
MF855-02

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

E0C63000 CORE CPU MANUAL

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency. Please note
that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it
now reads "E0C".

© SEIKO EPSON CORPORATION 1999 All rights reserved.

E0C63000 CORE CPU MANUAL EPSON i

CONTENTS

E0C63000 CORE CPU MANUAL

PREFACE
This manual explains the architecture, operation and instruction of the core CPU E0C63 of the CMOS 4-bit
single chip microcomputer E0C63 Family.
Also, since the memory configuration and the peripheral circuit configuration is different for each device
of the E0C63 Family, you should refer to the respective manuals for specific details other than the basic
functions.

CONTENTS

CHAPTER 1 OUTLINE ... 1
1.1 Features ... 1

1.2 Instruction Set Features .. 1

1.3 Block Diagram .. 2

1.4 Input-Output Signals ... 2

CHAPTER 2 ARCHITECTURE .. 4
2.1 ALU and Registers .. 4

2.1.1 ALU ... 4
2.1.2 Register configuration .. 4
2.1.3 Flags ... 5
2.1.4 Arithmetic operations with numbering system .. 7
2.1.5 EXT register and data extension ... 8

2.2 Program Memory ... 11
2.2.1 Configuration of program memory .. 11
2.2.2 PC (program counter) .. 11
2.2.3 Branch instructions .. 12
2.2.4 Table look-up instruction ... 16

2.3 Data Memory ... 17
2.3.1 Configuration of data memory ... 17
2.3.2 Addressing for data memory .. 18
2.3.3 Stack and stack pointer .. 19
2.3.4 Memory mapped I/O .. 21

CHAPTER 3 CPU OPERATION.. 22
3.1 Timing Generator and Bus Cycle ... 22

3.2 Instruction Fetch and Execution .. 22

3.3 Data Bus (Data Memory) Control ... 23
3.3.1 Data bus status ... 23
3.3.2 High-impedance control .. 23
3.3.3 Interrupt vector read .. 24
3.3.4 Memory write ... 24
3.3.5 Memory read .. 25

3.4 Initial Reset .. 25
3.4.1 Initial reset sequence ... 25
3.4.2 Initial setting of internal registers ... 26

ii EPSON E0C63000 CORE CPU MANUAL

CONTENTS

3.5 Interrupts .. 26
3.5.1 Interrupt vectors .. 26
3.5.2 Interrupt sequence ... 27
3.5.3 Notes for interrupt processing ... 30

3.6 Standby Status .. 31
3.6.1 HALT status.. 31
3.6.2 SLEEP status .. 31

CHAPTER 4 INSTRUCTION SET ... 33
4.1 Addressing Mode .. 33

4.1.1 Basic addressing modes ... 33
4.1.2 Extended addressing mode... 35

4.2 Instruction List ... 37
4.2.1 Function classification ... 37
4.2.2 Symbol meanings ... 38
4.2.3 Instruction list by function ... 40
4.2.4 List in alphabetical order ... 48
4.2.5 List of extended addressing instructions .. 55

4.3 Instruction Formats.. 59

4.4 Detailed Explanation of Instructions ... 60

E0C63000 CORE CPU MANUAL EPSON 1

CHAPTER 1: OUTLINE

CHAPTER 1 OUTLINE
The E0C63000 is the core CPU of the 4-bit single chip microcomputer E0C63 Family that utilizes

original EPSON architecture. It has a large and linear addressable space, maximum 64K words (13 bits/
word) program memory (code ROM area) and maximum 64K words (4 bits/word) data memory (RAM,
data ROM and I/O area), and high speed, abundant instruction sets. It operates in a wide range of supply
voltage and features low power consumption. Furthermore, modularization of programs can be done
easily because the program memory does not need bank and page management and relocatable program-
ming is possible.
In addition, it has adopted a unified architecture and a peripheral circuit interface in memory mapped I/O
method to flexibly meet future expansion of the E0C63 Family.

1.1 Features
The E0C63000 boasts the below features.

Program memory Maximum 64K × 13 bits (linear address, non-page method)
Data memory Maximum 64K × 4 bits
Basic instruction set 47 types with 5 types of basic addressing modes and 3 types of extended

addressing modes
Instruction cycle 1 cycle (2 clocks), 2 cycles (4 clocks) and 3 cycles (6 clocks)
Register configuration Data register 2 × 4 bits

Index register 2 × 16 bits
Address extension register 8 bits
Program counter 16 bits
Stack pointer 2 × 8 bits
Condition flag 4 bits
Queue register 16 bits

Interrupt function NMI (Non Maskable Interrupt) vector 1
Hardware interrupt vector Maximum 15 vectors
Software interrupt vector Maximum 63 vectors

Standby function HALT/SLEEP
Peripheral circuit interface Memory mapped I/O method
Pipeline processing 2 stages (fetch and execution) pipeline processing

1.2 Instruction Set Features

(1) It adopts high efficiency machine cycles, high speed and abundant instruction set.
Almost all standard instructions operate in 1 cycle (2 clock).

(2) Both the program space and the data space are designed as a 64K-word linear space without page
concept and can be addressed with 1 instruction.

(3) The instruction system includes relocatable jump instructions and allows a relocatable programming.
Thus modular programming and software library development can be realized easily, and it increases
an efficiency for developing applications.

(4) Memory management can be done easily by 5 types of basic addressing modes, 3 types of extended
addressing modes with the address extension register and 16-bit operation function that is useful in
address calculations.

(5) 8-bit data processing is possible using the table look-up instruction and other instructions.

(6) Some instructions support a numbering system, thus binary to hexadecimal software counters can be
made easily.

2 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 1: OUTLINE

1.3 Block Diagram
Figure 1.3.1 shows the E0C63000 block diagram.

Fig. 1.3.1 E0C63000 block diagram

1.4 Input-Output Signals
Tables 1.4.1 (a) and 1.4.1 (b) show the input/output signals between the E0C63000 and peripheral circuits.

Table 1.4.1(a) Input/output signal list (1)

Type I/O

I

I

I

O

O

O

FunctionTerminal name

Power supply

Clock

Address bus

VDD (VD1)

VSS (VS1)

CLK

PK

PL

IA00–IA15

DA00–DA15

Power supply (+)

 Inputs a plus supply voltage.

Power supply (-)

 Inputs a minus supply voltage.

Clock input

 Inputs the system clock from the peripheral circuit.

2-phase divided clock output

 Outputs the 2-phase divided signals to be generated from the system clock

 input to the CLK terminal as following phase.

Instruction address output

 Outputs an instruction (code ROM) address.

Data address output

 Outputs a data (RAM, I/O) address.

CLK

PK

PL
1 cycle

PC (16)

QUEUE (16)

X (16)

Y (16)

SP2 (8)

SP1 (8)

DATA ADDRESS LATCH

A (4)

F (4)

Port A Port B

4-bit ALU

B (4)

Port A Port B

16-bit ADDER

EXT (8)

ADDRESS
OPERATOR

BUS
CONTROL

TIMING & INTERRUPT
CONTROL

POWER
SUPPLY

R
D

W
R

R
D

IV
B

S
16

D
B

S
0

D
B

S
1

C
LK

S
R

P
K

P
L

S
T

O
P

U
S

LP
IR

Q
N

M
I

IA
C

K
N

A
C

K
F

E
T

C
H

V
D

D

V
S

S

IR (13)

INSTRUCTION
DECODER

µ Instruction

IA
00

 –
IA

15

I0
0

 –
I1

2

M
00

 –

M
15

D
A

00

 –
D

A
15 IF

D
0

 –

D
3

E0C63000

E0C63000 CORE CPU MANUAL EPSON 3

CHAPTER 1: OUTLINE

Table 1.4.1(b) Input/output signal list (2)

Type I/O

I

I/O

I/O

O

O

O

I

O

I

I

O

O

O

O

O

O

O

FunctionTerminal name

Data bus

Bus control

signal

System control

signal

Interrupt signal

Status signal

I00–I12

M00–M15

D0–D3

RD

WR

RDIV

SR

USLP

NMI

IRQ

IACK

NACK

FETCH

STOP

IF

BS16

DBS0

DBS1

Instruction bus

Inputs an instruction code.

16-bit data bus

 A bidirectional data bus to connect to the RAM (stack RAM) for 16-bit accessing.

4-bit data bus

 A bidirectional data bus to connect to the RAM and I/O.

Data read

 Goes to a low level when the CPU reads data (from RAM, I/O).

Data write

 Goes to a low level when the CPU writes data (to RAM, I/O).

Read interrupt vector

 Goes to a low level when the CPU reads an interrupt vector.

Reset input

 A low level input resets the CPU.

Micro sleep

 Goes to a low level when the CPU executes the SLP instruction.

 The peripheral circuit stops oscillation on the basis of this signal.

Non-maskable interrupt request

 An interrupt request terminal for an interrupt that cannot be masked by software.

 It is accepted at the falling edge of an input signal to this terminal.

Interrupt request

 An interrupt request terminal for interrupts that can be masked by software.

 It is accepted by a low level signal input to this terminal.

Interrupt acknowledge

 Goes to a low level while executing an NMI or IRQ interrupt response cycle.

Non-maskable interrupt acknowledge

 Goes to a low level while executing a non-maskable interrupt response cycle.

Fetch cycle

 Goes to a low level when the CPU fetches an instruction.

 Stop signal

 Goes to a low level when the CPU is in stop status after executing the HALT

 or SLP instruction, or in reset status (SR is low).

Interrupt flag

 Outputs a status (inverted value) of the interrupt flag in the flag (F) register.

16-bit access

 Goes to a low level when the CPU accesses to a 16-bit RAM.

Data bus status

 Outputs data bus status (for both the 4-bit and 16-bit data bus).

DBS1
0
0
1
1

DBS0
0
1
0
1

 State
High impedance
Interrupt vector read
Memory write
Memory read

See Chapter 3, "CPU OPERATION", for the timing of the signals.

4 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

CHAPTER 2 ARCHITECTURE
This chapter explains the E0C63000 ALU, registers, configuration of the program memory area

and data memory area, and addressing.

2.1 ALU and Registers

2.1.1 ALU
The ALU (Arithmetic and Logic Unit) loads 4-bit data from a memory or a register and operates the data
according to the instruction. Table 2.1.1.1 shows the ALU operation functions.

Table 2.1.1.1 ALU operation functions

Fig. 2.1.2.1 Register configuration

The operation result is stored to a register or memory according to the instruction.
In addition, the Z (zero) flag and C (carry) flag are set/reset according to the operation result.

2.1.2 Register configuration
Figure 2.1.2.1 shows the register configuration of the E0C63000.

Function classification

Arithmetic

Logic

Rotate / shift

Mnemonic Operation

Addition

Addition with carry

Subtraction

Subtraction with carry

Comparison

Increment (adds 1)

Decrement (subtracts 1)

Logical product

Logical sum

Exclusive OR

Bit test

Bit clear

Bit set

Bit test

Rotate to left with carry

Rotate to right with carry

Logical shift to left

Logical shift to right

ADD

ADC

SUB

SBC

CMP

INC

DEC

AND

OR

XOR

BIT

CLR

SET

TST

RL

RR

SLL

SRL

PC15 0

X15 0

XH7 0XL0 7

Y15 0

YH7 0YL0 7

0SP17 00000000

0SP2700H

0EXT7

BA7 0

B3 0A0 3

F3 0

ZCIE

Program counter

Index register X

Index register Y

Queue register

Stack pointer 1

Stack pointer 2

Extension register

Data register B & A

Flag register

QUEUE15 0

E0C63000 CORE CPU MANUAL EPSON 5

CHAPTER 2: ARCHITECTURE

 • A and B registers
The A and B registers are respective 4-bit data registers that are used for data transfer and operation
with other registers, data memories or immediate data. They are used independently for 4-bit trans-
fer/operations and used in a BA pair that makes the B register the high-order 4 bits for 8-bit transfer/
operations.

 • X and Y registers
The X and Y registers are respective 16-bit index registers that are used for indirect addressing of the
data memory. These registers are configured as an 8-bit register pair (high-order 8 bits: XH/YH, low-
order 8 bits: XL/YL) and data transfer/operations can be done in an 8-bit unit or a 16-bit unit.

 • PC (program counter)
The PC is a 16-bit counter to address a program memory and indicates the following address to be
executed.

 • SP1 and SP2 (stack pointers)
The SP1 and SP2 are respective 8-bit registers that indicate a stack address in the data memory. 8 bits
of the SP1 correspond to the DA02 to DA09 bits of the address bus for 16-bit data accessing (address
stacking) and it is used to operate the stack in a 4-word (16-bit) unit. 8 bits of the SP2 correspond to
the low-order 8 bits (DA01 to DA07) of the address bus for 4-bit data accessing and it is used to
operate stack in 1-word (4-bit) unit.
See Section 2.3.3, "Stack and stack pointer" for details of the stack operation.

 • EXT register
The EXT register is an 8-bit data register that is used when an address or data is extended into 16 bits.
See Section 2.1.5, "EXT register and data extension", for details.

 • F register
The F register includes 4 bits of flags; Z and C flags that are changed by operation results, I flag that is
used to enable/disable interrupts, and E flag that indicates extended addressing mode.

 • Queue register
The queue register is used as a queue buffer for data when the SP1 processes 16-bit stack operations.
This register is provided in order to process 16-bit data pop operations from the SP1 stack at high-
speed. The queue register is accessed by the hardware, so it is not necessary to be aware of the register
operation when programming.

2.1.3 Flags
The E0C63000 contains a 4-bit flag register (F register) that indicates such things as the operation result
status within the CPU.

Fig. 2.1.3.1 F (flag) register

 • Z (zero) flag
The Z flag is set to "1" when the execution result of an arithmetic instruction or a shift/rotate instruc-
tion has become "0" and is reset to "0'" when the result is other than "0".

Arithmetic instructions that change the Z flag:
ADD, ADC, SUB, SBC, CMP, INC, DEC, AND, OR, XOR, BIT, CLR, SET, TST

F3 0

ZCIE
Flag register

Z (zero) flag

C (carry) flag

I (interrupt) flag

E (extension mode) flag

6 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

Shift/Rotate instructions that change the Z flag:
SLL, SRL, RL, RR

The Z flag is used for condition judgments when executing the conditional jump ("JRZ sign8" and
"JRNZ sign8") instructions, thus it is possible to branch processing to a routine according to the
operation result.

 • C (carry) flag
The C flag is set to "1" when a carry (carry from the most significant bit) or a borrow (the most signifi-
cant bit borrows) has been generated by the execution of an arithmetic instruction and a shift/rotate
instruction, otherwise the flag is set to "0".

Arithmetic instructions that change the C flag:
ADD, ADC, SUB, SBC, CMP, INC, DEC

(It is different from the Z flag, the logic operation instructions except for the instruction that operates
the F register does not change the C flag. In addition, the ADD instructions for the X and Y register
operations and the INC and DEC instructions for the stack pointer operation does not change the C
flag.)

Shift/Rotate instructions that change the C flag:
SLL, SRL, RL, RR

The C flag is used for condition judgments when executing the conditional jump ("JRC sign8" and
"JRNC sign8") instructions, thus it is possible to branch processing to a routine according to the
operation result.

 • I flag
The I flag permits and forbids the hardware interrupts except for the NMI. By setting the I flag to "1",
the CPU enters in the EI (enable interrupts) status and the hardware interrupts are enabled. When the
I flag is set to "0", the CPU is in the DI (disable interrupts) and the interrupts except for NMI are
disabled. Furthermore, when a hardware interrupt (including the NMI) is generated, the I flag is reset
to "0" and interrupts after that point are disabled. The multiple interrupts can be accepted by setting
the I flag to "1" in the interrupt processing routine.
The NMI (non-maskable interrupt) is accepted regardless of the I flag setting.
The software interrupts are accepted regardless of the I flag and do not reset the I flag.
The I flag is set to "0" (DI status) at an initial reset, therefore it is necessary to set "1" before using
interrupts by software.
See Section 3.5, "Interrupts" for details.

 • E (extension mode) flag
The E flag indicates whether an extended addressing that uses the EXT (extension) register is valid or
invalid. When data is loaded into the EXT register, this flag is set to "1" and the data of the instruction
immediately after that (extended addressable instructions only) is extended with the EXT register.
Then the instruction is executed and the E flag is reset to "0".
See Section 2.1.5, "EXT register and data extension" for details.

 • Flag operations
As described above, the flags are automatically set/reset by the hardware. However, it is necessary to
set by software, especially the I flag. The following instructions are provided in order to operate the F
flag.

LD %A,%F Reads all the flag data
LD %F,%A Writes all the flag data
LD %F,imm4 Writes all the flag data
AND %F,imm4 Resets flag(s)
OR %F,imm4 Sets flag(s)

XOR %F,imm4 Inverts flag(s)
PUSH %F Evacuates the F register
POP %F Returns the F register
RETI Returns the F register∗

 ∗ The RETI instruction is used to return from interrupt processing routines (including software
interrupts), and returns the F register data that was evacuated when the interrupt was generated.

E0C63000 CORE CPU MANUAL EPSON 7

CHAPTER 2: ARCHITECTURE

2.1.4 Arithmetic operations with numbering system
In the E0C63000, some instructions support a numbering system. These instructions are indicated with
the following notations in the instruction list.

ADC operand,n4
SBC operand,n4
INC operand,n4
DEC operand,n4

(See "Instruction List" or "Detailed Explanation of Instructions" for the contents of the operand.)

"n4" is a radix, and can be specified from 1 to 16. The additions/subtractions are done in the numbering
system with n4 as the radix. Various counters (such as binary, octal, decimal and hexadecimal) can be
realized easily by software.

The Z flag indicates that an operation result is "0" or not in arithmetics with any numbering system. The
C flag indicates a carry/borrow according to the radix.

The following shows examples of these operation.

Example 1) Octal addition ADC %B,%A,8 (C flag is "0" before operation)
Setting value Result F register

B register A register B register E I C Z
0010B(2) 0111B(7) 0001B(1) 0 – 1 0

0101B(5) 0011B(3) 0000B(0) 0 – 1 1

Example 2) Decimal subtractio SBC %B,%A,10 (C flag is "0" before operation)
Setting value Result F register

B register A register B register E I C Z
1001B(9) 0111B(7) 0010B(2) 0 – 0 0

0001B(1) 0010B(2) 1001B(9) 0 – 1 0

Example 3) 3-digit BCD down counter
LDB %EXT,0 ; Counter base address [0010H]
LD %XL,0x10
LDB [%X]+,0 ; Initial value setting [100]
LDB [%X]+,0
LDB [%X]+,1

:
:

CTDOWN: ; Count down subroutine----------
LDB %EXT,0 ; Counter base address [0010H]
LD %XL,0x10

DEC [%X]+,10 ; Decrements digit 1
SBC [%X]+,0,10 ; Decrements carry from digit 2
SBC [%X],0,10 ; Decrements carry from digit 3
CALR CTDISP ; Count number display routine
LD %A,0 ; Zero check
ADD %A,[%X]
ADD %X,-1
ADD %A,[%X]
ADD %X,-1
JRNZ CTEXIT ; Return if counter is not zero
CALR CTOVER ; Count over processing routine

CTEXIT:
RET

This routine constructs a 3-digit BCD counter using the decimal operation instructions underlined.
Calling the CTDOWN subroutine decrements the counter, and then returns to the main routine. If the
counter has to be zero, the CTOVER subroutine is called before returning to the main routine to
process the end of counting.

8 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

 • Notes in numbering operations
When performing a numbering operation, set operands in correct notation according to the radix
before operation.
For example, if a decimal operation is done for hexadecimal values (AH to FH), the correct operation
result is not obtained as shown in the following example.

Example: ADC %B,%A,10

Setting value Result F register
B register A register B register E I C Z

1 1001B(9) 1001B(9) 1000B(8) 0 – 1 0 ●●

2 0101B(AH) 1001B(9) 1001B(9) 0 – 1 0 ▲▲

3 1010B(AH) 1010B(AH) 1010B(AH) 0 – 1 0 ×
4 1010B(AH) 1111B(FH) 1111B(FH) 0 – 1 0 ×

Example 1 operates correctly because a decimal value is loaded in the B and A registers.
Examples 3 and 4 do not operate correctly.
Example 2 operates correctly even though it is a wrong setting.

2.1.5 EXT register and data extension
The E0C63000 has a linear 64K-word addressable space, therefore it is required to handle 16-bit address
data. The EXT register and the F flag that extend 8-bit data into 16-bit data permit 16-bit data processing.
The EXT register is an 8-bit register for storing extension data. The E flag indicates that the EXT register
data is valid (extended addressing mode), and is set to "1" by writing data to the EXT register. The E flag
is reset at 1 cycle after setting (during executing the next instruction), therefore an EXT register data is
valid only for the executable instruction immediately after writing. However, that executable instruction
must be a specific instruction which permits the extended addressing to extend the data using the EXT
register. These instructions are specified in "Instruction List" and "Detailed Explanation of Instructions".
Make sure of the instructions when programming.

Note: Do not use instructions (see Instruction List) which are invalid for the extended addressing when
the E flag is set to "1". (Do not use them following instructions that write data to the EXT register or
that set the E flag.) Normal operations cannot be guaranteed if such instructions are used.

(1) Operation for EXT register and E flag (flag register)
The following explains the operation for the EXT register and the E flag (flag register).

 • Data setting to the EXT register

The following two instructions are provided to set data in the EXT register.

LDB %EXT,imm8 Loads an 8-bit immediate data to the EXT register
LDB %EXT,%BA Loads the content of the BA register to the EXT register

By executing the instruction, the EXT flag is set to "1" and it indicates that the content of the EXT
register is valid (the content of the EXT register will be used for data extension in the following
instructions).
Furthermore, the content of the EXT register can be read using the instruction below.

LDB %BA,%EXT Loads the content of the EXT register to the BA register

 • Setting/resetting the E flag

As mentioned above, the E flag is set to "1" by data setting to the EXT register and reset to "0" while
executing the next instruction.
In addition, the E flag can be set/reset using the following instructions that operate the flags.
LD %F,%A Writes all the flag data
LD %F,imm4 Writes all the flag data
AND %F,imm4 Resets flag(s)
OR %F,imm4 Sets flag(s)
XOR %F,imm4 Inverts flag(s)

E0C63000 CORE CPU MANUAL EPSON 9

CHAPTER 2: ARCHITECTURE

The EXT register maintains the data set previously until new data is written or an initial reset. In other
words, the content of the EXT register becomes valid by only setting the E flag using an above instruc-
tion without the register writing and is used for an extended addressing. However, the EXT register is
undefined at an initial reset, therefore, do not directly set the E flag except when the content of the
EXT register has been set for certain.

The following shows the other instructions related to flag data transfer.

LD %A,%F Reads all the flag data
PUSH %F Evacuates the F register
POP %F Returns the F register
RETI Returns the F register ∗

 ∗ The RETI instruction is used to return from interrupt processing routines (including software inter-
rupts), and returns the F register data that was evacuated when the interrupt was generated.
If an interrupt (including NMI) is generated while fetching an instruction, such as a "LDB %EXT, ••"
instruction or an instruction which writes data to the flag register (the E flag may be set), the interrupt
is accepted after fetching (and executing) the next instruction. In normal processing, data extension
processing is not performed after returning from the interrupt service routine because the interrupt
processing including the F register evacuation is performed after the data extension has finished (E
flag is reset). However, if the stack data in the memory is directly changed in the interrupt service
routine, the F register in which the E flag is set may return. In this case, the instruction immediately
after returning by the RETI instruction is executed in the extended addressing mode by the E flag set
to "1". Pay attention to the F register setting except when consciously describing such a processing. It
is necessary to pay the same attention when returning the F register using the "POP %F" instruction.

(2) Extension with E flag
The following explains the instructions that can be executed when the E flag is set to "1" and its
operation.

 • Modifying the indirect addressing with the X and Y registers (for 4-bit data access)
The indirect addressing instructions, which contain [%X] or [%Y] as an operand and accesses 4-bit
data using the X or Y register, functions as an absolute addressing that uses the EXT register data
together with the E flag (= "1").
When an 8-bit immediate data (imm8) is written to the EXT register and the E flag is set immediately
before these instructions, the instruction is modified executing as [%X] = [0000H + imm8] or [%Y] =
[FF00H + imm8]. Therefore, the addressable space with this function is data memory address from
0000H to 00FFH when [%X] is used, and from FF00H to FFFFH when [%Y] is used. Generally, data
that are often used are allocated to the data memory from 0000H to 00FFH and the area from FF00H to
FFFFH is assigned to the I/O memory area (for peripheral circuit control), so these areas are fre-
quently accessed. To access these areas by a normal indirect addressing (if the E flag has not been set)
using the X or Y register, two or three steps of instructions are necessary for setting an address data. In
other words, using this function promotes efficiency of the entire program. See Section 2.3, "Data
Memory" for details of the data memory.

Examples:
LDB %EXT,0x37

LD %A,[%X] ...Works as "LD %A, [0x0037]"

LDB %EXT,0x9C

ADD [%Y],5 ...Works as "ADD [0xFF9C], 5"

Note: This function can be used by only the specific instructions which permits the extended addressing
(see "Instruction List"). Be aware that the operation cannot be guaranteed if the instructions
indicated below are used.

1. Instructions which have a source and /or a destination operand with the post-increment function,
[%X]+ and [%Y]+.

2. Instructions which have [%X] and/or [%Y] in both the source and destination operands.

3.The RETD instruction and the LDB instructions which transfers 8-bit data.

10 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

 • 16-bit data transfer/arithmetic for the index registers X and Y

The following six instructions, which handle the X or Y register and have an 8-bit immediate data as
the operand, permit the extended addressing.

LDB %XL,imm8 LDB %YL,imm8

ADD %X,sign8 ADD %Y,sign8

CMP %X,imm8 CMP %Y,imm8

When data is written to the EXT register and the E flag is set immediately before these instructions,
the data is processed after extending into 16-bit; imm8 (sign8) is used as the low-order 8 bits and the
content of the EXT register is used as the high-order 8 bits.

Examples:
LDB %EXT,0x15

LDB %XL,0x7D ...Works as "LD %X,0x157D"

LDB %EXT,0xB8

ADD %X,0x4F ...Works as "ADD %X, 0xB84F"

LDB %EXT,0xE6

CMP %X,0xA2 ...Works as "CMP %X, 0x19A2"
 ∗ 19H = FFH - [EXT] (E6H)

Above examples use the X register, but work the same even when the Y register is used.

Note: The CMP instruction performs a subtraction with a complement, therefore it is necessary to set the
complement (1's complement) of the high-order 8-bit data in the EXT register.
EXT register ← [FFH - High-order 8-bit data]

 • Extending branch addresses

The following PC relative branch instructions, which have a signed 8-bit relative address as the
operand, permit extended addressing.

JR sign8 JRC sign8 JRNC sign8 JRZ sign8 JRNZ sign8

CALR sign8

When data is written to the EXT register and the E flag is set immediately before these instructions,
the relative address is processed after extending into signed 16-bit; sign8 is used as the low-order 8
bits and the content of the EXT register is as the high-order 8 bits.

Examples:
LDB %EXT,0x64

JR 0x29 ...Works as "JR 0x6429"

LDB %EXT,0x00

JR 127 ...Works as "JR 127"

LDB %EXT,0xFF

JR -128 ...Works as "JR -128"

LDB %EXT,0x3A

JR∗ 0x88 ...Works as "JR∗ 0x3A88" (∗ = C, NC, Z, or NZ)

LDB %EXT,0xF8

CALR 0x62 ...Works as "CALR 0xF862"

See Section 2.2.3, "Branch instructions" for the branch instructions.

E0C63000 CORE CPU MANUAL EPSON 11

CHAPTER 2: ARCHITECTURE

2.2 Program Memory

2.2.1 Configuration of program memory
The E0C63000 can access a maximum 64K-word (× 13 bits) program memory space. In the individual
model of the E0C63 Family, the ROM of which size is decided depending on the model is connected to
this space to write a program and static data.
Figure 2.2.1.1 shows the program memory map of the E0C63000.

Fig. 2.2.1.1 E0C63000 program memory map

The E0C63000 can access 64K-word space linearly without any page management used in current 4-bit
microcomputers.

As shown in Figure 2.2.1.1, the program start address after an initial reset is fixed at 0110H independent
of the E0C63 Family models. Programming should be done so that the execution program starts from that
address.

The address 0100H to 010FH is the hardware interrupt vector's area in which up to 16 interrupt vectors
can be assigned. Address 0100H is for the exclusive use of NMI (non-maskable interrupt). The number of
interrupt vectors is dependent on the interrupt function of the E0C63 Family models. Branch instructions
to the interrupt service routines should be written in this area. See Section 3.5, "Interrupts" for details of
the interrupts.

The address 0111H to 013FH is the software interrupt vector's area. Up to 63 software interrupts can be
set up together with the hardware interrupt vector area. Set branch instructions to the interrupt service
routines in this area similarly to the hardware interrupts.

Addresses from 0000H to 00FFH and from 0140H to FFFFH are program area. A call instruction (CALZ)
that is for the exclusive use of the area from 0000H to 00FFH is provided so that the area is useful to store
common subroutines that are called from relocatable modules.

2.2.2 PC (program counter)
The PC (program counter) is a 16-bit counter that keeps the program address to be executed next. The PC
is incremented by executing every instruction step to execute a program sequentially. When a branch
instruction is executed or an interrupt is generated, the content of the PC is modified to branch the
process flow.
The PC covers the entire program memory space alone, therefore processing such as page management
are unnecessary.
At initial reset, the PC is initialized to 0110H and the program starts executing from that address.

Address
0000H

00FFH
0100H
0101H

010FH
0110H
0111H

013FH
0140H

FFFFH

13-bit

Program area
 Common subroutine, etc.

NMI interrupt vector

Hardware interrupt vectors

Program start address

Software interrupt vectors

Program area

12 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.2.3 Branch instructions
Various branch instructions are provided for program repeat and subroutine calls that change a sequen-
tial program flow controlled with the PC. The branch instruction modifies the PC to branch the program
to an optional address. The types of the branch instructions are classified as follows, according to their
operation differences.

Table 2.2.3.1 Types of branch instructions

 • PC relative jump instructions (JR)
The PC relative jump instruction adds the relative address specified in the operand to the PC that has
indicated the next address, and branches to that address. It permits relocatable programming.
The relative address to be specified in the operand is a displacement from the PC value (address of the
next instruction) when the branch instruction is executed to the branch destination address. When
programming using the E0C63 Family assembler, it is not necessary to calculate displacements
because a branch destination address can be defined as a label and it can be used as an operand.
However, the range of branch destination addresses is different depending on the number of data bits
that are handled as relative addresses.
The following explains the PC relative jump instructions and the relative addresses.

(1) Instructions with a signed 8-bit immediate data sign8 that specifies a relative address

Unconditional jump JR sign8

Conditional jump JRC sign8 JRNC sign8 JRZ sign8 JRNZ sign8

These instructions branch the program sequence with the sign8 specified in the operand as a
signed 8-bit relative address. The range that can be branched is from the next instruction address -
128 to +127. A value within the range from -128 to +127 should be used if specifying a value for
jumping in the assembler. Generally branch destination labels such as "JR LABEL" are used, and
they are expanded into the actual address by the assembler.
These instructions permit the extended addressing with the E flag, and the 8-bit relative address
can be extended into 16 bits (the contents of the EXT register become the high-order 8 bits). In this
case, the range that can be branched is from the next instruction address -32768 to +32767. Conse-
quently, in the extended addressing mode these instructions can branch the entire 64K program
memory.

Examples:
JR -100 ...Jumps to the instruction 99 steps before

LDB %EXT,100 ...(100 × 256) = 25600
JR 100 ...Jumps to the instruction 25701 steps after

The unconditional jump instruction "JR sign8" jumps to the branch destination unconditionally
when it is executed.
The conditional jump instructions jump according to the status of C flag or the Z flag.

JRC sign8 ...Jumps if the C flag is "1", or executes the next instruction if the C flag is "0"
JRNC sign8 ...Jumps if the C flag is "0", or executes the next instruction if the C flag is "1"
JRZ sign8 ...Jumps if the Z flag is "1", or executes the next instruction if the Z flag is "0"
JRNZ sign8 ...Jumps if the Z flag is "0", or executes the next instruction if the Z flag is "1"

Type

PC relative jump

PC relative jump

Indirect jump

Absolute call

PC relative call

Return

Software interrupt

Condition Instruction

JR

JRC, JRNC, JRZ, JRNZ

JP

CALZ

CALR

RET, RETS, RETD, RETI

INT

Unconditional

Conditional

Unconditional

Unconditional

Unconditional

Unconditional

Unconditional

E0C63000 CORE CPU MANUAL EPSON 13

CHAPTER 2: ARCHITECTURE

(2) Instruction with a 4-bit A register data that specifies a relative address

JR %A

This instruction branches the program sequence with the content of the A register as an unsigned
4-bit relative address. The range that can be branched is from the next instruction address +0 to
+15 (absolute value in the A register). This instruction is useful when operation results are used as
the 4-bit relative addresses.

Example:
LD %A,4

JR %A ...Jumps to the instruction 5 steps after

(3) Instruction with an 8-bit BA register data that specifies a relative address

JR %BA

This instruction branches the program sequence with the content of the BA register as an unsigned
8-bit relative address (the B register data becomes the high-order 4 bits). The range that can be
branched is from the next instruction address +0 to +255 (absolute value in the BA register). This
instruction is useful when operation results are used as the 8-bit relative addresses.

Example:
LDB %BA,29

JR %BA ...Jumps to the instruction 30 steps after

(4) Instruction with a data memory address within 0000H to 003FH in which the content specifies a 4-bit
relative address

JR [addr6]

This instruction branches the program sequence with the content of the data memory specified by
the [addr6] as an unsigned 4-bit relative address. The operand [addr6] can specify a data memory
address within 0000H to 003FH. The range that can be branched is from the next instruction
address +0 to +15 (absolute value in the specified data memory). For the data memory area that is
specified with [addr6], bit operation instructions (CLR, SET, TST) are provided so that various
flags can be set simply. This jump instruction can be used as a conditional jump according to these
flags.

Example: When the content of the address 0010H is 4 (0100B).
SET [0x0010],0 ...Sets the bit 0 in the address 0010H to "1" ([0010H] = 5)
JR [0x0010] ...Jumps to the instruction 6 steps after

 • Indirect jump instruction (JP)
The indirect jump instruction "JP %Y" loads the content of the Y register into the PC to branch to that
address unconditionally. This instruction can branch entire 64K program memory because the 16-bit
data in the Y register becomes a branch destination address as it is.

Example:
LDB %EXT,0x24

LDB %YL,0x00 ...Y = 2400H
JP %Y ...Jumps to the address 2400H

Figure 2.2.3.1 shows the operation of the jump instructions and the branch range.

14 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

PC relative jump instructions

Program memory
0000H

FFFFH

xxxxH

xxxxH-127

JR sign8

xxxxH+128

0000H

FFFFH

xxxxH-1

xxxxH

xxxxH-32767

LDB %EXT,imm8

JR sign8

xxxxH+32768

0000H

FFFFH

xxxxH JR %A

xxxxH+16

A=0 → xxxxH+1
 :
A=15 → xxxxH+16

0000H

FFFFH

xxxxH JR %BA

xxxxH+256

BA=0 → xxxxH+1
 :
BA=255 → xxxxH+256

0000H

FFFFH

JP %Y

Y → Branch destination
 absolute address

0000H

FFFFH

xxxxH JR [addr6]

xxxxH+16

[addr6]=0 → xxxxH+1
 :
[addr6]=15 → xxxxH+16

Indirect jump instruction

0000H

FFFFH

003FH

addr6

Program memory Program memory Program memory

Program memory Data memory

Program memory

∗

∗

∗ In the extended addressing mode,
 this instruction can branch the
 entire 64K program memory.

Fig. 2.2.3.1 Operation of jump instructions

 • Absolute call instruction (CALZ)
The absolute call instruction "CALZ imm8" calls a subroutine within addresses 0000H to 00FFH. A
subroutine start address (absolute address) should be specified to imm8. When the call instruction is
executed, the PC value (address of the next instruction) is saved into the stack for return, then it
branches to the specified address.
Generally common subroutines that are called from two or more modules are placed in this area when
the program is developed as multiple modules.

Example:
CALZ 0x50 ...Calls the subroutine located at the address 0050H

See Section 2.3.3, "Stack and stack pointer" for stack.

 • PC relative call instructions (CALR)
The PC relative call instruction adds the relative address specified in the operand to the PC that has
indicated the next address, and calls a subroutine started from that address. It permits relocatable
programming.
The relative address to be specified in the operand is same as the PC related jump instruction.
The PC value (address of the next instruction) is saved into the stack before branching.

(1) Instructions with a signed 8-bit immediate data sign8 that specifies a relative address

CALR sign8

This instruction branches the program sequence with the sign8 specified in the operand as a
signed 8-bit relative address. The range that can be branched is from the next instruction address -
128 to +127. A value within the range from -128 to +127 should be used if specifying a value for
calling in the assembler. Generally branch destination labels such as "CALR LABEL" are used, and
they are expanded into the actual address by the assembler.

E0C63000 CORE CPU MANUAL EPSON 15

CHAPTER 2: ARCHITECTURE

This instruction permits the extended addressing with the E flag, and the 8-bit relative address can
be extended into 16 bits (the contents of the EXT register becomes the high-order 8 bits). In this
case, the range that can be branched is from the next instruction address -32768 to +32767. Conse-
quently, in the extended addressing mode this instruction can call subroutines over a 64K program
memory.

Examples:
CALR -50 ...Calls the subroutine 49 steps before

LDB %EXT,50 ...(50 × 256) = 17800
CALR 50 ...Calls the subroutine 17851 steps after

(2) Instruction with a data memory address within 0000H to 003FH in which the content specifies a 4-bit
relative address

CALR [addr6]

This instruction branches the program sequence with the content of the data memory specified by
the [addr6] as an unsigned 4-bit relative address. The operand [addr6] can specify a data memory
address within 0000H to 003FH. The range that can be branched is from the next instruction
address +0 to +15. Same with the "JR [addr6]", this call instruction can be used as a conditional
call according to the flags that are set in the memory specified with [addr6].

Example: When the content of the address 0010H is 4 (0100B).
SET [0x0010],0 ...Sets the bit 0 in the address 0010H to "1" ([0010H] = 5)
CALR [0x0010] ...Calls the subroutine 6 steps after

Figure 2.2.3.2 shows the operation of the call instructions and the branch range.

PC relative call instructions

Program memory
0000H

FFFFH

xxxxH

xxxxH-127

CALR sign8

xxxxH+128

0000H

FFFFH

CALZ imm8

imm → Branch destination
 absolute address

FFFFH

xxxxH CALR [addr6]

xxxxH+16

[addr6]=0 → xxxxH+1
 :
[addr6]=15 → xxxxH+16

Absolute call instruction

00FFH

0000H

FFFFH

xxxxH-1

xxxxH

xxxxH-32767

LDB %EXT,imm8

CALR sign8

xxxxH+32768

0000H

FFFFH

003FH

addr6

Program memory

Program memory Program memory Data memory

∗ In the extended addressing mode,
 this instruction can call subroutines
 over a 64K program memory.

∗

∗

Fig. 2.2.3.2 Operation of call instructions

16 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

 • Return instructions (RET, RETS, RETD, RETI)
A return instruction is used to return from a subroutine called by the call instruction to the routine
that called the subroutine. Return operation is done by loading the PC value (address next to the call
instruction) that was stored in the stack when the subroutine was called into the PC.

The RET instruction operates only to return the PC value in the stack, and the processing is continued
from the address next to the call instruction.

The RETS instruction returns the PC value then adds "1" to the PC. It skips executing an instruction
next to the call instruction.

Figure 2.2.3.3 shows return operations from a subroutine.

Fig. 2.2.3.3 Return from subroutine

The RETD instruction performs the same operation as the RET instruction, then stores the 8-bit data
specified in the operand into the memory specified with the X register. This function is useful to create
data tables that will be explained in the next section.

The RETI instruction is for the exclusive use of hardware and software interrupt service routines.
When an interrupt is generated, the content of the F register is saved into the stack with the current
PC value. The RETI instruction returns them.

 • Software interrupt instruction (INT)
The software interrupt instruction "INT imm6" specifies a vector address within the addresses from
0111H to 013FH to execute its interrupt service routine. It can also call a hardware interrupt service
routine because it can specify an address from 0100H. It performs the same operation with the call
instruction, but the F register is also saved into the stack before branching. Consequently, the RETI
instruction must be used for returning from interrupt service routines. See Section 3.5, "Interrupts" for
details of the interrupt.

2.2.4 Table look-up instruction
The RETD instruction, one of the return instructions, has an 8-bit data in the operand, and stores the data
in the memory specified with the X register (the low-order 8 bits are stored in [X] and the high-order 8
bits are stored in [X+1]) immediately after returning.
By using the RETD instruction combined with the "JR %BA" or "JR %A" instructions, an 8-bit data table
for an LCD segment data conversion or similar can simply be constructed in the code ROM.

Example: The following is an example of a table for converting a BCD data (0 to 9) in the A register
into an ASCII code (30H to 39H). The conversion result is stored in the addresses 0040H
(low-order 4 bits) and 0041H (high-order 4 bits).

LD %A,3 ;Sets data to be converted
CALR TOASCII ;Calls converting routine
LDB %BA,[%X]+ ;Loads result from memory to BA register
 :
 :

 :

 :

JR

LD

 :

sign8

%A,[%X]

CALR sign8

 :

ADD

 :

JR

A,B

NC,1

RET (RETD)

Mainroutine Subroutine

RETS

Address

xxxxH

xxxxH+1

xxxxH+2 Return to
xxxxH+1
Return to
xxxxH+2

E0C63000 CORE CPU MANUAL EPSON 17

CHAPTER 2: ARCHITECTURE

TOASCII: ;BCD to ASCII conversion
LDB %EXT,0x00 ;Sets address 0040H
LDB %XL,0x40
JR %A
RETD 0x30 ;"0"
RETD 0x31 ;"1"
RETD 0x32 ;"2"
RETD 0x33 ;"3"
RETD 0x34 ;"4"
RETD 0x35 ;"5"
RETD 0x36 ;"6"
RETD 0x37 ;"7"
RETD 0x38 ;"8"
RETD 0x39 ;"9"

As shown in the example, operation results in the A or BA register can simply be converted into other
formats.

2.3 Data Memory

2.3.1 Configuration of data memory
In addition to the program memory space, the E0C63000 can also access 64K-word (× 4 bits) data memory.
In the individual model of the E0C63 Family, RAM of which size is decided depending on the model and
I/O memory are connected to this space.
Figure 2.3.1.1 shows the data memory map of the E0C63000.

Fig. 2.3.1.1 E0C63000 data memory map

The E0C63000 can access 64K-word space linearly without any of the page management commonly used
in current 4-bit microcomputers.

The E0C63000 has a built-in 16-bit data bus for the address stack (SP1), and a RAM that permits 16-bit
data accessing can be connected to the addresses 0000H to 03FFH. The 16-bit accessible area is different
depending on the individual models. That area permits normal 4-bit accessing. Switching between 4-bit
accessing and 16-bit accessing is done according to the instruction by the hardware. A normal 4-bit data
stack (SP2) is assigned within the addresses 0000H to 00FFH.

The addresses FF00H to FFFFH are used for an I/O memory area to control the peripheral circuits.

Address
0000H

00FFH
0100H

03FFH
0400H

FEFFH
FF00H

FFFFH

4-bit

Data
and

SP1, SP2 stack area

Data
and

SP1 stack area

Data area

I/O memory area

18 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.3.2 Addressing for data memory
For addressing to access the data memory, the index registers X and Y, and stack pointers SP1 and SP2 are
used. (The next section will explain the stack pointers.)

Index registers X and Y are both 16-bit registers and cover the entire 64K data memory space. The data
memory is accessed by setting an address in the register.

Example:
LDB %EXT,0x00

LDB %XL,0x10 ...Sets 0010H in the X register
LD A,[%X] ...Loads the content of the memory address 0010H into the A register

The indirect addressing with the X or Y register permits use of the post-increment function and process-
ing for continuous addresses can be done efficiently. This function can be used in the instruction with
[%X]+ or [%Y]+ as an operand. [%X]+ indicates that the content of the X register is incremented after end
of transfer or operation, therefore the next address can be accessed without the X register re-setting. It is
the same in case of the Y register.

Example: To copy the 3-word data from the address specified with the X register to the area specified
with the Y register
LD [%Y]+,[%X]+
LD [%Y]+,[%X]+
LD [%Y],[%X]

In addition, the E0C63000 has also provided instructions in order to efficiently access only the area which
is accessed frequently such as the I/O memory and lower addresses.
One of that is the addressing using the EXT register explained in Section 2.1.5.

 • Accessing for addresses 0000H to 00FFH
For absolute addressing in this area, the EXT register and an indirect instruction with the X register
([%X]) are used. To access this area, first write an 8-bit low-order address (00H to FFH) in the EXT
register, then execute an indirect addressing instruction with an operand [%X] (only the instruction
that permits the extended addressing). In this case, the content of the X register does not affect the
address to be accessed. Also the content of the X register is not changed.

Example:
LDB %EXT,0x37

LD %A,[%X] ...Works as "LD %A, [0x0037]"

 • Accessing for addresses FF00H to FFFFH (I/O memory area)
For absolute addressing in this area, the EXT register and an indirect instruction with the Y register
([%Y]) are used. To access this area, first write an 8-bit low-order address (00H to FFH) in the EXT
register, then execute an indirect addressing instruction with an operand [%Y] (only the instruction
that permits the extended addressing). In this case, the content of the Y register does not affect the
address to be accessed. Also the content of the Y register is not changed.

Example:
LDB %EXT,0x9C

ADD [%Y],5 ...Works as "ADD [0xFF9C], 5"

Note: The extended addressing function using the EXT register is effective only for the instruction
following immediately after writing data to the EXT register or setting the E flag to "1". For that
instruction, do not use instructions other than the instructions that permit the extended addressing.
Operation cannot be guaranteed if used.

In addition to the above functions, some 6-bit addressing instructions are provided to directly access
that area. These instructions have a [addr6] as the operand and can alone directly access the area
0000H to 003FH or FFC0H to FFFFH.

E0C63000 CORE CPU MANUAL EPSON 19

CHAPTER 2: ARCHITECTURE

 • Accessing for addresses 0000H to 003FH
Data in this area is used for a relative address by the "JR [addr6]" and "CALR [addr6]" explained in
Section 2.2.3. This area is suitable for setting up various flags and counters since the bit operation
instructions (CLR, SET, TST) and increment/decrement instructions (INC, DEC) are provided for
accessing this area.

 • Accessing for addresses FFC0H to FFFFH (I/O memory area)
The bit operation instructions (CLR, SET, TST) are provided for accessing this area. Therefore, control
bits in the I/O memory can be operated simply.

Examples:
CLR [0xFFC0],0 ...Clears the D0 bit in the I/O memory address FFC0H to "0"
SET [0xFFD2],3 ...Sets the D3 bit in the I/O memory address FFD2H to "1"

2.3.3 Stack and stack pointer
The stack is a memory that is accessed in the LIFO (Last In, First Out) format and is allocated to the RAM
area of the address 0000H to 03FFH. The stack area can be set from an optional address (toward the lower
address) using the stack pointer.

The E0C63000 contains two stack pointers SP1 and SP2.

(1) Stack pointer SP1
The SP1 is used for the address data stack, and permits 16-bit data accessing.

Fig. 2.3.3.1 SP1 configuration

As shown in the figure, the D0, D1 and D10–D15 within the 16 bits are fixed at "0". 8 bits of the D2–D9
can be set by software. Furthermore, the hardware also operates for this 8-bit field. Therefore, ad-
dressing by the SP1 is done in 4-word units, and a 16-bit address data can be transferred in one
accessing. Since the SP1 performs 16-bit data accessing, this stack area is limited to the 16-bit acces-
sible RAM area even though it is within the addresses 0000H to 03FFH.

This stack is used to evacuate return addresses when the call instructions are executed or the inter-
rupts are generated. It is also used when the 16-bit data in the X or Y register is evacuated using the
PUSH instruction. The return address data is written into the stack as shown in Figure 2.3.3.2.
The SP1 is decremented after the data is evacuated and is incremented when a return instruction is
executed or after returning data by executing the POP instruction.

0SP17 00000000 Stack pointer 1
D0D1D2D9D10D15

8 bits to be modified

CALR sign81234H

1235H

Program memory

1235H

ROM
Address

:

:

PC
Stack (SP1)

Subroutine
:

RET

40H
SP1

00FFH

00FEH

00FDH

00FCH

ROM
Address

5H
3H
2H
1H

(= Address 100H)

(= Address FCH)

(= Address 100H)

(= Address FCH)

3FH

1235H
PC

40H
SP1

00FFH

00FEH

00FDH

00FCH

5H
3H
2H
1H 3FH

Fig. 2.3.3.2 Address stack operation

20 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

The SP1 increment/decrement affects only the 8-bit field shown in Figure 2.3.3.1, and its operation is
performed cyclically. In other words, if the SP1 is decremented by the PUSH instruction or other
conditions when the SP1 is 00H (indicating the memory address 0000H), the SP1 becomes FFH
(indicating the memory address 03FCH). Similarly, if the SP1 is incremented by the POP instruction or
other conditions when the SP1 is FFH (indicating the memory address 03FCH), the SP1 becomes 00H
(indicating the memory address 0000H).

 • Queue register

The queue register is provided in order to reduce the process time of the 16-bit data transfer by
the SP1. The queue register retains 16-bit data in the RAM indicated with the SP1. It is accessed
when the following instructions are executed, not by programs directly.

1. When the call instruction or the PUSH instruction is executed, and when an interrupt is generated
When the CALR or CALZ instruction is executed, a software interrupt by the INT instruction is
generated, and a hardware interrupt is generated, the PC value for returning is written in the
memory [SP1-1]. When the "PUSH %X" or "PUSH %Y" instruction is executed, the content of
the X register or Y register is written in the memory [SP1-1]. At this time, the same data which
is written in the memory [SP1-1] is also written to the queue register.

2. When the return instruction or the POP instruction is executed
When the RET, RETS, RETD, RETI, "POP %X" or "POP %Y" instructions are executed, the data
retained in the queue register is returned to the PC, X register or Y register. Since the SP1 is
incremented, the content of the queue register is renewed (it generates a bus cycle to load the
content of the memory [SP1+1] to the queue register).

3. When the "LDB %SP1, %BA", "INC SP1" or "DEC SP1" instructions are executed
When these instructions are executed, the content of the queue register is also renewed (it
generates a bus cycle to load the content of the memory [SP1] to the queue register).

Note: As shown above, the memory content that is indicated by the SP1 is written to the queue register
according to the SP1 changes. Therefore, the queue register is not renewed even if the memory
[SP1] is directly modified when the SP1 is not changed. Be aware that intended return and POP
operations cannot be performed if such an operation is done.

(2) Stack pointer SP2
The SP2 is used for the normal 4-bit data stack.

Fig. 2.3.3.3 SP2 configuration

In the case of the SP1, the D8–D15 within the 16 bits are fixed at "0". 8 bits of the D0–D7 can be set by
software. Furthermore, the hardware also operates for this 8-bit field. The address range that can be
used for the data stack is limited to within 0000H to 00FFH. Data evacuation/return is done in 1-word
units.

This stack is used to evacuate the F register data when an interrupt is generated. It is also used when
the 4-bit register data (A, B, F) is evacuated using the PUSH instruction. The register data is written
into the stack as shown in Figure 2.3.3.4.
The SP2 is decremented after the data is evacuated and is incremented when the data is returned.

0SP2700H

D0D7D8D15

Stack pointer 2

8 bits to be modified

E0C63000 CORE CPU MANUAL EPSON 21

CHAPTER 2: ARCHITECTURE

Fig. 2.3.3.4 4-bit stack operation

The SP2 increment/decrement affects only the 8-bit field shown in Figure 2.3.3.3, and its operation is
performed cyclically. In other words, if the SP2 is decremented by the PUSH instruction or other
conditions when the SP2 is 00H (indicating the memory address 0000H), the SP2 becomes FFH
(indicating the memory address 00FFH). Similarly, if the SP2 is incremented by the POP instruction or
other conditions when the SP2 is FFH (indicating the memory address 00FFH), the SP2 becomes 00H
(indicating the memory address 0000H).

(3) Notes for using the stack pointer

 • The SP1 and SP2 are undefined at an initial reset. Therefore, both the stack pointers must be initialized
by software.
For safety, all the interrupts including NMI are masked until both the SP1 and SP2 are set by software.
Furthermore, if either the SP1 or SP2 is re-set, all the interrupts are masked again until the other is re-
set. Therefore be sure to set the SP1 and SP2 as a pair.

 • The increment/decrement for the SP1 and SP2 is operated cyclically from 0000H to 03FFH (SP1) and
from 0000H to 00FFH (SP2) regardless of the memory capacity/allocation set up in each model.
Control with the program so that the stacks do not cross over the upper/lower limits of the mounted
memory.

 • The SP1 must be set in the RAM area that permits 16-bit accessing depending on the model. The SP1
address stack cannot be allocated to other than the 16-bit accessible area even if the address is less
than 03FFH.

 • The area management for the SP1 stack, SP2 stack and data RAM should be done by the user. Pay
attention to these areas so that they do not overlap in the same addresses.

2.3.4 Memory mapped I/O
The E0C63 Family contains the E0C63000 as the core CPU and various types of peripheral circuits, such
as input/output ports. The E0C63000 has adopted a memory mapped I/O system for controlling the
peripheral circuits, and the control bits and the registers for exchanging data are arranged in the data
memory area.

The I/O memory for controlling the peripheral circuits is assigned to the area from FF00H to FFFFH, and
is distinguished from RAM and others. However, the accessing method is the same as RAM, so indirect
addressing can be done using the X or Y register. In addition, since the I/O memory is accessed fre-
quently, the exclusive instructions for this area are also provided. (See Section 2.3.2.)

Refer to the manual for the individual model of the E0C63 Family for the I/O memory and the peripheral
circuits.

PUSH A

Program memory

6H
:

:

A register
Stack (SP2)

50H
SP2

004FH

004EH

ROM
Address

6H 4FH

6H
A register

POP A 50H
SP2

004FH

004EH

6H 4FH

22 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION

CHAPTER 3 CPU OPERATION
This section explains the CPU operations and the operation timings.

3.1 Timing Generator and Bus Cycle
The E0C63000 has a built-in timing generator. The timing generator of the E0C63000 generates the two-
phase divided signals PK and PL based on the clock (CLK) input externally (∗) to make states. One state
is a 1/2 cycle of the CLK and the one bus cycle that becomes the instruction execution unit is composed
of four states.

∗ The clock that is input to the E0C63000 is generated by an oscillation circuit provided outside of the
CPU. The E0C63 Family models have a built-in oscillation circuit.

Fig. 3.2.1 Fetch cycle and execution cycle

CLK

ROM address (PC)

FETCH

Fetch cycle

Execution cycle

One bus cycle

T1 T2 T3 T4

(PC) (PC+1) (PC+2)

inst. 1 inst. 2 inst. 3

inst. 1 inst. 2 inst. 3

PC PC+1 PC+2 PC+3

(PC+3)

inst. 4

one-cycle
instruction

two-cycle
instruction

three-cycle
instruction

ROM address
:

PC
PC+1
PC+2
PC+3

:

Instruction
:

:

inst. 1 (one-cycle instruction)
inst. 2 (two-cycle instruction)
inst. 3 (three-cycle instruction)
inst. 4 (one-cycle instruction)

Fig. 3.1.1 State and bus cycle

The number of cycles which is stated in the instruction list indicates the number of bus cycles.

3.2 Instruction Fetch and Execution
The E0C63000 executes the instructions indicated with the PC (program counter) one by one. That
operation for an instruction is divided into two stages; one is a fetch cycle to read an instruction, and
another is an execution cycle to execute the instruction that has been read.

All the E0C63000 instructions are composed of one step (word), and are fetched in one bus cycle. An
instruction code that is written in the ROM is read out during the fetch cycle and is analyzed by the
instruction decoder. The FETCH signal goes to a low level during that time. In addition, the PC is
incremented at the end of each fetch.
The analyzed instruction is executed from the next bus cycle. The number of execution cycles is shown in
the instruction list and it is one, two or three bus cycles depending on the instruction.
The E0C63000 contains two different buses for the program memory and the data memory. Consequently,
a fetch cycle for the next instruction can be executed to overlap with the last execution cycle, and it
increases the processing speed. In the one-cycle instructions, the next instruction is fetched at the same
time an instruction is executed.

CLK

PK

PL

T1 T2 T3 T4

Bus cycle

State State State State

E0C63000 CORE CPU MANUAL EPSON 23

CHAPTER 3: CPU OPERATION

3.3 Data Bus (Data Memory) Control

3.3.1 Data bus status
The E0C63000 output the data bus status in each bus cycle externally on the DBS0 and DBS1 signals as a
2-bit status. The peripheral circuits perform the direction control of the bus driver and other controls with
these signals. The data bus statuses indicated by the DBS0 and DBS1 are as shown in Table 3.3.1.1.

Table 3.3.1.1 Data bus status

DBS1
0

0

1

1

DBS0
0

1

0

1

State
High impedance

Interrupt vector read

Memory write

Memory read

3.3.2 High-impedance control
The data bus goes to a high-impedance during an execution cycle (∗) that accesses only the internal
registers in the CPU. During the bus cycle period, both the read signal RD and write signal WR are fixed
at a high level and a dummy address is output on the address bus.

CLK

PK

PL

DA00–DA15

WR

RD

D0–D3

DBS1

DBS0

T1 T2 T3 T4

Bus cycle

Dummy address

Fig. 3.3.2.1 Bus cycle during accessing internal register

∗ Data is output on the data bus only when the stack pointer SP1 is accessed because a data transfer is
performed between the queue register and the data memory. In this case, the data bus status becomes a
memory write or a memory read depending on the instruction that accesses the SP1.

24 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION

3.3.3 Interrupt vector read
When an interrupt is generated, the CPU reads the interrupt vector output to the data bus by the periph-
eral circuit that has generated the interrupt. The interrupt vector read status indicates this bus cycle. The
peripheral circuit outputs the interrupt vector to the data bus during this status, and the CPU reads the
data between the T2 and T3 states. At this time, the CPU outputs the RDIV signal (for exclusive use of the
interrupt vector read) as a read signal, not the RD signal that is used for normal data memory read. The
address bus outputs a dummy address during this bus cycle. See Section 3.5 for the operation when an
interrupt is generated.

CLK

PK

PL

DA00–DA15

RDIV

WR

RD

D0–D3

DBS1

DBS0

T1 T2 T3 T4

Bus cycle

Dummy address

Interrupt vector

CLaK

PK

PL

DA00–DA15

WR

RD

D0–D3

BS16

DBS1

DBS0

T1 T2 T3 T4

Bus cycle

Address

Write data

(a) During 4-bit data access (b) During 16-bit data access

Fig. 3.3.4.1 Bus cycle during memory write

Fig. 3.3.3.1 Bus cycle during reading interrupt vector

3.3.4 Memory write
In an execution cycle that writes data to the data memory, the writing data is output to the data bus
between the T2 and T4 states and the write signal WR is output in the T3 state. The address bus outputs
the target address during this bus cycle.
The E0C63000 contains a 4-bit data bus (D0–D3) and a 16-bit data bus (M00–M15) for an address stacking.
The CPU switches the data bus according to the instruction. The BS16 signal is provided for this switch-
ing.

CLK

PK

PL

DA00–DA15

WR

RD

M00–M15

BS16

DBS1

DBS0

T1 T2 T3 T4

Bus cycle

Address

Write data

E0C63000 CORE CPU MANUAL EPSON 25

CHAPTER 3: CPU OPERATION

3.3.5 Memory read
In an execution cycle that reads data from the data memory, the read signal RD is output between the T2
and T3 states and data is read from the data bus. The address bus outputs the target address during this
bus cycle.
The 4-bit/16-bit access is the same as the memory write.

Fig. 3.4.1.1 Initial reset status and sequence after releasing

CLK

SR

STOP

PK

PL

PC

FETCH

Interrupt mask

Reset status Sequence after releasing

ANY

ANY

ANY

ANY

110H

1 clock

LDB %BA,imm8 LDB %SP1,%BA LDB %BA,imm8 LDB %SP2,%BA ANY

Interrupt mask

111H 112H 113H 114H

CLK

PK

PL

DA00–DA15

WR

RD

D0–D3

BS16

DBS1

DBS0

T1 T2 T3 T4

Bus cycle

Address

Read data

CLK

PK

PL

DA00–DA15

WR

RD

M00–M15

BS16

DBS1

DBS0

T1 T2 T3 T4

Bus cycle

Address

Read data

(a) During 4-bit data access (b) During 16-bit data access

Fig. 3.3.5.1 Bus cycle during memory read

3.4 Initial Reset
The E0C63000 has a reset (SR) terminal in order to start the program after initializing the circuit when the
power is turned on or other situations. The following explains the operation at an initial reset and the
initial setting of the internal registers.

3.4.1 Initial reset sequence
The E0C63000 enters into an initial reset status immediately after setting the SR terminal to a low level,
and the internal circuits are initialized. During an initial reset, the data bus goes to a high-impedance and
the RD and WR signals go to a high level.
When the SR terminal goes to a high level, the initial reset is released and the program starts executing
from address 0110H. The release of an initial reset (the SR terminal goes a high level) is accepted at the
rising edge of the CPU operation clock (CLK), and the first bus cycle (fetching the instruction of the
address 0110H) starts from 1 clock after.

26 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION

After an initial reset, all the interrupts including NMI are masked until both the stack pointers SP1 and
SP2 are set by software.

3.4.2 Initial setting of internal registers
An initial reset initializes the internal registers in the CPU as shown in Table 3.4.2.1.

Table 3.4.2.1 Initial setting of internal registers

Name

Data register A

Data register B

Extension register EXT

Index register X

Index register Y

Program counter

Stack pointer SP1

Stack pointer SP2

Zero flag

Carry flag

Interrupt flag

Extension flag

Queue register

Setting value

Undefined

Undefined

Undefined

Undefined

Undefined

0110H

Undefined

Undefined

Undefined

Undefined

0

0

Undefined

Number of bits

4

4

8

16

16

16

8

8

1

1

1

1

16

Symbol

A

B

EXT

X

Y

PC

SP1

SP2

Z

C

I

E

Q

The registers and flags which are not initialized at an initial reset should be initialized in the program if
necessary.
Be sure to set both the stack pointers SP1 and SP2. All the interrupts cannot be accepted if they are not set
as a pair.

3.5 Interrupts
Interrupt is a function to process factors, that generate asynchronously with program execution, such as a
key entry and an end of a peripheral circuit operation. When the CPU accepts an interrupt request that is
sent by the hardware, the CPU stops executing the current sequence of the program and shifts into the
interrupt processing. When all the interrupt processing has finished, the interrupted program is resumed.

The E0C63000 has the hardware interrupt function for the peripheral circuits including an NMI (non-
maskable interrupt) and the hardware interrupt function. The hardware interrupts excluding the NMI
can be set to the DI (disable interrupts) status by setting the I (interrupt) flag.

I flag = "1": EI (enable interrupts) status ...The CPU accepts interrupt requests from the peripheral
circuits.

I flag = "0": DI (disable interrupts) status ...The CPU does not accept interrupt requests from the periph-
eral circuits. (excluding NMI and software interrupts)

The I flag is set to "0" at an initial reset. Furthermore, all the interrupts including NMI are masked and
cannot be accepted regardless of the I flag setting until both the stack pointers SP1 and SP2 are set in the
program after an initial reset.

3.5.1 Interrupt vectors
Interrupt vectors are provided to execute a interrupt service routine corresponding to the interrupt
generated.
The interrupt vectors are assigned to the following addresses in the ROM.

NMI interrupt vector: 0100H
Hardware interrupt vectors: 0101H to 010FH
Software interrupt vectors: 0111H to 013FH

E0C63000 CORE CPU MANUAL EPSON 27

CHAPTER 3: CPU OPERATION

Each of the addresses listed above corresponds to an interrupt factor individually. A branch (jump)
instruction to the interrupt service routine should be written to these addresses.

Up to 15 hardware interrupt vectors are available, however, the number of vectors is different depending
on the E0C63 Family models. The addresses, that are not assigned to the hardware interrupt vector within
the addresses 0101H to 010FH, can be used as software interrupt vectors. In addition, since the hardware
interrupt service routines can be executed using the software interrupt, up to 63 software interrupts can
be used (excluding the address 0110H because it is the program start address).

3.5.2 Interrupt sequence

 • Hardware interrupts
Hardware interrupts including NMI are generated by the peripheral circuits. The peripheral circuit
that contains the interrupt function outputs an interrupt request to the CPU when the interrupt factor
is generated. The NMI terminal for NMI or IRQ terminal for other interrupts goes low. Sampling the
NMI signal is done at the falling edge by the CPU. Sampling the IRQ signal is done at the rising edge
of the T3 state in the bus cycle. The CPU executes the following process after accepting an interrupt
request.

Bus cycle 0 Sampling the interrupt request.
Bus cycle 1 The last execution cycle of the instruction under execution becomes a dummy fetch

cycle. This cycle turns the interrupt acknowledge signal low (both NACK and IACK for
NMI, IACK only for a normal interrupt), which indicates that the interrupt has been
accepted.

Bus cycle 2 Saves the F register into the stack indicated by the SP2, then resets the I flag to "0" to
prohibit following interrupts (excluding NMI).

Bus cycle 3 Sets the data bus status DBS1/DBS0 to "01B". Then, turns the vector read signal RDIV
low and reads the interrupt vector (4 bits) output from the peripheral circuit to the data
bus.
When NMI is generated, this cycle becomes a dummy cycle because the interrupt vector
is fixed at 0100H.
The NACK and/or IACK are returned to high at the end of this cycle.

Bus cycle 4 Fetches the instruction in the interrupt vector (data that is read in Bus cycle 3 becomes
the low-order 4 bits of the vector) and saves the content of the PC (address immediately
after the instruction that is executed in Bus cycle 0 or branch destination address when
it is a branch instruction) to the stack indicated by the SP1.

Bus cycle 5 Executes the instruction fetched in Bus cycle 4. (If it is 1-cycle instruction, the next
instruction is fetched at the same time.)

 • Exceptional acceptance of interrupt

For all the interrupts including NMI that are generated during fetching the following instructions
are accepted after the next instruction is fetched (it is executed) even in the EI (enable interrupts)
status.

1. Instructions that set the E flag
LDB %EXT,imm8 LDB %EXT,%BA

2. Instructions that write data in the F (flag) register
LD %F,%A LD %F,imm4 AND %F,imm4 OR %F,imm4

XOR %F,imm4 POP %F RETI

These instructions set the E flag or may set it. Therefore, if an extended addressing instruction
follows them, it is executed previous to the interrupt processing.
Further, these instructions may modify the content of the I flag. If these instructions set the I flag
(EI status), the interrupt processing is done after executing the next instruction. If these instruc-
tions reset the I flag (DI status), interrupts generated after the instruction fetch cycle are masked.

28 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION

3. Instructions that set the stack pointer

LDB %SP1,%BA LDB %SP2,%BA

These two instructions are also accepted after fetching the next instruction. However, these
instructions must be executed as a pair. When one of them is fetched at first, all the interrupts
including NMI are masked (interrupts cannot be accepted). Then, when the other instruction is
fetched, that mask is released and interrupts can be accepted after the next instruction is fetched.

CLK

PK

PL

PC

FETCH

BS16

DBS1/0

WR

RD

RDIV

DA00–DA15

D0–D3

M00–M15

NMI

IACK

NACK

IF

0 1 2 3 4 5

DUMMY (0100H) ANY

pc-3 pc-1 0100H ANY

2 1 2 ANY

pc

SP2-1 DUMMY SP1-1

F reg. ANY

pc

Interrupt processing by the hardwareInterrupt sampling

ANY LD %A,[%X]

0 3

ANY

[00xxH]

pc-2

LDB %EXT,imm8

ANY

00xxH

DUMMY

Interrupt sampling Executing the interrupt service routine

Fig. 3.5.2.1 NMI sequence
 (normal acceptance)

Fig. 3.5.2.2 NMI sequence
 (interrupt acceptance
 after 1 instruction)

CLK

PK

PL

PC

FETCH

BS16

DBS1/0

WR

RD

RDIV

DA00–DA15

D0–D3

M00–M15

NMI

IACK

NACK

IF

0 1 2 3 4 5

ANY ANY DUMMY (0100H) ANY

pc-2 pc-1 0100H ANY

ANY 2 1 2 ANY

pc

SP2-1 DUMMY SP1-1ANY

F reg. ANY

pc

Interrupt processing by the hardware Executing the interrupt service routineInterrupt sampling

4–6 cycle

DUMMY

In this chart, the dummy fetch
cycle starts after fetching the
"LD %A, [%X]" instruction
that follows the "LDB %EXT,
imm8" instruction.

E0C63000 CORE CPU MANUAL EPSON 29

CHAPTER 3: CPU OPERATION

CLK

PK

PL

PC

FETCH

BS16

DBS1/0

WR

RD

RDIV

DA00–DA15

D0–D3

M00–M15

IRQ

IACK

NACK

IF

0 1 2 3 4 5

DUMMY (010xH) ANY

pc-3 pc-1 010xH ANY

2 1 2 ANY

pc

SP2-1 DUMMY SP1-1

F reg. xH

pc

ANY LD %A,[%X]

0 3

ANY

[00xxH]

pc-2

LDB %EXT,imm8

ANY

00xxH

Interrupt processing by the hardware Executing the interrupt service routineInterrupt sampling

Inte rrupt vector

CLK

PK

PL

PC

FETCH

BS16

DBS1/0

WR

RD

RDIV

DA00–DA15

D0–D3

M00–M15

IRQ

IACK

NACK

IF

0 1 2 3 4 5

ANY ANY DUMMY (010xH) ANY

pc-2 pc-1 010xH ANY

ANY 2 1 2 ANY

pc

SP2-1 DUMMY SP1-1ANY

F reg. xH

pc

Interrupt processing by the hardware Executing the interrupt service routine

4–6 cycle

Interrupt sampling

Inte rrupt vector

Fig. 3.5.2.3 Hardware interrupt
 (IRQ) sequence
 (normal acceptance)

Fig. 3.5.2.4 Hardware interrupt
 (IRQ) sequence
 (interrupt acceptance
 after 1 instruction)

In this chart, the dummy fetch
cycle starts after fetching the
"LD %A, [%X]" instruction
that follows the "LDB %EXT,
imm8" instruction.

30 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION

 • Software interrupts
The software interrupts are generated by the INT instruction. Time of the interrupt generation is
determined by the software, so the I flag setting does not affect the interrupt. That processing is the
same as the subroutine that evacuates the F register into the stack.
This interrupt does not change the interrupt control signals between the CPU and the peripheral
circuits, or the I flag either. An address that is specified with the operand of the INT instruction is
used as it is as the interrupt vector.

CLK

PK

PL

PC

FETCH

BS16

DBS1/0

WR

RD

RDIV

DA00–DA15

D0–D3

M00–M15

IRQ

IACK

IF

1 2 3 4 5

ANY ANY INT addr6 (01addr6H) ANY

pc-2 pc-1 01addr6H ANY

ANY 2 3 2 ANY

pc+1

SP2-1 DUMMY SP1-1ANY

F reg. xH

pc+1pc

DUMMY

Fig. 3.5.2.5 Software interrupt sequence

3.5.3 Notes for interrupt processing

(1) After an initial reset, all the interrupts including NMI are masked and cannot be accepted regardless
of the I flag setting until both the stack pointers SP1 and SP2 are set in the program. Be sure to set the
SP1 and SP2 in the initialize routine.
Further, when re-setting the stack pointer, the SP1 and SP2 must be set as a pair. When one of them is
set, all the interrupts including NMI are masked and interrupts cannot be accepted until the other one
is set.

(2) The interrupt processing is the same as a subroutine call that branches to the interrupt vector address.
At that time, the F register is evacuated into the stack. Therefore, the interrupt service routine should
be made as a subroutine and the RETI instruction that returns the F register must be used for return.

(3) If an interrupt (including NMI) is generated while fetching an instruction, that sets the E flag or writes
data to the F (flag) register, the interrupt is accepted after fetching (and executing) the next instruc-
tion. Therefore, the extended addressing with the EXT register is processed before executing the
interrupt processing. However, if the stack data in the memory is directly changed in the interrupt
service routine, the F register in which the E flag is set may return. In this case, the instruction imme-
diately after returning by the RETI instruction is executed in the extended addressing mode by the E
flag that is set to "1". Pay attention to the F register setting except when describing such a processing
consciously.

E0C63000 CORE CPU MANUAL EPSON 31

CHAPTER 3: CPU OPERATION

3.6 Standby Status
The E0C63000 has a function that stops the CPU operation and it can greatly reduce power consumption.
This function should be used to stop the CPU when there is no processing to be executed in the CPU,
example while the application program waits an interrupt. This is a standby status where the CPU has
been stopped to shift it to low power consumption.
This status is available in two types, a HALT status and a SLEEP status.

3.6.1 HALT status
The HALT status is the status in which only the CPU stops and shifting to it can be done using the HALT
instruction. The HALT status is released by a hardware interrupt including NMI, and the program
sequence returns to the step immediately after the HALT instruction by the RETI instruction in the
interrupt service routine. The peripheral circuits including the oscillation circuit and timer operate all
through the HALT status. Moreover during HALT status, the contents of the registers in the CPU that
have been set before shifting are maintained.
Figure 3.6.1.1 shows the sequence of shifting to the HALT status and restarting.
In the HALT status the Th1 and Th2 states are continuously inserted. During this period, interrupt
sampling is done at the falling edge of the Th2 state and the generation of an interrupt factor causes it to
shift to the interrupt processing.

Fig. 3.6.1.1 Sequence of shifting to HALT status and restarting

3.6.2 SLEEP status
The SLEEP status is the status in which the CPU and the peripheral circuits within the MCU stop operat-
ing and shifting it can be done using the SLP instruction.
The SLEEP status is released by a reset or a specific interrupt (it differs depending on the model). When
the SLEEP status is released by a reset, the program restarts from the program start address (0110H).
When it is released by an interrupt, the program sequence returns to the step immediately after the SLP
instruction by the RETI instruction in the interrupt service routine.
Power consumption in the SLEEP status can be greatly reduced in comparison with the the HALT status,
because such peripheral circuits as the oscillation circuit are also stopped. However, since stabilization
time is needed for the oscillation circuit when restarting, it is effective when used for extended standby
where instantaneous restarting is not necessary.

CLK

PK

PL

PC

FETCH

DBS1/0

STOP

IRQ

IACK

T1

HALT

pc

0 2

pc+1

Interrupt processing

Interrupt sampling

T2 T3 T4
Th1

Th2
Th1

Th2
Th1

Th2
Th1

Th2
Th1

Th2
Th1

Th2

DUMMY

ANY

T1T2 T3 T4

HALT status

32 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION

During SLEEP status, as in the HALT status, the contents of the registers in the CPU that have been set
before shifting are maintained if rated voltage is supplied.
Figure 3.6.2.1 shows the sequence of shifting to the SLEEP status and restarting.
When an interrupt that releases the SLEEP status is generated, the oscillation circuit begins to oscillate.
When the oscillation starts, the CLK input to the CPU is masked by the peripheral circuit and the input to
the CPU begins after stabilization waiting time (several 10 msec–several msec) has elapsed. The CPU
samples the interrupt at the falling edge of the initially input CLK and starts the interrupt processing.

OSC

CLK

PK

PL

PC

FETCH

DBS1/0

STOP

IRQ

T1

SLP

pc

0 2

pc+1

Interrupt processing

T2 T3 T4

DUMMY

ANY

T1T2 T3 T4

SLEEP status

Oscillation stable
waiting time

Fig. 3.6.2.1 Sequence of the shift to SLEEP status and restarting

E0C63000 CORE CPU MANUAL EPSON 33

CHAPTER 4: INSTRUCTION SET

CHAPTER 4 INSTRUCTION SET
The E0C63000 offers high machine cycle efficiency and a high speed instruction set. It has 47 basic

instructions (412 instructions in all) that are designed as an instruction system permitting relocatable
programming.
This chapter explains about the addressing modes for memory management and about the details of each
instruction.

4.1 Addressing Mode
The E0C63000 has the following 8 types of addressing modes and the address specifications correspond-
ing to the various statuses are done concisely and accurately.

 • Types of addressing modes

Basic addressing modes (5 types)
1) Immediate data addressing
2) Register direct addressing
3) Register indirect addressing
4) 6-bit absolute addressing
5) Signed 8-bit PC relative addressing

Extended addressing modes (3 types)
1) 16-bit immediate data addressing
2) 8-bit absolute addressing
3) Signed 16-bit PC relative addressing

4.1.1 Basic addressing modes
The basic addressing mode is an addressing function independent of the instruction.

 • Immediate data addressing
The immediate data addressing is the addressing mode in which the immediate data is used for
operations and is used as transfer data. Values that are specified in the operand are directly used as
data or addresses. In the instruction list, the following symbols are used to write immediate data.

Table 4.1.1.1 Symbol and size of immediate data

Symbol

imm2

imm4

imm6

imm8

sign8

n4

Use

Specifying a bit No. in 4-bit data

4-bit general-purpose data

Specifying a software interrupt vector

8-bit general-purpose data

Signed 8-bit general-purpose data

Specifying a radix

2 bits

4 bits

6 bits

8 bits

8 bits

4 bits

Size

0–3

0–15

0–63

0–255

-128–127

1–16

Specifiable range

Examples:
CLR [addr6],imm2 ...Clears a bit specified with imm2 within a 4-bit data in an address [addr6]
LD %A,imm4 ...Loads a 4-bit data imm4 into the A register
INT imm6 ...A software interrupt of which the vector address is specified with imm6
LDB %BA,imm8 ...Loads an 8-bit data imm8 into the BA register
CALZ imm8 ...Calls a subroutine that starts from an address imm8

 (Address specifiable range is 0000H to 00FFH.)
ADD %X,sign8 ...Adds a signed 8-bit data sign8 to the X register
ADC %B,%A,n4 ...Adds data in the A register to the B register with a radix n4 specification

34 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

 • Register direct addressing
The register direct addressing is the addressing mode when specifying a register for the source and/
or destination. Register names should be written with % in front.
Instructions in which the operand has the following register name operate in this addressing mode.

4-bit registers: %A,%B,%F

8-bit registers: %BA,%XH,%XL,%EXT,%SP1,%SP2

16-bit registers: %X,%Y

Examples:
ADD %A,%B ...Adds the data in the B register to the A register
LDB %BA,%XL ...Loads the data in the XL register into the BA register
DEC %SP1 ...Decrements the stack pointer SP1
JR %A ...Jumps using the content of the A register as a relative address
JP %Y ...Jumps to the address indicated with the Y register

 • Register indirect addressing
The register indirect addressing is the addressing mode for accessing the data memory and it indi-
rectly specifies the data memory address with the index register X or Y. To write the instructions,
place % in front of the index register name and enclose them with [].

Indirect addressing with the X register: Instructions which have [%X] or [%X]+ as the operand
Indirect addressing with the Y register: Instructions which have [%Y] or [%Y]+ as the operand

The content of the X register or Y register regarded as an address, and operations and transfers are
performed for the data stored in the address or the address.
"+" in the [%X]+ and [%Y]+ indicates a post-increment function. Instructions that have these operands
increment the content of the X register or Y register after executing the transfer or operation. This
function is useful to access a continuous addresses in the data memory.

Examples:
SUB %A,[%X] ...Subtracts the content of a memory specified with the X register from the A

register
LD [%X]+,[%Y]+ ...Transfers the content of a memory specified with the Y register to a memory

specified with the X register. Then increments the contents of the X register
and Y register

 • 6-bit absolute addressing
The 6-bit absolute addressing is the addressing mode for accessing within the 6-bit address range
from 0000H or FFC0H. Instructions that have [addr6] as the operand operate in this addressing mode.
The address range that can be specified with the addr6 is 0000H to 003FH or FFC0H to FFFFH.

(1) Instructions that access from 0000H to 003FH

For this area, the following instructions, which are used in this area as counters and flags, are
provided. An address within 0000H to 003FH is specified with the addr6.

INC [addr6] ...Increments the content of a memory specified with the addr6
DEC [addr6] ...Decrements the content of a memory specified with the addr6
CLR [addr6],imm2 ...Clears a bit specified with the imm2 in a memory specified with the addr6
SET [addr6],imm2 ...Sets a bit specified with the imm2 in a memory specified with the addr6
TST [addr6],imm2 ...Tests a bit specified with the imm2 in a memory specified with the addr6

In addition, the following branch instructions, which permit a conditional branch according to the
contents of this area, are provided.

JR [addr6] ...PC relative jump instruction that uses the content of a memory specified
with addr6 as a relative address

CALR [addr6] ...PC relative call instruction that uses the content of a memory specified with
addr6 as a relative address

E0C63000 CORE CPU MANUAL EPSON 35

CHAPTER 4: INSTRUCTION SET

These instructions perform a PC relative branch using the content (4 bits) of a memory specified
with the [addr6] as a relative address. The branch destination address is [the address next to the
branch instruction] + [the contents (0 to 15) of the memory specified with the addr6].

(2) Instructions that access from FFC0H to FFFFH

This area is reserved for the I/O memory in the E0C63 Family and the following instructions are
provided to operate the control bits of the peripheral circuits.
An address within FFC0H to FFFFH is specified with the addr6. However the addr6 is handled as
0 to 3FH in the machine codes.

CLR [addr6],imm2 ...Clears a bit specified with the imm2 in a memory specified with the addr6
SET [addr6],imm2 ...Sets a bit specified with the imm2 in a memory specified with the addr6
TST [addr6],imm2 ...Tests a bit specified with the imm2 in a memory specified with the addr6

Write only or read only control bits may have been assigned depending on the peripheral circuit.
Pay attention when using the above-mentioned instructions for such bits or addresses containing
such bits.

 • Signed 8-bit PC relative addressing
The signed 8-bit PC relative addressing is the addressing mode used for the branch instructions. The
signed 8-bit relative address (-128 to 127) that is specified in the operand is added to the address next
to the branch instruction to branch to that address.
The following instructions operate in this addressing mode.

Jump instructions: JR sign8

JRC sign8

JRNC sign8

JRZ sign8

JRNZ sign8

Call instruction: CALR sign8

4.1.2 Extended addressing mode
In the E0C63000, when data is written to the EXT register (the E flag is set) and a specific instruction
follows, the data specified by that instruction is extended with the EXT register data (see Section 2.1.5).
When the E flag is set, instructions are extended in an addressing mode different from the mode that is
specified in each instruction. This is the extended addressing mode that will be explained below.
However, instructions that can operate in the extended addressing mode are limited to those indicated in
the instruction list, so check it when programming.
Further the extended addressing mode is effective only for the instruction following immediately after
writing data to the EXT register and setting the E flag to "1" (the E flag is reset to "0" by executing that
instruction). When using an instruction in the extended addressing mode, write data to be extended to
the EXT register or set the E flag (when the E register has already been set).

 • 16-bit immediate data addressing
The addressing mode of the following instructions, which have an 8-bit immediate data as the
operand, change to the 16-bit immediate data addressing when the E flag is set to "1". Consequently, it
is possible to transfer and operate a 16-bit immediate data to the X or Y register.

Instructions that operate in the 16-bit immediate data addressing mode with the E flag

LDB %XL,imm8 LDB %Y,imm8

ADD %X,sign8 ADD %Y,sign8

CMP %X,imm8 CMP %X,imm8

The data is extended into 16 bits in which the E register data is the high-order 8 bits and the immedi-
ate data specified with the above instruction is the low-order 8 bit.

36 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

Examples:
LDB %EXT,0x15

LDB %XL,0x7D ...Works as "LD %X, 0157D"
LDB %EXT,0xB8

ADD %X,0x4F ...Works as "ADD %X, 0xB84F"

LDB %EXT,0xE6

CMP %X,0xA2 ...Works as "CMP %X, 0x19A2"
 ∗ 19H = FFH - [EXT] (E6H)

Above examples use the X register, but they work the same even when the Y register is used.

Note: The CMP instruction performs a subtraction with a complement, therefore it is necessary to set the
complement (1’s complement) of the high-order 8-bit data in the EXT register.
EXT register ← [FFH - High-order 8-bit data]

 • 8-bit absolute addressing
The 8-bit absolute addressing is the addressing mode for accessing within the 8-bit address range
from 0000H or FF00H. To enter this mode, write the low-order 8 bits (00H to FFH) of the address to
the EXT register, then execute an indirect addressing instruction which has [%X] or [%Y] as the source
operand or the destination operand. When [%X] is used, the memory from 0000H to 00FFH can be
accessed, and when [%Y] is used, FF00H to FFFFH can be accessed.

Instructions that operate in the 8-bit absolute addressing mode with the E flag

Instruction Operand
LD %r,[%X] %r,[%Y] [%X],%r [%Y],%r [%X],imm4 [%Y],imm4

EX %r,[%X] %r,[%Y]

ADD %r,[%X] %r,[%Y] [%X],%r [%Y],%r [%X],imm4 [%Y],imm4

ADC %r,[%X] %r,[%Y] [%X],%r [%Y],%r [%X],imm4 [%Y],imm4

%B,[%X],n4 %B,[%Y],n4 [%X],%B,n4 [%Y],%B,n4

[%X],0,n4 [%Y],0,n4

SUB %r,[%X] %r,[%Y] [%X],%r [%Y],%r [%X],imm4 [%Y],imm4

SBC %r,[%X] %r,[%Y] [%X],%r [%Y],%r [%X],imm4 [%Y],imm4

%B,[%X],n4 %B,[%Y],n4 [%X],%B,n4 [%Y],%B,n4

[%X],0,n4 [%Y],0,n4

INC [%X],n4 [%Y],n4

DEC [%X],n4 [%Y],n4

CMP %r,[%X] %r,[%Y] [%X],%r [%Y],%r [%X],imm4 [%Y],imm4

AND %r,[%X] %r,[%Y] [%X],%r [%Y],%r [%X],imm4 [%Y],imm4

OR %r,[%X] %r,[%Y] [%X],%r [%Y],%r [%X],imm4 [%Y],imm4

XOR %r,[%X] %r,[%Y] [%X],%r [%Y],%r [%X],imm4 [%Y],imm4

BIT %r,[%X] %r,[%Y] [%X],%r [%Y],%r [%X],imm4 [%Y],imm4

SLL [%X] [%Y]

SRL [%X] [%Y]

RL [%X] [%Y]

RR [%X] [%Y]

∗ "r" indicates the A or B register. Instructions with an operand other than above or the post-incre-
ment function do not have the extended addressing function.

Examples:
LDB %EXT,0x37

LD %A,[%X] ...Works as "LD %A, [0x0037]"

LDB %EXT,0x9C

ADD [%Y],5 ...Works as "ADD [0xFF9C]"

E0C63000 CORE CPU MANUAL EPSON 37

CHAPTER 4: INSTRUCTION SET

 • Signed 16-bit PC relative addressing
The addressing mode of the following branch instructions, which have an 8-bit relative address as the
operand, change to the signed 16-bit PC relative addressing with the E flag set to "1". Consequently, it
is possible to extend the branch range to the next address -32768 to +32767. (In this mode these
instructions can branch the entire 64K program memory.)

Instructions that operate in the signed 16-bit PC relative addressing mode with the E flag

JR sign8 JRC sign8 JRNC sign8 JRZ sign8 JRNZ sign8

CALR sign8

Examples:
LDB %EXT,0x64

JR 0x29 ...Works as "JR 0x6429"

LDB %EXT,0x3A

JR∗ 0x88 ...Works as "JR∗ 0x3A88" (∗ = C, NC, Z, or NZ)

LDB %EXT,0xF8

CALR 0x62 ...Works as "CALR 0xF862"

4.2 Instruction List

4.2.1 Function classification
Table 4.2.1.1 lists the function classifications of the instructions.

Table 4.2.1.1 Instruction function classifications

Function classification

Arithmetic

Logic

Transfer

Mnemonic Operation

Addition

Addition with carry

Subtraction

Subtraction with carry

Comparison

Increment (adds 1)

Decrement (subtracts 1)

Logical product

Logical sum

Exclusive OR

Bit test

Bit clear

Bit set

Bit test

Load (4-bit data)

Load (8-bit data)

Exchange (4-bit data)

ADD

ADC

SUB

SBC

CMP

INC

DEC

AND

OR

XOR

BIT

CLR

SET

TST

LD

LDB

EX

Function classification

Rotate / shift

Stack control

Branch

System control

Mnemonic Operation

Rotate to left with carry

Rotate to right with carry

Logical shift to left

Logical shift to right

Push

Pop

Relative jump

Indirect jump

Absolute call

Rrelative call

Return

Return and skip

Return and data set

Interrupt return

Software interrupt

No operation

Shift to HALT status

Shift to SLEEP status

RL

RR

SLL

SRL

PUSH

POP

JR

JP

CALZ

CALR

RET

RETS

RETD

RETI

INT

NOP

HALT

SLP

38 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

4.2.2 Symbol meanings
The following indicates the meanings of the symbols used in the instruction list.

Register names
A Data register A (4 bits)
B Data register B (4 bits)
BA BA register pair (8 bits, the B register is the high-order 4 bits)
X Index register X (16 bits)
XH XH register (high-order 8 bits of the X register)
XL XL register (low-order 8 bits of the X register)
Y Index register Y (16 bits)
YH YH register (high-order 8 bits of the Y register)
YL YL register (low-order 8 bits of the Y register)
F Flag register F (4 bits)
EXT Extension register EXT (8 bits)
SP1 Stack pointer SP1 (16 bits, however the setting data is 8 bits of D2 to D9)
SP2 Stack pointer SP2 (16 bits, however the setting data is 8 bits of D0 to D7)
PC Program counter PC (16 bits)

In the notation with mnemonics, the register names should be written with a % placed in front of them,
according to the E0C63 Family assembler source format.

%A A register
%B B register
%BA BA register
%X X register
%XH XH register
%XL XL register
%Y Y register
%YH YH register
%YL YL register
%F F register
%EXT EXT register
%SP1 Stack pointer SP1
%SP2 Stack pointer SP2

Immediate data
imm2 2-bit immediate data (0 to 3)
imm4 4-bit immediate data (0 to 15)
imm6 Software interrupt vector (0100H to 013FH)
imm8 8-bit immediate data (0 to 255)
i7–i0 Each bit in immX
n4 4-bit radix specification data (1 to 16)
n3–n0 Each bit in n4
sign8 Signed 8-bit immediate data (-128 to 127)
s7–s0 Each bit in sign8
addr6 6-bit address (00H to 3FH)
a5–a0 Each bit in addr6
00addr6 addr6 which specifies an address within 0000H to 003FH
FFaddr6 addr6 which specifies an address within FFC0H to FFFFH

E0C63000 CORE CPU MANUAL EPSON 39

CHAPTER 4: INSTRUCTION SET

Memory
[%X], [X] Memory where the X register specifies
[%Y], [Y] Memory where the Y register specifies
[00addr6] Memory within 0000H to 003FH where the addr6 specifies
[FFaddr6] Memory within FFC0H to FFFFH where the addr6 specifies
[%SP1], [SP1] 16-bit address stack where the SP1 specifies
[%SP2], [SP2] 4-bit data stack where the SP2 specifies

Flags
Z Zero flag
C Carry flag
I Interrupt flag
E Extension flag
↑ Flag is set
↓ Flag is reset
↕ Flag is set or reset
– Flag is not changed

Operations and others
+ Addition
- Subtraction
∧ Logical product
∨ Logical sum
∀ Exclusive OR
← Data load
↔ Data exchange

Extended addressing mode (EXT.mode)
●● Can be used
× Cannot be used (prohibit use)

40 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

4.2.3 Instruction list by function

LD %A,%A
%A,%B
%A,%F
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

LD %B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

LD %F,%A
%F,imm4

LD [%X],%A
[%X],%B
[%X],imm4
[%X],[%Y]
[%X],[%Y]+
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%X]+,[%Y]
[%X]+,[%Y]+

LD [%Y],%A
[%Y],%B
[%Y],imm4
[%Y],[%X]
[%Y],[%X]+
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4
[%Y]+,[%X]
[%Y]+,[%X]+

EX %A,%B
EX %A,[%X]

%A,[%X]+
%A,[%Y]
%A,[%Y]+

EX %B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

1 1 1 1 0 1 1 1 1 0 0 0 0
1 1 1 1 0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1 1 0 1 1 0
1 1 1 1 0 1 1 0 0 i3 i2 i1 i0
1 1 1 1 0 1 1 1 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 0 0 1
1 1 1 1 0 1 1 1 0 0 0 1 0
1 1 1 1 0 1 1 1 0 0 0 1 1
1 1 1 1 0 1 1 1 1 0 1 0 0
1 1 1 1 0 1 1 1 1 0 1 1 0
1 1 1 1 0 1 1 0 1 i3 i2 i1 i0
1 1 1 1 0 1 1 1 0 0 1 0 0
1 1 1 1 0 1 1 1 0 0 1 0 1
1 1 1 1 0 1 1 1 0 0 1 1 0
1 1 1 1 0 1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0 1
1 0 0 0 0 1 0 1 1 i3 i2 i1 i0
1 1 1 1 0 1 1 1 0 1 0 0 0
1 1 1 1 0 1 1 1 0 1 1 0 0
1 1 1 1 0 1 0 0 0 i3 i2 i1 i0
1 1 1 1 0 1 1 1 1 1 0 1 0
1 1 1 1 0 1 1 1 1 1 0 1 1
1 1 1 1 0 1 1 1 0 1 0 0 1
1 1 1 1 0 1 1 1 0 1 1 0 1
1 1 1 1 0 1 0 0 1 i3 i2 i1 i0
1 1 1 1 0 1 1 1 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 0 1 0 1 0
1 1 1 1 0 1 1 1 0 1 1 1 0
1 1 1 1 0 1 0 1 0 i3 i2 i1 i0
1 1 1 1 0 1 1 1 1 1 0 0 0
1 1 1 1 0 1 1 1 1 1 0 0 1
1 1 1 1 0 1 1 1 0 1 0 1 1
1 1 1 1 0 1 1 1 0 1 1 1 1
1 1 1 1 0 1 0 1 1 i3 i2 i1 i0
1 1 1 1 0 1 1 1 1 1 1 0 0
1 1 1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 0 1 1 1
1 0 0 0 0 1 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1 1 1 0 0 1
1 0 0 0 0 1 1 1 1 1 0 1 0
1 0 0 0 0 1 1 1 1 1 0 1 1
1 0 0 0 0 1 1 1 1 1 1 0 0
1 0 0 0 0 1 1 1 1 1 1 0 1
1 0 0 0 0 1 1 1 1 1 1 1 0
1 0 0 0 0 1 1 1 1 1 1 1 1

1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ×
1 ×
1 ↓ – – – ●

1 ↓ – – – ●

1 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ●

1 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ×
2 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ●

2 ↓ – – – ×

A ← A
A ← B
A ← F
A ← imm4
A ← [X]
A ← [X], X ← X+1
A ← [Y]
A ← [Y], Y ← Y+1
B ← A
B ← B
B ← imm4
B ← [X]
B ← [X], X ← X+1
B ← [Y]
B ← [Y], Y ← Y+1
F ← A
F ← imm4
[X] ← A
[X] ← B
[X] ← imm4
[X] ← [Y]
[X] ← [Y], Y ← Y+1
[X] ← A, X ← X+1
[X] ← B, X ← X+1
[X] ← imm4, X ← X+1
[X] ← [Y], X ← X+1
[X] ← [Y], X ← X+1, Y ← Y+1
[Y] ← A
[Y] ← B
[Y] ← imm4
[Y] ← [X]
[Y] ← [X], X ← X+1
[Y] ← A, Y ← Y+1
[Y] ← B, Y ← Y+1
[Y] ← imm4, Y ← Y+1
[Y] ← [X], Y ← Y+1
[Y] ← [X], Y ← Y+1, X ← X+1
A ↔ B
A ↔ [X]
A ↔ [X], X ← X+1
A ↔ [Y]
A ↔ [Y], Y ← Y+1
B ↔ [X]
B ↔ [X], X ← X+1
B ↔ [Y]
B ↔ [Y], Y ← Y+1

99
99
99

100
100
101
100
101
99
99

100
100
101
100
101
99

100
101
101
102
103
104
102
102
103
104
105
101
101
102
103
104
102
102
103
104
105
90
91
91
91
91
91
91
91
91

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔ ↔ ↔ ↔

↔ ↔ ↔ ↔

4-bit data transfer

E0C63000 CORE CPU MANUAL EPSON 41

CHAPTER 4: INSTRUCTION SET

ADD %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

ADD %B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

ADD [%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4

ADD [%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

ADC %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

ADC %B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

ADC [%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4

ADC [%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

SUB %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

1 1 0 0 1 0 1 1 1 0 0 0 X
1 1 0 0 1 0 1 1 1 0 0 1 X
1 1 0 0 1 0 1 0 0 i3 i2 i1 i0
1 1 0 0 1 0 1 1 0 0 0 0 0
1 1 0 0 1 0 1 1 0 0 0 0 1
1 1 0 0 1 0 1 1 0 0 0 1 0
1 1 0 0 1 0 1 1 0 0 0 1 1
1 1 0 0 1 0 1 1 1 0 1 0 X
1 1 0 0 1 0 1 1 1 0 1 1 X
1 1 0 0 1 0 1 0 1 i3 i2 i1 i0
1 1 0 0 1 0 1 1 0 0 1 0 0
1 1 0 0 1 0 1 1 0 0 1 0 1
1 1 0 0 1 0 1 1 0 0 1 1 0
1 1 0 0 1 0 1 1 0 0 1 1 1
1 1 0 0 1 0 1 1 0 1 0 0 0
1 1 0 0 1 0 1 1 0 1 1 0 0
1 1 0 0 1 0 0 0 0 i3 i2 i1 i0
1 1 0 0 1 0 1 1 0 1 0 0 1
1 1 0 0 1 0 1 1 0 1 1 0 1
1 1 0 0 1 0 0 0 1 i3 i2 i1 i0
1 1 0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 1 1 0 1 1 1 0
1 1 0 0 1 0 0 1 0 i3 i2 i1 i0
1 1 0 0 1 0 1 1 0 1 0 1 1
1 1 0 0 1 0 1 1 0 1 1 1 1
1 1 0 0 1 0 0 1 1 i3 i2 i1 i0
1 1 0 0 1 1 1 1 1 0 0 0 X
1 1 0 0 1 1 1 1 1 0 0 1 X
1 1 0 0 1 1 1 0 0 i3 i2 i1 i0
1 1 0 0 1 1 1 1 0 0 0 0 0
1 1 0 0 1 1 1 1 0 0 0 0 1
1 1 0 0 1 1 1 1 0 0 0 1 0
1 1 0 0 1 1 1 1 0 0 0 1 1
1 1 0 0 1 1 1 1 1 0 1 0 X
1 1 0 0 1 1 1 1 1 0 1 1 X
1 1 0 0 1 1 1 0 1 i3 i2 i1 i0
1 1 0 0 1 1 1 1 0 0 1 0 0
1 1 0 0 1 1 1 1 0 0 1 0 1
1 1 0 0 1 1 1 1 0 0 1 1 0
1 1 0 0 1 1 1 1 0 0 1 1 1
1 1 0 0 1 1 1 1 0 1 0 0 0
1 1 0 0 1 1 1 1 0 1 1 0 0
1 1 0 0 1 1 0 0 0 i3 i2 i1 i0
1 1 0 0 1 1 1 1 0 1 0 0 1
1 1 0 0 1 1 1 1 0 1 1 0 1
1 1 0 0 1 1 0 0 1 i3 i2 i1 i0
1 1 0 0 1 1 1 1 0 1 0 1 0
1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 0 0 1 1 0 1 0 i3 i2 i1 i0
1 1 0 0 1 1 1 1 0 1 0 1 1
1 1 0 0 1 1 1 1 0 1 1 1 1
1 1 0 0 1 1 0 1 1 i3 i2 i1 i0
1 1 0 0 0 0 1 1 1 0 0 0 X
1 1 0 0 0 0 1 1 1 0 0 1 X
1 1 0 0 0 0 1 0 0 i3 i2 i1 i0
1 1 0 0 0 0 1 1 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0 1
1 1 0 0 0 0 1 1 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 1 1

1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
1 ↓ – ↓ ↑ ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×

A ← A+A
A ← A+B
A ← A+imm4
A ← A+[X]
A ← A+[X], X ← X+1
A ← A+[Y]
A ← A+[Y], Y ← Y+1
B ← B+A
B ← B+B
B ← B+imm4
B ← B+[X]
B ← B+[X], X ← X+1
B ← B+[Y]
B ← B+[Y], Y ← Y+1
[X] ← [X]+A
[X] ← [X]+B
[X] ← [X]+imm4
[X] ← [X]+A, X ← X+1
[X] ← [X]+B, X ← X+1
[X] ← [X]+imm4, X ← X+1
[Y] ← [Y]+A
[Y] ← [Y]+B
[Y] ← [Y]+imm4
[Y] ← [Y]+A, Y ← Y+1
[Y] ← [Y]+B, Y ← Y+1
[Y] ← [Y]+imm4, Y ← Y+1
A ← A+A+C
A ← A+B+C
A ← A+imm4+C
A ← A+[X]+C
A ← A+[X]+C, X ← X+1
A ← A+[Y]+C
A ← A+[Y]+C, Y ← Y+1
B ← B+A+C
B ← B+B+C
B ← B+imm4+C
B ← B+[X]+C
B ← B+[X]+C, X ← X+1
B ← B+[Y]+C
B ← B+[Y]+C, Y ← Y+1
[X] ← [X]+A+C
[X] ← [X]+B+C
[X] ← [X]+imm4+C
[X] ← [X]+A+C, X ← X+1
[X] ← [X]+B+C, X ← X+1
[X] ← [X]+imm4+C, X ← X+1
[Y] ← [Y]+A+C
[Y] ← [Y]+B+C
[Y] ← [Y]+imm4+C
[Y] ← [Y]+A+C, Y ← Y+1
[Y] ← [Y]+B+C, Y ← Y+1
[Y] ← [Y]+imm4+C, Y ← Y+1
A ← A-A
A ← A-B
A ← A-imm4
A ← A-[X]
A ← A-[X], X ← X+1
A ← A-[Y]
A ← A-[Y], Y ← Y+1

68
68
69
69
70
69
70
68
68
69
69
70
69
70
70
70
71
71
71
72
70
70
71
71
71
72
61
61
61
62
62
62
62
61
61
61
62
62
62
62
63
63
64
63
63
64
63
63
64
63
63
64

135
135
135
136
136
136
136

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔ ↔
↔ ↔

ALU alithmetic operation (1/3)

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

42 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SUB %B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

SUB [%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4

SUB [%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

SBC %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

SBC %B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

SBC [%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4

SBC [%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

CMP %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

CMP %B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

1 1 0 0 0 0 1 1 1 0 1 0 X
1 1 0 0 0 0 1 1 1 0 1 1 X
1 1 0 0 0 0 1 0 1 i3 i2 i1 i0
1 1 0 0 0 0 1 1 0 0 1 0 0
1 1 0 0 0 0 1 1 0 0 1 0 1
1 1 0 0 0 0 1 1 0 0 1 1 0
1 1 0 0 0 0 1 1 0 0 1 1 1
1 1 0 0 0 0 1 1 0 1 0 0 0
1 1 0 0 0 0 1 1 0 1 1 0 0
1 1 0 0 0 0 0 0 0 i3 i2 i1 i0
1 1 0 0 0 0 1 1 0 1 0 0 1
1 1 0 0 0 0 1 1 0 1 1 0 1
1 1 0 0 0 0 0 0 1 i3 i2 i1 i0
1 1 0 0 0 0 1 1 0 1 0 1 0
1 1 0 0 0 0 1 1 0 1 1 1 0
1 1 0 0 0 0 0 1 0 i3 i2 i1 i0
1 1 0 0 0 0 1 1 0 1 0 1 1
1 1 0 0 0 0 1 1 0 1 1 1 1
1 1 0 0 0 0 0 1 1 i3 i2 i1 i0
1 1 0 0 0 1 1 1 1 0 0 0 X
1 1 0 0 0 1 1 1 1 0 0 1 X
1 1 0 0 0 1 1 0 0 i3 i2 i1 i0
1 1 0 0 0 1 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0 0 0 1
1 1 0 0 0 1 1 1 0 0 0 1 0
1 1 0 0 0 1 1 1 0 0 0 1 1
1 1 0 0 0 1 1 1 1 0 1 0 X
1 1 0 0 0 1 1 1 1 0 1 1 X
1 1 0 0 0 1 1 0 1 i3 i2 i1 i0
1 1 0 0 0 1 1 1 0 0 1 0 0
1 1 0 0 0 1 1 1 0 0 1 0 1
1 1 0 0 0 1 1 1 0 0 1 1 0
1 1 0 0 0 1 1 1 0 0 1 1 1
1 1 0 0 0 1 1 1 0 1 0 0 0
1 1 0 0 0 1 1 1 0 1 1 0 0
1 1 0 0 0 1 0 0 0 i3 i2 i1 i0
1 1 0 0 0 1 1 1 0 1 0 0 1
1 1 0 0 0 1 1 1 0 1 1 0 1
1 1 0 0 0 1 0 0 1 i3 i2 i1 i0
1 1 0 0 0 1 1 1 0 1 0 1 0
1 1 0 0 0 1 1 1 0 1 1 1 0
1 1 0 0 0 1 0 1 0 i3 i2 i1 i0
1 1 0 0 0 1 1 1 0 1 0 1 1
1 1 0 0 0 1 1 1 0 1 1 1 1
1 1 0 0 0 1 0 1 1 i3 i2 i1 i0
1 1 1 1 0 0 1 1 1 X 0 0 0
1 1 1 1 0 0 1 1 1 X 0 1 0
1 1 1 1 0 0 1 0 0 i3 i2 i1 i0
1 1 1 1 0 0 1 1 0 0 0 0 0
1 1 1 1 0 0 1 1 0 0 0 0 1
1 1 1 1 0 0 1 1 0 0 0 1 0
1 1 1 1 0 0 1 1 0 0 0 1 1
1 1 1 1 0 0 1 1 1 X 1 0 0
1 1 1 1 0 0 1 1 1 X 1 1 0
1 1 1 1 0 0 1 0 1 i3 i2 i1 i0
1 1 1 1 0 0 1 1 0 0 1 0 0
1 1 1 1 0 0 1 1 0 0 1 0 1
1 1 1 1 0 0 1 1 0 0 1 1 0
1 1 1 1 0 0 1 1 0 0 1 1 1

1 ↓ – ×
1 ↓ – ↓ ↑ ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
1 ↓ – ↓ ↑ ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ↓ ↑ ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×

B ← B-A
B ← B-B
B ← B-imm4
B ← B-[X]
B ← B-[X], X ← X+1
B ← B-[Y]
B ← B-[Y], Y ← Y+1
[X] ← [X]-A
[X] ← [X]-B
[X] ← [X]-imm4
[X] ← [X]-A, X ← X+1
[X] ← [X]-B, X ← X+1
[X] ← [X]-imm4, X ← X+1
[Y] ← [Y]-A
[Y] ← [Y]-B
[Y] ← [Y]-imm4
[Y] ← [Y]-A, Y ← Y+1
[Y] ← [Y]-B, Y ← Y+1
[Y] ← [Y]-imm4, Y ← Y+1
A ← A-A-C
A ← A-B-C
A ← A-imm4-C
A ← A-[X]-C
A ← A-[X]-C, X ← X+1
A ← A-[Y]-C
A ← A-[Y]-C, Y ← Y+1
B ← B-A-C
B ← B-B-C
B ← B-imm4-C
B ← B-[X]-C
B ← B-[X]-C, X ← X+1
B ← B-[Y]-C
B ← B-[Y]-C, Y ← Y+1
[X] ← [X]-A-C
[X] ← [X]-B-C
[X] ← [X]-imm4-C
[X] ← [X]-A-C, X ← X+1
[X] ← [X]-B-C, X ← X+1
[X] ← [X]-imm4-C, X ← X+1
[Y] ← [Y]-A-C
[Y] ← [Y]-B-C
[Y] ← [Y]-imm4-C
[Y] ← [Y]-A-C, Y ← Y+1
[Y] ← [Y]-B-C, Y ← Y+1
[Y] ← [Y]-imm4-C, Y ← Y+1
A-A
A-B
A-imm4
A-[X]
A-[X], X ← X+1
A-[Y]
A-[Y], Y ← Y+1
B-A
B-B
B-imm4
B-[X]
B-[X], X ← X+1
B-[Y]
B-[Y], Y ← Y+1

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔ ↔

ALU alithmetic operation (2/3)

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔

135
135
135
136
136
136
136
137
137
138
137
137
138
137
137
138
137
137
138
123
123
124
124
125
124
125
123
123
124
124
125
124
125
125
125
126
126
126
127
125
125
126
126
126
127
84
84
84
85
85
85
85
84
84
84
85
85
85
85

E0C63000 CORE CPU MANUAL EPSON 43

CHAPTER 4: INSTRUCTION SET

CMP [%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4

CMP [%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

INC [00addr6]
DEC [00addr6]
ADC %B,%A,n4
∗1 %B,[%X],n4

%B,[%X]+,n4
%B,[%Y],n4
%B,[%Y]+,n4

ADC [%X],%B,n4
∗1 [%X],0,n4

[%X]+,%B,n4
[%X]+,0,n4

ADC [%Y],%B,n4
∗1 [%Y],0,n4

[%Y]+,%B,n4
[%Y]+,0,n4

SBC %B,%A,n4
∗1 %B,[%X],n4

%B,[%X]+,n4
%B,[%Y],n4
%B,[%Y]+,n4

SBC [%X],%B,n4
∗1 [%X],0,n4

[%X]+,%B,n4
[%X]+,0,n4

SBC [%Y],%B,n4
∗1 [%Y],0,n4

[%Y]+,%B,n4
[%Y]+,0,n4

INC [%X],n4
∗1 [%X]+,n4
INC [%Y],n4
∗1 [%Y]+,n4
DEC [%X],n4
∗1 [%X]+,n4
DEC [%Y],n4
∗1 [%Y]+,n4

1 1 1 1 0 0 1 1 0 1 0 0 0
1 1 1 1 0 0 1 1 0 1 1 0 0
1 1 1 1 0 0 0 0 0 i3 i2 i1 i0
1 1 1 1 0 0 1 1 0 1 0 0 1
1 1 1 1 0 0 1 1 0 1 1 0 1
1 1 1 1 0 0 0 0 1 i3 i2 i1 i0
1 1 1 1 0 0 1 1 0 1 0 1 0
1 1 1 1 0 0 1 1 0 1 1 1 0
1 1 1 1 0 0 0 1 0 i3 i2 i1 i0
1 1 1 1 0 0 1 1 0 1 0 1 1
1 1 1 1 0 0 1 1 0 1 1 1 1
1 1 1 1 0 0 0 1 1 i3 i2 i1 i0
1 0 0 0 0 0 1 a5 a4 a3 a2 a1 a0
1 0 0 0 0 0 0 a5 a4 a3 a2 a1 a0
1 0 0 0 0 1 1 0 1 [10H-n4]
1 1 1 0 1 1 1 0 0 [10H-n4]
1 1 1 0 1 1 1 0 1 [10H-n4]
1 1 1 0 1 1 1 1 0 [10H-n4]
1 1 1 0 1 1 1 1 1 [10H-n4]
1 1 1 0 1 0 1 0 0 [10H-n4]
1 1 1 0 1 0 0 0 0 [10H-n4]
1 1 1 0 1 0 1 0 1 [10H-n4]
1 1 1 0 1 0 0 0 1 [10H-n4]
1 1 1 0 1 0 1 1 0 [10H-n4]
1 1 1 0 1 0 0 1 0 [10H-n4]
1 1 1 0 1 0 1 1 1 [10H-n4]
1 1 1 0 1 0 0 1 1 [10H-n4]
1 0 0 0 0 1 1 0 0 n3 n2 n1 n0
1 1 1 0 0 1 1 0 0 n3 n2 n1 n0
1 1 1 0 0 1 1 0 1 n3 n2 n1 n0
1 1 1 0 0 1 1 1 0 n3 n2 n1 n0
1 1 1 0 0 1 1 1 1 n3 n2 n1 n0
1 1 1 0 0 0 1 0 0 n3 n2 n1 n0
1 1 1 0 0 0 0 0 0 n3 n2 n1 n0
1 1 1 0 0 0 1 0 1 n3 n2 n1 n0
1 1 1 0 0 0 0 0 1 n3 n2 n1 n0
1 1 1 0 0 0 1 1 0 n3 n2 n1 n0
1 1 1 0 0 0 0 1 0 n3 n2 n1 n0
1 1 1 0 0 0 1 1 1 n3 n2 n1 n0
1 1 1 0 0 0 0 1 1 n3 n2 n1 n0
1 1 1 0 1 1 0 0 0 [10H-n4]
1 1 1 0 1 1 0 0 1 [10H-n4]
1 1 1 0 1 1 0 1 0 [10H-n4]
1 1 1 0 1 1 0 1 1 [10H-n4]
1 1 1 0 0 1 0 0 0 n3 n2 n1 n0
1 1 1 0 0 1 0 0 1 n3 n2 n1 n0
1 1 1 0 0 1 0 1 0 n3 n2 n1 n0
1 1 1 0 0 1 0 1 1 n3 n2 n1 n0

1 ↓ – ●

1 ↓ – ●

1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ●

1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×

[X]-A
[X]-B
[X]-imm4
[X]-A, X ← X+1
[X]-B, X ← X+1
[X]-imm4, X ← X+1
[Y]-A
[Y]-B
[Y]-imm4
[Y]-A, Y ← Y+1
[Y]-B, Y ← Y+1
[Y]-imm4, Y ← Y+1
[00addr6] ← [00addr6]+1
[00addr6] ← [00addr6]-1
B ← N's adjust (B+A+C)
B ← N's adjust (B+[X]+C)
B ← N's adjust (B+[X]+C), X ← X+1
B ← N's adjust (B+[Y]+C)
B ← N's adjust (B+[Y]+C), Y ← Y+1
[X] ← N's adjust ([X]+B+C)
[X] ← N's adjust ([X]+0+C)
[X] ← N's adjust ([X]+B+C), X ← X+1
[X] ← N's adjust ([X]+0+C), X ← X+1
[Y] ← N's adjust ([Y]+B+C)
[Y] ← N's adjust ([Y]+0+C)
[Y] ← N's adjust ([Y]+B+C), Y ← Y+1
[Y] ← N's adjust ([Y]+0+C), Y ← Y+1
B ← N's adjust (B-A-C)
B ← N's adjust (B-[X]-C)
B ← N's adjust (B-[X]-C), X ← X+1
B ← N's adjust (B-[Y]-C)
B ← N's adjust (B-[Y]-C), Y ← Y+1
[X] ← N's adjust ([X]-B-C)
[X] ← N's adjust ([X]-0-C)
[X] ← N's adjust ([X]-B-C), X ← X+1
[X] ← N's adjust ([X]-0-C), X ← X+1
[Y] ← N's adjust ([Y]-B-C)
[Y] ← N's adjust ([Y]-0-C)
[Y] ← N's adjust ([Y]-B-C), Y ← Y+1
[Y] ← N's adjust ([Y]-0-C), Y ← Y+1
[X] ← N's adjust ([X]+1)
[X] ← N's adjust ([X]+1), X ← X+1
[Y] ← N's adjust ([Y]+1)
[Y] ← N's adjust ([Y]+1), Y ← Y+1
[X] ← N's adjust ([X]-1)
[X] ← N's adjust ([X]-1), X ← X+1
[Y] ← N's adjust ([Y]-1)
[Y] ← N's adjust ([Y]-1), Y ← Y+1

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔ ↔

ALU alithmetic operation (3/3)

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔

"n4" should be specified with a value between 1 and 16 that indicates a radix.
In the ADC and INC instructions, the assembler converts the "n4" into a complement, and places it at the low-order 4 bits in
the machine code.
In the SBC and DEC instructions, the "n4" is placed as it is at the low-order 4 bits in the machine code.
(However, when 16 is specified to n4, the machine code is generated with 0000H as the low-order 4 bits.)

∗1

86
86
87
86
86
87
86
86
87
86
86
87
92
88
65
65
66
65
66
66
67
67
68
66
67
67
68

127
128
128
128
128
129
130
129
130
129
130
129
130
93
93
93
93
89
89
89
89

44 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

AND %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

AND %B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

AND %F,imm4
AND [%X],%A

[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4

AND [%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

OR %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

OR %B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

OR %F,imm4
OR [%X],%A

[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4

OR [%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

1 1 0 1 0 0 1 1 1 0 0 0 X
1 1 0 1 0 0 1 1 1 0 0 1 X
1 1 0 1 0 0 1 0 0 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 0 0 0 0
1 1 0 1 0 0 1 1 0 0 0 0 1
1 1 0 1 0 0 1 1 0 0 0 1 0
1 1 0 1 0 0 1 1 0 0 0 1 1
1 1 0 1 0 0 1 1 1 0 1 0 X
1 1 0 1 0 0 1 1 1 0 1 1 X
1 1 0 1 0 0 1 0 1 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 0 1 0 0
1 1 0 1 0 0 1 1 0 0 1 0 1
1 1 0 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 0 1 1 0 0 1 1 1
1 0 0 0 0 1 0 0 0 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 1 0 0 0
1 1 0 1 0 0 1 1 0 1 1 0 0
1 1 0 1 0 0 0 0 0 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 1 0 0 1
1 1 0 1 0 0 1 1 0 1 1 0 1
1 1 0 1 0 0 0 0 1 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 1 0 1 0
1 1 0 1 0 0 1 1 0 1 1 1 0
1 1 0 1 0 0 0 1 0 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 1 0 1 1
1 1 0 1 0 0 1 1 0 1 1 1 1
1 1 0 1 0 0 0 1 1 i3 i2 i1 i0
1 1 0 1 1 0 1 1 1 0 0 0 X
1 1 0 1 1 0 1 1 1 0 0 1 X
1 1 0 1 1 0 1 0 0 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 1
1 1 0 1 1 0 1 1 0 0 0 1 0
1 1 0 1 1 0 1 1 0 0 0 1 1
1 1 0 1 1 0 1 1 1 0 1 0 X
1 1 0 1 1 0 1 1 1 0 1 1 X
1 1 0 1 1 0 1 0 1 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 0 1 0 0
1 1 0 1 1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 0 0 1 1 0
1 1 0 1 1 0 1 1 0 0 1 1 1
1 0 0 0 0 1 0 0 1 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 1 0 0 0
1 1 0 1 1 0 1 1 0 1 1 0 0
1 1 0 1 1 0 0 0 0 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 1 0 0 1
1 1 0 1 1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 0 0 1 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 1 0 1 0
1 1 0 1 1 0 1 1 0 1 1 1 0
1 1 0 1 1 0 0 1 0 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 1 0 1 1
1 1 0 1 1 0 1 1 0 1 1 1 1
1 1 0 1 1 0 0 1 1 i3 i2 i1 i0

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ ↓ ↓ ↓ ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↑ ↑ ↑ ↑ ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×

A ← A∧A
A ← A∧B
A ← A∧imm4
A ← A∧[X]
A ← A∧[X], X ← X+1
A ← A∧[Y]
A ← A∧[Y], Y ← Y+1
B ← B∧A
B ← B∧B
B ← B∧imm4
B ← B∧[X]
B ← B∧[X], X ← X+1
B ← B∧[Y]
B ← B∧[Y], Y ← Y+1
F ← F∧imm4
[X] ← [X]∧A
[X] ← [X]∧B
[X] ← [X]∧imm4
[X] ← [X]∧A, X ← X+1
[X] ← [X]∧B, X ← X+1
[X] ← [X]∧imm4, X ← X+1
[Y] ← [Y]∧A
[Y] ← [Y]∧B
[Y] ← [Y]∧imm4
[Y] ← [Y]∧A, Y ← Y+1
[Y] ← [Y]∧B, Y ← Y+1
[Y] ← [Y]∧imm4, Y ← Y+1
A ← A∨A
A ← A∨B
A ← A∨imm4
A ← A∨[X]
A ← A∨[X], X ← X+1
A ← A∨[Y]
A ← A∨[Y], Y ← Y+1
B ← B∨A
B ← B∨B
B ← B∨imm4
B ← B∨[X]
B ← B∨[X], X ← X+1
B ← B∨[Y]
B ← B∨[Y], Y ← Y+1
F ← F∨imm4
[X] ← [X]∨A
[X] ← [X]∨B
[X] ← [X]∨imm4
[X] ← [X]∨A, X ← X+1
[X] ← [X]∨B, X ← X+1
[X] ← [X]∨imm4, X ← X+1
[Y] ← [Y]∨A
[Y] ← [Y]∨B
[Y] ← [Y]∨imm4
[Y] ← [Y]∨A, Y ← Y+1
[Y] ← [Y]∨B, Y ← Y+1
[Y] ← [Y]∨imm4, Y ← Y+1

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔

ALU logic operation (1/2)

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔

73
73
74
75
75
75
75
73
73
74
75
75
75
75
74
76
76
77
76
76
77
76
76
77
76
76
77

112
112
112
113
114
113
114
112
112
112
113
114
113
114
113
114
114
115
115
115
116
114
114
115
115
115
116

E0C63000 CORE CPU MANUAL EPSON 45

CHAPTER 4: INSTRUCTION SET

XOR %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

XOR %B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

XOR %F,imm4
XOR [%X],%A

[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4

XOR [%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

BIT %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

BIT %B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

BIT [%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4

BIT [%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

CLR [00addr6],imm2
[FFaddr6],imm2

SET [00addr6],imm2
[FFaddr6],imm2

TST [00addr6],imm2
[FFaddr6],imm2

1 1 0 1 1 1 1 1 1 0 0 0 X
1 1 0 1 1 1 1 1 1 0 0 1 X
1 1 0 1 1 1 1 0 0 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 0 0 0 0
1 1 0 1 1 1 1 1 0 0 0 0 1
1 1 0 1 1 1 1 1 0 0 0 1 0
1 1 0 1 1 1 1 1 0 0 0 1 1
1 1 0 1 1 1 1 1 1 0 1 0 X
1 1 0 1 1 1 1 1 1 0 1 1 X
1 1 0 1 1 1 1 0 1 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 0 1 0 0
1 1 0 1 1 1 1 1 0 0 1 0 1
1 1 0 1 1 1 1 1 0 0 1 1 0
1 1 0 1 1 1 1 1 0 0 1 1 1
1 0 0 0 0 1 0 1 0 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 1 0 0 0
1 1 0 1 1 1 1 1 0 1 1 0 0
1 1 0 1 1 1 0 0 0 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 1 0 0 1
1 1 0 1 1 1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0 1 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 1 0 1 0
1 1 0 1 1 1 1 1 0 1 1 1 0
1 1 0 1 1 1 0 1 0 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 1 0 1 1
1 1 0 1 1 1 1 1 0 1 1 1 1
1 1 0 1 1 1 0 1 1 i3 i2 i1 i0
1 1 0 1 0 1 1 1 1 0 0 0 X
1 1 0 1 0 1 1 1 1 0 0 1 X
1 1 0 1 0 1 1 0 0 i3 i2 i1 i0
1 1 0 1 0 1 1 1 0 0 0 0 0
1 1 0 1 0 1 1 1 0 0 0 0 1
1 1 0 1 0 1 1 1 0 0 0 1 0
1 1 0 1 0 1 1 1 0 0 0 1 1
1 1 0 1 0 1 1 1 1 0 1 0 X
1 1 0 1 0 1 1 1 1 0 1 1 X
1 1 0 1 0 1 1 0 1 i3 i2 i1 i0
1 1 0 1 0 1 1 1 0 0 1 0 0
1 1 0 1 0 1 1 1 0 0 1 0 1
1 1 0 1 0 1 1 1 0 0 1 1 0
1 1 0 1 0 1 1 1 0 0 1 1 1
1 1 0 1 0 1 1 1 0 1 0 0 0
1 1 0 1 0 1 1 1 0 1 1 0 0
1 1 0 1 0 1 0 0 0 i3 i2 i1 i0
1 1 0 1 0 1 1 1 0 1 0 0 1
1 1 0 1 0 1 1 1 0 1 1 0 1
1 1 0 1 0 1 0 0 1 i3 i2 i1 i0
1 1 0 1 0 1 1 1 0 1 0 1 0
1 1 0 1 0 1 1 1 0 1 1 1 0
1 1 0 1 0 1 0 1 0 i3 i2 i1 i0
1 1 0 1 0 1 1 1 0 1 0 1 1
1 1 0 1 0 1 1 1 0 1 1 1 1
1 1 0 1 0 1 0 1 1 i3 i2 i1 i0
1 0 1 0 0 i1 i0 a5 a4 a3 a2 a1 a0
1 0 1 0 1 i1 i0 a5 a4 a3 a2 a1 a0
1 0 1 1 0 i1 i0 a5 a4 a3 a2 a1 a0
1 0 1 1 1 i1 i0 a5 a4 a3 a2 a1 a0
1 0 0 1 0 i1 i0 a5 a4 a3 a2 a1 a0
1 0 0 1 1 i1 i0 a5 a4 a3 a2 a1 a0

1 ↓ – – ↑ ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ↑ ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ●

1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ●

1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×

A ← A∀A
A ← A∀B
A ← A∀imm4
A ← A∀[X]
A ← A∀[X], X ← X+1
A ← A∀[Y]
A ← A∀[Y], Y ← Y+1
B ← B∀A
B ← B∀B
B ← B∀imm4
B ← B∀[X]
B ← B∀[X], X ← X+1
B ← B∀[Y]
B ← B∀[Y], Y ← Y+1
F ← F∀imm4
[X] ← [X]∀A
[X] ← [X]∀B
[X] ← [X]∀imm4
[X] ← [X]∀A, X ← X+1
[X] ← [X]∀B, X ← X+1
[X] ← [X]∀imm4, X ← X+1
[Y] ← [Y]∀A
[Y] ← [Y]∀B
[Y] ← [Y]∀imm4
[Y] ← [Y]∀A, Y ← Y+1
[Y] ← [Y]∀B, Y ← Y+1
[Y] ← [Y]∀imm4, Y ← Y+1
A∧A
A∧B
A∧imm4
A∧[X]
A∧[X], X ← X+1
A∧[Y]
A∧[Y], Y ← Y+1
B∧A
B∧B
B∧imm4
B∧[X]
B∧[X], X ← X+1
B∧[Y]
B∧[Y], Y ← Y+1
[X]∧A
[X]∧B
[X]∧imm4
[X]∧A, X ← X+1
[X]∧B, X ← X+1
[X]∧imm4, X ← X+1
[Y]∧A
[Y]∧B
[Y]∧imm4
[Y]∧A, Y ← Y+1
[Y]∧B, Y ← Y+1
[Y]∧imm4, Y ← Y+1
[00addr6] ← [00addr6]∧not (2imm2)
[FFaddr6] ← [FFaddr6]∧not (2imm2)
[00addr6] ← [00addr6]∧(2imm2)
[FFaddr6] ← [FFaddr6]∧(2imm2)
[00addr6]∧(2imm2)
[FFaddr6]∧(2imm2)

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

ALU logic operation (2/2)

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔ ↔ ↔ ↔
↔

↔
↔

↔
↔

↔

139
139
140
141
141
141
141
139
139
140
141
141
141
141
140
142
142
143
142
142
143
142
142
143
142
142
143
78
78
78
79
79
79
79
78
78
78
79
79
79
79
80
80
81
80
80
81
80
80
81
80
80
81
83
83

131
131
139
139

46 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SLL %A
%B
[%X]
[%X]+
[%Y]
[%Y]+

SRL %A
%B
[%X]
[%X]+
[%Y]
[%Y]+

RL %A
%B
[%X]
[%X]+
[%Y]
[%Y]+

RR %A
%B
[%X]
[%X]+
[%Y]
[%Y]+

1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 1 1 1 1 0 1 0 0
1 0 0 0 0 1 1 1 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0 0 1
1 0 0 0 0 1 1 1 0 0 0 1 0
1 0 0 0 0 1 1 1 0 0 0 1 1
1 0 0 0 0 1 1 1 1 0 0 0 1
1 0 0 0 0 1 1 1 1 0 1 0 1
1 0 0 0 0 1 1 1 0 0 1 0 0
1 0 0 0 0 1 1 1 0 0 1 0 1
1 0 0 0 0 1 1 1 0 0 1 1 0
1 0 0 0 0 1 1 1 0 0 1 1 1
1 0 0 0 0 1 1 1 1 0 0 1 0
1 0 0 0 0 1 1 1 1 0 1 1 0
1 0 0 0 0 1 1 1 0 1 0 0 0
1 0 0 0 0 1 1 1 0 1 0 0 1
1 0 0 0 0 1 1 1 0 1 0 1 0
1 0 0 0 0 1 1 1 0 1 0 1 1
1 0 0 0 0 1 1 1 1 0 0 1 1
1 0 0 0 0 1 1 1 1 0 1 1 1
1 0 0 0 0 1 1 1 0 1 1 0 0
1 0 0 0 0 1 1 1 0 1 1 0 1
1 0 0 0 0 1 1 1 0 1 1 1 0
1 0 0 0 0 1 1 1 0 1 1 1 1

1 ↓ – ×
1 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
1 ↓ – ×
1 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
1 ↓ – ×
1 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
1 ↓ – ×
1 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×

A (C←D3←D2←D1←D0←0)
B (C←D3←D2←D1←D0←0)
[X] (C←D3←D2←D1←D0←0)
[X] (C←D3←D2←D1←D0←0), X ← X+1
[Y] (C←D3←D2←D1←D0←0)
[Y] (C←D3←D2←D1←D0←0), Y ← Y+1
A (0→D3→D2→D1→D0→C)
B (0→D3→D2→D1→D0→C)
[X] (0→D3→D2→D1→D0→C)
[X] (0→D3→D2→D1→D0→C), X ← X+1
[Y] (0→D3→D2→D1→D0→C)
[Y] (0→D3→D2→D1→D0→C), Y ← Y+1
A (C←D3←D2←D1←D0←C)
B (C←D3←D2←D1←D0←C)
[X] (C←D3←D2←D1←D0←C)
[X] (C←D3←D2←D1←D0←C), X ← X+1
[Y] (C←D3←D2←D1←D0←C)
[Y] (C←D3←D2←D1←D0←C), Y ← Y+1
A (C→D3→D2→D1→D0→C)
B (C→D3→D2→D1→D0→C)
[X] (C→D3→D2→D1→D0→C)
[X] (C→D3→D2→D1→D0→C), X ← X+1
[Y] (C→D3→D2→D1→D0→C)
[Y] (C→D3→D2→D1→D0→C), Y ← Y+1

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔ ↔

ALU shift and rotate operation

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔

131
131
132
132
132
132
133
133
134
134
134
134
120
120
121
121
121
121
122
122
122
123
122
123

LDB %BA,%XL
%BA,%XH
%BA,%YL
%BA,%YH
%BA,%EXT
%BA,%SP1
%BA,%SP2
%BA,imm8
%BA,[%X]+
%BA,[%Y]+

LDB %XL,%BA
%XL,imm8
%XH,%BA

LDB %YL,%BA
%YL,imm8
%YH,%BA

LDB %EXT,%BA
%EXT,imm8

LDB %SP1,%BA
%SP2,%BA

LDB [%X]+,%BA
[%X]+,imm8

LDB [%Y]+,%BA
ADD %X,%BA

%X,sign8
%Y,%BA
%Y,sign8

CMP %X,imm8
%Y,imm8

INC %SP1
%SP2

DEC %SP1
%SP2

1 1 1 1 1 1 1 0 0 1 0 0 0
1 1 1 1 1 1 1 0 0 1 0 0 1
1 1 1 1 1 1 1 0 0 1 0 1 0
1 1 1 1 1 1 1 0 0 1 0 1 1
1 1 1 1 1 1 1 0 1 0 1 1 X
1 1 1 1 1 1 1 0 0 1 1 0 X
1 1 1 1 1 1 1 0 0 1 1 1 X
0 1 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0
1 1 1 1 1 1 1 0 1 1 0 0 0
1 1 1 1 1 1 1 0 1 1 0 1 0
1 1 1 1 1 1 1 0 0 0 0 0 0
0 1 0 1 0 i7 i6 i5 i4 i3 i2 i1 i0
1 1 1 1 1 1 1 0 0 0 0 0 1
1 1 1 1 1 1 1 0 0 0 0 1 0
0 1 0 1 1 i7 i6 i5 i4 i3 i2 i1 i0
1 1 1 1 1 1 1 0 0 0 0 1 1
1 1 1 1 1 1 1 0 1 0 1 0 X
0 1 0 0 0 i7 i6 i5 i4 i3 i2 i1 i0
1 1 1 1 1 1 1 0 0 0 1 0 X
1 1 1 1 1 1 1 0 0 0 1 1 X
1 1 1 1 1 1 1 0 1 1 0 0 1
0 0 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0
1 1 1 1 1 1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 0 1 0 0 0 X
0 1 1 0 0 s7 s6 s5 s4 s3 s2 s1 s0
1 1 1 1 1 1 1 0 1 0 0 1 X
0 1 1 0 1 s7 s6 s5 s4 s3 s2 s1 s0
0 1 1 1 0 [FFH - imm8]
0 1 1 1 1 [FFH - imm8]
1 1 1 1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 1 1 1 0 1 1 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 1 0 0

1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ↑ – – – ×
1 ↑ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
2 ↓ – – – ×
2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – ●

1 ↓ – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×

BA ← XL
BA ← XH
BA ← YL
BA ← YH
BA ← EXT
BA ← SP1
BA ← SP2
BA ← imm8
A ← [X], B ← [X+1], X ← X+2
A ← [Y], B ← [Y+1], Y ← Y+2
XL ← BA
XL ← imm8
XH ← BA
YL ← BA
YL ← imm8
YH ← BA
EXT ← BA
EXT ← imm8
SP1 ← BA
SP2 ← BA
[X] ← A, [X+1] ← B, X ← X+2
[X] ← i3~0, [X+1] ← i7~4, X ← X+2
[Y] ← A, [Y+1] ← B, Y ← Y+2
X ← X+BA
X ← X+sign8 (sign8=-128~127)
Y ← Y+BA
Y ← Y+sign8 (sign8=-128~127)
X-imm8 (imm8=0~255)
Y-imm8 (imm8=0~255)
SP1 ← SP1+1
SP2 ← SP2+1
SP1 ← SP1-1
SP2 ← SP2-1

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

8/16-bit operation

↔ ↔
↔ ↔

↔
↔

↔
↔

↔
↔

↔
↔

107
107
107
107
106
107
107
105
106
106
110
110
110
110
110
110
109
109
111
111
108
108
108
72
72
72
72
88
88
94
94
90
90

E0C63000 CORE CPU MANUAL EPSON 47

CHAPTER 4: INSTRUCTION SET

Note: • The extended addressing (combined with the E flag) is available only for the instructions indi-
cated with ●● in the EXT. mode row. Operation of other instructions (indicated with ×) cannot be
guaranteed, therefore do not write data to the EXT register or do not set the E flag immediately
before those instructions.

• X in the machine code row indicates that the bit is valid even though it is "0" or "1", but the
assembler generates it as "0". When entering the code directly, such as for debugging, "0"
should be entered.

PUSH %A
%B
%F
%X
%Y

POP %A
%B
%F
%X
%Y

1 1 1 1 1 1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1 0 0 1 1 0
1 1 1 1 1 1 1 1 0 0 1 0 1
1 1 1 1 1 1 1 1 0 0 0 0 1
1 1 1 1 1 1 1 1 0 0 0 1 X
1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1 0 1 0 1 X

1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ×
1 ↓ – – – ×
1 ↓ – – – ×

[SP2-1] ← A, SP2 ← SP2-1
[SP2-1] ← B, SP2 ← SP2-1
[SP2-1] ← F, SP2 ← SP2-1
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← X, SP1 ← SP1-1
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← Y, SP1 ← SP1-1
A ← [SP2], SP2 ← SP2+1
B ← [SP2], SP2 ← SP2+1
F ← [SP2], SP2 ← SP2+1
X ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
Y ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

Stack operation

↔ ↔ ↔ ↔

117
117
117
118
118
116
116
116
117
117

JR sign8
JR %A

%BA
JR [00addr6]
JRC sign8
JRNC sign8
JRZ sign8
JRNZ sign8
JP %Y
CALZ imm8

CALR sign8

CALR [00addr6]

INT imm6

RET
RETS

RETD imm8

RETI

0 0 0 0 0 s7 s6 s5 s4 s3 s2 s1 s0
1 1 1 1 1 1 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 1 a5 a4 a3 a2 a1 a0
0 0 1 0 0 s7 s6 s5 s4 s3 s2 s1 s0
0 0 1 0 1 s7 s6 s5 s4 s3 s2 s1 s0
0 0 1 1 0 s7 s6 s5 s4 s3 s2 s1 s0
0 0 1 1 1 s7 s6 s5 s4 s3 s2 s1 s0
1 1 1 1 1 1 1 1 1 0 0 1 X
0 0 0 1 1 i7 i6 i5 i4 i3 i2 i1 i0

0 0 0 1 0 s7 s6 s5 s4 s3 s2 s1 s0

1 1 1 1 1 0 0 a5 a4 a3 a2 a1 a0

1 1 1 1 1 1 0 i5 i4 i3 i2 i1 i0

1 1 1 1 1 1 1 1 1 1 0 X 0
1 1 1 1 1 1 1 1 1 1 0 1 1

1 0 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0

1 1 1 1 1 1 1 1 1 1 0 0 1

1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ●

1 ↓ – – – ●

1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ×

1 ↓ – – – ●

2 ↓ – – – ×

3 ↓ – – – ×

1 ↓ – – – ×
2 ↓ – – – ×

3 ↓ – – – ×

2 ×

PC ← PC+sign8+1 (sign8=-128~127)
PC ← PC+A+1
PC ← PC+BA+1
PC ← PC+[00addr6]+1
If C=1 then PC ← PC+sign8+1 (sign8=-128~127)
If C=0 then PC ← PC+sign8+1 (sign8=-128~127)
If Z=1 then PC ← PC+sign8+1 (sign8=-128~127)
If Z=0 then PC ← PC+sign8+1 (sign8=-128~127)
PC ← Y
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1,
SP1 ← SP1-1, PC ← imm8
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1,
SP1 ← SP1-1, PC ← PC+sign8+1 (sign8=-128~127)
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1,
SP1 ← SP1-1, PC ← PC+[00addr6]+1
[SP2-1] ← F, SP2 ← SP2-1
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1,
SP1 ← SP1-1, PC ← imm6 (imm6=0100H~013FH)
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
PC ← PC+1
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
[X] ← i3~0, [X+1] ← i7~4, X ← X+2
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
F ← [SP2], SP2 ← SP2+1

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

Branch control

↔ ↔ ↔ ↔

97
95
96
96
97
98
99
98
95
83

82

82

94

118
120

119

119

HALT
SLP
NOP

1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 X

2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ×

Halt
Sleep
No operation (PC ← PC+1)

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

System control

92
133
111

48 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

4.2.4 List in alphabetical order

ADC %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%A,n4
%B,%B
%B,imm4
%B,[%X]
%B,[%X],n4
%B,[%X]+
%B,[%X]+,n4
%B,[%Y]
%B,[%Y],n4
%B,[%Y]+
%B,[%Y]+,n4
[%X],%A
[%X],%B
[%X],%B,n4
[%X],imm4
[%X],0,n4
[%X]+,%A
[%X]+,%B
[%X]+,%B,n4
[%X]+,imm4
[%X]+,0,n4
[%Y],%A
[%Y],%B
[%Y],%B,n4
[%Y],imm4
[%Y],0,n4
[%Y]+,%A
[%Y]+,%B
[%Y]+,%B,n4
[%Y]+,imm4
[%Y]+,0,n4

ADD %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%X,%BA
%X,sign8
%Y,%BA
%Y,sign8
[%X],%A
[%X],%B

1 1 0 0 1 1 1 1 1 0 0 0 X
1 1 0 0 1 1 1 1 1 0 0 1 X
1 1 0 0 1 1 1 0 0 i3 i2 i1 i0
1 1 0 0 1 1 1 1 0 0 0 0 0
1 1 0 0 1 1 1 1 0 0 0 0 1
1 1 0 0 1 1 1 1 0 0 0 1 0
1 1 0 0 1 1 1 1 0 0 0 1 1
1 1 0 0 1 1 1 1 1 0 1 0 X
1 0 0 0 0 1 1 0 1 [10H-n4]
1 1 0 0 1 1 1 1 1 0 1 1 X
1 1 0 0 1 1 1 0 1 i3 i2 i1 i0
1 1 0 0 1 1 1 1 0 0 1 0 0
1 1 1 0 1 1 1 0 0 [10H-n4]
1 1 0 0 1 1 1 1 0 0 1 0 1
1 1 1 0 1 1 1 0 1 [10H-n4]
1 1 0 0 1 1 1 1 0 0 1 1 0
1 1 1 0 1 1 1 1 0 [10H-n4]
1 1 0 0 1 1 1 1 0 0 1 1 1
1 1 1 0 1 1 1 1 1 [10H-n4]
1 1 0 0 1 1 1 1 0 1 0 0 0
1 1 0 0 1 1 1 1 0 1 1 0 0
1 1 1 0 1 0 1 0 0 [10H-n4]
1 1 0 0 1 1 0 0 0 i3 i2 i1 i0
1 1 1 0 1 0 0 0 0 [10H-n4]
1 1 0 0 1 1 1 1 0 1 0 0 1
1 1 0 0 1 1 1 1 0 1 1 0 1
1 1 1 0 1 0 1 0 1 [10H-n4]
1 1 0 0 1 1 0 0 1 i3 i2 i1 i0
1 1 1 0 1 0 0 0 1 [10H-n4]
1 1 0 0 1 1 1 1 0 1 0 1 0
1 1 0 0 1 1 1 1 0 1 1 1 0
1 1 1 0 1 0 1 1 0 [10H-n4]
1 1 0 0 1 1 0 1 0 i3 i2 i1 i0
1 1 1 0 1 0 0 1 0 [10H-n4]
1 1 0 0 1 1 1 1 0 1 0 1 1
1 1 0 0 1 1 1 1 0 1 1 1 1
1 1 1 0 1 0 1 1 1 [10H-n4]
1 1 0 0 1 1 0 1 1 i3 i2 i1 i0
1 1 1 0 1 0 0 1 1 [10H-n4]
1 1 0 0 1 0 1 1 1 0 0 0 X
1 1 0 0 1 0 1 1 1 0 0 1 X
1 1 0 0 1 0 1 0 0 i3 i2 i1 i0
1 1 0 0 1 0 1 1 0 0 0 0 0
1 1 0 0 1 0 1 1 0 0 0 0 1
1 1 0 0 1 0 1 1 0 0 0 1 0
1 1 0 0 1 0 1 1 0 0 0 1 1
1 1 0 0 1 0 1 1 1 0 1 0 X
1 1 0 0 1 0 1 1 1 0 1 1 X
1 1 0 0 1 0 1 0 1 i3 i2 i1 i0
1 1 0 0 1 0 1 1 0 0 1 0 0
1 1 0 0 1 0 1 1 0 0 1 0 1
1 1 0 0 1 0 1 1 0 0 1 1 0
1 1 0 0 1 0 1 1 0 0 1 1 1
1 1 1 1 1 1 1 0 1 0 0 0 X
0 1 1 0 0 s7 s6 s5 s4 s3 s2 s1 s0
1 1 1 1 1 1 1 0 1 0 0 1 X
0 1 1 0 1 s7 s6 s5 s4 s3 s2 s1 s0
1 1 0 0 1 0 1 1 0 1 0 0 0
1 1 0 0 1 0 1 1 0 1 1 0 0

1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
2 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

2 ↓ – ●

1 ↓ – ×
2 ↓ – ×
1 ↓ – ●

2 ↓ – ●

1 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

2 ↓ – ●

2 ↓ – ●

A ← A+A+C
A ← A+B+C
A ← A+imm4+C
A ← A+[X]+C
A ← A+[X]+C, X ← X+1
A ← A+[Y]+C
A ← A+[Y]+C, Y ← Y+1
B ← B+A+C
B ← N's adjust (B+A+C)
B ← B+B+C
B ← B+imm4+C
B ← B+[X]+C
B ← N's adjust (B+[X]+C)
B ← B+[X]+C, X ← X+1
B ← N's adjust (B+[X]+C), X ← X+1
B ← B+[Y]+C
B ← N's adjust (B+[Y]+C)
B ← B+[Y]+C, Y ← Y+1
B ← N's adjust (B+[Y]+C), Y ← Y+1
[X] ← [X]+A+C
[X] ← [X]+B+C
[X] ← N's adjust ([X]+B+C)
[X] ← [X]+imm4+C
[X] ← N's adjust ([X]+0+C)
[X] ← [X]+A+C, X ← X+1
[X] ← [X]+B+C, X ← X+1
[X] ← N's adjust ([X]+B+C), X ← X+1
[X] ← [X]+imm4+C, X ← X+1
[X] ← N's adjust ([X]+0+C), X ← X+1
[Y] ← [Y]+A+C
[Y] ← [Y]+B+C
[Y] ← N's adjust ([Y]+B+C)
[Y] ← [Y]+imm4+C
[Y] ← N's adjust ([Y]+0+C)
[Y] ← [Y]+A+C, Y ← Y+1
[Y] ← [Y]+B+C, Y ← Y+1
[Y] ← N's adjust ([Y]+B+C), Y ← Y+1
[Y] ← [Y]+imm4+C, Y ← Y+1
[Y] ← N's adjust ([Y]+0+C), Y ← Y+1
A ← A+A
A ← A+B
A ← A+imm4
A ← A+[X]
A ← A+[X], X ← X+1
A ← A+[Y]
A ← A+[Y], Y ← Y+1
B ← B+A
B ← B+B
B ← B+imm4
B ← B+[X]
B ← B+[X], X ← X+1
B ← B+[Y]
B ← B+[Y], Y ← Y+1
X ← X+BA
X ← X+sign8 (sign8=-128~127)
Y ← Y+BA
Y ← Y+sign8 (sign8=-128~127)
[X] ← [X]+A
[X] ← [X]+B

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔

↔
↔

↔
↔ ↔

↔ ↔

61
61
61
62
62
62
62
61
65
61
61
62
65
62
66
62
65
62
66
63
63
66
64
67
63
63
67
64
68
63
63
66
64
67
63
63
67
64
67
68
68
69
69
70
69
70
68
68
69
69
70
69
70
72
73
72
73
70
70

E0C63000 CORE CPU MANUAL EPSON 49

CHAPTER 4: INSTRUCTION SET

ADD [%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

AND %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%F,imm4
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

BIT %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B

1 1 0 0 1 0 0 0 0 i3 i2 i1 i0
1 1 0 0 1 0 1 1 0 1 0 0 1
1 1 0 0 1 0 1 1 0 1 1 0 1
1 1 0 0 1 0 0 0 1 i3 i2 i1 i0
1 1 0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 1 1 0 1 1 1 0
1 1 0 0 1 0 0 1 0 i3 i2 i1 i0
1 1 0 0 1 0 1 1 0 1 0 1 1
1 1 0 0 1 0 1 1 0 1 1 1 1
1 1 0 0 1 0 0 1 1 i3 i2 i1 i0
1 1 0 1 0 0 1 1 1 0 0 0 X
1 1 0 1 0 0 1 1 1 0 0 1 X
1 1 0 1 0 0 1 0 0 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 0 0 0 0
1 1 0 1 0 0 1 1 0 0 0 0 1
1 1 0 1 0 0 1 1 0 0 0 1 0
1 1 0 1 0 0 1 1 0 0 0 1 1
1 1 0 1 0 0 1 1 1 0 1 0 X
1 1 0 1 0 0 1 1 1 0 1 1 X
1 1 0 1 0 0 1 0 1 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 0 1 0 0
1 1 0 1 0 0 1 1 0 0 1 0 1
1 1 0 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 0 1 1 0 0 1 1 1
1 0 0 0 0 1 0 0 0 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 1 0 0 0
1 1 0 1 0 0 1 1 0 1 1 0 0
1 1 0 1 0 0 0 0 0 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 1 0 0 1
1 1 0 1 0 0 1 1 0 1 1 0 1
1 1 0 1 0 0 0 0 1 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 1 0 1 0
1 1 0 1 0 0 1 1 0 1 1 1 0
1 1 0 1 0 0 0 1 0 i3 i2 i1 i0
1 1 0 1 0 0 1 1 0 1 0 1 1
1 1 0 1 0 0 1 1 0 1 1 1 1
1 1 0 1 0 0 0 1 1 i3 i2 i1 i0
1 1 0 1 0 1 1 1 1 0 0 0 X
1 1 0 1 0 1 1 1 1 0 0 1 X
1 1 0 1 0 1 1 0 0 i3 i2 i1 i0
1 1 0 1 0 1 1 1 0 0 0 0 0
1 1 0 1 0 1 1 1 0 0 0 0 1
1 1 0 1 0 1 1 1 0 0 0 1 0
1 1 0 1 0 1 1 1 0 0 0 1 1
1 1 0 1 0 1 1 1 1 0 1 0 X
1 1 0 1 0 1 1 1 1 0 1 1 X
1 1 0 1 0 1 1 0 1 i3 i2 i1 i0
1 1 0 1 0 1 1 1 0 0 1 0 0
1 1 0 1 0 1 1 1 0 0 1 0 1
1 1 0 1 0 1 1 1 0 0 1 1 0
1 1 0 1 0 1 1 1 0 0 1 1 1
1 1 0 1 0 1 1 1 0 1 0 0 0
1 1 0 1 0 1 1 1 0 1 1 0 0
1 1 0 1 0 1 0 0 0 i3 i2 i1 i0
1 1 0 1 0 1 1 1 0 1 0 0 1
1 1 0 1 0 1 1 1 0 1 1 0 1
1 1 0 1 0 1 0 0 1 i3 i2 i1 i0
1 1 0 1 0 1 1 1 0 1 0 1 0
1 1 0 1 0 1 1 1 0 1 1 1 0

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ ↓ ↓ ↓ ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ●

1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ●

[X] ← [X]+imm4
[X] ← [X]+A, X ← X+1
[X] ← [X]+B, X ← X+1
[X] ← [X]+imm4, X ← X+1
[Y] ← [Y]+A
[Y] ← [Y]+B
[Y] ← [Y]+imm4
[Y] ← [Y]+A, Y ← Y+1
[Y] ← [Y]+B, Y ← Y+1
[Y] ← [Y]+imm4, Y ← Y+1
A ← A∧A
A ← A∧B
A ← A∧imm4
A ← A∧[X]
A ← A∧[X], X ← X+1
A ← A∧[Y]
A ← A∧[Y], Y ← Y+1
B ← B∧A
B ← B∧B
B ← B∧imm4
B ← B∧[X]
B ← B∧[X], X ← X+1
B ← B∧[Y]
B ← B∧[Y], Y ← Y+1
F ← F∧imm4
[X] ← [X]∧A
[X] ← [X]∧B
[X] ← [X]∧imm4
[X] ← [X]∧A, X ← X+1
[X] ← [X]∧B, X ← X+1
[X] ← [X]∧imm4, X ← X+1
[Y] ← [Y]∧A
[Y] ← [Y]∧B
[Y] ← [Y]∧imm4
[Y] ← [Y]∧A, Y ← Y+1
[Y] ← [Y]∧B, Y ← Y+1
[Y] ← [Y]∧imm4, Y ← Y+1
A∧A
A∧B
A∧imm4
A∧[X]
A∧[X], X ← X+1
A∧[Y]
A∧[Y], Y ← Y+1
B∧A
B∧B
B∧imm4
B∧[X]
B∧[X], X ← X+1
B∧[Y]
B∧[Y], Y ← Y+1
[X]∧A
[X]∧B
[X]∧imm4
[X]∧A, X ← X+1
[X]∧B, X ← X+1
[X]∧imm4, X ← X+1
[Y]∧A
[Y]∧B

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

71
71
71
72
70
70
71
71
71
72
73
73
74
75
75
75
75
73
73
74
75
75
75
75
74
76
76
77
76
76
77
76
76
77
76
76
77
78
78
78
79
79
79
79
78
78
78
79
79
79
79
80
80
81
80
80
81
80
80

50 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

BIT [%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

CALR [00addr6]

CALR sign8

CALZ imm8

CLR [00addr6],imm2
[FFaddr6],imm2

CMP %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%X,imm8
%Y,imm8
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

DEC %SP1
%SP2
[%X],n4
[%X]+,n4
[%Y],n4
[%Y]+,n4
[00addr6]

EX %A,%B
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+

HALT
INC %SP1

%SP2

1 1 0 1 0 1 0 1 0 i3 i2 i1 i0
1 1 0 1 0 1 1 1 0 1 0 1 1
1 1 0 1 0 1 1 1 0 1 1 1 1
1 1 0 1 0 1 0 1 1 i3 i2 i1 i0
1 1 1 1 1 0 0 a5 a4 a3 a2 a1 a0

0 0 0 1 0 s7 s6 s5 s4 s3 s2 s1 s0

0 0 0 1 1 i7 i6 i5 i4 i3 i2 i1 i0

1 0 1 0 0 i1 i0 a5 a4 a3 a2 a1 a0
1 0 1 0 1 i1 i0 a5 a4 a3 a2 a1 a0
1 1 1 1 0 0 1 1 1 X 0 0 0
1 1 1 1 0 0 1 1 1 X 0 1 0
1 1 1 1 0 0 1 0 0 i3 i2 i1 i0
1 1 1 1 0 0 1 1 0 0 0 0 0
1 1 1 1 0 0 1 1 0 0 0 0 1
1 1 1 1 0 0 1 1 0 0 0 1 0
1 1 1 1 0 0 1 1 0 0 0 1 1
1 1 1 1 0 0 1 1 1 X 1 0 0
1 1 1 1 0 0 1 1 1 X 1 1 0
1 1 1 1 0 0 1 0 1 i3 i2 i1 i0
1 1 1 1 0 0 1 1 0 0 1 0 0
1 1 1 1 0 0 1 1 0 0 1 0 1
1 1 1 1 0 0 1 1 0 0 1 1 0
1 1 1 1 0 0 1 1 0 0 1 1 1
0 1 1 1 0 [FFH - imm8]
0 1 1 1 1 [FFH - imm8]
1 1 1 1 0 0 1 1 0 1 0 0 0
1 1 1 1 0 0 1 1 0 1 1 0 0
1 1 1 1 0 0 0 0 0 i3 i2 i1 i0
1 1 1 1 0 0 1 1 0 1 0 0 1
1 1 1 1 0 0 1 1 0 1 1 0 1
1 1 1 1 0 0 0 0 1 i3 i2 i1 i0
1 1 1 1 0 0 1 1 0 1 0 1 0
1 1 1 1 0 0 1 1 0 1 1 1 0
1 1 1 1 0 0 0 1 0 i3 i2 i1 i0
1 1 1 1 0 0 1 1 0 1 0 1 1
1 1 1 1 0 0 1 1 0 1 1 1 1
1 1 1 1 0 0 0 1 1 i3 i2 i1 i0
1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 1 0 0
1 1 1 0 0 1 0 0 0 n3 n2 n1 n0
1 1 1 0 0 1 0 0 1 n3 n2 n1 n0
1 1 1 0 0 1 0 1 0 n3 n2 n1 n0
1 1 1 0 0 1 0 1 1 n3 n2 n1 n0
1 0 0 0 0 0 0 a5 a4 a3 a2 a1 a0
1 1 1 1 1 1 1 1 1 0 1 1 1
1 0 0 0 0 1 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1 1 1 0 0 1
1 0 0 0 0 1 1 1 1 1 0 1 0
1 0 0 0 0 1 1 1 1 1 0 1 1
1 0 0 0 0 1 1 1 1 1 1 0 0
1 0 0 0 0 1 1 1 1 1 1 0 1
1 0 0 0 0 1 1 1 1 1 1 1 0
1 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 1 1 1 0 1 1 0 0

1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
2 ↓ – – – ×

1 ↓ – – – ●

1 ↓ – – – ×

2 ↓ – – ×
2 ↓ – – ×
1 ↓ – ↓ ↑ ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ↓ ↑ ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ●

1 ↓ – ●

1 ↓ – ●

1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ●

1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – – ×
1 ↓ – – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
1 ↓ – – – ×
2 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – ×
1 ↓ – – ×

↔
↔

[Y]∧imm4
[Y]∧A, Y ← Y+1
[Y]∧B, Y ← Y+1
[Y]∧imm4, Y ← Y+1
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1,
SP1 ← SP1-1, PC ← PC+[00addr6]+1
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1,
SP1 ← SP1-1, PC ← PC+sign8+1 (sign8=-128~127)
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1,
SP1 ← SP1-1, PC ← imm8
[00addr6] ← [00addr6]∧not (2imm2)
[FFaddr6] ← [FFaddr6]∧not (2imm2)
A-A
A-B
A-imm4
A-[X]
A-[X], X ← X+1
A-[Y]
A-[Y], Y ← Y+1
B-A
B-B
B-imm4
B-[X]
B-[X], X ← X+1
B-[Y]
B-[Y], Y ← Y+1
X-imm8 (imm8=0~255)
Y-imm8 (imm8=0~255)
[X]-A
[X]-B
[X]-imm4
[X]-A, X ← X+1
[X]-B, X ← X+1
[X]-imm4, X ← X+1
[Y]-A
[Y]-B
[Y]-imm4
[Y]-A, Y ← Y+1
[Y]-B, Y ← Y+1
[Y]-imm4, Y ← Y+1
SP1 ← SP1-1
SP2 ← SP2-1
[X] ← N's adjust ([X]-1)
[X] ← N's adjust ([X]-1), X ← X+1
[Y] ← N's adjust ([Y]-1)
[Y] ← N's adjust ([Y]-1), Y ← Y+1
[00addr6] ← [00addr6]-1
A ↔ B
A ↔ [X]
A ↔ [X], X ← X+1
A ↔ [Y]
A ↔ [Y], Y ← Y+1
B ↔ [X]
B ↔ [X], X ← X+1
B ↔ [Y]
B ↔ [Y], Y ← Y+1
Halt
SP1 ← SP1+1
SP2 ← SP2+1

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔
↔

↔
↔

↔
↔

↔ ↔
↔

↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔

81
80
80
81
82

82

83

83
83
84
84
84
85
85
85
85
84
84
84
85
85
85
85
88
88
86
86
87
86
86
87
86
86
87
86
86
87
90
90
89
89
89
89
88
90
91
91
91
91
91
91
91
91
92
94
94

E0C63000 CORE CPU MANUAL EPSON 51

CHAPTER 4: INSTRUCTION SET

INC [%X],n4
[%X]+,n4
[%Y],n4
[%Y]+,n4
[00addr6]

INT imm6

JP %Y
JR %A

%BA
sign8
[00addr6]

JRC sign8
JRNC sign8
JRNZ sign8
JRZ sign8
LD %A,%A

%A,%B
%A,%F
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%F,%A
%F,imm4
[%X],%A
[%X],%B
[%X],imm4
[%X],[%Y]
[%X],[%Y]+
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%X]+,[%Y]
[%X]+,[%Y]+
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y],[%X]
[%Y],[%X]+
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4
[%Y]+,[%X]
[%Y]+,[%X]+

LDB %BA,%EXT
%BA,%SP1
%BA,%SP2
%BA,%XH
%BA,%XL

1 1 1 0 1 1 0 0 0 [10H-n4]
1 1 1 0 1 1 0 0 1 [10H-n4]
1 1 1 0 1 1 0 1 0 [10H-n4]
1 1 1 0 1 1 0 1 1 [10H-n4]
1 0 0 0 0 0 1 a5 a4 a3 a2 a1 a0
1 1 1 1 1 1 0 i5 i4 i3 i2 i1 i0

1 1 1 1 1 1 1 1 1 0 0 1 X
1 1 1 1 1 1 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 s7 s6 s5 s4 s3 s2 s1 s0
1 1 1 1 1 0 1 a5 a4 a3 a2 a1 a0
0 0 1 0 0 s7 s6 s5 s4 s3 s2 s1 s0
0 0 1 0 1 s7 s6 s5 s4 s3 s2 s1 s0
0 0 1 1 1 s7 s6 s5 s4 s3 s2 s1 s0
0 0 1 1 0 s7 s6 s5 s4 s3 s2 s1 s0
1 1 1 1 0 1 1 1 1 0 0 0 0
1 1 1 1 0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1 1 0 1 1 0
1 1 1 1 0 1 1 0 0 i3 i2 i1 i0
1 1 1 1 0 1 1 1 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 0 0 1
1 1 1 1 0 1 1 1 0 0 0 1 0
1 1 1 1 0 1 1 1 0 0 0 1 1
1 1 1 1 0 1 1 1 1 0 1 0 0
1 1 1 1 0 1 1 1 1 0 1 1 0
1 1 1 1 0 1 1 0 1 i3 i2 i1 i0
1 1 1 1 0 1 1 1 0 0 1 0 0
1 1 1 1 0 1 1 1 0 0 1 0 1
1 1 1 1 0 1 1 1 0 0 1 1 0
1 1 1 1 0 1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0 1
1 0 0 0 0 1 0 1 1 i3 i2 i1 i0
1 1 1 1 0 1 1 1 0 1 0 0 0
1 1 1 1 0 1 1 1 0 1 1 0 0
1 1 1 1 0 1 0 0 0 i3 i2 i1 i0
1 1 1 1 0 1 1 1 1 1 0 1 0
1 1 1 1 0 1 1 1 1 1 0 1 1
1 1 1 1 0 1 1 1 0 1 0 0 1
1 1 1 1 0 1 1 1 0 1 1 0 1
1 1 1 1 0 1 0 0 1 i3 i2 i1 i0
1 1 1 1 0 1 1 1 1 1 1 1 0
1 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 0 1 0 1 0
1 1 1 1 0 1 1 1 0 1 1 1 0
1 1 1 1 0 1 0 1 0 i3 i2 i1 i0
1 1 1 1 0 1 1 1 1 1 0 0 0
1 1 1 1 0 1 1 1 1 1 0 0 1
1 1 1 1 0 1 1 1 0 1 0 1 1
1 1 1 1 0 1 1 1 0 1 1 1 1
1 1 1 1 0 1 0 1 1 i3 i2 i1 i0
1 1 1 1 0 1 1 1 1 1 1 0 0
1 1 1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0 1 0 1 1 X
1 1 1 1 1 1 1 0 0 1 1 0 X
1 1 1 1 1 1 1 0 0 1 1 1 X
1 1 1 1 1 1 1 0 0 1 0 0 1
1 1 1 1 1 1 1 0 0 1 0 0 0

2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
3 ↓ – – – ×

1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ●

2 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ●

1 ↓ – – – ●

1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ×
1 ×
1 ↓ – – – ●

1 ↓ – – – ●

1 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ●

1 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×

[X] ← N's adjust ([X]+1)
[X] ← N's adjust ([X]+1), X ← X+1
[Y] ← N's adjust ([Y]+1)
[Y] ← N's adjust ([Y]+1), Y ← Y+1
[00addr6] ← [00addr6]+1
[SP2-1] ← F, SP2 ← SP2-1
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC+1,
SP1 ← SP1-1, PC ← imm6 (imm6=0100H~013FH)
PC ← Y
PC ← PC+A+1
PC ← PC+BA+1
PC ← PC+sign8+1 (sign8=-128~127)
PC ← PC+[00addr6]+1
If C=1 then PC ← PC+sign8+1 (sign8=-128~127)
If C=0 then PC ← PC+sign8+1 (sign8=-128~127)
If Z=0 then PC ← PC+sign8+1 (sign8=-128~127)
If Z=1 then PC ← PC+sign8+1 (sign8=-128~127)
A ← A
A ← B
A ← F
A ← imm4
A ← [X]
A ← [X], X ← X+1
A ← [Y]
A ← [Y], Y ← Y+1
B ← A
B ← B
B ← imm4
B ← [X]
B ← [X], X ← X+1
B ← [Y]
B ← [Y], Y ← Y+1
F ← A
F ← imm4
[X] ← A
[X] ← B
[X] ← imm4
[X] ← [Y]
[X] ← [Y], Y ← Y+1
[X] ← A, X ← X+1
[X] ← B, X ← X+1
[X] ← imm4, X ← X+1
[X] ← [Y], X ← X+1
[X] ← [Y], X ← X+1, Y ← Y+1
[Y] ← A
[Y] ← B
[Y] ← imm4
[Y] ← [X]
[Y] ← [X], X ← X+1
[Y] ← A, Y ← Y+1
[Y] ← B, Y ← Y+1
[Y] ← imm4, Y ← Y+1
[Y] ← [X], Y ← Y+1
[Y] ← [X], Y ← Y+1, X ← X+1
BA ← EXT
BA ← SP1
BA ← SP2
BA ← XH
BA ← XL

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔

↔ ↔ ↔ ↔

↔ ↔ ↔ ↔

93
93
93
93
92
94

95
95
96
97
96
97
98
98
99
99
99
99

100
100
101
100
101
99
99

100
100
101
100
101
99

100
101
101
102
103
104
102
102
103
104
105
101
101
102
103
104
102
102
103
104
105
106
107
107
107
107

52 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

LDB %BA,%YH
%BA,%YL
%BA,imm8
%BA,[%X]+
%BA,[%Y]+
%EXT,%BA
%EXT,imm8
%SP1,%BA
%SP2,%BA
%XH,%BA
%XL,%BA
%XL,imm8
%YH,%BA
%YL,%BA
%YL,imm8
[%X]+,%BA
[%X]+,imm8
[%Y]+,%BA

NOP
OR %A,%A

%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%F,imm4
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

POP %A
%B
%F
%X
%Y

PUSH %A
%B
%F
%X
%Y

RET
RETD imm8

1 1 1 1 1 1 1 0 0 1 0 1 1
1 1 1 1 1 1 1 0 0 1 0 1 0
0 1 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0
1 1 1 1 1 1 1 0 1 1 0 0 0
1 1 1 1 1 1 1 0 1 1 0 1 0
1 1 1 1 1 1 1 0 1 0 1 0 X
0 1 0 0 0 i7 i6 i5 i4 i3 i2 i1 i0
1 1 1 1 1 1 1 0 0 0 1 0 X
1 1 1 1 1 1 1 0 0 0 1 1 X
1 1 1 1 1 1 1 0 0 0 0 0 1
1 1 1 1 1 1 1 0 0 0 0 0 0
0 1 0 1 0 i7 i6 i5 i4 i3 i2 i1 i0
1 1 1 1 1 1 1 0 0 0 0 1 1
1 1 1 1 1 1 1 0 0 0 0 1 0
0 1 0 1 1 i7 i6 i5 i4 i3 i2 i1 i0
1 1 1 1 1 1 1 0 1 1 0 0 1
0 0 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0
1 1 1 1 1 1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 X
1 1 0 1 1 0 1 1 1 0 0 0 X
1 1 0 1 1 0 1 1 1 0 0 1 X
1 1 0 1 1 0 1 0 0 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 1
1 1 0 1 1 0 1 1 0 0 0 1 0
1 1 0 1 1 0 1 1 0 0 0 1 1
1 1 0 1 1 0 1 1 1 0 1 0 X
1 1 0 1 1 0 1 1 1 0 1 1 X
1 1 0 1 1 0 1 0 1 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 0 1 0 0
1 1 0 1 1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 0 0 1 1 0
1 1 0 1 1 0 1 1 0 0 1 1 1
1 0 0 0 0 1 0 0 1 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 1 0 0 0
1 1 0 1 1 0 1 1 0 1 1 0 0
1 1 0 1 1 0 0 0 0 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 1 0 0 1
1 1 0 1 1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 0 0 1 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 1 0 1 0
1 1 0 1 1 0 1 1 0 1 1 1 0
1 1 0 1 1 0 0 1 0 i3 i2 i1 i0
1 1 0 1 1 0 1 1 0 1 0 1 1
1 1 0 1 1 0 1 1 0 1 1 1 1
1 1 0 1 1 0 0 1 1 i3 i2 i1 i0
1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1 0 1 0 1 X
1 1 1 1 1 1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1 0 0 1 1 0
1 1 1 1 1 1 1 1 0 0 1 0 1
1 1 1 1 1 1 1 1 0 0 0 0 1
1 1 1 1 1 1 1 1 0 0 0 1 X
1 1 1 1 1 1 1 1 1 1 0 X 0
1 0 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0

1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
2 ↓ – – – ×
2 ↓ – – – ×
1 ↑ – – – ×
1 ↑ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ●

1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ●

2 ↓ – – – ×
2 ↓ – – – ×
2 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↑ ↑ ↑ ↑ ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
1 ↓ – – – ×
3 ↓ – – – ×

BA ← YH
BA ← YL
BA ← imm8
A ← [X], B ← [X+1], X ← X+2
A ← [Y], B ← [Y+1], Y ← Y+2
EXT ← BA
EXT ← imm8
SP1 ← BA
SP2 ← BA
XH ← BA
XL ← BA
XL ← imm8
YH ← BA
YL ← BA
YL ← imm8
[X] ← A, [X+1] ← B, X ← X+2
[X] ← i3~0, [X+1] ← i7~4, X ← X+2
[Y] ← A, [Y+1] ← B, Y ← Y+2
No operation (PC ← PC+1)
A ← A∨A
A ← A∨B
A ← A∨imm4
A ← A∨[X]
A ← A∨[X], X ← X+1
A ← A∨[Y]
A ← A∨[Y], Y ← Y+1
B ← B∨A
B ← B∨B
B ← B∨imm4
B ← B∨[X]
B ← B∨[X], X ← X+1
B ← B∨[Y]
B ← B∨[Y], Y ← Y+1
F ← F∨imm4
[X] ← [X]∨A
[X] ← [X]∨B
[X] ← [X]∨imm4
[X] ← [X]∨A, X ← X+1
[X] ← [X]∨B, X ← X+1
[X] ← [X]∨imm4, X ← X+1
[Y] ← [Y]∨A
[Y] ← [Y]∨B
[Y] ← [Y]∨imm4
[Y] ← [Y]∨A, Y ← Y+1
[Y] ← [Y]∨B, Y ← Y+1
[Y] ← [Y]∨imm4, Y ← Y+1
A ← [SP2], SP2 ← SP2+1
B ← [SP2], SP2 ← SP2+1
F ← [SP2], SP2 ← SP2+1
X ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
Y ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
[SP2-1] ← A, SP2 ← SP2-1
[SP2-1] ← B, SP2 ← SP2-1
[SP2-1] ← F, SP2 ← SP2-1
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← X, SP1 ← SP1-1
([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← Y, SP1 ← SP1-1
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
[X] ← i3~0, [X+1] ← i7~4, X ← X+2

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔ ↔ ↔ ↔

107
107
105
106
106
109
109
111
111
110
110
110
110
110
110
108
108
108
111
112
112
112
113
114
113
114
112
112
112
113
114
113
114
113
114
114
115
115
115
116
114
114
115
115
115
116
116
116
116
117
117
117
117
117
118
118
118
119

E0C63000 CORE CPU MANUAL EPSON 53

CHAPTER 4: INSTRUCTION SET

RETI

RETS

RL %A
%B
[%X]
[%X]+
[%Y]
[%Y]+

RR %A
%B
[%X]
[%X]+
[%Y]
[%Y]+

SBC %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+

%B,%A
%B,%A,n4
%B,%B
%B,imm4
%B,[%X]
%B,[%X],n4
%B,[%X]+
%B,[%X]+,n4
%B,[%Y]
%B,[%Y],n4
%B,[%Y]+
%B,[%Y]+,n4
[%X],%A
[%X],%B
[%X],%B,n4
[%X],imm4
[%X],0,n4
[%X]+,%A
[%X]+,%B
[%X]+,%B,n4
[%X]+,imm4
[%X]+,0,n4
[%Y],%A
[%Y],%B
[%Y],%B,n4
[%Y],imm4
[%Y],0,n4
[%Y]+,%A
[%Y]+,%B
[%Y]+,%B,n4
[%Y]+,imm4
[%Y]+,0,n4

SET [00addr6],imm2
[FFaddr6],imm2

SLL %A
%B

1 1 1 1 1 1 1 1 1 1 0 0 1

1 1 1 1 1 1 1 1 1 1 0 1 1

1 0 0 0 0 1 1 1 1 0 0 1 0
1 0 0 0 0 1 1 1 1 0 1 1 0
1 0 0 0 0 1 1 1 0 1 0 0 0
1 0 0 0 0 1 1 1 0 1 0 0 1
1 0 0 0 0 1 1 1 0 1 0 1 0
1 0 0 0 0 1 1 1 0 1 0 1 1
1 0 0 0 0 1 1 1 1 0 0 1 1
1 0 0 0 0 1 1 1 1 0 1 1 1
1 0 0 0 0 1 1 1 0 1 1 0 0
1 0 0 0 0 1 1 1 0 1 1 0 1
1 0 0 0 0 1 1 1 0 1 1 1 0
1 0 0 0 0 1 1 1 0 1 1 1 1
1 1 0 0 0 1 1 1 1 0 0 0 X
1 1 0 0 0 1 1 1 1 0 0 1 X
1 1 0 0 0 1 1 0 0 i3 i2 i1 i0
1 1 0 0 0 1 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0 0 0 1
1 1 0 0 0 1 1 1 0 0 0 1 0
1 1 0 0 0 1 1 1 0 0 0 1 1
1 1 0 0 0 1 1 1 1 0 1 0 X
1 0 0 0 0 1 1 0 0 n3 n2 n1 n0
1 1 0 0 0 1 1 1 1 0 1 1 X
1 1 0 0 0 1 1 0 1 i3 i2 i1 i0
1 1 0 0 0 1 1 1 0 0 1 0 0
1 1 1 0 0 1 1 0 0 n3 n2 n1 n0
1 1 0 0 0 1 1 1 0 0 1 0 1
1 1 1 0 0 1 1 0 1 n3 n2 n1 n0
1 1 0 0 0 1 1 1 0 0 1 1 0
1 1 1 0 0 1 1 1 0 n3 n2 n1 n0
1 1 0 0 0 1 1 1 0 0 1 1 1
1 1 1 0 0 1 1 1 1 n3 n2 n1 n0
1 1 0 0 0 1 1 1 0 1 0 0 0
1 1 0 0 0 1 1 1 0 1 1 0 0
1 1 1 0 0 0 1 0 0 n3 n2 n1 n0
1 1 0 0 0 1 0 0 0 i3 i2 i1 i0
1 1 1 0 0 0 0 0 0 n3 n2 n1 n0
1 1 0 0 0 1 1 1 0 1 0 0 1
1 1 0 0 0 1 1 1 0 1 1 0 1
1 1 1 0 0 0 1 0 1 n3 n2 n1 n0
1 1 0 0 0 1 0 0 1 i3 i2 i1 i0
1 1 1 0 0 0 0 0 1 n3 n2 n1 n0
1 1 0 0 0 1 1 1 0 1 0 1 0
1 1 0 0 0 1 1 1 0 1 1 1 0
1 1 1 0 0 0 1 1 0 n3 n2 n1 n0
1 1 0 0 0 1 0 1 0 i3 i2 i1 i0
1 1 1 0 0 0 0 1 0 n3 n2 n1 n0
1 1 0 0 0 1 1 1 0 1 0 1 1
1 1 0 0 0 1 1 1 0 1 1 1 1
1 1 1 0 0 0 1 1 1 n3 n2 n1 n0
1 1 0 0 0 1 0 1 1 i3 i2 i1 i0
1 1 1 0 0 0 0 1 1 n3 n2 n1 n0
1 0 1 1 0 i1 i0 a5 a4 a3 a2 a1 a0
1 0 1 1 1 i1 i0 a5 a4 a3 a2 a1 a0
1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 1 1 1 1 0 1 0 0

2 ×

2 ↓ – – – ×

1 ↓ – ×
1 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
1 ↓ – ×
1 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
2 ↓ – ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

2 ↓ – ●

1 ↓ – ×
2 ↓ – ×
1 ↓ – ●

2 ↓ – ●

1 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – – ×
2 ↓ – – ×
1 ↓ – ×
1 ↓ – ×

↔
↔

PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
F ← [SP2], SP2 ← SP2+1
PC ← ([SP1∗4+3]~[SP1∗4]), SP1 ← SP1+1
PC ← PC+1
A (C←D3←D2←D1←D0←C)
B (C←D3←D2←D1←D0←C)
[X] (C←D3←D2←D1←D0←C)
[X] (C←D3←D2←D1←D0←C), X ← X+1
[Y] (C←D3←D2←D1←D0←C)
[Y] (C←D3←D2←D1←D0←C), Y ← Y+1
A (C→D3→D2→D1→D0→C)
B (C→D3→D2→D1→D0→C)
[X] (C→D3→D2→D1→D0→C)
[X] (C→D3→D2→D1→D0→C), X ← X+1
[Y] (C→D3→D2→D1→D0→C)
[Y] (C→D3→D2→D1→D0→C), Y ← Y+1
A ← A-A-C
A ← A-B-C
A ← A-imm4-C
A ← A-[X]-C
A ← A-[X]-C, X ← X+1
A ← A-[Y]-C
A ← A-[Y]-C, Y ← Y+1
B ← B-A-C
B ← N's adjust (B-A-C)
B ← B-B-C
B ← B-imm4-C
B ← B-[X]-C
B ← N's adjust (B-[X]-C)
B ← B-[X]-C, X ← X+1
B ← N's adjust (B-[X]-C), X ← X+1
B ← B-[Y]-C
B ← N's adjust (B-[Y]-C)
B ← B-[Y]-C, Y ← Y+1
B ← N's adjust (B-[Y]-C), Y ← Y+1
[X] ← [X]-A-C
[X] ← [X]-B-C
[X] ← N's adjust ([X]-B-C)
[X] ← [X]-imm4-C
[X] ← N's adjust ([X]-0-C)
[X] ← [X]-A-C, X ← X+1
[X] ← [X]-B-C, X ← X+1
[X] ← N's adjust ([X]-B-C), X ← X+1
[X] ← [X]-imm4-C, X ← X+1
[X] ← N's adjust ([X]-0-C), X ← X+1
[Y] ← [Y]-A-C
[Y] ← [Y]-B-C
[Y] ← N's adjust ([Y]-B-C)
[Y] ← [Y]-imm4-C
[Y] ← N's adjust ([Y]-0-C)
[Y] ← [Y]-A-C, Y ← Y+1
[Y] ← [Y]-B-C, Y ← Y+1
[Y] ← N's adjust ([Y]-B-C), Y ← Y+1
[Y] ← [Y]-imm4-C, Y ← Y+1
[Y] ← N's adjust ([Y]-0-C), Y ← Y+1
[00addr6] ← [00addr6]∨(2imm2)
[FFaddr6] ← [FFaddr6]∨(2imm2)
A (C←D3←D2←D1←D0←0)
B (C←D3←D2←D1←D0←0)

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔ ↔ ↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

119

120

120
120
121
121
121
121
122
122
122
123
122
123
123
123
124
124
125
124
125
123
127
123
124
124
128
125
128
124
128
125
128
125
125
129
126
130
126
126
129
127
130
125
125
129
126
130
126
126
130
127
130
131
131
131
131

54 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SLL [%X]
[%X]+
[%Y]
[%Y]+

SLP
SRL %A

%B
[%X]
[%X]+
[%Y]
[%Y]+

SUB %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

TST [00addr6],imm2
[FFaddr6],imm2

XOR %A,%A
%A,%B
%A,imm4
%A,[%X]
%A,[%X]+
%A,[%Y]
%A,[%Y]+
%B,%A
%B,%B
%B,imm4
%B,[%X]
%B,[%X]+
%B,[%Y]
%B,[%Y]+
%F,imm4
[%X],%A
[%X],%B
[%X],imm4
[%X]+,%A
[%X]+,%B
[%X]+,imm4
[%Y],%A
[%Y],%B
[%Y],imm4
[%Y]+,%A
[%Y]+,%B
[%Y]+,imm4

1 0 0 0 0 1 1 1 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0 0 1
1 0 0 0 0 1 1 1 0 0 0 1 0
1 0 0 0 0 1 1 1 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0 1
1 0 0 0 0 1 1 1 1 0 0 0 1
1 0 0 0 0 1 1 1 1 0 1 0 1
1 0 0 0 0 1 1 1 0 0 1 0 0
1 0 0 0 0 1 1 1 0 0 1 0 1
1 0 0 0 0 1 1 1 0 0 1 1 0
1 0 0 0 0 1 1 1 0 0 1 1 1
1 1 0 0 0 0 1 1 1 0 0 0 X
1 1 0 0 0 0 1 1 1 0 0 1 X
1 1 0 0 0 0 1 0 0 i3 i2 i1 i0
1 1 0 0 0 0 1 1 0 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0 1
1 1 0 0 0 0 1 1 0 0 0 1 0
1 1 0 0 0 0 1 1 0 0 0 1 1
1 1 0 0 0 0 1 1 1 0 1 0 X
1 1 0 0 0 0 1 1 1 0 1 1 X
1 1 0 0 0 0 1 0 1 i3 i2 i1 i0
1 1 0 0 0 0 1 1 0 0 1 0 0
1 1 0 0 0 0 1 1 0 0 1 0 1
1 1 0 0 0 0 1 1 0 0 1 1 0
1 1 0 0 0 0 1 1 0 0 1 1 1
1 1 0 0 0 0 1 1 0 1 0 0 0
1 1 0 0 0 0 1 1 0 1 1 0 0
1 1 0 0 0 0 0 0 0 i3 i2 i1 i0
1 1 0 0 0 0 1 1 0 1 0 0 1
1 1 0 0 0 0 1 1 0 1 1 0 1
1 1 0 0 0 0 0 0 1 i3 i2 i1 i0
1 1 0 0 0 0 1 1 0 1 0 1 0
1 1 0 0 0 0 1 1 0 1 1 1 0
1 1 0 0 0 0 0 1 0 i3 i2 i1 i0
1 1 0 0 0 0 1 1 0 1 0 1 1
1 1 0 0 0 0 1 1 0 1 1 1 1
1 1 0 0 0 0 0 1 1 i3 i2 i1 i0
1 0 0 1 0 i1 i0 a5 a4 a3 a2 a1 a0
1 0 0 1 1 i1 i0 a5 a4 a3 a2 a1 a0
1 1 0 1 1 1 1 1 1 0 0 0 X
1 1 0 1 1 1 1 1 1 0 0 1 X
1 1 0 1 1 1 1 0 0 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 0 0 0 0
1 1 0 1 1 1 1 1 0 0 0 0 1
1 1 0 1 1 1 1 1 0 0 0 1 0
1 1 0 1 1 1 1 1 0 0 0 1 1
1 1 0 1 1 1 1 1 1 0 1 0 X
1 1 0 1 1 1 1 1 1 0 1 1 X
1 1 0 1 1 1 1 0 1 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 0 1 0 0
1 1 0 1 1 1 1 1 0 0 1 0 1
1 1 0 1 1 1 1 1 0 0 1 1 0
1 1 0 1 1 1 1 1 0 0 1 1 1
1 0 0 0 0 1 0 1 0 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 1 0 0 0
1 1 0 1 1 1 1 1 0 1 1 0 0
1 1 0 1 1 1 0 0 0 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 1 0 0 1
1 1 0 1 1 1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0 1 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 1 0 1 0
1 1 0 1 1 1 1 1 0 1 1 1 0
1 1 0 1 1 1 0 1 0 i3 i2 i1 i0
1 1 0 1 1 1 1 1 0 1 0 1 1
1 1 0 1 1 1 1 1 0 1 1 1 1
1 1 0 1 1 1 0 1 1 i3 i2 i1 i0

2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – – – ×
1 ↓ – ×
1 ↓ – ×
2 ↓ – ●

2 ↓ – ×
2 ↓ – ●

2 ↓ – ×
1 ↓ – ↓ ↑ ×
1 ↓ – ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ×
1 ↓ – ↓ ↑ ×
1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
1 ↓ – ●

1 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
2 ↓ – ●

2 ↓ – ●

2 ↓ – ●

2 ↓ – ×
2 ↓ – ×
2 ↓ – ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ↑ ×
1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ×
1 ↓ – – ↑ ×
1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ↓ – – ●

1 ↓ – – ×
1 ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ●

2 ↓ – – ×
2 ↓ – – ×
2 ↓ – – ×

[X] (C←D3←D2←D1←D0←0)
[X] (C←D3←D2←D1←D0←0), X ← X+1
[Y] (C←D3←D2←D1←D0←0)
[Y] (C←D3←D2←D1←D0←0), Y ← Y+1
Sleep
A (0→D3→D2→D1→D0→C)
B (0→D3→D2→D1→D0→C)
[X] (0→D3→D2→D1→D0→C)
[X] (0→D3→D2→D1→D0→C), X ← X+1
[Y] (0→D3→D2→D1→D0→C)
[Y] (0→D3→D2→D1→D0→C), Y ← Y+1
A ← A-A
A ← A-B
A ← A-imm4
A ← A-[X]
A ← A-[X], X ← X+1
A ← A-[Y]
A ← A-[Y], Y ← Y+1
B ← B-A
B ← B-B
B ← B-imm4
B ← B-[X]
B ← B-[X], X ← X+1
B ← B-[Y]
B ← B-[Y], Y ← Y+1
[X] ← [X]-A
[X] ← [X]-B
[X] ← [X]-imm4
[X] ← [X]-A, X ← X+1
[X] ← [X]-B, X ← X+1
[X] ← [X]-imm4, X ← X+1
[Y] ← [Y]-A
[Y] ← [Y]-B
[Y] ← [Y]-imm4
[Y] ← [Y]-A, Y ← Y+1
[Y] ← [Y]-B, Y ← Y+1
[Y] ← [Y]-imm4, Y ← Y+1
[00addr6]∧(2imm2)
[FFaddr6]∧(2imm2)
A ← A∀A
A ← A∀B
A ← A∀imm4
A ← A∀[X]
A ← A∀[X], X ← X+1
A ← A∀[Y]
A ← A∀[Y], Y ← Y+1
B ← B∀A
B ← B∀B
B ← B∀imm4
B ← B∀[X]
B ← B∀[X], X ← X+1
B ← B∀[Y]
B ← B∀[Y], Y ← Y+1
F ← F∀imm4
[X] ← [X]∀A
[X] ← [X]∀B
[X] ← [X]∀imm4
[X] ← [X]∀A, X ← X+1
[X] ← [X]∀B, X ← X+1
[X] ← [X]∀imm4, X ← X+1
[Y] ← [Y]∀A
[Y] ← [Y]∀B
[Y] ← [Y]∀imm4
[Y] ← [Y]∀A, Y ← Y+1
[Y] ← [Y]∀B, Y ← Y+1
[Y] ← [Y]∀imm4, Y ← Y+1

Mnemonic
Machine code

Operation Cycle Page
Flag EXT.

mode12 E I C Z11 10 9 8 7 6 5 4 3 2 1 0

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔ ↔ ↔ ↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔

132
132
132
132
133
133
133
134
134
134
134
135
135
135
136
136
136
136
135
135
135
136
136
136
136
137
137
138
137
137
138
137
137
138
137
137
138
139
139
139
139
140
141
141
141
141
139
139
140
141
141
141
141
140
142
142
143
142
142
143
142
142
143
142
142
143

E0C63000 CORE CPU MANUAL EPSON 55

CHAPTER 4: INSTRUCTION SET

4.2.5 List of extended addressing instructions

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

A ← [00imm8] (00imm8 = 0000H ~ 00FFH)

A ← [FFimm8] (FFimm8 = FF00H + 00H ~ FFH)

B ← [00imm8]

B ← [FFimm8]

[00imm8] ← A

[00imm8] ← B

[00imm8] ← imm4

[FFimm8] ← A

[FFimm8] ← B

[FFimm8] ← imm4

A ↔ [00imm8]

A ↔ [FFimm8]

B ↔ [00imm8]

B ↔ [FFimm8]

A ← A + [00imm8]

A ← A + [FFimm8]

B ← B + [00imm8]

B ← B + [FFimm8]

[00imm8] ← [00imm8] + A

[00imm8] ← [00imm8] + B

[00imm8] ← [00imm8] + imm4

[FFimm8] ← [FFimm8] + A

[FFimm8] ← [FFimm8] + B

[FFimm8] ← [FFimm8] + imm4

A ← A + [00imm8] + C

A ← A + [FFimm8] + C

B ← B + [00imm8] + C

B ← B + [FFimm8] + C

[00imm8] ← [00imm8] + A + C

[00imm8] ← [00imm8] + B + C

[00imm8] ← [00imm8] + imm4 + C

Mnemonic Operation
Flag

E I C Z

8-bit absolute addressing (1/4)

LDB %EXT,imm8
LD %A,[%X]
LDB %EXT,imm8
LD %A,[%Y]
LDB %EXT,imm8
LD %B,[%X]
LDB %EXT,imm8
LD %B,[%Y]
LDB %EXT,imm8
LD [%X],%A
LDB %EXT,imm8
LD [%X],%B
LDB %EXT,imm8
LD [%X],imm4
LDB %EXT,imm8
LD [%Y],%A
LDB %EXT,imm8
LD [%Y],%B
LDB %EXT,imm8
LD [%Y],imm4
LDB %EXT,imm8
EX %A,[%X]
LDB %EXT,imm8
EX %A,[%Y]
LDB %EXT,imm8
EX %B,[%X]
LDB %EXT,imm8
EX %B,[%Y]
LDB %EXT,imm8
ADD %A,[%X]
LDB %EXT,imm8
ADD %A,[%Y]
LDB %EXT,imm8
ADD %B,[%X]
LDB %EXT,imm8
ADD %B,[%Y]
LDB %EXT,imm8
ADD [%X],%A
LDB %EXT,imm8
ADD [%X],%B
LDB %EXT,imm8
ADD [%X],imm4
LDB %EXT,imm8
ADD [%Y],%A
LDB %EXT,imm8
ADD [%Y],%B
LDB %EXT,imm8
ADD [%Y],imm4
LDB %EXT,imm8
ADC %A,[%X]
LDB %EXT,imm8
ADC %A,[%Y]
LDB %EXT,imm8
ADC %B,[%X]
LDB %EXT,imm8
ADC %B,[%Y]
LDB %EXT,imm8
ADC [%X],%A
LDB %EXT,imm8
ADC [%X],%B
LDB %EXT,imm8
ADC [%X],imm4

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔

56 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

[FFimm8] ← [FFimm8] + A + C

[FFimm8] ← [FFimm8] + B + C

[FFimm8] ← [FFimm8] + imm4 + C

A ← A - [00imm8] (00imm8 = 0000H ~ 00FFH)

A ← A - [FFimm8] (FFimm8 = FF00H + 00H ~ FFH)

B ← B - [00imm8]

B ← B - [FFimm8]

[00imm8] ← [00imm8] - A

[00imm8] ← [00imm8] - B

[00imm8] ← [00imm8] - imm4

[FFimm8] ← [FFimm8] - A

[FFimm8] ← [FFimm8] - B

[FFimm8] ← [FFimm8] - imm4

A ← A - [00imm8] - C

A ← A - [FFimm8] - C

B ← B - [00imm8] - C

B ← B - [FFimm8] - C

[00imm8] ← [00imm8] - A - C

[00imm8] ← [00imm8] - B - C

[00imm8] ← [00imm8] - imm4 - C

[FFimm8] ← [FFimm8] - A - C

[FFimm8] ← [FFimm8] - B - C

[FFimm8] ← [FFimm8] - imm4 - C

A - [00imm8]

A - [FFimm8]

B - [00imm8]

B - [FFimm8]

[00imm8] - A

[00imm8] - B

[00imm8] - imm4

[FFimm8] - A

[FFimm8] - B

[FFimm8] - imm4

Mnemonic Operation
Flag

E I C Z

8-bit absolute addressing (2/4)

LDB %EXT,imm8
ADC [%Y],%A
LDB %EXT,imm8
ADC [%Y],%B
LDB %EXT,imm8
ADC [%Y],imm4
LDB %EXT,imm8
SUB %A,[%X]
LDB %EXT,imm8
SUB %A,[%Y]
LDB %EXT,imm8
SUB %B,[%X]
LDB %EXT,imm8
SUB %B,[%Y]
LDB %EXT,imm8
SUB [%X],%A
LDB %EXT,imm8
SUB [%X],%B
LDB %EXT,imm8
SUB [%X],imm4
LDB %EXT,imm8
SUB [%Y],%A
LDB %EXT,imm8
SUB [%Y],%B
LDB %EXT,imm8
SUB [%Y],imm4
LDB %EXT,imm8
SBC %A,[%X]
LDB %EXT,imm8
SBC %A,[%Y]
LDB %EXT,imm8
SBC %B,[%X]
LDB %EXT,imm8
SBC %B,[%Y]
LDB %EXT,imm8
SBC [%X],%A
LDB %EXT,imm8
SBC [%X],%B
LDB %EXT,imm8
SBC [%X],imm4
LDB %EXT,imm8
SBC [%Y],%A
LDB %EXT,imm8
SBC [%Y],%B
LDB %EXT,imm8
SBC [%Y],imm4
LDB %EXT,imm8
CMP %A,[%X]
LDB %EXT,imm8
CMP %A,[%Y]
LDB %EXT,imm8
CMP %B,[%X]
LDB %EXT,imm8
CMP %B,[%Y]
LDB %EXT,imm8
CMP [%X],%A
LDB %EXT,imm8
CMP [%X],%B
LDB %EXT,imm8
CMP [%X],imm4
LDB %EXT,imm8
CMP [%Y],%A
LDB %EXT,imm8
CMP [%Y],%B
LDB %EXT,imm8
CMP [%Y],imm4

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔

E0C63000 CORE CPU MANUAL EPSON 57

CHAPTER 4: INSTRUCTION SET

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

B ← N's adjust (B + [00imm8] + C) (00imm8 = 0000H ~ 00FFH)

B ← N's adjust (B + [FFimm8] + C) (FFimm8 = FF00H + 00H ~ FFH)

[00imm8] ← N's adjust ([00imm8] + B + C)

[00imm8] ← N's adjust ([00imm8] + 0 + C)

[FFimm8] ← N's adjust ([FFimm8] + B + C)

[FFimm8] ← N's adjust ([FFimm8] + 0 + C)

B ← N's adjust (B - [00imm8] - C)

B ← N's adjust (B - [FFimm8] - C)

[00imm8] ← N's adjust ([00imm8] - B - C)

[00imm8] ← N's adjust ([00imm8] - 0 - C)

[FFimm8] ← N's adjust ([FFimm8] - B - C)

[FFimm8] ← N's adjust ([FFimm8] - 0 - C)

[00imm8] ← N's adjust ([00imm8] + 1)

[FFimm8] ← N's adjust ([FFimm8] + 1)

[00imm8] ← N's adjust ([00imm8] - 1)

[FFimm8] ← N's adjust ([FFimm8] -1)

A ← A ∧ [00imm8]

A ← A ∧ [FFimm8]

B ← B ∧ [00imm8]

B ← B ∧ [FFimm8]

[00imm8] ← [00imm8] ∧ A

[00imm8] ← [00imm8] ∧ B

[00imm8] ← [00imm8] ∧ imm4

[FFimm8] ← [FFimm8] ∧ A

[FFimm8] ← [FFimm8] ∧ B

[FFimm8] ← [FFimm8] ∧ imm4

A ← A ∨ [00imm8]

A ← A ∨ [FFimm8]

B ← B ∨ [00imm8]

B ← B ∨ [FFimm8]

[00imm8] ← [00imm8] ∨ A

[00imm8] ← [00imm8] ∨ B

[00imm8] ← [00imm8] ∨ imm4

Mnemonic Operation
Flag

E I C Z

8-bit absolute addressing (3/4)

LDB %EXT,imm8
ADC %B,[%X],n4
LDB %EXT,imm8
ADC %B,[%Y],n4
LDB %EXT,imm8
ADC [%X],%B,n4
LDB %EXT,imm8
ADC [%X],0,n4
LDB %EXT,imm8
ADC [%Y],%B,n4
LDB %EXT,imm8
ADC [%Y],0,n4
LDB %EXT,imm8
SBC %B,[%X],n4
LDB %EXT,imm8
SBC %B,[%Y],n4
LDB %EXT,imm8
SBC [%X],%B,n4
LDB %EXT,imm8
SBC [%X],0,n4
LDB %EXT,imm8
SBC [%Y],%B,n4
LDB %EXT,imm8
SBC [%Y],0,n4
LDB %EXT,imm8
INC [%X],n4
LDB %EXT,imm8
INC [%Y],n4
LDB %EXT,imm8
DEC [%X],n4
LDB %EXT,imm8
DEC [%Y],n4
LDB %EXT,imm8
AND %A,[%X]
LDB %EXT,imm8
AND %A,[%Y]
LDB %EXT,imm8
AND %B,[%X]
LDB %EXT,imm8
AND %B,[%Y]
LDB %EXT,imm8
AND [%X],%A
LDB %EXT,imm8
AND [%X],%B
LDB %EXT,imm8
AND [%X],imm4
LDB %EXT,imm8
AND [%Y],%A
LDB %EXT,imm8
AND [%Y],%B
LDB %EXT,imm8
AND [%Y],imm4
LDB %EXT,imm8
OR %A,[%X]
LDB %EXT,imm8
OR %A,[%Y]
LDB %EXT,imm8
OR %B,[%X]
LDB %EXT,imm8
OR %B,[%Y]
LDB %EXT,imm8
OR [%X],%A
LDB %EXT,imm8
OR [%X],%B
LDB %EXT,imm8
OR [%X],imm4

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔

58 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ – –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

↓ –

[FFimm8] ← [FFimm8] ∨ A (FFimm8 = FF00H + 00H ~ FFH)

[FFimm8] ← [FFimm8] ∨ B

[FFimm8] ← [FFimm8] ∨ imm4

A ← A ∀ [00imm8] (00imm8 = 0000H ~ 00FFH)

A ← A ∀ [FFimm8]

B ← B ∀ [00imm8]

B ← B ∀ [FFimm8]

[00imm8] ← [00imm8] ∀ A

[00imm8] ← [00imm8] ∀ B

[00imm8] ← [00imm8] ∀ imm4

[FFimm8] ← [FFimm8] ∀ A

[FFimm8] ← [FFimm8] ∀ B

[FFimm8] ← [FFimm8] ∀ imm4

A ∧ [00imm8]

A ∧ [FFimm8]

B ∧ [00imm8]

B ∧ [FFimm8]

[00imm8] ∧ A

[00imm8] ∧ B

[00imm8] ∧ imm4

[FFimm8] ∧ A

[FFimm8] ∧ B

[FFimm8] ∧ imm4

[00imm8] (C ← D3 ← D2 ← D1 ← D0 ← 0)

[FFimm8] (C ← D3 ← D2 ← D1 ← D0 ← 0)

[00imm8] (0 → D3 → D2 → D1 → D0 → C)

[FFimm8] (0 → D3 → D2 → D1 → D0 → C)

[00imm8] (C ← D3 ← D2 ← D1 ← D0 ← C)

[FFimm8] (C ← D3 ← D2 ← D1 ← D0 ← C)

[00imm8] (C → D3 → D2 → D1 → D0 → C)

[FFimm8] (C → D3 → D2 → D1 → D0 → C)

Mnemonic Operation
Flag

E I C Z

8-bit absolute addressing (4/4)

LDB %EXT,imm8
OR [%Y],%A
LDB %EXT,imm8
OR [%Y],%B
LDB %EXT,imm8
OR [%Y],imm4
LDB %EXT,imm8
XOR %A,[%X]
LDB %EXT,imm8
XOR %A,[%Y]
LDB %EXT,imm8
XOR %B,[%X]
LDB %EXT,imm8
XOR %B,[%Y]
LDB %EXT,imm8
XOR [%X],%A
LDB %EXT,imm8
XOR [%X],%B
LDB %EXT,imm8
XOR [%X],imm4
LDB %EXT,imm8
XOR [%Y],%A
LDB %EXT,imm8
XOR [%Y],%B
LDB %EXT,imm8
XOR [%Y],imm4
LDB %EXT,imm8
BIT %A,[%X]
LDB %EXT,imm8
BIT %A,[%Y]
LDB %EXT,imm8
BIT %B,[%X]
LDB %EXT,imm8
BIT %B,[%Y]
LDB %EXT,imm8
BIT [%X],%A
LDB %EXT,imm8
BIT [%X],%B
LDB %EXT,imm8
BIT [%X],imm4
LDB %EXT,imm8
BIT [%Y],%A
LDB %EXT,imm8
BIT [%Y],%B
LDB %EXT,imm8
BIT [%Y],imm4
LDB %EXT,imm8
SLL [%X]
LDB %EXT,imm8
SLL [%Y]
LDB %EXT,imm8
SRL [%X]
LDB %EXT,imm8
SRL [%Y]
LDB %EXT,imm8
RL [%X]
LDB %EXT,imm8
RL [%Y]
LDB %EXT,imm8
RR [%X]
LDB %EXT,imm8
RR [%Y]

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔

↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔
↔ ↔

↔ ↔

E0C63000 CORE CPU MANUAL EPSON 59

CHAPTER 4: INSTRUCTION SET

4.3 Instruction Formats
All the instructions of the E0C63000 are configured with 1 word (13 bits) as follows:

I

OP Code
Examples:

LD
ADD
PUSH

%A,%B
%A,[%X]
%F

II

OP Code
Examples:

LD
ADC
BIT

%A,imm4
[%Y],%B,n4
%B,imm4

III

OP Code
Examples:

INC
CALR
INT

[addr6]
[addr6]
imm6

IV

OP Code
Examples:

LDB
CALZ
JR

%BA,imm8
imm8
sign8

V

OP Code
Examples:

CLR
SET
TST

[addr6],imm2
[addr6],imm2
[addr6],imm2

Operand

Operand

Operand

Operand Operand

13-bit operation code

9-bit operation code + 4-bit immediate data

7-bit operation code + 6-bit immediate data

5-bit operation code + 8-bit immediate data

5-bit operation code + 2-bit immediate data + 6-bit immediate data

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

↓ – – –

(sign16 : imm8 is upper 8-bit, sign8 is lower 8-bit)
PC ← PC + sign16 + 1 (sign16 = 32767~-32768)

If C = 1 then PC ← PC + sign16 + 1 (sign16 = 32767 ~ -32768)

If C = 0 then PC ← PC + sign16 + 1 (sign16 = 32767 ~ -32768)

If Z = 1 then PC ← PC + sign16 + 1 (sign16 = 32767 ~ -32768)

If Z = 0 then PC ← PC + sign16 + 1 (sign16 = 32767 ~ -32768)
([SP1 - 1 ∗4 + 3] ~ [(SP1 - 1) ∗4]) ← PC + 1, SP1 ← SP1 - 1
PC ← PC + sign16 + 1 (sign16 = 32767 ~ -32768)

Mnemonic Operation
Flag

E I C Z

signed 16-bit PC relative addressing

LDB %EXT,imm8
JR sign8
LDB %EXT,imm8
JRC sign8
LDB %EXT,imm8
JRNC sign8
LDB %EXT,imm8
JRZ sign8
LDB %EXT,imm8
JRNZ sign8
LDB %EXT,imm8
CALR sign8

↓ – – –

↓ – – –

↓ – –

↓ – –

↓ –

↓ –

X ← imm16 (∗1 is upper 8-bit, ∗2 is lower 8-bit)

Y ← imm16 (∗1 is upper 8-bit, ∗2 is lower 8-bit)

X ← X + imm16 (∗1 is upper 8-bit, ∗2 is lower 8-bit)

Y ← Y + imm16 (∗1 is upper 8-bit, ∗2 is lower 8-bit)

X - imm16 (FFH - ∗1 is upper 8-bit, ∗2 is lower 8-bit)

Y - imm16 (FFH - ∗1 is upper 8-bit, ∗2 is lower 8-bit)

Mnemonic Operation
Flag

E I C Z

16-bit immediate data addressing

LDB %EXT,imm8 ∗1
LDB %XL,imm8 ∗2
LDB %EXT,imm8 ∗1
LDB %YL,imm8 ∗2
LDB %EXT,imm8 ∗1
ADD %X,sign8 ∗2
LDB %EXT,imm8 ∗1
ADD %Y,sign8 ∗2
LDB %EXT,imm8 ∗1
CMP %X,imm8 ∗2
LDB %EXT,imm8 ∗1
CMP %X,imm8 ∗2 ↔ ↔

↔ ↔
↔

↔

60 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

Add with carry r' reg. to r reg. 1 cycle

Function: r ← r + r' + C
Adds the content of the r' register (A or B) and carry (C) to the r register (A or B).

Code: Mnemonic MSB LSB

ADC %A,%A 1 1 0 0 1 1 1 1 1 0 0 0 X 19F0H, (19F1H)
ADC %A,%B 1 1 0 0 1 1 1 1 1 0 0 1 X 19F2H, (19F3H)
ADC %B,%A 1 1 0 0 1 1 1 1 1 0 1 0 X 19F4H, (19F5H)
ADC %B,%B 1 1 0 0 1 1 1 1 1 0 1 1 X 19F6H, (19F7H)

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

ADC %r,%r'

4.4 Detailed Explanation of Instructions
This section explains the individual instructions in alphabetic order according to the following format.

View of the explanation

Number of bus cyclesMnemonic meaningMnemonic

Function
explanation

Mnemonic
and
object codes

Addressing
mode
Src indicates the source
and Dst indicates the
destination

The meaning of the symbols are the same as for the instruction list.
The following symbols are used to explain two or more registers as aggregations.

rData registers A, B, or flag register F
irIndex registers X or Y
rrIndex registers XL, XH, YL or YH
spStack pointers SP1 or SP2

Status of the flag
– Does not change
↓ Reset
↑ Set
↕ Set/reset

E0C63000 CORE CPU MANUAL EPSON 61

CHAPTER 4: INSTRUCTION SET

ADC %r,%r'

ADC %r,imm4 Add with carry immediate data imm4 to r reg. 1 cycle

Function: r ← r + imm4 + C
Adds the 4-bit immediate data imm4 and carry (C) to the r register (A or B).

Code: Mnemonic MSB LSB

ADC %A,imm4 1 1 0 0 1 1 1 0 0 i3 i2 i1 i0 19C0H–19CFH
ADC %B,imm4 1 1 0 0 1 1 1 0 1 i3 i2 i1 i0 19D0H–19DFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

Add with carry r' reg. to r reg. 1 cycle

Function: r ← r + r' + C
Adds the content of the r' register (A or B) and carry (C) to the r register (A or B).

Code: Mnemonic MSB LSB

ADC %A,%A 1 1 0 0 1 1 1 1 1 0 0 0 X 19F0H, (19F1H)
ADC %A,%B 1 1 0 0 1 1 1 1 1 0 0 1 X 19F2H, (19F3H)
ADC %B,%A 1 1 0 0 1 1 1 1 1 0 1 0 X 19F4H, (19F5H)
ADC %B,%B 1 1 0 0 1 1 1 1 1 0 1 1 X 19F6H, (19F7H)

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

62 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

ADC %r,[%ir] Add with carry location [ir reg.] to r reg. 1 cycle

Function: r ← r + [ir] + C
Adds the content of the data memory addressed by the ir register (X or Y) and carry (C) to the r
register (A or B).

Code: Mnemonic MSB LSB

ADC %A,[%X] 1 1 0 0 1 1 1 1 0 0 0 0 0 19E0H
ADC %A,[%Y] 1 1 0 0 1 1 1 1 0 0 0 1 0 19E2H
ADC %B,[%X] 1 1 0 0 1 1 1 1 0 0 1 0 0 19E4H
ADC %B,[%Y] 1 1 0 0 1 1 1 1 0 0 1 1 0 19E6H

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: ADC %r,[%X] r ← r + [00imm8] + C (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
ADC %r,[%Y] r ← r + [FFimm8] + C (FFimm8 = FF00H + 00H to FFH)

ADC %r,[%ir]+ Add with carry location [ir reg.] to r reg. and increment ir reg. 1 cycle

Function: r ← r + [ir] + C, ir ← ir + 1
Adds the content of the data memory addressed by the ir register (X or Y) and carry (C) to the r
register (A or B). Then increments the ir register (X or Y). The flags change due to the operation
result of the r register and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

ADC %A,[%X]+ 1 1 0 0 1 1 1 1 0 0 0 0 1 19E1H
ADC %A,[%Y]+ 1 1 0 0 1 1 1 1 0 0 0 1 1 19E3H
ADC %B,[%X]+ 1 1 0 0 1 1 1 1 0 0 1 0 1 19E5H
ADC %B,[%Y]+ 1 1 0 0 1 1 1 1 0 0 1 1 1 19E7H

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 63

CHAPTER 4: INSTRUCTION SET

ADC [%ir],%r Add with carry r reg. to location [ir reg.] 2 cycles

Function: [ir] ← [ir] + r + C
Adds the content of the r register (A or B) and carry (C) to the data memory addressed by the ir
register (X or Y).

Code: Mnemonic MSB LSB

ADC [%X],%A 1 1 0 0 1 1 1 1 0 1 0 0 0 19E8H
ADC [%X],%B 1 1 0 0 1 1 1 1 0 1 1 0 0 19ECH
ADC [%Y],%A 1 1 0 0 1 1 1 1 0 1 0 1 0 19EAH
ADC [%Y],%B 1 1 0 0 1 1 1 1 0 1 1 1 0 19EEH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: ADC [%X],%r [00imm8] ← [00imm8] + r + C (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
ADC [%Y],%r [FFimm8] ← [FFimm8] + r + C (FFimm8 = FF00H + 00H to FFH)

ADC [%ir]+,%r Add with carry r reg. to location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] + r + C, ir ← ir + 1
Adds the content of the r register (A or B) and carry (C) to the data memory addressed by the ir
register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation
result of the data memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

ADC [%X]+,%A 1 1 0 0 1 1 1 1 0 1 0 0 1 19E9H
ADC [%X]+,%B 1 1 0 0 1 1 1 1 0 1 1 0 1 19EDH
ADC [%Y]+,%A 1 1 0 0 1 1 1 1 0 1 0 1 1 19EBH
ADC [%Y]+,%B 1 1 0 0 1 1 1 1 0 1 1 1 1 19EFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

64 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

ADC [%ir],imm4

ADC [%ir]+,imm4

Add with carry immediate data imm4 to location [ir reg.] 2 cycles

Function: [ir] ← [ir] + imm4 + C
Adds the 4-bit immediate data imm4 and carry (C) to the data memory addressed by the ir
register (X or Y).

Code: Mnemonic MSB LSB

ADC [%X],imm4 1 1 0 0 1 1 0 0 0 i3 i2 i1 i0 1980H–198FH
ADC [%Y],imm4 1 1 0 0 1 1 0 1 0 i3 i2 i1 i0 19A0H–19AFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: ADC [%X],imm4 [00imm8] ← [00imm8] + imm4 + C (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
ADC [%Y],imm4 [FFimm8] ← [FFimm8] + imm4 + C (FFimm8 = FF00H + 00H to FFH)

Add with carry immediate data imm4 to location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] + imm4 + C, ir ← ir + 1
Adds the immediate data imm4 and carry (C) to the data memory addressed by the ir register
(X or Y). Then increments the ir register (X or Y). The flags change due to the operation result
of the data memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

ADC [%X]+,imm4 1 1 0 0 1 1 0 0 1 i3 i2 i1 i0 1990H–199FH
ADC [%Y]+,imm4 1 1 0 0 1 1 0 1 1 i3 i2 i1 i0 19B0H–19BFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 65

CHAPTER 4: INSTRUCTION SET

ADC %B,%A,n4 Add with carry A reg. to B reg. in specified radix 2 cycles

Function: B ← N's adjust (B + A + C)
Adds the content of the A register and carry (C) to the B register. The operation result is
adjusted with n4 as the radix. The C flag is set by a carry according to the radix.

Code: Mnemonic MSB LSB

ADC %B,%A,n4 1 0 0 0 0 1 1 0 1 [10H-n4] 10D0H–10DFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16.

ADC %B,[%ir],n4 Add with carry location [ir reg.] to B reg. in specified radix 2 cycles

Function: B ← N's adjust (B + [ir] + C)
Adds the content of the data memory addressed by the ir register (X or Y) and carry (C) to the
B register. The operation result is adjusted with n4 as the radix. The C flag is set by a carry
according to the radix.

Code: Mnemonic MSB LSB

ADC %B,[%X],n4 1 1 1 0 1 1 1 0 0 [10H-n4] 1DC0H–1DCFH
ADC %B,[%Y],n4 1 1 1 0 1 1 1 1 0 [10H-n4] 1DE0H–1DEFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: ADC %B,[%X],n4 B ← N’s adjust (B + [00imm8] + C) (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
ADC %B,[%Y],n4 B ← N’s adjust (B + [FFimm8] + C) (FFimm8 = FF00H + 00H to FFH)

Note: n4 should be specified with a value from 1 to 16.

66 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

ADC %B,[%ir]+,n4

ADC [%ir],%B,n4 Add with carry B reg. to location [ir reg.] in specified radix 2 cycles

Function: [ir] ← N's adjust ([ir] + B + C)
Adds the content of the B register and carry (C) to the data memory addressed by the ir
register (X or Y). The operation result is adjusted with n4 as the radix. The C flag is set by a
carry according to the radix.

Code: Mnemonic MSB LSB

ADC [%X],%B,n4 1 1 1 0 1 0 1 0 0 [10H-n4] 1D40H–1D4FH
ADC [%Y],%B,n4 1 1 1 0 1 0 1 1 0 [10H-n4] 1D60H–1D6FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: ADC [%X],%B,n4 [00imm8] ← N’s adjust ([00imm8] + B + C)

(00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
ADC [%Y],%B,n4 [FFimm8] ← N’s adjust ([FFimm8] + B + C)

(FFimm8 = FF00H + 00H to FFH)

Note: n4 should be specified with a value from 1 to 16.

Add with carry location [ir reg.] to B reg. in specified radix and increment ir reg. 2 cycles

Function: B ← N's adjust (B + [ir] + C), ir ← ir + 1
Adds the content of the data memory addressed by the ir register (X or Y) and carry (C) to the
B register. The operation result is adjusted with n4 as the radix. Then increments the ir register
(X or Y). The flags change due to the operation result of the B register and the increment result
of the ir register does not affect the flags. The C flag is set by a carry according to the radix.

Code: Mnemonic MSB LSB

ADC %B,[%X]+,n4 1 1 1 0 1 1 1 0 1 [10H-n4] 1DD0H–1DDFH
ADC %B,[%Y]+,n4 1 1 1 0 1 1 1 1 1 [10H-n4] 1DF0H–1DFFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16.

E0C63000 CORE CPU MANUAL EPSON 67

CHAPTER 4: INSTRUCTION SET

ADC [%ir]+,%B,n4 Add with carry B reg. to location [ir reg.] in specified radix and increment ir reg. 2 cycles

Function: [ir] ← N's adjust ([ir] + B + C), ir ← ir + 1
Adds the content of the B register and carry (C) to the data memory addressed by the ir
register (X or Y). The operation result is adjusted with n4 as the radix. Then increments the ir
register (X or Y). The flags change due to the operation result of the data memory and the
increment result of the ir register does not affect the flags. The C flag is set by a carry according
to the radix.

Code: Mnemonic MSB LSB

ADC [%X]+,%B,n4 1 1 1 0 1 0 1 0 1 [10H-n4] 1D50H–1D5FH
ADC [%Y]+,%B,n4 1 1 1 0 1 0 1 1 1 [10H-n4] 1D70H–1D7FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16.

ADC [%ir],0,n4 Add carry to location [ir reg.] in specified radix 2 cycles

Function: [ir] ← N's adjust ([ir] + 0 + C)
Adds the carry (C) to the data memory addressed by the ir register (X or Y). The operation
result is adjusted with n4 as the radix. The C flag is set by a carry according to the radix. This
instruction is useful for a carry processing to the highest digit of n based counters.

Code: Mnemonic MSB LSB

ADC [%X],0,n4 1 1 1 0 1 0 0 0 0 [10H-n4] 1D00H–1D0FH
ADC [%Y],0,n4 1 1 1 0 1 0 0 1 0 [10H-n4] 1D20H–1D2FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: ADC [%X],0,n4 [00imm8] ← N’s adjust ([00imm8] + 0 + C)

(00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
ADC [%Y],0,n4 [FFimm8] ← N’s adjust ([FFimm8] + 0 + C)

(FFimm8 = FF00H + 00H to FFH)

Note: n4 should be specified with a value from 1 to 16.

68 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

ADC [%ir]+,0,n4

ADD %r,%r' Add r' reg. to r reg. 1 cycle

Function: r ← r + r'
Adds the content of the r' register (A or B) to the r register (A or B).

Code: Mnemonic MSB LSB

ADD %A,%A 1 1 0 0 1 0 1 1 1 0 0 0 X 1970H, (1971H)
ADD %A,%B 1 1 0 0 1 0 1 1 1 0 0 1 X 1972H, (1973H)
ADD %B,%A 1 1 0 0 1 0 1 1 1 0 1 0 X 1974H, (1975H)
ADD %B,%B 1 1 0 0 1 0 1 1 1 0 1 1 X 1976H, (1977H)

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

Add carry to location [ir reg.] in specified radix and increment ir reg. 2 cycles

Function: [ir] ← N's adjust ([ir] + 0 + C), ir ← ir + 1
Adds the carry (C) to the data memory addressed by the ir register (X or Y). The operation
result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The flags
change due to the operation result of the data memory and the increment result of the ir
register does not affect the flags. The C flag is set by a carry according to the radix. This
instruction is useful for a carry processing of n based counters.

Code: Mnemonic MSB LSB

ADC [%X]+,0,n4 1 1 1 0 1 0 0 0 1 [10H-n4] 1D10H–1D1FH
ADC [%Y]+,0,n4 1 1 1 0 1 0 0 1 1 [10H-n4] 1D30H–1D3FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16.

E0C63000 CORE CPU MANUAL EPSON 69

CHAPTER 4: INSTRUCTION SET

ADD %r,imm4 Add immediate data imm4 to r reg. 1 cycle

Function: r ← r + imm4
Adds the 4-bit immediate data imm4 to the r register (A or B).

Code: Mnemonic MSB LSB

ADD %A,imm4 1 1 0 0 1 0 1 0 0 i3 i2 i1 i0 1940H–194FH
ADD %B,imm4 1 1 0 0 1 0 1 0 1 i3 i2 i1 i0 1950H–195FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

ADD %r,[%ir] Add location [ir reg.] to r reg. 1 cycle

Function: r ← r + [ir]
Adds the content of the data memory addressed by the ir register (X or Y) to the r register (A or
B).

Code: Mnemonic MSB LSB

ADD %A,[%X] 1 1 0 0 1 0 1 1 0 0 0 0 0 1960H
ADD %A,[%Y] 1 1 0 0 1 0 1 1 0 0 0 1 0 1962H
ADD %B,[%X] 1 1 0 0 1 0 1 1 0 0 1 0 0 1964H
ADD %B,[%Y] 1 1 0 0 1 0 1 1 0 0 1 1 0 1966H

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: ADD %r,[%X] r ← r + [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
ADD %r,[%Y] r ← r + [FFimm8] (FFimm8 = FF00H + 00H to FFH)

70 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

ADD %r,[%ir]+ Add location [ir reg.] to r reg. and increment ir reg. 1 cycle

Function: r ← r + [ir], ir ← ir + 1
Adds the content of the data memory addressed by the ir register (X or Y) to the r register (A or
B). Then increments the ir register (X or Y). The flags change due to the operation result of the r
register and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

ADD %A,[%X]+ 1 1 0 0 1 0 1 1 0 0 0 0 1 1961H
ADD %A,[%Y]+ 1 1 0 0 1 0 1 1 0 0 0 1 1 1963H
ADD %B,[%X]+ 1 1 0 0 1 0 1 1 0 0 1 0 1 1965H
ADD %B,[%Y]+ 1 1 0 0 1 0 1 1 0 0 1 1 1 1967H

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

ADD [%ir],%r Add r reg. to location [ir reg.] 2 cycles

Function: [ir] ← [ir] + r
Adds the content of the r register (A or B) to the data memory addressed by the ir register (X or
Y).

Code: Mnemonic MSB LSB

ADD [%X],%A 1 1 0 0 1 0 1 1 0 1 0 0 0 1968H
ADD [%X],%B 1 1 0 0 1 0 1 1 0 1 1 0 0 196CH
ADD [%Y],%A 1 1 0 0 1 0 1 1 0 1 0 1 0 196AH
ADD [%Y],%B 1 1 0 0 1 0 1 1 0 1 1 1 0 196EH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: ADD [%X],%r [00imm8] ← [00imm8] + r (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
ADD [%Y],%r [FFimm8] ← [FFimm8] + r (FFimm8 = FF00H + 00H to FFH)

E0C63000 CORE CPU MANUAL EPSON 71

CHAPTER 4: INSTRUCTION SET

ADD [%ir]+,%r Add r reg. to location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] + r, ir ← ir + 1
Adds the content of the r register (A or B) to the data memory addressed by the ir register (X or
Y). Then increments the ir register (X or Y). The flags change due to the operation result of the
data memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

ADD [%X]+,%A 1 1 0 0 1 0 1 1 0 1 0 0 1 1969H
ADD [%X]+,%B 1 1 0 0 1 0 1 1 0 1 1 0 1 196DH
ADD [%Y]+,%A 1 1 0 0 1 0 1 1 0 1 0 1 1 196BH
ADD [%Y]+,%B 1 1 0 0 1 0 1 1 0 1 1 1 1 196FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

ADD [%ir],imm4 Add immediate data imm4 to location [ir reg.] 2 cycles

Function: [ir] ← [ir] + imm4
Adds the 4-bit immediate data imm4 to the data memory addressed by the ir register (X or Y).

Code: Mnemonic MSB LSB

ADD [%X],imm4 1 1 0 0 1 0 0 0 0 i3 i2 i1 i0 1900H–190FH
ADD [%Y],imm4 1 1 0 0 1 0 0 1 0 i3 i2 i1 i0 1920H–192FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: ADD [%X],imm4 [00imm8] ← [00imm8] + imm4 (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
ADD [%Y],imm4 [FFimm8] ← [FFimm8] + imm4 (FFimm8 = FF00H + 00H to FFH)

72 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

ADD [%ir]+,imm4 Add immediate data imm4 to location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] + imm4, ir ← ir + 1
Adds the 4-bit immediate data imm4 to the data memory addressed by the ir register (X or Y).
Then increments the ir register (X or Y). The flags change due to the operation result of the data
memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

ADD [%X]+,imm4 1 1 0 0 1 0 0 0 1 i3 i2 i1 i0 1910H–191FH
ADD [%Y]+,imm4 1 1 0 0 1 0 0 1 1 i3 i2 i1 i0 1930H–193FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

ADD %ir,%BA Add BA reg. to ir reg. 1 cycle

Function: ir ← ir + BA
Adds the content of the BA register to the ir register (X or Y). This instruction does not affect
the C flag regardless of the operation result.

Code: Mnemonic MSB LSB

ADD %X,%BA 1 1 1 1 1 1 1 0 1 0 0 0 X 1FD0H, (1FD1H)
ADD %Y,%BA 1 1 1 1 1 1 1 0 1 0 0 1 X 1FD2H, (1FD3H)

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 73

CHAPTER 4: INSTRUCTION SET

ADD %ir,sign8 Add immediate data sign8 to ir reg. 1 cycle

Function: ir ← ir + sign8
Adds the signed 8-bit immediate data sign8 (-128 to 127) to the ir register (X or Y). This instruc-
tion does not affect the C flag regardless of the operation result.

Code: Mnemonic MSB LSB

ADD %X,sign8 0 1 1 0 0 s7 s6 s5 s4 s3 s2 s1 s0 0C00H–0CFFH
ADD %Y,sign8 0 1 1 0 1 s7 s6 s5 s4 s3 s2 s1 s0 0D00H–0DFFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: ADD %ir,sign8 ir ← ir + sign16 (upper 8-bit: imm8, lower 8-bit: sign8)

AND %r,%r' Logical AND of r' reg. and r reg. 1 cycle

Function: r ← r ∧ r'
Performs a logical AND operation of the content of the r' register (A or B) and the content of
the r register (A or B), and stores the result in the r register.

Code: Mnemonic MSB LSB

AND %A,%A 1 1 0 1 0 0 1 1 1 0 0 0 X 1A70H, (1A71H)
AND %A,%B 1 1 0 1 0 0 1 1 1 0 0 1 X 1A72H, (1A73H)
AND %B,%A 1 1 0 1 0 0 1 1 1 0 1 0 X 1A74H, (1A75H)
AND %B,%B 1 1 0 1 0 0 1 1 1 0 1 1 X 1A76H, (1A77H)

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

74 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

AND %r,imm4 Logical AND of immediate data imm4 and r reg. 1 cycle

Function: r ← r ∧ imm4
Performs a logical AND operation of the 4-bit immediate data imm4 and the content of the r
register (A or B), and stores the result in the r register.

Code: Mnemonic MSB LSB

AND %A,imm4 1 1 0 1 0 0 1 0 0 i3 i2 i1 i0 1A40H–1A4FH
AND %B,imm4 1 1 0 1 0 0 1 0 1 i3 i2 i1 i0 1A50H–1A5FH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

AND %F,imm4 Logical AND of immediate data imm4 and F reg. 1 cycle

Function: F ← F ∧ imm4
Performs a logical AND operation of the 4-bit immediate data imm4 and the content of the F
(flag) register, and stores the result in the r register. It is possible to reset any flag.

Code: Mnemonic MSB LSB

AND %F,imm4 1 0 0 0 0 1 0 0 0 i3 i2 i1 i0 1080H–108FH

Flags: E I C Z
↓ ↓ ↓ ↓

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 75

CHAPTER 4: INSTRUCTION SET

AND %r,[%ir]

AND %r,[%ir]+ Logical AND of location [ir reg.] and r reg. and increment ir reg. 1 cycle

Function: r ← r ∧ [ir], ir ← ir + 1
Performs a logical AND operation of the content of the data memory addressed by the ir
register (X or Y) and the content of the r register (A or B), and stores the result in the r register.
Then increments the ir register (X or Y). The flags change due to the operation result of the r
register and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

AND %A,[%X]+ 1 1 0 1 0 0 1 1 0 0 0 0 1 1A61H
AND %A,[%Y]+ 1 1 0 1 0 0 1 1 0 0 0 1 1 1A63H
AND %B,[%X]+ 1 1 0 1 0 0 1 1 0 0 1 0 1 1A65H
AND %B,[%Y]+ 1 1 0 1 0 0 1 1 0 0 1 1 1 1A67H

Flags: E I C Z
↓ – – ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

Logical AND of location [ir reg.] and r reg. 1 cycle

Function: r ← r ∧ [ir]
Performs a logical AND operation of the content of the data memory addressed by the ir
register (X or Y) and the content of the r register (A or B), and stores the result in the r register.

Code: Mnemonic MSB LSB

AND %A,[%X] 1 1 0 1 0 0 1 1 0 0 0 0 0 1A60H
AND %A,[%Y] 1 1 0 1 0 0 1 1 0 0 0 1 0 1A62H
AND %B,[%X] 1 1 0 1 0 0 1 1 0 0 1 0 0 1A64H
AND %B,[%Y] 1 1 0 1 0 0 1 1 0 0 1 1 0 1A66H

Flags: E I C Z
↓ – – ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: AND %r,[%X] r ← r ∧ [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
AND %r,[%Y] r ← r ∧ [FFimm8] (FFimm8 = FF00H + 00H to FFH)

76 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

AND [%ir],%r Logical AND of r reg. and location [ir reg.] 2 cycles

Function: [ir] ← [ir] ∧ r
Performs a logical AND operation of the content of the r register (A or B) and the content of the
data memory addressed by the ir register (X or Y), and stores the result in that address.

Code: Mnemonic MSB LSB

AND [%X],%A 1 1 0 1 0 0 1 1 0 1 0 0 0 1A68H
AND [%X],%B 1 1 0 1 0 0 1 1 0 1 1 0 0 1A6CH
AND [%Y],%A 1 1 0 1 0 0 1 1 0 1 0 1 0 1A6AH
AND [%Y],%B 1 1 0 1 0 0 1 1 0 1 1 1 0 1A6EH

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: AND [%X],%r [00imm8] ← [00imm8] ∧ r (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
AND [%Y],%r [FFimm8] ← [FFimm8] ∧ r (FFimm8 = FF00H + 00H to FFH)

AND [%ir]+,%r Logical AND of r reg. and location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] ∧ r, ir ← ir + 1
Performs a logical AND operation of the content of the r register (A or B) and the content of the
data memory addressed by the ir register (X or Y), and stores the result in that address. Then
increments the ir register (X or Y). The flags change due to the operation result of the data
memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

AND [%X]+,%A 1 1 0 1 0 0 1 1 0 1 0 0 1 1A69H
AND [%X]+,%B 1 1 0 1 0 0 1 1 0 1 1 0 1 1A6DH
AND [%Y]+,%A 1 1 0 1 0 0 1 1 0 1 0 1 1 1A6BH
AND [%Y]+,%B 1 1 0 1 0 0 1 1 0 1 1 1 1 1A6FH

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 77

CHAPTER 4: INSTRUCTION SET

AND [%ir],imm4 Logical AND of immediate data imm4 and location [ir reg.] 2 cycles

Function: [ir] ← [ir] ∧ imm4
Performs a logical AND operation of the 4-bit immediate data imm4 and the content of the
data memory addressed by the ir register (X or Y), and stores the result in that address.

Code: Mnemonic MSB LSB

AND [%X],imm4 1 1 0 1 0 0 0 0 0 i3 i2 i1 i0 1A00H–1A0FH
AND [%Y],imm4 1 1 0 1 0 0 0 1 0 i3 i2 i1 i0 1A20H–1A2FH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: AND [%X],imm4 [00imm8] ← [00imm8] ∧ imm4 (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
AND [%Y],imm4 [FFimm8] ← [FFimm8] ∧ imm4 (FFimm8 = FF00H + 00H to FFH)

AND [%ir]+,imm4 Logical AND of immediate data imm4 and location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] ∧ imm4, ir ← ir + 1
Performs a logical AND operation of the 4-bit immediate data imm4 and the content of the
data memory addressed by the ir register (X or Y), and stores the result in that address. Then
increments the ir register (X or Y). The flags change due to the operation result of the data
memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

AND [%X]+,imm4 1 1 0 1 0 0 0 0 1 i3 i2 i1 i0 1A10H–1A1FH
AND [%Y]+,imm4 1 1 0 1 0 0 0 1 1 i3 i2 i1 i0 1A30H–1A3FH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

78 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

BIT %r,%r’ Test bit of r reg. with r’ reg. 1 cycle

Function: r ∧ r’
Performs a logical AND of the content of the r’ register (A or B) and the content of the r register
(A or B) to check the bits of the r register. The Z flag is changed due to the operation result, but
the content of the register is not changed.

Code: Mnemonic MSB LSB

BIT %A,%A 1 1 0 1 0 1 1 1 1 0 0 0 X 1AF0H, (1AF1H)
BIT %A,%B 1 1 0 1 0 1 1 1 1 0 0 1 X 1AF2H, (1AF3H)
BIT %B,%A 1 1 0 1 0 1 1 1 1 0 1 0 X 1AF4H, (1AF5H)
BIT %B,%B 1 1 0 1 0 1 1 1 1 0 1 1 X 1AF6H, (1AF7H)

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

BIT %r,imm4 Test bit of r reg. with immediate data imm4 1 cycle

Function: r ∧ imm4
Performs a logical AND of the 4-bit immediate data imm4 and the content of the r register (A
or B) to check the bits of the r register. The Z flag is changed due to the operation result, but the
content of the register is not changed.

Code: Mnemonic MSB LSB

BIT %A,imm4 1 1 0 1 0 1 1 0 0 i3 i2 i1 i0 1AC0H–1ACFH
BIT %B,imm4 1 1 0 1 0 1 1 0 1 i3 i2 i1 i0 1AD0H–1ADFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 79

CHAPTER 4: INSTRUCTION SET

BIT %r,[%ir]

BIT %r,[%ir]+ Test bit of r reg. with location [ir reg.] and increment ir reg. 1 cycle

Function: r ∧ [ir], ir ← ir + 1
Performs a logical AND of the content of the data memory addressed by the ir register (X or Y)
and the content of the r register (A or B) to check the bits of the r register. The Z flag is changed
due to the operation result, but the content of the register is not changed. Then increments the
ir register (X or Y). The increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

BIT %A,[%X]+ 1 1 0 1 0 1 1 1 0 0 0 0 1 1AE1H
BIT %A,[%Y]+ 1 1 0 1 0 1 1 1 0 0 0 1 1 1AE3H
BIT %B,[%X]+ 1 1 0 1 0 1 1 1 0 0 1 0 1 1AE5H
BIT %B,[%Y]+ 1 1 0 1 0 1 1 1 0 0 1 1 1 1AE7H

Flags: E I C Z
↓ – – ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

Test bit of r reg. with location [ir reg.] 1 cycle

Function: r ∧ [ir]
Performs a logical AND of the content of the data memory addressed by the ir register (X or Y)
and the content of the r register (A or B) to check the bits of the r register. The Z flag is changed
due to the operation result, but the content of the register is not changed.

Code: Mnemonic MSB LSB

BIT %A,[%X] 1 1 0 1 0 1 1 1 0 0 0 0 0 1AE0H
BIT %A,[%Y] 1 1 0 1 0 1 1 1 0 0 0 1 0 1AE2H
BIT %B,[%X] 1 1 0 1 0 1 1 1 0 0 1 0 0 1AE4H
BIT %B,[%Y] 1 1 0 1 0 1 1 1 0 0 1 1 0 1AE6H

Flags: E I C Z
↓ – – ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: BIT %r,[%X] r ∧ [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
BIT %r,[%Y] r ∧ [FFimm8] (FFimm8 = FF00H + 00H to FFH)

80 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

BIT [%ir],%r Test bit of location [ir reg.] with r reg. 1 cycle

Function: [ir] ∧ r
Performs a logical AND of the content of the r register (A or B) and the content of the data
memory addressed by the ir register (X or Y) to check the bits of the memory. The Z flag is
changed due to the operation result, but the content of the memory is not changed.

Code: Mnemonic MSB LSB

BIT [%X],%A 1 1 0 1 0 1 1 1 0 1 0 0 0 1AE8H
BIT [%X],%B 1 1 0 1 0 1 1 1 0 1 1 0 0 1AECH
BIT [%Y],%A 1 1 0 1 0 1 1 1 0 1 0 1 0 1AEAH
BIT [%Y],%B 1 1 0 1 0 1 1 1 0 1 1 1 0 1AEEH

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: BIT [%X],%r [00imm8] ∧ r (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
BIT [%Y],%r [FFimm8] ∧ r (FFimm8 = FF00H + 00H to FFH)

BIT [%ir]+,%r Test bit of location [ir reg.] with r reg. and increment ir reg. 1 cycle

Function: [ir] ∧ r, ir ← ir + 1
Performs a logical AND of the content of the r register (A or B) and the content of the data
memory addressed by the ir register (X or Y) to check the bits of the memory. The Z flag is
changed due to the operation result, but the content of the memory is not changed. Then
increments the ir register (X or Y). The increment result of the ir register does not affect the
flags.

Code: Mnemonic MSB LSB

BIT [%X]+,%A 1 1 0 1 0 1 1 1 0 1 0 0 1 1AE9H
BIT [%X]+,%B 1 1 0 1 0 1 1 1 0 1 1 0 1 1AEDH
BIT [%Y]+,%A 1 1 0 1 0 1 1 1 0 1 0 1 1 1AEBH
BIT [%Y]+,%B 1 1 0 1 0 1 1 1 0 1 1 1 1 1AEFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 81

CHAPTER 4: INSTRUCTION SET

BIT [%ir],imm4

BIT [%ir]+,imm4 Test bit of location [ir reg.] with immediate data imm4 and increment ir reg. 1 cycle

Function: [ir] ∧ imm4, ir ← ir + 1
Performs a logical AND of the 4-bit immediate data imm4 and the content of the data memory
addressed by the ir register (X or Y) to check the bits of the memory. The Z flag is changed due
to the operation result, but the content of the memory is not changed. Then increments the ir
register (X or Y). The increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

BIT [%X]+,imm4 1 1 0 1 0 1 0 0 1 i3 i2 i1 i0 1A90H–1A9FH
BIT [%Y]+,imm4 1 1 0 1 0 1 0 1 1 i3 i2 i1 i0 1AB0H–1ABFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

Test bit of location [ir reg.] with immediate data imm4 1 cycle

Function: [ir] ∧ imm4
Performs a logical AND of the 4-bit immediate data imm4 and the content of the data memory
addressed by the ir register (X or Y) to check the bits of the memory. The Z flag is changed due
to the operation result, but the content of the memory is not changed.

Code: Mnemonic MSB LSB

BIT [%X],imm4 1 1 0 1 0 1 0 0 0 i3 i2 i1 i0 1A80H–1A8FH
BIT [%Y],imm4 1 1 0 1 0 1 0 1 0 i3 i2 i1 i0 1AA0H–1AAFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: BIT [%X],imm4 [00imm8] ∧ imm4 (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
BIT [%Y],imm4 [FFimm8] ∧ imm4 (FFimm8 = FF00H + 00H to FFH)

82 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

CALR [addr6] Call subroutine at relative location [addr6] 2 cycles

Function: ([(SP1-1)*4+3]~[(SP1-1)*4]) ← PC + 1, SP1 ← SP1 - 1, PC ← PC + [addr6] + 1
(addr6 = 0000H–003FH)
Saves the address next to this instruction to the stack as a return address, then adds the content
of the data memory (0000H–003FH) specified with the addr6 to that address to unconditionally
call the subroutine started from the address. Branch destination range is the next address of
this instruction +0 to 15.

Code: Mnemonic MSB LSB

CALR [addr6] 1 1 1 1 1 0 0 a5 a4 a3 a2 a1 a0 1F00H–1F3FH

Flags: E I C Z
↓ – – –

Mode: 6-bit absolute
Extended addressing: Invalid

CALR sign8 Call subroutine at relative location sign8 1 cycle

Function: ([(SP1-1)*4+3]~[(SP1-1)*4]) ← PC + 1, SP1 ← SP1 - 1, PC ← PC + sign8 + 1 (sign8 = -128~127)
Saves the address next to this instruction to the stack as a return address, then adds the related
address specified with the sign8 to that address to unconditionally call the subroutine started
from the address. Branch destination range is the next address of this instruction -128 to +127.

Code: Mnemonic MSB LSB

CALR sign8 0 0 0 1 0 s7 s6 s5 s4 s3 s2 s1 s0 0200H–02FFH

Flags: E I C Z
↓ – – –

Mode: Signed 8-bit PC relative
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: CALR sign8 ([(SP1-1)∗4+3]~[(SP1-1)∗4]) ← PC + 1, SP1 ← SP1 - 1,

PC ← PC + sign16 + 1
(sign16 = -32768 to 32767, upper 8-bit: imm8, lower 8-bit: sign8)

E0C63000 CORE CPU MANUAL EPSON 83

CHAPTER 4: INSTRUCTION SET

CALZ imm8 Call subroutine at location imm8 1 cycle

Function: ([(SP1-1)*4+3]~[(SP1-1)*4]) ← PC + 1, SP1 ← SP1 - 1, PC ← imm8
Saves the address next to this instruction to the stack as a return address, then unconditionally
calls the subroutine started from the address (0000H–00FFH) specified with the imm8.

Code: Mnemonic MSB LSB

CALZ imm8 0 0 0 1 1 i7 i6 i5 i4 i3 i2 i1 i0 0300H–03FFH

Flags: E I C Z
↓ – – –

Mode: Immediate data
Extended addressing: Invalid

CLR [addr6],imm2 Clear bit imm2 in location [addr6] 2 cycles

Function: [addr6] ← [addr6] ∧ not (2imm2)
(addr6 = 0000H–003FH or FFC0H–FFFFH)
Clears the bit specified with the imm2 in the data memory specified with the addr6 to "0".

Code: Mnemonic MSB LSB

CLR [00addr6],imm2 1 0 1 0 0 i1 i0 a5 a4 a3 a2 a1 a0 1400H–14FFH
CLR [FFaddr6],imm2 1 0 1 0 1 i1 i0 a5 a4 a3 a2 a1 a0 1500H–15FFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: 6-bit absolute
Extended addressing: Invalid

84 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

CMP %r,%r’

CMP %r,imm4 Compare r reg. with immediate data imm4 1 cycle

Function: r - imm4
Subtracts the 4-bit immediate data imm4 from the content of the r register (A or B). It changes
the flags (Z and C), but does not change the content of the register.

Code: Mnemonic MSB LSB

CMP %A,imm4 1 1 1 1 0 0 1 0 0 i3 i2 i1 i0 1E40H–1E4FH
CMP %B,imm4 1 1 1 1 0 0 1 0 1 i3 i2 i1 i0 1E50H–1E5FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

Compare r reg. with r’ reg. 1 cycle

Function: r - r’
Subtracts the content of the r’ register (A or B) from the content of the r register (A or B). It
changes the flags (Z and C), but does not change the content of the register.

Code: Mnemonic MSB LSB

CMP %A,%A 1 1 1 1 0 0 1 1 1 X 0 0 0 1E70H, (1E78H)
CMP %A,%B 1 1 1 1 0 0 1 1 1 X 0 1 0 1E72H, (1E7AH)
CMP %B,%A 1 1 1 1 0 0 1 1 1 X 1 0 0 1E74H, (1E7CH)
CMP %B,%B 1 1 1 1 0 0 1 1 1 X 1 1 0 1E76H, (1E7EH)

Flags: E I C Z
↓ – ↕ ↕ (r ≠ r’)
↓ – ↓ ↑ (r = r’)

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 85

CHAPTER 4: INSTRUCTION SET

CMP %r,[%ir]

CMP %r,[%ir]+

Compare r reg. with location [ir reg.] 1 cycle

Function: r - [ir]
Subtracts the content of the data memory addressed by the ir register (X or Y) from the content
of the r register (A or B). It changes the flags (Z and C), but does not change the content of the
register.

Code: Mnemonic MSB LSB

CMP %A,[%X] 1 1 1 1 0 0 1 1 0 0 0 0 0 1E60H
CMP %A,[%Y] 1 1 1 1 0 0 1 1 0 0 0 1 0 1E62H
CMP %B,[%X] 1 1 1 1 0 0 1 1 0 0 1 0 0 1E64H
CMP %B,[%Y] 1 1 1 1 0 0 1 1 0 0 1 1 0 1E66H

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: CMP %r,[%X] r - [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
CMP %r,[%Y] r - [FFimm8] (FFimm8 = FF00H + 00H to FFH)

Compare r reg. with location [ir reg.] and increment ir reg. 1 cycle

Function: r - [ir], ir ← ir + 1
Subtracts the content of the data memory addressed by the ir register (X or Y) from the content
of the r register (A or B). It changes the flags (Z and C), but does not change the content of the
register. Then increments the ir register (X or Y). The increment result of the ir register does not
affect the flags.

Code: Mnemonic MSB LSB

CMP %A,[%X]+ 1 1 1 1 0 0 1 1 0 0 0 0 1 1E61H
CMP %A,[%Y]+ 1 1 1 1 0 0 1 1 0 0 0 1 1 1E63H
CMP %B,[%X]+ 1 1 1 1 0 0 1 1 0 0 1 0 1 1E65H
CMP %B,[%Y]+ 1 1 1 1 0 0 1 1 0 0 1 1 1 1E67H

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

86 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

CMP [%ir],%r

CMP [%ir]+,%r Compare location [ir reg.] with r reg. and increment ir reg. 1 cycle

Function: [ir] - r, ir ← ir + 1
Subtracts the content of the r register (A or B) from the content of the data memory addressed
by the ir register (X or Y). It changes the flags (Z and C), but does not change the content of the
memory. Then increments the ir register (X or Y). The increment result of the ir register does
not affect the flags.

Code: Mnemonic MSB LSB

CMP [%X]+,%A 1 1 1 1 0 0 1 1 0 1 0 0 1 1E69H
CMP [%X]+,%B 1 1 1 1 0 0 1 1 0 1 1 0 1 1E6DH
CMP [%Y]+,%A 1 1 1 1 0 0 1 1 0 1 0 1 1 1E6BH
CMP [%Y]+,%B 1 1 1 1 0 0 1 1 0 1 1 1 1 1E6FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

Compare location [ir reg.] with r reg. 1 cycle

Function: [ir] - r
Subtracts the content of the r register (A or B) from the content of the data memory addressed
by the ir register (X or Y). It changes the flags (Z and C), but does not change the content of the
memory.

Code: Mnemonic MSB LSB

CMP [%X],%A 1 1 1 1 0 0 1 1 0 1 0 0 0 1E68H
CMP [%X],%B 1 1 1 1 0 0 1 1 0 1 1 0 0 1E6CH
CMP [%Y],%A 1 1 1 1 0 0 1 1 0 1 0 1 0 1E6AH
CMP [%Y],%B 1 1 1 1 0 0 1 1 0 1 1 1 0 1E6EH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: CMP [%X],%r [00imm8] - r (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
CMP [%Y],%r [FFimm8] - r (FFimm8 = FF00H + 00H to FFH)

E0C63000 CORE CPU MANUAL EPSON 87

CHAPTER 4: INSTRUCTION SET

CMP [%ir],imm4

CMP [%ir]+,imm4 Compare location [ir reg.] with immediate data imm4 and increment ir reg. 1 cycle

Function: [ir] - imm4, ir ← ir + 1
Subtracts the 4-bit immediate data imm4 from the content of the data memory addressed by
the ir register (X or Y). It changes the flags (Z and C), but does not change the content of the
memory. Then increments the ir register (X or Y). The increment result of the ir register does
not affect the flags.

Code: Mnemonic MSB LSB

CMP [%X]+,imm4 1 1 1 1 0 0 0 0 1 i3 i2 i1 i0 1E10H–1E1FH
CMP [%Y]+,imm4 1 1 1 1 0 0 0 1 1 i3 i2 i1 i0 1E30H–1E3FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

Compare location [ir reg.] with immediate data imm4 1 cycle

Function: [ir] - imm4
Subtracts the 4-bit immediate data imm4 from the content of the data memory addressed by
the ir register (X or Y). It changes the flags (Z and C), but does not change the content of the
memory.

Code: Mnemonic MSB LSB

CMP [%X],imm4 1 1 1 1 0 0 0 0 0 i3 i2 i1 i0 1E00H–1E0FH
CMP [%Y],imm4 1 1 1 1 0 0 0 1 0 i3 i2 i1 i0 1E20H–1E2FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: CMP [%X],imm4 [00imm8] - imm4 (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
CMP [%Y],imm4 [FFimm8] - imm4 (FFimm8 = FF00H + 00H to FFH)

88 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

CMP %ir,imm8

DEC [addr6]

Compare ir reg. with immediate data imm8 1 cycle

Function: ir - imm8
Subtracts the 8-bit immediate data imm8 from the content of the ir register (X or Y). It changes
the flags (Z and C), but does not change the register.

Code: Mnemonic MSB LSB

CMP %X,imm8 0 1 1 1 0 [FFH-imm8] 0E00H–0EFFH
CMP %Y,imm8 0 1 1 1 1 [FFH-imm8] 0F00H–0FFFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: CMP %ir,imm8' ir - imm16 (upper 8-bit: FFH - imm8, lower 8-bit: imm8')

Decrement location [addr6] 2 cycles

Function: [addr6] ← [addr6] - 1
(addr6 = 0000H–003FH)
Decrements (-1) the content of the data memory addressed by the addr6.

Code: Mnemonic MSB LSB

DEC [addr6] 1 0 0 0 0 0 0 a5 a4 a3 a2 a1 a0 1000H–103FH

Flags: E I C Z
↓ – ↕ ↕

Mode: 6-bit absolute addressing
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 89

CHAPTER 4: INSTRUCTION SET

DEC [ir],n4 Decrement location [ir] in specified radix 2 cycles

Function: [ir] ← N’s adjust ([ir] - 1)
Decrements (-1) the content of the data memory addressed by the ir register (X or Y). The
operation result is adjusted with n4 as the radix.

Code: Mnemonic MSB LSB

DEC [%X],n4 1 1 1 0 0 1 0 0 0 n3 n2 n1 n0 1C80H–1C8FH
DEC [%Y],n4 1 1 1 0 0 1 0 1 0 n3 n2 n1 n0 1CA0H–1CAFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: DEC [%X],n4 [00imm8] ← N’s adjust ([00imm8] - 1) (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
DEC [%Y],n4 [FFimm8] ← N’s adjust ([FFimm8] - 1) (FFimm8 = FF00H + 00H to FFH)

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4
bits of the machine code (n3–n0) become 0000B.

DEC [ir]+,n4 Decrement location [ir] in specified radix and increment ir reg. 2 cycles

Function: [ir] ← N’s adjust ([ir] - 1), ir ← ir + 1
Decrements (-1) the content of the data memory addressed by the ir register (X or Y). The
operation result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The
increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

DEC [%X]+,n4 1 1 1 0 0 1 0 0 1 n3 n2 n1 n0 1C90H–1C9FH
DEC [%Y]+,n4 1 1 1 0 0 1 0 1 1 n3 n2 n1 n0 1CB0H–1CBFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4
bits of the machine code (n3–n0) become 0000B.

90 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

DEC %sp

EX %A,%B Exchange A reg. and B reg. 1 cycle

Function: A ↔ B
Exchanges the contents of the A register and B register.

Code: Mnemonic MSB LSB

EX %A,%B 1 1 1 1 1 1 1 1 1 0 1 1 1 1FF7H

Flags: E I C Z
↓ – – –

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

Decrement stack pointer 1 cycle

Function: sp ← sp - 1
Decrements (-1) the content of the stack pointer sp (SP1 or SP2). This instruction does not
change the C flag regardless of the operation result.

Code: Mnemonic MSB LSB

DEC %SP1 1 1 1 1 1 1 1 1 0 0 0 0 0 1FE0H
DEC %SP2 1 1 1 1 1 1 1 1 0 0 1 0 0 1FE4H

Flags: E I C Z
↓ – – ↕

Mode: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 91

CHAPTER 4: INSTRUCTION SET

EX %r,[%ir] Exchange r reg. and location [ir reg.] 2 cycles

Function: r ↔ [ir]
Exchanges the contents of the r register (A or B) and data memory addressed by the ir register
(X or Y).

Code: Mnemonic MSB LSB

EX %A,[%X] 1 0 0 0 0 1 1 1 1 1 0 0 0 10F8H
EX %A,[%Y] 1 0 0 0 0 1 1 1 1 1 0 1 0 10FAH
EX %B,[%X] 1 0 0 0 0 1 1 1 1 1 1 0 0 10FCH
EX %B,[%Y] 1 0 0 0 0 1 1 1 1 1 1 1 0 10FEH

Flags: E I C Z
↓ – – –

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: EX %r,[%X] r ↔ [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
EX %r,[%Y] r ↔ [FFimm8] (FFimm8 = FF00H + 00H to FFH)

EX %r,[%ir]+ Exchange r reg. and location [ir reg.] and increment ir reg. 2 cycles

Function: r ↔ [ir], ir ← ir + 1
Exchanges the contents of the r register (A or B) and data memory addressed by the ir register
(X or Y). Then increments the ir register (X or Y). The increment result of the ir register does not
affect the flags.

Code: Mnemonic MSB LSB

EX %A,[%X]+ 1 0 0 0 0 1 1 1 1 1 0 0 1 10F9H
EX %A,[%Y]+ 1 0 0 0 0 1 1 1 1 1 0 1 1 10FBH
EX %B,[%X]+ 1 0 0 0 0 1 1 1 1 1 1 0 1 10FDH
EX %B,[%Y]+ 1 0 0 0 0 1 1 1 1 1 1 1 1 10FFH

Flags: E I C Z
↓ – – –

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

92 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

HALT Set CPU to HALT mode 2 cycles

Function: Halt
Sets the CPU to HALT status.
The CPU stops operating, thus the power consumption is reduced. Peripheral circuits such as
the oscillation circuit still operate.
An interrupt causes it to return from HALT status to the normal program execution status.

Code: Mnemonic MSB LSB

HALT 1 1 1 1 1 1 1 1 1 1 1 0 0 1FFCH

Flags: E I C Z
↓ – – –

INC [addr6] Increment location [addr6] 2 cycles

Function: [addr6] ← [addr6] + 1
(addr6 = 0000H–003FH)
Increments (+1) the content of the data memory addressed by the addr6.

Code: Mnemonic MSB LSB

INC [addr6] 1 0 0 0 0 0 1 a5 a4 a3 a2 a1 a0 1040H–107FH

Flags: E I C Z
↓ – ↕ ↕

Mode: 6-bit absolute
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 93

CHAPTER 4: INSTRUCTION SET

INC [ir],n4 Increment location [ir] in specified radix 2 cycles

Function: [ir] ← N’s adjust ([ir] + 1)
Increments (+1) the content of the data memory addressed by the ir register (X or Y). The
operation result is adjusted with n4 as the radix.

Code: Mnemonic MSB LSB

INC [%X],n4 1 1 1 0 1 1 0 0 0 [10H-n4] 1D80H–1D8FH
INC [%Y],n4 1 1 1 0 1 1 0 1 0 [10H-n4] 1DA0H–1DAFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: INC [%X],n4 [00imm8] ← N’s adjust ([00imm8] + 1) (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
INC [%Y],n4 [FFimm8] ← N’s adjust ([FFimm8] + 1) (FFimm8 = FF00H + 00H to FFH)

Note: n4 should be specified with a value from 1 to 16.

INC [ir]+,n4 Increment location [ir] in specified radix and increment ir reg. 2 cycles

Function: [ir] ← N’s adjust ([ir] + 1), ir ← ir + 1
Increments (+1) the content of the data memory addressed by the ir register (X or Y). The
operation result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The
increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

INC [%X]+,n4 1 1 1 0 1 1 0 0 1 [10H-n4] 1D90H–1D9FH
INC [%Y]+,n4 1 1 1 0 1 1 0 1 1 [10H-n4] 1DB0H–1DBFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16.

94 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

INC %sp

INT imm6 Software interrupt 3 cycles

Function: [SP2-1] ← F, SP2 ← SP2 - 1, ([(SP1-1)*4+3]~[(SP1-1)*4]) ← PC + 1, SP1 ← SP1 - 1, PC ← imm6
(imm6 = 0100H–013FH)
Saves the content of the F register and the return address (this instruction address + 1) to the
stack, then executes the software interrupt routine that starts from the vector address (0100H–
013FH) specified by the imm6.

Code: Mnemonic MSB LSB

INT imm6 1 1 1 1 1 1 0 i5 i4 i3 i2 i1 i0 1F80H–1FBFH

Flags: E I C Z
↓ – – –

Mode: Immediate data
Extended addressing: Invalid

Note: The RETI instruction, which returns the content of the F register, should be used for returning
from the interrupt routine that is executed by this instruction.

Increment stack pointer 1 cycle

Function: sp ← sp + 1
Increments (+1) the content of the stack pointer sp (SP1 or SP2). This instruction does not
change the C flag regardless of the operation result.

Code: Mnemonic MSB LSB

INC %SP1 1 1 1 1 1 1 1 1 0 1 0 0 0 1FE8H
INC %SP2 1 1 1 1 1 1 1 1 0 1 1 0 0 1FECH

Flags: E I C Z
↓ – – ↕

Mode: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 95

CHAPTER 4: INSTRUCTION SET

JP %Y Indirect jump using Y reg. 1 cycle

Function: PC ← Y
Loads the content of the Y register into the PC to branch unconditionally.

Code: Mnemonic MSB LSB

JP %Y 1 1 1 1 1 1 1 1 1 0 0 1 X 1FF2H, (1FF3H)

Flags: E I C Z
↓ – – –

Mode: Register direct
Extended addressing: Invalid

JR %A Jump to relative location A reg. 1 cycle

Function: PC ← PC + A + 1
Adds the content of the A register to the address next to this instruction, to unconditionally
branch to that address. Branch destination range is the next address of this instruction +0 to 15.

Code: Mnemonic MSB LSB

JR %A 1 1 1 1 1 1 1 1 1 0 0 0 1 1FF1H

Flags: E I C Z
↓ – – –

Mode: Register direct
Extended addressing: Invalid

96 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

JR %BA Jump to relative location BA reg. 1 cycle

Function: PC ← PC + BA + 1
Adds the content of the BA register to the address next to this instruction, to unconditionally
branch to that address. Branch destination range is the next address of this instruction +0 to
255.

Code: Mnemonic MSB LSB

JR %BA 1 1 1 1 1 1 1 1 1 0 0 0 0 1FF0H

Flags: E I C Z
↓ – – –

Mode: Register direct
Extended addressing: Invalid

JR [addr6] Jump to relative location [addr6] 2 cycles

Function: PC ← PC + [addr6] + 1 (addr6 = 0000H–003FH)
Adds the content of the data memory (0000H–003FH) specified with the addr6 to the address
next to this instruction , to unconditionally branch to that address. Branch destination range is
the next address of this instruction +0 to 15.

Code: Mnemonic MSB LSB

JR [addr6] 1 1 1 1 1 0 1 a5 a4 a3 a2 a1 a0 1F40H–1F7FH

Flags: E I C Z
↓ – – –

Mode: 6-bit absolute
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 97

CHAPTER 4: INSTRUCTION SET

JR sign8 Jump to relative location sign8 1 cycle

Function: PC ← PC + sign8 + 1 (sign8 = -128~127)
Adds the relative address specified with the sign8 to the address next to this instruction, to
unconditionally branch to that address. Branch destination range is the next address of this
instruction -128 to +127.

Code: Mnemonic MSB LSB

JR sign8 0 0 0 0 0 s7 s6 s5 s4 s3 s2 s1 s0 0000H–00FFH

Flags: E I C Z
↓ – – –

Mode: Signed 8-bit PC relative
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: JR sign8 PC ← PC + sign16 + 1

(sign16 = -32768 to 32767, upper 8-bit: imm8, lower 8-bit: sign8)

JRC sign8 Jump to relative location sign8 if C flag is set 1 cycle

Function: If C = 1 then PC ← PC + sign8 + 1 (sign8 = -128~127)
Executes the "JR sign8" instruction if the C (carry) flag has been set to "1", otherwise executes
the next instruction.

Code: Mnemonic MSB LSB

JRC sign8 0 0 1 0 0 s7 s6 s5 s4 s3 s2 s1 s0 0400H–04FFH

Flags: E I C Z
↓ – – –

Mode: Signed 8-bit PC relative
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: JRC sign8 If C = 1 then PC ← PC + sign16 + 1

(sign16 = -32768 to 32767, upper 8-bit: imm8, lower 8-bit: sign8)

98 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

JRNC sign8 Jump to relative location sign8 if C flag is reset 1 cycle

Function: If C = 0 then PC ← PC + sign8 + 1 (sign8 = -128~127)
Executes the "JR sign8" instruction if the C (carry) flag has been reset to "0", otherwise executes
the next instruction.

Code: Mnemonic MSB LSB

JRNC sign8 0 0 1 0 1 s7 s6 s5 s4 s3 s2 s1 s0 0500H–05FFH

Flags: E I C Z
↓ – – –

Mode: Signed 8-bit PC relative
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: JRNC sign8 If C = 0 then PC ← PC + sign16 + 1

(sign16 = -32768 to 32767, upper 8-bit: imm8, lower 8-bit: sign8)

JRNZ sign8 Jump to relative location sign8 if Z flag is reset 1 cycle

Function: If Z = 0 then PC ← PC + sign8 + 1 (sign8 = -128~127)
Executes the "JR sign8" instruction if the Z (zero) flag has been set to "1", otherwise executes
the next instruction.

Code: Mnemonic MSB LSB

JRNZ sign8 0 0 1 1 1 s7 s6 s5 s4 s3 s2 s1 s0 0700H–07FFH

Flags: E I C Z
↓ – – –

Mode: Signed 8-bit PC relative
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: JRNZ sign8 If Z = 0 then PC ← PC + sign16 + 1

(sign16 = -32768 to 32767, upper 8-bit: imm8, lower 8-bit: sign8)

E0C63000 CORE CPU MANUAL EPSON 99

CHAPTER 4: INSTRUCTION SET

JRZ sign8 Jump to relative location sign8 if Z flag is set 1 cycle

Function: If Z = 1 then PC ← PC + sign8 + 1 (sign8 = -128~127)
Executes the "JR sign8" instruction if the Z (zero) flag has been reset to "0", otherwise executes
the next instruction.

Code: Mnemonic MSB LSB

JRZ sign8 0 0 1 1 0 s7 s6 s5 s4 s3 s2 s1 s0 0600H–06FFH

Flags: E I C Z
↓ – – –

Mode: Signed 8-bit PC relative
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: JRZ sign8 If Z = 1 then PC ← PC + sign16 + 1

(sign16 = -32768 to 32767, upper 8-bit: imm8, lower 8-bit: sign8)

LD %r,%r’ Load r’ reg. into r reg. 1 cycle

Function: r ← r ’
Loads the content of the r’ register (A, B or F) into the r register (A, B or F).

Code: Mnemonic MSB LSB

LD %A,%A 1 1 1 1 0 1 1 1 1 0 0 0 0 1EF0H
LD %A,%B 1 1 1 1 0 1 1 1 1 0 0 1 0 1EF2H
LD %A,%F 1 1 1 1 1 1 1 1 1 0 1 1 0 1FF6H
LD %B,%A 1 1 1 1 0 1 1 1 1 0 1 0 0 1EF4H
LD %B,%B 1 1 1 1 0 1 1 1 1 0 1 1 0 1EF6H
LD %F,%A 1 1 1 1 1 1 1 1 1 0 1 0 1 1FF5H

Flags: E I C Z
↓ – – –
↕ ↕ ↕ ↕ (r = F)

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

100 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

LD %r,imm4 Load immediate data imm4 into r reg. 1 cycle

Function: r ← imm4
Loads the 4-bit immediate data imm4 into the r register (A, B or F).

Code: Mnemonic MSB LSB

LD %A,imm4 1 1 1 1 0 1 1 0 0 i3 i2 i1 i0 1EC0H–1ECFH
LD %B,imm4 1 1 1 1 0 1 1 0 1 i3 i2 i1 i0 1ED0H–1EDFH
LD %F,imm4 1 0 0 0 0 1 0 1 1 i3 i2 i1 i0 10B0H–10BFH

Flags: E I C Z
↓ – – –
↕ ↕ ↕ ↕ (r = F)

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

LD %r,[%ir] Load location [ir reg.] into r reg. 1 cycle

Function: r ← [ir]
Loads the content of the data memory addressed by the ir register (X or Y) into the r register (A
or B).

Code: Mnemonic MSB LSB

LD %A,[%X] 1 1 1 1 0 1 1 1 0 0 0 0 0 1EE0H
LD %A,[%Y] 1 1 1 1 0 1 1 1 0 0 0 1 0 1EE2H
LD %B,[%X] 1 1 1 1 0 1 1 1 0 0 1 0 0 1EE4H
LD %B,[%Y] 1 1 1 1 0 1 1 1 0 0 1 1 0 1EE6H

Flags: E I C Z
↓ – – –

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: LD %r,[%X] r ← [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
LD %r,[%Y] r ← [FFimm8] (FFimm8 = FF00H + 00H to FFH)

E0C63000 CORE CPU MANUAL EPSON 101

CHAPTER 4: INSTRUCTION SET

LD %r,[%ir]+ Load location [ir reg.] into r reg. and increment ir reg. 1 cycle

Function: r ← [ir], ir ← ir + 1
Loads the content of the data memory addressed by the ir register (X or Y) into the r register (A
or B). Then increments the ir register (X or Y).

Code: Mnemonic MSB LSB

LD %A,[%X]+ 1 1 1 1 0 1 1 1 0 0 0 0 1 1EE1H
LD %A,[%Y]+ 1 1 1 1 0 1 1 1 0 0 0 1 1 1EE3H
LD %B,[%X]+ 1 1 1 1 0 1 1 1 0 0 1 0 1 1EE5H
LD %B,[%Y]+ 1 1 1 1 0 1 1 1 0 0 1 1 1 1EE7H

Flags: E I C Z
↓ – – –

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

LD [%ir],%r Load r reg. into location [ir reg.] 1 cycle

Function: [ir] ← r
Loads the content of the r register (A or B) into the data memory addressed by the ir register (X
or Y).

Code: Mnemonic MSB LSB

LD [%X],%A 1 1 1 1 0 1 1 1 0 1 0 0 0 1EE8H
LD [%X],%B 1 1 1 1 0 1 1 1 0 1 1 0 0 1EECH
LD [%Y],%A 1 1 1 1 0 1 1 1 0 1 0 1 0 1EEAH
LD [%Y],%B 1 1 1 1 0 1 1 1 0 1 1 1 0 1EEEH

Flags: E I C Z
↓ – – –

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: LD [%X],%r [00imm8] ← r (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
LD [%Y],%r [FFimm8] ← r (FFimm8 = FF00H + 00H to FFH)

102 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

LD [%ir]+,%r Load r reg. into location [ir reg.] and increment ir reg. 1 cycle

Function: [ir] ← r, ir ← ir + 1
Loads the content of the r register (A or B) into the data memory addressed by the ir register (X
or Y). Then increments the ir register (X or Y).

Code: Mnemonic MSB LSB

LD [%X]+,%A 1 1 1 1 0 1 1 1 0 1 0 0 1 1EE9H
LD [%X]+,%B 1 1 1 1 0 1 1 1 0 1 1 0 1 1EEDH
LD [%Y]+,%A 1 1 1 1 0 1 1 1 0 1 0 1 1 1EEBH
LD [%Y]+,%B 1 1 1 1 0 1 1 1 0 1 1 1 1 1EEFH

Flags: E I C Z
↓ – – –

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

LD [%ir],imm4 Load immediate data imm4 into location [ir reg.] 1 cycle

Function: [ir] ← imm4
Loads the 4-bit immediate data imm4 into the data memory addressed by the ir register (X or
Y).

Code: Mnemonic MSB LSB

LD [%X],imm4 1 1 1 1 0 1 0 0 0 i3 i2 i1 i0 1E80H–1E8FH
LD [%Y],imm4 1 1 1 1 0 1 0 1 0 i3 i2 i1 i0 1EA0H–1EAFH

Flags: E I C Z
↓ – – –

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: LD [%X],imm4 [00imm8] ← imm4 (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
LD [%Y],imm4 [FFimm8] ← imm4 (FFimm8 = FF00H + 00H to FFH)

E0C63000 CORE CPU MANUAL EPSON 103

CHAPTER 4: INSTRUCTION SET

LD [%ir]+,imm4 Load immediate data imm4 into location [ir reg.] and increment ir reg. 1 cycle

Function: [ir] ← imm4, ir ← ir + 1
Loads the 4-bit immediate data imm4 into the data memory addressed by the ir register (X or
Y). Then increments the ir register (X or Y).

Code: Mnemonic MSB LSB

LD [%X]+,imm4 1 1 1 1 0 1 0 0 1 i3 i2 i1 i0 1E90H–1E9FH
LD [%Y]+,imm4 1 1 1 1 0 1 0 1 1 i3 i2 i1 i0 1EB0H–1EBFH

Flags: E I C Z
↓ – – –

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

LD [%ir],[%ir’] Load location [ir’ reg.] into location [ir reg.] 2 cycles

Function: [ir] ← [ir’]
Loads the content of the data memory addressed by the ir’ register (X or Y) into the data
memory addressed by the ir register (Y or X).

Code: Mnemonic MSB LSB

LD [%X],[%Y] 1 1 1 1 0 1 1 1 1 1 0 1 0 1EFAH
LD [%Y],[%X] 1 1 1 1 0 1 1 1 1 1 0 0 0 1EF8H

Flags: E I C Z
↓ – – –

Mode: Src: Register indirect
Dst: Register indirect
Extended addressing: Invalid

104 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

LD [%ir],[%ir’]+ Load location [ir’ reg.] into location [ir reg.] and increment ir’ reg. 2 cycles

Function: [ir] ← [ir’], ir’ ← ir’ + 1
Loads the content of the data memory addressed by the ir’ register (X or Y) into the data
memory addressed by the ir register (Y or X). Then increments the ir’ register (Y or X).

Code: Mnemonic MSB LSB

LD [%X],[%Y]+ 1 1 1 1 0 1 1 1 1 1 0 1 1 1EFBH
LD [%Y],[%X]+ 1 1 1 1 0 1 1 1 1 1 0 0 1 1EF9H

Flags: E I C Z
↓ – – –

Mode: Src: Register indirect
Dst: Register indirect
Extended addressing: Invalid

LD [%ir]+,[%ir’] Load location [ir’ reg.] into location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir’], ir ← ir + 1
Loads the content of the data memory addressed by the ir’ register (X or Y) into the data
memory addressed by the ir register (Y or X). Then increments the ir register (X or Y).

Code: Mnemonic MSB LSB

LD [%X]+,[%Y] 1 1 1 1 0 1 1 1 1 1 1 1 0 1EFEH
LD [%Y]+,[%X] 1 1 1 1 0 1 1 1 1 1 1 0 0 1EFCH

Flags: E I C Z
↓ – – –

Mode: Src: Register indirect
Dst: Register indirect
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 105

CHAPTER 4: INSTRUCTION SET

LD [%ir]+,[%ir’]+ Load location [ir’ reg.] into location [ir reg.] and increment ir and ir’ reg. 2 cycles

Function: [ir] ← [ir’], ir ← ir + 1, ir’ ← ir’ + 1
Loads the content of the data memory addressed by the ir’ register (X or Y) into the data
memory addressed by the ir register (Y or X). Then increments both the ir and ir’ registers.

Code: Mnemonic MSB LSB

LD [%X]+,[%Y]+ 1 1 1 1 0 1 1 1 1 1 1 1 1 1EFFH
LD [%Y]+,[%X]+ 1 1 1 1 0 1 1 1 1 1 1 0 1 1EFDH

Flags: E I C Z
↓ – – –

Mode: Src: Register indirect
Dst: Register indirect
Extended addressing: Invalid

LDB %BA,imm8 Load immediate data imm8 into BA reg. 1 cycle

Function: BA ← imm8
Loads the 8-bit immediate data imm8 into the BA register.

Code: Mnemonic MSB LSB

LDB %BA,imm8 0 1 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0 0900H–09FFH

Flags: E I C Z
↓ – – –

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

106 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

LDB %BA,[%ir]+ Load location [ir reg.] into BA reg. and increment ir reg. 2 cycles

Function: A ← [ir], B ← [ir + 1], ir ← ir + 2
Loads the 2-word data in the data memory into the BA register. The content of the data
memory addressed by the ir register (X or Y) is loaded into the A register as the low-order 4
bits, and the content of the next address is loaded into the B register as the high-order 4 bits.
The ir register (X or Y) is incremented by 2 words.

Code: Mnemonic MSB LSB

LDB %BA,[%X]+ 1 1 1 1 1 1 1 0 1 1 0 0 0 1FD8H
LDB %BA,[%Y]+ 1 1 1 1 1 1 1 0 1 1 0 1 0 1FDAH

Flags: E I C Z
↓ – – –

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

LDB %BA,%EXT Load EXT reg. into BA reg. 1 cycle

Function: BA ← EXT
Loads the content of the EXT register into the BA register.

Code: Mnemonic MSB LSB

LDB %BA,%EXT 1 1 1 1 1 1 1 0 1 0 1 1 X 1FD6H, (1FD7H)

Flags: E I C Z
↓ – – –

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 107

CHAPTER 4: INSTRUCTION SET

LDB %BA,%rr Load rr reg. into BA reg. 1 cycle

Function: BA ← rr
Loads the content of the rr register (XL, XH, YL or YH) into the BA register.

Code: Mnemonic MSB LSB

LDB %BA,%XL 1 1 1 1 1 1 1 0 0 1 0 0 0 1FC8H
LDB %BA,%XH 1 1 1 1 1 1 1 0 0 1 0 0 1 1FC9H
LDB %BA,%YL 1 1 1 1 1 1 1 0 0 1 0 1 0 1FCAH
LDB %BA,%YH 1 1 1 1 1 1 1 0 0 1 0 1 1 1FCBH

Flags: E I C Z
↓ – – –

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

LDB %BA,%sp Load stack pointer into BA reg. 1 cycle

Function: BA ← sp
Loads the content of the stack pointer sp (SP1 or SP2) into the BA register.

Code: Mnemonic MSB LSB

LDB %BA,%SP1 1 1 1 1 1 1 1 0 0 1 1 0 X 1FCCH, (1FCDH)
LDB %BA,%SP2 1 1 1 1 1 1 1 0 0 1 1 1 X 1FCEH, (1FCFH)

Flags: E I C Z
↓ – – –

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

108 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

LDB [%ir]+,%BA Load BA reg. into location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← A, [ir + 1] ← B, ir ← ir + 2
Loads the content of the BA register into the data memory. The content of the A register is
loaded into the data memory addressed by the ir register (X or Y) as the low-order 4 bits, and
the content of the B register is loaded into the next address as the high-order 4 bits. The ir
register (X or Y) is incremented by 2 words.

Code: Mnemonic MSB LSB

LDB [%X]+,%BA 1 1 1 1 1 1 1 0 1 1 0 0 1 1FD9H
LDB [%Y]+,%BA 1 1 1 1 1 1 1 0 1 1 0 1 1 1FDBH

Flags: E I C Z
↓ – – –

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

LDB [%X]+,imm8 Load immediate data imm8 into location [X reg.] and increment X reg. 2 cycles

Function: [X] ← i3-0, [X+1] ← i7-4, X ← X + 2
Loads the 8-bit immediate data imm8 into the data memory. The low-order 4 bit-data is loaded
into the data memory addressed by the ir register (X or Y), and the high-order 4-bit data is
loaded into the next address. The ir register (X or Y) is incremented by 2 words.

Code: Mnemonic MSB LSB

LDB [%X]+,imm8 0 0 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0 0100H–01FFH

Flags: E I C Z
↓ – – –

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 109

CHAPTER 4: INSTRUCTION SET

LDB %EXT,imm8 Load immediate data imm8 into EXT reg. 1 cycle

Function: EXT ← imm8
Loads the 8-bit immediate data into the EXT register. The E flag is set to "1".

Code: Mnemonic MSB LSB

LDB %EXT,imm8 0 1 0 0 0 i7 i6 i5 i4 i3 i2 i1 i0 0800H–08FFH

Flags: E I C Z
↑ – – –

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

LDB %EXT,%BA Load BA reg. into EXT reg. 1 cycle

Function: EXT ← BA
Loads the content of the BA register into the EXT register. The E flag is set to "1".

Code: Mnemonic MSB LSB

LDB %EXT,%BA 1 1 1 1 1 1 1 0 1 0 1 0 X 1FD4H, (1FD5H)

Flags: E I C Z
↑ – – –

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

110 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

LDB %rr,imm8 Load immediate data imm8 into rr reg. 1 cycle

Function: rr ← imm8
Loads the 8-bit immediate data imm8 into the rr (XL or YL) register.

Code: Mnemonic MSB LSB

LDB %XL,imm8 0 1 0 1 0 i7 i6 i5 i4 i3 i2 i1 i0 0A00H–0AFFH
LDB %YL,imm8 0 1 0 1 1 i7 i6 i5 i4 i3 i2 i1 i0 0B00H–0BFFH

Flags: E I C Z
↓ – – –

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: LDB %XL,imm8' X ← imm16 (upper 8-bit: imm8, lower 8-bit: imm8')

LDB %EXT,imm8
LDB %YL,imm8' Y ← imm16 (upper 8-bit: imm8, lower 8-bit: imm8')

LDB %rr,%BA Load BA reg. into rr reg. 1 cycle

Function: rr ← BA
Loads the content of the BA register into the rr register (XL, XH, YL or YH).

Code: Mnemonic MSB LSB

LDB %XL,%BA 1 1 1 1 1 1 1 0 0 0 0 0 0 1FC0H
LDB %XH,%BA 1 1 1 1 1 1 1 0 0 0 0 0 1 1FC1H
LDB %YL,%BA 1 1 1 1 1 1 1 0 0 0 0 1 0 1FC2H
LDB %YH,%BA 1 1 1 1 1 1 1 0 0 0 0 1 1 1FC3H

Flags: E I C Z
↓ – – –

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 111

CHAPTER 4: INSTRUCTION SET

LDB %sp,%BA Load BA reg. into stack pointer 1 cycle

Function: sp ← BA
Loads the content of the BA register into the stack pointer sp (SP1 or SP2).

Code: Mnemonic MSB LSB

LDB %SP1,%BA 1 1 1 1 1 1 1 0 0 0 1 0 X 1FC4H, (1FC5H)
LDB %SP2,%BA 1 1 1 1 1 1 1 0 0 0 1 1 X 1FC6H, (1FC7H)

Flags: E I C Z
↓ – – –

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

NOP No operation 1 cycle

Function: No operation (PC ← PC+1)
Expends 1 cycle without doing an operation that otherwise exerts an affect. The PC (program
counter) is incremented.

Code: Mnemonic MSB LSB

NOP 1 1 1 1 1 1 1 1 1 1 1 1 X 1FFEH, (1FFFH)

Flags: E I C Z
↓ – – –

112 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

OR %r,%r’

OR %r,imm4

Logical OR of r’ reg. and r reg. 1 cycle

Function: r ← r ∨ r’
Performs a logical OR operation of the content of the r’ register (A or B) and the content of the r
register (A or B), and stores the result in the r register.

Code: Mnemonic MSB LSB

OR %A,%A 1 1 0 1 1 0 1 1 1 0 0 0 X 1B70H, (1B71H)
OR %A,%B 1 1 0 1 1 0 1 1 1 0 0 1 X 1B72H, (1B73H)
OR %B,%A 1 1 0 1 1 0 1 1 1 0 1 0 X 1B74H, (1B75H)
OR %B,%B 1 1 0 1 1 0 1 1 1 0 1 1 X 1B76H, (1B77H)

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

Logical OR of immediate data imm4 and r reg. 1 cycle

Function: r ← r ∨ imm4
Performs a logical OR operation of the 4-bit immediate data imm4 and the content of the r
register (A or B), and stores the result in the r register.

Code: Mnemonic MSB LSB

OR %A,imm4 1 1 0 1 1 0 1 0 0 i3 i2 i1 i0 1B40H–1B4FH
OR %B,imm4 1 1 0 1 1 0 1 0 1 i3 i2 i1 i0 1B50H–1B5FH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 113

CHAPTER 4: INSTRUCTION SET

OR %F,imm4 Logical OR of immediate data imm4 and F reg. 1 cycle

Function: F ← F ∨ imm4
Performs a logical OR operation of the 4-bit immediate data imm4 and the content of the F
(flag) register, and stores the result in the r register. It is possible to set any flag.

Code: Mnemonic MSB LSB

OR %F,imm4 1 0 0 0 0 1 0 0 1 i3 i2 i1 i0 1090H–109FH

Flags: E I C Z
↑ ↑ ↑ ↑

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

OR %r,[%ir] Logical OR of location [ir reg.] and r reg. 1 cycle

Function: r ← r ∨ [ir]
Performs a logical OR operation of the content of the data memory addressed by the ir register
(X or Y) and the content of the r register (A or B), and stores the result in the r register.

Code: Mnemonic MSB LSB

OR %A,[%X] 1 1 0 1 1 0 1 1 0 0 0 0 0 1B60H
OR %A,[%Y] 1 1 0 1 1 0 1 1 0 0 0 1 0 1B62H
OR %B,[%X] 1 1 0 1 1 0 1 1 0 0 1 0 0 1B64H
OR %B,[%Y] 1 1 0 1 1 0 1 1 0 0 1 1 0 1B66H

Flags: E I C Z
↓ – – ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: OR %r,[%X] r ← r ∨ [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
OR %r,[%Y] r ← r ∨ [FFimm8] (FFimm8 = FF00H + 00H to FFH)

114 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

OR %r,[%ir]+ Logical OR of location [ir reg.] and r reg. and increment ir reg. 1 cycle

Function: r ← r ∨ [ir], ir ← ir +1
Performs a logical OR operation of the content of the data memory addressed by the ir register
(X or Y) and the content of the r register (A or B), and stores the result in the r register. Then
increments the ir register (X or Y). The flags change due to the operation result of the r register
and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

OR %A,[%X]+ 1 1 0 1 1 0 1 1 0 0 0 0 1 1B61H
OR %A,[%Y]+ 1 1 0 1 1 0 1 1 0 0 0 1 1 1B63H
OR %B,[%X]+ 1 1 0 1 1 0 1 1 0 0 1 0 1 1B65H
OR %B,[%Y]+ 1 1 0 1 1 0 1 1 0 0 1 1 1 1B67H

Flags: E I C Z
↓ – – ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

OR [%ir],%r Logical OR of r reg. and location [ir reg.] 2 cycles

Function: [ir] ← [ir] ∨ r
Performs a logical OR operation of the content of the r register (A or B) and the content of the
data memory addressed by the ir register (X or Y), and stores the result in that address.

Code: Mnemonic MSB LSB

OR [%X],%A 1 1 0 1 1 0 1 1 0 1 0 0 0 1B68H
OR [%X],%B 1 1 0 1 1 0 1 1 0 1 1 0 0 1B6CH
OR [%Y],%A 1 1 0 1 1 0 1 1 0 1 0 1 0 1B6AH
OR [%Y],%B 1 1 0 1 1 0 1 1 0 1 1 1 0 1B6EH

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: OR [%X],%r [00imm8] ← [00imm8] ∨ r (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
OR [%Y],%r [FFimm8] ← [FFimm8] ∨ r (FFimm8 = FF00H + 00H to FFH)

E0C63000 CORE CPU MANUAL EPSON 115

CHAPTER 4: INSTRUCTION SET

OR [%ir]+,%r Logical OR of r reg. and location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] ∨ r, ir ← ir +1
Performs a logical OR operation of the content of the r register (A or B) and the content of the
data memory addressed by the ir register (X or Y), and stores the result in that address. Then
increments the ir register (X or Y). The flags change due to the operation result of the data
memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

OR [%X]+,%A 1 1 0 1 1 0 1 1 0 1 0 0 1 1B69H
OR [%X]+,%B 1 1 0 1 1 0 1 1 0 1 1 0 1 1B6DH
OR [%Y]+,%A 1 1 0 1 1 0 1 1 0 1 0 1 1 1B6BH
OR [%Y]+,%B 1 1 0 1 1 0 1 1 0 1 1 1 1 1B6FH

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

OR [%ir],imm4 Logical OR of immediate data imm4 and location [ir reg.] 2 cycles

Function: [ir] ← [ir] ∨ imm4
Performs a logical OR operation of the 4-bit immediate data imm4 and the content of the data
memory addressed by the ir register (X or Y), and stores the result in that address.

Code: Mnemonic MSB LSB

OR [%X],imm4 1 1 0 1 1 0 0 0 0 i3 i2 i1 i0 1B00H–1B0FH
OR [%Y],imm4 1 1 0 1 1 0 0 1 0 i3 i2 i1 i0 1B20H–1B2FH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: OR [%X],imm4 [00imm8] ← [00imm8] ∨ imm4 (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
OR [%Y],imm4 [FFimm8] ← [FFimm8] ∨ imm4 (FFimm8 = FF00H + 00H to FFH)

116 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

OR [%ir]+,imm4 Logical OR of immediate data imm4 and location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] ∨ imm4, ir ← ir +1
Performs a logical OR operation of the 4-bit immediate data imm4 and the content of the data
memory addressed by the ir register (X or Y), and stores the result in that address. Then
increments the ir register (X or Y). The flags change due to the operation result of the data
memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

OR [%X]+,imm4 1 1 0 1 1 0 0 0 1 i3 i2 i1 i0 1B10H–1B1FH
OR [%Y]+,imm4 1 1 0 1 1 0 0 1 1 i3 i2 i1 i0 1B30H–1B3FH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

POP %r Pop top of stack into r reg. 1 cycle

Function: r ← [SP2], SP2 ← SP2 +1
Loads the 4-bit data that has been stored in the address indicated by the stack pointer SP2 into
the r register (A, B or F), then increments the SP2.

Code: Mnemonic MSB LSB

POP %A 1 1 1 1 1 1 1 1 0 1 1 1 1 1FEFH
POP %B 1 1 1 1 1 1 1 1 0 1 1 1 0 1FEEH
POP %F 1 1 1 1 1 1 1 1 0 1 1 0 1 1FEDH

Flags: E I C Z
↓ – – – (r = A, B)
↕ ↕ ↕ ↕ (r = F)

Mode: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 117

CHAPTER 4: INSTRUCTION SET

POP %ir

PUSH %r Push r reg. onto stack 1 cycle

Function: [SP2-1] ← r, SP2 ← SP2 -1
Decrements the stack pointer SP2, then stores the content of the r register (A, B or F) into the
address indicated by the SP2.

Code: Mnemonic MSB LSB

PUSH %A 1 1 1 1 1 1 1 1 0 0 1 1 1 1FE7H
PUSH %B 1 1 1 1 1 1 1 1 0 0 1 1 0 1FE6H
PUSH %F 1 1 1 1 1 1 1 1 0 0 1 0 1 1FE5H

Flags: E I C Z
↓ – – –

Mode: Register direct
Extended addressing: Invalid

Pop top of stack into ir reg. 1 cycle

Function: ir ← ([SP1*4+3]~[SP1*4]), SP1 ← SP1 +1
Loads the 16-bit data that has been stored in the addresses (4 words) indicated by the stack
pointer SP1 (SP1 indicates the lowest address) into the ir register (X or Y), then increments the
SP1.

Code: Mnemonic MSB LSB

POP %X 1 1 1 1 1 1 1 1 0 1 0 0 1 1FE9H
POP %Y 1 1 1 1 1 1 1 1 0 1 0 1 X 1FEAH, (1FEBH)

Flags: E I C Z
↓ – – –

Mode: Register direct
Extended addressing: Invalid

118 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

PUSH %ir Push ir reg. onto stack 1 cycle

Function: ([(SP1-1)*4+3]~[(SP1-1)*4]) ← ir, SP1 ← SP1 -1
Decrements the stack pointer SP1, then stores the content of the ir register (X or Y) into the
addresses (4 words) indicated by the SP1 (SP1 indicates the lowest address).

Code: Mnemonic MSB LSB

PUSH %X 1 1 1 1 1 1 1 1 0 0 0 0 1 1FE1H
PUSH %Y 1 1 1 1 1 1 1 1 0 0 0 1 X 1FE2H, (1FE3H)

Flags: E I C Z
↓ – – –

Mode: Register direct
Extended addressing: Invalid

RET Return from subroutine 1 cycle

Function: PC ← ([SP1*4+3]~[SP1*4]), SP1 ← SP1 +1
Loads the 16-bit data (return address) that has been stored in the addresses (4 words) indicated
by the stack pointer SP1 (SP1 indicates the lowest address) into the PC to return from the
subroutine. The SP1 is incremented.

Code: Mnemonic MSB LSB

RET 1 1 1 1 1 1 1 1 1 1 0 X 0 1FF8H, (1FFAH)

Flags: E I C Z
↓ – – –

E0C63000 CORE CPU MANUAL EPSON 119

CHAPTER 4: INSTRUCTION SET

RETD imm8 Return from subroutine and load imm8 into location [X] 3 cycles

Function: PC ← ([SP1*4+3]~[SP1*4]), SP1 ← SP1 +1, [X] ← i3-0, [X+1] ← i7-4, X ← X + 2
After executing the RET instruction, stores the 8-bit immediate data imm8 into the data
memory (2 words) indicated by the X register (X register specifies the low-order address of the
2 words). The X register is incremented by 2 words.

Code: Mnemonic MSB LSB

RETD imm8 1 0 0 0 1 i7 i6 i5 i4 i3 i2 i1 i0 1100H–11FFH

Flags: E I C Z
↓ – – –

Mode: Immediate data
Extended addressing: Invalid

RETI Return from interrupt routine 2 cycles

Function: PC ← ([SP1*4+3]~[SP1*4]), SP1 ← SP1 +1, F ← [SP2], SP2 ← SP2 +1
After executing the RET instruction, loads the 4-bit data that has been stored in the address
indicated by the stack pointer SP2 into the F register, then increments the SP2. This instruction
is used for returning from interrupt routines.

Code: Mnemonic MSB LSB

RETI 1 1 1 1 1 1 1 1 1 1 0 0 1 1FF9H

Flags: E I C Z
↕ ↕ ↕ ↕

120 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

RETS

RL %r Rotate left r reg. with carry 1 cycle

Function:
Rotates the content of the r register (A or B) including the carry (C) to the left for 1 bit. The
content of the C flag moves to bit 0 of the r register and bit 3 moves to the C flag.

Code: Mnemonic MSB LSB

RL %A 1 0 0 0 0 1 1 1 1 0 0 1 0 10F2H
RL %B 1 0 0 0 0 1 1 1 1 0 1 1 0 10F6H

Flags: E I C Z
↓ – ↕ ↕

Mode: Register direct
Extended addressing: Invalid

Return and skip 2 cycles

Function: PC ← ([SP1*4+3]~[SP1*4]), SP1 ← SP1 +1, PC ← PC + 1
After executing the RET instruction, increments the PC to skip 1 instruction immediately after
the return.

Code: Mnemonic MSB LSB

RETS 1 1 1 1 1 1 1 1 1 1 0 1 1 1FFBH

Flags: E I C Z
↓ – – –

C 3 2 1 0 r

E0C63000 CORE CPU MANUAL EPSON 121

CHAPTER 4: INSTRUCTION SET

RL [%ir] Rotate left location [ir reg.] with carry 2 cycles

Function:
Rotates the content of the data memory addressed by the ir register (X or Y) including the carry
(C) to the left for 1 bit. The content of the C flag moves to bit 0 of the data memory and bit 3
moves to the C flag.

Code: Mnemonic MSB LSB

RL [%X] 1 0 0 0 0 1 1 1 0 1 0 0 0 10E8H
RL [%Y] 1 0 0 0 0 1 1 1 0 1 0 1 0 10EAH

Flags: E I C Z
↓ – ↕ ↕

Mode: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: RL [%X] Rotates the content of [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
RL [%Y] Rotates the content of [FFimm8] (FFimm8 = FF00H + 00H to FFH)

RL [%ir]+ Rotate left location [ir reg.] with carry and increment ir reg. 2 cycles

Function: , ir ← ir +1
Rotates the content of the data memory addressed by the ir register (X or Y) including the carry
(C) to the left for 1 bit. The content of the C flag moves to bit 0 of the data memory and bit 3
moves to the C flag. Then increments the ir register (X or Y). The increment result of the ir
register does not affect the flags.

Code: Mnemonic MSB LSB

RL [%X]+ 1 0 0 0 0 1 1 1 0 1 0 0 1 10E9H
RL [%Y]+ 1 0 0 0 0 1 1 1 0 1 0 1 1 10EBH

Flags: E I C Z
↓ – ↕ ↕

Mode: Register indirect
Extended addressing: Invalid

C 3 2 1 0 [ir]

C 3 2 1 0 [ir]

122 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

RR %r

RR [%ir]

Rotate right r reg. with carry 1 cycle

Function:
Rotates the content of the r register (A or B) including the carry (C) to the right for 1 bit. The
content of the C flag moves to bit 3 of the r register and bit 0 moves to the C flag.

Code: Mnemonic MSB LSB

RR %A 1 0 0 0 0 1 1 1 1 0 0 1 1 10F3H
RR %B 1 0 0 0 0 1 1 1 1 0 1 1 1 10F7H

Flags: E I C Z
↓ – ↕ ↕

Mode: Register direct
Extended addressing: Invalid

rC3 2 1 0

[ir]C3 2 1 0

Rotate right location [ir reg.] with carry 2 cycles

Function:
Rotates the content of the data memory addressed by the ir register (X or Y) including the carry
(C) to the right for 1 bit. The content of the C flag moves to bit 3 of the data memory and bit 0
moves to the C flag.

Code: Mnemonic MSB LSB

RR [%X] 1 0 0 0 0 1 1 1 0 1 1 0 0 10ECH
RR [%Y] 1 0 0 0 0 1 1 1 0 1 1 1 0 10EEH

Flags: E I C Z
↓ – ↕ ↕

Mode: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: RR [%X] Rotates the content of [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
RR [%Y] Rotates the content of [FFimm8] (FFimm8 = FF00H + 00H to FFH)

E0C63000 CORE CPU MANUAL EPSON 123

CHAPTER 4: INSTRUCTION SET

RR [%ir]+ Rotate right location [ir reg.] with carry and increment ir reg. 2 cycles

Function: , ir ← ir +1
Rotates the content of the data memory addressed by the ir register (X or Y) including the carry
(C) to the right for 1 bit. The content of the C flag moves to bit 3 of the data memory and bit 0
moves to the C flag. Then increments the ir register (X or Y). The increment result of the ir
register does not affect the flags.

Code: Mnemonic MSB LSB

RR [%X]+ 1 0 0 0 0 1 1 1 0 1 1 0 1 10EDH
RR [%Y]+ 1 0 0 0 0 1 1 1 0 1 1 1 1 10EFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Register indirect
Extended addressing: Invalid

SBC %r,%r' Subtract with carry r' reg. from r reg. 1 cycle

Function: r ← r - r' - C
Subtracts the content of the r' register (A or B) and carry (C) from the r register (A or B).

Code: Mnemonic MSB LSB

SBC %A,%A 1 1 0 0 0 1 1 1 1 0 0 0 X 18F0H, (18F1H)
SBC %A,%B 1 1 0 0 0 1 1 1 1 0 0 1 X 18F2H, (18F3H)
SBC %B,%A 1 1 0 0 0 1 1 1 1 0 1 0 X 18F4H, (18F5H)
SBC %B,%B 1 1 0 0 0 1 1 1 1 0 1 1 X 18F6H, (18F7H)

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

[ir]C3 2 1 0

124 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SBC %r,imm4 Subtract with carry immediate data imm4 from r reg. 1 cycle

Function: r ← r - imm4 - C
Subtracts the 4-bit immediate data imm4 and carry (C) from the r register (A or B).

Code: Mnemonic MSB LSB

SBC %A,imm4 1 1 0 0 0 1 1 0 0 i3 i2 i1 i0 18C0H–18CFH
SBC %B,imm4 1 1 0 0 0 1 1 0 1 i3 i2 i1 i0 18D0H–18DFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

SBC %r,[%ir] Subtract with carry location [ir reg.] from r reg. 1 cycle

Function: r ← r - [ir] - C
Subtracts the content of the data memory addressed by the ir register (X or Y) and carry (C)
from the r register (A or B).

Code: Mnemonic MSB LSB

SBC %A,[%X] 1 1 0 0 0 1 1 1 0 0 0 0 0 18E0H
SBC %A,[%Y] 1 1 0 0 0 1 1 1 0 0 0 1 0 18E2H
SBC %B,[%X] 1 1 0 0 0 1 1 1 0 0 1 0 0 18E4H
SBC %B,[%Y] 1 1 0 0 0 1 1 1 0 0 1 1 0 18E6H

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SBC %r,[%X] r ← r - [00imm8] - C (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SBC %r,[%Y] r ← r - [FFimm8] - C (FFimm8 = FF00H + 00H to FFH)

E0C63000 CORE CPU MANUAL EPSON 125

CHAPTER 4: INSTRUCTION SET

SBC %r,[%ir]+ Subtract with carry location [ir reg.] from r reg. and increment ir reg. 1 cycle

Function: r ← r - [ir] - C, ir ← ir + 1
Subtracts the content of the data memory addressed by the ir register (X or Y) and carry (C)
from the r register (A or B). Then increments the ir register (X or Y). The flags change due to the
operation result of the r register and the increment result of the ir register does not affect the
flags.

Code: Mnemonic MSB LSB

SBC %A,[%X]+ 1 1 0 0 0 1 1 1 0 0 0 0 1 18E1H
SBC %A,[%Y]+ 1 1 0 0 0 1 1 1 0 0 0 1 1 18E3H
SBC %B,[%X]+ 1 1 0 0 0 1 1 1 0 0 1 0 1 18E5H
SBC %B,[%Y]+ 1 1 0 0 0 1 1 1 0 0 1 1 1 18E7H

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

SBC [%ir],%r Subtract with carry r reg. from location [ir reg.] 2 cycles

Function: [ir] ← [ir] - r - C
Subtracts the content of the r register (A or B) and carry (C) from the data memory addressed
by the ir register (X or Y).

Code: Mnemonic MSB LSB

SBC [%X],%A 1 1 0 0 0 1 1 1 0 1 0 0 0 18E8H
SBC [%X],%B 1 1 0 0 0 1 1 1 0 1 1 0 0 18ECH
SBC [%Y],%A 1 1 0 0 0 1 1 1 0 1 0 1 0 18EAH
SBC [%Y],%B 1 1 0 0 0 1 1 1 0 1 1 1 0 18EEH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SBC [%X],%r [00imm8] ← [00imm8] - r - C (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SBC [%Y],%r [FFimm8] ← [FFimm8] - r - C (FFimm8 = FF00H + 00H to FFH)

126 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SBC [%ir]+,%r Subtract with carry r reg. from location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] - r - C, ir ← ir + 1
Subtracts the content of the r register (A or B) and carry (C) from the data memory addressed
by the ir register (X or Y). Then increments the ir register (X or Y). The flags change due to the
operation result of the data memory and the increment result of the ir register does not affect
the flags.

Code: Mnemonic MSB LSB

SBC [%X]+,%A 1 1 0 0 0 1 1 1 0 1 0 0 1 18E9H
SBC [%X]+,%B 1 1 0 0 0 1 1 1 0 1 1 0 1 18EDH
SBC [%Y]+,%A 1 1 0 0 0 1 1 1 0 1 0 1 1 18EBH
SBC [%Y]+,%B 1 1 0 0 0 1 1 1 0 1 1 1 1 18EFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

SBC [%ir],imm4 Subtract with carry immediate data imm4 from location [ir reg.] 2 cycles

Function: [ir] ← [ir] - imm4 - C
Subtracts the 4-bit immediate data imm4 and carry (C) from the data memory addressed by the
ir register (X or Y).

Code: Mnemonic MSB LSB

SBC [%X],imm4 1 1 0 0 0 1 0 0 0 i3 i2 i1 i0 1880H–188FH
SBC [%Y],imm4 1 1 0 0 0 1 0 1 0 i3 i2 i1 i0 18A0H–18AFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SBC [%X],imm4 [00imm8] ← [00imm8] - imm4 - C (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SBC [%Y],imm4 [FFimm8] ← [FFimm8] - imm4 - C (FFimm8 = FF00H + 00H to FFH)

E0C63000 CORE CPU MANUAL EPSON 127

CHAPTER 4: INSTRUCTION SET

SBC [%ir]+,imm4 Subtract with carry immediate data imm4 from location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] - imm4 - C, ir ← ir + 1
Subtracts the immediate data imm4 and carry (C) from the data memory addressed by the ir
register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation
result of the data memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

SBC [%X]+,imm4 1 1 0 0 0 1 0 0 1 i3 i2 i1 i0 1890H–189FH
SBC [%Y]+,imm4 1 1 0 0 0 1 0 1 1 i3 i2 i1 i0 18B0H–18BFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

SBC %B,%A,n4 Subtract with carry A reg. from B reg. in specified radix 2 cycles

Function: B ← N’s adjust (B - A - C)
Subtracts the content of the A register and carry (C) from the B register. The operation result is
adjusted with n4 as the radix. The C flag is set according to the radix.

Code: Mnemonic MSB LSB

SBC %B,%A,n4 1 0 0 0 0 1 1 0 0 n3 n2 n1 n0 10C0H–10CFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4
bits of the machine code (n3–n0) become 0000B.

128 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SBC %B,[%ir],n4 Subtract with carry location [ir reg.] from B reg. in specified radix 2 cycles

Function: B ← N’s adjust (B - [ir] - C)
Subtracts the content of the data memory addressed by the ir register (X or Y) and carry (C)
from the B register. The operation result is adjusted with n4 as the radix. The C flag is set
according to the radix.

Code: Mnemonic MSB LSB

SBC %B,[%X],n4 1 1 1 0 0 1 1 0 0 n3 n2 n1 n0 1CC0H–1CCFH
SBC %B,[%Y],n4 1 1 1 0 0 1 1 1 0 n3 n2 n1 n0 1CE0H–1CEFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SBC %B,[%X],n4 B ← N’s adjust (B - [00imm8] - C) (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SBC %B,[%Y],n4 B ← N’s adjust (B - [FFimm8] - C) (FFimm8 = FF00H + 00H to FFH)

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4
bits of the machine code (n3–n0) become 0000B.

SBC %B,[%ir]+,n4 Subtract with carry location [ir reg.] from B reg. in specified radix and increment ir reg. 2 cycles

Function: B ← N’s adjust (B - [ir] - C), ir ← ir + 1
Subtracts the content of the data memory addressed by the ir register (X or Y) and carry (C)
from the B register. The operation result is adjusted with n4 as the radix. Then increments the ir
register (X or Y). The flags change due to the operation result of the B register and the incre-
ment result of the ir register does not affect the flags. The C flag is set according to the radix.

Code: Mnemonic MSB LSB

SBC %B,[%X]+,n4 1 1 1 0 0 1 1 0 1 n3 n2 n1 n0 1CD0H–1CDFH
SBC %B,[%Y]+,n4 1 1 1 0 0 1 1 1 1 n3 n2 n1 n0 1CF0H–1CFFH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4
bits of the machine code (n3–n0) become 0000B.

E0C63000 CORE CPU MANUAL EPSON 129

CHAPTER 4: INSTRUCTION SET

SBC [%ir],%B,n4 Subtract with carry B reg. from location [ir reg.] in specified radix 2 cycles

Function: [ir] ← N’s adjust ([ir] - B - C)
Subtracts the content of the B register and carry (C) from the data memory addressed by the ir
register (X or Y). The operation result is adjusted with n4 as the radix. The C flag is set accord-
ing to the radix.

Code: Mnemonic MSB LSB

SBC [%X],%B,n4 1 1 1 0 0 0 1 0 0 n3 n2 n1 n0 1C40H–1C4FH
SBC [%Y],%B,n4 1 1 1 0 0 0 1 1 0 n3 n2 n1 n0 1C60H–1C6FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SBC [%X],%B,n4 [00imm8] ← N’s adjust ([00imm8] - B - C) (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SBC [%Y],%B,n4 [FFimm8] ← N’s adjust ([FFimm8] - B - C) (FFimm8 = FF00H + 00H to FFH)

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4
bits of the machine code (n3–n0) become 0000B.

SBC [%ir]+,%B,n4 Subtract with carry B reg. from location [ir reg.] in specified radix and increment ir reg. 2 cycles

Function: [ir] ← N’s adjust ([ir] - B - C), ir ← ir + 1
Subtracts the content of the B register and carry (C) from the data memory addressed by the ir
register (X or Y). The operation result is adjusted with n4 as the radix. Then increments the ir
register (X or Y). The flags change due to the operation result of the data memory and the
increment result of the ir register does not affect the flags. The C flag is set according to the
radix.

Code: Mnemonic MSB LSB

SBC [%X]+,%B,n4 1 1 1 0 0 0 1 0 1 n3 n2 n1 n0 1C50H–1C5FH
SBC [%Y]+,%B,n4 1 1 1 0 0 0 1 1 1 n3 n2 n1 n0 1C70H–1C7FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4
bits of the machine code (n3–n0) become 0000B.

130 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SBC [%ir],0,n4 Subtract carry from location [ir reg.] in specified radix 2 cycles

Function: [ir] ← N’s adjust ([ir] - 0 - C)
Subtracts the carry (C) from the data memory addressed by the ir register (X or Y). The opera-
tion result is adjusted with n4 as the radix. The C flag is set according to the radix. This instruc-
tion is useful for borrow processing of n based counters.

Code: Mnemonic MSB LSB

SBC [%X],0,n4 1 1 1 0 0 0 0 0 0 n3 n2 n1 n0 1C00H–1C0FH
SBC [%Y],0,n4 1 1 1 0 0 0 0 1 0 n3 n2 n1 n0 1C20H–1C2FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SBC [%X],0,n4 [00imm8] ← N’s adjust ([00imm8] - 0 - C) (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SBC [%Y],0,n4 [FFimm8] ← N’s adjust ([FFimm8] - 0 - C) (FFimm8 = FF00H + 00H to FFH)

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4
bits of the machine code (n3–n0) become 0000B.

SBC [%ir]+,0,n4 Subtract carry from location [ir reg.] in specified radix and increment ir reg. 2 cycles

Function: [ir] ← N’s adjust ([ir] - 0 - C), ir ← ir + 1
Subtracts the carry (C) from the data memory addressed by the ir register (X or Y). The opera-
tion result is adjusted with n4 as the radix. Then increments the ir register (X or Y). The flags
change due to the operation result of the data memory and the increment result of the ir
register does not affect the flags. The C flag is set according to the radix. This instruction is
useful for borrow processing of n based counters.

Code: Mnemonic MSB LSB

SBC [%X]+,0,n4 1 1 1 0 0 0 0 0 1 n3 n2 n1 n0 1C10H–1C1FH
SBC [%Y]+,0,n4 1 1 1 0 0 0 0 1 1 n3 n2 n1 n0 1C30H–1C3FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

Note: n4 should be specified with a value from 1 to 16. When 16 is specified for n4, the low-order 4
bits of the machine code (n3–n0) become 0000B.

E0C63000 CORE CPU MANUAL EPSON 131

CHAPTER 4: INSTRUCTION SET

SET [addr6],imm2 Set bit imm2 in location [addr6] 2 cycles

Function: [addr6] ← [addr6] ∨ (2imm2)
(addr6 = 0000H–003FH or FFC0H–FFFFH)
Sets the bit specified with the imm2 in the data memory specified with the addr6 to "1".

Code: Mnemonic MSB LSB

SET [00addr6],imm2 1 0 1 1 0 i1 i0 a5 a4 a3 a2 a1 a0 1600H–16FFH
SET [FFaddr6],imm2 1 0 1 1 1 i1 i0 a5 a4 a3 a2 a1 a0 1700H–17FFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: 6-bit absolute
Extended addressing: Invalid

SLL %r Shift left r reg. logical 1 cycle

Function:
Shifts the content of the r register (A or B) to the left for 1 bit. Bit 3 of the r register moves to the
C flag and bit 0 goes "0".

Code: Mnemonic MSB LSB

SLL %A 1 0 0 0 0 1 1 1 1 0 0 0 0 10F0H
SLL %B 1 0 0 0 0 1 1 1 1 0 1 0 0 10F4H

Flags: E I C Z
↓ – ↕ ↕

Mode: Register direct
Extended addressing: Invalid

rC 3 2 1 0 0

132 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SLL [%ir]

SLL [%ir]+ Shift left location [ir reg.] logical and increment ir reg. 2 cycles

Function: , ir ← ir + 1
Shifts the content of the data memory addressed by the ir register (X or Y) to the left for 1 bit.
Bit 3 of the r register moves to the C flag and bit 0 goes "0". Then increments the ir register (X
or Y). The increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

SLL [%X]+ 1 0 0 0 0 1 1 1 0 0 0 0 1 10E1H
SLL [%Y]+ 1 0 0 0 0 1 1 1 0 0 0 1 1 10E3H

Flags: E I C Z
↓ – ↕ ↕

Mode: Register indirect
Extended addressing: Invalid

Shift left location [ir reg.] logical 2 cycles

Function:
Shifts the content of the data memory addressed by the ir register (X or Y) to the left for 1 bit.
Bit 3 of the r register moves to the C flag and bit 0 goes "0".

Code: Mnemonic MSB LSB

SLL [%X] 1 0 0 0 0 1 1 1 0 0 0 0 0 10E0H
SLL [%Y] 1 0 0 0 0 1 1 1 0 0 0 1 0 10E2H

Flags: E I C Z
↓ – ↕ ↕

Mode: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SLL [%X] Shifts the content of [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SLL [%Y] Shifts the content of [FFimm8] (FFimm8 = FF00H + 00H to FFH)

[ir]C 3 2 1 0 0

[ir]C 3 2 1 0 0

E0C63000 CORE CPU MANUAL EPSON 133

CHAPTER 4: INSTRUCTION SET

SLP Set CPU to SLEEP mode 2 cycles

Function: Sleep
Sets the CPU to SLEEP status.
The CPU and the peripheral circuits including the oscillation circuit stops operating, thus the
power consumption is substantially reduced.
An interrupt from outside the MCU causes it to return from SLEEP status to the normal
program execution status.

Code: Mnemonic MSB LSB

SLP 1 1 1 1 1 1 1 1 1 1 1 0 1 1FFDH

Flags: E I C Z
↓ – – –

SRL %r Shift right r reg. logical 1 cycle

Function:
Shifts the content of the r register (A or B) to the right for 1 bit. Bit 0 of the r register moves to
the C flag and bit 3 goes "0".

Code: Mnemonic MSB LSB

SRL %A 1 0 0 0 0 1 1 1 1 0 0 0 1 10F1H
SRL %B 1 0 0 0 0 1 1 1 1 0 1 0 1 10F5H

Flags: E I C Z
↓ – ↕ ↕

Mode: Register direct
Extended addressing: Invalid

rC3 2 1 00

134 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SRL [%ir] Shift right location [ir reg.] logical 2 cycles

Function:
Shifts the content of the data memory addressed by the ir register (X or Y) to the right for 1 bit.
Bit 0 of the r register moves to the C flag and bit 3 goes "0".

Code: Mnemonic MSB LSB

SRL [%X] 1 0 0 0 0 1 1 1 0 0 1 0 0 10E4H
SRL [%Y] 1 0 0 0 0 1 1 1 0 0 1 1 0 10E6H

Flags: E I C Z
↓ – ↕ ↕

Mode: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SRL [%X] Shifts the content of [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SRL [%Y] Shifts the content of [FFimm8] (FFimm8 = FF00H + 00H to FFH)

SRL [%ir]+ Shift right location [ir reg.] logical and increment ir reg. 2 cycles

Function: , ir ← ir + 1
Shifts the content of the data memory addressed by the ir register (X or Y) to the right for 1 bit.
Bit 0 of the r register moves to the C flag and bit 3 goes "0". Then increments the ir register (X
or Y). The increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

SRL [%X]+ 1 0 0 0 0 1 1 1 0 0 1 0 1 10E5H
SRL [%Y]+ 1 0 0 0 0 1 1 1 0 0 1 1 1 10E7H

Flags: E I C Z
↓ – ↕ ↕

Mode: Register indirect
Extended addressing: Invalid

[ir]C3 2 1 00

[ir]C3 2 1 00

E0C63000 CORE CPU MANUAL EPSON 135

CHAPTER 4: INSTRUCTION SET

SUB %r,%r’ Subtract r’ reg. from r reg. 1 cycle

Function: r ← r - r’
Subtracts the content of the r’ register (A or B) from the r register (A or B).

Code: Mnemonic MSB LSB

SUB %A,%A 1 1 0 0 0 0 1 1 1 0 0 0 X 1870H, (1871H)
SUB %A,%B 1 1 0 0 0 0 1 1 1 0 0 1 X 1872H, (1873H)
SUB %B,%A 1 1 0 0 0 0 1 1 1 0 1 0 X 1874H, (1875H)
SUB %B,%B 1 1 0 0 0 0 1 1 1 0 1 1 X 1876H, (1877H)

Flags: E I C Z
↓ – ↕ ↕ (r ≠ r’)
↓ – ↓ ↑ (r = r’)

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

SUB %r,imm4 Subtract immediate data imm4 from r reg. 1 cycle

Function: r ← r - imm4
Subtracts the 4-bit immediate data imm4 from the r register (A or B).

Code: Mnemonic MSB LSB

SUB %A,imm4 1 1 0 0 0 0 1 0 0 i3 i2 i1 i0 1840H–184FH
SUB %B,imm4 1 1 0 0 0 0 1 0 1 i3 i2 i1 i0 1850H–185FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

136 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SUB %r,[%ir]

SUB %r,[%ir]+ Subtract location [ir reg.] from r reg. and increment ir reg. 1 cycle

Function: r ← r - [ir], ir ← ir + 1
Subtracts the content of the data memory addressed by the ir register (X or Y) from the r
register (A or B). Then increments the ir register (X or Y). The flags change due to the operation
result of the r register and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

SUB %A,[%X]+ 1 1 0 0 0 0 1 1 0 0 0 0 1 1861H
SUB %A,[%Y]+ 1 1 0 0 0 0 1 1 0 0 0 1 1 1863H
SUB %B,[%X]+ 1 1 0 0 0 0 1 1 0 0 1 0 1 1865H
SUB %B,[%Y]+ 1 1 0 0 0 0 1 1 0 0 1 1 1 1867H

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

Subtract location [ir reg.] from r reg. 1 cycle

Function: r ← r - [ir]
Subtracts the content of the data memory addressed by the ir register (X or Y) from the r
register (A or B).

Code: Mnemonic MSB LSB

SUB %A,[%X] 1 1 0 0 0 0 1 1 0 0 0 0 0 1860H
SUB %A,[%Y] 1 1 0 0 0 0 1 1 0 0 0 1 0 1862H
SUB %B,[%X] 1 1 0 0 0 0 1 1 0 0 1 0 0 1864H
SUB %B,[%Y] 1 1 0 0 0 0 1 1 0 0 1 1 0 1866H

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SUB %r,[%X] r ← r - [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SUB %r,[%Y] r ← r - [FFimm8] (FFimm8 = FF00H + 00H to FFH)

E0C63000 CORE CPU MANUAL EPSON 137

CHAPTER 4: INSTRUCTION SET

SUB [%ir],%r

SUB [%ir]+,%r Subtract r reg. from location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] - r, ir ← ir + 1
Subtracts the content of the r register (A or B) from the data memory addressed by the ir
register (X or Y). Then increments the ir register (X or Y). The flags change due to the operation
result of the data memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

SUB [%X]+,%A 1 1 0 0 0 0 1 1 0 1 0 0 1 1869H
SUB [%X]+,%B 1 1 0 0 0 0 1 1 0 1 1 0 1 186DH
SUB [%Y]+,%A 1 1 0 0 0 0 1 1 0 1 0 1 1 186BH
SUB [%Y]+,%B 1 1 0 0 0 0 1 1 0 1 1 1 1 186FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

Subtract r reg. from location [ir reg.] 2 cycles

Function: [ir] ← [ir] - r
Subtracts the content of the r register (A or B) from the data memory addressed by the ir
register (X or Y).

Code: Mnemonic MSB LSB

SUB [%X],%A 1 1 0 0 0 0 1 1 0 1 0 0 0 1868H
SUB [%X],%B 1 1 0 0 0 0 1 1 0 1 1 0 0 186CH
SUB [%Y],%A 1 1 0 0 0 0 1 1 0 1 0 1 0 186AH
SUB [%Y],%B 1 1 0 0 0 0 1 1 0 1 1 1 0 186EH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SUB [%X],%r [00imm8] ← [00imm8] - r (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SUB [%Y],%r [FFimm8] ← [FFimm8] - r (FFimm8 = FF00H + 00H to FFH)

138 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

SUB [%ir],imm4 Subtract immediate data imm4 from location [ir reg.] 2 cycles

Function: [ir] ← [ir] - imm4
Subtracts the 4-bit immediate data imm4 from the data memory addressed by the ir register (X
or Y).

Code: Mnemonic MSB LSB

SUB [%X],imm4 1 1 0 0 0 0 0 0 0 i3 i2 i1 i0 1800H–180FH
SUB [%Y],imm4 1 1 0 0 0 0 0 1 0 i3 i2 i1 i0 1820H–182FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: SUB [%X],imm4 [00imm8] ← [00imm8] - imm4 (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
SUB [%Y],imm4 [FFimm8] ← [FFimm8] - imm4 (FFimm8 = FF00H + 00H to FFH)

SUB [%ir]+,imm4 Subtract immediate data imm4 from location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] - imm4, ir ← ir + 1
Subtracts the 4-bit immediate data imm4 from the data memory addressed by the ir register (X
or Y). Then increments the ir register (X or Y). The flags change due to the operation result of
the data memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

SUB [%X]+,imm4 1 1 0 0 0 0 0 0 1 i3 i2 i1 i0 1810H–181FH
SUB [%Y]+,imm4 1 1 0 0 0 0 0 1 1 i3 i2 i1 i0 1830H–183FH

Flags: E I C Z
↓ – ↕ ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 139

CHAPTER 4: INSTRUCTION SET

TST [addr6],imm2

XOR %r,%r’ Exclusive OR r’ reg. and r reg. 1 cycle

Function: r ← r ∀ r’
Performs an exclusive OR operation of the content of the r’ register (A or B) and the content of
the r register (A or B), and stores the result in the r register.

Code: Mnemonic MSB LSB

XOR %A,%A 1 1 0 1 1 1 1 1 1 0 0 0 X 1BF0H, (1BF1H)
XOR %A,%B 1 1 0 1 1 1 1 1 1 0 0 1 X 1BF2H, (1BF3H)
XOR %B,%A 1 1 0 1 1 1 1 1 1 0 1 0 X 1BF4H, (1BF5H)
XOR %B,%B 1 1 0 1 1 1 1 1 1 0 1 1 X 1BF6H, (1BF7H)

Flags: E I C Z
↓ – – ↕ (r ≠ r’)
↓ – – ↑ (r = r’)

Mode: Src: Register direct
Dst: Register direct
Extended addressing: Invalid

Test bit imm2 in location [addr6] 1 cycle

Function: [addr6] ∨ (2imm2)
(addr6 = 0000H–003FH or FFC0H–FFFFH)
Tests the bit specified with the imm2 in the data memory specified with the addr6, and sets/
resets the Z flag. It does not change the content of the data memory.

Code: Mnemonic MSB LSB

TST [00addr6],imm2 1 0 0 1 0 i1 i0 a5 a4 a3 a2 a1 a0 1200H–12FFH
TST [FFaddr6],imm2 1 0 0 1 1 i1 i0 a5 a4 a3 a2 a1 a0 1300H–13FFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: 6-bit absolute
Extended addressing: Invalid

140 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

XOR %r,imm4 Exclusive OR immediate data imm4 and r reg. 1 cycle

Function: r ← r ∀ imm4
Performs an exclusive OR operation of the 4-bit immediate data imm4 and the content of the r
register (A or B), and stores the result in the r register.

Code: Mnemonic MSB LSB

XOR %A,imm4 1 1 0 1 1 1 1 0 0 i3 i2 i1 i0 1BC0H–1BCFH
XOR %B,imm4 1 1 0 1 1 1 1 0 1 i3 i2 i1 i0 1BD0H–1BDFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

XOR %F,imm4 Exclusive OR immediate data imm4 and F reg. 1 cycle

Function: F ← F ∀ imm4
Performs an exclusive OR operation of the 4-bit immediate data imm4 and the content of the F
(flag) register, and stores the result in the r register. It is possible to set/reset any flag.

Code: Mnemonic MSB LSB

XOR %F,imm4 1 0 0 0 0 1 0 1 0 i3 i2 i1 i0 10A0H–10AFH

Flags: E I C Z
↕ ↕ ↕ ↕

Mode: Src: Immediate data
Dst: Register direct
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 141

CHAPTER 4: INSTRUCTION SET

XOR %r,[%ir] Exclusive OR location [ir reg.] and r reg. 1 cycle

Function: r ← r ∀ [ir]
Performs an exclusive OR operation of the content of the data memory addressed by the ir
register (X or Y) and the content of the r register (A or B), and stores the result in the r register.

Code: Mnemonic MSB LSB

XOR %A,[%X] 1 1 0 1 1 1 1 1 0 0 0 0 0 1BE0H
XOR %A,[%Y] 1 1 0 1 1 1 1 1 0 0 0 1 0 1BE2H
XOR %B,[%X] 1 1 0 1 1 1 1 1 0 0 1 0 0 1BE4H
XOR %B,[%Y] 1 1 0 1 1 1 1 1 0 0 1 1 0 1BE6H

Flags: E I C Z
↓ – – ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: XOR %r,[%X] r ← r ∀ [00imm8] (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
XOR %r,[%Y] r ← r ∀ [FFimm8] (FFimm8 = FF00H + 00H to FFH)

XOR %r,[%ir]+ Exclusive OR location [ir reg.] and r reg. and increment ir reg. 1 cycle

Function: r ← r ∀ [ir], ir ← ir + 1
Performs an exclusive OR operation of the content of the data memory addressed by the ir
register (X or Y) and the content of the r register (A or B), and stores the result in the r register.
Then increments the ir register (X or Y). The flags change due to the operation result of the r
register and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

XOR %A,[%X]+ 1 1 0 1 1 1 1 1 0 0 0 0 1 1BE1H
XOR %A,[%Y]+ 1 1 0 1 1 1 1 1 0 0 0 1 1 1BE3H
XOR %B,[%X]+ 1 1 0 1 1 1 1 1 0 0 1 0 1 1BE5H
XOR %B,[%Y]+ 1 1 0 1 1 1 1 1 0 0 1 1 1 1BE7H

Flags: E I C Z
↓ – – ↕

Mode: Src: Register indirect
Dst: Register direct
Extended addressing: Invalid

142 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

XOR [%ir],%r Exclusive OR r reg. and location [ir reg.] 2 cycles

Function: [ir] ← [ir] ∀ r
Performs an exclusive OR operation of the content of the r register (A or B) and the content of
the data memory addressed by the ir register (X or Y), and stores the result in that address.

Code: Mnemonic MSB LSB

XOR [%X],%A 1 1 0 1 1 1 1 1 0 1 0 0 0 1BE8H
XOR [%X],%B 1 1 0 1 1 1 1 1 0 1 1 0 0 1BECH
XOR [%Y],%A 1 1 0 1 1 1 1 1 0 1 0 1 0 1BEAH
XOR [%Y],%B 1 1 0 1 1 1 1 1 0 1 1 1 0 1BEEH

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: XOR [%X],%r [00imm8] ← [00imm8] ∀ r (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
XOR [%Y],%r [FFimm8] ← [FFimm8] ∀ r (FFimm8 = FF00H + 00H to FFH)

XOR [%ir]+,%r Exclusive OR r reg. and location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] ∀ r, ir ← ir + 1
Performs an exclusive OR operation of the content of the r register (A or B) and the content of
the data memory addressed by the ir register (X or Y), and stores the result in that address.
Then increments the ir register (X or Y). The flags change due to the operation result of the data
memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

XOR [%X]+,%A 1 1 0 1 1 1 1 1 0 1 0 0 1 1BE9H
XOR [%X]+,%B 1 1 0 1 1 1 1 1 0 1 1 0 1 1BEDH
XOR [%Y]+,%A 1 1 0 1 1 1 1 1 0 1 0 1 1 1BEBH
XOR [%Y]+,%B 1 1 0 1 1 1 1 1 0 1 1 1 1 1BEFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Register direct
Dst: Register indirect
Extended addressing: Invalid

E0C63000 CORE CPU MANUAL EPSON 143

CHAPTER 4: INSTRUCTION SET

XOR [%ir],imm4 Exclusive OR immediate data imm4 and location [ir reg.] 2 cycles

Function: [ir] ← [ir] ∀ imm4
Performs an exclusive OR operation of the 4-bit immediate data imm4 and the content of the
data memory addressed by the ir register (X or Y), and stores the result in that address.

Code: Mnemonic MSB LSB

XOR [%X],imm4 1 1 0 1 1 1 0 0 0 i3 i2 i1 i0 1B80H–1B8FH
XOR [%Y],imm4 1 1 0 1 1 1 0 1 0 i3 i2 i1 i0 1BA0H–1BAFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Valid

Extended LDB %EXT,imm8
operation: XOR [%X],imm4 [00imm8] ← [00imm8] ∀ imm4 (00imm8 = 0000H + 00H to FFH)

LDB %EXT,imm8
XOR [%Y],imm4 [FFimm8] ← [FFimm8] ∀ imm4 (FFimm8 = FF00H + 00H to FFH)

XOR [%ir]+,imm4 Exclusive OR immediate data imm4 and location [ir reg.] and increment ir reg. 2 cycles

Function: [ir] ← [ir] ∀ imm4, ir ← ir + 1
Performs an exclusive OR operation of the 4-bit immediate data imm4 and the content of the
data memory addressed by the ir register (X or Y), and stores the result in that address. Then
increments the ir register (X or Y). The flags change due to the operation result of the data
memory and the increment result of the ir register does not affect the flags.

Code: Mnemonic MSB LSB

XOR [%X]+,imm4 1 1 0 1 1 1 0 0 1 i3 i2 i1 i0 1B90H–1B9FH
XOR [%Y]+,imm4 1 1 0 1 1 1 0 1 1 i3 i2 i1 i0 1BB0H–1BBFH

Flags: E I C Z
↓ – – ↕

Mode: Src: Immediate data
Dst: Register indirect
Extended addressing: Invalid

144 EPSON E0C63000 CORE CPU MANUAL

CHAPTER 4: INSTRUCTION SET

Index

ADC %r,%r’ 61

ADC %r,imm4 61

ADC %r,[%ir] 62

ADC %r,[%ir]+ 62

ADC [%ir],%r 63

ADC [%ir]+,%r 63

ADC [%ir],imm4 64

ADC [%ir]+,imm4 ... 64

ADC %B,%A,n4 65

ADC %B,[%ir],n4 ... 65

ADC %B,[%ir]+,n4 . 66

ADC [%ir],%B,n4 ... 66

ADC [%ir]+,%B,n4 . 67

ADC [%ir],0,n4 67

ADC [%ir]+,0,n4 68

ADD %r,%r’ 68

ADD %r,imm4 69

ADD %r,[%ir] 69

ADD %r,[%ir]+ 70

ADD [%ir],%r 70

ADD [%ir]+,%r 71

ADD [%ir],imm4 71

ADD [%ir]+,imm4 ... 72

ADD %ir,%BA 72

ADD %ir,sign8........ 73

AND %r,%r’ 73

AND %r,imm4 74

AND %F,imm4 74

AND %r,[%ir] 75

AND %r,[%ir]+ 75

AND [%ir],%r 76

AND [%ir]+,%r 76

AND [%ir],imm4 77

AND [%ir]+,imm4 ... 77

BIT %r,%r’ 78

BIT %r,imm4 78

BIT %r,[%ir] 79

BIT %r,[%ir]+ 79

BIT [%ir],%r 80

BIT [%ir]+,%r.......... 80

BIT [%ir],imm4 81

BIT [%ir]+,imm4 81

CALR [addr6] 82

CALR sign8 82

CALZ imm8 83

CLR [addr6],imm2 . 83

CMP %r,%r’ 84

CMP %r,imm4 84

CMP %r,[%ir] 85

CMP %r,[%ir]+ 85

CMP [%ir],%r 86

CMP [%ir]+,%r 86

CMP [%ir],imm4 87

CMP [%ir]+,imm4 ... 87

CMP %ir,imm8 88

DEC [addr6] 88

DEC [%ir],n4 89

DEC [%ir]+,n4 89

DEC %sp 90

EX %A,%B 90

EX %r,[%ir] 91

EX %r,[%ir]+ 91

HALT 92

INC [addr6] 92

INC [%ir],n4 93

INC [%ir]+,n4 93

INC %sp 94

INT imm6 94

JP %Y 95

JR %A 95

JR %BA.................. 96

JR [addr6] 96

JR sign8 97

JRC sign8 97

JRNC sign8 98

JRNZ sign8 98

JRZ sign8 99

LD %r,%r’ 99

LD %r,imm4 100

LD %r,[%ir] 100

LD %r,[%ir]+ 101

LD [%ir],%r 101

LD [%ir]+,%r 102

LD [%ir],imm4 102

LD [%ir]+,imm4 103

LD [%ir],[%ir’] 103

LD [%ir],[%ir’]+ 104

LD [%ir]+,[%ir’] 104

LD [%ir]+,[%ir’]+ ... 105

LDB %BA,imm8 105

LDB %BA,[%ir]+ ... 106

LDB %BA,%EXT... 106

LDB %BA,%rr 107

LDB %BA,%sp 107

LDB [%ir]+,%BA ... 108

LDB [%X]+,imm8 .. 108

LDB %EXT,imm8 .. 109

LDB %EXT,%BA ... 109

LDB %rr,imm8....... 110

LDB %rr,%BA 110

LDB %sp,%BA 111

NOP 111

OR %r,%r’ 112

OR %r,imm4 112

OR %F,imm4 113

OR %r,[%ir] 113

OR %r,[%ir]+ 114

OR [%ir],%r 114

OR [%ir]+,%r 115

OR [%ir],imm4 115

OR [%ir]+,imm4 116

POP %r 116

POP %ir 117

PUSH %r 117

PUSH %ir 118

RET 118

RETD imm8 119

RETI 119

RETS 120

RL %r 120

RL [%ir] 121

RL [%ir]+ 121

RR %r 122

RR [%ir] 122

RR [%ir]+ 123

SBC %r,%r’ 123

SBC %r,imm4 124

SBC %r,[%ir] 124

SBC %r,[%ir]+ 125

SBC [%ir],%r 125

SBC [%ir]+,%r 126

SBC [%ir],imm4 126

SBC [%ir]+,imm4 ..127

SBC %B,%A,n4 127

SBC %B,[%ir],n4 .. 128

SBC %B,[%ir]+,n4 128

SBC [%ir],%B,n4 .. 129

SBC [%ir]+,%B,n4 129

SBC [%ir],0,n4 130

SBC [%ir]+,0,n4 130

SET [addr6],imm2 .131

SLL %r 131

SLL [%ir] 132

SLL [%ir]+ 132

SLP 133

SRL %r 133

SRL [%ir] 134

SRL [%ir]+ 134

SUB %r,%r’ 135

SUB %r,imm4 135

SUB %r,[%ir] 136

SUB %r,[%ir]+ 136

SUB [%ir],%r 137

SUB [%ir]+,%r 137

SUB [%ir],imm4 138

SUB [%ir]+,imm4 ..138

TST [addr6],imm2 .139

XOR %r,%r’ 139

XOR %r,imm4 140

XOR %F,imm4 140

XOR %r,[%ir] 141

XOR %r,[%ir]+ 141

XOR [%ir],%r 142

XOR [%ir]+,%r 142

XOR [%ir],imm4 143

XOR [%ir]+,imm4 ..143

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Muenchen, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
2.4 Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-Dong
Youngdeungpo-Ku, Seoul, 150-010, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings .

ELECTRONIC DEVICES MARKETING DIVISION

■ Electronic devices information on Epson WWW server

http://www.epson.co.jp/device/
First issue JULY 1995, Printed SEPTEMBER 1999 in Japan M A

	 伀唀吀䰀䤀一䔀
	1.1 Features
	1.2 Instruction Set Features
	1.3 Block Diagram
	1.4 Input-Output Signals

	㈀ 䄀刀䌀䠀䤀吀䔀䌀吀唀刀䔀
	2.1 ALU and Registers
	2.1.1 ALU
	2.1.2 Register configuration
	2.1.3 Flags
	2.1.4 Arithmetic operations with numbering system
	2.1.5 EXT register and data extension

	2.2 Program Memory
	2.2.1 Configuration of program memory
	2.2.2 PC (program counter)
	2.2.3 Branch instructions
	2.2.4 Table look-up instruction

	2.3 Data Memory
	2.3.1 Configuration of data memory
	2.3.2 Addressing for data memory
	2.3.3 Stack and stack pointer
	2.3.4 Memory mapped I/O

	㌀ 䌀倀唀 伀倀䔀刀䄀吀䤀伀一
	3.1 Timing Generator and Bus Cycle
	3.2 Instruction Fetch and Execution
	3.3 Data Bus (Data Memory) Control
	3.3.1 Data bus status
	3.3.2 High-impedance control
	3.3.3 Interrupt vector read
	3.3.4 Memory write
	3.3.5 Memory read

	3.4 Initial Reset
	3.4.1 Initial reset sequence
	3.4.2 Initial setting of internal registers

	3.5 Interrupts
	3.5.1 Interrupt vectors
	3.5.2 Interrupt sequence
	3.5.3 Notes for interrupt processing

	3.6 Standby Status
	3.6.1 HALT status
	3.6.2 SLEEP status

	㐀 䤀一匀吀刀唀䌀吀䤀伀一 匀䔀吀
	4.1 Addressing Mode
	4.1.1 Basic addressing modes
	4.1.2 Extended addressing mode

	4.2 Instruction List
	4.2.1 Function classification
	4.2.2 Symbol meanings
	4.2.3 Instruction list by function
	4.2.4 List in alphabetical order
	4.2.5 List of extended addressing instructions

	4.3 Instruction Formats
	4.4 Detailed Explanation of Instructions

