Y],imm4	1	1	0	1	0	1	0	1	0	i3	i2	i1	i0	1AA0H–1AAFH
Flags:	E ↓	I C 		<u>Z</u> ↓												
Mode:	Src: Ir Dst: R Extenc	nmediate data egister indirec led addressing	t g: Va	alid												
Extended operation:	LDB BIT	%EXT,imm8 [%X],imm4	[(00im	nm8] ^ i	imm	n4 ((00iı	mm	8 =	000	00H	+ (юн	to FFH)
	LDB BIT	%EXT,imm8 [%Y],imm4	[Fin	nm8] ^	imn	า4	(FFi	mm	18 =	FF	00F	+ +	00H	l to FFH)

BIT [%ir]+, imm4 Test bit of location [ir reg.] with immediate data imm4 and increment ir reg. 1 cycle

Function: $[ir] \land imm4, ir \leftarrow ir + 1$

Performs a logical AND of the 4-bit immediate data imm4 and the content of the data memory addressed by the ir register (X or Y) to check the bits of the memory. The Z flag is changed due to the operation result, but the content of the memory is not changed. Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	BIT [%X]+,imm4	1	1	0	1	0	1	0	0	1	i3	i2	i1	i0	1A90H–1A9FH
	BIT [%Y]+,imm4	1	1	0	1	0	1	0	1	1	i3	i2	i1	i0	1AB0H–1ABFH

Flags:EICZ \downarrow -- \uparrow

Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid

CALR	[addr6] Call subroutine at relative location [addr6]	2 cycles
Function:	I: ([(SP1-1)*4+3]~[(SP1-1)*4]) ← PC + 1, SP1 ← SP1 - 1, PC ← PC + [addr6] + 1 (addr6 = 0000H-003FH) Saves the address next to this instruction to the stack as a return address, then of the data memory (0000H-003FH) specified with the addr6 to that address to call the subroutine started from the address. Branch destination range is the net this instruction +0 to 15.	adds the content o unconditionally ext address of
Code:	Mnemonic MSB LSB CALR [addr6] 1 1 1 0 0 a5 a4 a3 a2 a1 a0 1F00H–1F	3FH
Flags:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Mode:	6-bit absolute	

Extended addressing: Invalid

CALR sign8 *Call subroutine at relative location sign8*

1 cycle

Function: ([(SP1-1)*4+3]~[(SP1-1)*4]) ← PC + 1, SP1 ← SP1 - 1, PC ← PC + sign8 + 1 (sign8 = -128~127) Saves the address next to this instruction to the stack as a return address, then adds the related address specified with the sign8 to that address to unconditionally call the subroutine started from the address. Branch destination range is the next address of this instruction -128 to +127.

Code:	Mnemo	nic	1	MSB												LSB			
	CALR	sign8		0	0	0	1	0	s7	s6	s5	s4	s3	s2	s1	s0	0200H-	02FFH	
Flags:	E ↓	 _	C -	2	-														
Mode:	Signed Extend	8-bit P ed addi	C relati ressing	ve : Va	lid														
Extended operation:	LDB CALR	%EXT,i sign8	mm8	([P (s	(SP C ← sign	1-1 - P(16 =)*4- C + = -3	+3]- sigi 276	-[(S n16 58 to	P1- + 1 5 32	1)*4 767	4]) ∢ 7, up	⊱ P	'C + r 8-l	- 1, bit:	SP1 imm	← SP1 8, lower	- 1, 8-bit: siç	ın8)

CALZ imm8 Call subroutine at location imm8

Function: ([(SP1-1)*4+3]~[(SP1-1)*4]) ← PC + 1, SP1 ← SP1 - 1, PC ← imm8 Saves the address next to this instruction to the stack as a return address, then unconditionally calls the subroutine started from the address (0000H–00FFH) specified with the imm8.

Code:	Mnemo	nic]	MSE	8											LSB	
	CALZ	imm8		0	0	0	1	1	i7	i6	i5	i4	i3	i2	i1	i0	0300H-03FFH
Flags:	E	Ι	С	Z	Z												
-	\downarrow	-	-	-	-												

Mode: Immediate data Extended addressing: Invalid

CLR [addr6], imm2 Clear bit imm2 in location [addr6]

2 cycles

Function: [addr6] ← [addr6] ∧ not (2^{imm2}) (addr6 = 0000H–003FH or FFC0H–FFFFH) Clears the bit specified with the imm2 in the data memory specified with the addr6 to "0".

Code:	Mnemonic	MSB												LSB	
	CLR [00addr6],imm2	1	0	1	0	0	i1	i0	a5	a4	a3	a2	a1	a0	1400H–14FFH
	CLR [FFaddr6],imm2	1	0	1	0	1	i1	i0	a5	a4	a3	a2	a1	a0	1500H–15FFH

Flags:	Е	_	С	Z
	\downarrow	_	_	\$

Mode: Src: Immediate data Dst: 6-bit absolute Extended addressing: Invalid

CMP %r,%r' Compare r

Extended addressing: Invalid

Function: r - r'

Subtracts the content of the r' register (A or B) from the content of the r register (A or B). It changes the flags (Z and C), but does not change the content of the register.

Code:	Mnem	onic		MSE	3											LSB	
	CMP	%A,%A	4	1	1	1	1	0	0	1	1	1	X	0	0	0	1E70H, (1E78H)
	CMP	%A,%E	3	1	1	1	1	0	0	1	1	1	Х	0	1	0	1E72H, (1E7AH)
	CMP	%B,%A	٩	1	1	1	1	0	0	1	1	1	Х	1	0	0	1E74H, (1E7CH)
	CMP	%B,%E	3	1	1	1	1	0	0	1	1	1	Х	1	1	0	1E76H, (1E7EH)
		1 -	-														
Flags:	E		C	2	<u> </u>												
	\downarrow	_	1		\$	(r	≠ r')									
	\downarrow	-	\downarrow		<u>↑</u>	(r	= r')									
Mode:	Src: F	Register	direct														
	Dst: F	Register	direct														

СМР	%r,imm4	
-----	---------	--

Compare r reg. with immediate data imm4

1 cycle

Function: r - imm4

Subtracts the 4-bit immediate data imm4 from the content of the r register (A or B). It changes the flags (Z and C), but does not change the content of the register.

Code:	Mnemonic	MSE	3											LSB	
	CMP %A,imm4	1	1	1	1	0	0	1	0	0	i3	i2	i1	i0	1E40H–1E4FH
	CMP %B,imm4	1	1	1	1	0	0	1	0	1	i3	i2	i1	i0	1E50H-1E5FH

Flags:EICZ \downarrow - \updownarrow \updownarrow

Mode: Src: Immediate data Dst: Register direct Extended addressing: Invalid

CMP %r,[%ir] Compare r reg. with location [ir reg.]

1 cycle

Function: r - [ir]

Subtracts the content of the data memory addressed by the ir register (X or Y) from the content of the r register (A or B). It changes the flags (Z and C), but does not change the content of the register.

Code:	Mnemo	onic]	MSB												LSB	
	CMP	%A,[%)	<]	1	1	1	1	0	0	1	1	0	0	0	0	0	1E60H
	CMP	%A,[%`	[]	1	1	1	1	0	0	1	1	0	0	0	1	0	1E62H
	CMP	%B,[%)	(]	1	1	1	1	0	0	1	1	0	0	1	0	0	1E64H
	CMP	%B,[%`	[]	1	1	1	1	0	0	1	1	0	0	1	1	0	1E66H
Flags:	E ↓	 _	C ¢	Z	7												
Mode:	Src: R Dst: R Extenc	egister i egister o led addi	ndirect lirect ressing	t : Va	lid												
Extended operation:	LDB CMP	%EXT,i %r,[%X	mm8]	r	- [0	Dim	m8]	(0	0im	m8	= 0	000	H +	00	H to	o FF	ΈH)
	CMP	%EX1,i %r,[%Y	mm8]	r	- (F	Fim	m8]	(F	Fim	ım8	= F	F0	οн -	+ 00)H t	o F	FH)

СМР	%r,[%ir]+	Compare r reg.	with location [ir reg.] and	increment ir reg.	1 cycle
-----	-----------	----------------	-----------------	--------------	-------------------	---------

Function: r - [ir], $ir \leftarrow ir + 1$

Subtracts the content of the data memory addressed by the ir register (X or Y) from the content of the r register (A or B). It changes the flags (Z and C), but does not change the content of the register. Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	8											LSB	
	CMP %A,[%X]+	1	1	1	1	0	0	1	1	0	0	0	0	1	1E61H
	CMP %A,[%Y]+	1	1	1	1	0	0	1	1	0	0	0	1	1	1E63H
	CMP %B,[%X]+	1	1	1	1	0	0	1	1	0	0	1	0	1	1E65H
	CMP %B,[%Y]+	1	1	1	1	0	0	1	1	0	0	1	1	1	1E67H

Flags:	E	I	С	Z
	J.	_	↑	↑

Mode: Src: Register indirect Dst: Register direct Extended addressing: Invalid

CMP [%ir],%r Compare location [ir reg.] with r reg.

Function: [ir] - r

Subtracts the content of the r register (A or B) from the content of the data memory addressed by the ir register (X or Y). It changes the flags (Z and C), but does not change the content of the memory.

Code:	Mnemo	onic]	MSE	3											LSB	
	CMP	[%X],%	A	1	1	1	1	0	0	1	1	0	1	0	0	0	1E68H
	CMP	[%X],%	В	1	1	1	1	0	0	1	1	0	1	1	0	0	1E6CH
	CMP	[%Y],%	A	1	1	1	1	0	0	1	1	0	1	0	1	0	1E6AH
	CMP	[%Y],%	В	1	1	1	1	0	0	1	1	0	1	1	1	0	1E6EH
Flags	F		C	-	7												
rugs.			 ↑		•												
	¥		*	<u> </u>	*												
Mode:	Src: R	egister o	direct														
	Dst: R	egister i	ndirec	t													
	Extend	led add	ressing	: Va	lid												
E	ם ו																
				10	<u>،</u>				0:m	~ 0	~	000	ы.	00	Ц +/		-11)
operation:	CIVIP	[%X],%	of in the second s	ĮC	JUIT	ima	5] - I	(0	Um	mø	= 0	000	H +	- 00	нι)	·H)
	LDB	%EXT,i	mm8														
	CMP	[%Y],%	r	[F	Fin	nm8	3] - I	r (F	Fim	nm8	= F	F0	0H ·	+ 00	DH t	o F	FH)

CMP	[%ir]+,%r	Compare location [ir reg.] with r reg. and increment ir reg.	1 cycle
• · · · ·	_ /•··· 」 ·//•·		

Function: [ir] - r, ir \leftarrow ir + 1

Subtracts the content of the r register (A or B) from the content of the data memory addressed by the ir register (X or Y). It changes the flags (Z and C), but does not change the content of the memory. Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	8											LSB	
	CMP [%X]+,%A	1	1	1	1	0	0	1	1	0	1	0	0	1	1E69H
	CMP [%X]+,%B	1	1	1	1	0	0	1	1	0	1	1	0	1	1E6DH
	CMP [%Y]+,%A	1	1	1	1	0	0	1	1	0	1	0	1	1	1E6BH
	CMP [%Y]+,%B	1	1	1	1	0	0	1	1	0	1	1	1	1	1E6FH

Flags:	E	I	С	Z
	\rightarrow	—	\$	\leftrightarrow

Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

CMP [%ir],imm4 Compare location [ir reg.] with immediate data imm4

1 cycle

Function:	[ir] - i1	nm4															
	Subtra	cts the 4-bit im	me	diat	e da	ata i	imn	14 f	rom	the	e co	ntei	nt o	f th	e da	ta memory addressed b	уy
	the ir i	register (X or Y)	. It	cha	nge	s th	ne fl	ags	(Z	and	C),	bu	t do	es 1	not d	change the content of th	é
	memo	rv			0			0	`		- //					0	
	memo	- y.															
Code:	Mnem	onic N	ЛSB												LSB		
	CMP	[%X],imm4	1	1	1	1	0	0	0	0	0	i3	i2	i1	i0	1E00H–1E0FH	
	CMP	' [%Y],imm4 1 1 1 1 0 0 0 1 0 i3 i2 i1 i0 1E20H–1E2FH															
	E I C Z																
Flags:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																
	\downarrow	\downarrow – \uparrow \uparrow															
Mode:	Src: Immediate data																
	Dst: R	egister indirect															
	Extend	ded addressing:	Va	lid													
		0															
Extended	LDB	%EXT,imm8															
operation:	CMP	[%X],imm4	[0	0im	m8] - i	mm	4 (00ir	nm8	3 =	000	OН	+ 0	0H 1	to FFH)	
	LDB	%EXT.imm8															
	CMP	[%Y],imm4	[F	Fim	nm8] - i	mm	4 (FFi	mm	8 =	FF	00H	+(юн	to FFH)	

CMP [%ir]+,imm4 Compare location [ir reg.] with immediate data imm4 and increment ir reg. 1 cycle

Function: [ir] - imm4, ir \leftarrow ir + 1

Subtracts the 4-bit immediate data imm4 from the content of the data memory addressed by the ir register (X or Y). It changes the flags (Z and C), but does not change the content of the memory. Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	CMP [%X]+,imm4	1	1	1	1	0	0	0	0	1	i3	i2	i1	i0	1E10H–1E1FH
	CMP [%Y]+,imm4	1	1	1	1	0	0	0	1	1	i3	i2	i1	i0	1E30H–1E3FH
	· · · · ·														

Flags:EIC \downarrow - \updownarrow

Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid

CMP %ir,imm8 Compare ir reg. with immediate data imm8

Function: ir - imm8

Subtracts the 8-bit immediate data imm8 from the content of the ir register (X or Y). It changes the flags (Z and C), but does not change the register.

Code:	Mnem	onic	Ν	ASB									LS	SB	
	CMP	%X,imm8		0	1	1	1	0	[FFH	-imm8]		0E00H-0EFFH
	CMP	%Y,imm8		0	1	1	1	1	[FFH	-imm8]		0F00H–0FFFH
Flags:	E ↓	(_ (C ¢	Z	7 										
Mode:	Src: In	nmediate d	lata												
	Dst: R	egister dire	ect												
	Extend	ded address	sing:	Va	lid										
Extended operation:	LDB CMP	%EXT,imn %ir,imm8'	n8	ir	- in	1m1	6 (upp	er 8-t	oit: F	FH	- imm8	, lowe	er 8	B-bit: imm8')

DEC [addr6] Decrement location [addr6]

2 cycles

Function: [addr6] ← [addr6] - 1 (addr6 = 0000H–003FH) Decrements (-1) the content of the data memory addressed by the addr6.

Code:	Mnemo	onic	1	MSE	3										-	LSB	
	DEC	[addr6]		1	0	0	0	0	0	0	а5	a4	a3	a2	a1	a0	1000H–103FH
Flags	F		C		7												
rugs.		1	0	4	_												
	\downarrow	-	\$		\$												

Mode: 6-bit absolute addressing Extended addressing: Invalid

DEC [ir],n4 Decrement location [ir] in specified radix

2 cycles

Function: [ir] ← N's adjust ([ir] - 1) Decrements (-1) the content of the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix.

Code:	Mnem	onic	MSB											LSB	
	DEC	[%X],n4	1 1	1	0	0	1	0	0	0	n3	n2	n1	n0	1C80H–1C8FH
	DEC	[%Y],n4	1 1	1	0	0	1	0	1	0	n3	n2	n1	n0	1CA0H-1CAFH
Flags:	E ↓	I C - ↓	Z ↓												
Mode:	Src: In Dst: R Extend	mmediate data Register indirec ded addressing	t ;: Valid												
Extended operation:	LDB DEC	%EXT,imm8 [%X],n4	[00im	nm8] ←	N's	s ad	ljust	([0	0im	ım8] - 1) (00im	nm8 = 0000H + 00H to FFH)
	LDB DEC	%EXT,imm8 [%Y],n4	[FFin	[FFimm8] ← N's adjust ([FFimm8] - 1) (FFimm8 = FF00H + 00H to FFH)											
Note:	n4 sho bits of	ould be specifie the machine c	d with ode (n3	a va -n0	alue) be	fro con	m 1 ne 0	l to 0000	16. ^v B.	Wh	en 1	l6 is	s sp	ecifi	ed for n4, the low-order 4

DEC [ir]+,n4	Decrement location [ir] in specified radix and increment ir reg.	2 cycles
--------------	--	----------

Function: $[ir] \leftarrow N's$ adjust ([ir] - 1), ir \leftarrow ir + 1

Decrements (-1) the content of the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSB		LSB
	DEC [%X]+,n4	1 1 '	1 0 0 1 0	0 1 n3 n2 n1 n0 1C90H–1C9FH
	DEC [%Y]+,n4	1 1 [·]	1 0 0 1 0) 1 1 n3 n2 n1 n0 1CB0H–1CBFH
Flags	E I C	7		

- Flags: $\begin{array}{c|c} E & I & C & Z \\ \hline \downarrow & & \uparrow & \uparrow \end{array}$
- Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid
- *Note:* n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4 bits of the machine code (n3–n0) become 0000B.

DEC %sp Decrement stack pointer

Function: $sp \leftarrow sp - 1$

Decrements (-1) the content of the stack pointer sp (SP1 or SP2). This instruction does not change the C flag regardless of the operation result.

Code:	Mnem	onic		MSE	3											LSB	
	DEC	%SP1		1	1	1	1	1	1	1	1	0	0	0	0	0	1FE0H
	DEC	%SP2		1	1	1	1	1	1	1	1	0	0	1	0	0	1FE4H
						1											
Flags:	Ŀ		С	4	<u> </u>												
	\downarrow	-	—		\$												
Mode	Pogiet	or direct															

Mode: Register direct Extended addressing: Invalid

EX %A,%B	Exchange A reg. and B reg.	

1 cycle

Function: $A \leftrightarrow B$

Exchanges the contents of the A register and B register.

Code:	Mnemo	nic		MSI	3											LSB	
	EX %	A,%B		1	1	1	1	1	1	1	1	1	0	1	1	1	1FF7H
			1	_		7											
Flags:	E		С		Z												
	\downarrow	_	-	-	-												
Mode	Src: Re	orister	direct														
moue.	510. 10	Bister	uncer														
	Dst: Re	egister	direct														

Extended addressing: Invalid

EX %r,[%ir]

Exchange r reg. and location [ir reg.]

2 cycles

Function: $r \leftrightarrow [ir]$

Exchanges the contents of the r register (A or B) and data memory addressed by the ir register (X or Y).

Code:	Mnemo	onic	I	MSB												LSB	
	EX %	6A,[%X]		1	0	0	0	0	1	1	1	1	1	0	0	0	10F8H
	EX %	5A,[%Y]		1	0	0	0	0	1	1	1	1	1	0	1	0	10FAH
	EX %	6B,[%X]		1	0	0	0	0	1	1	1	1	1	1	0	0	10FCH
	EX %	5B,[%Y]		1	0	0	0	0	1	1	1	1	1	1	1	0	10FEH
Flags:	E ↓	 _	C -	Z	-												
Mode:	Src: Register indirect Dst: Register direct Extended addressing: Valid																
Extended operation:	LDB %EXT,imm8 $r \leftrightarrow [00imm8]$ (00imm8 = 0000H + 00H to FFH)																
	LDB EX	%EXT,i %r,[%Y	mm8]	r	↔[FFi	mm	8] ((FFi	mm	18 =	FF	00H	1+(00⊦	l to	FFH)

EX	%r,[%ir]+	Exchange r reg. and location [ir reg.] and increment ir reg.	2 cycles
----	-----------	--	----------

Function: $r \leftrightarrow [ir]$, $ir \leftarrow ir + 1$

Exchanges the contents of the r register (A or B) and data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE												LSB	
	EX %A,[%X]+	1	0	0	0	0	1	1	1	1	1	0	0	1	10F9H
	EX %A,[%Y]+	1	0	0	0	0	1	1	1	1	1	0	1	1	10FBH
	EX %B,[%X]+	1	0	0	0	0	1	1	1	1	1	1	0	1	10FDH
	EX %B,[%Y]+	1	0	0	0	0	1	1	1	1	1	1	1	1	10FFH

Flags:

Е		С	Z
\downarrow	-	-	-

Mode: Src: Register indirect Dst: Register direct Extended addressing: Invalid

HALTSet CPU to HALT mode

2 cycles

Function: Halt

Sets the CPU to HALT status.

The CPU stops operating, thus the power consumption is reduced. Peripheral circuits such as the oscillation circuit still operate.

An interrupt causes it to return from HALT status to the normal program execution status.

Code:	Mnemo	nic	1	MSB	3											LSB	
	HALT			1	1	1	1	1	1	1	1	1	1	1	0	0	1FFCH
			1														
Flags:	E		С	Z	Z												
	\downarrow	_	_	-	_												

INC [addr6]

Increment location [addr6]

2 cycles

Function: $[addr6] \leftarrow [addr6] + 1$

(addr6 = 0000H-003FH)

Increments (+1) the content of the data memory addressed by the addr6.

Code:	Mnemo	nic	1	MSB	;											LSB		
	INC [a	addr6]		1	0	0	0	0	0	1	a5	a4	a3	a2	a1	a0	1040H–107FH	
Flags	F	1	C	-	7													
rugs.	L	•	0	- 4	-													
	\downarrow	_	\$															

Mode: 6-bit absolute Extended addressing: Invalid

INC [ir],n4 Increment location [ir] in specified radix

2 cycles

Function: [ir] ← N's adjust ([ir] + 1) Increments (+1) the content of the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix.

Code:	Mnem	onic	MSI	3								LSB		
	INC	[%X],n4	1	1	1	0	1	1	0	0	0	[10H-n4]	1D80H–1D8FH	
	INC	[%Y],n4	1	1	1	0	1	1	0	1	0	[10H-n4]	1DA0H–1DAFH	
Flags:	E ↓	I C - ↓		Z ¢										
Mode:	Src: In Dst: R Extend	mmediate data Register indirec ded addressing	t : Va	alid										
Extended operation:	LDB INC LDB	%EXT,imm8 [%X],n4 %EXT,imm8	[(00in	nm8	6] ←	· N's	s ac	ljust	: ([0	0im	m8] + 1)(00ir	nm8 = 0000H + 00H to	FFH)
	INC	[%Y],n4	[FFin	nm8	8] ←	- N':	s ad	djus	t ([F	Fim	nm8] + 1)(FFi	mm8 = FF00H + 00H to	o FFH)
Note:	n4 shc	ould be specifie	d v	vith	a va	alue	e fro	m 1	l to	16.				

INC	[ir]+,n4	Increment location	[ir] in specifi	ied radix and	increment ir	reg.	2 cycles
-----	----------	--------------------	-----------------	---------------	--------------	------	----------

Function: $[ir] \leftarrow N's adjust ([ir] + 1), ir \leftarrow ir + 1$

Increments (+1) the content of the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemo	onic]	MSE	3								LSB	
	INC [%X]+,n	4	1	1	1	0	1	1	0	0	1	[10H-n4]	1D90H–1D9FH
	INC [%Y]+,n	4	1	1	1	0	1	1	0	1	1	[10H-n4]	1DB0H-1DBFH
Flags:	E		С		Z									
0	\downarrow	_	\$,	\$									

- *Mode:* Src: Immediate data Dst: Register indirect Extended addressing: Invalid
- *Note:* n4 should be specified with a value from 1 to 16.

INC %sp Increment stack pointer

Function: $sp \leftarrow sp + 1$

Increments (+1) the content of the stack pointer sp (SP1 or SP2). This instruction does not change the C flag regardless of the operation result.

Code:	Mnemo	onic		MSI	3	_	_	-		-	-		-			LSB	_
	INC 9	%SP1		1	1	1	1	1	1	1	1	0	1	0	0	0	1FE8H
	INC 9	%SP2		1	1	1	1	1	1	1	1	0	1	1	0	0	1FECH
		1	1			1											
Flags:	E		С		Ζ												
	\downarrow	-	-		\$												
Mode:	Regist	er direc	t														

Extended addressing: Invalid

Software interrupt

3 cycles

Function: $[SP2-1] \leftarrow F, SP2 \leftarrow SP2 - 1, ([(SP1-1)*4+3]~[(SP1-1)*4]) \leftarrow PC + 1, SP1 \leftarrow SP1 - 1, PC \leftarrow imm6$ (imm6 = 0100H-013FH)

Saves the content of the F register and the return address (this instruction address + 1) to the stack, then executes the software interrupt routine that starts from the vector address (0100H–013FH) specified by the imm6.

Code:	Mnemo	nic	1	MSE	8				-			-				LSB	
	INT ir	nm6		1	1	1	1	1	1	0	i5	i4	i3	i2	i1	i0	1F80H–1FBFH
Flags:	E	I	С		<u>z</u>												
Ū	\downarrow	_	_	-	-												

- *Mode:* Immediate data Extended addressing: Invalid
- *Note:* The RETI instruction, which returns the content of the F register, should be used for returning from the interrupt routine that is executed by this instruction.

JP %Y Indirect jump using Y reg.

1 cycle

Function: $PC \leftarrow Y$

Loads the content of the Y register into the PC to branch unconditionally.

Code:	Mnemo	nic		MSE	3											LSB	
	JP %`	Y		1	1	1	1	1	1	1	1	1	0	0	1	Х	1FF2H, (1FF3H)
Flags	F		С		7	1											
	\downarrow	_	-		_												
Mode:	Registe Extend	er direc ed add	t ressinį	g: In	vali	id											

JR %A

Jump to relative location A reg.

1 cycle

Function: $PC \leftarrow PC + A + 1$

Adds the content of the A register to the address next to this instruction, to unconditionally branch to that address. Branch destination range is the next address of this instruction +0 to 15.

Code:	Mnemo	nic	1	MSE	3											LSB	
	JR %	A		1	1	1	1	1	1	1	1	1	0	0	0	1	1FF1H
Flags:	E	I	С	Z	Z												
	\downarrow	_	-	-	-												

Mode:	Register direct
	Extended addressing: Invalid

JR %BA Jump to relative location BA reg.

Function: $PC \leftarrow PC + BA + 1$ Adds the content of the BA register to

Adds the content of the BA register to the address next to this instruction, to unconditionally branch to that address. Branch destination range is the next address of this instruction +0 to 255.

Code:	Mnemo	nic]	MSE	3				_			-	-			LSB	
	JR %	JR %BA			1	1	1	1	1	1	1	1	0	0	0	0	1FF0H
Flags:	E ↓	 _	C -	-	<u>Z</u>												
Mode:	Registe	ister direct															

Extended addressing: Invalid

JR [addr6]

Jump to relative location [addr6]

2 cycles

Function: $PC \leftarrow PC + [addr6] + 1 (addr6 = 0000H-003FH)$

Adds the content of the data memory (0000H–003FH) specified with the addr6 to the address next to this instruction , to unconditionally branch to that address. Branch destination range is the next address of this instruction +0 to 15.

Mnemor	nic]	MSB	5								-			LSB			
JR [ad	1	1	1	1	1	0	1	a5	a4	a3	a2	a1	a0	1F40H-	1F7FH			
	1	C	-	7														
E .	I	<u> </u>	<u> </u>	_														
\downarrow	_	_	-	-														
	Mnemor JR [ac E ↓	Mnemonic JR [addr6] E I ↓ -	Mnemonic I JR [addr6] E I C ↓ - -	Mnemonic MSB JR [addr6] 1 E I C 2 ↓ - - -	Mnemonic MSB JR [addr6] 1 1 E I C Z ↓ - - -	MnemonicMSBJR [addr6]111EICZ \downarrow	Mnemonic MSB JR [addr6] 1 1 1 1 E I C Z ↓ - - -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnemonicMSBJR [addr6]11110EICZ \downarrow	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mnemonic MSB JR [addr6] 1 1 1 1 0 1 a5 a4 E I C Z ↓ - - -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mnemonic MSB JR [addr6] 1 1 1 1 0 1 a5 a4 a3 a2 a1 E I C Z ↓ - - -	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mnemonic MSB LSB JR [addr6] 1 1 1 1 0 1 a5 a4 a3 a2 a1 a0 1F40H- E I C Z	Mnemonic MSB LSB JR [addr6] 1 1 1 1 0 1 a5 a4 a3 a2 a1 a0 1F40H−1F7FH E I C Z

Mode:	6-bit absolute
	Extended addressing: Invalid

JR sign8 Jump to relative location sign8

1 cycle

Function:	PC ← Adds t uncon instruc	PC + sign8 + the relative a ditionally br ction -128 to	- 1 (s iddre anch +127	ign8 ess sp to th	= -12 pecific nat ac	8~12 ed wi ldres	7) ith tl s. Bı	he s ranc	ign8 h de	8 to estii	the nati	adc on r	lres ang	s ne ge is	ext to this instruction, the next address of th	to nis
Code:	Mnemo JR si	onic gn8	MS 0	в 0	0	0 0	s7	s6	s5	s4	s3	s2	s1	LSB s0	0000H-00FFH	
Flags:	E ↓	I C		Z -												
Mode:	Signed Extend	l 8-bit PC rel led addressi	ative ng: V	alid												
Extended operation:	LDB JR	%EXT,imm8 sign8	3	PC ← (sign	– PC 16 =	+ sig -327	gn16 68 te	6 + 1 o 32	767	, up	ореі	• 8-t	oit: i	imm	8, lower 8-bit: sign8)	

JRC sign8 Jump to relative location sign8 if C flag is set	
--	--

1 cycle

Function:If C = 1 then PC \leftarrow PC + sign8 + 1 (sign8 = -128~127)Executes the "JR sign8" instruction if the C (carry) flag has been set to "1", otherwise executes
the next instruction.

Code:	Mnemo	Mnemonic														LSB	
	JRC s	JRC sign8				1	0	0	s7	s6	s5	s4	s3	s2	s1	s0	0400H–04FFH
Flags:	E		С		Z]											
0	\downarrow	_	-	-	_												
Mode:	Signed Extend	8-bit P ed add	alid														

Extended LDB %EXT,imm8

operation: JRC

sign8 If C = 1 then PC \leftarrow PC + sign16 + 1 (sign16 = -32768 to 32767, upper 8-bit: imm8, lower 8-bit: sign8)

JRNC sign8 Jump to relative location sign8 if C flag is reset

Function: If C = 0 then PC ← PC + sign8 + 1 (sign8 = -128~127) Executes the "JR sign8" instruction if the C (carry) flag has been reset to "0", otherwise executes the next instruction.

Code:	Mnemo	nic	1	MSB												LSB	
	JRNC	sign8		0	0	1	0	1	s7	s6	s5	s4	s3	s2	s1	s0	0500H-05FFH
Flags:	E ↓	 _	C -	Z -	-												
Mode:	Signed Extend	8-bit P0 ed addı	C relati ressing	ve : Va	lid												
Extended operation:	LDB JRNC	%EXT,ii sign8	mm8	lf (s	C =	= 0 t 16 =	:her = -3	n PC 276	C ← 68 to	PC 32	; + s 767	sign 7, up	16 - opei	+ 1 r 8-	bit:	imm	18, lower 8-bit: sign8)

JRNZ sign8	Jump to relative location sign8 if Z flag is reset	1 cycle
JRNZ sign8	Jump to relative location sign8 if Z flag is reset	1 cyc

Function: If Z = 0 then PC \leftarrow PC + sign8 + 1 (sign8 = -128~127) Executes the "JR sign8" instruction if the Z (zero) flag has been set to "1", otherwise executes the next instruction.

Code:	Mnemo	onic		MSE	3											LSB		
	JRNZ	sign8		0	0	1	1	1	s7	s6	s5	s4	s3	s2	s1	s0	0700H–07FFH	
Flags:	E	I	С		Z													
	\downarrow	-	-	-	-													
Mode:	Signed Extend	l 8-bit P led add																
Extended	LDB	%EXT.i																

operation: JRNZ sign8 If Z = 0 then PC \leftarrow PC + sign16 + 1 (sign16 = -32768 to 32767, upper 8-bit: imm8, lower 8-bit: sign8)

1 cycle

JRZ sign8 Jump to relative location sign8 if Z flag is set

1 cycle

Function:If Z = 1 then PC \leftarrow PC + sign8 + 1 (sign8 = -128~127)Executes the "JR sign8" instruction if the Z (zero) flag has been reset to "0", otherwise executes
the next instruction.

Code:	Mnemo	onic	Ν	ASB]	LSB		
	JRZ s	sign8		0 0	1	1	0	s7	s6	s5	s4	s3	s2	s1	s0	0600H-06FFH]
Flags:	E		С	Z	1												
	\downarrow	-	-	_													
Mode:	Signed Extend	l 8-bit P led add:	C relati ressing:	ve : Valid	_												
Extended operation:	LDB JRZ	%EXT,i sign8	= 1 t n16 =	hen = -3	PC 276	; ← 68 to	PC 32	+ s 767	ign′ ′, up	16 + oper	- 1 · 8-ł	oit: i	imm	8, lower 8-bit: sign8)		

Load r' reg. into r reg.

1 cycle

Function: $r \leftarrow r'$

Loads the content of the r' register (A, B or F) into the r register (A, B or F).

Code:	Mnemonic	MSE												LSB	
	LD %A,%A	1	1	1	1	0	1	1	1	1	0	0	0	0	1EF0H
	LD %A,%B	1	1	1	1	0	1	1	1	1	0	0	1	0	1EF2H
	LD %A,%F	1	1	1	1	1	1	1	1	1	0	1	1	0	1FF6H
	LD %B,%A	1	1	1	1	0	1	1	1	1	0	1	0	0	1EF4H
	LD %B,%B	1	1	1	1	0	1	1	1	1	0	1	1	0	1EF6H
	LD %F,%A	1	1	1	1	1	1	1	1	1	0	1	0	1	1FF5H

Flags:

L			2	
\downarrow	-	_	_	
\$	\leftrightarrow	\$	\$	(r = F)

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

LD %r,imm4 Load immediate data imm4 into r reg.

1 cycle

Function: $r \leftarrow imm4$

Loads the 4-bit immediate data imm4 into the r register (A, B or F).

Code:	Mnemo	nic		MSE	3											LSB	
	LD %	A,imm4	ļ	1	1	1	1	0	1	1	0	0	i3	i2	i1	i0	1EC0H-1ECFH
	LD %	B,imm4	ŀ	1	1	1	1	0	1	1	0	1	i3	i2	i1	i0	1ED0H-1EDFH
	LD %	F,imm4		1	0	0	0	0	1	0	1	1	i3	i2	i1	i0	10B0H–10BFH
Flags:	E		С	2	<u>z</u>												
	\downarrow	-	_	-	-												
	\$	\$	↔		\$	(r	= F)									
Mode:	Src: In	nmedia	te data			-											
	Dst: Re	egister o	direct														
	Extend	led add	d														

LD %r,[%ir]

Load location [ir reg.] into r reg.

1 cycle

Function: $r \leftarrow [ir]$

Loads the content of the data memory addressed by the ir register (X or Y) into the r register (A or B).

Code:	Mnemo	onic	1	MSB	6											LSB	
	LD %	5A,[%X]		1	1	1	1	0	1	1	1	0	0	0	0	0	1EE0H
	LD %	6A,[%Y]		1	1	1	1	0	1	1	1	0	0	0	1	0	1EE2H
	LD %	6B,[%X]		1	1	1	1	0	1	1	1	0	0	1	0	0	1EE4H
	LD %	5B,[%Y]		1	1	1	1	0	1	1	1	0	0	1	1	0	1EE6H
E1				-	7												
Flags:	E		U	<u> </u>	<u></u>												
	\downarrow	-	-	-	-												
Mode:	Src: R	egister i	ndirect	t													
	Dst: R	egister o	direct														
	Extend	ded add	ressing	: Va	lid												
			-														
Extended	LDB	%EXI,i	mm8		_											_	
operation:	LD	%r,[%X]	r	←[00ir	nm	8] (00ir	nm	8 =	000	00H	+ 0	0H	to F	FFH)
	LDB	%EXT,i	mm8														
	LD	%r,[%Y]	r	← [FFir	nm	8] (FFi	mm	18 =	FF	00+	1+(00H	l to	FFH)

LD %r,[%ir]+ Load location [ir reg.] into r reg. and increment ir reg.

1 cycle

Function: $r \leftarrow [ir]$, $ir \leftarrow ir + 1$

Loads the content of the data memory addressed by the ir register (X or Y) into the r register (A or B). Then increments the ir register (X or Y).

Code:	Mnemo	nic	1	MSE	8											LSB	
	LD %	A,[%X]·	+	1	1	1	1	0	1	1	1	0	0	0	0	1	1EE1H
	LD %	A,[%Y]·	+	1	1	1	1	0	1	1	1	0	0	0	1	1	1EE3H
	LD %	B,[%X]·	+	1	1	1	1	0	1	1	1	0	0	1	0	1	1EE5H
	LD %	B,[%Y]·	+	1	1	1	1	0	1	1	1	0	0	1	1	1	1EE7H
F 1			<u> </u>	-	7												
Flags:	E		U	4	<u></u>												
	\leftarrow	-	-	-	-												

Mode: Src: Register indirect Dst: Register direct Extended addressing: Invalid

LD [%ir],%r

Load r reg. into location [ir reg.]

1 cycle

Function: $[ir] \leftarrow r$

Loads the content of the r register (A or B) into the data memory addressed by the ir register (X or Y).

Code:	Mnem	onic]	MSB												LSB	
	LD [%X],%A		1	1	1	1	0	1	1	1	0	1	0	0	0	1EE8H
	LD [%X],%B		1	1	1	1	0	1	1	1	0	1	1	0	0	1EECH
	LD [%Y],%A		1	1	1	1	0	1	1	1	0	1	0	1	0	1EEAH
	LD [%Y],%B		1	1	1	1	0	1	1	1	0	1	1	1	0	1EEEH
Flags:	E ↓	 -	C -	2	-												
Mode:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
Extended operation:	LDB LD	%EXT,i [%X],%	mm8 sr	[0)0im	nm8	8] ←	·r (00ir	nm	8 =	000	00H	+ 0	юн	to F	FH)
	LDB LD	%EXT,i [%Y],%	mm8 sr	[F	Fin	าฑช	8] ←	-r (FFi	mm	8 =	FF	00F	1+0	00H	to	FFH)

LD [%ir]+,%r Load r reg. into location [ir reg.] and increment ir reg.

1 cycle

Function: $[ir] \leftarrow r$, $ir \leftarrow ir + 1$

Loads the content of the r register (A or B) into the data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y).

Code:	Mnemo	nic		MSI	3											LSB	
	LD [%	6X]+,%/	A	1	1	1	1	0	1	1	1	0	1	0	0	1	1EE9H
	LD [%	6X]+,%l	В	1	1	1	1	0	1	1	1	0	1	1	0	1	1EEDH
	LD [%	6Y]+,%/	A	1	1	1	1	0	1	1	1	0	1	0	1	1	1EEBH
	LD [%	6Y]+,%I	В	1	1	1	1	0	1	1	1	0	1	1	1	1	1EEFH
F 1			<u> </u>		7	1											
Flags:	E	1		4	<u> </u>												
	\downarrow	-	-	-	_												
Mode:	Src: Re	- gister	direct														

Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

LD [%ir],imm4 Load immediate data imm4 into location [ir reg.]

1 cycle

Function: $[ir] \leftarrow imm4$

Loads the 4-bit immediate data imm4 into the data memory addressed by the ir register (X or Y).

Code:	Mnem	onic	1	MSE	;											LSB	
	LD [9	%X],imm	14	1	1	1	1	0	1	0	0	0	i3	i2	i1	i0	1E80H–1E8FH
	LD [9	%Y],imm	14	1	1	1	1	0	1	0	1	0	i3	i2	i1	i0	1EA0H–1EAFH
Flags:	E ↓	 -	C -	-	<u>7</u> -												
Mode:	E I C Z \downarrow - - - Src: Immediate data Dst: Register indirect Extended addressing: Valid																
Extended operation:	LDB LD	%EXT,i [%X],im	mm8 nm4	[()0in	nm8] ←	im	m4	(00	imn	n8 =	= 00	00H	+ ۱	00H	to FFH)
	LDB LD	%EXT,i [%Y].im	mm8 1m4	ſF	Fin	nm8	81 ←	· im	m4	(FF	- imr	m8	= Fl	F00	Н+	· 00	H to FFH)

LD [%ir]+,imm4 Load immediate data imm4 into location [ir reg.] and increment ir reg. 1 cycle

Function: $[ir] \leftarrow imm4$, $ir \leftarrow ir + 1$

Loads the 4-bit immediate data imm4 into the data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y).

Code:	Mnemo	nic		MSE	3											LSB	
	LD [%	X]+,im	m4	1	1	1	1	0	1	0	0	1	i3	i2	i1	i0	1E90H–1E9FH
	LD [%	Y]+,im	m4	1	1	1	1	0	1	0	1	1	i3	i2	i1	i0	1EB0H–1EBFH
			-	_	_												
Flags:	E		С	2	<u> </u>												
	\downarrow	—	—	-	-												

Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid

LD [%ir],[%ir'] Load location [ir' reg.] into location [ir reg.]

2 cycles

Function: $[ir] \leftarrow [ir']$

Loads the content of the data memory addressed by the ir' register (X or Y) into the data memory addressed by the ir register (Y or X).

Code:	Mnemo	nic]	MSE	3											LSB	
	LD [%	5X],[%Y]	1	1	1	1	0	1	1	1	1	1	0	1	0	1EFAH
	LD [%	5Y],[%X	[]	1	1	1	1	0	1	1	1	1	1	0	0	0	1EF8H
Flags	F	I	C	-	7												
rugs.	<u> </u>	•	<u> </u>	- 4	-												
	$ \downarrow$	-	—	-	-												

Mode: Src: Register indirect Dst: Register indirect Extended addressing: Invalid

LD [%ir],[%ir']+ Load location [ir' reg.] into location [ir reg.] and increment ir' reg. 2 cycles

Function: [ir] ← [ir'], ir' ← ir' + 1 Loads the content of the data memory addressed by the ir' register (X or Y) into the data memory addressed by the ir register (Y or X). Then increments the ir' register (Y or X).

Code:	Mnemo	onic		MSE	3											LSB	
	LD [%	6X],[%Υ	/]+	1	1	1	1	0	1	1	1	1	1	0	1	1	1EFBH
	LD [%	ώY],[%λ	(]+	1	1	1	1	0	1	1	1	1	1	0	0	1	1EF9H
Flags:	E ↓	 _	C -	-	<u>Z</u>												
Mode:	Src: Re Dst: Re Extend	egister egister led add	indirec indirec ressing	t t ;: In	vali	d											

LD [%ir]+,[%ir'] Load location [ir' reg.] into location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir'], ir \leftarrow ir + 1$

Loads the content of the data memory addressed by the ir' register (X or Y) into the data memory addressed by the ir register (Y or X). Then increments the ir register (X or Y).

Code:	Mnemonic	MSE	3											LSB	
	LD [%X]+,[%Y]	1	1	1	1	0	1	1	1	1	1	1	1	0	1EFEH
	LD [%Y]+,[%X]	1	1	1	1	0	1	1	1	1	1	1	0	0	1EFCH
			-												

Flags:EICZ \downarrow ---

Mode: Src: Register indirect Dst: Register indirect Extended addressing: Invalid
LD [%ir]+,[%ir']+ Load location [ir' reg.] into location [ir reg.] and increment ir and ir' reg. 2 cycles

Function: $[ir] \leftarrow [ir'], ir \leftarrow ir + 1, ir' \leftarrow ir' + 1$

Loads the content of the data memory addressed by the ir' register (X or Y) into the data memory addressed by the ir register (Y or X). Then increments both the ir and ir' registers.

Code:	Mnemo	nic		MSI	3											LSB	
	LD [%	5X]+,[%	Y]+	1	1	1	1	0	1	1	1	1	1	1	1	1	1EFFH
	LD [%	6Y]+,[%	X]+	1	1	1	1	0	1	1	1	1	1	1	0	1	1EFDH
Flags:	E	I	С		Z												
	\downarrow	-	-	-	-												
Mode:	Src: Re	egister	indirec	t													
	Dst [.] Re	orister	indirec	t													

Extended addressing: Invalid

LDB %BA, imm8 Load immediate data imm8 into BA reg.

1 cycle

Function: $BA \leftarrow imm8$

Loads the 8-bit immediate data imm8 into the BA register.

Code: Mnemonic MSB LSB 0 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0 0900H–09FFH LDB %BA,imm8 1 Flags: Е С Ζ T \downarrow _ _

Mode: Src: Immediate data Dst: Register direct Extended addressing: Invalid

LDB %BA,[%ir]+ Load location [ir reg.] into BA reg. and increment ir reg.

Function: $A \leftarrow [ir], B \leftarrow [ir + 1], ir \leftarrow ir + 2$ Loads the 2-word data in the data memory into the BA register. The content of the datamemory addressed by the ir register (X or Y) is loaded into the A register as the low-order 4bits, and the content of the next address is loaded into the B register as the high-order 4 bits.The ir register (X or Y) is incremented by 2 words.

Code:	Mnemo	onic		MSE	3			_	-	-						LSB	
	LDB	%BA,[%	6X]+	1	1	1	1	1	1	1	0	1	1	0	0	0	1FD8H
	LDB	%BA,[%	6Y]+	1	1	1	1	1	1	1	0	1	1	0	1	0	1FDAH
		1				1											
Flags:	E	E I C			<u>z</u>												
	\downarrow	-	-	-	-												
	6 D	•															
Mode:	Src: R	egister	indirec	t													
	Det R	onictor	direct														

Dst: Register direct Extended addressing: Invalid

LDB %BA,%EXT Load EXT reg. into BA reg.

1 cycle

2 cycles

Function: $BA \leftarrow EXT$

Loads the content of the EXT register into the BA register.

				LSD	
	LDB %BA,%EXT	1 1 1 1 1	1 1 0 1	0 1 1 X	1FD6H, (1FD7H)
Flags:	E I C	Z			
	\downarrow – –	-			
Mode:	Src: Register direct	:			
Flags: Mode:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Z –			

Dst: Register direct Extended addressing: Invalid

LDB %BA,%rr Load rr reg. into BA reg.

1 cycle

Function: $BA \leftarrow rr$

Loads the content of the rr register (XL, XH, YL or YH) into the BA register.

Code:	Mnemo	nic		MSE	3											LSB	
	LDB 9	%BA,%	XL	1	1	1	1	1	1	1	0	0	1	0	0	0	1FC8H
	LDB 9	%BA,%	ХН	1	1	1	1	1	1	1	0	0	1	0	0	1	1FC9H
	LDB 9	%BA,%	YL	1	1	1	1	1	1	1	0	0	1	0	1	0	1FCAH
	LDB 9	%BA,%	YH	1	1	1	1	1	1	1	0	0	1	0	1	1	1FCBH
Flags:	E	I	С		Ζ												
	\downarrow	-	-	-	-												
Mode:	Src: Re	egister (direct														

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

LDB %BA,%sp Load stack pointer into BA reg.

С

_

Ζ

1 cycle

$\textit{Function: } BA \gets sp$

Loads the content of the stack pointer sp (SP1 or SP2) into the BA register.

Code:	Mnemonic	MSE	3											LSB	
	LDB %BA,%SP1	1	1	1	1	1	1	1	0	0	1	1	0	Х	1FCCH, (1FCDH)
	LDB %BA,%SP2	1	1	1	1	1	1	1	0	0	1	1	1	Х	1FCEH, (1FCFH)
	,														

Flags:

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

T

_

Е

 \downarrow

LDB [%ir]+,%BA Load BA reg. into location [ir reg.] and increment ir reg.

Function: [ir] ← A, [ir + 1] ← B, ir ← ir + 2 Loads the content of the BA register into the data memory. The content of the A register is loaded into the data memory addressed by the ir register (X or Y) as the low-order 4 bits, and the content of the B register is loaded into the next address as the high-order 4 bits. The ir register (X or Y) is incremented by 2 words.

Code:	Mnemo	onic		MSE	3											LSB	
	LDB	[%X]+,%	6BA	1	1	1	1	1	1	1	0	1	1	0	0	1	1FD9H
	LDB	[%Y]+,%	6BA	1	1	1	1	1	1	1	0	1	1	0	1	1	1FDBH
Flags:	E		С	Z	<u>Z</u>												
	\downarrow	-	-	-	-												
M 1	C. D		1														
Mode:	Src: K	egister (direct														
	Dst: R	egister i	ndirec	t													

LDB [%X]+, imm8 Load immediate data imm8 into location [X reg.] and increment X reg. 2 cycles

Function: $[X] \leftarrow i3-0, [X+1] \leftarrow i7-4, X \leftarrow X + 2$

Extended addressing: Invalid

Loads the 8-bit immediate data imm8 into the data memory. The low-order 4 bit-data is loaded into the data memory addressed by the ir register (X or Y), and the high-order 4-bit data is loaded into the next address. The ir register (X or Y) is incremented by 2 words.

Code:	Mnemo	nic]	MSB	6											LSB	
	LDB [%X]+,ir	nm8	0	0	0	0	1	i7	i6	i5	i4	i3	i2	i1	i0	0100H–01FFH
Flags:	E	I	С	Z	2	1											
0	\downarrow	_	_	-	-												

Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid 2 cycles

LDB %EXT, imm8 Load immediate data imm8 into EXT reg.

1 cycle

1 cycle

Function: EXT \leftarrow imm8

Loads the 8-bit immediate data into the EXT register. The E flag is set to "1".

Code:	Mnemo	nic		MSE	3	_	-		_	-						LSB	
	LDB %	%EXT,ir	nm8	0	1	0	0	0	i7	i6	i5	i4	i3	i2	i1	i0	0800H-08FFH
Flags:	E	I	С		<u>z</u>]											
	\uparrow	-	-]													
Mode:	Src: In Dst: Re Extend	nmediat egister o ed add	te data direct ressing	;: In	vali	id											

LDB %EXT,%BA Load BA reg. into EXT reg.

Function: EXT \leftarrow BA

Loads the content of the BA register into the EXT register. The E flag is set to "1".

Code:	Mnemo	nic		MSB												LSB				
	LDB 🤉	%EXT,%	6BA	1	1	1	1	1	1	1	0	1	0	1	0	X	1FD4H	, (1FC	05H)	
Flags:	E	I	С	Z																
-	↑	-	_	_																

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

LDB %rr,imm8 Load immediate data imm8 into rr reg.

Function: $rr \leftarrow imm8$

Loads the 8-bit immediate data imm8 into the rr (XL or YL) register.

Code:	Mnem	onic	1	MSB												LSB	
	LDB	%XL,im	m8	0	1	0	1	0	i7	i6	i5	i4	i3	i2	i1	i0	0A00H–0AFFH
	LDB	%YL,im	m8	0	1	0	1	1	i7	i6	i5	i4	i3	i2	i1	i0	0B00H-0BFFH
Flags:	E ↓	 -	C -	Z	-												
Mode:	Src: In	nmedia	te data														
	Dst: R	egister o	direct														
	Extend	ded add	ressing	: Va	lid												
Extended operation:	LDB LDB	%EXT,i %XL,im	mm8 1m8'	Х	\leftarrow	imm	n16	(up	ре	⁻ 8-ł	oit: i	imm	18, I	owe	er 8	-bit:	imm8')
	LDB LDB	%EXT,i %YL,im	mm8 1m8'	Y	\leftarrow	imm	n16	(up	ppe	· 8-k	oit: i	imm	18, I	owe	er 8	-bit:	imm8')

LDB	%rr.%BA	Load BA reg. into rr reg.
	/011,/00/1	Louid Dillics. Into Il los

1 cycle

Function: $rr \leftarrow BA$

Loads the content of the BA register into the rr register (XL, XH, YL or YH).

Code:	Mnemonic	MSE	5											LSB	
	LDB %XL,%BA	1	1	1	1	1	1	1	0	0	0	0	0	0	1FC0H
	LDB %XH,%BA	1	1	1	1	1	1	1	0	0	0	0	0	1	1FC1H
	LDB %YL,%BA	1	1	1	1	1	1	1	0	0	0	0	1	0	1FC2H
	LDB %YH,%BA	1	1	1	1	1	1	1	0	0	0	0	1	1	1FC3H

Flags:	E	I	С	Z
	\downarrow	_	_	-

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

LDB %sp,%BA Load BA reg. into stack pointer

1 cycle

Function: $sp \leftarrow BA$

Loads the content of the BA register into the stack pointer sp (SP1 or SP2).

Code:	Mnemo	onic		MSE	3											LSB	i
	LDB [•]	%SP1,9	%BA	1	1	1	1	1	1	1	0	0	0	1	0	X	1FC4H, (1FC5H)
	LDB [•]	%SP2,9	%BA	1	1	1	1	1	1	1	0	0	0	1	1	Х	1FC6H, (1FC7H)
						1											
Flags:	E		C	2	Z												
	\downarrow	-	-	-	-												
Mode:	Src: R	egister	direct														
	Dst: R	egister	direct														
	Extend	led add	ressing	: In	vali	d											

NOP	No operation	1 cycle
	$(\mathbf{P}_{\mathcal{C}}) = (\mathbf{P}_{\mathcal{C}}) = \mathbf{P}_{\mathcal{C}} = 1$	

Function: No operation (PC \leftarrow PC+1)

Expends 1 cycle without doing an operation that otherwise exerts an affect. The PC (program counter) is incremented.

Code:	Mnemo	nic	1	MSE	8		_	-								LSB	
	NOP			1	1	1	1	1	1	1	1	1	1	1	1	Х	1FFEH, (1FFFH)
Flags:	E	I	С	2	Z												
	\downarrow	_	_	-	-												

OR %**r**,%**r**' Logical OR of r' reg. and r reg.

Function: $r \leftarrow r \lor r'$

Performs a logical OR operation of the content of the r' register (A or B) and the content of the r register (A or B), and stores the result in the r register.

Code:	Mnemo	onic		MSE	3											LSB	
	OR %	6A,%A		1	1	0	1	1	0	1	1	1	0	0	0	Х	1B70H, (1B71H)
	OR %	6A,%B		1	1	0	1	1	0	1	1	1	0	0	1	Х	1B72H, (1B73H)
	OR %	6В,%А		1	1	0	1	1	0	1	1	1	0	1	0	Х	1B74H, (1B75H)
	OR %	6В,%В		1	1	0	1	1	0	1	1	1	0	1	1	Х	1B76H, (1B77H)
						1											
Flags:	E		С	4	<u> </u>												
	\downarrow	-	-		\$												
Mode	Src. R	ogistor (diract														

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

OR %**r**,**imm4** Logical OR of immediate data imm4 and r reg.

1 cycle

Function: $r \leftarrow r \lor imm4$

Performs a logical OR operation of the 4-bit immediate data imm4 and the content of the r register (A or B), and stores the result in the r register.

Code:	Mnemonic	MSE												LSB	
	OR %A,imm4	1	1	0	1	1	0	1	0	0	i3	i2	i1	i0	1B40H–1B4FH
	OR %B,imm4	1	1	0	1	1	0	1	0	1	i3	i2	i1	i0	1B50H–1B5FH

Flags:EICZ \downarrow -- \updownarrow

Mode: Src: Immediate data Dst: Register direct Extended addressing: Invalid

OR %F,imm4 Logical OR of immediate data imm4 and F reg.

1 cycle

Function: $F \leftarrow F \lor imm4$

Performs a logical OR operation of the 4-bit immediate data imm4 and the content of the F (flag) register, and stores the result in the r register. It is possible to set any flag.

Code:	Mnemo	nic		MSE	3											LSB	
	OR %	F,imm4	4	1	0	0	0	0	1	0	0	1	i3	i2	i1	i0	1090H–109FH
Flags:	E ↑	 ↑	C ↑		<u>z</u> ↑												
Mode:	Src: In Dst: Re	nmedia egister	te data direct			-											

Extended addressing: Invalid

OR %r,[%ir]

Logical OR of location [ir reg.] and r reg.

1 cycle

Function: $r \leftarrow r \lor [ir]$

Performs a logical OR operation of the content of the data memory addressed by the ir register (X or Y) and the content of the r register (A or B), and stores the result in the r register.

Code:	Mnemo	onic	1	MSB												LSB		
	OR %	6A,[%X]		1	1	0	1	1	0	1	1	0	0	0	0	0	1B60H	
	OR %	6A,[%Y]		1	1	0	1	1	0	1	1	0	0	0	1	0	1B62H	
	OR %	6B,[%X]		1	1	0	1	1	0	1	1	0	0	1	0	0	1B64H	
	OR %	6B,[%Y]		1	1	0	1	1	0	1	1	0	0	1	1	0	1B66H	
		· · · · ·	-															
Flags:	<u> </u>		С															
	\downarrow	-	-	1	,													
Mode:	EICZ \downarrow \updownarrow Src: Register indirectDst: Register directExtended addressing: Valid																	
Extended operation:	LDB OR	%EXT,i %r,[%X	mm8]	r٠	← r	~ [(00ir	nm8	3] (00ir	nm	8 =	000	OН	+ 0	0H 1	to FFH)	
	LDB OR	%EXT,i %r,[%Y	mm8]	r	← r	∨ [I	FFir	nma	8] (FFi	mm	8 =	FF	00H	+()0H	to FFH)	

OR %r,[%ir]+ Logical OR of location [ir reg.] and r reg. and increment ir reg. 1 cycle

Function: $r \leftarrow r \lor [ir]$, $ir \leftarrow ir +1$

Performs a logical OR operation of the content of the data memory addressed by the ir register (X or Y) and the content of the r register (A or B), and stores the result in the r register. Then increments the ir register (X or Y). The flags change due to the operation result of the r register and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	OR %A,[%X]+	1	1	0	1	1	0	1	1	0	0	0	0	1	1B61H
	OR %A,[%Y]+	1	1	0	1	1	0	1	1	0	0	0	1	1	1B63H
	OR %B,[%X]+	1	1	0	1	1	0	1	1	0	0	1	0	1	1B65H
	OR %B,[%Y]+	1	1	0	1	1	0	1	1	0	0	1	1	1	1B67H

Flags:	E		С	Z
	\downarrow	-	Ι	\$

Mode: Src: Register indirect Dst: Register direct Extended addressing: Invalid

OR [%ir],%r

Logical OR of r reg. and location [ir reg.]

2 cycles

Function: $[ir] \leftarrow [ir] \lor r$

Performs a logical OR operation of the content of the r register (A or B) and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address.

Code:	Mnem	onic	1	MSB												LSB	
	OR [%X],%A		1	1	0	1	1	0	1	1	0	1	0	0	0	1B68H
	OR [%X],%B		1	1	0	1	1	0	1	1	0	1	1	0	0	1B6CH
	OR [%Y],%A		1	1	0	1	1	0	1	1	0	1	0	1	0	1B6AH
	OR [%Y],%B		1	1	0	1	1	0	1	1	0	1	1	1	0	1B6EH
Flags:	E ↓	 _	C -	Z	2												
Mode:	Src: R	↓ – – ↓ Src: Register direct															
	Dst: R	legister i	ndirect	t													
	Extend	ded addı	ressing	: Va	lid												
Extended operation:	LDB OR	%EXT,i [%X],%	mm8 r	[0	00im	nm8]←	[00)imr	n8]	∨ r	(00	Dimr	n8 :	= 00)00ł	H + 00H to FFH)
	LDB OR	%EXT,i [%Y],%	mm8 r	[F	Fin	nm8	8] ←	FI	-im	m8]	∨ r	(F	Fim	m8	= F	FOC)H + 00H to FFH)

OR [%ir]+,%r Logical OR of r reg. and location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir] \lor r$, $ir \leftarrow ir + 1$ Performs a logical OR operation of the content of the r register (A or B) and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address. Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags. Code: Mnemonic MSB LSB OR [%X]+,%A 1 1 0 1 1 0 1 1 0 1 0 0 1 1B69H 1 1 1 1 1 1 OR [%X]+,%B 0 1 1 0 0 0 1B6DH 1 1 OR [%Y]+,%A 1 0 1 1 1 1 0 1 1 1B6BH 0 0 1 OR [%Y]+,%B 1 1 0 1 1 0 1 1 0 1 1 1 1 1B6FH Ζ Flags: E С \downarrow Î _ _ Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

OR [%ir],imm4 Logical OR of immediate data imm4 and location [ir reg.] 2 cycles

Function: $[ir] \leftarrow [ir] \lor imm4$

Performs a logical OR operation of the 4-bit immediate data imm4 and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address.

Code:	Mnem	nonic	1	MSB]	LSB	
	OR	[%X],imn	า4	1	1	0	1	1	0	0	0	0	i3	i2	i1	i0	1B00H–1B0FH
	OR	[%Y],imn	า4	1	1	0	1	1	0	0	1	0	i3	i2	i1	i0	1B20H–1B2FH
Flags:	E ↓	 _	C -	Z	2												
Mode:	Src: I Dst: I Exten	mmediat Register i ded addi	te data ndirect ressing	: : Va	lid												
Extended operation:	LDB OR	%EXT,i [%X],im	mm8 1m4	[C)0im	nm8	6] ←	[00	imn	n8]	∨ in	nm4	4 (C)0im	ım8	= 0	000H + 00H to FFH)
	LDB OR	%EXT,i [%Y],im	mm8 nm4	[F	Fin	nm8	8] ←	FF	- imi	m8]	∨ ir	nm	4 (I	FFir	nm8	8 = 1	FF00H + 00H to FFH

OR [%ir]+,imm4 Logical OR of immediate data imm4 and location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir] \lor imm4$, ir \leftarrow ir +1

Performs a logical OR operation of the 4-bit immediate data imm4 and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address. Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnem	onic		MSE	3											LSB	
	OR	[%X]+,im	nm4	1	1	0	1	1	0	0	0	1	i3	i2	i1	i0	1B10H–1B1FH
	OR	[%Y]+,im	nm4	1	1	0	1	1	0	0	1	1	i3	i2	i1	i0	1B30H–1B3FH
		· · ·															
Flags:	L F		C	4	<u> </u>												
	\downarrow	_	-		1												
	_																

Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid

POP %r

Pop top of stack into r reg.

1 cycle

Function: $r \leftarrow [SP2]$, $SP2 \leftarrow SP2 + 1$

Loads the 4-bit data that has been stored in the address indicated by the stack pointer SP2 into the r register (A, B or F), then increments the SP2.

- ----

Code:	

Mnemonic	MSB	5											LSB	
POP %A	1	1	1	1	1	1	1	1	0	1	1	1	1	1FEFH
POP %B	1	1	1	1	1	1	1	1	0	1	1	1	0	1FEEH
POP %F	1	1	1	1	1	1	1	1	0	1	1	0	1	1FEDH

Flags:	
--------	--

Mode: Register direct Extended addressing: Invalid

POP %ir Pop top of stack into ir reg.

1 cycle

Function: ir \leftarrow ([SP1*4+3]~[SP1*4]), SP1 \leftarrow SP1 +1

Loads the 16-bit data that has been stored in the addresses (4 words) indicated by the stack pointer SP1 (SP1 indicates the lowest address) into the ir register (X or Y), then increments the SP1.

Code:	Mnemo	onic		MSE	3		-			-					-	LSB	
	POP	%Х		1	1	1	1	1	1	1	1	0	1	0	0	1	1FE9H
	POP	%Y		1	1	1	1	1	1	1	1	0	1	0	1	Х	1FEAH, (1FEBH)
Flags:	E ↓	 -	C -		<u>Z</u> -												
Mode:	Registe Extend	er direc led add	t ressing	g: In	vali	d											

PUSH %r

Push r reg. onto stack

1 cycle

Function: $[SP2-1] \leftarrow r, SP2 \leftarrow SP2 -1$

Decrements the stack pointer SP2, then stores the content of the r register (A, B or F) into the address indicated by the SP2.

Code:

Mnemonic	MSE												LSB	
PUSH %A	1	1	1	1	1	1	1	1	0	0	1	1	1	1FE7H
PUSH %B	1	1	1	1	1	1	1	1	0	0	1	1	0	1FE6H
PUSH %F	1	1	1	1	1	1	1	1	0	0	1	0	1	1FE5H

Flags:EICZ \downarrow ---

Mode: Register direct Extended addressing: Invalid

PUSH %ir Push ir reg. onto stack

1 cycle

Function: ([(SP1-1)*4+3]~[(SP1-1)*4]) ← ir, SP1 ← SP1 -1 Decrements the stack pointer SP1, then stores the content of the ir register (X or Y) into the addresses (4 words) indicated by the SP1 (SP1 indicates the lowest address).

Code:	Mnemo	nic		MSE	3											LSB	
	PUSH	%X		1	1	1	1	1	1	1	1	0	0	0	0	1	1FE1H
	PUSH	%Y		1	1	1	1	1	1	1	1	0	0	0	1	Х	1FE2H, (1FE3H)
Flags:	E ↓	 _	C -	-	Z -												
Mode:	Registe Extend	er direct ed add	t ressing	: In	vali	d											

RET

Return from subroutine

1 cycle

Function: $PC \leftarrow ([SP1*4+3]\sim[SP1*4]), SP1 \leftarrow SP1+1$

Loads the 16-bit data (return address) that has been stored in the addresses (4 words) indicated by the stack pointer SP1 (SP1 indicates the lowest address) into the PC to return from the subroutine. The SP1 is incremented.

Code:	Mnemo	nic	1	MSE	3											LSB	
	RET			1	1	1	1	1	1	1	1	1	1	0	Х	0	1FF8H, (1FFAH)
Flage	E	-	0	-	7												
r tags:		I	U	2	<u> </u>												
	\rightarrow	Ι	-	-	-												

RETD imm8 *Return from subroutine and load imm8 into location [X]*

3 cycles

Function: PC ← ([SP1*4+3]~[SP1*4]), SP1 ← SP1 +1, [X] ← i3-0, [X+1] ← i7-4, X ← X + 2 After executing the RET instruction, stores the 8-bit immediate data imm8 into the data memory (2 words) indicated by the X register (X register specifies the low-order address of the 2 words). The X register is incremented by 2 words.

Code:	Mnemo	nic		MSE	8											LSB		
	RETD	imm8		1	0	0	0	1	i7	i6	i5	i4	i3	i2	i1	i0	1100H–11FFH	
Flags:	E	I	С		<u>Z</u>													
	\downarrow	-	-	-	-													
Mode:	Immed	iate da	ta															

Extended addressing: Invalid

RETI

Return from interrupt routine

2 cycles

Function: $PC \leftarrow ([SP1*4+3]\sim [SP1*4]), SP1 \leftarrow SP1+1, F \leftarrow [SP2], SP2 \leftarrow SP2+1$

After executing the RET instruction, loads the 4-bit data that has been stored in the address indicated by the stack pointer SP2 into the F register, then increments the SP2. This instruction is used for returning from interrupt routines.

Code:	Mnemo	nic		MSE	3											LSB	
	RETI			1	1	1	1	1	1	1	1	1	1	0	0	1	1FF9H
Flags:	E		С	2	Z												
	\$	\$	\$		\$												

RETS *Return and skip*

2 cycles

Function: $PC \leftarrow ([SP1*4+3]\sim[SP1*4])$, $SP1 \leftarrow SP1 + 1$, $PC \leftarrow PC + 1$ After executing the RET instruction, increments the PC to skip 1 instruction immediately after
the return.

Code:	Mnemo	nic	1	MSE	3											LSB	
	RETS			1	1	1	1	1	1	1	1	1	1	0	1	1	1FFBH
Flags:	E	I	С		7												
	\downarrow	_	-	-	-												

RL %r

Rotate left r reg. with carry

1 cycle

Function: □C ← 3210 ← r

Rotates the content of the r register (A or B) including the carry (C) to the left for 1 bit. The content of the C flag moves to bit 0 of the r register and bit 3 moves to the C flag.

Code:	Mnemonic	ľ	MSE	3											LSB	
	RL %A		1	0	0	0	0	1	1	1	1	0	0	1	0	10F2H
	RL %B		1	0	0	0	0	1	1	1	1	0	1	1	0	10F6H
Flags:	EII	С		7												

1 1455.			0	~
	\downarrow	_	\$	\$

Mode:	Register direct
	Extended addressing: Invalid

RL [%ir] Rotate left location [ir reg.] with carry

2 cycles

Function:	Ľ[C] ←	3 2 1 0 ↓ [ir]														
	Rotate	s the content of	th	e da	ta r	nem	nory	ad	dre	ssee	d by	7 the	e ir	regi	ister	r (X or Y) including the carry
	(C) to	the left for 1 bit	. Tl	he c	onte	ent	of th	le (C fla	ıg n	nov	es to	o bi	t 0 c	of th	e data memory and bit 3
	moves	to the C flag.								0						2
		0														
Code:	Mnemo	onic N	ЛSE	3											LSB	
	RL [%	6X]	1	0	0	0	0	1	1	1	0	1	0	0	0	10E8H
RL [%Y] 1 0 0 0 1 1 1 0 </th <th>10EAH</th>															10EAH	
		1 - 1 - 1														
Flags:	E	I C	2	<u>z</u>												
	\downarrow	- 1)												
Mada	Pogist	or indirect														
Moue:	Exton	lad addressing	V.	1:4												
	Extend	ieu aduressing:	Va	ma												
Extended	LDB	%EXT.imm8														
operation:	RI	[%X]	R	otat	es	he	cont	en	t of	001	imn	n81	(00	imn	n8 =	= 0000H + 00H to FFH)
op 01 unio 111		[,,,,]								[00]	(00			
	LDB	%EXT,imm8														
	RL	[%Y]	R	otat	es	the	cont	en	t of	[FF	imn	n8]	(FF	imr	m8 :	= FF00H + 00H to FFH)

RL [%ir]+Rotate left location [ir reg.] with carry and increment ir reg.2 cycles

Function: $\boxed{C} \leftarrow 3210 \leftarrow$ [ir] , ir \leftarrow ir +1

Rotates the content of the data memory addressed by the ir register (X or Y) including the carry (C) to the left for 1 bit. The content of the C flag moves to bit 0 of the data memory and bit 3 moves to the C flag. Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	RL [%X]+	1	0	0	0	0	1	1	1	0	1	0	0	1	10E9H
	RL [%Y]+	1	0	0	0	0	1	1 1 0 1 0 1						1	10EBH

Flags: E

Mode: Register indirect Extended addressing: Invalid

↑

RR %r Rotate right r reg. with carry

1 cycle

Function: →3210→C r

Rotates the content of the r register (A or B) including the carry (C) to the right for 1 bit. The content of the C flag moves to bit 3 of the r register and bit 0 moves to the C flag.

Code:	Mnemo	onic		MSE	3											LSB	
	RR %	6A		1	0	0	0	0	1	1	1	1	0	0	1	1	10F3H
	RR %	6B		1	0	0	0	0	1	1	1	1	0	1	1	1	10F7H
		1 .	-			1											
Flags:	E		С		Z												
	\downarrow	-	\$		\$												
Mode:	Regist	er direc	t														

Extended addressing: Invalid

RR [%ir]

Rotate right location [ir reg.] with carry

2 cycles

Function: \rightarrow 3210 \rightarrow C [ir]

Rotates the content of the data memory addressed by the ir register (X or Y) including the carry (C) to the right for 1 bit. The content of the C flag moves to bit 3 of the data memory and bit 0 moves to the C flag.

Code:	Mnem	onic	1	MSB	8											LSB	
	RR [%X]		1	0	0	0	0	1	1	1	0	1	1	0	0	10ECH
	RR ['	%Y]		1	0	0	0	0	1	1	1	0	1	1	1	0	10EEH
Flags:	E ↓	 -	C ↓	Z	<u>z</u>												
Mode:	Regist Extend	er indir led add	ect ressing	: Va	lid												
Extended operation:	LDB RR	%EXT, [%X]	imm8	Rotates the content of [00imm8] (00imm8 = 0000H + 00H to Ff													= 0000H + 00H to FFH)
	LDB RR	%EXT, [%Y]	imm8	R	ota	tes	the	con	iten	t of	[FF	imn	n8]	(FF	- imr	n8 =	= FF00H + 00H to FFH)

RR [%ir]+ Rotate right location [ir reg.] with carry and increment ir reg. 2 cycles

Function: \rightarrow 3210 \rightarrow C [ir], ir \leftarrow ir +1 Rotates the content of the data memory addressed by the ir register (X or Y) including the carry (C) to the right for 1 bit. The content of the C flag moves to bit 3 of the data memory and bit 0 moves to the C flag. Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags. Code: Mnemonic MSB LSB RR [%X]+ 1 0 0 0 0 1 1 0 1 1 0 1 10EDH 1 1 0 0 0 0 1 1 1 0 10EFH RR [%Y]+ 1 1 1 1

Flags:	E	I	С	Ζ
	\downarrow	-	\uparrow	€

Mode: Register indirect Extended addressing: Invalid

SBC %r,%r'

Subtract with carry r' reg. from r reg.

1 cycle

Function: $r \leftarrow r - r' - C$

Subtracts the content of the r' register (A or B) and carry (C) from the r register (A or B).

Code:	Mnemonic	MSE	3											LSB	
	SBC %A,%A	1	1	0	0	0	1	1	1	1	0	0	0	Х	18F0H, (18F1H)
	SBC %A,%B	1	1	0	0	0	1	1	1	1	0	0	1	Х	18F2H, (18F3H)
	SBC %B,%A	1	1	0	0	0	1	1	1	1	0	1	0	Х	18F4H, (18F5H)
	SBC %B,%B	1	1	0	0	0	1	1	1	1	0	1	1	Х	18F6H, (18F7H)

Flags:

- Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

SBC %r,imm4 Subtract with carry immediate data imm4 from r reg.

1 cycle

Function: $r \leftarrow r - imm4 - C$

Subtracts the 4-bit immediate data imm4 and carry (C) from the r register (A or B).

Code:	Mnemo	onic	1	MSE	3											LSB	
	SBC	%A,imr	n4	1	1	0	0	0	1	1	0	0	i3	i2	i1	i0	18C0H–18CFH
	SBC	%B,imr	n4	1	1	0	0	0	1	1	0	1	i3	i2	i1	i0	18D0H–18DFH
Flags:	E ↓																
Mode:	Src: Ir Dst: R Extenc	nmedia egister led add	te data direct ressing	: In	vali	d											

SBC %r,[%ir]

Subtract with carry location [ir reg.] from r reg.

1 cycle

Function: $r \leftarrow r - [ir] - C$

Subtracts the content of the data memory addressed by the ir register (X or Y) and carry (C) from the r register (A or B).

Code:	Mnem	onic]	MSB	;											LSB	
	SBC	%A,[%>	(]	1	1	0	0	0	1	1	1	0	0	0	0	0	18E0H
	SBC	%A,[%\	′]	1	1	0	0	0	1	1	1	0	0	0	1	0	18E2H
	SBC	%B,[%X	(]	1	1	0	0	0	1	1	1	0	0	1	0	0	18E4H
	SBC	%B,[%\	[]	1	1	0	0	0	1	1	1	0	0	1	1	0	18E6H
Flags:	E ↓	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
Mode:	Src: Register indirect																
	Dst: R	legister o	direct														
	Extend	ded add	ressing	: Va	lid												
Extended operation:	LDB SBC	%EXT,i %r,[%X	mm8]	r	← r	- [C)0in	nm8] - (C (()0in	nm8	3 = (000	ОH	+ 0(DH to FFH)
	LDB SBC	%EXT,i %r,[%Y	mm8]	r	← r	- [F	Fin	nm8	8] - (C (I	FFir	nma	8 =	FFC)0H	+ 0	0H to FFH)

SBC %r,[%ir]+ Subtract with carry location [ir reg.] from r reg. and increment ir reg. 1 cycle

Function: $r \leftarrow r - [ir] - C$, $ir \leftarrow ir + 1$ Subtracts the content of the data memory addressed by the ir register (X or Y) and carry (C) from the r register (A or B). Then increments the ir register (X or Y). The flags change due to the operation result of the r register and the increment result of the ir register does not affect the flags. Code: Mnemonic MSB LSB SBC %A,[%X]+ 1 1 0 0 0 1 1 1 0 0 0 0 1 18E1H 1 1 0 0 0 1 1 1 0 0 0 SBC %A,[%Y]+ 1 18E3H 1 1 1 1 SBC %B,[%X]+ 0 0 0 1 1 0 0 1 0 18E5H 1 SBC %B,[%Y]+ 1 1 0 0 0 1 1 1 0 0 1 1 1 18E7H Е Ζ Flags: С L \downarrow \$ ↑ _ Mode: Src: Register indirect Dst: Register direct

SBC	[%ir1.%r

Subtract with carry r reg. from location [ir reg.]

2 cycles

Function: $[ir] \leftarrow [ir] - r - C$

Extended addressing: Invalid

Subtracts the content of the r register (A or B) and carry (C) from the data memory addressed by the ir register (X or Y).

Code:	Mnem	onic]	MSB												LSB	
	SBC	[%X],%	A	1	1	0	0	0	1	1	1	0	1	0	0	0	18E8H
	SBC	[%X],%	В	1	1	0	0	0	1	1	1	0	1	1	0	0	18ECH
	SBC	[%Y],%	A	1	1	0	0	0	1	1	1	0	1	0	1	0	18EAH
	SBC	[%Y],%	В	1	1	0	0	0	1	1	1	0	1	1	1	0	18EEH
F 1			<u> </u>	-	7												
Flags:			ر ۲														
	\downarrow	\downarrow – \uparrow \uparrow															
Mode:	Src: Register direct																
	Dst: R	legister i	ndirec	t													
	Extend	ded add	ressing	: Va	lid												
Friended		%EXTi	mm8														
oneration	SBC	/0⊑/T,i	.r	IC)∩in	mß	1	ເດດ	limr	n 81	- r -	C	(00	imn	<u>18 -</u>	- 00	00H + 00H to FFH)
operation.	000	[/0/1], /0	,,	LC.	/0111	iiiio	·] <	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	noj	- 1 -	U	(00)		10 -	- 00	0011+0011101111
	LDB	%EXT,i	mm8														
	SBC	[%Y],%	r	[F	Fin	nm8	}] ←	· [FI	Fim	m8]	- r	- C	(FF	Fimi	m8	= Fl	F00H + 00H to FFH)

SBC [%ir]+,%r Subtract with carry r reg. from location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir] - r - C, ir \leftarrow ir + 1$

Subtracts the content of the r register (A or B) and carry (C) from the data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	SBC [%X]+,%A	1	1	0	0	0	1	1	1	0	1	0	0	1	18E9H
	SBC [%X]+,%B	1	1	0	0	0	1	1	1	0	1	1	0	1	18EDH
	SBC [%Y]+,%A	1	1	0	0	0	1	1	1	0	1	0	1	1	18EBH
	SBC [%Y]+,%B	1	1	0	0	0	1	1	1	0	1	1	1	1	18EFH

Flags:	E		С	Z
	\downarrow	-	\$	\$

Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

SBC [%ir], imm4 Subtract with carry immediate data imm4 from location [ir reg.] 2 cycles

Function: [ir] ← [ir] - imm4 - C Subtracts the 4-bit immediate data imm4 and carry (C) from the data memory addressed by the ir register (X or Y).

Code:	Mnemonic	MS	В											LSB		
	SBC [%X],imm4	1	1	0	0	0	1	0	0	0	i3	i2	i1	i0	1880H–188FH	
	SBC [%Y],imm4	1	1	0	0	0	1	0	1	0	i3	i2	i1	i0	18A0H–18AFH	
Flags:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Z ¢]												
Mode:	Src: Immediate da Dst: Register indir Extended addressin	ta ect ng: V	⁷ alid													
Extended operation:	LDB %EXT,imm8 SBC [%X],imm4	3	[00ir	nm8	8] ←	[00)imr	n8]	- im	nm4	- C	; (0	0im	m8	= 0000H + 00H to FF	H)
	LDB %EXT,imm8 SBC [%Y],imm4	3	[FFir	ոՠն	8] ←	· [FF	- im	m8]	- in	nm4	4 - C	C (F	Fir	nm8	8 = FF00H + 00H to FF	=H)

SBC [%ir]+,imm4 Subtract with carry immediate data imm4 from location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] - imm4 - C, ir ← ir + 1 Subtracts the immediate data imm4 and carry (C) from the data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB SBC [%X]+,imm4 1 i0 1890H-189FH 1 0 0 0 1 0 0 1 i3 i2 i1 1 1 i3 i2 i1 SBC [%Y]+,imm4 1 0 0 0 0 1 1 i0 18B0H-18BFH Flags: E С Ζ \downarrow 1 Mode: Src: Immediate data

Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid

SBC %**B**,%**A**,**n**4 Subtract with carry A reg. from B reg. in specified radix

Function: $B \leftarrow N's$ adjust (B - A - C)

Subtracts the content of the A register and carry (C) from the B register. The operation result is adjusted with n4 as the radix. The C flag is set according to the radix.

Code:	Mnemo	nic		MSE	3											LSB	
	SBC 9	%B,%A	.,n4	1	0	0	0	0	1	1	0	0	n3	n2	n1	n0	10C0H-10CFH
Flags:	E	l	С	Z	Z												
	\downarrow	-	\$		1												
Mode	Src: Re	oristor	direct														

- Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid
- *Note:* n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4 bits of the machine code (n3–n0) become 0000B.

2 cycles

SBC %B,[%ir],n4 Subtract with carry location [ir reg.] from B reg. in specified radix 2 cycles

Function: $B \leftarrow N's$ adjust (B - [ir] - C) Subtracts the content of the data memory addressed by the ir register (X or Y) and carry (C) from the B register. The operation result is adjusted with n4 as the radix. The C flag is set according to the radix.

Code:	Mnem	onic	MSE												LSB	
	SBC	%B,[%X],n4	1	1	1	0	0	1	1	0	0	n3	n2	n1	n0	1CC0H-1CCFH
	SBC	%B,[%Y],n4	1	1	1	0	0	1	1	1	0	n3	n2	n1	n0	1CE0H-1CEFH
Flags:	E ↓	I C - ↓		2												
Mode:	Src: R Dst: R Exten	Register indired Register direct ded addressing	et g: Va	lid												
Extended operation:	LDB SBC	%EXT,imm8 %B,[%X],n4	В	←	N's	adj	ust	(B -	[00)imr	n8]	- C)) (C)0in	nm8	= 0000H + 00H to FFH)
	LDB SBC	%EXT,imm8 %B,[%Y],n4	В	\leftarrow	N's	adj	ust	(B -	(FF	- imr	n8]	- C) (F	Fir	nm8	= FF00H + 00H to FFH
Note:	n4 sho	ould be specifi	ed w	ith	a va	alue	e fro	m 1	to	16.	Wh	en 1	l6 is	sp	ecifi	ed for n4, the low-order

bits of the machine code (n3-n0) become 0000B.

SBC %B,[%ir]+,n4 Subtract with carry location [ir reg.] from B reg. in specified radix and increment ir reg. 2 cycles

Function: $B \leftarrow N's$ adjust (B - [ir] - C), ir \leftarrow ir + 1 Subtracts the content of the data memory addressed by the ir register (X or Y) and carry (C) from the B register. The operation result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The flags change due to the operation result of the B register and the increment result of the ir register does not affect the flags. The C flag is set according to the radix.

Code:	Mnem	ionic		MSE	3											LSB	
	SBC	%B,[%]	X]+,n4	1	1	1	0	0	1	1	0	1	n3	n2	n1	n0	1CD0H-1CDFH
	SBC	%B,[%`	Y]+,n4	1	1	1	0	0	1	1	1	1	n3	n2	n1	n0	1CF0H-1CFFH
		· ·		-	_	1											
Flags:	E		C	4	<u> </u>												
	\downarrow	-	\$		¢												
Mode	Src. 1	Pogister	indirec	ł													
moue.	510. 1	legister	munec	L													
	Dst: ŀ	Register	direct														
	Exten	ded add	lressing	: In	vali	d											

n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4 Note: bits of the machine code (n3–n0) become 0000B.

4

SBC [%ir],%B,n4 Subtract with carry B reg. from location [ir reg.] in specified radix 2 cycles

Function: [ir] ← N's adjust ([ir] - B - C) Subtracts the content of the B register and carry (C) from the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix. The C flag is set according to the radix.

Code: Mnemonic MSB LSB SBC [%X],%B,n4 1 n3 n2 n1 n0 1C40H-1C4FH 1 1 0 0 0 1 0 0 1 1 1 1 0 n3 n2 n1 n0 SBC [%Y],%B,n4 1 0 0 0 1C60H-1C6FH Flags: E С 7 \downarrow î Mode: Src: Register direct Dst: Register indirect Extended addressing: Valid Extended LDB %EXT,imm8 *operation:* SBC [%X],%B,n4 [00imm8] ← N's adjust ([00imm8] - B - C) (00imm8 = 0000H + 00H to FFH) LDB %EXT.imm8 SBC [%Y],%B,n4 [FFimm8] ← N's adjust ([FFimm8] - B - C) (FFimm8 = FF00H + 00H to FFH) Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4

SBC [%ir]+,%B,n4 Subtract with carry B reg. from location [ir reg.] in specified radix and increment ir reg. 2 cycles

bits of the machine code (n3–n0) become 0000B.

Function: [ir] ← N's adjust ([ir] - B - C), ir ← ir + 1 Subtracts the content of the B register and carry (C) from the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags. The C flag is set according to the radix.

Code:	Mnemo	onic	1	MSE	3											LSB	
	SBC	[%X]+,	%B,n4	1	1	1	0	0	0	1	0	1	n3	n2	n1	n0	1C50H-1C5FH
	SBC	[%Y]+,'	%B,n4	1	1	1	0	0	0	1	1	1	n3	n2	n1	n0	1C70H-1C7FH
F 1	-			-	7	1											
Flags:	E		C	4	<u> </u>												
	\downarrow	-	↓ ↓		Ĵ.												
Mode:	Src: R	egister	direct														
	Dst: R	egister	indirect	t													
	Extend	led add	lressing	: In	vali	d											
Note:	n4 sho	uld be	specifie	d w	vith	a v	alue	• fro	m 1	to	16.	Wh	en 1	16 is	ssp	ecifi	ed for n4, the low-ord

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4 bits of the machine code (n3–n0) become 0000B.

SBC [%ir],0,n4 Subtract carry from location [ir reg.] in specified radix

Function: [ir] ← N's adjust ([ir] - 0 - C) Subtracts the carry (C) from the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix. The C flag is set according to the radix. This instruction is useful for borrow processing of n based counters.

Code:	Mnen	nonic	MSI	3											LSB	
	SBC	[%X],0,n4	1	1	1	0	0	0	0	0	0	n3	n2	n1	n0	1C00H–1C0FH
	SBC	[%Y],0,n4	1	1	1	0	0	0	0	1	0	n3	n2	n1	n0	1C20H-1C2FH
Flags:	E ↓	I C - ↓		<u>Z</u> ↓												
Mode:	Src: 1 Dst: 1 Exten	Register direct Register indire ided addressin	ct g: Va	alid												
Extended	LDB	%EXT,imm8														
operation:	SBC	[%X],0,n4	[00i	mm	8] ←	- N	's a	djus	st ([(00in	nm8	3] - [0 - 0	C)	(00ir	nm8 = 0000H + 00H to FFH)
	LDB SBC	%EXT,imm8 [%Y],0,n4	(FFi	mm	8] ←	– N	's a	dju	st ([FFir	nm	8] -	0 -	C)	(FFi	mm8 = FF00H + 00H to FFH)
Note:	n4 sh bits o	ould be specifi f the machine	ed w code	vith (n3	a va –n0	alue) be	e fro econ	m 1 ne (l to)000	16. [°] B.	Wh	en 1	16 is	sp	ecifi	ed for n4, the low-order 4

SBC [%ir]+,0,n4 Subtract carry from location [ir reg.] in specified radix and increment ir reg. 2 cycles

Function: $[ir] \leftarrow N's$ adjust ([ir] - 0 - C), ir \leftarrow ir + 1

Subtracts the carry (C) from the data memory addressed by the ir register (X or Y). The operation result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags. The C flag is set according to the radix. This instruction is useful for borrow processing of n based counters.

Code:	Mnemonic	MSB										LSB		
	SBC [%X]+,0,n4	1 1	1	0 0	0	0	0	1	n3	n2	n1	n0	1C10H-1C1FH	7
	SBC [%Y]+,0,n4	1 1	1	0 0	0	0	1	1	n3	n2	n1	n0	1C30H-1C3FH	1
Flags:	E I C ↓ − ↓	Z ↓												
Mode:	Src: Register direct Dst: Register indire Extended addressin	: ect ng: Inval	id											
Notes	nd should be specif	iad with	0.170	luo fr	om 1	l to	16	wh	on 1	6 ;		ocifi	ad for n4 the law a	rde

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4 bits of the machine code (n3–n0) become 0000B.

2 cycles

SET [addr6], imm2 Set bit imm2 in location [addr6]

Function: $[addr6] \leftarrow [addr6] \lor (2^{imm2})$ (addr6 = 0000H-003FH or FFC0H-FFFFH)Sets the bit specified with the imm2 in the data memory specified with the addr6 to "1".

Code:	Mnen	nonic	1	MSE												LSB	
	SET	[00addr6],imm2	1	0	1	1	0	i1	i0	a5	a4	a3	a2	a1	a0	1600H–16FFH
	SET	[FFaddr6],imm2	1	0	1	1	1	i1	i0	a5	a4	a3	a2	a1	a0	1700H–17FFH
Flags:	E		С	Z	2												
	\downarrow	—	-														

Mode: Src: Immediate data Dst: 6-bit absolute Extended addressing: Invalid

SLL %r

Shift left r reg. logical

1 cycle

Function: C ← 3210 ← 0 r

Shifts the content of the r register (A or B) to the left for 1 bit. Bit 3 of the r register moves to the C flag and bit 0 goes "0".

Code:	Mnemonic	MSB		LSB
	SLL %A	1 0 0	0 0 1 1	1 1 0 0 0 10 10F0H
	SLL %B	1 0 0	0 0 1 1	1 1 0 1 0 0 10F4H
	SLL %B			1 1 0 1 0 0 10F4H

Flags: \vdash

Mode: Register direct Extended addressing: Invalid

Т

_

С

1

Ζ

SLL [%ir] Shift left location [ir reg.] logical

Function: $C \leftarrow 3 \ 2 \ 1 \ 0 \leftarrow 0$ [ir] Shifts the content of the data memory addressed by the ir register (X or Y) to the left for 1 bit. Bit 3 of the r register moves to the C flag and bit 0 goes "0". Code: Mnemonic MSB LSB SLL [%X] 1 0 0 0 0 1 0 0 0 0 0 10E0H 1 1 1 0 0 0 0 1 1 1 0 0 0 0 10E2H SLL [%Y] 1 Е С Ζ Flags: I \downarrow 1 Mode: **Register** indirect Extended addressing: Valid Extended LDB %EXT,imm8 operation: SLL Shifts the content of [00imm8] (00imm8 = 0000H + 00H to FFH) [%X] LDB %EXT,imm8

SLL [%ir]+ Shift left location [ir reg.] logical and increment ir reg. 2 cycles

Function: $\mathbb{C} \leftarrow 3210 \leftarrow 0$ [ir], ir \leftarrow ir + 1

[%Y]

SLL

Shifts the content of the data memory addressed by the ir register (X or Y) to the left for 1 bit. Bit 3 of the r register moves to the C flag and bit 0 goes "0". Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Shifts the content of [FFimm8] (FFimm8 = FF00H + 00H to FFH)

Code:	Mnemonic	MSE	3											LSB	
	SLL [%X]+	1	0	0	0	0	1	1	1	0	0	0	0	1	10E1H
	SLL [%Y]+	1	0	0	0	0	1	1	1	0	0	0	1	1	10E3H

Flags:	Е	-	С	Z
	\rightarrow	Ι	\Leftrightarrow	\$

Mode: Register indirect Extended addressing: Invalid

SLP Set CPU to SLEEP mode

2 cycles

Function: Sleep

Sets the CPU to SLEEP status.

The CPU and the peripheral circuits including the oscillation circuit stops operating, thus the power consumption is substantially reduced.

An interrupt from outside the MCU causes it to return from SLEEP status to the normal program execution status.

Code:	Mnemo	nic	1	MSE	3											LSB	
	SLP			1	1	1	1	1	1	1	1	1	1	1	0	1	1FFDH
Flags:	E	1	С		7]											
	\downarrow	_	_	-	_												

SRL %r

Shift right r reg. logical

1 cycle

Function: 0→3210→C r

Shifts the content of the r register (A or B) to the right for 1 bit. Bit 0 of the r register moves to the C flag and bit 3 goes "0".

Code:	Mnemonic	MSE	3											LSB	
	SRL %A	1	0	0	0	0	1	1	1	1	0	0	0	1	10F1H
	SRL %B	1	0	0	0	0	1	1	1	1	0	1	0	1	10F5H
								-							

Flags:

- Е С Ζ Т \downarrow \$
- Mode: Register direct Extended addressing: Invalid

SRL [%ir] Shift right location [ir reg.] logical

Function: $0 \rightarrow 3210 \rightarrow C$ [ir]

Shifts the content of the data memory addressed by the ir register (X or Y) to the right for 1 bit. Bit 0 of the r register moves to the C flag and bit 3 goes "0".

Code:	Mnemo	onic	ľ	MSB	;											LSB	
	SRL	[%X]		1	0	0	0	0	1	1	1	0	0	1	0	0	10E4H
	SRL	[%Y]		1	0	0	0	0	1	1	1	0	0	1	1	0	10E6H
Flags:	E	I	С	Z	2												
	\downarrow	-	\$														
Mode:	Regist	Register indirect Extended addressing: Valid															
	Extenc	led add	ressing	: Va	lıd												
Extended	LDB	%EXT,i	mm8														
operation:	SRL	[%X]		Shifts the content of [00imm8] (00imm8 = 0000H + 00H to FFH)													
	LDB	%EXT,i	mm8														
	SRL	[%Y]		Shifts the content of [FFimm8] (FFimm8 = FF00H + 00H to FFH)													

SRL	[%ir]+	Shift right location [ir reg.] logical and increment ir reg.	2 cycles

Function: $0 \rightarrow 3210 \rightarrow C$ [ir], ir \leftarrow ir + 1

Shifts the content of the data memory addressed by the ir register (X or Y) to the right for 1 bit. Bit 0 of the r register moves to the C flag and bit 3 goes "0". Then increments the ir register (X or Y). The increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	;											LSB	
	SRL [%X]+	1	0	0	0	0	1	1	1	0	0	1	0	1	10E5H
	SRL [%Y]+	1	0	0	0	0	1	1	1	0	0	1	1	1	10E7H

Flags:	E		С	Z
	\downarrow	—	\$	\$

Mode: Register indirect Extended addressing: Invalid

SUB %r,%r' Subtract r'reg. from r reg.

1 cycle

Function: $r \leftarrow r - r'$

Subtracts the content of the r' register (A or B) from the r register (A or B).

Code:	Mnemonic	MSI	3											LSB	
	SUB %A,%A	1	1	0	0	0	0	1	1	1	0	0	0	Х	1870H, (1871H)
	SUB %A,%B	1	1	0	0	0	0	1	1	1	0	0	1	Х	1872H, (1873H)
	SUB %B,%A	1	1	0	0	0	0	1	1	1	0	1	0	Х	1874H, (1875H)
	SUB %B,%B	1	1	0	0	0	0	1	1	1	0	1	1	Х	1876H, (1877H)
	· · · · ·			1											
Flags:	E I C		Z												
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
Mode:	Src: Register direct	:													
	Dst: Register direct	:													
	Extended addressin	ıg: In	vali	d											

SUB %r,imm4 Subtract immediate data imm4 from r reg.

1 cycle

Function: $r \leftarrow r - imm4$

Subtracts the 4-bit immediate data imm4 from the r register (A or B).

Code:	Mnemonic	MSE	3											LSB	
	SUB %A,imm4	1	1	0	0	0	0	1	0	0	i3	i2	i1	i0	1840H–184FH
	SUB %B,imm4	1	1	0	0	0	0	1	0	1	i3	i2	i1	i0	1850H–185FH

Flags: Е

- С Ζ T \downarrow 1 _
- Mode: Src: Immediate data Dst: Register direct Extended addressing: Invalid

SUB %r,[%ir] Subtract location [ir reg.] from r reg.

1 cycle

Function: $r \leftarrow r - [ir]$

Subtracts the content of the data memory addressed by the ir register (X or Y) from the r register (A or B).

Code:	Mnem	onic	N	ASB]	LSB	
	SUB	%A,[%X]		1	1	0	0	0	0	1	1	0	0	0	0	0	1860H
	SUB	%A,[%Y]		1	1	0	0	0	0	1	1	0	0	0	1	0	1862H
	SUB	%B,[%X]		1	1	0	0	0	0	1	1	0	0	1	0	0	1864H
	SUB	%B,[%Y]		1	1	0	0	0	0	1	1	0	0	1	1	0	1866H
Flags:	E ↓	 _	C ¢	Z \$													
Mode:	Src: Register indirect																
	Src: Register indirect Dst: Register direct																
	Extend	ded addre	ssing	Va	lid												
Extended operation:	LDB SUB	%EXT,im %r,[%X]	im8	r٠	← r	- [0)0im	ım8] (C)0im	ım8	= ()00()H -	F 00)H t	o FFH)
	LDB SUB	%EXT,im %r,[%Y]	nm8	r٠	← r	- (F	Firr	nm8	6] (F	Fin	nm8	8 =	FF0	ЮH	+ 0	0H	to FFH)

SUB	%r,[%ir]	+ Subtract location [ir reg.] from r reg. and increment ir reg.	1 cycle

Function: $r \leftarrow r - [ir]$, $ir \leftarrow ir + 1$

Subtracts the content of the data memory addressed by the ir register (X or Y) from the r register (A or B). Then increments the ir register (X or Y). The flags change due to the operation result of the r register and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3											LSB	
	SUB %A,[%X]+	1	1	0	0	0	0	1	1	0	0	0	0	1	1861H
	SUB %A,[%Y]+	1	1	0	0	0	0	1	1	0	0	0	1	1	1863H
	SUB %B,[%X]+	1	1	0	0	0	0	1	1	0	0	1	0	1	1865H
	SUB %B,[%Y]+	1	1	0	0	0	0	1	1	0	0	1	1	1	1867H

Flags:	E	I	С	Z
	\downarrow	-	¢	\$

Mode: Src: Register indirect Dst: Register direct Extended addressing: Invalid

SUB [%ir],%r Subtract r reg. from location [ir reg.]

2 cycles

Function: $[ir] \leftarrow [ir] - r$

Subtracts the content of the r register (A or B) from the data memory addressed by the ir register (X or Y).

Code:	Mnem	onic]	MSB]	LSB	
	SUB	[%X],%/	A	1	1	0	0	0	0	1	1	0	1	0	0	0	1868H
	SUB	[%X],%l	В	1	1	0	0	0	0	1	1	0	1	1	0	0	186CH
	SUB	[%Y],%/	A	1	1	0	0	0	0	1	1	0	1	0	1	0	186AH
	SUB	[%Y],%l	В	1	1	0	0	0	0	1	1	0	1	1	1	0	186EH
Flags: Mode:	E ↓ Src: R	I –	C ¢ direct	<u>Z</u> ↓	- -												
	Extend	ded addi	ressing	: Va	lid												
	Litterit	acti acti															
Extended operation:	LDB SUB	%EXT,i [%X],%	mm8 r	$(00imm8] \leftarrow [00imm8] - r (00imm8 = 0000H + 00H to FFH)$													
	LDB SUB	%EXT,i [%Y],%	mm8 r	[FFimm8] \leftarrow [FFimm8] - r (FFimm8 = FF00H + 00H to FFH)													

SUB	[%ir]+,%r	Subtract r reg. from location [ir reg.] and increment ir reg.	2 cycles
			~

Function: $[ir] \leftarrow [ir] - r, ir \leftarrow ir + 1$

Subtracts the content of the r register (A or B) from the data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	8											LSB	
	SUB [%X]+,%A	1	1	0	0	0	0	1	1	0	1	0	0	1	1869H
	SUB [%X]+,%B	1	1	0	0	0	0	1	1	0	1	1	0	1	186DH
	SUB [%Y]+,%A	1	1	0	0	0	0	1	1	0	1	0	1	1	186BH
	SUB [%Y]+,%B	1	1	0	0	0	0	1	1	0	1	1	1	1	186FH

Flags:

Е	_	С	Z
\downarrow	-	€	\Rightarrow

Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

SUB [%ir], imm4 Subtract immediate data imm4 from location [ir reg.]

2 cycles

Function: $[ir] \leftarrow [ir] - imm4$

Subtracts the 4-bit immediate data imm4 from the data memory addressed by the ir register (X or Y).

Code:	Mnem	onic	MSE	3											LSB	
	SUB	[%X],imm4	1	1	0	0	0	0	0	0	0	i3	i2	i1	i0	1800H–180FH
	SUB	[%Y],imm4	1	1	0	0	0	0	0	1	0	i3	i2	i1	i0	1820H–182FH
Flags:	E ↓	I C - ↓		<u>Z</u> ↓												
Mode:	Src: In Dst: R Extend	mmediate data Register indirec ded addressin	n et g: Va	alid												
Extended operation:	LDB SUB	%EXT,imm8 [%X],imm4	} [00imm8] ← [00imm8] - imm4 (00imm8 = 0000H + 00H to FFH)													
	LDB SUB	%EXT,imm8 [%Y],imm4	[FFin	nm8	8] ←	FF	im	m8]	- in	nm4	4 (F	Fin	าฑ8	8 = F	F00H + 00H to FFH)

SUB [%ir]+,imm4 Subtract immediate data imm4 from location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir] - imm4$, ir $\leftarrow ir + 1$

Subtracts the 4-bit immediate data imm4 from the data memory addressed by the ir register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSB	5											LSB	
	SUB [%X]+,imm4	1	1	0	0	0	0	0	0	1	i3	i2	i1	i0	1810H–181FH
	SUB [%Y]+,imm4	1	1	0	0	0	0	0	1	1	i3	i2	i1	i0	1830H–183FH

Flags:	E	I	С	Ζ
	\rightarrow	Ι	\Leftrightarrow	\$

Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid

TST [addr6], imm2 Test bit imm2 in location [addr6]

1 cycle

Function:	[addr	$[6] \vee (2^{imn})$	ⁿ²)															
	(addr	6 = 0000	H-003F	Ήc	or F	FC0	H-1	FFF	FH))								
	Tests	the bit sp	pecified	wi	th t	he i	mm	n2 ir	ı th	e da	ita r	nen	nory	y sp	ecif	fied	with the addr6, and	sets/
	resets	s the Z fla	ag. It do	bes	not	cha	nge	e the	e co	ntei	nt o	f th	e da	ita r	nen	nory	7.	
Code: Mnemonic MSB LSB TST [00addr6],imm2 1 0 0 1 i0 a5 a4 a3 a2 a1 a0 1200H–12FFH																		
													1200H–12FFH					
	TST	[FFaddr6	6],imm2	1	0	0	1	1	i1	i0	a5	a4	a3	a2	a1	a0	1300H–13FFH	
Flags:	E	I	С	Z	Ζ													
	\downarrow	-	_		\$													
M 1	C					-												

Mode: Src: Immediate data Dst: 6-bit absolute Extended addressing: Invalid

XOR %r,%r'

Exclusive OR r' reg. and r reg.

1 cycle

Function: $r \leftarrow r \forall r'$

Performs an exclusive OR operation of the content of the r' register (A or B) and the content of the r register (A or B), and stores the result in the r register.

Code:	Mnemonic	MSE	3	_	-	-	_		-		_	-	-	LSB	
	XOR %A,%A	1	1	0	1	1	1	1	1	1	0	0	0	Х	1BF0H, (1BF1H)
	XOR %A,%B	1	1	0	1	1	1	1	1	1	0	0	1	Х	1BF2H, (1BF3H)
	XOR %B,%A	1	1	0	1	1	1	1	1	1	0	1	0	Х	1BF4H, (1BF5H)
	XOR %B,%B	1	1	0	1	1	1	1	1	1	0	1	1	Х	1BF6H, (1BF7H)
	XOR %B,%A XOR %B,%B	1	1 1	0	1 1	1 1	1 1	1 1	1 1	1 1	0	1 1	0	X X X	1BF4H, (1BF5 1BF6H, (1BF7

Flags:

E		С	Z	
\downarrow	_	_	\$	(r ≠ r')
\downarrow	_	—	\uparrow	(r = r')

Mode: Src: Register direct Dst: Register direct Extended addressing: Invalid

XOR %**r**,**imm4** *Exclusive OR immediate data imm4 and r reg.*

Function: $r \leftarrow r \forall imm4$

Performs an exclusive OR operation of the 4-bit immediate data imm4 and the content of the r register (A or B), and stores the result in the r register.

Code:	Mnemo	onic		MSE	3											LSB	
	XOR	%A,imr	m4	1	1	0	1	1	1	1	0	0	i3	i2	i1	i0	1BC0H-1BCFH
	XOR	%B,imr	n4	1	1	0	1	1	1	1	0	1	i3	i2	i1	i0	1BD0H-1BDFH
		1				1											
Flags:	E		C		Ζ												
	\downarrow	-	\$														
Mode:	Src: In	nmedia	te data														
	DSt: K	egister	unect														

XOR %F,imm4 Ex

Extended addressing: Invalid

Exclusive OR immediate data imm4 and F reg.

1 cycle

Function: $F \leftarrow F \forall imm4$

Performs an exclusive OR operation of the 4-bit immediate data imm4 and the content of the F (flag) register, and stores the result in the r register. It is possible to set/reset any flag.

Code:	Mnemonic				MSB							LSB							
	XOR %F,imm4				0	0	0	0	1	0	1	0	i3	i2	i1	i0	10A0H–10AFH		
Flags:	E	1	С		7														
	\$	\$	\$																

Mode: Src: Immediate data Dst: Register direct Extended addressing: Invalid
XOR %r,[%ir] *Exclusive OR location [ir reg.] and r reg.*

Function: $r \leftarrow r \forall [ir]$

Performs an exclusive OR operation of the content of the data memory addressed by the ir register (X or Y) and the content of the r register (A or B), and stores the result in the r register.

Code:	Mnemo	onic	1	MSB LSB													
	XOR	%A,[%)	K]	1	1	0	1	1	1	1	1	0	0	0	0	0	1BE0H
	XOR	%A,[%`	Y]	1	1	0	1	1	1	1	1	0	0	0	1	0	1BE2H
	XOR	%B,[%)	K]	1	1	0	1	1	1	1	1	0	0	1	0	0	1BE4H
	XOR	XOR %B,[%Y]			1	0	1	1	1	1	1	0	0	1	1	0	1BE6H
Flags:	E ↓	 _	C -	Z	2												
Mode:	Src: R Dst: R Extenc	egister i egister d led add	ndirect direct ressing	: Va	lid												
Extended operation:	LDB XOR LDB XOR	%EXT,i %r,[%X %EXT,i %r,[%Y	mm8 .] mm8 .]	r r	← r ← r	∀ [∀ [00ir FFii	mm8 mm	8] (8] (00ii (FFi	mm mm	8 = 18 =	000)0H 00⊦	+ C	юн 00н	to FFH) to FFH)

XOR %r,[%ir]+ Exclusive OR location [ir reg.] and r reg. and increment ir reg. 1 cycle

Function: $r \leftarrow r \forall [ir], ir \leftarrow ir + 1$

Performs an exclusive OR operation of the content of the data memory addressed by the ir register (X or Y) and the content of the r register (A or B), and stores the result in the r register. Then increments the ir register (X or Y). The flags change due to the operation result of the r register and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3				LSB								
	XOR %A,[%X]+	1	1	0	1	1	1	1	1	0	0	0	0	1	1BE1H
	XOR %A,[%Y]+	1	1	0	1	1	1	1	1	0	0	0	1	1	1BE3H
	XOR %B,[%X]+	1	1	0	1	1	1	1	1	0	0	1	0	1	1BE5H
	XOR %B,[%Y]+	1	1	0	1	1	1	1	1	0	0	1	1	1	1BE7H
	,[]			-						-					

Flags:	E	I	С	
		_		

Mode: Src: Register indirect Dst: Register direct Extended addressing: Invalid

XOR [%ir],%r Exclusive OR r reg. and location [ir reg.]

Function: $[ir] \leftarrow [ir] \forall r$

Performs an exclusive OR operation of the content of the r register (A or B) and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address.

Code:	Mnemo	onic]	MSB]	LSB	
	XOR	[%X],%	A	1	1	0	1	1	1	1	1	0	1	0	0	0	1BE8H
	XOR	[%X],%	В	1	1	0	1	1	1	1	1	0	1	1	0	0	1BECH
	XOR [%Y],%A			1	1	0	1	1	1	1	1	0	1	0	1	0	1BEAH
	XOR [%Y],%B			1	1	0	1	1	1	1	1	0	1	1	1	0	1BEEH
Flags:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
Moae:	Src: K	egister d	lirect														
	Dst: K	egister i	ndirect														
	Extend	led add	ressing	: Va	lıd												
Extended operation:	LDB XOR	%EXT,i [%X],%	mm8 r	[0	0im	nm8	6] ←	[00	imr	n8]	∀r	(00	Dimr	m8 :	= 00	000	H + 00H to FFH)
	LDB XOR	%EXT,i [%Y],%	mm8 r	n8 [FFimm8] \leftarrow [FFimm8] \forall r (FFimm8 = FF00H + 00H to 1									0H + 00H to FFH)				

XOR	[%ir]+,%r	Exclusive OR r reg.	and location	[ir reg.] and	l increment ir reg.	2 cycles
-----	-----------	---------------------	--------------	---------------	---------------------	----------

Function: $[ir] \leftarrow [ir] \forall r, ir \leftarrow ir + 1$

Performs an exclusive OR operation of the content of the r register (A or B) and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address. Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemonic	MSE	3				LSB								
	XOR [%X]+,%A	1	1	0	1	1	1	1	1	0	1	0	0	1	1BE9H
	XOR [%X]+,%B	1	1	0	1	1	1	1	1	0	1	1	0	1	1BEDH
	XOR [%Y]+,%A	1	1	0	1	1	1	1	1	0	1	0	1	1	1BEBH
	XOR [%Y]+,%B	1	1	0	1	1	1	1	1	0	1	1	1	1	1BEFH

Flags:	E	I	С	Z
	\rightarrow	—	_	\leftrightarrow

Mode: Src: Register direct Dst: Register indirect Extended addressing: Invalid

XOR [%ir],imm4 Exclusive OR immediate data imm4 and location [ir reg.]

2 cycles

Function: $[ir] \leftarrow [ir] \forall imm4$

Performs an exclusive OR operation of the 4-bit immediate data imm4 and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address.

Code:	Mnem	onic	MSI	В			LSB									
	XOR	[%X],imm4	1	1	0	1	1	1	0	0	0	i3	i2	i1	i0	1B80H–1B8FH
	XOR	[%Y],imm4	1	1	0	1	1	1	0	1	0	i3	i2	i1	i0	1BA0H–1BAFH
Flags:	E ↓	I C 		Z ¢												
Mode:	Src: In	mmediate data	L													
	Dst: R	legister indired	t													
	Exten	ded addressing	g: Va	alid												
Extended operation:	LDB XOR	%EXT,imm8 [%X],imm4	[00in	nm8	-) [[00	imr	n8]	∀ ir	nm	4 (()0in	nm8	3 = (0000H + 00H to FFH)
	LDB XOR	%EXT,imm8 [%Y],imm4	[FFin	nm8	8] ←	FF	- imi	m8]	∀i	mm	4 (FFii	nm	8 =	FF00H + 00H to FFH)

XOR [%ir]+, imm4 Exclusive OR immediate data imm4 and location [ir reg.] and increment ir reg. 2 cycles

Function: $[ir] \leftarrow [ir] \forall imm4, ir \leftarrow ir + 1$

Performs an exclusive OR operation of the 4-bit immediate data imm4 and the content of the data memory addressed by the ir register (X or Y), and stores the result in that address. Then increments the ir register (X or Y). The flags change due to the operation result of the data memory and the increment result of the ir register does not affect the flags.

Code:	Mnemonic		MSE	3											LSB	
	XOR [%X]+,i	OR [%X]+,imm4				1	1	1	0	0	1	i3	i2	i1	i0	1B90H–1B9FH
	XOR [%Y]+,imm4			1	0	1	1	1	0	1	1	i3	i2	i1	i0	1BB0H–1BBFH
Flags:	E I	С	Z	2												

Mode: Src: Immediate data Dst: Register indirect Extended addressing: Invalid

 \downarrow

Index

ADC %r,%r' 61	CALR [addr6] 82	LD [%ir]+,imm4 103	SBC %r,imm4 124
ADC %r,imm4 61	CALR sign8 82	LD [%ir],[%ir'] 103	SBC %r,[%ir] 124
ADC %r,[%ir] 62	CALZ imm8 83	LD [%ir],[%ir']+ 104	SBC %r,[%ir]+ 125
ADC %r,[%ir]+ 62	CLR [addr6],imm2 . 83	LD [%ir]+,[%ir'] 104	SBC [%ir],%r 125
ADC [%ir],%r 63	CMP %r,%r' 84	LD [%ir]+,[%ir']+ 105	SBC [%ir]+,%r126
ADC [%ir]+,%r 63	CMP %r,imm4 84	LDB %BA,imm8 105	SBC [%ir],imm4 126
ADC [%ir],imm4 64	CMP %r,[%ir] 85	LDB %BA,[%ir]+ 106	SBC [%ir]+,imm4 127
ADC [%ir]+,imm4 64	CMP %r,[%ir]+ 85	LDB %BA,%EXT106	SBC %B,%A,n4 127
ADC %B,%A,n4 65	CMP [%ir],%r 86	LDB %BA,%rr 107	SBC %B,[%ir],n4128
ADC %B,[%ir],n4 65	CMP [%ir]+,%r 86	LDB %BA,%sp 107	SBC %B,[%ir]+,n4 128
ADC %B,[%ir]+,n4 . 66	CMP [%ir],imm4 87	LDB [%ir]+,%BA 108	SBC [%ir],%B,n4129
ADC [%ir],%B,n4 66	CMP [%ir]+,imm4 87	LDB [%X]+,imm8 108	SBC [%ir]+,%B,n4 129
ADC [%ir]+,%B,n4 . 67	CMP %ir,imm8 88	LDB %EXT,imm8 109	SBC [%ir],0,n4 130
ADC [%ir],0,n4 67	DEC [addr6] 88	LDB %EXT,%BA 109	SBC [%ir]+,0,n4 130
ADC [%ir]+,0,n4 68	DEC [%ir],n4 89	LDB %rr,imm8 110	SET [addr6],imm2.131
ADD %r,%r' 68	DEC [%ir]+,n4 89	LDB %rr,%BA 110	SLL %r131
ADD %r,imm4 69	DEC %sp 90	LDB %sp,%BA 111	SLL [%ir]132
ADD %r,[%ir] 69	EX %A,%B 90	NOP 111	SLL [%ir]+132
ADD %r,[%ir]+ 70	EX %r,[%ir] 91	OR %r,%r' 112	SLP 133
ADD [%ir],%r 70	EX %r,[%ir]+ 91	OR %r,imm4 112	SRL %r133
ADD [%ir]+,%r 71	HALT 92	OR %F,imm4 113	SRL [%ir]134
ADD [%ir],imm4 71	INC [addr6] 92	OR %r,[%ir] 113	SRL [%ir]+134
ADD [%ir]+,imm4 72	INC [%ir],n4 93	OR %r,[%ir]+ 114	SUB %r,%r' 135
ADD %ir,%BA 72	INC [%ir]+,n4 93	OR [%ir],%r 114	SUB %r,imm4 135
ADD %ir,sign8 73	INC %sp 94	OR [%ir]+,%r 115	SUB %r,[%ir] 136
AND %r,%r' 73	INT imm6 94	OR [%ir],imm4 115	SUB %r,[%ir]+ 136
AND %r,imm4 74	JP %Y 95	OR [%ir]+,imm4 116	SUB [%ir],%r 137
AND %F,imm4 74	JR %A 95	POP %r 116	SUB [%ir]+,%r137
AND %r,[%ir] 75	JR %BA 96	POP %ir 117	SUB [%ir],imm4 138
AND %r,[%ir]+ 75	JR [addr6] 96	PUSH %r117	SUB [%ir]+,imm4 138
AND [%ir],%r 76	JR sign8 97	PUSH %ir 118	TST [addr6],imm2.139
AND [%ir]+,%r 76	JRC sign8 97	RET 118	XOR %r,%r'139
AND [%ir],imm4 77	JRNC sign8 98	RETD imm8 119	XOR %r,imm4 140
AND [%ir]+,imm4 77	JRNZ sign8 98	RETI 119	XOR %F,imm4 140
BIT %r,%r' 78	JRZ sign8 99	RETS 120	XOR %r,[%ir]141
BIT %r,imm4 78	LD %r,%r' 99	RL %r120	XOR %r,[%ir]+ 141
BIT %r,[%ir] 79	LD %r,imm4100	RL [%ir]121	XOR [%ir],%r142
BIT %r,[%ir]+ 79	LD %r,[%ir]100	RL [%ir]+121	XOR [%ir]+,%r 142
BIT [%ir],%r 80	LD %r,[%ir]+101	RR %r122	XOR [%ir],imm4 143
BIT [%ir]+,%r 80	LD [%ir],%r101	RR [%ir]122	XOR [%ir]+,imm4143
BIT [%ir],imm4 81	LD [%ir]+,%r102	RR [%ir]+123	
BIT [%ir]+,imm4 81	LD [%ir],imm4 102	SBC %r,%r' 123	

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A. Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -Riesstrasse 15 80992 Muenchen, GERMANY Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

SALES OFFICE Altstadtstrasse 176

51379 Leverkusen, GERMANY Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

2.4 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -

EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

 10F, No. 287, Nanking East Road, Sec. 3

 Taipei, TAIWAN, R.O.C.

 Phone: 02-2717-7360

 Fax: 02-2712-9164

 Telex: 24444

 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2 HsinChu 300, TAIWAN, R.O.C. Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD. No. 1 Temasek Avenue. #36-00

Millenia Tower, SINGAPORE 039192 Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-Dong Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "**Saving**" **Technology**, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings**.

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic devices information on Epson WWW server http://www.epson.co.jp/device/