MF859-04

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

E0C6S32 Technical Hardware E0C6S32 Technical Software

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. Please note that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it now reads "E0C".

PREFACE

This manual is individually described about the hardware and the software of the E0C6S32.

I. E0C6S32 Technical Hardware

This part explains the function of the E0C6S32, the circuit configurations, and details the controlling method.

II. E0C6S32 Technical Software

This part explains the programming method of the E0C6S32.

E0C6S32 Technical Hardware

CONTENTS

CHAPTER 1	OVI	ERVIEW	I-1
	1.1	Configuration	. I-1
	1.2	Features	. I-2
	1.3	Block Diagram	. I-3
	1.4	Pin Layout Diagram	. I-4
	1.5	Pin Description	. I-5
CHAPTER 2	POV	WER SUPPLY AND INITIAL RESET	I-6
	2.1	Power Supply	I-6
	2.2	Initial Reset Reset pin (RESET) Simultaneous high input to input ports (K00–K03) Watchdog timer (Auxiliary reset) Oscillation detection circuit (Auxiliary reset) Internal register at initial setting	I-11 I-11 I-11 I-12
	2.3	Test Terminal (TEST)	I-12
CHAPTER 3	CPL	J, ROM, RAM	I-13
	3.1	CPU	I-13
	3.2	ROM	I-14
	3.3	RAM	I-15
CHAPTER 4	PER	IPHERAL CIRCUITS AND OPERATION	I-16
	4.1	Memory Map	I-16
	4.2	Resetting Watchdog Timer Configuration of watchdog timer Mask option Control of watchdog timer Programming note	I-24 I-24 I-25

4.3	Oscillation Circuit	I-26
	OSC1 oscillation circuit	I-26
	OSC3 oscillation circuit	I-26
	Configuration of oscillation circuit	I-28
	Control of oscillation circuit	I-29
	Programming notes	I-30
4.4	Input Ports (K00–K03, K10)	I-31
	Configuration of input ports	I-31
	Differential registers and interrupt function	
	Mask option	
	Control of input ports	
	Programming notes	
4.5	Output Ports (R00–R03, R10–R13)	I-40
1.0	Configuration of output ports	
	Mask option	
	Control of output ports	
	Programming note	
4.6	I/O Ports (P00–P03, P10–P13)	
4.0	Configuration of I/O ports	
	I/O control register and I/O mode	
	Mask option	
	Control of I/O ports	
	Programming notes	
4.7	LCD Driver (COM0–3, SEG0–37)	I-51
	Configuration of LCD driver	I-51
	Switching between dynamic and ALL OFF	I-56
	Mask option (segment allocation)	I-57
	Control of LCD driver	I-59
	Programming notes	I-60
4.8	Clock Timer	I-61
	Configuration of clock timer	I-61
	Interrupt function	I-62
	Control of clock timer	I-63
	Programming notes	I-65

4.9	Stopwatch Counter	I-66
	Configuration of stopwatch counter	I-66
	Count-up pattern	I-67
	Interrupt function	I-68
	Control of stopwatch counter	I-69
	Programming notes	I-72
4.10	Event Counter	I-73
	Configuration of event counter	I-73
	Operation of event counter	I-73
	Mask option	I-74
	Control of event counter	I-75
	Programming note	I-76
4.11	Analog Comparator	I-77
	Configuration of analog comparator	I-77
	Operation of analog comparator	I-77
	Control of analog comparator	I-78
	Programming notes	I-79
4.12	Supply Voltage Detection (SVD) Circuit	
	and Heavy Load Protection Function	I-80
	Configuration of SVD circuit	I-80
	Heavy load protection function	I-81
	Detection timing of SVD circuit	I-82
	Control of SVD circuit	I-84
	Programing notes	I-86
4.13	Interrupt and HALT	I-88
	Interrupt factors	I-90
	Specific masks and factor flags for interrupt	I-91
	Interrupt vectors	I-92
	Control of interrupt and HALT	I-93
	Programming notes	I-96

CHAPTER 5	SUM	IMARY OF NOTES	I-97
	5.1	Notes for Low Current Consumption	I-97
	5.2	Summary of Notes by Function	I-98
CHAPTER 6		GRAM OF BASIC ERNAL CONNECTIONS	I-104
CHAPTER 7	ELEC	CTRICAL CHARACTERISTICS	I-107
	7.1	Absolute Maximum Rating	I-107
	7.2	Recommended Operating Conditions	I-108
	7.3	DC Characteristics	I-109
	7.4	Analog Circuit Characteristics and Consumed Current	I-111
	7.5	Oscillation Characteristics	I-119
CHAPTER 8	PAC	CKAGE	I-124
	8.1	Plastic Package	I-124
	8.2	Ceramic Package for Test Samples	I-126
CHAPTER 9	PAD	LAYOUT	I-127
	9.1	Diagram of Pad Layout	I-127
	9.2	Pad Coordinates	I-128

CHAPTER 1

OVERVIEW

The E0C6S32 Series is a single-chip microcomputer made up of the 4-bit core CPU E0C6200A, ROM (2,048 words, 12 bits to a word), RAM (144 words, 4 bits to a word) LCD driver circuit, analog comparator, event counter, watchdog timer, and two types of time base counter. Because of its low-voltage operation and low power consumption, this series is ideal for a wide range of applications, and is especially suitable for battery-driven systems. Furthermore, the E0C6S32 is a shrunk model of the E0C6232. It can be used as various controller applications such as a clock, game and pager.

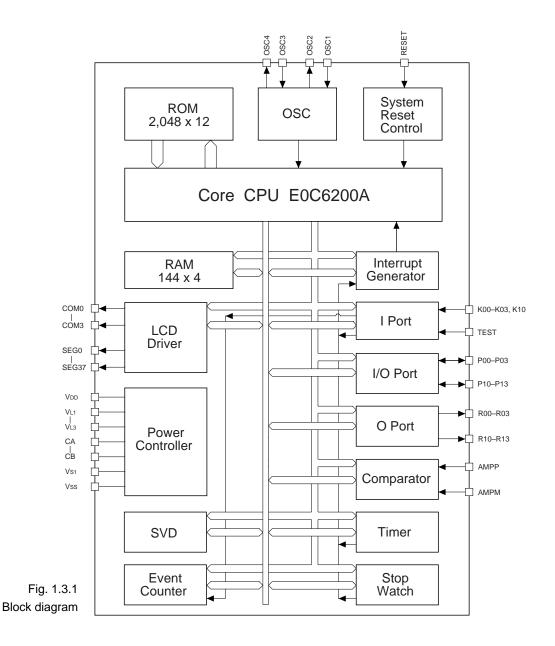
1.1 Configuration

The E0C6S32 Series is configured as follows, depending on supply voltage and oscillation circuits.

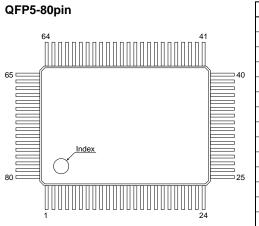
Model	E0C6S32	E0C6SL32	E0C6SB32	E0C6SA32
Supply Voltage	1.8*–3.6 V	0.9–1.8 V	0.9–3.6 V	1.8*–3.6 V
External LCD Power Supply	Supports 3.0 V LCD panels	Supports 3.0 V LCD panels	Not supported	Supports 4.5/3.0 V LCD panels
Oscillation		OSC1 only		OSC1 and OSC3
Circuits		(Twin Clock)		

 * Applications that display with an LCD panel require at least 2.2 V of supply voltage because a voltage less than 2.2 V lowers the LCD drive voltage.

1.2 Features


		E0C6S32	E0C6SL32	E0C6SB32	E0C6SA32		
OSC1 oscillation	n circuit	Crystal oscillation circ	uit 32.768 kHz (Typ.)				
OSC3 oscillation	n circuit	No setting	No setting				
				1 MHz (Typ.)			
Instruction sets		100 types					
Instruction exec	ution time	153 µsec, 214 µsec, 36	66 μsec (CLK = 32.768	kHz)			
(differs dependi	ng oninstruction)				5 µsec, 7 µsec, 12 µsec		
(CLK: CPU ope	ration frequency)				(CLK = 1 MHz)		
ROM capacity		2,048 words, 12 bits p	er word				
RAM capacity		144 words, 4 bits per v	vord				
Input ports		5 bits (pull-down resis	tor can be added throug	gh mask option)			
Output ports		8 bits (BZ, BZ, FOUT	outputs are available th	nrough mask option)			
Input/output por	ts	8 bits (pull-down resistor is added during input data read-out)					
LCD driver		Either 38 segments × 4 or 3 or 2 common *1					
		V-3V 1/4 or 1/3 or 1/2 duty (regulated voltage circut and booster voltage circuit built-in)					
Time base count	ter	Two types (timer and stopwatch)					
Watchdog timer	-	Built-in (can be disabled through mask option)					
Event counter		One 8-bit inputs					
Analog compara	ator	Inverted input x 1, noninverted input x 1					
Supply voltage d	etection circuit (SVD)	2.4 V	1.2 V	1.2 V	2.4 V		
External interrup	pt	Input port interrupt; du	al system				
Internal interrup	ot	Time base counter inte	errupt; dual system				
Supply voltage 3	*2	3.0 V (1.8–3.6 V)	1.5 V (0.9–1.8 V)	1.5 V (0.9–3.6 V)	3.0 V (1.8–3.6 V)		
Consumed	CLK = 32.768 kHz	1.2 µA	1.0 µA	1.0 µA	1.5 µA		
current	(when halted)	1.2 μΑ	1.0 μΑ	1.0 μΑ	1.5 μΑ		
	CLK = 32.768 kHz	4.5 μΑ	4.0 µA	4.0 µA	6.0 µA		
(Typ. value)	(when executed)	т.5 µЛ	4.0 µA	τ.υ μΛ	0.0 μΑ		
	CLK = 1 MHz	_	_	_	300 µA		
	(when executed)	_	_		500 µA		
Form when ship	ped	80-pin QFP (plastic) o	r chip				

*1 Selected by mask option


*2 The supply voltage range of the E0C6S32 and E0C6SA32 is 2.2 to 3.6 V when an LCD panel is used.

In this manual, BLD and SVD (supply voltage detection) have the same meaning.

1.3 Block Diagram

1.4 Pin Layout Diagram

Pin No.	Pin Name						
1	SEG17	21	SEG36	41	R00	61	COM2
2	TEST	22	SEG37	42	R12	62	COM1
3	SEG18	23	AMPP	43	R11	63	COM0
4	SEG19	24	AMPM	44	R10	64	SEG0
5	SEG20	25	K10	45	R13	65	SEG1
6	SEG21	26	K03	46	Vss	66	SEG2
7	SEG22	27	K02	47	RESET	67	SEG3
8	SEG23	28	K01	48	OSC4	68	SEG4
9	SEG24	29	K00	49	OSC3	69	SEG5
10	SEG25	30	P03	50	VS1	70	SEG6
11	SEG26	31	P02	51	OSC2	71	SEG7
12	SEG27	32	P01	52	OSC1	72	SEG8
13	SEG28	33	P00	53	VDD	73	SEG9
14	SEG29	34	P13	54	VL3	74	SEG10
15	SEG30	35	P12	55	VL2	75	SEG11
16	SEG31	36	P11	56	VL1	76	SEG12
17	SEG32	37	P10	57	N.C.	77	SEG13
18	SEG33	38	R03	58	CB	78	SEG14
19	SEG34	39	R02	59	CA	79	SEG15
20	SEG35	40	R01	60	COM3	80	SEG16

N.C.: No connection

Pin No.	Pin Name						
1	AMPP	21	R11	41	COM0	61	SEG18
2	AMPM	22	R10	42	SEG0	62	SEG19
3	K10	23	R13	43	SEG1	63	SEG20
4	K03	24	Vss	44	SEG2	64	SEG21
5	K02	25	RESET	45	SEG3	65	SEG22
6	K01	26	OSC4	46	SEG4	66	SEG23
7	K00	27	OSC3	47	SEG5	67	SEG24
8	P03	28	VS1	48	SEG6	68	SEG25
9	P02	29	OSC2	49	SEG7	69	SEG26
10	P01	30	OSC1	50	SEG8	70	SEG27
11	P00	31	VDD	51	SEG9	71	SEG28
12	P13	32	VL3	52	SEG10	72	SEG29
13	P12	33	VL2	53	SEG11	73	SEG30
14	P11	34	VL1	54	SEG12	74	SEG31
15	P10	35	N.C.	55	SEG13	75	SEG32
16	R03	36	CB	56	SEG14	76	SEG33
17	R02	37	CA	57	SEG15	77	SEG34
18	R01	38	COM3	58	SEG16	78	SEG35
19	R00	39	COM2	59	SEG17	79	SEG36
20	R12	40	COM1	60	TEST	80	SEG37

QFP14-80pin

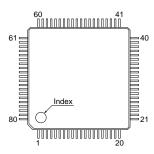


Fig. 1.4.1(b) Pin layout diagram

N.C.: No connection

Fig. 1.4.1(a) Pin layout diagram

1.5 Pin Description

Die Norse	Pin N	umber	Input/	Function	
Pin Name	QFP5-80	QFP14-80	Output		
Vdd	53	31	(I)	Power source positive terminal	
Vss	46	24	(I)	Power source negative terminal	
VS1	50	28	_	Constant voltage output terminal for oscillation	
VL1	56	34	_	Constant voltage output terminal for LCD (approx1.05 V)	
VL2	55	33	_	Booster output terminal for LCD (VL1 \times 2)	
VL3	54	32	-	Booster output terminal for LCD (VL1 \times 3)	
CA, CB	58, 59	36, 37	-	Booster condenser connector terminal	
OSC1	52	30	Ι	Crystal oscillator input terminal	
OSC2	51	29	0	Crystal oscillator output terminal	
OSC3	49	27	Ι	*1	
OSC4	48	26	0	*2	
K00–10	25–29	3–7	Ι	Input terminal	
P00–13	30–37	8–15	I/O	Input/output terminal	
R00–03	38–41	16–19	0	Output terminal	
R10	44	22	Ο	Output terminal (Can output BZ through mask option.)	
R13	45	23	Ο	Output terminal (Can output $\overline{\text{BZ}}$ through mask option.)	
R11	43	21	Ο	Output terminal	
R12	42	20	Ο	Output terminal (Can output FOUT through mask option.)	
AMPP	23	1	Ι	Analog comparator noninverted input terminal	
AMPM	24	2	Ι	Analog comparator inverted input terminal	
SEG0-37	1, 3–22,	42–59,	0	LCD segment output terminal	
	64–80	61–80		(DC output available through mask option.)	
COM0-3	60–63	38–41	0	LCD common output terminal	
RESET	47	25	Ι	Initial setting input terminal	
TEST	2	60	Ι	Test input terminal	

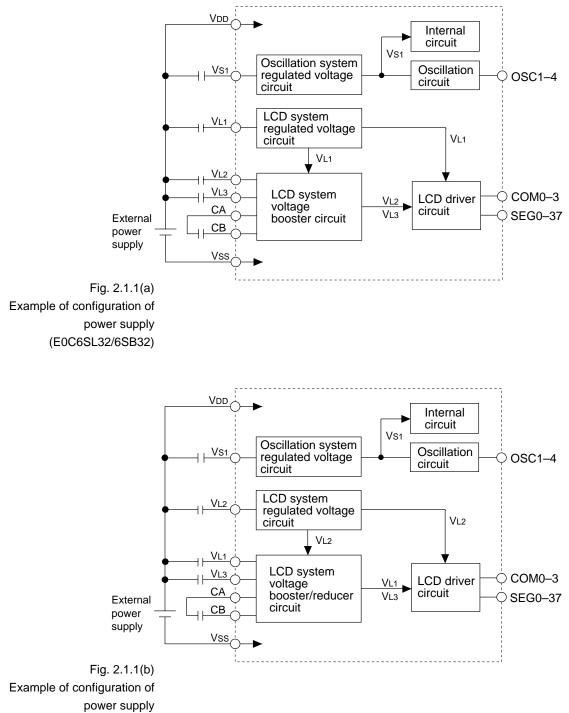
Table 1.5.1 Pin description

*1 6S32/6SL32/6SB32: Not connected

	6SA32:	CR or ceramic oscillation input terminal
		(Switchable through mask option.)
*2	6S32/6SL32/6SB32:	Not connected
	6SA32:	CR or ceramic oscillation output terminal
		(Switchable through mask option.)

CHAPTER 2 POWER SUPPLY AND INITIAL RESET

2.1 Power Supply

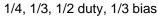

With a single external power supply (*1) supplied to VDD through Vss, the EOC6S32 Series generates the necessary internal voltage with the regulated voltage circuit (<Vs1> for oscillators, <VL1> for LCDs) and the voltage booster circuit (<VL2, VL3> for LCDs). Or the EOC6S32 Series generates the necessary internal voltage with the regulated voltage circuit (<Vs1> for oscillators, <VL2> for LCDs) and the voltage booster circuit (<VL1, VL3> for LCDs).

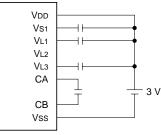
Figures 2.1.1(a) and 2.1.1(b) show the configuration of power supply.

*1 Supply voltage: 6S32 .. 1.8 (2.2)-3.6 V 6SL32 .. 0.9-1.8 V 6SB32 .. 0.9-3.6 V 6SA32 .. 1.8 (2.2)-3.6 V The values enclosed with () are mini-

mum voltages for applications that use LCD display.

- Note External loads cannot be driven by the regulated voltage and voltage booster circuit's output voltage.
 - See "7 ELECTRICAL CHARACTERISTICS" for voltage values.



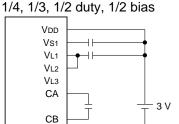

(E0C6S32/6SA32)

The LCD system regulated voltage circuit use can be prohibited by setting the mask option. In this case, external elements can be minimized because the external capacitors for the LCD system regulated voltage circuit are not necessary. However when the LCD system regulated voltage circuit is not used, the display quality of the LCD panel, when the supply voltage fluctuates (drops), is inferior to when the LCD system regulated voltage circuit is used. The E0C6SB32 always uses the the LCD system regulated voltage circuit, therefore the external capacitors are required. Figure 2.1.2 shows the external elements when the the LCD system regulated voltage circuit is not used.

• E0C6SA32

4.5 V LCD panel




Note: VL2 is shorted to VSS inside the IC.

• E0C6S32/E0C6SA32

3 V LCD panel 3 V LCD panel

1/4, 1/3, 1/2 duty, 1/3 bias

Vss

Note: VL3 is shorted to VSS inside the IC.

• E0C6SL32

3 V LCD panel

1/4, 1/3, 1/2 duty, 1/2 bias

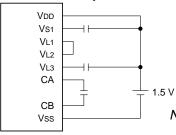


Fig. 2.1.2 External elements when LCD system regulated voltage circuit is not used

Note: VL1 is shorted to VSS inside the IC.

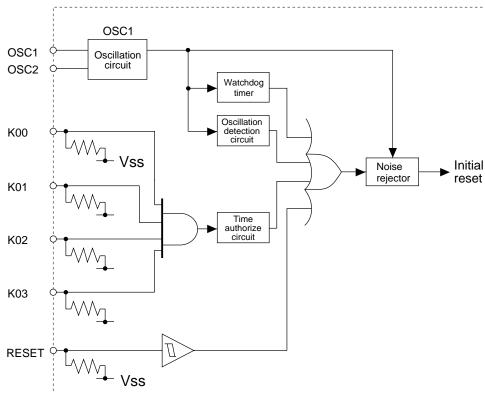
LCD system power supply

For the LCD system power supply, either "internal" (to generate internally) or "external" (to supply from outside of the IC) can be selected. The LCD panel voltage has been decided depending on the model and selection of the LCD system power supply.

When "external" is selected by the mask option, the specified LCD drive voltage terminal is connected to the VSS inside the IC.

1/3 Bias	Internal	External				
	Vl1 / Vl2	VL1 = VSS	VL2 = VSS	VL3 = VSS		
E0C6S32	3.0 V LCD	×	×	3.0 V LCD		
E0C6SA32	3.0 V LCD	×	4.5 V LCD	3.0 V LCD		
E0C6SL32	3.0 V LCD	×	×	×		
E0C6SB32	3.0 V LCD	Х	×	×		

1/2 Bias	Internal	External			
	VL1/VL2	VL1 = VSS	VL2 = VSS	VL3 = VSS	
E0C6S32	×	×	×	3.0 V LCD	
E0C6SA32	×	×	Х	3.0 V LCD	
E0C6SL32	×	3.0 V LCD	Х	×	


Combinations that are marked with an " $\!\times\!$ " cannot be selected.

2.2 Initial Reset

To initialize the EOC6S32 Series circuits, initial reset must be executed. There are four ways of doing this. Four types of initial reset factors are available, however be sure to use (1) or (2) for resetting because (3) and (4) are auxiliary reset factors.

- (1) External initial reset by the RESET terminal
- (2) External initial reset by simultaneous high input to terminals K00–K03
- (3) Initial reset by watchdog timer
- (4) Initial reset by the oscillation detection circuit

Figure 2.2.1 shows the configuration of the initial reset circuit.

Reset pin (RESET)Initial reset can be executed externally by setting the reset
terminal to the high level. This high level must be main-
tained for at least 5 msec (when oscillating frequency is
fosc1 = 32 kHz, after oscillation circuit start up), because
the initial reset circuit contains a noise rejector circuit.
When the reset terminal goes low the CPU begins to operate.

Simultaneous high input to input ports (K00–K03)

Another way of executing initial reset externally is to input a high signal simultaneously to the input ports (K00–K03) selected with the mask option. The specified input port terminals must be kept high for at least 5 msec (when oscillating frequency is fOSC1 = 32 kHz, after oscillation circuit start up), because the initial reset circuit contains a noise rejector circuit. Table 2.2.1 shows the combinations of input ports (K00–K03) that can be selected with the mask option.

Table 2.2.1 Input port combinations

Α	Not used
В	K00*K01
С	K00*K01*K02
D	K00*K01*K02*K03

When, for instance, mask option D (K00*K01*K02*K03) is selected, initial reset is executed when the signals input to the four ports K00–K03 are all high at the same time.

Further, when the input time of the simultaneous HIGH input is tested and found to be the same or more than the defined time (1–3 sec), the time test circuit that performs initial reset can be selected with the mask option.

If you use this function, make sure that the specified ports do not go high at the same time during ordinary operation.

Watchdog timer (Auxiliary reset)

If the CPU runs away for some reason, the watchdog timer will detect this situation and output an initial reset signal. See "4.2 Resetting Watchdog Timer" for details.

Oscillation detection	The oscillation detection circuit outputs the initial reset
circuit (Auxiliary	signal at power-on until the crystal oscillation circuit (OSC1)
reset)	begins oscillating, or when this crystal oscillation circuit
16361)	(OSC1) halts oscillating for some reason.
	However, depending on the power-on sequence (voltage rise
	timing), the circuit may not work properly. Therefore, use
	the reset terminal or reset by simultaneous high input to the
	input port (K00–K03) for initial reset after turning power on.

Internal register at initial setting

Initial reset initializes the CPU as shown in the table below.

Table 2.2.2

Initial values

2 C	PU Core	l	
Name	Signal	Number of Bits	Setting Value
Program counter step	PCS	8	00H
Program counter page	PCP	4	1H
New page pointer	NPP	4	1H
Stack pointer	SP	8	Undefined
Index register X	X	9	Undefined
Index register Y	Y	9	Undefined
Register pointer	RP	4	Undefined
General-purpose register A	A	4	Undefined
General-purpose register B	В	4	Undefined
Interrupt flag	I	1	0
Decimal flag	D	1	Undefined
Zero flag	Z	1	Undefined
Carry flag	C	1	Undefined

Peripheral Circuits									
Name	Number of Bits	Setting Value							
RAM	4	Undefined							
Segment data	4	Undefined							
Other peripheral circuit	4	*1							

*1 See "4.1 Memory Map"

2.3 Test Terminal (TEST)

This terminal is used when the IC load is being detected. During ordinary operation be certain to connect this terminal to Vss.

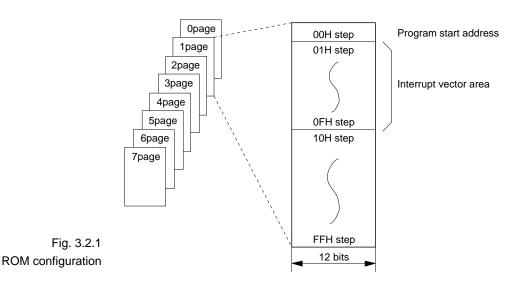
CHAPTER 3

CPU, ROM, RAM

3.1 CPU

The E0C6S32 Series employs the core CPU E0C6200A for the CPU, so that register configuration, instructions and so forth are virtually identical to those in other family processors using the E0C6200A.

Refer to "E0C6200/6200A Core CPU Manual" for details about the E0C6200A.


Note the following points with regard to the E0C6S32 Series:

- (1) The SLEEP operation is not assumed, so the SLP instruction cannot be used.
- (2) Because the ROM capacity is 2,048 words, bank bits are unnecessary and PCB and NBP are not used.
- (3) The RAM page is set at 0 only, so that the page part (XP, YP) of the index register that performs address specification is invalid.

PUSH	XP	PUSH	YP
POP	XP	POP	YP
LD	XP,r	LD	YP,r
LD	r,XP	LD	r,YP

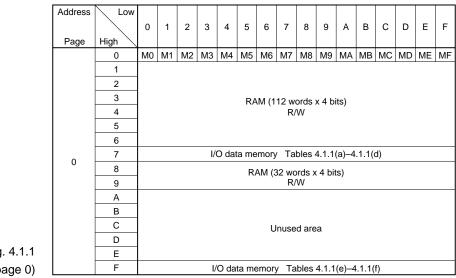
3.2 ROM

The built-in ROM, a mask ROM for loading the program, has a capacity of 2,048 steps, 12 bits each. The program area is 8 pages (0–7), each of 256 steps (00H–FFH). After initial reset, the program beginning address is page 1, step 00H. The interrupt vector is allocated to page 1, steps 01H–0FH.

3.3 RAM

The RAM, a data memory storing a variety of data, has a capacity of 144 words, each of four bits. When programming, keep the following points in mind.

- (1) Part of the data memory can be used as stack area when saving subroutine calls and registers, so be careful not to overlap the data area and stack area.
- (2) Subroutine calls and interrupts take up three words of the stack area.
- (3) The data memory 000H–00FH is for the register pointers (RP), and is the addressable memory register area.
- (4) The data memory is split into two areas, 000H–06FH and 080H–09FH, so take care when allocating the data. (See "4.1 Memory Map" for details.)


CHAPTER 4 PERIPHERAL CIRCUITS AND OPERATION

Peripheral circuits (timer, I/O, and so on) of the E0C6S32 Series are memory mapped, and interfaced with the CPU. Thus, all the peripheral circuits can be controlled by using the memory operation command to access the I/O data memory in the memory map.

The following sections describe how the peripheral circuits operation.

4.1 Memory Map

Data memory of the E0C6S32 Series has an address space of 160 words, of which 48 words are allocated to segment data memory and 32 words to I/O data memory. Figures 4.1.1 and 4.1.2 present the overall memory maps of the E0C6S32 Series, and Tables 4.1.1(a)–4.1.1(f) the peripheral circuits' (I/O space) memory maps.

	Address	Low																
			0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Fig. 4.1.2	Page	High 🔪																
Memory map		4 or C				S	eame	nt da	ata m	emor	rv (38	s wor	ds x 4	1 hits)			
, ,	0	5 or D	Segment data memory (38 words x 4 bits) 40H–6FH = R/W															
(segment area) $6 \text{ or } E$ $C0H-EFH = W$																		

Note (1) See Tables 4.1.1(a)–4.1.1(f) for details of I/O data memory.

(2) The mask option can be used to select whether to assign the overall area of segment data memory to 40H–6FH or C0H– EFH.

> When 40H–6FH is selected, read/write is enabled. When C0H–EFH is selected, write only is enabled.

If 40H–6FH is assigned, RAM is used as the segment area (48 words).

(3) Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

Address		Reg	ister						Comment
71001033	D3	D2	D1	D0	Name	SR *1	1	0	Common
	TM3	TM2	TM1	TM0	TM3	0			Timer data (clock timer 2 Hz)
070H		I	R		TM2	0			Timer data (clock timer 4 Hz)
0700					TM1	0			Timer data (clock timer 8 Hz)
					TM0	0			Timer data (clock timer 16 Hz)
	SWL3	SWL2	SWL1	SWL0	SWL3	0			MSB
071H		l	R		SWL2	0			Stopwatch counter
0/18					SWL1	0			1/100 sec (BCD)
					SWL0	0			LSB
	SWH3	SWH2	SWH1	SWH0	SWH3	0			MSB
072H		I	R		SWH2	0			Stopwatch counter 1/10 sec (BCD)
0720					SWH1	0			1/10 sec (BCD)
					SWH0	0			LSB
	K03	K02	K01	K00	К03	_ *2	High	Low	
073H		I	R		K02	_ *2	High	Low	Level and (K00, K02)
0/30					K01	_ *2	High	Low	Input port (K00–K03)
					K00	- *2	High	Low	

Table 4.1.1(a) I/O memory map (070H–073H)

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Reg	ister						Comment
///////////////////////////////////////	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	DFK03	DFK02	DFK01	DFK00	DFK03	0	Falling	Rising	7
074H		R	/W		DFK02	0	Falling	Rising	Differential register (K00–K03)
07-111					DFK01	0	Falling	Rising	(K00-K03)
					DFK00	0	Falling	Rising	
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	
075H		R	w		EIK02	0	Enable	Mask	Interrupt mask register (K00–K03)
07511					EIK01	0	Enable	Mask	(K00-K03)
					EIK00	0	Enable	Mask	
	HLMOD	BLD BLS	EISWIT1	EISWITO	HLMOD	0	Heavy load	Normal	Heavy load protection mode register
	R/W	R	R	W	BLD		Low voltage	Normal	SVD evaluation data
076H	1011	W			BLS	0	ON	OFF	SVD ON/OFF
					EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)
					EISWITO	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)
	0	EIK10	DFK10	K10	0	_ *2			Unused
077H	R	R	W	R	EIK10	0	Enable	Mask	Interrupt mask register (K10)
					DFK10	0	Falling	Rising	Differential register (K10)
					K10	- *2	High	Low	Input port (K10)

Table 4.1.1(b) I/O memory map (074H–077H)

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Reg	ister						Comment
71001033	D3	D2	D1	D0	Name	SR *1	1	0	Common
	CSDC	ETI2	ETI8	ETI32	CSDC	0	Dynamic	ALL OFF	LCD drive switch
078H		R	/W		ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
0700					ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
					ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	TI2	TI8	TI32	0	_ *2			Unused
079H			R		TI2 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
07511					TI8 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
					TI32 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	IK1	IK0	SWIT1	SWIT0	IK1 ^{*4}	0	Yes	No	Interrupt factor flag (K10)
07AH			R		IK0 ^{*4}	0	Yes	No	Interrupt factor flag (K00–K03)
UTAN					SWIT1 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
					SWIT0 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)
	R03	R02	R01	R00	R03	0	High	Low	
07BH		R	/W		R02	0	High	Low	Output port (R00–R03)
0/01					R01	0	High	Low	
					R00	0	High	Low	

Table 4.1.1(c) I/O memory map (078H–07BH)

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	R13	R12	R11	R10	R13	0	High	Low	Output port (R13, $\overline{\text{BZ}}$)
07CH		R	W		R12	0	High	Low	Output port (R12, FOUT)
					R11	0	High	Low	Output port (R11)
					R10	0	High	Low	Output port (R10, BZ)
	P03	P02	P01	P00	P03	_ *2	High	Low	
07DH		R	w		P02	- *2	High	Low	I/O port (P00–P03) Output latch reset at time of SR
					P01	_ *2	High	Low	Output facts reset at time of SK
					P00	_ *2	High	Low	
	TMRST	SWRUN	SWRST	IOC0	TMRST ^{*5}	Reset	Reset	-	Clock timer reset
07EH	w	R/W	W	R/W	SWRUN	0	RUN	STOP	Stopwatch counter RUN/STOP
					SWRST ^{*5}	Reset	Reset	-	Stopwatch counter reset
					IOC0	0	Output	Input	I/O control register 0 (P00–P03)
	WDRST	WD2	WD1	WD0	WDRST ^{*5}	Reset	Reset		Watchdog timer reset
07FH	W		R		WD2	0			Timer data (watchdog timer 1/4 Hz)
					WD1	0			Timer data (watchdog timer 1/2 Hz)
					WD0	0			Timer data (watchdog timer 1 Hz)

Table 4.1.1(d) I/O memory map (07CH–07FH)

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Reg	ister						Comment
///////////////////////////////////////	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	BZFQ	0	0	0	BZFQ	0	2 kHz	4 kHz	Buzzer frequency selection register
0F6H	R/W		R		0	- *2			Unused
					0	_ *2			Unused
					0	_ *2			Unused
	0	0	AMPDT	AMPON	0	_ *2			Unused
0F7H		R		R/W	0	_ *2			Unused
					AMPDT	1	+ > -	- > +	Analog comparator data
				-	AMPON	0	ON	OFF	Analog comparator ON/OFF
	EV03	EV02	EV01	EV00	EV03	0			7
0F8H			R		EV02	0			Event counter Low order (EV00–EV03)
					EV01	0			
					EV00	0			
	EV07	EV06	EV05	EV04	EV07	0			
0F9H		I	R		EV06	0			Event counter High order (EV04–EV07)
					EV05	0			
					EV04	0			

Table 4.1.1(e) I/O memory map (0F6H–0F9H)

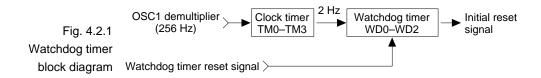
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Regi	ster						Comment
Audiess	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	0	EVRUN	0	EVRST	0	_ *2			Unused
0FCH	R	R/W	R	w	EVRUN	0	RUN	STOP	Event counter RUN/STOP
					0	_ *2			Unused
					EVRST ^{*5}	Reset	Reset		Event counter reset
	P13	P12	P11	P10	P13	_ *2	High	Low	
0FDH		R/	W		P12	_ *2	High	Low	I/O port (P10–P13) Output latch reset at time of SR
					P11	_ *2	High	Low	Output faich reset at time of SK
					P10	- *2	High	Low	
	0	CLKCHG	OSCC	IOC1	0	_ *2			Unused
OFEH	R		R/W		CLKCHG	0	OSC3	OSC1	CPU clock switch
					OSCC	0	ON	OFF	OSC3 oscillator ON/OFF
					IOC1	0	Output	Input	I/O control register 1 (P10–P13)

Table 4.1.1(f) I/O memory map (0FCH–0FEH)

*2 Not set in the circuit

*3 Undefined


*4 Reset (0) immediately after being read

*5 Constantly "0" when being read

4.2 Resetting Watchdog Timer

Configuration of watchdog timer

The E0C6S32 Series incorporates a watchdog timer as the source oscillator for OSC1 (clock timer 2 Hz signal). The watchdog timer must be reset cyclically by the software. If reset is not executed in at least 3 or 4 seconds, the initial reset signal is output automatically for the CPU. Figure 4.2.1 is the block diagram of the watchdog timer.

The watchdog timer, configured of a three-bit binary counter (WD0–WD2), generates the initial reset signal internally by overflow of the MSB.

Watchdog timer reset processing in the program's main routine enables detection of program overrun, such as when the main routine's watchdog timer processing is bypassed. Ordinarily this routine is incorporated where periodic processing takes place, just as for the timer interrupt routine.

The watchdog timer operates in the halt mode. If the halt status continues for 3 or 4 seconds, the initial reset signal restarts operation.

Mask option

You can select whether or not to use the watchdog timer with the mask option. When "Not use" is chosen, there is no need to reset the watchdog timer.

Control of watchdog timer

Table 4.2.1 lists the watchdog timer's control bits and their addresses.

Address	Register								Comment
Addless	D3	D2	D1	D0	Name	SR *1	1	0	Comment
07FH	WDRST	WD2	WD1	WD0	WDRST ^{*5}	Reset	Reset		Watchdog timer reset
	W	R			WD2	0			Timer data (watchdog timer 1/4 Hz)
					WD1	0			Timer data (watchdog timer 1/2 Hz)
					WD0	0			Timer data (watchdog timer 1 Hz)

*1 Initial value at the time of initial reset

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

WDRST: This is the bit for resetting the watchdog timer.

Watchdog timer reset (07FH·D3)	When "1" is written : When "0" is written : Read-out :	Watchdog timer is reset No operation Always "0"			
	When "1" is written to WDRST , the watchdog timer is reset, and the operation restarts immediately after this. When "0" is written to WDRST, no operation results. This bit is dedicated for writing, and is always "0" for read- out.				
Programming note	When the watchdog timer is being used, the software must reset it within 3-second cycles, and timer data (WD0–WD2) cannot be used for timer applications.				

4.3 Oscillation Circuit

OSC1 oscillation circuit

The E0C6S32 Series has a built-in crystal oscillation circuit. As an external element, the OSC1 oscillation circuit generates the operating clock for the CPU and peripheral circuitry by connecting the crystal oscillator (Typ. 32.768 kHz) and trimmer capacitor (5–25 pF).

Figure 4.3.1 is the block diagram of the OSC1 oscillation circuit.

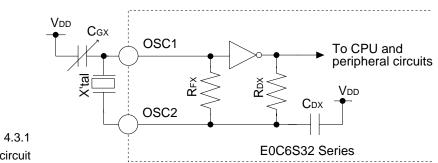
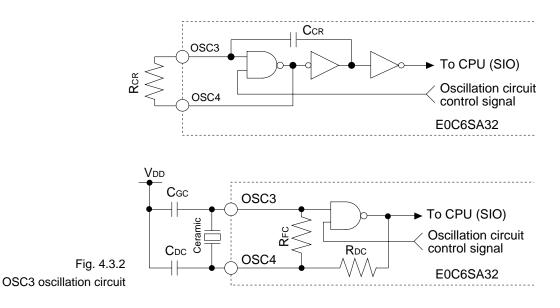
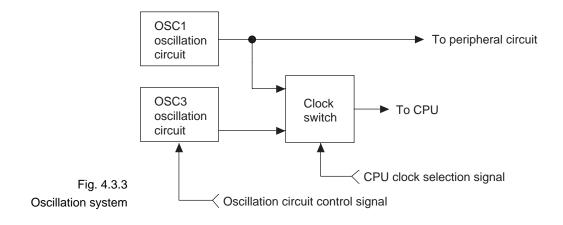



Fig. 4.3.1 OSC1 oscillation circuit

As Figure 4.3.1 indicates, the crystal oscillation circuit can be configured simply by connecting the crystal oscillator (X'tal) between terminals OSC1 and OSC2 to the trimmer capacitor (CGx) between terminals OSC1 and VDD.

OSC3 oscillation
circuitIn the E0C6S32 Series, the E0C6SA32 has twin clock speci-
fication. The mask option enables selection of either the CR
or ceramic oscillation circuit (OSC3 oscillation circuit) as the
CPU's subclock. Because the oscillation circuit itself is built-
in, it provides the resistance as an external element when
CR oscillation is selected, but when ceramic oscillation is
selected both the ceramic oscillator and two capacitors (gate
and drain capacitance) are required.
Figure 4.3.2 is the block diagram of the OSC3 oscillation
circuit.



Note The figure above is an equivalent circuit and is different from the actual circuit.

As indicated in Figure 4.3.2, the CR oscillation circuit can be configured simply by connecting the resistor (RCR) between terminals OSC3 and OSC4 when CR oscillation is selected. When 33 k Ω is used for RCR, the oscillation frequency is about 1 MHz. When ceramic oscillation is selected, the ceramic oscillation circuit can be configured by connecting the ceramic oscillator (Typ. 1 MHz) between terminals OSC3 and OSC4 to the two capacitors (CGC and CDC) located between terminals OSC3 and OSC4 and VDD. For both CGC and CDC, connect capacitors that are about 100 pF. To lower current consumption of the OSC3 oscillation circuit, oscillation can be stopped through the software.

Configuration of
oscillation circuitThe E0C6S32, 6SL32 and 6SB32 have one oscillation circuit
(OSC1), and the E0C6SA32 has two oscillation circuits
(OSC1 and OSC3). OSC1 is a crystal oscillation circuit that
supplies the operating clock the CPU and peripheral cir-
cuits. OSC3 is either a CR or ceramic oscillation circuit.
When processing with the E0C6SA32 requires high-speed
operation, the CPU operating clock can be switched from
OSC1 to OSC3.

Figure 4.3.3 is the block diagram of this oscillation system.

For EOC6SA32, selection of either OSC1 or OSC3 for the CPU's operating clock can be made through the software.

Control of oscillationTable 4.3.1 lists the control bits and their addresses for the
oscillation circuit.

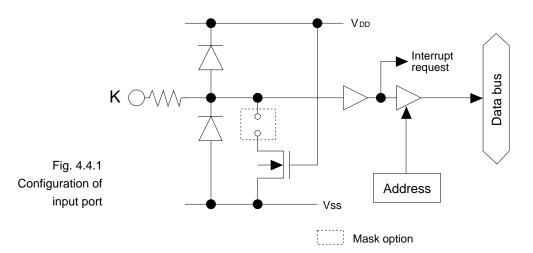
Address		Regi	ster		Comment				
Addless	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	0	CLKCHG	OSCC	IOC1	0	_ *2			Unused
OFEH	R	R/W		CLKCHG	0	OSC3	OSC1	CPU clock switch	
					oscc	0	ON	OFF	OSC3 oscillator ON/OFF
					IOC1	0	Output	Input	I/O control register 1 (P10-P13)

Table 4.3.1 Control bits of oscillation circuit and prescaler

*1 Initial value at the time of initial reset

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

OSCC: OSC3 oscillation control	Controls oscillation ON/OFF for the OSC3 oscillation circuit. (E0C6SA32 only.)						
(0FEH-D1)	 When "1" is written : The OSC3 oscillation ON When "0" is written : The OSC3 oscillation OFF Read-out : Valid When it is necessary to operate the CPU of the E0C6SA32 high speed, set OSCC to "1". At other times, set it to "0" to lessen the current consumption. 						
	For the E0C6S32, 6SL32 and 6SB32, keep OSCC set to "0". At initial reset, OSCC is set to "0".						
The CPU's clock switch	The CPU's operation clock is selected with this register. (E0C6SA32 only.)						
(0FEH·D2)		OSC3 clock is selected OSC1 clock is selected Valid					
	When the E0C6SA32's CPU clock is to be OSC3, set CLKCHG to "1"; for OSC1, set CLKCHG to "0". This register						
	cannot be controlled for the E0C6S32, 6SL32 and 6SB32, so that OSC1 is selected no matter what the set value.						
	At initial reset, CLKCHG is set to "0".						


Programming notes	(1) It takes at least 5 ms from the time the OSC3 oscillation
• •	circuit goes ON until the oscillation stabilizes. Conse-
	quently, when switching the CPU operation clock from
	OSC1 to OSC3, do this after a minimum of 5 ms have
	elapsed since the OSC3 oscillation went ON.
	Further, the oscillation stabilization time varies depend-
	ing on the external oscillator characteristics and condi-
	tions of use, so allow ample margin when setting the wait
	time.

(2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.

4.4 Input Ports (K00-K03, K10)

Configuration of input ports

The E0C6S32 Series has five bits general-purpose input ports. Each of the input port terminals (K00–K03, K10) provides internal pull-down resistor. Pull-down resistor can be selected for each bit with the mask option. Figure 4.4.1 shows the configuration of input port.

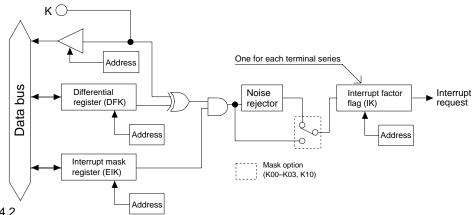
Selection of "pull-down resistance enabled" with the mask option suits input from the push switch, key matrix, and so forth. When "pull-down resistance disabled" is selected, the port can be used for slide switch input and interfacing with other LSIs.

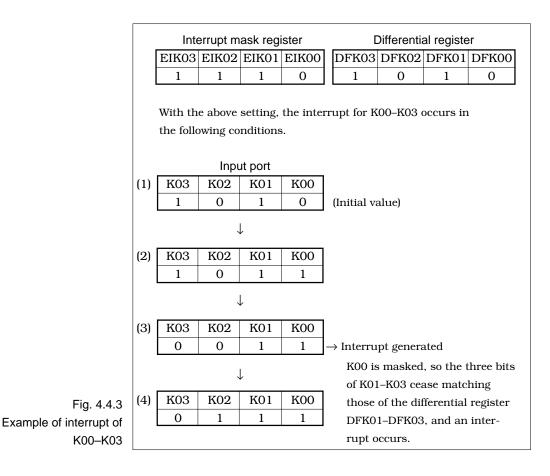
Further, the input port terminal K10 or K03 is used as the input terminals for the event counter. (See "4.10 Event Counter" for details.)

Differential registers and interrupt function

All five bits of the input ports (K00–K03, K10) provide the interrupt function. The conditions for issuing an interrupt can be set by the software. Further, whether to mask the interrupt function can be selected individually for all five bits by the software.

Figure 4.4.2 shows the configuration of K00–K03 and K10.




Fig. 4.4.2 Input interrupt circuit configuration (K00–K03, K10)

The input interrupt timing for K00–K03 and K10 depends on the value set for the differential registers (DFK00–DFK03 and DFK10). Interrupt can be selected to occur at the rising or falling edge of the input.

The interrupt mask registers (EIK00–EIK03, EIK10) enables the interrupt mask to be selected individually for K00–K03 and K10. However, whereas the interrupt function is enabled inside K00–K03, the interrupt occurs when the contents change from matching those of the differential register to non-matching contents. Interrupt for K10 can be generated by setting the same conditions individually.

When the interrupt is generated, the interrupt factor flag (IK0 and IK1) is set to "1".

Figure 4.4.3 shows an example of an interrupt for K00–K03.

K00 is masked by the interrupt mask register (EIK00), so that an interrupt does not occur at (2). At (3), K03 changes to "0"; the data of the terminal that is interrupt enabled no longer matches the data of the differential register, so that interrupt occurs. As already explained, the condition for the interrupt to occur is the change in the port data and contents of the differential register from matching to nonmatching. Hence, in (4), when the nonmatching status changes to another nonmatching status, an interrupt does not occur. Further, terminals that have been masked for interrupt do not affect the conditions for interrupt generation.

Mask optionThe contents that can be selected with the input port mask
option are as follows:

- (1) Internal pull-down resistor can be selected for each of the five bits of the input ports (K00–K03, K10).
 When you have selected "pull-down resistor disabled", take care that the floating status does not occur for the input. Select "pull-down resistor enabled" for input ports that are not being used.
- (2) The input interrupt circuit contains a noise rejector for preventing interrupt occurring through noise. The mask option enables selection of whether to use the noise rejector for each separate terminal series.When "Use" is selected, a maximum delay of 1 ms occurs from the time interrupt condition is established until the interrupt factor flag (IK) is set to "1".

Control of input ports Table 4.4.1 list the input ports control bits and their addresses.

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	K03	K02	K01	K00	K03	_ *2	High	Low	
073H		I	2		K02	_ *2	High	Low	Input port (K00–K03)
0730					K01	_ *2	High	Low	
					К00	- *2	High	Low	
	DFK03	DFK02	DFK01	DFK00	DFK03	0	Falling	Rising	
074H		R	W		DFK02	0	Falling	Rising	Differential register (K00–K03)
07.111					DFK01	0	Falling	Rising	
					DFK00	0	Falling	Rising	
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	
075H		R	W		EIK02	0	Enable	Mask	Interrupt mask register (K00–K03)
07011					EIK01	0	Enable	Mask	
					EIK00	0	Enable	Mask	
	0	EIK10	DFK10	K10	0	_ *2			Unused
077H	R	R	W	R	EIK10	0	Enable	Mask	Interrupt mask register (K10)
0//11					DFK10	0	Falling	Rising	Differential register (K10)
					K10	_ *2	High	Low	Input port (K10)
	IK1	IK0	SWIT1	SWIT0	IK1 ^{*4}	0	Yes	No	Interrupt factor flag (K10)
07AH			2		IK0 ^{*4}	0	Yes	No	Interrupt factor flag (K00–K03)
UTAI					SWIT1 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
					SWIT0 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)

Table 4.4.1 Input port control bits

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*3 Undefined

*4 Reset (0) immediately after being read

*5 Constantly "0" when being read

Input port data	Input data of the input port terminals can be read out with these registers.						
(073H, 077H·D0)	When "1" is read out : High levelWhen "0" is read out : Low levelWriting :Invalid						
	The read-out is "1" when the terminal voltage of the five bits of the input ports (K00–K03, K10) goes high (VDD), and "0" when the voltage goes low (Vss). These bits are dedicated for read-out, so writing cannot be done.						
DFK00–DFK03, DFK10: Differential registers (074H, 077H·D1)	Interrupt conditions can be set with these registers. When read out is "1" : Falling edge When read out is "0" : Rising edge Read-out : Valid						
	The interrupt conditions can be set for the rising or falling edge of input for each of the five bits (K00–K03 and K10), through the differential registers (DFK00–DFK03 and DFK10). At initial reset, these registers are set to "0".						
EIK00–EIK03, EIK10: Interrupt mask registers (075H, 077H·D2)	Masking the interrupt of the input port terminals can be selected with these registers. When "1" is written : Enable When "0" is written : Mask Read-out : Valid						
	With these registers, masking of the input port bits can be selected for each of the five bits. At initial reset, these registers are all set to "0".						

IK0, IK1: These flags indicate the occurrence of input interrupt.

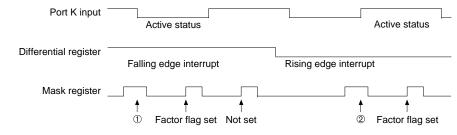
Interrupt factor flags (07AH·D2 and D3)	When "1" is read out :	Interrupt has occurred
	When "0" is read out :	Interrupt has not occurred
	Writing :	Invalid

The interrupt factor flags IKO and IK1 are associated with KOO–KO3 and K10, respectively. From the status of these flags, the software can decide whether an input interrupt has occurred.

These flags are reset when the software reads them. Reading of interrupt factor flags is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

At initial reset, these flags are set to "0".


Programming notes(1) When input ports are changed from high to low by pull-
down resistance, the fall of the waveform is delayed on
account of the time constant of the pull-down resistance
and input gate capacitance. Hence, when fetching input
ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during
key matrix configuration. Aim for a wait time of about 1
ms.

(2) When "noise rejector circuit enable" is selected with the mask option, a maximum delay of 1 ms occurs from time the interrupt conditions are established until the interrupt factor flag (IK) is set to "1" (until the interrupt is actually generated).

Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.

For example, when performing a key scan with the key matrix, the key scan changes the input status to set the interrupt factor flag, so it has to be read out to reset it. However, if the interrupt factor flag is read out immediately after key scanning, the delay will cause the flag to be set after read-out, so that it will not be reset.

(3) Input interrupt programing related precautions

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at ① and @, ① being the interrupt due to the falling edge and @ the interrupt due to the rising edge.

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set. Therefore, when using the input interrupt, the active status of the input terminal implies

- input terminal = Low status, when the falling edge interrupt is effected and
- input terminal = High status, when the rising edge interrupt is effected.

When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of ① shown in Figure 4.4.4. However, when clearing the content of the mask register with the input terminal kept in the Low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (Low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (High status).

Fig. 4.4.4 Input interrupt timing When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of ⁽²⁾ shown in Figure 4.4.4. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the Low status. In addition, when the mask register = "1" and the content of the differential register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the differential register = "0" status.

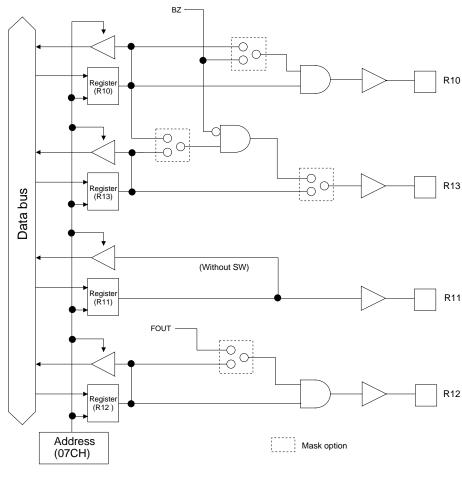
(4) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

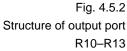
4.5 Output Ports (R00-R03, R10-R13)

Configuration of
output portsThe E0C6S32 Series has general output ports (4 bits x 2).Output portsOutput specifications of the output ports can be selected
individually with the mask option. Two kinds of output
specifications are available: complementary output and Pch
open drain output.Further, the mask option enables the output ports R10,
R12, and R13 to be used as special output ports.

The R10, R11 and R13 ports have larger drive capability than the R00–R03 and R12 ports.

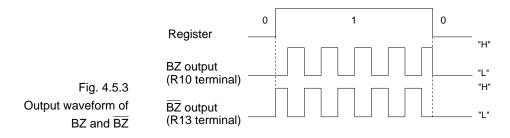
Figure 4.5.1 shows the configuration of the output ports.




Mask option	The mask option enables the following output port selection.
	(1) Output specifications of output ports
	Output specifications for the output ports (R00–R03,
	R10–R13) enable selection of either complementary
	output or Pch open drain output for each of the eight
	bits.
	However, even when Pch open drain output is selected,
	voltage exceeding source voltage must not be applied to
	the output port.

(2) Special output

In addition to the regular DC output, special output can be selected for the output ports R10, R12, and R13 as shown in Table 4.5.1. Figure 4.5.2 shows the structure of the output ports R10–R13.


Table 4.5.1	Pin Name	When Special Output Selected
Special output	R10	BZ
	R13	$\overline{\mathrm{BZ}}$ (Only when R10 = BZ output is selected)
	R12	FOUT

- BZ, \overline{BZ} BZ and \overline{BZ} are the buzzer signal output for driving the
- (R10, R13) piezoelectric buzzer. The buzzer signal frequency of 2 or 4 kHz can be selected by software.
 - Note When the BZ and \overline{BZ} output signals are turned ON or OFF, a hazard can result. When DC output is set for the output port R10, the output port R13 cannot be set for \overline{BZ} output.

Figure 4.5.3 shows the output waveform for BZ and $\overline{\text{BZ}}$.

- FOUT When the output port R12 is set for FOUT output, it outputs
- (R12) the clock of fosc1 or the demultiplied fosc1. The clock frequency is selectable with the mask options, from the frequencies listed in Table 4.5.2.

Table 4.5.2 FOUT clock frequency

	Clock Frequency (Hz)				
Setting Value	fosc1 = 32,768				
fosc1 / 1	32,768				
fosc1 / 2	16,384				
fosc1 / 4	8,192				
fosc1 / 8	4,096				
fosc1 / 16	2,048				
fosc1 / 32	1,024				
fosc1 / 64	512				
fosc1 / 128	256				

Note A hazard may occur when the FOUT signal is turned ON or OFF.

Control of outputTable 4.5.3 lists the output ports' control bits and their
addresses.

Address		Reg	ister	-	Comment					
//ddic33	D3	D2	D1	D0	Name	SR *1	1	0	Comment	
	R03	R02	R01	R00	R03	0	High	Low	7	
07BH		R/	W		R02	0	High	Low	Output a set (D00, D02)	
					R01	0	High	Low	Output port (R00–R03)	
					R00	0	High	Low		
	R13	R12	R11	R10	R13	0	High	Low	Output port (R13, BZ)	
07CH	CH		R12	0	High	Low	Output port (R12, FOUT)			
					R11	0	High	Low	Output port (R11)	
					R10	0	High	Low	Output port (R10, BZ)	
	BZFQ	0	0	0	BZFQ	0	2 kHz	4 kHz	Buzzer frequency selection register	
0F6H	R/W R		0	_ *2			Unused			
					0	_ *2			Unused	
					0	_ *2			Unused	

Table 4.5.3 Control bits of output ports

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*3 Undefined

*4 Reset (0) immediately after being read

*5 Constantly "0" when being read

R00–R03, R10–R13 $\,$ Sets the output data for the output ports.

(when DC output):	TTT UTU .	TT. 1
Output port data	When "1" is written :	High output
(07BH, 07CH)	When "0" is written :	Low output
	Read-out :	Valid

The output port terminals output the data written in the corresponding registers (R00–R03, R10–R13) without changing it. When "1" is written in the register, the output port terminal goes high (VDD), and when "0" is written, the output port terminal goes low (Vss).

At initial reset, all registers are set to "0".

R10, R13 (when BZ and	These bits control the output of the buzzer signals (BZ, BZ).				
BZ output is selected):	When "1" is written t	Duggen signal is output			
Special output port data	when I is written:	Buzzer signal is output			
(07CH·D0 and D3)	When "0" is written :	Low level (DC) is output			
	Read-out :	Valid			

BZ is output from terminal R13. With the mask option, selection can be made perform this output control by R13, or to perform output control simultaneously with BZ by R10.

• When R13 controls BZ output

BZ output and $\overline{\text{BZ}}$ output can be controlled independently. BZ output is controlled by writing data to R10, and $\overline{\text{BZ}}$ output is controlled by writing data to R13.

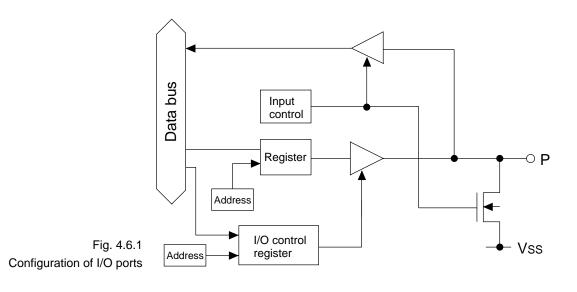
When R10 controls BZ output

BZ output and $\overline{\text{BZ}}$ output can be controlled simultaneously by writing data to R10 only. For this case, R13 can be used as a one-bit general register having both read and write functions, and data of this register exerts no affect on $\overline{\text{BZ}}$ output (output from the R13 pin).

At initial reset, registers R10 and R13 are set to "0".

BZFQ: Selects the frequency of the buzzer signal.

Buzzer frequency		
	When "1" is written :	2 kHz
selection register	When "0" is written :	4 kHz
(0F6H·D3)	Read-out :	Valid


When "1" is written to register BZFQ, the frequency of the buzzer signal is set in 2 kHz, and in 4 kHz when "0" is written. At initial reset, BZFQ is set to "0" (4 kHz).

	Controls the FOUT (clock) output.					
(when FOUT is selected): Special output port data (07CH·D2)	When "1" is written : When "0" is written : Read-out :	Clock output Low level (DC) output Valid				
	FOUT output can be con At initial reset, this regis	trolled by writing data to R12. ter is set to "0".				
Programming note	When BZ, $\overline{\text{BZ}}$ and FOUT are selected with the mask op a hazard may be observed in the output waveform whe data of the output register changes.					

4.6 I/O Ports (P00-P03, P10-P13)

Configuration of I/O ports

The E0C6S32 Series has general-purpose I/O ports (4 bits x 2). Figure 4.6.1 shows the configuration of the I/O ports. The four bits of each of the I/O ports P00–P03 and P10–P13 can be set to either input mode or output mode. Modes can be set by writing data to the I/O control register.

I/O control register and I/O mode	Input or output mode can be set for the four bits of I/O port P00–P03 and I/O port P10–P13 by writing data into the corresponding I/O control register IOC0 and IOC1.					
	To set the input mode, "0" is written to the I/O control register. When an I/O port is set to input mode, it becomes high impedance status and works as an input port. How- ever, the input line is pulled down when input data is read.					
	The output mode is set when "1" is written to the I/O control register. When an I/O port set to output mode works as an output port, it outputs a high signal (VDD) when the port output data is "1", and a low signal (Vss) when the port output data is "0".					
	At initial reset, the I/O control registers are set to "0", and the I/O port enters the input mode.					
Mask option	The output specification during output mode (IOC = "1") of these I/O ports can be set with the mask option for either complementary output or Pch open drain output. This setting can be performed for each bit of each port. However, when Pch open drain output has been selected, voltage in excess of the power voltage must not be applied to the port.					

Control of I/O ports

Table 4.6.1 lists the $\,$ I/O ports' control bits and their addresses.

Address		Reg	ister						Comment
//ddic33	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	P03	P02	P01	P00	P03	_ *2	High	Low	7
07011		R/	W		P02	_ *2	High	Low	I/O port (P00–P03)
07DH					P01	_ *2	High	Low	Output latch reset at time of SR
					P00	- *2	High	Low	
	TMRST	SWRUN	SWRST	IOC0	TMRST ^{*5}	Reset	Reset	-	Clock timer reset
07EH	w	R/W	w	R/W	SWRUN	0	RUN	STOP	Stopwatch counter RUN/STOP
					SWRST ^{*5}	Reset	Reset	-	Stopwatch counter reset
					IOC0	0	Output	Input	I/O control register 0 (P00–P03)
	P13	P12	P11	P10	P13	_ *2	High	Low	
0FDH		R	/W		P12	_ *2	High	Low	I/O port (P10–P13)
					P11	_ *2	High	Low	Output latch reset at time of SR
					P10	_ *2	High	Low	
	0	CLKCHG	OSCC	IOC1	0	_ *2			Unused
OFEH	R R/W				CLKCHG	0	OSC3	OSC1	CPU clock switch
					OSCC	0	ON	OFF	OSC3 oscillator ON/OFF
					IOC1	0	Output	Input	I/O control register 1 (P10–P13)

Table 4.6.1 I/O port control bits

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*3 Undefined

*4 Reset (0) immediately after being read

*5 Constantly "0" when being read

P00–P03, P10–P13: I/O port data can be read and output data can be set I/O port data through these ports.

(07DH, 0FDH)

· When writing data

When "1" is written :High levelWhen "0" is written :Low level

When an I/O port is set to the output mode, the written data is output unchanged from the I/O port terminal. When "1" is written as the port data, the port terminal goes high (VDD), and when "0" is written, the level goes low (Vss). Port data can be written also in the input mode.

• When reading data out

When "1" is read out : High level When "0" is read out : Low level

The terminal voltage level of the I/O port is read out. When the I/O port is in the input mode the voltage level being input to the port terminal can be read out; in the output mode the output voltage level can be read. When the terminal voltage is high (VDD) the port data that can be read is "1", and when the terminal voltage is low (Vss) the data is "0".

Further, the built-in pull-down resistance goes ON during read-out, so that the I/O port terminal is pulled down.

- Note When the I/O port is set to the output mode and a low-impedance load is connected to the port terminal, the data written to the register may differ from the data read out.
 - When the I/O port is set to the input mode and a low-level voltage (Vss) is input, erroneous input results if the time constant of the capacitive load of the input line and the built-in pull-down resistance load is greater than the read-out time. When the input data is being read out, the time that the input line is pulled down is equivalent to 1.5 cycles of the CPU system clock. However, the electric potential of the terminals must be settled within 0.5 cycles. If this condition cannot be fulfilled, some measure must be devised such as arranging pull-down resistance externally, or performing multiple read-outs.

IOC0, IOC1: The input and output modes of the I/O ports can be set I/O control registers with these registers.

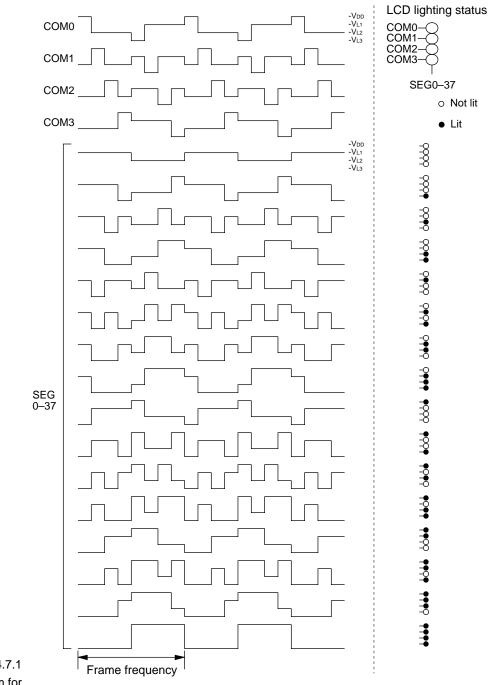
(07EH·D0, 0FEH·D0)

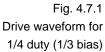
When "1" is written :Output modeWhen "0" is written :Input modeRead-out :Valid

The input and output modes of the I/O ports are set in units of four bits. IOC0 sets the mode for P00–P03, and IOC1 sets the mode for P10–P13.

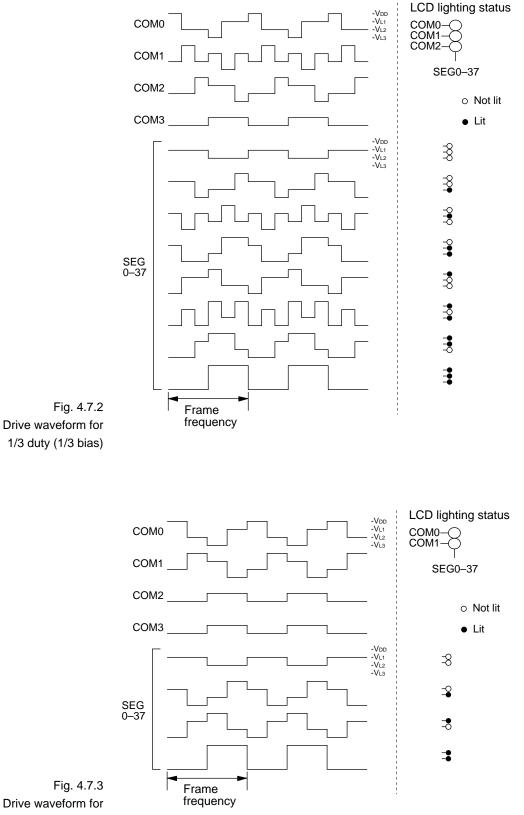
Writing "1" to the I/O control register makes the corresponding I/O port enter the output mode, and writing "0" induces the input mode.

At initial reset, these two registers are set to "0", so the I/O ports are in the input mode.

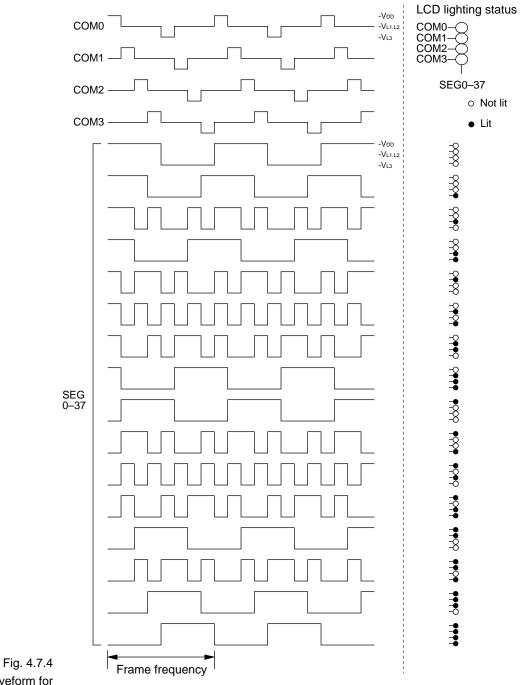

Programming notes(1) When the I/O port is being read out, the built-in pull-
down resistance of the I/O port goes ON. Consequently,
if data is read out while the CPU is running in the OSC3
oscillation circuit, data must be read out continuously for
about 500 μs.

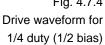

(2) When the I/O port is set to the output mode and the data register has been read, the terminal data instead of the register data can be read out. Because of this, if a low-impedance load is connected and read-out performed, the value of the register and the read-out result may differ.

4.7 LCD Driver (COM0-3, SEG0-37)

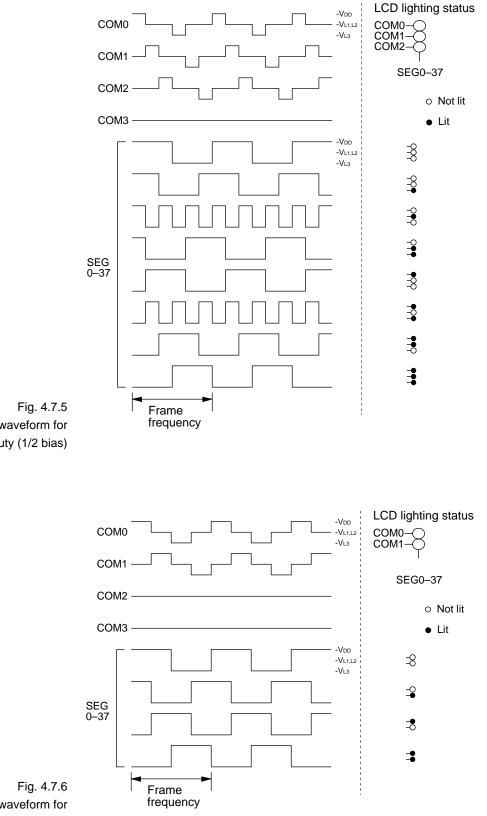

Configuration of LCD	The E0C6S32 Series has four common terminals and 38
driver	segment terminals, so that it can drive an LCD with a maxi-
	mum of 152 (38 x 4) segments.
	The mask option can select the LCD system power supply to
	generate power by the internal circuit of the CPU or to
	supply power from outside of the IC.
	The driving method is $1/4$ duty (or $1/3$, $1/2$ duty by mask
	option) dynamic drive, adopting the four types of potential
	(1/3 bias), VDD, VL1, VL2 and VL3. Moreover, the $1/2$ bias
	dynamic drive that uses three types of potential, VDD , $VL1 =$
	VL2 and VL3, can be selected by setting the mask option
	(drive duty can also be selected from $1/4$, $1/3$ or $1/2$). $1/2$
	bias drive is effective when the LCD system regulated voltage
	circuit is not used. The VL1 terminal and the VL2 terminal
	should be connected outside of the IC.
	The frame frequency is fosc1/1,024 Hz for 1/4 duty, fosc1/
	768 Hz for $1/3$ duty, and $fosc1/1,024$ Hz for $1/2$ duty.
	Figure 4.7.1 shows the drive waveform for $1/4$ duty $(1/3$ bias),
	Figure 4.7.2 shows the drive waveform for $1/3$ duty ($1/3$ bias),
	Figure 4.7.3 shows the drive waveform for $1/2$ duty ($1/3$ bias),
	Figure 4.7.4 shows the drive waveform for $1/4$ duty $(1/2$ bias),
	Figure 4.7.5 shows the drive waveform for $1/3$ duty ($1/2$ bias)
	and Figure 4.7.6 shows the drive waveform for $1/2$ duty ($1/2$
	bias).
Note	fOSC1 indicates the oscillation frequency of the OSC1 oscillation

circuit.





CHAPTER 4: PERIPHERAL CIRCUITS AND OPERATION (LCD Driver)



Drive waveform for 1/2 duty (1/3 bias)

CHAPTER 4: PERIPHERAL CIRCUITS AND OPERATION (LCD Driver)

Drive waveform for 1/3 duty (1/2 bias)

Drive waveform for 1/2 duty (1/2 bias)

Switching between dynamic and ALL OFF

The E0C6S32 Series provides software setting of the LCD ALL OFF. This function enables easy ALL OFF of the LCD panel. (COM and SEG terminals output a constant voltage.)

The procedure for executing ALL OFF of the LCD is as follows:

• Write "0" to the register CSDC at address 078H, D3.

To turn the LCD on and to set dynamic drive:

• Write "1" to the register CSDC at address 078H, D3.

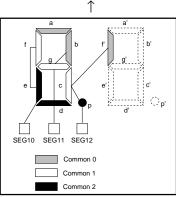
At initial reset, the LCD goes into ALL OFF state.

Mask option (segment allocation)

(1) Segment allocation

As shown in Figure 4.1.2, segment data of the E0C6S32 Series is decided depending on display data written to the segment data memory (write-only) at address 40H–6FH or C0H–EFH.

- ① The mask option enables the segment data memory to be allocated entirely to either 40H–6FH or C0H–EFH.
- ② The address and bits of the segment data memory can be made to correspond to the segment pins (SEG0– SEG37) in any form through the mask option. This makes design easy by increasing the degree of freedom with which the liquid crystal panel can be designed.


Figure 4.7.7 shows an example of the relationship between the LCD segments (on the panel) and the segment data memory (when 40H–6FH is selected) for the case of 1/3 duty.

Address		Dat	Data					
Address	D3	D2	D1	D0				
06AH	d	с	b	а				
06BH	р	g	f	e	$ \rightarrow$			
06CH	ď	c '	b'	a'				
06DH	p'	g'	f′	e'				

Segment data memory allocation

	Common 0	Common 1	Common 2
SEG10	6A, D0	6B, D1	6B, D0
	(a)	(f)	(e)
SEG11	6A, D1	6B, D2	6A, D3
	(b)	(g)	(d)
SEG12	6D, D1	6A, D2	6B, D3
	(f')	(c)	(p)

Pin address allocation

Example of LCD panel

Fig. 4.7.7 Segment allocation

(2) Drive duty

With the mask option, either 1/4, 1/3 or 1/2 duty can be selected for the LCD drive duty.

Table 4.7.1 shows the differences in the number of segments depending on the selected duty.

	Table 4.7.1	Differences depending on selected of	dutv
--	-------------	--------------------------------------	------

Duty	Pins used in common	Maximum number of segments	Frame frequency (when fosc1 = 32 kHz)
1/4	COM0-3	152 (38 x 4)	fosc1/1,024 (32 Hz)
1/3	COM0-2	114 (38 x 3)	fosc1/768 (42.7 Hz)
1/2	COM0-1	76 (38 x 2)	fosc1/1,024 (32 Hz)

(3) Output specification

- The segment pins (SEG0–SEG37) are selected with the mask option in pairs for either segment signal output or DC output (VDD and Vss binary output).
 When DC output is selected, the data corresponding to COM0 of each segment pin is output.
- ② When DC output is selected, either complementary output or Pch open drain output can be selected for each pin with the mask option.
- Note The pin pairs are the combination of SEG2*n and SEG2*n + 1 (where n is an integer from 0 to 18).

Control of LCD driver Table 4.7.2 shows the LCD driver's control bits and their addresses. Figure 4.7.8 shows the segment data memory map.

Table 4.7.2 Control bits of LCD driver

Address		Reg	ister						Comment				
Audress	D3	D2	D1	D0	Name	SR *1	1	0					
	CSDC	ETI2	ETI8 ETI32 CSDC 0 Dynamic ALL OFF		LCD drive switch								
078H		R	W	ETI2 0	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)					
0700					ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)				
					ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)				

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address	Low																
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
Page	High																
	4 or C																
0	5 or D		Segment data memory (38 words x 4 bits) 40H–6FH = R/W														
	6 or E							CC	H–E	FH =	W						

Fig. 4.7.8 Segment data memory map

CSDC:	The LCD drive mode can	be selected with this switch.					
LCD drive switch (078H·D3)	When "1" is written : When "0" is written : Read-out :	Dynamic drive (Normal mode) LCD ALL OFF (ALL OFF mode) Valid					
	At initial reset, this regist	ter is set to LCD ALL OFF.					
Segment data memory (40H–6FH or C0H–EFH)	Ũ	t or turned off depending on this					
	When "1" is written : When "0" is written : Read-out :	Lit Not lit Valid for 40H–6FH Undefined C0H–EFH					
	By writing data into the segment data memory allocated to the LCD segment (on the panel), the segment can be lit or put out. At initial reset, the contents of the segment data memory are undefined.						
Programming notes	(1) When 40H–6FH is selected for the segment data memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the segment data memory by executing initial processing.						
	(2) When COH–EFH is selected for the segment data memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).						

4.8 Clock Timer

Configuration of clock timer

The E0C6S32 Series has a built-in clock timer as the source oscillator for OSC1 (crystal oscillator). The clock timer is configured of a seven-bit binary counter that serves as the input clock, a 256 kHz signal output by the prescaler. Data of the four high-order bits (16 Hz–2 Hz) can be read out by the software.

Figure 4.8.1 is the block diagram for the clock timer.

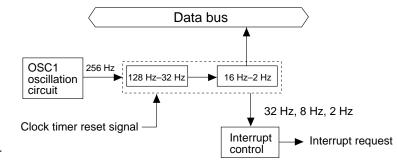


Fig. 4.8.1 Block diagram of clock timer

Ordinarily, this clock timer is used for all types of timing functions such as clocks.

Interrupt function

The clock timer can cause interrupts at the falling edge of 32 Hz, 8 Hz and 2 Hz signals. Software can set whether to mask any of these frequencies.

Figure 4.8.2 is the timing chart of the clock timer.

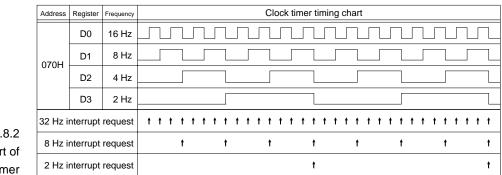


Fig. 4.8.2 Timing chart of clock timer

As shown in Figure 4.8.2, interrupt is generated at the falling edge of the frequencies (32 Hz, 8 Hz, 2 Hz). At this time, the corresponding interrupt factor flag (TI32, TI8, TI2) is set to "1". Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (ETI32, ETI8, ETI2). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to "1" at the falling edge of the corresponding signal.

Control of clockTable 4.8.1 shows the clock timer control bits and their
addresses.

Address	Register				Comment					
	D3	D2	D1	D0	Name	SR *1	1	0	Comment	
070H	TM3	TM2	TM1	TM0	TM3	0			Timer data (clock timer 2 Hz)	
	R				TM2	0			Timer data (clock timer 4 Hz)	
					TM1	0			Timer data (clock timer 8 Hz)	
					TM0	0			Timer data (clock timer 16 Hz)	
078H	CSDC	ETI2	ETI8	ETI32	CSDC	0	Dynamic	ALL OFF	LCD drive switch	
	R/W				ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)	
					ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)	
					ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)	
079H	0	TI2	T18	TI32	0	_ *2			Unused	
	R				TI2 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)	
					TI8 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)	
					TI32 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)	
07EH	TMRST	SWRUN	SWRST	IOC0	TMRST ^{*5}	Reset	Reset	_	Clock timer reset	
	W	R/W	W	R/W	SWRUN	0	RUN	STOP	Stopwatch counter RUN/STOP	
					SWRST ^{*5}	Reset	Reset	-	Stopwatch counter reset	
					IOC0	0	Output	Input	I/O control register 0 (P00-P03)	

Table 4.8.1 Control bits of clock timer

*1 Initial value at the time of initial reset

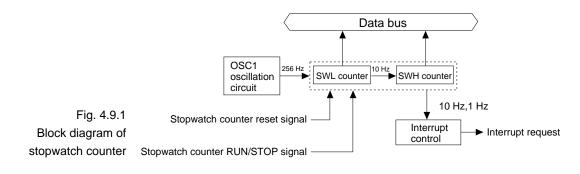
*2 Not set in the circuit

*3 Undefined

*4 Reset (0) immediately after being read

*5 Constantly "0" when being read

	The 16 Hz–2 Hz timer data of the clock timer can be read out with this register. These four bits are read-out only, and writing operations are invalid. At initial reset, the timer data is initialized to "OH".
ETI32, ETI8, ETI2: Interrupt mask registers (078H·D0–D2)	These registers are used to select whether to mask the clock timer interrupt. When "1" is written : Enabled When "0" is written : Masked Read-out : Valid The interrupt mask registers (ETI32, ETI8, ETI2) are used to select whether to mask the interrupt to the separate fre- quencies (32 Hz, 8 Hz, 2 Hz). At initial reset, these registers are all set to "0".
TI32, TI8, TI2: Interrupt factor flags (079H·D0–D2)	These flags indicate the status of the clock timer interrupt. When "1" is read out : Interrupt has occurred When "0" is read out : Interrupt has not occurred Writing : Invalid The interrupt factor flags (TI32, TI8, TI2) correspond to the clock timer interrupts of the respective frequencies (32 Hz, 8 Hz, 2 Hz). The software can judge from these flags whether there is a clock timer interrupt. However, even if the inter- rupt is masked, the flags are set to "1" at the falling edge of the signal. These flags can be reset through being read out by the software. Reading of interrupt factor flags is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address. At initial reset, these flags are set to "0".

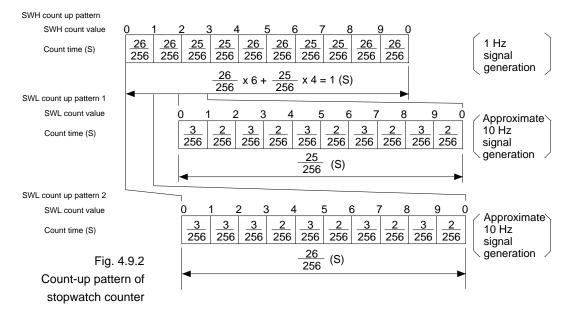

This bit resets the clock timer.						
When "1" is written :Clock timer resetWhen "0" is written :No operationRead-out :Always "0"						
The clock timer is reset by writing "1" to TMRST. The clock timer starts immediately after this. No operation results when "0" is written to TMRST. This bit is write-only, and so is always "0" at read-out.						
(1) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to "1". Consequently, perform flag read-out (reset the flag) as necessary at reset.						
(2) The input clock of the watchdog timer is the 2 Hz signal of the clock timer, so that the watch dog timer may be counted up at timer reset.						
(3) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.Be very careful when interrupt factor flags are in the same address.						
1						

4.9 Stopwatch Counter

Configuration of stopwatch counter

The E0C6S32 Series incorporates a 1/100 sec and 1/10 sec stopwatch counter. The stopwatch counter is configured of a two-stage, four-bit BCD counter serving as the input clock of an approximately 100 Hz signal (signal obtained by approximately demultiplying the 256 Hz signal output by the prescaler). Data can be read out four bits at a time by the software.

Figure 4.9.1 is the block diagram of the stopwatch counter.

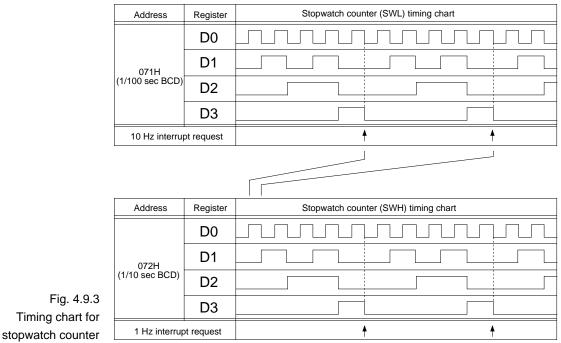


The stopwatch counter can be used as a separate timer from the clock timer. In particular, digital watch stopwatch functions can be realized easily with software.

Count-up pattern

The stopwatch counter is configured of four-bit BCD counters SWL and SWH. The counter SWL, at the stage preceding the stopwatch counter, has an approximated 100 Hz signal for the input clock. It counts up every 1/100 sec, and generates an approximated 10 Hz signal. The counter SWH has an approximated 10 Hz signal generated by the counter SWL for the input clock. It count-up every 1/10 sec, and generated 1 Hz signal.

Figure 4.9.2 shows the count-up pattern of the stopwatch counter.



SWL generates an approximated 10 Hz signal from the basic 256 Hz signal. The count-up intervals are 2/256 sec and 3/ 256 sec, so that finally two patterns are generated: 25/256 sec and 26/256 sec intervals. Consequently, these patterns do not amount to an accurate 1/100 sec.

SWH counts the approximated 10 Hz signals generated by the 25/256 sec and 26/256 sec intervals in the ratio of 4:6, to generate a 1 Hz signal. The count-up intervals are 25/256 sec and 26/256 sec, which do not amount to an accurate 1/10 sec.

Interrupt function

The 10 Hz (approximate 10 Hz) and 1 Hz interrupts can be generated through the overflow of stopwatch counters SWL and SWH respectively. Also, software can set whether to separately mask the frequencies described earlier. Figure 4.9.3 is the timing chart for the stopwatch counter.

As shown in Figure 4.9.3

As shown in Figure 4.9.3, the interrupts are generated by the overflow of their respective counters ("9" changing to "0"). Also, at this time the corresponding interrupt factor flags (SWIT0, SWIT1) are set to "1".

The respective interrupts can be masked separately through the interrupt mask registers (EISWITO, EISWIT1). However, regardless of the setting of the interrupt mask registers, the interrupt factor flags are set to "1" by the overflow of their corresponding counters.

Control of stopwatchTable 4.9.1 list the stopwatch counter control bits and their
addresses.

Address		Reg	ister						Comment
71001033	D3	D2	D1	D0	Name	SR *1	1	0	Common
	SWL3	SWL2	SWL1	SWL0	SWL3	0			MSB
071H		I	2		SWL2	0			Stopwatch counter 1/100 sec (BCD)
07111					SWL1	0			1/100 sec (BCD)
					SWL0	0			LSB
	SWH3	SWH2	SWH1	SWH0	SWH3	0			MSB
072H		I	2		SWH2	0			Stopwatch counter 1/10 sec (BCD)
07211					SWH1	0			1/10 set (BCD)
					SWH0	0			LSB
	HLMOD	BLD BLS	EISWIT1	EISWIT0	HLMOD	0	Heavy load	Normal	Heavy load protection mode register
	R/W	R	R	W	BLD BLS	00	Low voltage ON	Normal OFF	SVD evaluation data
076H		W							SVD ON/OFF Interrupt mask register
					EISWIT1	0	Enable	Mask	(stopwatch 1 Hz)
					EISWIT0	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)
	IK1	IK0	SWIT1	SWIT0	IK1 ^{*4}	0	Yes	No	Interrupt factor flag (K10)
07411		l	2		IK0 ^{*4}	0	Yes	No	Interrupt factor flag (K00–K03)
07AH					SWIT1 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
					SWIT0 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)
	TMRST	SWRUN	SWRST	IOC0	TMRST ^{*5}	Reset	Reset		Clock timer reset
07EH	W	R/W	W	R/W	SWRUN	0	RUN	STOP	Stopwatch counter RUN/STOP
U/EH					SWRST ^{*5}	Reset	Reset		Stopwatch counter reset
					IOC0	0	Output	Input	I/O control register 0 (P00–P03)

Table 4.9.1 Stopwatch counter control bits

 $^{\ast}1$ Initial value at the time of initial reset

*2 Not set in the circuit

*3 Undefined

*4 Reset (0) immediately after being read

*5 Constantly "0" when being read

	Data (BCD) of the 1/100 sec column of the stopwatch coun- ter can be read out. These four bits are read-only, and cannot be used for writing operations. At initial reset, the counter data is set to "OH".
SWH0–SWH3: Stopwatch counter 1/10 sec (072H)	Data (BCD) of the 1/10 sec column of the stopwatch counter can be read out. These four bits are read-only, and cannot be used for writing operations. At initial reset, the counter data is set to "OH".
EISWIT0, EISWIT1: Interrupt mask register (076H·D0 and D1)	These registers are used to select whether to mask the stopwatch counter interrupt. When "1" is written : Enabled When "0" is written : Masked Read-out : Valid The interrupt mask registers (EISWIT0, EISWIT1) are used to separately select whether to mask the 10 Hz and 1 Hz interrupts. At initial reset, these registers are both set to "0".
SWIT0, SWIT1: Interrupt factor flag (07AH·D0 and D1)	 These flags indicate the status of the stopwatch counter interrupt. When "1" is read out : Interrupt has occurred When "0" is read out : Interrupt has not occurred Writing : Invalid The interrupt factor flags (SWITO, SWIT1) correspond to the 10 Hz and 1 Hz interrupts respectively. With these flags, the software can judge whether a stopwatch counter interrupt has occurred. However, regardless of the interrupt mask register setting, these flags are set to "1" by the counter overflow. These flags are reset when read out by the software. Reading of interrupt factor flags is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address. At initial reset, these flags are set to "0".

SWRST: This bit resets the stopwatch counter.

Stopwatch counter reset (07EH·D1)

When "1" is written :Stopwatch counter resetWhen "0" is written :No operationRead-out :Always "0"

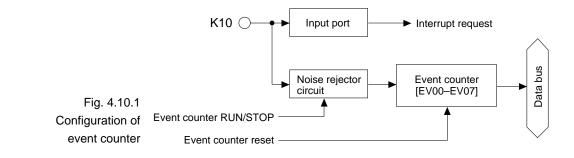
The stopwatch counter is reset when "1" is written to SWRST. When the stopwatch counter is reset in the RUN status, operation restarts immediately. Also, in the STOP status the reset data is maintained. This bit is write-only, and is always "0" at read-out.

SWRUN: This bit controls RUN/STOP of the stopwatch counter.

Stopwatch counter RUN/STOP (07EH·D2)

When "1" is written :	RUN
When "0" is written :	STOP
Read-out :	Valid

The stopwatch counter enters the RUN status when "1" is written to SWRUN, and the STOP status when "0" is written. In the STOP status, the counter data is maintained until the next RUN status or resets counter. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count. When the counter data is read out in the RUN status, correct read-out may be impossible because of the carry from the low-order bit (SWL) to the high-order bit (SWH). This occurs when read-out has extended over the SWL and SWH bits when the carry occurs. To prevent this, perform read out after entering the STOP status, and then return to the RUN status. Also, the duration of the STOP status must be within 976 µs (256 Hz 1/4 cycle).


At initial reset, this register is set to "0".

Programming notes	(1) If counter data is read out in the RUN status, the counter						
0 0	must be made into the STOP status, and after data is						
	read out the RUN status can be restored. If data is read						
	out when a carry occurs, the data cannot be read cor-						
	rectly.						
	Also, the processing above must be performed within the						
	STOP interval of 976 μs (256 Hz 1/4 cycle).						
	(2) Reading of interrupt factor flags is available at EI, but be						
	careful in the following cases.						
	If the interrupt mask register value corresponding to the						
	interrupt factor flags to be read is set to "1", an interrupt						
	request will be generated by the interrupt factor flags set						
	timing, or an interrupt request will not be generated.						
	Be very careful when interrupt factor flags are in the						
	same address.						

4.10 Event Counter

Configuration of
event counterThe E0C6S32 Series has an event counter that counts the
clock signals input from outside.
The event counter is configured of eight-bit binary counters
(UP counters). The clock pulses are input through K10 pin
or K03 pin of the input port. (K03 input can be selected by
mask option.)

Figure 4.10.1 shows the configuration of the event counter.

Operation of event
counterThe clock signal input from terminal K10 is input to the
event counter via the noise rejector. (Either K10 or K03 can
be selected as the event counter input by mask option.)
The event counter increments when the clock signal is
input, and the incremented data can be read out through
the software.
RUN and STOP of the event counter are performed by mak-
ing the clock of the noise rejector ON and OFF. This is
controlled by writing data to the EVRUN register.
The counter counts up at the rising edge of the K10 input
clock or the falling edge of the K03 input clock.
Figure 4.10.2 is the timing chart for the event counter.

Input of K10 terminal	←Ton→←Toff→	
EVRUN	STOP RUN	←Tstp→
Input of event counter	ſſ	
Defined time Fig. 4.10.2 Timing chart of event counter	$\begin{array}{ll} \text{TON} & \geq 1.5 \mbox{ TCH} \\ \text{TOFF} & \geq 1.0 \mbox{ TCH} \\ \text{TN} & < 0.5 \mbox{ TCH} \\ \text{TSTP} & \geq 0.5 \mbox{ TCH} \\ \text{TON2} & \geq 1.5 \mbox{ TCH} + \mbox{ TSTP} \mbox{ (Execution time)} \end{array}$	TCH = 1/fCH Through the mask option, fCH selects fosc1/16 or fosc1/128 for the clock frequency of the noise rejector

Mask option

For the event counter input, either the K10 terminal or the K03 terminal can be selected by mask option.

The clock frequency of the noise rejector can be selected as fosc1/16 or fosc1/128.

Table 4.10.1 lists the defined time depending on the frequency selected.

Table 4.10.1 Defined time depending on frequency selected

Selection	fosc1/16	fosc1/128
TON	0.74	5.86
Toff	0.49	3.91
TN	0.24	1.95
TSTP	0.25	1.96

(Unit: msec)

fosc1 = 32.768 kHz TN : Max value Others : Min value

Control of eventTable 4.10.2 shows the event counter control bits and their
addresses.

Address		Reg	ster						Comment
/1001033	D3	D2	D1	D0	Name	SR *1	1	0	oominicitt
	EV03	EV02	EV01	EV00	EV03	0			7
0F8H		F	2		EV02	0			Event counter Low order (EV00–EV03)
					EV01	0			
					EV00	0			_
	EV07	EV06	EV05	EV04	EV07	0			7
0F9H		F	8		EV06	0			Event counter High order (EV04–EV07)
					EV05	0			High older (EV04–EV07)
					EV04	0			
	0	EVRUN	0	EVRST	0	_ *2			Unused
0FCH	R	R/W	R	w	EVRUN	0	RUN	STOP	Event counter RUN/STOP
					0	- *2			Unused
					EVRST ^{*5}	Reset	Reset	-	Event counter reset

Table 4.10.2 Event counter control bits

*1 Initial value at the time of initial reset

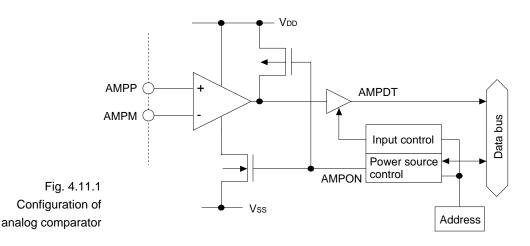
*2 Not set in the circuit

*3 Undefined

*4 Reset (0) immediately after being read

*5 Constantly "0" when being read

EV00-EV03:	The four low-order data bits of event counter are read out.
Event counter Low-order	These four bits are read-only, and cannot be used for writ-
(0F8H)	ing.
	At initial reset, this counter is set to "OH".
EV04–EV07:	The four high-order data bits of event counter are read out.
Event counter High-order	These four bits are read-only, and cannot be used for writ-
(0F9H)	ing.
	At initial reset, this counter is set to "OH".


EVRST: Event counter reset (0FCH·D0)	This is the register for rea When "1" is written : When "0" is written : Read-out :	<u> </u>			
	becomes "00H". When "0 cuted.	nt counter is reset and the data)" is written, no operation is exe- nd is always "0" at read-out.			
EVRUN: Event counter RUN/STOP (0FCH·D2)	This register controls the event counter RUN/STOP statusWhen "1" is written :RUNWhen "0" is written :STOPRead-out :Valid				
	When "1" is written, the event counter enters the RUN status and starts receiving the clock signal input. When "0" is written, the event counter enters the STOP status and the clock signal input is ignored. (However, input to the input port is valid.) At initial reset, this register is set to "0".				
Programming note	-	ding of the event counter data, read eral times, compare it, and use the ult.			

4.11 Analog Comparator

Configuration of analog comparator

The E0C6S32 Series incorporates an MOS input analog comparator. This analog comparator, which has two differential input terminals (inverted input terminal AMPM, noninverted input terminal AMPP), can be used for general purposes.

Figure 4.11.1 shows the configuration of the analog comparator.

Operation of analog comparator

The analog comparator is ON when the AMPON register is "1", and compares the input levels of the AMPP and AMPM terminals. The result of the comparison is read from the AMPDT register. It is "1" when AMPP (+) > AMPM (-) and "0" when AMPP (+) < AMPM (-).

After the analog comparator goes ON it takes a maximum of 3 ms until the output stabilizes.

Control of analog comparator

Table 4.11.1 lists the analog comparator control bits and their addresses.

Address		Reg	ister						Comment
Audress	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	-	-	AMPDT	AMPON	-	-			Unused
0F7H		R		R/W	-	-			Unused
01711					AMPDT	1	+ > -	- > +	Analog comparator data
					AMPON	0	ON	OFF	Analog comparator ON/OFF

Table 4.11.1 Analog comparator control bits

*1 Initial value at the time of initial reset

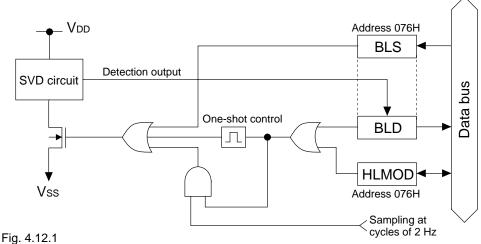
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

AMPON: Switches the analog comparator ON and OFF.

Analog comparator ON/ OFF (0F7H·D0)	When "1" is written : When "0" is written : Read-out :	The analog comparator goes ON The analog comparator goes OFF Valid				
	The analog comparator goes ON when "1" is written to AMPON, and OFF when "0" is written. At initial reset, AMPON is set to "0".					
AMPDT: Analog comparator data (0F7H·D1)	Reads out the output from the analog comparator. When "1" is read out : AMPP (+) > AMPM (-) When "0" is read out : AMPP (+) < AMPM (-) Writing : Invalid AMPDT is "0" when the input level of the inverted input terminal (AMPM) is greater than the input level of the					
	noninverted input terminal (AMPP); and "1" when smaller. At initial reset, AMPDT is set to "1".					

Programming notes	(1) To reduce current consumption, set the analog compara- tor to OFF when it is not necessary.
	(2) After setting AMPON to "1", wait at least 3 ms for the operation of the analog comparator to stabilize before reading the output data of the analog comparator from AMPDT.

4.12 Supply Voltage Detection (SVD) Circuit and Heavy Load Protection Function


Configuration of SVD circuit

The E0C6S32 Series has a built-in supply voltage detection (SVD) circuit, so that the software can find when the source voltage lowers. The configuration of the SVD circuit is shown in Figure 4.12.1.

Turning the SVD operation ON/OFF is controlled through the software (HLMOD, BLS). Moreover, when a drop in source voltage (BLD = "1") is detected, SVD operation is periodically performed by the hardware until the source voltage is recovered (BLD = "0").

Because the power current consumption of the IC becomes big when the SVD operation is turned ON, set the SVD operation to OFF unless otherwise necessary.

See "7 ELECTRICAL CHARACTERISTICS" for the evaluation voltage accuracy.

Configuration of SVD circuit

Heavy load protec- tion function	Note that the heavy load protection function on the E0C6SL32/6SB32 is different from the E0C6S32/6SA32.				
	(1) In case of E0C6SL32/6SB32				
	The E0C6SL32/6SB32 has the heavy load protection function for when the battery load becomes heavy and the source voltage drops, such as when an external buzzer sounds or an external lamp lights. The state where the heavy load protection function is in effect is called the heavy load protection mode. In this mode, operation with a lower voltage than normal is possible. The normal mode changes to the heavy load protection mode in the following two cases:				
	 When the software changes the mode to the heavy load protection mode (HLMOD = "1") 				
	② When supply voltage drop (BLD = "1") in the SVD circuit is detected, the mode will automatically shift to the heavy load protection mode until the supply volt- age is recovered (BLD = "0")				
	In the heavy load protection mode, the internally regu- lated voltage is generated by the liquid crystal driver source output VL2 so as to operate the internal circuit. Consequently, more current is consumed in the heavy load protection mode than in the normal mode. Unless it is necessary, be careful not to set the heavy load protec- tion mode with the software. Also, when the BLS is to be turned on during operation in the heavy load protection mode, limit the ON time to 10 msec per second of opera- tion time.				
	(2) In case of E0C6S32/6SA32				
	The E0C6S32/6SA32 has the heavy load protection function for when the battery load becomes heavy and the source voltage changes, such as when an external buzzer sounds or an external lamp lights. The state where the heavy load protection function is in effect is called the heavy load protection mode. Compared with				

the normal operation mode, this mode can reduce the output voltage variation of the constant voltage/booster voltage circuit of the LCD system.

The normal mode changes to the heavy load protection mode in the following case:

	 When the software changes the mode to the heavy load protection mode (HLMOD = "1") 					
	The heavy load protection mode switches the constant voltage circuit of the LCD system to the high-stability mode from the low current consumption mode. Conse- quently, more current is consumed in the heavy load protection mode than in the normal mode. Unless it is necessary, be careful not to set the heavy load protection mode with the software.					
Detection timing of SVD circuit	 This section explains the timing for when the SVD circuit writes the result of the source voltage detection to the SVD latch. Turning the SVD operation ON/OFF is controlled through the software (HLMOD, BLS). Moreover, when a drop in source voltage (BLD = "1") is detected, SVD operation is periodically performed by the hardware until the source voltage is recovered (BLD = "0"). The result of the source voltage detection is written to the SVD latch by the SVD circuit, and this data can be read out by the software to find the status of the source voltage. There are three methods, explained below, for executing the detection operation of the SVD circuit. 					
	(1) Sampling with HLMOD set to "1"					
	When HLMOD is set to "1" and SVD sampling executed, the detection results can be written to the SVD latch in the following two timings.					
	 Immediately after the time for one instruction cycle has ended immediately after HLMOD = "1" 					
	② Immediately after sampling in the 2 Hz cycle output by the clock timer while HLMOD = "1"					
	Consequently, the SVD latch data is loaded immediately after HLMOD has been set to "1", and at the same time the new detection result is written in 2 Hz cycles.					
	To obtain a stable SVD detection result, the SVD circuit must be set to ON with at least 100 μ s. Consequently, when the CPU system clock is fosc3 in EOC6SA32, the detection result at the timing in $①$ above may be invalid or incorrect. (When performing SVD detection using the timing in $①$, be sure that the CPU system clock is fosc1.)					

(2) Sampling with BLS set to "1"

When BLS is set to "1", SVD detection is executed. As soon as BLS is reset to "0" the detection result is loaded to the SVD latch. To obtain a stable SVD detection result, the SVD circuit must be set to ON with at least 100 µs. Hence, to obtain the SVD detection result, follow the programming sequence below.

0. Set HLMOD to "1" (only when the CPU system clock is fosc3 in E0C6SA32)

- 1. Set BLS to "1"
- 2. Maintain at 100 μs minimum
- 3. Set BLS to "0"
- 4. Read out BLD
- 5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C6SA32)

However, when a crystal oscillation clock (fosc1) is selected for the CPU system clock in E0C6S32, E0C6SL32, E0C6SB32 and E0C6SA32, the instruction cycles are long enough, so that there is no need for concern about maintaining 100 μ s for the BLS = "1" with the software.

(3) Sampling by hardware when SVD latch is set to "1"

When SVD latch is set to "1", the detection results can be written to the SVD latch in the following two timings (same as that sampling with HLMOD set to "1").

- Immediately after the time for one instruction cycle has ended immediately after BLD = "1"
- ② Immediately after sampling in the 2 Hz cycle output by the clock timer while BLD = "1"

Consequently, the SVD latch data is loaded immediately after SVD latch has been set to "1", and at the same time the new detection result is written in 2 Hz cycles. To obtain a stable SVD detection result, the SVD circuit must be set to ON with at least 100 µs.

When the CPU system clock is fosc3 in E0C6SA32, the detection result at the timing in ① above may be invalid or incorrect.

Control of SVD cir-
cuitTable 4.12.1 shows the SVD circuit's control bits and their
addresses.

Address	Register								Comment
Audiess	D3 D2		D1	D0	Name SR *1 1 0		0	Comment	
	HLMOD	BLD BLS	EISWIT1	EISWIT0	HLMOD	0	Heavy load	Normal	Heavy load protection mode register
	076H	R/W	NA /	BLD	0	Low voltage	Normal	SVD evaluation data	
076H		W	R/W		BLS	0	ON	OFF	SVD ON/OFF
07011			EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)		
					EISWITO	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)

Table 4.12.1 Control bits of SVD circuit

*1 Initial value at the time of initial reset

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

HLMOD:	When "1" is written :	Heavy load protection mode is set
Heavy load protection	When "0" is written :	Heavy load protection mode
mode (076H·D3)		is released
	Read-out :	Valid

When HLMOD is set to "1", the IC operating status enters the heavy load protection mode and at the same time the supply voltage detection of the SVD circuit is controlled (ON/OFF).

When HLMOD is set to "1", sampling control is executed for the SVD circuit ON time. There are two types of sampling time, as follows:

- (1) Sampling at time of one instruction cycle immediately after HLMOD = "1"
- (2) Sampling at cycles of 2 Hz output by the clock timer while HLMOD = "1"

The SVD circuit must be made ON with at least 100 µs for the SVD circuit to respond. Hence, when the CPU system clock is fosc3 in EOC6SA32, the detection result at the timing in (1) above may be invalid or incorrect. (When performing SVD detection using the timing in (1), be sure that the CPU system clock is fosc1.)

When SVD sampling is done with HLMOD set to "1", the results are written to the SVD latch in the timing as follows:

- (1) As soon as the time has elapsed for one instruction cycle immediately following HLMOD = "0" \rightarrow "1"
- (2) Immediately on completion of sampling at cycles of 2 Hz output by the clock timer while HLMOD = "1"

Consequently, the SVD latch data is written immediately after HLMOD is set to "0" \rightarrow "1", and at the same time the new detection result is written in 2 Hz cycles.

When "0" is written :	SVD detection OFF
When "1" is written :	SVD detection ON
When "0" is read out :	Source voltage (VDD-Vss)
	is higher than SVD set value
When "1" is read out :	Source voltage (VDD–Vss)
	is lower than SVD set value
	When "1" is written : When "0" is read out :

Note that the function of this bit when written is different to when read out.

When this bit is written to, ON/OFF of the SVD detection operation is controlled; when this bit is read out, the result of the SVD detection (contents of SVD latch) is obtained. Appreciable current is consumed during operation of SVD detection, so keep SVD detection OFF except when necessary.

When BLS is set to "1", SVD detection is executed. As soon as BLS is reset to "0" the detection result is loaded to the SVD latch. To obtain a stable SVD detection result, the SVD circuit must be set to ON with at least 100 μ s. Hence, to obtain the SVD detection result, follow the programming sequence below.

	 0. Set HLMOD to "1" (only when the CPU system clock is fosc3 in E0C6SA32) 1. Set BLS to "1" 2. Maintain at 100 µs minimum 3. Set BLS to "0" 4. Read out BLD 5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C6SA32) 				
	However, when a crystal oscillation clock (fosc1) is selected for the CPU system clock in E0C6S32, E0C6SL32, E0C6SB32 and E0C6SA32, the instruction cycles are long enough, so that there is no need for concern about main- taining 100 μ s for the BLS = "1" with the software.				
Programming notes	(1) It takes 100 µs from the time the SVD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:				
	 ① When the CPU system clock is fosc1 1. When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed. 				
	 2. When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µs has lapsed (the following instruction can write "0" because the instruction cycle is long enough) and then read the BLD. 				
	 When the CPU system clock is fosc3 (in case of E0C6SA32 only) 1. When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second) 				
	 When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 µs has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD. 				

- (2) BLS resides in the same bit at the same address as BLD, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) at this address, pay attention to whether BLD is ON or OFF.
- (3) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode (E0C6SL32/6SB32).
 - After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
 - ② After heavy load drive is completed, switch BLS ON and OFF (at least 100 µs is necessary for the ON status) and then return to the normal mode.

The E0C6S32/6SA32 returns to the normal mode after driving a heavy load without special software processing.

(4) When the BLS is to be turned on during operation in the heavy load protection mode, limit the ON time to 10 msec per second of operation time.

4.13 Interrupt and HALT

The E0C6S32 Series provides the following interrupt settings, each of which is maskable.

External interrupt :	Input interrupt (two)
Internal interrupt :	Timer interrupt (three)
	Stopwatch interrupt (two)

To authorize interrupt, the interrupt flag must be set to "1" (EI) and the necessary related interrupt mask registers must be set to "1" (enable).

When an interrupt occurs the interrupt flag is automatically reset to "0" (DI), and interrupts after that are inhibited. When a HALT instruction is input the CPU operating clock stops, and the CPU enters the HALT status.

The CPU is reactivated from the HALT status when an interrupt request occurs.

If reactivation is not caused by an interrupt request, initial reset by the watchdog timer causes reactivates the CPU (when the watchdog timer is enabled).

Figure 4.13.1 shows the configuration of the interrupt circuit.

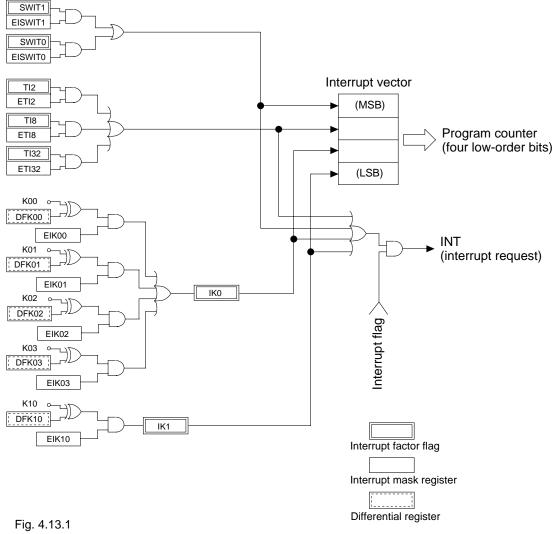


Fig. 4.13.1 Configuration of interrupt circuit

•	Table 4.13.1 shows the factors for generating interrupt requests.					
	The interrupt flags are set to "1" sponding interrupt factors.	depending on the corre-				
	The CPU operation is interrupted below set an interrupt factor flag	•				
	 The corresponding mask register is "1" (enabled) The interrupt flag is "1" (EI) 					
	The interrupt factor flag is a read-only register, but can be reset to "0" when the register data is read out. At initial reset, the interrupt factor flags are reset to "0".					
Note	 Reading of interrupt factor flags is available at EI, but be careful the following cases. If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt 					
	request will not be generated. Be very careful when interrupt factor flags are in the same addres					
Table 4.13.1	Interrupt Factor	Interrupt Factor Flag				
Interrupt factors	Clock timer 2 Hz falling edge	TI2 (079H·D2)				
	Clock timer 8 Hz falling edge	TI8 (079H·D1)				
	Clock timer 32 Hz falling edge	TI32 (079H·D0)				
	Stopwatch counter	SWIT1				
	1 Hz falling edge	(07AH·D1)				

Stopwatch counter

10 Hz falling edge

Input data (K10)

Input data (K00–K03)

Rising or falling edge

Rising or falling edge

SWIT0

IK0

IK1

(07AH·D0)

(07AH·D2)

(07AH·D3)

correspond-
sters. They ritten to ' is written : to "0". : interrupt

Table 4.13.2 Interrupt mask registers and interrupt factor flags

Interrupt M	ask Register	Interrup	t Factor Flag
ETI2	(078H·D2)	TI2	(079H·D2)
ETI8	(078H·D1)	TI8	(079H·D1)
ETI32	(078H·D0)	TI32	(079H·D0)
EISWIT1	(076H·D1)	SWIT1	(07AH·D1)
EISWIT0	(076H·D0)	SWIT0	(07AH·D0)
EIK03	(075H·D3)		
EIK02	(075H·D2)	IVO	(07AH·D2)
EIK01	(075H·D1)	IK0	(07AH·D2)
EIK00	(075H·D0)		
EIK10	(077H·D2)	IK1	(07AH·D3)

* There is an interrupt mask register for each pin of the input ports.

Interrupt vectors	When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being exe- cuted is terminated, the interrupt processing is executed in the following order.							
		The address data (value of program counter) of the pro- gram to be executed next is saved in the stack area (RAM						
	② The interrupt request causes the value of the interrupt vector (page 1, 01H–0FH) to be set in the program count							
	③ The program at the specified address is executed (execu- tion of interrupt processing routine by software).							
	Table 4.13 quests and		s the correspondence of pt vectors.	interrupt re-				
Note	The proces system cloo	-	and	es of the CPU				
Table 4.13.3	PC	Value	Interrupt Reque	st				
Interrupt request and	PCS3	1	Stopwatch interrupt	Enabled				
interrupt vectors		0		Masked				
	PCS2	1	Timer interrupt	Enabled				

0

1

0

1

0

PCS1

PCS0

The four low-order bits of the program counter are indirectly addressed through the interrupt request.

Input (K00–K03) interrupt

Input (K10) interrupt or

Masked

Enabled

Masked

Enabled

Masked

Control of interrupt and HALT

Tables 4.13.4(a)–(b) show the interrupt control bits and their addresses.

Address	Register			Comment						
	D3	D2	D1	D0	Name	SR *1	1	0		
	DFK03	DFK02	DFK01	DFK00	DFK03	0	Falling	Rising	7	
074H	R/W				DFK02	0	Falling	Rising	Differential register (K00–K03)	
07411					DFK01	0	Falling	Rising	(K00-K03)	
					DFK00	0	Falling	Rising		
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	7	
075H		R	W		EIK02	0	Enable	Mask	Interrupt mask register (K00–K03)	
07511					EIK01	0	Enable	Mask	(100-105)	
					EIK00	0	Enable	Mask		
	HLMOD	BLD BLS	EISWIT1	EISWIT0	HLMOD	0	Heavy Ioad	Normal	Heavy load protection mode register	
	R/W	R	R	W	BLD	0	Low voltage	Normal	SVD evaluation data	
076H		W			BLS	0	ON	OFF	SVD ON/OFF	
					EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)	
					EISWIT0	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)	
	0	EIK10	DFK10	K10	0	_ *2			Unused	
077H	R	R	W	R	EIK10	0	Enable	Mask	Interrupt mask register (K10)	
					DFK10	0	Falling	Rising	Differential register (K10)	
					K10	_ *2	High	Low	Input port (K10)	

Table 4.13.4(a) Interrupt control bits (1)

 $^{\ast}1$ Initial value at the time of initial reset

*2 Not set in the circuit

*3 Undefined

*4 Reset (0) immediately after being read

*5 Constantly "0" when being read

Address	Register						_	Comment	
Audress	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	CSDC	ETI2	ETI8	ETI32	CSDC	0	Dynamic	ALL OFF	LCD drive switch
078H	R/W				ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
					ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
					ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	TI2	TI8	TI32	0	_ *2			Unused
079H	R				TI2 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
					TI8 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
					TI32 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	IK1	IK0	SWIT1	SWIT0	IK1 ^{*4}	0	Yes	No	Interrupt factor flag (K10)
07AH	R				IK0 ^{*4}	0	Yes	No	Interrupt factor flag (K00–K03)
					SWIT1 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
					SWIT0 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)

Table 4.13.4(b) Interrupt control bits (2)

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*3 Undefined

*4 Reset (0) immediately after being read

*5 Constantly "0" when being read

- ETI32, ETI8, ETI2: Interrupt mask registers (078H·D0–D2)
- TI32, TI8, TI2: Interrupt factor flags (079H·D0–D2)
 See "Control of clock timer".
- EISWIT0, EISWIT1: Interrupt mask registers (076H·D0–D1)
- SWIT0, SWIT1: Interrupt factor flags (07AH·D0–D1)
 See "Control of stopwatch counter".
- DFK00–DFK03: Differential registers (074H)
- EIK00-EIK03: Interrupt mask registers (075H)
- IK0: Interrupt factor flag (07AH·D2)

See "Control of input ports".

- DFK10: Differential register (077H·D1)
- EIK10: Interrupt mask register (077H·D2)
- IK1: Interrupt factor flag (07AH·D3)

See "Control of input ports".

Programming notes	(1) When the interrupt mask register (EIK) is set to "0", the interrupt factor flag (IK) of the input port cannot be set even though the pin status of the input port has changed.
	(2) The interrupt factor flags of the clock timer and stop- watch counter (TI, SWIT) are set when the timing condi- tion is established, even if the interrupt mask registers (ETI, EISWIT) are set to "0".
	(3) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

CHAPTER 5 SUMMARY OF NOTES

5.1 Notes for Low Current Consumption

The E0C6S32 Series contains control registers for each of the circuits so that current consumption can be lowered. These control registers lower the current consumption through programs that operate the circuits at the minimum levels.

The following text explains the circuits that can control operation and their control registers. Refer to these when putting programs together.

Table 5.1.1	Circuits	and	control	registers
-------------	----------	-----	---------	-----------

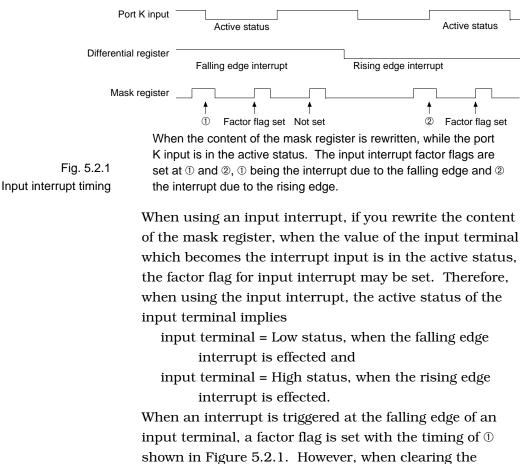
Circuits (and Items)	Control Registers	Order of Consumed Current
CPU	HALT instruction	See electrical characteristics (Chapter 7)
CPU operation frequency	CLKCHG, OSCC	See electrical characteristics (Chapter 7)
(E0C6SA32)		
Heavy load protection mode	HLMOD	See electrical characteristics (Chapter 7)
SVD circuit	HLMOD, BLS	Severral tens µA
Analog comparator	AMPON	Severral tens µA

Below are the circuit statuses at initial reset.

CPU:	Operating status
CPU operating frequency:	Low speed side (CLKCHG = $"0"$),
	OSC3 oscillation circuit stop
	status (OSCC = "0")
Heavy load protection mode	: Normal operating mode
	(HLMOD = "0")
SVD circuit:	OFF status (HLMOD = "0", BLS = "0")
Analog comparator:	OFF status (AMPON = "0")

Also, be careful about panel selection because the current consumption can differ by the order of several μA on account of the LCD panel characteristics.

5.2 Summary of Notes by Function


Here, the cautionary notes are summed up by function category. Keep these notes well in mind when programming.

- Memory Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this manual, normal operation cannot be assured for programs that have been prepared with access to these areas.
- Watchdog timer When the watchdog timer is being used, the software must reset it within 3-second cycles, and timer data (WD0–WD2) cannot be used for timer applications.
- Oscillation circuit (1) It takes at least 5 ms from the time the OSC3 oscillation and prescaler circuit starts operating until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 ms have elapsed since the OSC3 oscillation went ON. Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
 - (2) When switching the clock from OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
 - Input port (1) When input ports are changed from high to low by pulldown resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 ms.

(2) When "noise rejector circuit enable" is selected with the mask option, a maximum delay of 1 ms occurs from the time the interrupt conditions are established until the interrupt factor flag (IK) is set to "1" (until the interrupt is actually generated).

Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag. For example, immediately after performing a key scan with the key matrix, the flag will not be reset because the delay in the interrupt factor flag read-out means the flag is set after read-out. (The key scan changes the input status and the interrupt factor flag is set, necessitating read-out to reset the flag.)

(3) Input interrupt programing related precautions

set.

content of the mask register with the input terminal kept in the Low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been

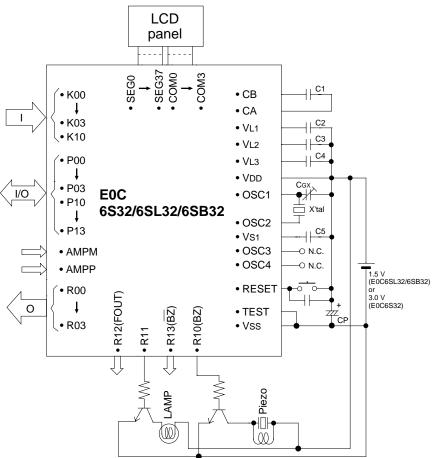
Consequently, when the input terminal is in the active status (Low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (High status).

When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of ⁽²⁾ shown in Figure 5.2.1. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the Low status. In addition, when the mask register = "1" and the content of the differential register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the differential register = "0" status.

- Output port When $\overline{\text{BZ}}$, BZ and FOUT are selected with the mask option, a hazard may be observed in the output waveform when the data of the output register changes.
 - I/O port (1) When the I/O port is being read out, the in-built pulldown resistance of the I/O port goes ON. Consequently, if data is read out while the CPU is running in the OSC3 oscillation circuit, data must be read out continuously for about 500 µs.
 - (2) When the I/O port is set to the output mode and the data register has been read, the terminal data instead of the register data can be read out. Because of this, if a lowimpedance load is connected and read-out performed, the value of the register and the read-out result may differ.
- LCD driver (1) When 40H–6FH is selected for the segment data memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the segment data memory by executing initial processing.

- (2) When COH–EFH is selected for the segment data memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).
- Clock timer (1) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to "1". Consequently, perform flag read-out (reset the flag) as necessary at reset.
 - (2) The input clock of the watchdog timer is the 2 Hz signal of the clock timer, so that the watch dog timer may be counted up at timer reset.
- Stopwatch counter If counter data is read out in the RUN status, the counter must be made into the STOP status, and after data is read out the RUN status can be restored. If data is read out when a carry occurs, the data cannot be read correctly. Also, the processing above must be performed within the STOP interval of 976 µs (256 Hz 1/4 cycle).
 - Event counter To prevent erroneous reading of the event counter data, read out the counter data several times, compare it, and use the matching data as the result.
- Analog comparator (1) To reduce current consumption, set the analog comparator to OFF when it is not necessary.
 - (2) After setting AMPON to "1", wait at least 3 ms for the operation of the analog comparator to stabilize before reading the output data of the analog comparator from AMPDT.

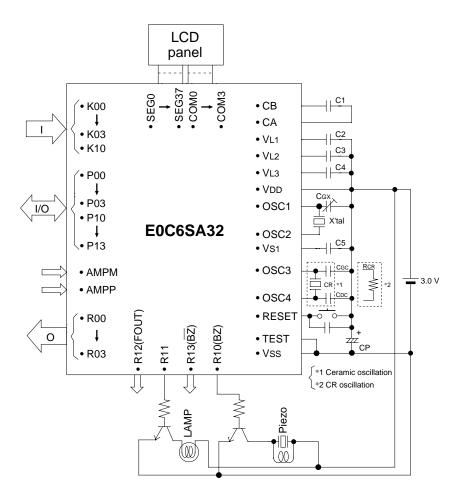
(SVD) circuit and heavy load protection function


Supply voltage detection (1) It takes 100 µs from the time the SVD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:

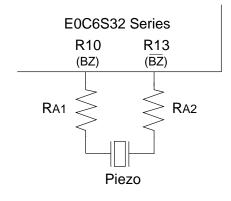
- ① When the CPU system clock is fosc1
 - 1. When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.
 - 2. When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 us has lapsed (the following instruction can write "0" because the instruction cycle is long enough) and then read the BLD.
- ^② When the CPU system clock is fosc3 (in case of E0C6SA32 only)
 - 1. When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second)
 - 2. When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 µs has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD.
- (2) BLS resides in the same bit at the same address as BLD. and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) at this address, pay attention to whether BLD is ON or OFF.
- (3) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode.
 - ① After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
 - ^② After heavy load drive is completed, switch BLS ON and OFF (at least 100 µs is necessary for the ON status) and then return to the normal mode.
- (4) When the BLS is to be turned on during operation in the heavy load protection mode, limit the ON time to 10 milliseconds per second of operation time.

- Interrupt and HALT (1) When the interrupt mask register (EIK) is set to "0", the interrupt factor flag (IK) of the input port cannot be set even though the pin status of the input port has changed.
 - (2) The interrupt factor flags of the clock timer and stopwatch counter (TI, SWIT) are set when the timing condition is established, even if the interrupt mask registers (ETI, EISWIT) are set to "0".
 - (3) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

CHAPTER 6 DIAGRAM OF BASIC EXTERNAL CONNECTIONS


E0C6S32/6SL32/6SB32

X'tal	Crystal oscillator	32.768 kHz, CI = 35 k Ω
Cgx	Trimmer capacitor	5–25 pF
C1		0.1 μF
C2		0.1 µF
C3		0.1 μF
C4		0.1 µF
C5		0.1 μF
CP		3.3 μF


Note The above table is simply an example, and is not guaranteed to work.

E0C6SA32

X'tal	Crystal oscillator	32.768 kHz, CI = $35 \text{ k}\Omega$
Cgx	Trimmer capacitor	5–25 pF
CR	Ceramic oscillator	1 MHz
CGC	Gate capacitance	100 pF
CDC	Drain capacitance	100 pF
RCR	Resistance for CR oscillation	33 kΩ
C1		0.1 μF
C2		0.1 μF
C3		0.1 μF
C4		0.1 μF
C5		0.1 μF
СР		3.3 μF

Note The above table is simply an example, and is not guaranteed to work.

When the piezoelectric buzzer is driven directly

RA1	Protection resistance	100 Ω
Ra2	Protection resistance	100 Ω

When driving the buzzer, set the IC into the heavy load protection mode since the supply voltage changes according to the buzzer frequency.

CHAPTER 7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Rating

E0C6S32/6SA32/6SB32

		(Vde) = 0 V)
Item	Code	Rated Value	Unit
Supply voltage	Vss	-5.5 to 0.5	V
Input voltage (1)	VI	Vss-0.3 to 0.5	V
Input voltage (2)	VIOSC	Vs1-0.3 to 0.5	V
Permissible total output current ^{*2}	ΣIvss	10	mA
Operating temperature	Topr	-20 to 70	°C
Storage temperature	Tstg	-65 to 150	°C
Soldered temperature, time	Tsol	260°C, 10 sec (lead section)	-
Permitted loss *1	Pd	250	mW

E0C6SL32

(VDD = 0 V)

Item	Code	Rated Value	Unit
Supply voltage	Vss	-2.0 to 0.5	V
Input voltage (1)	VI	Vss-0.3 to 0.5	V
Input voltage (2)	Viosc	Vs1-0.3 to 0.5	V
Permissible total output current *2	ΣIvss	10	mA
Operating temperature	Topr	-20 to 70	°C
Storage temperature	Tstg	-65 to 150	°C
Soldered temperature, time	Tsol	260°C, 10 sec (lead section)	-
Permitted loss *1	Pd	250	mW

*1 For 80-pin plastic package

*2 The permissible total output current is the sum total of the current (average current) that simultaneously flows from the output pins (or is drawn in).

7.2 Recommended Operating Conditions

E0C6S32

 $(Ta = -20-70^{\circ}C)$

Item	Code	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vss	VDD = 0V	-3.6	-3.0	-1.8^{*3}	V
Oscillation frequency	fosc1		_	32.768	_	kHz

E0C6SL32

(Ta = -20–70°C)

Item	Code	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vss	$V_{DD} = 0V$	-1.8	-1.5	-1.1	V
		VDD = 0V, software *1 controllable	-1.8	-1.5	-0.9^{*2}	v
		VDD = 0V, When use the analog comparator		-1.5	-1.2	v
Oscillation frequency	fosc1		-	32.768	-	kHz

E0C6SB32

 $(Ta = -20-70^{\circ}C)$

Item	Code	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vss	$V_{DD} = 0V$	-3.6	-1.5	-1.1	V
		VDD = 0V, software *1 controllable	-3.6	-1.5	-0.9^{*2}	v
		VDD = 0V, When use the analog comparator		-1.5	-1.2	v
Oscillation frequency	fosc1		-	32.768	-	kHz

E0C6SA32

 $(Ta = -20-70^{\circ}C)$

Item	Code	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vss	VDD = 0V	-3.6	-3.0	-1.8^{*3}	V
Oscillation frequency (1)	fosc1		-	32.768	_	kHz
Oscillation frequency (2)	fosc3	duty 50±5%	300	1000	1300	kHz

*1 When switching to heavy load protection mode. (See Section 4.12 for details.) Note, however, that the ON time for BLS in the heavy load protection must be limited to 10 milliseconds per second of operation time.

- *2 The possibility of LCD panel display differs depending on the characteristics of the LCD panel.
- *3 2.2 V for applications that use LCD display.

7.3 DC Characteristics

E0C6S32/6SA32

(VDD=0V, Vss=-3.0V, fosc1=32.768kHz, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=0.1 μF)

Item	Code	Сог	ndition	Min.	Тур.	Max.	Unit
High-level	VIH1		K00-K03, K10	0.2		0	V
input voltage (1)			P00–P03, P10–P13	Vss			
High-level	VIH2			0.1.		0	V
input voltage (2)			RESET, TEST	Vss			
Low-level	VIL1		K00-K03, K10	Vss		0.8.	V
input voltage (1)			P00–P03, P10–P13			Vss	
Low-level	VIL2			Vss		0.9	V
input voltage (2)			RESET, TEST			Vss	
High-level	IIH1	VIH = 0V	K00-K03, K10	0		0.5	μΑ
input current (1)			P00–P03, P10–P13				
		No pull-down	AMPP, AMPM				
		resistance					
High-level	IIH2	VIH = 0V	K00-K03, K10	4		40	μΑ
input current (2)		Has pull-down resistance					
High-level	Іінз	VIH = 0V	P00-P03, P10-P13	25		150	μΑ
input current (3)		Has pull-down resistance	RESET, TEST				
Low-level	Iil	VIL = Vss	K00-K03, K10	-0.5		0	μΑ
input current			P00–P03, P10–P13				
			AMPP, AMPM				
			RESET, TEST				
High-level	Іон1	VOH1 = 0.1 ·Vss	R10			-1.8	mA
output current (1)			R11				
			R13				
High-level	IOH2	VOH2 = 0.1 ·Vss	R00-R03, R12			-0.9	mA
output current (2)			P00–P03, P10–P13				
Low-level	IOL1	$VOL1 = 0.9 \cdot Vss$	R10	4.0			mA
output current (1)			R11				
			R13				
Low-level	IOL2	$VOL2 = 0.9 \cdot VSS$	R00-R03, R12	3.0			mA
output current (2)			P00–P03, P10–P13				
Common	Іонз	Voh3 = -0.05V	COM0–COM3			-3	μA
output current	IOL3	VOL3 = VL3+0.05V		3			μA
Segment output current	IOH4	Voh4 = -0.05V	SEG0-SEG37			-3	μA
(at LCD output)	IOL4	VOL4 = VL3 + 0.05V		3			μA
Segment output current	Іон5	Voh5 = 0.1 ·Vss	SEG0-SEG37			-200	μA
(at DC output)	Iol5	$VOL5 = 0.9 \cdot Vss$		200			μΑ

E0C6SL32/6SB32

(VDD=0V, Vss=-1.5V, fosc1=32.768kHz, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=0.1 μF)

Item	Code	Сог	ndition	Min.	Тур.	Max.	Unit
High-level	VIH1		K00-K03, K10	0.2·		0	V
input voltage (1)			P00–P03, P10–P13	Vss			
High-level	VIH2			0.1.		0	V
input voltage (2)			RESET, TEST	Vss			
Low-level	VIL1		K00-K03, K10	Vss		0.8.	V
input voltage (1)			P00–P03, P10–P13			Vss	
Low-level	VIL2			Vss		0.9	V
input voltage (2)			RESET, TEST			Vss	
High-level	IIH1	VIH = 0V	K00-K03, K10	0		0.5	μA
input current (1)			P00–P03, P10–P13				
_		No pull-down	AMPP, AMPM				
		resistance					
High-level	IIH2	VIH = 0V	K00-K03, K10	2		16	μA
input current (2)		Has pull-down resistance					
High-level	Іінз	VIH = OV	P00-P03, P10-P13	9		60	μA
input current (3)		Has pull-down resistance	RESET, TEST				
Low-level	Iil	VIL = Vss	K00-K03, K10	-0.5		0	μA
input current			P00–P03, P10–P13				
			AMPP, AMPM				
			RESET, TEST				
High-level	Іон1	VOH1 = 0.1 ·Vss	R10			-300	μA
output current (1)			R11				
			R13				
High-level	IOH2	VOH2 = 0.1 ·Vss	R00-R03, R12			-150	μA
output current (2)			P00–P03, P10–P13				
Low-level	Iol1	$VOL1 = 0.9 \cdot Vss$	R10	1,400			μΑ
output current (1)			R11				
			R13				
Low-level	IOL2	$VOL2 = 0.9 \cdot VSS$	R00-R03, R12	700			μΑ
output current (2)			P00–P03, P10–P13				
Common	Іонз	Voнз = -0.05V	COM0–COM3			-3	μΑ
output current	Iol3	VOL3 = VL3+0.05V		3			μΑ
Segment output current	Іон4	VOH4 = -0.05V	SEG0-SEG37			-3	μA
(at LCD output)	IOL4	VOL4 = VL3+0.05V		3			μA
Segment output current	Іон5	Voh5 = 0.1 ·Vss	SEG0-SEG37			-100	μΑ
(at DC output)	Iol5	$VOL5 = 0.9 \cdot Vss$		100			μΑ

7.4 Analog Circuit Characteristics and Consumed Current

E0C6S32 (Normal mode)

(VDD=0V, Vss=-3.0V, fosc1=32.768kHz, Cg=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=0.1 μ F)

Item	Code	Conditio	on	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ lo	ad resistance	$1/2 \cdot VL2$		$1/2 \cdot VL2$	V
		between VDD and V	-0.1		× 0.9		
	VL2	Connects a $1M\Omega$ lo	ad resistance	-2.2	-2.1	-2.0	V
		between VDD and V	L2 (No panel load)				
	VL3	Connects a $1M\Omega$ lo	ad resistance	$3/2 \cdot VL2$		$3/2 \cdot VL2$	V
		between VDD and V	L3 (No panel load)	-0.1		× 0.9	
SVD voltage	VSVD			-2.55	-2.40	-2.25	V
SVD circuit response time	tsvd					100	μs
Analog comparator	VIP	Noninverted input	(AMPP)	Vss+0.3		VDD-0.9	V
input voltage	Vim	Inverted input (AM	PM)				
Analog comparator	Vof					10	mV
offset voltage							
Analog comparator	tamp	VIP = -1.5V				3	ms
response time		$VIM = VIP \pm 15mV$					
Consumed current	Iop	During HALT	No panel load		0.65	2.0	μΑ
		During operation*1			2.0	4.0	μА

 $\ast 1\,$ The SVD circuit and analog comparator are in the OFF status.

E0C6S32 (Heavy load protection mode)

(VDD=0V, Vss=-3.0V, fosc1=32.768kHz, CG=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are
internal voltage, C1=C2=C3=C4=C5=0.1 μ F)

Item	Code	Conditio	on	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load resistance		$1/2 \cdot VL2$		$1/2 \cdot VL2$	V
		between VDD and V	L1 (No panel load)	-0.1		$\times 0.9$	
	VL2	Connects a $1M\Omega$ lo	ad resistance	-2.2	-2.1	-2.0	V
		between VDD and V	L2 (No panel load)				
	VL3	Connects a $1M\Omega$ lo	ad resistance	$3/2 \cdot VL2$		$3/2 \cdot VL2$	V
		between VDD and V	L3 (No panel load)	-0.1		× 0.9	
SVD voltage	VSVD			-2.55	-2.40	-2.25	V
SVD circuit response time	tsvd					100	μs
Analog comparator	Vip	Noninverted input	(AMPP)	Vss+0.3		Vdd-0.9	V
input voltage	Vim	Inverted input (AM	PM)				
Analog comparator	Vof					10	mV
offset voltage							
Analog comparator	tamp	$V_{IP} = -1.5V$				3	ms
response time		$VIM = VIP \pm 15mV$					
Consumed current	IOP	During HALT	No panel load		11.2	34.0	μA
		During operation ^{*1}			14.5	40.0	μΑ

*1 The SVD circuit is on status (HLMOD = "1", BLS = "0"). The analog comparator is in the OFF status.

E0C6SL32 (Normal mode)

(VDD=0V, Vss=-1.5V, fosc1=32.768kHz, CG=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=0.1 μ F)

Item	Code	Conditio	on	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load resistance		-1.15	-1.05	-0.95	V
		between VDD and VL1 (No panel load)					
	VL2	Connects a $1M\Omega$ lo	ad resistance	$2 \cdot V_{L1}$		$2 \cdot V_{L1}$	V
		between VDD and V	L2 (No panel load)	-0.1		× 0.9	
	VL3	Connects a $1M\Omega$ lo	ad resistance	3.VL1		3.VL1	V
		between VDD and V	L3 (No panel load)	-0.1		× 0.9	
SVD voltage	VSVD			-1.30	-1.20	-1.10	V
SVD circuit response time	tsvd					100	μs
Analog comparator	Vip	Noninverted input	(AMPP)	Vss+0.3		Vdd-0.9	V
input voltage	Vim	Inverted input (AM	PM)				
Analog comparator	Vof					20	mV
offset voltage							
Analog comparator	tamp	VIP = -1.1V				3	ms
response time		$VIM = VIP \pm 30mV$					
Consumed current	Iop	During HALT	No panel load		0.65	1.5	μΑ
		During operation*1			2.0	4.0	μΑ

*1 The SVD circuit and analog comparator are in the OFF status.

E0C6SL32 (Heavy load protection mode)

(VDD=0V, VSS=-1.5V, fosc1=32.768kHz, CG=25pF, Ta=25°C, VS1, VL1, VL2, VL3 are
internal voltage, C1=C2=C3=C4=C5=0.1µF)

	<u> </u>	a			-		
Item	Code	Conditio	on	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load resistance		-1.15	-1.05	-0.95	V
		between VDD and V	L1 (No panel load)				
	VL2	Connects a $1M\Omega$ lo	ad resistance	$2 \cdot V_{L1}$		$2 \cdot V_{L1}$	V
		between VDD and V	L2 (No panel load)	-0.1		$\times 0.85$	
	Vl3	Connects a $1M\Omega$ lo	ad resistance	3.VL1		3.VL1	V
		between VDD and V	L3 (No panel load)	-0.1		imes 0.85	
SVD voltage	VSVD			-1.30	-1.20	-1.10	V
SVD circuit response time	tsvd					100	μs
Analog comparator	Vip	Noninverted input	(AMPP)	Vss+0.3		Vdd-0.9	V
input voltage	Vim	Inverted input (AM	PM)				
Analog comparator	Vof					20	mV
offset voltage							
Analog comparator	tamp	$V_{IP} = -1.1V$				3	ms
response time		$VIM = VIP \pm 30mV$					
Consumed current	Iop	During HALT ^{*1}	No panel load		11.2	34.0	μΑ
		During operation*1			14.5	40.0	μΑ

*1 The SVD circuit is on status (HLMOD = "1", BLS = "0"). The analog comparator is in the OFF status.

E0C6SB32 (Normal mode)

(VDD=0V, Vss=-1.5V, fosc1=32.768kHz, CG=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=0.1 μ F)

Item	Code	Conditio	on	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load resistance		-1.15	-1.05	-0.95	V
		between VDD and V	between VDD and VL1 (No panel load)				
	VL2	Connects a $1M\Omega$ lo	ad resistance	$2 \cdot V_{L1}$		$2 \cdot V_{L1}$	V
		between VDD and V	L2 (No panel load)	-0.1		× 0.9	
	VL3	Connects a $1M\Omega$ lo	ad resistance	3.VL1		3.VL1	V
		between VDD and V	L3 (No panel load)	-0.1		× 0.9	
SVD voltage	VSVD			-1.30	-1.20	-1.10	V
SVD circuit response time	tsvd					100	μs
Analog comparator	Vip	Noninverted input	(AMPP)	Vss+0.3		Vdd-0.9	V
input voltage	Vim	Inverted input (AM	PM)				
Analog comparator	Vof					20	mV
offset voltage							
Analog comparator	tamp	VIP = -1.1V				3	ms
response time		$VIM = VIP \pm 30mV$					
Consumed current	Iop	During HALT	No panel load		0.65	1.5	μA
		During operation*1			2.0	4.0	μΑ

*1 The SVD circuit and analog comparator are in the OFF status.

E0C6SB32 (Heavy load protection mode)

(VDD=0V, Vss=-1.5V, fosc1=32.768kHz, CG=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=0.1 μ F)

	-						
Item	Code	Conditio	on	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load resistance		-1.15	-1.05	-0.95	V
		between VDD and V	L1 (No panel load)				
	VL2	Connects a $1M\Omega$ lo	ad resistance	$2 \cdot V_{L1}$		$2 \cdot V_{L1}$	V
		between VDD and V	L2 (No panel load)	-0.1		$\times 0.85$	
	VL3	Connects a $1M\Omega$ lo	ad resistance	3.VL1		3.VL1	V
		between VDD and V	L3 (No panel load)	-0.1		$\times 0.85$	
SVD voltage	VSVD			-1.30	-1.20	-1.10	V
SVD circuit response time	tsvd					100	μs
Analog comparator	Vip	Noninverted input	(AMPP)	Vss+0.3		Vdd-0.9	V
input voltage	Vim	Inverted input (AM	PM)				
Analog comparator	Vof					20	mV
offset voltage							
Analog comparator	tamp	VIP = -1.1V				3	ms
response time		$VIM = VIP \pm 30mV$					
Consumed current	Iop	During HALT ^{*1}	No panel load		11.2	34.0	μΑ
		During operation*1			14.5	40.0	μΑ

*1 The SVD circuit is on status (HLMOD = "1", BLS = "0"). The analog comparator is in the OFF status.

E0C6SA32 (Normal mode)

(VDD=0V, Vss=-3.0V, fosc1=32.768kHz, CG=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=0.1 μ F)

Item	Code	Condition	۱	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load resistance		$1/2 \cdot VL2$		$1/2 \cdot VL2$	V
		between VDD and VL1	(No panel load)	-0.1		× 0.9	
	VL2	Connects a $1M\Omega$ load	d resistance	-2.2	-2.1	-2.0	V
		between VDD and VL2	e (No panel load)				
	Vl3	Connects a $1M\Omega$ load	d resistance	$3/2 \cdot VL2$		$3/2 \cdot VL2$	V
		between VDD and VL3	3 (No panel load)	-0.1		× 0.9	
SVD voltage	VSVD			-2.55	-2.40	-2.25	V
SVD circuit response time	tsvd					100	μs
Analog comparator	Vip	Noninverted input (A	MPP)	Vss+0.3		VDD-0.9	V
input voltage	Vim	Inverted input (AMP	M)				
Analog comparator	Vof					10	mV
offset voltage							
Analog comparator	tamp	VIP = -1.5V				3	ms
response time		$VIM = VIP \pm 15mV$					
Consumed current	Iop	During HALT	No panel load		1.5	3.0	μΑ
		During operation *1	OSCC = "0"		4.0	8.0	μA
		During operation	No panel load		150	300	μΑ
		at 1 MHz ^{*1}					

 $^{\ast}1\,$ The SVD circuit and analog comparator are in the OFF status.

E0C6SA32 (Heavy load protection mode)

(VDD=0V, Vss=-3.0V, fosc1=32.768kHz, CG=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=0.1 μ F)

Item	Code	Conditior	ו	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ loa	d resistance	$1/2 \cdot VL2$		$1/2 \cdot VL2$	V
		between VDD and VL	between VDD and VL1 (No panel load)			× 0.9	
	VL2	Connects a $1M\Omega$ loa	d resistance	-2.2	-2.1	-2.0	V
		between VDD and VL2	e (No panel load)				
	VL3	Connects a $1M\Omega$ loa	d resistance	$3/2 \cdot VL2$		$3/2 \cdot VL2$	V
		between VDD and VL3	8 (No panel load)	-0.1		$\times 0.9$	
SVD voltage	VSVD			-2.55	-2.40	-2.25	V
SVD circuit response time	tsvd					100	μs
Analog comparator	VIP	Noninverted input (A	MPP)	Vss+0.3		VDD-0.9	V
input voltage	VIM	Inverted input (AMP	M)				
Analog comparator	Vof					10	mV
offset voltage							
Analog comparator	tamp	VIP = -1.5V				3	ms
response time		$VIM = VIP \pm 15mV$					
Consumed current	Iop	During HALT	No panel load		60	110	μΑ
		During operation *1	OSCC = "0"		65	120	μΑ
		During operation	No panel load		200	330	μΑ
		at 1 MHz ^{*1}					

*1 The SVD circuit is on status (HLMOD = "1", BLS = "0"). The analog comparator is in the OFF status.

7.5 Oscillation Characteristics

The oscillation characteristics change depending on the conditions (components used, board pattern, etc.). Use the following characteristics as reference values.

E0C6S32

If no special requirement

VDD=0V, Vss=-3.0V, Crystal: C-002R(CI=35k Ω), Cg=25pF, CD=built-in, Ta=25°C

Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation start	Vsta	tsta≤5sec	-1.8			V
voltage	(Vss)					
Oscillation stop	Vstp	tstp≤10sec	-1.8			V
voltage	(Vss)					
Built-in capacitance	CD	Including incidental		14		pF
(drain)		capacitance inside IC				
Frequency/voltage	f/V	Vss = -1.8 to -3.6V			5	ppm
deviation						
Frequency/IC	f/IC		-10		10	ppm
deviation						
Frequency adjustment	f/Cg	CG = 5 to 25pF	35	45		ppm
range						
Harmonic oscillation	Vhho				-3.6	V
start voltage	(Vss)					
Permitted leak	Rleak	Between OSC1	200			MΩ
resistance		and VDD, Vss				

E0C6SL32

If no special requirement

VDD=0V, Vss=-1.5V, Crystal: C-002R(CI=35k Ω), Cg=25pF, CD=built-in,

Ta=25°C

Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation start	Vsta	tsta≤5sec	-1.1			V
voltage	(Vss)					
Oscillation stop	Vstp	tstp≤10sec	-1.1			V
voltage	(Vss)		(-0.9) ^{*1}			
Built-in capacitance	Cd	Including incidental		14		pF
(drain)		capacitance inside IC				
Frequency/voltage	f/V	Vss = -1.1 to -1.8V			5	ppm
deviation		(-0.9)*1				
Frequency/IC	f/IC		-10		10	ppm
deviation						
Frequency adjustmen	f/Cg	CG = 5 to 25pF	35	45		ppm
rang						
Harmonic oscillation	Vhho				-1.8	V
start voltage	(Vss)					
Permitted leak	Rleak	Between OSC1	200			MΩ
resistance		and VDD, Vss				

*1 Parentheses indicate value for operation in heavy load protection mode. Note, however, that the ON time for BLS must be limited to 10 milliseconds per second of operation time.

E0C6SB32

If no special requirement

Vdd=0V, Vss=-1.5V, Crystal: C-002R(CI=35k Ω), Cg=25pF, Cd=built-in, Ta=25°C

Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation start	Vsta	tsta≤5sec	-1.1			V
voltage	(Vss)					
Oscillation stop	Vstp	tstp≤10sec	-1.1			V
voltage	(Vss)		(-0.9)*1			
Built-in capacitance	Cd	Including incidental		14		pF
(drain)		capacitance inside IC				
Frequency/voltage	f/V	Vss = -1.1 to -3.6V			5	ppm
deviation		(-0.9) ^{*1}				
Frequency/IC	f/IC		-10		10	ppm
deviation						
Frequency adjustmen	f/Cg	CG = 5 to 25pF	35	45		ppm
rang						
Harmonic oscillation	Vhho				-3.6	V
start voltage	(Vss)					
Permitted leak	Rleak	Between OSC1	200			MΩ
resistance		and VDD, Vss				

*1 Parentheses indicate value for operation in heavy load protection mode. Note, however, that the ON time for BLS must be limited to 10 milliseconds per second of operation time.

E0C6SA32

OSC1, 2

If no special requirement

Vdd=0V, Vss=-3.0V, Crystal: C-002R(CI=35k Ω), Cg=25pF, Cd=built-in,

Ta=25°C

Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation start	Vsta	tsta≤5sec	-1.8			V
voltage	(Vss)					
Oscillation stop	Vstp	tstp≤10sec	-1.8			V
voltage	(Vss)					
Built-in capacitance	CD	Including incidental		14		pF
(drain)		capacitance inside IC				
Frequency/voltage	f/V	Vss = -2.2 to -3.6V			5	ppm
deviation						
Frequency/IC	f/IC		-10		10	ppm
deviation						
Frequency adjustment	f/Cg	CG = 5 to 25pF	35	45		ppm
range						
Harmonic oscillation	Vhho				-3.6	V
start voltage	(Vss)					
Permitted leak	Rleak	Between OSC1	200			MΩ
resistance		and VDD, Vss				

OSC3, OSC4 (for CR oscillation circuit)

If no special requirement

VDD=0V, Vss=-3.0V, Rcr= $33k\Omega$, Ta= $25^{\circ}C$

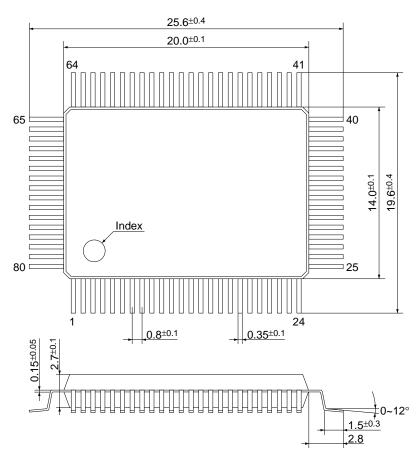
Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation frequency	fosc3		-30	1MHz	30	%
Oscillation start voltage	Vsta		-1.8			V
Oscillation start time	tsta	Vss = -2.2 to -3.6V			3	ms
Oscillation stop voltage	Vstp		-1.8			V

OSC3, OSC4 (for ceramic oscillation circuit)

If no special requirement

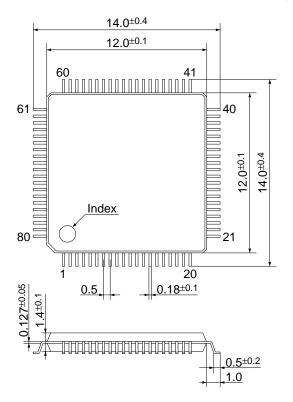
VDD=0V, Vss=-3.0V, ceramic oscillation: 1MHz

Cgc=Cpc=100pF, Ta= $25^{\circ}C$

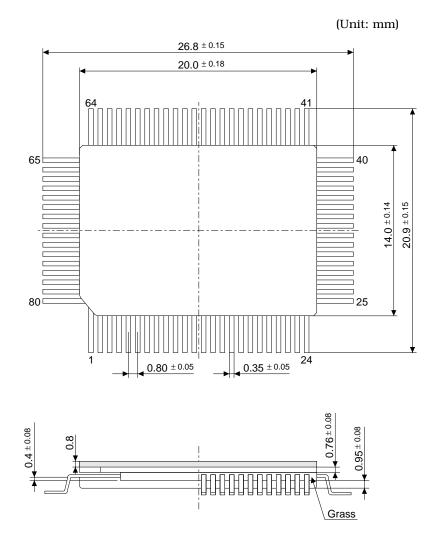

Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation start voltage	Vsta		-1.8			V
Oscillation start time	tsta	Vss = -2.2 to -3.6V			5	ms
Oscillation stop voltage	Vstp		-1.8			V

CHAPTER 8 PACKAGE

8.1 Plastic Package

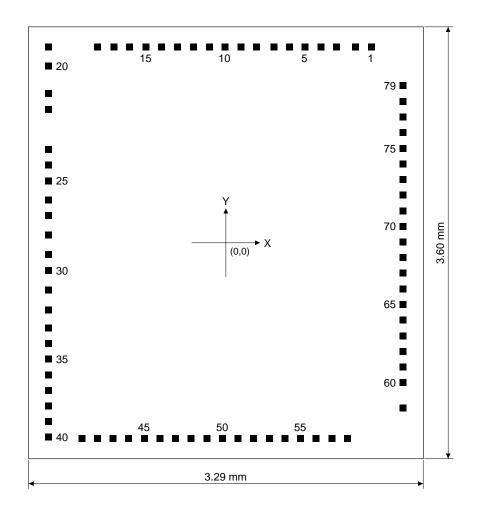

QFP5-80pin

(Unit: mm)



QFP14-80pin

(Unit: mm)



Note The ceramic package is fixed in this form regardless selecting of the plastic package form.

CHAPTER 9 PAD LAYOUT

9.1 Diagram of Pad Layout

Chip thickness: 400 μm Pad opening: 95 μm

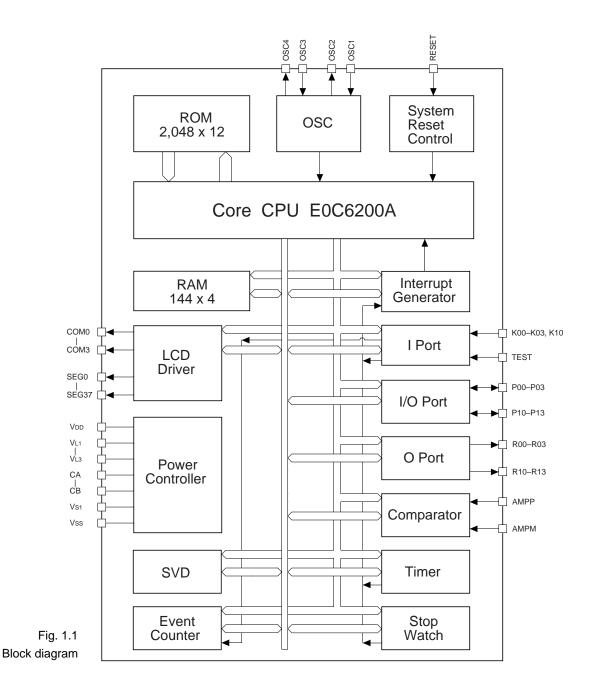
9.2 Pad Coordinates

_										(Unit	: µm)
F	PAD	COORE	ORDINATE		PAD	COORI	COORDINATE		PAD	COORI	DINATE
No	NAME	Х	Y	No	NAME	Х	Y	No	NAME	Х	Y
1	AMPP	1,212	1,631	28	Vs1	-1,478	64	55	SEG14	622	-1,631
2	AMPM	1,082	1,631	29	OSC2	-1,478	-99	56	SEG15	753	-1,631
3	K10	921	1,631	30	OSC1	-1,478	-229	57	SEG16	883	-1,631
4	K03	791	1,631	31	Vdd	-1,478	-392	58	SEG17	1,014	-1,631
5	K02	660	1,631	32	VL3	-1,478	-560	59	TEST	1,478	-1,376
6	K01	530	1,631	33	VL2	-1,478	-710	60	SEG18	1,478	-1,166
7	K00	399	1,631	34	VL1	-1,478	-840	61	SEG19	1,478	-1,035
8	P03	256	1,631	35	СВ	-1,478	-969	62	SEG20	1,478	-905
9	P02	125	1,631	36	CA	-1,478	-1,100	63	SEG21	1,478	-775
10	P01	-7	1,631	37	COM3	-1,478	-1,231	64	SEG22	1,478	-645
11	P00	-138	1,631	38	COM2	-1,478	-1,360	65	SEG23	1,478	-514
12	P13	-271	1,631	39	COM1	-1,478	-1,490	66	SEG24	1,478	-384
13	P12	-402	1,631	40	COM0	-1,478	-1,620	67	SEG25	1,478	-253
14	P11	-535	1,631	41	SEG0	-1,201	-1,631	68	SEG26	1,478	-123
15	P10	-665	1,631	42	SEG1	-1,071	-1,631	69	SEG27	1,478	6
16	R03	-803	1,631	43	SEG2	-941	-1,631	70	SEG28	1,478	136
17	R02	-934	1,631	44	SEG3	-810	-1,631	71	SEG29	1,478	267
18	R01	-1,070	1,631	45	SEG4	-680	-1,631	72	SEG30	1,478	397
19	R00	-1,478	1,631	46	SEG5	-549	-1,631	73	SEG31	1,478	528
20	R12	-1,478	1,472	47	SEG6	-419	-1,631	74	SEG32	1,478	658
21	R11	-1,478	1,243	48	SEG7	-289	-1,631	75	SEG33	1,478	788
22	R10	-1,478	1,113	49	SEG8	-159	-1,631	76	SEG34	1,478	918
23	R13	-1,478	779	50	SEG9	-28	-1,631	77	SEG35	1,478	1,049
24	Vss	-1,478	649	51	SEG10	101	-1,631	78	SEG36	1,478	1,179
25	RESET	-1,478	517	52	SEG11	232	-1,631	79	SEG37	1,478	1,310
26	OSC4	-1,478	358	53	SEG12	362	-1,631				
27	OSC3	-1,478	227	54	SEG13	492	-1,631				

Chip size X: 3,288

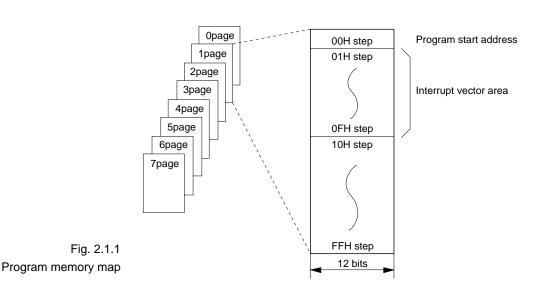
Y: 3,593

E0C6S32 Technical Software


CONTENTS

CHAPTER 1	BLO	CK DIAGRAM	II-1
CHAPTER 2	PRC	GRAM MEMORY	II-2
	2.1	Program Memory Map	II-2
	2.2	Programming Notes	II-3
CHAPTER 3	DAT	A MEMORY	II-4
	3.1	Data Memory Map	II-4
	3.2	RAM Map	II-5
	3.3	Programming Notes	II-5
	3.4	I/O Memory Map	II-6
CHAPTER 4	INTE	RRUPT AND HALT	II-12
	4.1	Control of Interrupt and HALT	II-13
	4.2	Generation of Interrupt	II-15
	4.3	Example of Main Routine: Entering HALT and waiting for reactivation by interrupt	II-16
	4.4	Interrupt Vector Map	
	4.5	Example of Interrupt Vector Processing	
	4.6	Programming Notes	
CHAPTER 5	PER	IPHERAL CIRCUITS	II-22
	5.1	Watchdog Timer	II-22
		Watchdog timer memory map	II-22
		Example of reset processing for watchdog timer	II-23 II-24
		Programming note	11-24

5.2	OSC3 OSC3 memory map Example of using OSC3	II-25 II-25 II-26
5.3	Programming notes Supply Voltage Detection (SVD) Circuit	II-27
	and Heavy Load Protection Function	II-28
	SVD circuit memory map	II-28
	Example of supply voltage detection	11 20
	using SVD circuit	II-28
	Example of using heavy load protection function	II-33
	Programming notes	II-38
5.4	Output Ports (R00–R03, R10–R13)	II-40
	Output port memory map	II-40
	Example of using output ports	II-42
	Programming note	II-48
5.5	LCD Driver	II-49
	Segment data memory map	II-49
	Example of control program	
	for LCD segment output	II-50
	LCD driver memory map	II-57
	Programming notes	II-57
5.6	Clock Timer	II-58
	Clock timer memory map	II-58
	Example of using clock timer	II-59
	Timer interrupt memory map	II-62
	Clock timer timing chart	II-63
	Example of using timer interrupt	II-63
	Programming notes	II-68
5.7	Input Ports (K00–K03, K10)	II-69
	Input port memory map	II-69
	Example of using input ports	II-71
	Programming notes	II-80
5.8	I/O Ports	II-82
	I/O port memory map	II-82
	Example of program for I/O ports	II-83
	Programming notes	II-86


	5.9	Stopwatch Counter	II-87
		Stopwatch counter memory map	II-87
		Example of program for stopwatch counter	II-88
		Stopwatch interrupt memory map	II-90
		Stopwatch counter timing chart	II-91
		Example of program for stopwatch interrupt	II-92
		Programming notes	II-96
	5.10	Event Counter	II-97
		Event counter memory map	II-97
		Example of program for event counter	II-98
		Programming note	II-99
	5.11	Analog Comparator	II-100
		Analog comparator memory map	II-100
		Example of program for analog comparator	II-101
		Programming notes	II-102
CHAPTER 6	INITI	AL RESET	II-103
	6.1	Internal Status at Initial Reset	II-103
	6.2	Example of Initialize Program	II-104
CHAPTER 7	CI IN A	MARY OF NOTES	H 100
CHAFIER /	30101	MART OF NOTES	II-106
CHAPTER 8	CDU		п 119
CHAFIER O	CFU		II-113
	8.1	E0C6S32 Restrictions	II-113
	8.2	Instruction Set	II-113
APPENDIX	• Tah	le of cross assembler pseudo-instructions	II-119
		-	
	• Tab	ble of ICE commands	II-120

CHAPTER 1 BLOCK DIAGRAM

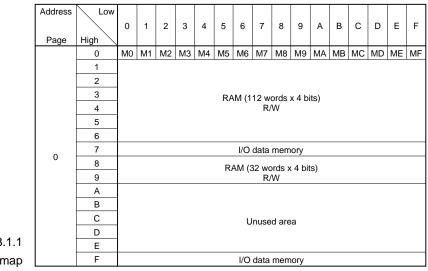
CHAPTER 2 PROGRAM MEMORY

The E0C6S32 Series has a mask ROM of 2,048 steps \times 12 bits, for storing programs. Address space for program memory is configured of one bank of 8 pages \times 256 steps.

2.1 Program Memory Map

After initial reset, the program start address is page 1, step 00H; interrupt vectors can be allocated to page 1, steps 01H–0FH.

2.2 Programming Notes

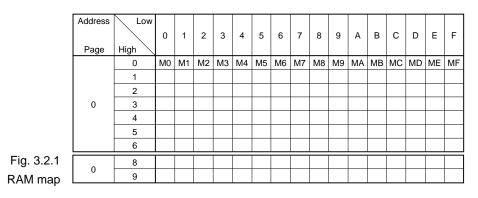

- (1) To use a branch instruction such as "JP" to branch outside the page of that instruction, the page to branch to must first be set with the "PSET" instruction; then the branch instruction can be executed. Be sure to execute the branch instruction as the step immediately following "PSET".
- (2) Immediately after the "PSET" instruction mentioned in above item (1), it will automatically be DI state until execution of the branch instruction is completed.
- (3) When moving from the last step of one page to the top step of the next page, there is no need to execute branch instructions such as "PSET" and "JP".
- (4) With just the one instruction "CALZ", subroutines on page 0 can be called from any page without using "PSET". Programming can be done efficiently if universal subroutines are located on page 0.
- (5) If the "PSET" instruction is executed immediately before "CALZ", "CALZ" will have priority and data set with "PSET" will be ignored.
- (6) The program memory can be used as a data table through the table look-up instruction.

For details of the instructions, refer to "E0C6200/6200A Core CPU Manual".

CHAPTER 3 DATA MEMORY

The E0C6S32 Series has a general-purpose RAM (144 words \times 4 bits), I/O memory for controlling the internal peripheral circuits (32 words \times 4 bits), and the optionally selectable segment memory (48 words \times 4 bits). All these are allocated to the data memory addresses on page 0.

3.1 Data Memory Map




```
Fig. 3.1.1
Data memory map
```

Through option selection, segment memory can be allocated to either 40H–6FH or COH–EFH.

- Note When 40H–6FH is selected, 48 words of RAM can be used as segment area. In this case, this area of RAM can be used for access.
 - When COH–EFH is selected, this area becomes write only. (See details in page II-49, "Segment data memory map".)
 - Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

3.2 RAM Map

Addresses 00H–0FH are the memory register area that can be addressed with the register pointer (RP).

Note Addresses 40H–6FH can be allocated to segment memory by option selection. With this selection, 48 words of RAM can be used as segment area.

3.3 Programming Notes

- (1) Part of the data memory is used as stack area for subroutine calls and register storage, so be careful not to overlap the data area and stack area.
- (2) Subroutine calls and interrupts take up three words of the stack area.
- (3) When addresses 40H–6FH have been allocated as segment memory by option selection, 48 words of RAM can be used as segment area.

3.4 I/O Memory Map

Address		Reg	ister						Comment
///////////////////////////////////////	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	TM3	TM2	TM1	TM0	TM3	0			Timer data (clock timer 2 Hz)
070H		I	R		TM2	0			Timer data (clock timer 4 Hz)
0700						0			Timer data (clock timer 8 Hz)
					TM0	0			Timer data (clock timer 16 Hz)
	SWL3	SWL2	SWL1	SWL0	SWL3	0			MSB
071H		l	R		SWL2	0			Stopwatch counter
0/10						0			1/100 sec (BCD)
					SWL0	0			
	SWH3	SWH2	SWH1	SWH0	SWH3	0			MSB
072H		I	R		SWH2	0			Stopwatch counter
0721					SWH1	0			1/10 sec (BCD)
					SWH0	0			LSB
	K03	K02	K01	K00	К03	_ *2	High	Low	
073H			R		K02	- *2	High	Low	Input port (K00–K03)
0/301					K01	_ *2	High	Low	
					К00	_ *2	High	Low	

Table 3.4.1(a) I/O data memory map (070H–073H)

*1 Initial value at the time of initial reset

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Reg	ister	-					Comment
/ 1001000	D3	D2	D1	D0	Name	SR *1	1	0	
	DFK03	DFK02	DFK01	DFK00	DFK03	0	Falling	Rising	7
074H		R/W				0	Falling	Rising	Differential register (K00–K03)
07411	40				DFK01	0	Falling	Rising	(K00-K05)
						0	Falling	Rising	
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	7
075H		R	W		EIK02	0	Enable	Mask	Interrupt mask register (K00–K03)
07511						0	Enable	Mask	(100-105)
					EIK00	0	Enable	Mask	
	HLMOD	BLD BLS	EISWIT1	EISWITO	HLMOD	0	Heavy load	Normal	Heavy load protection mode register
	R/W	R	R	/W	BLD	0	Low voltage	Normal	SVD evaluation data
076H	10,11	W			BLS	0	ON	OFF	SVD ON/OFF
					EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)
					EISWIT0	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)
	0	EIK10	DFK10	K10	0	_ *2			Unused
0774	R	R R/W R		EIK10	0	Enable	Mask	Interrupt mask register (K10)	
	077H				DFK10	0	Falling	Rising	Differential register (K10)
					K10	_ *2	High	Low	Input port (K10)

Table 3.4.1(b) I/O data memory map (074H–077H)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	CSDC	ETI2	ETI8	ETI32	CSDC	0	Dynamic	ALL OFF	LCD drive switch
078H		R	/W		ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
07011					ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
			1	1	ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	TI2	TI8	TI32	0	- *2			Unused
079H			R		TI2 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
0/9⊓					TI8 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
					TI32 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	IK1	IK0	SWIT1	SWIT0	IK1 ^{*4}	0	Yes	No	Interrupt factor flag (K10)
07AH			R		IK0 ^{*4}	0	Yes	No	Interrupt factor flag (K00–K03)
07АП					SWIT1 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
					SWIT0 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)
	R03	R02	R01	R00	R03	0	High	Low	
07BH	R/W				R02	0	High	Low	Output port (R00–R03)
					R01	0	High	Low	
					R00	0	High	Low	

Table 3.4.1(c) I/O data memory map (078H–07BH)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Reg	ster						Comment
	D3	D2	D1	D0	Name	SR *1	1	0	
	R13	R12	R11	R10	R13	0	High	Low	Output port (R13, $\overline{\text{BZ}}$)
07CH		R/	W		R12	0	High	Low	Output port (R12, FOUT)
					R11	0	High	Low	Output port (R11)
					R10	0	High	Low	Output port (R10, BZ)
	P03	P02	P01	P00	P03	_ *2	High	Low	
07DH		R/W				_ *2	High	Low	I/O port (P00–P03) Output latch reset at time of SR
					P01	_ *2	High	Low	Output fateri reset at time of SK
					P00	_ *2	High	Low	
	TMRST	SWRUN	SWRST	IOC0	TMRST ^{*5}	Reset	Reset	-	Clock timer reset
07EH	w	R/W	W	R/W	SWRUN	0	RUN	STOP	Stopwatch counter RUN/STOP
0/20					SWRST ^{*5}	Reset	Reset	-	Stopwatch counter reset
					IOC0	0	Output	Input	I/O control register 0 (P00–P03)
	WDRST	WD2	WD1	WD0	WDRST ^{*5}	Reset	Reset		Watchdog timer reset
07FH	W		R		WD2	0			Timer data (watchdog timer 1/4 Hz)
					WD1	0			Timer data (watchdog timer 1/2 Hz)
					WD0	0			Timer data (watchdog timer 1 Hz)

Table 3.4.1(d) I/O data memory map (07CH–07FH)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Reg	ister						Comment		
Address	D3	D2	D1	D0	Name	SR *1	1	0			
	BZFQ	0	0	0	BZFQ	0	2 kHz	4 kHz	Buzzer frequency selection register		
0F6H	R/W		R		0	- *2			Unused		
	1				0	_ *2			Unused		
					0	_ *2			Unused		
	0	0	AMPDT	AMPON	0	_ *2			Unused		
0F7H		R R/W				_ *2			Unused		
					AMPDT	1	+ > -	- > +	Analog comparator data		
					AMPON	0	ON	OFF	Analog comparator ON/OFF		
	EV03	EV02	EV01	EV00	EV03	0					
0F8H		I	R		EV02	0			Event counter		
					EV01	0			Low order (EV00–EV03)		
				-	EV00	0					
	EV07	EV06	EV05	EV04	EV07	0					
0F9H		ſ	2		EV06	0			Event counter		
01311	EV05 0		High order (EV04–EV07)								
					EV04	0					

Table 3.4.1(e) I/O data memory map (0F6H–0F9H)

*1 Initial value at the time of initial reset

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Regi	ster	_		_		_	Comment
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	0	EVRUN	0	EVRST	0	_ *2			Unused
0FCH	R	R/W	R	w	EVRUN	0	RUN	STOP	Event counter RUN/STOP
					0	_ *2			Unused
					EVRST ^{*5}	Reset	Reset		Event counter reset
	P13	P12	P11	P10	P13	_ *2	High	Low	7
0FDH	R/W				P12	_ *2	High	Low	I/O port (P10–P13) Output latch reset at time of SR
					P11	_ *2	High	Low	Output facts reset at time of SK
					P10	_ *2	High	Low	
	0	CLKCHG	OSCC	IOC1	0	_ *2			Unused
OFEH	R		R/W		CLKCHG	0	OSC3	OSC1	CPU clock switch
					OSCC	0	ON	OFF	OSC3 oscillator ON/OFF
					IOC1	0	Output	Input	I/O control register 1 (P10–P13)

Table 3.4.1(f) I/O data memory map (0FCH–0FEH)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

CHAPTER 4 INTERRUPT AND HALT

The E0C6S32 Series provides the following interrupt settings, each of which is maskable.

External interrupts:	Input interrupts (two)
Internal interrupts:	Timer interrupt (three channels)
	Stopwatch interrupt (two channels)

When a HALT instruction is input the CPU operating clock stops, and the CPU enters the HALT status. The CPU is reactivated from the HALT status when an interrupt request occurs.

4.1 Control of Interrupt and HALT

Address		Reg	ister						Comment		
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment		
	DFK03	DFK02	DFK01	DFK00	DFK03	0	Falling	Rising			
074H		R/W				0	Falling	Rising	Differential register (K00–K03)		
0/411					DFK01	0	Falling	Rising	(K00-K03)		
					DFK00	0	Falling	Rising			
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	7		
075H		R	W		EIK02	0	Enable	Mask	Interrupt mask register (K00–K03)		
0/5/1					EIK01	0	Enable	Mask	(100-105)		
					EIK00	0	Enable	Mask			
	HLMOD	BLD BLS	EISWIT1	EISWIT0	HLMOD	0	Heavy load	Normal	Heavy load protection mode register		
	R/W	R	D	Ŵ	BLD	0	Low voltage	Normal	SVD evaluation data		
076H	10/00	W	N.		BLS	0	ON	OFF	SVD ON/OFF		
					EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)		
					EISWITO	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)		
	0	EIK10	0 DFK10 K10		0	_ *2			Unused		
077H	R	R	R/W R		EIK10	0	Enable	Mask	Interrupt mask register (K10)		
					DFK10	0	Falling	Rising	Differential register (K10)		
					K10	_ *2	High	Low	Input port (K10)		

Table 4.1.1(a) I/O data memory map (interrupt 1)

*1 Initial value at the time of initial reset

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Address		Reg	ister	_					Comment		
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment		
	CSDC	ETI2	ETI8	ETI32	CSDC	0	Dynamic	ALL OFF	LCD drive switch		
07011		R	/W		ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)		
078H					ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)		
					ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)		
	0	TI2	TI8	TI32	0	_ *2			Unused		
07011			R		TI2 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)		
079H					TI8 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)		
					TI32 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)		
	IK1	IK0	SWIT1	SWIT0	IK1 ^{*4}	0	Yes	No	Interrupt factor flag (K10)		
07AH		R				0	Yes	No	Interrupt factor flag (K00–K03)		
					SWIT1 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)		
					SWIT0 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)		

Table 4.1.1(b) I/O data memory map (interrupt 2)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

4.2 Generation of Interrupt

Table 4.2.1 Interrupt factors

Interrupt Factor			pt Mask gister		terrupt tor Flag
Clock timer 2 Hz falling edge	T2Hz	ETI2	(078H•D2)	TI2	(079H•D2)
Clock timer 8 Hz falling edge	T8Hz	ETI8	(078H•D1)	TI8	(079H•D1)
Clock timer 32 Hz falling edge	T32Hz	ETI32	(078H•D0)	TI32	(079H•D0)
Stopwatch counter	SWT1Hz	EISWIT1	(076H•D1)	SWIT1	(07AH•D1)
1 Hz falling edge					
Stopwatch counter	SWT10Hz	EISWIT0	(076H•D0)	SWIT0	(07AH•D0)
10 Hz falling edge					
Input data (K00–K03)	K0	EIK03	(075H•D3)	IK0	(07AH•D2)
Change from match to mismatch		EIK02	(075H•D2)		
of differential register data		EIK01	(075H•D1)		
and port register data		EIK00	(075H•D0)		
Input data (K10)	K1	EIK10	(077H•D2)	IK1	(07AH•D3)
Rising or falling edge					

The CPU operation is interrupted when any of the conditions below sets an interrupt factor flag to "1".

- The corresponding interrupt mask register is "1" (enabled)
- The interrupt flag is "1" (EI)

The interrupt flag is set to "1" depending on the corresponding interrupt factor.

The interrupt factor flag is a read-only register, and is reset to "0" when the register data is read out.

- Note Even when the interrupt mask registers (ETI, EISWIT) are set to "0", the interrupt factor flags (TI, SWIT) of the clock timer and stopwatch counter can be set when the timing conditions are established.
 - Reading of interrupt factor flags is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.

Be very careful when interrupt factor flags are in the same address.

4.3 Example of Main Routine: Entering HALT and waiting for reactivation by interrupt

Specifications This main routine enables K00–K03 input interrupt and 2 Hz timer interrupt, after which it enters the HALT status to wait for reactivation by interrupts. At every loop, the EI instruction enables an interrupt after execution of the display routine "DS" (of the watch or whatever the application happens to be).

Program

	LD	Х,75Н	; Enable K00–K03 input interrupt
	LD	MX,1111B	;
	LD	Х,78Н	; Enable 2 Hz timer interrupt
	LD	MX,0100B	;
;			
MAINLP:	CALL	DS	; Execute display processing "DS"
	EI		; Enable interrupts
	HALT		; Enter HALT
	JP	MAINLP	; Interrupts' return address: Back to "MAINLP"

This routine assumes that "DS" has been prepared separately.

- Notes1. This program example is one to follow the initialize
program. Even without executing the DI instruction,
writing to interrupt mask registers is done in the DI
status.
 - 2. When an interrupt is generated, the DI status (interrupt flag = "0") comes into effect automatically, so the EI instruction is necessary for each loop.

Page	Step	Interrupt Vector
	00H	Initial reset
	01H	Generation of input port interrupt (INTK1)
	02H	Generation of input port interrupt (INTK0)
	03H	Generation of INTK1 and INTK0
	04H	Generation of timer interrupt (TINT)
	05H	Generation of INTK1 and TINT
	06H	Generation of INTK0 and TINT
1	07H	Generation of INTK1, INTK0 and TINT
1	08H	Generation of stopwatch interrupt (SWINTT)
	09H	Generation of INTK1 and SWINTT
	0AH	Generation of INTK0 and SWINTT
	0BH	Generation of INTK1, INTK0 and SWINTT
	0CH	Generation of TINT and SWINTT
	0DH	Generation of INTK1, TINT and SWINTT
	0EH	Generation of INTK0, TINT and SWINTT
	0FH	Generation of all interrupts

4.4 Interrupt Vector Map

Table 4.4.1 Interrupt vector map

Addresses (start addresses of interrupt processing routines) to jump to are written into the addresses available for interrupt vector allocation.

4.5 Example of Interrupt Vector Processing

SpecificationsWhen interrupts having different vectors occur simultane-
ously, they are processed in the specified order of priority.
Because of this, it is convenient to process all interrupts
with the one interrupt routine "IN".

Interrupt vectors

	ORG	101H	Vector leading address
;			
	JP	IN	; Generation of K10 input interrupt (INTK1)
	JP	IN	; Generation of K00–K03 input interrupt (INTK0)
	JP	IN	; Generation of of INTK1 and INTK0
	JP	IN	; Generation of timer interrupt (TINT)
	JP	IN	; Generation of INTK1 and TINT
	JP	IN	; Generation of INTK0 and TINT
	JP	IN	; Generation of INTK1, INTK0 and TINT
	JP	IN	; Generation of stopwatch interrupt (SWINTT)
	JP	IN	; Generation of INTK1 and SWINTT
	JP	IN	; Generation of INTK0 and SWINTT
	JP	IN	; Generation of INTK1, INTK0 and SWINTT
	JP	IN	; Generation of TINT and SWINTT
	JP	IN	; Generation of INTK1, TINT and SWINTT
	JP	IN	; Generation of INTK0, TINT and SWINTT
	JP	IN	<i>;</i> Generation of all interrupts

Interrupt routine

Table 4.5.1 lists the order of priority for processing interrupts.

Values of registers X, Y, A, B and F are retained in stack.

Table 4.5.1 Order of interrupt priority in program example

Priority	Interrupt Factor				
1	Stopwatch 10 Hz				
2	Stopwatch 1 Hz				
3	K00–K03 input ports				
4	K10 input port				
5	Clock timer	32 Hz			
6	Clock timer	8 Hz			
7	Clock timer	2 Hz			

YIKSTB	EQU	$\bigcirc \bigtriangleup$ H	; Buffer address for factor flags of input interrupts
			<i>i</i> and stopwatch interrupts
YTIB	EQU	O⊟H	; Buffer address for timer interrupt factor flags
;			
;			
IN:	PUSH	XH	; Store the value of X register to stack
	PUSH	XL	;
	PUSH	YH	<i>;</i> Store the value of Y register to stack
	PUSH	YL	;
	PUSH	A	<i>i</i> Store the value of A register to stack
	PUSH	В	<i>i</i> Store the value of B register to stack
	PUSH	F	<i>i</i> Store the value of F register to stack
;			
	LD	Х,7АН	<i>i</i> Reset and store
	LD	Y,YIKSTB	; input interrupt and stopwatch interrupt factor flags
	LD	MY,MX	<i>i</i> in the buffer
	LD	Х,76Н	; Mask the stopwatch interrupt factor flags
	LD	A,MX	;
	OR	A,1100B	;
	AND	MY,A	; by the value of the stopwatch interrupt mask register
;			
	FAN	MY,0001B	; If the ST10Hz interrupt factor flag is set
	JP	Z,INSIT1	; and enabled
	CALL	STIO	<i>;</i> then execute ST10Hz interrupt processing "SIT0"
;			
INSIT1:	LD	Y,YIKSTB	; If the ST1Hz interrupt factor flag is set
	FAN	MY,0010B	; and enabled
	JP	Z,INKO	;
	CALL	SIT1	; then execute ST1Hz interrupt processing "SIT1"
;			
INKO:	LD	Y,YIKSTB	; If the K0 interrupt factor flag is set
	FAN	MY,0100B	;
	JP	Z,INK1	;
	CALL	IKO	<i>;</i> then execute K0 interrupt processing "IK0"
INK1:	LD	Y,YIKSTB	; If the K1 interrupt factor flag is set
	FAN	MY,1000B	;
	JP	Z,INTI	;
	CALL	IK1	<i>;</i> then execute K1 interrupt processing "IK1"
INTI:	LD	Х,79Н	; Reset and store
	LD	Y,YETI	; the timer interrupt factor flags
	LD	MY,MX	<i>i</i> in the buffer

	LD	Х,78Н	; Mask the timer interrupt factor flag
	AND	MY,MX	; by the value of the timer interrupt mask register
;			
	FAN	MY,0001B	; If the T32Hz interrupt factor flag is set
	JP	Z,INTI8	; and enabled
	CALL	TI32	; then execute T32Hz interrupt processing "TI32"
;			
INTI8:	LD	Y,YTIB	; If the T8Hz interrupt factor flag is set
	FAN	MY,0010B	; and enabled
	JP	Z,INTI2	;
	CALL	TI8	<i>i</i> then execute T8Hz interrupt processing "TI8"
;			
INTI2:	LD	Y,YTIB	; If the TI2Hz interrupt factor flag is set
	FAN	MY,0100B	; and enabled
	JP	Z,INRT	;
	CALL	TI2	<i>i</i> then execute T2Hz interrupt processing "TI2"
;			
INRT:	POP	F	; Return the value of F register from stack
	POP	В	; Return the value of B register from stack
	POP	А	; Return the value of A register from stack
	POP	YL	; Return the value of Y register from stack
	POP	YH	;
	POP	XL	; Return the value of X register from stack
	POP	XH	;
	RET		<i>i</i> Return to parent routine

Addresses of buffers IKSTB and TIB can be set anywhere in RAM.

This routine assumes that processing routines "SITO", "SIT1", "IKO", "IK1", "TI32", "TI8" and "TI2" have been prepared separately for each of the interrupts.

4.6 Programming Notes

- (1) Even when the interrupt mask registers (ETI, EISWIT) are set to "0", the interrupt factor flags (TI, SWIT) of the clock timer and stopwatch counter can be set when the timing conditions are established.
- (2) When an interrupt is generated, three words of RAM are used; also, it takes 12 cycles of the CPU system clock until the value of the interrupt vector is set in the program counter.
- (3) When an interrupt occurs, the DI status (interrupt flag = "0") comes into effect automatically.
- (4) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

CHAPTER 5 PERIPHERAL CIRCUITS

Peripheral circuits of the E0C6S32 Series, such as the timer and I/O, are interfaced with the CPU by memory mapped I/O format. This means that all peripheral circuits can be controlled by accessing the memory map's I/O memory or segment memory with memory operation instructions. This chapter details how to control the peripheral circuits

This chapter details how to control the peripheral circuits.

5.1 Watchdog Timer

The EOC6S32 Series incorporates a watchdog timer. If the watchdog timer reset is not executed by the software in at least 3–4 seconds, the initial reset signal is output automatically for the CPU.

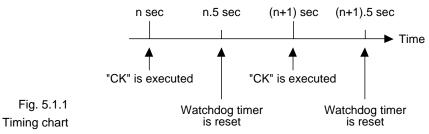
You can select whether or not to use the watchdog timer with the mask option. When "Not use" is chosen, there is no need to reset the watchdog timer.

Watchdog timer memory map

Table 5.1.1 I/O data memory map (watchdog timer)

Address	Register							Comment	
Audiess	D3	D2	D1	D0			Comment		
	WDRST	WD2	WD1	WD0	WDRST ^{*5}	Reset	Reset		Watchdog timer reset
07511	77FH			WD2	0			Timer data (watchdog timer 1/4 Hz)	
0/FH			WD1	0			Timer data (watchdog timer 1/2 Hz)		
					WD0	0			Timer data (watchdog timer 1 Hz)

*1 Initial value at the time of initial reset


- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

WDRST: Watchdog timer reset (07FH.D3)

This is the bit for resetting the watchdog timer.

When "1" is written:Watchdog timer is reset.When "0" is written:No operationRead-out:Always "0"

Example of reset processing for watchdog timer	When the watchdog timer is used for the reset function, the software must reset the watchdog timer within 3 seconds. Operation restarts immediately after the watchdog timer is reset. Ordinarily, this routine is incorporated where periodic processing takes place, such as in the timer interrupt rou- tine, to detect program overrun, for instance when the watchdog timer processing is bypassed.
Note	In this case, timer data (WD0–WD2) cannot be used for timer applications. The watchdog timer operates in the halt mode. If the halt status continues for 3–4 seconds, the initial reset signal restarts operation.
Specifications	When the timing flag ("0.5-sec flag") is set in the T2Hz inter- rupt processing routine "TI2", the watchdog timer will be reset every second. When the routine "basic timer 'CK'" for the timer is executed every second on the second, the watchdog timer will be reset every second on the half-second.

Program

VULCE	POIT	00010	$\cdot 0.5 \dots fl_{}$ (TICE)
XTISF	EQU	0001B	; 0.5-sec flag (TISF)
YFTM	EQU	$\Diamond \Diamond$ H	; Address for timing flag set
;			
;			
TI2:	LD	X,YFTM	<i>i</i> TISF = "0" or "1"?
	FAN	aMX,XTISF	;
	JP	NZ,TI21	i
;			
	OR	MX,XTISF	; TISF = "0": Set the TIS flag
	LD	Х,7FH	<i>i</i> Reset the watchdog timer
	LD	MX,0001B	i
	RET		<i>i</i> Returns to parent routine
TI21:	AND	MX,XTISF XOR OF	"H i TISF = "1": Reset the TIS flag
	CALL	CK	<i>;</i> Execute the basic timer "CK"
;			
	RET		<i>i</i> Returns to parent routine

The address for the timing flag set FTM can be set anywhere in RAM.

Further, this routine assumes that a timer subroutine has been prepared separately to make 1 second the unit for the routine "basic timer 'CK'".

(See page 63, "Example of using timer interrupt" for how to make "basic timer 'CK'".)

Programming note

When the watchdog timer is used for the reset function, the software must reset the watchdog timer within 3 seconds. In this case, timer data (WD0–WD2) cannot be used for timer applications.

5.2 OSC3

E0C6SA32 has two built-in oscillation circuits (OSC1 and OSC3).

When processing of E0C6SA32 requires high-speed operations, the CPU's operating clock should be switched from OSC1 to OSC3.

OSC3 memory map

Table 5.2.1	I/O data memory map	(OSC3)
-------------	---------------------	--------

Address Register						Comment					
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment		
	0	CLKCHG	OSCC	IOC1	0	_ *2			Unused		
OFEH	R		R/W	_	CLKCHG	0	OSC3	OSC1	CPU clock switch		
UFEN					oscc	0	ON	OFF	OSC3 oscillator ON/OFF		
					IOC1	0	Output	Input	I/O control register 1 (P10-P13)		

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

CLKCHG: The CPU's clock switch (0FEH.D2)

The CPU's operation clock is selected with this register (E0C6SA32 only).

When "1" is written:OSC3 is selectedWhen "0" is written:OSC1 is selectedRead-out:Available

This register cannot be controlled for E0C6S32/6SL32/ 6SB32, so that OSC1 is selected regardless of the set value.

Example of using OSC3

Note To lessen current consumption, keep OSC3 oscillation OFF except when the CPU must be run at high speed. Also, with E0C6S32/ 6SL32/6SB32, keep OSCC fixed to "0".

(1) Switching from OSC1 to OSC3

SpecificationsThis subroutine first sets OSC3 to ON, and then, after about
5 ms, switches the CPU clock to OSC3.

Program

S3:	LD	X,OFEH	; Set OSC3 to ON
	OR	MX,0010B	
	LD	A,OEH	<i>i</i> Delay of 5.28 ms: preparation
S3DLLP:	ADD	A,OFH	; Loop for delay
	JP	NZ,OS3DLLP	;
	OR	MX,0100B	; Switche the CPU clock to OSC3
	RET		; Return to parent routine

Note A 5.28 ms delay is specified before switching to OSC3, to allow time for the oscillation circuit to stabilize.

(2) Switching from OSC3 to OSC1

Specifications	This subroutine switches the CPU clock to OSC1, and then
	sets OSC3 to OFF.

Program

	OS1:	LD	X,OFEH	; Switche the CPU clock to OSC1
		AND	MX,1011B	;
	;			
		AND	MX,1101B	; Set OSC3 to OFF
		RET		; Return to parent routine
Note	To pro	event an	error, first swite	ch OSC1, and then set OSC3
	-		next step.	
			1	
Programming notes	(1) It t	akes at le	east 5 ms from	the time the OSC3 oscillation
r logial ming riolot				scillation stabilizes. Conse-
		0		ne CPU operation clock from
	-	•	0	er a minimum of 5 ms have
				cillation went ON.
		-		bilization time varies depend-
				_
	~			or characteristics and condi-
			, so allow allipi	e margin when setting the wait
	tin	ie.		
	(2) Wł	nen switc	hing the clock f	from OSC3 to OSC1, use a
			-	itching the OSC3 oscillation
	OF			
	01			
	(3) To	lessen cu	irrent consump	otion, keep OSC3 oscillation
	OF	F except	when the CPU	must be run at high speed.
	Als	o, with E	0C6S32/6SL32	2/6SB32, keep OSCC fixed to
	"0"			-

5.3 Supply Voltage Detection (SVD) Circuit and Heavy Load Protection Function

The E0C6S32 Series has a built-in supply voltage detection (SVD) circuit, so that the software can find when the source voltage lowers.

E0C6SL32/6SB32 has a heavy load protection function for when the battery load becomes heavy and the source voltage drops.

SVD circuit memory

map

Address	Register				Comment				
	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	HLMOD	BLD BLS	EISWIT1	EISWIT0	HLMOD	0	Heavy load	Normal	Heavy load protection mode register
	R/W	R	R/W		BLD BLS	0	Low voltage ON	Normal OFF	SVD evaluation data SVD ON/OFF
076H		W			EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)
					EISWITO	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)

Table 5.3.1 I/O data memory map (SVD circuit and heavy load protection function)

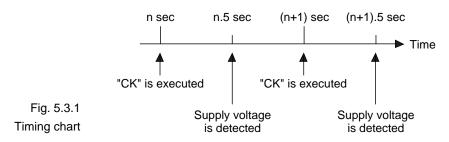
- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Example of supply voltage detection	To obtain the SVD detection result, follow the programming sequence below.
using SVD circuit	0. Set HLMOD to "1" (only when the CPU system clock is fosc3 in E0C6SA32)
	1. Set BLS to "1"
	2. Maintain at 100 μs minimum
	3. Set BLS to "0"
	4. Read out BLD
	5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C6SA32)

When HLMOD is set to "1" or low voltage is detected by the BLD, the HLMOD circuit is turned ON. At the same time the SVD circuit is switched ON and OFF.

At this time, sampling control is executed for the SVD circuit ON time. There are two types of sampling time, as follows:

- ① The time of one instruction cycle immediately after the HLMOD circuit is turned ON.
- ^② Sampling at cycles of 2 Hz output by the clock timer while HLMOD circuit ON time.


When the CPU system clock is fosc3 in EOC6SA32, the detection result at the timing in ① above may be invalid or incorrect. When performing SVD detection using the timing in ①, be sure that the CPU system clock is fosc1.

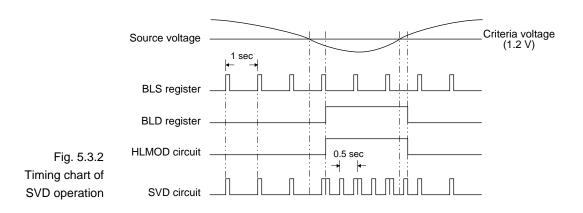
Note Appreciable current is consumed during operation of SVD detection, so keep SVD detection OFF except when necessary.

(1) For OSC1 using BLS

SpecificationsWhen the CPU clock is OSC1, the timing flag ("0.5-sec flag")
is set in the T2Hz interrupt processing routine "TI2", so that
the supply voltage is detected every second.
Every second on the second the timer routine "basic timer
'CK" is executed, to turn BLS ON or OFF every second on
the half second.

If the detection result indicates that the voltage is low, the separately prepared low voltage display routine "DSBLD" is executed.

Program


XTISF	EQU	0001B	; 0.5-sec flag (TISF)
YFTM	~ EQU	$\Diamond \Diamond_{\rm H}$	<i>;</i> Address for timing flag set
;	~ -		6 6
;			
TI2:	LD	X,YFTM	; TISF = "0" or "1"?
	FAN	MX,XTISF	;
	JP	NZ,TI21	;
;			
	OR	MX,XTISF	; TISF = "0": Set the TIS flag
	LD	Х,76Н	<i>i</i> Detect: BLS ON
	OR	MX,0100B	;
	AND	MX,1011B	; BLS OFF
	FAN	MX,0100B	<i>i</i> If result is "1" (low voltage)
	JP	Z,TI2RT	;
	CALL	DSBLD	<i>i</i> then execute display routine "DSBLD"
;			
TI2RT:	RET		<i>i</i> Return to parent routine
TI21:	AND	MX,XTISF XOR OFH	; TISF = "1": Reset the TIS flag
	CALL	CK	<i>i</i> Execute the basic timer "CK"
;			
	RET		; Return to parent routine

The address for the timing flag set FTM can be set anywhere in RAM.

This routine assumes that a timer subroutine has been prepared separately to make 1 second the unit for the routine "basic timer 'CK".

(See page 63, "Example of using timer interrupt" for how to make "basic timer 'CK'".)

Timing chart of SVD operation

(2) For OSC3 using HLMOD

Specifications When the CPU clock is OSC3, the supply voltage is detected every second, just as for (1). However, the method of detection is through the ON and OFF status of HLMOD.

ProgramWhen the CPU clock is OSC3, detection must be performed
after switching the CPU clock to OSC1.

XTISF	EQU	0001B	; 0.5-sec flag (TISF)
YFTM	EQU	$\Diamond \Diamond H$; Address for timing flag set
;			
;			
TI2:	LD	X,YFTM	; TISF = "0" or "1"?
	FAN	MX,XTISF	i
	JP	NZ,TI21	i
;			
	OR	MX,XTISF	; TISF = "0": Set the TIS flag
	LD	Х,76Н	<i>;</i> Detect: Preparation
	LD	Y,OFEH	; Switch the CPU's operating clock OSC1
	AND	MY,1011B	;
	OR	MX,1000B	; HLMOD ON
	AND	MX,0011B	; HLMOD OFF
	OR	MY,0100B	<i>i</i> Return the CPU's operating clock to OSC3
	FAN	MX,0100B	<i>i</i> If the result is "1" (low voltage)
	JP	Z,TI2RT	;
	CALL	DSBLD	<i>i</i> then execute display routine "DSBLD"
;			
TI2RT:	RET		<i>i</i> Return to parent routine
TI21:	AND	MX,XTISF XOR OFH	; TISF = "1": Reset the TIS flag
	CALL	CK	; Execute the basic timer "CK"
;		-	
	RET		; Return to parent routine
	1/11/1		/ Return to parent routine

Note

BLS is fixed to "0" when the HLMOD is turnd OFF, because BLS risides in the same bits at the same address as BLD, and one or the other is selected by write or read operation.

(3) For E0C6SL32/6SB32 using HLMOD

Specifications E0C6SL32/6SB32 uses HLMOD to detect supply voltage. The other conditions are the same as for (1) and (2). However, the CPU of E0C6SL32/6SB32 does not use OSC3 for the clock.

ProgramE0C6SL32/6SB32 has a heavy load protection function, so
do not use HLMOD to detect supply voltage in the heavy
load protection mode.
(See the following sections for the heavy load protection
function.)

XTISF	EQU	0001B	; 0.5-sec flag (TISF)
YFTM	EQU	$\Diamond \Diamond H$; Address for timing flag set
;			
;			
TI2:	LD	X,YFTM	<i>;</i> TISF = "0" or "1"?
	FAN	MX,XTISF	;
	JP	NZ,TI21	;
;			
	OR	MX,XTISF	; TISF = "0": Set the TIS flag
	LD	Х,76Н	; If HLMOD is OFF
	FAN	MX,1000B	;
	JP	NZ,TI2DSB	;
;			
	OR	MX,1000B	; then detect: HLMOD ON
	AND	MX,0011B	; HLMOD OFF
TI2DSB	FAN	MX,0100B	; If the result is "1" (low voltage)
	JP	Z,TI2RT	;
	CALL	DSBLD	; then execute display routine "DSBLD"
;			
TI2RT:	RET		; Return to parent routine
TI21:	AND	MX,XTISF XOR OFH	i ; TISF = "1": Reset the TIS flag
	CALL	СК	; Execute the basic timer "CK"
;			
	RET		<i>i</i> Return to parent routine

Note

When the HLMOD is turned OFF, BLS is fixed to "0".

Example of using heavy load protec- tion function	Note that the heavy load protection function on the E0C6SL32/6SB32 is different from the E0C6S32/6SA32. (1) In case of E0C6SL32/6SB32 The E0C6SL32/6SB32 has the heavy load protection function for when the battery load becomes heavy and the source voltage drops, such as when an external buzzer sounds or an external lamp lights. The state where the heavy load protection function is in effect is called the heavy load protection mode. In this mode, operation with a lower voltage than normal is possible. The normal mode changes to the heavy load protection mode in the following two cases:
	 When the software changes the mode to the heavy load protection mode (HLMOD = "1") When supply voltage drop (BLD = "1") in the SVD circuit is detected, the mode will automatically shift to the heavy load protection mode until the supply voltage is recovered (BLD = "0")
	In the heavy load protection mode, the internally regu- lated voltage is generated by the liquid crystal driver source output VL2 so as to operate the internal circuit. Consequently, more current is consumed in the heavy load protection mode than in the normal mode. Unless it is necessary, be careful not to set the heavy load protec- tion mode with the software. Also, when the BLS is to be turned on during operation in the heavy load protection mode, limit the ON time to 10 msec per second of opera- tion time.
	(2) In case of E0C6S32/6SA32 The E0C6S32/6SA32 has the heavy load protection

The E0C6S32/6SA32 has the heavy load protection function for when the battery load becomes heavy and the source voltage changes, such as when an external buzzer sounds or an external lamp lights. The state where the heavy load protection function is in effect is called the heavy load protection mode. Compared with the normal operation mode, this mode can reduce the output voltage variation of the constant voltage/booster voltage circuit of the LCD system. The normal mode changes to the heavy load protection mode in the following case:

① When the software changes the mode to the heavy load protection mode (HLMOD = "1")

The heavy load protection mode switches the constant voltage circuit of the LCD system to the high-stability mode from the low current consumption mode. Consequently, more current is consumed in the heavy load protection mode than in the normal mode. Unless it is necessary, be careful not to set the heavy load protection mode with the software.

(1) Control of heavy load protection function using flag (E0C6SL32/6SB32)

Specifications When heavy load protection mode is set, this will be routine "HLONBZ" which switches BZ ON, routine "BZOF" which switches BZ OFF, and 2 Hz interrupt routine "TI2" which controls 1-second waiting release.

> This routine employs the heavy load protection mode release flag HLOFF, which recognizes termination of heavy load drive, and the heavy load protection mode release delay flag HLOFDLF, which takes the timing of a 1-second wait.

XHLOF	EQU	1000B	; Heavy load protection mode release flag
XHLOFDL	EQU	0100B	; Heavy load protection mode release delay flag
XNOTHL	EQU	0011B	;
YFHL	EQU	$\Diamond \Diamond H$; Address of heavy load protection function related flag set
;			
;			
HLONBZ:	LD	Х,76Н	; Set heavy load protection mode
	OR	MX,1000B	;
	LD	X,YFHL	; Reset flags related to heavy load protection
	AND	MX,XNOTHL	;
	LD	Х,7СН	; Switch BZ ON
	OR	MX,0001B	;
	RET		; Return to parent routine

Setting heavy load protection mode

This routine assumes that the addresses of the flag set related to heavy load protection functions together with the 0.5-sec flag are allocated suitably in RAM as the addresses of the timing flag set.

Release of heavy load protection mode

When the heavy load drive terminates, the heavy load protection mode release flag is set, the heavy load protection mode delay flag is set and reset with the 1-second timer during the T2Hz interrupt processing routine, the heavy load protection mode is released.

		n sec	n.5 sec (n+1) sec (n+1).5 sec
			I I → Time
			
		 "CK" is execute	ed HLOFDL "CK" is executed
			flag is set
	Fig. 5		eavy load Heavy load protection mode is released
	Timing cl		F flag is set) (Two flags are reset)
XTISF	EQU	0001B	; 0.5-sec flag (TISF)
XHLOFF	EQU	1000B	; High load protection mode release flag (HLOFF)
XHLOFD	LEQU	0100B	; High load protection mode release delay flag (HLOFDLF)
XNOTHL	EQU	1100B	;
YFTM	EQU	$\bigcirc \Box$ H	; Address of timing flag set
YFHL	EQU	$\Diamond \Diamond H$; Address of heavy load protection flag set
;			
;			
BZOF:	LD	Х,7СН	; Stop BZ
	AND	MX,1110B	;
	LD	X,YFHL	; Set the HLOF flag
	OR	MX,XHLOF	;
	RET		; Return to parent routine
;			
;			
TI2:	LD	X,YFTM	; TISF = "0" or "1"?
	FAN	MX,XTISF	;
	JP	NZ,TI21	;
	;		
	OR	MX,XTISF	; TISF = "0": Set the TIS flag
	FAN	MX,XHLOFDL	; If the HLOF flag is set
	JP FAN	Z,TI2RT MX,XHLOFDL	; ; then HLOFDLF = "0" or "1"?
	JP	NZ,TI2HLO	i inen HEOFDEF – 0 01 1 :
;	51		,
	OR	MX,XHLOFDL	; $HLOFDLF = "0"$: Set the HLOFDL flag
	RET	,	 Return to parent routine
	-		···· · · · · · · · · · · · · · · · · ·

E0C6S32 TECHNICAL SOFTWARE

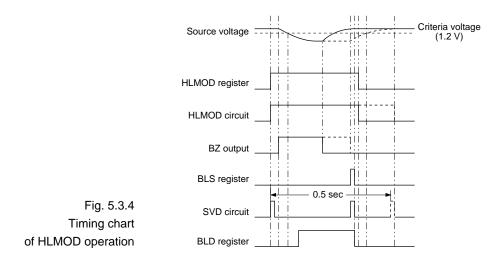
TI2HLO:AND		MX,XNOTHL	;	HLOFDLF = "1": Reset heavy load protection
			;	flag set
	LD	Х,76Н	;	Release heavy load protection mode
	AND	MX,0011B	;	and fix BLS to "0"
;				
TI2RT:	RET		;	Return to parent routine
TI21:	AND	MX,XTISF XOR OFE	I; TISF	= "1": Reset the TIS flag
	CALL	CK	;	Execute basic timer "CK"
;				
	RET		;	Return to parent routine

See page 42, "Example of using output ports" for details on BZ control.

- Notes
 1. When the heavy load protection mode is set, the heavy load protection flags must be reset.
 - 2. BLS is fixed to "0" when the heavy load protection mode is released, because the BLD result is not fed back to BLS through the AND instruction.

(2) Method without using flags (E0C6SL32/6SB32)

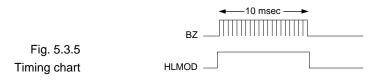
Specifications	When heavy load protection mode is set, this will be routine		
	"HLONBZ" which switches BZ ON and routine "BZHLOF"		
	which stop BZ then releases the heavy load protection mode.		
	Note, however, that unlike item (1) above, it does not use		
	flags.		


ProgramBLS is used to release the heavy load protection mode with-
out using flags. After the heavy load drive terminates, the
BLS is set ON and OFF, and then the heavy load protection
mode is released.

HLONBZ:LD	Х,76Н	; Set the heavy load protection mode	
OR	MX,1000B	i	
LD	Х,7СН	; Switch BZ ON	
OR	MX,0001B	;	
RET		; Return to parent routine	
;			
;			
BZHLOF:LD	Х,7СН	; Stop BZ	
AND	MX,1110B	;	
LD	Х,76Н	; BLS ON	

OR	MX,0100B	;
AND	MX,1011B	; OFF
AND	MX,0011B	; Release the heavy load protection mode
		; and fix BLS to "0"
RET		; Return to parent routine

Note BLS is fixed to "0" when the heavy load protection mode is released, because the BLD result is not fed back to BLS through the AND instruction.


Timing chart of heavy load protection mode operation

(3) Control of heavy load protection (for E0C6S32/6SA32)

Specifications When the heavy load protection function is selected for the E0C6S32 or E0C6SA32 by the mask option setting, the "HLBZ10" routine sets the heavy load protection mode and outputs the BZ signal for 10 msec, then, it releases the heavy load protection mode.

However, the OSC1 clock (32.768 kHz) must be set for the CPU operating clock.

HLBZ10:	LD	Х,76Н	; Set the heavy losd protection mode				
	OR	MX,1000B	;				
	LD	Y,7CH	; Switch BZ ON				
	OR	му,1000в	;				
;							
CALL		ST10MS	; 10 msec soft timer call				
;							
	AND	MY,0111B	; Switch BZ OFF				
	AND	MX,0111B	; Release the heavy load protection mode				
;							
;							
ST10MS:	LD	А,ОН	; 10 msec soft timer subroutine				
	RDF		<i>i</i> Reset the decimal flag				
ST10MS1:	NOP7		; Loop for 10 msec				
	ADD	A,OFH	; $(7+7+5)$ clock × 16				
	JP	NZ,ST10MS1	;				
	RET		;				
Note	The heavy load protection mode can be released immediated after driving the heavy load (BZ output). To reduce current consumption, release the heavy load protection mode unless otherwise necessary.						

Programming notes	(1) It takes 100 μ s from the time the SVD circuit goes ON					
	until a stable result is obtained. For this reason, keep					
	the following software notes in mind:					

- 0 When the CPU system clock is fosc1
 - 1. When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.
 - 2. When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µs has lapsed (the following instruction can write "0" because the instruction cycle is long enough) and then read the BLD.

- ② When the CPU system clock is fosc3 (in case of E0C6SA32 only)
 - When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 sec has passed. (HLMOD holds "1" for at least 0.6 sec)
 - 2. When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 μ s has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD.
- (2) To reduce current consumption, set the SVD operation to OFF unless otherwise necessary.
- (3) BLS resides in the same bit at the same address as BLD, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) at this address, pay attention to whether BLD is ON or OFF.
- (4) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode (E0C6SL32/6SB32).
 - ① After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
 - $\$ After heavy load drive is completed, switch BLS ON and OFF (at least 100 µs is necessary for the ON status) and then return to the normal mode.

The E0C6S32/6SA32 returns to the normal mode after driving a heavy load without special software processing.

- (5) To reduce current consumption, be careful not to set the heavy load protection mode with the software unless otherwise necessary.
- (6) When the BLS is to be turned on during operation in the heavy load protection mode, limit the ON time to 10 msec per second of operation time.

5.4 Output Ports (R00-R03, R10-R13)

The E0C6S32 Series reserves eight bits (4 bits \times 2) for general output ports. The output ports R10–R13 can be used as special output ports.

Output port memory map

Address	Register				Comment				
71001033	D3	D2	D1	D0	Name	SR *1	1	0	Comment
07BH	R03	R02	R01	R00	R03	0	High	Low	
	R/W				R02	0	High	Low	Output port (B00, B02)
					R01	0	High	Low	Output port (R00–R03)
					R00	0	High	Low	
07CH	R13	R12	R11	R10	R13	0	High	Low	Output port (R13, $\overline{\text{BZ}}$)
	R/W				R12	0	High	Low	Output port (R12, FOUT)
					R11	0	High	Low	Output port (R11)
					R10	0	High	Low	Output port (R10, BZ)
0F6H	BZFQ	0	0	0	BZFQ	0	2 kHz	4 kHz	Buzzer frequency selection register
	R/W	W R			0	_ *2			Unused
					0	- *2			Unused
					0	- *2			Unused

Table 5.4.1 I/O data memory map (output ports)

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*3 Undefined

*4 Reset (0) immediately after being read

*5 Constantly "0" when being read

The following explanations cover the control registers when special output has been selected for R10, R12, and R13.

R10, R13 (when BZ and $\overline{\text{BZ}}$ output is selected): Special output ports data (07CH.D0 and D3)

These bits control the output of the buzzer signals (BZ, $\overline{\text{BZ}}$).

When "1" is written:Buzzer signal is outputWhen "0" is written:Low level (DC) is outputRead-out:Available

BZ is output from pin R13. The mask option supports selection of output control by R13, or output control by R10 simultaneously with BZ.

 When R13 controls BZ output BZ output and BZ output can be controlled independently. BZ output is controlled by writing data to R10, and BZ output is controlled by writing data to R13.

• When R10 controls \overline{BZ} output

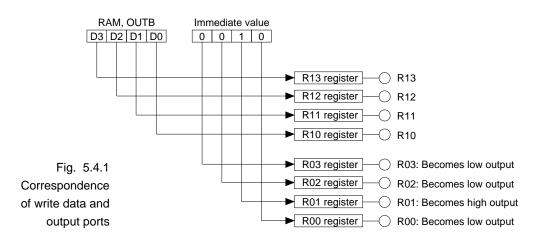
BZ output and $\overline{\text{BZ}}$ output can be controlled simultaneously by writing data to R10 only. For this case, R13 can be used as a one-bit general register having both read and write functions, and data of this register exerts no affect on $\overline{\text{BZ}}$ output (output from pin R13).

R12 (when FOUT is selected):

Special output port data (07CH.D2)

Controls the FOUT (clock) output.

When "1" is written:	Clock output
When "0" is written:	Low level (DC) output
Read-out:	Available


Example of using output ports

(1) Writing and reading to output ports

Specifications Register R13 control for pin R13 has been selected by mask option.

First, the immediate value "0010B" is output to the output ports R00–R03.

The value of RAM, OUTB is output to output ports R10–R13. Figure 5.4.1 indicates the correspondence of write data and output ports.

Then, the status of the (outputting) pins of output ports R00–R03 is read into B register, and the status of the pins of output ports R10–R13 is read into RAM, DTB.

Program

YOUTB	EQU	$\bigcirc \bigtriangledown$ H	; Buffer address of data to be output to R10-R13
YDTB	EQU	О☆н	; Buffer address of data
;			
;			
	LD	Х,7ВН	; Output (write) the immediate value "0010B" to R00-R03
	LD	MX,0010B	;
;			
	LD	Х,7СН	; Output (write) the value of RAM, OUTB to R10-R13
	LD	Y,YOUTB	;
	LD	MY,MX	
;			
	LD	Х,7ВН	; Read the value of R00–R03 (being output) to B register
	LD	B,MX	;
;			
	LD	Х,7СН	; Read the value of R10–R13 (being output) to RAM, DTB
	LD	Y,YDTB	;
	LD	MY,MX	i


Addresses for RAM, OUTB and DTB are allocated appropriately.

(2) Operation of output ports by separate bits

Specifications This routine uses the read-out capability of the output port control registers, to control output for separate bits with the memory arithmetic instructions.

First, "1" is written to registers R00 and R03 by the OR instruction, and then "0" is written to register R01 by the AND instruction.

The result of the output to ports R00–R03 is shown in Figure 5.4.2.

Program	LD	Х,7ВН	; Make R00 and R03 outputs high
	OR	MX,1001B	;
	AND	MX,1101B	<i>i</i> Make R01 output low

(3) Scanning for key input by ports R00-R03

Specifications The key matrix is shown in Figure 5.4.3. This is the scanning subroutine, "KYSC", to specify the key that has been made high input.

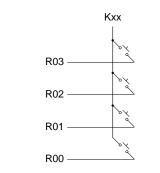


Fig. 5.4.3 Key matrix (Kxx \times R00–R03)

Program"KYSC" first brings R00 to high output and the other ports
to low output, and then executes "KYIN" to judge whether an
entry has been made to the key connected to R00.
Regardless of the result of evaluation, the high output pin is
shifted to the left and the key connected to the next pin is
evaluated.

This processing is repeated up to R03.

KYSC:	LD	Х,7ВН	; Make R00 only high output
	LD	MX,0001B	;
;			
KYSCLP	:CALL	KYIN	<i>;</i> Scanning loop: Execute key input evaluation processing "KYIN"
	LD	Х,7ВН	<i>;</i> Shift high output to left
	ADD	MX,MX	;
	JP	NZ,KYSCLP	<i>;</i> Continue until R00–R03 are all low
	RET		; Return to parent routine

This routine assumes that the key input evaluation processing routine "KYIN" has been prepared separately.

(4) Control of BZ (when R13 is R10 control)

Specifications This is the subroutine to switch BZ and BZ ON and OFF when R13 has become R10 control.
In subroutine "BZ4", BZ output is switched ON after the BZ frequency is set to 4 kHz.
In subroutine "BZ2", BZ output is switched ON after the BZ frequency is set to 2 kHz.

In subroutine "BZOF", BZ output is switched OFF.

Program

BZ4:	LD	Х,ОГ6Н	; Set BZ frequency to 4 kHz
	LD	MX,0000B	;
	LD	Х,7СН	; Make R10 and R13 high output
	OR	MX,0001B	;
	RET		; Return to parent routine
BZ2:	LD	Х,ОГ6Н	; Set BZ frequency to 2 kHz
	LD	MX,1000B	;
	LD	Х,7СН	; Make R10 and R13 high output
	OR	MX,0001B	;
	RET		; Returns to parent routine
BZOF:	LD	Х,7СН	; Make R10 and R13 low output
	AND	MX,1110B	;
	RET		; Return to parent routine

Note

None of these routines affects registers R11–R13 (output pins R11 and R12).

(5) Control of BZ frequency (when R13 is R10 control)

- **Specifications** This subroutine, "BZ", uses the BZ frequency control to sound BZ at 4 kHz when the value of the second counter is implemented in even time, and at 2 kHz for odd time.
- **Program** The second counter is the seconds column BCD data in the timer program. This routine assumes that the start address of the seconds data (that is, the memory address of the 1-second column BCD data) is defined in "YCKS", the symbol indicating the address. (In the program example, "©0H".)

The value of the second counter is judged to be even time (that is, even seconds) or odd time (that is, odd seconds) depending on whether the D0 data in the BCD data is "0" or "1". Branching is done depending on this evaluation, and the BZ is sounded after "0" or "1" is written to the BZFQ register.

YCKS	EQU	©0н	; Start address of second counter
;			
;			
BZ:	LD	Х,ОГ6Н	; Store the I/O memory BZFQ in the X register
	LD	Y,YCKS	; Is the value of the second counter even or odd?
	FAN	MY,0001B	;
	JP	NZ,BZOD	;
;			
	LD	MX,0000B	; Even: Make BZFQ = "0"
	JP	BZON	;
BZ0D:	LD	MX,1000B	<i>i</i> Odd: Make BZFQ = "1"
;			
BZON:	LD	Х,7СН	; Output BZ
	OR	MX,0001B	;
	RET		<i>;</i> Return to parent routine

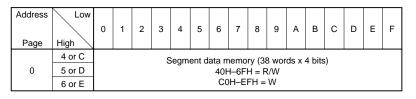
Note

In this program example, the BZ frequency is changed (according to even seconds or odd seconds) only when "BZ" is called and executed.

For instance, if "BZ" is executed at even seconds and the BZ frequency is set to 4 kHz, then the BZ frequency will still be 4 kHz, even if the second counter advances and becomes odd seconds. As long as "BZ" is not executed again, the frequency will not change to 2 kHz.

Programming note	When $\overline{\text{BZ}}$ has been selected by the output application for pin R13, the mask option decides whether output is controlled by register R13, or by register R10 simultaneously with BZ.
	In particular, when $\overline{\text{BZ}}$ output is under R10 control, register R13 can be used as a 1-bit general register for read/write. Data in this register has no affect on $\overline{\text{BZ}}$ output (output of pin R13).

5.5 LCD Driver


The E0C6S32 Series has four common pins and 38 segment pins, so that it can drive an LCD with up to 152 (38×4) segments.

The driving method is 1/4 duty (1/3 duty or 1/2 duty can be selected with the mask option) dynamic drive.

Segment data mem-

ory map

Fig. 5.5.1 Segment data memory map

Segment data memory (40H-6FH or C0H-EFH)

The LCD segments are lit or turned off depending on this data.

When "1" is written:	Lit
When "0" is written:	Not lit
Read-out:	Available for 40H–6FH
	Undefined for COH-EFH

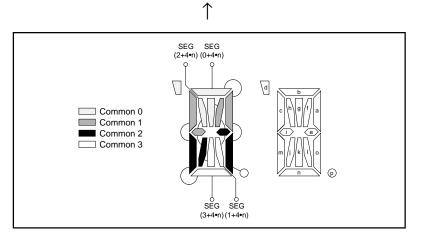
At initial reset, the contents of the segment data memory are undefined.

- When 40H–6FH is selected for the segment data memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the segment data memory by executing initial processing.
 - When C0H–EFH is selected for the segment data memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).
 - Data output from segment pins selected as DC output will be the data corresponding to the COM0 pins.

Example of control program for LCD segment output

(1) Generation of 16-segment character

Specifications This is the subroutine "DSCG", which uses the table lookup instruction to generate characters corresponding to the values of A and B registers, by writing to the A and B registers.


Segment data memory assignment table				
Address	Data			
Address	D3	D2	D1	D0
(n+0)H	-	с	b	а
(n+1)H	h	g	f	e
(n+2)H	1	k	j	i
(n+3)H	-	0	n	m

Segment data memory assignment table

	ı.	
	L	
1	~	

Pin address assignment table

	Common 0	Common 1	Common 2	Common 3
SEG(0+4•n)	(b)	(a)	(0)	(p)
SEG(1+4•n)	(g)	(f)	(e)	(1)
SEG(2+4•n)	(h)	(i)	(j)	(k)
SEG(3+4•n)	(d)	(c)	(m)	(n)

The mask options are selected as below for the segment assignment to correspond with the LCD panel shown in Figure 5.5.2.

- The drive duty is made 1/4 duty.
- Of the 38 segment pins, one consecutive group of four pins (SEG0 + 4·n through SEG3 + 4·n, where n is 0 to 9) lights one LCD figure (16 segments). (See the pin address assignment table.)

As a result, a group of four consecutive words in the segment memory address can control one LCD figure. (See the segment data memory assignment table.)

The segment data memory area can be either 40H-6FH or COH-EFH. In the two assignment tables, the addresses of one set of four words begin from the lowest value, as (n + 0), (n + 1), (n + 2), (n + 3).

The relationship between the values of the A and B registers and the characters generated is as follows:

- When the B register is "0", the value (hexadecimal) of the A register corresponds to a numeral from "0" through "F" (hexadecimal).
- When the B register is "1" and A register is "0", this corresponds to " " (single-figure space). When the table is expanded, it corresponds to the character added to the A register in hexadecimal order.

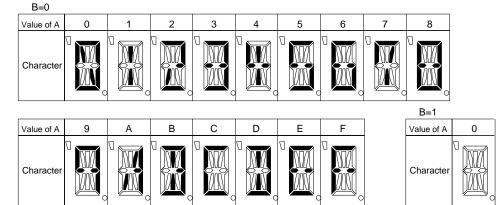


Fig. 5.5.3 Diagram of characters Table look-up"DSCG" converts the address of the steps for writing into
segment data memory the characters in the data table that
correspond to the values of registers A and B (which have
been set by the parent routine). Then it jumps to this ad-
dress with the JPBA instruction.

The PSET instruction is inserted immediately before the first half of the JPBA instruction, so that the table look-up is on the same page as the parent routine, and the data table part is on a different page.

DSCG:	ADD	A,A	; Set to jump to A and B
	ADC	В,В	;
	PSET	DSCGTB	; Jump to table and form subroutine
	JPBA		;

Data tableThe data table begins at the start address of the page in
which it is placed. The segment memory can be written to
in such a way that numerals "0" to "9" and letters "A" to "F"
and " " (single-figure space) can be displayed. A character
can be generated by combining LBPX instruction and RETD
instruction.

Further, expansion from " " (single-figure space) can be done according to the rule below for setting the values of the A and B registers.

	ORG	×00н	; Start address of table
;			
DSCGTB	LBPX	MX,10000111B	; Generate "0" (write to segment memory)
	RETD	01111000B	; , Return to parent routine
	LBPX	MX,0100001B	<i>;</i> Generate "1" (write to segment memory)
	RETD	00000100B	; , Return to parent routine
	LBPX	MX,00010011B	<i>;</i> Generate "2" (write to segment memory)
	RETD	00100010B	; , Return to parent routine
	LBPX	MX,00010011B	<i>;</i> Generate "3" (write to segment memory)
	RETD	01100001B	; , Return to parent routine
	LBPX	MX,01010100B	<i>;</i> Generate "4" (write to segment memory)
	RETD	00000101B	; , Return to parent routine
	LBPX	MX,00010110B	<i>;</i> Generate "5" (write to segment memory)
	RETD	01100001B	; , Return to parent routine
	LBPX	MX,00010110B	; Generate "6" (write to segment memory)
	RETD	01110001B	; , Return to parent routine
	LBPX	MX,00100110B	<i>;</i> Generate "7" (write to segment memory)
	RETD	00010111B	; , Return to parent routine
	LBPX	MX,00010111B	<i>;</i> Generate "8" (write to segment memory)
	RETD	01110001B	; , Return to parent routine
	LBPX	MX,00010111B	<i>;</i> Generate "9" (write to segment memory)
	RETD	01000001B	; , Return to parent routine
	LBPX	MX,00110001B	; Generate "A" (write to segment memory)
	RETD	01000010B	; , Return to parent routine
	LBPX	MX,01010011B	<i>;</i> Generate "B" (write to segment memory)
	RETD	01100100в	; , Return to parent routine
	LBPX	MX,00000110B	<i>;</i> Generate "C" (write to segment memory)
	RETD	00110000B	; , Return to parent routine
	LBPX	MX,01000011B	; Generate "D" (write to segment memory)
	RETD	01100100в	; , Return to parent routine
	LBPX	MX,00010110B	<i>;</i> Generate "E" (write to segment memory)
	RETD	01100001B	; , Return to parent routine
	LBPX	MX,00010110B	<i>;</i> Generate "F" (write to segment memory)
	RETD	00010001B	; , Return to parent routine
	LBPX	MX,0000000B	; Generate " " (single-space figure)
			; (write to segment memory)
	RETD	00000000B	;, Return to parent routine

(2) When segment memory is assigned to COH-EFH

SpecificationsThis application example, in which the assignment shown in
(1) is made to the segment data memory area COH-EFH, is
the "column display routine 'DSSG'" and the "apostrophe
and period display routine 'DSSGA'". Both assume, as in
(1), that eight columns of the LCD panel are to be used.
The SEG (0 + $4 \cdot n$) pin for the LCD's first column is assigned
to segment memory COH, and the remaining 31 pins are
assigned in order.

The pin assignment for the apostrophe and period assignments are not shown in (1). They are assigned in the manner shown in Figure 5.5.4.

Address	Data						
Address	D3	D2	D1	D0			
E0H	A3	A2	A1	A0			
E1H	A7	A6	A5	A4			
E2H	P3	P2	P1	P0			
E3H	P7	P6	P5	P4			

Segment data memory assignment table

 \uparrow

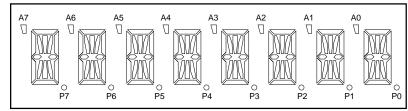


Fig. 5.5.4 Example of LCD panel

FigureThe segment data memory area C0H-EFH is write-only, sodisplaythe display data stored in the buffers "YDSB1"-"YDSB8" (forroutinearithmetic operations) is written to the segment memory.

Two words of the buffer display data correspond to one figure of the display. The low address data corresponds to the value of the A register of DSCG, and the high address data corresponds to the value of the B register.

YDSB1	EQU	©ОН	; Segment data buffer first figure start address
YDSSG	EQU	0С0Н	; Segment memory first figure start address
;			
;			
DSSG:	LD	X,YDSSG	; Store the segment memory first figure start
			; address to X register
	LD	Y,YDSB1	; Store the segment data buffer first figure start
			; address to Y register
;			
DSSGLP:	LDPY	A,MY	; Display: Set the display character
	LDPY	B,MY	;
	CALL	DSCG	; Execute "DSCG"
	CP	XH,OEH	; Continue up to the eighth figure
	JP	C,DSSGLP	
;			
	RET		; Return to parent routine

period display the b			in the Figure display routine, the display data stored in buffers "YDSBA"–"YDSBP" is written to the segment data mory.				
YDSBA	EQU	\triangle 0H	; Segment data buffer apostrophe start address				
YDSBP	EQU	riangle 2H	; Segment data buffer period start address				
YDSSGA	EQU	OEOH	; Segment data memory apostrophe start address				
YDSSGP	EQU	0E2H	; Segment data memory period start address				
;							
;							
DSSGA:	LD	X,YDSSG	A ; Store the segment data memory apostrophe start address in X register				
	LD	Y,YDSBA	; Store the segment data buffer apostrophe start address in Y register				
;							
DSSGAL	:LDPX	MX,MY	i Display: Transfer the data, and increment X register				
	INC	Y	; Increment the Y register				
	CP	XL,4H	; Repeat up to the eighth figure				
	JP	C,DSSGA	L ;				
;							
	RET		; Return to parent routine				

(3) Zero-suppression of buffer data

Specifications	With the settings of (1) and (2), zero-suppression can be
	effected if the display data and buffer data is manipulated
	by this subroutine "DSSP".

DSSP:	CP	MY,OH	; If low address data is "0"
	JP	NZ,DSSPRT	;
	INC	Y	; then make high address data "1"
	LD	MY,1H	;
;			
DSSPRT:	RET		; Return to parent routine

LCD driver memory

map

Table 5.5.1 I/O data memory map (LCD driver)

Address	Register							Comment	
Address	D3 D2 D1 D0 Name SR *1 1 0		0	Comment					
	CSDC	ETI2	ETI8	ETI32	CSDC	0	Dynamic	ALL OFF	LCD drive switch
078H	R/W				ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
0/00			ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)		
					ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Programming notes

- (1) When 40H–6FH is selected for the segment data memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU).Initialize the segment data memory by executing initial processing.
- (2) When COH–EFH is selected for the segment data memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).
- (3) Data output from segment pins selected as DC output will be the data corresponding to the COM0 pins.

5.6 Clock Timer

The E0C6S32 Series has a clock timer built-in. The clock timer can generate timer interrupts at 32 Hz, 8 Hz and 2 Hz. Ordinarily, this clock timer is used for all types of timing functions such as clocks.

Clock timer memory map

Tabla 5 6 1	I/O data	momor	mon	(clock timor)	`
Table 5.6.1	I/O uala	memory	y map i	(CIOCK LIMEI)	,

Address		Reg	ister		Comment			Comment		
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment	
	TM3	TM2	TM1	TM0	TM3	0			Timer data (clock timer 2 Hz)	
070H		I	2		TM2	0			Timer data (clock timer 4 Hz)	
0700					TM1	0 Timer data (clock timer 8 Hz)		Timer data (clock timer 8 Hz)		
					TM0	0			Timer data (clock timer 16 Hz)	
	TMRST	SWRUN	SWRST	IOC0	TMRST ^{*5}	Reset	Reset	-	Clock timer reset	
07EH	W	R/W	W	R/W	SWRUN	0	RUN	STOP	Stopwatch counter RUN/STOP	
0726					SWRST ^{*5}	Reset	Reset	_	Stopwatch counter reset	
					IOC0	0	Output	Input	I/O control register 0 (P00–P03)	

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

TMRST: Clock timer reset (07EH.D3)

This bit resets the clock timer.

When "1" is written:Clock timer resetWhen "0" is written:No operationRead-out:Always "0"

The clock timer restarts immediately on being reset.

Example of using clock timer

(1) Initializing clock timer

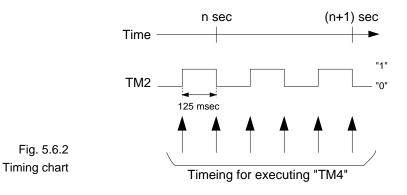
Specifications	This program 1	resets the clock	timer.			
Program	LD OR	Х,7ЕН МХ,1000В	<i>i</i> Reset the clock timer<i>i</i>			
Notes	1. When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to "1".					
	2. The watchdog timer may be counted up at the clock timer reset.					
	3. Resetting the clock timer does not affect the stopwatch counter.					

(2) Reading the clock timer

Specifications This program reads the clock timer data into A register.

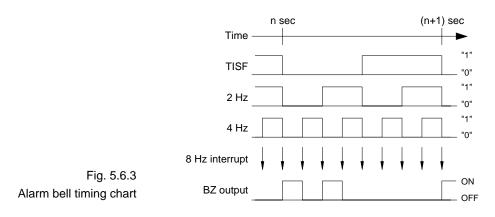
	A register				
Fig. 5.6.1		D3	D2	D1	D0
Correspondence between		TM3	TM2	TM1	TM0
clock timer and A register					

Program	LD	Х,70Н	; Load the clock timer data into A register
	LD	A,MX	;


(3) Detecting the edge of the clock timer

Specifications This subroutine, "TMEDG", detects the edge of the timer data, and executes the 4 Hz processing routine "TM4" if the 2 Hz edge is detected.

Program


XTMDT2	EQU	0100B	<i>;</i> Timer data 2 Hz
YTMDTB	EQU	\bigcirc XH	; Address of timer data buffer
;			
;			
TMEDG:	LD	Х,70Н	<i>;</i> Detect change (edge) in timer data
	LD	Y,TMDTBF	;
	XOR	MY,MX	;
	FAN	MY,XTMDT2	; If 2 Hz edge
	JP	Z,TMEDGRT	;
	CALL	TM4	<i>;</i> then execute 4 Hz processing "TM4"
;			
TMEDGRT:	RET		; Return to parent routine

The processing routine for frequencies not set in the clock timer interrupt can be executed by repeatedly calling this subroutine at high frequency.

(4) Alarm bell using clock timer and BZ output

Specifications When called every 8 Hz, this subroutine generates the alarm bell sound by switching the BZ output ON and OFF, as shown in the timing chart.

XTISF	EQU	0001B		<i>i</i> 0.5-sec flag (TISF)
XBESYNF	EQU	0010B		<i>i</i> Bell sound synchro flag
YFTM	EQU	$\Diamond \Diamond H$		<i>i</i> Address of timing flag set
;				
;				
BE:	LD	Y,YFTM		; TISF = "0" or "1"?
	FAN	MY,XTISF		;
	JP	NZ,BZOF		; TISF = "1": Execute "BZOF", return to parent routine
;				
	LD	Х,70Н		; TISF = "0": Is the timer data of 2 Hz and 4 Hz
	LD	A,MX		;
	AND	A,1100B		;
	CP	A,0000B		; all "0"?
	JP	NZ,BE1		;
;				
	OR	MY,XBESYNF		; Both 2 Hz and 4 Hz are "0": Reset BESYNF
	JP	BZ		; Execute "BZ", return to parent routine
;				
BE1:	FAN	MY,XBESYNF		<i>i</i> 2 Hz and 4 Hz not both "0":
	JP	Z,BZOF		; When $BESYNF = "0"$
	CP	A,1000B		; or $4 \text{ Hz} = "1"$
	JP	NZ,BZOF		; execute "BZOF", return to parent routine
;				
	AND	MY,XBESYNF XOR OF	FH	<i>i</i> In other cases: Reset BESYNF
	JP	BZ		<i>i</i> Execute "BZ", return to parent routine
				-

Timer interrupt memory map

Address		Reg	ister				_	_	Comment
Audress	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	CSDC	ETI2	ETI8	ETI32	CSDC	0	Dynamic	ALL OFF	LCD drive switch
078H		R	W		ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
0700					ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
					ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	TI2	TI8	TI32	0	_ *2			Unused
07011			R		TI2 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
079H					TI8 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
					TI32 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)

Table 5.6.2 I/O data memory map (timer interrupt)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

Tl32, Tl8, Tl2: Interrupt factor flags (079H.D0–D2)

These flags indicate the status of the clock timer interrupt.

When "1" is read out:Interrupt has occurredWhen "0" is read out:Interrupt has not occurredWriting:Invalid

These flags can be reset through being read out by the software.

Note Even if these flag interrupts are masked, the flags are set to "1" at the falling edge of the corresponding signal.

Clock timer timing chart

Address	Register	Frequency									С	loc	k tii	me	r tin	nin	g ch	nart										
	D0	16 Hz					П				Л																	
070H	D1	8 Hz													1_							1						
07011	D2	4 Hz																				1						٦
	D3	2 Hz																										٦
32 Hz i	nterrupt	request	t 1	t	t	t	t t	t	t	t	t t	t	t	t	t	t 1	t t	t	t	t	t	t 1	t t	t	t	t	t 1	t
8 Hz i	nterrupt	request			t			t			t				t			t				t			t			t
2 Hz i	nterrupt	request													t													t

Fig. 5.6.4 Timing chart of the clock timer

Interrupt is generated at the falling edge of the frequencies (32 Hz, 8 Hz, 2 Hz). At this time, the corresponding interrupt factor flag (TI32, TI8, TI2) is set to "1".

Example of using timer interrupt

(1) Initializing clock timer and setting interrupt mask register (2 Hz)

SpecificationsThis program resets the clock timer after enabling the timer
2 Hz interrupt only.

Program

DI		; Disable interrupts
LD	Х,78Н	; Enable timer 2 Hz interrupt, and mask all others
LD	MX,0100B	;
LD	Х,7ЕН	; Reset clock timer
OR	MX,1000B	;
LD	Х,79Н	; Reset the timer interrupt factor flags
FAN	MX,0111B	;
EI		; Enable interrupt

NoteThe generated timer interrupt factor flag is also resetthrough the clock timer being reset.

(2) Operating interrupt mask register by separate bits

Specifications	This program e then masks the		er 8 Hz interrupt only, and nterrupt.
Program	DI		<i>i</i> Disable interrupt
	LD	Х,78Н	; Enable timer 8 Hz interrupt
	OR	MX,0010B	;
	AND	MX,1110B	; Mask timer 32 Hz interrupt
	EI		; Enable interrupt

(3) Processing after timer interrupt generated

Specifications This program stores the register when an interrupt is generated, and when the interrupt processing is completed it recovers the register data and returns to the main routine.

The order of priority for the interrupts is set as shown in the table below, interrupt nesting is disabled, and processing proceeds in descending order of priority. The interrupt processing routine is called with CALL instruction and processed.

Table 5.6.3	Order of Priority	Interrupt Factor
Order of priority of interrupts	1	Clock timer 32 Hz
in program example	2	Clock timer 8 Hz
	3	Clock timer 2 Hz

	ORG	104H	; Interrupt vector address of timer interrupt
;			
	JP	INTI	; Go to "INTI" if timer interrupt is generated
;			
, YTIB	EQU	O⊟h	; Buffer address of timer interrupt factor flags
;			
;			

INTI:	PUSH	ХН	<i>i</i> Store value of X register in stack
	PUSH	XL	;
	PUSH	YH	; Store value of Y register in stack
	PUSH	YL	;
	PUSH	А	; Store value of A register in stack
	PUSH	В	; Store value of B register in stack
	PUSH	F	; Store value of F register in stack
;			
	LD	Х,79Н	; (Reset) the timer interrupt factor flags
	LD	Y,YTIB	; and store in buffer
	LD	MY,MX	;
	LD	Х,78Н	; Mask the timer interrupt factor flags
	AND	MY,MX	; by the value of the timer interrupt mask register
;			
	FAN	MY,0001B	; If the TM32Hz interrupt factor flag is set,
	JP	Z,INTI8	; and enabled
	CALL	TI32	<i>i</i> then "TI32" is executed
;			
INTI8:	LD	Y,YTIB	; If the TM8Hz interrupt factor flag is set,
	FAN	MY,0010B	; and enabled
	JP	Z,INTI2	i
	CALL	TI8	<i>;</i> then "TI8" is executed
;			
INTI2:	LD	Y,YTIB	; If the TM2Hz interrupt factor flag is set,
	FAN	MY,0100B	; and enabled
	JP	Z,INRT	;
	CALL	TI2	; then "TI2" is executed
;			
INRT:			

For details on "INRT", see the interrupt routine in "4.5 Example of Interrupt Vector Processing".

Note Regardless of the setting of the interrupt mask register (ETI), the interrupt factor flag (TI) is set to "1" at the falling edge of the corresponding signal. Hence, the presence of an interrupt factor is judged by the result of ANDing the factor flag stored in the buffer and the interrupt mask register.

(4) Clock using timer 2 Hz interrupt

Specifications This program is for a clock that uses the timer 2 Hz interrupt. It judges when 1 second elapses after the 2 Hz interrupt and counts the clock's seconds.

Table 5.6.4	Address	Data
Clock data	©0Н	Second count data (single digit seconds column, BCD)
	©1H	Second count data (ten's seconds column, BCD)
	©2H	Minute count data (single digit minutes column, BCD)
	©3H	Minute count data (ten's digit minutes column, BCD)

XTISF	EQU	0001B	; 0.5-sec flag (TISF)
YFTM	EQU	$\Diamond \Diamond$ H	; Address of timing flag set
YCKS	EQU	©ОН	; Start address of second counter data (BCD)
;			
;			
TI2:	LD	X,YFTM	; TISF = "0" or "1"?
	FAN	MX,XBTSF	;
	JP	NZ,TI21	;
;			
	OR	MX,XTISF	<i>;</i> TISF = "0": Set TISF
	RET		; Return to "INTI"
TI21:	AND	MX,XTISF XOR OF	FH ; TISF = "1": Reset TISF
	LD	X,YCKS	; Increment the second counter data by 1
	CALZ	СТ60	;
	RET		; No carry: Return to "INTI"
	JP	CK	<i>;</i> Carry: Execute clock processing for
			; at least a minute "CK",
			; and return to "INTI"

Reference

Page 0 routine "CT60"

	PAGE	0	;
;			
СТ60:	CALZ	CTUP	; Count 1 up the BCD counter
	CP	МХ,6Н	; Where is the tens' position?
	JP	NZ,RTPO	; Not "6": Go to RTP0
	LDPX	MX,OH	; "6": Zero clear
	RETS		; Return to parent routine and skip

Page 0 routine "CTUP"

	PAGE	0	;
;			
CTUP:	SDF		; Preparation: Set D flag
	ADD	MX,1H	; Increment data by 1 with BCD
	INC	Х	; Set tens' place address
	ADC	МХ,ОН	; Carry processing to tens' place
	RDF		; After process: Reset D flag
RTP0:	RET		; Return to parent routine

Programming notes	(1) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to "1". Consequently, perform flag read-out (reset the flag) when necessary at reset.
	(2) The watchdog timer may be counted up at clock timer reset.
	(3) Resetting the clock timer has no effect on the stopwatch counter, and vice versa.
	(4) Reading of interrupt factor flags is available at EI, but be careful in the following cases.
	If the interrupt mask register value corresponding to the
	interrupt factor flags to be read is set to "1", an interrupt
	request will be generated by the interrupt factor flags set
	timing, or an interrupt request will not be generated.
	Be very careful when interrupt factor flags are in the

same address.

(5) Regardless of the setting of the interrupt mask register (ETI), the interrupt factor flag (TI) is set to "1" at the falling edge of the corresponding signal.

5.7 Input Ports (K00-K03, K10)

The E0C6S32 Series has general-purpose input ports consisting of a total of five bits. Four bits are reserved for pins K00–K03 and one bit is for K10. All five bits of these input ports have interrupt functions.

Input port memory

map

Address	Register							Comment	
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	K03	K02	K01	К00	К03	_ *2	High	Low	7
073H		R				_ *2	High	Low	Levent a set (K00, K02)
0730					K01	_ *2	High	Low	Input port (K00–K03)
						_ *2	High	Low	
	DFK03	DFK02	DFK01	DFK00	DFK03	0	Falling	Rising	
074H		R	W		DFK02	0	Falling	Rising	Differential register (K00–K03)
0/4/1						0	Falling	Rising	(K00-K03)
					DFK00	0	Falling	Rising	
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	
075H	R/W				EIK02	0	Enable	Mask	Interrupt mask register (K00–K03)
0750					EIK01	0	Enable	Mask	(K00-K03)
					EIK00	0	Enable	Mask	
	0	EIK10	DFK10	K10	0	_ *2			Unused
077H	R	R	W	R	EIK10	0	Enable	Mask	Interrupt mask register (K10)
					DFK10	0	Falling	Rising	Differential register (K10)
					K10	_ *2	High	Low	Input port (K10)
	IK1	IK0	SWIT1	SWIT0	IK1 ^{*4}	0	Yes	No	Interrupt factor flag (K10)
07AH		R				0	Yes	No	Interrupt factor flag (K00–K03)
					SWIT1 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
					SWIT0 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)

Table 5.7.1 I/O data memory map (input ports)

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*4 Reset (0) immediately after being read

*3 Undefined

*5 Constantly "0" when being read

DFK00–DFK03, DFK10: Differential registers (074H, 077H.D1)

Interrupt conditions can be set with these registers.

When read-out is "1": Falling edge When read-out is "0": Rising edge Read-out: Available

In the K00–K03 pin group, the interrupt is enabled inside K00–K03, but the interrupt factor flag IK0 is set to "1" when the values of the input port data and the differential register changes from matching to non-matching.

Note Even though the values of the input port data and the differential register change from non-matching to matching, the interrupt factor flag IK0 will not be set to "1".

When the interrupt is enabled for K10, the interrupt factor flag IK1 is set to "1" at the falling edge when the differential register is "1" and at the rising edge when "0".

IK0, IK1: Interrupt factor flags (07AH.D2 and D3)

These flags indicate the occurrence of input interrupt.

When "1" is read out:Interrupt has occurredWhen "0" is read out:Interrupt has not occurredWriting:Invalid

These flags are reset when the software reads them.

Note When "noise rejector circuit enable" is selected with the mask option, a maximum delay of 1 ms occurs from the time the interrupt conditions are established until the interrupt factor flag (IK) is set to "1" (until the interrupt is actually generated). Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.

Example of using input ports

(1) Reading to input ports

Specifications

This program reads the input port (K00–K03) data to RAM, YINB.

Table 5.7.2 Correspondence of input ports (K00–K03) and store memory

Address	Data bits				
	D3	D2	D1	D0	
$\bigcirc \bigtriangleup H$	K03	K02	K01	K00	

Then it reads the input port (K10) data to the A register.

Fig. 5.7.1	
Correspondence of input port	
(K10) and A register	

	A register					
D3	D2	D1	D0			
0	EIK10	DFK10	K10			

Program

YINB	EQU	$\bigcirc \bigtriangleup$ H	; Buffer address of K00-K03 input data
;			
;			
	LD	Х,73Н	; Store K00–K03 data in RAM, YINB
	LD	Y,YINB	;
	LD	MY,MX	;
;			
	LD	Х,77Н	; Load K10 data to A register (D0)
	LD	A,MX	;
	AND	A,0001B	<i>i</i> Reset all bits except D0 to "0"

Note When input ports are changed from high to low by pulldown resistor, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance.

(2) Input ports determination per bit

SpecificationsThis is an example of whether each terminal is high or low,
using computational command on the input port (K00–K03)
registers.ON/OFF switching of BZ output, or BZ frequency is con-
trolled according to the result of the determination.

YDTB	EQU	О☆н	<i>i</i> Data buffer address
;			
;			
KYTS:	LD	Х,73Н	; If only K00 is high input
	CP	MX,0001B	;
	JP	NZ,KYTS2	;
	CALL	BZ4	<i>;</i> then sound BZ at 4 kHz
;			
KYTS2:	LD	Y,YDTB	; If the value of RAM, YDTB
	LD	A,MY	;
	LD	Х,73Н	; does not match the value of K00–K03
	XOR	A,MX	;
	JP	Z,KYTSOF	;
	CALL	BZ2	; then sound BZ at 2 kHz
;			
KYTSOF:	LD	Х,73Н	; If K00 is low input
	FAN	MX,0001B	;
	JP	NZ,KYTSLP	;
	CALL	BZOF	<i>i</i> then stop the buzzer
;			
KYTSLP:	LD	Х,77Н	<i>i</i> Loop: K10 pin is low or high?
	FAN	MX,0001B	;
	JP	Z,KYTSLP	<i>i</i> Low input: Loop
			* *

(3) Setting differential register and interrupt mask register

Specifications This program sets the mask registers and differential registers of K00–K03 and K10 as shown in the table below.

Table 5.7.3 Setting of interrupt generation conditions

Port	K10	K03	K02	K01	K00
Mask Register	1	0	1	1	1
Generation of Interrupt	Enabled	Disabled	Enabled	Enabled	Enabled
Differential	0	1	1	0	1
Generation Conditions	Rising edge	Don't care	Change from High input status	Change from Low input status	Change from High input status
Interrupt Generated	K1 interrupt		K0 in	terrupt	

DI		; Disable interrupts
LD	Х,74Н	; Set the differential registers of K00-K03
LDPX	MX,1101B	; to "1101", Set the interrupt mask registers of
LD	MX,0111B	; K00–K03 to "0111"
LD	Х,77Н	; Enable interrupt at the rising edge of K10
LD	MX,0100B	;
EI		; Enable interrupt

(4) Processing after interrupt generated

Specifications This program stores the register data when an interrupt is generated, recovers the register data when the interrupt processing completes, and returns to the main routine. The order of priority for the interrupts is set as shown in the table below, interrupt nesting is disabled, and processing proceeds in descending order of priority. The interrupt processing routine is called with CALL instruction and processed.

Table 5.7.4	Order of Priority	Interrupt Factor
Order of interrupt priority in	1	Input ports K00–K03
program example	2	Input port K10

	ORG	101H	; Interrupt vector address of K1 interrupt
;			
	JP	INIK	; If the K1 interrupt is generated, go to "INIK"
	JP	INIK	; If the K0 interrupt is generated, go to "INIK"
	JP	INIK	; If the K0 and K1 interrupts are generated, go to "INIK"
;			
;			
YIKB	EQU	$\bigcirc \bigtriangleup$ H	; Buffer address of input interrupt factor flags
;			
;			
INIK:	PUSH	XH	; Store the value of X register in stack
	PUSH	XL	;
	PUSH	YH	; Store the value of Y register in stack
	PUSH	YL	;
	PUSH	А	; Store the value of A register in stack
	PUSH	В	; Store the value of B register in stack
	PUSH	F	; Store the value of the flag group in stack
;			
	LD	Х,7АН	; (Reset) the input interrupt factor flags
	LD	Y,YIKB	; and store in buffer
	LD	MY,MX	;
;			

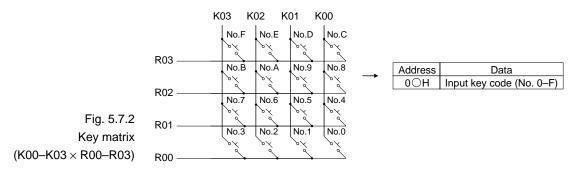
	FAN	MY,0100B	; If the K0 interrupt factor flag is set
	JP	Z,INIK1	;
	CALL	IKO	; then execute "IK0"
;			
INIK1:	LD	Y,YIKB	; If the K1 interrupt factor flag is set
	FAN	MY,1000B	;
	JP	Z,INRT	; then execute "IK1"
	CALL	IK1	;
;			
INRT:			

See details of "INRT" in the section on "Interrupt routine" in "4.5 Example of Processing Interrupt Vector".

(5) Evaluating input pins (K00–K03)

Specifications	This routine decides which of K00–K03 are high input pins				
	when an interrupt is generated by high input from the input				
	ports (K00–K03). It then executes the corresponding sub-				
	routine "K0n".				
	If an interrupt has come from more than one pin, this is				
	treated as "multiple key entry", and subroutine "IKOMLT" is				
	executed.				
	Moreover, in case interrupt is inadvertently generated, the				
	error display process "DSER" will be executed.				

Program


	DI		; Disable interrupts
	LD	Х,74Н	; Set differential registers of K00-K03
	LDPX	MX,0000B	; to "0000"
	LD	MX,1111B	; Enable K00–K03 interrupt
	ΕI		; Enable interrupts
;			
;			
YINB	EQU	О©н	; Read data buffer address
;			
;			
IK0:	LD	Х,73Н	; Store K00–K03 data in RAM, YK0B
	LD	Y,YINB	;
	LD	MY,MX	;
	LD	A,0H	; Preparation:
;			
	CP	MY,0001B	; If only K00 is high input
	JP	Z,K00	; then execute K00 input processing "K00", and return to "INIK"
	JP	C,DSER	; If not high input pin
			; then execute the error display processing "DSER",
			; and return to "INIK"
	CP	MY,0010B	; If only K01 is high input
	JP	Z,K01	; then execute K01 input processing "K01", and return to "INIK"
	CP	MY,0100B	; If only K02 is high input
	JP	Z,K02	; then execute K02 input processing "K02", and return to "INIK"
	CP	MY,1000B	; If only K03 is high input
	JP	Z,K03	; then execute K03 input processing "K03", and return to "INIK"
;			
			Multiple key entry: Execute multiple key entry processing "IK0MLT", and
			return to "INIK"

This routine assumes that processing routines "K00"-"K03", "IKOMLT" and "DSER" have been prepared separately.

(6) Key matrix (K00–K03 \times R00–R03) processing

Specifications This is the interrupt routine "IKO" which specifies the high input key from the key matrix shown in Figure 5.7.2 and converts it to the key code.

Note, however, that the duplicate input process "KOMLT" will be executed when multiple keys are simultaneously pressed, and the no-entry process "KONOENT" will be executed when interrupt is inadvertently generated.

Program

At first, the key matrix is scanned and then the status of the 16 keys is read into the buffer memory. Next, these 16 data are converted to high input key numbers.

Table 5.7.5 Contents of RAM and input data buffer

Address		Data	Bits	
Audress	D3	D2	D1	D0
O0H	No.3	No.2	No.1	No.0
O1H	No.7	No.6	No.5	No.4
○2H	No.B	No.A	No.9	No.8
⊖3H	No.F	No.E	No.D	No.C

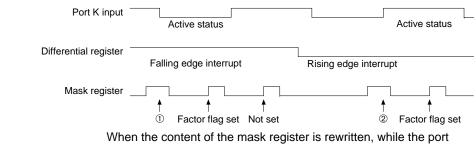
	DI		<i>i</i> Disable interrupts
	LD	Х,74Н	; Set the differential registers DFK00–DFK03
	LDPX	MX,0000B	; to "0000"
	LD	MX,1111B	; Enable K00–K03 interrupt
	LD	Х,7ВН	i Make R00–R03 high output
	LD	MX,1111B	;
	ΕI		<i>i</i> Enable interrupts
;			

;

YK0B0: ;	EQU	ООН	<i>i</i> Input data buffer start address
;			
IK0:	LD	Х,75Н	i Mask K00–K03 interrupt
	LD	MX,0000B	;
	LD	Х,7ВН	<i>i</i> Preparation: Make only R00 high output
	LD	MX,0001B	;
	LD	Ү,ҮКОВО	; Store YK0B0 in Y register
;			
IK0SCLP:	LD	A,1H	; Scanning loop: Delay: Preparation
IKOSCDLLP	: ADD	A,OFH	; Delay loop
	JP	NZ,IKOSCDLLP	;
	LD	Х,73Н	<i>;</i> Store K00–K03 data in the buffer
	LDPY	MY,MX	; Address next buffer
	LD	Х,7ВН	; Shift high output to the left
	ADD	MX,MX	;
	JP	NZ,IKOSCLP	<i>;</i> Continue until all are low
;			
	CALL	К0	; Execute key processing routine "K0"
	LD	Х,75Н	; Enable K00–K03 interrupt again
	LD	MX,1111B	;
	LD	Х,7ВН	i Make R00–R03 high output again
	LD	MX,1111B	i
	RET		<i>i</i> Return to "INIK"
;			
;			
к0:	LD	А,ОН	7 Preparation: Clear A register
	LD	Ү,ҮКОВО	<i>i</i> Store YK0B0 in Y register
KORDLP:	CP	MY,OH	; Loop: If contents of input data buffer
	JP	KORDCT	<i>i</i> are not "0",
	ADD	A,1H	; then add 1 to A register
K0RDCT:	INC	Y	<i>i</i> and address next buffer
	CP	YL,4H	<i>i</i> Continue until four times
	JP	NZ,KORDLP	i
;			
	CP	А,ОН	<i>i</i> If not high input
	JP	Z,KONOENT	<i>i</i> execute non-input processing "K0NOENT"
			<i>i</i> and return to "IK0"
;			
	CP	А,2Н	<i>i</i> If multiple key entry
	JP	NC,KOMLT	<i>i</i> execute multiple key entry processing "KOMLT"
			<i>i</i> and return to "IK0"

TD	7 011	· Deservations Class A maniator
	-	; Preparation: Clear A register
		; Clear B register
LD	Y,YKOBO	; Store YK0B0 in Y register
-	•	; Coding loop: Judge high input pin
JP	Z,KOECLPO	; K00 high input: Go to K0ECLP0
JP	C,KOECLP4	<i>i</i> Not high input: Go to K0ECLP4
CP	MY,0010B	<i>i</i> K01 high input:
JP	Z,KOECLP1	; Go to K0ECLP1
CP	MY,0100B	; K02 high input:
JP	Z,KPECLP2	; Go to K0ECLP2
CP	MY,1000B	; K03 high input:
JP	Z,KOECLP3	; Go to K0ECLP3
JP	KOMLT	<i>i</i> Multiple key entry: Execute multiple key entry
		; processing "K0MLT", and return to "IK0"
ADD	A,1H	; K03 high input: $A \leftarrow 3$
ADD	A,1H	; K02 high input: $A \leftarrow 2$
ADD	A,1H	; K01 high input: $A \leftarrow 1$
ADD	A,B	; K00 high input: Add the value of B register
		; to A register
LD	$\texttt{M} \bigcirc$, \texttt{A}	; Store result in memory register MO
ADD	в,4н	<i>i</i> Increase the value of B register by four
INC	Y	; Address next buffer
CP	YL,4H	; Continue until four times
JP	NZ,KOECLP	;
RET		; Return to "IK0"
	CP JP CP JP JP JP ADD ADD ADD ADD ADD INC CP JP	LD B,0H LD Y,YK0B0 CP MY,0001B JP Z,K0ECLP0 JP C,K0ECLP4 CP MY,0010B JP Z,K0ECLP1 CP MY,0100B JP Z,K0ECLP2 CP MY,1000B JP Z,K0ECLP3 JP K0MLT ADD A,1H ADD A,1H ADD A,1H ADD A,1H ADD A,1H INC Y CP YL,4H JP NZ,K0ECLP

;


This routine assumes that processing routines "KONOENT" and "KOMLT" have been prepared separately.

- Notes1. When the key scan is executed, the input status changes
and the condition is ready for an interrupt factor flag to
be set. Hence, the K03–K00 interrupt is masked in
advance.
 - When input ports are changed from high to low by pulldown resistance, the fall of the waveform is delayed. Hence, when fetching key scan input, set an appropriate wait time.

Programming notes(1) When input ports are changed from high to low by pull-
down resistor, the fall of the waveform is delayed on
account of the time constant of the pull-down resistance
and input gate capacitance. Hence, when fetching input
ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during
key matrix configuration. Aim for a wait time of about 1
ms.

(2) When "noise rejector circuit enable" is selected with the mask option, a maximum delay of 1 ms occurs from the time the interrupt conditions are established until the interrupt factor flag (IK) is set to "1" (until the interrupt is actually generated).

Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.

(3) Input interrupt programing related precautions

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at ① and @, ① being the interrupt due to the falling edge and @ the interrupt due to the rising edge.

Fig. 5.7.3 Input interrupt timing

> When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set. Therefore, when using the input interrupt, the active status of the input terminal implies

- input terminal = Low status, when the falling edge interrupt is effected and
- input terminal = High status, when the rising edge interrupt is effected.

When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of \mathbb{O} shown in Figure 5.7.3. However, when clearing the content of the mask register with the input terminal kept in the Low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (Low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (High status).

When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of ⁽²⁾ shown in Figure 5.7.3. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the Low status. In addition, when the mask register = "1" and the content of the differential register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the differential register = "0" status.

(4) Reading of interrupt factor flags is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

(5) Even when the values of the input data and differential register changes from non-matching to matching, the interrupt factor flag is not set to "1".

5.8 I/O Ports

The E0C6S32 Series reserves eight bits for general-purpose I/O ports. The I/O ports are the allocated into two lots of four bits, P00–P03 and P10–P13, which can be set to either input mode or output mode.

I/O port memory map

Table 5.8.1	I/O data	memory	map	(I/O port	s)
-------------	----------	--------	-----	-----------	----

Address	Register								Comment
71001033	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	P03	P02	P01	P00	P03	- *2	High	Low	
07DH		R	W		P02	_ *2	High	Low	I/O port (P00–P03) Output latch reset at time of SR
07011					P01	_ *2	High	Low	Output fater reset at time of SK
					P00	_ *2	High	Low	
	TMRST	SWRUN	SWRST	IOC0	TMRST ^{*5}	Reset	Reset	-	Clock timer reset
07EH	W	R/W	W	R/W	SWRUN	0	RUN	STOP	Stopwatch counter RUN/STOP
0/20					SWRST ^{*5}	Reset	Reset	-	Stopwatch counter reset
					IOC0	0	Output	Input	I/O control register 0 (P00–P03)
	P13	P12	P11	P10	P13	_ *2	High	Low	
0FDH		R	Ŵ		P12	_ *2	High	Low	I/O port (P10–P13) Output latch reset at time of SR
					P11	_ *2	High	Low	Output fatch reset at time of SK
					P10	- *2	High	Low	
	0	CLKCHG	OSCC	IOC1	0	_ *2			Unused
0FEH	R		R/W		CLKCHG	0	OSC3	OSC1	CPU clock switch
					OSCC	0	ON	OFF	OSC3 oscillator ON/OFF
					IOC1	0	Output	Input	I/O control register 1 (P10–P13)

*1 Initial value at the time of initial reset

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

P00-P03, P10-P13: I/O port data (07DH, 0FDH)

I/O port data can be read and output data can be set through these ports.

• When writing data

When "1" is written:	High level
When "0" is written:	Low level

Port data can be written also in input mode.

• When reading data out

When "1" is read out:High levelWhen "0" is read out:Low level

The terminal voltage level of the I/O port is read out. When the I/O port is in the input mode the voltage level being input to the port terminal can be read out; in output mode the output voltage level can be read.

Further, the built-in pull-down resistance goes ON during read-out, so that the I/O port terminal is pulled down.

Example of program for I/O ports

(1) Reading to I/O ports (P00-P03, P10-P13), when OSC1 running

Specifications

When the CPU clock is OSC1, this routine sets I/O ports (P00–P03) to input mode, and reads the input data to A register.

Fig. 5.8.1 Correspondence of I/O ports (input) and A register

	A reg	gister	
D3	D2	D1	D0
P03	P02	P01	P00

Next it sets P10–P13 to input mode, and reads the input data to RAM, YINB.

Finally it sets P00–P03 to output mode, and <u>reads the status</u> <u>of pins</u> P00–P03 into RAM, YDTB.

Table 5.8.2 Correspondence of I/O ports and RAM store data

Address		Data	Bits	
Audress	D3	D2	D1	D0
O©H	P13	P12	P11	P10
O☆H	P03	P02	P01	P00

Program

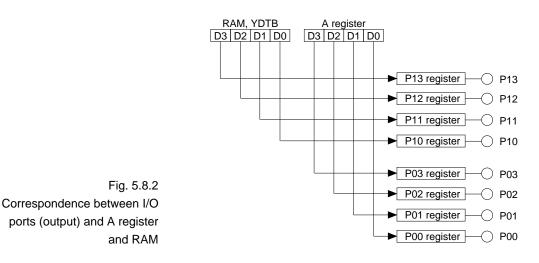
EQU	О©н	; Data buffer address to read
EQU	О☆н	; Data buffer address
LD	Х,7ЕН	; Set ports P00–P03 to input mode
AND	MX,1110B	;
LD	X,7DH	; Load the input to P00–P03 into A register
LD	A,MX	;
LD	X,OFEH	; Set ports P10–P13 to input mode
AND	MX,1110B	;
LD	X,OFDH	; Store the input to P10–P13 into RAM, YINB
LD	Y,YINB	;
LD	MY,MX	;
LD	Х,7ЕН	; Set ports P00–P03 to output mode
OR	MX,0001B	;
LD	X,7DH	; Store the pin data of P00–P03 to RAM, YDTB
LD	Y,YDTB	;
LD	MY,MX	;
	EQU LD AND LD LD LD LD LD LD LD CR LD LD	EQU $\bigcirc \bigstar H$ LDX,7EHANDMX,1110BLDX,7DHLDA,MXLDX,0FEHANDMX,1110BLDY,YINBLDY,YINBLDMY,MXLDX,7EHORMX,0001BLDY,YDTB

Note

When the I/O port is set to output mode and a low-impedance load is connected to the port pins, the value of data written to the register and data read out may differ.

(2) Reading to I/O ports (P00-P03) when OSC3 running

Specifications When the CPU clock is OSC3, this routine sets I/O ports (P00–P03) to input mode, and reads the input data to A register.


Program

	LD	Х,7ЕН	; Set ports P00–P03 to input mode
	AND	MX,1110B	;
	LD	X,7DH	; Read: Preparation
	LD	в,9н	;
PINLP:	LD	A,MX	<i>i</i> Loop: Load to A register
	ADD	B,OFH	;
	JP	NZ,PINLP	; Repeat 10 times

Note This program example assumes that the pull-down resistor uses the built-in pull-down resistor only, and performs the read operation ten times.

(3) Writing to I/O ports (P00-P03, P10-P13)

Specifications This routine outputs the value of A register to I/O ports (P00–P03), then outputs the value of RAM, YDTB to P10–P13.

YDTB	EQU	О☆н	<i>i</i> Data buffer address
;			
	LD	Х,7ЕН	; Set the ports P00–P03 to output mode
	OR	MX,0001B	;
	LD	X,7DH	; Output the value of A register to P00–P03
	LD	MX,A	;
;			
	LD	X,OFEH	; Set the ports P10–P13 to output mode
	OR	MX,0001B	;
	LD	X,7DH	; Output the value of RAM, YDTB to P10–P13
	LD	Y,YDTB	;
	LD	MX,MY	;

Program

- Programming notes(1) When the I/O port is being read out and the pull-down is
executed only with the built-in pull-down resistor of the
I/O ports, the read-out must be repeated about ten times
when the CPU is operating with the OSC3 oscillation
circuit.
 - (2) When the I/O port is set to the output mode and the data register has been read, the pin data instead of the register data can be read out. Because of this, if a low-impedance load is connected and read-out performed, the value of the register and the read-out result may differ.

5.9 Stopwatch Counter

The E0C6S32 Series incorporates a 1/100 sec and 1/10 sec stopwatch counter. The stopwatch counter data can be read out by the software.

Further, the stopwatch counter can generate 10 Hz (approximated 10 Hz) and 1 Hz interrupts.

The stopwatch counter can be used as a separate timer from the clock timer. In particular, digital watch stopwatch functions can be realized easily with software.

Stopwatch counter

memory map

Address	Register							Comment	
Audiess	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	SWL3	SWL2	SWL1	SWL0	SWL3	0			MSB
071H	R				SWL2	0			Stopwatch counter 1/100 sec (BCD)
07111					SWL1	0			1/100 Sec (BCD)
				SWL0	0			LSB	
	SWH3	SWH2	SWH1	SWH0	SWH3	0			MSB
072H		I	R		SWH2	0			Stopwatch counter 1/10 sec (BCD)
07211					SWH1	0			1/10 sec (BCD)
				SWH0	0				
	TMRST	SWRUN	SWRST	IOC0	TMRST ^{*5}	Reset	Reset		Clock timer reset
07EH	W	R/W	W	R/W	SWRUN	0	RUN	STOP	Stopwatch counter RUN/STOP
07211					SWRST ^{*5}	Reset	Reset		Stopwatch counter reset
					IOC0	0	Output	Input	I/O control register 0 (P00–P03)

Table 5.9.1 I/O data memory map (stopwatch counter)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

SWRST: Stopwatch counter reset (07EH.D1)

This bit resets the stopwatch counter.

When "1" is written:Stopwatch counter resetWhen "0" is written:No operationRead-out:Always "0"

Example of program for stopwatch counter

(1) Resetting, starting and stopping the stopwatch counter

Specifications	Controlling procedure for the initial start, stop, start, and
	reset of the stopwatch counter is sequentially indicated.

Program

	LD	Х,7ЕН	; Initial start the stopwatch counter
	OR	MX,0110B	;
;			
	LD	Х,7ЕН	; Reset the stopwatch counter
	OR	MX,0010B	;
;			
	LD	Х,7ЕН	; Stop the stopwatch counter
	AND	MX,1011B	;
;			
	LD	Х,7ЕН	; Restart the stopwatch counter
	OR	MX,0100B	;

Notes 1. Resetting the stopwatch counter does not affect the clock timer.

- 2. When the stopwatch counter is reset in RUN status, operation restarts immediately. Also, in STOP status the reset data is maintained.
- 3. In STOP status, the counter data is maintained until reset or next RUN status occurs. Also, when STOP status changes to RUN status, the data that was maintained can be used for resuming the count.

(2) Reading to the stopwatch counter

Specifications

This program reads the stopwatch counter's 1/100 sec data to A register and the 1/10 sec data to B register.

Fig. 5.9.1
Correspondence between
stopwatch counter and
general-purpose register

A register						B reg	gister	
D3	D2	D1	D0		D3	D2	D1	D0
SWL3	SWL2	SWL1	SWL0		SWH3	SWH2	SWH1	SWH0

Program

	LD	Х,71Н	; Preparation: Store SWL address in X register
	LD	Y,7EH	<i>i</i> Stop the stopwatch counter
	AND	MY,1011B	;
;			
	LDPX	A,MX	; Load SWL data into A register
	LD	B,MX	; Load SWH data into B register
;			
	OR	MY,0100B	; Restart the stopwatch counter

Note

To prevent erroneous reading during carry from the stopwatch counter's low order column (SWL) to the high order column (SWH), the stopwatch counter is stopped during read.

The duration of the stop status must be within 976 μs (256 Hz 1/4 cycle).

Stopwatch interrupt memory map

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	HLMOD	BLD BLS	EISWIT1	EISWIT0	HLMOD	0	Heavy Ioad	Normal	Heavy load protection mode register
	R/W	R	р	W	BLD	0	Low voltage	Normal	SVD evaluation data
076H	FC/ VV	W	ĸ	Ŵ	BLS	0	ON	OFF	SVD ON/OFF
07011						0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)
					EISWIT0	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)
	IK1	IK0	SWIT1	SWITO	IK1 ^{*4}	0	Yes	No	Interrupt factor flag (K10)
07AH		I	R		IK0 ^{*4}	0	Yes	No	Interrupt factor flag (K00–K03)
					SWIT1 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
					SWIT0 ^{*4}	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)

Table 5.9.2 I/O data memory map (stopwatch interrupt)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

SWIT0, SWIT1: Interrupt factor flag (07AH.D0 and D1)

These flags indicate the status of the stopwatch counter interrupt.

When "1" is read out:Interrupt has occurredWhen "0" is read out:Interrupt has not occurredWriting:Invalid

These flags are reset when read out by the software.

Note Regardless of the interrupt mask register setting, these flags are set to "1" by overflow of the corresponding counter.

Stopwatch counter timing chart

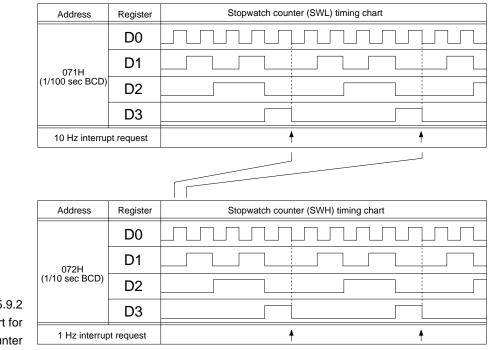


Fig. 5.9.2 Timing chart for stopwatch counter

Interrupts are generated by the overflow of their respective counters ("9" changing to "0"). At this time the corresponding interrupt factor flags (SWIT0, SWIT1) are set to "1".

Example of program for stopwatch interrupt

(1) Combining interrupt factor flag and stopwatch counter

Specifications

This program uses the generation of the stopwatch 1 Hz interrupt factor flag to execute timer display from the 1/100 second to the 10 minute columns.

Table 5.9.3 Correspondence between stopwatch counter and store data

Data Bits Address D3 D2 D1 D0 $\triangle 0H$ SWL3 SWL2 SWL1 SWL0 SWH0 $\triangle 1H$ SWH3 SWH2 SWH1

Table 5.9.4 Timer data by "SWTM"

Address	Data
$\triangle 2H$	Single digit seconds column (BCD)
∆3H	Ten's digit seconds column (BCD)
$\triangle 4H$	Single digit minutes column (BCD)
$\triangle 5H$	Ten's digit minutes column (BCD)

ProgramStores SWIT in the memory register address M© and creates
data greater than a second digit. Through this, simultane-
ous display of 1/100 second and 1/10 second stopwatch
data, and second/minute data will be possible.

Table 5.9.5	Address		Data	Bits	
Data of memory register	Address	D3	D2	D1	D0
	0©H	IK1	IK0	SWIT1	SWIT0

YSITB	B EQU	0©н	; SWT interrupt factor flag buffer address
YSWLB	B EQU	riangle0H	; Stopwatch counter low order data buffer address
;			
;			
	DI		; Disable interrupts
	LD	Х,7ЕН	; Initial start stopwatch counter
	OR	MX,0010B	;
;			
SWLP:	LD	Х,7АН	; Preparation: Store interrupt factor flag address in the X register
	LD	Y,7EH	; Stop the stopwatch counter
	AND	MY,1011B	;
	LD	A,MX	; Store stopwatch interrupt factor flags

	LD	$M \bigcirc$, A	; in the memory register M
	LD	Х,71Н	; Load SWL data to A register
	LDPX	A,MX	; Load SWH data to B register
	LD	B,MX	i
	OR	MY,0100B	; Restart the stopwatch counter
	LD	X,YSWLB	; Store the value of the A register in RAM, YSWLB
	LDPX	MX,A	; Store the value of the B register in RAM, YSWLB+1
	LD	MX,B	i
;			
	LD	X,YSITB	; If the ST1Hz interrupt factor flag is set
	FAN	MX,0010B	;
	JP	Z,SWDS	i
	CALL	SWTM	; then execute stopwatch timer "SWTM"
;			
SWDS:	CALL	DSSW	; Executes the stopwatch display routine "DSSW"
	JP	SWLP	;

Notes

Back to SWLP

- Regardless of the setting of the mask register (EISWIT), the interrupt factor flag (SWIT) is set to "1" by overflow of the counter. Therefore, "interrupt generation" is not used.
- 2. The stopwatch counter is stopped when being read to, so as to prevent an error occurring when the counter is performing carry from the low order column (SWL) to the

Reference		high order	column (SWH).
SWTM:	LD	X,YSWL+2	; Stopwatch timer "SWTM"
	CALZ	CT60	; Increment the seconds by 1
	RET		;
	CALZ	CT60	; No carry up to minutes column: Return to parent routine
	RET		; Carry to higher column: Increment the minutes by 1
	RET		i No carry up to hours column: Returns to parent routine
			;

Carry to higher column: No carry up to hours column, return to parent routine

(2) Setting stopwatch interrupts

Specifications	In the interrupt disabled status, this program enables stopwatch 1 Hz interrupt only, and then enables interrupts.						
Program	DI		<i>i</i> Disable interrupts				
	LD	Х,76Н	; Enable stopwatch 1 Hz interrupt				
	LD	MX,0010B	; and mask 10 Hz interrupt				
	EI		; Enable interrupts				
	<u>E1</u>		/ Enable interrupts				

Note This program example avoids using arithmetic instructions to write to the interrupt mask flag (EISWIT), and assumes that BLS is fixed at "0".

(3) Processing after interrupt is generated

Specifications This routine stores the register data when an interrupt occurs, recovers the register data when the interrupt processing completes, and returns to the main routine. The order of priority for setting the interrupts is shown in the table below. Nesting of interrupts cannot be done. Processing proceeds in descending order of priority. Further, the interrupt processing routine is called with CALL instruction and processed.

Table 5.9.6	Order of Priority	Interrupt Factor
Order of priority in program	1	Stopwatch 10 Hz
example	2	Stopwatch 1 Hz

Program

	ORG	108H	; Vector address of stopwatch interrupts
;			
	JP	INST	; If SWT interrupts occur, go to "INST"
;			
;			
YSITB	EQU	$\bigcirc \bigtriangleup$ H	; Buffer address of stopwatch interrupt factor flags
;			
;			
INST:	PUSH	XH	; Store value of X register in stack
	PUSH	XL	;
	PUSH	YH	<i>i</i> Store value of Y register in stack
	PUSH	YL	;
	PUSH	A	<i>i</i> Store value of A register in stack
	PUSH	В	; Store value of B register in stack
	PUSH	F	; Store value of flag group in stack
;			
	LD	Х,7АН	; (Reset and) store
	LD	Y,YSITB	; stopwatch interrupt factor flags
	LD	MY,MX	; in the buffer
	LD	Х,76Н	; Mask the stopwatch interrupt factor flags
	AND	MY,MX	; by value of stopwatch interrupt mask register
;			
	FAN	MY,0001B	; If the ST10Hz interrupt factor flag is set
	JP	Z,INSIT1	; and enabled
	CALL	SIT0	; then execute "SIT0"
;			
INSIT1	:FAN	MY,0010B	; If the ST1Hz interrupt factor flag is set
	JP	Z,INRT	; and enabled
	CALL	SIT1	; then execute "SIT1"
;			
INRT:			

For details of "INRT", see "4.5 Example of Interrupt Vector Processing".

NoteRegardless of the setting of the mask register (EISWIT), the
interrupt factor flag (SWIT) is set to "1" when the corre-
sponding counter overflows. Therefore, the presence of each
interrupt factor is judged according to the result of ANDing
the factor flag stored in the buffer with the mask register.

Programming notes	 (1) Correct read-out is impossible when there is a carry from the low order bit (SWL) to the high order bit (SWH). Hence, when reading out the counter data in the RUN status, the counter must first be stopped, and then the RUN status returned again. Also, the duration of the above STOP status must be within 976 µs (256 Hz 1/4 cycle). (2) Resetting the clock timer has no effect on the stopwatch
	counter, and vice versa. (3) When using arithmetic instructions (AND, OR, ADD, SUB, etc.) for writing to the interrupt mask registers (EISWIT), pay attention to the control of BLD.
	(4) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

(5) Regardless of the setting of the mask register (EISWIT), the interrupt factor flag (SWIT) is set to "1" when the corresponding counter overflows.

5.10 Event Counter

The E0C6S32 Series houses an event counter that counts the clock signals input from outside.

The event counter is configured of an eight-bit binary counter (up counter). The counter data can be read out by software.

Event counter memory map

Address		Regi	ster					-	Comment
71001033	D3	D2	D1	D0	Name	SR *1	1	0	oominent
	EV03	EV02	EV01	EV00	EV03	0			7
0F8H		F	2		EV02	0			Event counter
UFON					EV01	0			Low order (EV00–EV03)
					EV00	0			
	EV07	EV06	EV05	EV04	EV07	0			
0F9H		F	8		EV06	0			Event counter
01311					EV05	0			High order (EV04–EV07)
					EV04	0			_
	0	EVRUN	0	EVRST	0	_ *2			Unused
0FCH	R	R/W	R	W	EVRUN	0	RUN	STOP	Event counter RUN/STOP
					0	_ *2			Unused
					EVRST ^{*5}	Reset	Reset	-	Event counter reset

Table 5.10.1 I/O data memory map (event counter)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

EVRST: Event counter reset (0FCH.D0)

This it the register for resetting the event counter.

When "1" is written:Event counter resetWhen "0" is written:No operationRead-out:Always "0"

Example of program for event counter

(1) Resetting, starting, and stopping the event counter

Specifications	Controlling procedure for the initial start, stop, start, and reset of the event counter is sequentially indicated.						
Program		LD	X,0FCH	; Initial start event counter			
-		LD	MX,0101B	;			
	;						
		LD	X,OFCH	; Stop event counter			
		LD	MX,0000B	;			
	;						
		LD	X,OFCH	; Start event counter			
		LD	MX,0100B	;			
	;						
		LD	X,OFCH	; Reset event counter			
		LD	MX,0001B	;			

(2) Reading event counter

Specifications This program reads the four high order bits of the event counter to B register, and the four low order bits to A register.

Fig. 5.10.1	A register					B register			
Correspondence between	D3	D2	D1	D0		D3	D2	D1	D0
event counter and general-	EV03	EV02	EV01	EV00		EV07	EV06	EV05	EV04
purpose register									

Program

	LD	Х,ОГ8Н	; First reading: Preparation				
	LD	Ү,0F9H	;	Load EV04-EV07 data to B register			
	LD	B,MY	;				
	LD	A,MX	;	Load EV00-EV03 data to A register			
	CP	MY,B	; If the	re is a carry to EV04–EV07			
	JP	z , ev \bigcirc	;				
	LD	A,MX	;	Redo read: EV00-EV03 data			
	LD	B,MY	;	EV04–EV07 data			
;							
ev00:							

NoteTo prevent erroneous reading when there is a carry from the
event counter's low order data (EV00–EV03) to the high
order data (EV04–EV07), the counter data is read out mul-
tiple times and compared.

Programming note To prevent erroneous reading of the event counter data, read out the counter data multiple times for comparison, and use the matching data for the result.

5.11 Analog Comparator

The E0C6S32 Series incorporates an MOS input analog comparator. This analog comparator, which has two differential input terminals (inverted input terminal AMPM, noninverted input terminal AMPP), can be used for general purposes.

To keep current consumption low, the analog comparator circuit can be switched ON and OFF by the software.

Analog comparator memory map

Address								Comment	
Audiess	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	-	-	AMPDT	AMPON	-	-			Unused
0F7H		R		R/W	-	-			Unused
01711					AMPDT	1	+ > -	- > +	Analog comparator data
					AMPON	0	ON	OFF	Analog comparator ON/OFF

Table 5.11.1 I/O data memory map (analog comparator)

- *1 Initial value at the time of initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Constantly "0" when being read

AMPDT: Analog comparator data (0F7H.D1)

Reads out the output from the analog comparator.

When "1" is read out: AMPP (+) > AMPM (-) When "0" is read out: AMPP (+) < AMPM (-)

Example of program		-
for analog	Note	To keep the current consumption low, set the analog com- parator to OFF when it is not needed.
comparator		paralor to Or F when it is not needed.

(1) Setting the analog comparator ON and OFF, and reading data (when OSC1 is running)

Specifications With OSC1 as the CPU clock, this program sets the AMP circuit to ON, allows a delay, reads the result into A register, and sets the circuit to OFF.

Program	LD	Х,ОГ7Н	<i>i</i> AMP circuit ON
	LD	MX,0001B	;
	LD	A,OFH	<i>;</i> Delay: Preparation
	AMDLLP:ADD	A,OFH	; Delay loop
	JP	NZ,AMDLLP	;
	LD	A,MX	; Load the result to A register
	LD	MX,1110B	; AMP circuit OFF

Note The delay is made to allow the output to stabilize.

(2) Setting the analog comparator ON and OFF, and reading data (when OSC3 is running)

Specifications With OSC3 as the CPU clock, this program sets the AMP circuit to ON, allows a delay, reads the result into A register, and sets the circuit to OFF.

Program	LD	Х,ОГ7Н	; AMP circuit ON
	LD	MX,0001B	;
	LD	Ү,54Н	; Delay: Preparation
	AMDLLP:ADD	Y,OFH	; Delay loop
	JP	NZ,AMDLLP	;
	LD	A,MX	; Load the result to A register
	AND	MX,1110B	; AMP circuit OFF
	LD	A,MX	; Load the result to A register

Note The delay is made to allow the output to stabilize.

Programming notes	(1) To keep the current consumption low, set the analog comparator to OFF when it is not needed.
	(2) After AMPON is set to "1", allow a wait of at least 3 ms for
	the analog comparator's operation to stabilize before
	reading out the analog comparator's output data AMPDT.

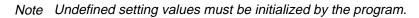
CHAPTER 6 INITIAL RESET

Initial reset is required to initialize the circuits in the E0C6S32 Series.

6.1 Internal Status at Initial Reset

At initial reset, the CPU can be initialized in the following ways.

Table 6.1.1


Initial setting values (1)

Core CPU				
Internal Circuit		Bit Length	Setting Value	
Program counter step	PCS	8	00H	
Program counter page	PCP	4	1H	
New page pointer	NPP	4	1H	
Program counter bank	PCB	1	1	
New bank pointer	NBP	1	Undefined	
Stack pointer	SP	8	Undefined	
Index register	Х	8	Undefined	
Index register	Y	8	Undefined	
Register pointer	RP	4	Undefined	
General-purpose register	А	4	Undefined	
General-purpose register	В	4	Undefined	
Interrupt flag	Ι	1	0	
Decimal flag	D	1	Undefined	
Zero flag	Ζ	1	Undefined	
Carry flag	С	1	Undefined	

Further, data memory is initialized as below.

Table 6.1.2	Peripheral Circuits		
Initial setting values (2)	Name	Bit Length	Setting Value
	RAM	4	Undefined
	Segment data	4	Undefined
	Other peripheral circuits	4	*1

*1 See "3.4 I/O Memory Map".

6.2 Example of Initialize Program

After initial reset, and the CPU and data memory are reset as shown on the previous page, this program starts from address 100H (reset vector).

Then the initialize program's label (INIT) is defined in the reset vector, and the program executes the initialize operation.

Reset vector	;	ORG	100H	; Reset vector address
		JP	INIT	; Start program

Specifications This program defines the bottom address of Stack pointer, clears RAM (including segment data) and resets Flag group, in that order.

Table 6.2.1	Internal Circ	Setting Value	
Result of initializing	General-purpose register	А	0H
internal circuits	Stack pointer	SP	A0H
	Interrupt flag	IF	0
	Decimal flag	DF	0
	Zero flag	ZF	0
	Carry flag	CF	0
	RAM data	(00H–6FH)	он
		(80H–9FH)	
	Segment data	(C0H–EFH)	0H

* The values for the B, X and Y registers are undefined.

Program

INIT:	LD	A,OAH	; Set Stack pointer bottom as A0H
	LD	SPH,A	;
	LD	А,ОН	;
	LD	SPL,A	;
;			
	LD	х,00н	; Clear RAM area 00H–6FH
CLRLP1:	LDPX	МХ,ОН	; Clear MX, and increment X register
	CP	ХН,7Н	<i>;</i> Continue until X register become 70H
	JP	C,CLRLP1	;
;			
	LD	Х,80Н	;
CLRLP2:	LDPX	МХ,ОН	; Clear RAM area 80H–EFH
	CP	XH,OFH	; Clear MX, and increment X register
	JP	C,CLRLP2	<i>;</i> Continue until X register becomes F0H
;			
	RST	F,0000B	; Reset Flag group

Note This program is the basic initialize program for the E0C6S32 Series. When this program is executed, the internal circuits are initialized as shown in Table 6.2.1. When using the program example, be sure to add any setting items necessary for your applications.

CHAPTER 7

Program Memory

SUMMARY OF NOTES

- (1) To use a branch instruction such as "JP" to branch outside the page of that instruction, the page to branch to must first be set with the "PSET" instruction; then the branch instruction can be executed. Be sure to execute the branch instruction as the step immediately following "PSET".
 - (2) Immediately after the "PSET" instruction mentioned in above item (1), it will automatically be DI state until execution of the branch instruction is completed.
 - (3) When moving from the last step of one page to the top step of the next page, there is no need to execute branch instructions such as "PSET" and "JP".
 - (4) With just the one instruction "CALZ", subroutines on page 0 can be called from any page without using "PSET". Programming can be done efficiently if universal subroutines are located on page 0.
 - (5) If the "PSET" instruction is executed immediately before "CALZ", "CALZ" will have priority and data set with "PSET" will be ignored.
 - (6) The program memory can be used as a data table through the table look-up instruction.

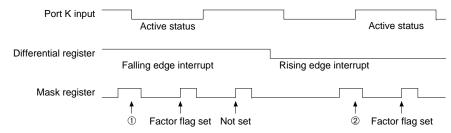
Data Memory (1) Part of the data memory is used as stack area for subroutine calls and register storage, so be careful not to overlap the data area and stack area.

- (2) Subroutine calls and interrupts take up three words of the stack area.
- (3) When addresses 40H–6FH have been allocated as segment memory by option selection, 48 words of RAM can be used as segment area.
- (4) Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this manual, normal operation cannot be assured for programs that have been prepared with access to these

– Interrupt and HALT	(1) Even when the interrupt mask registers (ETI, EISWIT) are set to "0", the interrupt factor flags (TI, SWIT) of the clock timer and stopwatch counter can be set when the timing conditions are established.
	(2) When an interrupt is generated, three words of RAM are used; also, it takes 12 cycles of the CPU system clock until the value of the interrupt vector is set in the program counter.
	(3) When an interrupt occurs, the DI status (interrupt flag = "0") comes into effect automatically.
	(4) Reading of interrupt factor flags is available at EI, but be careful in the following cases.If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.
– Watchdog Timer	When the watchdog timer is used for the reset function, the software must reset the watch dog timer within 3 seconds. In this case, timer data (WD0–WD2) cannot be used for timer applications.
– OSC3	 (1) It takes at least 5 ms from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 ms have elapsed since the OSC3 oscillation went ON. Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
	(2) When switching the clock from OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF.
	(3) To lessen current consumption, keep OSC3 oscillation OFF except when the CPU must be run at high speed. Also, with E0C6S32/6SL32/6SB32, keep OSCC fixed to "0".

SVD Circuit and Heavy Load Protection Functions

- (1) It takes 100 μ s from the time the SVD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:
 - 1 When the CPU system clock is fosc1
 - When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.
 - When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µs has lapsed (the following instruction can write "0" because the instruction cycle is long enough) and then read the BLD.
 - ② When the CPU system clock is fosc3 (in case of E0C6SA32 only)
 - When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second)
 - 2. When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 μ s has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD.
- (2) Be sure to set SVD detection to OFF when it is not needed, so as to keep the current consumption low.
- (3) BLS resides in the same bits at the same address as BLD, and one or the other is selected by write or read operation. When using arithmetic operations (AND, OR, ADD, SUB and so forth) at this address, pay attention to whether BLD is ON or OFF.
- (4) Select either of the following methods of software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode.
 - After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
 - ② After heavy load drive is completed, switch BLS ON and OFF (at least 100 µs is necessary for the ON status) and then return to the normal mode.


	(5) To keep current consumption low, do not set the heavy load protection mode with the software unless necessary.
– Output Ports	When $\overline{\text{BZ}}$ has been selected by the output application for pin R13, the mask option decides whether output is controlled by register R13, or by register R10 simultaneously with BZ. In particular, when $\overline{\text{BZ}}$ output is under R10 control, register R13 can be used as a 1-bit general register for read/write. Data in this register has no affect on $\overline{\text{BZ}}$ output (output of pin R13).
– LCD Driver	(1) When 40H–6FH is selected for the segment data memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU).Initialize the segment data memory by executing initial processing.
	(2) When COH–EFH is selected for the segment data memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).
	(3) Data output from segment pins selected as DC output will be the data corresponding to the COM0 pins.
– Clock Timer	(1) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to "1". Consequently, perform flag read-out (reset the flag) when necessary at reset.
	(2) The watchdog timer may be counted up at clock timer reset.
	(3) Resetting the clock timer has no effect on the stopwatch counter, and vice versa.
	(4) Regardless of the setting of the interrupt mask register (ETI), the interrupt factor flag (TI) is set to "1" at the falling edge of the corresponding signal.

Input Ports (1) When input ports are changed from high to low by pull-down resistor, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during

Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 ms.

(2) When "noise rejector circuit enable" is selected with the mask option, a maximum delay of 1 ms occurs from the time the interrupt conditions are established until the interrupt factor flag (IK) is set to "1" (until the interrupt is actually generated).

Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.

(3) Input interrupt programing related precautions

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at ① and @, ① being the interrupt due to the falling edge and @ the interrupt due to the rising edge.

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set. Therefore,

when using the input interrupt, the active status of the input terminal implies

input terminal = Low status, when the falling edge interrupt is effected and

input terminal = High status, when the rising edge interrupt is effected.

When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of \bigcirc shown in Figure 7.1.

Fig. 7.1 Input interrupt timing However, when clearing the content of the mask register with the input terminal kept in the Low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (Low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (High status).

When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of ⁽²⁾ shown in Figure 7.1. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the Low status. In addition, when the mask register = "1" and the content of the differential register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the differential register in the mask register = "0" status.

(4) Even when the values of the input data and differential register changes from non-matching to matching, the interrupt factor flag is not set to "1".

- I/O Ports

- When the I/O port is being read out and the pull-down is executed only with the built-in pull-down resistor of the I/O ports, the read-out must be repeated about ten times when the CPU is operating with the OSC3 oscillation circuit.
- (2) When the I/O port is set to the output mode and the data register has been read, the pin data instead of the register data can be read out. Because of this, if a low-impedance load is connected and read-out performed, the value of the register and the read-out result may differ.

E0C6S32 TECHNICAL SOFTWARE

– Stopwatch Counter	 (1) Correct read-out is impossible when there is a carry from the low order bit (SWL) to the high order bit (SWH). Hence, when reading out the counter data in the RUN status, the counter must first be stopped, and then the RUN status returned again. Also, the duration of the above STOP status must be within 976 µs (256 Hz 1/4 cycle).
	(2) Resetting the clock timer has no effect on the stopwatch counter, and vice versa.
	(3) When using arithmetic instructions (AND, OR, ADD, SUB, etc.) for writing to the interrupt mask registers (EISWIT), pay attention to the control of BLD.
	(4) Regardless of the setting of the mask register (EISWIT), the interrupt factor flag (SWIT) is set to "1" when the corresponding counter overflows.
– Event Counter	To prevent erroneous reading of the event counter data, read out the counter data multiple times for comparison, and use the matching data for the result.
 Analog Comparator 	(1) To keep the current consumption low, set the analog comparator to OFF when it is not needed.
	(2) After AMPON is set to "1", allow a wait of at least 5 ms for the analog comparator's operation to stabilize before reading out the analog comparator's output data AMPDT.

CHAPTER 8 CPU

The E0C6S32 Series employs the four-bit core CPU E0C6200A for the CPU, so that register configuration, instructions and so forth are virtually identical to those in other family processors using the E0C6200A. Refer to "E0C6200/6200A Core CPU Manual" for details about the E0C6200A.

8.1 E0C6S32 Restrictions

Note the following points with regard to the E0C6S32 Series:

- (1) The SLEEP operation is not assumed, so that SLP instruction cannot be used.
- (2) Because the ROM capacity is 2,048 words, bank bits are unnecessary and PCB and NBP are not used.
- (3) The RAM page is set at 0 only, so that the page part (XP, YP) of the index register that performs address specification is invalid. Consequently, the following instructions cannot be used:

PUSH	XP	PUSH	YP
POP	XP	POP	YP
LD	XP,r	LD	YP,r
LD	r,XP	LD	r,YP

8.2 Instruction Set

The E0C6S32 Series has some 100 types of instructions including arithmetical instructions.

All instructions consist of one word (= 12 bits).

The following pages contain tables of the instruction set of the 4-bit Core CPU, E0C6200A. "*" mean "not in E0C6S32 Series".

Table 8.2.1(a) Instruction set (1)

01 10 11	Mne-		Operation Code			Flag											
Classification	monic	Operand	В	А	9	8	7	6	5	4	3	2 1	0	IDZC	C Clock Operation		Operation
Branch	PSET	р	1	1	1	0	0	1	0	p4	p3]	p2 p	1 pC			5	NBP \leftarrow p4, NPP \leftarrow p3~p0
instructions	JP	s	0	0	0	0	s7	s6	s5	s4	s3	s2 s	1 s0			5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7 \sim s0$
		C, s	0	0	1	0	s7	s6	s5	s4	s3	s2 s	1 s0			5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if C=1
		NC, s	0	0	1	1	s7	s6	s5	s4	s3	s2 s	1 s0			5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if C=0
		Z, s	0	1	1	0	s7	s6	s5	s4	s3	s2 s	1 s0		Τ	5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if Z=1
		NZ, s	0	1	1	1	s7	s6	s5	s4	s3	s2 s	1 s0			5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if Z=0
	JPBA		1	1	1	1	1	1	1	0	1	0 () ()			5	$PCB \leftarrow NBP, PCP \leftarrow NPP, PCSH \leftarrow B, PCSL \leftarrow A$
	CALL	s	0	1	0	0	s7	s6	s5	s4	s3	s2 s	1 s0		Τ	7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
																	SP \leftarrow SP-3, PCP \leftarrow NPP, PCS \leftarrow s7~s0
	CALZ	s	0	1	0	1	s7	s6	s5	s4	s3	s2 s	1 s0			7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
																	SP \leftarrow SP-3, PCP \leftarrow 0, PCS \leftarrow s7~s0
	RET		1	1	1	1	1	1	0	1	1	1 1	1		T	7	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																	SP←SP+3
	RETS		1	1	1	1	1	1	0	1	1	1 1	0		t	12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																	$SP \leftarrow SP+3, PC \leftarrow PC+1$
	RETD	l	0	0	0	1	17	<i>l</i> 6	15	<i>l</i> 4	13	121	110		t	12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																	$SP \leftarrow SP+3$, $M(X) \leftarrow l3 \sim l0$, $M(X+1) \leftarrow l7 \sim l4$, $X \leftarrow X+2$
System	NOP5		1	1	1	1	1	1	1	1	1	0 1	1		t	5	No operation (5 clock cycles)
control	NOP7									-		1 1			t	7	No operation (7 clock cycles)
instructions	HALT		1	1	1	1	1	1	1	1	1	0 0) 0		t	5	Halt (stop clock)
	SLP *		1	1	1	1	1	1	1	1	1	0 () 1		t	5	SLEEP (stop oscillation)
Index	INC	Х	1	1	1	0	1	1	1	0	0	0 () 0		t	5	X←X+1
operation		Y	1	1	1	0	1	1	1	1	0	0 () ()		t	5	$Y \leftarrow Y+1$
instructions	LD	X, x	1	0	1	1	x7	xб	x5	x4	x3 :	x2 x	1 x(T	5	$XH \leftarrow x7 \sim x4, XL \leftarrow x3 \sim x0$
		Ү, у	1	0	0	0	y7	y6	y5	y4	y3	у2 у	1 y(t	5	YH ← y7~y4, YL ← y3~y0
		XP, r *	1	1	1	0	1	0	0	0	0	0 r	1 r0		t	5	XP←r
		XH, r	1	1	1	0	1	0	0	0	0	1 r	1 r0		T	5	XH←r
		XL, r	1	1	1	0	1	0	0	0	1	0 r	1 r0		t	5	XL←r
		YP, r *	1	1	1	0	1	0	0	1	0	0 r	1 r0		t	5	YP←r
		YH, r	1	1	1	0	1	0	0	1	0	1 r	1 r0		T	5	YH←r
		YL, r	1	1	1	0	1	0	0	1	1	0 r	1 r0		t	5	YL←r
		r, XP *	1	1	1	0	1	0	1	0	0	0 r	1 r0		t	5	r←XP
		r, XH	1	1	1	0	1	0	1	0	0	1 r	1 r0		T	5	r←XH
		r, XL	1	1	1	0	1	0	1	0	1	0 r	1 r0		t	5	r←XL
		r, YP *	1	1	1	0	1	0	1	1	0	0 r	1 r0		t	5	r←YP
		r, YH										1 r			t	5	r←YH
		r, YL								-		0 r			t	5	r←YL
	ADC	XH, i								-		i2 i			;	7	XH←XH+i3~i0+C
		XL, i								-		i2 i			+	7	XL←XL+i3~i0+C
		YH, i								-		i2 i			+	7	YH←YH+i3~i0+C
									1	-	-	-	-	11	+	7	

Table 8.2.1(b)	Instruction set (2)
----------------	---------------------

01 17 11	Mne-		Operation Code				Fla	ıg											
Classification	monic	Operand	В	А	9	8	7	6	5	4	3	2	1	0	ΙD	Ζ	С	Clock	Operation
Index	СР	XH, i	1	0	1	0	0	1	0	0	i3	i2	i1	i0		€	\updownarrow	7	XH-i3~i0
operation		XL, i	1	0	1	0	0	1	0	1	i3	i2	i1	i0		€	\updownarrow	7	XL-i3~i0
instructions		YH, i	1	0	1	0	0	1	1	0	i3	i2	i1	i0		€	\updownarrow	7	YH-i3~i0
		YL, i	1	0	1	0	0	1	1	1	i3	i2	i1	i0		↕	\updownarrow	7	YL-i3~i0
Data	LD	r, i	1	1	1	0	0	0	r1	r0	i3	i2	i1	i0				5	r ←i3~i0
transfer		r, q	1	1	1					_	-	r0		^				5	r←q
instructions		A, Mn	1	1	1	1	1	0	1	0	n3	n2	n1	n0				5	$A \leftarrow M(n3 \sim n0)$
		B, Mn	1	1	1	1	1	0	1	1	n3	n2	n1	n0				5	$B \leftarrow M(n3 \sim n0)$
		Mn, A	1	1	1	1	1	0	0	0	n3	n2	n1	n0				5	$M(n3 \sim n0) \leftarrow A$
		Mn, B	1	1	1	1	1	0	0	1	n3	n2	n1	n0				5	$M(n3 \sim n0) \leftarrow B$
	LDPX	MX, i	1	1	1	0	0	1	1	0	i3	i2	i1	i0				5	$M(X) \leftarrow i3 \sim i0, X \leftarrow X+1$
		r, q	1	1	1	0	1	1	1	0	r1	r0	q1	q0				5	$r \leftarrow q, X \leftarrow X+1$
	LDPY	MY, i	1	1	1	0	0	1	1	1	i3	i2	i1	i0				5	$M(Y) \leftarrow i3 \sim i0, Y \leftarrow Y+1$
		r, q	1	1	1	0	1	1	1	1	r1	r0	q1	q0				5	$r \leftarrow q, Y \leftarrow Y+1$
	LBPX	MX, l	1	0	0	1	17	16	15	<i>l</i> 4	13	12	l1	10				5	$M(X) \leftarrow l 3 \sim l 0, M(X+1) \leftarrow l 7 \sim l 4, X \leftarrow X+2$
Flag	SET	F, i	1	1	1	1	0	1	0	0	i3	i2	i1	i0	$\uparrow \uparrow$	↑	\uparrow	7	F←F∨i3~i0
operation	RST	F, i	1	1	1	1	0	1	0	1	i3	i2	i1	i0	$\downarrow \downarrow$	\downarrow	\downarrow	7	F←F∧i3~i0
instructions	SCF		1	1	1	1	0	1	0	0	0	0	0	1			\uparrow	7	C←1
	RCF		1	1	1	1	0	1	0	1	1	1	1	0			\downarrow	7	C←0
	SZF		1	1	1	1	0	1	0	0	0	0	1	0		Ŷ		7	Z←1
	RZF		1	1	1	1	0	1	0	1	1	1	0	1		\downarrow		7	Z←0
	SDF		1	1	1	1	0	1	0	0	0	1	0	0	Ŷ			7	D←1 (Decimal Adjuster ON)
	RDF		1	1	1	1	0	1	0	1	1	0	1	1	\downarrow			7	$D \leftarrow 0$ (Decimal Adjuster OFF)
	EI		1	1	1	1	0	1	0	0	1	0	0	0	↑			7	$I \leftarrow 1$ (Enables Interrupt)
	DI		1	1	1	1	0	1	0	1	0	1	1	1	\downarrow			7	$I \leftarrow 0$ (Disables Interrupt)
Stack	INC	SP	1	1	1	1	1	1	0	1	1	0	1	1				5	$SP \leftarrow SP + 1$
operation	DEC	SP	1	1	1	1	1	1	0	0	1	0	1	1				5	SP← SP-1
instructions	PUSH	r	1	1	1	1	1	1	0	0	0	0	r1	r0				5	$SP \leftarrow SP-1, M(SP) \leftarrow r$
		XP *	1	1	1	1	1	1	0	0	0	1	0	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow XP$
		XH	1	1	1	1	1	1	0	0	0	1	0	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow XH$
		XL	1	1	1	1	1	1	0	0	0	1	1	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow XL$
		YP *	1	1	1	1	1	1	0	0	0	1	1	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow YP$
		YH	1	1	1	1	1	1	0	0	1	0	0	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow YH$
		YL	1	1	1	1	1	1	0	0	1	0	0	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow YL$
		F	1	1	1	1	1	1	0	0	1	0	1	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow F$
	POP	r	1	1	1	1	1	1	0	1	0	0	r1	r0				5	$r \leftarrow M(SP), SP \leftarrow SP+1$
		XP *	1	1	1	1	1	1	0	1	0	1	0	0				5	$XP \leftarrow M(SP), SP \leftarrow SP+1$
		XH	1	1	1	1	1	1	0	1	0	1	0	1				5	$XH \leftarrow M(SP), SP \leftarrow SP+1$
		XL	1	1	1	1	1	1	0	1	0	1	1	0				5	$XL \leftarrow M(SP), SP \leftarrow SP+1$
		YP *	1	1	1	1	1	1	0	1	0	1	1	1				5	$YP \leftarrow M(SP), SP \leftarrow SP+1$

Table 8.2.1(c) Instruction set (3)

Classifianting	Mne-	Onerend					Оре	ratic	n C	ode					Flag	CI-	alı	Occuration
Classification	monic	Operand	В	А	9	8	7	6	5	4	3	2	1	0	IDZC	Clo	CK	Operation
Stack	POP	YH	1	1	1	1	1	1	0	1	1	0	0	0		5	i	$YH \leftarrow M(SP), SP \leftarrow SP+1$
operation		YL	1	1	1	1	1	1	0	1	1	0	0	1		5	;	$YL \leftarrow M(SP), SP \leftarrow SP+1$
instructions		F	1	1	1	1	1	1	0	1	1	0	1	0	$\uparrow\uparrow\uparrow\uparrow\uparrow$	5	;	$F \leftarrow M(SP), SP \leftarrow SP+1$
	LD	SPH, r	1	1	1	1	1	1	1	0	0	0	r1	r0		5	i	$SPH \leftarrow r$
		SPL, r	1	1	1	1	1	1	1	1	0	0	r1	r0		5	i	$SPL \leftarrow r$
		r, SPH	1	1	1	1	1	1	1	0	0	1	r1	r0		5	;	$r \leftarrow SPH$
		r, SPL	1	1	1	1	1	1	1	1	0	1	r1	r0		5	;	$r \leftarrow SPL$
Arithmetic	ADD	r, i	1	1	0	0	0	0	r1	r0	i3	i2	i1	i0	★ ↓ ↓	7	'	r←r+i3~i0
instructions		r, q	1	0	1	0	1	0	0	0	r1	r0	q1	q0	★ ↓ ↓	7	'	$r \leftarrow r+q$
	ADC	r, i	1	1	0	0	0	1	r1	r0	i3	i2	i1	i0	★ ↓ ↓	7	'	r←r+i3~i0+C
		r, q	1	0	1	0	1	0	0	1	r1	r0	q1	q0	★ ↓ ↓	7	'	$r \leftarrow r+q+C$
	SUB	r, q	1	0	1	0	1	0	1	0	r1	r0	q1	q0	★ ↓ ↓	7	'	r←r-q
	SBC	r, i	1	1	0	1	0	1	r1	r0	i3	i2	i1	i0	★ ↓ ↓	7	'	r←r-i3~i0-C
		r, q	1	0	1	0	1	0	1	1	r1	r0	q1	q0	★ \$ \$	7	'	r←r-q-C
	AND	r, i	1	1	0	0	1	0	r1	r0	i3	i2	i1	i0	\$	7	'	r ←r∧i3~i0
		r, q	1	0	1	0	1	1	0	0	r1	r0	q1	q0	\uparrow	7	'	$r \leftarrow r \land q$
	OR	r, i	1	1	0	0	1	1	r1	r0	i3	i2	i1	i0	\$	7	'	r←r∨i3~i0
		r, q	1	0	1	0	1	1	0	1	r1	r0	q1	q0	\$	7	'	$r \leftarrow r \lor q$
	XOR	r, i	1	1	0	1	0	0	r1	r0	i3	i2	i1	i0	\uparrow	7	'	r←r∀i3~i0
		r, q	1	0	1	0	1	1	1	0	r1	r0	q1	q0	\uparrow	7	'	$r \leftarrow r \forall q$
	СР	r, i	1	1	0	1	1	1	r1	r0	i3	i2	i1	i0	11	7	'	r-i3~i0
		r, q	1	1	1	1	0	0	0	0	r1	r0	q1	q0	11	7	'	r-q
	FAN	r, i	1	1	0	1	1	0	r1	r0	i3	i2	i1	i0	\uparrow	7	'	r∧i3~i0
		r, q	1	1	1	1	0	0	0	1	r1	r0	q1	q0	\uparrow	7	'	r∧q
	RLC	r	1	0	1	0	1	1	1	1	r1	r0	r1	r0	11	7	'	$d3 \leftarrow d2, d2 \leftarrow d1, d1 \leftarrow d0, d0 \leftarrow C, C \leftarrow d3$
	RRC	r	1	1	1	0	1	0	0	0	1	1	r1	r0	11	5	;	$d3 \leftarrow C, d2 \leftarrow d3, d1 \leftarrow d2, d0 \leftarrow d1, C \leftarrow d0$
	INC	Mn	1	1	1	1	0	1	1	0	n3	n2	n1	n0	\$\$	7	'	$M(n3 \sim n0) \leftarrow M(n3 \sim n0) + 1$
	DEC	Mn	1	1	1	1	0	1	1	1	n3	n2	n1	n0	\$\$	7	'	$M(n3 \sim n0) \leftarrow M(n3 \sim n0)-1$
	ACPX	MX, r	1	1	1	1	0	0	1	0	1	0	r1	r0	★ ↓ ↓	7	'	$M(X) \leftarrow M(X)+r+C, X \leftarrow X+1$
	ACPY	MY, r	1	1	1	1	0	0	1	0	1	1	r1	r0	★ ↓ ↓	7	'	$M(Y) \leftarrow M(Y)+r+C, Y \leftarrow Y+1$
	SCPX	MX, r	1	1	1	1	0	0	1	1	1	0	r1	r0	★ ↓ ↓	7	'	$M(X) \leftarrow M(X)$ -r-C, $X \leftarrow X+1$
	SCPY	MY, r	1	1	1	1	0	0	1	1	1	1	r1	r0	★ \$ \$	7	'	$M(Y) \leftarrow M(Y)$ -r-C, $Y \leftarrow Y$ +1
	NOT	r	1	1	0	1	0	0	r1	r0	1	1	1	1	\$	7	'	r←r

Abbreviations used in the explanations have the following meanings.

Symbolo accepted with	Δ	A regi	ster				
Symbols associated with	A B						
registers and memory				· (low	order	eight bits of index	c register
		IX)		(1011	01 401	<u>G</u> 2.02 01	1108-5001
			egister	· (low o	order	eight bits of index	ζ.
		regist	-			0	
	ХН	XH reg	gister	(high	order	four bits of XHL re	egister)
	XL	XL reg	gister	(low o	rder fo	our bits of XHL reg	gister)
			-	~		four bits of YHL re	•
		-				our bits of YHL reg	ister)
		-		(high o	order i	four bits of index	
		regist					
		-		high o	order I	four bits of index	
		regist Stool		or SD			
	SP		-		its of	stack pointer SP	
		-				stack pointer SP	
						ldress is specified	with
			regist	-		1	
			-		ose ad	ldress is specified	with
		index	regist	er IY			
	Mn, M(n)	Data	memo	ry ado	lress (000H–00FH (addr	ess
		specif	ìed w	ith im	media	te data n of 00H-	-0FH)
				-	ose ad	ldress is specified	with
			pointe				
	r, q		-				
		-				te data; according	
						they indicate regista memory whose	
						ith index registers	
		IY)	co ure	opeen	neu wi	the much register.) III ullu
		<u> </u>	r	(7		1
		r1	rO	q1	- q0	Registers specified	
		0	0	0	0	А	
		0	1	0	1	В	
		-		-			

MX

MY

•	 NBP New bank pointer NPP New page pointer PCB Program counter bank PCP Program counter page PCS Program counter step PCSH Four high order bits of PCS PCSL Four low order bits of PCS
	 F Flag register (I, D, Z, C) C Carry flag Z Zero flag D Decimal flag I Interrupt flag ↓ Flag reset ↑ Flag set ↓ Flag set or reset
	 ∧Logical AND

v..... Logical OR

∀ Exclusive-OR

 \bigstar Add-subtract instruction for decimal operation when the D flag is set

APPENDIX

• Table of cross assembler pseudo-instructions

Item No.	Pseudo-instruction	Meaning		Example of U	se
1	EQU	To allocate data to label	ABC	EQU	9
	(Equation)		BCD	EQU	ABC+1
2	ORG	To define location counter		ORG	100H
	(Origin)			ORG	256
3	SET	To allocate data to label	ABC	SET	0001H
	(Set)	(data can be changed)	ABC	SET	0002H
4	DW	To define ROM data	ABC	DW	' AB '
	(Define Word)		BCD	DW	OFFBH
5	PAGE	To define boundary of page		PAGE	1н
	(Page)			PAGE	7
6	SECTION (Section)	To define boundary of section		SECTION	I
7	END (End)	To terminate assembly		END	
8	MACRO (Macro)	To define macro			
			CHECK	MACRO	DATA
9	LOCAL	To make local specification of label	LOCAL	LOOP	
	(Local)	during macro definition	LOOP	CP	MX,DATA
10	ENDM	To end macro definition		JP ENDM	NZ,LOOP
	(End Macro)			CHECK	1

• Table of ICE commands

Item No.	Function	Command Format	Outline of Operation
1	Assemble	#A,a 🖵	Assemble command mnemonic code and store at address "a"
2	Disassemble	#L,a1,a2 🖵	Contents of addresses a1 to a2 are disassembled and displayed
3	Dump	#DP,a1,a2 🖵	Contents of program area a1 to a2 are displayed
		#DD,a1,a2 🖵	Content of data area a1 to a2 are displayed
4	Fill	#FP,a1,a2,d 🖵	Data d is set in addresses a1 to a2 (program area)
		#FD,a1,a2,d 🖵	Data d is set in addresses a1 to a2 (data area)
5	Set	#G,aJ	Program is executed from the "a" address
	Run Mode	#TIM J	Execution time and step counter selection
		#OTFJ	On-the-fly display selection
6	Trace	#T,a,n 🖵	Executes program while displaying results of step instruction
			from "a" address
		#U,a,n 🖵	Displays only the final step of #T,a,n
7	Break	#BA,a 🖵	Sets Break at program address "a"
		#BAR,a J	Breakpoint is canceled
		#BDJ	Break condition is set for data RAM
		#BDR 🖵	Breakpoint is canceled
		#BR J	Break condition is set for EVA62XXCPU internal registers
		#BRR J	Breakpoint is canceled
		#BM J	Combined break conditions set for program data RAM address
			and registers
		#BMR J	Cancel combined break conditions for program data ROM
			address and registers
		#BRES J	All break conditions canceled
		#BC J	Break condition displayed
		#BE J	Enter break enable mode
		#BSYN 🖵	Enter break disable mode
		#BT J	Set break stop/trace modes
		#BRKSEL,REM 🖵	Set BA condition clear/remain modes
8	Move	#MP,a1,a2,a3 🖵	Contents of program area addresses a1 to a2 are moved to
			addresses a3 and after
		#MD,a1,a2,a3 🖵	Contents of data area addresses a1 to a2 are moved to addresses
			a3 and after
9	Data Set	#SP,a J	Data from program area address "a" are written to memory
		#SD,a	Data from data area address "a" are written to memory
10	Change CPU	#DR J	Display EVA62XXCPU internal registers
	Internal	#SR J	Set EVA62XXCPU internal registers
	Registers	#I 🖵	Reset EVA62XXCPU
		#DXY J	Display X, Y, MX and MY
		#SXY J	Set data for X and Y display and MX, MY

Item No.	Function	Command Format	Outline of Operation
11	History	#H,p1,p2 🖵	Display history data for pointer 1 and pointer 2
		#HB J	Display upstream history data
		#HG J	Display 21 line history data
		#HP J	Display history pointer
		#HPS,a 🖵	Set history pointer
		#HC,S/C/EJ	Sets up the history information acquisition before (S),
			before/after (C) and after (E)
		#HA,a1,a2 🖵	Sets up the history information acquisition from program area
			a1 to a2
		#HAR,a1,a2 🖵	Sets up the prohibition of the history information acquisition
			from program area a1 to a2
		#HAD J	Indicates history acquisition program area
		#HS,a 🖵	Retrieves and indicates the history information which executed
			a program address "a"
		#HSW,a 🖵	Retrieves and indicates the history information which wrote or
		#HSR,a 🖵	read the data area address "a"
12	File	#RF,file 🖵	Move program file to memory
		#RFD,file 🖵	Move data file to memory
		#VF,file 🖵	Compare program file and contents of memory
		#VFD,file ┛	Compare data file and contents of memory
		#WF,file 🖵	Save contents of memory to program file
		#WFD,file 🖵	Save contents of memory to data file
		#CL,file 🖵	Load ICE6200 set condition from file
		#CS,file 🖵	Save ICE6200 set condition to file
13	Coverage	#CVDJ	Indicates coverage information
		#CVR J	Clears coverage information
14	ROM Access	#RP J	Move contents of ROM to program memory
		#VPJ	Compare contents of ROM with contents of program memory
		#ROM J	Set ROM type
15	Terminate	#Q 🖵	Terminate ICE and return to operating system control
	ICE		
16	Command	#HELP J	Display ICE6200 instruction
	Display		
17	Self	#CHK 🖵	Report results of ICE6200 self diagnostic test
	Diagnosis		

I means press the RETURN key.

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A. Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -Riesstrasse 15 80992 Muenchen, GERMANY Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

SALES OFFICE Altstadtstrasse 176

51379 Leverkusen, GERMANY Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

2.4 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -

EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

 10F, No. 287, Nanking East Road, Sec. 3

 Taipei, TAIWAN, R.O.C.

 Phone: 02-2717-7360

 Fax: 02-2712-9164

 Telex: 24444

 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2 HsinChu 300, TAIWAN, R.O.C. Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD. No. 1 Temasek Avenue. #36-00

Millenia Tower, SINGAPORE 039192 Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-Dong Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of **"Saving" Technology**, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings**.

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic devices information on Epson WWW server