

CMOS 8-BIT SINGLE CHIP MICROCOMPUTER E0C88348/317/316/308 TECHNICAL MANUAL

E0C88348/317/316/308 Technical Hardware E0C88348/317/316/308 Technical Software

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. Please note that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it now reads "E0C".

CMOS 8-bit Single Chip Microcomputer

E0C88348/317/316/308 Technical Manual

Introduction

This Manual contains separate descriptions of the hardware and software of the E0C88348/317/316/308 CMOS 8-bit single chip microcomputers.

I. E0C88348/317/316/308 Technical Hardware

This section of the Manual describes the functions, circuit configuration and control system of the E0C88348/317/316/308.

II. E0C88348/317/316/308 Technical Software

This section of the Manual describes the programming of the E0C88348/317/316/308.

EOC88348/317/316/308 Technical Hardware

Contents

1	INT	RODUCTION	<i>I-1</i>
	1.1	Configuration	I-1
	1.2	Features	<i>I-2</i>
	1.3	Block Diagram	I-3
	1.4	Pin Layout Diagram	I-5
2	PO	WER SUPPLY	<i>I-13</i>
	2.1	Operating Voltage	<i>I-13</i>
	2.2	Internal Power Supply Circuit	
	2.3	Heavy Load Protection Mode	
3	CPI	U AND BUS CONFIGURATION	
5	3.1	CPU	
	3.2	Internal Memory	
	5.2	3.2.1 ROM	
		3.2.2 RAM	
		3.2.3 I/O memory	
		3.2.4 Display memory	
	3.3	Exception Processing Vectors	
	3.4	CC (Customized Condition Flag)	
	3.5	Chip Mode	
		3.5.1 MCU mode and MPU mode	
	3.6	External Bus	
	2.0	<i>3.6.1 Data bus</i>	
		3.6.2 Address bus	<i>I-21</i>
		3.6.3 Read $(\overline{RD})/write (\overline{WR})$ signals	
		3.6.4 Chip enable (\overline{CE}) signal	
		3.6.5 WAIT control	
	7377	3.6.6 Bus authority release state	
4	INI	TIAL RESET	
	4.1	Initial Reset Factors	
		4.1.1 RESET terminal 4.1.2 Simultaneous LOW level input at input port terminals K00–K03	
		4.1.2 Simultaneous LOW level input at input port terminats K00–K05 4.1.3 Supply voltage detection (SVD) circuit	
		4.1.4 Initial reset sequence	
	4.2	Initial Settings After Initial Reset	
5	PEI	RIPHERAL CIRCUITS AND THEIR OPERATION	<i>I-29</i>
	5.1	I/O Memory Map	
	5.2	System Controller and Bus Control	<i>I-42</i>
		5.2.1 Bus mode settings	
		5.2.2 Address decoder (\overline{CE} output) settings	
		5.2.3 WAIT state settings	
		5.2.4 Setting the bus authority release request signal 5.2.5 Stack page setting	
		5.2.6 Control of system controller	
		5.2.7 Programming notes	

CONTENTS

5.3	Watchdog Timer	I-50
	5.3.1 Configuration of watchdog timer	I-50
	5.3.2 Interrupt function	
	5.3.3 Control of watchdog timer	I-50
	5.3.4 Programming notes	I-50
5.4	Oscillation Circuits and Operating Mode	. I-51
	5.4.1 Configuration of oscillation circuits	
	5.4.2 Mask option	
	5.4.3 OSC1 oscillation circuit	
	5.4.4 OSC3 oscillation circuit	
	5.4.5 Operating mode	
	5.4.6 Switching the CPU clocks	
	5.4.7 Control of oscillation circuit and operating mode	
	5.4.8 Programming notes	
5.5	Input Ports (K ports)	
5.5	5.5.1 Configuration of input ports	
	5.5.2 Mask option	
	5.5.3 Interrupt function and input comparison register	
	5.5.4 Control of input ports	
	5.5.5 Programming note	
5.6		
5.6	Output Ports (R ports)	
	5.6.1 Configuration of output ports	
	5.6.2 Mask option	
	5.6.3 High impedance control	
	5.6.4 DC output	
	5.6.5 Special output	
	5.6.6 Control of output ports	
	5.6.7 Programming notes	
5.7	I/O Ports (P ports)	
	5.7.1 Configuration of I/O ports	
	5.7.2 Mask option	
	5.7.3 I/O control registers and I/O mode	
	5.7.4 Control of I/O ports	
	5.7.5 Programming notes	1-73
5.8	Serial Interface	
	5.8.1 Configuration of serial interface	
	5.8.2 Mask option	I-75
	5.8.3 Transfer modes	
	5.8.4 Clock source	I-76
	5.8.5 Transmit-receive control	
	5.8.6 Operation of clock synchronous transfer	
	5.8.7 Operation of asynchronous transfer	
	5.8.8 Interrupt function	
	5.8.9 Control of serial interface	
	5.8.10 Programming notes	I-92
5.9	Clock Timer	I-93
	5.9.1 Configuration of clock timer	I-93
	5.9.2 Interrupt function	I-93
	5.9.3 Control of clock timer	I-95
	5.9.4 Programming notes	I-97
5.10	Stopwatch Timer	I-98
	5.10.1 Configuration of stopwatch timer	
	5.10.2 Count up pattern	
	5.10.3 Interrupt function	
	5.10.4 Control of stopwatch timer	
	5.10.5 Programming notes	

5.11	Programmable Timer	
	5.11.1 Configuration of programmable timer	
	5.11.2 Count operation and setting basic mode	
	5.11.3 Setting of input clock	
	5.11.4 Timer mode	
	5.11.5 Event counter mode	
	5.11.6 Pulse width measurement timer mode	
	5.11.7 Interrupt function	
	5.11.8 Setting of TOUT output 5.11.9 Transmission rate setting of serial interface	
	5.11.9 Transmission rate setting of serial interface	
	5.11.10 Control of programmable timer	
5.12	LCD Controller	
5.12	5.12.1 Configuration of LCD controller	
	5.12.2 Mask option	
	5.12.2 Mask option 5.12.3 LCD power supply	
	5.12.5 LCD power supply 5.12.4 LCD driver	
	5.12.5 Display memory	
	5.12.6 Display control	
	5.12.7 CL and FR outputs	
	5.12.8 Control of LCD controller	
	5.12.9 Programming notes	
5.13	Sound Generator	
5.15	5.13.1 Configuration of sound generator	
	5.13.2 Control of buzzer output	
	5.13.3 Setting of buzzer frequency and sound level	
	5.13.4 Digital envelope	. <i>I-131</i>
	5.13.5 One-shot output	
	5.13.6 Control of sound generator	
	5.13.7 Programming notes	
5.14	Analog Comparator	I-136
	5.14.1 Configuration of analog comparator	
	5.14.2 Mask option	
	5.14.3 Analog comparator operation	
	5.14.4 Control of analog comparator	
	5.14.5 Programming notes	
5.15	Supply Voltage Detection (SVD) Circuit	I-138
0.10	5.15.1 Configuration of SVD circuit	
	5.15.2 Operation of SVD circuit	
	5.15.3 Control of SVD circuit	
	5.15.4 Programming notes	
5.16	Interrupt and Standby Status	
5.10	5.16.1 Interrupt generation conditions	
	5.16.2 Interrupt factor flag	
	5.16.3 Interrupt enable register	
	5.16.4 Interrupt priority register and interrupt priority level	
	5.16.5 Exception processing vectors	
	5.16.6 Control of interrupt	
	5.16.7 Programming notes	
5.17	Notes for Low Current Consumption	
	IC EXTERNAL WIRING DIAGRAM	
ELE	CTRICAL CHARACTERISTICS	I-150
7.1	Absolute Maximum Rating	
7.2	Recommended Operating Conditions	1-131

6 7

CONTENTS

10	PRE	ECAUTIONS ON MOUNTING	<i>I-191</i>
	9.2	Pad Coordinates	<i>I-187</i>
	9.1	Diagram of Pad Layout	
9	PAL	D LAYOUT	<i>I-183</i>
	8.2	Ceramic Package	<i>I-182</i>
	8.1	Plastic Package	I-180
8	PAC	CKAGE	<i>I-180</i>
	7.8	Characteristics Curves (reference value)	<i>I-164</i>
	7.7	Oscillation Characteristics	I-163
	7.6	AC Characteristics	<i>I-156</i>
	7.5	Power Current Consumption	<i>I-155</i>
	7.4	Analog Circuit Characteristics	<i>I-153</i>
	7.3	DC Characteristics	<i>I-152</i>

1 INTRODUCTION

The E0C88348, E0C88317, E0C88316 and E0C88308 microcomputers feature the E0C88 (Model 3) CMOS 8-bit core CPU along with ROM, RAM, three different timers and a serial interface with optional asynchronization or clock synchronization.

These devices are fully operable over a wide range of voltages, and can perform high speed operations even at low voltage. Like all the equipment in the EOC Family, these microcomputers have low power consumption.

A 19-bit external address bus and 4 bits chip enable signals make it possible for these microcomputers to control up to $512K \times 4$ bytes of memory, making them ideal for high performance data bank systems.

1.1 Configuration

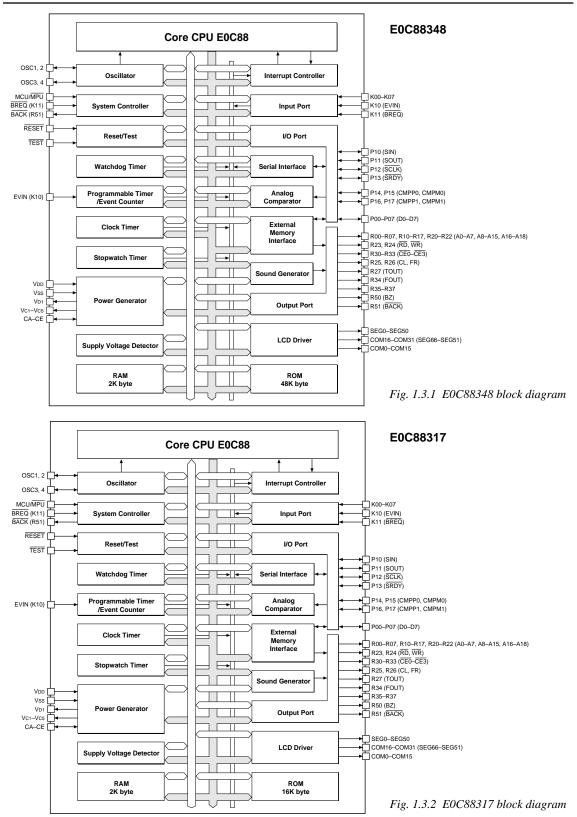
In this manual, the E0C883xx is associated with E0C88348, E0C88317, E0C88316 and E0C88308. In these four models, there are differences in built-in ROM capacity, built-in RAM capacity, number of input ports, number of output ports, number of LCD drive segments and bus authority release functions, but the other peripheral circuits are made with the same configuration.

Table 1.1.1	Configuration
10010 1.1.1	conjignantion

Model	Internal ROM	Internal RAM	Input port	Output port*1	LCD segment*2	Bus authority release function
E0C88348	48K bytes	2K bytes	10 bits	9 bits	1,632 (Max.)	Available
E0C88317	16K bytes	2K bytes	10 bits	9 bits	1,632 (Max.)	Available
E0C88316	16K bytes	2K bytes	10 bits	9 bits	1,632 (Max.)	Available
E0C88308	8K bytes	256 bytes	9 bits	5 bits	1,312 (Max.)	Not available

*1 The terminals shared with the external bus are not included.

^{*2} Maximum number of drive segment when the 32 commons is selected.


1.2 Features

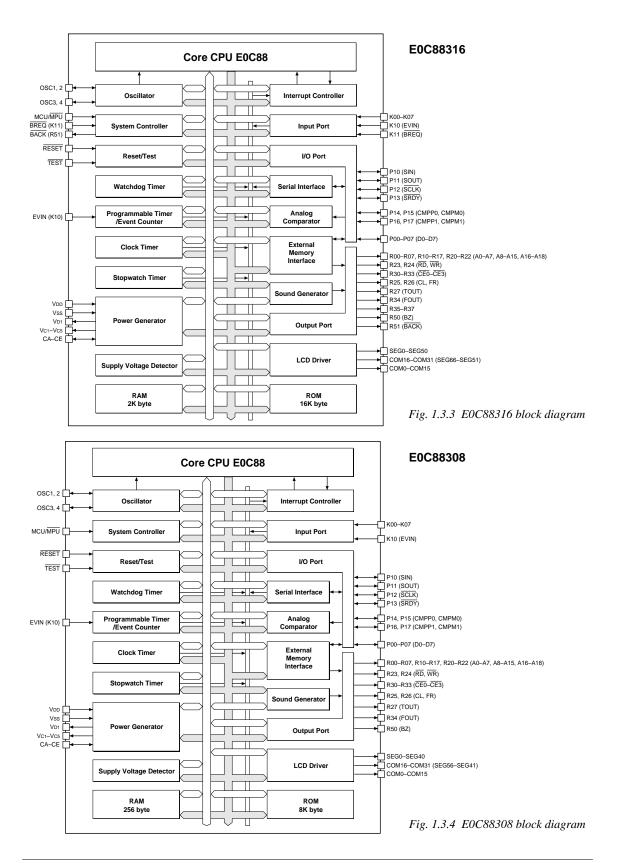

Table 1.2.1 lists the features of the E0C883xx.

	Table 1.2.1 Main features										
Model	E0C88348 E0C88317 E0C88316	E0C88308									
Core CPU	E0C88 (MODEL3) CMOS 8-bit core CPU										
OSC1 Oscillation circuit	Crystal oscillation circuit/CR oscillation circuit/external clock input 32.768 kHz (Typ.)										
OSC3 Oscillation circuit	Crystal oscillation circuit/ceramic oscillation circuit/CR oscillation circuit/externa	l clock input 8.2 MHz (Max.)									
Instruction set 608 types (Usable for multiplication and division instructions)											
Min. instruction execution time	xecution time 0.244 µsec/8.2 MHz (2 clock)										
Internal ROM capacity	48K bytes 16K bytes	8K bytes									
Internal RAM capacity	2K byte/RAM	256 bytes/RAM									
	3,216 bits/display memory	3,216 bits/display memory									
Bus line	Address bus: 19 bits (Also usable as a general output port when not used as a b	ous)									
	Data bus: 8 bits (Also usable as a general I/O port when not used as a bus))									
	CE signal: 4 bits										
	$\overline{\text{WR}}$ signal: 1 bit (Also usable as a general output port when not used as a b	ous)									
	RD signal: 1 bit										
Input port	10 bits	9 bits									
	(2 bits can be set for event counter clock input	(1 bit can be set for event									
	and bus request signal input terminal)	counter clock input)									
Output port	9 bits	5 bits									
	(6 bits can be set for buzzer output, LCD control, FOUT,	(5 bits can be set for									
	TOUT and bus acknowledge signal output terminal)	buzzer, LCD control,									
		FOUT and TOUT)									
I/O port	8 bits (4 bits each can be set for serial interface input/output and analog comparat	tor input)									
Serial interface	1ch (Optional clock synchronous system or asynchronous system)										
Timer	Programmable timer (8 bits): 2ch										
	(1ch can be set as a an event counter or 2ch as a 16 bits programmable timer for 1ch)										
	Clock timer (8 bits): 1ch										
	Stopwatch timer (8 bits): 1ch										
Power supply circuit to	Built-in (booster type, 5 potentials)										
drive liquid crystals		-									
LCD driver	Dot matrix type	Dot matrix type									
	$(5 \times 8 \text{ or } 5 \times 5 \text{ fonts})$	$(5 \times 8 \text{ or } 5 \times 5 \text{ fonts})$									
	51 SEG \times 32 COM	$41 \text{ SEG} \times 32 \text{ COM}$									
	$67 \text{ SEG} \times 16 \text{ COM}$	$57 \text{ SEG} \times 16 \text{ COM}$									
	$67 \text{ SEG} \times 8 \text{ COM}$	57 SEG \times 8 COM									
	Expandable external LCD driver	Expandable external									
	LCD driver										
Sound generator	Envelop function, equipped with volume control										
Watchdog timer	Built-in										
Analog comparator	2ch built-in										
Supply voltage detection	Can detect up to 16 different voltage levels										
(SVD) circuit											
Interrupt	External interrupt: Input interrupt 2 systems (3 types)										
	Internal interrupt: Timer interrupt 3 systems (9 types)										
	Serial interface interrupt 1 system (3 types)										
Supply voltage	Normal mode: 2.4 V–5.5 V (Max. 4.2 MHz)										
	Low power mode: 1.8 V–3.5 V (Max. 50 kHz)										
	High speed mode: 3.5 V–5.5 V (Max. 8.2 MHz)										
Current consumption	SLEEP status: 300 nA (Typ./normal mode)										
	HALT status (32.768 kHz): 2 µA (Typ./normal mode)										
	RUN status (32.768 kHz): 14 µA (Typ./normal mode)										
	RUN status (4.9152 MHz): 2 mA (Typ./normal mode)										
Supply form	QFP8-160 pin, QFP17-160pin or chip QFP8-160 pin or chip										

* The number of bits cited for output ports and I/O ports does not include those shared with the bus.

1.3 Block Diagram

1.4 Pin Layout Diagram

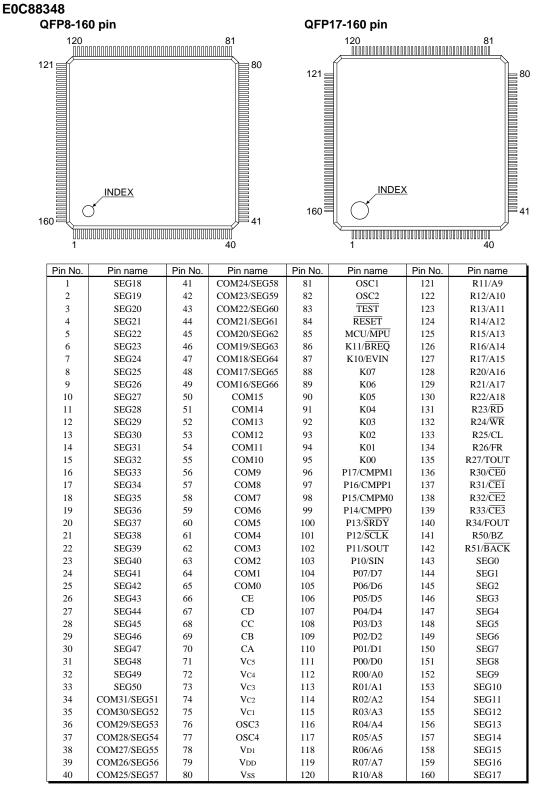
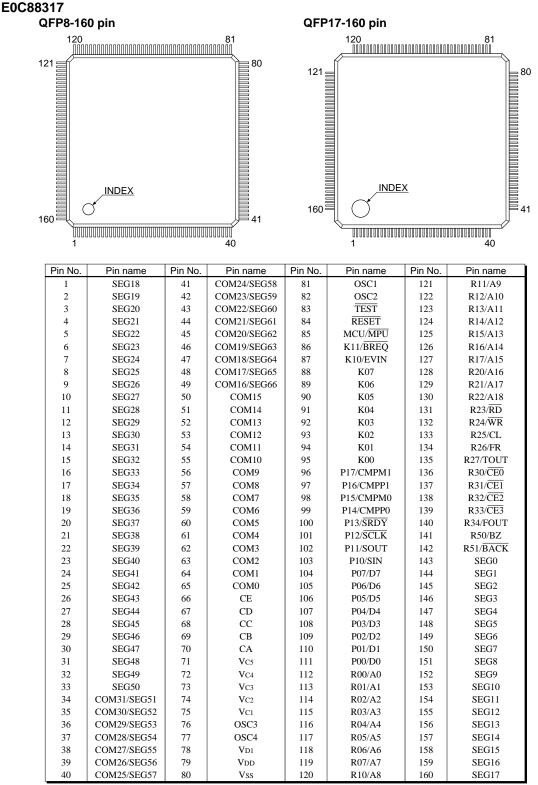


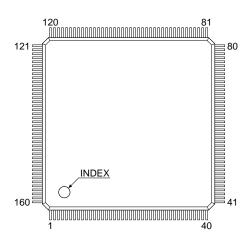
Fig. 1.4.1 E0C88348 pin layout

Din nomo		1	<i>I.4.1 E0C88348 pin description</i> Function
Pin name	Pin No.	In/out	
VDD	79	_	Power supply (+) terminal
Vss	80	-	Power supply (GND) terminal
VD1	78	-	Regulated voltage output terminal for oscillators
VC1–VC5	75–71	0	LCD drive voltage output terminals
CA-CE	70–66	-	Booster capacitor connection terminals for LCD
OSC1	81	Ι	OSC1 oscillation input terminal
0.502		0	(select crystal oscillation/CR oscillation/external clock input with mask option)
OSC2	82	0	OSC1 oscillation output terminal
OSC3	76	Ι	OSC3 oscillation input terminal
0001		0	(select crystal/ceramic/CR oscillation/external clock input with mask option)
OSC4	77	0	OSC3 oscillation output terminal
MCU/MPU	85	I	Terminal for setting MCU or MPU modes
K00–K07	95-88	I	Input terminals (K00–K07)
K10/EVIN	87	I	Input terminal (K10) or event counter external clock input terminal (EVIN)
K11/BREQ	86	I	Input terminal (K11) or bus request signal input terminal (BREQ)
R00-R07/A0-A7	112–119	0	Output terminals (R00–R07) or address bus (A0–A7)
R10–R17/A8–A15	120–127	0	Output terminals (R10–R17) or address bus (A8–A15)
R20-R22/A16-A18	128–130	0	Output terminals (R20–R22) or address bus (A16–A18)
R23/RD	131	0	Output terminal (R23) or read signal output terminal (RD)
R24/WR	132	0	Output terminal (R24) or write signal output terminal (\overline{WR})
R25/CL	133	0	Output terminal (R25) or LCD synchronous signal output terminal (CL)
R26/FR	134	0	Output terminal (R26) or LCD frame signal output terminal (FR)
R27/TOUT	135	0	Output terminal (R27)
			or programmable timer underflow signal output terminal (TOUT)
R30-R33/CE0-CE3	136–139	0	Output terminals (R30–R33) or chip enable output terminals ($\overline{CE0}$ – $\overline{CE3}$)
R34/FOUT	140	0	Output terminal (R34) or clock output terminal (FOUT)
R35–R37 *2		0	Output terminals (R35–R37)
R50/BZ	141	0	Output terminal (R50) or buzzer output terminal (BZ)
R51/BACK	142	0	Output terminal (R51) or bus acknowledge signal output terminal (\overline{BACK})
P00-P07/D0-D7	111-104	I/O	I/O terminals (P00–P07) or data bus (D0–D7)
P10/SIN	103	I/O	I/O terminal (P10) or serial I/F data input terminal (SIN)
P11/SOUT	102	I/O	I/O terminal (P11) or serial I/F data output terminal (SOUT)
P12/SCLK	101	I/O	I/O terminal (P12) or serial I/F clock I/O terminal (SCLK)
P13/SRDY	100	I/O	I/O terminal (P13) or serial I/F ready signal output terminal (SRDY)
P14/CMPP0	99	I/O	I/O terminal (P14) or comparator 0 non-inverted input terminal
P15/CMPM0	98	I/O	I/O terminal (P15) or comparator 0 inverted input terminal
P16/CMPP1	97	I/O	I/O terminal (P16) or comparator 1 non-inverted input terminal
P17/CMPM1	96	I/O	I/O terminal (P17) or comparator 1 inverted input terminal
COM0-COM15	65–50	0	LCD common output terminals
COM16-COM31	49–34	0	LCD common output terminals (when 1/32 duty is selected)
/SEG66-SEG51			or LCD segment output terminal (when 1/16 or 1/8 duty is selected)
SEG0-SEG50	143–160, 1–33	0	LCD segment output terminals
RESET	84	Ι	Initial reset input terminal
TEST *1	83	Ι	Test input terminal

Table 1.4.1	E0C88348	pin description
1 10/0 1.1.1	L0000010	pin acscription

*1 TEST is the terminal used for shipping inspection of the IC. For normal operation be sure it is connected to VDD.
 *2 R35-R37 terminals can be used only when chip is being shipped.




Fig. 1.4.2 E0C88317 pin layout

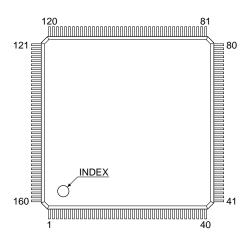
Pin name	Pin No.	In/out	1.4.2 EUC88317 pin description Function
VDD	79	myour	Power supply (+) terminal
Vss	80	_	Power supply (47) terminal
V SS VD1	78	_	Regulated voltage output terminal for oscillators
VC1–VC5	75–71	0	LCD drive voltage output terminals
CA-CE	70–66	- T	Booster capacitor connection terminals for LCD
OSC1	81	Ι	OSC1 oscillation input terminal
0.000		-	(select crystal oscillation/CR oscillation/external clock input with mask option)
OSC2	82	0	OSC1 oscillation output terminal
OSC3	76	Ι	OSC3 oscillation input terminal
		-	(select crystal/ceramic/CR oscillation/external clock input with mask option)
OSC4	77	0	OSC3 oscillation output terminal
MCU/MPU	85	Ι	Terminal for setting MCU or MPU modes
K00-K07	95–88	Ι	Input terminals (K00–K07)
K10/EVIN	87	Ι	Input terminal (K10) or event counter external clock input terminal (EVIN)
K11/BREQ	86	Ι	Input terminal (K11) or bus request signal input terminal (BREQ)
R00-R07/A0-A7	112–119	0	Output terminals (R00-R07) or address bus (A0-A7)
R10-R17/A8-A15	120-127	0	Output terminals (R10-R17) or address bus (A8-A15)
R20-R22/A16-A18	128-130	0	Output terminals (R20-R22) or address bus (A16-A18)
R23/RD	131	0	Output terminal (R23) or read signal output terminal (\overline{RD})
$R24/\overline{WR}$	132	0	Output terminal (R24) or write signal output terminal (WR)
R25/CL	133	0	Output terminal (R25) or LCD synchronous signal output terminal (CL)
R26/FR	134	0	Output terminal (R26) or LCD frame signal output terminal (FR)
R27/TOUT	135	0	Output terminal (R27)
			or programmable timer underflow signal output terminal (TOUT)
R30-R33/CE0-CE3	136–139	0	Output terminals (R30–R33) or chip enable output terminals ($\overline{CE0}$ – $\overline{CE3}$)
R34/FOUT	140	0	Output terminal (R34) or clock output terminal (FOUT)
R35–R37 *2		0	Output terminals (R35–R37)
R50/BZ	141	0	Output terminal (R50) or buzzer output terminal (BZ)
R51/BACK	142	0	Output terminal (R51) or bus acknowledge signal output terminal (\overline{BACK})
P00-P07/D0-D7	111-104	I/O	I/O terminals (P00–P07) or data bus (D0–D7)
P10/SIN	103	I/O	I/O terminal (P10) or serial I/F data input terminal (SIN)
P11/SOUT	102	I/O	I/O terminal (P11) or serial I/F data output terminal (SOUT)
P12/SCLK	101	I/O	I/O terminal (P12) or serial I/F clock I/O terminal (SCLK)
P13/SRDY	100	I/O	I/O terminal (P13) or serial I/F ready signal output terminal (SRDY)
P14/CMPP0	99	I/O	I/O terminal (P14) or comparator 0 non-inverted input terminal
P15/CMPM0	98	I/O	I/O terminal (P15) or comparator 0 inverted input terminal
P16/CMPP1	97	I/O	I/O terminal (P16) or comparator 1 non-inverted input terminal
P17/CMPM1	96	I/O	I/O terminal (P17) or comparator 1 inverted input terminal
COM0–COM15	65–50	0	LCD common output terminals
COM16-COM31	49-34	0	LCD common output terminals (when 1/32 duty is selected)
/SEG66-SEG51	., .,		or LCD segment output terminal (when 1/16 or 1/8 duty is selected)
SEG0-SEG50	143-160, 1-33	0	LCD segment output terminals
RESET	84	I	Initial reset input terminal
TEST *1	83	I	Test input terminal
11.51 *1	03	1	rest input terminat

Table 1.4.2 E0C88317 pin description

*1 TEST is the terminal used for shipping inspection of the IC. For normal operation be sure it is connected to VDD.
*2 R35–R37 terminals can be used only when chip is being shipped.

E0C88316 QFP8-160 pin

Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name
1	SEG18	41	COM24/SEG58	81	OSC1	121	R11/A9
2	SEG19	42	COM23/SEG59	82	OSC2	122	R12/A10
3	SEG20	43	COM22/SEG60	83	TEST	123	R13/A11
4	SEG21	44	COM21/SEG61	84	RESET	124	R14/A12
5	SEG22	45	COM20/SEG62	85	MCU/MPU	125	R15/A13
6	SEG23	46	COM19/SEG63	86	K11/BREQ	126	R16/A14
7	SEG24	47	COM18/SEG64	87	K10/EVIN	127	R17/A15
8	SEG25	48	COM17/SEG65	88	K07	128	R20/A16
9	SEG26	49	COM16/SEG66	89	K06	129	R21/A17
10	SEG27	50	COM15	90	K05	130	R22/A18
11	SEG28	51	COM14	91	K04	131	R23/RD
12	SEG29	52	COM13	92	K03	132	R24/WR
13	SEG30	53	COM12	93	K02	133	R25/CL
14	SEG31	54	COM11	94	K01	134	R26/FR
15	SEG32	55	COM10	95	K00	135	R27/TOUT
16	SEG33	56	COM9	96	P17/CMPM1	136	R30/CE0
17	SEG34	57	COM8	97	P16/CMPP1	137	R31/CE1
18	SEG35	58	COM7	98	P15/CMPM0	138	R32/CE2
19	SEG36	59	COM6	99	P14/CMPP0	139	R33/CE3
20	SEG37	60	COM5	100	P13/SRDY	140	R34/FOUT
21	SEG38	61	COM4	101	P12/SCLK	141	R50/BZ
22	SEG39	62	COM3	102	P11/SOUT	142	R51/BACK
23	SEG40	63	COM2	103	P10/SIN	143	SEG0
24	SEG41	64	COM1	104	P07/D7	144	SEG1
25	SEG42	65	COM0	105	P06/D6	145	SEG2
26	SEG43	66	CE	106	P05/D5	146	SEG3
27	SEG44	67	CD	107	P04/D4	147	SEG4
28	SEG45	68	CC	108	P03/D3	148	SEG5
29	SEG46	69	CB	109	P02/D2	149	SEG6
30	SEG47	70	CA	110	P01/D1	150	SEG7
31	SEG48	71	VC5	111	P00/D0	151	SEG8
32	SEG49	72	VC4	112	R00/A0	152	SEG9
33	SEG50	73	VC3	113	R01/A1	153	SEG10
34	COM31/SEG51	74	VC2	114	R02/A2	154	SEG11
35	COM30/SEG52	75	VC1	115	R03/A3	155	SEG12
36	COM29/SEG53	76	OSC3	116	R04/A4	156	SEG13
37	COM28/SEG54	77	OSC4	117	R05/A5	157	SEG14
38	COM27/SEG55	78	VD1	118	R06/A6	158	SEG15
39	COM26/SEG56	79	Vdd	119	R07/A7	159	SEG16
40	COM25/SEG57	80	Vss	120	R10/A8	160	SEG17


Fig. 1.4.3 E0C88316 pin layout

OSC2 82 O OSC1 oscillation output terminal OSC3 76 I OSC3 oscillation input terminal OSC4 77 O OSC3 oscillation input terminal OSC4 77 O OSC3 oscillation output terminal MCU/MPU 85 I Terminal for setting MCU or MPU modes K00-K07 95-88 I Input terminal (K10) or event counter external clock input terminal (EVIN) K11/BREQ 86 I Input terminals (R00-R07) or address bus (A0-A7) R10-R17/A8-A15 120-127 O Output terminal (R10) or bus request signal output terminal (REQ) R20-R22/A16-A18 128-130 O Output terminal (R23) or read signal output terminal (RD) R23/RD I 31 O Output terminal (R23) or read signal output terminal (RD) R24/WR 132 O Output terminal (R27) R27/TCUT I 35 O Output terminal (R27) R27/TCUT 135 O Output terminal (R30 or clock output terminal (R2) R3/4FOUT 140 O Output terminals (R30-R37) R2	[]		Table 1.4.3 E0C88316 pin description					
Vss 80 Power supply (GND) terminal Vb1 78 Regulated voltage output terminal for oscillators Vc1-Vc5 75-71 O LCD drive voltage output terminals CA-CE 70-66 Booster capacitor connection terminals OSC1 81 1 OSC1 oscillation input terminal OSC2 82 O OSC1 oscillation output terminal OSC4 77 O OSC3 oscillation output terminal OSC4 77 O OSC3 oscillation output terminal MCU/MPU 85 1 Terminal for setting MCU or MPU modes K00-K07 95-88 1 Input terminal (K10) or event counter external clock input terminal (EVIN) K11/BERQ 86 1 Input terminals (R0-R07) R0-R07, A0-A7 I12-19 O Output terminals (R0-R07) R0-R07, A0-A7 R10-R17/AB-A15 120-17 O Output terminal (R2) or event counter external clock input terminal (R1) R2/ARB R2/WR 131 O Output terminal (R2) or address bus (A0-A7) R10-R17/AB-A	Pin name	Pin No.	In/out	Function				
VD178-Regulated voltage output terminal for oscillatorsVc1-Vcs75-71OLCD drive voltage output terminalsCA-CE70-66-Booster capacitor connection terminals for LCDOSC181IOSC1 oscillation input terminal (select crystal oscillation/CR oscillation/external clock input with mask option)OSC282OOSC1 oscillation output terminal (select crystal/ceramic/CR oscillation/external clock input with mask option)OSC376IOSC3 oscillation output terminal (select crystal/ceramic/CR oscillation/external clock input with mask option)OSC477OOSC3 oscillation output terminal (select crystal/ceramic/CR oscillation/external clock input with mask option)OSC477OOSC3 oscillation output terminal (R00-R07/AO-A7)KI0/EVIN87IInput terminals (R00-R07)KI0/EVIN87IInput terminal (R10) or event counter external clock input terminal (BEQ) (R0-R07/AO-A7)R10-R17/A8-A15120-127OOutput terminals (R20-R17) or address bus (A0-A7)R10-R17/A8-A15120-127OOutput terminal (R23) or tead signal output terminal (RD)R23/RD131OOutput terminal (R23) or tead signal output terminal (RD)R23/RD131OOutput terminal (R23) or tead signal output terminal (RD)R23/RD134OOutput terminal (R24) or orbig canable output terminal (RD)R3/RDUT140OOutput terminal (R24) or trie signal output terminal (RD)R3/FROT136OOutput	VDD	79	_	Power supply (+) terminal				
VC1-VCS $75-71$ OLCD drive voltage output terminalsCA-CE $70-66$ -Booster capacitor connection terminals for LCDOSC181IOSC1 oscillation input terminalGSC282OOSC1 oscillation CR oscillation/external clock input with mask optionOSC376IOSC3 oscillation output terminalGSC477OOSC3 oscillation output terminalMCUMPU851Terminal for setting MCU or MPU modesK00-K0795-881Input terminals (K00-K07)K10/EVIN87IInput terminals (K00-K07)K10/EVIN87IInput terminals (K00-K07)K10/EVIN87IInput terminals (K00-K07)K10/EVIN87IInput terminals (K00-K07)R00-R07/A0-A7112-119OOutput terminals (R0-R07) or address bus (A0-A7)R10-R17/A8-A15120-127OOutput terminals (R20-R2) or address bus (A0-A7)R10-R17/A8-A15120-127OOutput terminal (R23) or read signal output terminal (RD)R24/WR132OOutput terminal (R23) or read signal output terminal (RD)R24/WR132OOutput terminal (R23) or LCD synchronous signal output terminal (R1)R27/TOUT135OOutput terminal (R20) or LCD synchronous signal output terminal (R1)R27/TOUT135OOutput terminal (R30 or clock output terminal (R2)R3/FAFOUTH40OOutput terminal (R30 or clock output terminal (R2)R5/FARCK142O <td>Vss</td> <td>80</td> <td>-</td> <td>Power supply (GND) terminal</td>	Vss	80	-	Power supply (GND) terminal				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VD1	78	-	Regulated voltage output terminal for oscillators				
OSC1 81 1 OSC1 oscillation input terminal (select crystal oscillation/external clock input with mask option) OSC2 82 0 OSC1 oscillation output terminal OSC3 76 1 OSC3 oscillation output terminal (select crystal/ceramic/CR oscillation/external clock input with mask option) OSC4 77 0 OSC3 oscillation output terminal MCU/MPU 85 1 Terminal for setting MCU or MPU modes K00-K07 95-88 1 Input terminals (K00-K07) K10EVIN 87 1 Input terminals (K00-R07) K10-R07 112-119 0 Output terminals (R0-R07) or address bus (A0-A7) R10-R17/A8-A15 120-127 0 Output terminals (R0-R17) or address bus (A0-A18) R23/RD 131 0 Output terminal (R20-R22) or address bus (A16-A18) R23/RD 131 0 Output terminal (R24) or write signal output terminal (RD) R24/WR 132 0 Output terminal (R24) or write signal output terminal (RC1) R24/WR 132 0 Output terminal (R26) or LCD Stame signal output terminal (R2) R24/WR 132 0 Output terminal (R24) or clock output terminal (R21) R34/WDT 134 0 Output terminal (R24) or clock output terminal (R01) R34/FOUT	VC1–VC5	75–71	0	LCD drive voltage output terminals				
OSC2 82 O OSC1 oscillation output terminal OSC3 76 1 OSC3 oscillation output terminal OSC4 77 O OSC3 oscillation output terminal OSC4 77 O OSC3 oscillation output terminal MCU/MPU 85 1 Terminal for setting MCU or MPU modes K00-K07 95-88 1 Input terminal (K10) or event counter external clock input terminal (EVIN) K10/EVIN 87 1 Input terminals (K00-K07) K10/EREQ 86 1 Input terminals (K10) or event counter external clock input terminal (EVIN) K11/BEQ 86 1 Input terminals (R10-R17) or address bus (A0-A7) R10-R17/A8-A15 120-127 O Output terminals (R10-R17) or address bus (A16-A18) R23/ED 131 O Output terminal (R23) or read signal output terminal (RD) R24/WR 132 O Output terminal (R26) or LCD synchronous signal output terminal (CL) R25/CL 133 O Output terminal (R26) or LCD synchronous signal output terminal (CD) R25/CT 136 O Output ter	CA-CE	70–66	_	Booster capacitor connection terminals for LCD				
OSC2 82 O OSC1 oscillation output terminal OSC3 76 I OSC3 oscillation input terminal OSC4 77 O OSC3 oscillation input terminal OSC4 77 O OSC3 oscillation output terminal MCU/MPU 85 I Terminal for setting MCU or MPU modes K00-K07 95-88 I Input terminal (K10) or event counter external clock input terminal (EVIN) K11/BREQ 86 I Input terminals (R00-R07) or address bus (A0-A7) R10-R17/A8-A15 120-127 O Output terminal (R10) or bus request signal output terminal (REQ) R20-R22/A16-A18 128-130 O Output terminal (R23) or read signal output terminal (RD) R23/RD I 31 O Output terminal (R23) or read signal output terminal (RD) R24/WR 132 O Output terminal (R27) R27/TCUT I 35 O Output terminal (R27) R27/TCUT 135 O Output terminal (R30 or clock output terminal (R2) R3/4FOUT 140 O Output terminals (R30-R37) R2	OSC1	81	Ι	OSC1 oscillation input terminal				
OSC3 76 I OSC3 oscillation input terminal (select crystal/ceramic/CR oscillation/external clock input with mask option) OSC4 77 O OSC3 oscillation output terminal MCU/MPU 85 I Terminal for setting MCU or MPU modes K00-K07 95-88 I Input terminal (K10) or event counter external clock input terminal (EVIN) K10/EVIN 87 I Input terminal (K11) or bus request signal input terminal (BREQ) R00-R07/A0-A7 112–119 O Output terminals (R00-R07) or address bus (A0-A7) R10-R17/A8-A15 120–127 O Output terminal (R2) or write signal output terminal (BD) R23/RD 131 O Output terminal (R2) or write signal output terminal (RD) R24/WR 132 O Output terminal (R2) or LCD synchronous signal output terminal (CL) R26/CL 133 O Output terminal (R2) or LCD synchronous signal output terminal (CL) R26/FR 134 O Output terminal (R30-R33) or chip enable output terminal (CD) R27/TOUT 135 O Output terminal (R30-R33) or chip enable output terminal (CE0-CE3) R3/AFOUT 140 O Output terminal (R30-R33) or chip enable output terminal (CE0-CE3)				(select crystal oscillation/CR oscillation/external clock input with mask option)				
Image: constraint of the second sec	OSC2	82	0	OSC1 oscillation output terminal				
OSC4770OSC3 oscillation output terminalMCU/MPU85ITerminal for setting MCU or MPU modesK00-K0795-88IInput terminals (K00-K07)K10/EVIN87IInput terminals (K10) or event counter external clock input terminal (EVIN)K11/BREQ86IInput terminals (K00-R07) or address bus (A8-A15)R00-R07/A0-A7112-119OOutput terminals (R00-R07) or address bus (A8-A15)R20-R22/A16-A18128-130OOutput terminals (R20-R22) or address bus (A6-A18)R23/RD131OOutput terminal (R23) or read signal output terminal (RD)R24/WR132OOutput terminal (R23) or rad signal output terminal (RD)R25/CL133OOutput terminal (R25) or LCD synchronous signal output terminal (CL)R26/FR134OOutput terminal (R30) or bus zero usignal output terminal (FQ)r27/TOUT135OOutput terminal (R30-R33) or chip enable output terminal (TOUT)R30-R33/CE0-CE3136-139OOutput terminal (R30) or bus zero output terminal (FQ)r80/FR141OOutput terminal (R30) or bus zero output terminal (BZ)R50/BZ141OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O terminal (P10) or serial I/F data input terminal (BACK)P10/SIN103I/OI/O terminal (P11) or serial I/F data input terminal (SDT)P12/SCLK101I/OI/O terminal (P11) or serial I/F clock I/O terminal (SDT)P1	OSC3	76	Ι	OSC3 oscillation input terminal				
MCU/MPU851Terminal for setting MCU or MPU modesK00-K0795-88IInput terminals (K00-K07)K10EVIN87IInput terminal (K10) or event counter external clock input terminal (EVIN)K11/BREQ86IInput terminals (R00-R07) or address bus (A0-A7)R10-R17/A8-A15120-127OOutput terminals (R00-R07) or address bus (A0-A7)R10-R17/A8-A15120-127OOutput terminals (R10-R17) or address bus (A16-A18)R23/RD131OOutput terminals (R20-R22) or address bus (A16-A18)R23/RD131OOutput terminal (R23) or read signal output terminal (RD)R24/WR132OOutput terminal (R25) or LCD synchronous signal output terminal (CL)R26/FR134OOutput terminal (R26) or LCD frame signal output terminal (CL)R26/FR134OOutput terminal (R27) or programmable timer underflow signal output terminal (CE0-CE3)R34/FOUT140OOutput terminal (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminal (R31) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O terminal (P10) or serial I/F data output terminal (SRDY)P11/SOUT102I/OI/O terminal (P11) or serial I/F data output terminal (SRDY)P11/SOUT102I/OI/O terminal (P13) or serial I/F data output terminal (SRDY)P11/SOUT100I/O				(select crystal/ceramic/CR oscillation/external clock input with mask option)				
K00-K0795-88IInput terminals (K00-K07)K10/EVIN87IInput terminal (K10) or event counter external clock input terminal (EVIN)K11/BRQ86IInput terminal (K11) or bus request signal input terminal (BRQ)R00-R07/A0-A7112-119OOutput terminals (R00-R07) or address bus (A0-A7)R10-R17/A8-A15120-127OOutput terminals (R10-R17) or address bus (A8-A15)R20-R22/A16-A18128-130OOutput terminals (R20-R22) or address bus (A16-A18)R23/RD131OOutput terminal (R23) or read signal output terminal (RD)R24/WR132OOutput terminal (R23) or vrite signal output terminal (RD)R25/CL133OOutput terminal (R26) or LCD synchronous signal output terminal (CL)R26/FR134OOutput terminal (R27) or programmable timer underflow signal output terminal (TOUT)R30-R33/CE0-CE3136-139OOutput terminal (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminal (R30 or buzzer output terminal (BZ)R50/BZ141OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O terminal (P11) or serial I/F data input terminal (S0T)P11/S0T102I/OI/O terminal (P11) or serial I/F clock I/O terminal (S0T)P12/SCLK101I/OI/O terminal (P11) or serial I/F clock I/O terminal (SRDY)P13/SRDY100I/OI/O terminal (P11) or comparator 1 non-inverted input terminalP15/CMPM0<	OSC4	77	0	OSC3 oscillation output terminal				
K10/EVIN87IInput terminal (K10) or event counter external clock input terminal (EVIN)K11/BREQ86IInput terminals (R10) or bus request signal input terminal (BREQ)R00-R07/A0-A7112-119OOutput terminals (R00-R07) or address bus (A0-A7)R10-R17/A8-A15120-127OOutput terminals (R10-R17) or address bus (A8-A15)R20-R22/A16-A18128-130OOutput terminals (R20-R22) or address bus (A8-A15)R23/RD131OOutput terminal (R23) or read signal output terminal (RD)R23/RD132OOutput terminal (R20) or LCD synchronous signal output terminal (CL)R26/FR134OOutput terminal (R26) or LCD frame signal output terminal (FR)R27/TOUT135OOutput terminal (R26) or LCD frame signal output terminal (TOUT)R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminals (R30-R33) or chip enable output terminal (GE0-CE3)R34/FOUT140OOutput terminals (R35-R37)R50/BZ141OOutput terminal (R50) or buzzer output terminal (BACK)P00-P07/D0-D7111-104I/OI/OP00-P07/D0-D7111-104I/OI/OP10/SIN103I/OI/O terminal (P11) or serial I/F data input terminal (SRDY)P11/SOUT102I/OI/O terminal (P12) or serial I/F data output terminalP15/CMPN099I/OI/O terminal (P13) or comparator 0 non-inverted input terminalP15/CMPN1 </td <td>MCU/MPU</td> <td>85</td> <td>Ι</td> <td>Terminal for setting MCU or MPU modes</td>	MCU/MPU	85	Ι	Terminal for setting MCU or MPU modes				
K11/BREQ86IInput terminal (K11) or bus request signal input terminal (BREQ)R00-R07/A0-A7112-119OOutput terminals (R00-R07) or address bus (A0-A7)R10-R17/A8-A15120-127OOutput terminals (R10-R17) or address bus (A8-A15)R20-R22/A16-A18128-130OOutput terminals (R20-R22) or address bus (A16-A18)R23/RD131OOutput terminal (R23) or read signal output terminal (RD)R24/WR132OOutput terminal (R24) or write signal output terminal (RC)R26/FR133OOutput terminal (R25) or LCD synchronous signal output terminal (FR)R27/TOUT135OOutput terminal (R27)R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminal (TOUT)R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals ($\overline{CE0-CE3}$)R34/FOUT140OOutput terminals (R30-R33) or chip enable output terminal (\overline{BACK})P00-P07/D0-D7111-104VOOutput terminal (R50) or buzzer output terminal (\overline{BACK})P00-P07/D0-D7111-104VOI/O terminal (P10) or serial I/F data output terminal (\overline{SOT})P1/SOUT103I/OI/O terminal (P11) or serial I/F data output terminal (\overline{SRDY})P1/SCUK101I/OI/O terminal (P12) or serial I/F data output terminal (\overline{SRDY})P1/SCUFN098I/OI/O terminal (P13) or comparator 0 non-inverted input terminalP1/SCUFN497I/OI/O terminal (P14) or comparator 1 non-inverted input terminal<	K00-K07	95-88	Ι	Input terminals (K00–K07)				
R00-R07/A0-A7112-119OOutput terminals (R00-R07) or address bus (A0-A7)R10-R17/A8-A15120-127OOutput terminals (R10-R17) or address bus (A8-A15)R20-R22/A16-A18128-130OOutput terminals (R20-R22) or address bus (A16-A18)R23/RD131OOutput terminal (R23) or read signal output terminal (RD)R24/WR132OOutput terminal (R23) or LCD synchronous signal output terminal (CL)R25/CL133OOutput terminal (R26) or LCD frame signal output terminal (FR)R27/TOUT135OOutput terminal (R26) or LCD frame signal output terminal (TOUT)R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminal (R34) or clock output terminal (FOUT)R35-R37*2OOutput terminal (R30) or buzzer output terminal (BZ/R50/BZ141OOutput terminal (R50) or buzzer output terminal (BACK)P00-P07/D0-D7111-1041/O1/O terminal (R10) or serial 1/F data input terminal (SOUT)P11/SOUT1021/O1/O terminal (P10) or serial 1/F ready signal output terminal (SOUT)P13/SRDY1001/O1/O terminal (P13) or comparator 0 non-inverted input terminalP13/SRDY1001/O1/O terminal (P14) or comparator 0 non-inverted input terminalP13/SRDY1001/O1/O terminal (P15) or comparator 1 non-inverted input terminalP13/SRDY1001/O1/O terminal (P14) or comparator 1 non-inverted input terminalP13/S	K10/EVIN	87	Ι	Input terminal (K10) or event counter external clock input terminal (EVIN)				
R10-R17/A8-A15120-127OOutput terminals (R10-R17) or address bus (A8-A15)R20-R22/A16-A18128-130OOutput terminals (R20-R22) or address bus (A16-A18)R23/RD131OOutput terminal (R23) or read signal output terminal (\overline{RD})R24/WR132OOutput terminal (R24) or write signal output terminal (\overline{WR})R25/CL133OOutput terminal (R25) or LCD synchronous signal output terminal (CL)R26/FR134OOutput terminal (R27)R27/TOUT135OOutput terminal (R27)rror programmable timer underflow signal output terminal (CUT)R30-R33/CE0-CE3136-139OOutput terminal (R34) or clock output terminal (FOUT)R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminal (R50) or buzzer output terminal (BZ)R50/BZ141OOutput terminal (R50) or buzzer output terminal (BZ)R51/BACK142OOUTPUT1/OI/O-P07/D0-D7111-104I/OI/O terminal (P0-P07) or data bus (D0-D7)P11/SOUT1021/OI/OI/O terminal (P13) or serial I/F data output terminal (SUT)P12/SCLK1011/OI/OI/O terminal (P14) or comparator 0 non-inverted input terminalP15/CMPM0981/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPN1961/OI/O terminal (P16) o	K11/BREQ	86	Ι	Input terminal (K11) or bus request signal input terminal (BREQ)				
R20-R22/A16-A18128-130OOutput terminals (R20-R22) or address bus (A16-A18)R23/RD131OOutput terminal (R23) or read signal output terminal (RD)R24/WR132OOutput terminal (R24) or write signal output terminal (WR)R25/CL133OOutput terminal (R25) or LCD synchronous signal output terminal (CL)R26/FR134OOutput terminal (R26) or LCD frame signal output terminal (FR)R27/TOUT135OOutput terminal (R27)or programmable timer underflow signal output terminals (CE0-CE3)136-139OR34/FOUT140OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminal (R34) or clock output terminal (FOUT)R35-R37*2OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O turput terminal (R51) or bus acknowledge signal output terminal (BACK)P11/SOUT102I/OI/O terminal (P10) or serial I/F data output terminal (S0UT)P12/SCLK101I/OI/O terminal (P12) or serial I/F clock I/O terminal (S0DY)P13/SRDY100I/OI/O terminal (P13) or serial I/F ready signal output terminalP15/CMPM098I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP16/CMP197I/OI/O terminal (P15) or comparator 1 inverted input terminalP16/CMP197I/OI/O terminal (P16) or comparator 1 inverted input terminalP16/CMP196I/OI/O ter	R00-R07/A0-A7	112–119	0	Output terminals (R00-R07) or address bus (A0-A7)				
R23/RD131OOutput terminal (R23) or read signal output terminal (RD)R24/WR132OOutput terminal (R24) or write signal output terminal (WR)R25/CL133OOutput terminal (R25) or LCD synchronous signal output terminal (CL)R26/FR134OOutput terminal (R25) or LCD frame signal output terminal (FR)R27/TOUT135OOutput terminal (R27) or programmable timer underflow signal output terminal (TOUT)R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R35-R37*2OOutput terminals (R35-R37)R50/BZ141OOutput terminal (R50) or buzzer output terminal (BZ)R51/BACK142OOutput terminal (P10) or serial I/F data input terminal (SIN)P00-P07/D0-D7111-104I/OI/O terminal (P11) or serial I/F data output terminal (SOUT)P12/SCLK101I/OI/O terminal (P13) or serial I/F ready signal output terminalP13/SRDY100I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP14/CMPPO99I/OI/O terminal (P15) or comparator 0 inverted input terminalP17/CPMM196I/OI/O terminal (P17) or comparator 1 non-inverted input terminalP17/CPMP197I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminals (when 1/16 or 1/8 duty is selected)SEG6-S	R10-R17/A8-A15	120-127	0	Output terminals (R10-R17) or address bus (A8-A15)				
R24/WR132OOutput terminal (R24) or write signal output terminal (\overline{WR})R25/CL133OOutput terminal (R25) or LCD synchronous signal output terminal (CL)R26/FR134OOutput terminal (R26) or LCD frame signal output terminal (FR)R27/TOUT135OOutput terminal (R27) or programmable timer underflow signal output terminals (TOUT)R30-R33/CEO-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R35-R37*2OOutput terminal (R34) or clock output terminal (FOUT)R35-R37*2OOutput terminal (R50) or buzzer output terminal (BZ)R51/BACK142OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O terminal (P10) or serial I/F data input terminal (SUT)P11/SOUT102I/OI/O terminal (P11) or serial I/F clock I/O terminal (SOUT)P12/SCLK101I/OI/O terminal (P13) or serial I/F ready signal output terminalP13/SRDY100I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP14/CMPP099I/OI/O terminal (P15) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 non-inverted input terminalCOM0-COM1565-50OLCD common output terminals<	R20-R22/A16-A18	128-130	0	Output terminals (R20–R22) or address bus (A16–A18)				
R25/CL133OOutput terminal (R25) or LCD synchronous signal output terminal (CL)R26/FR134OOutput terminal (R26) or LCD frame signal output terminal (FR)R27/TOUT135OOutput terminal (R27) or programmable timer underflow signal output terminal (TOUT)R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R35-R37*2OOutput terminal (R51) or bus acknowledge signal output terminal (BZ)R51/BACK142OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O terminal (P10) or serial I/F data input terminal (SIN)P11/SOUT102I/OI/O terminal (P11) or serial I/F data output terminal (SOUT)P12/SCLK101I/OI/O terminal (P13) or serial I/F ready signal output terminalP15/CMPP099I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP16/CMPP197I/OI/O terminal (P15) or comparator 1 inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM0-COM3149-34OLCD common output terminals	R23/RD	131	0	Output terminal (R23) or read signal output terminal (\overline{RD})				
R26/FR134OOutput terminal (R26) or LCD frame signal output terminal (FR)R27/TOUT135OOutput terminal (R27) or programmable timer underflow signal output terminal (TOUT)R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminals (R35-R37)R35-R37*2OOutput terminal (R50) or buzzer output terminal (BZ)R51/BACK142OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-1041/O1/O terminal (P10) or serial 1/F data input terminal (SIN)P11/SOUT1021/O1/O terminal (P11) or serial 1/F data output terminal (SOUT)P12/SCLK1011/O1/O terminal (P12) or serial 1/F clock 1/O terminal (SCLK)P13/SRDY1001/O1/O terminal (P13) or comparator 0 non-inverted input terminalP15/CMP0991/O1/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMP1961/O1/O terminal (P16) or comparator 1 inverted input terminalP17/CMP1961/O1/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminals (when 1/32 duty is selected)SEG6-SEG51143-160, 1-33OLCD segment output terminalRESET841Initial reset input terminal	R24/WR	132	0	Output terminal (R24) or write signal output terminal (\overline{WR})				
R27/TOUT135OOutput terminal (R27) or programmable timer underflow signal output terminal (TOUT)R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminal (R34) or clock output terminal (FOUT)R35-R37*2OOutput terminal (R34) or clock output terminal (FOUT)R50/BZ141OOutput terminal (R50) or buzzer output terminal (BZ)R51/BACK142OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-1041/O1/O terminal (P10) or serial 1/F data input terminal (SIN)P11/SOUT1021/O1/O terminal (P11) or serial 1/F data output terminal (SOUT)P12/SCLK1011/O1/O terminal (P13) or serial 1/F clock 1/O terminal (SCLK)P13/SRDY1001/O1/O terminal (P14) or comparator 0 non-inverted input terminalP15/CMPM0981/O1/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM1961/O1/O terminal (P17) or comparator 1 non-inverted input terminalCOM0-COM1565-50OLCD common output terminals (when 1/32 duty is selected)SEG6-SEG51143-160, 1-33OLCD segment output terminalRESET84IInitial reset input terminal	R25/CL	133	0	Output terminal (R25) or LCD synchronous signal output terminal (CL)				
or programmable timer underflow signal output terminal (TOUT)R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminal (R34) or clock output terminal (FOUT)R35-R37*2OOutput terminals (R35-R37)R50/BZ141OOutput terminal (R50) or buzzer output terminal (BZ)R51/BACK142OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-1041/O1/O terminals (P00-P07) or data bus (D0-D7)P10/SIN1031/O1/O terminal (P10) or serial I/F data input terminal (SUT)P11/SOUT1021/O1/O terminal (P11) or serial I/F data output terminal (SOUT)P12/SCLK1011/O1/O terminal (P12) or serial I/F clock I/O terminal (SCLK)P13/SRDY1001/O1/O terminal (P13) or serial I/F ready signal output terminalP15/CMPM0981/O1/O terminal (P14) or comparator 0 non-inverted input terminalP16/CMPP1971/O1/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM1961/O1/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminals (when 1/32 duty is selected)SEG6-SEG50143-160, 1-33OLCD segment output terminalRESET84IInitial reset input terminal	R26/FR	134	0	Output terminal (R26) or LCD frame signal output terminal (FR)				
R30-R33/CE0-CE3136-139OOutput terminals (R30-R33) or chip enable output terminals (CE0-CE3)R34/FOUT140OOutput terminal (R34) or clock output terminal (FOUT)R35-R37*2OOutput terminals (R35-R37)R50/BZ141OOutput terminal (R50) or buzzer output terminal (BZ)R51/BACK142OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O terminal (P10) or serial I/F data input terminal (SIN)P10/SIN103I/OI/O terminal (P11) or serial I/F data output terminal (SOUT)P12/SCLK101I/OI/O terminal (P12) or serial I/F clock I/O terminal (SCLK)P13/SRDY100I/OI/O terminal (P13) or serial I/F ready signal output terminalP15/CMPN098I/OI/O terminal (P16) or comparator 0 non-inverted input terminalP17/CMPN196I/OI/O terminal (P17) or comparator 1 inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminalsKEGE84IInitial reset input terminalsRESET84IInitial reset input terminal	R27/TOUT	135	0	Output terminal (R27)				
R34/FOUT140OOutput terminal (R34) or clock output terminal (FOUT)R35-R37*2OOutput terminals (R35-R37)R50/BZ141OOutput terminals (R35-R37)R50/BZ141OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-1041/OI/O terminals (P00-P07) or data bus (D0-D7)P10/SIN1031/OI/O terminal (P10) or serial I/F data input terminal (SIN)P11/SOUT1021/OI/O terminal (P11) or serial I/F clock I/O terminal (SOUT)P12/SCLK1011/OI/O terminal (P12) or serial I/F clock I/O terminal (SEDY)P14/CMPP0991/OI/O terminal (P13) or serial I/F clock I/O terminal (SEDY)P16/CMP1971/OI/O terminal (P14) or comparator 0 non-inverted input terminalP17/CMPM1961/OI/O terminal (P17) or comparator 1 non-inverted input terminalP17/CMPM1961/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminal (when 1/32 duty is selected) or LCD segment output terminalSEG6-SEG50143-160, 1-33OLCD segment output terminalRESET84IInitial reset input terminal				or programmable timer underflow signal output terminal (TOUT)				
R35-R37*2OOutput terminals (R35-R37)R50/BZ141OOutput terminal (R50) or buzzer output terminal (BZ)R51/BACK142OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O terminals (P00-P07) or data bus (D0-D7)P10/SIN103I/OI/O terminal (P10) or serial I/F data input terminal (SIN)P11/SOUT102I/OI/O terminal (P11) or serial I/F data output terminal (SOUT)P12/SCLK101I/OI/O terminal (P12) or serial I/F clock I/O terminal (SCLK)P13/SRDY100I/OI/O terminal (P13) or serial I/F ready signal output terminal (SRDY)P14/CMPP099I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP15/CMPM098I/OI/O terminal (P15) or comparator 1 non-inverted input terminalP16/CMPP197I/OI/O terminal (P17) or comparator 1 inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminals (when 1/32 duty is selected)SEG66-SEG510LCD common output terminal (when 1/16 or 1/8 duty is selected)SEG0-SEG50143-160, 1-33OLCD segment output terminalsRESET84IInitial reset input terminal	R30-R33/CE0-CE3	136–139	0	Output terminals (R30–R33) or chip enable output terminals ($\overline{CE0}$ – $\overline{CE3}$)				
R50/BZ141OOutput terminal (R50) or buzzer output terminal (BZ)R50/BZ141OOutput terminal (R50) or buzzer output terminal (BZ)R51/BACK142OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O terminals (P00-P07) or data bus (D0-D7)P10/SIN103I/OI/O terminal (P10) or serial I/F data input terminal (SIN)P11/SOUT102I/OI/O terminal (P12) or serial I/F data output terminal (SOUT)P12/SCLK101I/OI/O terminal (P12) or serial I/F clock I/O terminal (SCLK)P13/SRDY100I/OI/O terminal (P13) or serial I/F ready signal output terminalP15/CMPM099I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP16/CMPP197I/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminal (when 1/32 duty is selected)SEG6-SEG50143-160, 1-33OLCD segment output terminalRESET84IInitial reset input terminal	R34/FOUT	140	0	Output terminal (R34) or clock output terminal (FOUT)				
R51/BACK142OOutput terminal (R51) or bus acknowledge signal output terminal (BACK)P00-P07/D0-D7111-104I/OI/O terminals (P00-P07) or data bus (D0-D7)P10/SIN103I/OI/O terminal (P10) or serial I/F data input terminal (SIN)P11/SOUT102I/OI/O terminal (P11) or serial I/F data output terminal (SOUT)P12/SCLK101I/OI/O terminal (P12) or serial I/F clock I/O terminal (SOUT)P13/SRDY100I/OI/O terminal (P13) or serial I/F ready signal output terminal (SRDY)P14/CMPP099I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP15/CMPM098I/OI/O terminal (P15) or comparator 0 inverted input terminalP16/CMPP197I/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminal (when 1/16 or 1/8 duty is selected)SEG0-SEG50143-160, 1-33OLCD segment output terminalsRESET84IInitial reset input terminal	R35–R37 *2		0	Output terminals (R35–R37)				
P00-P07/D0-D7111-104I/OI/O terminals (P00-P07) or data bus (D0-D7)P10/SIN103I/OI/O terminal (P10) or serial I/F data input terminal (SIN)P11/SOUT102I/OI/O terminal (P11) or serial I/F data output terminal (SOUT)P12/SCLK101I/OI/O terminal (P12) or serial I/F clock I/O terminal (SCLK)P13/SRDY100I/OI/O terminal (P13) or serial I/F ready signal output terminal (SRDY)P14/CMPP099I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP15/CMPM098I/OI/O terminal (P15) or comparator 0 inverted input terminalP16/CMPP197I/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminal (when 1/16 or 1/8 duty is selected)SEG0-SEG50143-160, 1-33OLCD segment output terminalRESET84IInitial reset input terminal	R50/BZ	141	0	Output terminal (R50) or buzzer output terminal (BZ)				
P10/SIN103I/OI/O terminal (P10) or serial I/F data input terminal (SIN)P11/SOUT102I/OI/O terminal (P11) or serial I/F data output terminal (SOUT)P12/SCLK101I/OI/O terminal (P12) or serial I/F clock I/O terminal (SCLK)P13/SRDY100I/OI/O terminal (P13) or serial I/F ready signal output terminal (SRDY)P14/CMPP099I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP15/CMPM098I/OI/O terminal (P15) or comparator 0 inverted input terminalP16/CMPP197I/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminal (when 1/16 or 1/8 duty is selected)SEG0-SEG50143-160, 1-33OLCD segment output terminalsRESET84IInitial reset input terminal	R51/BACK	142	0	Output terminal (R51) or bus acknowledge signal output terminal (BACK)				
P11/SOUT1021/OI/O terminal (P11) or serial I/F data output terminal (SOUT)P12/SCLK101I/OI/O terminal (P12) or serial I/F clock I/O terminal (SCLK)P13/SRDY100I/OI/O terminal (P13) or serial I/F clock I/O terminal (SRDY)P14/CMPP099I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP15/CMPM098I/OI/O terminal (P15) or comparator 0 inverted input terminalP16/CMPP197I/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminal (when 1/16 or 1/8 duty is selected)SEG0-SEG50143-160, 1-33OLCD segment output terminalsRESET84IInitial reset input terminal	P00-P07/D0-D7	111-104	I/O	I/O terminals (P00–P07) or data bus (D0–D7)				
P12/SCLK101I/OI/O terminal (P12) or serial I/F clock I/O terminal (SCLK)P13/SRDY100I/OI/O terminal (P13) or serial I/F clock I/O terminal (SRDY)P14/CMPP099I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP15/CMPM098I/OI/O terminal (P15) or comparator 0 inverted input terminalP16/CMPP197I/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminal (when 1/16 or 1/8 duty is selected)SEG0-SEG50143-160, 1-33OLCD segment output terminalsRESET84IInitial reset input terminal	P10/SIN	103	I/O	I/O terminal (P10) or serial I/F data input terminal (SIN)				
P13/SRDY100I/OI/O terminal (P13) or serial I/F ready signal output terminal (SRDY)P14/CMPP099I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP15/CMPM098I/OI/O terminal (P15) or comparator 0 inverted input terminalP16/CMPP197I/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminals (when 1/32 duty is selected) or LCD segment output terminal (when 1/16 or 1/8 duty is selected)SEG0-SEG50143-160, 1-33OLCD segment output terminalsRESET84IInitial reset input terminal	P11/SOUT	102	I/O	I/O terminal (P11) or serial I/F data output terminal (SOUT)				
P14/CMPP099I/OI/O terminal (P14) or comparator 0 non-inverted input terminalP15/CMPM098I/OI/O terminal (P15) or comparator 0 inverted input terminalP16/CMPP197I/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565–50OLCD common output terminalsCOM16-COM3149–34OLCD common output terminals (when 1/32 duty is selected)SEG0-SEG50143–160, 1–33OLCD segment output terminalsRESET84IInitial reset input terminal	P12/SCLK	101	I/O	I/O terminal (P12) or serial I/F clock I/O terminal (SCLK)				
P15/CMPM0 98 I/O I/O terminal (P15) or comparator 0 inverted input terminal P16/CMPP1 97 I/O I/O terminal (P16) or comparator 1 non-inverted input terminal P17/CMPM1 96 I/O I/O terminal (P17) or comparator 1 inverted input terminal COM0-COM15 65–50 O LCD common output terminals COM16-COM31 49–34 O LCD common output terminals (when 1/32 duty is selected) or LCD segment output terminal (when 1/16 or 1/8 duty is selected) SEG0-SEG50 143–160, 1–33 O LCD segment output terminals RESET 84 I Initial reset input terminal	P13/SRDY	100	I/O	I/O terminal (P13) or serial I/F ready signal output terminal (SRDY)				
P16/CMPP197I/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminals (when 1/32 duty is selected)/SEG66-SEG510LCD segment output terminal (when 1/16 or 1/8 duty is selected)SEG0-SEG50143-160, 1-33OLCD segment output terminalsRESET84IInitial reset input terminal	P14/CMPP0	99	I/O	I/O terminal (P14) or comparator 0 non-inverted input terminal				
P16/CMPP197I/OI/O terminal (P16) or comparator 1 non-inverted input terminalP17/CMPM196I/OI/O terminal (P17) or comparator 1 inverted input terminalCOM0-COM1565-50OLCD common output terminalsCOM16-COM3149-34OLCD common output terminals (when 1/32 duty is selected)/SEG66-SEG510LCD segment output terminal (when 1/16 or 1/8 duty is selected)SEG0-SEG50143-160, 1-33OLCD segment output terminalsRESET84IInitial reset input terminal	P15/CMPM0	98	I/O	I/O terminal (P15) or comparator 0 inverted input terminal				
COM0-COM15 65–50 O LCD common output terminals COM16-COM31 49–34 O LCD common output terminals (when 1/32 duty is selected) /SEG66-SEG51 or LCD segment output terminals (when 1/16 or 1/8 duty is selected) SEG0-SEG50 143–160, 1–33 O LCD segment output terminals RESET 84 I Initial reset input terminal	P16/CMPP1	97	I/O					
COM16-COM31 49–34 O LCD common output terminals (when 1/32 duty is selected) or LCD segment output terminal (when 1/16 or 1/8 duty is selected) /SEG6-SEG50 143–160, 1–33 O LCD segment output terminals RESET 84 I Initial reset input terminal	P17/CMPM1	96	I/O	I/O terminal (P17) or comparator 1 inverted input terminal				
/SEG66-SEG51 or LCD segment output terminal (when 1/16 or 1/8 duty is selected) SEG0-SEG50 143-160, 1-33 O LCD segment output terminals RESET 84 I Initial reset input terminal	COM0-COM15	65–50	0	LCD common output terminals				
SEG0-SEG50 143-160, 1-33 O LCD segment output terminals RESET 84 I Initial reset input terminal	COM16-COM31	49–34	0	LCD common output terminals (when 1/32 duty is selected)				
RESET 84 I Initial reset input terminal	/SEG66-SEG51			or LCD segment output terminal (when 1/16 or 1/8 duty is selected)				
	SEG0-SEG50	143–160, 1–33	0	LCD segment output terminals				
	RESET	84	Ι	Initial reset input terminal				
	TEST *1	83	Ι	Test input terminal				

Table 1 4 3 E0C88316 nin description

*1 TEST is the terminal used for shipping inspection of the IC. For normal operation be sure it is connected to VDD.
*2 R35–R37 terminals can be used only when chip is being shipped.

E0C88308 QFP8-160 pin

Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name	Pin No.	Pin name
1	N.C.	41	N.C.	81	OSC1	121	N.C.
2	SEG13	42	COM22/SEG50	82	OSC2	122	R06/A6
3	SEG14	43	COM21/SEG51	83	TEST	123	R07/A7
4	SEG15	44	COM20/SEG52	84	RESET	124	R10/A8
5	SEG16	45	COM19/SEG53	85	MCU/MPU	125	R11/A9
6	SEG17	46	COM18/SEG54	86	N.C.	126	R12/A10
7	SEG18	47	COM17/SEG55	87	K10/EVIN	127	R13/A11
8	SEG19	48	COM16/SEG56	88	K07	128	R14/A12
9	SEG20	49	COM15	89	K06	129	R15/A13
10	SEG21	50	COM14	90	K05	130	R16/A14
11	SEG22	51	COM13	91	K04	131	R17/A15
12	SEG23	52	COM12	92	K03	132	R20/A16
13	SEG24	53	COM11	93	K02	133	R21/A17
14	SEG25	54	COM10	94	K01	134	R22/A18
15	SEG26	55	COM9	95	K00	135	R23/RD
16	SEG27	56	COM8	96	P17/CMPM1	136	R24/WR
17	SEG28	57	COM7	97	P16/CMPP1	137	R25/CL
18	SEG29	58	COM6	98	P15/CMPM0	138	R26/FR
19	SEG30	59	COM5	99	P14/CMPP0	139	R27/TOUT
20	SEG31	60	COM4	100	P13/SRDY	140	R30/CE0
21	N.C.	61	N.C.	101	P12/SCLK	141	N.C.
22	SEG32	62	COM3	102	P11/SOUT	142	R31/CE1
23	SEG33	63	COM2	103	P10/SIN	143	R32/CE2
24	SEG34	64	COM1	104	P07/D7	144	R33/CE3
25	SEG35	65	COM0	105	P06/D6	145	R34/FOUT
26	SEG36	66	CE	106	P05/D5	146	R50/BZ
27	SEG37	67	CD	107	P04/D4	147	SEG0
28	SEG38	68	CC	108	P03/D3	148	SEG1
29	SEG39	69	CB	109	P02/D2	149	SEG2
30	SEG40	70	CA	110	P01/D1	150	SEG3
31	COM31/SEG41	71	Vc5	111	P00/D0	151	SEG4
32	COM30/SEG42	72	VC4	112	N.C.	152	SEG5
33	COM29/SEG43	73	VC3	113	N.C.	153	SEG6
34	COM28/SEG44	74	VC2	114	R00/A0	154	SEG7
35	COM27/SEG45	75	VC1	115	R01/A1	155	SEG8
36	COM26/SEG46	76	OSC3	116	R02/A2	156	SEG9
37	COM25/SEG47	77	OSC4	117	R03/A3	157	SEG10
38	COM24/SEG48	78	VD1	118	R04/A4	158	SEG11
39	COM23/SEG49	79	VDD	119	R05/A5	159	SEG12
40	N.C.	80	Vss	120	N.C.	160	N.C.

Fig. 1.4.4 E0C88308 pin layout

	Table 1.4.4 E0C88308 pin description				
Pin name	Pin No.	In/out	Function		
VDD	79	-	Power supply (+) terminal		
Vss	80	-	Power supply (GND) terminal		
VD1	78	-	Regulated voltage output terminal for oscillators		
VC1–VC5	75–71	0	LCD drive voltage output terminals		
CA-CE	70–66	-	Booster capacitor connection terminals for LCD		
OSC1	81	Ι	OSC1 oscillation input terminal		
			(select crystal oscillation/CR oscillation/external clock input with mask option)		
OSC2	82	0	OSC1 oscillation output terminal		
OSC3	76	Ι	OSC3 oscillation input terminal		
			(select crystal/ceramic/CR oscillation/external clock input with mask option)		
OSC4	77	0	OSC3 oscillation output terminal		
MCU/MPU	85	Ι	Terminal for setting MCU or MPU modes		
K00-K07	88–95	Ι	Input terminals (K00–K07)		
K10/EVIN	87	Ι	Input terminal (K10) or event counter external clock input terminal (EVIN)		
R00-R07/A0-A7	114-119, 122, 123	0	Output terminals (R00–R07) or address bus (A0–A7)		
R10-R17/A8-A15	124–131	0	Output terminals (R10–R17) or address bus (A8–A15)		
R20-R22/A16-A18	132–134	0	Output terminals (R20–R22) or address bus (A16–A18)		
R23/RD	135	0	Output terminal (R23) or read signal output terminal (\overline{RD})		
R24/WR	136	0	Output terminal (R24) or write signal output terminal (\overline{WR})		
R25/CL	137	0	Output terminal (R25) or LCD synchronous signal output terminal (CL)		
R26/FR	138	0	Output terminal (R26) or LCD frame signal output terminal (FR)		
R27/TOUT	139	0	Output terminal (R27)		
			or programmable timer underflow signal output terminal (TOUT)		
R30–R33/CE0–CE3	140, 142–144	0	Output terminals (R30–R33) or chip enable output terminals ($\overline{CE0}$ – $\overline{CE3}$)		
R34/FOUT	145	0	Output terminal (R34) or clock output terminal (FOUT)		
R50/BZ	146	0	Output terminal (R50) or buzzer output terminal (BZ)		
P00-P07/D0-D7	104–111	I/O	I/O terminals (P00–P07) or data bus (D0–D7)		
P10/SIN	103	I/O	I/O terminal (P10) or serial I/F data input terminal (SIN)		
P11/SOUT	102	I/O	I/O terminal (P11) or serial I/F data output terminal (SOUT)		
P12/SCLK	101	I/O	I/O terminal (P12) or serial I/F clock I/O terminal (SCLK)		
P13/SRDY	100	I/O	I/O terminal (P13) or serial I/F ready signal output terminal (SRDY)		
P14/CMPP0	99	I/O	I/O terminal (P14) or comparator 0 non-inverted input terminal		
P15/CMPM0	98	I/O	I/O terminal (P15) or comparator 0 inverted input terminal		
P16/CMPP1	97	I/O	I/O terminal (P16) or comparator 1 non-inverted input terminal		
P17/CMPM1	96	I/O	I/O terminal (P17) or comparator 1 inverted input terminal		
COM0–COM15	65-62, 60-49	0	LCD common output terminals		
COM16-COM31	48-42, 39-31	0	LCD common output terminals (when 1/32 duty is selected)		
/SEG56–SEG41		2	or LCD segment output terminal (when 1/16 or 1/8 duty is selected)		
SEG0-SEG40	147–159,	0	LCD segment output terminals		
5200 52010	2-20, 22-30	0			
RESET	84	Ι	Initial reset input terminal		
TEST *	83	I	Test input terminal		
11.51 *	0.5	1	1 con input terminar		

Table 1.4.4 E0C88308 pin description

* TEST is the terminal used for shipping inspection of the IC. For normal operation be sure it is connected to VDD.

2 POWER SUPPLY

In this section, we will explain the operating voltage and the configuration of the internal power supply circuit of the E0C883xx.

2.1 Operating Voltage

The E0C883xx operating power voltage is as follows:

Normal mode:	2.4 V to 5.5 V
Low power mode:	1.8 V to 3.5 V
High speed mode:	3.5 V to 5.5 V

If supply voltage drops below level 0 (see Chapter 7, "ELECTRICAL CHARACTERISTICS"), the system is automatically reset by a supply voltage detection (SVD) circuit described in the latter. This function can be selected by mask option.

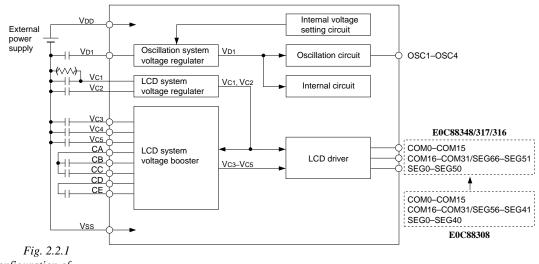
2.2 Internal Power Supply Circuit

The E0C883xx incorporate the power supply circuit shown in Figure 2.2.1. When voltage within the range described above is supplied to VDD (+) and Vss (GND), all the voltage needed for the internal circuit is generated internally in the IC.

Roughly speaking, the power supply circuit is divided into two sections.

One section is the oscillation system voltage regulator. The oscillation and internal circuits operate on the voltage VD1, output by this circuit. VD1 voltage can be selected from among three types: 1.3 V (low-power mode), 2.2 V (normal mode) and 3.3 V (high-speed mode). It should be selected by a program to switch according to the supply voltage and oscillation frequency.

See Section 5.4, "Oscillation Circuits and Operating Mode", for the switching of operating mode.


Note: Under no circumstances should VD1 terminal output be used to drive external circuit.

The second circuit section is the power supply circuit for the LCD system which generates the drive voltage for the LCD. Drive voltage has five potentials VC1–VC5 for 1/5 bias: VC1 and VC2 are generated by the LCD voltage regulator, and are boosted to generate VC3–VC5. These five potentials are output externally at each of the terminals and can be used to supply an external expanded LCD driver.

See Chapter 7, "ELECTRICAL CHARACTERIS-TICS" for the voltage values.

In the E0C883xx, the LCD drive voltage is supplied to the built-in LCD driver which drives the LCD panel connected to the SEG and COM terminals.

Note: Do not use terminals Vc1–Vc5 except to supply voltage to the expanded LCD driver. A load resistance between terminals Vss– Vc1 is needed when driving an LCD panel that constitutes a heavy load.

Configuration of power supply circuit

2.3 Heavy Load Protection Mode

The E0C883xx has a heavy load protection function for stable operation even when the supply voltage fluctuates by driving a heavy load. The heavy load protection mode becomes valid when the peripheral circuits are in the following status:

- (1) The OSC3 oscillation circuit is switched ON (OSCC = "1" and not in SLEEP)
- (2) The buzzer output is switched ON (BZON = "1" or BZSHT = "1")

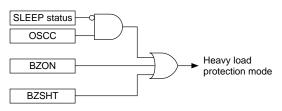


Fig. 2.3.1 Configuration of heavy load protection mode control circuit

For details of the OSC3 oscillation circuit and buzzer output, see "5.4 Oscillation Circuits and Operating Mode" and "5.13 Sound Generator", respectively.

3 CPUAND BUS CONFIGURATION

In this section, we will explain the CPU, operating mode and bus configuration.

3.1 CPU

The E0C883xx utilize the E0C88 8-bit core CPU whose resistor configuration, command set, etc. are virtually identical to other units in the family of processors incorporating the E0C88.

See the "E0C88 Core CPU Manual" for the E0C88.

Specifically, the E0C883xx employ the Model 3 E0C88 CPU which has a maximum address space of 512K bytes × 4.

3.2 Internal Memory

The E0C883xx is equipped with internal ROM and RAM as shown in Figure 3.2.1. Small scale applications can be handled by one chip. It is also possible to utilize internal memory in combination with external memory.

Furthermore, internal ROM can be disconnected from the bus and the resulting space released for external applications.

	E0C88348	E0C88317/316	E0C88308
00FFFFH 00FF00H	I/O memory	I/O memory	I/O memory
00FD42H 00F800H	Display memory	Display memory	Display memory
00F7FFH 00F000H	IRAM (2K bytes)	RAM (2K bytes)	RAM (256 bytes)
00EFFFH : 00C000H 00BFFFH 004000H	Undefined area	Undefined area	Undefined area
003FFFH	ROM (48K bytes)	ROM	
001FFFH 000000H		(16K bytes)	ROM (8K bytes)

Fig. 3.2.1 Internal memory map

3.2.1 ROM

The internal ROM capacity is shown in Table 3.2.1.1.

Table 3.2.1.1 Internal ROM capacity

Model	ROM capacity	Address
E0C88348	48K bytes	000000H-00BFFFH
E0C88317	16K bytes	000000H-003FFFH
E0C88316	16K bytes	000000H-003FFFH
E0C88308	8K bytes	000000H-001FFFH

The ROM areas shown above can be released to external memory depending on the setting of the MCU/MPU terminal. (See "3.5 Chip Mode".)

3.2.2 RAM

The internal RAM capacity is shown in Table 3.2.2.1.

Table 3.2.2.1 Internal RAM capacity

		1 2
Model RAM capac		Address
E0C88348	2K bytes	00F000H-00F7FFH
E0C88317	2K bytes	00F000H-00F7FFH
E0C88316	2K bytes	00F000H-00F7FFH
E0C88308	256 bytes	00F000H-00F0FFH

Even when external memory which overlaps the internal RAM area is expanded, the RAM area is not released to external memory. Access to this area is via internal RAM.

3.2.3 I/O memory

A memory mapped I/O method is employed in the E0C883xx for interfacing with internal peripheral circuit. Peripheral circuit control bits and data register are arranged in data memory space. Control and data exchange are conducted via normal memory access. I/O memory is arranged in page 0: 00FF00H–00FFFFH area.

See Section 5.1, "I/O Memory Map", for details of the I/O memory.

Even when external memory which overlaps the I/O memory area is expanded, the I/O memory area is not released to external memory. Access to this area is via I/O memory.

3.2.4 Display memory

The E0C883xx is equipped with an internal display memory which stores a display data for LCD driver.

Display memory is arranged in page 0: 00Fx00H-00Fx42H (x = 8–DH) in the data memory area. See Section 5.12, "LCD Controller", for details of the display memory. Like the I/O memory, display memory cannot be released to external memory.

3.3 Exception Processing Vectors

000000H–000023H in the program area of the E0C883xx is assigned as exception processing vectors. Furthermore, from 000026H to 0000FFH, software interrupt vectors are assignable to any two bytes which begin with an even address. Table 3.3.1 lists the vector addresses and the exception processing factors to which they correspond.

Table 3.3.1	Vector addresses and the corresponding
	exception processing factors

Vector address	Exception processing factor	Priority
000000H	Reset	High
000002H	Zero division	\uparrow
000004H	Watchdog timer (MMI)	
000006H	Programmable timer 1 interrupt	
000008H	Programmable timer 0 interrupt	
00000AH	K10, K11 input interrupt	
00000CH	K04–K07 input interrupt	
00000EH	K00–K03 input interrupt	
000010H	Serial I/F error interrupt	
000012H	Serial I/F receiving complete interrupt	
000014H	Serial I/F transmitting complete interrupt	
000016H	Stopwatch timer 100 Hz interrupt	
000018H	Stopwatch timer 10 Hz interrupt	
00001AH	Stopwatch timer 1 Hz interrupt	
00001CH	Clock timer 32 Hz interrupt	
00001EH	Clock timer 8 Hz interrupt	
000020H	Clock timer 2 Hz interrupt	\downarrow
000022H	Clock timer 1 Hz interrupt	Low
000024H	System reserved (cannot be used)	No
000026H		
:	Software interrupt	priority
0000FEH		rating

For each vector address and the address after it, the start address of the exception processing routine is written into the subordinate and super ordinate sequence. When an exception processing factor is generated, the exception processing routine is executed starting from the recorded address.

When multiple exception processing factors are generated at the same time, execution starts with the highest priority item.

The priority sequence shown in Table 3.3.1 assumes that the interrupt priority levels are all the same. The interrupt priority levels can be set by software in each system. (See Section 5.16 "Interrupt and Standby Status".)

Note: For exception processing other than reset, SC (system condition flag) and PC (program counter) are evacuated to the stack and branches to the exception processing routines. Consequently, when returning to the main routine from exception processing routines, please use the RETE instruction.

See the "E0C88 Core CPU Manual" for information on CPU operations when an exception processing factor is generated.

3.4 CC (Customized Condition Flag)

The E0C883xx does not use the customized condition flag (CC) in the core CPU. Accordingly, it cannot be used as a branching condition for the conditional branching instruction (JRS, CARS).

3.5 Chip Mode

3.5.1 MCU mode and MPU mode

The chip operating mode can be set to one of two settings using the MCU/\overline{MPU} terminal.

MCU mode...Set the MCU/MPU terminal to HIGH Switch to this setting when using internal ROM.

With respect to areas other than internal memory, external memory can even be expanded. See Section 3.5.2, "Bus mode", for the memory map.

In the MCU mode, during initial reset, only systems in internal memory are activated. Internal ROM is normally fixed as the top portion of the program memory common area (logical space 0000H–7FFFH). Exception processing vectors are assigned in internal ROM. Furthermore, the application initialization routines that start with reset exception processing must likewise be written to internal ROM. Since bus and other settings which correlate with external expanded memory can be executed in software, this processing is executed in the initialization routine written to internal ROM. Once these bus mode settings are made, external memory can be accessed.

When accessing internal memory in this mode, the chip enable (\overline{CE}) and read (\overline{RD})/write (\overline{WR}) signals are not output to external memory, and the data bus (D0–D7) changed to high impedance status (pull-up status when the "pull-up resistors for P00–P07 enabled" have been selected by the mask option). Consequently, in cases where addresses overlap in external and internal memory, the areas in external memory will be unavailable.

■ MPU mode...Set the MCU/MPU terminal to LOW Internal ROM area is released to an external device source. Internal ROM then becomes unusable and when this area is accessed, chip enable (CE) and read (RD)/write (WR) signals are output to external memory and the data bus (D0–D7) become active. These signals are not output to an external source when other areas of internal memory are accessed.

In the MPU mode, the system is activated by external memory.

For this reason, in order to adjust bus settings to conform to the configuration of external memory during initial reset, the user can select the applicable system configuration using the mask option. (See "3.5.2 Bus mode") When employing this mode, the exception processing vectors and initialization routine must be assigned within the common area (000000H–007FFFH).

You can select whether to use the built-in pullup resistor of the MCU/ $\overline{\text{MPU}}$ terminal by the mask option.

Note: Setting of MCU/MPU terminal is latched at the rising edge of a reset signal input from the RESET terminal. Therefore, if the setting is to be changed, the RESET terminal must be set to LOW level once again.

3.5.2 Bus mode

In order to set bus specifications to match the configuration of external expanded memory, four different bus modes described below are selectable in software.

Single chip mode

E0C88317/316 E0C88308 E0C88348 - MCU mode -- MCU mode -- MCU mode -00FFFFH I/O memory I/O memory I/O memory 00FF00H Display Display Display 00FD42H memory memory memory 00F800H 00F7FFH Internal RAM Internal RAM 00F000H Internal RAM 00EFFFH Undefined : area 00С000н Undefined 00BFFFH area Undefined area 004000н Internal ROM 003FFFH 002000н Internal ROM 001FFFH Internal ROM 000000H

Fig. 3.5.2.1 Memory map for the single chip mode

The single chip mode setting applies when the E0C883xx is used as a single chip microcomputer without external expanded memory. Since this mode employs internal ROM, the system can only be operated in the MCU mode discussed in Section 3.5.1. In the MPU mode, the system cannot be set to the single chip mode.

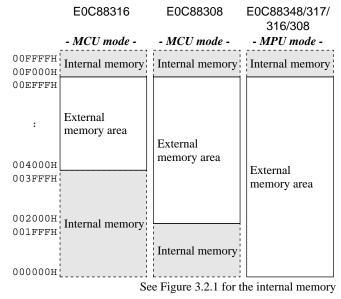
Since there is no need for an external bus line in this mode, terminals normally set for bus use can be used as general purpose output ports or I/O ports.

Accordingly, the output ports are in a 34-bit configuration in the E0C88348/317/316 and 30bit in the E0C88308. The I/O ports are in a 16bit configuration in both the models.

CPU operation in this mode is equivalent to the E0C88 core CPU Model 3 minimum mode. Addresses assigned to internal memory within physical space 000000H to 00FFFFH are only effective as a target for accessing.

Expanded 64K mode

The expanded 64K mode setting applies when the E0C883xx is used with 64K bytes or less of external expanded memory. In the E0C88316/ 308, this mode is usable regardless of the MCU/ MPU mode setting. In the E0C88348/317, it can be used only in the MPU mode.


Because internal ROM is being used in the MCU mode, external memory in that area is not accessible.

External memory can be assigned to the area from 004000H to 00EFFFH in the E0C88348/317/316 and to the area from 002000H to 00EFFFH in the E0C88308.

Since the internal ROM area is released in the MPU mode, external memory can be assigned to the area from 000000H to 00EFFFH. The area from 00F000H to 00FFFFH is assigned to internal memory (RAM, etc.) and cannot be used to access an external device.

This mode setting is suitable for small- to midscale systems. The address range of the chip enable $\overline{(CE)}$ signal, adapted to memory chips with a capacity of from 8 to 64K bytes, can be selected in software to any one of four settings. See Section 3.6.4, "Chip enable $\overline{(CE)}$ signal", for the \overline{CE} signal.

CPU operation in this mode is equivalent to the E0C88 core CPU Model 3 minimum mode. The area within physical space 000000H to 00FFFFH is only effective as a target for accessing.

* The E0C88348 and E0C88317 do not support the expanded 64K + MCU mode. *Fig. 3.5.2.2 Memory map for the expanded 64K mode*

Expanded 512K minimum mode

The expanded 512K minimum mode setting applies when the E0C883xx is used with over 64K bytes and less than 512K bytes \times 4 of external expanded memory. This mode is usable regardless of the MCU/MPU mode setting.

Because internal ROM is being used in the MCU mode, external memory can be assigned to the area from 080000H to 27FFFH. Since the internal ROM area is released in the MPU mode, external memory can be assigned to the area from 000000H to 1FFFFFH. However, the area from 00F000H to 00FFFFH is assigned to internal memory and cannot be used to access an external device. CPU operation in this mode is equivalent to the E0C88 core CPU Model3 minimum mode. The area within physical space 000000H to 1FFFFFH in the MPU mode or physical space 080000H to 27FFFFH + internal memory in the MCU mode is effective as a target for accessing.

Furthermore, since program memory expansion is limited to less than 64K bytes configured with the common area (000000H to 007FFFH) and one optional bank area (internal ROM + 32K in the MCU mode), this mode is suitable for smallto mid-scale program memory and large-scale data memory systems.

The address range of chip enable (\overline{CE}) signals in this mode is fixed at 512K bytes.

	E0C88348 - MCU mode -	E0C88317/316 - MCU mode -	E0C88308 - MCU mode -	- MPU mode -
27FFFFH				1FFFFFH
÷	External memory area	External memory area	External memory area	External memory area
080000H				
07FFFFH	Unused area	Unused area	Unused area	
010000H 00FFFFH	Internal manager	Internal mamory	Internal memory	Internal mamory
00F000H 00EFFFH	Internal memory	Internal memory	Internal memory	
:	Unused area			
00C000H 00BFFFH		Unused area		
			Unused area	External memory area
004000H 003FFFH	Internal memory			
002000H 001FFFH	j	Internal memory		
000000н		ç	Internal memory	he internal memory
		50	.c i iguie 5.2.1 101 t	ne memai memory

Fig. 3.5.2.3 Memory map for the expanded 512K minimum mode

Expanded 512K maximum mode

The expanded 512K maximum mode setting applies when the E0C883xx is used with over 64K bytes and less than 512K bytes \times 4 of external expanded memory. This mode is usable regardless of the MCU/MPU mode setting.

Because internal ROM is being used in the MCU mode, external memory can be assigned to the area from 080000H to 27FFFH. Since the internal ROM area is released in the MPU mode, external memory can be assigned to the area from 000000H to 1FFFFFH. The area from 00F000H to 00FFFFH is assigned to internal memory and cannot be used to access an external device. CPU operation in this mode is equivalent to the E0C88 core CPU Model 3 maximum mode, the area within physical space 000000H to 1FFFFFH in the MPU mode or physical space 080000H to 27FFFFH + internal memory in the MCU mode is effective as a target for accessing. In the above mentioned physical space, since program memory and data memory can be secured with an optional (maximum 512K bytes × 4 program + data) size, this mode is suitable for systems with large-scale program and data capacity.

The address range of chip enable (\overline{CE}) signals in this mode is fixed at 512K bytes.

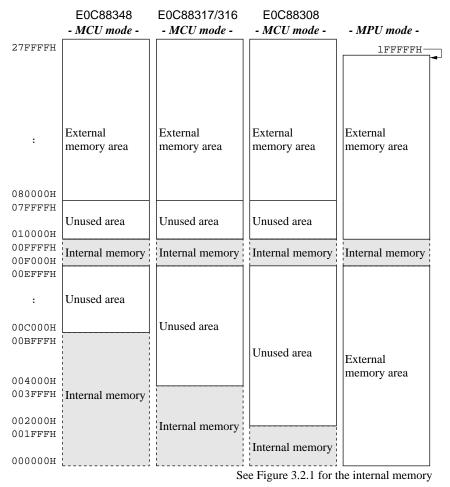
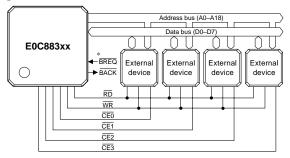



Fig. 3.5.2.4 Memory map for the expanded 512K maximum mode

There is an explanation on how all these settings are actually made in "5.2 System Controller and Bus Control" of this Manual.

3.6 External Bus

The E0C883xx has bus terminals that can address a maximum of $512K \times 4$ bytes and memory (and other) devices can be externally expanded according to the range of each bus mode described in the previous section.

* There is no bus authority release function in the E0C88308.

Below is an explanation of external bus terminals. For information on control methods, see Section 5.2, "System Controller and Bus Control".

3.6.1 Data bus

The E0C883xx possess an 8-bit external data bus (D0–D7). The terminals and I/O circuits of data bus D0–D7 are shared with I/O ports P00–P07, switching between these functions being determined by the bus mode setting.

In the single chip mode, the 8-bit terminals are all set as I/O ports P00–P07 and in the other expanded modes, they are set as data bus (D0–D7). When set as data bus, the data register and I/O control register of each I/O port are detached from the I/O circuits and usable as a general purpose data register with read/write capabilities.

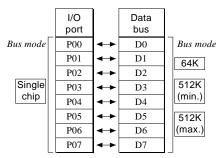


Fig. 3.6.1.1 Correspondence between data bus and I/O ports

With regard to the pull-up resistors that go ON only in input mode, the mask option can be used to select whether or not to use the pull-up resistor for each data bus line. (The same holds true when the terminals are used as I/O ports.)

3.6.2 Address bus

The E0C883xx possess a 19-bit external address bus A0–A18. The terminals and output circuits of address bus A0–A18 are shared with output ports R00–R07 (=A0–A7), R10–R17 (=A8–A15) and R20–R22 (=A16–A18), switching between these functions being determined by the bus mode setting. In the single chip mode, the 19-bit terminals are all set as output ports R00–R07, R10–R17 and R20–R22. In the expanded 64K mode, 16 of the 19-bit terminals, A0–A15, are set as the address bus, while the remaining 3 bits, A16–A18, are set as output ports R20–R22.

In the expanded 512K minimum and maximum modes, all of the 19-bit terminals are set as the address bus (A0–A18).

When set as an address bus, the data register and high impedance control register of each output port are detached from the output circuit and used as a general purpose data register with read/write capabilities.

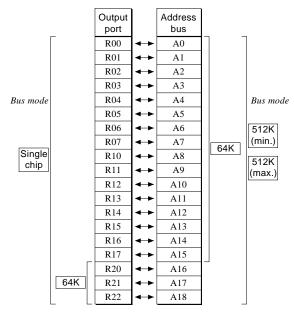


Fig. 3.6.2.1 Correspondence between address bus and output ports

Fig. 3.6.1 External bus lines

3.6.3 Read (\overline{RD})/write (\overline{WR}) signals

The output terminals and output circuits for the read $(\overline{RD})/write (\overline{WR})$ signals directed to external devices are shared respectively with output ports R23 and R24, switching between these functions being determined by the bus mode setting. In the single chip mode, both of these terminals are set as output port terminals and in the other expanded modes, they are set as read $(\overline{RD})/write (\overline{WR})$ signal output terminals. When set as read $(\overline{RD})/write (\overline{WR})$ signal output terminal, the data register and high impedance control register for each output port (R23, R24) are detached from the output circuit and is usable as a general purpose data register with read/write capabilities.

These two signals are only output when the memory area of the external device is being accessed. They are not output when internal memory is accessed.

See Section 3.6.5, "WAIT control", for the output timing of the signal.

Fig. 3.6.3.1 Correspondence between read (\overline{RD}) /write (\overline{WR}) signal and output ports

3.6.4 Chip enable (\overline{CE}) signal

The E0C883xx is equipped with address decoders which can output four different chip enable (\overline{CE}) signals.

Consequently, four devices equipped with a chip enable ($\overline{\text{CE}}$) or chip select ($\overline{\text{CS}}$) terminal can be directly connected without setting the address decoder to an external device.

The four chip enable ($\overline{CE0}$ – $\overline{CE3}$) signal output terminals and output circuits are shared with output ports R30–R33 and in modes other than the single chip mode, the selection of chip enable (\overline{CE}) or output port can be set in software for each of the four bits. When set for chip enable (\overline{CE}) output, the data register and high impedance control register for each output port are detached from the output circuit and is usable as general purpose data register with read/write capabilities. In the single chip mode, these terminals are set as output ports R30–R33.

Bus mode	Output port		CE signal	Bus mode
Γ	R30	<+>	CE0	64K
Single chip	R31	<►	CE1	512K (min.)
chip	R32	<►	CE2	(1111.) 512K
	R33	≁ ►	CE3	_(max.)

Fig. 3.6.4.1 Correspondence between \overline{CE} signals and output ports

The address range assigned to the four chip enable (\overline{CE}) signals is determined by the bus mode setting. In the expanded 64K mode, the four different address ranges which match the amount of memory in use can be selected in software. Table 3.6.4.1 shows the address ranges which are assigned to the chip enable (\overline{CE}) signal in each mode. When accessing the internal memory area, the $\overline{\text{CE}}$ signal is not output. Care should be taken here because the address range for these portions of memory involves irregular settings. The arrangement of memory space for external devices does not necessarily have to be continuous from a subordinate address and any of the chip enable signals can be used to assign areas in memory.

Each of these signals is only output when the memory area of the external device is being accessed. They are not output when internal memory is accessed. See Section 3.6.5, "WAIT control", for the output timing of signal.

Table 3.6.4.1 $\overline{CE0}$ – $\overline{CE3}$ address settings

(1) Expanded 64K mode + MCU mode (E0C88316)

CE signal		Address range (selected in software)			
CE signal	8K bytes	16K bytes	32K bytes	64K bytes	
CE0	008000H-009FFFH	-	004000H-007FFFH	004000H-00EFFFH	
CE1	00A000H-00BFFFH	004000H-007FFFH	008000H-00EFFFH	-	
CE2	004000H-005FFFH	008000H-00BFFFH	-	-	
CE3	006000H-007FFFH	00C000H-00EFFFH	-	-	

(2) Expanded 64K mode + MCU mode (E0C88308)

		Address range (selected in software)			
CE signal	8K bytes	16K bytes	32K bytes	64K bytes	
CE0	008000H-009FFFH	002000H-003FFFH	002000H-007FFFH	002000H-00EFFFH	
CE1	002000H-003FFFH	004000H-007FFFH	008000H-00EFFFH	-	
CE2	004000H-005FFFH	008000H-00BFFFH	_	-	
CE3	006000H-007FFFH	00C000H-00EFFFH	-	-	

(3) Expanded 64K mode + MPU mode (E0C88348/317/316/308)

CE signal	Address range (selected in software)							
CE Signai	8K bytes	16K bytes	32K bytes	64K bytes				
CE0	000000H-001FFFH	000000H-003FFFH	000000H-007FFFH	000000H-00EFFFH				
CE1	002000H-003FFFH	004000H-007FFFH	008000H-00EFFFH	-				
CE2	004000H-005FFFH	008000H-00BFFFH	-	-				
CE3	006000H-007FFFH	00C000H-00EFFFH	_	-				

(4) Expanded 512K minimum/maximum modes (E0C88348/317/316/308)

CE signal	Address range				
CE Signai	MCU mode	MPU mode			
CE0	200000H-27FFFFH	000000H-00EFFFH, 010000H-07FFFFH			
CE1	080000H-0FFFFH	080000H-0FFFFFH			
CE2	100000H-17FFFFH	100000H-17FFFFH			
CE3	180000H-1FFFFFH	180000H-1FFFFFH			

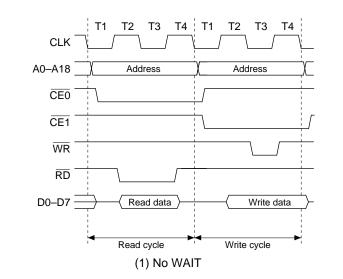
3.6.5 WAIT control

In order to insure accessing of external low speed devices during high speed operations, the E0C883xx is equipped with a WAIT function which prolongs access time. (See the "E0C88 Core CPU Manual" for details of the WAIT function.)

The WAIT state numbers to be inserted can be selected in software from a series of 8 as shown in Table 3.6.5.1.

Table 3.6.5.1	Selectable	WAIT	state numbers
---------------	------------	------	---------------

Selection No.	1	2	3	4	5	6	7	8
Insert states	0	2	4	6	8	10	12	14


* One state is a 1/2 cycle of the clock in length.

The WAIT states set in software are inserted between bus cycle states T3–T4.

Note, however, that WAIT states cannot be inserted when an internal register and internal memory are being accessed and when operating with the OSC1 oscillation circuit (see "5.4 Oscillation Circuits and Operating Mode").

Consequently, WAIT state settings are meaningless in the single chip mode.

Figure 3.6.5.1 shows the memory read/write timing charts.

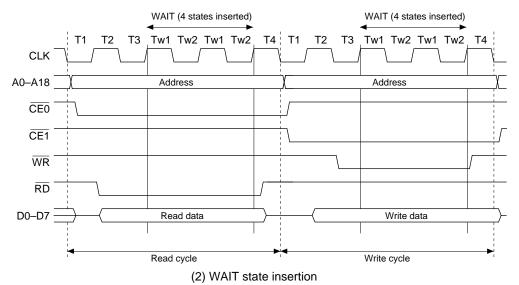


Fig. 3.6.5.1 Memory read/write cycle

3.6.6 Bus authority release state

The E0C88348/317/316 is equipped with a bus authority release function on request from an external device so that DMA (Direct Memory Access) transfer can be conducted between external devices. The internal memory cannot be accessed by this function.

There are two terminals used for this function: the bus authority release request signal (\overline{BREQ}) input terminal and the bus authority release acknowledge signal (\overline{BACK}) output terminal.

The BREQ input terminal is shared with input port terminal K11 and the \overline{BACK} output terminal with output port terminal R51, use with setting to $\overline{BREQ}/\overline{BACK}$ terminals done in software. In the single chip mode, or when using a system which does not require bus authority release, set respective terminals as input and output ports.

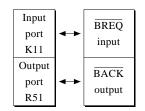


Fig. 3.6.6.1 BREQ/BACK terminals

When the bus authority release request (\overline{BREQ} = LOW) is received from an external device, the E0C883xx switches the address bus, data bus, \overline{RD} / \overline{WR} signal, and \overline{CE} signal lines to a high impedance state, outputs a LOW level from the BACK terminal and releases bus authority.

As soon as a LOW level is output from the \overline{BACK} terminal, the external device can use the external bus. When DMA is completed, the external device returns the \overline{BREQ} terminal to HIGH and releases bus authority.

Figure 3.6.6.2 shows the bus authority release sequence.

During bus authority release state, internal memory cannot be accessed from the external device. In cases where external memory has areas which overlap areas in internal memory, the external memory areas can be accessed accordance with the $\overline{\text{CE}}$ signal output by the external device.

Note: Be careful with the system, such that an external device does not become the bus master, other than during the bus release status.

After setting the BREQ terminal to LOW level, hold the BREQ terminal at LOW level until the BACK terminal becomes LOW level. If the BREQ terminal is returned to HIGH level, before the BACK terminal becomes LOW level, the shift to the bus authorization release status will become indefinite.

There is no bus authority release function in the E0C88308.

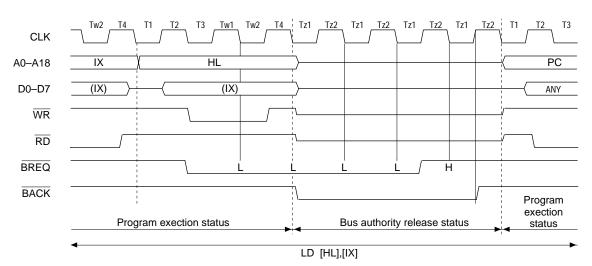


Fig. 3.6.6.2 Bus authority release sequence

4 INITIAL RESET

Initial reset in the E0C883xx is required in order to initialize circuits. This section of the Manual contains a description of initial reset factors and the initial settings for internal registers, etc.

4.1 Initial Reset Factors

There are three initial reset factors for the E0C883xx as shown below.

- (1) RESET terminal
- (2) Simultaneous LOW level input at input port terminals K00–K03.
- (3) Supply voltage detection (SVD) circuit

Figure 4.1.1 shows the configuration of the initial reset circuit.

The CPU and peripheral circuits are initialized by means of initial reset factors. When the factor is canceled, the CPU commences reset exception processing. (See "E0C88 Core CPU Manual".)

When this occurs, reset exception processing vectors, Bank 0, 000000H–000001H from program memory are read out and the program (initialization routine) which begins at the readout address is executed.

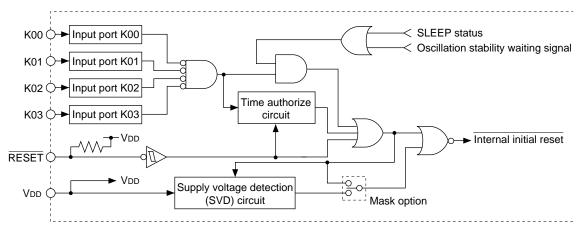


Fig. 4.1.1 Configuration of initial reset circuit

4.1.1 **RESET** terminal

Initial reset can be done by executed externally inputting a LOW level to the $\overline{\text{RESET}}$ terminal. Be sure to maintain the $\overline{\text{RESET}}$ terminal at LOW level for the regulation time after the power on to assure the initial reset.

In addition, be sure to use the RESET terminal for the first initial reset after the power is turned on. The RESET terminal is equipped with a pull-up resistor. You can select whether or not to use by mask option.

4.1.2 Simultaneous LOW level input at input port terminals K00–K03

Another way of executing initial reset externally is to input a LOW level simultaneously to the input ports (K00–K03) selected by mask option.

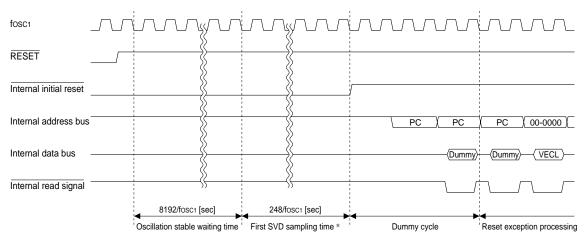
Since there is a built-in time authorize circuit, be sure to maintain the designated input port terminal at LOW level for two seconds (when the oscillation frequency is fOSC1 = 32.768 kHz) or more to perform the initial reset by means of this function. However, the time authorize circuit is bypassed during the SLEEP (standby) status and oscillation stabilization waiting period, and initial reset is executed immediately after the simultaneous LOW level input to the designated input ports.

The combination of input ports (K00–K03) that can be selected by mask option are as follows:

- (1) Not use
- (2) K00 & K01
- (3) K00 & K01 & K02
- (4) K00 & K01 & K02 & K03

For instance, let's say that mask option (4) "K00 & K01 & K02 & K03" is selected.

When the input level at input ports K00–K03 is simultaneously LOW, initial reset will take place.


When using this function, make sure that the designated input ports do not simultaneously switch to LOW level while the system is in normal operation.

4.1.3 Supply voltage detection (SVD) circuit

When the SVD circuit detects that supply voltage has dropped below level 0 four successive times (see Chapter 7, "ELECTRICAL CHARACTERIS-TICS"), it outputs an initial reset signal until the supply voltage has been restored to level 2. You can select whether or not to use the initial reset according to the SVD circuit by mask option. If you use it, the supply voltage must be at least level 2 for the first sampling of the SVD circuit, when the power is turned on. At this time, if the power voltage level is less than level 2, the initial reset status will not be canceled and instead the SVD circuit will continue sampling until the supply voltage reaches level 2 or more. For more information, see "5.15 Supply Voltage Detection (SVD) Circuit" in this Manual.

4.1.4 Initial reset sequence

After cancellation of the LOW level input to the RESET terminal, when the power is turned on, the start-up of the CPU is held back until the oscillation stabilization waiting time (8,192/fOSC1 sec.) has elapsed. When the initial reset by the SVD circuit has been used, an initial sampling time (248/fOSC1 sec.) is added as additional waiting time. Figure 4.1.4.1 shows the operating sequence following initial reset release.

* When the initial reset by the SVD circuit with the mask option has been used, this cycle is inserted as the waiting time.

Fig. 4.1.4.1 Initial reset sequence

Also, when using the initial reset by simultaneous LOW level input into the input port, you should be careful of the following points.

- (1) During SLEEP status, since the time authorization circuit is bypassed, an initial reset is triggered immediately after a LOW level simultaneous input value. In this case, the CPU starts after waiting the oscillation stabilization time and the SVD circuit initial sampling time (when used with the mask option), following cancellation of the LOW level simultaneous input.
- (2) Other than during SLEEP status, an initial reset will be triggered 1–2 seconds after a LOW level simultaneous input. In this case, since a reset differential pulse (64/foSC1 sec.) is generated within the E0C883xx, the CPU will start even if the LOW level simultaneous input status is not canceled.

4.2 Initial Settings After Initial Reset

The CPU internal registers are initialized as follows during initial reset.

Table 4.2.1 Initial settings				
Register name	Code	Bit length	Setting value	
Data register A	Α	8	Undefined	
Data register B	В	8	Undefined	
Index (data) register L	L	8	Undefined	
Index (data) register H	Н	8	Undefined	
Index register IX	IX	16	Undefined	
Index register IY	IY	16	Undefined	
Program counter	PC	16	Undefined*	
Stack pointer	SP	16	Undefined	
Base register	BR	8	Undefined	
Zero flag	Z	1	0	
Carry flag	C	1	0	
Overflow flag	V	1	0	
Negative flag	Ν	1	0	
Decimal flag	D	1	0	
Unpack flag	U	1	0	
Interrupt flag 0	IO	1	1	
Interrupt flag 1	I1	1	1	
New code bank register	NB	8	01H	
Code bank register	CB	8	Undefined*	
Expand page register	EP	8	00H	
Expand page register for IX	XP	8	00H	
Expand page register for IY	YP	8	00H	

Table 4.2.1 Initial settings

* Reset exception processing loads the preset values stored in 0 bank, 0000H–0001H into the PC. At the same time, 01H of the NB initial value is loaded into CB.

Initialize the registers which are not initialized at initial reset using software.

Since the internal RAM and display memory are not initialized at initial reset, be sure to initialize using software.

The respectively stipulated initializations are done for internal peripheral circuits. If necessary, the initialization should be done using software. For initial value at initial reset, see the sections on the I/O memory map and peripheral circuit descriptions in the following chapter of this Manual.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION

The peripheral circuits of the E0C883xx is interfaced with the CPU by means of the memory mapped I/O method. For this reason, just as with other memory access operations, peripheral circuits can be controlled by manipulating I/O memory. Below is a description of the operation and control method for each individual peripheral circuit.

5.1 I/O Memory Map

			able 5.1.1(a) I/O Memory map	(00FF00)H-00FF02	H, MCU m	ode)		
Address	Bit	Name	Function		1	0	SR	R/W	Comment
00FF00	D7	BSMD1	us mode (CPU mode)				0	R/W	
(MCU)			BSMD1 BSMD0 Mode						
			1 1 512K (Maxim	um)				L	
	D6	BSMD0	1 0 512K (Minimu	ım)			0	R/W	
			0 1 64K						
			0 0 Single chip						
	D5	CEMD1	hip enable mode				1	R/W	Only for 64K
			$\frac{\text{EMD1}}{1} \frac{\text{CEMD0}}{1} \frac{\text{Mode}}{64 \text{K} (\overline{\text{CE0}})}$						bus mode
			$\begin{array}{cccc} 1 & 1 & 64K (CE0) \\ 1 & 0 & 32K (\overline{CE0}, \overline{CE1}) \end{array}$					L	*1
	D4	CEMD0	0 1 16K				1	R/W	
			(CE0–CE3E0C88) (CE1–CE3E0C88)						
			$0 \qquad 0 \qquad 8K (\overline{CE0} - \overline{CE3})$	510)					
	D3	CE3	$\overline{E3}$ (R33) \overline{CE} signal sutput Enchla	/Disable	$\overline{\text{CE3}}$ enable	$\overline{\text{CE3}}$ disable	0	R/W	In the Single chip
	D2	CE2	$\overline{\text{E2}}$ (R32) E1 (P21) $\overline{\text{CE}}$ signal output Enable. Enable: $\overline{\text{CE}}$ signal output		$\overline{\text{CE2}}$ enable	$\overline{\text{CE2}}$ disable	0	R/W	mode, these setting
	D1	CE1	EL(R31)		$\overline{\text{CE1}}$ enable	$\overline{\text{CE1}}$ disable	0	R/W	are fixed at DC
	D0	CE0	$\overline{E0}$ (R30) Disable: DC (R3x) outp	but	$\overline{\text{CE0}}$ enable	$\overline{\text{CE0}}$ disable	0	R/W	output.
00FF01	D7	SPP7	ack pointer page address (1	MSB)	1	0	0	R/W	
	D6	SPP6			1	0	0	R/W	
	D5	SPP5	SP page allocatable address >		1	0	0	R/W	
	D4	SPP4	Single chip mode: only 0 page		1	0	0	R/W	
	D3	SPP3	54K mode: only 0 page		1	0	0	R/W	
	D2	SPP2	512K (min) mode: 0–27H page		1	0	0	R/W	
	D1	SPP1	512K (max) mode: 0–27H page		1	0	0	R/W	
	D0	SPP0	(1	LSB)	1	0	0	R/W	
00FF02	D7		us release enable register	K11	BREQ	Input port	0	DAV	*2
	זט	EBR	(11 and R51 terminal specification)	R51	BACK	Output port	0	R/W	
			ait control register Nu	umber					
	D6	WT2	WT2 WT1 WT0 of	state					
			1 1 1	14					
			1 1 0	12					
	D5	WT1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10			0	R/W	
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 6					
			0 1 0	4					
	D4	WT0	0 0 1	2					
			0 0 0 No	o wait					
	D3	CLKCHG	PU operating clock switch		OSC3	OSC1	0	R/W	
	D2	OSCC	SC3 oscillation On/Off control		On	Off	0	R/W	
			perating mode selection						
	D1	VDC1	VDC1 VDC0 Operating m	ode					
			$\frac{1}{1} \times \frac{1}{1}$ High speed (VD1				0	D/117	
			0 1 Low power (VDI				U	R/W	
	D0	VDC0	-	=1.3V) =2.2V)					
				-2.2 V)					

 Table 5.1.1(a)
 I/O Memory map (00FF00H–00FF02H, MCU mode)

*1 This is just R/W register on E0C88348/317. *2 This is just R/W register on E0C88308.

Note: All the interrupts including NMI are disabled, until you write the optional value into both the "00FF00H" and "00FF01H" addresses.

Address	Bit	Name		Fu	nction		1	0	SR	R/W	Comment
00FF00		BSMD1	Bus mode (CPU mod	le)				*	R/W	* Initial setting can
(MPU)			BSMD1	BSMD0	Mo	ode					be selected among 3
			1	1	512K (M	laximum)					types (64K, 512K
	D6	BSMD0	1	0	512K (M	linimum)			*	R/W	min and 512K max)
			0	1	64K						by mask option
			0	0	* Option	selection 🗲					setting.
	D5	CEMD1	Chip enable	mode					1	R/W	Only for 64K
			CEMD1		Mo	ode					bus mode
			1	1	64K (CE	0)					
	D4	CEMD0	1	0	32K (CE	$\overline{0}, \overline{CE1})$			1	R/W	
			0	1	16K (CE	$\overline{0} - \overline{CE3}$)					
			0	0	8K (CE	$\overline{0} - \overline{CE3}$)					
	D3	CE3	CE3 (R33)]			CE3 enable	CE3 disable	0	R/W	
	D2	CE2	CE2 (R32)	-	-	nable/Disable	$\overline{\text{CE2}}$ enable	$\overline{\text{CE2}}$ disable	0	R/W	
	D1	CE1	CE1 (R31)		CE signa	-	$\overline{CE1}$ enable		0	R/W	
	D0	CE0	CE0 (R30)	Disable:	DC (R3x) output	$\overline{\text{CE0}}$ enable	CE0 disable	1	R/W	
00FF01	D7	SPP7	Stack pointe	er page ad	ldress	(MSB)	1	0	0	R/W	
	D6	SPP6					1	0	0	R/W	
	D5	SPP5	< SP page a	llocatable	e address >		1	0	0	R/W	
	D4	SPP4	Single chi	p mode:	only 0 page	e	1	0	0	R/W	
	D3	SPP3	• 64K mode	:	only 0 page	e	1	0	0	R/W	
	D2	SPP2	• 512K (mir	n) mode:	0–27H pag	e	1	0	0	R/W	
	D1	SPP1	• 512K (ma	x) mode:	0–27H pag	e	1	0	0	R/W	
	D0	SPP0				(LSB)	1	0	0	R/W	
00FF02	D7	EBR	Bus release	enable re	gister	K11	BREQ	Input port	0	DAV	*1
	זטן	EDK	(K11 and R	51 termir	al specific	ation) R51	BACK	Output port	0	R/W	
			Wait contro	l register		Number					
	D6	WT2	WT2	WT1	WT0	of state					
			1	1	1	14					
			1 1	1 0	0	12					
	D5	WT1	1	0	1 0	10 8			0	R/W	
			0	1	1	8 6					
			0	1	0	4					
	D4	WT0	0	0	1	2					
			0	0	0	No wait					
			CPU operat	ing clock	switch		OSC3	OSC1	0	R/W	
	D2	OSCC	OSC3 oscill	lation On	/Off contro	ol	On	Off	0	R/W	
			Operating n	node sele	ction						
	D1	VDC1	VDC1	VDC0	Onerati	ing mode					
	L		$\frac{\sqrt{DC1}}{1}$			l (VD1=3.3V)			0	R/W	
			0			r(VD1=3.3V) r(VD1=1.3V)					
	D0	VDC0	0		Normal	(VD1=1.5V) (VD1=2.2V)					
			~	<u> </u>		(, 2, 2, 2, 2, 7)					

Table 5.1.1(b) I/O Memory map (00FF00H–00FF02H, MPU mode)

*1 This is just R/W register on E0C88308.

Note: All the interrupts including $\overline{\text{NMI}}$ are disabled, until you write the optional value into both the "00FF00H" and "00FF01H" addresses.

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF10	D7	-	_	-	-	-		
	D6	-	-	-	-	-		Constantry "0" when
	D5	-	-	-	-	-		being read
	D4	LCCLK	CL output control for expanded LCD driver	On	Off	0	R/W	
	D3	LCFRM	FR output control for expanded LCD driver	On	Off	0	R/W	
	D2	DTFNT	LCD dot font selection	5 x 5 dots	5 x 8 dots	0	R/W	
	D1	LDUTY	LCD drive duty selection	1/16 duty	1/32 duty	0	R/W	*1
	D0	SGOUT	R/W register	1	0	0	R/W	Reserved register
00FF11	D7	-	_	-	-	-		"0" when being read
	D6	DSPAR	LCD display memory area selection	Display area 1	Display area 0	0	R/W	
	D5	LCDC1	LCD display control			0	R/W	
			LCDC1 LCDC0 LCD display					These bits are reset
			1 1 All LCDs lit					to (0, 0) when
	D4	LCDC0	1 0 All LCDs out			0	R/W	SLP instruction
			0 1 Normal display					is executed.
			0 0 Drive off					
	D3	LC3	LCD contrast adjustment			0	R/W	
	D2	LC2	$\frac{\text{LC3}}{1}$ $\frac{\text{LC2}}{1}$ $\frac{\text{LC1}}{1}$ $\frac{\text{LC0}}{1}$ $\frac{\text{Contrast}}{\text{Dark}}$			0	R/W	
	D1	LC1	1 1 1 1 Dark 1 1 1 0 :			0	R/W	
	D0	LC0	: : : : : : 0 0 0 0 Light			0	R/W	
00FF12	D7	-	_	_	_	_		Constantry "0" when
	D6	-	-	-	-	-		being read
	D5	SVDSP	SVD auto-sampling control	On	Off	0	R/W	These registers are
								reset to "0" when
	D4	SVDON	SVD continuous sampling control/status R	Busy	Ready	1→0*2	R/W	SLP instruction
			W	On	Off	0		is executed.
	D3	SVD3	SVD detection level			Х	R	*3
	D2	SVD2	<u>SVD3</u> <u>SVD2</u> <u>SVD1</u> <u>SVD0</u> <u>Detection level</u> Level 15	L	L	X	R	
	D1	SVD1	1 1 1 0 Level 14	L	L	X	R	
	D0	SVD0	0 0 0 0 Level 0			Х	R	
00FF13	D7	_	-	-	-	-		
	D6	-	-	-	-	-		Constantly "0" when
	D5	-		-	-	-		being read
	D4	-	-	-	-	-		
	D3	CMP10N	Comparator 1 On/Off control	On	Off	0	R/W	
	D2	CMP0ON	Comparator 0 On/Off control	On	Off	0	R/W	
	D1	CMP1DT	Comparator 1 data	+>-	+ < -	0	R]
	D0	CMP0DT	Comparator 0 data	+>-	+ < -	0	R	

Table 5.1.1(c) I/O Memory map (00FF10H–00FF13H)

*1 When 1/8 duty has been selected by mask option, setting of this register becomes invalid.

*2 After initial reset, this status is set "1" until conclusion of hardware first sampling.

*3 Initial values are set according to the supply voltage detected at first sampling by hardware. Until conclusion of first sampling, SVD0–SVD3 data are undefined.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (I/O Memory Map)

Address	Bit	Name	Table 5.1.1(d) I/O Memory map (0 Function	1	, 11 0	0	SR	R/W	Comment
00FF20		PK01							
		PK00	K00–K07 interrupt priority register	PK01	PK0	0	0	R/W	
	D5	PSIF1		PSIF1	PSIF	0			
	D4	PSIF0	Serial interface interrupt priority register	PSW1 PTM1			0	R/W	
	D3	PSW1	6 1	1	1	Level 3	0	DAV	
	D2	PSW0	Stopwatch timer interrupt priority register	1 0	0 1	Level 2 Level 1	0	R/W	
	D1	PTM1		0	0	Level 0		DAV	
	D0	PTM0	Clock timer interrupt priority register				0	R/W	
00FF21	D7	-	_	-		-	-		
	D6	-	_	-		-	-		Constantly "0" when
	D5	-	_	-		-	-		being read
	D4	-	-	-		-	-		
		PPT1	Programmable timer interrupt priority register	PPT1 PK11	PPT PK1		0	R/W	
		PPT0		1	1	Level 3		10 11	
		PK11	K10 and K11 interrupt priority register	1	0 1	Level 2 Level 1	0	R/W	
		PK10		0	0	Level 0			
00FF22	D7	-		-		-	-		"0" when being read
			Stopwatch timer 100 Hz interrupt enable register						
		ESW10	Stopwatch timer 10 Hz interrupt enable register						
		ESW1	Stopwatch timer 1 Hz interrupt enable register	Interr	upt	Interrupt			
		ETM32	Clock timer 32 Hz interrupt enable register	enab	ole	disable	0	R/W	
		ETM8	Clock timer 8 Hz interrupt enable register						
		ETM2	Clock timer 2 Hz interrupt enable register						
00FF23		ETM1 EPT1	Clock timer 1 Hz interrupt enable register						
006623		EPT1 EPT0	Programmable timer 1 interrupt enable register						
		EF10 EK1	Programmable timer 0 interrupt enable register K10 and K11 interrupt enable register						
		EK0H	K04–K07 interrupt enable register	Interr	anot	Interrupt			
		EK0L	K00–K03 interrupt enable register	enab	•	disable	0	R/W	
		ESERR	Serial I/F (error) interrupt enable register	Chat	JIC .	uisable			
		ESREC	Serial I/F (receiving) interrupt enable register						
		ESTRA	Serial I/F (transmitting) interrupt enable register						
00FF24	D7	_		_		-	_		"0" when being read
		FSW100	Stopwatch timer 100 Hz interrupt factor flag	(R)		(R)			
		FSW10	Stopwatch timer 10 Hz interrupt factor flag	Interr		No interrupt			
			Stopwatch timer 1 Hz interrupt factor flag	facto	-	factor is			
	D3	FTM32	Clock timer 32 Hz interrupt factor flag	genera	ated	generated	0	R/W	
	D2	FTM8	Clock timer 8 Hz interrupt factor flag						
	D1	FTM2	Clock timer 2 Hz interrupt factor flag	(W		(W)			
	D0	FTM1	Clock timer 1 Hz interrupt factor flag	Res	et	No operation			
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R))	(R)			
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interr	upt	No interrupt			
		FK1	K10 and K11 interrupt factor flag	facto	r is	factor is			
	D4	FK0H	K04–K07 interrupt factor flag	genera	ated	generated	0	D/W	
	D3	FK0L	K00–K03 interrupt factor flag				0	R/W	
	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)	(W)			
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Res	et	No operation			
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag						

Table 5.1.1(d) I/O Memory map (00FF20H–00FF25H)

Address	Bit	Name		nction	1	0	SR	R/W	Comment
00FF30	D7	_	_		_	_	_		Constantry "0" when
	D6	_	_		_	_	_		being read
	D5	_	_		_	_	_		U
	D4	MODE16	8/16-bit mode selection	on	16-bit x 1	8-bit x 2	0	R/W	
	D3	CHSEL	TOUT output channe	l selection	Timer 1	Timer 0	0	R/W	
		PTOUT	TOUT output control		On	Off	0	R/W	
	D1		Prescaler 1 source clo		fosc3	fosci	0	R/W	
	D0		Prescaler 0 source clo		fosc3	fosci	0	R/W	
00FF31		EVCNT	Timer 0 counter mod		Event counter	Timer	0	R/W	
		FCSEL	Timer 0	In timer mode	Pulse width	Normal	0	R/W	
			function selection		measurement	mode			
				In event counter mode	With	Without			
						noise rejector			
	D5	PLPOL	Timer 0	Down count timing	Rising edge	Falling edge	0	R/W	
			pulse polarity	in event counter mode		of K10 input	0	10	
			selection	In pulse width	High level	Low level			
			selection	measurement mode	measurement	measurement for K10 input			
	Π4	PSC01	Timer 0 prescaler div		TOT K TO INPUT	Tor KTO Input	0	R/W	
	D-			Prescaler dividing ratio			0	10/11	
			$\frac{15001}{1}$ $\frac{15000}{1}$	Source clock / 64					
	20	PSC00	1 0	Source clock / 16				R/W	
	00		0 1	Source clock / 4			0	10/10	
			0 0	Source clock / 4					
	D2	CONTO		ne-shot mode selection	Continuous	One-shot	0	R/W	
		PSET0	Timer 0 preset	ne shot mode selection	Preset	No operation	-	W	"0" when being read
		PRUN0	Timer 0 Run/Stop con	ntrol	Run	Stop	0	R/W	
00FF32	D7	_	-		_		_		
	D6	_	_		_	_	_		Constantry "0" when
	D5	_	_		_	_	_		being read
		PSC11	Timer 1 prescaler div	iding ratio selection			0	R/W	
				Prescaler dividing ratio			-		
				r researer ar raing rains					
			1 1	Source clock / 64					
1	D3	PSC10	1 1 1 0	Source clock / 64			0	R/W	
	D3	PSC10	1 0	Source clock / 16			0	R/W	
	D3	PSC10	$ \begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} $	Source clock / 16 Source clock / 4			0	R/W	
			1 0 0 1 0 0	Source clock / 16 Source clock / 4 Source clock / 1	Continuous	One-shot			
	D2	CONT1	1 0 0 1 0 0 Timer 1 continuous/o	Source clock / 16 Source clock / 4	Continuous	One-shot	0	R/W	"0" when being read
	D2 D1	CONT1 PSET1	1 0 0 1 0 0 Timer 1 continuous/o Timer 1 preset	Source clock / 16 Source clock / 4 Source clock / 1 ne-shot mode selection	Preset	No operation	0	R/W W	"0" when being read
00FF33	D2 D1 D0	CONT1 PSET1 PRUN1	1 0 0 1 0 0 Timer 1 continuous/or 1 Timer 1 preset 1	Source clock / 16 Source clock / 4 Source clock / 1 ne-shot mode selection htrol				R/W	"0" when being read
00FF33	D2 D1 D0 D7	CONT1 PSET1 PRUN1 RLD07	1 0 0 1 0 0 Timer 1 continuous/o Timer 1 preset Timer 1 Run/Stop continues Timer 0 reload data E	Source clock / 16 Source clock / 4 Source clock / 1 ne-shot mode selection ntrol 07 (MSB)	Preset	No operation	0	R/W W	"0" when being read
00FF33	D2 D1 D0 D7 D6	CONT1 PSET1 PRUN1 RLD07 RLD06	1 0 0 1 0 0 Timer 1 continuous/o Timer 1 preset Timer 1 Run/Stop con Timer 0 reload data I Timer 0 reload data I	Source clock / 16 Source clock / 4 Source clock / 1 ne-shot mode selection ntrol 07 (MSB) 06	Preset	No operation	0	R/W W	"0" when being read
00FF33	D2 D1 D0 D7 D6 D5	CONT1 PSET1 PRUN1 RLD07 RLD06 RLD05	1 0 0 1 0 0 Timer 1 continuous/o Timer 1 preset Timer 1 Run/Stop con Timer 0 reload data 1 Timer 0 reload data 1 Timer 0 reload data 1	Source clock / 16 Source clock / 4 Source clock / 1 ne-shot mode selection htrol 07 (MSB) 06 55	Preset	No operation	0	R/W W	"0" when being read
00FF33	D2 D1 D0 D7 D6 D5 D4	CONT1 PSET1 PRUN1 RLD07 RLD06 RLD05 RLD04	1 0 0 1 0 0 Timer 1 continuous/or Timer 1 preset Timer 1 Run/Stop continuer Timer 0 reload data 1	Source clock / 16 Source clock / 4 Source clock / 1 ne-shot mode selection ntrol 77 (MSB) 96 95	Preset	No operation	0	R/W W	"0" when being read
00FF33	D2 D1 D0 D7 D6 D5 D4 D3	CONT1 PSET1 PRUN1 RLD07 RLD06 RLD05 RLD04 RLD03	1 0 0 1 0 0 Timer 1 continuous/o Timer 1 preset Timer 1 Run/Stop continuer Timer 0 reload data 1	Source clock / 16 Source clock / 4 Source clock / 1 ne-shot mode selection ntrol 07 (MSB) 06 55 94 93	Preset Run	No operation Stop	0 - 0	R/W W R/W	"0" when being read
00FF33	D2 D1 D7 D6 D5 D4 D3 D2	CONT1 PSET1 PRUN1 RLD07 RLD06 RLD05 RLD04 RLD03 RLD02	1 0 0 1 0 0 Timer 1 continuous/o Timer 1 preset Timer 1 Run/Stop continue Timer 0 reload data 1 Timer 0 reload data 1	Source clock / 16 Source clock / 4 Source clock / 1 ne-shot mode selection ntrol 07 (MSB) 06 05 04 03 02	Preset Run	No operation Stop	0 - 0	R/W W R/W	"0" when being read
00FF33	D2 D1 D0 D7 D6 D5 D4 D3 D2 D1	CONT1 PSET1 PRUN1 RLD07 RLD06 RLD05 RLD04 RLD03	1 0 0 1 0 0 Timer 1 continuous/o Timer 1 preset Timer 1 Run/Stop continuer Timer 0 reload data 1	Source clock / 16 Source clock / 4 Source clock / 1 ne-shot mode selection ntrol 07 (MSB) 06 05 04 03 02	Preset Run	No operation Stop	0 - 0	R/W W R/W	"0" when being read

Table 5.1.1(e) I/O Memory map (00FF30H-00FF33H)

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (I/O Memory Map)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF34	D7	RLD17	Timer 1 reload data D7 (MSB)					
	D6	RLD16	Timer 1 reload data D6					
	D5	RLD15	Timer 1 reload data D5					
	D4	RLD14	Timer 1 reload data D4	TT: - 1.	T	1	R/W	
	D3	RLD13	Timer 1 reload data D3	High	Low		K/W	
	D2	RLD12	Timer 1 reload data D2					
	D1	RLD11	Timer 1 reload data D1					
	D0	RLD10	Timer 1 reload data D0 (LSB)					
00FF35	D7	PTD07	Timer 0 counter data D7 (MSB)					
	D6	PTD06	Timer 0 counter data D6					
	D5	PTD05	Timer 0 counter data D5			1		
	D4	PTD04	Timer 0 counter data D4	High	Low		R	
	D3	PTD03	Timer 0 counter data D3	rigii	LOW		ĸ	
	D2	PTD02	Timer 0 counter data D2					
	D1	PTD01	Timer 0 counter data D1					
	D0	PTD00	Timer 0 counter data D0 (LSB)					
00FF36	D7	PTD17	Timer 1 counter data D7 (MSB)					
	D6	PTD16	Timer 1 counter data D6					
	D5	PTD15	Timer 1 counter data D5					
	D4	PTD14	Timer 1 counter data D4	High	Low	1	R	
	D3	PTD13	Timer 1 counter data D3	rigii	Low	ow 1	ĸ	
	D2	PTD12	Timer 1 counter data D2					
	D1	PTD11	Timer 1 counter data D1					
	D0	PTD10	Timer 1 counter data D0 (LSB)					

Table 5.1.1(f) I/O Memory map (00FF34H–00FF36H)

Table 5.1.1(g) I/O Memory map (00FF40H–00FF41H)

Address	Bit	Name			Functior	ו	1	0	SR	R/W	Comment
00FF40	D7	-	-				-	-	-		"0" when being read
	D6	FOUT2	FOUT fre	equency	selection				0	R/W	
			FOUT2	FOUT1	FOUT0	Frequency					
			0	0	0	fosc1 / 1					
	D5	FOUT1	0	0	1	fosc1 / 2			0	R/W	
			0	1	0	fosc1 / 4					
			0	1	1 0	fosc1 / 8 fosc3 / 1					
	D4	FOUT0	1	0	1	fosc3 / 2			0	R/W	
			1	1	0	fosc3 / 4			U	10.11	
			1	1	1	fosc3 / 8					
	D3	FOUTON	FOUT ou	itput con	trol		On	Off	0	R/W	
	D2	WDRST	Watchdo	g timer r	eset		Reset	No operation	-	W	Constantly "0" when
	D1	TMRST	Clock tin	her reset			Reset	No operation	-	W	being read
	D0	TMRUN	Clock tin	her Run/	Stop cont	rol	Run	Stop	0	R/W	
00FF41	D7	TMD7	Clock tin	ıer data	1 Hz						
	D6	TMD6	Clock tin	her data	2 Hz						
	D5	TMD5	Clock tin	her data	4 Hz						
	D4	TMD4	Clock tin	her data	8 Hz		TI:-1	T	0	R	
	D3	TMD3	Clock tin	her data	16 Hz		High	Low	0	ĸ	
	D2	TMD2	Clock tin	ier data	32 Hz						
	D1	TMD1	Clock tin	ıer data	64 Hz]				
	D0	TMD0	Clock tin	1er data	128 Hz						

Address	Bit	Name	Table 5.1.1(h) I/O Memory map (0 Function	1	0	SR	R/W	Comment
00FF42	D7	_	_	-	-			Common
001112	D6	_	_	_	_	_		
	D5	_	_	_	_	_		
	D4	_	_	_	_	_		Constantly "0" when
	D3	_	_	_	_	_		being read
	D2	_	_	-	-	_		
	D1	SWRST	Stopwatch timer reset	Reset	No operation	_	W	
	D0	SWRUN	Stopwatch timer Run/Stop control	Run	Stop	0	R/W	
00FF43	D7	SWD7	Stopwatch timer data					
	D6	SWD6						
	D5	SWD5	BCD (1/10 sec)					
	D4	SWD4					Ъ	
	D3	SWD3	Stopwatch timer data			0	R	
	D2	SWD2						
	D1	SWD1	BCD (1/100 sec)					
	D0	SWD0						
00FF44	D7	-	_	-	-	-		Constantry "0" when
	D6	BZSTP	One-shot buzzer forcibly stop	Forcibly stop	No operation	_	W	being read
	D5	BZSHT	One-shot buzzer trigger/status R	Busy	Ready	0	R/W	
			W	Trigger	No operation			
	D4	SHTPW	One-shot buzzer duration width selection	125 msec	31.25 msec	0	R/W	
	D3	ENRTM	Envelope attenuation time	1 sec	0.5 sec	0	R/W	
	D2	ENRST	Envelope reset	Reset	No operation	_	W	"0" when being read
	D1	ENON	Envelope On/Off control	On	Off	0	R/W	*1
	D0	BZON	Buzzer output control	On	Off	0	R/W	
00FF45	D7	-	-	-	-	-		"0" when being read
	D6	DUTY2	$\frac{\text{DUTY2-1}}{2 \ 1 \ 0} \frac{\text{Buzzer signal duty ratio selection}}{\frac{40960 \ 3276.8 \ 2730.7 \ 2340.6}{2730.7 \ 2340.6}}$			0	R/W	
			$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{2048.0}{8/16} \frac{1638.4}{8/20} \frac{1365.3}{12/24} \frac{1170.3}{12/28}$					
	D5	DUTY1	0 0 1 7/16 7/20 11/24 11/28			0	R/W	
			0 1 0 6/16 6/20 10/24 10/28					
			0 1 1 5/16 5/20 9/24 9/28 1 0 0 4/16 4/20 8/24 8/28					
	D4	DUTY0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
			1 1 0 2/16 2/20 6/24 6/28					
	D3		1 1 1 1/16 1/20 5/24 5/28					
			Buzzer frequency selection			-	DAV	"0" when being read
	υz	BZFQ2				0	R/W	
			$\frac{\text{BZFQ2}}{0} \frac{\text{BZFQ1}}{0} \frac{\text{BZFQ0}}{0} \frac{\text{Frequency (Hz)}}{4096.0}$					
		BZFQ1	0 0 1 3276.8					
	DI	BZFQ1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
			0 1 1 2340.6					
		DZEOG	1 0 0 2048.0					
	00	BZFQ0	1 0 1 1638.4			0	R/W	
			1 1 0 1365.3 1 1 1 1170.3					

Table 5.1.1(h) I/O Memory map (00FF42H–00FF45H)

*1 Reset to "0" during one-shot output.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (I/O Memory Map)

Address	Bit	Name			Function	-r (-	1	0	SR	R/W	Comment
00FF48	D7	_	_				_	_	_		"0" when being read
	D6	EPR	Parity en	able regi	ster		With parity	Non parity	0	R/W	Only for
	D5	PMD	Parity mo	ode selec	tion		Odd	Even	0	R/W	asynchronous mode
	D4	SCS1	Clock so	urce sele	ction				0	R/W	In the clock synchro-
			SCS1	SCS0	Clock source						nous slave mode,
			1	1	Programmable tim	er					external clock is
	D3	SCS0	1	0	fosc3 / 4				0	R/W	selected.
			0	1	fosc3 / 8						
			0	0	fosc3 / 16						
	D2	SMD1	Serial I/F	⁷ mode se	election				0	R/W	
			SMD1	SMD0	Mode						
			1	1	Asynchronous 8-bit						
	D1	SMD0	1	0	Asynchronous 7-bit				0	R/W	
			0	1	Clock synchronous sl	ave					
			0	0	Clock synchronous m	naster					
	D0	ESIF	Serial I/F	⁷ enable r	egister		Serial I/F	I/O port	0	R/W	
00FF49	D7	-	-				-	-	-		"0" when being read
	D6	FER	Framing	error flag	5	R	Error	No error	0	R/W	Only for
						W	Reset (0)	No operation			asynchronous mode
	D5	PER	Parity err	ror flag		R	Error	No error	0	R/W	
						W	Reset (0)	No operation			
	D4	OER	Overrun	error flag		R	Error	No error	0	R/W	
	_					W	Reset (0)	No operation			
	D3	RXTRG	Receive t	trigger/st	atus	R	Run	Stop	0	R/W	
						¦ W	Trigger	No operation			
		RXEN	Receive of			1	Enable	Disable	0	R/W	
	D1	TXTRG	Transmit	trigger/s	tatus	¦ R	Run	Stop	0	R/W	
						¦ W	Trigger	No operation		-	
		TXEN	Transmit				Enable	Disable	0	R/W	
00FF4A		TRXD7			data D7 (MSB)						
		TRXD6	Transmit								
		TRXD5	Transmit								
		TRXD4	Transmit				High	Low	Х	R/W	
		TRXD3	Transmit				-				
		TRXD2	Transmit								
		TRXD1	Transmit								
L	00	TRXD0	Transmit	/Receive	data D0 (LSB)						

Table 5.1.1(i) I/O Memory map (00FF48H–00FF4AH)

Address	Bit	Name	Table 5.1.1(j) I/O Memory map (0 Function	1	0	SR	R/W	Comment
00FF50	D7	SIK07	K07 interrupt selection register					
	D6	SIK06	K06 interrupt selection register					
	D5	SIK05	K05 interrupt selection register					
	D4	SIK04	K04 interrupt selection register	Interrupt	Interrupt			
	D3	SIK03	K03 interrupt selection register	enable	disable	0	R/W	
		SIK02	K02 interrupt selection register					
		SIK01	K01 interrupt selection register					
		SIK00	K00 interrupt selection register					
00FF51	D7	_	_	_	_	_		
	D6	_	_	_	_	_		
	D5	_	_	_	_	_		Constantly "0" when
	D4	_	_	_	_	_		being read
	D3	_	_	_	_	_		
	D2	_	_	_	_	_		-
		SIK11	K11 interrupt selection register	Interrupt	Interrupt			*1
		SIK10	K10 interrupt selection register	enable	disable	0	R/W	
00FF52		KCP07	K07 interrupt comparison register					
		KCP06	K06 interrupt comparison register					
		KCP05	K05 interrupt comparison register	Interrupt	Interrupt			
		KCP04	K04 interrupt comparison register	generated	generated			
		KCP03	K03 interrupt comparison register	at falling	at rising	1	R/W	
		KCP02	K02 interrupt comparison register	edge	edge			
		KCP01	K01 interrupt comparison register	cugo	eage			
		KCP00	K00 interrupt comparison register					
00FF53	D7	_	_	_	_	_		
	D6	_	_	_	_	_		-
	D5	_	_	_	_	<u> </u>		Constantly "0" when
	D4	_	_	_	_	_		being read
	D3	_	_	_	_	_		being read
	D2	_	_	_	_	_		-
		KCP11	K11 interrupt comparison register	Falling	Rising			*2
		KCP10	K10 interrupt comparison register	edge	edge	1	R/W	2
00FF54		K07D	K07 input port data	euge	euge			
001101		K06D	K06 input port data					
		K05D	K05 input port data					
		K04D	K04 input port data	High level	L ow level			
		K03D	K03 input port data	input	input	-	R	
		K02D	K02 input port data	mput	mput			
		K01D	K01 input port data					
		K00D	K00 input port data					
00FF55	D7	_		_		_		
501100	D6	_	_	_	_			1
	D5	_	_	_		+		Constantly "0" when
	D3	_		_		-		being read
	D4	_		_		-		Joing reau
	D3 D2	_				-		-
		– K11D	K11 input port data	- High laval	-	-		*3
		K11D K10D	K11 input port data	High level	Low level	-	R	
	υU	NIUD	K10 input port data	input	input			

Table 5.1.1(i) I/O Memory map (00FF50H–00FF55H)

*1 Set constantly "0" on E0C88308. *2 Set constantly "1" on E0C88308.

*3 Constantly "1" when being read on E0C88308.

EPSON

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (I/O Memory Map)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF60	D7	IOC07	P07 I/O control register					
	D6	IOC06	P06 I/O control register					
	D5	IOC05	P05 I/O control register					
	D4	IOC04	P04 I/O control register	0.4.4	T .		DAV	
	D3	IOC03	P03 I/O control register	Output	Input	0	R/W	
	D2	IOC02	P02 I/O control register					
	D1	IOC01	P01 I/O control register					
	D0	IOC00	P00 I/O control register					
00FF61	D7	IOC17	P17 I/O control register					
	D6	IOC16	P16 I/O control register					
	D5	IOC15	P15 I/O control register					
	D4	IOC14	P14 I/O control register	A	. .		DAV	
	D3	IOC13	P13 I/O control register	Output	Input	0	R/W	
	D2	IOC12	P12 I/O control register					
	D1	IOC11	P11 I/O control register					
	D0	IOC10	P10 I/O control register					
00FF62	D7	P07D	P07 I/O port data					
	D6	P06D	P06 I/O port data					
	D5	P05D	P05 I/O port data					
	D4	P04D	P04 I/O port data	TT: 1	Ţ	1	R/W	
	D3	P03D	P03 I/O port data	High	Low	1	K/W	
	D2	P02D	P02 I/O port data					
	D1	P01D	P01 I/O port data					
	D0	P00D	P00 I/O port data					
00FF63	D7	P17D	P17 I/O port data					
	D6	P16D	P16 I/O port data					
	D5	P15D	P15 I/O port data					
	D4	P14D	P14 I/O port data	TT: 1		1	DAV	
	D3	P13D	P13 I/O port data	High	Low	1	R/W	
	D2	P12D	P12 I/O port data					
	D1	P11D	P11 I/O port data					
	D0	P10D	P10 I/O port data					

Table 5.1.1(k) I/O Memory map (00FF60H–00FF63H)

Address	Bit	Name	Table 5.1.1(l) I/O Memory map (0 Function	1	0	SR	R/W	Comment
00FF70	D7	HZR51	R51 high impedance control	High	Comple-	0	DAV	*1
	D6	HZR50	R50 high impedance control	impedance	mentary	0	R/W	
	D5	HZR4H	R/W register			0	DAV	
	D4	HZR4L	R/W register	1	0	0	R/W	Reserved register
	D3	HZR1H	R14–R17 high impedance control					
	D2	HZR1L	R10–R13 high impedance control	High	Comple-		DAV	
	D1	HZR0H	R04–R07 high impedance control	impedance	mentary	0	R/W	
	D0	HZR0L	R00–R03 high impedance control					
00FF71	D7	HZR27	R27 high impedance control					
	D6	HZR26	R26 high impedance control					
	D5	HZR25	R25 high impedance control					
	D4	HZR24	R24 high impedance control	High	Comple-		DAV	
	D3	HZR23	R23 high impedance control	impedance	mentary	0	R/W	
	D2	HZR22	R22 high impedance control					
	D1	HZR21	R21 high impedance control					
	D0	HZR20	R20 high impedance control					
00FF72	D7	HZR37	R37 high impedance control					These are just
	D6	HZR36	R36 high impedance control					R/W registers
	D5	HZR35	R35 high impedance control					on E0C88308
	D4	HZR34	R34 high impedance control	High	Comple-		DAV	
	D3	HZR33	R33 high impedance control	impedance	mentary	0	R/W	
	D2	HZR32	R32 high impedance control					
	D1	HZR31	R31 high impedance control					
	D0	HZR30	R30 high impedance control					
00FF73	D7	R07D	R07 output port data					
	D6	R06D	R06 output port data					
	D5	R05D	R05 output port data					
	D4	R04D	R04 output port data		Ţ	1	DAV	
	D3	R03D	R03 output port data	High	Low	1	R/W	
	D2	R02D	R02 output port data					
	D1	R01D	R01 output port data					
	D0	R00D	R00 output port data					
00FF74	D7	R17D	R17 output port data					
	D6	R16D	R16 output port data					
	D5	R15D	R15 output port data					
	D4	R14D	R14 output port data	TT:-1	T	1	R/W	
	D3	R13D	R13 output port data	High	Low	1	K/W	
	D2	R12D	R12 output port data					
	D1	R11D	R11 output port data					
	D0	R10D	R10 output port data					
00FF75	D7	R27D	R27 output port data					
	D6	R26D	R26 output port data					
	D5	R25D	R25 output port data					
	D4	R24D	R24 output port data	11:1	T	1	D/117	
	D3	R23D	R23 output port data	High	Low	1	R/W	
	D2	R22D	R22 output port data					
	D1	R21D	R21 output port data					
		R20D	R20 output port data	1				

Table 5.1.1(1) I/O Memory map (00FF70H–00FF75H)

*1 This is just R/W register on E0C88308.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (I/O Memory Map)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF76	D7	R37D	R37 output port data					These are just
	D6	R36D	R36 output port data					R/W registers
	D5	R35D	R35 output port data					on E0C88308
	D4	R34D	R34 output port data	*** 1	Ţ	1	DAV	
	D3	R33D	R33 output port data	High	Low	1	R/W	
	D2	R32D	R32 output port data					
	D1	R31D	R31 output port data					
	D0	R30D	R30 output port data					
00FF77	D7	R47D	R/W register					
	D6	R46D	R/W register	1	0	1		
	D5	R45D	R/W register					
	D4	R44D	R/W register				DAV	D 1 1
	D3	R43D	R/W register				K/W	Reserved register
	D2	R42D	R/W register					
	D1	R41D	R/W register					
	D0	R40D	R/W register					
00FF78	D7	-	_	-	-	-		
	D6	-	_	-	-	-		
	D5	-	_	-	-	-		Constantly "0" when
	D4	-	_	-	-	-		being read
	D3	_	_			_]
	D2	_	_			_		
	D1	R51D	R51 output port data	High	Low	1	R/W	*1
	D0	R50D	R50 output port data	High	Low	0	R/W	

Table 5.1.1(m) I/O Memory map (00FF76H–00FF78H)

*1 This is just R/W register on E0C88308.

5.2 System Controller and Bus Control

The system controller is a management unit which sets such items as the bus mode in accordance with memory system configuration factors. For the purposes of controlling the system, the following settings can be performed in software:

- (1) Bus mode (CPU mode) settings
- (2) Chip enable (CE) signal output settings
- (3) WAIT state settings for external memory
- (4) Bus authority release request / acknowledge signal (BREQ/BACK) settings
- (5) Page address setting of the stack pointer
- Note: There is no bus authority release function in the E0C88308.

Below is a description of the how these settings are to be made.

5.2.1 Bus mode settings

As explained in "3.5.2 Bus mode", the E0C883xx has four bus modes. Settings for bus modes must be made in software and must match the capacity of the external memory.

As shown in Table 5.2.1.1, bus mode settings are performed on the basis of the preset values for each mode written to the registers BSMD0 and BSMD1.

Setting	g value	Bus mode	Configuration of ovtarnal moment
BSMD1	BSMD0	Bus mode	Configuration of external memory
1	1	Expanded 512K maximum mode	ROM+RAM>64K bytes (Program>64K bytes)
1	0	Expanded 512K minimum mode	ROM+RAM>64K bytes (Program≤64K bytes)
0	1	Expanded 64K mode	ROM+RAM≤64K bytes
0	0	Single chip mode (MCU)	None
		Optional setting of one of the expanded	See above
		modes (MPU)	

Table 5.2.1.1 Bus mode settings

* The single chip mode setting is only possible when this IC is used in the MCU mode. The single chip mode setting is incompatible with the MPU mode, since this mode does not utilize internal ROM.

When using in the MPU mode, it is necessary to select the bus mode at the time of the initial resetting and at the time of the <BSMD1 = "0" and BSMD0 = "0"> setting from among the three types of expanded modes (expanded 64K mode, expanded 512K minimum mode and expanded 512K maximum mode) by mask option. Select the expanded 512K maximum mode for this option, when the MPU mode is not used at all. The function of I/O terminals is set as shown in Table 5.2.1.2 in accordance with mode selection.

Terminal	Bus mode						
Terminal	Single chip	Expanded 64K mode	Expanded 512K mode				
R00	Output port R00	Address bus A0					
R01	Output port R01	Address bus A1					
R02	Output port R02	Addres	s bus A2				
R03	Output port R03	Addres	s bus A3				
R04	Output port R04	Addres	s bus A4				
R05	Output port R05	Addres	s bus A5				
R06	Output port R06	Addres	s bus A6				
R07	Output port R07	Addres	s bus A7				
R10	Output port R10	Addres	s bus A8				
R11	Output port R11	Addres	s bus A9				
R12	Output port R12	R12 Address bus A10					
R13	Output port R13	Address bus A11					
R14	Output port R14	Address bus A12					
R15	Output port R15	Address bus A13					
R16	Output port R16	Address bus A14					
R17	Output port R17	Address	bus A15				
R20	Output	port R20	Address bus A16				
R21	Output	port R21	Address bus A17				
R22	Output	port R22	Address bus A18				
R23	Output port R23	\overline{RD}	signal				
R24	Output port R24	WR	signal				
P00	I/O port P00	Data	bus D0				
P01	I/O port P01	Data	bus D1				
P02	I/O port P02	Data	bus D2				
P03	I/O port P03	Data	bus D3				
P04	I/O port P04	Data	bus D4				
P05	I/O port P05	Data	bus D5				
P06	I/O port P06	Data	bus D6				
P07	I/O port P07	Data	bus D7				

Table 5.2.1.2	I/O terminal	settings
1 0000 0121112	1, 0, 10, 11, 11, 10, 10	00000000

At initial reset, the bus mode is set as explained below.

• In MCU mode:

At initial reset, the E0C883xx is set in single chip mode.

Accordingly, in MCU mode, even if a memory has been externally expanded, the system is activated by the program written to internal ROM.

In systems with externally expanded memory, perform the applicable bus mode settings during the initialization routine originating in internal ROM.

• In MPU mode:

When the MPU mode is used, the expanded mode (expanded 64K mode, expanded 512K minimum mode or expanded 512K maximum mode) set during initial reset must be preselected by mask option.

You should set it to conform properly to system configuration.

5.2.2 Address decoder (\overline{CE} output) settings

As explained in Section 3.6.4, the E0C883xx is equipped with address decoders that can output a maximum of four chip enable signals ($\overline{CE0}$ - $\overline{CE3}$) to external devices.

The output terminals and output circuits for $\overline{CE0}$ - $\overline{CE3}$ are shared with output ports R30–R33. At initial reset, they are set as output port terminals. For this reason, when operating in a mode other than single chip mode, the ports to be used as \overline{CE} signal output terminals must be set as such. This setting is performed through software which writes "1" to registers CE0–CE3 corresponding the \overline{CE} signals to be used.

Table 5.2.2.1 shows the address range assigned to the four chip enable (\overline{CE}) signals.

The arrangement of memory space for external devices does not necessarily have to be continuous from a subordinate address and any of the chip enable signals can be used to assign areas in memory. However, in the MPU mode, program memory must be assigned to $\overline{\text{CE0}}$. In the expanded 512K mode, the address range of each of the $\overline{\text{CE}}$ signals is fixed. In the expanded 64K mode, the four address ranges, which match the amount of memory in use, are selected with registers CEMD0 and CEMD1.

These signals are only output when the appointed external memory area is accessed and are not output when internal memory is accessed.

Table 5.2.2.1 Address settings of $\overline{CE0}$ - $\overline{CE3}$

(1) Expanded 64K mode + MCU mode (E0C88316)

CEMD1	CEMD0	Chip size	CE0 CE1		CE2	CE3
1	1	64K bytes	004000H-00EFFFH	-	-	-
1	0	32K bytes	004000H-007FFFH	008000H-00EFFFH	-	-
0	1	16K bytes	-	004000H-007FFFH	008000H-00BFFFH	00C000H-00EFFFH
0	0	8K bytes	008000H-009FFFH	00A000H-00BFFFH	004000H-005FFFH	006000H-007FFFH

(2) Expanded 64K mode + MCU mode (E0C88308)

CEMD1	CEMD0	Chip size	CE0	CE1	CE2	CE3
1	1	64K bytes	002000H-00EFFFH	-	-	-
1	0	32K bytes	002000H-007FFFH	008000H-00EFFFH	-	-
0	1	16K bytes	002000H-003FFFH	004000H-007FFFH	008000H-00BFFFH	00C000H-00EFFFH
0	0	8K bytes	008000H-009FFFH	002000H-003FFFH	004000H-005FFFH	006000H-007FFFH

(3) Expanded 64K mode + MPU mode (E0C88348/317/316/308)

CEMD1	CEMD0	Chip size	CE0	CE1	CE2	CE3
1	1	64K bytes	000000H-00EFFFH	-	-	-
1	0	32K bytes	000000H-007FFFH	008000H-00EFFFH	-	-
0	1	16K bytes	000000H-003FFFH	004000H-007FFFH	008000H-00BFFFH	00C000H-00EFFFH
0	0	8K bytes	000000H-001FFFH	002000H-003FFFH	004000H-005FFFH	006000H-007FFFH

(4) Expanded 512K minimum/maximum modes (E0C88348/317/316/308)

CE signal	Address range					
CL Signal	MCU mode	MPU mode				
CE0	200000H-27FFFFH	000000H-00EFFFH, 010000H-07FFFFH				
CE1	080000H-0FFFFH	080000H-0FFFFH				
CE2	100000H-17FFFFH	100000H-17FFFFH				
CE3	180000H-1FFFFFH	180000H-1FFFFFH				

Notes: • "Expanded 64K mode + MCU mode" cannot be selected in the E0C88348/317.

 The CE terminal status when the HALT or SLP instruction is executed in the external program memory is different depending on the model as follows: E0C88348/317

The \overline{CE} terminal goes HIGH when the CPU enters HALT or SLEEP status.

E0C88316/88308

The \overline{CE} terminal does not change its status when the CPU enters HALT or SLEEP status, so the external ROM access status will be maintained.

5.2.3 WAIT state settings

In order to insure accessing of external low speed devices during high speed operations, the E0C883xx is equipped with a WAIT function which prolongs access time.

The number of wait states inserted can be selected from a choice of eight as shown in Table 5.2.3.1 by means of registers WT0–WT2.

		0	5
WT2	WT1	WT0	Number of inserted states
1	1	1	14
1	1	0	12
1	0	1	10
1	0	0	8
0	1	1	6
0	1	0	4
0	0	1	2
0	0	0	No wait

* A state is 1/2 cycles of the clock in length.

WAIT states set in software are inserted between bus cycle states T3–T4.

Note, however, that WAIT states cannot be inserted when an internal register and internal memory are being accessed and when operating with the OSC1 oscillation circuit (see "5.4 Oscillation Circuits and Operating Mode").

Consequently, WAIT state settings in single chip mode are meaningless.

With regard to WAIT insertion timing, see Section 3.6.5, "WAIT control".

5.2.4 Setting the bus authority release request signal

With systems performing DMA transfer, the bus authority release request signal (\overline{BREQ}) input terminal and acknowledge signal (\overline{BACK}) output terminal have to be set.

The BREQ input terminal is shared with input port terminal K11 and the BACK output terminal with output port terminal R51. At initial reset, these terminal facilities are set as input port terminal and output port terminal, respectively. The terminals can be altered to function as BREQ/BACK terminals by writing a "1" to register EBR. Since there is no bus authority release function in the E0C88308, register EBR in the E0C88308 is usable as a general purpose register with read/ write capabilities.

For details on bus authority release, see "3.6.6 Bus authority release state" and "E0C88 Core CPU Manual".

5.2.5 Stack page setting

Although the stack area used to evacuate registers during subroutine calls can be arbitrarily moved to any area in data RAM using the stack pointer SP, its page address is set in registers SPP0–SPP7 in I/O memory.

At initial reset, SPP0–SPP7 are set to "00H" (page 0).

Since the internal RAM is arranged on page 0 (E0C88348/317/316: 00F000H–00F7FFH, E0C88308: 00F000H–00F0FFH), the stack area in single chip mode is inevitably located in page 0. In expanded 64K mode where RAM is externally expanded, stack page is likewise limited to page 0. In order to place the stack area at the final address in internal RAM, the stack pointer SP is placed at an initial setting of "F800H" (E0C88348/317/316) or "F100H" (E0C88308). (SP is pre-decremented.)

In the expanded 512K mode, to place the stack in external expanded RAM, set a corresponding page to SPP0–SPP7. The page addresses to which SPP0–SPP7 can be set are 00H–27H and must be within a RAM area.

* A page is each recurrent 64K division of data memory beginning at address zero.

5.2.6 Control of system controller

Table 5.2.6.1 shows the control bits for the system controller.

<i>Table 5.2.6.1(a)</i>	System	controller	control hi	ts (MCII mode)
<i>Tuble 5.2.0.1(u)</i>	system	comfoner	common bi	is (MCO mode)

Address	Bit	Name			unction	1	0	SR	R/W	Comment	
00FF00			Bus mode (<u> </u>	0	R/W	
(MCU)		Boind	BSMD1			ode					
(1100)			1	1		Maximum)					
		BSMD0	1	0		/inimum)			0	D/W	
		DSIVIDU				(IIIIIIIIIIII)				R/W	
			0	1	64K						
		0	0	0	Single c	hip					
	D5	CEMD1	Chip enable CEMD1 Cl		N	/Iode			1	R/W	5
			$\frac{\text{CEMDT}}{1}$		64K (CE0)	loue					bus mode
			1	0	32K (CE0, C	E1)					*1
	D4	CEMD0	0	1	16K (CE0-CE3	E0C88308)			1	R/W	
					(CE0-CE3 (CE1-CE3						
			0	0	8K (CE0-C						
	D3	CE3	CE3 (R33)	\overline{CE} size	nal output I	Enable/Disable	CE3 enable	CE3 disable	0	R/W	In the Single chip
	D2	CE2	CE2 (R32)	-	-		$\overline{\text{CE2}}$ enable	$\overline{\text{CE2}}$ disable	0	R/W	mode, these setting
	D1	CE1	CE1 (R31)		e: CE sign	-	CE1 enable	CE1 disable	0	R/W	are fixed at DC
	D0	CE0	CE0 (R30)_	Disabl	e: DC (R3)	x) output	CE0 enable	$\overline{\text{CE0}}$ disable	0	R/W	output.
00FF01	D7	SPP7	Stack pointe	er page	address	(MSB)	1	0	0	R/W	
	D6	SPP6	_			1	0	0	R/W		
	D5	SPP5	< SP page a	llocatat	le address >	>	1	0	0	R/W	
	D4	SPP4	Single chi			1	0	0	R/W		
	D3	SPP3	• 64K mode	-	only 0 pag		1	0	0	R/W	
	D2		• 512K (mir	1) mode		1	0	0	R/W		
	D1		• 512K (max			1	0	0	R/W		
	D0	SPP0	, î	,	1 4	(LSB)	1	0	0	R/W	
00FF02			Bus release	enable	able register K11 BREQ Input port				*2		
	D7 EBR	EBR			-	cation) R51	BACK	Output port	0	R/W	
			Wait contro		-	Number					
	D6	WT2	WT2	WT1	WT0	of state					
			1	1	$-\frac{1}{1}$	14					
			1	1	0	12					
	D5	WT1	1	0	1	10			0	R/W	
	05		1	0	0	8					
			0	1	1	6					
		WTO	0	1 0	0 1	4					
	D4	WT0	0	0	0	2 No wait					
			-			i wan	00000	0000		D /11	
			CPU operat	0		1	OSC3	OSC1	0	R/W	
	D2	OSCC	OSC3 oscill			01	On	Off	0	R/W	
		VDC1	Operating n	iode sel	ection						
	D1	VDC1	VDC1	VDC0	Operat	ting mode					
			1	×	High spee	d (VD1=3.3V)			0	R/W	
			0	1		er (VD1=1.3V)					
	D0	VDC0	0	0	Normal	(VD1=2.2V)					

*1 This is just R/W register on E0C88348/317. *2 This is just R/W register on E0C88308.

Note: All the interrupts including NMI are disabled, until you write the optional value into both the "00FF00H" and "00FF01H" addresses.

Address	Bit	Name			unction	composer ce	1	0	SR	R/W	Comment
00FF00		BSMD1	Bus mode (Ŭ	*	R/W	
(MPU)			BSMD1								be selected among 3
(1	1		aximum)					types (64K, 512K
	D6	BSMD0	1	0	512K (M				*	R/W	min and 512K max)
		Dombo	0	1	64K						by mask option
			0	0		selection \blacktriangleleft					setting.
	D5	CEMD1	Chip enable		opuon	Seree and a			1	R/W	-
		02	CEMD1) Mo	ode			-	10.11	bus mode
			1	1	64K (CE						
	D4	CEMD0	1	0	32K (CE				1	R/W	
		0 E III E O	0	1	16K (CE						
			0	0	8K (CE	,					
	50	CE3	CE3 (R33)		OK (CL	0 CL3)	CE3 enable	CE3 disable	0	R/W	
		CE2	$\overline{CE2}$ (R33)	CE sign	nal output E	nable/Disable	$\overline{CE2}$ enable	$\overline{CE2}$ disable	0	R/W	
		CE1	$\overline{\text{CE1}}$ (R32)	Enable	: CE signa	l output	$\overline{CE1}$ enable	$\overline{CE1}$ disable	0	R/W	
		CE0	$\overline{CE0}$ (R30)	Disable	e: DC (R3x) output	$\overline{CE0}$ enable	$\overline{CE0}$ disable	1	R/W	
00FF01		SPP7	Stack point	er nage a	ddress	(MSB)	1	0	0	R/W	
001101		SPP6	Stack point	er page a	laaress	(MDD)	1	0	0	R/W	
		SPP5	< SP page a	allocatab	le address >		1	0	0	R/W	
		SPP4			only 0 page		1	0	0	R/W	
		SPP3	• 64K mode	•	only 0 page		1	0	0	R/W	
		SPP2			0–27H pag		1	0	0	R/W	
		SPP1	-		0–2711 pag :0–2711 pag		1	0	0	R/W	
		SPP0	- 512 K (IIIa	(X) mode	. 0–2711 pag	(LSB)	1	0	0	R/W	
00FF02	00	5110	Bus release	anabla r	agistar	(L3B) K11	BREQ	Input port	0		*1
001102	D7	EBR			-	ation) R51	BACK	Output port	0	R/W	1
	-		Wait control		-		DACK	Output port			
	ПА	WT2	WT2	WT1	WT0	Number of state					
			$\frac{w_{12}}{1}$	1	$-\frac{w_{10}}{1}$	<u>14</u>					
			1	1	0	14					
	D5	WT1	1	0	1	10			0	R/W	
			1	0	0	8			0		
			0	1 1	1 0	6					
	D4	wто	0	0	1	4 2					
	04	WIO	0	0	0	No wait					
	D3	СІ КСНС	CPU operat	ting cloc	k switch		OSC3	OSC1	0	R/W	
		OSCC	-	-	n/Off contro	1	On	Off	0	R/W	
	02		Operating n			1			0		
	D1	VDC1			Luon						
			VDC1	VDC0		ng mode					
			1	×	• •	(VD1=3.3V)			0	R/W	
	0	VDC0	0	1	-	(VD1=1.3V)					
			0	0	Normal	(VD1=2.2V)					

Table 5.2.6.1(b) System controller control bits (MPU mode)

*1 This is just R/W register on E0C88308.

Note: All the interrupts including $\overline{\text{NMI}}$ are disabled, until you write the optional value into both the "00FF00H" and "00FF01H" addresses.

BSMD0, BSMD1: 00FF00H•D6, D7

Bus modes are set as shown in Table 5.2.6.2.

Setting	values	Bus mode				
BSMD1	BSMD0	Bus mode				
1	1	Expanded 512K maximum mode				
1	0	Expanded 512K minimum mode				
0	1	Expanded 64K mode				
0	0	Single chip mode (MCU)				
		Optional setting of one of the				
		expanded modes (MPU)				

Table 5.2.6.2 Bus mode settings

The single chip mode setting is only possible when this IC is used in the MCU mode. The single chip mode setting is incompatible with the MPU mode, since this mode does not utilize internal ROM. When using in the MPU mode, it is necessary to select the bus mode at the time of the initial resetting and at the time of the <BSMD1 = "0" and BSMD0 = "0"> setting from among the three types of expanded modes (expanded 64K mode, expanded 512K minimum mode and expanded 512K maximum mode) by mask option. Select the expanded 512K maximum mode for this

option, when the MPU mode is not used at all. At initial reset, in the MCU mode the unit is set to single chip mode and in the MPU mode the mask option is used to select the applicable mode.

CEMD0, CEMD1: 00FF00H•D4, D5

Sets the $\overline{\text{CE}}$ signal address range (valid only in the expanded 64K mode).

Settings are made according to external memory chip size as shown in Table 5.2.6.3.

CEMD1	CEMD0	Address range	Usable terminals						
1	1	64K bytes	CE0						
1	0	32K bytes	$\overline{\text{CE0}}, \overline{\text{CE1}}$						
0	1	16K bytes	CE0-CE3						
			CE1-CE3E0C88316 *						
0	0	8K bytes	CE0-CE3						

Table 5.2.6.3 \overline{CE} signal settings

* At the case of MPU mode, $\overline{CE0}$ - $\overline{CE3}$.

These settings are invalid for any mode other than expanded 64K mode.

At initial reset, each register is set to "1" (64K bytes).

CE0-CE3: 00FF00H•D0-D3

Sets the \overline{CE} output terminals being used.

When "1" is written:	CE output enable
When "0" is written:	CE output disable
Reading:	Valid

 $\overline{\text{CE}}$ output is enabled when a "1" is written to registers CE0–CE3 which correspond to the $\overline{\text{CE}}$ output being used. A "0" written to any of the registers disables $\overline{\text{CE}}$ signal output from that terminal and it reverts to its alternate function as an output port terminal (R30–R33).

At initial reset, register CE0 is set to "0" in the MCU mode and in the MPU mode, "1" is set in the register. Registers CE1–CE3 are always set to "0" regardless of the MCU/MPU mode setting.

SPP0-SPP7: 00FF01H

Sets the page address of stack area. In single chip mode and expanded 64K mode, set page address to "00H".

In expanded 512K mode, it can be set to any value within the range "00H"–"27H".

Since a carry and borrow from/to the stack pointer SP is not reflected in register SPP, the upper limit on continuous use of the stack area is 64K bytes. At initial reset, this register is set to "00H" (page 0).

Note: To avoid a malfunction from an interrupt generated before the bus configuration is initialized, all interrupts including $\overline{\text{NMI}}$ are disabled, until you write an optional value into "00FF01H" address. Furthermore, to avoid generating an interrupt while the stack area is being set, all interrupts including $\overline{\text{NMI}}$ are disabled in one instruction execution period after writing to address "00FF01H".

Note: To avoid a malfunction from an interrupt generated before the bus configuration is initialized, all interrupts including MMI are masked until you write an optional value into address "00FF00H".

WT0-WT2: 00FF02H•D4-D6

How WAIT state settings are performed. The number of WAIT states to be inserted based on register settings is as shown in Table 5.2.6.4.

Table 5.2.6.4	Setting	WAIT states
---------------	---------	-------------

WT2	WT1	WT0	No. of inserted states
1	1	1	14
1	1	0	12
1	0	1	10
1	0	0	8
0	1	1	6
0	1	0	4
0	0	1	2
0	0	0	No wait

* A state is 1/2 cycles of the clock in length.

At initial reset, this register is set to "0" (no wait).

EBR: 00FF02H•D7

Sets the $\overline{BREQ}/\overline{BACK}$ terminals function.

When "1" is written:BREQBACK enabledWhen "0" is written:BREQBACK disabledReading:Valid

How BREQ and BACK terminal functions are set. Writing "1" to EBR enables BREQ/BACK input/ output. Writing "0" sets the BREQ terminal as input port terminal K11 and the BACK terminal as output port terminal R51.

At initial reset, EBR is set to "0" ($\overline{BREQ}/\overline{BACK}$ disabled).

5.2.7 Programming notes

- (1) All the interrupts including MMI are masked, until you write the optional value into both the "00FF00H" and "00FF01H" addresses. Consequently, even if you do not change the content of this address (You use the initial value, as is.), you should still be sure to perform the writing operation using the initialization routine.
- (2) When setting stack fields, including page addresses as well, you should write them in the order of the register SPP ("00FF01H") and the stack pointer SP.

Example: When setting the "178000H" address

LD EP, #00H LD HL, #0FF01H

LD

- LD HL, #0FF01H LD [HL], #17H ____ Du
 - [HL], #17H During this period the interrupts (including
 - SP, #8000H \square $\frac{\text{Interrupts (including SP, #8000H)}}{\text{NMI}}$ are masked.

5.3 Watchdog Timer

5.3.1 Configuration of watchdog timer

The E0C883xx is equipped with a watchdog timer driven by OSC1 as source oscillation. The watchdog timer must be reset periodically in software, and if reset of more than 3–4 seconds (when fOSC1 = 32.768 kHz) does not take place, a non-maskable interrupt signal is generated and output to the CPU.

Figure 5.3.1.1 is a block diagram of the watchdog timer.

Fig. 5.3.1.1 Block diagram of watchdog timer

By running watchdog timer reset during the main routine of the program, it is possible to detect program runaway as if watchdog timer processing had not been applied. Normally, this routine is integrated at points that are regularly being processed.

The watchdog timer continues to operate during HALT and when a HALT state is continuous for longer than 3–4 seconds, the CPU shifts to exception processing.

During SLEEP, the watchdog timer is stopped.

5.3.2 Interrupt function

In cases where the watchdog timer is not periodically reset in software, the watchdog timer outputs an interrupt signal to the CPU's $\overline{\text{NMI}}$ (level 4) input. Unmaskable and taking priority over other interrupts, this interrupt triggers the generation of exception processing. See the "E0C88 Core CPU Manual" for more details on $\overline{\text{NMI}}$ exception processing.

This exception processing vector is set at 000004H.

5.3.3 Control of watchdog timer

Table 5.3.3.1 shows the control bits for the watch-dog timer.

WDRST: 00FF40H•D2

Resets the watchdog timer.

When "1" is written:	Watchdog timer is reset
When "0" is written:	No operation
Reading:	Constantly "0"

By writing "1" to WDRST, the watchdog timer is reset, after which it is immediately restarted. Writing "0" will mean no operation. Since WDRST is for writing only, it is constantly set to "0" during readout.

5.3.4 Programming notes

- (1) The watchdog timer must reset within 3-second cycles by software.
- (2) Do not execute the SLP instruction for 2 msec after a \overline{NMI} interrupt has occurred (when fosc1 is 32.768 kHz).

Address	Bit	Name	Function			1	0	SR	R/W	Comment	
00FF40	D7	-	_				-	-	_		"0" when being read
	D6	FOUT2	FOUT fr	equency	selection				0	R/W	
		FOUT1 FOUT0	FOUT2 0 0 0 1 1 1 1 1	FOUT1 0 1 1 0 0 1 1 1	FOUT0 0 1 0 1 0 1 0 1 0 1	Frequency fosc1 / 1 fosc1 / 2 fosc1 / 4 fosc1 / 8 fosc3 / 1 fosc3 / 2 fosc3 / 4 fosc3 / 8			0	R/W R/W	
	D3	FOUTON	FOUT ou	tput con	trol		On	Off	0	R/W	
	D2	WDRST	Watchdo	g timer r	eset		Reset	No operation	_	W	Constantly "0" when
	D1	TMRST	Clock tin	ner reset			Reset	No operation	_	W	being read
	D0	TMRUN	Clock tin	her Run/	Stop conti	ol	Run	Stop	0	R/W	

Table 5.3.3.1 Watchdog timer control bits

5.4 Oscillation Circuits and Operating Mode

5.4.1 Configuration of oscillation circuits

The E0C883xx is twin clock system with two internal oscillation circuits (OSC1 and OSC3). OSC1 oscillation circuit generates the 32.768 kHz (Typ.) main clock and OSC3 oscillation circuit the sub-clock when the CPU and some peripheral circuits (output port, serial interface and programmable timer) are in high speed operation. Figure 5.4.1.1 shows the configuration of the oscillation circuit.

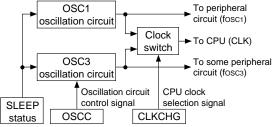


Fig. 5.4.1.1 Configuration of oscillation circuits

At initial reset, OSC1 oscillation circuit is selected for the CPU operating clock and OSC3 oscillation circuit is in a stopped state. ON/OFF switching of the OSC3 oscillation circuit and switching of the system clock between OSC1 and OSC3 are controlled in software. OSC3 circuit is utilized when high speed operation of the CPU and some peripheral circuits become necessary. Otherwise, OSC1 should be used to generate the operating clock and OSC3 circuit placed in a stopped state in order to reduce current consumption.

5.4.2 Mask option

- Crystal oscillation circuit
- □ External clock input
- CR oscillation circuit
- Crystal oscillation circuit (gate capacitor built-in)

- □ Crystal oscillation circuit
- Ceramic oscillation circuit
- □ CR oscillation circuit
- External clock input

In terms of the oscillation circuit types for OSC1, either crystal oscillation, CR oscillation, crystal oscillation (gate capacitor built-in) or external clock input can be selected with the mask option. In terms of oscillation circuit types for OSC3, either crystal oscillation, ceramic oscillation, CR oscillation or external clock input can be selected with the mask option, in the same way as OSC1.

5.4.3 OSC1 oscillation circuit

The OSC1 oscillation circuit generates the 32.768 kHz (Typ.) system clock which is utilized during low speed operation (low power mode) of the CPU and peripheral circuits. Furthermore, even when OSC3 is utilized as the system clock, OSC1 continues to generate the source clock for the clock timer and stopwatch timer.

This oscillation circuit stops when the SLP instruction is executed. However, in case the SVD circuit is executing an SLP instruction, oscillation is stopped in synchronization with the completion of sampling. In terms of the oscillation circuit types, either crystal oscillation, CR oscillation, crystal oscillation (gate capacitor built-in) or external clock input can be selected with the mask option.

Figure 5.4.3.1 shows the configuration of the OSC1 oscillation circuit.

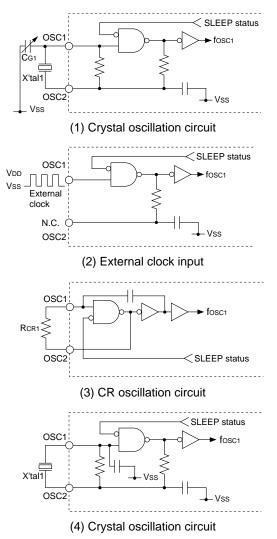
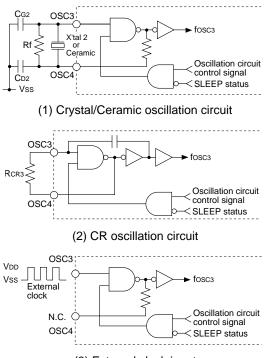


Fig. 5.4.3.1 OSC1 oscillation circuit (gate capacitor built-in)

When crystal oscillation is selected, a crystal oscillation circuit can be easily formed by connecting a crystal oscillator X'tal1 (Typ. 32.768 kHz) between the OSC1 and OSC2 terminals along with a trimmer capacitor CG1 (5–25 pF) between the OSC1 terminal and Vss.


In addition, the gate capacitor CG1 (5 pF) can be built into the circuit by the mask option. When CR oscillation is selected, connect a resistor (RCR1) between the OSC1 and OSC2 terminals. When external input is selected, release the OSC2 terminal and input the rectangular wave clock into the OSC1 terminal.

5.4.4 OSC3 oscillation circuit

The OSC3 oscillation circuit generates the system clock when the CPU and some peripheral circuits (output port, serial interface and programmable timer) are in high speed operation.

This oscillation circuit stops when the SLP instruction is executed, or the OSCC register is set to "0". In terms of oscillation circuit types, any one of crystal oscillation, ceramic oscillation, CR oscillation or external clock input can be selected with the mask option.

Figure 5.4.4.1 shows the configuration of the OSC3 oscillation circuit.

(3) External clock input

Fig. 5.4.4.1 OSC3 oscillation circuit

When crystal or ceramic oscillation circuit is selected, the crystal or ceramic oscillation circuit are formed by connecting either a crystal oscillator (X'tal2) or a combination of ceramic oscillator (Ceramic) and feedback resistor (Rf) between OSC3 and OSC4 terminals and connecting two capacitors (CG2, CD2) between the OSC3 terminal and VSS, and between the OSC4 terminal and VSS, respectively. When CR oscillation is selected, the CR oscillation circuit is formed merely by connecting a resistor (RCR3) between OSC3 and OSC4 terminals. When external input is selected, release the OSC4 terminal and input the rectangular wave clock into the OSC3 terminal.

5.4.5 Operating mode

You can select three types of operating modes using software, to obtain a stable operation and good characteristics (operating frequency and current consumption) over a broad operation voltage. Here below are indicated the features of the respective modes.

- Normal mode (VDD = 2.4 V–5.5 V) This mode is set following the initial reset. It permits the OSC3 oscillation circuit (Max. 4.2 MHz) to be used and also permits relative low power operation.
- Low power mode (VDD = 1.8 V-3.5 V) This is a lower power mode than the normal mode. It makes ultra-low power consumption possible by operation on the OSC1 oscillation circuit, although the OSC3 circuit cannot be used.
- High speed mode (VDD = 3.5 V–5.5 V) This mode permits higher speed operation than the normal mode. Since the OSC3 oscillation circuit (Max. 8.2 MHz) can be used, you should use this mode, when you require operation at 4.2 MHz or more. However, the current consumption will increase relative to the normal mode.

Using software to switch over among the above three modes to meet your actual usage circumstances will make possible a low power system. For example, you will be able to reduce current consumption by switching over to the normal mode when using the OSC3 as the CPU clock and, conversely, changing over to the low power mode when using the OSC1 as the CPU clock (OSC3 oscillation circuit is OFF). Note: Do not turn the OSC3 oscillation circuit ON in the low power mode. Do not switch over the operating mode (normal mode ↔ high speed mode) in the OSC3 oscillation circuit ON status, as this will cause faulty operation. You can not use two modes, the low power mode and the high speed mode on one application, with respect to the operating voltages.

When CR oscillation is selected for the OSC1 oscillation circuit, the operating mode is fixed in the normal mode to stabilize the oscillation frequency. Consequently, settings of the mode setting registers VDC0 and VDC1 become invalid.

5.4.6 Switching the CPU clocks

You can use either OSC1 or OSC3 as the system clock for the CPU and you can switch over by means of software.

You can save power by turning the OSC3 oscillation circuit off while the CPU is operating in OSC1. When you must operate on OSC3, you can change to high speed operation by turning the OSC3 oscillation circuit ON and switching over the system clock. In this case, since several msec to several tens of msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit ON, you should switch over the clock after stabilization time has elapsed. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".)

When switching over from the OSC3 to the OSC1, turn the OSC3 oscillation circuit OFF immediately following the clock changeover. The basic clock switching procedure is as described above, however, you must also combine it with the changeover of the operating mode to permit low current consumption and high speed operation. Figure 5.4.6.1 indicates the status transition diagram for the operation mode and clock changeover.

Note: When turning ON the OSC3 oscillation circuit after switching the operating mode, you should allow a minimum waiting time of 5 msec.

	CLKCHG=1 High speed mode
OSC1 ON OSC1 ON	OSC1 ON
OSC3 OFFOSC3 ON	■ OSC3 ON
CPU clock OSC1 OSCC=0 CPU clock OSC1	CLKCHG=0 CPU clock OSC3
VDC0=× VDC0=0	
VDC1=1 VDC1=0	
Normal mode OSCC=1 Normal mode	CLKCHG=1 Normal mode
OSC1 ON OSC1 ON	OSC1 ON
OSC3 OFF OSC3 ON	OSC3 ON
CPU clock OSC1 OSCC=0 CPU clock OSC1	CLKCHG=0 CPU clock OSC3
VDC0=0 VDC0=1	
VDC1=0 VDC1=0	
Low power mode	
OSC1 ON	
OSC3 OFF	
CPU clock OSC1	
Interrupt [*] HALT instruction Interru	
(Input inte	errupt)
	↓ ↓
HALT status	SLEEP status
OSC1 ON	OSC1 OFF
OSC3 ON or OFF	OSC3 OFF
CPU clock STOP	CPU clock STOP
Standby Status	
Standby Status	

Program Execution Status

Fig. 5.4.6.1 Status transition diagram for the operation mode and clock changeover

* The return destination from the standby status becomes the program execution status prior to shifting to the standby status

5.4.7 Control of oscillation circuit and operating mode

Table 5.4.7.1 shows the control bits for the oscillation circuits and operating modes.

Address	Bit	Name		F	unction			1	0	SR	R/W	Comment
00FF02	דח	07 EBR	Bus release enable register K11				BREQ	Input port	0 R	R/W	*1	
			(K11 and	R51 term	inal specific	ation)	R51	BACK	Output port	0	K/ W	
			Wait control register Number									
	D6	WT2	WT2	WT1	WT0	of s	tate					
			1	1	1	1	4			0		
			1	1	0	1						
	D5	D5 WT1	1	0 0	1	1	-				R/W	
			0	1	1	8						
			0	1	0	4	, L					
	D4	Ο4 WT0	0	0	1	2	2					
			0	0	0	Nov	wait					
	D3	CLKCHG	CPU oper	ating cloc	k switch			OSC3	OSC1	0	R/W	
	D2	OSCC	OSC3 osc	illation O	n/Off contro	ol		On	Off	0	R/W	
			Operating	mode sel	ection							
	D1	VDC1	VDC1	VDC0	Operat	ing mod	ام					
			$\frac{\sqrt{DC1}}{1}$	×	High speed					0	DAV	
			0	1	Low powe					0	R/W	
	D0	VDC0	0	-			,					
			0	0	Normal	(VD1=	2.2V)					

 Table 5.4.7.1 Oscillation circuit and operating mode control bits

*1 This is just R/W register on E0C88308.

VDC1, VDC0: 00FF02H•D1, D0

Selects the operating mode according to supply voltage and operating frequency. Table 5.4.7.2 shows the correspondence between register preset values and operating modes.

Table 5.4.7.2	Correspondence between register
	preset values and operating modes

Operating mode	VDC1	VDC0	VD1	Power voltage	Operating frequency
Normal mode	0	0	2.2 V	2.4–5.5 V	4.2 MHz (Max.)
Low power mode	0	1	1.3 V	1.8–3.5 V	50 kHz (Max.)
High speed mode	1	×	3.3 V	3.5–5.5 V	8.2 MHz (Max.)

* The VD1 voltage is the value where VSS has been made the standard (GND).

At initial reset, this register is set to "0" (normal mode).

OSCC: 00FF02H•D2

Controls the ON and OFF settings of the OSC3 oscillation circuit.

When "1" is written:OSC3 oscillation ONWhen "0" is written:OSC3 oscillation OFFReading:Valid

When the CPU and some peripheral circuits (output port, serial interface and programmable timer) are to be operated at high speed, OSCC is to be set to "1". At all other times, it should be set to "0" in order to reduce current consumption. At initial reset, OSCC is set to "0" (OSC3 oscillation OFF).

CLKCHG: 00FF02H•D3

Selects the operating clock for the CPU.

When "1" is written: OSC3 clock When "0" is written: OSC1 clock Reading: Valid

When the operating clock for the CPU is switched to OSC3, CLKCHG should be set to "1" and when the clock is switched to OSC1, CLKCHG should be set to "0".

At initial reset, CLKCHG is set to "0" (OSC1 clock).

5.4.8 Programming notes

- When the high speed CPU operation is not necessary, you should operate the peripheral circuits according to the setting outline indicate below.
 - CPU operating clock OSC1
 - OSC3 oscillation circuit OFF (When the OSC3 clock is not necessary for some peripheral circuits.)
 - Operating mode Low power mode (When VDD–Vss is 3.5 V or less) or Normal mode (When VDD–Vss is 3.5 V or more)
- (2) Do not turn the OSC3 oscillation circuit ON in the low power mode.
 Do not switch over the operating mode (normal mode ↔ high speed mode) in the OSC3 oscillation circuit ON status, as this will cause faulty operation.
- (3) When turning ON the OSC3 oscillation circuit after switching the operating mode, you should allow a minimum waiting time of 5 msec.
- (4) Since several msec to several tens of msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit ON. Consequently, you should switch the CPU operating clock (OSC1 → OSC3) after allowing for a sufficient waiting time once the OSC3 oscillation goes ON. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERIS-TICS".)
- (5) When switching the clock from OSC3 to OSC1, be sure to switch OSC3 oscillation OFF with separate instructions. Using a single instruction to process simultaneously can cause a malfunction of the CPU.

5.5 Input Ports (K ports)

5.5.1 Configuration of input ports

The E0C88348/317/316 is equipped with 10 input port bits (K00–K07, K10 and K11) and the E0C88308 is equipped with 9 input port bits (K00–K07, K10) all of which are usable as general purpose input port terminals with interrupt function.

K10 terminal doubles as the external clock (EVIN) input terminal of the programmable timer (event counter) with input port functions sharing the input signal as is. (See "5.11 Programmable Timer")

Furthermore, it should be noted, however, that K11 terminal (K11 is not available in the E0C88308) is shared with the bus authority release request signal (BREQ) input terminal. Function assignment of this terminal can be selected in software. When this terminal is selected for BREQ signal, K11 cannot be used as an input port. (See "5.2 System Controller and Bus Control")

In the explanation below, it is assumed that K11 is set as an input port.

Each input port is equipped with a pull-up resistor. The mask option can be used to select either "With resistor" or "Gate direct" for each input port. Figure 5.5.1.1 shows the structure of the input port.

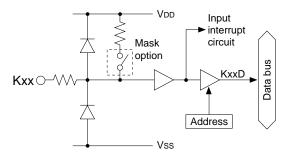


Fig. 5.5.1.1 Structure of input port

Each input port terminal is directly connected via a three-state buffer to the data bus. Furthermore, the input signal state at the instant of input port readout is read in that form as data.

5.5.2 Mask option

Input port pull-up resis	tors
K00 🗆 With resistor	\Box Gate direct
K01 🗆 With resistor	\Box Gate direct
K02 🗆 With resistor	\Box Gate direct
K03 🗆 With resistor	\Box Gate direct
K04 🗆 With resistor	\Box Gate direct
K05 🗆 With resistor	\Box Gate direct
K06 🗆 With resistor	\Box Gate direct
K07 🗆 With resistor	\Box Gate direct
K10 🗆 With resistor	□ Gate direct
K11 🗆 With resistor	

* K11 is not available in the E0C88308

Input ports K00–K07, K10 and K11 (K11 is not available in the E0C88308) are all equipped with pull-up resistors. The mask option can be used to select 'With resistor' or 'Gate direct' for each port (bit).

The 'With resistor' option is rendered suitable for purposes such as push switch or key matrix input. When changing the input terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an input port. In particular, special attention should be paid to key scan for key matrix formation. Make this wait time the amount of time or more calculated by the following expression.

Wait time = Rוא x (Cוא + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

When 'Gate direct' is selected, the pull-up resistor is detached and the port is rendered suitable for purposes such as slide switch input and interfacing with other LSIs.

In this case, take care that a floating state does not occur in input.

For unused input ports, select the default setting of "With resistor".

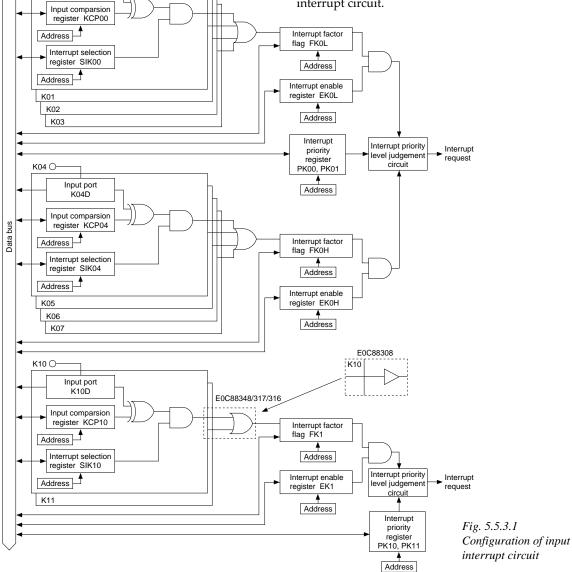
5.5.3 Interrupt function and input comparison register

Input port K00–K07, K10 and K11 (K11 is not available in the E0C88308) are all equipped with an interrupt function. These input ports are divided into three groupings: K00–K03 (K0L), K04–K07 (K0H) and K10–K11 (K1). Furthermore, the interrupt generation condition for each series of terminals can be set by software.

When the interrupt generation condition set for each series of terminals is met, the interrupt factor flag FK0L, FK0H or FK1 corresponding to the applicable series is set at "1" and an interrupt is generated.

K00 ()

Input port K00D Interrupt can be prohibited by setting the interrupt enable registers EK0L, EK0H and EK1 for the corresponding interrupt factor flags. Furthermore, the priority level for input interrupt can be set at the desired level (0–3) using the


interrupt priority registers PK00–PK01 and PK10– PK11 corresponding to each of two groups K0x (K00–K07) and K1x (K10–K11).

For details on the interrupt control registers for the above and on operations subsequent to interrupt generation, see "5.16 Interrupt and Standby Status".

The exception processing vectors for each interrupt factor are set as follows:

K10 and K11 input interrupt:	00000AH
K04–K07 input interrupt:	00000CH
K00–K03 input interrupt:	00000EH

Figure 5.5.3.1 shows the configuration of the input interrupt circuit.

The interrupt selection registers SIK00–SIK03, SIK04–SIK07 and SIK10–SIK11 and input comparison registers KCP00–KCP03, KCP04–KCP07 and KCP10–KCP11 for each port are used to set the interrupt generation condition described above.

Input port interrupt can be permitted or prohibited by the setting of the interrupt selection register SIK. In contrast to the interrupt enable register EK which masks the interrupt factor for each series of terminals, the interrupt selection register SIK is masks the bit units.

The input comparison register KCP selects whether the interrupt for each input port will be generated on the rising edge or the falling edge of input.

When the data content of the input terminals in which interrupt has been permitted by the interrupt selection register SIK and the data content of the input comparison register KCP change from a conformity state to a non-conformity state, the interrupt factor flag FK should be set to "1" and an interrupt is generated.

Figure 5.5.3.2 shows an example of interrupt generation in the series of terminals K0L (K00–K03).

Because interrupt has been prohibited for K00 by the interrupt selection register SIK00, with the settings as shown in (2), an interrupt will not be generated.

Since K03 is "0" in the next settings (3) in the figure, the non-conformity between the input terminal data K01–K03 where interrupt is permitted and the data from the input comparison registers KCP01– KCP03 generates an interrupt.

In line with the explanation above, since the change in the contents of input data and input comparison registers KCP from a conformity state to a nonconformity state introduces an interrupt generation condition, switching from one non-conformity state to another, as is the case in (4) in the figure, will not generate an interrupt. Consequently, in order to be able to generate a second interrupt, either the input terminal must be returned to a state where its content is once again in conformity with that of the input comparison register KCP, or the input comparison register KCP must be reset. Input terminals for which interrupt is prohibited will not influence an interrupt generation condition.

Interrupt is generated in exactly the same way in the other two series of terminals K0H (K04–K07) and K1 (K10 and K11). (Only K10 belongs to K1 series of the E0C88308)

(Only KTO belongs to KT series of the E0C00000)

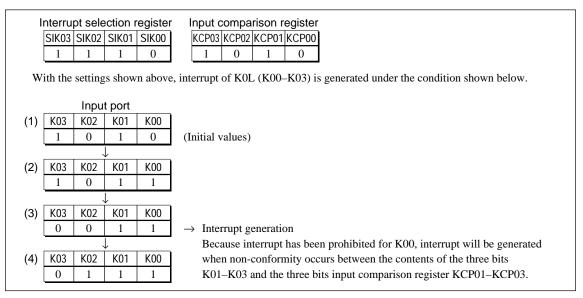


Fig. 5.5.3.2 Interrupt generation example in K0L (K00–K03)

5.5.4 Control of input ports

Table 5.5.4.1 shows the input port control bits.

Table 5 5 4 1	(a)	Input port control bits
<i>Table 5.5.4.1</i>	(a)	Input port control bus

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF50	D7	SIK07	K07 interrupt selection register					
	D6	SIK06	K06 interrupt selection register					
	D5	SIK05	K05 interrupt selection register					
		SIK04	K04 interrupt selection register	Interrupt	Interrupt			
	D3	SIK03	K03 interrupt selection register	enable		0	R/W	
		SIK02	K02 interrupt selection register					
		SIK01	K01 interrupt selection register					
		SIK00	K00 interrupt selection register					
00FF51	D7	_	_	_	-	_		
-	D6	_	_	_	_	-		
-	D5	_	_	_	_	-		Constantly "0" when
-	D4	_	-	_	_	_		being read
	D3	_	_	_	_	-		
	D2	_	_	_	_	_		
		SIK11	K11 interrupt selection register	Interrupt	Interrupt			*1
		SIK10	K10 interrupt selection register	enable	disable	0	R/W	-
00FF52		KCP07	K07 interrupt comparison register	chable	uisable			
0011.02		KCP06	K06 interrupt comparison register					
		KCP05	K05 interrupt comparison register	Interment	Interrupt			
		KCP03	K03 interrupt comparison register	Interrupt	1			
		KCP04 KCP03		generated	generated	1	R/W	
			K03 interrupt comparison register	at falling	at rising			
		KCP02	K02 interrupt comparison register	edge	edge			
		KCP01	K01 interrupt comparison register					
		KCP00	K00 interrupt comparison register					
00FF53	D7	-	-	-	-	-		-
	D6	-	-	-	-	-		
-	D5	-	-	-	-	-		Constantly "0" when
-	D4	-	-	-	-	-		being read
	D3	-	-	-	-	-		-
	D2	-	-	-	-	-		
	D1	KCP11	K11 interrupt comparison register	Falling	Rising	1	R/W	*2
	D0	KCP10	K10 interrupt comparison register	edge	edge	1	IC	
00FF54	D7	K07D	K07 input port data					
	D6	K06D	K06 input port data					
	D5	K05D	K05 input port data					
	D4	K04D	K04 input port data	High level	Low level			
	D3	K03D	K03 input port data	input	input	-	R	
	D2	K02D	K02 input port data					
	D1	K01D	K01 input port data					
	D0	K00D	K00 input port data					
00FF55	D7	_	-	-	-	_		
	D6	_	_	_	-	-		
-	D5	_		_	-			Constantly "0" wher
	D4	_		_	_	-		being read
	D3	_	_	_	_	-		come rout
	D2	_		_	_	-	<u> </u>	1
		– K11D	K11 input port data	- High level	Low level	-		*3
				l č		-	R	5
	D0	K10D	K10 input port data	input	input			

*1 Set constantly "0" on E0C88308.

*2 Set constantly "1" on E0C88308.

*3 Constantly "1" when being read on E0C88308.

Address	Bit	Name	Function	1		0	SR	R/W	Comment
00FF20	D7	PK01				0	DAV		
	D6	PK00	K00–K07 interrupt priority register	PK01 PK00		0	R/W		
	D5	PSIF1		PSIF1			0 6	D/W	
	D4	PSIF0	Serial interface interrupt priority register		PSW1 PSW0 Priority 0 PTM1 PTM0 level	0	R/W		
	D3	PSW1	Stopwatch timer interrupt priority register	1 1	1 0	Level 3 Level 2	0	R/W	
	D2	PSW0	Stopwatch timer interrupt priority register	0	1	Level 1	0	K/ W	
	D1	PTM1	Clock timer interrupt priority register	0	0	Level 0	0	0 R/W	
	D0	PTM0	Clock timer interrupt priority register				0	K/W	
00FF21	D7	-	_	-		-	-		
	D6	-	_	-		-	_		Constantly "0" when
	D5	-	_	-		-	_		being read
	D4	-	_	-		-	_		
	D3	PPT1	Programmable timer interrupt priority register	PPT1 PK11	PPT(0	R/W	
	D2	PPT0	r rogrammable unier interrupt priority register	$\frac{1 \text{ Km}}{1}$	1	Level 3		K/ W	
	D1	PK11	K10 and K11 interrupt priority register	1	0	Level 2 Level 1	0	R/W	
	D0	PK10	KTO and KTT interrupt priority register	0	0	Level 0	0	K/ W	
00FF23	D7	EPT1	Programmable timer 1 interrupt enable register						
	D6	EPT0	Programmable timer 0 interrupt enable register						
	D5	EK1	K10 and K11 interrupt enable register						
	D4	EK0H	K04–K07 interrupt enable register	Interru	ıpt	Interrupt	0	R/W	
	D3	EK0L	K00-K03 interrupt enable register	enabl	e	disable	0	K/ W	
		ESERR	Serial I/F (error) interrupt enable register						
	D1	ESREC	Serial I/F (receiving) interrupt enable register						
		ESTRA	Serial I/F (transmitting) interrupt enable register						
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)		(R)			
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interru	ıpt	No interrupt			
	D5	FK1	K10 and K11 interrupt factor flag	factor	is	factor is			
	D4	FK0H	K04–K07 interrupt factor flag	generat	ted	generated	0	R/W	
	D3	FK0L	K00–K03 interrupt factor flag				0	10/ 10	
		FSERR	Serial I/F (error) interrupt factor flag	(W)		(W)			
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Rese	t	No operation			
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag						

Table 5.5.4.1(b) Input port control bits

K00D-K07D: 00FF54H K10D, K11D: 00FF55H•D0, D1

Input data of input port terminal Kxx can be read out.

When "1" is read:	HIGH level
When "0" is read:	LOW level
Writing:	Invalid

The terminal voltage of each of the input port K00– K07, K10 and K11 (K11 is not available in the E0C88308) can be directly read out as either a "1" for HIGH (VDD) level or a "0" for LOW (Vss) level. This bit is exclusively for readout and are not usable for write operations.

In the E0C88308, [°]1" is constantly read out from K11D (00FF55H•D1).

SIK00-SIK07: 00FF50H SIK10, SIK11: 00FF51H•D0, D1

Sets the interrupt generation condition (interrupt permission/prohibition) for input port terminals K00–K07, K10 and K11.

When "1" is written:Interrupt permittedWhen "0" is written:Interrupt prohibitedReading:Valid

SIKxx is the interrupt selection register which correspond to the input port Kxx. A "1" setting permits interrupt in that input port and a "0" prohibits it. Changes of state in an input terminal in which interrupt is prohibited, will not influence interrupt generation.

At initial reset, this register is set to "0" (interrupt prohibited).

Set constantly "0" for SIK11 (00FF51H•D1) in the E0C88308.

KCP00-KCP07: 00FF52H KCP10, KCP11: 00FF53H•D0, D1

Sets the interrupt generation condition (interrupt generation timing) for input port terminals K00–K07, K10 and K11.

When "1" is written:	Falling edge
When "0" is written:	Rising edge
Reading:	Valid

KCPxx is the input comparison register which correspond to the input port Kxx. Interrupt in those ports which have been set to "1" is generated on the falling edge of the input and in those set to "0" on the rising edge.

At initial reset, this register is set to "1" (falling edge). Set constantly "1" for KCP11 (00FF53H•D1) in the E0C88308.

PK00, PK01: 00FF20H•D6, D7 PK10, PK11: 00FF21H•D0, D1

Sets the input interrupt priority level. The two bits PK00 and PK01 are the interrupt priority registers corresponding to the interrupts for K00–K07 (K0L and K0H). Corresponding to K10–K11 (K1), the two bits PK10 and PK11 perform the same function. Table 5.5.4.2 shows the interrupt priority level which can be set by this register.

Tuble 5.5.4.2 Interrupt priority level settings				
PK11	PK10	Interrupt priority lovel		
PK01	PK00	Interrupt priority leve		
1	1	Level 3 (IRQ3)		
1	0	Level 2 (IRQ2)		
0	1	Level 1 (IRQ1)		
0	0	Level 0 (None)		

Table 5.5.4.2 Interrupt priority level settings

At initial reset, this register is set to "0" (level 0).

EK0L, EK0H, EK1: 00FF23H•D3, D4, D5

How interrupt generation to the CPU is permitted or prohibited.

When "1" is written:Interrupt permittedWhen "0" is written:Interrupt prohibitedReading:Valid

The interrupt enable register EK0L corresponds to K00–K03, EK0H to K04–K07, and EK1 to K10–K11 (K11 is not available in the E0C88308).

Interrupt is permitted in those series of terminals set to "1" and prohibited in those set to "0".

At initial reset, this register is set to "0" (interrupt prohibited).

FK0L, FK0H, FK1: 00FF25H•D3, D4, D5

Indicates the generation state for an input interrupt.

When "1" is read:	Interrupt factor present
When "0" is read:	Interrupt factor not present
When "1" is written:	Reset factor flag

When "0" is written: Invalid

The interrupt factor flag FK0L corresponds to K00–K03, FK0H to K04–K07, and FK1 to K10–K11 (K11 is not available in the E0C88308) and they are set to "1" by the occurrence of an interrupt generation condition.

When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is all reset to "0".

5.5.5 Programming note

When changing the input terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an input port. In particular, special attention should be paid to key scan for key matrix formation. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

5.6 Output Ports (R ports)

5.6.1 Configuration of output ports

The E0C88348/317/316 is equipped with a 34-bit output port (R00–R07, R10–R17, R20–R27, R30–R37, R50, R51) and the E0C88308 is equipped with a 30-bit output port (R00–R07, R10–R17, R20–R27, R30–R34, R50).

Depending on the bus mode setting, the configuration of the output ports may vary as shown in the table below.

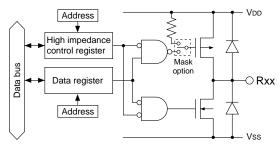
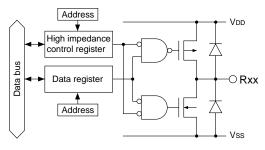

	Bus mode			
Terminal	Single chip Expanded 64K Expanded 512k			
R00	Output port R00	Address A0		
R01	Output port R01	Address A1		
R02	Output port R02	Addres		
R03	Output port R03	Addres	s A3	
R04	Output port R04	Addres	s A4	
R05	Output port R05	Addres	s A5	
R06	Output port R06	Addres	s A6	
R07	Output port R07	Addres	s A7	
R10	Output port R10	Addres	s A8	
R11	Output port R11	Addres	s A9	
R12	Output port R12	Address	s A10	
R13	Output port R13	Address	s A11	
R14	Output port R14	Address	s A12	
R15	Output port R15	Address	s A13	
R16	Output port R16	Address	s A14	
R17	Output port R17	Address	s A15	
R20	Output j	port R20	Address A16	
R21	Output j	port R21	Address A17	
R22	Output j	port R22	Address A18	
R23	Output port R23	RD sig	gnal	
R24	Output port R24	WR si	gnal	
R25		Output port R25		
R26		Output port R26		
R27		Output port R27		
R30	Output port R30	Output port R3	0/CE0 signal	
R31	Output port R31	Output port R3	1/CE1 signal	
R32	Output port R32	Output port R32/CE2 signal		
R33	Output port R33	Output port R33/CE3 signal		
R34	Output port R34			
R35 *	Output port R35			
R36 *	Output port R36			
R37 *		Output port R37		
R50	Output port R50			
R51 *	Output port R51	Output port R51	BACK signal	

Table 5.6.1.1 Configuration of output ports


* R35–R37 and R51 are not available in the E0C88308.

Only the configuration of the output ports in single chip mode will be discussed here. With respect to bus control, see "5.2 System Controller and Bus Control".

Figure 5.6.1.1 shows the basic structure (excluding special output circuits) of the output ports.

Nch open drain can be set for R00–R07 and R10–R17 by the mask option.

In modes other than single chip mode, the data registers and high impedance control registers of the output ports used for bus function can be used as general purpose registers with read/write capabilities. This will not in any way affect bus signal output.

Note: When the 160-pin package is selected for a shipping form of the E0C88348/317/316, the output port terminals R35, R36 and R37 can not be used because these are non-bonding terminals. However, the data registers (R35D–R37D) and high impedance control registers (HZR35–HZR37) corresponding to these output ports can be used as general purpose registers with read/write capabilities.

The output specification of each output port is as complementary output with high impedance control in software possible.

Besides normal DC output, output ports R25–R27, R34, and R50 have a special output function, which can be selected by software.

5.6.2 Mask option

Output ports R00–R07 and specifications	R10–R17 output
R00 Complementary	🗆 Nch open drain
R01 Complementary	\Box Nch open drain
R02 Complementary	\Box Nch open drain
R03 Complementary	\Box Nch open drain
R04 Complementary	\Box Nch open drain
R05 Complementary	\Box Nch open drain
R06 Complementary	\Box Nch open drain
R07 Complementary	🗆 Nch open drain
R10 Complementary	🗆 Nch open drain
R11 Complementary	🗆 Nch open drain
R12 Complementary	🗆 Nch open drain
R13 Complementary	□ Nch open drain
R14 Complementary	\Box Nch open drain
R15 Complementary	🗆 Nch open drain
R16 Complementary	🗆 Nch open drain
R17 Complementary	\Box Nch open drain

Output ports R00–R07 and R10–R17 can be used to select output specification for each port (1 bit) by mask option.

The output specification can be selected for either complementary output or Nch open drain output.

Nch open drain output is rendered suitable for purposes as key matrix common output.

For unused input ports, select the default setting of "Complementary".

Note: When Nch open drain has been selected, voltage in excess of the supply voltage range must not applied to the output port terminal.

5.6.3 High impedance control

The output port can be high impedance controlled in software.

This makes it possible to share output signal lines with an other external device.

A high impedance control register is set for each series of output port terminals as shown below. Either complementary output and high impedance state can be selected with this register.

Table 5.6.3.1	Correspondence between output ports and
	high impedance control registers

nigh impedance control registers		
Register	Output port terminal	
HZR0L	R00-R03	
HZR0H	R04–R07	
HZR1L	R10–R13	
HZR1H	R14–R17	
HZR20	R20	
HZR21	R21	
HZR22	R22	
HZR23	R23	
HZR24	R24	
HZR25	R25	
HZR26	R26	
HZR27	R27	
HZR30	R30	
HZR31	R31	
HZR32	R32	
HZR33	R33	
HZR34	R34	
HZR35 *1	R35	
HZR36 *1	R36	
HZR37 *1	R37	
HZR4L *2	-	
HZR4H ^{*2}	-	
HZR50	R50	
HZR51 *1	R51	

*1 In the E0C88308, this is general purpose register with read/write capabilities.

*2 This is a 2-bit reserved register, it can be used as a general purpose register with read/write capabilities.

When a high impedance control register HZRxx is set to "1", the corresponding output port terminal becomes high impedance state and when set to "0", it becomes complementary output.

5.6.4 DC output

As Figure 5.6.1.1 shows, when "1" is written to the output port data register, the output terminal switches to HIGH (VDD) level and when "0" is written it switches to LOW (VSS) level. When output is in a high impedance state, the data written to the data register is output from the terminal at the instant when output is switched to complementary.

5.6.5 Special output

Besides normal DC output, output ports R25–R27, R34 and R50 can also be assigned special output functions in software as shown in Table 5.6.5.1.

Output port	Special output
R25	CL output
R26	FR output
R27	TOUT output
R34	FOUT output
R50	BZ output

■ CL and FR output (R25 and R26)

In order for the E0C883xx to handle connection to an externally expanded LCD driver, output ports R25 and R26 can be used to output a CL signal (LCD synchronous signal) and FR signal (LCD frame signal), respectively.

The configuration of output ports R25 and R26 are shown in Figure 5.6.5.1.

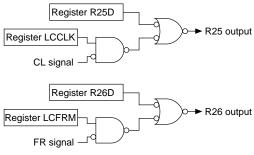


Fig. 5.6.5.1 Configuration of R25 and R26

The output control for the CL signal is done by the register LCCLK. When you set "1" for the LCCLK, the CL signal is output from the output port terminal R25, when "0" is set, the HIGH (VDD) level is output. At this time, "1" must always be set for the data register R25D.

The output control for the FR signal is done by the register LCFRM. When you set "1" for the LCFRM, the FR signal is output from the output port terminal R26, when "0" is set, the HIGH (VDD) level is output. At this time, "1" must always be set for the data register R26D.

The frequencies of each signal are changed as shown in Table 5.6.5.2 according to the drive duty selection.

Table 5.6.5.2 Frequencies of CL and FR signals

Drive duty	CL signal (Hz)	FR signal (Hz)
1/32	2,048	32
1/16	1,024	32
1/8	1,024	64

Since the signals are generated asynchronously from the registers LCCLK and LCFRM, when the signals are turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated. Figure 5.6.5.2 shows the output waveforms of the CL and FR signals.

LCCLK/LCFRM	0 1	
CL output (R25)		
FR output (R26)		

Fig. 5.6.5.2 Output waveforms of CL and FR signals

TOUT output (R27)

In order for the E0C883xx to provide clock signal to an external device, the output port terminal R27 can be used to output a TOUT signal (clock output by the programmable timer). The configuration of output port R27 is shown in Figure 5.6.5.3.

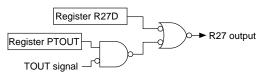


Fig. 5.6.5.3 Configuration of R27

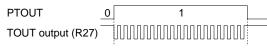
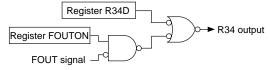
The output control for the TOUT signal is done by the register PTOUT. When you set "1" for the PTOUT, the TOUT signal is output from the output port terminal R27, when "0" is set, the HIGH (VDD) level is output. At this time, "1" must always be set for the data register R27D.

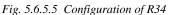
The TOUT signal is the programmable timer underflow divided by 1/2.

With respect to frequency control, see "5.11 Programmable Timer".

Since the TOUT signal is generated asynchronously from the register PTOUT, when the signal is turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated.

Figure 5.6.5.4 shows the output waveform of the TOUT signal.


Fig. 5.6.5.4 Output waveform of TOUT signal

■ FOUT output (R34)

In order for the E0C883xx to provide clock signal to an external device, a FOUT signal (oscillation clock fOSC1 or fOSC3 dividing clock) can be output from the output port terminal R34.

Figure 5.6.5.5 shows the configuration of output port R34.

The output control for the FOUT signal is done by the register FOUTON. When you set "1" for the FOUTON, the FOUT signal is output from the output port terminal R34, when "0" is set, the HIGH (VDD) level is output. At this time, "1" must always be set for the data register R34D.

The frequency of the FOUT signal can be selected in software by setting the registers FOUT0–FOUT2. The frequency is selected any one from among eight settings as shown in Table 5.6.5.3.

FOUT2	FOUT1	FOUT0	FOUT frequency						
0	0	0	foscı / 1						
0	0	1	fosc1 / 2						
0	1	0	fosc1 / 4						
0	1	1	fosc1 / 8						
1	0	0	fosc3 / 1						
1	0	1	fosc3 / 2						
1	1	0	fosc3 / 4						
1	1	1	fosc3 / 8						

Table 5.6.5.3 FOUT frequency setting

fosc1: OSC1 oscillation frequency fosc3: OSC3 oscillation frequency

When the FOUT frequency is made "foSC3/n", you must turn on the OSC3 oscillation circuit before outputting FOUT. A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, if an abnormality occurs as the result of an unstable FOUT signal being output externally, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before turning outputting FOUT. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELEC-TRICAL CHARACTERISTICS".)

At initial reset, OSC3 oscillation circuit is set to OFF state.

Since the FOUT signal is generated asynchronously from the register FOUTON, when the signal is turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated.

Figure 5.6.5.6 shows the output waveform of the FOUT signal.

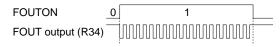
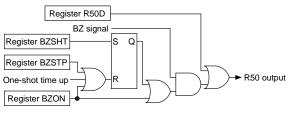
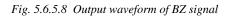


Fig. 5.6.5.6 Output waveform of FOUT signal

BZ output (R50)

In order for the E0C883xx to drive an external buzzer, a BZ signal (sound generator output) can be output from the output port terminal R50. The configuration of the output port R50 is shown in Figure 5.6.5.7.




Fig. 5.6.5.7 Configuration of R50

The output control for the BZ signal is done by the registers BZON, BZSHT and BZSTP. When you set "1" for the BZON or BZSHT, the BZ signal is output from the output port terminal R50, when "0" is set for the BZON or "1" is set for the BZSTP, the LOW (Vss) level is output. At this time, "0" must always be set for the data register R50D.

The BZ signal which is output makes use of the output of the sound generator. With respect to control of frequency and envelope, see "5.13 Sound Generator".

Since the BZ signal is generated asynchronously from the registers BZON, BZSHT and BZSTP, when the signal is turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated. Figure 5.6.5.8 shows the output waveform of the BZ signal.

5.6.6 Control of output ports

Table 5.6.6.1 shows the output port control bits.

Address	Bit	Name	Table 5.6.6.1(a) Output po Function Function	1	0	SR	R/W	Comment
00FF70	D7	HZR51	R51 high impedance control	High	Comple-			*1
		HZR50	R50 high impedance control	impedance	mentary	0	R/W	
		HZR4H	R/W register					
		HZR4L	R/W register	1	0	0	R/W	Reserved register
	D3	HZR1H	R14–R17 high impedance control					
	D2	HZR1L	R10–R13 high impedance control	High	Comple-			
	D1	HZR0H	R04–R07 high impedance control	impedance	mentary	0	R/W	
	D0	HZR0L	R00–R03 high impedance control		-			
00FF71	D7	HZR27	R27 high impedance control					
	D6	HZR26	R26 high impedance control					
	D5	HZR25	R25 high impedance control					
	D4	HZR24	R24 high impedance control	High	Comple-			
	D3	HZR23	R23 high impedance control	impedance	mentary	0	R/W	
	D2	HZR22	R22 high impedance control					
	D1	HZR21	R21 high impedance control					
	D0	HZR20	R20 high impedance control					
00FF72	D7	HZR37	R37 high impedance control					These are just
	D6	HZR36	R36 high impedance control					R/W registers
	D5	HZR35	R35 high impedance control					on E0C88308
	D4	HZR34	R34 high impedance control	High	Comple-		DAV	
	D3	HZR33	R33 high impedance control	impedance	mentary	0	R/W	
	D2	HZR32	R32 high impedance control	1				
	D1	HZR31	R31 high impedance control					
	D0	HZR30	R30 high impedance control					
00FF73	D7	R07D	R07 output port data					
	D6	R06D	R06 output port data					
	D5	R05D	R05 output port data					
	D4	R04D	R04 output port data	High	Low	1	R/W	
	D3	R03D	R03 output port data	High	Low		K/W	
	D2	R02D	R02 output port data					
	D1	R01D	R01 output port data					
	D0	R00D	R00 output port data					
00FF74	D7	R17D	R17 output port data					
	D6	R16D	R16 output port data					
	D5	R15D	R15 output port data					
	D4	R14D	R14 output port data	High	Low	1	R/W	
		R13D	R13 output port data	, ingu	LOW		10,00	
		R12D	R12 output port data					
		R11D	R11 output port data					
		R10D	R10 output port data					
00FF75		R27D	R27 output port data					
		R26D	R26 output port data					
		R25D	R25 output port data					
		R24D	R24 output port data	High	Low	1	R/W	
		R23D	R23 output port data	g		.		
		R22D	R22 output port data					
		R21D	R21 output port data			1		
	D0	R20D	R20 output port data					

Table 5.6.6.1(a) Output port control bits

*1 This is just R/W register on E0C88308.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Output Ports)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF76	D7	R37D	R37 output port data					These are just
	D6	R36D	R36 output port data					R/W registers
	D5	R35D	R35 output port data					on E0C88308
	D4	R34D	R34 output port data					
	D3	R33D	R33 output port data	High	Low	1	R/W	
		R32D	R32 output port data					
		R31D	R31 output port data					
		R30D	R30 output port data					
00FF77		R47D	R/W register					
001111		R46D	R/W register					
		R45D	R/W register					
		R44D	R/W register					
		R44D R43D		1	0	1	R/W	Reserved register
			R/W register					
		R42D	R/W register					
		R41D	R/W register					
005570		R40D	R/W register					
00FF78	D7	_	-	-	-	-		-
	D6	-		-	-	-		-
	D5	-	-	-	-	-		Constantly "0" when
	D4	-	_	-	-	-		being read
	D3	-	-	-	-	-		-
	D2	-	_	-	-	-		
	D1	R51D	R51 output port data	High	Low	1	R/W	*1
	D0	R50D	R50 output port data	High	Low	0	R/W	
00FF10	D7	-	-	-	-	-		Constantry "0" when
	D6	-	-	-	-	-		being read
	D5	-		-	-	-		being read
	D4	LCCLK	CL output control for expanded LCD driver	On	Off	0	R/W	
	D3	LCFRM	FR output control for expanded LCD driver	On	Off	0	R/W	
	D2	DTFNT	LCD dot font selection	5 x 5 dots	5 x 8 dots	0	R/W	
	D1	LDUTY	LCD drive duty selection	1/16 duty	1/32 duty	0	R/W	*2
	D0	SGOUT	R/W register	1	0	0	R/W	Reserved register
00FF30	D7	-	=	-	-	-		Constantry "0" when
	D6	_	-	-	-	-		being read
	D5	-	-	-	-	-		
	D4	MODE16	8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
	D3	CHSEL	TOUT output channel selection	Timer 1	Timer 0	0	R/W	
	D2	PTOUT	TOUT output control	On	Off	0	R/W	
	D1		Prescaler 1 source clock selection	fosc3	fosc1	0	R/W	
	D0	CKSEL0	Prescaler 0 source clock selection	fosc3	fosc1	0	R/W	
00FF44	D7	_	_	_	_	_		Constantry "0" when
	D6	BZSTP	One-shot buzzer forcibly stop	Forcibly stop	No operation	_	W	being read
		BZSHT	One-shot buzzer trigger/status R	Busy	Ready	0	R/W	6
	-	-	W	Trigger	No operation			
	D4	SHTPW	One-shot buzzer duration width selection	125 msec	31.25 msec	0	R/W	
		ENRTM	Envelope attenuation time	1 sec	0.5 sec	0	R/W	
-		ENRST	Envelope reset	Reset	No operation		W	"0" when being read
		ENON	Envelope On/Off control	On	Off	- 0	R/W	<u> </u>
l l								
	טט	BZON	Buzzer output control	On	Off	0	R/W	

Table 5.6.6.1(b) Output port control bits

*1 This is just R/W register on E0C88308.

*2 When 1/8 duty has been selected by mask option, setting of this register becomes invalid.

*3 Reset to "0" during one-shot output.

Address	Bit	Name			Function		1	0	SR	R/W	Comment
00FF40	D7	-	-				-	-	_		"0" when being read
	D6	FOUT2	FOUT fr	equency	selection				0	R/W	
			$\frac{FOUT2}{0}$	$\frac{FOUT1}{0}$	FOUT0	Frequency fosc1 / 1					
	D5	FOUT1	0 0	0 1	1 0	fosc1 / 2 fosc1 / 4			0	R/W	
			0 1	1 0	1 0	fosc1 / 8 fosc3 / 1					
	D4	FOUT0	1 1	0 1	1 0	fosc3 / 2 fosc3 / 4			0	R/W	
			1	1	1	fosc3 / 8					
	D3	FOUTON	FOUT ou	itput con	trol		On	Off	0	R/W	
	D2	WDRST	Watchdo	g timer r	eset		Reset	No operation	_	W	Constantly "0" when
	D1	TMRST	Clock tin	ner reset			Reset	No operation	-	W	being read
	D0	TMRUN	Clock tin	ner Run/	Stop contr	ol	Run	Stop	0	R/W	

 Table 5.6.6.1(c)
 Output port control bits

■ High impedance control

HZR0L, HZR0H: 00FF70H•D0, D1 HZR1L, HZR1H: 00FF70H•D2, D3 HZR20–HZR27: 00FF71H HZR30–HZR37: 00FF72H *1 HZR4L, HZR4H: 00FF70H•D4, D5 *2 HZR50, HZR51: 00FF70H•D6, D7 *1

Sets the output terminals to a high impedance state.

When "1" is written:High impedanceWhen "0" is written:ComplementaryReading:Valid

HZRxx is the high impedance control register which correspond as shown in Table 5.6.3.1 to the various output port terminals.

When "1" is set to the HZRxx register, the corresponding output port terminal becomes high impedance state and when "0" is set, it becomes complementary output.

At initial reset, this register is set to "0" (complimentary).

- *1 In the E0C88308, HZR35–HZR37 and HZR51 are general purpose registers with read/write capabilities.
- *2 HZR4L and HZR4H is 2-bit reserved register, it can be used as a general purpose register with read/write capabilities.

DC output control

R00D-R07D: 00FF73H R10D-R17D: 00FF74H R20D-R27D: 00FF75H R30D-R37D: 00FF76H *1 R40D-R47D: 00FF77H *2 R50D, R51D: 00FF78H•D0, D1 *1

Sets the data output from the output port terminal Rxx.

When "1" is written:HIGH level outputWhen "0" is written:LOW level outputReading:Valid

RxxD is the data register for each output port. When "1" is set, the corresponding output port terminal switches to HIGH (VDD) level, and when "0" is set, it switches to LOW (Vss) level. At initial reset, R50D is set to "0" (LOW level output), all other registers are set to "1" (HIGH level output).

The output data registers set for bus signal output can be used as general purpose registers with read/ write capabilities which do not affect the output terminals.

- *1 In the E0C88308, R35D–R37D and R51D are general purpose registers with read/write capabilities.
- *2 R40D–R47D is 8-bit reserved register, it can be used as a general purpose register with read/ write capabilities.

Special output control

LCCLK: 00FF10H•D4

Controls the CL (LCD synchronous) signal output.

When "1" is written:CL signal outputWhen "0" is written:HIGH level (DC) outputReading:Valid

LCCLK is the output control register for CL signal. When "1" is set, the CL signal is output from the output port terminal R25 and when "0" is set, HIGH (VDD) level is output. At this time, "1" must always be set for the data register R25D.

At initial reset, LCCLK is set to "0" (HIGH level output).

LCFRM: 00FF10H•D3

Controls the FR (LCD frame) signal output.

When "1" is written:FR signal outputWhen "0" is written:HIGH level (DC) outputReading:Valid

LCFRM is the output control register for FR signal. When "1" is set, the FR signal is output from the output port terminal R26 and when "0" is set, HIGH (VDD) level is output. At this time, "1" must always be set for the data register R26D.

At initial reset, LCFRM is set to "0" (HIGH level output).

PTOUT: 00FF30H•D2

Controls the TOUT (programmable timer output clock) signal output.

When "1" is written:TOUT signal outputWhen "0" is written:HIGH level (DC) outputReading:Valid

PTOUT is the output control register for TOUT signal. When "1" is set, the TOUT signal is output from the output port terminal R27 and when "0" is set, HIGH (VDD) level is output. At this time, "1" must always be set for the data register R27D. At initial reset, PTOUT is set to "0" (HIGH level output).

FOUTON: 00FF40H•D3

Controls the FOUT (fOSC1/fOSC3 dividing clock) signal output.

When "1" is written:FOUT signal outputWhen "0" is written:HIGH level (DC) outputReading:Valid

FOUTON is the output control register for FOUT signal. When "1" is set, the FOUT signal is output from the output port terminal R34 and when "0" is set, HIGH (VDD) level is output. At this time, "1" must always be set for the data register R34D. At initial reset, FOUTON is set to "0" (HIGH level output).

FOUT0, FOUT1, FOUT2: 00FF40H•D4, D5, D6

FOUT signal frequency is set as shown in Table 5.6.6.2.

Table 5.6.6.2 FOUT frequency settings

FOUT2	FOUT1	FOUT0	FOUT frequency					
0	0	0	fosc1 / 1					
0	0	1	fosc1 / 2					
0	1	0	fosc1 / 4					
0	1	1	fosc1 / 8					
1	0	0	fosc3 / 1					
1	0	1	fosc3 / 2					
1	1	0	fosc3 / 4					
1	1	1	fosc3 / 8					
farmer 0001 11.1 f								

fOSC1: OSC1 oscillation frequency fOSC3: OSC3 oscillation frequency

At initial reset, this register is set to "0" (fOSC1/1).

BZON: 00FF44H•D0

Controls the BZ (buzzer) signal output.

When "1" is written:BZ signal outputWhen "0" is written:LOW level (DC) outputReading:Valid

BZON is the output control register for BZ signal. When "1" is set, the BZ signal is output from the output port terminal R50 and when "0" is set, LOW (Vss) level is output. At this time, "0" must always be set for the data register R50D.

At initial reset, BZON is set to "0" (LOW level output).

BZSHT: 00FF45H•D5

Controls the one-shot buzzer output.

When "1" is written: When "0" is written:	
When "1" is read:	Busy
When "0" is read:	Ready

Writing "1" into BZSHT causes the one-shot output circuit to operate and the BZ signal to be output. The buzzer output is automatically turned OFF after the time set by SHTPW has elapsed. At this time, "0" must always be set for the data register R50D.

The one-shot output is only valid when the normal buzzer output is OFF (BZON = "0") state. The trigger is invalid during ON (BZON = "1") state. When a re-trigger is assigned during a one-shot output, the one-shot output time set with SHTPW is measured again from that point. (time extension) The operation status of the one-shot output circuit can be confirmed by reading BZSHT, when the one-shot output is ON, BZSHT reads "1" and when the output is OFF, it reads "0".

At initial reset, BZSHT is set to "0" (ready).

BZSTP: 00FF45H•D6

Forcibly stops the one-shot buzzer output.

When "1" is written:	Forcibly stop
When "0" is written:	No operation
Reading:	Constantly "0"

By writing "1" into BZSTP, the one-shot buzzer output can be stopped prior to the elapsing of the time set with SHTPW.

Writing "0" is invalid and writing "1" except during one-shot output is also invalid.

When "1" is written to BZSHT and BZSTP simultaneously, BZSTP takes precedence and one-shot output becomes stop status.

Since BZSTP is for writing only, during readout it is constantly set to "0".

5.6.7 Programming notes

- (1) Since the special output signals (CL, FR, TOUT, FOUT and BZ) are generated asynchronously from the output control registers (LCCLK, LCFRM, PTOUT, FOUTON, BZON, BZSHT and BZSTP), when the signals is turned ON or OFF by the output control register settings, a hazard of a 1/2 cycle or less is generated.
- (2) When the FOUT frequency is made "fOSC3/n", you must turn on the OSC3 oscillation circuit before outputting FOUT. A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, if an abnormality occurs as the result of an unstable FOUT signal being output externally, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before turning outputting FOUT. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHAR-ACTERISTICS".)

At initial reset, OSC3 oscillation circuit is set to OFF state.

(3) The SLP instruction has executed when the special output signals (TOUT, FOUT and BZ) are in the enable status, an unstable clock is output for the special output at the time of return from the SLEEP state. Consequently, when shifting to the SLEEP state, you should set the special output signal to the disable status prior to executing the SLP instruction.

5.7 I/O Ports (P ports)

5.7.1 Configuration of I/O ports

The E0C883xx is equipped with 16 bits of I/O ports (P00–P07, P10–P17). The configuration of these I/O ports will vary according to the bus mode as shown below.

Terminal	Bus mode					
reminal	Single chip	Expanded 64K Expanded 512K				
P00	I/O port P00	Data bus D0				
P01	I/O port P01	Data bus D1				
P02	I/O port P02	Data bus D2				
P03	I/O port P03	Data bus D3				
P04	I/O port P04	Data bus D4				
P05	I/O port P05	Data bus D5				
P06	I/O port P06	Data bus D6				
P07	I/O port P07	Data bus D7				
P10	I/C	port P10 (SIN)				
P11	I/C	port P11 (SOUT)				
P12	I/O port P12 (SCLK)					
P13	I/O port P13 (SRDY)					
P14	I/O port P14 (CMPP0)					
P15	I/O port P15 (CMPM0)					
P16	I/C	port P16 (CMPP1)				
P17	I/C	port P17 (CMPM1)				

Table 5.7.1.1 Configuration of I/O ports

With respect to the data bus, see "5.2 System Controller and Bus Control".

Figure 5.7.1.1 shows the structure of an I/O port.

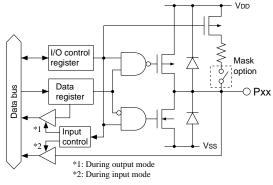


Fig. 5.7.1.1 Structure of I/O port

I/O port can be set for input or output mode in one bit unit. These settings are performed by writing data to the I/O control registers.

I/O port terminals P10–P13 and P14–P17 are shared with serial interface input/output terminal and analog comparator input terminals, respectively. The function of each terminals is switchable in software. With respect to serial interface and analog comparator, see "5.8 Serial Interface" and "5.14 Analog Comparator", respectively. The data registers and I/O control registers of I/O ports set for data bus and serial interface output terminals use are usable as general purpose registers with read/write capabilities which do not affect I/O activities of the terminal. The same as above, the I/O control register of I/O port set for serial interface input terminal use is usable as general purpose register.

5.7.2 Mask option

I/O port pull-up resistors	
P00 🗆 With resistor	□ Gate direct
P01 🗆 With resistor	□ Gate direct
P02 🗆 With resistor	□ Gate direct
P03 🗆 With resistor	□ Gate direct
P04 🗆 With resistor	□ Gate direct
P05 🗆 With resistor	□ Gate direct
P06 🗆 With resistor	□ Gate direct
P07 🗆 With resistor	□ Gate direct
P10 🗆 With resistor	□ Gate direct
P11 🗆 With resistor	□ Gate direct
P12 🗆 With resistor	🗆 Gate direct
P13 🗆 With resistor	□ Gate direct
P14 🗆 With resistor	□ Gate direct
P15 🗆 With resistor	□ Gate direct
P16 🗆 With resistor	□ Gate direct
P17 \Box With resistor	□ Gate direct

I/O ports P00–P07 and P10–P17 are equipped with a pull-up resistor which goes ON in the input mode. Whether this resistor is used or not can be selected for each port (one bit unit).

In cases where the 'With resistor' option is selected, the pull-up resistor goes ON when the port is in input mode.

When changing the port terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an I/O port. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

When the analog comparator is used, select "Gate direct" for I/O ports (P14–P15 or P16–P17, or both) which then become input terminals.

For unused I/O ports, select the default setting of "With resistor".

5.7.3 I/O control registers and I/O mode

I/O ports P00–P07 and P10–P17 are set either to input or output modes by writing data to the I/O control registers IOC00–IOC07 and IOC10–IOC17 which correspond to each bit.

To set an I/O port to input mode, write "0" to the I/O control register.

An I/O port which is set to input mode will shift to a high impedance state and functions as an input port. Readout in input mode consists simply of a direct readout of the input terminal state: the data being "1" when the input terminal is at HIGH (VDD) level and "0" when it is at LOW (VSS) level.

When the "With resistor" option is selected using the mask option, the resistor is pulled up onto the port terminal in input mode. Even in input mode, data can be written to the data registers without affecting the terminal state. To set an I/O port to output mode, write "1" to the I/O control register. An I/O port which is set to output mode functions as an output port. When port output data is "1", a HIGH (VDD) level is output and when it is "0", a LOW (VSS) level is output. Readout in output mode consists of the contents of the data register. At initial reset, I/O control registers are set to "0" (I/O ports are set to input mode).

5.7.4 Control of I/O ports

Table 5.7.4.1 shows the I/O port control bits.

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF60	D7	IOC07	P07 I/O control register					
	D6	IOC06	P06 I/O control register					
	D5	IOC05	P05 I/O control register					
	D4	IOC04	P04 I/O control register	Orteret	Torrest		R/W	
	D3	IOC03	P03 I/O control register	Output	Input	0	K/W	
	D2	IOC02	P02 I/O control register					
	D1	IOC01	P01 I/O control register					
	D0	IOC00	P00 I/O control register					
00FF61	D7	IOC17	P17 I/O control register					
	D6	IOC16	P16 I/O control register					
	D5	IOC15	P15 I/O control register					
	D4	IOC14	P14 I/O control register	0	.		R/W	
	D3	IOC13	P13 I/O control register	Output	Input	0	K/W	
	D2	IOC12	P12 I/O control register					
	D1	IOC11	P11 I/O control register					
	D0	IOC10	P10 I/O control register					
00FF62	D7	P07D	P07 I/O port data					
	D6	P06D	P06 I/O port data					
	D5	P05D	P05 I/O port data					
	D4	P04D	P04 I/O port data	IT:-1	T	1	R/W	
	D3	P03D	P03 I/O port data	High	Low	1	K/W	
	D2	P02D	P02 I/O port data					
	D1	P01D	P01 I/O port data					
	D0	P00D	P00 I/O port data					
00FF63	D7	P17D	P17 I/O port data					
	D6	P16D	P16 I/O port data					
	D5	P15D	P15 I/O port data					
	D4	P14D	P14 I/O port data	High	Low	1	R/W	
	D3	P13D	P13 I/O port data	High	Low	1	K/W	
	D2	P12D	P12 I/O port data					
	D1	P11D	P11 I/O port data					
	D0	P10D	P10 I/O port data					

Table 5.7.4.1 I/O port control bits

P00D–P07D, P10D–P17D: 00FF62H, 00FF63H

How I/O port terminal Pxx data readout and output data settings are performed.

When writing data:

When "1" is written: HIGH level When "0" is written: LOW level

When the I/O port is set to output mode, the data written is output as is to the I/O port terminal. In terms of port data, when "1" is written, the port terminal goes to HIGH (VDD) level and when "0" is written to a LOW (VSS) level.

Even when the port is in input mode, data can still be written in.

When reading out data:

When "1" is read:	HIGH level ("1")
When "0" is read:	LOW level ("0")

When an I/O port is in input mode, the voltage level being input to the port terminal is read out. When terminal voltage is HIGH (VDD), it is read as a "1", and when it is LOW (VSS), it is read as a "0". Furthermore, in output mode, the contents of the data register are read out.

At initial reset, this register is set to "1" (HIGH level).

Note: The data registers of I/O ports set for the data bus and output terminal of serial interface can be used as general purpose registers with read/write capabilities which do not affect I/O activities of the terminals.

IOC00–IOC07: 00FF60H IOC10–IOC17: 00FF61H

Sets the I/O ports to input or output mode.

When "1" is written:	Output mode
When "0" is written:	Input mode
Reading:	Valid

IOCxx is the I/O control register which correspond to each I/O port in a bit unit. Writing "1" to the IOCxx register will switch the corresponding I/O port Pxx to output mode, and writing "0" will switch it to input mode. When the analog comparator is used, "0" must always be set for the I/O control registers (IOC14– IOC15 or IOC16–IOC17, or both) of I/O ports which will become input terminals. At initial reset, this register is set to "0" (input mode).

Note: The data registers of I/O ports set for the data bus and input terminal of serial interface can be used as general purpose registers with read/write capabilities which do not affect I/O activities of the terminals.

5.7.5 Programming notes

(1) When changing the port terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an I/O port. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec]

RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

(2) When the analog comparator is used, "0" must always be set for the I/O control registers (IOC14–IOC15 or IOC16–IOC17, or both) of I/O ports which will become input terminals.

5.8 Serial Interface

5.8.1 Configuration of serial interface

The E0C883xx incorporates a full duplex serial interface (when asynchronous system is selected) that allows the user to select either clock synchronous system or asynchronous system.

The data transfer method can be selected in software.

When the clock synchronous system is selected, 8bit data transfer is possible.

When the asynchronous system is selected, either 7bit or 8-bit data transfer is possible, and a parity check of received data and the addition of a parity bit for transmitting data can automatically be done by selecting in software.

Figure 5.8.1.1 shows the configuration of the serial interface.

Serial interface input/output terminals, SIN, SOUT, SCLK and SRDY are shared with I/O ports P10–P13. In order to utilize these terminals for the serial interface input/output terminals, proper settings have to be made with registers ESIF, SMD0 and SMD1. (At initial reset, these terminals are set as I/O port terminals.)

The direction of I/O port terminals set for serial interface input/output terminals are determined by the signal and transfer mode for each terminal. Furthermore, the settings for the corresponding I/O control registers for the I/O ports become invalid.

T-11.5011	C	- C:	· · · · · · · · · · · · · · · · · · ·
1 able 5.8.1.1	Configuration	of input/output	terminais

Terminal	When serial interface is selected
P10	SIN
P11	SOUT
P12	SCLK
P13	SRDY

* The terminals used may vary depending on the transfer mode.

SIN and SOUT are serial data input and output terminals which function identically in clock synchronous system and asynchronous system. SCLK is exclusively for use with clock synchronous system and functions as a synchronous clock input/ output terminal. SRDY is exclusively for use in clock synchronous slave mode and functions as a sendreceive ready signal output terminal. When asynchronous system is selected, since SCLK and SRDY are superfluous, the I/O port terminals P12 and P13 can be used as I/O ports. In the same way, when clock synchronous master mode is selected, since SRDY is superfluous, the I/O port terminal P13 can be used as I/O port.

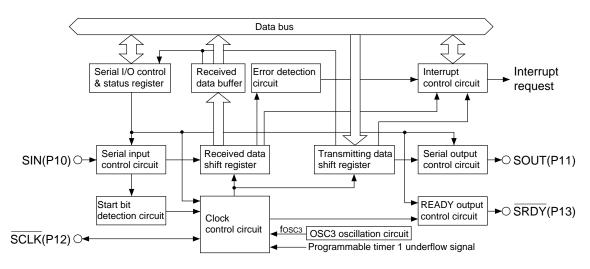


Fig. 5.8.1.1 Configuration of serial interface

5.8.2 Mask option

Since serial interface input/output terminals are shared with the I/O ports, serial interface terminal specifications have necessarily been selected with the mask option for I/O ports.

I/O port pull-up resistors	
P10 (SIN) 🗆 With resistor	□ Gate direct
P12 ($\overline{\text{SCLK}}$) \Box With resistor	\Box Gate direct

Each I/O port terminal is equipped with a pull-up resistor which goes ON in input mode. A selection can be made for each port (one bit unit) as to whether or not the resistor will be used. Specifications (whether the pull-up will be used or not) of P10 (SIN) and P12 (SCLK) which will become input terminals when using the serial interface are decided by settings the options for the I/O port.

When "Gate direct" is selected in the serial I/F mode, be sure that the input terminals do not go into a floating state.

5.8.3 Transfer modes

There are four transfer modes for the serial interface and mode selection is made by setting the two bits of the mode selection registers SMD0 and SMD1 as shown in the table below.

Table 5.8.3.1 Transfer modes

SMD1	SMD0	Mode
1	1	Asynchronous 8-bit
1	0	Asynchronous 7-bit
0	1	Clock synchronous slave
0	0	Clock synchronous master

Table 5.8.3.2	Terminal settings corresponding
	to each transfer mode

Mode	SIN	SOUT	SCLK	SRDY
Asynchronous 8-bit	Input	Output	P12	P13
Asynchronous 7-bit	Input	Output	P12	P13
Clock synchronous slave	Input	Output	Input	Output
Clock synchronous master	Input	Output	Output	P13

At initial reset, transfer mode is set to clock synchronous master mode.

Clock synchronous master mode

In this mode, the internal clock is utilized as a synchronous clock for the built-in shift registers, and clock synchronous 8-bit serial transfers can be performed with this serial interface as the master. The synchronous clock is also output from the SCLK terminal which enables control of the external (slave side) serial I/O device. Since the SRDY terminal is not utilized in this mode, it can be used as an I/O port.

Figure 5.8.3.1(a) shows the connection example of input/output terminals in the clock synchronous master mode.

Clock synchronous slave mode

In this mode, a synchronous clock from the external (master side) serial input/output device is utilized and clock synchronous 8-bit serial transfers can be performed with this serial interface as the slave. The synchronous clock is input to the SCLK terminal and is utilized by this interface as the synchronous clock.

Furthermore, the $\overline{\text{SRDY}}$ signal indicating the transmit-receive ready status is output from the $\overline{\text{SRDY}}$ terminal in accordance with the serial interface operating status.

In the slave mode, the settings for registers SCS0 and SCS1 used to select the clock source are invalid. Figure 5.8.3.1(b) shows the connection example of input/output terminals in the clock synchronous slave mode.

Asynchronous 7-bit mode

In this mode, asynchronous 7-bit transfer can be performed. Parity check during data reception and addition of parity bit (odd/even/none) during transmitting can be specified and data processed in 7 bits with or without parity. Since this mode employs the internal clock, the SCLK terminal is not used. Furthermore, since the SRDY terminal is not utilized either, both of these terminals can be used as I/O ports.

Figure 5.8.3.1(c) shows the connection example of input/output terminals in the asynchronous mode.

Asynchronous 8-bit mode

In this mode, asynchronous 8-bit transfer can be performed. Parity check during data reception and addition of parity bit (odd/even/none) during transmitting can be specified and data processed in 8 bits with or without parity. Since this mode employs the internal clock, the SCLK terminal is not used. Furthermore, since the SRDY terminal is not utilized either, both of these terminals can be used as I/O ports.

Figure 5.8.3.1(c) shows the connection example of input/output terminals in the asynchronous mode.

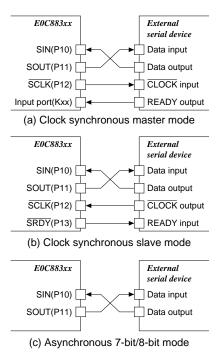


Fig. 5.8.3.1 Connection examples of serial interface I/O terminals

5.8.4 Clock source

There are four clock sources and selection is made by setting the two bits of the clock source selection register SCS0 and SCS1 as shown in table below.

SCS1	SCS0	Clock source
1	1	Programmable timer
1	0	fosc3 / 4
0	1	fosc3 / 8
0	0	fosc3 / 16

This register setting is invalid in clock synchronous slave mode and the external clock input from the SCLK terminal is used.

When the "programmable timer" is selected, the programmable timer 1 underflow signal is divided by 1/2 and this signal used as the clock source. With respect to the transfer rate setting, see "5.11 Programmable Timer".

At initial reset, the synchronous clock is set to "fosc3/16".

Whichever clock is selected, the signal is further divided by 1/16 and then used as the synchronous clock.

Furthermore, external clock input is used as is for SCLK in clock synchronous slave mode.

Table 5.8.4.2 shows an examples of transfer rates and OSC3 oscillation frequencies when the clock source is set to programmable timer.

When the demultiplied signal of the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the serial interface.

A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before starting transmitting/receiving of serial interface. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".) At initial reset, the OSC3 oscillation circuit is set to OFF status.

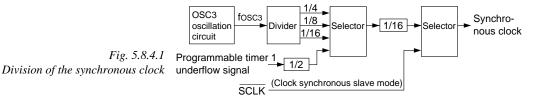


Table 5.8.4.2 OSC3 oscillation frequencies and transfer rates

Transfer rate	OSC3 os	scillation fr	equency /	Programm	nable time	settings
Transfer rate	fosc3 = 3	.072 MHz	fosc3 = 4	.608 MHz	fosc3 = 4.	9152 MHz
(bps)	PSC1X	RLD1X	PSC1X	RLD1X	PSC1X	RLD1X
9,600	0 (1/1)	09H	0 (1/1)	0EH	0 (1/1)	0FH
4,800	0 (1/1)	13H	0 (1/1)	1DH	0 (1/1)	1FH
2,400	0 (1/1)	27H	0 (1/1)	3BH	0 (1/1)	3FH
1,200	0 (1/1)	4FH	0 (1/1)	77H	0 (1/1)	7FH
600	0 (1/1)	9FH	0 (1/1)	EFH	0 (1/1)	FFH
300	1 (1/4)	4FH	1 (1/4)	77H	1 (1/4)	7FH
150	1 (1/4)	9FH	1 (1/4)	EFH	1 (1/4)	FFH

5.8.5 Transmit-receive control

Below is a description of the registers which handle transmit-receive control. With respect to transmitreceive control procedures and operations, please refer to the following sections in which these are discussed on a mode by mode basis.

Shift register and received data buffer

Exclusive shift registers for transmitting and receiving are installed in this serial interface. Consequently, duplex communication simultaneous transmit and receive is possible when the asynchronous system is selected.

Data being transmitted are written to TRXD0– TRXD7 and converted to serial through the shift register and is output from the SOUT terminal.

In the reception section, a received data buffer is installed separate from the shift register. Data being received are input to the SIN terminal and is converted to parallel through the shift register and written to the received data buffer. Since the received data buffer can be read even during serial input operation, the continuous data is received efficiently.

However, since buffer functions are not used in clock synchronous mode, be sure to read out data before the next data reception begins.

Transmit enable register and transmit control bit

For transmitting control, use the transmit enable register TXEN and transmit control bit TXTRG.

The transmit enable register TXEN is used to set the transmitting enable/disable status. When "1" is written to this register to set the transmitting enable status, clock input to the shift register is enabled and the system is ready to transmit data. In the clock synchronous mode, synchronous clock input/output from the SCLK terminal is also enabled.

The transmit control bit TXTRG is used as the trigger to start transmitting data.

Data to be transmitted is written to the transmit data shift register, and when transmitting preparations a recomplete, "1" is written to TXTRG whereupon data transmitting begins.

When interrupt has been enabled, an interrupt is generated when the transmission is completed. If there is subsequent data to be transmitted it can be sent using this interrupt. In addition, TXTRG can be read as the status. When set to "1", it indicates transmitting operation, and "0" indicates transmitting stop.

For details on timing, see the timing chart which gives the timing for each mode.

When not transmitting, set TXEN to "0" to disable transmitting status.

Receive enable register, receive control bit

For receiving control, use the receive enable register RXEN and receive control bit RXTRG.

Receive enable register RXEN is used to set receiving enable/disable status. When "1" is written into this register to set the receiving enable status, clock input to the shift register is enabled and the system is ready to receive data. In the clock synchronous mode, synchronous clock input/output from the SCLK terminal is also enabled.

With the above setting, receiving begins and serial data input from the SIN terminal goes to the shift register.

The operation of the receive control bit RXTRG is slightly different depending on whether a clock synchronous system or an asynchronous system is being used.

In the clock synchronous system, the receive control bit TXTRG is used as the trigger to start receiving data.

When received data has been read and the preparation for next data receiving is completed, write "1" into RXTRG to start receiving. (When "1" is written to RXTRG in slave mode, SRDY switches to "0".) In an asynchronous system, RXTRG is used to prepare for next data receiving. After reading the received data from the received data buffer, write "1" into RXTRG to signify that the received data buffer is empty. If "1" is not written into RXTRG, the overrun error flag OER will be set to "1" when the next receiving operation is completed. (An overrun error will be generated when receiving is completed between reading the received data and the writing of "1" to RXTRG.)

In addition, RXTRG can be read as the status. In either clock synchronous mode or asynchronous mode, when RXTRG is set to "1", it indicates receiving operation and when set to "0", it indicates that receiving has stopped.

For details on timing, see the timing chart which gives the timing for each mode.

When you do not receive, set RXEN to "0" to disable receiving status.

5.8.6 Operation of clock synchronous transfer

Clock synchronous transfer involves the transfer of 8-bit data by synchronizing it to eight clocks. The same synchronous clock is used by both the transmitting and receiving sides.

When the serial interface is used in the master mode, the clock signal selected using SCS0 and SCS1 is further divided by 1/16 and employed as the synchronous clock. This signal is then sent via the SCLK terminal to the slave side (external serial I/O device).

When used in the slave mode, the clock input to the $\overline{\text{SCLK}}$ terminal from the master side (external serial input/output device) is used as the synchronous clock.

In the clock synchronous mode, since one clock line (SCLK) is shared for both transmitting and receiving, transmitting and receiving cannot be performed simultaneously. (Half duplex only is possible in clock synchronous mode.)

Transfer data is fixed at 8 bits and both transmitting and receiving are conducted with the LSB (bit 0) coming first.

Fig. 5.8.6.1 Transfer data configuration using clock synchronous mode

Below is a description of initialization when performing clock synchronous transfer, transmitreceive control procedures and operations. With respect to serial interface interrupt, see "5.8.8 Interrupt function".

Initialization of serial interface

When performing clock synchronous transfer, the following initial settings must be made.

(1) Setting of transmitting/receiving disable To set the serial interface into a status in which both transmitting and receiving are disabled, "0" must be written to both the transmit enable register TXEN and the receive enable register RXEN. Fix these two registers to a disable status until data transfer actually begins.

(2) Port selection

Because serial interface input/output ports SIN, SOUT, SCLK and SRDY are set as I/O port terminals P10–P13 at initial reset, "1" must be written to the serial interface enable register ESIF in order to set these terminals for serial interface use.

(3) Setting of transfer mode

Select the clock synchronous mode by writing the data as indicated below to the two bits of the mode selection registers SMD0 and SMD1.

Master mode:	SMD0 = "0", SMD1 = "0"
Slave mode:	SMD0 = "1", SMD1 = "0"

(4) Clock source selection

In the master mode, select the synchronous clock source by writing data to the two bits of the clock source selection registers SCS0 and SCS1. (See Table 5.8.4.1.) This selection is not necessary in the slave mode.

Since all the registers mentioned in (2)–(4) are assigned to the same address, it's possible to set them all with one instruction. The parity enable register EPR is also assigned to this address, however, since parity is not necessary in the clock synchronous mode, parity check will not take place regardless of how they are set.

(5) Clock source control

When the master mode is selected and programmable timer for the clock source is selected, set transfer rate on the programmable timer side. (See "5.11 Programmable Timer".) When the divided signal of OSC3 oscillation circuit is selected for the clock source, be sure that the OSC3 oscillation circuit is turned ON prior to commencing data transfer. (See "5.4 Oscillation Circuit and Operating Mode".)

■ Data transmit procedure

The control procedure and operation during transmitting is as follows.

- (1) Write "0" in the transmit enable register TXEN and the receive enable register RXEN to reset the serial interface.
- (2) Write "1" in the transmit enable register TXEN to set into the transmitting enable status.
- (3) Write the transmitting data into TRXD0– TRXD7.
- (4) In case of the master mode, confirm the receive ready status on the slave side (external serial input/output device), if necessary. Wait until it reaches the receive ready status.
- (5) Write "1" in the transmit control bit TXTRG and start transmitting.

In the master mode, this control causes the synchronous clock to change to enable and to be provided to the shift register for transmitting and output from the \overline{SCLK} terminal. In the slave mode, it waits for the synchronous clock to be input from the \overline{SCLK} terminal. The transmitting data of the shift register shifts one bit at a time at each falling edge of the synchronous clock and is output from the SOUT terminal. When the final bit (MSB) is output, the SOUT terminal is maintained at that level, until the next transmitting begins.

The transmitting complete interrupt factor flag FSTRA is set to "1" at the point where the data transmitting of the shift register is completed. When interrupt has been enabled, a transmitting complete interrupt is generated at this point.

Set the following transmitting data using this interrupt.

(6) Repeat steps (3) to (5) for the number of bytes of transmitting data, and then set the transmit disable status by writing "0" to the transmit enable register TXEN, when the transmitting is completed.

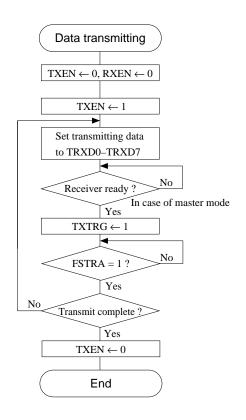


Fig. 5.8.6.2 Transmit procedure in clock synchronous mode

Data receive procedure

The control procedure and operation during receiving is as follows.

- (1) Write "0" in the receive enable register RXEN and transmit enable register TXEN to reset the serial interface.
- (2) Write "1" in the receive enable register RXEN to set into the receiving enable status.
- (3) In case of the master mode, confirm the transmit ready status on the slave side (external serial input/output device), if necessary. Wait until it reaches the transmit ready status.
- (4) Write "1" in the receive control bit RXTRG and start receiving.

In the master mode, this control causes the synchronous clock to change to enable and is provided to the shift register for receiving and output from the SCLK terminal. In the slave mode, it waits for the synchronous clock to be input from the SCLK terminal. The received data input from the SIN terminal is successively incorporated into the shift register in synchronization with the rising edge of the

synchronous clock. At the point where the data of the 8th bit has been incorporated at the final (8th) rising edge of the synchronous clock, the content of the shift register is sent to the received data buffer and the receiving complete interrupt factor flag FSREC is set to "1". When interrupt has been enabled, a receiving complete interrupt is generated at this point.

- (5) Read the received data from TRXD0–TRXD7 using receiving complete interrupt.
- (6) Repeat steps (3) to (5) for the number of bytes of receiving data, and then set the receive disable status by writing "0" to the receive enable register RXEN, when the receiving is completed.

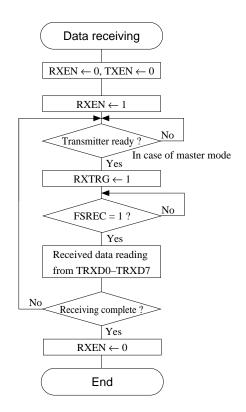


Fig. 5.8.6.3 Receiving procedure in clock synchronous mode

■ Transmit/receive ready (SRDY) signal

When this serial interface is used in the clock synchronous slave mode (external clock input), an SRDY signal is output to indicate whether or not this serial interface can transmit/receive to the master side (external serial input/output device). This signal is output from the SRDY terminal and when this interface enters the transmit or receive enable (READY) status, it becomes "0" (LOW level) and becomes "1" (HIGH level) when there is a BUSY status, such as during transmit/receive operation.

The SRDY signal changes the "1" to "0," immediately after writing "1" into the transmit control bit TXTRG or the receive control bit RXTRG and returns from "0" to "1", at the point where the first synchronous clock has been input (falling edge). When you have set in the master mode, control the transfer by inputting the same signal from the slave side using the input port or I/O port. At this time, since the SRDY terminal is not set and instead P13 functions as the I/O port, you can apply this port for said control.

Timing chart

The timing chart for the clock synchronous system transmission is shown in Figure 5.8.6.4.

	RXEN
TXEN	RXTRG (RD)
TXTRG (RD)	RXTRG (WR)
TXTRG (WR)	SCLК
SCLK	SIN <u>\D0\D1\D2\D3\D4\D5\D6\D7</u>
SOUT (D0(D1)(D2)(D3)(D4)(D5)(D6)(D7)	TRXD 7F 1st data
Interrupt	Interrupt
(a) Transmit timing for master mode	(c) Receive timing for master mode
	RXEN
TXEN	
TXTRG (RD)	– RXTRG (WR)
TXTRG (WR)	
SCLК	
SOUT <u>\D0\D1\D2\D3\D4\D5\D6\D7</u>	TRXD7F7F7F7F
SRDY	SRDY
Interrupt	Interrupt
(b) Transmit timing for slave mode	(d) Receive timing for slave mode

Fig. 5.8.6.4 Timing chart (clock synchronous system transmission)

5.8.7 Operation of asynchronous transfer

Asynchronous transfer is a mode that transfers by adding a start bit and a stop bit to the front and the back of each piece of serial converted data. In this mode, there is no need to use a clock that is fully synchronized clock on the transmit side and the receive side, but rather transmission is done while adopting the synchronization at the start/stop bits that have attached before and after each piece of data. The RS-232C interface functions can be easily realized by selecting this transfer mode. This interface has separate transmit and receive shift registers and is designed to permit full duplex transmission to be done simultaneously for transmitting and receiving.

For transfer data in the asynchronous 7-bit mode, either 7 bits data (no parity) or 7 bits data + parity bit can be selected. In the asynchronous 8-bit mode, either 8 bits data (no parity) or 8 bits data + parity bit can be selected.

Parity can be even or odd, and parity checking of received data and adding a party bit to transmitting data will be done automatically. Thereafter, it is not necessary to be conscious of parity itself in the program.

The start bit and stop bit are respectively fixed at one bit and data is transmitted and received by placing the LSB (bit 0) at the front.

Sampling clock	
7bit data	s1 D0 D1 D2 D3 D4 D5 D6 s2
7bit data +parity	s1 D0 D1 D2 D3 D4 D5 D6 p s2
8bit data	s1 D0 D1 D2 D3 D4 D5 D6 D7 s2
8bit data +parity	s1 D0 D1 D2 D3 D4 D5 D6 D7 p s2
	s1 : Start bit (Low level, 1 bit) s2 : Stop bit (High level, 1 bit) p : Parity bit

Fig. 5.8.7.1 Transfer data configuration for asynchronous system

Here following, we will explain the control sequence and operation for initialization and transmitting /receiving in case of asynchronous data transfer. See "5.8.8 Interrupt function" for the serial interface interrupts.

Initialization of serial interface

The below initialization must be done in cases of asynchronous system transfer.

- (1) Setting of transmitting/receiving disable To set the serial interface into a status in which both transmitting and receiving are disabled, "0" must be written to both the transmit enable register TXEN and the receive enable register RXEN. Fix these two registers to a disable status until data transfer actually begins.
- (2) Port selection

Because serial interface input/output terminals SIN and SOUT are set as I/O port terminals P10 and P11 at initial reset, "1" must be written to the serial interface enable register ESIF in order to set these terminals for serial interface use. SCLK and SRDY terminals set in the clock synchronous mode are not used in the asynchronous mode. These terminals function as I/O port terminals P12 and P13.

(3) Setting of transfer mode

Select the asynchronous mode by writing the data as indicated below to the two bits of the mode selection registers SMD0 and SMD1.

7-bit mode:	SMD0 = "0", SMD1 = "1"
8-bit mode:	SMD0 = "1", SMD1 = "1"

(4) Parity bit selection

When checking and adding parity bits, write "1" into the parity enable register EPR to set to "with parity check". As a result of this setting, in the asynchronous 7-bit mode, it has a 7 bits data + parity bit configuration and in the asynchronous 8-bit mode it has an 8 bits data + parity bit configuration. In this case, parity checking for receiving and adding a party bit for transmitting is done automatically in hardware. Moreover, when "with parity check" has been selected, "odd" or "even" parity must be further selected in the parity mode selection register PMD. When "0" is written to the PMD register to select "without parity check" in the asynchronous 7-bit mode, data configuration is set to 7 bits data (no parity) and in the asynchronous 8-bit mode (no parity) it is set to 8 bits data (no parity) and parity checking and parity bit adding will not be done.

(5) Clock source selection Select the clock source by writing data to the two bits of the clock source selection registers SCS0 and SCS1. (See Table 5.8.4.1.) Since all the registers mentioned in (2)–(5) are assigned to the same address, it's possible to set them all with one instruction.

(6) Clock source control

When the programmable timer is selected for the clock source, set transfer rate on the programmable timer side. (See "5.11 Programmable Timer".)

When the divided signal of OSC3 oscillation circuit is selected for the clock source, be sure that the OSC3 oscillation circuit is turned ON prior to commencing data transfer. (See "5.4 Oscillation Circuit and Operating Mode".)

Data transmit procedure

The control procedure and operation during transmitting is as follows.

- (1) Write "0" in the transmit enable register TXEN to reset the serial interface.
- (2) Write "1" in the transmit enable register TXEN to set into the transmitting enable status.
- (3) Write the transmitting data into TRXD0–TRXD7. Also, when 7-bit data is selected, the TRXD7 data becomes invalid.
- (4) Write "1" in the transmit control bit TXTRG and start transmitting.

This control causes the shift clock to change to enable and a start bit (LOW) is output to the SOUT terminal in synchronize to its rising edge. The transmitting data set to the shift register is shifted one bit at a time at each rising edge of the clock thereafter and is output from the SOUT terminal. After the data output, it outputs a stop bit (HIGH) and HIGH level is maintained until the next start bit is output.

The transmitting complete interrupt factor flag FSTRA is set to "1" at the point where the data transmitting is completed. When interrupt has been enabled, a transmitting complete interrupt is generated at this point. Set the following transmitting data using this interrupt.

(5) Repeat steps (3) to (4) for the number of bytes of transmitting data, and then set the transmit disable status by writing "0" to the transmit enable register TXEN, when the transmitting is completed.

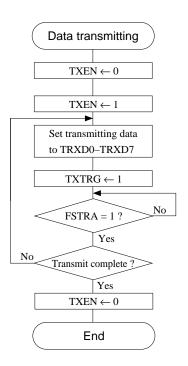


Fig. 5.8.7.2 Transmit procedure in asynchronous mode

Data receive procedure

The control procedure and operation during receiving is as follows.

- (1) Write "0" in the receive enable register RXEN to set the receiving disable status and to reset the respective PER, OER, FER flags that indicate parity, overrun and framing errors.
- (2) Write "1" in the receive enable register RXEN to set into the receiving enable status.
- (3) The shift clock will change to enable from the point where the start bit (LOW) has been input from the SIN terminal and the receive data will be synchronized to the rising edge following the second clock, and will thus be successively incorporated into the shift register. After data bits have been incorporated, the stop bit is checked and, if it is not HIGH, it becomes a framing error and the error interrupt factor flag FSERR is set to "1". When interrupt has been enabled, an error interrupt is generated at this point. When receiving is completed, data in the shift register is transferred to the received data buffer and the receiving complete interrupt flag FSREC is set to "1". When interrupt has been enabled, a receiving complete interrupt is generated at this point. (When an overrun error is generated, the interrupt factor flag FSREC is not set to "1" and a receiving complete interrupt is not generated.) If "with parity check" has been selected, a parity check is executed when data is transferred into the received data buffer from the shift register and if a parity error is detected, the error interrupt factor flag is set to "1". When the interrupt has been enabled, an error interrupt is generated at this point just as in the framing error mentioned above.
- (4) Read the received data from TRXD0–TRXD7 using receiving complete interrupt.
- (5) Write "1" to the receive control bit RXTRG to inform that the receive data has been read out. When the following data is received prior to writing "1" to RXTRG, it is recognized as an overrun error and the error interrupt factor flag is set to "1". When the interrupt has been enabled, an error interrupt is generated at this point just as in the framing error and parity error mentioned above.
- (6) Repeat steps (3) to (5) for the number of bytes of receiving data, and then set the receive disable status by writing "0" to the receive enable register RXEN, when the receiving is completed.

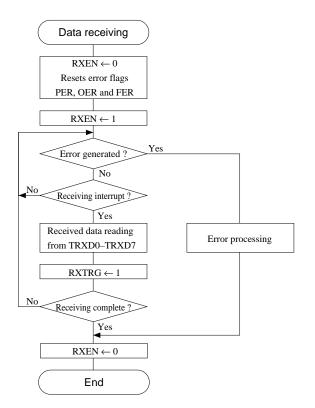


Fig. 5.8.7.3 Receiving procedure in asynchronous mode

Receive error

During receiving the following three types of errors can be detected by an interrupt.

(1) Parity error

When writing "1" to the EPR register to select "with parity check", a parity check (vertical parity check) is executed during receiving. After each data bit is sent a parity check bit is sent. The parity check bit is a "0" or a "1". Even parity checking will cause the sum of the parity bit and the other bits to be even. Odd parity causes the sum to be odd. This is checked on the receiving side.

The parity check is performed when data received in the shift register is transferred to the received data buffer. It checks whether the parity check bit is a "1" or a "0" (the sum of the bits including the parity bit) and the parity set in the PMD register match. When it does not match, it is recognized as an parity error and the parity error flag PER and the error interrupt factor flag FSERR is set to "1". When interrupt has been enabled, an error

interrupt is generated at this point. The PER flag is reset to "0" by writing "1". Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues. The received data at this point cannot assured because of the parity error.

(2) Framing error

In asynchronous transfer, synchronization is adopted for each character at the start bit ("0") and the stop bit ("1"). When receiving has been done with the stop bit set at "0", the serial interface judges the synchronization to be off and a framing error is generated. When this error is generated, the framing error flag FER and the error interrupt factor flag FSERR are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The FER flag is reset to "0" by writing "1". Even when this error has been generated, the received data for it is loaded into the receive data buffer and the receive operation also continues. However, even when it does not become a framing error with the following data receipt, such data cannot be assured.

Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues. However, even when it does not become a framing error with the following data receiving, such data cannot be assured.

(3) Overrun error

When the next data is received before "1" is written to RXTRG, an overrun error will be generated, because the previous receive data will be overwritten. When this error is generated, the overrun error flag OER and the error interrupt factor flag FSERR are set to "1". When interrupt has been enabled, an error interrupt is generated at this point. The OER flag is reset to "0" by writing "1" into it.

Even when this error has been generated, the received data corresponding to the error is transferred in the received data buffer and the receive operation also continues. Furthermore, when the timing for writing "1" to RXTRG and the timing for the received data transfer to the received data buffer overlap, it will be recognized as an overrun error.

Timing chart

Figure 5.8.7.4 show the asynchronous transfer timing chart.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Serial Interface)

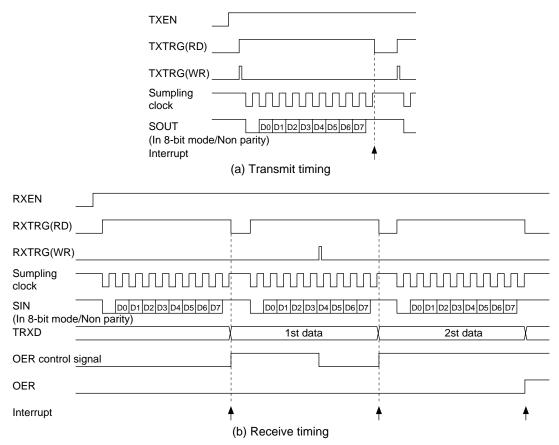


Fig. 5.8.7.4 Timing chart (asynchronous transfer)

5.8.8 Interrupt function

This serial interface includes a function that generates the below indicated three types of interrupts.

- Transmitting complete interrupt
- Receiving complete interrupt
- Error interrupt

The interrupt factor flag FSxxx and the interrupt enable register ESxxx for the respective interrupt factors are provided and then the interrupt enable/ disable can be selected by the software. In addition, a priority level of the serial interface interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PSIF0 and PSIF1. For details on the above mentioned interrupt control register and the operation following generation of an interrupt, see "5.16 Interrupt and Standby Status".

Figure 5.8.8.1 shows the configuration of the serial interface interrupt circuit.

Transmitting complete interrupt

This interrupt factor is generated at the point where the sending of the data written into the shift register has been completed and sets the interrupt factor flag FSTRA to "1". When set in this manner, if the corresponding interrupt enable register ESTRA is set to "1" and the corresponding interrupt priority registers PSIF0 and PSIF1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. When "0" has been written into the interrupt enable register ESTRA and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSTRA is set to "1". The interrupt factor flag FSTRA is reset to "0" by writing "1".

The following transmitting data can be set and the transmitting start (writing "1" to TXTRG) can be controlled by generation of this interrupt factor. The exception processing vector address for this interrupt factor is set at 000014H.

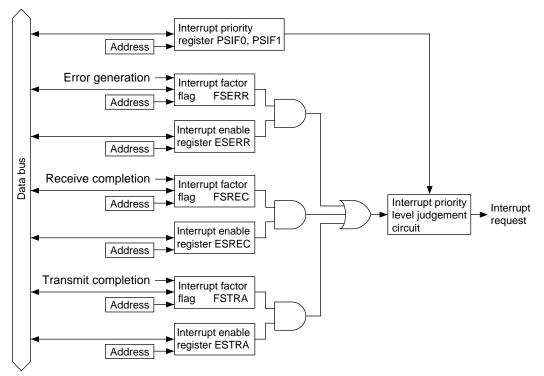


Fig. 5.8.8.1 Configuration of serial interface interrupt circuit

Receiving complete interrupt

This interrupt factor is generated at the point where receiving has been completed and the receive data incorporated into the shift register has been transferred into the received data buffer and it sets the interrupt factor flag FSREC to "1". When set in this manner, if the corresponding interrupt enable register ESREC is set to "1" and the corresponding interrupt priority registers PSIF0 and PSIF1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. When "0" has been written into the interrupt enable register ESREC and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSREC is set to "1". The interrupt factor flag FSREC is reset to "0" by writing "1".

The generation of this interrupt factor permits the received data to be read.

Also, the interrupt factor flag is set to "1" when a parity error or framing error is generated.

The exception processing vector address for this interrupt factor is set at 000012H.

Error interrupt

This interrupt factor is generated at the point where a parity error, framing error or overrun error is detected during receiving and it sets the interrupt factor flag FSERR to "1". When set in this manner, if the corresponding interrupt enable register ESERR is set to "1" and the corresponding interrupt priority registers PSIF0 and PSIF1 are set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. When "0" has been written in the interrupt enable register ESERR and interrupt has been disabled, an interrupt is not generated to the CPU. Even in this case, the interrupt factor flag FSERR is set to "1". The interrupt factor flag FSERR is reset to "0" by writing "1".

Since all three types of errors result in the same interrupt factor, you should identify the error that has been generated by the error flags PER (parity error), OER (overrun error) and FER (framing error).

The exception processing vector address for this interrupt factor is set at 000010H.

5.8.9 Control of serial interface

Table 5.8.9.1 show the serial interface control bits.

Table 5.8.9.1	(a)	Serial	interface	control hits
10010 5.0.7.1	<i>u</i> ,	Deriui	inicijuce	connot ons

Address	Bit	Name	Table 5.8.9.1(a) Serial interf Function Function	1	0	SR	R/W	Comment
		Name	Function				K/ VV	
00FF48	D7	-		-	-	-	DAV	"0" when being read
		EPR	Parity enable register	With parity	Non parity	0	R/W	
		PMD	Parity mode selection	Odd	Even	0	R/W	5
	D4	SCS1	Clock source selection			0	R/W	
			SCS1 SCS0 Clock source					nous slave mode,
			1 1 Programmable timer					external clock is
	D3	SCS0	1 0 fosc3 / 4			0	R/W	selected.
			0 1 fosc3 / 8					
			0 0 fosc3 / 16					
	D2	SMD1	Serial I/F mode selection			0	R/W	
			<u>SMD1</u> <u>SMD0</u> Mode					
			1 1 Asynchronous 8-bit					
	D1	SMD0	1 0 Asynchronous 7-bit			0	R/W	
			0 1 Clock synchronous slave					
			0 0 Clock synchronous master					
	D0	ESIF	Serial I/F enable register	Serial I/F	I/O port	0	R/W	
00FF49	D7	-	-	-	-	-		"0" when being read
	D6	FER	Framing error flag R	Error	No error	0	R/W	Only for
			W	Reset (0)	No operation			asynchronous mode
	D5	PER	Parity error flag R	Error	No error	0	R/W	
			W	Reset (0)	No operation			
	D4	OER	Overrun error flag R	Error	No error	0	R/W	
			W	Reset (0)	No operation			
	D3	RXTRG	Receive trigger/status R	Run	Stop	0	R/W	
			W	Trigger	No operation			
	D2	RXEN	Receive enable	Enable	Disable	0	R/W	
	D1	TXTRG	Transmit trigger/status	Run	Stop	0	R/W	
			W	Trigger	No operation			
	D0	TXEN	Transmit enable	Enable	Disable	0	R/W	
00FF4A	D7	TRXD7	Transmit/Receive data D7 (MSB)					
	D6	TRXD6	Transmit/Receive data D6					
	D5	TRXD5	Transmit/Receive data D5					
	D4	TRXD4	Transmit/Receive data D4	High	Low	x	R/W	
	D3	TRXD3	Transmit/Receive data D3	Ingn	LOW			
	D2	TRXD2	Transmit/Receive data D2					
	D1	TRXD1	Transmit/Receive data D1					
	D0	TRXD0	Transmit/Receive data D0 (LSB)					
00FF20	D7	PK01	K00–K07 interrupt priority register			0	R/W	
	D6	PK00	K00–K07 interrupt priority register	PK01 PK0	0	0	K/ W	
	D5	PSIF1		PSIF1 PSIF PSW1 PSW			DAV	
	D4	PSIF0	Serial interface interrupt priority register	PTM1 PTM		0	R/W	
	D3	PSW1	Chamman and a state of the state	$\begin{array}{c c} \hline 1 \\ \hline 1 \\ \hline 0 \\ \end{array}$	Level 3		D /117	
	D2	PSW0	Stopwatch timer interrupt priority register	$ \begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} $	Level 2 Level 1	0	R/W	
	D1	PTM1		0 0	Level 0		Dav	
	D0	PTM0	Clock timer interrupt priority register			0	R/W	
L		1	1	1				1

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF23	D7	EPT1	Programmable timer 1 interrupt enable register					
	D6	EPT0	Programmable timer 0 interrupt enable register					
	D5	EK1	K10 and K11 interrupt enable register					
	D4	EK0H	K04–K07 interrupt enable register	Interrupt	Interrupt	0	DAV	
	D3	EK0L	K00–K03 interrupt enable register	enable	disable	0	R/W	
	D2	ESERR	Serial I/F (error) interrupt enable register					
	D1	ESREC	Serial I/F (receiving) interrupt enable register					
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register					
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)	(R)			
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interrupt	No interrupt			
	D5	FK1	K10 and K11 interrupt factor flag	factor is	factor is			
	D4	FK0H	K04–K07 interrupt factor flag	generated	generated	0	R/W	
	D3	FK0L	K00–K03 interrupt factor flag			0	K/W	
	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)	(W)			
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Reset	No operation			
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag					

Table 5.8.9.1(b) Serial interface control bits

ESIF: 00FF48H•D0

Sets the serial interface terminals (P10–P13).

When "1" is written:Serial input/output terminalWhen "0" is written:I/O port terminalReading:Valid

The ESIF is the serial interface enable register and P10–P13 terminals become serial input/output terminals (SIN, SOUT, SCLK, SRDY) when "1" is written, and they become I/O port terminals when "0" is written.

Also, see Table 5.8.3.2 for the terminal settings according to the transfer modes. At initial reset, ESIF is set to "0" (I/O port).

SMD0, SMD1: 00FF48H•D1, D2

Set the transfer modes according to Table 5.8.9.2.

Table 5.8.9.2	Transfer mode	settings
---------------	---------------	----------

SMD1	SMD0	Mode
1	1	Asynchronous system 8-bit
1	0	Asynchronous system 7-bit
0	1	Clock synchronous system slave
0	0	Clock synchronous system master

SMD0 and SMD1 can also read out.

At initial reset, this register is set to "0" (clock synchronous master mode).

SCS0, SCS1: 00FF48H•D3, D4

Select the clock source according to Table 5.8.9.3.

Table 5.8.9.3 Clock source selection

SCS1	SCS0	Clock source
1	1	Programmable timer
1	0	fosc3 / 4
0	1	fosc3 / 8
0	0	fosc3 / 16

SCS0 and SCS1 can also be read out.

In the clock synchronous slave mode, setting of this register is invalid.

At initial reset, this register is set to "0" (fOSC3/16).

EPR: 00FF48H•D6

Selects the parity function.

When "1" is written:With parityWhen "0" is written:Non parityReading:Valid

Selects whether or not to check parity of the received data and to add a parity bit to the transmitting data. When "1" is written to EPR, the most significant bit of the received data is considered to be the parity bit and a parity check is executed. A parity bit is added to the transmitting data. When "0" is written, neither checking is done nor is a parity bit added. Parity is valid only in asynchronous mode and the EPR setting becomes invalid in the clock synchronous mode.

At initial reset, EPR is set to "0" (non parity).

PMD: 00FF48H•D5

Selects odd parity/even parity.

When "1" is written:Odd parityWhen "0" is written:Even parityReading:Valid

When "1" is written to PMD, odd parity is selected and even parity is selected when "0" is written. The parity check and addition of a parity bit is only valid when "1" has been written to EPR. When "0" has been written to EPR, the parity setting by PMD becomes invalid.

At initial reset, PMD is set to "0" (even parity).

TXEN: 00FF49H•D0

Sets the serial interface to the transmitting enable status.

When "1" is written: Transmitting enable When "0" is written: Transmitting disable Reading: Valid

When "1" is written to TXEN, the serial interface shifts to the transmitting enable status and shifts to the transmitting disable status when "0" is written. Set TXEN to "0" when making the initial settings of the serial interface and similar operations. At initial reset, TXEN is set to "0" (transmitting disable).

TXTRG: 00FF49H•D1

Functions as the transmitting start trigger and the operation status indicator (transmitting/stop status).

When "1" is read:	During transmitting
When "0" is read:	During stop
When "1" is written: When "0" is written:	e

Starts the transmitting when "1" is written to TXTRG after writing the transmitting data. TXTRG can be read as the status. When set to "1", it indicates transmitting operation, and "0" indicates transmitting stop.

At initial reset, TXTRG is set to "0" (during stop).

RXEN: 00FF49H•D2

Sets the serial interface to the receiving enable status.

When "1" is written:	Receiving enable
When "0" is written:	Receiving disable
Reading:	Valid

When "1" is written to RXEN, the serial interface shifts to the receiving enable status and shifts to the receiving disable status when "0" is written. Set RXEN to "0" when making the initial settings of the serial interface and similar operations. At initial reset, RXEN is set to "0" (receiving disable).

RXTRG: 00FF49H•D3

Functions as the receiving start trigger or preparation for the following data receiving and the operation status indicator (during receiving/during stop).

When "1" is read: When "0" is read:	During receiving During stop
When "1" is written:	Receiving start/following
	data receiving preparation
When "0" is written:	Invalid

RXTRG has a slightly different operation in the clock synchronous system and the asynchronous system.

The RXTRG in the clock synchronous system, is used as the trigger for the receiving start. Writes "1" into RXTRG to start receiving at the point where the receive data has been read and the following receive preparation has been done. (In the slave mode, SRDY becomes "0" at the point where "1" has been written into into the RXTRG.)

RSTRG is used in the asynchronous system for preparation of the following data receiving. Reads the received data located in the received data buffer and writes "1" into RXTRG to inform that the received data buffer has shifted to empty. When "1" has not been written to RXTRG, the overrun error flag OER is set to "1" at the point where the following receiving has been completed. (When the receiving has been completed between the operation to read the received data and the operation to write "1" into RXTRG, an overrun error occurs.)

In addition, RXTRG can be read as the status. In either clock synchronous mode or asynchronous mode, when RXTRG is set to "1", it indicates receiving operation and when set to "0", it indicates that receiving has stopped. At initial reset, RXTRG is set to "0" (during stop).

TRXD0-TRXD7: 00FF4AH

During transmitting

Write the transmitting data into the transmit shift register.

When "1" is written: HIGH level When "0" is written: LOW level

Write the transmitting data prior to starting transmitting.

In the case of continuous transmitting, wait for the transmitting complete interrupt, then write the data. The TRXD7 becomes invalid for the asynchronous 7-bit mode.

Converted serial data for which the bits set at "1" as HIGH (VDD) level and for which the bits set at "0" as LOW (VSS) level are output from the SOUT terminal.

During receiving

Read the received data.

When "1" is read:	HIGH level
When "0" is read:	LOW level

The data from the received data buffer can be read out. Since the sift register is provided separately from this buffer, reading can be done during the receive operation in the asynchronous mode. (The buffer function is not used in the clock synchronous mode.) Read the data after waiting for the receiving complete interrupt.

When performing parity check in the asynchronous 7-bit mode, "0" is loaded into the 8th bit (TRXD7) that corresponds to the parity bit.

The serial data input from the SIN terminal is level converted, making the HIGH (VDD) level bit "1" and the LOW (Vss) level bit "0" and is then loaded into this buffer.

At initial reset, the buffer content is undefined.

OER: 00FF49H•D4

Indicates the generation of an overrun error.

When "1" is read:	Error
When "0" is read:	No error
When "1" is written: When "0" is written:	

OER is an error flag that indicates the generation of an overrun error and becomes "1" when an error has been generated.

An overrun error is generated when the receiving of data has been completed prior to the writing of "1" to RXTRG in the asynchronous mode.

OER is reset to "0" by writing "1".

At initial reset and when RXEN is "0", OER is set to "0" (no error).

PER: 00FF49H•D5

Indicates the generation of a parity error.

When "1" is read:	Error
When "0" is read:	No error
When "1" is written: When "0" is written:	

PER is an error flag that indicates the generation of a parity error and becomes "1" when an error has been generated.

When a parity check is performed in the asynchronous mode, if data that does not match the parity is received, a parity error is generated.

PER is reset to "0" by writing "1".

At initial reset and when RXEN is "0", PER is set to "0" (no error).

FER: 00FF49H•D6

Indicates the generation of a framing error.

When "1" is read:	Error
When "0" is read:	No error
When "1" is written: When "0" is written:	

FER is an error flag that indicates the generation of a framing error and becomes "1" when an error has been generated.

When the stop bit for the receiving of the asynchronous mode has become "0", a framing error is generated.

FER is reset to "0" by writing "1".

At initial reset and when RXEN is "0", FER is set to "0" (no error).

PSIF0, PSIF1: 00FF20H•D4, D5

Sets the priority level of the serial interface interrupt. The two bits PSIF0 and PSIF1 are the interrupt priority register corresponding to the serial interface interrupt. Table 5.8.9.4 shows the interrupt priority level which can be set by this register.

Table 5.8.9.4 Interrupt priority level settings

	I I I	
PSIF1	PSIF0	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

ESTRA, ESREC, ESERR: 00FF23H•D0, D1, D2

Enables or disables the generation of an interrupt for the CPU.

When "1" is written:Interrupt enabledWhen "0" is written:Interrupt disabledReading:Valid

ESTRA, ESREC and ESERR are interrupt enable registers that respectively correspond to the interrupt factors for transmitting complete, receiving complete and receiving error. Interrupts set to "1" are enabled and interrupts set to "0" are disabled. At initial reset, this register is set to "0" (interrupt disabled).

FSTRA, FSREC, FSERR: 00FF25H•D0, D1, D2

Indicates the serial interface interrupt generation status.

When "1" is read:	Interrupt factor present
When "0" is read:	Interrupt factor not present
When "1" is written: When "0" is written:	0

FSTRA, FSREC and FSERR are interrupt factor flags that respectively correspond to the interrupts for transmitting complete, receiving complete and receiving error and are set to "1" by generation of each factor.

Transmitting complete interrupt factor is generated at the point where the data transmitting of the shift register has been completed.

Receiving complete interrupt factor is generated at the point where the received data has been transferred into the received data buffer.

Receive error interrupt factor is generated when a parity error, framing error or overrun error has been detected during data receiving.

When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU.

Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is reset to "0".

5.8.10 Programming notes

- (1) Be sure to initialize the serial interface mode in the transmitting/receiving disable status (TXEN = RXEN = "0").
- (2) Do not perform double trigger (writing "1") to TXTRG (RXTRG) when the serial interface is in the transmitting (receiving) operation. Furthermore, do not execute the SLP instruction. (When executing the SLP instruction, set TXEN = RXEN = "0".)
- (3) In the clock synchronous mode, since one clock line (SCLK) is shared for both transmitting and receiving, transmitting and receiving cannot be performed simultaneously. (Half duplex only is possible in clock synchronous mode.) Consequently, be sure not to write "1" to RXTRG (TXTRG) when TXTRG (RXTRG) is "1".
- (4) When a parity error or flaming error is generated during receiving in the asynchronous mode, the receiving error interrupt factor flag FSERR is set to "1" prior to the receiving complete interrupt factor flag FSREC for the time indicated in Table 5.8.10.1. Consequently, when an error is generated, you should reset the receiving complete interrupt factor flag FSREC to "0" by providing a wait time in error processing routines and similar routines. When an overrun error is generated, the receiving complete interrupt factor flag FSREC is not set to "1" and a receiving complete interrupt is not generated.

Table 5.8.10.1 Time difference between FSERR and FSREC on error generation

	0
Clock source	Time difference
fosc3 / n	1/2 cycles of fosc3 / n
Programmable timer	1 cycle of timer 1 underflow

(5) When the demultiplied signal of the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the serial interface.

A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before starting transmitting/receiving of serial interface. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERISTICS".) At initial reset, the OSC3 oscillation circuit is set to OFF status.

5.9 Clock Timer

5.9.1 Configuration of clock timer

The E0C883xx has built in a clock timer that uses the OSC1 oscillation circuit as clock source. The clock timer is composed of an 8-bit binary counter that uses the 256 Hz signal dividing fOSC1 as its input clock and can read the data of each bit (128–1 Hz) by software.

Normally, this clock timer is used for various timing functions such as clocks.

The configuration of the clock timer is shown in Figure 5.9.1.1.

5.9.2 Interrupt function

The clock timer can generate an interrupt by each of the 32 Hz, 8 Hz, 2 Hz and 1 Hz signals. The configuration of the clock timer interrupt circuit is shown in Figure 5.9.2.1.

Interrupts are generated by respectively setting the corresponding interrupt factor flags FTM32, FTM8, FTM2 and FTM1 at the falling edge of the 32 Hz, 8 Hz, 2 Hz and 1 Hz signals to "1". Interrupt can be prohibited by the setting the interrupt enable registers ETM32, ETM8, ETM2 and ETM1 corresponding to each interrupt factor flag. In addition, a priority level of the clock timer interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PTM0 and PTM1.

For details on the above mentioned interrupt control register and the operation following generation of an interrupt, see "5.16 Interrupt and Standby Status".

The exception processing vector addresses for each interrupt factor are respectively set as shown below.

32 Hz interrupt:	00001CH
8 Hz interrupt:	00001EH
2 Hz interrupt:	000020H
1 Hz interrupt:	000022H

Figure 5.9.2.2 shows the timing chart for the clock timer.

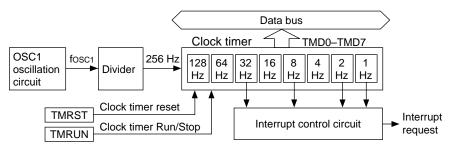


Fig. 5.9.1.1 Configuration of clock timer

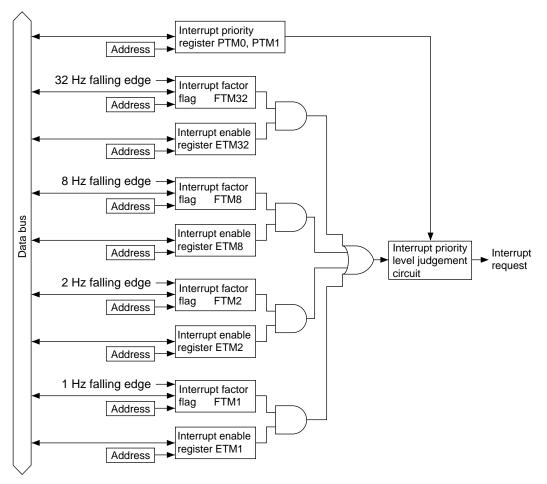


Fig. 5.9.2.1 Configuration of clock timer interrupt circuit

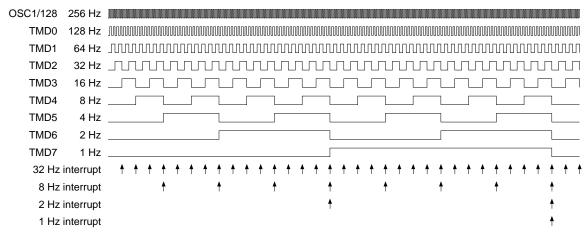


Fig. 5.9.2.2 Timing chart of clock timer

5.9.3 Control of clock timer

Table 5.9.3.1 shows the clock timer control bits.

Table 5.9.3.1 Clock timer control bits

Address	Bit	Name		Functio	on	1	0	SR	R/W	Comment
00FF40	D7	-	_			-	-	_		"0" when being read
	D6	FOUT2	FOUT frequenc	y selectio	n			0	R/W	
			FOUT2 FOUT	1 FOUTO	Frequency					
			0 0	0	fosci / 1					
	D5	FOUT1	$ \begin{array}{ccc} 0 & 0 \\ 0 & 1 \end{array} $	1 0	fosc1 / 2 fosc1 / 4			0	R/W	
			0 1	1	fosci / 8					
			1 0	0	fosc3 / 1					
	D4	FOUT0	1 0	1	fosc3 / 2			0	R/W	
			1 1	0	fosc3 / 4					
			1 1	1	fosc3 / 8					
	D3	FOUTON	FOUT output co	ontrol		On	Off	0	R/W	
	D2	WDRST	Watchdog timer	reset		Reset	No operation	-	W	Constantly "0" when
	D1	TMRST	Clock timer rese	et		Reset	No operation	-	W	being read
	D0	TMRUN	Clock timer Ru	n/Stop coi	ntrol	Run	Stop	0	R/W	
00FF41	D7	TMD7	Clock timer dat	a 1 Hz						
	D6	TMD6	Clock timer dat	a 2 Hz						
	D5	TMD5	Clock timer data	a 4 Hz						
	D4	TMD4	Clock timer data	a 8 Hz		High	Low	0	R	
	D3	TMD3	Clock timer data	a 16 Hz		Ingn	LOW	0		
	D2	TMD2	Clock timer data	a 32 Hz						
	D1	TMD1	Clock timer data	a 64 Hz						
	D0	TMD0	Clock timer data	a 128 Hz						
00FF20	D7	PK01	KOO KO7 intom	unt nui qui	try no giston			0	R/W	
	D6	PK00	K00–K07 interrupt priority register		PK01 PK00		0 K/W	K/W		
	D5	PSIF1	Social interface	into munt		PSIF1 PSIF0 PSW1 PSW0 Priority		0 R/W	R/W	
	D4	PSIF0	Serial interface interrupt priority register Stopwatch timer interrupt priority register		PSW1 PSW0 Priority <u>PTM1</u> <u>PTM0</u> level 1 1 Level 3 Level 2		0 K/W			
	D3	PSW1					0	R/W		
	D2	PSW0	stopwatch time	merrupi	priority register	1 0 Level 2 0 1 Level 1		0	K/W	
	D1	PTM1				0 0	0 0 Level 0		DAV	
	D0	PTM0	Clock timer inte	rrupt pric	rity register			0	R/W	
00FF22	D7	-	-			-	-	_		"0" when being read
	D6	ESW100	Stopwatch timer	100 Hz in	terrupt enable register					
	D5	ESW10	Stopwatch timer	10 Hz inte	errupt enable register					
	D4	ESW1	Stopwatch timer	1 Hz inter	rupt enable register	Tutum	Testamont			
	D3	ETM32	Clock timer 32 H	z interrup	t enable register	Interrupt	Interrupt	0	R/W	
	D2	ETM8	Clock timer 8 Hz	interrupt	enable register	enable	disable			
	D1	ETM2	Clock timer 2 Hz	interrupt	enable register					
	D0	ETM1	Clock timer 1 Hz	interrupt	enable register					
00FF24	D7	-	_			-	-	-		"0" when being read
	D6	FSW100	Stopwatch time	: 100 Hz i	nterrupt factor flag	(R)	(R)			
	D5	FSW10	Stopwatch time	10 Hz in	terrupt factor flag	Interrupt	No interrupt			
	D4	FSW1	Stopwatch time	1 Hz int	errupt factor flag	factor is	factor is			
	D3	FTM32	Clock timer 32	Hz interru	pt factor flag	generated	generated	0	R/W	
	D2	FTM8	Clock timer 8 H	z interrup	t factor flag					
	D1	FTM2	Clock timer 2 H	z interrup	t factor flag	(W)	(W)			
	D0	FTM1	Clock timer 1 H	z interrup	t factor flag	Reset	No operation			

TMD0–TMD7: 00FF41H

The clock timer data can be read out. Each bit of TMD0–TMD7 and frequency correspondence are as follows:

TMD0:	128Hz	TMD4:	8Hz
TMD1:	64Hz	TMD5:	4Hz
TMD2:	32Hz	TMD6:	2Hz
TMD3:	16Hz	TMD7:	1Hz

Since the TMD0–TMD7 is exclusively for reading, the write operation is invalid. At initial reset, the timer data is set to "00H".

TMRST: 00FF40H•D1

Resets the clock timer.

When "1" is written:Clock timer resetWhen "0" is written:No operationReading:Always "0"

The clock timer is reset by writing "1" to the TMRST.

When the clock timer is reset in the RUN status, it restarts immediately after resetting. In the case of the STOP status, the reset data "00H" is maintained. No operation results when "0" is written to the TMRST.

Since the TMRST is exclusively for writing, it always becomes "0" during reading.

TMRUN: 00FF40H•D0

Controls RUN/STOP of the clock timer.

When "1" is written:	RUN
When "0" is written:	STOP
Reading:	Valid

The clock timer starts up-counting by writing "1" to the TMRUN and stops by writing "0". In the STOP status, the count data is maintained

until it is reset or set in the next RUN status. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count.

At initial reset, the TMRUN is set to "0" (STOP).

PTM0, PTM1: 00FF20H•D0, D1

Sets the priority level of the clock timer interrupt. The two bits PTM0 and PTM1 are the interrupt priority register corresponding to the clock timer interrupt. Table 5.9.3.2 shows the interrupt priority level which can be set by this register.

PTM1	PTM0	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

ETM1, ETM2, ETM8, ETM32: 00FF22H•D0-D3

Enables or disables the generation of an interrupt for the CPU.

When "1" is written:Interrupt enabledWhen "0" is written:Interrupt disabledReading:Valid

The ETM1, ETM2, ETM8 and ETM32 are interrupt enable registers that respectively correspond to the interrupt factors for 1 Hz, 2 Hz, 8 Hz and 32 Hz. Interrupts set to "1" are enabled and interrupts set to "0" are disabled.

At initial reset, this register is set to "0" (interrupt disabled).

FTM1, FTM2, FTM8, FTM32: 00FF24H•D0–D3

Indicates the clock timer interrupt generation status.

When "1" is read:	Interrupt factor present
When "0" is read:	Interrupt factor not present
When "1" is written:	Resets factor flag

When "0" is written: Invalid

The FTM1, FTM2, FTM8 and FTM32 are interrupt factor flags that respectively correspond to the interrupts for 1 Hz, 2 Hz, 8 Hz and 32 Hz and are set to "1" at the falling edge of each signal. When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is reset to "0".

5.9.4 Programming notes

(1) The clock timer is actually made to RUN/STOP in synchronization with the falling edge of the 256 Hz signal after writing to the TMRUN register. Consequently, when "0" is written to the TMRUN, the timer shifts to STOP status when the counter is incremented "1". The TMRUN maintains "1" for reading until the timer actually shifts to STOP status. Figure 5.9.4.1 shows the timing chart of the RUN/STOP control.

256 Hz			
TMRUN(RD)			
TMRUN(WR)		Γ	
TMDX	57H	(58H)(59H)(5AH)(5BH)	5CH

Fig. 5.9.4.1 Timing chart of RUN/STOP control

(2) The SLP instruction is executed when the clock timer is in the RUN status (TMRUN = "1"). The clock timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (TMRUN = "0") prior to executing the SLP instruction.

5.10 Stopwatch Timer

5.10.1 Configuration of stopwatch timer

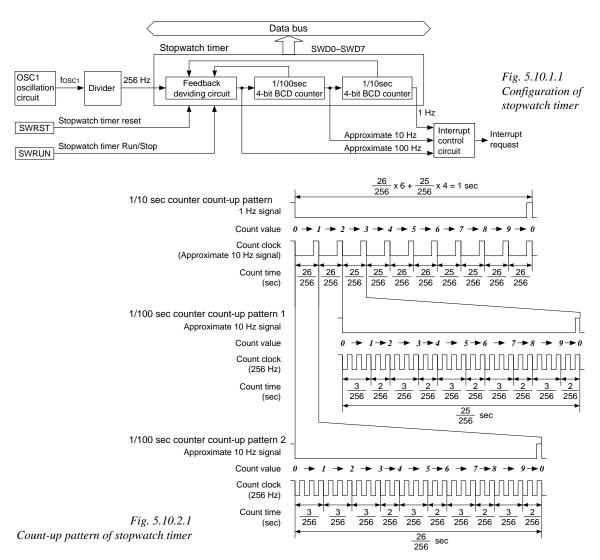
The E0C883xx has a built-in 1/100 sec and 1/10 sec stopwatch timer. The stopwatch timer is composed of a 4-bit 2 stage BCD counter (1/100 sec units and 1/10 sec units) that makes the 256 Hz signal that divides the fosc1 the input clock and it can read the count data by software.

Figure 5.10.1.1 shows the configuration of the stopwatch timer.

The stopwatch timer can be used as a timer different from the clock timer and can easily realize stopwatch and other such functions by software.

5.10.2 Count up pattern

The stopwatch timer is respectively composed of the 4-bit BCD counters SWD0–SWD3 and SWD4–SWD7.


Figure 5.10.2.1 shows the count up pattern of the stopwatch timer.

The feedback dividing circuit generates an approximate 100 Hz signal at 2/256 sec and 3/256 sec intervals from a 256 Hz signal divided from fOSC1.

The 1/100 sec counter (SWD0–SWD3) generates an approximate 10 Hz signal at 25/256 sec and 26/256 sec intervals by counting the approximate 100 Hz signal generated by the feedback dividing circuit in 2/256 sec and 3/256 sec intervals. The count-up is made approximately 1/100 sec counting by the 2/256 sec and 3/256 sec intervals.

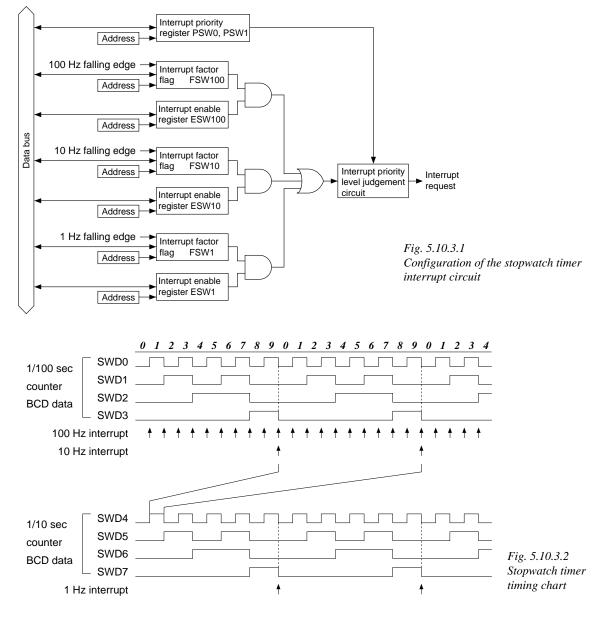
The 1/10 sec counter (SWD4–SWD7) generates a 1 Hz signal by counting the approximate 10 Hz signal generated by the 1/100 sec counter at 25/256 sec and 26/256 sec intervals in 4:6 ratios.

The count-up is made approximately 1/10 sec counting by 25/256 sec and 26/256 sec intervals.

5.10.3 Interrupt function

The stopwatch timer can generate an interrupt by each of the 100 Hz (approximately 100 Hz), 10 Hz (approximately 10 Hz) and 1 Hz signals. Figure 5.10.3.1 shows the configuration of the stopwatch timer interrupt circuit

The corresponding factor flags FSW100, FSW10 and FSW1 are respectively set to "1" at the falling edge of the 100 Hz, 10Hz and 1Hz signal and an interrupt is generated. Interrupt can be prohibited by the setting of the interrupt enable registers ESW100, ESW10 and ESW1 corresponding to each interrupt factor flag.


In addition, a priority level of the stopwatch timer interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PSW0 and PSW1.

For details on the above mentioned interrupt control registers and the operation following generation of an interrupt, see "5.16 Interrupt and Standby Status".

The exception processing vector addresses of each interrupt factor are respectively set as shown below.

100 Hz interrupt:	000016H
10 Hz interrupt:	000018H
1 Hz interrupt:	00001AH

Figure 5.10.3.2 shows the timing chart for the stopwatch timer.

5.10.4 Control of stopwatch timer

Table 5.10.4.1 shows the stopwatch timer control bits.

Table 5.10.4.1 Stopwatch timer control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF42	D7	_	-	-	-	_		
	D6	_	-	-	-	-		
	D5	_	-	-	-	-		
	D4	_	-	-	-	-		Constantly "0" when being read
	D3	_	-	_		-		
	D2	_	-	-	-	_		
	D1	SWRST	Stopwatch timer reset	Reset No operation		-	W	
	D0	SWRUN	Stopwatch timer Run/Stop control	Run	Stop	0	R/W	
00FF43	D7	SWD7	Stopwatch timer data					
	D6	SWD6						
	D5	SWD5	BCD (1/10 sec)					
	D4	SWD4				0		
	D3	SWD3	Stopwatch timer data				R	
D2	D2	SWD2						
	D1	SWD1	BCD (1/100 sec)					
-	D0	SWD0						
00FF20	00FF20 D7	PK01			0	0	R/W	
	D6	PK00	K00–K07 interrupt priority register	PK01 PK00				
	D5	PSIF1		PSIF1 PSIF0		0	DAV	
D4	D4	PSIF0	Serial interface interrupt priority register	PSW1 PSW PTM1 PTM			R/W	
	D3	PSW1		$\begin{array}{c c} \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline 0 \\ \hline \end{array}$	0 Level 2	0	R/W	
	D2	PSW0	Stopwatch timer interrupt priority register	$ \begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} $				
	D1	PTM1		0 0	Level 0		DAV	
	D0	PTM0	Clock timer interrupt priority register			0	R/W	
00FF22	D7	_	-	-	-	_		"0" when being read
	D6	ESW100	Stopwatch timer 100 Hz interrupt enable register					
	D5	ESW10	Stopwatch timer 10 Hz interrupt enable register		Interrupt disable	0	R/W	
	D4	ESW1	Stopwatch timer 1 Hz interrupt enable register	Interrupt enable				
	D3	ETM32	Clock timer 32 Hz interrupt enable register					
	D2	ETM8	Clock timer 8 Hz interrupt enable register					
	D1	ETM2	Clock timer 2 Hz interrupt enable register					
	D0	ETM1	Clock timer 1 Hz interrupt enable register					
00FF24	D7		_	_	-	_		"0" when being read
	D6	FSW100	Stopwatch timer 100 Hz interrupt factor flag	(R)	(R)			
	D5	FSW10	Stopwatch timer 10 Hz interrupt factor flag	Interrupt	No interrupt			
	D4	FSW1	Stopwatch timer 1 Hz interrupt factor flag	factor is	factor is			
	D3	FTM32	Clock timer 32 Hz interrupt factor flag	generated	generated	0	R/W	
	D2	FTM8	Clock timer 8 Hz interrupt factor flag	(11)				
D		FTM2	Clock timer 2 Hz interrupt factor flag	(W) Reset	(W)			
	D0	FTM1	Clock timer 1 Hz interrupt factor flag	Reset	No operation	n		

SWD0-SWD7: 00FF43H

The stopwatch timer data can be read out. Higher and lower nibbles and BCD digit correspondence are as follows:

SWD0-SWD3:	BCD (1/100sec)
SWD4–SWD7:	BCD (1/10sec)

Since SWD0–SWD7 are exclusively for reading, the write operation is invalid.

At initial reset, the timer data is set to "00H".

SWRST: 00FF42H•D1

Resets the stopwatch timer.

When "1" is written:Stopwatch timer resetWhen "0" is written:No operationReading:Always "0"

The stopwatch timer is reset by writing "1" to the SWRST. When the stopwatch timer is reset in the RUN status, it restarts immediately after resetting. In the case of the STOP status, the reset data "00H" is maintained.

No operation results when "0" is written to the SWRST.

Since the SWRST is exclusively for writing, it always becomes "0" during reading.

SWRUN: 00FF42H•D0

Controls RUN/STOP of the stopwatch timer.

When "1" is written:	RUN
When "0" is written:	STOP
Reading:	Valid

The stopwatch timer starts up-counting by writing "1" to the SWRUN and stops by writing "0". In the STOP status, the timer data is maintained until it is reset or set in the next RUN status. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count.

At initial reset, the SWRUN is set at "0" (STOP).

PSW0, PSW1: 00FF20H•D2, D3

Sets the priority level of the stopwatch timer interrupt.

The two bits PSW0 and PSW1 are the interrupt priority register corresponding to the stopwatch timer interrupt. Table 5.10.4.2 shows the interrupt priority level which can be set by this register.

Table 5.10.4.2	Interrupt	priority	level	settings
----------------	-----------	----------	-------	----------

PSW1	PSW0	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)
0	0	Level 0 (None)

At initial reset, this register is set to "0" (level 0).

ESW1, ESW10, ESW100: 00FF22H•D4, D5, D6

Enables or disables the generation of an interrupt for the CPU.

When "1" is written:Interrupt enabledWhen "0" is written:Interrupt disabledReading:Valid

The ESW1, ESW10 and ESW100 are interrupt enable registers that respectively correspond to the interrupt factors for 1 Hz, 10 Hz and 100 Hz. Interrupts set to "1" are enabled and interrupts set to "0" are disabled.

At initial reset, this register is set to "0" (interrupt disabled).

FSW1, FSW10, FSW100: 00FF24H•D4, D5, D6

Indicates the stopwatch timer interrupt generation status.

When "1" is read:	Interrupt factor present
When "0" is read:	Interrupt factor not present
When "1" is written: When "0" is written:	0

The FSW1, FSW10 and FSW100 are interrupt factor flags that respectively correspond to the interrupts for 1 Hz, 10 Hz and 100 Hz and are set to "1" in synchronization with the falling edge of each signal. When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

At initial reset, this flag is reset to "0".

5.10.5 Programming notes

(1) The stopwatch timer is actually made to RUN/ STOP in synchronization with the falling edge of the 256 Hz signal after writing to the SWRUN register. Consequently, when "0" is written to the SWRUN, the timer shifts to STOP status when the counter is incremented "1". The SWRUN maintains "1" for reading until the timer actually shifts to STOP status. Figure 5.10.5.1 shows the timing chart of the RUN/STOP control.

256 Hz		
SWRUN(RD)		
SWRUN(WR)	_[
SWDX	27 (28 (29 (30) 31	32

Fig. 5.10.5.1 Timing chart of RUN/STOP control

(2) The SLP instruction is executed when the stopwatch timer is in the RUN status (SWRUN = "1"). The stopwatch timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (SWRUN = "0") prior to executing the SLP instruction.

5.11 Programmable Timer

5.11.1 Configuration of programmable timer

The E0C883xx has two built-in 8-bit programmable timer systems (timer 0 and timer 1).

Timer 0 and timer 1 are composed of 8-bit presettable down counters and they can be used as 8-bit \times 2 channels or 16-bit \times 1 channel programmable timer. They also have an event counter function and a pulse width measurement function using the K10 input port terminal.

Figure 5.11.1.1 shows the configuration of the programmable timer.

Programmable setting of the transfer rate is possible, due to the fact that the programmable timer underflow signal can be used as a synchronous clock for the serial interface.

The underflow divided by 1/2 signal can also be output externally from the R27 output port terminal.

5.11.2 Count operation and setting basic mode

Here we will explain the basic operation and setting of the programmable timer.

Setting of initial value and counting down

The timers 0 and 1 each have a down counter and reload data register.

The reload data registers RLD00–RLD07 (timer 0) and RLD10–RLD17 (timer 1) are registers that set the initial value of the counter.

By writing "1" to the preset control bit PSET0 (timer 0) or PSET1 (timer 1), the down counter loads the initial value set in the reload register RLD. Therefore, down-counting is executed from the stored initial value according to the input clock.

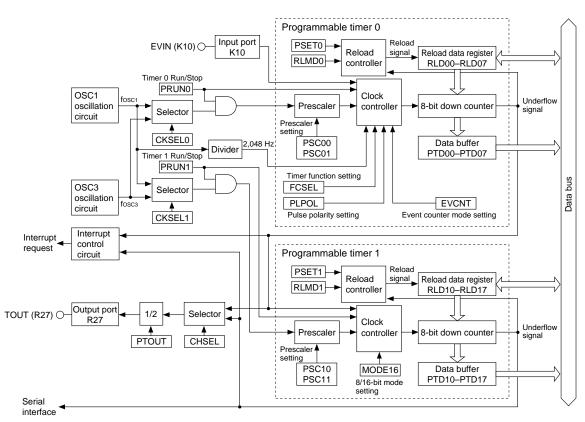


Fig. 5.11.1.1 Configuration of programmable timer

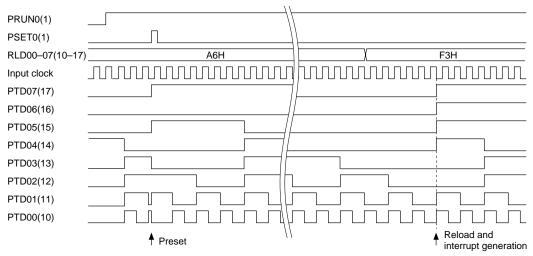


Fig. 5.11.2.1 Basic operation timing of the counter

The registers PRUN0 (timer 0) and PRUN1 (timer 1) are provided to control the RUN/STOP for timers 0 and 1.

After the reload data has been preset into the counter, down-counting is begun by writing "1" to this register. When "0" is written, the clock input is prohibited and the count stops.

The control of this RUN/STOP has no affect on the counter data. The counter data is maintained even during the stoppage of the counter and it can start the count, continuing from that data.

The reading of the counter data can be done through the data buffers PTD00–PTD07 (timer 0) and PTD10–PTD17 (timer 1) with optional timing. When the down-counting has progressed and an underflow is generated, the counter reloads the initial value set in the reload data register. This underflow signal controls an interrupt generation, pulse (TOUT signal) output and serial interface clocking, in addition to reloading the counter.

Continuous/one-shot mode setting

By writing "1" to the continuous/one-shot mode selection registers CONT0 (timer 0) and CONT1 (timer 1), the programmable timer is set to the continuous mode. In the continuous mode, the initial counter value is automatically loaded when an underflow is generated, and counting is continued. This mode is suitable when programmable intervals are necessary (such as an interrupt and a synchronous clock for the serial interface). On the other hand, when writing "0" to the registers CONT0 (timer 0) and CONT1 (timer 1), the programmable timer is set to the one-shot mode. The counter loads an initial value and stops when an underflow is generated. At this time, the RUN/ STOP control register PRUN0 (timer 0) and PRUN1 (timer 1) are automatically reset to "0". After the counter stops, a one-shot count can be performed once again by writing "1" to registers PRUN0 (timer 0) and PRUN1 (timer 1). This mode is suitable for single time measurement, for example.

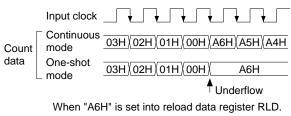


Fig. 5.11.2.2 Continuous mode and one-shot mode

■ 8/16-bit mode setting

By writing "0" to the 8/16-bit mode selection register MODE16, timer 0 and timer 1 are set as independent timers in 8-bit \times 2 channels. In this mode, timer 0 and timer 1 can be controlled individually and each of them operates independently.

On the other hand, when writing "1" to the register MODE16, timer 0 and timer1 are set as 1 channel 16-bit timer. This is done by setting timer 0 to the lower 8 bits, and timer 1 to the upper 8 bits. The timer is controlled by timer 0's registers. In this case, the control registers for timer 1 are invalid. (PRUN1 is fixed at "0".)

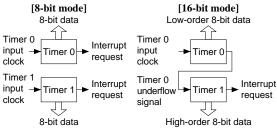


Fig. 5.11.2.3 8/16-bit mode setting and counter configuration

5.11.3 Setting of input clock

Prescalers have been provided for timers 0 and 1. The prescalers generate the input clock for each by dividing the source clock signal from the OSC1 or OSC3 oscillation circuit.

The source clock and the dividing ratio of the prescaler can be selected individually for timer 0 and timer 1 in software.

The input clocks are set by the below sequence.

(1) Selection of source clock

Select the source clock (OSC1 or OSC3) for each prescaler. This is done with the source clock selection registers CKSEL0 (timer 0) and CKSEL1 (timer 1): when "0" is written, OSC1 is selected and when "1" is written, OSC3 is selected. When the 16-bit mode is selected, the source clock is selected by register CKSEL0, and the register CKSEL1 setting becomes invalid. When the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the programmable timer. From the time the OSC3 oscillation circuit is turning ON until oscillation stabilizes, an interval of several msec to several 10 msec is necessary. Consequently, you should allow an adequate waiting time after turning the OSC3 oscillation circuit ON before starting the count of the programmable timer. (The oscillation start time will vary somewhat depending on the oscillator and on external parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERIS-TICS".)

At initial reset, OSC3 oscillation circuit is set to OFF status.

(2) Selection of prescaler dividing ratio

Select the dividing ratio of each prescaler from among 4 types. This selection is done by the prescaler dividing ratio selection registers PSC00/PSC01 (timer 0) and PSC10/PSC11 (timer 1). Setting value and dividing ratio correspondence are shown in Table 5.11.3.1.

Table 5.11.3.	Selection	of prescaler	dividing ratio
---------------	-----------	--------------	----------------

		-			
PSC11	PSC10	Prescaler dividing ratio			
PSC01	PSC00	Prescaler dividing ratio			
1	1	Source clock / 64			
1	0	Source clock / 16			
0	1	Source clock / 4			
0	0	Source clock / 1			

By writing "1" to the register PRUN0 (timer 0) and PRUN1 (timer 1), the source clock is input to the prescaler. Therefore, the clock with selected dividing ratio is input to the timer and the timer starts counting down.

When the 16-bit mode has been selected, the dividing ratio for the source clock is selected by register PSC00/PSC01 and the setting of register PSC10/PSC11 becomes invalid.

5.11.4 Timer mode

The timer mode counts down using the prescaler output as an input clock. In this mode, the programmable timer operates as a timer that obtains fixed cycles using the OSC1 or OSC3 oscillation circuit as a clock source.

See "5.11.2 Count operation and basic mode setting" for basic operation and control, and "5.11.3 Setting input clock" for the clock source and setting of the prescaler.

5.11.5 Event counter mode

Timer 0 includes an even counter function that counts by inputting an external clock (EVIN) to input port K10. This function is selected by writing "1" to the timer 0 counter mode selection register EVCNT.

When the event counter mode is selected, timer 0 operates as an event counter and timer 1 operates as a normal timer in 8-bit mode. In the 16-bit mode, timer 0 and timer 1 operate as 1 channel 16-bit event counter. In the event counter mode, since the timer 0 is clocked externally, the settings of registers PSC00/PSC01 become invalid.

Count down timing can be controlled by either the falling edge or rising edge selected by the timer 0 pulse polarity selection register PLPOL. When "0" is written to the register PLPOL, the falling edge is selected, and when "1" is written, the rising edge is selected. The timing is shown in Figure 5.11.5.1.

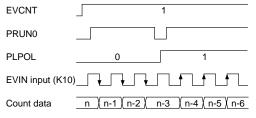


Fig. 5.11.5.1 Timing chart for event counter mode

The event counter also includes a noise rejecter to eliminate noise such as chattering for the external clock (EVIN). This function is selected by writing "1" to the timer 0 function selection register FCSEL. For a reliable count when "with noise rejecter" is selected, you must allow 0.98 msec or more pulse width for both LOW and HIGH levels. (The noise rejecter allows clocking counter at the second falling edge of the internal 2,048 Hz signal after changing the input level of the K10 input port terminal. Consequently, the pulse width that can reliably be rejected is 0.48 msec.)

Figure 5.11.5.2 shows the count down timing with the noise rejecter selected.

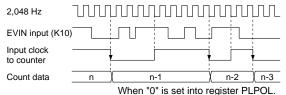


Fig. 5.11.5.2 Count down timing with noise rejecter

The event counter mode is the same as the timer mode except that the clock is external (EVIN). See "5.11.2 Count operation and setting basic mode" for the basic operation and control.

5.11.6 Pulse width measurement timer mode

Timer 0 includes a pulse width measurement function that measures the width of the input signal to the K10 input port terminal. This function is selected by writing "1" to the timer function selection register FCSEL when in the timer mode (EVCNT = "0"). When the pulse width measurement mode is selected, timer 0 operates as an pulse width measurement and timer 1 operates as a normal timer in 8-bit mode. In the 16-bit mode, timer 0 and timer 1 operate as 1 channel 16-bit pulse width measurement. The level of the input signal (EVIN) for measurement can be changed either a LOW or HIGH level by the timer 0 pulse polarity selection register PLPOL. When "0" is written to register PLPOL, a LOW level width is measured and when "1" is written, a HIGH level width is measured. The timing is shown in Figure 5.11.6.1.

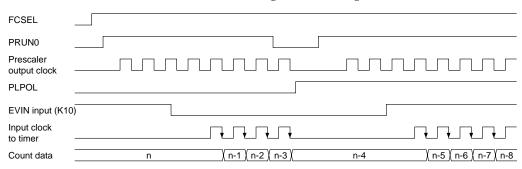


Fig. 5.11.6.1 Timing chart for pulse width measurement timer mode

The pulse width measurement timer mode is the same as the timer mode except that the input clock is controlled by the level of the signal (EVIN) input to the K10 input port terminal.

See "5.11.2 Count operation and setting basic mode" for the basic operation and control.

5.11.7 Interrupt function

The programmable timer can generate an interrupt due to an underflow signal of timer 0 and timer 1. Figure 5.11.7.1 shows the configuration of the programmable timer interrupt circuit.

The respectively corresponding interrupt factor flags FPT0 and FPT1 are set to "1" and an interrupt is generated by an underflow signal of timers 1 and 0. Interrupt can also be prohibited by the setting of the interrupt enable registers EPT0 and EPT1 corresponding to each interrupt flag.

In addition, a priority level of the programmable timer interrupt for the CPU can be optionally set at levels 0 to 3 by the interrupt priority registers PPT0 and PPT1.

For details on the above mentioned interrupt control registers and the operation following generation of an interrupt, see "5.16 Interrupt and Standby Status".

The exception processing vector addresses of each interrupt factor are respectively set as shown below.

Programmable timer 1 interrupt: 000006H Programmable timer 0 interrupt: 000008H

When the 16-bit mode is selected, the interrupt factor flag FPT0 is not set to "1" and a timer 0 interrupt cannot be generated. (In the 16-bit mode, the interrupt factor flag FPT1 is set to "1" by an underflow of the 16-bit counter.

5.11.8 Setting of TOUT output

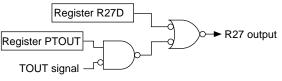

The programmable timer can generate a TOUT signal due to an underflow of timer 0 or timer 1. A TOUT signal is the above mentioned underflow divided by 1/2. The timer underflow which is to be used can be selected by the TOUT output channel selection register CHSEL. When writing "0" to register CHSEL, timer 0 is selected and when "1" is written, timer 1 is selected. However, in the 16-bit mode, it is fixed in timer 1 (underflow of the 16-bit timer) and the setting of register CHSEL becomes invalid.

Figure 5.11.8.1 shows the TOUT signal waveform when channel switching.

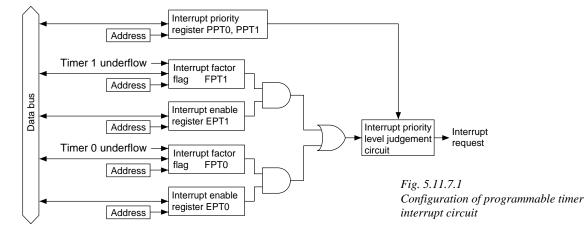

CHSEL	0	1	_
Timer 0 underflow			
Timer 1 underflow			
TOUT output (R27)			

Fig. 5.11.8.1 TOUT signal waveform at channel change

The TOUT signal can be output from the R27 output port terminal and the programmable clock can be supplied to an external device. The configuration of the output port R27 is shown in Figure 5.11.8.2.

The output control of the TOUT signal is done by register PTOUT. When "1" is set to the PTOUT, the TOUT signal is output from the R27 output port and when "0" is set, HIGH (VDD) level is output. At this time, "1" must always be set in the data register R27D.

Since the TOUT signal is generated asynchronously from the register PTOUT, when the signal is turned ON or OFF by the register setting, a hazard of a 1/2 cycle or less is generated.

Figure 5.11.8.3 shows the output waveform of TOUT signal.

PTOUT	0	1	
TOUT output (R27)			

Fig. 5.11.8.3 Output waveform of the TOUT signal

5.11.9 Transmission rate setting of serial interface

The underflow signal of the timer 1 can be used to clock the serial interface.

The transmission rate setting in this case is made in registers PSC1X and PLD1X, and is used to set the count mode to the reload count mode (RLMD1 = "1").

Since the underflow signal of the timer 1 is divided by 1/32 in the serial interface, the value set in register RLD1X which corresponds to the transmission rate is shown in the following expression:

RLD1X = fosc / (32*bps*4^{PSC1X}) - 1

fosc: Oscillation frequency (OSC1/OSC3) bps: Transmission rate

PSC1X: Setting value to the register PSC1X (0–3)

(00H can be set to RLD1X)

Table 5.11.9.1 shows an example of the transmission rate setting when the OSC3 oscillation circuit is used as a clock source.

Table 5.11.9.1	Example of	transmission	rate setting
----------------	------------	--------------	--------------

Transfer rate	OSC3 oscillation frequency / Programmable timer settings					
	fosc3 = 3	.072 MHz	$fosc_3 = 4$.608 MHz	fosc3 = 4.	9152 MHz
(bps)	PSC1X	RLD1X	PSC1X	RLD1X	PSC1X	RLD1X
9,600	0 (1/1)	09H	0 (1/1)	0EH	0 (1/1)	0FH
4,800	0 (1/1)	13H	0 (1/1)	1DH	0 (1/1)	1FH
2,400	0 (1/1)	27H	0 (1/1)	3BH	0 (1/1)	3FH
1,200	0 (1/1)	4FH	0 (1/1)	77H	0 (1/1)	7FH
600	0 (1/1)	9FH	0 (1/1)	EFH	0 (1/1)	FFH
300	1 (1/4)	4FH	1 (1/4)	77H	1 (1/4)	7FH
150	1 (1/4)	9FH	1 (1/4)	EFH	1 (1/4)	FFH

5.11.10 Control of programmable timer

Table 5.11.10.1 shows the programmable timer control bits.

Table 5.11.10.1(a) Programmable timer control bits

Address	Bit	Name		10.1(a) Programmab	1	0	SR	R/W	Comment
00FF30	D7	_	_		_	_	_		Constantry "0" when
	D6	_	_		_	_	_		being read
	D5	_	_		_	_	_		
	-	MODE16	8/16-bit mode selection	on	16-bit x 1	8-bit x 2	0	R/W	
		CHSEL	TOUT output channe		Timer 1	Timer 0	0	R/W	-
		PTOUT	TOUT output control		On	Off	0	R/W	-
			Prescaler 1 source clo		fosc3	fosci	0	R/W	
			Prescaler 0 source clo		fosc3	fosci	0	R/W	-
00FF31	_	EVCNT	Timer 0 counter mode		Event counter	Timer	0	R/W	
	D6	FCSEL	Timer 0	In timer mode	Pulse width	Normal	0	R/W	
	-		function selection		measurement	mode			
				In event counter mode	With	Without			
					noise rejector	noise rejector			
	D5	PLPOL	Timer 0	Down count timing	Rising edge	Falling edge	0	R/W	
			pulse polarity	in event counter mode		of K10 input			
			selection	In pulse width	High level	Low level			
				measurement mode		measurement for K10 input			
	D4	PSC01	Timer 0 prescaler div	iding ratio selection			0	R/W	-
			Ĩ	Prescaler dividing ratio					
			1 1	Source clock / 64					
	D3	PSC00	1 0	Source clock / 16			0	R/W	
			0 1	Source clock / 4					
			0 0	Source clock / 1					
	D2	CONT0	Timer 0 continuous/o	ne-shot mode selection	Continuous	One-shot	0	R/W	
	D1	PSET0	Timer 0 preset		Preset	No operation	_	W	"0" when being read
	D0	PRUN0	Timer 0 Run/Stop con	ntrol	Run	Stop	0	R/W	
00FF32	D7	-	_		-	-	-		~
	D6	-	_		-	-	-		Constantry "0" when
	D5	-	_		-	-	-		being read
	D4	PSC11	Timer 1 prescaler div	iding ratio selection			0	R/W	
			PSC11 PSC10	Prescaler dividing ratio					
			1 1	Source clock / 64					
	D3	PSC10	1 0	Source clock / 16			0	R/W	
			0 1	Source clock / 4					
			0 0	Source clock / 1					
	D2	CONT1	Timer 1 continuous/o	ne-shot mode selection	Continuous	One-shot	0	R/W]
	D1	PSET1	Timer 1 preset		Preset	No operation	-	W	"0" when being read
	D0	PRUN1	Timer 1 Run/Stop con	ntrol	Run	Stop	0	R/W	

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF33	D7	RLD07	Timer 0 reload data D7 (MSB)					
	D6	RLD06	Timer 0 reload data D6					
	D5	RLD05	Timer 0 reload data D5					
	D4	RLD04	Timer 0 reload data D4	High	Low	1	R/W	
	D3	RLD03	Timer 0 reload data D3	підії	Low	1	K/W	
	D2	RLD02	Timer 0 reload data D2					
	D1	RLD01	Timer 0 reload data D1					
	D0	RLD00	Timer 0 reload data D0 (LSB)					
00FF34	D7	RLD17	Timer 1 reload data D7 (MSB)					
	D6	RLD16	Timer 1 reload data D6					
	D5	RLD15	Timer 1 reload data D5					
	D4	RLD14	Timer 1 reload data D4	High	Low	1	R/W	
	D3	RLD13	Timer 1 reload data D3	mgn	LOW	1	10, 11	
	D2	RLD12	Timer 1 reload data D2					
	D1	RLD11	Timer 1 reload data D1					
	D0	RLD10	Timer 1 reload data D0 (LSB)					
00FF35	D7	PTD07	Timer 0 counter data D7 (MSB)					
	D6	PTD06	Timer 0 counter data D6					
		PTD05	Timer 0 counter data D5					
		PTD04	Timer 0 counter data D4	High	Low	1	R	
	D3	PTD03	Timer 0 counter data D3	mgn	Low			
		PTD02	Timer 0 counter data D2					
		PTD01	Timer 0 counter data D1					
		PTD00	Timer 0 counter data D0 (LSB)					
00FF36		PTD17	Timer 1 counter data D7 (MSB)					
		PTD16	Timer 1 counter data D6					
		PTD15	Timer 1 counter data D5					
		PTD14	Timer 1 counter data D4	High	Low	1	R	
		PTD13	Timer 1 counter data D3		20.0			
		PTD12	Timer 1 counter data D2					
		PTD11	Timer 1 counter data D1					
	D0	PTD10	Timer 1 counter data D0 (LSB)					

Table 5.11.10.1(b) Programmable timer control bits

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (Programmable Timer)

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF21	D7	-	_	-	-	_		
	D6	-	_	_	-	_		Constantly "0" when
	D5	-	_	-	-	_		being read
	D4	-	_	-	-	-		
	D3	PPT1	Programmable timer interrupt priority register	PPT1 PPT PK11 PK1		0	R/W	
	D2	PPT0	Programmable unter interrupt priority register	$\frac{\mathbf{r}\mathbf{K}\mathbf{H}}{1}$ $\frac{\mathbf{r}\mathbf{K}\mathbf{H}}{1}$	Level 3	0	K/ W	
	D1	PK11	K10 and K11 interrupt priority register	$ \begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} $	Level 2 Level 1	0	R/W	
	D0	PK10	KTO and KTT interrupt priority register	0 1	Level 0	0	K/ W	
00FF23	D7	EPT1	Programmable timer 1 interrupt enable register					
	D6	EPT0	Programmable timer 0 interrupt enable register					
	D5	EK1	K10 and K11 interrupt enable register					
	D4	EK0H	K04–K07 interrupt enable register	Interrupt	Interrupt	0	R/W	
	D3	EK0L	K00–K03 interrupt enable register	enable	disable	0	IC/ W	
	D2	ESERR	Serial I/F (error) interrupt enable register					
	D1	ESREC	Serial I/F (receiving) interrupt enable register					
		ESTRA	Serial I/F (transmitting) interrupt enable register					
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)	(R)			
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interrupt	No interrupt			
	D5	FK1	K10 and K11 interrupt factor flag	factor is	factor is			
	D4	FK0H	K04–K07 interrupt factor flag	generated	generated	0	R/W	
	D3	FK0L	K00-K03 interrupt factor flag			0	IC/ W	
	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)	(W)			
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Reset	No operation			
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag					

Table 5.11.10.1(c) Programmable timer control bits

MODE16: 00FF30H•D4

Selects the 8/16-bit mode.

When "1" is written: $16 \text{ bits} \times 1 \text{ channel}$ When "0" is written: $8 \text{ bits} \times 2 \text{ channels}$ Reading:Valid

Select whether timer 0 and timer 1 will be used as 2 channel independent 8-bit timers or as a 1 channel combined 16-bit timer. When "0" is written to MODE16, 8-bit \times 2 channels is selected and when "1" is written, 16-bit \times 1 channel is selected. At initial reset, MODE16 is set to "0" (8-bit \times 2 channels).

CKSEL0, CKSEL1: 00FF30H•D0, D1

Select the source clock of the prescaler.

When "1" is written: OSC3 clock When "0" is written: OSC1 clock Reading: Valid

Select whether the source clock of prescaler 0 will be set to OSC1 or OSC3. When "0" is written to CKSEL0, OSC1 is selected and when "1" is written, OSC3 is selected.

In the same way, the source clock of prescaler 1 is selected by CKSEL1.

When event counter mode has been selected, the setting of the CKSEL0 becomes invalid. In the same way, the CKSEL1 setting becomes invalid when 16-bit mode has been selected.

At initial reset, this register is set to "0" (OSC1 clock).

PSC00, PSC01: 00FF31H•D3, D4 PSC10, PSC11: 00FF32H•D3, D4

Select the dividing ratio of the prescaler. Two-bit PSC00 and PSC01 is the prescaler dividing ratio selection registers for timer 0, and the two-bit PSC10 and PSC11 correspond to timer 1. The prescaler dividing ratios that can be set by these registers are shown in Table 5.11.10.2.

Table 5.11.10.2	Selection	of prescaler	dividing ratio
-----------------	-----------	--------------	----------------

PSC11	PSC10	Prescaler dividing ratio
PSC01	PSC00	
1	1	Input clock / 64
1	0	Input clock / 16
0	1	Input clock / 4
0	0	Input clock / 1

When event counter mode has been selected, the setting of the PSC00 and PSC01 becomes invalid. In the same way, the PSC10 and PSC11 setting becomes invalid when 16-bit mode has been selected. At initial reset, this register is set to "0" (input clock/1).

EVCNT: 00FF31H•D7

Selects the counter mode for the timer 0.

When "1" is written:Event counter modeWhen "0" is written:Timer modeReading:Valid

Select whether timer 0 will be used as an event counter or a timer. When "1" is written to EVCNT, the event counter mode is selected and when "0" is written, the timer mode is selected.

At initial reset, EVCNT is set to "0" (timer mode).

FCSEL: 00FF31H•D6

Selects the function for each counter mode of timer 0.

In timer mode
 When "1" is written: Pulse width measurement timer mode
 When "0" is written: Normal mode
 Reading: Valid

In the timer mode, select whether timer 0 will be used as a pulse width measurement timer or a normal timer. When "1" is written to FCSEL, the pulse width measurement mode is selected and the counting is done according to the level of the signal (EVIN) input to the K10 input port terminal. When "0" is written to FCSEL, the normal mode is selected and the counting is not affected by the K10 input port terminal.

• In event counter mode

When "1" is written:	With noise rejecter
When "0" is written:	Without noise rejecter
Reading:	Valid

In the event counter mode, select whether the noise rejecter for the K10 input port terminal will be selected or not.

When "1" is written to FCSEL, the noise rejecter is selected and counting is done by an external clock (EVIN) with 0.98 msec or more pulse width. (The noise rejecter allows clocking counter at the second falling edge of the internal 2,048 Hz signal after changing the input level of the K10 input port terminal. Consequently, the pulse width that can reliably be rejected is 0.48 msec.)

When "0" is written to FCSEL, the noise rejector is not selected and the counting is done directly by an external clock (EVIN) input to the K10 input port terminal.

At initial reset, FCSEL is set to "0".

PLPOL: 00FF31H•D5

Selects the pulse polarity for the K10 input port terminal.

In event counter mode

When "1" is written:Rising edgeWhen "0" is written:Falling edgeReading:Valid

In the event counter mode, select whether the count timing will be set at the falling edge of the external clock (EVIN) input to the K10 input port terminal or at the rising edge. When "0" is written to PLPOL, the falling edge is selected and when "1" is written, the rising edge is selected.

In pulse width measurement mode

When "1" is written:	High level pulse width
	measurement
When "0" is written:	LOW level pulse width
	measurement
Reading:	Valid

In the pulse width measurement mode, select whether the LOW level width of the signal (EVIN) input to the K10 input port terminal will be measured or the HIGH level will be measured. When "0" is written to PLPOL, the LOW level width measurement is selected and when "1" is written, the HIGH level width measurement is selected. In the normal mode (EVCNT = FCSEL = "0"), the setting of PLPOL becomes invalid. At initial reset, PLPOL is set to "0".

CONT0, CONT1: 00FF31H•D2, 00FF32H•D2

Select the continuous/one-shot mode.

When "1" is written:	Continuous mode
When "0" is written:	One-shot mode
Reading:	Valid

Select whether timer 0 will be used in the continuous mode or in the one-shot mode.

By writing "1" to CONT0, the programmable timer is set to the continuous mode. In the continuous mode, the initial counter value is automatically loaded when an underflow is generated, and counting is continued. On the other hand, when writing "0" to CONT0, the programmable timer is set to the oneshot mode. The counter loads an initial value and stops when an underflow is generated. At this time, PRUN0 is automatically reset to "0".

In the same way, the continuous/one-shot mode for timer 1 is selected by CONT1. (In the one-shot mode for timer 1, PRUN1 is automatically reset to "0" when the counter underflow is generated.) At initial reset, this register is set to "0" (one-shot mode).

RLD00–RLD07: 00FF33H RLD10–RLD17: 00FF34H

Sets the initial value for the counter.

RLD00-RLD07:Reload data for Timer 0RLD10-RLD17:Reload data for Timer 1

The reload data set in this register is loaded into the respective counters and is counted down with that as the initial value.

Reload data is loaded to the counter under two conditions, when "1" is written to PSET0 or PSET1 and when the counter underflow automatically loads.

At initial reset, this register is set to "FFH".

PTD00-PTD07: 00FF35H PTD10-PTD17: 00FF36H

Data of the programmable timer can be read out.

PTD00-PTD07:	Timer 0 counter data
PTD10-PTD17:	Timer 1 counter data

These bits act as a buffer to maintain the counter data during readout, and the data can be read as optional timing. However, in the 16-bit mode, to avoid a read error, (data error when a borrow from timer 0 to timer 1 is generated in the middle of reading PTD00–PTD07 and PTD10–PTD17), PTD10–PTD17 latches the timer 1 counter data according to the reading of PTD00–PTD07.

The latched status of PTD10–PTD17 is canceled according to the readout of PTD10–PTD17 or when 0.73–1.22 msec (depends on the readout timing) has elapsed. Therefore, in 16-bit mode, be sure to read the counter data of PTD00–PTD07 and PTD10–PTD17 in order.

Since these bits are exclusively for reading, the write operation is invalid.

At initial reset, these bits are set to "FFH".

PSET0, PSET1: 00FF31H•D1, 00FF32H•D1

Presets the reload data to the counter.

When "1" is written:	Preset
When "0" is written:	No operation
Reading:	Always "0"

By writing "1" to PSET0, the reload data in PLD00– PLD07 is preset to the counter of timer 0. When the counter of timer 0 is preset in the RUN status, it restarts immediately after presetting. In the case of STOP status, the reload data that has been preset is maintained.

No operation results when "0" is written. In the same way, the reload data in PLD10–PLD17 is preset to the counter of timer 1 by PSET1. When the 16-bit mode is selected, writing "1" to PSET1 is invalid.

This bit is exclusively for writing, it always becomes "0" during reading.

PRUN0, PRUN1: 00FF31H•D0, 00FF32H•D0

Controls the RUN/STOP of the counter.

When "1" is written: RUN When "0" is written: STOP Reading: Valid

The counter of timer 0 starts down-counting by writing "1" to PRUN0 and stops by writing "0". In the STOP status, the counter data is maintained until it is preset or set in the next RUN status. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count.

In the same way, the RUN/STOP of the timer 1 counter is controlled by PRUN1.

When the 16-bit mode is selected, PRUN1 is fixed at "0".

At initial reset and when an underflow is generated in the one-shot mode, this register is set to "0" (STOP).

CHSEL: 00FF30H•D3

Selects the channel of the TOUT signal.

When "1" is written:	Timer 0 underflow
When "0" is written:	Timer 1 underflow
Reading:	Valid

Select whether the timer 0 underflow will be used for the TOUT signal or the timer 1 underflow will be used. When "0" is written to CHSEL, timer 0 is selected and when "1" is written, timer 1 is selected. When the 16-bit mode has been selected, it is fixed to timer 1 (underflow of the 16-bit timer), and setting of CHSEL becomes invalid. At initial reset, CHSEL is set to "0" (timer 1 underflow).

PTOUT: 00FF30H•D2

Controls the TOUT signal output.

When "1" is written: TOUT signal output When "0" is written: HIGH level (DC) output Reading: Valid

PTOUT is the output control register for TOUT signal. When "1" is set, the TOUT signal is output from the output port terminal R27 and when "0" is set, HIGH (VDD) level is output. At this time, "1" must always be set for the data register R27D. At initial reset, PTOUT is set to "0" (HIGH level output).

PPT0, PPT1: 00FF21H•D2, D3

Sets the priority level of the programmable timer interrupt.

The two bits PPT0 and PPT1 are the interrupt priority register corresponding to the programmable timer interrupt. Table 5.11.10.3 shows the interrupt priority level which can be set by this register.

PPT1	PPT0	Interrupt priority level
1	1	Level 3 (IRQ3)
1	0	Level 2 (IRQ2)
0	1	Level 1 (IRQ1)

Level 0 (None)

0 At initial reset, this register is set to "0" (level 0).

EPT0, EPT1: 00FF23H•D6, D7

Enables or disables the generation of an interrupt for the CPU.

When "1" is written: Interrupt enabled When "0" is written: Interrupt disabled Reading: Valid

The EPT0 and EPT1 are interrupt enable registers that respectively correspond to the interrupt factors for timer 0 and timer 1. Interrupts set to "1" are enabled and interrupts set to "0" are disabled. When the 16-bit mode is selected, setting of EPT0 becomes invalid.

At initial reset, this register is set to "0" (interrupt disabled).

FPT0, FPT1: 00FF25H•D6, D7

Indicates the programmable timer interrupt generation status.

When "1" is read:	Interrupt factor present
When "0" is read:	Interrupt factor not present
When "1" is written: When "0" is written:	0

The FPT0 and FPT1 are interrupt factor flags that respectively correspond to the interrupts for timer 0 and timer 1 and are set to "1" in synchronization with the underflow of each counter. When set in this manner, if the corresponding interrupt enable register is set to "1" and the corresponding interrupt priority register is set to a higher level than the setting of interrupt flags (I0 and I1), an interrupt will be generated to the CPU. Regardless of the interrupt enable register and interrupt priority register settings, the interrupt factor flag will be set to "1" by the occurrence of an interrupt generation condition.

To accept the subsequent interrupt after interrupt generation, re-setting of the interrupt flags (set interrupt flag to lower level than the level indicated by the interrupt priority registers, or execute the RETE instruction) and interrupt factor flag reset are necessary. The interrupt factor flag is reset to "0" by writing "1".

When the 16-bit mode is selected, the interrupt factor flag FPT0 is not set to "1" and a timer 0 interrupt cannot be generated. (In the 16-bit mode, the interrupt factor flag FPT1 is set to "1" by an underflow of the 16-bit counter.) At initial reset, this flag is reset to "0".

5.11.11 Programming notes

(1) The programmable timer is actually made to RUN/STOP in synchronization with the falling edge of the input clock after writing to the PRUN0(1) register. Consequently, when "0" is written to the PRUN0(1), the timer shifts to STOP status when the counter is decremented "1". The PRUN0(1) maintains "1" for reading until the timer actually shifts to STOP status. Figure 5.11.11.1 shows the timing chart of the RUN/STOP control.

Input clock			
PRUN0/PRUN1(RD) _			
PRUN0/PRUN1(WR)		Π	
PTD0X/PTD1X	42H	(41H)(40H)(3FH)(3EH	(3DH

Fig. 5.11.11.1 Timing chart of RUN/STOP control

The event counter mode is excluded from the above note.

(2) The SLP instruction is executed when the programmable timer is in the RUN status (PRUN0(1) = "1"). The programmable timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (PRUN0(1) = "0") prior to executing the SLP instruction. In the same way, disable the TOUT signal

In the same way, disable the TOUT signal (PTOUT = "0") to avoid an unstable clock output to the R27 output port terminal.

(3) Since the TOUT signal is generated asynchronously from the register PTOUT, when the signal is turned ON or OFF by the register setting, a hazard of a 1/2 cycle or less is generated. (4) When the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the programmable timer.

From the time the OSC3 oscillation circuit is turning ON until oscillation stabilizes, an interval of several msec to several 10 msec is necessary. Consequently, you should allow an adequate waiting time after turning the OSC3 oscillation circuit ON before starting the count of the programmable timer. (The oscillation start time will vary somewhat depending on the oscillator and on external parts. Refer to the oscillation start time example indicated in Chapter 7, "ELECTRICAL CHARACTERIS-TICS".)

At initial reset, OSC3 oscillation circuit is set to OFF status.

(5) When the 16-bit mode has been selected, be sure to read the counter data in the order of PTD00– PTD07 and PTD10–PTD17. Moreover, the time interval between reading PTD00–PTD07 and PTD10–PTD17 should be 0.73 msec or less.

5.12 LCD Controller

5.12.1 Configuration of LCD controller

The E0C88xx has a built-in dot matrix LCD driver. The E0C88348/317/316 allows an LCD panel with a maximum of 1,632 dots (51 segments \times 32 commons). In the E0C88308 a maximum of 1,312 dots (41 segments \times 32 commons) are permitted. It also has an LCD controller for an external LCD driver. Figure 5.12.1.1 shows the configuration of the LCD controller and the drive power supply.

5.12.2 Mask option

Selection of the drive duty for the built-in LCD driver can be selected whether it will be 1/32 and 1/16 software-switched or fixed at 1/8 by the mask option.

LCD drive duty	
□ 1/32 & 1/16 duty	
□ 1/8 duty	

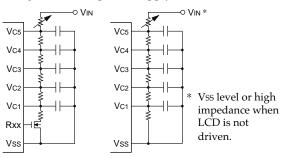
When "1/32 & 1/16 duty" is selected, the drive duty can be selected by software. When "0" is written to the drive duty selection register LDUTY, 1/32 duty is selected and when "1" is written, 1/16 duty is selected.

When "1/8 duty" is selected, the drive duty is fixed at 1/8 and setting of LDUTY becomes invalid. When the built-in LCD driver is not used, select the default setting of "1/32 & 1/16 duty".

> Fig. 5.12.3.1 Circuit examples when using an external power supply

5.12.3 LCD power supply

For the LCD system drive voltages VC1–VC5, either the internal power supply or external power supply can be selected by the mask option.


When the internal power supply is selected, voltage is generated by the internal voltage regulator and voltage booster circuits. The internal power supply can generate two types of reference voltage; TYPE A (4.5 V) and TYPE B (5.5 V), and either one can be selected by the mask option.

When external power supply is selected, the voltage should be supplied from outside of the IC.

LCD power supply	
 ☐ Internal power supply ☐ Internal power supply ☐ External power supply 	TYPE A (4.5 V) TYPE B (5.5 V)

The internal power supply is designed for a small scale LCD panel and is not suitable for driving a panel that has large size pixels or for driving a large capacity panel using an external expanded LCD driver. In this case, select external power supply and input the regulated voltage from outside of the IC.

Figure 5.12.3.1 shows the circuit examples when using an external power supply.

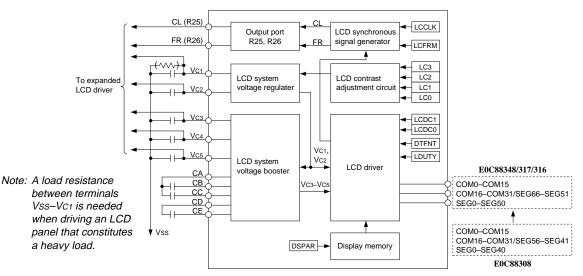


Fig. 5.12.1.1 Configuration of LCD controller and drive power supply

5.12.4 LCD driver

The maximum number of dots changes according to the drive duty selection.

When 1/32 duty is selected, the combined common/segment output terminal is switched to the common terminal. An LCD panel with 51 segments \times 32 commons (maximum 1,632 dots) in the E0C88348/317/316 and 41 segments \times 32 commons (maximum 1,312 dots) in the E0C88308 can be driven.

When 1/16 duty is selected, the combined common/segment output terminal is switched to the segment terminal. An LCD panel with 67 segments \times 16 commons (maximum 1,072 dots) in the E0C88348/317/316 and 57 segments \times 16 commons (maximum 912 dots) in the E0C88308 can be driven. When 1/8 duty is selected, the combined common/ segment output terminal is switched to the segment terminal as when 1/16 duty is selected. An LCD panel with 67 segments × 8 commons (maximum 536 dots) in the E0C88348/317/316 and 57 segments × 8 commons (maximum 456 dots) in the E0C88308 can be driven. Furthermore, when 1/8 duty is selected, terminals COM8–COM15 become invalid, in that they always output an OFF signal. Table 5.12.4.1 shows the correspondence between the drive duty and the maximum number of displaying dots.

The drive bias is 1/5 (five potentials, VC1–VC5) for any one of the 1/32, 1/16 and 1/8 duties. The respective drive waveforms are shown in Figures 5.12.4.1-5.12.4.3.

Model name	Mask option	LDUTY	Duty	Common terminal	Segment terminal	Maximum number of display dots
E0C88348	1/32 & 1/16 duty	0	1/32	COM0-COM31	SEG0-SEG50	1,632 dots
E0C88317	$1/32 \propto 1/10 \text{ duty}$	1	1/16	COM0-COM15	SEG0-SEG66	1,072 dots
E0C88316	1/8 duty	×	1/8	COM0–COM7	SEG0-SEG66	536 dots
	1/32 & 1/16 duty	0	1/32	COM0-COM31	SEG0-SEG40	1,312 dots
E0C88308	$1/32 \propto 1/10 \text{ duty}$	1	1/16	COM0-COM15	SEG0-SEG56	912 dots
	1/8 duty	×	1/8	COM0–COM7	SEG0-SEG56	456 dots

Table 5.12.4.1 Correspondence between drive duty and maximum number of displaying dots

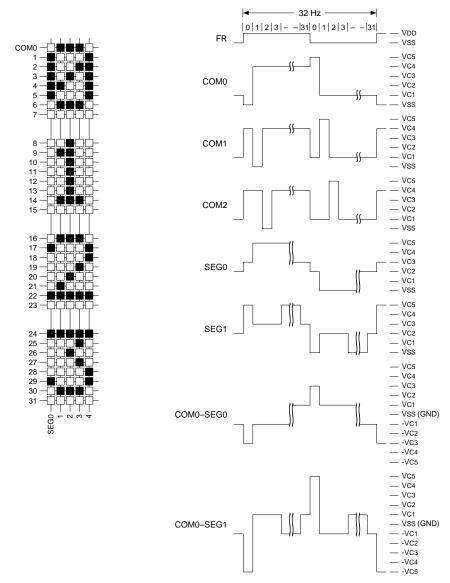
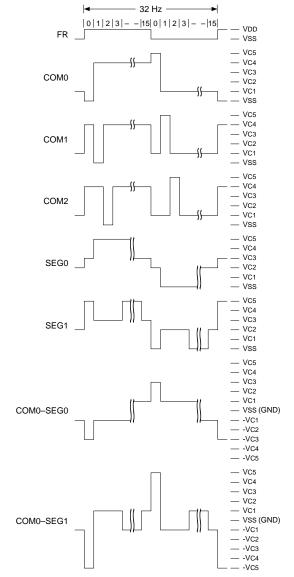



Fig. 5.12.4.1 Drive waveform for 1/32 duty

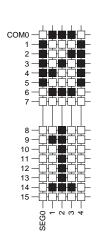
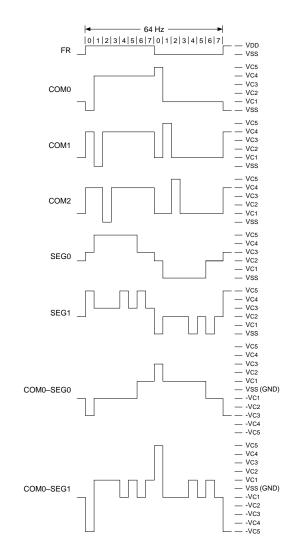
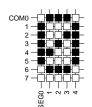
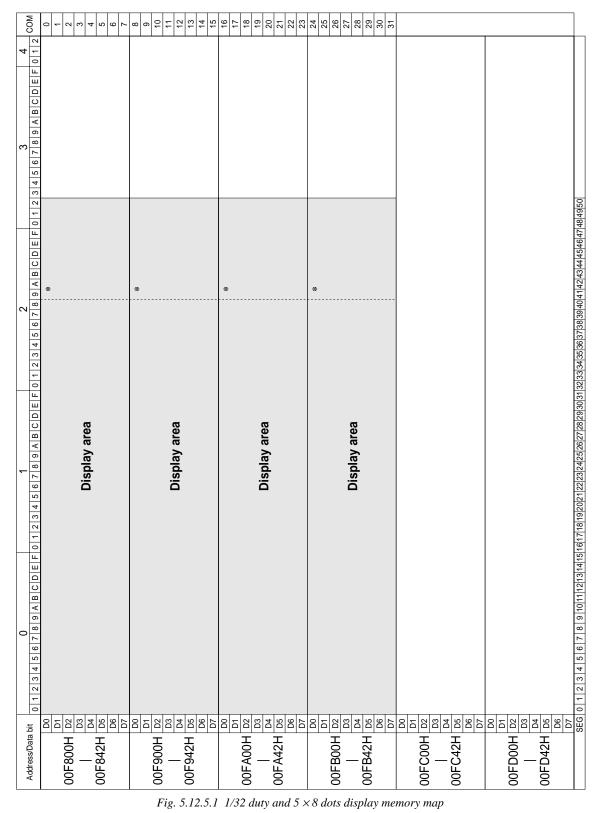




Fig. 5.12.4.2 Drive waveform for 1/16 duty

5.12.5 Display memory

The E0C883xx has a built-in 402-byte display memory. The display memory is allocated to address Fx00H-Fx42H (x = 8-DH) and the correspondence between the memory bits and common/ segment terminal is changed according to the selection status of the following items.

- (1) Drive duty (1/32, 1/16 or 1/8 duty)
- (2) Dot font $(5 \times 8 \text{ or } 5 \times 5 \text{ dots})$


When 1/16 or 1/8 duty is selected for drive duty, two-screen memory can be secured, and the two screens can be switched by the display memory area selection register DSPAR. When "0" is written to DSPAR, display area 0 is selected and when "1" is written, display area 1 is selected.

Furthermore, memory allocation for 5×8 dots and 5×5 dots can be selected in order to easily display 5×5 -dot font characters on the LCD panel. This selection can be done by the dot font selection register DTFNT: when "0" is written to DTFNT, 5×8 dots is selected and when "1" is written, 5×5 dots is selected.

The correspondence between the display memory bits set according to the drive duty and font size, and the common/segment terminals are shown in Figures 5.12.5.1–5.12.5.6.

When "1" is written to the display memory bit corresponding to the dot on the LCD panel, the dot goes ON and when "0" is written, it goes OFF. Since display memory is designed to permit reading/ writing, it can be controlled in bit units by logical operation instructions and other means (read, modify and write instruction)s.

The display area bits which have not been assigned within the 402-byte display memory can be used as general purpose RAM with read/write capabilities. Even when external memory has expanded into the display memory area, this area is not released to external memory. Access to this area is always via display memory.

* In the E0C88308, an area of 00Fx29H–00Fx32H (x = 8–BH) is secured as general purpose RAM with read/write capabilities that does not affect the display.

Fig. 5.12.5.2 1/32 duty and 5×5 dots display memory map

* In the E0C88308, an area of 00Fx29H–00Fx32H (x = 8–DH) is secured as general purpose RAM with read/write capabilities that does not affect the display.

Fig. 5.12.5.3 1/16 duty and 5×8 dots display memory map

* In the E0C88308, an area of 00Fx39H–00Fx42H (x = 8–BH) is secured as general purpose RAM with read/write capabilities that does not affect the display.

5 PERIPHERAL CIRCUITS AND THEIR OPERATION (LCD Controller)

COM	0 1 2 4		5 6 8 8		10 12 13 15		0 - 0 4		5 6 8 9		10 13 13 15	
3 4 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2	*		*		*		*		*		*	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
F 0 1 2 3 4 5 6 7 8												7 48 49 50 51 52 53 54 55 56
2 4 5 6 7 8 9 A B C D E	t into DSPAR)		t into DSPAR)		t into DSPAR)	38 39 40 41 42 43 44 45 46 4						
DEF0123	Display area 0 (when "0" is set into DSPAR)		Display area 0 (when "0" is set into DSPAR)		Display area 0 (when "0" is set into DSPAR)		Display area 1 (when "1" is set into DSPAR)		Display area 1 (when "1" is set into DSPAR)		Display area 1 (when "1" is set into DSPAR)	29 30 31 32 33 34 35 36 37
1 4 5 6 7 8 9 A B C	Display area 0		Display area 0		Display area 0		Display area 1		Display area 1		Display area 1	20 21 22 23 24 25 26 27 28
B C D E F 0 1 2 3 4												11213141516171819
0 2 3 4 5 6 7 8 9 A												2 3 4 5 6 7 8 9 101
bit 0 1	6 2 2 2 8	D5 D7	8 2 2 8	D6 D7	86366	D6 D7	8688	02 02 03	8688	886	D0 D1 D2 D3 D5	D6 D7 SEG 0 1
Address/Data bit		00F842H		00F942H	00FA00H 00FA42H			00FB42H		00FC42H	00FD00H	

Fig. 5.12.5.4 1/16 duty and 5 \times 5 dots display memory map

* In the E0C88308, an area of 00Fx39H–00Fx42H (x = 8–DH) is secured as general purpose RAM with read/write capabilities that does not affect the display.

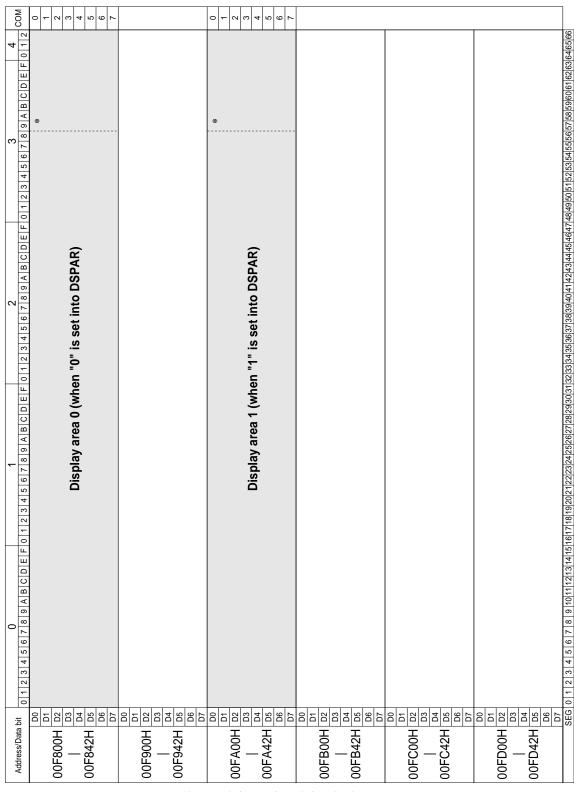


Fig. 5.12.5.5 1/8 duty and 5×8 dots display memory map

* In the E0C88308, an area of 00Fx39H–00Fx42H (x = 8 and 0AH) is secured as general purpose RAM with read/write capabilities that does not affect the display.

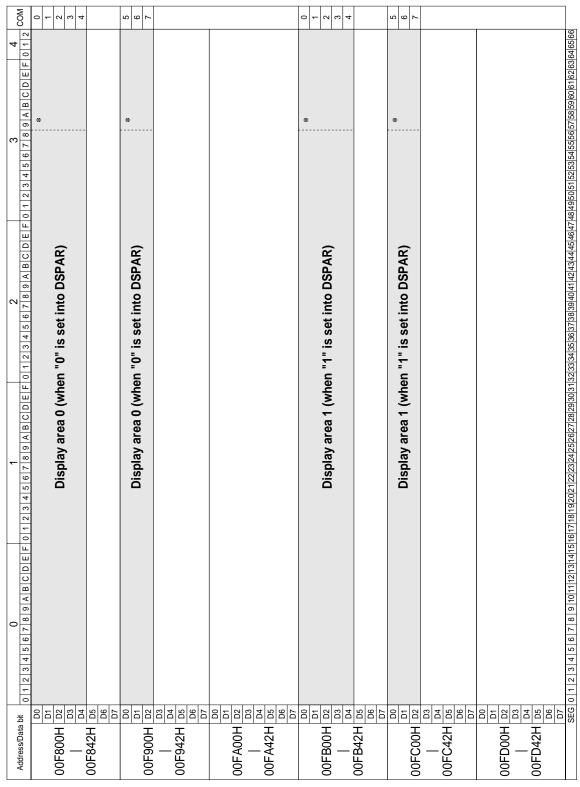


Fig. 5.12.5.6 1/8 duty and 5×5 dots display memory map

* In the E0C88308, an area of 00Fx39H–00Fx42H (x = 8, 9, BH and CH) is secured as general purpose RAM with read/ write capabilities that does not affect the display.

5.12.6 Display control

The display status of the built-in LCD driver and the contrast adjustment can be controlled with the built-in LCD controller. The LCD display status can be selected by display control registers LCDC0 and LCDC1. Setting the value and display status are shown in Table 5.12.6.1.

Table 5.12.6.1 LCD display control

		1 2
LCDC1	LCDC0	LCD display
1	1	All LCDs lit (Static)
1	0	All LCDs out (Dynamic)
0	1	Normal display
0	0	Drive OFF

All the dots in the LCD display can be turned on or off directly by the drive waveform output from the LCD driver, and data in the display memory is not changed. Also, since the common terminal at this time is set to static drive when all the dots are on and is set to dynamic drive when they are off, this function can be used as follows:

- (1) Since all dots on is binary output (VC5 and VSS) with static drive, the common/segment terminal can be used as a monitor terminal for the OSC1 oscillation frequency adjustment.
- (2) Since all dots off is dynamic drive, you can brink the entire LCD display without changing display memory data.

Selecting LCD drive OFF turns the LCD drive power circuit OFF and all the VC1–VC5 terminals go to V55 level. However, if external power supply has been selected by the mask option, the VC1–VC5 shift to floating status when drive is turned OFF. Furthermore, when the SLP instruction is executed, registers LCDC0 and LCDC1 are automatically reset to "0" (set to drive off) by hardware.

The LCD contrast can be adjusted in 16 stages. This adjustment is done by the contrast adjustment register LCO–LC3, and the setting values correspond to the contrast as shown in Table 5.12.6.2. However, if external power supply has been selected by the mask option, the contrast adjustment register LCO–LC3 is ineffective and contrast adjustment cannot be done.

Table 5.12.6.2	LCD	contrast	adjustment
----------------	-----	----------	------------

LC3	LC2	LC1	LC0	Contrast
1	1	1	1	Dark
1	1	1	0	\uparrow
1	1	0	1	
:	:	:	:	
0	0	1	0	
0	0	0	1	\downarrow
0	0	0	0	Light

5.12.7 CL and FR outputs

In order for the E0C883xx to handle connection to an externally expanded LCD driver, output ports R25 and R26 can be used to output a CL signal (LCD synchronous signal) and FR signal (LCD frame signal), respectively.

The configuration of output ports R25 and R26 are shown in Figure 5.12.7.1.

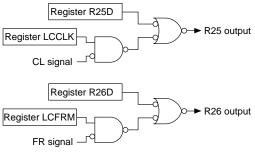


Fig. 5.12.7.1 Configuration of R25 and R26

The output control for the CL signal is done by the register LCCLK. When you set "1" for the LCCLK, the CL signal is output from the output port terminal R25, when "0" is set, the HIGH (VDD) level is output. At this time, "1" must always be set for the data register R25D.

The output control for the FR signal is done by the register LCFRM. When you set "1" for the LCFRM, the FR signal is output from the output port terminal R26, when "0" is set, the HIGH (VDD) level is output. At this time, "1" must always be set for the data register R26D.

The frequencies of each signal are changed as shown in Table 5.12.7.1 according to the drive duty selection.

Drive duty	CL signal (Hz)	FR signal (Hz)
1/32	2,048	32
1/16	1,024	32
1/8	1,024	64

Since the signals are generated asynchronously from the registers LCCLK and LCFRM, when the signals are turned ON or OFF by the register settings, a hazard of a 1/2 cycle or less is generated. Figure 5.12.7.2 shows the output waveforms of the CL and FR signals.

LCCLK/LCFRM	0 1
CL output (R25)	
FR output (R26)	

Fig. 5.12.7.2 Output waveforms of CL and FR signals (when 1/16 duty is selected)

5.12.8 Control of LCD controller

Table 5.12.8.1 shows the LCD controller control bits.

Table 5.12.8.1	LCD controller control bits	

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF10	D7	_	-	-	-	_		G
	D6	_	_	-	-	-		Constantry "0" when
	D5	_	_	-	-	_		being read
	D4	LCCLK	CL output control for expanded LCD driver	On	Off	0	R/W	
	D3	LCFRM	FR output control for expanded LCD driver	On	Off	0	R/W	
	D2	DTFNT	LCD dot font selection	5 x 5 dots	5 x 8 dots	0	R/W	
	D1	LDUTY	LCD drive duty selection	1/16 duty	1/32 duty	0	R/W	*1
	D0	SGOUT	R/W register	1	0	0	R/W	Reserved register
00FF11	D7	_	_	-	-	_		"0" when being read
	D6	DSPAR	LCD display memory area selection	Display area 1	Display area 0	0	R/W	
	D5	LCDC1	LCD display control			0	R/W	
			LCDC1 LCDC0 LCD display					These bits are reset
			1 1 All LCDs lit					to (0, 0) when
	D4	LCDC0	1 0 All LCDs out			0	R/W	SLP instruction
			0 1 Normal display					is executed.
			0 0 Drive off					
	D3	LC3	LCD contrast adjustment			0	R/W	
	D2	LC2	$\frac{\text{LC3}}{1} \frac{\text{LC2}}{1} \frac{\text{LC1}}{1} \frac{\text{LC0}}{1} \frac{\text{Contrast}}{\text{Dark}}$			0	R/W	
	D1	LC1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D0	LC0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	

*1 When 1/8 duty has been selected by mask option, setting of this register becomes invalid.

LDUTY: 00FF10H•D1

Selects the drive duty.

When "1" is written:1/16 dutyWhen "0" is written:1/32 dutyReading:Valid

When "1/32 & 1/16 duty" is selected by the mask option, select whether the drive duty will be 1/32 or 1/16.

When "0" is written to LDUTY, 1/32 duty is selected and the combined common/segment output terminal is switched to the common terminal.

When "1" is written to LDUTY, 1/16 duty is selected and the combined common/segment output terminal is switched to the segment terminal. When "1/8 duty" is selected by the mask option, the combined common/segment terminals are fixed to the segment terminals and the setting of LDUTY becomes invalid. The correspondence between the display memory bits set according to the drive duty, and the common/segment terminals are shown in Figures 5.12.5.1–5.12.5.6.

At initial reset, LDUTY is set to "0" (1/32 duty).

DTFNT: 00FF10H•D2

Selects the dot font.

When "1" is written: 5×5 dotsWhen "0" is written: 5×8 dotsReading:Valid

Select 5×8 dots or 5×5 dots type for the display memory area.

When 0° is written to DTFNT, 5 × 8 dots is selected and when "1" is written, 5 × 5 dots is selected. The correspondence between the display memory bits set according to the dot font, and the common/ segment terminals are shown in Figures 5.12.5.1– 5.12.5.6.

At initial reset, DTFNT is set to "0" (5×8 dots).

DSPAR: 00FF11H•D6

Selects the display area.

When "1" is written:	Display area 1
When "0" is written:	Display area 0
Reading:	Valid

Selects which display area is secured for two screens in the display memory, will be displayed when 1/16 or 1/8 duty is selected.

When "0" is written to DSPAR, display area 0 is selected and when "1" is written, display area 1 is selected.

When 1/32 duty is selected, since the display area is only for one screen, the setting of DSPAR becomes invalid.

The correspondence between the display memory bits set according to the display area, and the common/segment terminals are shown in Figures 5.12.5.1–5.12.5.6.

At initial reset, DSPAR is set to "0" (display area 0).

LCDC0, LCDC1: 00FF11H•D4, D5

Controls the LCD display.

Table 5.12.8.2 LCD display control

LCDC1	LCDC0	LCD display
1	1	All LCDs lit (Static)
1	0	All LCDs out (Dynamic)
0	1	Normal display
0	0	Drive OFF

The four settings mentioned above can be made without changing the display memory data. At initial reset and in the SLEEP status, this register is set to "0" (drive off).

LC0-LC3: 00FF11H•D0-D3

Adjusts the LCD contrast.

i	Table 5.12.8.3 LCD contract adjustment									
LC3	LC2	LC1	LC0	Contrast						
1	1	1	1	Dark						
1	1	1	0	\uparrow						
1	1	0	1							
1	1	0	0							
1	0	1	1							
1	0	1	0							
1	0	0	1							
1	0	0	0							
0	1	1	1							
0	1	1	0							
0	1	0	1							
0	1	0	0							
0	0	1	1							
0	0	1	0							
0	0	0	1	\downarrow						
0	0	0	0	Light						

Table 5.12.8.3 LCD contract adjustment

The contrast can be adjusted in 16 stages as mentioned above. This adjustment changes the drive voltage on terminals VC1–VC5. At initial reset, this register is set to "0".

Note: If external power supply has been selected by the mask option, the contrast adjustment register LC0–LC3 is ineffective.

LCCLK: 00FF10H•D4

Controls the CL signal output.

When "1" is written:CL signal outputWhen "0" is written:HIGH level (DC) outputReading:Valid

LCCLK is the output control register for CL signal. When "1" is set, the CL signal is output from the output port terminal R25 and when "0" is set, HIGH (VDD) level is output. At this time, "1" must always be set for the data register R25D. At initial reset, LCCLK is set to "0" (HIGH level

LCFRM: 00FF10H•D3

output).

Controls the FR signal output.

When "1" is written:FR signal outputWhen "0" is written:HIGH level (DC) outputReading:Valid

LCFRM is the output control register for FR signal. When "1" is set, the FR signal is output from the output port terminal R26 and when "0" is set, HIGH (VDD) level is output. At this time, "1" must always be set for the data register R26D. At initial reset, LCFRM is set to "0" (HIGH level output).

5.12.9 Programming notes

- (1) Since the CL and FR signals are generated asynchronously from the output control registers LCCLK and LCFRM, when the signals is turned ON or OFF by setting of the registers LCCLK and LCFRM, a hazard of a 1/2 cycle or less is generated.
- (2) When the SLP instruction is executed, display control registers LCDC0 and LCDC1 are automatically reset to "0" by hardware. Furthermore, in the SLEEP status, HIGH (VDD) level is output for the CL and FR signals. (When registers R25D and R26D are set to "1".)

5.13 Sound Generator

5.13.1 Configuration of sound generator

The E0C883xx has a built-in sound generator for generating BZ (buzzer) signal.

BZ signals generated from the sound generator can be output from the R50 output port terminal. Aside permitting the respective setting of the buzzer signal frequency and sound level (duty adjustment) to 8 stages, it permits the adding of a digital envelope by means of duty ratio control. It also has a one-shot output function for outputting key operated sounds.

Figure 5.13.1.1 shows the configuration of the sound generator.

5.13.2 Control of buzzer output

BZ signal can be output from the R50 output port terminal.

The configuration of the output port R50 is shown in Figure 5.13.2.1.

The output control for the BZ signal generated by the sound generator is done by the buzzer output control register BZON, one-shot buzzer trigger bit BZSHT and one-shot buzzer forced stop bit BZSTP. When "1" is set to BZON or BZSHT, the BZ signal is output from the R50 output port terminal and when "0" is set to BZON or "1" is set to BZSTP, the LOW (Vss) level is output. At this time, "0" must always be set for the output data register R50D. Figure 5.13.2.2 shows the output waveform of the BZ signal.

Note: Since the BZ signal is generated asynchronously from the registers BZON, BZSHT and BZSTP, when the signal is turned ON or OFF by the register settings, a hazard of a 1/ 2 cycle or less is generated.

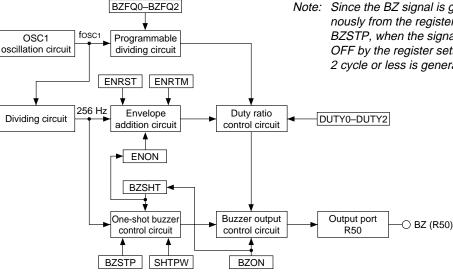


Fig. 5.13.1.1 Configuration of sound generator

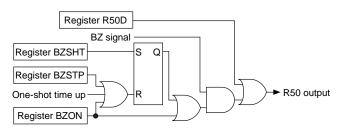


Fig. 5.13.2.1 Configuration of R50

BZON/BZSHT	0	1	
BZ output (R50)			

Fig. 5.13.2.2 Output waveform of BZ signal

5.13.3 Setting of buzzer frequency and sound level

The BZ signal is a divided signal using the OSC1 oscillation circuit (32.768 kHz) as the clock source and 8 frequencies can be selected. This selection is done by the buzzer frequency selection register BZFQ0–BZFQ2. The setting value and buzzer frequency correspondence is shown in Table 5.13.3.1. By selecting the duty ratio of the BZ signal from among 8 types, the buzzer sound level can be adjusted. This selection is made in the duty ratio selection register DUTY0–DUTY2. The setting value and duty ratio correspondence is shown in Table 5.13.3.2.

Table 5.13.3.1 Buzzer signal frequency settings

	BZFQ2	BZFQ1	BZFQ0	Buzzer frequency (Hz)		
	0	0	0	4096.0		
	0	0	1	3276.8		
	0	1	0	2730.7		
	0	1	1	2340.6		
	1	0	0	2048.0		
	1	0	1	1638.4		
	1	1	0	1365.3		
	1	1	1	1170.3		

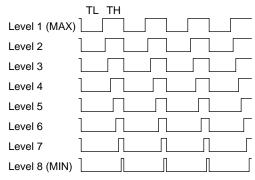

				Duty ratio by buzzer frequencies (Hz)					
Level	DUTY2	DUTY1	DUTY0	4096.0	3276.8	2730.7	2340.6		
				2048.0	1638.4	1365.3	1170.3		
Level 1 (Max)	0	0	0	8/16	8/20	12/24	12/28		
Level 2	0	0	1	7/16	7/20	11/24	11/28		
Level 3	0	1	0	6/16	6/20	10/24	10/28		
Level 4	0	1	1	5/16	5/20	9/24	9/28		
Level 5	1	0	0	4/16	4/20	8/24	8/28		
Level 6	1	0	1	3/16	3/20	7/24	7/28		
Level 7	1	1	0	2/16	2/20	6/24	6/28		
Level 8 (Min)	1	1	1	1/16	1/20	5/24	5/28		

Table 5.13.3.2 Duty ratio settings

Duty ratio refers to the ratio of pulse width to the pulse cycle; given that HIGH level output time is TH, and low level output time is TL the BZ signal becomes TH/(TH+TL).

When DUTY0–DUTY2 have all been set to "0", the duty ratio becomes maximum and the sound level also becomes maximum. Conversely, when DUTY0–DUTY2 have all been set to "1", the duty ratio becomes minimum and the sound level also becomes minimum.

Note that the duty ratio setting differ depending on frequency. See Table 5.13.3.2.

Note: When using the digital envelope, the DUTY0–DUTY2 setting becomes invalid.

5.13.4 Digital envelope

A digital envelope with duty control can be added to the BZ signal.

The envelope can be realized by staged changing of the same duty ratio as detailed in Table 5.13.3.2 in the preceding section from level 1 (maximum) to level 8 (minimum).

The addition of an envelope to the buzzer signal can be done by writing "1" to the envelope control register ENON. When "0" is written, the duty ratio is set at the level selected in DUTY0–DUTY2. By writing "1" to ENON to turn the buzzer output ON (writing "1" to BZON), a BZ signal with a level 1 duty ratio is output, and then the duty ratio can be attenuated in stages to level 8. The attenuated envelope can be returned to level 1 by writing "1" to the envelope reset bit ENRST. When attenuated to level 8, the duty level remains at level 8 until the buzzer output is turned OFF (writing "0" to BZON) or writing "1" to ENRST.

The stage changing time for the envelope level can be selected either 125 msec or 62.5 msec by the envelope attenuation time selection register ENRTM. Figure 5.13.4.1 shows the timing chart of the digital envelope.

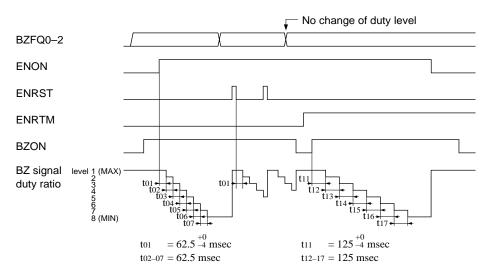


Fig. 5.13.4.1 Timing chart of digital envelope

5.13.5 One-shot output

The sound generator has a built-in one-shot output function for outputting a short duration buzzer signal for key operation sounds and similar effects. Either 125 msec or 31.25 msec can be selected by the one-shot buzzer duration selection register SHTPW for buzzer signal output time.

The output control of the one-shot buzzer is done by writing "1" to the one-shot buzzer trigger BZSHT, then the BZ signal is output in synchronization with the internal 256 Hz signal from the R50 output port terminal. Thereafter, when the set time has elapsed, the BZ signal in synchronization with the 256 Hz signal automatically goes OFF in the same manner.

The BZSHT can be read to determine status. When BZSHT is "1", it indicates a BUSY status (during one-shot output) and when BZSHT is "0", it indicates a READY status (during stop).

When you want to turn the BZ signal OFF prior to the elapse of the set time, the BZ signal can be immediately stopped (goes OFF in asynchonization with 256 Hz signal) by writing "1" to the one-shot forced stop bit BZSTP. Since the one-shot output has a short duration, an envelope cannot be added. (When "1" is written to BZSHT, ENON is automatically reset to "0".) Consequently, only the frequency and sound level can be set for one-shot output.

The control for the one-shot output is invalid during normal buzzer output.

Figure 5.13.5.1 shows the timing chart of the one-shot output.

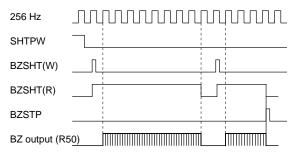


Fig. 5.13.5.1 Timing chart of one-shot output

5.13.6 Control of sound generator

Table 5.13.6.1 shows the sound generator control bits.

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF44	D7	_	-	-	-	_		Constantry "0" when
	D6	BZSTP	One-shot buzzer forcibly stop	Forcibly stop	No operation	_	W	being read
	D5	BZSHT	One-shot buzzer trigger/status R	Busy	Ready	0	R/W	
			W	Trigger	No operation			
	D4	SHTPW	One-shot buzzer duration width selection	125 msec	31.25 msec	0	R/W	
	D3	ENRTM	Envelope attenuation time	1 sec	0.5 sec	0	R/W	
	D2	ENRST	Envelope reset	Reset	No operation	_	W	"0" when being read
	D1	ENON	Envelope On/Off control	On	Off	0	R/W	*1
	D0	BZON	Buzzer output control	On	Off	0	R/W	
00FF45	D7	-	-	-	-	-		"0" when being read
	D5	DUTY2 DUTY1 DUTY0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0	R/W R/W	
	D3		_			-		"0" when being read
	D2	BZFQ2	Buzzer frequency selection $\frac{\text{BZFQ2}}{0} \frac{\text{BZFQ1}}{0} \frac{\text{BZFQ0}}{0} \frac{\text{Frequency (Hz)}}{4096.0}$			0	R/W	
	D1	BZFQ1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D0	BZFQ0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	

Table 5.13.6.1 Sound generator control bits

*1 Reset to "0" during one-shot output.

BZON: 00FF44H•D0

Controls the BZ signal output.

When "1" is written:BZ signal outputWhen "0" is written:LOW level (DC) outputReading:Valid

BZON is the output control register for BZ signal. When "1" is set, the BZ signal is output from the output port terminal R50 and when "0" is set, LOW (Vss) level is output. At this time, "0" must always be set for the data register R50D.

At initial reset, BZON is set to "0" (LOW level output).

BZFQ0-BZFQ2: 00FF45H•D0-D2

Selects the BZ signal frequency.

Table 5.13.6.2 Buzzer frequency settings

BZFQ2	BZFQ1	BZFQ0	Buzzer frequency (Hz)
0	0	0	4096.0
0	0	1	3276.8
0	1	0	2730.7
0	1	1	2340.6
1	0	0	2048.0
1	0	1	1638.4
1	1	0	1365.3
1	1	1	1170.3

The buzzer frequency can be selected from among the above 8 types that have divided the OSC1 clock. At initial reset, this register is set at "0" (4096.0 Hz).

DUTY0-DUTY2: 00FF45H•D4-D6

Selects the duty ratio of the BZ signal.

Table 5.13.6.3	Duty ratio settings	
----------------	---------------------	--

				Duty ratio by buzzer frequencies (Hz)			
Level	DUTY2	DUTY1	DUTY0	4096.0	3276.8	2730.7	2340.6
				2048.0	1638.4	1365.3	1170.3
Level 1 (Max)	0	0	0	8/16	8/20	12/24	12/28
Level 2	0	0	1	7/16	7/20	11/24	11/28
Level 3	0	1	0	6/16	6/20	10/24	10/28
Level 4	0	1	1	5/16	5/20	9/24	9/28
Level 5	1	0	0	4/16	4/20	8/24	8/28
Level 6	1	0	1	3/16	3/20	7/24	7/28
Level 7	1	1	0	2/16	2/20	6/24	6/28
Level 8 (Min)	1	1	1	1/16	1/20	5/24	5/28

The buzzer sound level can be adjusted by selecting the duty ratio from among the above 8 types. However, when the envelope has been set to ON (ENON = "1"), this setting becomes invalid.

At initial reset, this register is set to "0" (level 1).

ENRST: 00FF44H•D2

Resets the envelope.

When "1" is written:ResetWhen "0" is written:No operationReading:Always "0"

The envelope is reset by writing "1" to ENRST and the duty ratio returns to level 1 (maximum). Writing "0" to ENRST and writing "1" when an envelope has not been added become invalid. Since ENRST is exclusively for writing, it always becomes "0" during reading.

ENON: 00FF44H•D1

Controls the addition of an envelope to the BZ signal.

When "1" is written: ON When "0" is written: OFF Reading: Valid

By writing "1" to ENON, an envelope can be added to BZ signal output. When "0" is written, an envelope is not added and the BZ signal is fixed at the duty ratio selected in DUTY0–DUTY2. At initial reset and when "1" is written to BZSHT, ENON is set to "0" (OFF).

ENRTM: 00FF44H•D3

Selects the envelope attenuation time that is added to the BZ signal.

When "1" is written:	1.0 sec
	$(125 \text{ msec} \times 7 = 875 \text{ msec})$
When "0" is written:	0.5 sec
	$(62.5 \text{ msec} \times 7 = 437.5 \text{ msec})$
Reading:	Valid

The attenuation time of the digital envelope is determined by the time for changing the duty ratio. The duty ratio is changed in 125 msec (8 Hz) units when "1" is written to ENRTM and in 62.5 msec (16 Hz) units, when "0" is written. This setting becomes invalid when an envelope has been set to OFF (ENON = "0"). At initial reset, ENRTM is set to "0" (0.5 sec).

SHTPW: 00FF44H•D4

Selects the output duration width of the one-shot buzzer.

When "1" is written: 125 msec When "0" is written: 31.25 msec Reading: Valid

The one-shot buzzer output duration width is set to 125 msec when "1" is written to SHTPW and 62.5 msec, when "0" is written.

At initial reset, SHTPW is set to "0" (31.25 msec).

BZSHT: 00FF44H•D5

Controls the one-shot buzzer output.

When "1" is written: When "0" is written:	
When "1" is read:	Busy
When "0" is read:	Ready

Writing "1" into BZSHT causes the one-shot output circuit to operate and the BZ signal to be output. The buzzer output is automatically turned OFF after the time set by SHTPW has elapsed. At this time, "0" must always be set for the data register R50D.

The one-shot output is only valid when the normal buzzer output is OFF (BZON = "0") status. The trigger is invalid during ON (BZON = "1") status. When a re-trigger is assigned during a one-shot output, the one-shot output time set with SHTPW is measured again from that point. (time extension) The operation status of the one-shot output circuit can be confirmed by reading BZSHT, when the one-shot output is ON (busy), BZSHT reads "1" and when the output is OFF (ready), it reads "0". At initial reset, BZSHT is set to "0" (ready).

BZSTP: 00FF44H•D6

Forcibly stops the one-shot buzzer output.

When "1" is written:	Forcibly stop
When "0" is written:	No operation
Reading:	Constantly "0"

By writing "1" into BZSTP, the one-shot buzzer output can be stopped prior to the elapsing of the time set with SHTPW.

Writing "0" is invalid and writing "1" except during one-shot output is also invalid.

When "1" is written to BZSHT and BZSTP simultaneously, BZSTP takes precedence and one-shot output becomes stop status.

Since BZSTP is for writing only, during readout it is constantly set to "0".

5.13.7 Programming notes

- (1) Since the BZ signal is generated asynchronously from the register BZON, when the signal is turned ON or OFF by the register setting, a hazard of a 1/2 cycle or less is generated.
- (2) The SLP instruction has executed when the BZ signal is in the enable status (BZON = "1" or BZSHT = "1"), an unstable clock is output from the R50 output port terminal at the time of return from the SLEEP status. Consequently, when shifting to the SLEEP status, you should set the BZ signal to the disable status (BZON = BZSHT = "0") prior to executing the SLP instruction.
- (3) The one-shot output is only valid when the normal buzzer output is OFF (BZON = "0") status. The trigger is invalid during ON (BZON = "1") status.

5.14 Analog Comparator

5.14.1 Configuration of analog comparator

The E0C883xx has an MOS input analog comparator built into two channels. The respective analog comparators have two differential input terminals (inverted input terminal CMPMx and non-inverted input terminal CMPPx) that are available for general purpose use.

Figure 5.14.1.1 shows the configuration of the analog comparator.

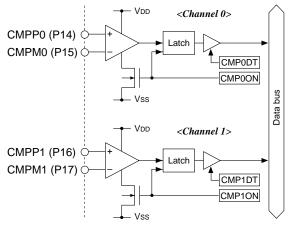


Fig. 5.14.1.1 Configuration of analog comparator

Since the input terminals of the analog comparator CMPP0, CMPM0, CMPP1 and CMPM1 are common to I/O ports P14–P17, when using as the input terminal for the analog comparator, "0" (input mode) must be written to I/O control registers IOC14–IOC17.

Terminal	When analog comparator is used
P14	CMPP0
P15	CMPM0
P16	CMPP1
P17	CMPM1

5.14.2 Mask option

Since the input terminals of the analog comparator are common to the I/O ports, the mask option for the I/O port corresponding to the channel to be used must be set to "Gate direct".

	I/O ports pull-up resistor	
	P14 (CMPP0) 🗆 With resistor 🔽 Gate direct	
	P15 (CMPM0) 🗆 With resistor 🔽 Gate direct	
	P16 (CMPP1) 🗆 With resistor 🔽 Gate direct	
	P17 (CMPM1) \Box With resistor \Box Gate direct	
_		-

^{* &}quot;✓" above shows an example of both channels being used.

5.14.3 Analog comparator operation

By writing "1" to the analog comparator control register CMPxON, the analog comparator goes ON, and the analog comparator starts comparing the external voltages that have been input to the two differential input terminals CMPPx and CMPMx. The result can be read from the comparator comparison result detection bit CMPxDT through the latch and when CMPPx (+) > CMPMx (-), it is "1" and when CMPPx (+) < CMPMx (-), it is "0". After the analog comparator has been turned ON, a maximum time of 3 msec is necessary until output stabilizes. Consequently, you should allow an adequate waiting time after turning the analog comparator ON, before reading the comparison result.

When the analog comparator is turned OFF, the comparison result at that point will be latched and the concerned data can be read thereafter, until the analog comparator is turned ON.

You should turn the analog comparator OFF, when it is not necessary, so as to reduce current consumption.

See "7 ELECTRICAL CHARACTERISTICS" for the input voltage range.

Note: Since the input terminals of the analog comparator are common to the I/O ports, the I/O control registers (IOC14–IOC17) corresponding to the channel to be used must be set to the input mode.

5.14.4 Control of analog comparator

Table 5.14.4.1 shows the analog comparator control bits.

Table 5.14.4.1 Analog comparator control bits

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF13	D7	-	_	-	-	-		
	D6	-	_	-	-	-		Constantly "0" when
	D5	-	_	-	-	-		being read
	D4	_	_	-	-	-		
	D3	CMP1ON	Comparator 1 On/Off control	On	Off	0	R/W	
	D2	CMP0ON	Comparator 0 On/Off control	On	Off	0	R/W	
	D1	CMP1DT	Comparator 1 data	+>-	+ < -	0	R	
	D0	CMP0DT	Comparator 0 data	+ > -	+ < -	0	R	

CMPOON, CMP1ON: 00FF13H•D2, D3

Controls the analog comparator ON/OFF.

When "1" is written: ON When "0" is written: OFF Reading: Valid

The analog comparator 0 goes ON by writing "1" to CMP0ON and goes OFF, when "0" is written. The analog comparator 1 can be controlled with CMP1ON in the same way. At initial reset, this register is set "0" (OFF).

CMP0DT, CMP1DT: 00FF13H•D0, D1

The comparison result of the analog comparator can be read out.

When "1" is read:	CMPPx (+) > CMPMx (-)
When "0" is read:	CMPPx (+) < CMPMx (-)
Writing:	Invalid

The result of analog comparator 0 can be read from CMP0DT. When the status of external voltage input to differential input terminals CMPP0 and CMPM0 is CMPP0 (+) > CMPM0 (-), CMP0DT becomes "1" and when it is CMPP0 (+) < CMPM0 (-), CMP0DT becomes "0".

As the same way, the comparison result between CMPP1 and CMPM1 can be read from CMP1DT. When the analog comparator is turned OFF, the latched result immediately prior to going OFF is read out.

At initial reset, this bit is set to "1".

5.14.5 Programming notes

- To reduce current consumption, turn the analog comparator OFF (CMP0ON = CMP1ON = "0") when it is not necessary.
- (2) After the analog comparator has been turned ON, a maximum time of 3 msec is necessary until output stabilizes. Consequently, you should allow an adequate waiting time after turning the analog comparator ON, before reading the comparison result.
- (3) Since the input terminals of the analog comparator are common to the I/O ports, the I/O control registers (IOC14–IOC17) corresponding to the channel to be used must be set to the input mode.

5.15 Supply Voltage Detection (SVD) Circuit

5.15.1 Configuration of SVD circuit

The E0C883xx has a built-in supply voltage detection (SVD) circuit configured with a 4-bit successive approximation A/D converter.

The SVD circuit has 16 sampling levels (level 0– level 15) for supply voltage, and this can be controlled by software.

In addition, an initial reset signal can be generated when the supply voltage drops to level 0 or less. This is selected by the mask option.

Figure 5.15.1.1 shows the configuration of the SVD circuit.

5.15.2 Operation of SVD circuit

Sampling control of the SVD circuit

The SVD circuit has two operation modes: continuous sampling and 1/4 Hz auto-sampling mode. Operation mode selection is done by the SVD control registers SVDON and SVDSP as shown in Table 5.15.2.1. When both bits of SVDON and SVDSP are set to "1", continuous sampling is selected.

 Table 5.15.2.1
 Correspondence between control register

 and operation mode

SVDON	SVDSP	Operating mode
0	0	SVD circuit OFF
0	1	1/4 Hz auto-sampling ON
1	×	Continuous sampling ON

In both operation modes, reading SVDON can confirm whether the SVD circuit is operating (BUSY) or on standby (READY); "1" indicates BUSY and "0" indicates READY.

When executing an SLP instruction while the SVD circuit is operating, the stop operation of the OSC1 oscillation circuit is kept waiting until the sampling is completed. The two bits of SVDON and SVDSP are automatically reset to "0" by hardware while waiting for completion of sampling. To reduce current consumption, turn the SVD circuit OFF when it is not necessary.

Detection result

The SVD circuit A/D converts the supply voltage (VDD–VSS) by 4-bit resolution and sets the result thereof into the SVD0–SVD3 register. The data in SVD0–SVD3 correspond to the detection levels as shown in Table 5.15.2.2 and the detection data is maintained until the next sampling.

For the correspondence between the detection level and the supply voltage, see "7 ELECTRICAL CHARACTERISTICS".

An interval of 7.8 msec (foSC1 = 32.768 kHz) is required from the start of supply voltage sampling by the SVD circuit to completion by writing the result into SVD0–SVD3. Therefore, when reading SVD0–SVD3 before sampling is finished, the previous result will be read.

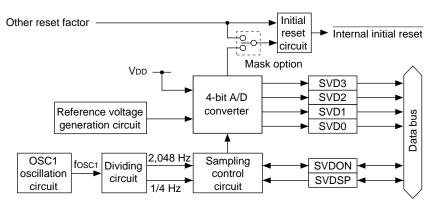


Fig.5.15.1.1 Configuration of SVD circuit

Table 5.15.2.2	Supply voltage	detection	results
----------------	----------------	-----------	---------

SVD3	SVD2	SVD1	SVD0	Detection level			
1	1	1	1	Level 15			
1	1	1	0	Level 14			
1	1	0	1	Level 13			
1	1	0	0	Level 12			
1	0	1	1	Level 11			
1	0	1	0	Level 10			
1	0	0	1	Level 9			
1	0	0	0	Level 8			
0	1	1	1	Level 7			
0	1	1	0	Level 6			
0	1	0	1	Level 5			
0	1	0	0	Level 4			
0	0	1	1	Level 3			
0	0	1	0	Level 2			
0	0	0	1	Level 1			
0	0	0	0	Level 0			

Timing of sampling

Next, we will explain the timing for two operation modes.

(1) Continuous sampling mode

This mode is selected when "1" is written to SVDON and sampling of the supply voltage is done continuously in 7.8 msec cycles.

The SVD circuit starts operation in synchronization with the internal 2,048 Hz signal and performs one sampling in 16 clock cycles. The sampling is done continuously without setting the standby time and the result is latched to SVD0–SVD3 in every 16 clock cycles. Cancellation of continuous sampling is done by writing "0" to SVDON. The SVD circuit maintains ON status until completion of sampling and then goes OFF. After writing "0" to SVDON, SVDON reads "1" until the SVD circuit actually goes OFF. Figure 5.15.2.1 shows the timing chart of the continuous sampling.

(2) 1/4 Hz auto-sampling mode

This mode is selected when "0" is written to SVDON and "1" is written to SVDSP. In this case, supply voltage sampling is done in every 4 seconds.

The sampling time is 7.8 msec as in continuous sampling, and the result in SVD0–SVD3 is updated every 4 seconds.

Cancellation of 1/4 Hz auto-sampling is done by writing "0" to SVDSP. If the SVD circuit is sampling, SVD circuit waits until completion and then turns OFF. In addition, "1" is read from SVDON while the SVD circuit is sampling. Figure 5.15.2.2 shows the timing chart of the 1/4 Hz auto-sampling.

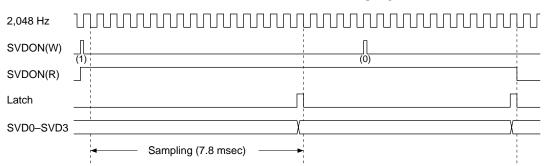


Fig. 5.15.2.1 Timing chart of continuous sampling

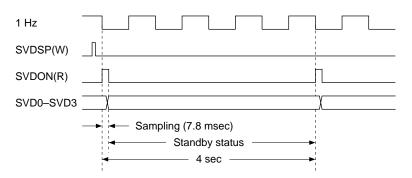


Fig. 5.15.2.2 Timing chart of 1/4 Hz auto-sampling

Reset function at low voltage detection

To avoid CPU runaway due to a supply voltage drop, an initial reset function when the supply voltage drops to level 0 or less can be selected by the mask option.

The SVD circuit shifts to continuous sampling status when it detects level 0 (SVD3–SVD0 = 0000B) four successive times. At this time, the internal initial reset signal is generated. The reset status continues until the supply voltage returns to level 2 (SVD3–SVD0 = 0010B) or higher. When the reset status is canceled by the restoration of the supply voltage, the SVD circuit returns to its previous status. Continuous sampling status continuous in case of the previous status was continuous sampling. Then CPU starts the reset exception processing.

Figure 5.15.2.3 shows the timing chart of the initial reset signal generation. (Example when using 1/4 Hz auto-sampling.)

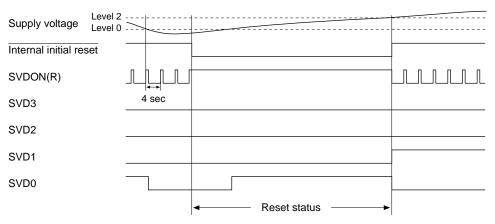


Fig. 5.15.2.3 Timing chart of the initial reset signal generation

5.15.3 Control of SVD circuit

Table 5.15.3.1 shows the SVD circuit control bits.

Table 5.15.3.1	SVD circuit control	bits
1 0000 01101011	bib chenneenner	

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF12	D7	-	_	-	-	-		Constantry "0" when
	D6	-	_	-	-	-		being read
	D5	SVDSP	SVD auto-sampling control	On	Off	0	R/W	These registers are
								reset to "0" when
	D4	SVDON	SVD continuous sampling control/status R	Busy	Ready	1→0*1	R/W	SLP instruction
			W	On	Off	0		is executed.
	D3	SVD3	SVD detection level			Х	R	*2
	D2	SVD2	<u>SVD3</u> <u>SVD2</u> <u>SVD1</u> <u>SVD0</u> <u>Detection level</u> Level 15			Х	R	
	D1	SVD1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			X	R	
	D0	SVD0	: : : : : : 0 0 0 0 Level 0			Х	R	

*1 After initial reset, this status is set "1" until conclusion of hardware first sampling.

*2 Initial values are set according to the supply voltage detected at first sampling by hardware. Until conclusion of first sampling, SVD0–SVD3 data are undefined.

SVDON: 00FF12H•D4

Controls the turning ON/OFF of the continuous sampling mode.

When "1" is written: Continuous sampling ON When "0" is written: Continuous sampling OFF

When "1" is read: BUSY When "0" is read: READY

The continuous sampling mode goes ON when "1" is written to SVDON and goes OFF, when "0" is written.

In the ON status, sampling of the supply voltage is done continuously in 7.8 msec cycles and the detection result is latched to SVD0–SVD3.

SVDON can be read, and "1" indicates SVD circuit operation (BUSY) and "0" indicates standby (READY).

At initial reset and in the SLEEP status, SVDON is set to "0" (continuous sampling OFF/READY).

SVDSP: 00FF12H•D5

Controls the turning ON/OFF of the 1/4 Hz autosampling mode.

When "1" is written:Auto-sampling ONWhen "0" is written:Auto-sampling OFFReading:Valid

The 1/4 Hz auto-sampling mode goes ON when "1" is written to SVDSP and goes OFF, when "0" is written.

In the ON status, sampling is done in every 4 seconds and "1" is read from SVDON during the actual sampling period (7.8 msec).

At initial reset and in the SLEEP status, SVDSP is set to "0" (auto-sampling OFF).

SVD0-SVD3: 00FF12H•D0-D3

The detection result of the SVD is set. The reading data correspond to the detection levels as shown in Table 5.15.3.2 and the data is maintained until the next sampling.

Table 5.15.3.2 Supply voltage detection results

	SVD3 SVD2 SVD1 SVD0 Detection level					
SVD3	SVD2	SVD1	SVD0	Detection level		
1	1	1	1	Level 15		
1	1	1	0	Level 14		
1	1	0	1	Level 13		
1	1	0	0	Level 12		
1	0	1	1	Level 11		
1	0	1	0	Level 10		
1	0	0	1	Level 9		
1	0	0	0	Level 8		
0	1	1	1	Level 7		
0	1	1	0	Level 6		
0	1	0	1	Level 5		
0	1	0	0	Level 4		
0	0	1	1	Level 3		
0	0	1	0	Level 2		
0	0	0	1	Level 1		
0	0	0	0	Level 0		

For the correspondence between the detection level and the supply voltage, see "7 ELECTRICAL CHARACTERISTICS".

The initial value at initial reset is set according to the supply voltage detected at first sampling by hardware. Data of this bit is undefined until this sampling is completed.

5.15.4 Programming notes

- To reduce current consumption, turn the SVD circuit OFF (SVDON = SVDSP = "0") when it is not necessary.
- (2) When executing an SLP instruction while the SVD circuit is operating, the stop operation of the OSC1 oscillation circuit is kept waiting until the sampling is completed. The two bits of SVDON and SVDSP are automatically reset to "0" by hardware while waiting for completion of sampling.

5.16 Interrupt and Standby Status

Types of interrupts

Six systems and 15 types of interrupts have been provided for the E0C883xx.

External interrupt

- •K00–K07 input interrupt (2 types)
- •K10 and K11 input interrupt (1 type)

Internal interrupt

- Clock timer interrupt (4 types)
- •Stopwatch interrupt (3 types)
- Programmable timer interrupt (2 types)
- •Serial interface interrupt (3 types)

* K11 is not available in the E0C88308.

An interrupt factor flag that indicates the generation of an interrupt factor and an interrupt enable register that sets enable/disable for interrupt requests have been provided for each interrupt and interrupt generation can be optionally set for each factor.

In addition, an interrupt priority register has been provided for each system of interrupts and the priority of interrupt processing can be set to 3 levels in each system.

Figure 5.16.1 shows the configuration of the interrupt circuit.

Refer to the explanations of the respective peripheral circuits for details on each interrupt.

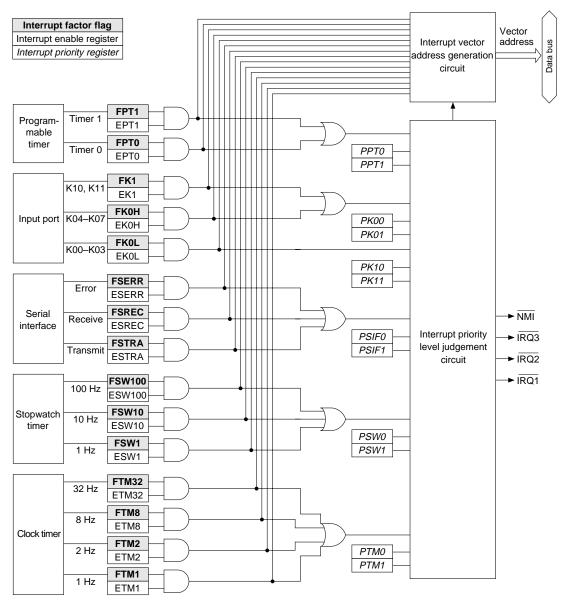


Fig. 5.16.1 Configuration of interrupt circuit

HALT status

By executing the program's HALT instruction, the E0C883xx shifts to the HALT status.

Since CPU operation stops in the HALT status, power consumption can be reduced with only peripheral circuit operation.

Cancellation of the HALT status is done by initial reset or an optional interrupt request, and the CPU restarts program execution from an exception processing routine.

See the "E0C88 Core CPU Manual" for the HALT status and reactivation sequence.

SLEEP status

By executing the program's SLP instruction, the E0C883xx shifts to the SLEEP status.

Since the operation of the CPU and peripheral circuits stop completely in the SLEEP status, power consumption can be reduced even more than in the HALT status. Cancellation of the SLEEP status is done by initial reset or an input interrupt from the input port. The CPU reactivates after waiting 8,192/foSC1 seconds of oscillation stabilization time. At this time, the CPU restarts program execution from an exception processing routine (input interrupt routine).

- Notes: Since oscillation is unstable for a short time after reactivation from the SLEEP status, the wait time is not always 250 msec even when using the 32.768 kHz crystal oscillator for the OSC1 oscillation circuit.
 - The \overline{CE} terminal status in HALT or SLEEP mode is different depending on the model. See Note in Section 5.2.2.

5.16.1 Interrupt generation conditions

The interrupt factor flags that indicate the generation of their respective interrupt factors are provided for the previously indicated 6 systems and 15 types of interrupts and they will be set to "1" by the generation of a factor. In addition, interrupt enable registers with a 1 to 1 correspondence to each of the interrupt factor flags are provided. An interrupt is enabled when "1" is written and interrupt is disabled when "0" is written.

The CPU manages the enable/disable of interrupt requests at the interrupt priority level. An interrupt priority register that sets the priority level is provided for each of the interrupts of the 6 systems and the CPU accepts only interrupts above the level that has been indicated with the interrupt flags (I0 and I1).

Consequently, the following three conditions are necessary for the CPU to accept the interrupt.

- (1) The interrupt factor flag has been set to "1" by generation of an interrupt factor.
- (2) The interrupt enable register corresponding to the above has been set to "1".
- (3) The interrupt priority register corresponding to the above has been set to a priority level higher than the interrupt flag (I0 and I1) setting.

The CPU initially samples the interrupt for the first op-code fetch cycle of each instruction. Thereupon, the CPU shifts to the exception processing when the above mentioned conditions have been established. See the "E0C88 Core CPU Manual" for the exception processing sequence.

5.16.2 Interrupt factor flag

Table 5.16.2.1 shows the correspondence between the factors generating an interrupt and the interrupt factor flags.

The corresponding interrupt factor flags are set to "1" by generation of the respective interrupt factors. The corresponding interrupt factor can be confirmed by reading the flags through software.

Interrupt factor	Interru	ot factor flag
Programmable timer 1 underflow	FPT1	(00FF25 D7)
Programmable timer 0 underflow	FPT0	(00FF25 D6)
Non matching of the K10 and K11 inputs and the input comparison registers KCP10 and KCP11	FK1	(00FF25 D5)
Non matching of the K04-K07 inputs and the input comparison registers KCP04-KCP07	FK0H	(00FF25 D4)
Non matching of the K00-K03 inputs and the input comparison registers KCP00-KCP03	FK0L	(00FF25 D3)
Serial interface receiving error (in asynchronous mode)	FSERR	(00FF25 D2)
Serial interface receiving completion	FSREC	(00FF25 D1)
Serial interface transmitting completion	FSTRA	(00FF25 D0)
Falling edge of the stopwatch timer 100 Hz signal	FSW100	(00FF24 D6)
Falling edge of the stopwatch timer 10 Hz signal	FSW10	(00FF24 D5)
Falling edge of the stopwatch timer 1 Hz signal	FSW1	(00FF24 D4)
Rising edge of the clock timer 32 Hz signal	FTM32	(00FF24 D3)
Rising edge of the clock timer 8 Hz signal	FTM8	(00FF24 D2)
Rising edge of the clock timer 2 Hz signal	FTM2	(00FF24 D1)
Rising edge of the clock timer 1 Hz signal	FTM1	(00FF24 D0)

Interrupt factor flag that has been set to "1" is reset to "0" by writing "1".

At initial reset, the interrupt factor flags are reset to "0".

Note: When executing the RETE instruction without resetting the interrupt factor flag after an interrupt has been generated, the same interrupt will be generated. Consequently, the interrupt factor flag corresponding to that routine must be reset (writing "1") in the interrupt processing routine.

5.16.3 Interrupt enable register

The interrupt enable register has a 1 to 1 correspondence with each interrupt factor flag and enable/disable of interrupt requests can be set.

When "1" is written to the interrupt enable register, an interrupt request is enabled, and is disabled when "0" is written. This register also permits reading, thus making it possible to confirm that a status has been set.

At initial reset, the interrupt enable registers are set to "0" and shifts to the interrupt disable status. Table 5.16.3.1 shows the correspondence between the interrupt enable registers and the interrupt factor flags.

5.16.4 Interrupt priority register and interrupt priority level

The interrupt priority registers shown in Table 5.16.4.1 are set to each system of interrupts and the interrupt priority levels for the CPU can be set to the optional priority level (0–3). As a result, it is possible to have multiple interrupts that match the system's interrupt processing priority levels.

The interrupt priority level between each system can optionally be set to three levels by the interrupt priority register. However, when more than one system is set to the same priority level, they are processed according to the default priority level.

Table 5.16.4.2	Setting of interrup	ot priority level
----------------	---------------------	-------------------

P*1	P*0	Interrupt priority level
1	1	Level 3 $(\overline{IRQ3})$
1	0	Level 2 $(\overline{IRQ2})$
0	1	Level 1 $(\overline{IRQ1})$
0	0	Level 0 (non)

Interrupt	Interrup	ot factor flag	Interrupt e	enable register
Programmable timer 1	FPT1	(00FF25 D7)	EPT1	(00FF23 D7)
Programmable timer 0	FPT0	(00FF25 D6)	EPT0	(00FF23 D6)
K10 and K11 input	FK1	(00FF25 D5)	EK1	(00FF23 D5)
K04–K07 input	FK0H	(00FF25 D4)	EK0H	(00FF23 D4)
K00–K03 input	FK0L	(00FF25 D3)	EK0L	(00FF23 D3)
Serial interface receiving error	FSERR	(00FF25 D2)	ESERR	(00FF23 D2)
Serial interface receiving completion	FSREC	(00FF25 D1)	ESREC	(00FF23 D1)
Serial interface transmitting completion	FSTRA	(00FF25 D0)	ESTRA	(00FF23 D0)
Stopwatch timer 100 Hz	FSW100	(00FF24 D6)	ESW100	(00FF22 D6)
Stopwatch timer 10 Hz	FSW10	(00FF24 D5)	ESW10	(00FF22 D5)
Stopwatch timer 1 Hz	FSW1	(00FF24 D4)	ESW1	(00FF22 D4)
Clock timer 32 Hz	FTM32	(00FF24 D3)	ETM32	(00FF22 D3)
Clock timer 8 Hz	FTM8	(00FF24 D2)	ETM8	(00FF22 D2)
Clock timer 2 Hz	FTM2	(00FF24 D1)	ETM2	(00FF22 D1)
Clock timer 1 Hz	FTM1	(00FF24 D0)	ETM1	(00FF22 D0)

Table 5.16.3.1 Interrupt enable registers and interrupt factor flags

Table 5.16.4.1 Interrupt priority register

Interrupt	Interrupt priority register			
Programmable timer interrupt	PPT0, PPT1 (00FF21 D2, D3)			
K10 and K11 input interrupt	PK10, PK11 (00FF21 D0, D1)			
K00–K07 input interrupt	PK00, PK01 (00FF20 D6, D7)			
Serial interface interrupt	PSIF0, PSIF1 (00FF20 D4, D5)			
Stopwatch timer interrupt	PSW0, PSW1 (00FF20 D2, D3)			
Clock timer interrupt	PTM0, PTM1 (00FF20 D0, D1)			

At initial reset, the interrupt priority registers are all set to "0" and each interrupt is set to level 0. Furthermore, the priority levels in each system have been previously decided and they cannot be changed.

The CPU can mask each interrupt by setting the interrupt flags (I0 and I1). The relation between the interrupt priority level of each system and interrupt flags is shown in Table 5.16.4.3, and the CPU accepts only interrupts above the level indicated by the interrupt flags.

The $\overline{\text{NMI}}$ (watchdog timer) that has level 4 priority, is always accepted regardless of the setting of the interrupt flags.

Table 5.16.4.3	Interrupt mask	setting of CPU
----------------	----------------	----------------

l1	10	Acceptable interrupt
1	1	Level 4 (MII)
1	0	Level 4, Level 3 (IRQ3)
0	1	Level 4, Level 3, Level 2 (IRQ2)
0	0	Level 4, Level 3, Level 2, Level 1 $(\overline{IRQ1})$

After an interrupt has been accepted, the interrupt flags are written to the level of that interrupt. However, interrupt flags after an $\overline{\text{NMI}}$ has been accepted are written to level 3 (I0 = I1 = "1").

Accepted interrupt priority level		l1	10
Level 4	(\overline{NMI})	1	1
Level 3	(IRQ3)	1	1
Level 2	$(\overline{IRQ2})$	1	0
Level 1	$(\overline{IRQ1})$	0	1

The set interrupt flags are reset to their original value on return from the interrupt processing routine. Consequently, multiple interrupts up to 3 levels can be controlled by the initial settings of the interrupt priority registers alone. Additional multiplexing can be realized by rewriting the interrupt flags and interrupt enable register in the interrupt processing routine.

Note: Beware. If the interrupt flags have been rewritten (set to lower priority) prior to resetting an interrupt factor flag after an interrupt has been generated, the same interrupt will be generated again.

5.16.5 Exception processing vectors

When the CPU accepts an interrupt request, it starts exception processing following completion of the instruction being executed. In exception processing, the following operations branch the program.

- (1) In the minimum mode, the program counter (PC) and system condition flag (SC) are moved to stack and in the maximum mode, the code bank register (CB), PC and SC are moved.
- (2) The branch destination address is read from the exception processing vector corresponding to each exception processing (interrupt) factor and is placed in the PC.

An exception vector is 2 bytes of data in which the top address of each exception (interrupt) processing routine has been stored and the vector addresses correspond to the exception processing factors as shown in Table 5.16.5.1.

Table 5.16.5.1	Vector address and exception
	processing correspondence

	processing correspondence	·
Vector address	Exception processing factor	Priority
000000H	Reset	High
000002H	Zero division	\uparrow
000004H	Watchdog timer (MMI)	
000006H	Programmable timer 1 interrupt	
000008H	Programmable timer 0 interrupt	
00000AH	K10, K11 input interrupt	
00000CH	K04–K07 input interrupt	
00000EH	K00–K03 input interrupt	
000010H	Serial I/F error interrupt	
000012H	Serial I/F receiving complete interrupt	
000014H	Serial I/F transmitting complete interrupt	
000016H	Stopwatch timer 100 Hz interrupt	
000018H	Stopwatch timer 10 Hz interrupt	
00001AH	Stopwatch timer 1 Hz interrupt	
00001CH	Clock timer 32 Hz interrupt	
00001EH	Clock timer 8 Hz interrupt	
000020H	Clock timer 2 Hz interrupt	\downarrow
000022H	Clock timer 1 Hz interrupt	Low
000024H	System reserved (cannot be used)	N-
000026H		No
:	Software interrupt	priority
0000FEH		rating

Note: An exception processing vector is fixed at 2 bytes, so it cannot specify a branch destination bank address. Consequently, to branch from multiple banks to a common exception processing routine, the top portion of an exception processing routine must be described within the common area (000000H–007FFFH).

5.16.6 Control of interrupt

Table 5.16.6.1 shows the interrupt control bits.

Table 5 1661	Interrupt control bits
<i>Table 5.10.0.1</i>	interrupt control bus

Address	Bit	Name	Function	1		0	SR	R/W	Comment
00FF20	D7 D6	PK01 PK00	K00–K07 interrupt priority register	PK01	PK01 PK00 PSIF1 PSIF0 PSW1 PSW0 Priority PTM1 PTM0 level		0	R/W	
		PSIF1 PSIF0	Serial interface interrupt priority register	PSIF1 1 PSW1 1			0	R/W	•
	D3	PSW1 PSW0	Stopwatch timer interrupt priority register	1 1	1 0	Level 3 Level 2	0	R/W	
	D1	PTM1	Clock timer interrupt priority register	0	1 0	Level 1 Level 0	0	R/W	
00FF21	D0 D7	PTM0	_	_		_	_		
	D6	_	_	_		_	_		Constantly "0" when
	D5	_	_	_		_	_		being read
	D4	_		_		_	_		
	D3	PPT1		PPT1	PPT0				
		PPT0	Programmable timer interrupt priority register	PK11 1	PK10 1	level Level 3	0	R/W	
	-	PK11		1	0	Level 2			
		PK10	K10 and K11 interrupt priority register	0	1 0	Level 1 Level 0	0	R/W	
00FF22	D7	_	_				_		"0" when being read
		ESW100	Stopwatch timer 100 Hz interrupt enable register						
		ESW10	Stopwatch timer 10 Hz interrupt enable register						
		ESW1	Stopwatch timer 1 Hz interrupt enable register					R/W	
		ETM32	Clock timer 32 Hz interrupt enable register	Interru	pt	Interrupt disable	0		
		ETM8	Clock timer 8 Hz interrupt enable register	enable	e				
		ETM2	Clock timer 2 Hz interrupt enable register						
		ETM1	Clock timer 1 Hz interrupt enable register						
00FF23		EPT1	Programmable timer 1 interrupt enable register						
		EPT0	Programmable timer 0 interrupt enable register						
		EK1	K10 and K11 interrupt enable register						
		EK0H	K04–K07 interrupt enable register	Interru	nt	Interrupt			
		EK0L	K00–K03 interrupt enable register	enable	-	disable	0	R/W	
		ESERR	Serial I/F (error) interrupt enable register	Cindon		uisuoie			
		ESREC	Serial I/F (receiving) interrupt enable register						
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register						
00FF24	D7	_	-	_		_	_		"0" when being read
	D6	FSW100	Stopwatch timer 100 Hz interrupt factor flag	(R)		(R)			6
		FSW10	Stopwatch timer 10 Hz interrupt factor flag	Interru	pt	No interrupt			
	D4	FSW1	Stopwatch timer 1 Hz interrupt factor flag	factor	-	factor is			
	D3	FTM32	Clock timer 32 Hz interrupt factor flag	generat		generated	0	R/W	
		FTM8	Clock timer 8 Hz interrupt factor flag						
		FTM2	Clock timer 2 Hz interrupt factor flag	(W)		(W)			
		FTM1	Clock timer 1 Hz interrupt factor flag	Reset	t 1	No operation			
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)		(R)			
		FPT0	Programmable timer 0 interrupt factor flag	Interru	pt	No interrupt			
		FK1	K10 and K11 interrupt factor flag	factor	-	factor is			
		FK0H	K04–K07 interrupt factor flag	generat		generated	c	D	
		FK0L	K00–K03 interrupt factor flag				0	R/W	
		FSERR	Serial I/F (error) interrupt factor flag	(W)		(W)			
		FSREC	Serial I/F (receiving) interrupt factor flag	Reset		No operation			
		FSTRA	Serial I/F (transmitting) interrupt factor flag	1	1				

Refer to the explanations on the respective peripheral circuits for the setting content and control method for each bit.

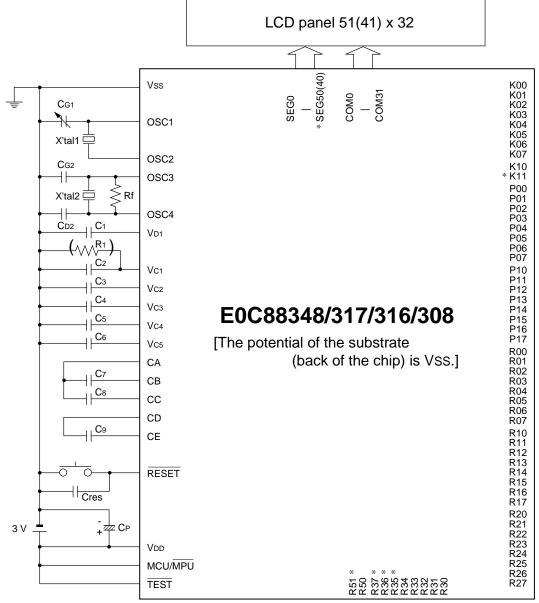
5.16.7 Programming notes

- (1) When executing the RETE instruction without resetting the interrupt factor flag after an interrupt has been generated, the same interrupt will be generated. Consequently, the interrupt factor flag corresponding to that routine must be reset (writing "1") in the interrupt processing routine.
- (2) Beware. If the interrupt flags (I0 and I1) have been rewritten (set to lower priority) prior to resetting an interrupt factor flag after an interrupt has been generated, the same interrupt will be generated again.
- (3) An exception processing vector is fixed at 2 bytes, so it cannot specify a branch destination bank address. Consequently, to branch from multiple banks to a common exception processing routine, the front portion of an exception processing routine must be described within the common area (000000H–007FFFH).
- (4) Do not execute the SLP instruction for 2 msec after a MMI interrupt has occurred (when fOSC1 is 32.768 kHz).

5.17 Notes for Low Current Consumption

The E0C883xx can turn circuits, which consume a large amount of power, ON or OFF by control registers.

You can reduce power consumption by creating a program that operates the minimum necessary circuits using these control registers.


Next, which circuit systems' operation can be controlled and their control registers (instructions) are explained. You should refer to these when programming.

See Chapter 7, "ELECTRICAL CHARACTERIS-TICS" for the current consumption.

Circuit type	Control register (Instruction)	Status at time of initial resetting
CPU	HALT and SLP instructions	Operation status
Oscillation circuit	CLKCHG, OSCC	OSC1 clock (CLKCHG = "0")
		OSC3 oscillation OFF (OSCC = "0")
Operating mode	VDC0, VDC1	Normal mode ($VDC0 = VDC1 = "0"$)
LCD controller	LCDC0, LCDC1	Drive OFF (LCDC0 = LCDC1 = "0")
SVD circuit	SVDON, SVDSP	OFF status (SVDON = SVDSP = "0")
Analog comparator	CMP0ON, CMP1ON	OFF status (CMP0ON = CMP1ON = "0")

<i>Table</i> 5.17.1	Circuit systems and control registers	

6 BASIC EXTERNAL WIRING DIAGRAM

*: R35-R37, R51, K11 and SEG41-SEG50 are not available in the E0C88308.

Recommended values for external parts

Symbol	Name	Recommended value
X'tal1	Crystal oscillator	32.768 kHz,
		$CI (Max.) = 35 k\Omega$
X'tal2	Crystal oscillator	4.9152 MHz
Rf	Feedback resistor	1 MΩ
CG1	Trimmer capacitor	5–25 pF
CG2	Gate capacitor	15 pF
CD2	Drain capacitor	15 pF
C1	Capacitor between Vss and VD1	0.1 μF
C2	Capacitor between Vss and Vc1	0.1 μF

Symbol	Name	Recommended value
C3	Capacitor between Vss and Vc2	0.1 µF
C4	Capacitor between Vss and Vc3	0.1 µF
C5	Capacitor between Vss and Vc4	0.1 µF
C6	Capacitor between Vss and Vc5	0.1 µF
C7–C9	Booster capacitors	0.1 µF
Ср	Capacitor for power supply	3.3 µF
Cres	Capacitor for RESET terminal	0.47 μF
Rı	Load resistor between	$100 \text{ k}\Omega$ (It is needed when
	Vss and Vc1	driving an LCD panel that constitutes a heavy load.)

7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Rating

				(Vss =	= 0 V)
Item	Symbol	Condition	Rated value	Unit	Note
Power voltage	VDD		-0.3 to +7.0	V	
Liquid crystal power voltage	VC5		-0.3 to +7.0	V	
Input voltage	VI		-0.3 to VDD + 0.3	V	
Output voltage	Vo		-0.3 to VDD + 0.3	V	1
High level output current	Іон	1 terminal	-5	mA	
		Total of all terminals	-20	mA	
Low level output current	IOL	1 terminal	5	mA	
		Total of all terminals	20	mA	
Permitted loss	PD		200	mW	2
Operating temperature	Topr		-40 to +85	°C	
Storage temperature	Tstg		-65 to +150	°C	

Note) 1 Case that to Nch open drain output by the mask option is included.

2 In case of plastic package.

				(Vss	= 0 V, Ta	= -40 to	85°C)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Operating power voltage (Normal mode)	VDD		2.4		5.5	V	
Operating power voltage (Low power mode)	VDD		1.8		3.5	V	
Operating power voltage (High speed mode)	VDD		3.5		5.5	V	
Operating frequency (Normal mode)	fosc1	VDD = 2.4 to 5.5 V	30.000	32.768	50.000	kHz	1
	fosc3		0.03		4.2	MHz	1,5
Operating frequency (Low power mode)	fosc1	VDD = 1.8 to 3.5 V	30.000	32.768	50.000	kHz	1
Operating frequency (High speed mode)	fosc1	VDD = 3.5 to 5.5 V	30.000	32.768	50.000	kHz	1
	fosc3		0.03		8.2	MHz	1,6
Liquid crystal power voltage	VC5	$V_{C5} \geq V_{C4} \geq V_{C3} \geq V_{C2} \geq V_{C1} \geq V_{SS}$			6.0	V	2
Capacitor between VD1 and VSS	C1			0.1		μF	
Capacitor between VC1 and VSS	C2			0.1		μF	3
Capacitor between VC2 and VSS	C3			0.1		μF	3
Capacitor between VC3 and VSS	C4			0.1		μF	3
Capacitor between VC4 and VSS	C5			0.1		μF	3
Capacitor between VC5 and VSS	C6			0.1		μF	3
Capacitor between CA and CB	C7			0.1		μF	3
Capacitor between CA and CC	C8			0.1		μF	3
Capacitor between CD and CE	C9			0.1		μF	3
Resistor between VC1 and VSS	R 1			100		kΩ	4

7.2 Recommended Operating Conditions

Note) 1 When an external clock is input from the OSC1 terminal by the mask option, do not connect anything to the OSC2 terminal, and when an external clock is input from the OSC3 terminal, do not connect to the OSC4 terminal.

2 When external power supply is selected by the mask option.

 $3\;$ When LCD drive power is not used, the capacitor is not necessary.

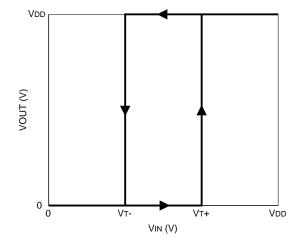
In this case, do not connect anything to VC1 to VC5 and CA to CE terminals.

4~ It is necessary when the panel load is large and for 1/32 duty driving.

The resistance value should be decided by connecting it to the actual panel to be used.

5 When CR oscillation is selected to OSC3, the maximum frequency is limited to 3 MHz.

6 When CR oscillation is selected to OSC3, the maximum frequency is limited to 4 MHz.


7.3 DC Characteristics

Unless otherwise specified: VDD = 1			NA:	T	Mari	1.1	Nata
Item	Symbol		Min.	Тур.	Max.	Unit	Note
High level input voltage (1)	VIH1	Kxx, Pxx, MCU/MPU	0.8Vdd		VDD	V	<u> </u>
Low level input voltage (1)	VIL1	Kxx, Pxx, MCU/MPU	0		0.2Vdd	V	
High level input voltage (2)	VIH2	OSC1, OSC3	1.6		VDD	V	1
(Normal mode)							
High level input voltage (2)	VIH2	OSC1	1.0		VDD	V	1
(Low power mode)							
High level input voltage (2)	VIH2	OSC1, OSC3	2.4		VDD	V	1
(High speed mode)							
Low level input voltage (2)	VIL2	OSC1, OSC3	0		0.6	V	1
(Normal mode)							
Low level input voltage (2)	VIL2	OSC1	0		0.3	V	1
(Low power mode)							
Low level input voltage (2)	VIL2	OSC1, OSC3	0		0.9	V	1
(High speed mode)							
High level schmitt input voltage	V_{T+}	RESET	0.5Vdd		0.9Vdd	V	
Low level schmitt input voltage	VT-	RESET	0.1Vdd		0.5Vdd	V	
High level output current	Іон	PXX, RXX, VOH = 0.9 VDD			-0.5	mA	
Low level output current	Iol	Pxx, Rxx, Vol = 0.1 VDD	0.5			mA	
Input leak current	Ili	Kxx, Pxx, RESET, MCU/MPU	-1		1	μΑ	
Output leak current	Ilo	Pxx, Rxx	-1		1	μΑ	
Input pull-up resistance	Rin	Kxx, Pxx, RESET, MCU/MPU	100		500	kΩ	2
Input terminal capacitance	Cin	Kxx, Pxx			15	pF	
		$V_{IN} = 0 V, f = 1 MHz, Ta = 25^{\circ}C$					
Segment/Common output current	ISEGH	SEGxx, COMxx, VSEGH = VC5-0.1 V			-5	μA	1
Ç I	ISEGL	SEGxx, COMxx, VSEGL = $0.1 V$	5		1	μA	1

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$

Note) 1 When external clock is selected by mask option.

 $2\;$ When addition of pull-up resistor is selected by mask option.

7.4 Analog Circuit Characteristics

LCD drive circuit

The Typ. values of the LCD drive voltage shown in the following table shift in difference of panel load (panel size, drive duty, display segment number). Therefore, these should be evaluated by connecting to the actual panel to be used. Moreover, if the display is uneven with a large panel load, connect a resistor (R1) between the VSS and VC1 terminal. (It is necessary in 1/32 duty driving.)

Unless otherwise specified: VDD = Vc2 (LCX = FH) +0.1 to 5.5 V, Vss = 0 V, Ta = 25°C,

Item	Symbol		Condition	Min.	Тур.	Max.	Unit	No
LCD drive voltage	VC1	*1		0.18Vc5		0.22Vc5	V	
	VC2	*2		0.39Vc5		0.43Vc5	V	
	VC3	*3		0.59Vc5		0.63Vc5	V	
	VC4	*4		0.80Vc5		0.84Vc5	S V 25 V 20 V	
	VC5	*5	LCX = 0H		3.89			
	TYPE A		LCX = 1H		3.96			
	(4.5V)		LCX = 2H		4.04		V	
			LCX = 3H		4.11		V	
			LCX = 4H		4.18		V	
			LCX = 5H		4.26		V	
			LCX = 6H		4.34	-	V	
			LCX = 7H	Typ×0.94	4.42	Typ×1.06	V	
			LCX = 8H		4.50	-	V	
			LCX = 9H		4.58	-	V	
			LCX = AH		4.66		V	
			LCX = BH		4.74		V	
			LCX = CH		4.82		V	
			LCX = DH		4.90		V	
			LCX = EH		4.99		V V V V V V V V V V V V V V V	
			LCX = FH		5.08			1
	VC5	*5	LCX = 0H		4.73			
	TYPE B		LCX = 1H		4.83			
	(5.5V)		LCX = 2H		4.92		V	
			LCX = 3H		5.02		V V V V V V V V V V V V V V	
			LCX = 4H		5.11		V	
			LCX = 5H	1	5.21	1		t
			LCX = 6H	1	5.30	1		1
			LCX = 7H	Typ×0.94	5.40	Typ×1.06	V	t
			LCX = 8H		5.50		V	t
			LCX = 9H	1	5.60	1		1
	LCX = AH	1	5.70	1		1		
			LCX = BH	1	5.81	1	V	1
			LCX = CH	1	5.93	1	V	1
			LCX = DH	1	6.05	1	V	1
			LCX = EH	1	6.17	1	V	1
			LCX = FH	1 1	6.29	1	V	

 $C_1 = C_2 = C_3 = C_4 = C_5 = C_6 = C_7 = C_8 = C_9 = 0.1 \ \mu F$

*1 Connects 1 M Ω load resistor between Vss and Vc1. (without panel load)

*2 Connects 1 M\Omega load resistor between Vss and Vc2. (without panel load)

*3 Connects 1 M Ω load resistor between Vss and Vc3. (without panel load)

*4 Connects 1 M Ω load resistor between Vss and Vc4. (without panel load)

*5 Connects 1 MΩ load resistor between Vss and Vc5. (without panel load)

7 ELECTRICAL CHARACTERISTICS

SVD circuit

Unless otherwise specified: VDD =			Min.	Turn	Max.	Linit
Item	Symbol	Condition	iviin.	Тур.	wax.	Unit
SVD voltage	VSVD	Level 1 \rightarrow Level 0		1.82		V
		Level 2 \rightarrow Level 1		2.00		v
		Level 3 \rightarrow Level 2		2.18	Typ×1.08	V
		Level 4 \rightarrow Level 3		2.36		V
		Level 5 \rightarrow Level 4	Typ×0.92	2.54	Typ×1.08	V
		Level 6 \rightarrow Level 5		2.72		V
		Level 7 \rightarrow Level 6		2.90		V
		Level 8 \rightarrow Level 7		3.08		V
		Level 9 \rightarrow Level 8		3.26		V
		Level $10 \rightarrow$ Level 9		3.45		V
		Level $11 \rightarrow$ Level 10		3.65		V
		Level $12 \rightarrow$ Level 11	T	3.85	T	V
		Level $13 \rightarrow$ Level 12	Typ×0.88	4.05	1yp×1.12	V
		Level $14 \rightarrow$ Level 13	1	4.25		V
		Level $15 \rightarrow$ Level 14	1	4.50	1	V

VSVD (Level 0) < VSVD (Level 1) < VSVD (Level 2) < VSVD (Level 3) < VSVD (Level 4) < VSVD (Level 5) < VSVD (Level 6) < VSVD (Level 7) < VSVD

 $< V \\ SVD (Level 8) < V \\ SVD (Level 9) < V \\ SVD (Level 10) < V \\ SVD (Level 11) < V \\ SVD (Level 12) < V \\ SVD (Level 13) < V \\ SVD (Level 14) < V \\ SVD (Level 15) < V \\ SVD (Level 15) < V \\ SVD (Level 16) < V \\ SVD (Level 16) < V \\ SVD (Level 17) < V \\ SVD$ Note) 1 Low power operating mode only

- 2 Low power operating mode or Normal operating mode only
- 3 Normal operating mode only
- 4 Normal operating mode or High speed operating mode only

Analog comparator circuit

Unless otherwise specified: VDD = 1.8 to 5.5 V, Vss = 0 V, $Ta = 25^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Analog comparator	VCMIP	Non-inverted input (CMPP)	0.7		Vdd - 0.7	V	1
operating voltage input range	VCMIM	Inverted input (CMPM)	0.7		Vdd - 0.7	V	1
Analog comparator offset voltage	VCMOF	$V_{CMIP} = 0.7 V$ to $V_{DD} - 0.7 V$			20	mV	1
		VCMIM = 0.7 V to VDD - 0.7 V					
Analog comparator stability time	t _{CMP1}				1	mS	2
Analog comparator response time	tcmp2	$V_{CMIP} = 0.7 V$ to $V_{DD} - 0.7 V$			2	mS	1
		VCMIM = 0.7 V to VDD - 0.7 V					3
		$V_{CMIP} = V_{CMIM} \pm 0.025 V$					

Note) 1 When "without pull-up resistor" (comparator input terminal) is selected by mask option.

2 Stability time is the time from turning the circuit ON until the circuit is stabilized.

3 Response time is the time that the output result responds to the input signal.

Note

1

1

1

2

2

2

3

3

3

4

4

4

4

4

4

7.5 Power Current Consumption

Unless otherwise specified: VDD = Within the operating voltage in each operating mode, <math>Vss = 0 V, $Ta = 25^{\circ}C$, OSC1 = 32.768 kHz crystal oscillation, CG = 25pF, OSC3 = External clock input, Non heavy load protection mode,

Item	Symbol	Condition		Min.	Тур.	Max.	Unit	Note
Power current	IDD1	In SLEEP status	*1		0.3	1	μA	
ower current Normal mode)	IDD2	In HALT status	*2		2	5	μΑ	
	IDD3	CPU is in operating (32.768 kHz)	*1 0.3 1 μA *2 2 5 μA *3 14 18 μA *4 0.45 0.60 mA *4 0.45 0.60 mA #4 0.45 0.60 mA #4 0.45 0.60 mA #1 0.55 1.0 mA R = 100 k\Omega) *5 1.1 1.7 mA *1 0.2 1 μA *1 0.2 1 μA *2 1 5 μA *3 8 12 μA *3 8 12 μA *1 1 3 μA *3 24 30 μA *3 24 30 μA *4 0.70 1.00 mA *4 0.70 1.2 2.5 mA					
	IDD4	CPU is in operating (1 MHz)	*4		0.45	0.60	mA	
	IDD5	CPU is in operating (OSC3 = 1 MHz, Crystal)	*5		0.55	1.0	mA	
	IDD6	CPU is in operating (OSC3 = 1 MHz, Ceramic)	*5		0.55	1.0	mA	
	IDD7	CPU is in operating (OSC3 = CR, R = $100 \text{ k}\Omega$)	*5		1.1	1.7	mA	
	Ihvl	In heavy load protection mode			25	50	μΑ	1
Power current	IDD1	In SLEEP status	*1		0.2	1	μΑ	
(Low power mode)	IDD2	In HALT status	*2		1	5	μΑ	
	IDD3	CPU is in operating (32.768 kHz)	*3		8	12	μΑ	
	Ihvl	In heavy load protection mode			15	30	μΑ	1
Power current	IDD1	In SLEEP status	*1		1	3	μΑ	
(High speed mode)	IDD2	In HALT status	*2		5	10	μΑ	
	IDD3	CPU is in operating (32.768 kHz)	*3		24	30	μΑ	
	IDD4	CPU is in operating (1 MHz)	*4		0.70	1.00	mA	
	IDD5	CPU is in operating (OSC3 = 1 MHz, Crystal)	*5		1.2	2.5	mA	
	IDD6	CPU is in operating (OSC3 = 1 MHz, Ceramic)	*5		1.2	2.5	mA	
	IDD7	CPU is in operating (OSC3 = CR, R = $100 \text{ k}\Omega$)	*5		3.4	4.7	mA	
	Ihvl	In heavy load protection mode			35	70	μΑ	1
LCD drive circuit	ILCDN				2.5	5	μΑ	
current	ILCDH	In heavy load protection mode			15	30	μΑ	1
SVD circuit current	ISVDN	VDD = 3.0 V			30	60	μΑ	2
	ISVDH	In heavy load protection mode			25	75	μΑ	1
Analog comparator	ICMP1	CMPXDT = "1"			40	100	μΑ	
circuit current	ICMP2	CMPXDT = "0"			4	10	μA	
OSC1 CR oscillation	ICR1				20	50	μA	3
current								
*1 OSC1: Stop	o, O	SC3: Stop, CPU, ROM, RAM: SLEEP status,		Cloc	k timer: St	op, O	thers: Sto	op stati

*1OSC1: Stop,OSC3: Stop,CPU, ROM, RAM: SLEEP status,Clock timer: Stop,Others: Stop status*2OSC1: Oscillating, OSC3: Stop,CPU, ROM, RAM: HALT status,Clock timer: Operating, Others: Stop status*3OSC1: Oscillating, OSC3: Stop,CPU, ROM, RAM: Operating in 32.768 kHz, Clock timer: Operating, Others: Stop status

*4 OSC1: Oscillating, OSC3: External, CPU, ROM, RAM: Operating in 1 MHz,
 *5 SC1: Oscillating, OSC3: Oscillating, CPU, ROM, RAM: Operating in 1 MHz,

 1 MHz,
 Clock timer: Operating, Others: Stop status

 1 MHz,
 Clock timer: Operating, Others: Stop status

Note) 1 It is the value of current which flows in the heavy load protection circuit when in the heavy load protection mode (OSC3 ON or buzzer ON).

2 The value in \mathbf{x} V can be found by the following expression: ISVDN (VDD = \mathbf{x} V) = ($\mathbf{x} \times 20$) - 30 (Typ. value), ISVDN (VDD = \mathbf{x} V) = ($\mathbf{x} \times 30$) - 30 (Max. value)

3 When OSC1 CR oscillation circuit is selected by the mask option.

7.6 AC Characteristics

External memory access

• Read cycle (Normal operating mode)

Condition: VDD = 2.4 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C, VIH1 = 0.8VDD, VIL1 = 0.2VDD, VIH2 = 1.6 V, VIL2 = 0.6 V,

VOH = 0.8VDD, VOL = 0.2VDD, CL = 100 pF (load capacitance)

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Address set-up time in read cycle	tras	tc+tl-100+n•tc/2			nS	1
Address hold time in read cycle	trah	th-80			nS	
Read signal pulse width	trp	tc-20+n•tc/2			nS	1
Data input set-up time in read cycle	trds	300			nS	
Data input hold time in read cycle	trdh	0			nS	

Note) 1 Substitute the number of states for wait insertion in n.

• Read cycle (High speed operating mode)

 $Condition: Vdd = 3.5 \text{ to } 5.5 \text{ V}, Vss = 0 \text{ V}, Ta = -40 \text{ to } 85^{\circ}\text{C}, Vihi = 0.8 \text{ Vdd}, Vill = 0.2 \text{ Vdd}, Vih2 = 2.4 \text{ V}, Vill = 0.9 \text{ V}, Vill = 0.2 \text{ Vdd}, Vill$

VOH = 0.8VDD, VOL = 0.2VDD, CL = 100 pF (load capacitance)

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Address set-up time in read cycle	tras	tc+tl-50+n•tc/2			nS	1
Address hold time in read cycle	trah	th-40			nS	
Read signal pulse width	trp	tc-10+n•tc/2			nS	1
Data input set-up time in read cycle	trds	150			nS	
Data input hold time in read cycle	trdh	0			nS	

Note) 1 Substitute the number of states for wait insertion in n.

• Read cycle (Low power operating mode)

 $Condition: Vdd = 1.8 \text{ to } 3.5 \text{ V}, Vss = 0 \text{ V}, Ta = -40 \text{ to } 85^{\circ}\text{C}, Vihi = 0.8 \text{ Vdd}, Vill = 0.2 \text{ Vdd}, Vih2 = 1.0 \text{ V}, Vill = 0.3 \text{ V}, Vill = 0.3 \text{ V}, Vill = 0.4 \text{ Vd}, Vill$

VOH = 0.8VDD, VOL = 0.2VDD, CL = 100 pF (load capacitance)

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Address set-up time in read cycle	tras	15			μS	
Address hold time in read cycle	trah	5			μS	
Read signal pulse width	trp	10			μS	
Data input set-up time in read cycle	trds	10			μS	
Data input hold time in read cycle	trdh	0			μS	

• Write cycle (Normal operating mode)

 $\textit{Condition: Vdd} = 2.4 \textit{ to } 5.5 \textit{ V}, \textit{ Vss} = 0 \textit{ V}, \textit{ Ta} = -40 \textit{ to } 85^{\circ}\textit{C}, \textit{ Vih1} = 0.8 \textit{ Vdd}, \textit{ Vil1} = 0.2 \textit{ Vdd}, \textit{ Vih2} = 1.6 \textit{ V}, \textit{ Vil2} = 0.6 \textit{ V}, \textit{ Vil2}$

VOH = 0.8VDD, VOL = 0.2VDD, CL = 100 pF (load capacitance)

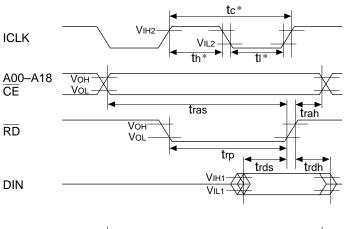
Item	Symbol	Min.	Тур.	Max.	Unit	Note
Address set-up time in write cycle	twas	tc-180			nS	
Address hold time in write cycle	twah	th-80			nS	
Write signal pulse width	twp	t1-40+n•tc/2			nS	1
Data output set-up time in write cycle	twds	tc-180+n•tc/2			nS	1
Data output hold time in write cycle	twdh	th-80		th+80	nS	

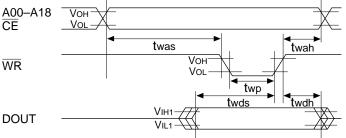
Note) 1 Substitute the number of states for wait insertion in n.

• Write cycle (High speed operating mode)

Condition: VDD = 3.5 to 5.5 V, Vss = 0 V, Ta = -40 to 85° C, VIH1 = 0.8VDD, VIL1 = 0.2VDD, VIH2 = 2.4 V, VIL2 = 0.9 V, VOH = 0.8VDD, VOI = 0.2VDD, CL = 100 pF (load capacitance)

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Address set-up time in write cycle	twas	tc-90			nS	
Address hold time in write cycle	twah	th-40			nS	
Write signal pulse width	twp	tl-20+n•tc/2			nS	1
Data output set-up time in write cycle	twds	tc-90+n•tc/2			nS	1
Data output hold time in write cycle	twdh	th-40		th+40	nS	


Note) 1 Substitute the number of states for wait insertion in n.


• Write cycle (Low power operating mode)

 $\textit{Condition: Vdd} = 1.8 \text{ to } 3.5 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Ta} = -40 \text{ to } 85^{\circ}\text{C}, \text{ Vihi} = 0.8 \text{ Vdd}, \text{ Vill} = 0.2 \text{ Vdd}, \text{ Vih2} = 1.0 \text{ V}, \text{ Vill} = 0.3 \text{ V}, \text{ Vill}$

VOH = 0.8VDD, VOL = 0.2VDD, CL = 100 pF (load capacitance)

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Address set-up time in write cycle	twas	10			μS	
Address hold time in write cycle	twah	5			μS	
Write signal pulse width	twp	5			μS	
Data output set-up time in write cycle	twds	10			μS	
Data output hold time in write cycle	twdh	5		20	μS	

* In the case of crystal oscillation and ceramic oscillation: th = 0.5 tc ± 0.05 tc, tl = tc - th (1/tc: oscillation frequency)

* In the case of CR oscillation: th = $0.5tc \pm 0.10tc$, tl = tc - th (1/tc: oscillation frequency)

7 ELECTRICAL CHARACTERISTICS

■ Serial interface

• Clock synchronous master mode (Normal operating mode)

 $\textit{Condition: Vdd} = 2.4 \text{ to } 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Ta} = -40 \text{ to } 85^{\circ}\text{C}, \text{Vih1} = 0.8 \text{Vdd}, \text{Vill} = 0.2 \text{Vdd}, \text{Vol} = 0.8 \text{Vdd}, \text{Vol} = 0.2 \text{Vd$

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tsmd			200	nS	
Receiving data input set-up time	tsms	500			nS	
Receiving data input hold time	tsmh	200			nS	

• Clock synchronous master mode (High speed operating mode)

Condition: VDD = 3.5 to 5.5 V, VSS = 0 V, Ta = -40 to 85°C, VIH1 = 0.8VDD, VIL1 = 0.2VDD, VOH = 0.8VDD, VOL = 0.2VDD

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tsmd			100	nS	
Receiving data input set-up time	tsms	250			nS	
Receiving data input hold time	tsmh	100			nS	

Clock synchronous master mode (Low power operating mode)

Condition: VDD = 1.8 to 3.5 V, VSS = 0 V, Ta = -40 to 85°C, VIH1 = 0.8VDD, VIL1 = 0.2VDD, VOH = 0.8VDD, VOL = 0.2VDD

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tsmd			5	μS	
Receiving data input set-up time	tsms	10			μS	
Receiving data input hold time	tsmh	5			μS	

• Clock synchronous slave mode (Normal operating mode)

Condition: VDD = 2.4 to 5.5 V, VSS = 0 V, Ta = -40 to 85°C, VIH1 = 0.8VDD, VIL1 = 0.2VDD, VOH = 0.8VDD, VOL = 0.2VDD

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tssd			500	nS	
Receiving data input set-up time	tsss	200			nS	
Receiving data input hold time	tssh	200			nS	

• Clock synchronous slave mode (High speed operating mode)

Condition: VDD = 3.5 to 5.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$, VIHI = 0.8VDD, VILI = 0.2VDD, VOH = 0.8VDD, VOL = 0.2VDD, VOL

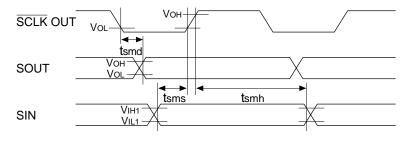
Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tssd			250	nS	
Receiving data input set-up time	tsss	100			nS	
Receiving data input hold time	tssh	100			nS	

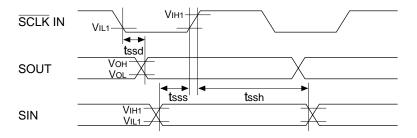
· Clock synchronous slave mode (Low power operating mode)

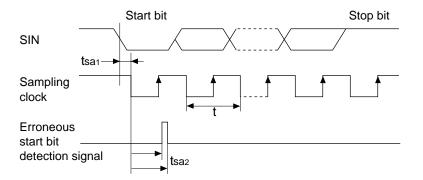
Condition: VDD = 1.8 to 3.5 V, VSS = 0 V, Ta = -40 to 85°C, VIH1 = 0.8VDD, VIL1 = 0.2VDD, VOH = 0.8VDD, VOL = 0.2VDD

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitting data output delay time	tssd			10	μS	
Receiving data input set-up time	tsss	5			μS	
Receiving data input hold time	tssh	5			μS	

• Asynchronous system (All operating mode)


Condition: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$


Item	Symbol	Min.	Тур.	Max.	Unit	Note
Start bit detection error time	tsaı	0		t/16	S	1
Erroneous start bit detection range time	tsa2	9t/16		10t/16	S	2


Note) 1 Start bit detection error time is a logical delay time from inputting the start bit until internal sampling begins operating. (Time as far as AC is excluded.)

2 Erroneous start bit detection range time is a logical range to detect whether a LOW level (start bit) has been input again after a start bit has been detected and the internal sampling clock has started.

When a HIGH level is detected, the start bit detection circuit is reset and goes into a wait status until the next start bit. (Time as far as AC is excluded.)

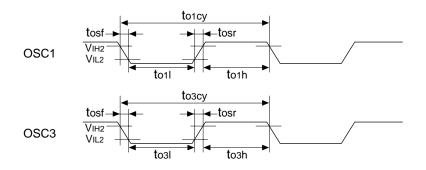
Input clock

• OSC1, OSC3 external clock (Normal operating mode)

Condition: VDD = 2.4 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C, VIH2 = 1.6 V, VIL2 = 0.6 V

Item		Symbol	Min.	Тур.	Max.	Unit	Note
OSC1 input clock time	Cycle time	toicy	20		32	μS	
	"H" pulse width	toih	10		16	μS	
	"L" pulse width	toil	10		16	μS	
OSC3 input clock time	Cycle time	to3cy	250		32,000	nS	
	"H" pulse width	to3h	125		16,000	nS	
	"L" pulse width	to3l	125		16,000	nS	
Input clock rising time		tosr			25	nS	
Input clock falling time		tosf			25	nS	

• OSC1, OSC3 external clock (High speed operating mode)


Condition: VDD = 3.5 to 5.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$, VIH2 = 2.4 V, VIL2 = 0.9 V

Item		Symbol	Min.	Тур.	Max.	Unit	Note
OSC1 input clock time	Cycle time	toicy	20		32	μS	
	"H" pulse width	toih	10		16	μS	
	"L" pulse width	toil	10		16	μS	
OSC3 input clock time	Cycle time	to3cy	125		32,000	nS	
	"H" pulse width	to3h	62.5		16,000	nS	
	"L" pulse width	to3l	62.5		16,000	nS	
Input clock rising time		tosr			25	nS	
Input clock falling time		tosf			25	nS	

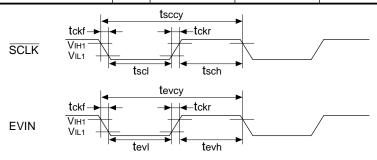
• OSC1, OSC3 external clock (Low power operating mode)

Condition: VDD = 1.8 to 3.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$, VIH2 = 1.0 V, VIL2 = 0.3 V

Item		Symbol	Min.	Тур.	Max.	Unit	Note
OSC1 input clock time	Cycle time	toicy	20		32	μS	
	"H" pulse width	toih	10		16	μS	
	"L" pulse width	toil	10		16	μS	
Input clock rising time		tosr			25	nS	
Input clock falling time		tosf			25	nS	

Item		System	Min.	Тур.	Max.	Unit	Note
SCLK input clock time	Cycle time	tsccy	4			μS	
	"H" pulse width	tsch	2			μS	
	"L" pulse width	tscl	2			μS	
EVIN input clock time	Cycle time	tevcy	64 / fosc1			S	
(With noise rejector)	"H" pulse width	tevh	32 / fosc1			S	
	"L" pulse width	tevl	32 / fosc1			S	
EVIN input clock time	Cycle time	tevcy	4			μS	
(Without noise rejector)	"H" pulse width	tevh	2			μS	
	"L" pulse width	tevl	2			μS	
Input clock rising time		tckr			25	nS	
Input clock falling time		tckf			25	nS	

• SCLK, EVIN input clock (Normal operating mode) Condition: VDD = 2.4 to 5.5 V, Vss = 0 V, Ta = -40 to 85°C, VIH1 = 0.8VDD, VIL1 = 0.2VDD

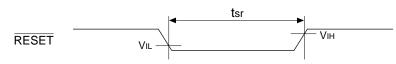

• SCLK, EVIN input clock (High speed operating mode) Condition: VDD = 3.5 to 5.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$, VIHI = 0.8VDD, VILI = 0.2VDD

Item		System	Min.	Тур.	Max.	Unit	Note
SCLK input clock time	Cycle time	tsccy	2			μS	
	"H" pulse width	tsch	1			μS	
	"L" pulse width	tscl	1			μS	
EVIN input clock time	Cycle time	tevcy	64 / fosc1			S	
(With noise rejector)	"H" pulse width	tevh	32 / fosc1			S	
	"L" pulse width	tevl	32 / fosc1			S	
EVIN input clock time	Cycle time	tevcy	2			μS	
(Without noise rejector)	"H" pulse width	tevh	1			μS	
	"L" pulse width	tevl	1			μS	
Input clock rising time		tckr			25	nS	
Input clock falling time		tckf			25	nS	

• SCLK, EVIN input clock (Low power operating mode)

Condition: VDD = 1.8 to 3.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$, VIHI = 0.8VDD, VILI = 0.2VDD

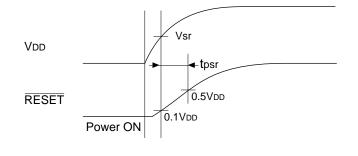
ltem		System	Min.	Тур.	Max.	Unit	Note
SCLK input clock time	Cycle time	tsccy	100			μS	
	"H" pulse width	tsch	50			μS	
	"L" pulse width	tscl	50			μS	
EVIN input clock time	Cycle time	tevcy	64 / fosc1			S	
(With noise rejector)	"H" pulse width	tevh	32 / fosc1			S	
	"L" pulse width	tevl	32 / fosc1			S	
EVIN input clock time	Cycle time	tevcy	100			μS	
(Without noise rejector)	"H" pulse width	tevh	50			μS	
	"L" pulse width	tevl	50			μS	
Input clock rising time	•	tckr			25	nS	
Input clock falling time		tckf			25	nS	

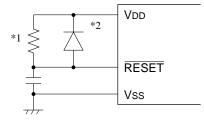


7 ELECTRICAL CHARACTERISTICS

• RESET input clock (All operating mode)

Condition: VDD = 1.8 to 5.5 V, VSS = 0 V, Ta = -40 to $85^{\circ}C$, VIH = 0.5VDD, VIL = 0.1VDD


Item	Symbol	Min.	Тур.	Max.	Unit	Note
RESET input time	tsr	100			μS	



Power ON reset

Condition: Vss = 0 V, $Ta = -40 to 85^{\circ}C$

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Operating power voltage	Vsr	2.4			V	
RESET input time	tpsr	10			mS	

*1 When the built-in pull up resistor is not used.

*2 Because the potential of the $\overline{\text{RESET}}$ terminal not reached VDD level or higher.

Operating mode switching

Condition: VDD = 1.8 to 5.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Stabilization time	tvdc	5			mS	1

Note) 1 Stabilization time is the time from switching on the operating mode until operating mode is stabilized. For example, when turning the OSC3 oscillation circuit on, stabilization time is needed after the operating mode is switched on.

7.7 Oscillation Characteristics

Oscillation characteristics change depending on conditions (board pattern, components used, etc.). Use the following characteristics as reference values. In particular, when a ceramic oscillator is used for OSC3, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance. The oscillation start time is important because it becomes the wait time when OSC3 clock is used. (If OSC3 is used as CPU clock before oscillation stabilizes, the CPU may malfunction.)

■ OSC1 (Crystal)

Unless otherwise specified: VDD = Within the operating voltage in each operating mode, Vss = 0 V, Ta = 25°C,

Crystal oscillator = C2-TYPE*, CG1 = 25 pF, CD1 = Built-in

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	tsta				3	S	
External gate capacitance	CG1	Including board capacitance	5		25	pF	1
Built-in gate capacitance	CG1	In case of the chip		15		pF	2
Built-in drain capacitance	CD1	In case of the chip		15		pF	
Frequency/IC deviation	∂f/∂IC	VDD = constant	-10		10	ppm	
Frequency/power voltage deviation	∂f/∂V				1	ppm/V	
Frequency adjustment range	∂f/∂Cg	VDD = constant, CG = 5 to 25pF	25			ppm	
Frequency/operating mode devistion	∂f/∂MD	VDD = constant			20	ppm	

* C2-TYPE Made by Seiko Epson corporation

Note) 1 When crystal oscillation is selected by the mask option.

2 When crystal oscillation (gate capacitor built-in) is selected by the mask option.

■ OSC1 (CR)

Unless otherwise specified: VDD = 2.4 to 5.5 V, Vss = 0 V, Ta = -40 to $85^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	tsta				3	mS	
Frequency/IC deviation	∂f/∂IC	Rcr = constant	-25		25	%	

■ OSC3 (Crystal)

Unless otherwise specified: VDD = Within the operating voltage in each operating mode, Vss = 0 V, Ta = 25°C,

Crystal oscillator = CA-301 4MHz / CA-301 8MHz*, RF = 1MQ, CG2 = CD2 = 15pF

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time (Normal mode)	tsta	4.0 MHz crystal oscillator			20	mS	1
Oscillation start time (High speed mode)	tsta	8.0 MHz crystal oscillator			20	mS	1

* CA-301 4MHz / CA-301 8MHz Made by Seiko Epson corporation

Note) 1 The crystal oscillation start time changes by the crystal oscillator to be used, CG2 and CD2.

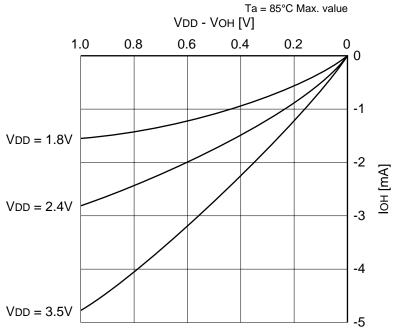
■ OSC3 (Ceramic)

Unless otherwise specified: VDD = Within the operating voltage in each operating mode, Vss = 0 V, Ta = 25°C,

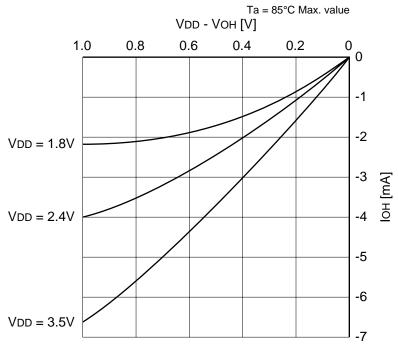
Ceramic oscillator = CSA4.00MG / CSA8.00MTZ*, $R_F = 1M\Omega$, $C_{G2} = C_{D2} = 30pF$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time (Normal mode)	tsta	4.0 MHz ceramic oscillator			5	mS	
Oscillation start time (High speed mode)	tsta	8.0 MHz ceramic oscillator			5	mS	

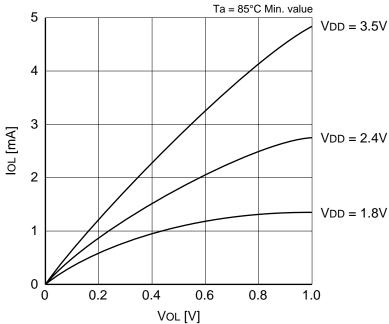
* CSA4.00MG / CSA8.00MTZ Made by Murata Mfg. corporation

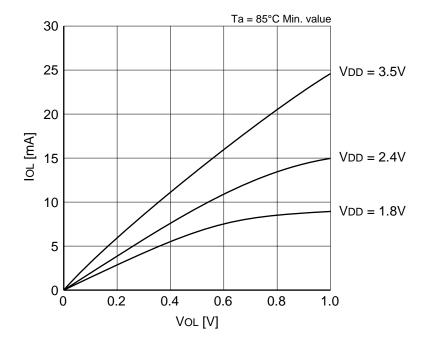

■ OSC3 (CR)

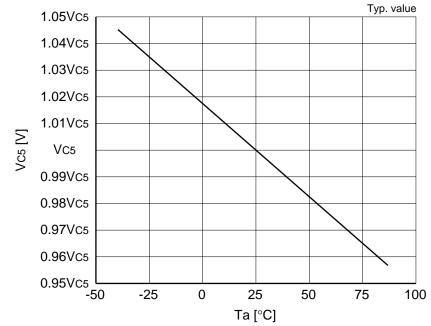
Unless otherwise specified: VDD = Within the operating voltage in each operating mode, Vss = 0 V, Ta = -40 to 85°C

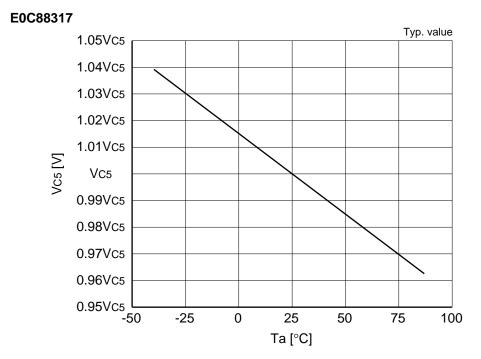

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time (Normal mode)	tsta				1	mS	
Oscillation start time (High speed mode)	tsta				1	mS	
Frequency/IC deviation (Normal mode)	∂f/∂IC	Rcr = constant	-25		25	%	
Frequency/IC deviation (High speed mode)	∂f/∂IC	Rcr = constant	-25		25	%	

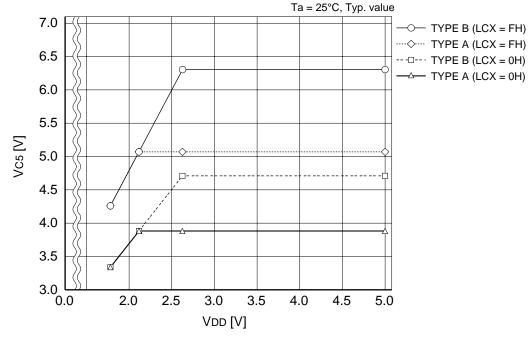

7.8 Characteristics Curves (reference value)

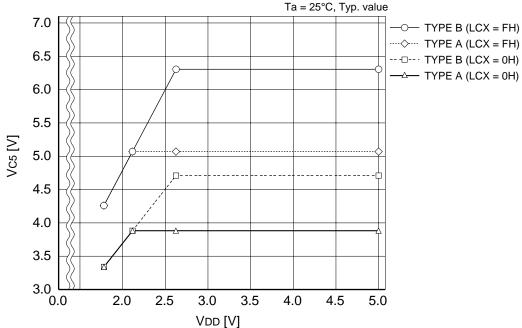

High level output current-voltage characteristic E0C88348/316/308

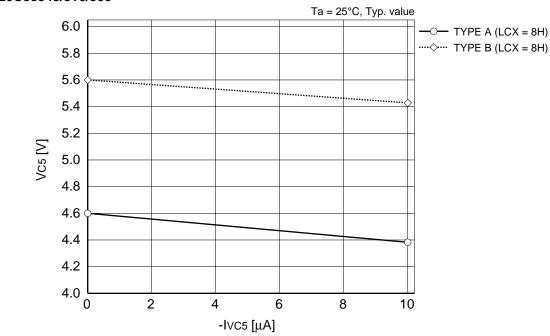

E0C88317



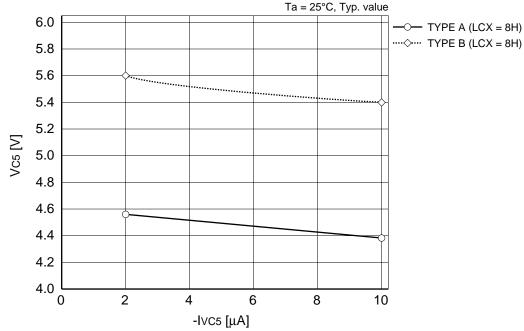


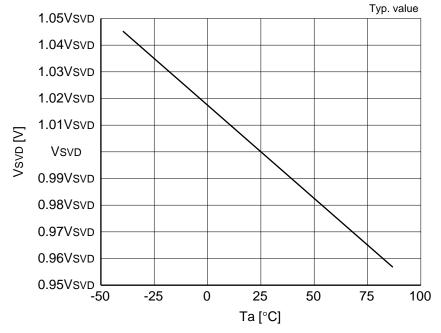


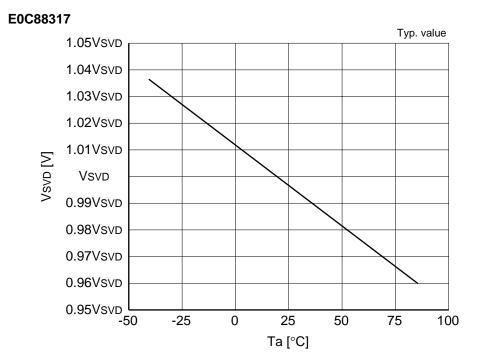

■ LCD drive voltage-ambient temperature characteristic E0C88348/316/308

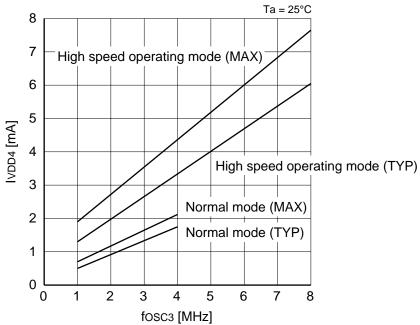


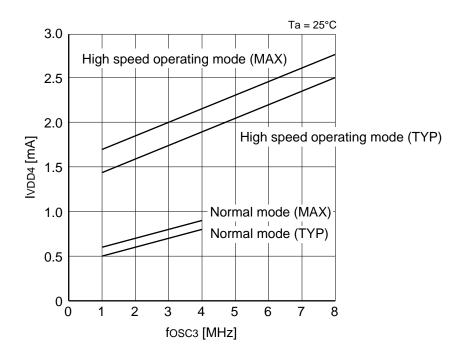
■ LCD drive voltage-supply voltage characteristic E0C88348/316/308

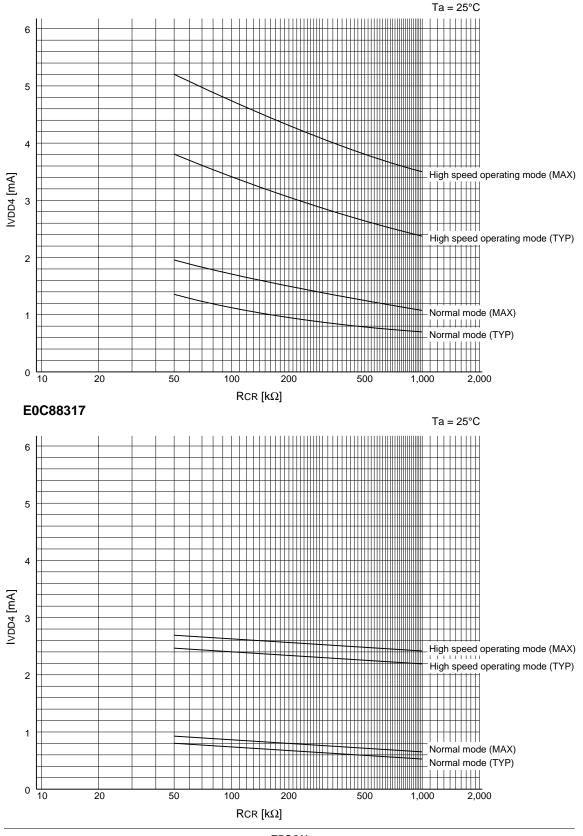




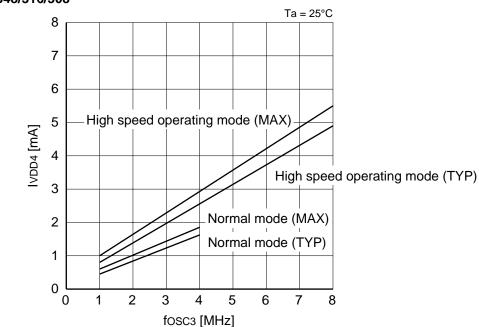

■ LCD drive voltage-load characteristic E0C88348/316/308

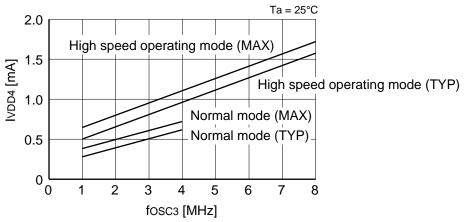


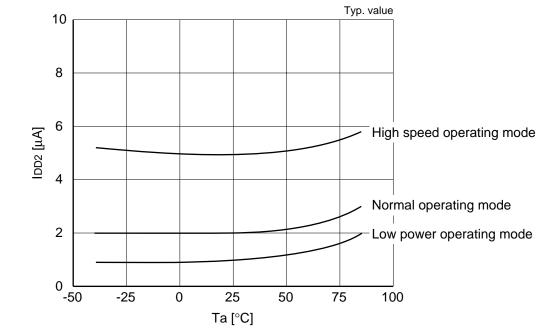

■ SVD voltage-ambient temperature characteristic E0C88348/316/308

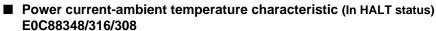


Power current (During operation with OSC3) <Crystal oscillation> E0C88348/316/308

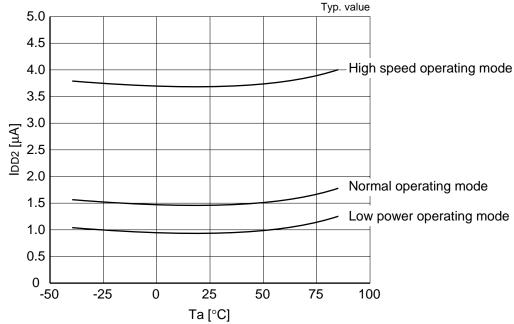


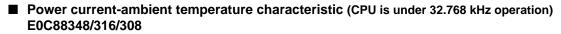


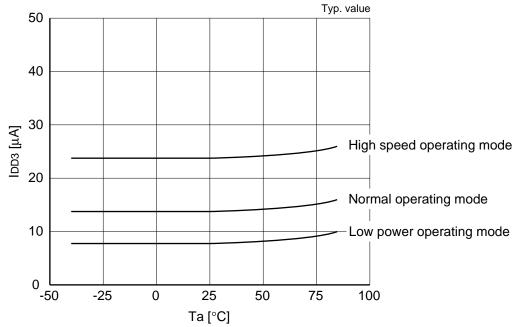

Power current (During operation with OSC3) <CR oscillation> E0C88348/316/308

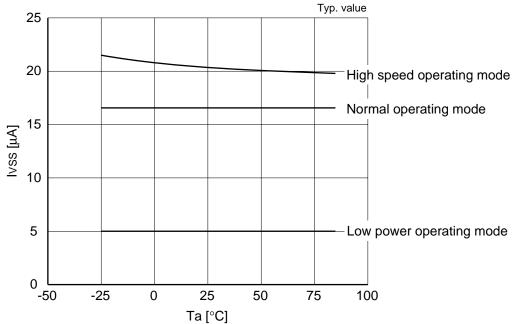


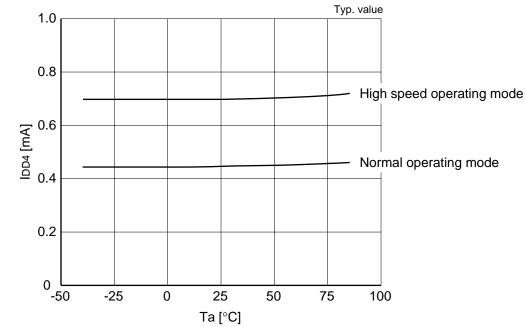
Power current (During operation with OSC3) <External clock> E0C88348/316/308

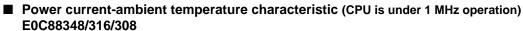

E0C88317

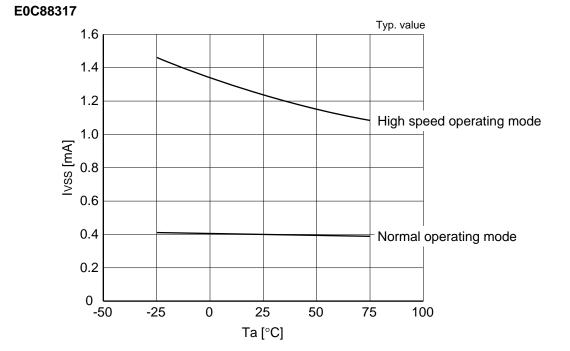


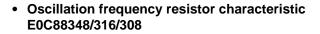


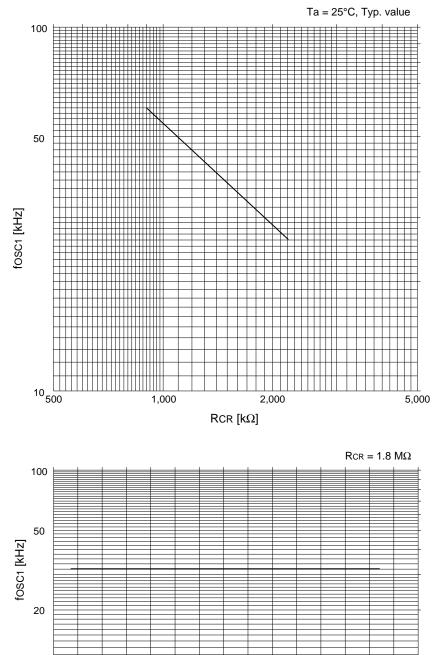






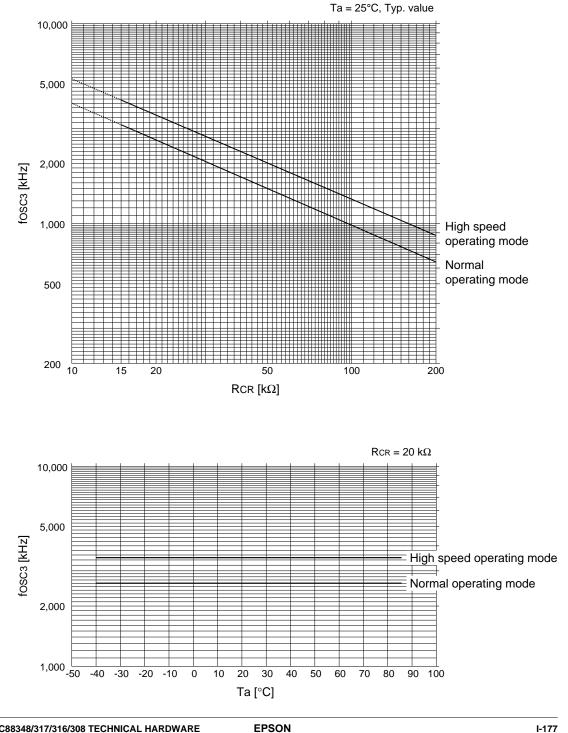




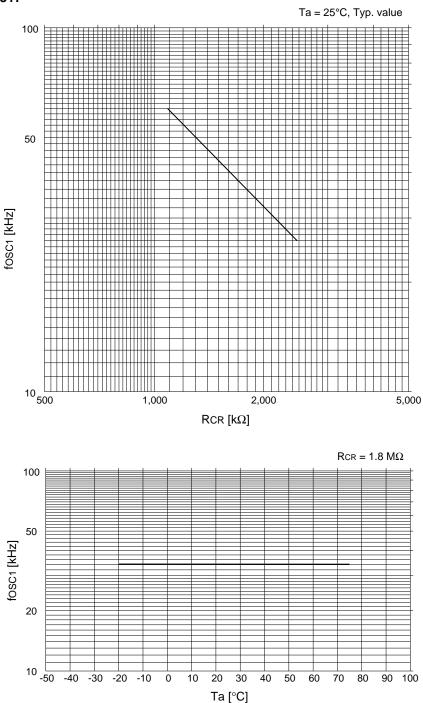


CR oscillation frequency characteristic

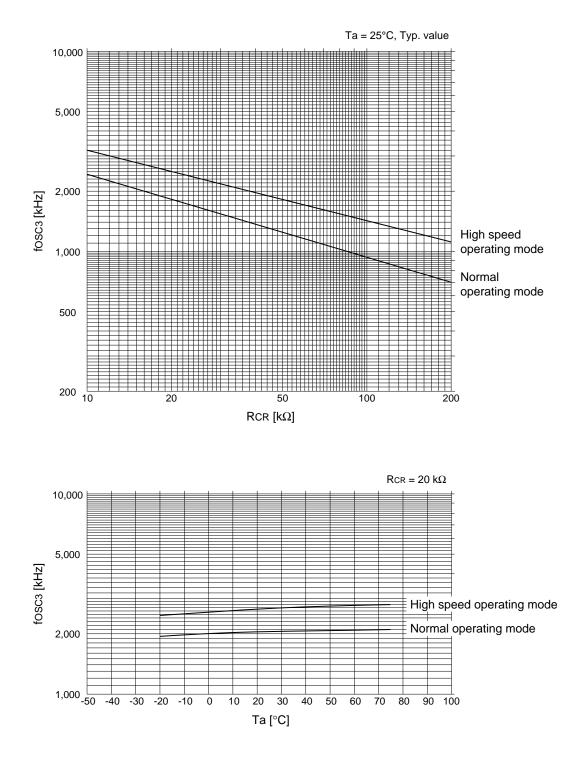
Note: Oscillation frequency changes depending on the conditions (components used, board pattern, etc.). In particular, the OSC3 oscillation frequency changes extensively depending on the product form (chip, plastic package or ceramic package) and board capacitance. Therefore, use the following charts for reference only and select the resistance value after evaluating the actual product. (The resistance value should be set to $RCR \ge 15 \ k\Omega$.)


EPSON

30


40 50 60 70 80 90 100

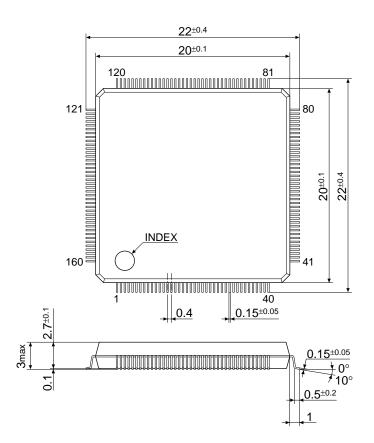
10 _____ -50


-40 -30 -20 -10 0 10 20

I-178

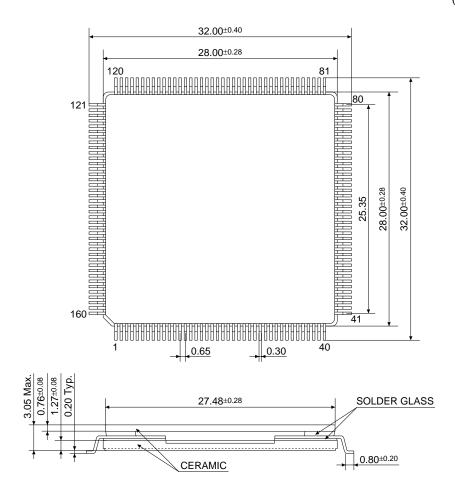
8 PACKAGE

8.1 Plastic Package


QFP8-160pin

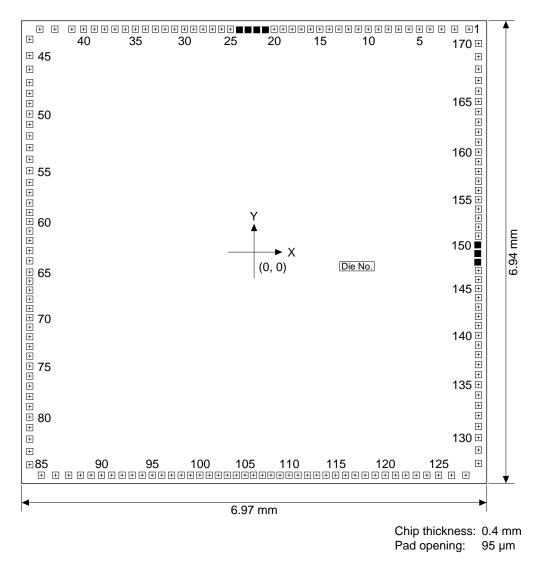
(Unit: mm)

QFP17-160pin

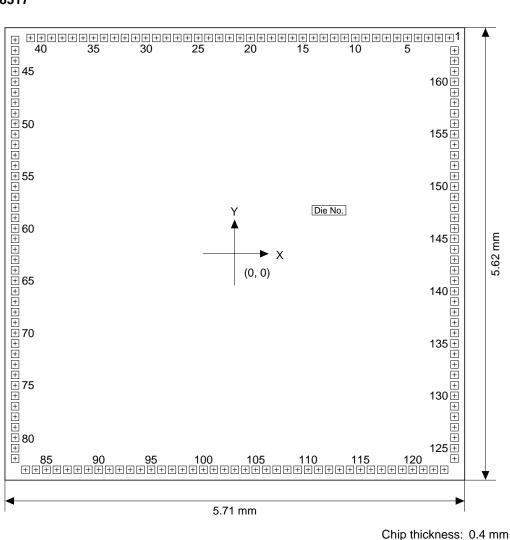

(Unit: mm)

8.2 Ceramic Package

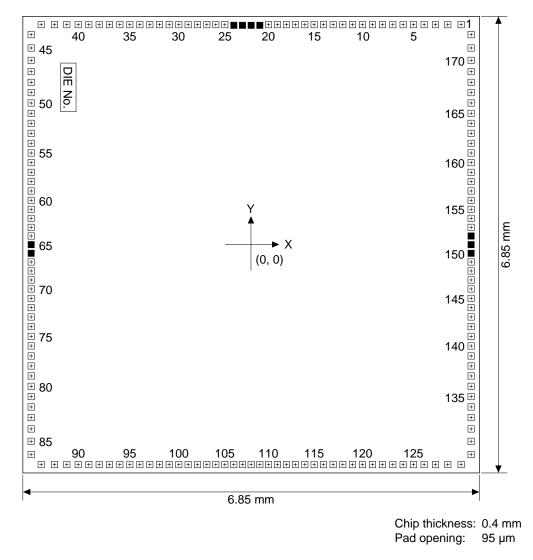
QFP8-160pin


(Unit: mm)

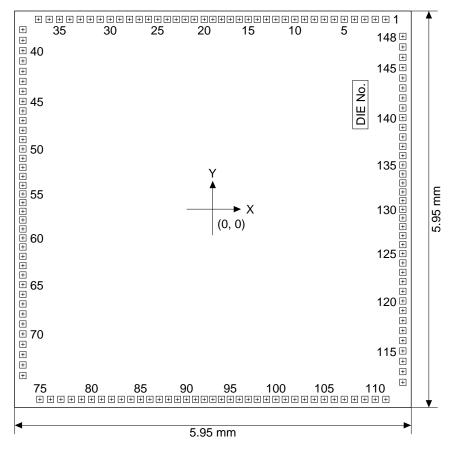
9 PAD LAYOUT


9.1 Diagram of Pad Layout

E0C88348


■ Pads are used for the IC shipment test, so you should not bond them.

E0C88317


Chip thickness: 0.4 mm Pad opening: 95 μm

E0C88316

■ Pads are used for the IC shipment test, so you should not bond them.

E0C88308

Chip thickness: 0.4 mm Pad opening: 95 µm

9.2 Pad Coordinates

														(Uni	t: mm)
No.	Name	Х	Y	No.	Name	Х	Y	No.	Name	X	Y	No.	Name	Х	Y
1	COM24/SEG58	3.220	3.345	44	Vss	-3.360	3.194	87	R13/A11	-2.777	-3.345	130	SEG20	3.360	-2.783
2	COM23/SEG59	3.005	3.345	45	OSC1	-3.360	2.950	88	R14/A12	-2.602	-3.345	131	SEG21	3.360	-2.613
3	COM22/SEG60	2.810	3.345	46	OSC2	-3.360	2.744	89	R15/A13	-2.442	-3.345	132	SEG22	3.360	-2.453
4	COM21/SEG61	2.635	3.345	47	TEST	-3.360	2.542	90	R16/A14	-2.287	-3.345	133	SEG23	3.360	-2.298
5	COM20/SEG62	2.475	3.345	48	RESET	-3.360	2.382	91	R17/A15	-2.132	-3.345	134	SEG24	3.360	-2.143
6	COM19/SEG63	2.320	3.345	49	MCU/MPU	-3.360	2.227	92	R20/A16	-1.977	-3.345	135	SEG25	3.360	-1.988
7	COM18/SEG64	2.165	3.345	50	K11/BREQ	-3.360	2.072	93	R21/A17	-1.827	-3.345	136	SEG26	3.360	-1.838
8	COM17/SEG65	2.010	3.345	51	K10/EVIN	-3.360	1.917	94	R22/A18	-1.677	-3.345	137	SEG27	3.360	-1.688
9	COM16/SEG66	1.860	3.345	52	K07	-3.360	1.743	95	R23/RD	-1.527	-3.345	138	SEG28	3.360	-1.538
10	COM15	1.710	3.345	53	K06	-3.360	1.567	96	R24/WR	-1.382	-3.345	139	SEG29	3.360	-1.393
11	COM14	1.560	3.345	54	K05	-3.360	1.394	97	R25/CL	-1.237	-3.345	140	SEG30	3.360	-1.248
12	COM13	1.415	3.345	55	K04	-3.360	1.221	98	R26/FR	-1.092	-3.345	141	SEG31	3.360	-1.103
13	COM12	1.270	3.345	56	K03	-3.360	1.043	99	R27/TOUT	-0.952	-3.345	142	SEG32	3.360	-0.963
14	COM11	1.125	3.345	57	K02	-3.360	0.891	100	R30/CE0	-0.812	-3.345	143	SEG33	3.360	-0.823
15	COM10	0.985	3.345	58	K01	-3.360	0.737	101	R31/CE1	-0.672	-3.345	144	SEG34	3.360	-0.683
16	COM9	0.845	3.345	59	K00	-3.360	0.596	102	R32/CE2	-0.537	-3.345	145	SEG35	3.360	-0.548
17	COM8	0.705	3.345	60	P17/CMPM1	-3.360	0.459	103	R33/CE3	-0.402	-3.345	146	SEG36	3.360	-0.413
18	COM7	0.570	3.345	61	P16/CMPP1	-3.360	0.317	104	R34/FOUT	-0.267	-3.345	147	SEG37	3.360	-0.278
19	COM6	0.435	3.345	62	P15/CMPM0	-3.360	0.174	105	R35	-0.137	-3.345	148	- *	3.350	-0.151
20	COM5	0.300	3.345	63	P14/CMPP0	-3.360	0.022	106	R36	-0.007	-3.345	149	- *	3.350	-0.021
21	- *	0.170	3.335	64	P13/SRDY	-3.360	-0.131	107	R37	0.123	-3.345	150	- *	3.350	0.109
22	- *	0.040	3.335	65	P12/SCLK	-3.360	-0.299	108	R50/BZ	0.253	-3.345	151	SEG38	3.360	0.241
23	- *	-0.090	3.335	66	P11/SOUT	-3.360	-0.434	109	R51/BACK	0.388	-3.345	152	SEG39	3.360	0.376
24	- *	-0.220	3.335	67	P10/SIN	-3.360	-0.569	110	SEG0	0.523	-3.345	153	SEG40	3.360	0.511
25	COM4	-0.354	3.345	68	P07/D7	-3.360	-0.704	111	SEG1	0.658	-3.345	154	SEG41	3.360	0.646
26	COM3	-0.489	3.345	69	P06/D6	-3.360	-0.844	112	SEG2	0.798	-3.345	155	SEG42	3.360	0.786
27	COM2	-0.624	3.345	70	P05/D5	-3.360	-0.984	113	SEG3	0.938	-3.345	156	SEG43	3.360	0.926
28	COM1	-0.764	3.345	71	P04/D4	-3.360	-1.124	114	SEG4	1.078	-3.345	157	SEG44	3.360	1.066
29	COM0	-0.904	3.345	72	P03/D3	-3.360	-1.269	115	SEG5	1.223	-3.345	158	SEG45	3.360	1.211
30	CE	-1.044	3.345	73	P02/D2	-3.360	-1.414	116	SEG6	1.368	-3.345	159	SEG46	3.360	1.356
31	CD	-1.189	3.345	74	P01/D1	-3.360	-1.559	117	SEG7	1.513	-3.345	160	SEG47	3.360	1.501
32	CC	-1.334	3.345	75	P00/D0	-3.360	-1.709	118	SEG8	1.663	-3.345	161	SEG48	3.360	1.651
33	СВ	-1.479	3.345	76	R00/A0	-3.360	-1.859	119	SEG9	1.813	-3.345	162	SEG49	3.360	1.801
34	CA	-1.629	3.345	77	R01/A1	-3.360	-2.009	120	SEG10	1.963	-3.345	163	SEG50	3.360	1.951
35	Vc5	-1.779	3.345	78	R02/A2	-3.360	-2.164	121	SEG11	2.118	-3.345	164	COM31/SEG51	3.360	2.106
36	VC4	-1.929	3.345	79	R03/A3	-3.360	-2.319	122	SEG12	2.273	-3.345	165	COM30/SEG52	3.360	2.261
37	Vc3	-2.084	3.345	80	R04/A4	-3.360	-2.474	123	SEG13	2.428	-3.345	166	COM29/SEG53	3.360	2.416
38	VC2	-2.239	3.345	81	R05/A5	-3.360	-2.634	124	SEG14	2.588	-3.345	167	COM28/SEG54	3.360	2.576
39	Vc1	-2.394	3.345	82	R06/A6	-3.360	-2.804	125	SEG15	2.763	-3.345	168	COM27/SEG55	3.360	2.746
40	OSC3	-2.554	3.345	83	R07/A7	-3.360	-2.989	126	SEG16	2.958	-3.345	169	COM26/SEG56	3.360	2.931
41	OSC4	-2.729	3.345	84	R10/A8	-3.360	-3.189	127	SEG17	3.173	-3.345	170	COM25/SEG57	3.360	3.131
42	VD1	-2.984	3.345	85	R11/A9	-3.187	-3.345	128	SEG18	3.360	-3.168				
43	Vdd	-3.209	3.345	86	R12/A10	-2.972	-3.345	129	SEG19	3.360	-2.968				

* Pads (No.21–24 and 148–150) are used for the IC shipment test, so you should not bond them.

	Table 9.2.2Pad coordinates (E0C88317)											(Unit: mm)			
No.	Name	Х	Y	No.	Name	Х	Y	No.	Name	Х	Y	No.	Name	Х	Y
1	COM25/SEG57	2.665	2.682	42	OSC1	-2.729	2.657	83	R12/A10	-2.600	-2.682	124	SEG17	2.729	-2.543
2	COM24/SEG58	2.535	2.682	43	OSC2	-2.729	2.527	84	R13/A11	-2.470	-2.682	125	SEG18	2.729	-2.413
3	COM23/SEG59	2.405	2.682	44	TEST	-2.729	2.397	85	R14/A12	-2.340	-2.682	126	SEG19	2.729	-2.283
4	COM22/SEG60	2.275	2.682	45	RESET	-2.729	2.267	86	R15/A13	-2.210	-2.682	127	SEG20	2.729	-2.153
5	COM21/SEG61	2.145	2.682	46	MCU/MPU	-2.729	2.137	87	R16/A14	-2.080	-2.682	128	SEG21	2.729	-2.023
6	COM20/SEG62	2.015	2.682	47	K11/BREQ	-2.729	2.007	88	R17/A15	-1.950	-2.682	129	SEG22	2.729	-1.893
7	COM19/SEG63	1.885	2.682	48	K10/EVIN	-2.729	1.877	89	R20/A16	-1.820	-2.682	130	SEG23	2.729	-1.763
8	COM18/SEG64	1.755	2.682	49	K07	-2.729	1.747	90	R21/A17	-1.690	-2.682	131	SEG24	2.729	-1.633
9	COM17/SEG65	1.625	2.682	50	K06	-2.729	1.617	91	R22/A18	-1.560	-2.682	132	SEG25	2.729	-1.503
10	COM16/SEG66	1.495	2.682	51	K05	-2.729	1.487	92	R23/RD	-1.430	-2.682	133	SEG26	2.729	-1.373
11	COM15	1.365	2.682	52	K04	-2.729	1.357	93	R24/WR	-1.300	-2.682	134	SEG27	2.729	-1.243
12	COM14	1.235	2.682	53	K03	-2.729	1.227	94	R25/CL	-1.170	-2.682	135	SEG28	2.729	-1.113
13	COM13	1.105	2.682	54	K02	-2.729	1.097	95	R26/FR	-1.040	-2.682	136	SEG29	2.729	-983
14	COM12	975	2.682	55	K01	-2.729	967	96	R27/TOUT	-910	-2.682	137	SEG30	2.729	-853
15	COM11	845	2.682	56	K00	-2.729	837	97	R30/CE0	-780	-2.682	138	SEG31	2.729	-723
16	COM10	715	2.682	57	P17/CMPM1	-2.729	707	98	R31/CE1	-650	-2.682	139	SEG32	2.729	-593
17	COM9	585	2.682	58	P16/CMPP1	-2.729	577	99	R32/CE2	-520	-2.682	140	SEG33	2.729	-463
18	COM8	455	2.682	59	P15/CMPM0	-2.729	447	100	R33/CE3	-390	-2.682	141	SEG34	2.729	-333
19	COM7	325	2.682	60	P14/CMPP0	-2.729	317	101	R34/FOUT	-260	-2.682	142	SEG35	2.729	-203
20	COM6	195	2.682	61	P13/SRDY	-2.729	187	102	R35	-130	-2.682	143	SEG36	2.729	-73
21	COM5	65	2.682	62	P12/SCLK	-2.729	57	103	R36	0	-2.682	144	SEG37	2.729	57
22	COM4	-65	2.682	63	P11/SOUT	-2.729	-73	104	R37	130	-2.682	145	SEG38	2.729	187
23	COM3	-195	2.682	64	P10/SIN	-2.729	-203	105	R50/BZ	260	-2.682	146	SEG39	2.729	317
24	COM2	-325	2.682	65	P07/D7	-2.729	-333	106	R51/BACK	390	-2.682	147	SEG40	2.729	447
25	COM1	-455	2.682	66	P06/D6	-2.729	-463	107	SEG0	520	-2.682	148	SEG41	2.729	577
26	COM0	-585	2.682	67	P05/D5	-2.729	-593	108	SEG1	650	-2.682	149	SEG42	2.729	707
27	CE	-715	2.682	68	P04/D4	-2.729	-723	109	SEG2	780	-2.682	150	SEG43	2.729	837
28	CD	-845	2.682	69	P03/D3	-2.729	-853	110	SEG3	910	-2.682	151	SEG44	2.729	967
29	CC	-975	2.682	70	P02/D2	-2.729	-983	111	SEG4	1.040	-2.682	152	SEG45	2.729	1.097
30	СВ	-1.105	2.682	71	P01/D1	-2.729	-1.113	112	SEG5	1.170	-2.682	153	SEG46	2.729	1.227
31	CA	-1.234	2.682	72	P00/D0	-2.729	-1.243	113	SEG6	1.300	-2.682	154	SEG47	2.729	1.357
32	Vc5	-1.365	2.682	73	R00/A0	-2.729	-1.373	114	SEG7	1.430	-2.682	155	SEG48	2.729	1.487
33	VC4	-1.495	2.682	74	R01/A1	-2.729	-1.503	115	SEG8	1.560	-2.682	156	SEG49	2.729	1.617
34	Vc3	-1.625	2.682	75	R02/A2	-2.729	-1.633	116	SEG9	1.690	-2.682	157	SEG50	2.729	1.747
35	Vc2	-1.755	2.682	76	R03/A3	-2.729	-1.763	117	SEG10	1.820	-2.682	158	COM31/SEG51	2.729	1.877
36	Vc1	-1.885	2.682	77	R04/A4	-2.729	-1.893	118	SEG11	1.950	-2.682	159	COM30/SEG52	2.729	2.007
37	OSC3	-2.015	2.682	78	R05/A5	-2.729	-2.023	119	SEG12	2.080	-2.682	160	COM29/SEG53	2.729	2.137
38	OSC4	-2.145	2.682	79	R06/A6	-2.729	-2.153	120	SEG13	2.210	-2.682	161	COM28/SEG54	2.729	2.267
39	VD1	-2.275	2.682	80	R07/A7	-2.729	-2.283	121	SEG14	2.340	-2.682	162	COM27/SEG55	2.729	2.397
40	Vdd	-2.405	2.682	81	R10/A8	-2.729	-2.413	122	SEG15	2.470	-2.682	163	COM26/SEG56	2.729	2.527
41	Vss	-2.535	2.682	82	R11/A9	-2.729	-2.543	123	SEG16	2.600	-2.682				

Table 9.2.2 Pad coordinates (E0C88317)

(Unit: mm)

Table 9.2.3	Pad coordinates	(E0C88316)
-------------	-----------------	------------

(Unit: mm)

									ules (EUCoo.						. mm)
No.	Name	Х	Y	No.	Name	X	Y	No.	Name	X	Y	No.	Name	Х	Y
1	COM24/SEG58	3.150	3.300	44	Vss	-3.300	3.150	87	R11/A9	-3.150	-3.300	130	SEG18	3.300	-3.150
2	COM23/SEG59	2.950	3.300	45	OSC1	-3.300	2.950	88	R12/A10	-2.950	-3.300	131	SEG19	3.300	-2.950
3	COM22/SEG60	2.765	3.300	46	OSC2	-3.300	2.765	89	R13/A11	-2.765	-3.300	132	SEG20	3.300	-2.765
4	COM21/SEG61	2.595	3.300	47	TEST	-3.300	2.595	90	R14/A12	-2.595	-3.300	133	SEG21	3.300	-2.595
5	COM20/SEG62	2.435	3.300	48	RESET	-3.300	2.435	91	R15/A13	-2.435	-3.300	134	SEG22	3.300	-2.435
6	COM19/SEG63	2.280	3.300	49	MCU/MPU	-3.300	2.280	92	R16/A14	-2.280	-3.300	135	SEG23	3.300	-2.280
7	COM18/SEG64	2.125	3.300	50	K11/BREQ	-3.300	2.125	93	R17/A15	-2.125	-3.300	136	SEG24	3.300	-2.125
8	COM17/SEG65	1.970	3.300	51	K10/EVIN	-3.300	1.970	94	R20/A16	-1.970	-3.300	137	SEG25	3.300	-1.970
9	COM16/SEG66	1.820	3.300	52	K07	-3.300	1.820	95	R21/A17	-1.820	-3.300	138	SEG26	3.300	-1.820
10	COM15	1.670	3.300	53	K06	-3.300	1.670	96	R22/A18	-1.670	-3.300	139	SEG27	3.300	-1.670
11	COM14	1.520	3.300	54	K05	-3.300	1.520	97	R23/RD	-1.520	-3.300	140	SEG28	3.300	-1.520
12	COM13	1.375	3.300	55	K04	-3.300	1.375	98	R24/WR	-1.375	-3.300	141	SEG29	3.300	-1.375
13	COM12	1.230	3.300	56	K03	-3.300	1.230	99	R25/CL	-1.230	-3.300	142	SEG30	3.300	-1.230
14	COM11	1.085	3.300	57	K02	-3.300	1.085	100	R26/FR	-1.085	-3.300	143	SEG31	3.300	-1.085
15	COM10	0.945	3.300	58	K01	-3.300	0.945	101	R27/TOUT	-0.945	-3.300	144	SEG32	3.300	-0.945
16	COM9	0.805	3.300	59	K00	-3.300	0.805	102	R30/CE0	-0.805	-3.300	145	SEG33	3.300	-0.805
17	COM8	0.665	3.300	60	P17/CMPM1	-3.300	0.665	103	R31/CE1	-0.665	-3.300	146	SEG34	3.300	-0.665
18	COM7	0.530	3.300	61	P16/CMPP1	-3.300	0.530	104	R32/CE2	-0.530	-3.300	147	SEG35	3.300	-0.530
19	COM6	0.395	3.300	62	P15/CMPM0	-3.300	0.395	105	R33/CE3	-0.395	-3.300	148	SEG36	3.300	-0.395
20	COM5	0.260	3.300	63	P14/CMPP0	-3.300	0.260	106	R34/FOUT	-0.260	-3.300	149	SEG37	3.300	-0.260
21	- *	0.130	3.290	64	P13/SRDY	-3.300	0.130	107	R35	-0.130	-3.300	150	_ *	3.300	-0.130
22	_ *	0.000	3.290	65	_ *	-3.300	0.000	108	R36	0.000	-3.300	151	_ *	3.300	0.000
23	- *	-0.130	3.290	66	- *	-3.300	-0.130	109	R37	0.130	-3.300	152	- *	3.300	0.130
24	_ *	-0.260	3.290	67	P12/SCLK	-3.300	-0.260	110	R50/BZ	0.260	-3.300	153	SEG38	3.300	0.260
25	COM4	-0.395	3.300	68	P11/SOUT	-3.300	-0.395	111	R51/BACK	0.395	-3.300	154	SEG39	3.300	0.395
26	COM3	-0.530	3.300	69	P10/SIN	-3.300	-0.530	112	SEG0	0.530	-3.300	155	SEG40	3.300	0.530
27	COM2	-0.665	3.300	70	P07/D7	-3.300	-0.665	113	SEG1	0.665	-3.300	156	SEG41	3.300	0.665
28	COM1	-0.805	3.300	71	P06/D6	-3.300	-0.805	114	SEG2	0.805	-3.300	157	SEG42	3.300	0.805
29	COM0	-0.945	3.300	72	P05/D5	-3.300	-0.945	115	SEG3	0.945	-3.300	158	SEG43	3.300	0.945
30	CE	-1.085	3.300	73	P04/D4	-3.300	-1.085	116	SEG4	1.085	-3.300	159	SEG44	3.300	1.085
31	CD	-1.230	3.300	74	P03/D3	-3.300	-1.230	117	SEG5	1.230	-3.300	160	SEG45	3.300	1.230
32	CC	-1.375	3.300	75	P02/D2	-3.300	-1.375	118	SEG6	1.375	-3.300	161	SEG46	3.300	1.375
33	СВ	-1.520	3.300	76	P01/D1	-3.300	-1.520	119	SEG7	1.520	-3.300	162	SEG47	3.300	1.520
34	CA	-1.670	3.300	77	P00/D0	-3.300	-1.670	120	SEG8	1.670	-3.300	163	SEG48	3.300	1.670
35	VC5	-1.820	3.300	78	R00/A0	-3.300	-1.820	121	SEG9	1.820	-3.300	164	SEG49	3.300	1.820
36	VC4	-1.970	3.300	79	R01/A1	-3.300	-1.970	122	SEG10	1.970	-3.300	165	SEG50	3.300	1.970
37	VC3	-2.125	3.300	80	R02/A2	-3.300	-2.125		SEG11	2.125	-3.300	166		3.300	2.125
38	VC2	-2.280	3.300	81	R03/A3	-3.300	-2.280	124		2.280	-3.300	167	COM30/SEG52	3.300	2.280
39	VC1	-2.435	3.300	82	R04/A4	-3.300	-2.435	125	SEG13	2.435	-3.300	168	COM29/SEG53	3.300	2.435
40	OSC3	-2.595	3.300	83	R05/A5	-3.300	-2.595		SEG14	2.595	-3.300	169	COM28/SEG54	3.300	2.595
41	OSC4	-2.765	3.300	84	R06/A6	-3.300	-2.765	127	SEG15	2.765	-3.300	170	COM27/SEG55	3.300	2.765
42	VD1	-2.950	3.300	85	R07/A7	-3.300	-2.950	128		2.950	-3.300	171	COM26/SEG56	3.300	2.950
43	VDD	-3.150	3.300	86	R10/A8	-3.300	-3.150	129		3.150	-3.300	172	COM25/SEG57	3.300	3.150
		0.100	0.000	00		0.000	0.100	120	02017	0.100	0.000	1 ' ' -	000120/02001	0.000	0.100

* Pads (No.21–24, 65–66 and 150–152) are used for the IC shipment test, so you should not bond them.

Х Х Y No. Name Х Υ No. Name Υ No. Name Х Υ No. Name COM22/SEG50 2.595 2.850 38 Vss -2.850 2.695 75 R06/A6 2.595 2.850 112 SEG13 2.850 -2.595 1 2 COM21/SEG51 2.435 2.850 39 OSC1 -2.850 2.535 76 R07/A7 -2.435 -2.850 113 SEG14 2.850 -2.435 3 COM20/SEG52 2.280 2.850 40 OSC2 -2.850 2.380 77 R10/A8 -2.280 -2.850 114 SEG15 2.850 -2.280 4 COM19/SEG53 2.125 2.850 41 TEST -2.850 2.225 78 R11/A9 -2.125 -2.850 115 SEG16 2.850 -2.125 5 COM18/SEG54 1.970 2.850 42 RESET -2.850 2.070 R12/A10 -1.970 -2.850 116 SEG17 2.850 -1.970 79 6 COM17/SEG55 1.820 2.850 43 MCU/MPU -2.850 1.920 80 R13/A11 -1.820 -2.850 117 SEG18 2.850 -1.820 7 COM16/SEG56 1.670 2.850 K10/EVIN -2.850 1.770 R14/A12 -1.670 -2.850 118 SEG19 2.850 -1.670 44 81 8 COM15 1.520 2.850 45 K07 -2.850 1.620 82 R15/A13 -1.520 -2.850 119 SEG20 2.850 -1.520 9 COM14 1.375 2.850 46 K06 -2.850 1.475 83 R16/A14 -1.375 2.850 120 SEG21 2.850 -1.375 COM13 K05 R17/A15 -1.230 -2.850 -1.230 10 1.230 2 850 47 -2.850 1 3 3 0 84 121 SEG22 2.850 COM12 1.085 2.850 K04 -2.850 1.185 R20/A16 -1.085 -2.850 122 SEG23 2.850 -1.085 11 48 85 12 COM11 0.945 2.850 49 K03 -2.850 1.045 86 R21/A17 -0.945 2.850 123 SEG24 2.850 -0.945 13 COM10 0.805 2.850 50 K02 -2.850 0.905 87 R22/A18 -0.805 -2.850 124 SEG25 2.850 -0.805 14 COM9 0.665 2.850 51 K01 -2.850 0.765 88 R23/RD -0.665 -2.850 125 SEG26 2.850 -0.665 COM8 0.530 2.850 -2.850 R24/WR -0.530 2.850 126 SEG27 -0.530 15 52 K00 0.630 89 2.850 COM7 0.395 2.850 P17/CMPM1 R25/CL -0.395 2.850 127 2.850 16 53 -2.850 0.495 90 SEG28 -0.395 COM6 -2.850 -2.850 2.850 -0.260 17 0 260 2 850 54 P16/CMPP1 0.360 91 R26/FR -0 260 128 SEG29 18 COM5 0.130 2.850 55 P15/CMPM0 -2.850 0.230 92 R27/TOUT -0.130 -2.850 129 SEG30 2.850 -0.130 19 COM4 0.000 2.850 56 P14/CMPP0 -2.850 0.100 93 R30/CE0 0.000 -2.850 130 SEG31 2.850 0.000 COM3 -0.130 P13/SRDY R31/CE1 20 2.850 57 -2.850 -0.030 94 0.130 -2.850 131 SEG32 2.850 0.130 COM2 -0.281 2.850 P12/SCLK -2.850 -0.160 R32/CE2 0.260 -2.850 2.850 0.260 21 58 95 132 SEG33 COM1 -0.416 2.850 P11/SOUT -2.850 -0.295 R33/CE3 0.395 -2.850 2.850 0.395 22 59 96 133 SEG34 23 COM0 -0.551 2.850 60 P10/SIN -2.850 -0.430 97 R34/FOUT 0.530 -2.850 134 SEG35 2.850 0.530 24 CE -0.686 2.850 61 P07/D7 -2.850 -0.565 98 R50/BZ 0.665 -2.850 135 SEG36 2.850 0.665 25 CD -0.826 2.850 62 P06/D6 -2.850 -0.705 99 SEG0 0.805 -2.850 136 SEG37 2.850 0.805 26 CC -0.966 2.850 63 P05/D5 -2.850 -0.845 100 SEG1 0.945 -2.850 137 SEG38 2.850 0.945 2.850 -1.106 P04/D4 -2.850 -0.985 101 SEG2 1.085 -2.850 138 SEG39 2.850 1.085 27 CB 64 28 CA -1.251 2.850 65 P03/D3 -2.850 -1.130 102 SEG3 1.230 -2.850 139 SEG40 2.850 1.230 29 VC5 -1.396 2.850 66 P02/D2 -2.850 -1.275 103 SEG4 1.375 -2.850 140 COM31/SEG41 2.850 1.375 -1.541 -2.850 -2.850 141 COM30/SEG42 2.850 1.520 30 VC4 2.850 67 P01/D1 -1.420 104 SEG5 1.520 2.850 31 VC3 -1.691 2.850 68 P00/D0 -2.850 -1.570 105 SEG6 1.670 2.850 142 COM29/SEG43 1.670 32 VC₂ -1 841 2 850 69 R00/A0 -2 850 -1.720 106 SEG7 1 820 -2 850 143 COM28/SEG44 2 850 1 820 33 VC1 -1.991 2.850 70 R01/A1 -2.850 -1.870 107 SEG8 1.970 -2.850 144 COM27/SEG45 2.850 1.970 34 OSC3 -2.146 2.850 71 R02/A2 -2.850 -2.025 108 SEG9 2.125 2.850 145 COM26/SEG46 2.850 2.125 35 OSC4 -2.301 2.850 -2.850 -2.180 -2.850 146 COM25/SEG47 2.850 72 R03/A3 109 SEG10 2.280 2.280 -2.456 2.850 R04/A4 -2.850 110 2.435 2.850 147 COM24/SEG48 2.850 36 VD1 73 2 335 SEG11 2 4 3 5

-2.850

-2.495

111 SEG12

2.595

-2.850 148

COM23/SEG49

2.850

2.595

Table 9.2.4 Pad coordinates (E0C88308)

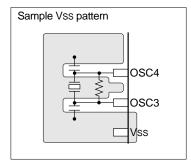
(Unit: mm)

37

ססע

-2.616

2.850 74 R05/A5


10 PRECAUTIONS ON MOUNTING

<Oscillation Circuit>

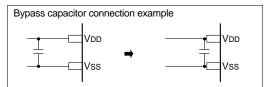
 Oscillation characteristics change depending on conditions (board pattern, components used, etc.).

In particular, when a ceramic oscillator or crystal oscillator is used, use the oscillator manufacturer's recommended values for constants such as capacitance and resistance.

- Disturbances of the oscillation clock due to noise may cause a malfunction. Consider the following points to prevent this:
 - (1) Components which are connected to the OSC1, OSC2, OSC3 and OSC4 terminals, such as oscillators, resistors and capacitors, should be connected in the shortest line.
 - (2) As shown in the right hand figure, make a Vss pattern as large as possible at circumscription of the OSC1, OSC2, OSC3 and OSC4 terminals and the components connected to these terminals. Furthermore, do not use this Vss pattern for any purpose other than the oscillation system.

- (3) When supplying an external clock to the OSC1 (OSC3) terminal, the clock source should be connected to the OSC1 (OSC3) terminal in the shortest line. Furthermore, do not connect anything else to the OSC2 (OSC4) terminal.
- In order to prevent unstable operation of the oscillation circuit due to current leak between OSC1 (OSC3) and VDD, please keep enough distance between OSC1 (OSC3) and VDD or other signals on the board pattern.

<Reset Circuit>

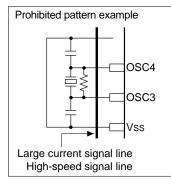

The power-on reset signal which is input to the RESET terminal changes depending on conditions (power rise time, components used, board pattern, etc.).
 Decide the time constant of the capacitor and resistor after enough tests have been completed with the application product.
 When the built-in pull-up resistor is added to the RESET terminal by mask option, take into

consideration dispersion of the resistance for setting the constant.

• In order to prevent any occurrences of unnecessary resetting caused by noise during operating, components such as capacitors and resistors should be connected to the RESET terminal in the shortest line.

<Power Supply Circuit>

- Sudden power supply variation due to noise may cause malfunction. Consider the following points to prevent this:
- The power supply should be connected to the VDD and VSS terminals with patterns as short and large as possible.
- (2) When connecting between the VDD and VSS terminals with a bypass capacitor, the terminals should be connected as short as possible.



- (3) Components which are connected to the VD1, VC1–VC5 and CA–CE terminals, such as capacitors, should be connected in the shortest line. In particular, the VC1–VC5 voltages affect the display quality.
- Do not connect anything to the VC1–VC5 and CA–CE terminals when the LCD driver is not used.

<Arrangement of Signal Lines>

- In order to prevent generation of electromagnetic induction noise caused by mutual inductance, do not arrange a large current signal line near the circuits that are sensitive to noise such as the oscillation unit and analog unit.
- When a signal line is parallel with a high-speed line in long distance or intersects a high-speed line, noise may generated by mutual interference between the signals and it may cause a malfunction.

Do not arrange a high-speed signal line especially near circuits that are sensitive to noise such as the oscillation unit and analog unit.

<Precautions for Visible Radiation (when bare chip is mounted)>

- Visible radiation causes semiconductor devices to change the electrical characteristics. It may cause this IC to malfunction. When developing products which use this IC, consider the following precautions to prevent malfunctions caused by visible radiations.
- (1) Design the product and implement the IC on the board so that it is shielded from visible radiation in actual use.
- (2) The inspection process of the product needs an environment that shields the IC from visible radiation.
- (3) As well as the face of the IC, shield the back and side too.

I E0C88348/317/316/308 Technical Software

Contents

	PREFACE
	Description
	Notes for Program Example Use
1	SYSTEM INITIALIZATIONII-2 Initialization for E0C88316 single chip mode
2	SYSTEM CONTROLLER AND BUS CONTROL
3	WATCHDOG TIMER II-9 (1) Watchdog timer reset (2) Watchdog timer (NMI) interrupt processing
4	OSCILLATION CIRCUIT
5	<i>INPUT PORTS (K PORTS)</i>
6	<i>OUTPUT PORTS (R PORTS)</i>
7	<i>I/O PORTS (P PORTS)</i>
8	SERIAL INTERFACE 1 (CLOCK SYNCHRONOUS INTERFACE) II-33 (1) Initialization for clock synchronous serial interface (master mode) (2) Receiving of clock synchronous serial interface (master mode) (3) Transmitting of clock synchronous serial interface (master mode)
9	SERIAL INTERFACE 2 (ASYNCHRONOUS INTERFACE)
10	<i>CLOCK TIMER</i>
11	<i>STOPWATCH TIMER II-58</i> (1) Initialization for stopwatch timer (2) Stopwatch timer interrupt processing

EPSON

12	PROG	RAMMABLE TIMER	<i>II-63</i>
) Initialization and interrupt processing for 8-bit reload timer (two channels)	
		P) Initialization and interrupt processing for 16-bit one-shot timer (one channel) P) Initialization and interrupt processing for 8-bit event counter	
	(4	() Initialization and interrupt processing for 16-bit pulse width measurement timer () 16-bit reload timer pulse output	
13	LCD C	ONTROLLER	<i>II-86</i>
) Initialization for LCD controller) Display control	
14	SOUN	D GENERATOR	II-91
) Initialization for sound generator	
) Normal buzzer output) Buzzer output with digital envelope	
) One-shot buzzer output	
15	ANAL	OG COMPARATOR	II-96
	(1) Initialization for analog comparator) Data reading for analog comparator	
16	SVD (S	SUPPLY VOLTAGE DETECTION) CIRCUIT	<i>II-98</i>
	(1) Supply voltage detection in 1/4 Hz auto sampling mode	
	(2) Supply voltage detection in continuously sampling mode	
17	INTER	RUPT (EXCEPTION) PROCESSING	II-100
) Interrupt level setting and enables interrupt	
		P) Zero division exception processing P) Watchdog timer (NMI) interrupt processing	
) Interrupt processing for peripheral circuit	
18	EXPAN	NDED MODE	<i>II-108</i>
) Access for program memory outside logical space	
		P) Data block transfer between pages P) Access for data outside page	
App	endix A	Table of Input/Output Port Terminals	II-111
	endix B	Instruction List	
Арр	endix C	Programming Notes	

PREFACE

In this part, example of a control programs for each peripheral circuit are described. Basic initialization and control routines are shown in the program examples use a relocatable method and are based on the assumption that the cross assembler asm88 for the E0C88 Family is being used. When you create an application program referring to these examples, use them after completion of the program by adding the necessary functions.

Description

Program examples are shown by each peripheral circuit or function, according to the following items.

- I/O MAP Indicates the I/O memory map that controls the peripheral circuit. See Part I in this manual, "E0C88348/317/316/308 Technical Hardware", for details of the control registers and operation.
- SpecificationIndicates the purpose, function, etc.,
of the example routine.FlowchartIndicates a flowchart of the example.
- *Note* Indicates matters that require attention when using the example routine and for programming of the peripheral circuit.
- Source List A source code listing using the relocatable method in assembly language. See the "E0C88 Core CPU Manual" for details of the instructions and the "E0C88 Family Structured Assembler Manual" for the assembly language and the format of the source list.

Notes for Program Example Use

Take the following precautions when reading this manual and using the described routines:

(1) Each program example has been modularized as a low-level routine that controls hardware directly, and examples such as a concrete application have not been included. For a routine to be added by the user, an external declaration with a label such as "user_program" should be made and the program will branch to the label. Because the name "user_program" is not very descriptive, you should modify the label name to reflect its function.

- (2) In the program examples, 8-bit absolute addressing has been used for I/O memory access. Consequently, the program loads the upper 8 bits (0FFH) of the I/O memory base address (00FF00H) into the BR register. This part in the flowchart is described as (BR setting) and it is set in each program example. If you use another addressing mode, rewriting this part is necessary.
- (3) These routines do not specify bank or page. When using in the expanded mode, set the bank and page if necessary.
- (4) Input, output and I/O port terminals of the E0C88316 are shared the a bus and special output, and these functions are set by software. Be aware that the port configuration will be changed by these setting. Refer to the terminal configuration tables according to the mode and special output settings which have been mentioned in the "Appendix".
- (5) Unary operators set in the asm88 cross assembler have been used for the program examples. These unary operators get the values below from a constant or a label operand.

low ... Presents the lower 8 bits of the expression.

- high .. Returns the upper 8 bits of a 16-bit expression.
- boc ... Calculates a bank value from the physical address.
- loc Calculates a logical address in a bank from the physical address.
- pod .. Calculates a page value from the physical address.
- lod Calculates a logical address in a page from the physical address.
- (6) Seiko Epson assumes no responsibility for any consequences arising from the use of the programs described.
- Note: The program examples are created for the E0C88316. Since there are some differences in the built-in ROM/RAM capacity, number of input ports, output ports and LCD drive segments, and bus authority release function of the E0C88348/317/308, it is necessary to modify the settings according to the model to be used.

1 SYSTEM INITIALIZATION

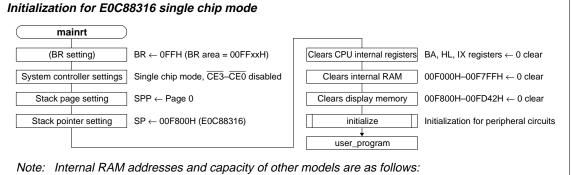
I/O Мар

Refer to the peripheral circuit descriptions in this manual.

Model	Internal ROM	Internal RAM	Input port	Output port*1	LCD segment*2	Bus authority release function
E0C88348	48K bytes	2K bytes	10 bits	9 bits	1,632 (Max.)	Available
E0C88317	16K bytes	2K bytes	10 bits	9 bits	1,632 (Max.)	Available
E0C88316	16K bytes	2K bytes	10 bits	9 bits	1,632 (Max.)	Available
E0C88308	8K bytes	256 bytes	9 bits	5 bits	1,312 (Max.)	Not available

*1 The terminals common to the external bus are excluded.

*2 Maximum number of drive segment when the 32 commons is selected.


Specification

Initialization for E0C88316 single chip mode

mainrt: Initialization for E0C88316 single chip mode

Settings of the base register, CPU mode, \overline{CE} output, stack page, stack pointer, wait and bus authority release signal and clearing of RAM (display memory included) are done sequentially.

Flowchart

Note: Internal RAM addresses and capacity of other models are as follows: E0C88348/317: 00F000H–00F7FFH (2K bytes) E0C88308: 00F000H–00F0FFH (256 bytes)

Notes

- (1) Interrupts have been set to their initial status (all disabled) except for the watchdog timer (NMI) interrupt which cannot be masked.
- (2) Be sure to declare the watchdog timer (NMI) interrupt processing routine and the vector address, regardless of whether or not the watchdog timer is used.
- (3) For peripheral circuit initialization, you must create a separate routine according to the system configuration to be used. (external call: initialize)
- (4) For the interrupt flags (I0 and I1), set them to adapt to the interrupt factor and priority level of the peripheral I/O that will be enabled.
- (5) When using the peripheral I/O interrupt, declare the front address of the peripheral I/O interrupt processing routine in a vector address corresponding to the interrupt in the order of lower and upper. (Vector address: 000006H–000023H)
- (6) Vector addresses 000026H–0000FFH can be set for software interrupts. In this case as well as the above, declare the front address of the software interrupt processing routine in a vector address of the software interrupt in the order of lower and upper.
- (7) The vector addresses 000024H and 000025H cannot be used since this is a system reserved area.
- (8) In this initialization routine example, the vector address setting and program have been allocated from 000100H for the sake of convenience.

Source List

Initializa	tion fo	r E0C8	8316 single chip mode	
	exterr exterr public	nal	<pre>initialize,watchdog_reset user_program mainrt</pre>	
; reset_ve main	ctor	-	000000h 000100h	;reset vector address ;program start address offset
; br_io mcu spp mode		equ equ	Offh OOffOOh OOffOIh OOffO2h	;base reg. address (set i/o area) ;mcu mode system control address ;stack pointer page address ;mpu//mcu mode control address
; sp_316		equ	00f800h	;e0c88316 stack pointer top address
; internal	_ram	equ	00f000h	;e0c88316 internal ram top address
; lcdram_t lcdram_e: ;			00f800h 00fd43h	;lcd ram top address ;lcd ram end address
<pre>intr_vec ;</pre>	code tors: org dw	intr_v mainrt	vectors+reset_vector	; initial reset program address
;******	org ******	intr_v ******	vectors+main ****************************	* * * * * * * * * * * * * * * * * * * *
; * ; * ; *	e0c883	316 mcu	single-chip mode initial	* ize * *
	*****	******	*****	*****
maini (·	ld ld ld ld ld	br, #br [br:lc [br:lc sp, #lc [br:lc ba, #00 hl, #00 ix, #00	ww mcu],#00110000b ww spp],#00h od sp_316 ww mode],#00000000b 00b	<pre>;set br reg. address to 0ffxxh ;single chip mode, /ce3-/ce0 disable ;set stack pointer page to 0 ;satck pointer top address set ;set mode reg. ;internal reg. clear</pre>
;interna		JEar	log_reset	;watchdog timer reset ***
mainrt00	ld :	iy,#lo	od internal_ram	;e0c88316 internal ram top address
	ld inc cp	[iy],a iy iy,#lc nz,mai	d internal_ram+0800h	;clear data set ;poniter increment ;internal ram end ?
;lcd ram	clear	includ watchd	ling ignore area log_reset od lcdram_top	;watchdog timer reset *** ;lcd ram top address
mainrt01		[iy],a iy iy,#lc nz,mai	od lcdram_end	<pre>;clear data set ;pointer increment ;lcd rasm end ?</pre>
;	carl jrl	initia user_p	lize program	;initialize i/o area *** ;jump user program
;start u	ser pro	ogram		
;	end			

2 SYSTEM CONTROLLER AND BUS CONTROL

I/O Map (MCU mode)

Address	Bit	Name		F	unction		1	0	SR	R/W	Comment
00FF00	D7	BSMD1	Bus mode (0	R/W	
(MCU)		_	BSMD1			ode					
(1	1		laximum)					
	D6	BSMD0	1	0		linimum)			0	R/W	
		DSIVIDU				(iiiiiiiiiiiiii)			0	K/ W	
			0	1	64K						
			0	0	Single ch	пр					
	D5	CEMD1	Chip enable		M	lode			1	R/W	Only for 64K
			$\frac{\text{CEMD1}}{1}$		64K (CE0)	loue					bus mode
			1		32K (CE0, CE	<u>E1</u>)					*1
	D4	CEMD0	0	1	16K	2000000			1	R/W	
					(CE0-CE3H (CE1-CE3H						
			0		$K (\overline{CE0} - \overline{CE})$						
	D3	CE3	CE3 (R33)]			CE3 enable	CE3 disable	0	R/W	In the Single chip
	D2	CE2	CE2 (R32)	-	-	nable/Disable	$\overline{\text{CE2}}$ enable	$\overline{\text{CE2}}$ disable	0	R/W	mode, these setting
	D1	CE1	CE1 (R31)		: CE signa	-	$\overline{CE1}$ enable	$\overline{CE1}$ disable	0	R/W	are fixed at DC
		CE0	CE0 (R30)	Disabl	e: DC (R3x) output	$\overline{CE0}$ enable	$\overline{CE0}$ disable	0	R/W	output.
00FF01		SPP7	Stack point	er nage :	address	(MSB)	1	0	0	R/W	
		SPP6	~ · · · · · · · · ·	F8-		(1	0	0	R/W	
		SPP5	< SP nage s	llocatab	le address >		1	0	0	R/W	
		SPP4			only 0 page		1	0	0	R/W	
		SPP3	• 64K mode	-							
					only 0 page		1	0	0	R/W	
		SPP2			: 0–27H pag		1	0	0	R/W	
		SPP1	• 512K (ma	x) mode	::0–27H pag		1	0	0	R/W	
	D0	SPP0				(LSB)	1	0	0	R/W	
00FF02	D7	EBR	Bus release		-	K11	BREQ	Input port	0	R/W	*2
					inal specific	ation) ¦ R51	BACK	Output port	-		
			Wait control	ol registe	er	Number					
	D6	WT2	WT2	WT1	WT0	of state					
			1	1	1	14					
			1 1	1 0	0 1	12					
	D5	WT1	1	0	1 0	10 8			0	R/W	
			0	1	1	8 6					
		[0	1	0	4					
	D4	wтo	0	0	1	2					
			0	0	0	No wait					
	D3	CLKCHG	CPU operat	ing cloc	k switch		OSC3	OSC1	0	R/W	
		oscc		-	n/Off contro	ol	On	Off	0	R/W	
			Operating r								
	D1	VDC1									
				VDC0		ng mode					
		+	1	×		(VD1=3.3V)			0	R/W	
		VDC0	0	1	Low power	(VDI=1.3V)					
			0	0	Normal	(VD1=2.2V)					
l											

*1 This is just R/W register on E0C88348/317. *2 This is just R/W register on E0C88308.

Note: All the interrupts including $\overline{\text{NMI}}$ are disabled, until you write the optional value into both the "00FF00H" and "00FF01H" addresses.

Address	Bit	Name		Function				0	SR	R/W	Comment
00FF00	D7	BSMD1	Bus mode (CPU mod	le)				*	R/W	* Initial setting can
(MPU)			BSMD1	BSMD0	Mod	le					be selected among 3
			1	1	512K (Ma	iximum)				L	types (64K, 512K
	D6	BSMD0	1	0	512K (Mi	nimum)			*	R/W	min and 512K max)
			0	1	64K						by mask option
			0	0	* Option s	selection \checkmark					setting.
	D5	CEMD1	Chip enable	e mode					1	R/W	Only for 64K
			CEMD1	CEMD0	Mod	le					bus mode
			1	1	64K (CE0)					
	D4	CEMD0	1	0	32K (CE0	, CE1)			1	R/W	
			0	1	16K (CE0	– CE3)					
			0	0	8K (CE0	– CE3)					
	D3	CE3	CE3 (R33)		1	11 (5: 11	CE3 enable	CE3 disable	0	R/W	
	D2	CE2	CE2 (R32)	-	-	able/Disable	$\overline{\text{CE2}}$ enable	$\overline{\text{CE2}}$ disable	0	R/W	
	D1	CE1	CE1 (R31)		\overline{CE} signal	-	$\overline{CE1}$ enable	CE1 disable	0	R/W	
	D0	CE0	CE0 (R30)_	Disable:	DC (R3x)	output	$\overline{\text{CE0}}$ enable	CE0 disable	1	R/W	
00FF01	D7	SPP7	Stack point	er page ac	ldress	(MSB)	1	0	0	R/W	
	D6	SPP6					1	0	0	R/W	
	D5	SPP5	< SP page a	llocatable	e address >	1	0	0	R/W		
	D4	SPP4	Single chi	p mode:	only 0 page	1	0	0	R/W		
	D3	SPP3	• 64K mode	:	only 0 page	1	0	0	R/W		
	D2	SPP2	• 512K (min	n) mode:	0–27H page		1	0	0	R/W	
	D1	SPP1	• 512K (ma	x) mode:	0–27H page		1	0	0	R/W	
	D0	SPP0				(LSB)	1	0	0	R/W	
00FF02	D7		Bus release	enable re	gister	K11	BREQ	Input port	0	DAV	*1
	D7	EBR	(K11 and R	51 termin	al specifica	tion) R51	BACK	Output port	0	R/W	
			Wait contro	l register		Number					
	D6	WT2	WT2	WT1	WT0	of state					
			1	1	1	14					
			1	1	0	12					
	D5	WT1	1 1	0 0	1 0	10			0	R/W	
			0	1	1	8 6					
			0	1	0	4					
	D4	WT0	0	0	1	2					
			0	0	0	No wait					
	D3	CLKCHG	CPU operat	ing clock	switch		OSC3	OSC1	0	R/W	
	D2	OSCC	OSC3 oscil	DSC3 oscillation On/Off control			On	Off	0	R/W	
			Operating n	perating mode selection							
	D1	VDC1	VDC1	c							
			$\frac{\mathbf{v}\mathbf{D}\mathbf{C}\mathbf{I}}{1}$ –	VDC0 Operating mode High speed (VD1-3.3V)						DAV	
			0	× High speed (VD1= 3.3 V) 1 Low power (VD1= 1.3 V)					0	R/W	
	D0	VDC0	0	 Low power (VD1=1.3V) Normal (VD1=2.2V) 							
			U	0	Norman	(VDI-2.2V)					
· · · · · ·			gister on F		~			-			

I/O Map (MPU mode) -

-

*1 This is just R/W register on E0C88308.

Note: All the interrupts including NMI are disabled, until you write the optional value into both the "00FF00H" and "00FF01H" addresses.

2 SYSTEM CONTROLLER AND BUS CONTROL

Specifications

System controller settings and bus control

single_chip:	E0C88316	Single	chip mode
(2) mcu64k_308:	E0C88308	MCU	Expanded 64K mode
(3) mcu64k_316:	E0C88316	MCU	Expanded 64K mode
(4) mpu_64k:	E0C88316	MPU	Expanded 64K mode
(5) mpu512k_max	:E0C88316	MPU	Expanded 512K maximum mode

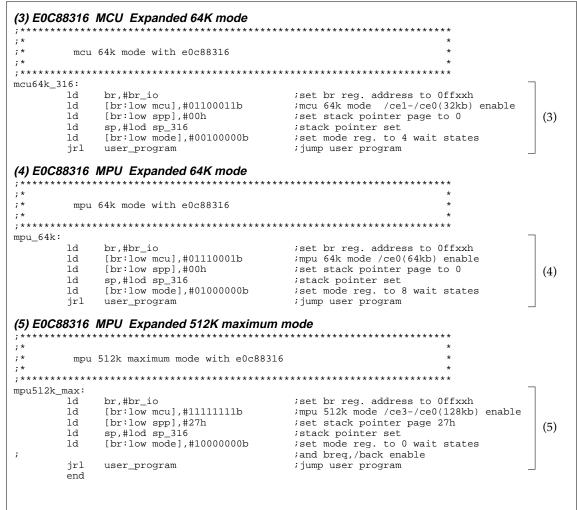
Each of the routines sets the system controller and bus as shown in the table below.

Table 2.1 Setting contents of each routine

Address	Setting item	(1)	(2)	(3)	(4)	(5)
0FF00H	CPU mode	Single chip	64K	64K	64K	512K
	Chip enable mode	No	$\overline{\text{CE3}}\text{-}\overline{\text{CE0}}$	$\overline{\text{CE1}}\text{-}\overline{\text{CE0}}$	CEO	CE3-CE0
			(16K)	(32K)	(64K)	(128K)
	$\overline{\text{CE}}$ signal output	No	$\overline{\text{CE3}}\text{-}\overline{\text{CE0}}$	$\overline{CE1} - \overline{CE0}$	CEO	$\overline{\text{CE3}}$ – $\overline{\text{CE0}}$
0FF01H	Stack page	Page 0	\leftarrow	\downarrow	\leftarrow	Page 27H
0FF02H	Bus release (Note)	No	\leftarrow	\leftarrow	\leftarrow	Use
	Wait control	No	2	4	8	0
	CPU operating clock	OSC1	\leftarrow	\downarrow	\leftarrow	\leftarrow
	OSC3 oscillation circuit	Off	\leftarrow	\leftarrow	\leftarrow	\leftarrow
	Operating mode	Normal mode	\leftarrow	\leftarrow	\leftarrow	\leftarrow

Flowchart

Start	single_chip / mcu64k_308 / mcu64k_316 / mpu64k / mpu512k_max						
(BR setting)							
CPU mode and \overline{CE} output settings	00FF00H						
Stack page setting	DOFFOIH	ory map is different depending or nodel and bus mode to be used.					
Stack pointer setting		E0C88308 does not have a bus					
Wait and bus authority release signal settings		ority release function, K11 termina 51 terminal.					
user_program							


Notes

- (1) Prior to any other processing, be sure to set the system controller and bus control in an initialization routine executed immediately after an initial reset.
- (2) When using the MPU mode, the output of $\overline{\text{CE0}}$ signal is set to valid at initial reset. Be sure not to set the $\overline{\text{CE0}}$ output to invalid when setting the system controller.
- (3) The CEO-CE3 output terminals are shared with the R30-R33 terminals. Consequently, the terminals which have been set for CE outputs cannot be used as a general purpose output port, including the high impedance control. Moreover, since the output terminals shift to LOW if "0" is written to the R30-R33 registers prior setting the CE outputs, be sure to avoid this.
- (4) When using the bus release function, the K11 and R51 terminals function as the BREQ and BACK terminals, respectively. Consequently, K11 and R51 cannot be used as an input port and a output port.

Source List

	external	ttings and bus control user program							
	public		0 m m (4) - 21 (mm (4) - (4) - mm (5) - (1)						
	public	single_cnip,mcu64k_308	3,mcu64k_316,mpu_64k,mpu512k_max						
		0.5.51							
r_io	equ	0ffh	;base reg. address (set i/o area)						
cu	equ	00ff00h	mcu mode system control address						
pu	equ		mpu mode system control address						
pp	equ	00ff01h	<pre>istack pointer page address</pre>						
ode	equ	00ff02h	;mcu//mpu mode control address						
p_308	equ	00f100h	;e0c88308 stack pointer						
p_316	equ	00f800h	;e0c88316 stack pointer						
	code								
1) EOC	88316 Single	chip mode							

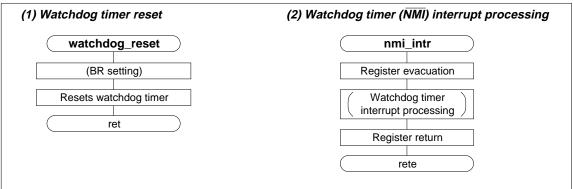
*			*						
*	single chi	p mode with e0c88316	*						
*	bingic chi	p mode with cocoosio	*						
	*****	****	*****						
ingle_			Γ						
ingic_	ld br,#b	rio	;set br req. address to Offxxh						
		.ow mcu],#00110000b	;single chip mode /ce3-/ce0 disable						
		.ow spp],#00h	;set stack pointer page to 0						
		.od sp_316	;stack pointer set						
	ld [br:low mode],#0000000b		;set mode reg. to initial value						
	jrl user_	program	;jump user program						
?) E0C		Expanded 64K mode							
	* * * * * * * * * * * * *	*****	******						
*****			*						

******	mcu 64k mo	de with e0c88308	*						
****** * *	mcu 64k mo	de with e0c88308	*						
* * * * * * * * *			* * ****						
* * * * * * * *	****		*						
***** * * **	****	*****	*						
***** * * **	**************************************	**************************************	* ************************************						
***** * * **	**************************************	**************************************	* * * * * * * * * * * * * * * * * * *						
***** * * **	************** 308: ld br,#b ld [br:1 ld [br:1	**************************************	<pre>* * * * * * * * * * * * * * * * * * *</pre>						
***** * * **	**************************************	**************************************	<pre>* * * * *****************************</pre>						
***** * * **	**************************************	**************************************	<pre>* * * * * * * * * * * * * * * * * * *</pre>						

Source List

3 WATCHDOG TIMER

I/O Мар


Address	Bit	Name			Function	1	1	0	SR	R/W	Comment
00FF40	D7	-	-				-	-	-		"0" when being read
	D6	FOUT2	FOUT fro	equency	selection				0	R/W	
			$\frac{FOUT2}{0}$	$\frac{\text{FOUT1}}{0}$	$\frac{FOUT0}{0}$	Frequency fosc1 / 1					
	D5	FOUT1	0 0	0 1	1 0	fosc1 / 2 fosc1 / 4			0	R/W	
			0 1	1 0	1 0	fosc1 / 8 fosc3 / 1					
	D4	FOUT0	1 1	0 1	1 0	fosc3 / 2 fosc3 / 4			0	R/W	
			1	1	1	fosc3 / 8					
	D3	FOUTON	FOUT ou	tput con	trol		On	Off	0	R/W	
	D2	WDRST	Watchdo	g timer r	eset		Reset	No operation	-	W	Constantly "0" when
	D1	TMRST	Clock tin	ner reset			Reset	No operation	_	W	being read
	D0	TMRUN	Clock tin	her Run/	Stop contr	rol	Run	Stop	0	R/W	

Specifications

Watchdog timer processing

Vector address setting for watchdog timer (NMI) interrupt (1) watchdog_reset:Watchdog timer reset (2) nmi_intr: Watchdog timer (NMI) interrupt processing

Flowchart

Notes

- Since the watchdog timer (NMI) interrupt cannot be masked, be sure to declare the watchdog timer (NMI) interrupt processing routine and the vector address, regardless of whether or not the watchdog timer is used.
- (2) In this program example for the watchdog timer, the vector address setting and program have been allocated from 003000H for the sake of convenience.
- (3) Do not execute the SLP instruction for 2 msec after a $\overline{\text{NMI}}$ interrupt has occurred (when fOSC1 is 32.768 kHz).

Source List

```
Watchdog timer processing
      public
                 watchdog_reset,nmi_intr
;
nmi_vector
                 000004h
                                     ;watchdog /nmi interrupt routine
            equ
                 003000h
watchdog
                                     ;program start address offset
           equ
br_io
                 Offh
                                     ;base reg. address (set i/o area)
            equ
rtm_mode
            equ
                 00ff40h
                                     ;timer mode set address
;
;
       code
Vector address setting for watchdog timer (NMI) interrupt
intr_vectors:
;
            intr_vectors+nmi_vector
       orq
            nmi_intr
       dw
;
(1) Watchdog timer reset
           intr vectors+watchdog
      orq
; * * * * *
                             ******
                * * * * * * * * * * * * * * *
;*
                                                          *
; *
                                                          *
       watchdog timer reset
;*
watchdog_reset:
       ld
           br,#br_io
                                     ;set br reg. address to Offxxh
                                                                       (1)
           [br:low rtm_mode],#00000100b ;watchdogtimer reset
       or
       ret
;
(2) Watchdog timer (NMI) interrupt processing
;*
;*
                                                          *
       /nmi (watchdog) interrupt routine
;*
nmi_intr:
      push ale
;
;
      /nmi (watchdog) interrupt routine
                                                                       (2)
;
;
;
            ale
       pop
       rete
       end
```

4 OSCILLATION CIRCUIT

I/O Map

Address	Bit	Name		F	unction		1	0	SR	R/W	Comment
00FF02		EBR	Bus release enable registerK11(K11 and R51 terminal specification)R51			BREQ	Input port	0	R/W	*1	
						BACK	Output port				
			Wait cont	rol registe	r						
	D6	WT2	WT2	WT1	WT0	of state			0	R/W	
			1	1	1	14					
		D5 WT1	1	1	0	12					
	D5		1	0 0	1	10					
			0	1	1	8 6					
		94 WT0	0	1	0	4					
	D4		0	0	1	2					
			0	0	0	No wait					
	D3 CLKCHG CPU operating clock switch						OSC3	OSC1	0	R/W	
	D2	OSCC	OSC3 osc	illation O	n/Off contro	ol	On	Off	0	R/W	
			Operating mode selection								
	D1	VDC1	VDC1	VDC0	Operating mode						
			$\frac{1}{1}$	×		l (VD1=3.3V)			0	R/W	
			0	1	• •	r(VD1=3.3V) r(VD1=1.3V)					
		VDC0	0	0	Normal	(VD1=1.3V) (VD1=2.2V)					
			0	U	ivonnai	$(\mathbf{v} D \mathbf{I} - 2.2 \mathbf{V})$					

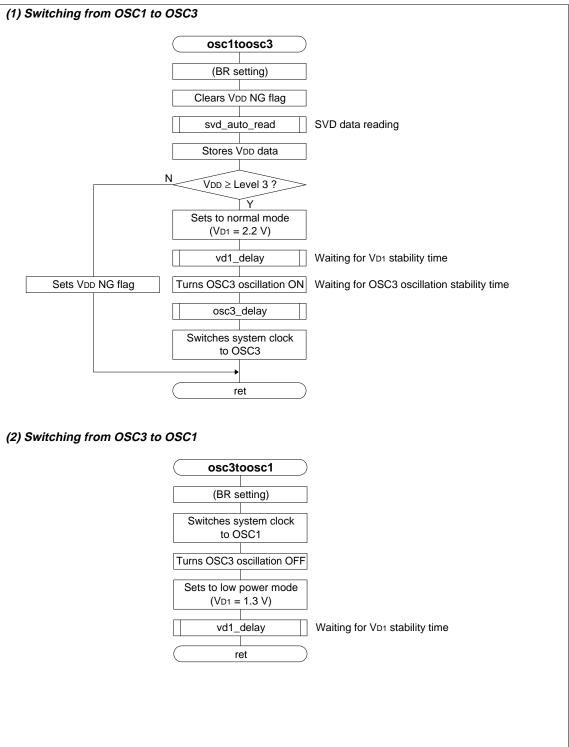
*1 This is just R/W register on E0C88308.

Specifications

CPU clock switching

(1) osc1toosc3: Switching from OSC1 to OSC3

Checks supply voltage and switches system clock from OSC1 (low power mode, VD1 = 1.3 V) to OSC3 (normal mode, VD1 = 2.2 V).


(2) osc3toosc1: Switching from OSC3 to OSC1

Switches system clock from OSC3 (normal mode, VD1 = 2.2 V) to OSC1 (low power mode, VD1 = 1.3 V).

Notes

- (1) Delay routines for the OSC3 oscillation stabilization waiting time, VD1 voltage stabilization waiting time (wait time until OSC3 turns on after operating mode switching, 5 msec or more), etc. are not included in this program example, so it is necessary to create them separately using a hardware timer or software timer. (external call: osc3_delay, vd1_delay)
- (2) Switching operating modes when the supply voltage is lower than the VD1 setting may cause a malfunction. Hence, perform operating mode switching only after making sure that the power voltage of SVD is more than the VD1 setting voltage (absolute value). (external call: svd_auto) The program example sets the NG flag (vdd_ngf) and terminates processing without switching the system clock, when the supply voltage is lower than the VD1 setting.
- (3) When switching from OSC3 to OSC1 (VD1 = $2.2 \text{ V} \rightarrow 1.3 \text{ V}$), the program example does not perform special checking of the supply voltage of SVD if the supply voltage is already more than the VD1 setting.
- (4) Pay special attention the delay routine setting since the OSC3 oscillation stabilization waiting time varies somewhat depending on the oscillator and externally attached parts used.
- (5) Because of operating voltage considerations, both modes (low power mode and high speed mode) cannot be used in one application.

Flowchart

Source List

```
CPU clock switching
       external
                 osc3_delay,vd1_delay
       external
                 svd_auto_read
       public
                 oscltoosc3,osc3toosc1
       public
                 vdd_ngf,vdd_data
:
                Offh
br_io
           equ
                                     ;base reg. address (set i/o area)
mode
           eau
                 00ff02h
                                     imcu//mpu mode control address
;
      data
vdd_ngf: db
                                      ;vdd ng flag
            [1]
vdd_data:db
                                      ;vdd detection data
            [1]
      code
(1) Switching from OSC1 to OSC3
;*
;* change oscl(low power mode [vdl=1.3v]) to osc3(normal mode [vdl=2.2v]) *
;*
oscltoosc3:
      1d
           br,#br_io
                                     ;set br reg. address to Offxxh
       xor
           a,a
            [lod vdd_ngf],a
       ld
                                     ;vdd ng flag clear
                                    ;vda ny ....
;vdd data store
            [lod vdd_data],a
       ld
                                     ;svd check ***
       carl svd_auto_read
       ld
            [lod vdd_data],a
                                     ;vdd store
            a,#03h
                                     ;areg=svd data
       CD
       jrs c,oscltoosc300
                                     ;vdd >= level 3
;
                                                                        (1)
       and
            [br:low mode],#11111100b
                                     ; change mode to normal (vdl to 2.2v)
            [br:low mode],#00000100b
                                     ;osc3 clock on
       or
       carl osc3_delay
                                     ;osc3 start up delay ***
           [br:low mode],#00001000b
                                     ; change system clock to osc3
       or
           osc1toosc301
       jrs
oscltoosc300:
       ld
            a,#0ffh
       ld
            [lod vdd_ngf],a
                                     ;vdd ng flag set
oscltoosc301:
      ret
(2) Switching from OSC3 to OSC1
; *
;* change osc3(normal mode [vd1=2.2v]) to osc1(low power mode [vd1=1.3v]) *
;*
osc3toosc1:
       ld
            br,#br_io
                                     ;set br reg. address to Offxxh
            [br:low mode],#11110111b
                                     ; change system clock to oscl
       and
                                     ;osc3 clock off
       and
            [br:low mode],#11111011b
                                                                        (2)
            [br:low mode],#00000001b
                                     ; change mode to low power (vdl to 1.3v)
       or
                                     ;vdl delay ***
       carl vd1_delay
       ret
;
       end
```

5 INPUT PORTS (K PORTS)

I/O Map

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF50	D7	SIK07	K07 interrupt selection register					
	D6	SIK06	K06 interrupt selection register					
	D5	SIK05	K05 interrupt selection register					
	D4	SIK04	K04 interrupt selection register	Interrupt	Interrupt			
	D3	SIK03	K03 interrupt selection register	enable	disable	0	R/W	
		SIK02	K02 interrupt selection register					
		SIK01	K01 interrupt selection register					
		SIK00	K00 interrupt selection register					
00FF51	D7	_		_	_	_		
001101	D6	_	_	_	_	_		
	D5	_		_	_			Constantly "0" when
	D3		_	_	_	-		being read
			_	_	_	-		being read
	D3		-	-	-	_		-
	D2	-		-	-	-		
		SIK11	K11 interrupt selection register	Interrupt	Interrupt	0	R/W	*1
		SIK10	K10 interrupt selection register	enable	disable			
00FF52		KCP07	K07 interrupt comparison register					
		KCP06	K06 interrupt comparison register					
		KCP05	K05 interrupt comparison register	Interrupt	Interrupt			
		KCP04	K04 interrupt comparison register	generated	generated	1	R/W	
		KCP03	K03 interrupt comparison register	at falling	at rising	-	10	
	D2	KCP02	K02 interrupt comparison register	edge	edge			
	D1	KCP01	K01 interrupt comparison register					
	D0	KCP00	K00 interrupt comparison register					
00FF53	D7	-	_	-	-	-		
	D6	-	_	-	-	-		
	D5	-	-	-	-	-		Constantly "0" when
	D4	-	-	-	-	-		being read
	D3	-	_	-	-	-		
	D2	_	-	-	-	-		
	D1	KCP11	K11 interrupt comparison register	Falling	Rising		D /III	*2
	D0	KCP10	K10 interrupt comparison register	edge	edge	1	R/W	
00FF54	D7	K07D	K07 input port data					
	D6	K06D	K06 input port data					
		K05D	K05 input port data					
	D4	K04D	K04 input port data	High level	Low level			
		K03D	K03 input port data	input	input	-	R	
		K02D	K02 input port data	par				
		K01D	K01 input port data					
		K00D	K00 input port data					
00FF55	D7	_	_	_		<u> </u>		
001 F 00	D7 D6	_			-	<u> </u>		
	D6 D5		-	-				Constanth "0" 1
		-		-	-	-		Constantly "0" when
	D4	-	-	-	-	-		being read
	D3	-	-	-	-	-		
	D2	-		-	-			
		K11D	K11 input port data	High level	Low level	-	R	*3
	D0	K10D	K10 input port data	input	input			

EPSON

*1 Set constantly "0" on E0C88308.

*2 Set constantly "1" on E0C88308.

*3 Constantly "1" when being read on E0C88308.

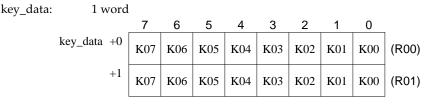
I/O Map

Address	Bit	Name	Function	1		0	SR	R/W	Comment
00FF20	D7	PK01	K00–K07 interrupt priority register				0	R/W	
	D6	PK00	K00–K07 interrupt priority register	PK01	PK00		0	K/W	
	D5	PSIF1			PSIF0 PSW0		0	R/W	
	D4	PSIF0	Serial interface interrupt priority register		PTM	~ 1	0	K/W	
	D3	PSW1		1	1	Level 3 Level 2	0	R/W	
	D2	PSW0	Stopwatch timer interrupt priority register	0	1	Level 2 Level 1	0	K/W	
	D1	PTM1	Cleak times interment priority register	0	0	Level 0	0	R/W	
	D0	PTM0	Clock timer interrupt priority register				0	K/W	
00FF21	D7	-	_	-		-	-		
	D6	-	_	-		-	-		Constantly "0" when
	D5	-	_	-		-	-		being read
	D4	-	_	-		-	-		
	D3	PPT1	Programmable timer interrupt priority register	PPT1 PV11	PPT0		0	R/W	
	D2	PPT0	Programmable unier interrupt priority register	$\frac{\mathbf{PKII}}{1}$	PK10 1	Level 3	0	K/ W	
	D1	PK11	K10 and K11 interrupt priority register	1 0	0	Level 2 Level 1	0	R/W	
	D0	PK10	KTO and KTT interrupt priority register	0	0	Level 1 Level 0	0	K/W	
00FF23	D7	EPT1	Programmable timer 1 interrupt enable register						
	D6	EPT0	Programmable timer 0 interrupt enable register						
	D5	EK1	K10 and K11 interrupt enable register						
	D4	EK0H	K04–K07 interrupt enable register	Interr	upt	Interrupt	0	R/W	
	D3	EK0L	K00-K03 interrupt enable register	enab	ole	disable	0	K/ W	
	D2	ESERR	Serial I/F (error) interrupt enable register						
	D1	ESREC	Serial I/F (receiving) interrupt enable register						
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register						
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)) [(R)			
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interr	upt	No interrupt			
	D5	FK1	K10 and K11 interrupt factor flag	factor	r is	factor is			
	D4	FK0H	K04–K07 interrupt factor flag	genera	ated	generated	0	R/W	
	D3	FK0L	K00–K03 interrupt factor flag		Γ		0		
	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)	(W)			
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Res	et 1	No operation			
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag						

Specifications

Control of input port (K port)

Vector address setting for input port (K port) interrupt


(1) input_normal: Data reading from normal input port (K port)

(2) input_keyscan:Key scan for 8 x 2 key matrix

Assumes the key matrix has been configured with input and output as shown in Figure 5.1, and specifies the key pressed and then stores the data into the RAM area named key_data.

<Conditions>

K07–K00 ports: Input with pull-up resistor (mask option setting) R01, R00 ports: Nch open drain output (mask option setting)

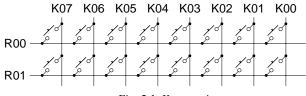


Fig. 5.1 Key matrix

(3) input_keywait, input_keyintr: Interrupt condition setting and interrupt processing for input port (K port) Generates an IRQ3 interrupt when changing the input port K10 and K11 from HIGH to LOW.

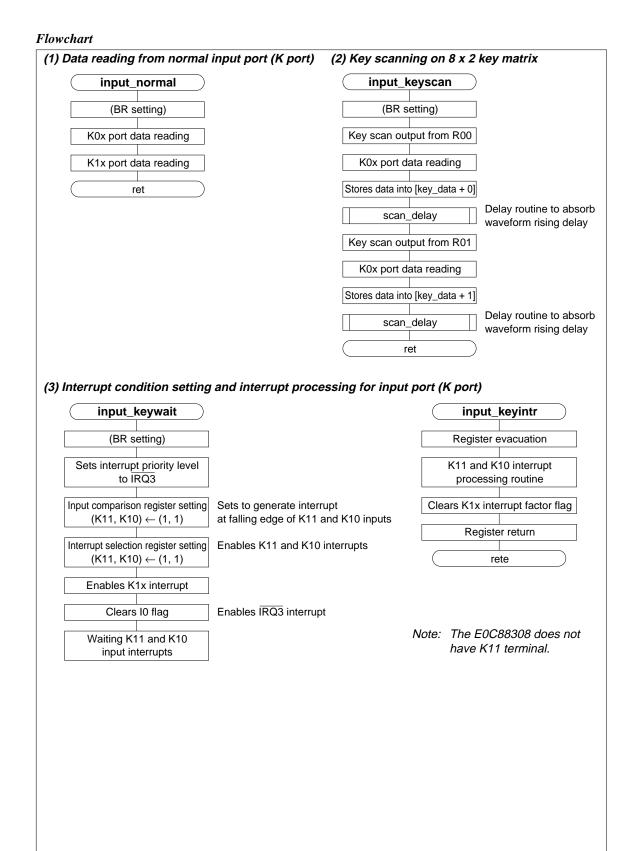



Fig. 5.2 Interrupt generation timing

Notes

- (1) When the pull-up resistor option has been set to "with resistor", a delay in the waveform rise time will occur depending on the time constant of the input gate capacitance when changing the input terminal from LOW to HIGH. For this reason, set an appropriate wait time (for reference, approximately 500 μ sec) for the introduction of the input port. In particular, special attention should be paid to key scanning for key matrix formation.
- (2) Note that the K11 terminal cannot be used as an input port when the K11 terminal has been set for input of the bus release request (BREQ) signal.
 See Part I in this manual, "E0C88348/317/316/308 Technical Hardware", for details of the bus release sequence.
- (3) The K10 terminal doubles as the input terminal of the programmable timer/event counter with input port functions sharing the input signal as it is. For this reason, when the K10 terminal has been set to the input terminal of the programmable timer/event counter, pay attention to interrupt setting. See "12 PROGRAMMABLE TIMER", for the control of the programmable timer/event counter.
- (4) To reset the interrupt factor flag, write "1" into the corresponding flags alone, using the AND or LD instruction. When the OR logic operation instruction has been used, "1" is written for the interrupt factor flags that have been set to "1" within the same address and those flags are then clear.
- (5) The interrupt flags (I1 and I0) have not been reset in the interrupt processing routine of this program example, so an interrupt lower than IRQ3 level is disabled at the time of generation. When you wish to accept the next interrupt after an interrupt has been generated, re-setting of the interrupt flags or resetting the interrupt factor flag is necessary after due consideration for the nesting level.
- (6) A noise reject circuit is not included in the input port (K port). In particular, when input port data is read using an interrupt, the interrupt may generate one of the another by key chattering. For this reason, some measure must be devised such as adding noise reject processing in software or with an external.
- (7) In this program example for input port (K port), the vector address setting and program have been allocated from 003000H for the sake of convenience.
- (8) The E0C88308 does not have K11 terminal.

Source List

Control of input port (K port)

	external public public		scan_delay input_normal,inp key_data	ut_keyscan,input_keywait,input_keyintr
/ klx_vecto keyinput		equ equ	00000ah 003000h	<pre>;klx interrupt vector address offset ;program start address offset</pre>
br io		equ	Offh	; base req. address (set i/o area)
sikl		equ	00ff51h	interrupt selection reg. for k1x
kcpl		equ	00ff53h	; interrupt comparison reg. for k1x
k0d		equ	00ff54h	; input port data from k0x
k1d		equ	00ff55h	;input port data from k1x
r0d		equ	00ff73h	;r0x output data
intr_prl		equ	00ff21h	;interrupt priority reg. 0
intr_en1		equ	00ff23h	;interrupt enable reg. 0
intr_fac1;	1	equ	00ff25h	;interrupt factor flag reg. 0
	data			
key_data:	: code	dw	[1]	

```
Vector address setting for input port (K port) interrupt
intr vectors:
;
        org intr_vectors+klx_vector
                                             ;klx interrupt processing routine
        dw
              input_keyintr
(1) Data reading from normal input port (K port)
        org intr_vectors+keyinput
;*
;*
        k(input) port read (normal)
; *
         a <- k0x(complementary)
;*
           b <- klx(complementary)</pre>
;*
input_normal:
                                            ;set br reg. address to Offxxh
              br,#br_io
       ld
                                            ;k07-00 port read
;k11-00 port read
              a,[br:low k0d]
b,[br:low k1d]
                                                                                      (1)
        ld
        1d
        ret
(2) Key scanning on 8 x 2 key matrix
      ;***
;*
;*
        k(input) port read (key scan)
         k07 k06 k05 k04 k03 k02 k01 k00(pull up)
;*
           r00(n-ch. o.d)
;*
;*
           r01(n-ch. o.d)
; *
           key_data+0(r10) <- k07 k06 k05 k04 k03 k02 k01 k00
key_data+1(r11) <- r07 k06 k05 k04 k03 k02 k01 k00</pre>
:*
; *
; *
input_keyscan:
                                            ;set br reg. address to Offxxh
        ld br,#br_io
                                            ;r00 key scan output
;k0x port read
        and
             [br:low r0d],#11111110b
              a,[br:low k0d]
        ld
              [lod key_data+0],a
        1d
                                            ;key_data save
                                                                                      (2)
                                            ;key scan delay ***
;r01 key scan output
        carl scan_delay
        and
              [br:low r0d],#11111101b
        ld
              a,[br:low k0d]
                                             ;k0x port read
        ld
              [lod key_data+1],a
                                             ;key_data save
        carl scan delay
                                             ;key scan delay ***
        ret
(3) Interrupt condition setting and interrupt processing for input port (K port)
       ******
;**
;*
;*
                                                                       *
        k(input) port read (interrupt)
;*
           k11,10 <- /irq3 falling edge ("h" - "l") interrupt
;*
bi,#Dr_10 ;set br reg. address to 0ffxxh
[br:low intr_prl],#00000011b ;set pk11 and 10 to /irq3
[br:low kcp1],#00000011b ;k11,10 falling edge (h -> 1)
[br:low intr_cprl] "COLLEG";set br reg. address to 0ffxxh
;set pk11 and 10 to /irq3
;k11,10 falling edge (h -> 1)
;k11,10 interrupt crch]
input_keywait:
        1d
        or
                                                                                      (3)
        ld
        ld
              [br:low sik1],#00000011b ;k11,10 interrupt enable
[br:low intr_en1],#0010000b ;ek1 (k11,10) interrupt en.
        or
```

```
ld
         [br:low r0d],#0000000b ;waiting key on r0d scan low output
      ld
          a,sc
         a,#00111111b
      and
          a,#10000000b
      or
         sc,a
      ld
                                ;i0 flag clear (en. /irq3 intr.)
;waiting k11,10 interrupt
;
(3)
;*
                                                  *
;*
                                                  *
     klx interrupt processing routine
; *
                                                  *
input_keyintr:
     push ale
;
     k11 and 10 interrupt processing routine
;
;
          [br:low intr_fac1],#00100000b ;clear fk1 (k11,10) flag
      and
      pop
          ale
      rete
;
```

end

6 OUTPUT PORTS (R PORTS)

I/O Map

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF70	D7	HZR51	R51 high impedance control	High	Comple-	0	R/W	*1
	D6	HZR50	R50 high impedance control	impedance	mentary	0	K/ W	
	D5	HZR4H	R/W register	1	0	0	DAV	Reserved register
	D4	HZR4L	R/W register	1	0	0	K/ W	Reserved register
	D3	HZR1H	R14–R17 high impedance control					
	D2	HZR1L	R10–R13 high impedance control	High	Comple-	0	R/W	
	D1	HZR0H	R04–R07 high impedance control	impedance	mentary		K/ W	
	D0	HZR0L	R00–R03 high impedance control					
00FF71	D7	HZR27	R27 high impedance control					
	D6	HZR26	R26 high impedance control					
	D5	HZR25	R25 high impedance control					
	D4	HZR24	R24 high impedance control	High	Comple-	0	R/W	
	D3	HZR23	R23 high impedance control	impedance	mentary	0	K/W	
	D2	HZR22	R22 high impedance control					
	D1	HZR21	R21 high impedance control					
	D0	HZR20	R20 high impedance control					
00FF72	D7	HZR37	R37 high impedance control					These are just
	D6	HZR36	R36 high impedance control					R/W registers
	D5	HZR35	R35 high impedance control					on E0C88308
	D4	HZR34	R34 high impedance control	High	Comple-	0	DAV	
	D3	HZR33	R33 high impedance control	impedance	mentary	0	R/W	
	D2	HZR32	R32 high impedance control					
	D1	HZR31	R31 high impedance control					
	D0	HZR30	R30 high impedance control					
00FF73	D7	R07D	R07 output port data					
	D6	R06D	R06 output port data					
	D5	R05D	R05 output port data					
	D4	R04D	R04 output port data	TT' - 1	T	1	DAV	
	D3	R03D	R03 output port data	High	Low	1	R/W	
	D2	R02D	R02 output port data					
	D1	R01D	R01 output port data					
	D0	R00D	R00 output port data					
00FF74	D7	R17D	R17 output port data					
	D6	R16D	R16 output port data					
	D5	R15D	R15 output port data					
	D4	R14D	R14 output port data	TT' - 1	T	1	DAV	
	D3	R13D	R13 output port data	High	Low	1	R/W	
	D2	R12D	R12 output port data					
	D1	R11D	R11 output port data					
	D0	R10D	R10 output port data					
00FF75	D7	R27D	R27 output port data					
	D6	R26D	R26 output port data					
	D5	R25D	R25 output port data					
	D4	R24D	R24 output port data	TT: 1		1	D/117	
		R23D	R23 output port data	High	Low	1	R/W	
		R22D	R22 output port data					
		R21D	R21 output port data					
		R20D	R20 output port data					

*1 This is just R/W register on E0C88308.

I/O Мар

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF76	D7	R37D	R37 output port data					These are just
	D6	R36D	R36 output port data					R/W registers
	D5	R35D	R35 output port data					on E0C88308
	D4	R34D	R34 output port data	1			DAV	
	D3	R33D	R33 output port data	High	Low	1	R/W	
	D2	R32D	R32 output port data					
	D1	R31D	R31 output port data					
	D0	R30D	R30 output port data					
00FF77	D7	R47D	R/W register					
	D6	R46D	R/W register					
	D5	R45D	R/W register					
		R44D	R/W register					
		R43D	R/W register	1	0	1	R/W	Reserved register
		R42D	R/W register					
		R41D	R/W register					
		R40D	R/W register					
00FF78	D0 D7	1(40D	K/ W Tegister					
006670	D7 D6			-	-	_		
		-		_	_	_		G (1 "0" 1
	D5	-		-	-	-		Constantly "0" when
	D4	-	-	-	-	-		being read
	D3	-	-	-	-	-		
	D2	-	-	-	-	-		
		R51D	R51 output port data	High	Low	1	R/W	*1
	D0	R50D	R50 output port data	High	Low	0	R/W	
00FF10	D7	-	-	-	-	-		Constantry "0" when
	D6	-	-	-	-	-		being read
	D5	-	-	-	-	-		being read
	D4	LCCLK	CL output control for expanded LCD driver	On	Off	0	R/W	
	D3	LCFRM	FR output control for expanded LCD driver	On	Off	0	R/W	
	D2	DTFNT	LCD dot font selection	5 x 5 dots	5 x 8 dots	0	R/W	
	D1	LDUTY	LCD drive duty selection	1/16 duty	1/32 duty	0	R/W	*2
	D0	SGOUT	R/W register	1	0	0	R/W	Reserved register
00FF30	D7	_	_	-	-	-		Constantry "0" when
	D6	_	-	-	-	_		being read
	D5	_	_	-	-	_		
	D4	MODE16	8/16-bit mode selection	16-bit x 1	8-bit x 2	0	R/W	
	D3	CHSEL	TOUT output channel selection	Timer 1	Timer 0	0	R/W	
	D2	PTOUT	TOUT output control	On	Off	0	R/W	
	D1	CKSEL1		fosc3	fosci	0	R/W	
	D0	CKSEL0	Prescaler 0 source clock selection	fosc3	fosci	0	R/W	
00FF44	D7	_	_	_	_	_		Constantry "0" when
		BZSTP	One-shot buzzer forcibly stop	Forcibly stop	No operation	_	w	being read
		BZSHT	One-shot buzzer trigger/status R	Busy	Ready	0	R/W	being read
	20	DEGITI	W	Trigger	No operation	0	10	
	<u></u> ли	SHTPW	One-shot buzzer duration width selection	125 msec	31.25 msec	0	R/W	
		ENRTM	Envelope attenuation time			0	R/W	
		ENRST	*	1 sec	0.5 sec			"0" when heiner -
			Envelope reset	Reset	No operation	-	W D/W	"0" when being read
		ENON	Envelope On/Off control	On	Off	0	R/W	*3
	00	BZON	Buzzer output control	On	Off	0	R/W	

*1 This is just R/W register on E0C88308. *2 When 1/8 duty has been selected by mask option, setting of this register becomes invalid.

*3 Reset to "0" during one-shot output.

I/O Мар

Address	Bit	Name			Function	l	1	0	SR	R/W	Comment
00FF40	D7	-	-				-	-	-		"0" when being read
	D6	FOUT2	FOUT fr	equency	selection				0	R/W	
			0	$\frac{\text{FOUT1}}{0}$	$\frac{FOUT0}{0}$	Frequency fosc1 / 1					
	D5	FOUT1	0 0	0 1	1 0	fosc1 / 2 fosc1 / 4			0	R/W	
			0 1	1 0	1 0	fosc1 / 8 fosc3 / 1					
	D4	FOUT0	1 1	0 1	1 0	fosc3 / 2 fosc3 / 4			0	R/W	
			1	1	1	fosc3 / 8					
	D3	FOUTON	FOUT ou	itput con	trol		On	Off	0	R/W	
	D2	WDRST	Watchdo	g timer r	eset		Reset	No operation	-	W	Constantly "0" when
	D1	TMRST	Clock tin	ner reset			Reset	No operation	_	W	being read
	D0	TMRUN	Clock tin	ner Run/S	Stop conti	ol	Run	Stop	0	R/W	

Specifications

Control of output port (R port)

(1) initoutput_normal, output_normal: Normal DC output

Sets the R3x port to complementary output and outputs HIGH and LOW to R35–R37.

(2) init_hiz, output_hiz: High impedance output control

First sets the R5x port to complementary output and then switches between high impedance output and complementary output to operate the high impedance control register.

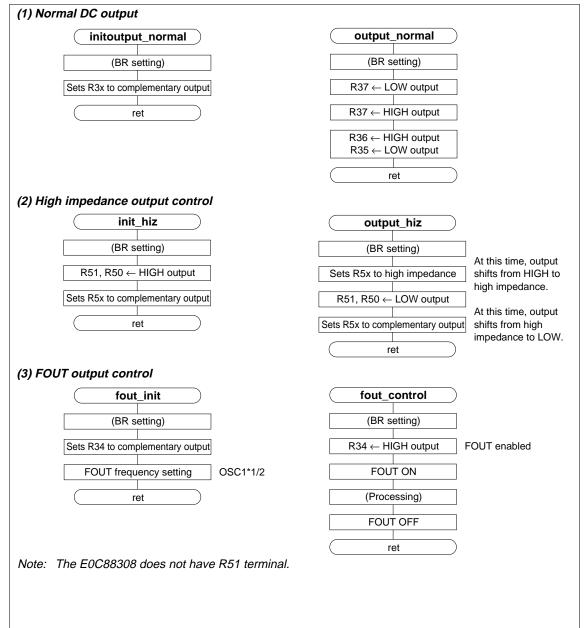
(3) fout_init, fout_control: FOUT output control

Controls the turning ON/OFF of the FOUT output.

Notes

(1) Besides normal DC output, output port terminals are	Table 6	.1 Special output
shared with the special output shown in Table 6.1, and	Output port	Special output
which is used can be selected in software. When using	R25	CL output
special output, it should be noted so that the port	R26	FR output
cannot be used as output port.	R27	TOUT output
For control of special output except for FOUT output	R34	FOUT output
(R34 terminal), see the following chapters:	R50	BZ output
• TOUT output (R27) "12 PROCRAM	ABLE TIMER"	

• TOUT output (R27) "12 PROGRAMMABLE TIMER"


- CL output (R25), FR output (R26) "13 LCD CONTROLLER"
- BZ output (R50) "14 SOUND GENERATOR"
- (2) Please note that in accordance with the bus mode and system controller settings or when using bus release for DMA transfer, the following output port terminals are used for the address bus, $\overline{RD}/\overline{WR}$ signals, $\overline{CE3}$ - $\overline{CE0}$ signals and \overline{BACK} outputs and cannot be used as an output port.

(3) R35–R37 terminals can be used only when the E0C883xx chip is being shipped.

(4) The E0C88308 does not have R51 terminal.

6 OUTPUT PORTS (R PORTS)

Table 6.2	Output port	Special output
Combined output terminal	R00-R07	A0–A7
	R10–R17	A8-A15
	R20-R22	A16–A18
	R23	$\overline{\text{RD}}$ signal
	R24	WR signal
	R30–R33	$\overline{\text{CE0}}$ – $\overline{\text{CE3}}$ signals
	R51	BACK signal


```
Control of output port (R port)
       public
                 initoutput_normal,output_normal
       public
                 init_hiz,output_hiz
      public
                 fout_init,fout_control
br_io
            equ
                 Offh
                                     ;base reg. address (set i/o area)
                00ff70h
                                     ;expand output control reg.
hzr ex
            equ
hzr3
            equ
                 00ff72h
                                    ;r3x output control reg.
r3d
            equ
                 00ff76h
                                     ;r3x output data
r5d
                 00ff78h
                                     ;r5x output data
            equ
                 00ff40h
rtm_mode
                                     ;timer mode set reg.
            equ
       code
(1) Normal DC output
;*
:*
       r(output) port control (normal)
;*
        r37 <- "l" then "h (complementary)
                                                          *
;*
         r36,35 <- "h","l"
                                (complementary)
                                                          *
;*
;*** initialize routine
initoutput_normal:
           br,#br_io
       ld
                                    ;set br reg. address to Offxxh
            [br:low hzr3],#0000000b
       ld
                                     ;set r3x complementary output
      ret
;*** control routine
output_normal:
                                                                      (1)
       ld
            br,#br io
                                     ;set br reg. address to Offxxh
            [br:low r3d],#01111111b
                                     ;r37 <- "l" output
       and
                                    ir37 <- "h" output
            [br:low r3d],#10000000b
       or
            a,[br:low r3d]
       ld
                                     ;r3x output port read
            a,#10011111b
       and
       or
            a,#0100000b
       ld
            [br:low r3d],a
                                    ;r36 <- "h" and r35 <- "l" output
       ret
(2) High impedance output control
;*
;*
       r(output) port control (hi-z)
;*
         r50,51 <- "h","h"
                                (complementary at init.)
;*
;*
               <- "hi-z"
;*
               <- "1","1"
                                (complementary)
;*
;*** initialize rotine
init_hiz:
       lд
           br,#br_io
                                    ;set br reg. address to Offxxh
            [br:low r5d],#00000011b
                                    ;r51,50 <- "h"
;r5x <- complementary output
       or
            [br:low hzr_ex],#00111111b
      and
       ret
(2)
;*** control routine
output_hiz:
       ld
            br,#br_io
                                    ;set br reg. address to Offxxh
            [br:low hzr_ex],#1100000b ;r5x <- high impedance ("hi-z")
[br:low r5d],#1111100b ;r51,50 <- "l" output
       or
       and
                                    ;r5x <- complementary output
       and
            [br:low hzr_ex],#00111111b
      ret
:
```

```
(3) FOUT output control
;*
                                                    *
;*
                                                    *
      fout control
;*
                                                    *
;*** initialize rotine
fout_init:
                                 ;set br reg. address to Offxxh
      1d
          br,#br_io
         [br:low hzr3],#11101111b ;set r34 complementary output
      and
      ld
          a,[br:low rtm_mode]
          a,#00000111b
      and
      or
          a,#00010000b
                                 ;set fout=fosc1/2
      ld
          [br:low rtm_mode],a
;*** control routine
fout_control:
          [br:low r3d],#00010000b ;r34="h" (fout enable)
[br:low rtm_mode],#00001000b ;fout on
      or
      or
;
;
;other processing
;
;
          [br:low rtm_mode],#11110111b ;fout off
      and
      ret
;
      end
```

(3)

7 I/O PORTS (P PORTS)

I/O Map

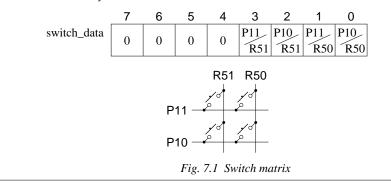
Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF60	D7	IOC07	P07 I/O control register					
	D6	IOC06	P06 I/O control register					
	D5	IOC05	P05 I/O control register					
	D4	IOC04	P04 I/O control register	Output	Tumut	0	R/W	
	D3	IOC03	P03 I/O control register	Output	Input		K/ W	
	D2	IOC02	P02 I/O control register					
	D1	IOC01	P01 I/O control register					
	D0	IOC00	P00 I/O control register					
00FF61	D7	IOC17	P17 I/O control register					
	D6	IOC16	P16 I/O control register					
	D5	IOC15	P15 I/O control register					
	D4	IOC14	P14 I/O control register	Orteret	Turnet	0	R/W	
	D3	IOC13	P13 I/O control register	Output	Input		K/W	
	D2	IOC12	P12 I/O control register					
	D1	IOC11	P11 I/O control register					
	D0	IOC10	P10 I/O control register					
00FF62	D7	P07D	P07 I/O port data					
	D6	P06D	P06 I/O port data					
	D5	P05D	P05 I/O port data					
	D4	P04D	P04 I/O port data	High	Low	1	R/W	
	D3	P03D	P03 I/O port data	nigii	LOW	1	K/ W	
	D2	P02D	P02 I/O port data					
	D1	P01D	P01 I/O port data					
	D0	P00D	P00 I/O port data					
00FF63	D7	P17D	P17 I/O port data					
	D6	P16D	P16 I/O port data					
	D5	P15D	P15 I/O port data					
	D4	P14D	P14 I/O port data	High	Low	1	R/W	
	D3	P13D	P13 I/O port data	High	Low		r./ w	
	D2	P12D	P12 I/O port data					
	D1	P11D	P11 I/O port data					
	D0	P10D	P10 I/O port data					

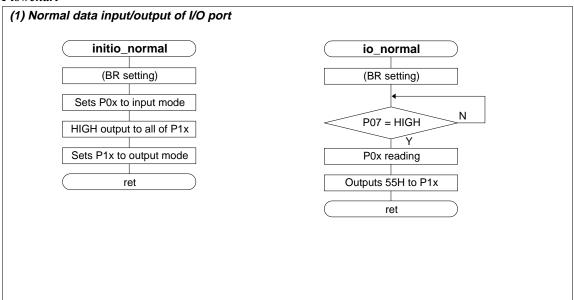
Specifications

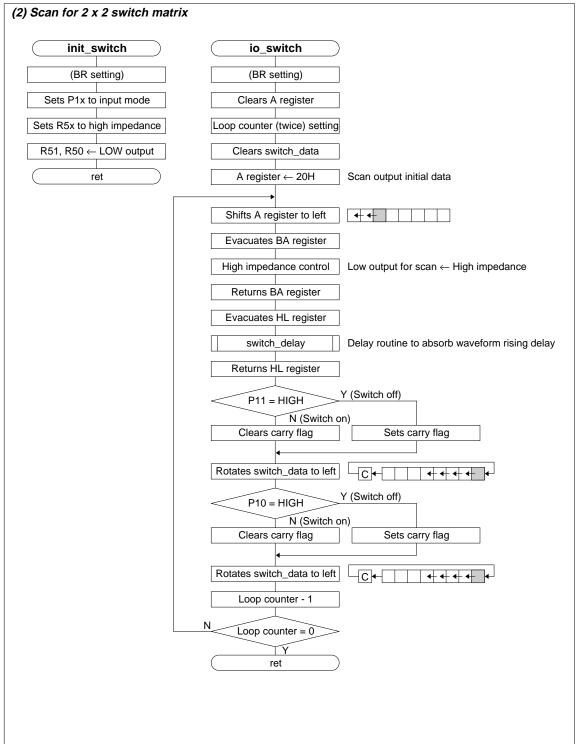
Control of I/O port (P port)

(1) initio_normal, io_normal: Normal data input/output of I/O port

Sets P0x port as input and P1x port as output, and then waits for a HIGH input to P07 port. When P07 shifts to HIGH, reads P0x input data and outputs 55H to P1x.


(2) init_switch, io_switch: Scan for 2 x 2 switch matrix


Assumes the switch matrix has been configured with input and output as shown in Figure 7.1, and specifies the key pressed and then stores the data into the RAM area named switch_data.


<Conditions>

P10, P11 ports:	Input with pull-up resistor
R51, R50 ports:	Nch open drain output (software setting)

switch_data: 1 byte

Notes

- (1) In the input mode, when changing the port terminal from LOW to HIGH with a pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and input gate capacity. Hence, when reading data from the input port, set an appropriate wait time (for reference, approximately 500 μ sec). Care is particularly required in key scanning for key matrix configuration. (external call: switch_delay)
- (2) Besides normal DC output, I/O port terminals are shared with the special output shown in Table 7.1, and which is used can be selected in software. When using special output, it should be noted so that the port cannot be used as I/O port.

Table 7.1 Special input/output									
I/O port	Special output								
P10	SIN								
P11	SOUT								
P12	SCLK								
P13	SRDY								
P14	CMPP0								
P15	CMPM0								
P16	CMPP1								
P17	CMPM1								

For details of each control procedure, see the following chapters:

• SIN (P10), SOUT (P11), <u>SCLK</u> (P12), <u>SRDY</u> (P13)

"8 SERIAL INTERFACE 1 (CLOCK SYNCHRONOUS SYSTEM)"

• CMPP0 (P14), CMPM0 (P15), CMPP1 (P16), CMPM1 (P17)

..... "15 ANALOG COMPARATOR"

(3) Please note that in accordance with the bus mode and system controller settings, P0x terminals are used for the data bus and cannot be used as an I/O port.

Table 7.2 Combined data bus ter	rminal
---------------------------------	--------

I/O port	Special output
P00-P07	D0-D7

```
Control of I/O port (P port)
        external
                   switch_delay
       public
                  initio_normal,io_normal
       public
                  init_switch, io_switch
       public
                  switch_data
:
                   Offh
                                         ;base reg. address (set i/o area)
br_io
             equ
ioc0
                   00ff60h
                                         ;p0x i/o control reg.
             equ
                                         ;plx i/o control reg.
ioc1
             equ
                   00ff61h
                                         ;p0x port data
;p1x port data
p0d
             equ
                   00ff62h
p1d
                   00ff63h
             equ
                                         ;expand output control reg.
                   00ff70h
hzr_ex
             equ
r5d
             equ
                   00ff78h
                                         ;r5x output data
;
       data
                  [1]
switch_data:
             db
;
       code
(1) Normal data input/output of I/O port
      ; * * *
;*
                                                                *
;*
       p(i/o) port control (normal)
                                                                *
         p0x (input:gate direct)
;*
;*
          plx (output) <- p17-10 (all "h")
;*
         p07 (input) <- waits "l" to "h" then p0x data read p0x (input) <- p0x port data read
;*
;*
;*
;*** initialize routine
initio_normal:
        ld
             br,#br_io
                                        ;set br reg. address to Offxxh
             [br:low joc0],#0000000b ;set joc0 (p07-00=input)
[br:low pld],#1111111b ;p17-10(output) <- "h"
        ld
        1d
        ld
            [br:low ioc1],#11111111b
                                        ;set ioc1 (p17-10=output)
       ret
;*** control routine
                                                                               (1)
io_normal:
       ld
             br,#br_io
                                         ;set br reg. address to Offxxh
io_normal00:
             [br:low p0d],#1000000b
       bit
                                        ;p07 = "h" ?
       jrs
             z,io_normal00
;
        1d
             a,[br:low p0d]
                                         ;p0x input
       ld
             [br:low p1d],#01010101b
                                         ;plx output
;
       ret
```

```
(2) Scan for 2 x 2 switch matrix
;*
;*
        p(i/o) port control (internal pull up delay)
;*
           r51 r50(n-channel open drain)
;*
           pl1(pull up)
;*
           p10(pull up)

        7
        6
        5
        4
        3
        2
        1
        0

        switch data
        0
        0
        0
        r51/p11
        r51/p10
        r50/p11
        r50/p10

; *
;*
;*
;*** initialize routine
init_switch:
        ld
              br,#br_io
                                            ;set br reg. address to Offxxh
              [br:low ioc1],#0000000b
                                         ;set iocl (p17-10=input)
;r5x <- high impledance "hi-z"
;r5x <- "l"
        1d
        or
              [br:low hzr_ex],#11000000b
        and [br:low r5d],#11111100b
        ret
;*** control routine
io_switch:
        1d
                                             ;set br reg. address to Offxxh
              br,#br_io
        xor
              a,a
        ld
              b,#2
                                             ;switch scan loop counter
                                            ;switch data buffer
        1d
              hl,#lod switch_data
        ld
              [hl],#0
                                            ;clear switch data buffer
        ld
              a,#00100000b
                                             ;scan init. data set
switch00:
        sll
                                             ;scan data move bit0 to 7
              а
        push ba
                                             ;escape scan data
        ld
              b,[br:low hzr_ex]
                                             ir5x hi-z control ("hi-z" <-> "l")
              b,#00111111b
        and
        or
              a,b
        ld
              [br:low hzr_ex],a
                                            ;r5x scan data control with hi-z
        pop
              ba
        pop ba
push hl
                                                                                      (2)
                                            ;switch scan delay ***
        carl switch_delay
              h1
        pop
              [br:low pld],#00000010b
                                            ;compare p11 port level
        bit
        jrs
             nz,switch01
;switch (p11) on "1"
              sc,#11111101b
        and
                                             ;clear carry flag
        jrs
              switch02
;switch (p11) off "h"
switch01:
              sc,#00000010b
        or
                                             ;set carry flag
switch02:
        rl
              [h1]
                                            ;set switch data buffer
        bit
              [br:low p1d],#0000001b
                                            ;compare p10 port level
        jrs
              nz,switch03
;switch (p10) on "l"
              sc,#11111101b
        and
                                             ;clear carry flag
        jrs
              switch04
;switch (p10) off "h"
switch03:
        or
              sc,#00000010b
                                             ;set carry flag
switch04:
        rl
              [hl]
                                            ;set switch data buffer
              nz,switch00
        djr
;
        ret
;
        end
```

8 SERIAL INTERFACE 1 (CLOCK SYNCHRONOUS INTERFACE)

I/O Map

D7 D6	-	-	-	_	_		"0" when being read
D6							0 when being read
	EPR	Parity enable register	With parity	Non parity	0	R/W	Only for
D5	PMD	Parity mode selection	Odd	Even	0	R/W	asynchronous mode
D4	SCS1	Clock source selection			0	R/W	In the clock synchro
		SCS1 SCS0 Clock source					nous slave mode,
		1 1 Programmable timer				L	external clock is
D3	SCS0	1 0 fosc3 / 4			0	R/W	selected.
		0 1 fosc3 / 8					
		0 0 fosc3 / 16					
D2	SMD1	Serial I/F mode selection			0	R/W	
		SMD1 SMD0 Mode					
		1 1 Asynchronous 8-bit					
D1	SMD0	1 0 Asynchronous 7-bit			0	R/W	
		0 1 Clock synchronous slave					
		0 0 Clock synchronous master					
D0	ESIF	Serial I/F enable register	Serial I/F	I/O port	0	R/W	
D7	_	-	-	-	-		"0" when being read
D6	FER	Framing error flag R	Error	No error	0	R/W	Only for
		W	Reset (0)	No operation			asynchronous mode
D5	PER	Parity error flag R	Error	No error	0	R/W	
		W	Reset (0)	No operation			
D4	OER	Overrun error flag R	Error	No error	0	R/W	
		W	Reset (0)	No operation			
D3	RXTRG	Receive trigger/status R	Run	Stop	0	R/W	
		W	Trigger	No operation			
D2	RXEN	Receive enable	Enable	Disable	0	R/W	
D1	TXTRG	Transmit trigger/status R	Run	Stop	0	R/W	
		W	Trigger	No operation			
D0	TXEN	Transmit enable	Enable	Disable	0	R/W	
D7	TRXD7	Transmit/Receive data D7 (MSB)					
D6	TRXD6	Transmit/Receive data D6					
D5	TRXD5	Transmit/Receive data D5					
D4	TRXD4	Transmit/Receive data D4				DAV	
D3	TRXD3	Transmit/Receive data D3	High	Low	Х	R/W	
D2	TRXD2	Transmit/Receive data D2					
D1	TRXD1	Transmit/Receive data D1					
D0	TRXD0	Transmit/Receive data D0 (LSB)					
D7	PK01						
D6	PK00	K00–K07 interrupt priority register	PK01 PK0	0	0	R/W	
_			PSIF1 PSIF	-0			
		Serial interface interrupt priority register			0	R/W	
_			1 1	Level 3			•
		Stopwatch timer interrupt priority register	$ \begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} $	Level 2 Level 1	0	R/W	
	PTM1	Clock timer interrupt priority register	$\begin{array}{ccc} 0 & 1 \\ 0 & 0 \end{array}$	Level 1 Level 0			
1.1.1						R/W	
	D2 D1 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D5 D4 D5 D5 D4 D5 D5 D4 D5 D5 D4 D5 D5 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1	D0 ESIF D7 - D6 FER D5 PER D4 OER	Image: Display set of the sector of the s	Image:	1 1 Programmable timer D3 SCS0 1 0 fosc3/4 0 1 fosc3/4 0 0 D2 SMD1 Serial I/F mode selection Mode 1 D1 SMD0 Mode 1 Asynchronous 8-bit D1 SMD0 1 0 Asynchronous 8-bit D1 SMD0 1 0 Asynchronous slave 0 0 Clock synchronous slave 0 0 D0 ESIF Serial I/F enable register Serial I/F I/O port D7 - - - - D6 FER Framing error flag R Error No error W Reset (0) No operation No operation No error D4 OER Overrun error flag R R Run Stop D3 RXTRG Receive enable Enable Disable Disable D1 TXTRG Transmit rigger/status R Run Stop D0 TXEN Transmit/	Image: Display the interval of the interval o	1 1 Programmable timer D3 SCS0 1 0 fosc3 / 4 0 1 fosc3 / 4 0 R/W D2 SMD1 Serial L/F mode selection 0 R/W SMD0 1 Asynchronous 8-bit 0 R/W D1 SMD0 1 Asynchronous 8-bit 0 R/W D1 SMD0 1 0 Asynchronous 8-bit 0 R/W D0 ESIF Serial L/F enable register 0 Clock synchronous master 0 R/W D0 ESIF Serial L/F enable register No error 0 R/W D7 - - - - - - D6 FER Framing error flag R Error No error 0 R/W D4 OER Overrun error flag R Error No error 0 R/W D3 RXTRG Receive enable Enable Disable 0 R/W D4 OER Overrun error flag R R

1/0 <i>Map</i>								
Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF23	D7	EPT1	Programmable timer 1 interrupt enable register					
	D6	EPT0	Programmable timer 0 interrupt enable register					
	D5	EK1	K10 and K11 interrupt enable register					
	D4	EK0H	K04–K07 interrupt enable register	Interrupt	Interrupt	0	R/W	
	D3	EK0L	K00–K03 interrupt enable register	enable	disable	0	K/W	
	D2	ESERR	Serial I/F (error) interrupt enable register					
	D1	ESREC	Serial I/F (receiving) interrupt enable register					
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register					
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)	(R)			
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interrupt	No interrupt			
	D5	FK1	K10 and K11 interrupt factor flag	factor is	factor is			
	D4	FK0H	K04–K07 interrupt factor flag	generated	generated	0	R/W	
	D3	FK0L	K00–K03 interrupt factor flag			0	K/ W	
	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)	(W)			
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Reset	No operation			
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag					

I/O Man

Specifications

Clock synchronous serial interface

<Conditions>

P10: SIN (Input) P11: SOUT (Output) P12: SCLK (Output)

Function and input/output direction of the I/O port are automatically decided when setting the serial mode.

P13: Slave READY (Input) Hand shake signal from slave side

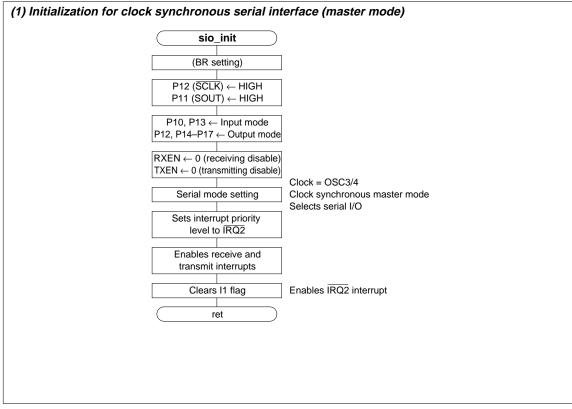
Vector address setting for serial interface interrupt

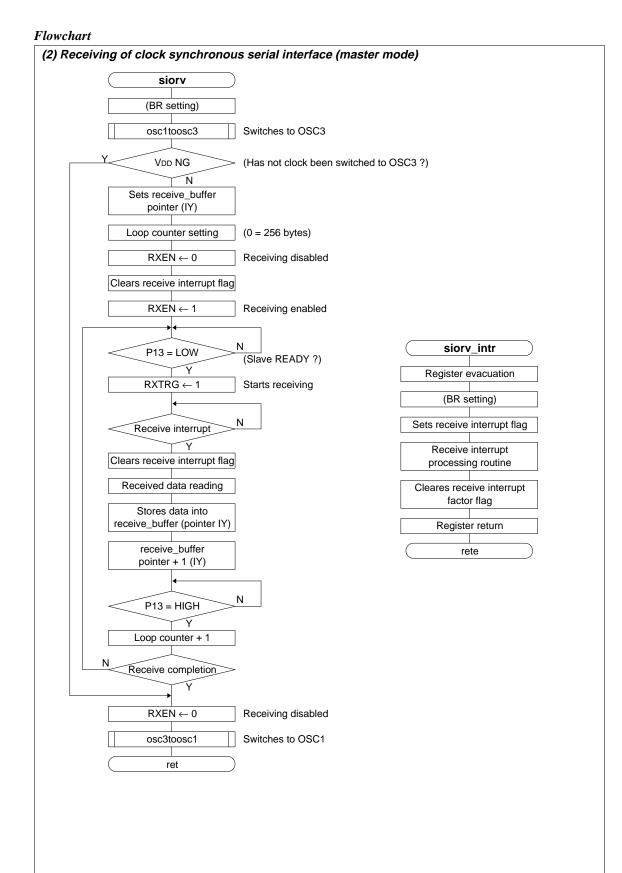
(1) sio_init: Initialization for clock synchronous serial interface (master mode)

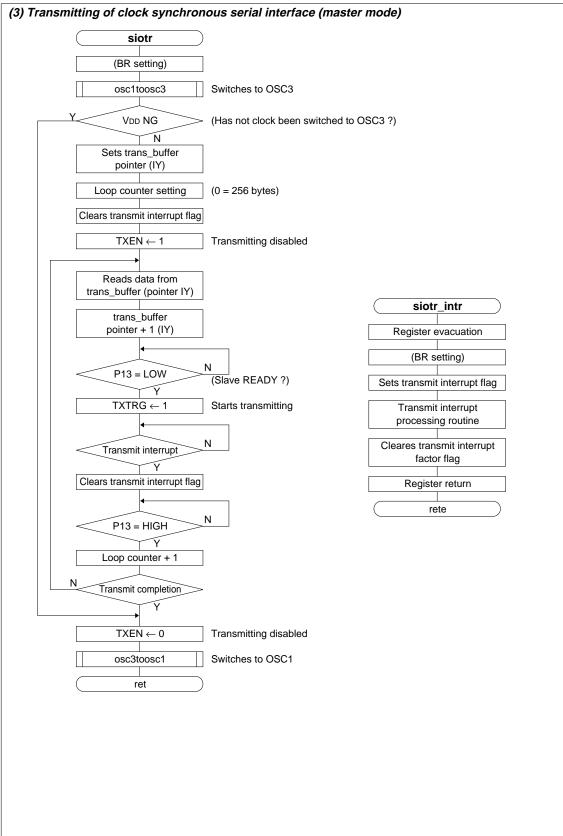
Sets the following in order to transmit/receive in a clock synchronous system:

- Serial interface function
- Normal mode (OSC3 oscillation)
- Clock synchronous master mode
- Transmitting/receiving interrupt enable (IRQ2)
- Synchronous clock OSC3 x 1/4

(2) siorv, siorv_intr: Receiving of clock synchronous serial interface (master mode)


Checks handshake signal (P13) and stores a total of 256 bytes of received data from the slave into a built-in memory receive_buffer one byte at a time, using the receiving interrupt (IRQ2).


(3) siotr, siotr intr: Transmitting of clock synchronous serial interface (master mode)


Checks handshake signal (P13) and outputs a total of 256 bytes of transmitted data from a built-in memory trans_buffer to the slave one byte at a time, using the transmitting interrupt (IRQ2).

Notes

- (1) External routines are called for switching to OSC3 and OSC1. (external call: osc1toosc3, osc3toosc1)
- (2) Switching the operating mode when the supply voltage is lower than the VD1 setting may cause a malfunction. Hence, the example routine checks the supply voltage when switching to the normal mode (OSC3) and terminates as a supply voltage error remains unprocessed if the supply voltage is lower than the VD1 setting. For this determination, vdd_ngf flag is used. (See "4 OSCILLATION CIRCUIT".)
- (3) When switching from OSC3 to OSC1 (VD1 = $2.2 \text{ V} \rightarrow 1.3 \text{ V}$), the program example does not perform special checking of the supply voltage of SVD if the supply voltage is already more than the VD1 setting.
- (4) To reset the interrupt factor flag, write "1" into the corresponding flags alone, using the AND or LD instruction. When the OR logic operation instruction has been used, "1" is written for the interrupt factor flags that have been set to "1" within the same address and those flags are then clear.
- (5) The interrupt flags (I1 and I0) have not been reset in the interrupt processing routine of this program example, so an interrupt lower than IRQ2 level is disabled at the time of generation. When you wish to accept the next interrupt after an interrupt has been generated, re-setting of the interrupt flags or resetting the interrupt factor flag is necessary after due consideration for the nesting level.
- (6) When you have written "1" for the transmitting/receiving trigger and begin transmitting/receiving, first read the data and be sure to write "1" only on the necessary bits. Another transmitting/receiving status (receiving status during transmitting, and transmitting status during receiving) has been allocated for reading to the same address as the transmitting/receiving triggers. For example, when directly writing to the transmitting trigger, using the OR instruction during a receiving operation (receiving status = "1"), the receiving status is read once and it is then written as the receiving trigger. It is the same as the current receiving trigger.
- (7) In this program example for serial interface 1 (clock synchronous system), the vector address setting and program have been allocated from 003000H for the sake of convenience.

Source	List
Source	Lisi

лоск ѕупс	hronous	serial interface	
ex	ternal	oscltoosc3,osc3toc	oscl
ex	ternal	vdd_ngf	
pu	blic		tr,siorv_intr,siotr_intr
pu	blic	receive_buffer,tra	ns_buffer,receive_flag,trans_flag
iorv_vecto	or equ		;sio receive interrupt vector offset
iotr_vecto	or equ		;sio trans interrupt vector offset
io	equ	003000h	program start address offset;
r_io	equ	Offh	;base reg. address (set i/o area)
ode	equ		;mode control reg.
ocl	equ	00ff61h	;plx i/o control reg.
Ld	equ		;plx port data
nd	equ	00ff48h	;serial interface mode set reg.
er	equ		;serial interface error and trriger reg
rxd		00ff4ah	;trans/recive data reg.
ntr_pr0	equ	00ff20h	;interrupt priority reg. 0
ntr_en1		00ff23h	;interrupt enable reg. 1
ntr_fac1	equ	00ff25h	;interrupt factor reg. 1
	ta		
eceive_buf		[256]	;sio receive bufffer
ans_buffe		[256]	;sio trans buffer
eceive_fla	ıg: db	[1]	;trans complete flag
cans_flag:	db	[1]	;receive complete flag
CO	de		
lector add	race cati	ing for serial interface	interrunt
		ing for Serial interface	menupt
ntr_vector	s:		
or	a inti	r_vectors+siorv_vecto	r
dw		rv intr	;sio receive interrupt
uw	5101	rv_inci	/SIO IECEIVE INCEITUPC
or	a inti	r vegtorgegiotr vegto	r
or		r_vectors+siotr_vecto	
		r_vectors+siotr_vecto tr_intr	r ;sio trans interrupt
dw	siot	tr_intr	;sio trans interrupt
dw	siot	tr_intr	
dw 1) Initializa or	sion ntion for g intr	tr_intr clock synchronous se r_vectors+sio	;sio trans interrupt erial interface (master mode)
dw 1) Initializa or	sion ntion for g intr	tr_intr clock synchronous se r_vectors+sio	;sio trans interrupt
dw 1) Initializa or **********	sion sion sion sion sion sion sion sion	cr_intr clock synchronous se r_vectors+sio *********	;sio trans interrupt crial interface (master mode)
dw 1) Initializa or **********************************	sion sion sion sion sion sion sion sion	tr_intr clock synchronous se r_vectors+sio	;sio trans interrupt erial interface (master mode) ************************************
dw 1) Initializa or **********************************	sion filion for g intr *********	cr_intr clock synchronous se r_vectors+sio ************************************	;sio trans interrupt crial interface (master mode)
dw (1) Initializa or ************ * * *	sion tion for g intr *********	cr_intr clock synchronous se r_vectors+sio r mode initialize (pl	;sio trans interrupt erial interface (master mode) ************************************
dw 1) Initializa or * * * * * * * * * * * * *	sion tion for g intr *********	cr_intr clock synchronous se r_vectors+sio r mode initialize (pl	;sio trans interrupt erial interface (master mode) ************************************
dw 1) Initializa or **********************************	sion tion for g intr .o master .tize rou	cr_intr clock synchronous se r_vectors+sio ************************************	; sio trans interrupt erial interface (master mode) ************************************
dw 1) Initializa or **********************************	sion ation for g intr .o master .lize rou	cr_intr clock synchronous se r_vectors+sio ************************************	; sio trans interrupt erial interface (master mode) ************************************
dw 1) Initializa or **********************************	sion g intr o master lize rou grammabl br,	cr_intr clock synchronous se r_vectors+sio r mode initialize (pl transfer (pl transfer (pl) transfer (pl)	; sio trans interrupt erial interface (master mode) ************************************
dw 1) Initializa or **********************************	sion fion for g intr to master co master lize rou ogrammabl br, [br	cr_intr clock synchronous se c_vectors+sio t mode initialize (pl t time t output,p13=slave re t p_ t output,p13=slave re t output,p13=slave re	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion sion g intr .o master .o master .lize rou br, [br [br [br	<pre>cr_intr clock synchronous se r_vectors+sio c mode initialize (pl control initialize (p</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion sion g intr .o master .o master .lize rou br, [br [br [br	<pre>cr_intr clock synchronous se r_vectors+sio c mode initialize (pl control initialize (p</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion ation for g intr .o master .o master .lize rou br, [br [br [br [br [br [br [br	cr_intr clock synchronous se c_vectors+sio ************************************	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion sion g intr co master dize rou br,t [br [br [br [br [br [br [br [br	cr_intr clock synchronous se c_vectors+sio ************************************	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion sion sion sion sion sion sion sion	cr_intr clock synchronous se c_vectors+sio the mode initialize (pl the output,pl3=slave re the pld],#1110110b clow pld],#1110110b clow iocl],#11110110b clow ser],#01110000b city,clock=fosc3/4,sic clow smd],#0010001b	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw or **********************************	sion sion g intr second star constant lize rou br,4 [br [br [br [br [br [br [br [br	<pre>cr_intr clock synchronous se c_vectors+sio c mode initialize (pl content of the synchronous se c mode initialize (pl content of the synchronous second second</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion sion g intr co master co master lize rou br,; [br [br [br [br [br [br [br [br	<pre>cr_intr clock synchronous se r_vectors+sio c mode initialize (pl. comparing the synchronous se the output,pl3=slave re the output,pl3=slave re the output,pl3=slave re the ser],#1110110b clow iocl],#11110110b clow ser],#01110000b city,clock=fosc3/4,sie clow smd],#0001000b pr:low smd],#0001001b pr:low intr_pr0] 1000111b</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw or **********************************	sion sion g intr ************************************	<pre>cr_intr clock synchronous se c_vectors+sio c mode initialize (p1 content of the synchronous se c mode initialize (p1 content of the synchronous second second</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion sion sion sion sion sion sion sion	<pre>cr_intr clock synchronous se c_vectors+sio c mode initialize (pl control initialize (p</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion sion sion states states sta	<pre>tr_intr clock synchronous se c_vectors+sio c mode initialize (pl content of the synchronous se c mode initialize (pl content of the synchronous second content of the synch</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion sion sion stituen for g intr ************************************	<pre>tr_intr clock synchronous se r_vectors+sio twt***********************************</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion sion sion states states st	<pre>cr_intr clock synchronous se r_vectors+sio cmode initialize (pl. cmmode initialize (pl</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw f) Initializa or **********************************	sion sion sion stituen for g intr ********* co master ************************************	<pre>tr_intr clock synchronous se r_vectors+sio c mode initialize (pl comparing the synchronous se the output,pl3=slave re the output,pl3=slave re the output,pl3=slave re the ser],#1110110b clow iocl],#11110110b clow ser],#01110000b clow ser],#01110000b clow intr_pr0] tlo01111b tlo010000b clow intr_pr0],a tr:low intr_en1] tli0111b tlo00b tlow intr_en1],a tr tr</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw or ***********************************	sion sion sion stion for g intr ************************************	cr_intr clock synchronous se r_vectors+sio ************************************	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw 1) Initializa or **********************************	sion sion sion sion sion sion sion sion	<pre>tr_intr clock synchronous se r_vectors+sio c mode initialize (pl content of the synchronous se the mode initialize (pl content of the synchronous se the synchronous set the synchron</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>
dw or ***********************************	sion sion sion stion for g intr ******** o master ********* lize rou br,4 [br br,6 [br [br [br [br a,1] d a,4 [br a,1] d a,4 [br a,1] d a,4 [br a,1] d a,4 [br a,1] d a,4 [br a,1] d a,4 [br a,1] d a,4 [br a,1] d a,4 [br a,2] br,6 [br a,1] d a,4 [br a,1] d a,4 [br a,4] a,4 [br a,4] d a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4] a,4 [br a,4] a,4 [br a,4] a,4 [br a,4] a,4] a,4 [br a,4] a,4 [br a,4] a,4] a,4 [br a,4] a,4] a,4 [br a,4] a,4] a,4 [br a,4] a,4] a,4] a,4] a,4] a,4] a,4] a,4]	<pre>tr_intr clock synchronous se r_vectors+sio c mode initialize (pl content of the synchronous se traine the output,pl3=slave re the ser],#011000b clow iocl],#1110110b clow ser],#0110000b clow intr_pr0] 1001111b 0010000b clow intr_pr0],a pr:low intr_en1] 0111100b 00000011b clow intr_en1],a c 00111111b 0100000b</pre>	<pre>;sio trans interrupt prial interface (master mode) ************************************</pre>

```
(2) Receiving of clock synchronous serial interface (master mode)
;*
;*
       sio master mode receive (p13=slave ready)
                                                               *
;*
;*** control routine
siorv:
       ld
             br,#br_io
                                        ;set br reg. address to Offxxh
                                        ; change osc1 to osc3 ***
       carl osc1toosc3
             a,[lod vdd_ngf]
                                        ;vdd ng flag
       1d
       ср
             a,#0ffh
                                         ;vdd error
       jrl
            z,siorv02
;
       ld
             iy,#lod receive_buffer
                                        ;receive data buffer
       ld
             b,#0
                                         ;set receive counter (00h=256)
       ld
            a,[br:low ser]
             a,#00000001b
       and
       ld
             [br:low ser],a
                                        ;rxen=0 (dis.) sio reset
       xor
             a,a
       ld
             [lod receive_flag],a
                                        ;sio receive interrupt flag clear
             a,[br:low ser]
       1d
             a,#00000001b
       and
       or
             a,#00000100b
       ld
            [br:low ser],a
                                        ;rxen=1 (en.)
;
;wait slave ready
siorv00:
       bit
             [br:low p1d],#00001000b ;p13(slave ready)="1
           nz,siorv00
                                                                             (2)
       irs
;
       ld
             a,[br:low ser]
       and a,#00000101b
             a,#00001000b
       or
       1d
            [br:low ser],a
                                        ;rxtrg=set
;wait sio receive interrupt
siorv01:
       ld
             a,[lod receive_flag]
                                        ;sio receive interrput flag
       ср
             a,#0ffh
       jrs
            nz,siorv01
;
       xor
             a,a
             [lod receive_flag],a
                                        ;clear sio receive interrupt flag
       1d
             a,[br:low trxd]
       ld
                                        ;receive data read
       ld
             [iy],a
                                        ;set receive data buffer
siorv03:
             [br:low pld],#00001000b
       bit
       jrs
             z,siorv03
                                        ;receive buffer + 1
       inc
             iv
             nz,siorv00
                                        ;until buffer end (256 bytes)
       djr
:
siorv02:
       ld
             a,[br:low ser]
             a,#00000001b
       and
                                        ;rxen=0 (dis.) sio reset
       ld
             [br:low ser],a
       carl osc3toosc1
                                         ; change osc3 to osc1 ***
       ret
```

		ng of clock synchronous serial i		
	*****	******	***************************************	
;* ;*	sio m	master mode trans (p13=slave re	eadv) *	
;*			*	
		***********************	* * * * * * * * * * * * * * * * * * * *	
;*** con siotr:	itrol i	routine		Г
51001	ld cp	<pre>br,#br_io oscltoosc3 a,[lod vdd_ngf] a,#0ffh</pre>	<pre>;set br reg. address to Offxxh ;change oscl to osc3 *** ;vdd ng flag</pre>	
;	jrl	z,siotr03	;vdd error	
		iy,#lod trans_buffer b,#0 a,[br:low ser] a,#00000100b	<pre>;trans data buffer ;set trans counter (00h=256)</pre>	
		[br:low ser],a	;txen=0 (dis.) sio reset	
		a,a [lod trans_flag],a a,[br:low ser] a,#00000100b a,#0000001b	;sio trans interrupt flag clear	
	ld	[br:low ser],a	;txen=en.	
;wait sl				
siotr00:				
	ld ld	a,[iy] [br:low trxd],a	;load trans data buffer ;set trans data	
	inc	iy	itrans buffer + 1	
		2		
siotr02:	bit	[br:low pld],#00001000b nz,siotr02	;pl3(slave ready)="l	(3)
1	ld and or	a,#00000010b		
	ld	[br:low ser],a	;txtrg=set	
;wait si siotr01:		ns interrupt		
;	ld cp	a,[lod trans_flag] a,#0ffh nz,siotr01	;sio trans interrput flag	
, siotr04:		a,a [lod trans_flag],a	clear sio trans interrupt flag;	
;	bit jrs	[br:low pld],#00001000b z,siotr04 nz,siotr00	;until buffer end (256 bytes)	
siotr03:	ld and ld	[br:low ser],a	;txen=0 (dis.) sio reset	
	carl ret	osc3toosc1	;change osc3 to osc1 ***	

```
(2) Receiveing interrupt
;*
;*
     sio master mode receive interrupt processing routine
                                                  *
;*
***********
siorv_intr:
     push ale
;
     ld br,#br_io
                                ;set br reg. address to Offxxh
;
      ld a,#0ffh
          [lod receive_flag],a
                               ;set sio receive interrupt flag
      ld
                                                              (2)
;
;
      sio receive interrupt processing routine
;
;
;
          [br:low intr_fac1],#00000010b ;clear fsrec flag
      and
      pop
          ale
      rete
(3) Transmitting interrupt
;*
;*
                                                  *
      sio master trans interrupt processing routine
;*
                                                   *
siotr_intr:
      push ale
;
      ld br,#br_io
                                ;set br reg. address to Offxxh
;
      ld a,#0ffh
      ld [lod trans_flag],a
                               ;set sio trans interrupt flag
                                                              (3)
;
;
      sio trans interrupt processing routine
;
;
;
      and
          [br:low intr_fac1],#00000001b ;clear fstra flag
      pop
          ale
      rete
;
      end
```

9 SERIAL INTERFACE 2 (ASYNCHRONOUS INTERFACE)

I/O Map

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF48	D7	-	-	-	-	_		"0" when being read
	D6	EPR	Parity enable register	With parity	Non parity	0	R/W	Only for
	D5	PMD	Parity mode selection	Odd	Even	0	R/W	asynchronous mod
	D4	SCS1	Clock source selection			0	R/W	In the clock synchro
			SCS1 SCS0 Clock source					nous slave mode,
			1 1 Programmable timer					external clock is
	D3	SCS0	1 0 fosc3 / 4			0	R/W	selected.
			0 1 fosc3 / 8					
			0 0 fosc3 / 16					
	D2	SMD1	Serial I/F mode selection			0	R/W	
			SMD1 SMD0 Mode					
			1 1 Asynchronous 8-bit					
	D1	SMD0	1 0 Asynchronous 7-bit			0	R/W	
			0 1 Clock synchronous slave					
			0 0 Clock synchronous master					
	D0	ESIF	Serial I/F enable register	Serial I/F	I/O port	0	R/W	
00FF49	D7	_	-	-	-	_		"0" when being rea
	D6	FER	Framing error flag	Error	No error	0	R/W	Only for
			W	Reset (0)	No operation			asynchronous mod
	D5	PER	Parity error flag R		No error	0	R/W	
	-		W		No operation			
	D4	OER	Overrun error flag R	. ,	No error	0	R/W	-
			W		No operation	-		
	D3	RXTRG	Receive trigger/status R		Stop	0	R/W	
			W		No operation	-		
	D2	RXEN	Receive enable	Enable	Disable	0	R/W	
		TXTRG	Transmit trigger/status		Stop	0	R/W	
			W		No operation	Ŭ	10 11	
	D0	TXEN	Transmit enable	Enable	Disable	0	R/W	
00FF4A		TRXD7	Transmit/Receive data D7 (MSB)			-		
		TRXD6	Transmit/Receive data D6	- 1				
		TRXD5	Transmit/Receive data D5	- 1				
		TRXD4	Transmit/Receive data D4	- 1				
		TRXD3	Transmit/Receive data D3	- High	Low	X	R/W	
		TRXD2	Transmit/Receive data D2	- :				
		TRXD1	Transmit/Receive data D1					
		TRXD0	Transmit/Receive data D0 (LSB)					
00FF20		PK01						
001120		PK00	K00–K07 interrupt priority register	DV01 DV	20	0	R/W	
		PSIF1		PK01 PK0 PSIF1 PSI				
		PSIF1 PSIF0	Serial interface interrupt priority register	PSW1 PSW	V0 Priority	0	R/W	
		PSIFU PSW1		$-\frac{\text{PTM1}}{1}\frac{\text{PTM}}{1}$				-
			Stopwatch timer interrupt priority register	1 0	Level 2	0	R/W	
		PSW0		- 0 1 0 0	Level 1 Level 0			{
		PTM1	Clock timer interrupt priority register		Level 0	0	R/W	
	00	PTM0						

I/O Мар

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF23	D7	EPT1	Programmable timer 1 interrupt enable register					
	D6	EPT0	Programmable timer 0 interrupt enable register					
	D5	EK1	K10 and K11 interrupt enable register					
	D4	EK0H	K04–K07 interrupt enable register	Interrupt	Interrupt	0	R/W	
	D3	EK0L	K00–K03 interrupt enable register	enable	disable	0	K/W	
	D2	ESERR	Serial I/F (error) interrupt enable register					
	D1	ESREC	Serial I/F (receiving) interrupt enable register					
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register					
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)	(R)			
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interrupt	No interrupt			
	D5	FK1	K10 and K11 interrupt factor flag	factor is	factor is			
	D4	FK0H	K04–K07 interrupt factor flag	generated	generated	0	R/W	
	D3	FK0L	K00–K03 interrupt factor flag			0	K/ W	
	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)	(W)			
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Reset	No operation			
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag					

Specifications

Asynchronous serial interface

-Con	ditions>
< con	autons>

<conunions></conunions>			L
P10: SIN	(Input)	Function and input/output direction of the I/O port are automatically	
P11: SOUT	(Output)	decided when setting the serial mode.	
P12: Hand shake	(Output)	Unused	
P13: Hand shake	(Input)	(In this program example, handshake signals during transmission are ignored.)	

Vector address setting for serial interface interrupt

(1) async_init: Initialization for asynchronous serial interface (8-bit mode)

Sets the following in order to transmit/receive in an asynchronous system:

- Serial interface function Normal mode (OSC3 oscillation)
- Asynchronous 8-bit mode, even parity Transmitting/receiving interrupt enable (IRQ2)
- Synchronous clock = Programmable timer

Transmission baud rate clock has been set to 9,600 bps (when OSC3 = 4.9152 MHz) using programmable timer 1 (8 bits).

(2) asyncrv, asyncrv_intr, asyncerr_intr: Receiving of asynchronous serial interface (8-bit mode)

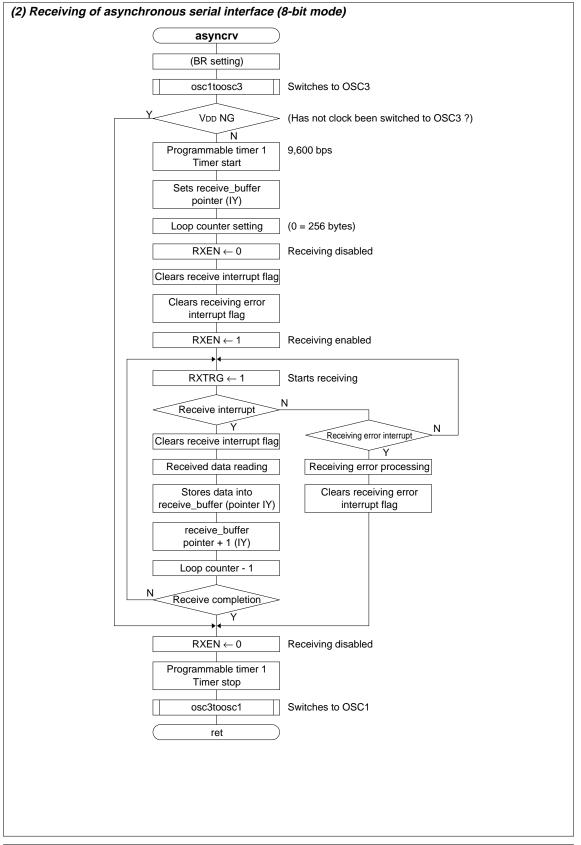
Performs switching to the OSC3 clock and starting the programmable timer, and stores a total of 256 bytes of received data into the built-in memory receive_buffer one byte at a time, using the receiving interrupt (IRQ2). At this time, if a receiving error occurs, it suspends receiving processing at that point.

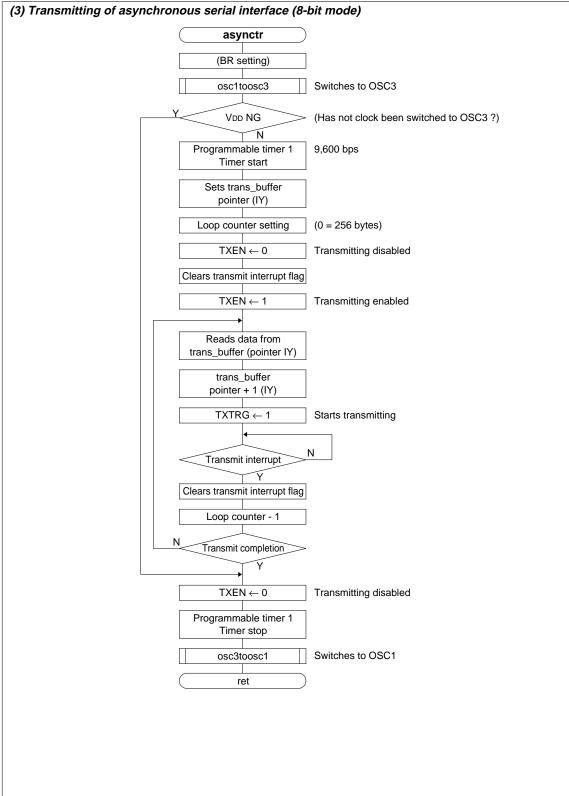
(3) asynctr, async_intr: Transmitting of asynchronous serial interface (8-bit mode)

Performs switching to the OSC3 clock and starting the programmable timer, outputs a total of 256 bytes of transmitted data from a built-in memory trans_buffer one byte at a time, using the transmitting interrupt (IRQ2).

9 SERIAL INTERFACE 2 (ASYNCHRONOUS INTERFACE)

Notes


- (1) External routines are called for switching to OSC3 and OSC1. (external call: osc1toosc3, osc3toosc1)
- (2) Switching the operating mode when the supply voltage is lower than the VD1 setting may cause a malfunction. Hence, the example routine checks the supply voltage when switching to the normal mode (OSC3) and terminates as a supply voltage error remains unprocessed if the supply voltage is lower than the VD1 setting. For this determination, vdd_ngf flag is used. (See "4 OSCILLATION CIRCUIT".)
- (3) When switching from OSC3 to OSC1 (VD1 = $2.2 \text{ V} \rightarrow 1.3 \text{ V}$), the program example does not perform special checking of the supply voltage of SVD if the supply voltage is already more than the VD1 setting.
- (4) The example routine does not check the handshake signal when transmitting/receiving. If this routine is used for an actual program, pay attention to the timing of transmitting/receiving, or check the timing using a handshake signal.
- (5) The 9,600 bps baud rate has been set on the condition that the 4.9152 MHz OSC3 oscillation clock is used.
- (6) To reset the interrupt factor flag, write "1" into the corresponding flags alone, using the AND or LD instruction. When the OR logic operation instruction has been used, "1" is written for the interrupt factor flags that have been set to "1" within the same address and those flags are then clear.
- (7) The interrupt flags (I1 and I0) have not been reset in the interrupt processing routine of this program example, so an interrupt lower than IRQ2 level is disabled at the time of generation. When you wish to accept the next interrupt after an interrupt has been generated, re-setting of the interrupt flags or resetting the interrupt factor flag is necessary after due consideration for the nesting level.
- (8) When you have written "1" for the transmitting/receiving trigger and begin transmitting/receiving, first read the data and be sure to write "1" only on the necessary bits. Also, when writing "1" to reset the receive error flag to "0", similar care is necessary. Another transmitting/receiving status (receiving status during transmitting, transmitting status during receiving, and receiving error flag) has been allocated for reading to the same address as the transmitting/receiving triggers. For example, when directly writing to the transmitting trigger, using the OR instruction during a receiving operation (receiving status = "1"), the receiving status is read once and it is then written as the receiving trigger. Also when the receiving error flag has been set to "1" the receiving error flag is written and reset by


Also when the receiving error flag has been set to "1", the receiving error flag is written and reset by an OR instruction. It is the same as setting the receiving trigger or resetting the receiving error flag.

(9) In this program example for serial interface 2 (asynchronous system), the vector address setting and program have been allocated from 003000H for the sake of convenience.

async_init	
(BR setting)	
P12 (output) ← HIGH P11 (SOUT) ← HIGH	
P10, P13 ← Input mode P12, P14–P17 ← Output mode	
$\begin{array}{c} \\ RXEN \leftarrow 0 \text{ (receiving disable)} \\ TXEN \leftarrow 0 \text{ (transmitting disable)} \end{array}$	
Serial mode setting	Even parity, Clock = programmable timer Asynchronous 8-bit mode, Selects serial I/O
Programmable timer 1 baud rate data setting	9,600 bps (fosc3 = 4.9152 MHz)
Sets interrupt priority level to IRQ2	
Disables programmable timer interrupt	
Enables receive, transmit and error interrupts	
Clears I1 flag	Enables IRQ2 interrupt

Flowchart (1) (2) (3) Interrupts of asynchronous serial interface (8-bit mode) Receiving error interrupt asyncerr_intr Register evacuation (BR setting) Reads receiving error status Resets receiving error status Sets receiving error interrupt flag Receiving error interrupt processing routine Cleares receiving error interrupt factor flag Register return rete Receiving interrupt Transmitting interrupt asyncrv_intr asynctr_intr Register evacuation Register evacuation (BR setting) (BR setting) Sets receive interrupt flag Sets transmit interrupt flag Receive interrupt Transmit interrupt processing routine processing routine Cleares receive interrupt Cleares transmit interrupt factor flag factor flag Register return Register return rete rete

Asynchronous serial interface				
external oscltoosc3,osc3toosc1				
external	= 3			
public public	async_init,asyncrv,asynct asyncerr intr.asyncrv int	asyncerr_intr,asyncrv_intr,asynctr_intr		
public		receive_buffer,trans_buffer,receive_flag,trans_flag		
public	error_flag,bps_data			
; asyncerr_vectoreq	nu 000010h	async error interrupt vector offset		
asyncrv_vector eq		async receive interrupt vector offset		
asynctr_vector eq	-	;async trans interrupt vector offset		
	u 003000h u 0ffh	<pre>;program start address offset ;base reg. address (set i/o area)</pre>		
-	gu 00ff02h	;mode control req.		
-	u 00ff61h	;plx i/o control reg.		
	u 00ff63h	plx port data		
-	u 00ff48h u 00ff49h	<pre>;serial interface mode set reg. ;serial interface error and trriger reg</pre>		
	u 00ff4ah	;trans/recive data reg.		
	u 00ff30h	;programmable timer mode set reg. 0		
	u 00ff32h	;programmable timer mode set reg. 2		
	nu 00ff34h nu 00ff20h	<pre>;programmable timer 1 reload data ;interrupt priority reg. 0</pre>		
intr_prl eq	u 00ff21h	interrupt priority reg. 1		
intr_en1 eq	u 00ff23h	; interrupt enable reg. 1		
intr_fac1 eq	u 00ff25h	;interrupt factor reg. 1		
, data				
receive_buffer:db		;async receive bufffer		
trans_buffer: db		async trans buffer		
error_flag: db receive_flag: db		;async error flag ;trans complete flag		
trans_flag: db		receive complete flag		
code				
Vector address setting for serial interface interrupt				
		· · ·		
intr_vectors:				
	itr_vectors+asyncerr_vector			
	syncerr_intr	;async error interrupt		
; org in	ntr_vectors+asyncrv_vector			
	syncrv_intr	;async receive interrupt		
;				
	ntr_vectors+asynctr_vector synctr_intr	async trans interrupt		
;	1			
(1) Initialization for asynchronous serial interface (8-bit mode)				
	tr_vectors+async			
bps_data: db	0fh ************************************	;baud rate(osc3*1/1 9600bps:4.9152mhz)		
;*		*		
	bit mode initialize (p13 and	12 = hand shake:not use) *		
;*	****	*		
;*************************************				
async_init:				
	ble output,p13-12=hand shake,			
	;,#br_io pr:low pld],#11110110b	<pre>;set br reg. address to 0ffxxh ;sout="h" and no hand shake</pre>		
	pr:low ioc1],#11110110b	/sout- ii and no nand shake		
ld [b	pr:low ser],#01110000b	<pre>;rxen=dis.</pre>		
		-bit mode and serial i/o select		
		<pre>;set serial interface mode tput=dis.,clock (timer0&1=fosc3)</pre>	(1)	
ld [b	pr:low pt_mode0],#00001011b			
1	[loc bps_data]			
	pr:low rld1],a [br:low intr_pr0]	;set reload data reg. ;interrupt priority reg.		
	#11001111b	aro Fridrid, 103.		
or a,	#00100000b			
	pr:low intr_pr0],a [br:low intr_pr1]	<pre>;set psif=/irq2 ;interrupt priority reg.</pre>		
a,	[21.10W INCL PIT]	, incertape priority ity.		

and a,#11110011b a,#00001100b or ld [br:low intr_pr1],a ld a,[low intr_en1] a,#01111000b ;ept1 interrupt dis.(baud rate control) and a,#00000111b or (1)ld [br:low intr_en1],a ;eserr esrec and estra intr. en ld a,sc and a,#00111111b a,#0100000b or 1d sc,a ;i1 flag clear (en. /irq2 intr.) ret (2) Receiving of asynchronous serial interface (8-bit mode) ;* ;* async 8-bit mode receive (p13 and 12 = hand shake:not use) * ;* ;*** control routine asyncrv: ld br,#br io ;set br reg. address to Offxxh carl oscltoosc3 ; change oscl to osc3 *** ld a,[lod vdd_ngf] ;vdd ng flag ср a,#0ffh z.asvncrv03 irl ;psc=1/1*fosc3(4.9152mhz),timer1=reload mode and reload data set to timer 1 [br:low pt_mode2],#00000110b ld [br:low pt_mode2],#00000001b ;timer 1 start (baud rate) or iy,#lod receive_buffer ;receive data buffer b,#0 ;set receive counter (00h=256) 1d ld b,#0 ld a,[br:low ser] a,#00000001b and ;rxen=0 (dis.) async reset ld [br:low ser],a a,a [lod receive_flag],a xor ;async receive interrpt flag clear ;async receive error flag clear ld ld ld a,[br:low ser] and a,#00000001b a,#00000100b or ld [br:low ser],a ;rxen=1 (en.) ;no hand shake asyncrv00: a,[br:low ser] a,#00000101b ld and or a,#00001000b [br:low ser],a ld ;rxtrg=set and error reset ;wait async receive interrupt (2)asyncrv01: ld a,[lod receive_flag] ;async receive interrput flag ср a,#0ffh jrs z,asyncrv02 ; 1d a,[lod error_flag] ;async error interrupt flag a,#00h ср z,asyncrv01 irs ;receive error occurrs ; ; async receive error processing ; ; ; xor a,a ld [lod error_flag],a ;clear error interrupt flag jrs asyncrv03 ; ;receive no error asyncrv02: xor a,a ld [lod receive flag],a ;clear async receive interrupt flag ;receive data read a,[br:low trxd] ld 1d [iy],a ;set receive data buffer inc ;receive buffer + 1 iy ;until buffer end (256 bytes) dir nz,asyncrv00 ;

```
asyncrv03:
       ld
            a,[br:low ser]
       and
            a,#00000001b
       ld
             [br:low ser],a
                                       ;rxen=0 (dis.) async reset
                                                                            (2)
             [br:low pt_mode2],#00011100b ;timer 1 stop (baud rate)
       and
                                       ; change osc3 to osc1 ***
       carl
            osc3toosc1
       ret.
(3) Transmitting of asynchronous serial interface (8-bit mode)
; *
;*
       async 8-bit mode trans (p13 and 12 = hand shake:not use)
;*
;*** control routine
asynctr:
       ld
            br,#br_io
                                        ;set br reg. address to Offxxh
       carl osc1toosc3
                                       ; change osc1 to osc3 ***
                                       ;vdd ng flag
            a,[lod vdd_ngf]
       ld
            a,#0ffh
       ср
       jrl
            z,asynctr02
                                       ;vdd error
;psc=1/1*fosc3(4.9152mhz),timer1=reload mode and reload data set to timer 1
            [br:low pt_mode2],#00000110b
       ld
            [br:low pt_mode2],#0000001b
                                       ;timer 1 start (baud rate)
       or
             iy, #lod trans_buffer
                                ;trans data build:
;set trans counter (00h=256)
       ld
            b,#0
       ld
            a,[br:low ser]
       ld
            a,#00000100b
       and
                                       ;txen=0 (dis.) async reset
       ld
            [br:low ser],a
       xor
            a,a
       ld
            [lod trans_flag],a
                                       ;async trans interrupt flag clear
       ld
            a,[br:low ser]
            a,#00000100b
       and
       or
            a,#0000001b
       ld
            [br:low ser],a
                                       ;txen=en.
;no hand shake
asvnctr00:
       ld
            a,[iy]
                                       ;load trans data buffer
                                                                            (3)
       ld
            [br:low trxd],a
                                        ;set trans data
                                        ;trans buffer + 1
       inc
            iy
       ld
            a,[br:low ser]
            a,#00000101b
       and
            a,#00000010b
       or
       ld
            [br:low ser],a
                                       ;txtrg=set
;wait async trans interrupt
asynctr01:
       ld
            a,[lod trans_flag]
                                       ;async trans interrpu flag
            a,#0ffh
       ср
           nz,asynctr01
       jrs
;
       xor
            a,a
       ld
            [lod trans_flag],a
                                       ;clear async trans interrupt flag
           nz,asynctr00
       dir
                                        ;until buffer end (256 bytes)
asynctr02:
            a,[br:low ser]
       ld
            a,#00000100b
       and
                                       ;txen=0 (dis.) async reset
       ld
            [br:low ser],a
             [br:low pt_mode2],#00011100b
                                       ;timer 1 stop (baud rate)
       and
                                        ; change osc3 to osc1 ***
       carl osc3toosc1
       ret.
(2) Receiving error interrupt
;*
                                                              *
;*
                                                              *
       async 8-bit mode error interrupt processing routine
;*
asyncerr_intr:
       push ale
;
       ld
            br,#br_io
                                       ;set br reg. address to Offxxh
                                                                            (2)
;
            a,[br:low ser]
       1d
            a,#01110101b
       and
```

```
ld
           [br:low ser],a
                                   ;receive error status reset
      and
           a,#01110000b
                                   ;ignore bits clear
      ld
           [lod error_flag],a
                                   ;set async error interrupt flag
;
;
      async error interrupt processing routine
;
;
;
      and
           [br:low intr fac1],#00000100b ;clear fserr flag
      pop
           ale
      rete
(2) Receiving interrupt
; *
                                                        *
                                                                    (2)
;*
      async 8-bit mode receive interrupt processing routine
                                                        *
;*
asyncrv_intr:
      push ale
;
      ld
           br,#br io
                                   ;set br req. address to Offxxh
;
      ld
           a,#0ffh
           [lod receive_flag],a
      ld
                                  ;set async receive interrupt flag
;
;
      async receive interrupt processing routine
;
;
;
      and
           [br:low intr_fac1],#00000010b ;clear fsrec flag
      gog
           ale
      rete
(3) Transmitting interrupt
; *
                                                        *
;*
      async 8-bit mode trans interrupt processing routine
                                                        *
;*
asynctr_intr:
      push ale
;
      ld
           br,#br_io
                                   ;set br reg. address to Offxxh
;
      ld
          a,#0ffh
      ld
           [lod trans_flag],a
                                   ;set async trans interrupt flag
;
                                                                    (3)
;
      async trans interrupt processing routine
;
;
;
      and
           [br:low intr_fac1],#00000001b ;clear fstra flag
      pop
           ale
      rete
      end
```

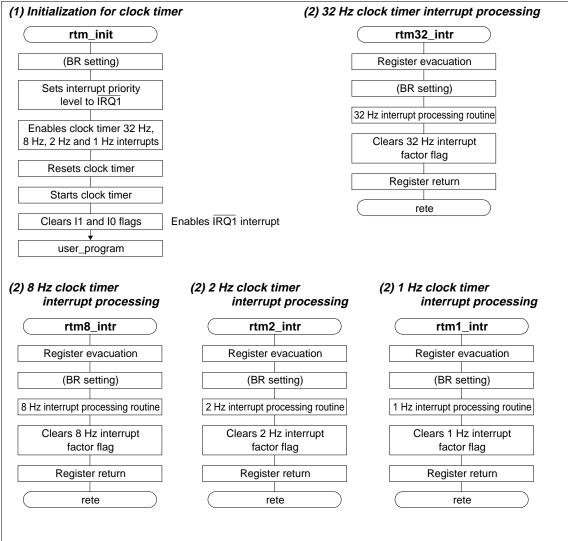
10 CLOCK TIMER

I/O Map

Address	Bit	Name			Function		1	0	SR	R/W	Comment
00FF40	D7	-	-				-	-	-		"0" when being read
	D6	FOUT2	FOUT freq	uency	selection				0	R/W	
			FOUT2 F	OUT1	FOUT0	Frequency					
			0	0	0	fosc1 / 1					
	D5	FOUT1	0	0	1	fosc1 / 2			0	R/W	
			0	1	0	fosc1 / 4					
			0	1 0	1	fosci / 8					
	D4	FOUT0	1	0	0 1	fosc3 / 1 fosc3 / 2			0	R/W	
	51		1	1	0	fosc3 / 4			0	10.11	
			1	1	1	fosc3 / 8					
	D3	FOUTON	FOUT outp	out con	trol		On	Off	0	R/W	
		WDRST	Watchdog 1				Reset	No operation	_	W	Constantly "0" when
		TMRST	Clock time				Reset	No operation	_	W	being read
	D0	TMRUN	Clock time		Stop contr	റി	Run	Stop	0	R/W	Joing Jour
00FF41	-	TMD7	Clock time		1 Hz	01	Run	Biop	0	10/11	
001141		TMD6	Clock time		2 Hz						
		TMD5	Clock time		4 Hz						
		TMD4	Clock time		4 112 8 Hz						
		TMD3					High	Low	0	R	
		TMD2	Clock time								
			Clock time								
		TMD1	Clock time								
005500		TMD0	Clock time	r data	128 HZ						
00FF20		PK01	K00–K07 i	nterrup	ot priority	register			0	R/W	
		PK00				-	PK01 PK0 PSIF1 PSIF				-
		PSIF1	Serial inter	face in	terrupt pri	ority register	PSW1 PSW		0	R/W	
		PSIF0					$\frac{\text{PTM1}}{1} \frac{\text{PTM}}{1}$	10 level Level 3	-		
		PSW1	Stopwatch	timer i	nterrupt p	riority register	1 0	Level 2	0	R/W	
		PSW0	1				$ \begin{array}{ccc} 0 & 1 \\ 0 & 0 \end{array} $	Level 1 Level 0			
		PTM1	Clock time	r interr	upt priori	v register	0 0	Level	0	R/W	
		PTM0			1 1	, ,					
00FF22	D7	-	-				-	-	-		"0" when being read
						rupt enable register					
		ESW10				upt enable register					
		ESW1	<u> </u>			pt enable register	Interrupt	Interrupt			
		ETM32				nable register	enable	disable	0	R/W	
		ETM8	Clock timer	8 Hz i	nterrupt en	able register					
		ETM2				able register					
	D0	ETM1	Clock timer	1 Hz i	nterrupt en	able register					
00FF24	D7	-	-				-	-	-		"0" when being read
			Stopwatch	timer 1	00 Hz int	errupt factor flag	(R)	(R)			
		FSW10	Stopwatch	timer 1	0 Hz inte	rrupt factor flag	Interrupt	No interrupt			
	D4	FSW1	Stopwatch	timer 1	Hz inter	upt factor flag	factor is	factor is			
	D3	FTM32	Clock time	r 32 H	z interrupt	factor flag	generated	generated	0	R/W	
	D2	FTM8	Clock time	r 8 Hz	interrupt	actor flag					
	D1	FTM2	Clock time	r 2 Hz	interrupt	actor flag	(W)	(W)			
	D0	FTM1	Clock time	r 1 Hz	interrupt 1	actor flag	Reset	No operation			

Specifications

Control of clock timer


Vector address setting for clock timer interrupt

(1) rtm_init: Initialization for clock timer

Enables the respective 32 Hz, 8 Hz, 2 Hz and 1 Hz interrupts of the clock timer, clears the timer data and starts the clock timer. The interrupt level has been set at IRQ1.

(2) rtm32_intr, rtm8_intr, rtm2_intr, rtm1_intr:Clock timer interrupt processing

Flowchart

Notes

- (1) To reset the interrupt factor flag, write "1" into the corresponding flags alone, using the AND or LD instruction. When the OR logic operation instruction has been used, "1" is written for the interrupt factor flags that have been set to "1" within the same address and those flags are then clear.
- (2) The interrupt flags (I1 and I0) have not been reset in the interrupt processing routine of this program example, so an interrupt lower than IRQ1 level is disabled at the time of generation. When you wish to accept the next interrupt after an interrupt has been generated, re-setting of the interrupt flags or resetting the interrupt factor flag is necessary after due consideration for the nesting level.
- (3) When stopping the clock timer by writing "0" into the RUN/STOP control register for the clock timer, the clock timer count actually stops when it advances one count with the timing synchronized to the 256 Hz input clock. For this reason, when the clock timer stops, if the 32 Hz, 8 Hz, 2 Hz and 1 Hz interrupt factors are generated, the respective interrupt factor flags are set and if interrupt is enabled, an interrupt is generated. Thus, you should add an interrupt processing and interrupt factor flag resetting, if necessary.
- (4) In this program example for the clock timer, the vector address setting and program have been allocated from 003000H for the sake of convenience.

Source List

Control of clock timer

extern public		user_program clock_init,clock32_intr,clo	ock8_intr,clock2_intr,clock1_intr
, clock32 vector	eau	00001ch	;clock32hz interrupt vector offset
clock8 vector	equ	00001eh	<pre>/clock8hz interrupt vector offset</pre>
clock2_vector	equ	000020h	;clock2hz interrupt vector offset
clock1_vector	equ	000022h	;clock1hz interrupt vector offset
clock	equ	003000h	<pre>;program start address offset</pre>
br_io	equ	Offh	;base reg. address (set i/o area)
clock_mode	equ	00ff40h	;timer mode set reg.
clockd	equ	00ff41h	;timer data
intr_pr0	equ	00ff20h	;interrupt priority reg. 0
intr_en0	equ	00ff22h	;interrupt enable reg. 0
intr_fac0	equ	00ff24h	;interrupt factor flag reg.
;			

code

Vector address setting for clock timer interrupt

intr_vec				
	org dw	intr_vectors+clock32_vector clock32_intr	;clock	32hz interrupt
;	org dw	<pre>intr_vectors+clock8_vector clock8_intr</pre>	;clock	8hz interrupt
;	org dw	<pre>intr_vectors+clock2_vector clock2_intr</pre>	;clock	2hz interrupt
;	org dw	<pre>intr_vectors+clock1_vector clock1_intr</pre>	;clock	lhz interrupt

```
(1) Initialization for clock timer
      org
         intr_vectors+clock
;*
;*
      clock timer initialize (32,8,2 and 1hz interrupt enable)
; *
;*** initialize routine
clock_init:
          br,#br_io
      ld
                                  ;set br reg. address to Offxxh
      ld
          a,[br:low intr_pr0]
                                  ; interrupt priority reg.
      and a,#11111100b
          a,#00000001b
      or
      ld
          [br:low intr_pr0],a
                                  ;set ptm=/irq1
;etm32,etm8,etm2 and etm1 (en. /irq1) intr.
      or [br:low intr_en0],#00001111b
                                                              (1)
          [br:low clock_mode],#00000010b ;clock timer counter reset
      or
     or [br:low clock_mode],#0000001b
and sc,#00111111b
                                ;clock timer start
                                  ;il and i0 flag clear
;*** start clock timer interrupt
;
;
      jrl user_program
;
;
(2) 32 Hz clock timer interrupt processing
;*
;*
     clock timer 32hz interrupt processing routine
; *
clock32_intr:
     push ale
;
     ld br,#br_io
                                  ;set br reg. address to Offxxh
;
;
;
     clock timer 32hz processing routine
;
;
;
          [br:low intr_fac0],#00001000b
                                 ;clear etm32 flag
      and
      pop
          ale
      rete
(2) 8 Hz clock timer interrupt processing
;*
                                                  *
                                                              (2)
;*
     clock timer 8hz interrupt processing routine
;*
clock8_intr:
     push ale
;
      ld br,#br_io
                                  ;set br reg. address to Offxxh
;
;
;
;
      clock timer 8hz processing routine
;
;
          [br:low intr_fac0],#00000100b ;clear etm8 flag
      and
      pop
          ale
      rete
```

```
(2) 2 Hz clock timer interrupt processing
;*
                                               *
;*
    clock timer 2hz interrupt processing routine
                                               *
;*
*****
clock2_intr:
     push ale
;
     ld br,#br_io
                                ;set br reg. address to Offxxh
;
;
;
;
     clock timer 2hz processing routine
;
;
         [br:low intr_fac0],#00000010b ;clear etm2 flag
     and
     pop
         ale
     rete
(2) 1 Hz clock timer interrupt processing
                                                          (2)
;*
                                               *
;*
                                               *
     clock timer 1hz interrupt processing routine
;*
clock1_intr:
     push ale
;
     ld br,#br_io
                                ;set br reg. address to Offxxh
;
;
;
     clock timer 1hz processing routine
;
;
;
     and
         [br:low intr_fac0],#00000001b ;clear etml flag
     pop
         ale
     rete
     end
```

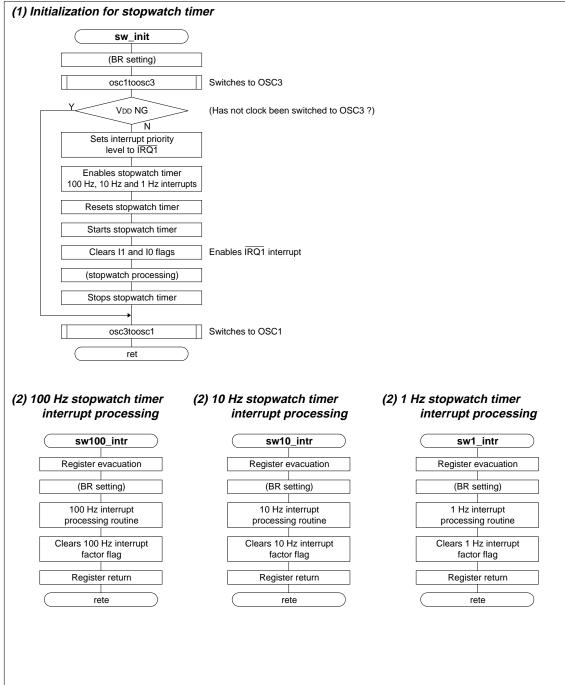
11 STOPWATCH TIMER

I/O Map

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF42	D7	-	_	_	-	-		
	D6	_	_	I	-	_		
	D5	_	_	I	-	_		Constantia "O" ash an
	D4	_	_	I	-	_		Constantly "0" when
	D3	-	_	-	-	_		being read
	D2	-	_	-	-	_		
	D1	SWRST	Stopwatch timer reset	Reset	No operation	_	W	
	D0	SWRUN	Stopwatch timer Run/Stop control	Run	Stop	0	R/W	
00FF43	D7	SWD7	Stopwatch timer data					
	D6	SWD6						
	D5	SWD5	BCD (1/10 sec)					
	D4	SWD4				0	R	
	D3	SWD3	Stopwatch timer data			0	ĸ	
	D2	SWD2						
	D1	SWD1	BCD (1/100 sec)					
	D0	SWD0						
00FF20	D7	PK01	K00 K07 intermet priority register			0	R/W	
	D6	PK00	K00–K07 interrupt priority register	PK01 PK0	00	0	K/W	
	D5	PSIF1	Social interface interrupt priority register	PSIF1 PSII PSW1 PSW		0	R/W	
	D4	PSIF0	Serial interface interrupt priority register	PTM1 PTM	10 level	0	K/ W	
	D3	PSW1	Stopwatch timer interrupt priority register	$ 1 1 1 \\ 1 0 $	Level 3 Level 2	0	R/W	
	D2	PSW0	Stopwatch timer interrupt priority register	0 1	Level 1	0	K/ W	
	D1	PTM1	Clock timer interrupt priority register	0 0	Level 0	0	R/W	
	D0	PTM0	Clock timer interrupt priority register			0	K/ W	
00FF22	D7	-	-	-	-	-		"0" when being read
	D6	ESW100	Stopwatch timer 100 Hz interrupt enable register					
	D5	ESW10	Stopwatch timer 10 Hz interrupt enable register					
	D4	ESW1	Stopwatch timer 1 Hz interrupt enable register	Interrupt	Interrupt			
		ETM32	Clock timer 32 Hz interrupt enable register	enable	disable	0	R/W	
	D2	ETM8	Clock timer 8 Hz interrupt enable register	chable	uisabie			
	D1	ETM2	Clock timer 2 Hz interrupt enable register					
	D0	ETM1	Clock timer 1 Hz interrupt enable register					
00FF24	D7	-	-	-	-	_		"0" when being read
			Stopwatch timer 100 Hz interrupt factor flag	(R)	(R)			
		FSW10	Stopwatch timer 10 Hz interrupt factor flag	Interrupt	No interrupt			
		FSW1	Stopwatch timer 1 Hz interrupt factor flag	factor is	factor is			
	D3	FTM32	Clock timer 32 Hz interrupt factor flag	generated	generated	0	R/W	
	D2	FTM8	Clock timer 8 Hz interrupt factor flag	(W)	(W)			
	D1	FTM2	Clock timer 2 Hz interrupt factor flag	Reset	No operation			
	D0	FTM1	Clock timer 1 Hz interrupt factor flag	NUSCI				

Specifications

Control of stopwatch timer


Vector address setting for stopwatch timer interrupt

(1) sw_init: Initialization for stopwatch timer

Enables the respective 100 Hz, 10 Hz and 1 Hz interrupts of the stopwatch timer, clears the timer data and starts the stopwatch timer. The interrupt level has been set at IRQ1.

(2) sw100_intr, sw10_intr, sw1_intr: Stopwatch timer interrupt processing

Flowchart

11 STOPWATCH TIMER

Notes

- (1) External routines are called for switching to OSC3 and OSC1. (external call: osc1toosc3, osc3toosc1)
- (2) Switching the operating mode when the supply voltage is lower than the VD1 setting may cause a malfunction. Hence, the example routine checks the supply voltage when switching to the normal mode (OSC3) and terminates as a supply voltage error remains unprocessed if the supply voltage is lower than the VD1 setting. For this determination, vdd_ngf flag is used. (See "4 OSCILLATION CIRCUIT".)
- (3) When switching from OSC3 to OSC1 (VD1 = $2.2 \text{ V} \rightarrow 1.3 \text{ V}$), the program example does not perform special checking of the supply voltage of SVD if the supply voltage is already more than the VD1 setting.
- (4) To reset the interrupt factor flag, write "1" into the corresponding flags alone, using the AND or LD instruction. When the OR logic operation instruction has been used, "1" is written for the interrupt factor flags that have been set to "1" within the same address and those flags are then clear.
- (5) The interrupt flags (I1 and I0) have not been reset in the interrupt processing routine of this program example, so an interrupt lower than IRQ1 level is disabled at the time of generation. When you wish to accept the next interrupt after an interrupt has been generated, re-setting of the interrupt flags or resetting the interrupt factor flag is necessary after due consideration for the nesting level.
- (6) When stopping the stopwatch timer by writing "0" into the RUN/STOP control register for the stopwatch timer, the stopwatch timer count actually stops when it advances one count with the timing synchronized to the 256 Hz input clock. For this reason, when the stopwatch timer stops, if the 100 Hz, 10 Hz, and 1 Hz interrupt factors are generated, the respective interrupt factor flags are set and if interrupt is enabled, an interrupt is generated. Thus, you should add an interrupt processing and interrupt factor flag resetting, if necessary.
- (7) In this program example for the stopwatch timer, the vector address setting and program have been allocated from 003000H for the sake of convenience.

Control of sto	pwatch	n timer	
exter exter publi	nal	oscltoosc3,osc3toosc1 vdd_ngf sw_init,sw100_intr,sw10_:	intr,swl_intr
; sw100_vector sw10_vector sw1_vector sw_ br_io sw_mode swd intr_pr0 intr_en0 intr_fac0 ;	equ equ equ equ equ equ equ equ	000016h 000018h 003000h 0ffh 00ff42h 00ff42h 00ff22h 00ff22h	<pre>;sw100hz interrupt vector offset ;sw10hz interrupt vector offset ;sw1hz interrupt vector offset ;program start address offset ;base reg. address (set i/o area) ;stopwatch mode set reg. ;stopwatch data ;interrupt priority reg. 0 ;interrupt enable reg. 0 ;interrupt factor flag reg.</pre>
code			

Vector address setting for stopwatch timer interrupt intr vectors: org intr_vectors+sw100_vector sw100_intr ;sw 100hz interrupt dw ; intr_vectors+sw10_vector orq dw sw10_intr ;sw 10hz interrupt ; intr_vectors+sw1_vector orq dw sw1_intr ;sw 1hz interrupt ; (1) Initialization for stopwatch timer orq intr_vectors+sw ; * * * * * * * * * * * * * * * * * * ;* ;* stopwatch initialize (100,10 and 1hz interrupt enable) * ; * ;*** initialize routine sw_init: ld br,#br_io ;set br reg. address to Offxxh carl osc1toosc3 ;change oscl to osc3 *** a,[lod vdd_ngf] ld ;vdd ng flag a,#0ffh CD jrl z,sw_init00 ; ld a,[br:low intr_pr0] ; interrupt priority reg. and a,#11110011b or a,#00000100b ld [br:low intr_pr0],a ;set sw=/irq1 ;sw100,sw10 and sw1 (en. /irq1) intr. (1)or [br:low intr_en0],#01110000b [br:low sw_mode],#00000010b ;stopwatch counter reset
;stopwatch start or or [br:low sw_mode],#0000001b and sc,#00111111b ;il and i0 flag clear ***** ;*** start stopwatch interrupt ; (user program) ; ;*** end processing and [br:low sw_mode],#11111110b ;stopwatch stop sw init00: carl osc3toosc1 ; change osc3 to osc1 *** ret (2) 100 Hz stopwatch timer interrupt processing ;* ;* stopwatch 100hz interrupt processing routine ;* sw100_intr: push ale ; ld br,#br io ;set br req. address to Offxxh : ; (2)stopwatch 100hz processing routine ; ; ; and [br:low intr_fac0],#01000000b ;clear sw100 flag pop ale rete

```
(2) 10 Hz stopwatch timer interrupt processing
;*
;*
     stopwatch 10hz interrupt processing routine
; *
                                               *
sw10_intr:
     push ale
;
    ld br,#br_io
                               ;set br reg. address to Offxxh
;
;
;
     stopwatch 10hz processing routine
;
;
;
         [br:low intr_fac0],#00100000b ;clear sw10 flag
     and
     pop
         ale
     rete
                                                         (2)
(2) 1 Hz stopwatch timer interrupt processing
;*
; *
                                               *
     stopwatch 1hz interrupt processing routine
;*
                                               *
sw1_intr:
     push ale
;
     ld br,#br_io
                               ;set br reg. address to Offxxh
;
;
;
;
     stopwatch 1hz processing routine
;
;
     and
         [br:low intr_fac0],#00010000b ;clear sw1 flag
     pop
         ale
     rete
;
     end
```

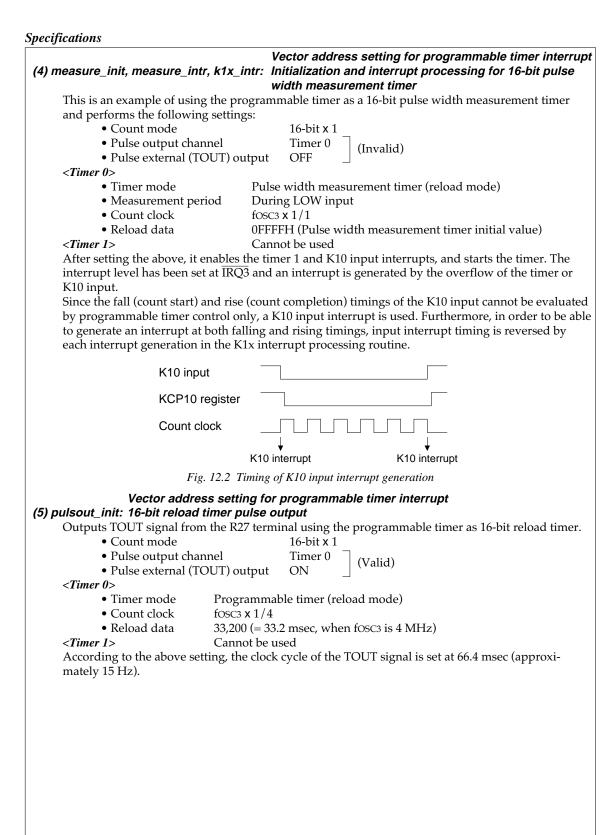
12 PROGRAMMABLE TIMER

I/O Map

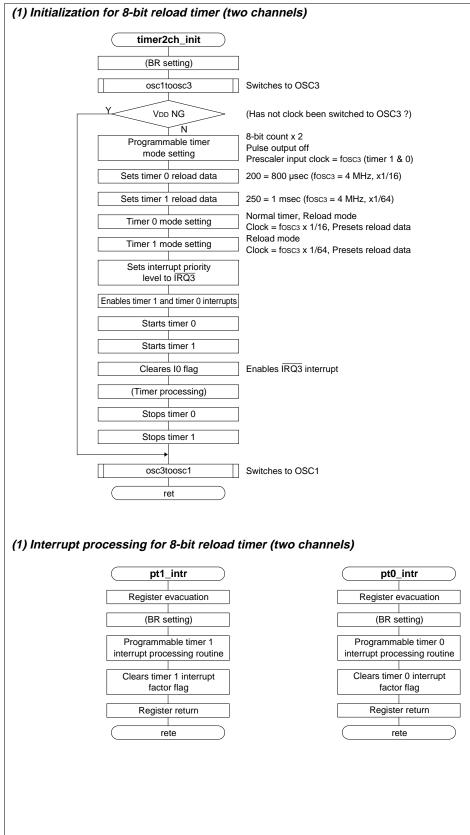
Address	Bit	Name		Fu	Inction	1	0	SR	R/W	Comment
00FF30	D7	-	-			-	-	_		Constantry "0" when
	D6	-	-			-	-	_		being read
	D5	_	-			-	-	_		
	D4	MODE16	8/16-bit mo	de selecti	ion	16-bit x 1	8-bit x 2	0	R/W	
	D3	CHSEL	TOUT outpo	ut channe	el selection	Timer 1	Timer 0	0	R/W	
	D2	PTOUT	TOUT output	ut contro	1	On	Off	0	R/W	
	D1	CKSEL1	Prescaler 1 s	source cl	ock selection	fosc3	fosc1	0	R/W	
	D0	CKSEL0	Prescaler 0 s	source cl	ock selection	fosc3	fosc1	0	R/W	
00FF31	D7	EVCNT	Timer 0 cou	nter mod	le selection	Event counter	Timer	0	R/W	
	D6	FCSEL	Timer 0		In timer mode	Pulse width	Normal	0	R/W	
			function sele	ection		measurement	mode			
					In event counter mode	With	Without			
					 	noise rejector	noise rejector			
	D5	PLPOL	Timer 0		Down count timing	Rising edge	Falling edge	0	R/W	
			pulse polarit	ty	in event counter mode		of K10 input			
			selection		In pulse width	High level measurement	Low level measurement			
					measurement mode		for K10 input			
	D4	PSC01	Timer 0 pres	scaler div	viding ratio selection			0	R/W	
			PSC01	PSC00	Prescaler dividing ratio					
			1	1	Source clock / 64					
	D3	PSC00	1	0	Source clock / 16			0	R/W	
			0	1	Source clock / 4					
			0	0	Source clock / 1					
	D2	CONT0	Timer 0 con	tinuous/o	one-shot mode selection	Continuous	One-shot	0	R/W	
	D1	PSET0	Timer 0 pres	set		Preset	No operation	-	W	"0" when being read
	D0	PRUN0	Timer 0 Rui	n/Stop co	ontrol	Run	Stop	0	R/W	
00FF32	D7	-	_			-	-	-		G
	D6	_	_			-	-	-		Constantry "0" when
	D5	-	_			-	-	-		being read
	D4	PSC11	Timer 1 pres	scaler div	viding ratio selection			0	R/W	
			PSC11	PSC10	Prescaler dividing ratio					
			1	1	Source clock / 64					
	D3	PSC10	1	0	Source clock / 16			0	R/W	
			0	1	Source clock / 4					
			0	0	Source clock / 1					
	D2	CONT1	Timer 1 con	tinuous/o	one-shot mode selection	Continuous	One-shot	0	R/W	1
	D1	PSET1	Timer 1 pres	set		Preset	No operation	_	W	"0" when being read
	D٥	PRUN1	Timer 1 Rui	/Stop.cc	ntrol	Run	Stop	0	R/W	

I/O Map

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF33	D7	RLD07	Timer 0 reload data D7 (MSB)					
	D6	RLD06	Timer 0 reload data D6					
	D5	RLD05	Timer 0 reload data D5					
	D4	RLD04	Timer 0 reload data D4	High	Low	1	R/W	
	D3	RLD03	Timer 0 reload data D3	High	LOW	1	K/ W	
	D2	RLD02	Timer 0 reload data D2					
	D1	RLD01	Timer 0 reload data D1					
	D0	RLD00	Timer 0 reload data D0 (LSB)					
00FF34	D7	RLD17	Timer 1 reload data D7 (MSB)					
	D6	RLD16	Timer 1 reload data D6					
	D5	RLD15	Timer 1 reload data D5					
	D4	RLD14	Timer 1 reload data D4	11 L	T	1	R/W	
	D3	RLD13	Timer 1 reload data D3	High	Low		K/W	
	D2	RLD12	Timer 1 reload data D2					
	D1	RLD11	Timer 1 reload data D1					
	D0	RLD10	Timer 1 reload data D0 (LSB)					
00FF35	D7	PTD07	Timer 0 counter data D7 (MSB)					
	D6	PTD06	Timer 0 counter data D6					
	D5	PTD05	Timer 0 counter data D5					
	D4	PTD04	Timer 0 counter data D4	High	Low	1	R	
	D3	PTD03	Timer 0 counter data D3	High	LOW	1	K	
	D2	PTD02	Timer 0 counter data D2					
	D1	PTD01	Timer 0 counter data D1					
	D0	PTD00	Timer 0 counter data D0 (LSB)					
00FF36	D7	PTD17	Timer 1 counter data D7 (MSB)					
	D6	PTD16	Timer 1 counter data D6					
	D5	PTD15	Timer 1 counter data D5					
	D4	PTD14	Timer 1 counter data D4	High	Low	1	R	
	D3	PTD13	Timer 1 counter data D3	High	Low		ĸ	
	D2	PTD12	Timer 1 counter data D2					
	D1	PTD11	Timer 1 counter data D1					
	D0	PTD10	Timer 1 counter data D0 (LSB)					

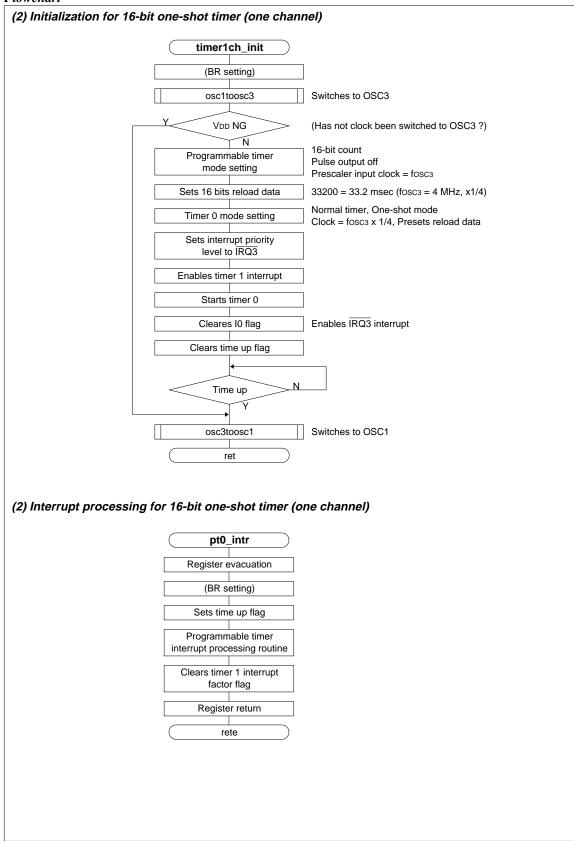

I/O Мар

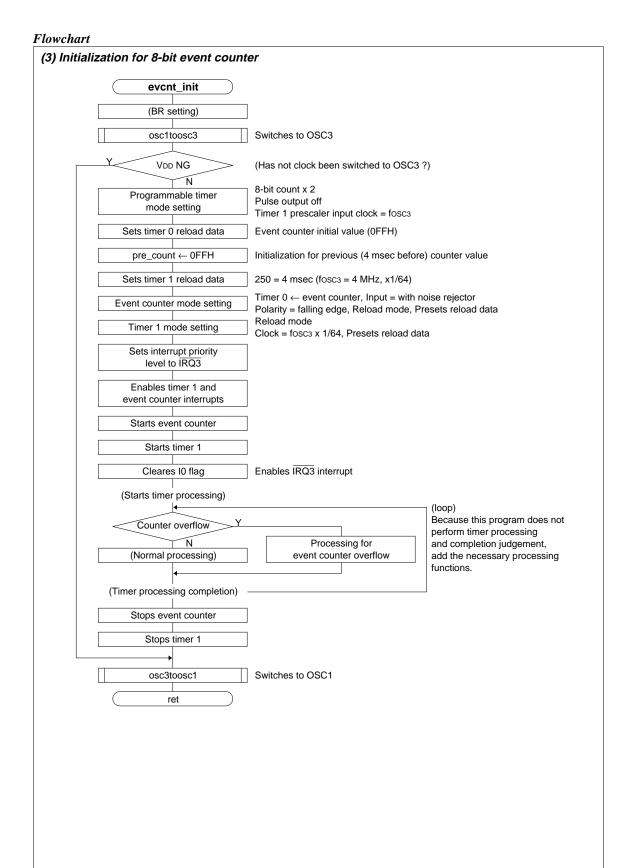
Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF21	D7	-	_	-	-	_		
	D6	-	_	_	_	-		Constantly "0" when
	D5	-	_	_	_	-		being read
	D4	_	_	_	_	_		
		PPT1 PPT0	Programmable timer interrupt priority register	$\frac{PPT1}{PK11} \frac{PPT}{PK1}$		0	R/W	
		PK11 PK10	K10 and K11 interrupt priority register	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Level 2 Level 1 Level 0	0	R/W	
00FF23	D7	EPT1	Programmable timer 1 interrupt enable register					
	D6	EPT0	Programmable timer 0 interrupt enable register					
	D5	EK1	K10 and K11 interrupt enable register					
	D4	EK0H	K04–K07 interrupt enable register	Interrupt	Interrupt	0	R/W	
	D3	EK0L	K00-K03 interrupt enable register	enable	disable	0	K/W	
	D2	ESERR	Serial I/F (error) interrupt enable register					
	D1	ESREC	Serial I/F (receiving) interrupt enable register					
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register					
00FF25	D7	FPT1	Programmable timer 1 interrupt factor flag	(R)	(R)			
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interrupt	No interrupt			
	D5	FK1	K10 and K11 interrupt factor flag	factor is	factor is			
	D4	FK0H	K04–K07 interrupt factor flag	generated	generated	0	R/W	
	D3	FK0L	K00–K03 interrupt factor flag			0		
	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)	(W)			
	D1	FSREC	Serial I/F (receiving) interrupt factor flag	Reset	No operation			
	D0	FSTRA	Serial I/F (transmitting) interrupt factor flag					

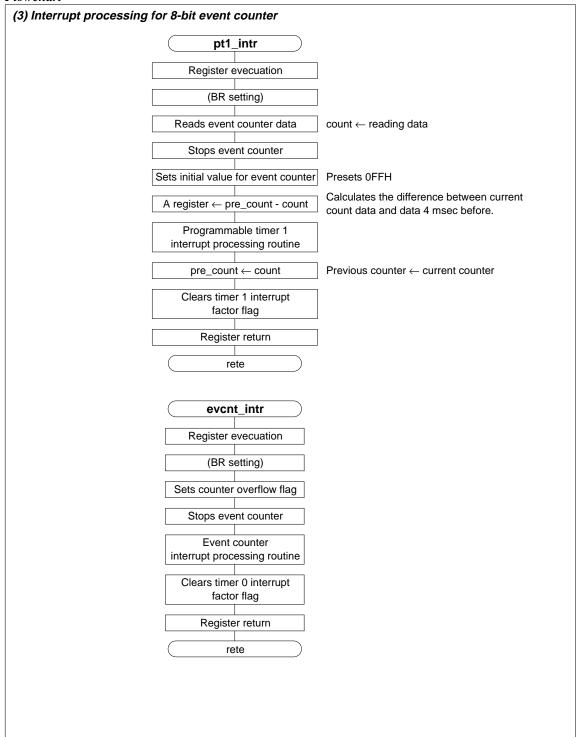

Specifications

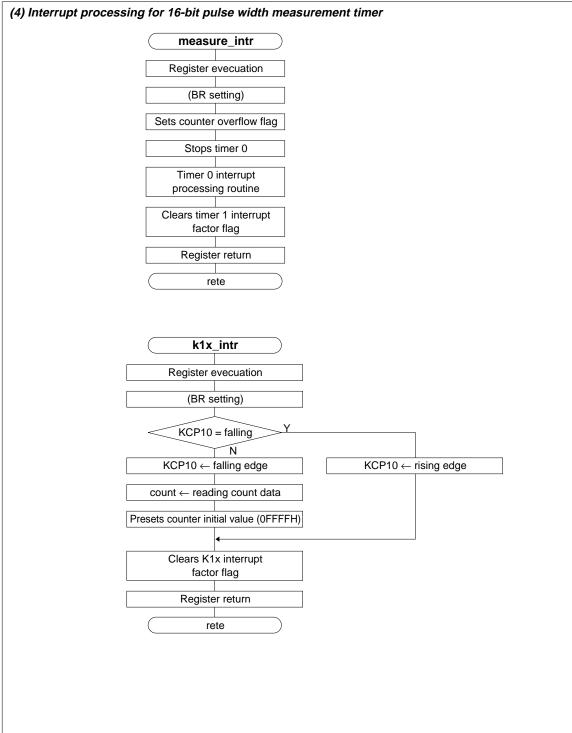
Control of programmable timer Vector address setting for programmable timer interrupt (1) timer2ch_init, pt1_intr, pt0_intr: Initialization and interrupt processing for 8-bit reload timer (two channels) This is an example of using the programmable timer as an 8-bit x 2 system and performs the following settings: • Count mode 8-bit x 2 • Pulse output channel Timer 0 (Invalid) • Pulse external (TOUT) output OFF <Timer 0> • Timer mode Programmable timer (reload mode) • Count clock $fosc_3 \times 1/16$ Reload data 200 (= 800 μ sec, when fOSC3 is 4 MHz) <Timer 1> • Timer mode Programmable timer (reload mode) Count clock fosc3 x 1/64 • Reload data 250 (= 1 msec, when fosc3 is 4 MHz)After setting the above, it enables the timer 1 and timer 0 interrupts, and starts each timer. The interrupt level has been set at IRQ3 and the respective interrupts are generated in the cycles according to the reload data.

Specifications	
(2) timer1ch_init, pt0_intr: In	ector address setting for programmable timer interrupt itialization and interrupt processing for 16-bit one-shot timer one channel)
•	ng the programmable timer as a 16-bit x 1 system one-shot timer and
performs the following se	
Count mode	16-bit x 1
 Pulse output cha 	annel Timer 0 (Invalid)
• Pulse external (1	
<timer 0=""></timer>	*
 Timer mode 	Programmable timer (one-shot mode)
 Count clock 	$fosc3 \times 1/4$
 Reload data 	33,200 (= 33.2 msec, when fosc3 is 4 MHz)
<timer 1=""></timer>	Cannot be used
After setting the above, it	enables the timer 1 interrupt, and starts the timer.
The interrupt level has be	en set at $\overline{\text{IRQ3}}$ and an interrupt is generated 33.2 msec after starting.
	Vector address setting for programmable timer interrupt
(3) evcnt_init, pt1_intr, evcnt	_intr: Initialization and interrupt processing for 8-bit event counter
	ng the programmable timer as an 8-bit event counter and 8-bit reload
timer, and performs the f	
Count mode	8-bit x 2
 Pulse output cha 	annel Timer 0 (Invalid)
• Pulse external (T	
<timer 0=""></timer>	
 Timer mode 	Event counter (reload mode)
 Input clock 	K10 with noise rejector
 Count timing 	Falling edge
Reload data	0FFH (Event counter initial value)
<timer 1=""></timer>	
 Timer mode 	Programmable timer (reload mode)
 Count clock 	fosc3 x 1/64
 Reload data 	250 (= 4 msec, when fOSC3 is 4 MHz)
After setting the above, it	enables the the event counter and timer 1 interrupts, and starts each
timer.	
The interrupt level has be	en set at IRQ3 and an interrupt is generated by the overflow of the event
counter or timer 1.	
	o generate an interrupt in 4 msec cycles. This example reads the event
	upt processing routine and calculates the difference between it and
	is difference is made to the number of clocks that had been input in the 4
msec period.	
	_ ↓ Start
K10 inp	
Event c	ounter FFH FEH FDH FCH FBH FAH F9H
Timer 1	interrupt
	4 msec
	FFH - FCH = 3 FCH - F9H = 3
	Fig. 12.1 Event counter processing

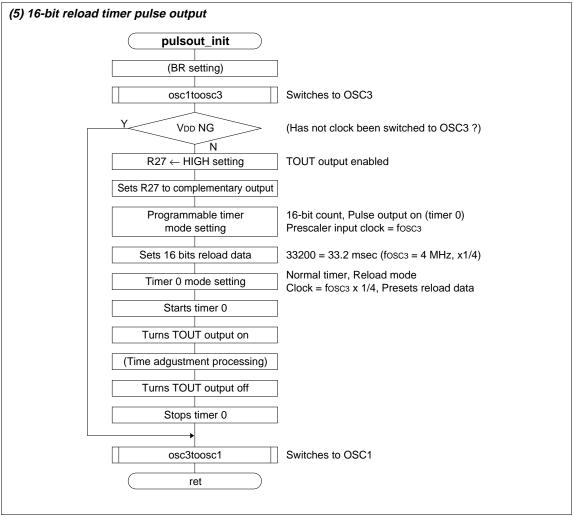



Flowchart


II-68



Flowchart



Flowchart (4) Initialization for 16-bit pulse width measurement timer measure_init (BR setting) Switches to OSC3 osc1toosc3 VDD NG (Has not clock been switched to OSC3 ?) N 16-bit count Programmable timer Pulse output off mode setting Prescaler input clock = fosc3 Sets reload data Counter initial value (0FFFFH) Timer 0 ← pulse width measurement mode, Polarity = LOW period measurement Pulse width measurement Clock = fosc3 x 1/1, Reload mode, Presets reload data mode setting K10 input interrupt condition setting K10 falling edge, Enables K10 interrupt Sets interrupt priority level to IRQ3 Enables timer 1 and K1x input interrupts Starts timer 0 Cleares I0 flag Enables IRQ3 interrupt (Starts timer processing) (loop) Because this program does not Counter overflow perform timer processing N and completion judgement, Processing for counter overflow (Normal processing) add the necessary processing functions. (Timer processing completion) Stops timer 0 Switches to OSC1 osc3toosc1 ret

Flowchart

Flowchart

Notes

- (1) External routines are called for switching to OSC3 and OSC1. (external call: osc1toosc3, osc3toosc1)
- (2) Switching the operating mode when the supply voltage is lower than the VD1 setting may cause a malfunction. Hence, the example routine checks the supply voltage when switching to the normal mode (OSC3) and terminates as a supply voltage error remains unprocessed if the supply voltage is lower than the VD1 setting. For this determination, vdd_ngf flag is used. (See "4 OSCILLATION CIRCUIT".)
- (3) When switching from OSC3 to OSC1 ($VD1 = 2.2 V \rightarrow 1.3 V$), the program example does not perform special checking of the supply voltage of SVD if the supply voltage is already more than the VD1 setting.
- (4) To reset the interrupt factor flag, write "1" into the corresponding flags alone, using the AND or LD instruction. When the OR logic operation instruction has been used, "1" is written for the interrupt factor flags that have been set to "1" within the same address and those flags are then clear.
- (5) The interrupt flags (I1 and I0) have not been reset in the interrupt processing routine of this program example, so an interrupt lower than IRQ3 level is disabled at the time of generation. When you wish to accept the next interrupt after an interrupt has been generated, re-setting of the interrupt flags or resetting the interrupt factor flag is necessary after due consideration for the nesting level.

Notes

- (6) The R27 terminal is the common terminal for the normal DC output port and the TOUT output. When TOUT is being output, set R27 register to "1" and control the signal ON/OFF using the TOUT register.
- (7) When the pulse output control is set to off ("0"), the setting of the pulse output channel selection becomes invalid.
- (8) When programmable timer 1 is selected as the clock source for the serial interface, pay attention to the setting value for timer 1, the mode selection for timer 1 and the interrupt setting. Be advised that in this case, it is impossible to use it as a 16-bit timer coupling both timer 0 and timer 1.
- (9) When coupling programmable timers 0 and 1 for use as a 16-bit timer, the setting of timer 0 becomes valid for timer operation and the setting of timer 1 becomes invalid. However, since an interrupt is generated by the underflow of timer 1, set the interrupt related routine with timer 1.
- (10) When stopping the programmable timer by writing "0" into the RUN/STOP control register for the programmable timer 0 and 1, the programmable timer count actually stops when it advances one count with the timing synchronized to the input clock selected with the prescaler dividing clock. For this reason, when the programmable timer stops, if the respective interrupt factors are generated, the respective interrupt factor flags are set and if interrupt is enabled, an interrupt is generated. Thus, you should add an interrupt processing and interrupt factor flag resetting, if necessary.
- (11) A noise reject circuit is not included in the input port (K port). For this reason, when the programmable timer is used for event counter in the program example (3) or for pulse width measurement in the example (4), the following operation will occur if there is chattering in the K10 input, so, input waveform shaping or adding external noise reject processing with an external circuit and software is necessary. In case of the event counter in the program example (3), if there is chattering in the K10 input, the chattering may be counted. In the case of pulse width measurement in the program example (4), if there is chattering in the K10 input, successive interrupts may be generated in the measurement start trigger timing of the rising or falling K10 input.
- (12) When a down-counter underflow occurs, the one-shot timer mode sets the reload register value to the counter data register, to stop the count. For this reason, when you want to continue the count at the same count number, you should restart to timer. If you want to newly set a different count number, set the new value in the reload register, then set it to the count data register, and then start the timer.
- (13) In the examples of programmable timer control programs which use an interrupt, the vector address setting and program have been allocated from 003000H for the sake of convenience. For an example which does not use an interrupt, a specific address has not been allocated as in the examples in other chapters.

Control of pro	ogramn	nable timer 1	
	ernal ernal .ic	oscltoosc3,osc3toosc1 vdd_ngf timer2ch_init,pt1_intr,	pt0_intr
pt1_vector	equ	000006h	;timer 0 interrupt vector offset
pt0_vector	equ	000008h	;timer 1 interrupt vector offset
pt	equ	003000h	;program start address offset
br_io	equ	Offh	;base reg. address (set i/o area)
pt_mode0	equ	00ff30h	;programmable timer mode set reg. 0
pt_mode1	equ	00ff31h	;programmable timer mode set reg. 1
pt_mode2	equ	00ff32h	;programmable timer mode set reg. 2
rld0	equ	00ff33h	;programmable timer 0 reload data
rld1	equ	00ff34h	;programmable timer 1 reload data
;			
intr_pr1	equ	00ff21h	;interrupt priority reg. 1
intr_en1	equ	00ff23h	;interrupt enable reg. 1
intr_fac1	equ	00ff25h	;interrupt factor flag reg. 1
;			

code

. .

Vector address setting for programmable timer interrupt

intr_vec	org dw	<pre>intr_vectors+ptl_vector ptl_intr</pre>	;programmable timer 1 interrupt	
;	org dw	<pre>intr_vectors+pt0_vector pt0_intr</pre>	;programmable timer 0 interrupt	

(1) Initialization for 8-bit reload timer (two systems)

```
intr_vectors+pt
        org
timerdata8_0: db 200
timerdata8_1: db 250
                                            ;timer 0 reload data (800us at 4mhz/16)
                                            ;timer 1 reload data ( 1ms at 4mhz/64)
;
;*
;*
       8-bit * 2-channel reload timer
;*
*****
;*** initialize routine
timer2ch_init:
        1d
             br,#br io
                                           ;set br reg. address to Offxxh
        carl osc1toosc3
                                           ; change osc1 to osc3 ***
        ld a,[lod vdd_ngf]
                                           ;vdd ng flag
             a,#0ffh
        ср
       jrl z,timer2ch_init00
;
;mode16=8bit*2,chsel=timer0,ptout=off,cksel1&0=fosc3
        ld [br:low pt_mode0],#00000011b
             a,[loc timerdata8_0]
        ld
        ld
            [br:low rld0],a
                                           ;set reload data (timer 0)
            a,[loc timerdata8_1]
[br:low rld1],a
       ld
        ld
                                           ;set reload data (timer 1)
;pt0:evcnt=timer,fcsel=normal timer,plpol=don't care,psc=fosc3/16,rlmd0=reload
;pset0=preset
        ld
             [br:low pt_mode1],#00010110b
;pt1:psc=fosc3/64,rlmd1=reload,pset1=preset
       ld [br:low pt_mode2],#00011110b
        or
             [br:low intr_pr1],#00001100b
                                           ;set pt=/irq3
                                        ept1&0 intr. en.
             [br:low intr_en1],#11000000b
        or
                                           ;start timer 0
;start timer 1
        or
             [br:low pt_mode1],#0000001b
             [br:low pt_mode2],#0000001b
        or
        ld
             a,sc
             a,#00111111b
        and
             a,#10000000b
        or
        1d
             sc,a
                                            ;i0 flag clear (en. /irq3 intr.)
```

```
Source List
```

```
;*** start programmable timer 0 & 1 interrupt
:
     (user program)
;*** end processing
                             ;stop timer 0
     and [br:low pt_mode1],#11111110b
     and
         [br:low pt_mode2],#11111110b
                              ;stop timer 1
timer2ch_init00:
     carl osc3toosc1
                               ; change osc3 to osc1 ***
     ret
(1) Interrupt processing for 8-bit reload timer (two systems)
;*
;*
   programmable timer 1 interrupt processing routine (reload mode)
                                              *
;*
pt1_intr:
     push ale
;
     ld br,#br_io
                               ;set br reg. address to Offxxh
;
;
;
     programmable timer 1 processing
;
;
     and [br:low intr_fac1],#1000000b
                              ;clear fpt1 interrupt flag
     pop
         ale
     rete
;*
;*
   programmable timer 0 interrupt processing routine (reload mode)
                                              *
; *
pt0_intr:
     push ale
;
     ld br,#br_io
                               ;set br reg. address to Offxxh
;
;
    programmable timer 0 processing
;
;
;
     and
         [br:low intr_fac1],#01000000b
                              ;clear fpt0 interrupt flag
     pop
         ale
     rete
     end
```

Control of programmable timer 2

public public		
, pt1_vector equ pt equ br_io equ pt_mode0 equ pt_mode1 equ rld0 equ rld1 equ	000006h 003000h 0ffh 00ff30h 00ff31h 00ff33h 00ff34h	<pre>;timer 1 interrupt vector offset ;program start address offset ;base reg. address (set i/o area) ;programmable timer mode set reg. 0 ;programmable timer mode set reg. 1 ;programmable timer 0 reload data ;programmable timer 1 reload data</pre>
<pre>intr_prl equ intr_enl equ intr_facl equ ;</pre>	00ff21h 00ff23h 00ff25h [1]	<pre>;interrupt priority reg. 1 ;interrupt enable reg. 1 ;interrupt factor flag reg. 1 ;timeup flag</pre>

Vector address setting for programmable timer interrupt

(2) Initialization for 16-bit one-shot timer (one system)

```
orq
            intr_vectors+pt
;timer16 reload data (33.2ms at 4mhz/4)
                      *****
; *
;*
       16-bit * 1-channel one shot timer
;*
;*** initialize routine
timer1ch_init:
       ld
            br,#br_io
                                        ;set br reg. address to Offxxh
       carl
           oscltoosc3
                                        ; change osc1 to osc3 ***
       ld
            a,[lod vdd_ngf]
                                        ;vdd ng flag
            a,#0ffh
       ср
       jrl
            z,timer1ch_init00
;
;model6=16-bit,chsel=timer0,ptout=off,cksel1=dont't care,ckse0=fosc3
       ld
            [br:low pt_mode0],#00010001b
       ld
            ba,[loc timerdata16]
                                       ;set 16-bit reload data (timer 0 & 1)
       ld
            [lod rld0],ba
;pt0:evcnt=timer,fcsel=normal timer,plpol=don't care,psc=fosc3/4,rlmd0=oneshot
;pset0=preset
            [br:low pt_mode1],#00001010b
       ld
            [br:low intr_pr1],#00001100b
                                       ;set pt=/irq3
       or
            [br:low intr_prl],#00001100b ;set pt=/irq3
[br:low intr_en1],#10000000b ;ept1 intr. en.
       or
            [br:low pt_mode1],#0000001b
                                        ;start timer 0
       or
       ld
            a,sc
            a,#00111111b
       and
       or
            a,#1000000b
       ld
                                        ;i0 flag clear (en. /irg3 intr.)
            sc.a
       xor
            a,a
       ld
            [lod timeup],a
;*** start programmable timer 0 (16-bit) interrupt
timer1ch_init01:
      ld a,[lod timeup]
           a,#0ffh
       CD
           nz,timer1ch_init01
       jrs
;******
;*** end processing
timer1ch_init00:
       carl osc3toosc1
                                        ; change osc3 to osc1 ***
       ret
```

```
(2) Interrupt processing for 16-bit one-shot timer (one system)
;*
;*
   programmable timer 1 interrupt processing routine (one-shot mode)
                                                   *
;*
pt0_intr:
      push ale
;
      ld
          br,#br_io
                                  ;set br reg. address to Offxxh
          a,#0ffh
      ld
          [lod timeup],a
                                  ;timeup flag set
      ld
;
;
      programmable timer 0 processing
;
;
;
          [br:low intr_fac1],#1000000b ;clear fpt1 interrupt flag
      and
      pop
          ale
      rete
      end
```

Control of programmable timer 3

	external external public public		oscltoosc3,osc3toosc1 vdd_ngf evcnt_init,evcnt_intr,pt1_; pre_count,count,ovf_flag	intr
	, pt1_vector	equ	000006h	;timer 1 interrupt vector offset
	event vector	-	000008h	;event counter interrupt vector offset
	event_veeto	-	003000h	-
		equ		;program start address offset
	br_io	equ	Offh	;base reg. address (set i/o area)
	pt_mode0	equ	00ff30h	vevent counter timer mode set reg. 0
	pt_mode1	equ	00ff31h	;event counter mode set reg. 1
	pt_mode2	equ	00ff32h	;programmable timer mode set reg. 2
	rld0	equ	00ff33h	;event counter reload data
	rld1	equ	00ff34h	;programmable timer 1 reload data
	ptd0	equ	00ff35h	;event counter counting data
	ptd1	equ	00ff36h	;programmable timer 1 counter data
	;			
	intr_pr1	equ	00ff21h	;interrupt priority reg. 1
	intr_en1	equ	00ff23h	;interrupt enable reg. 1
	intr_fac1	equ	00ff25h	;interrupt factor flag reg. 1
	;			
data		ta		
	pre_count:	db	[1]	;previous event counter data
	count:	db	[1]	;present event counter data
	ovf flag:	db	[1]	; event counter overflow flag
	co			

Vector address setting for 8-bit event counter interrupt

(3) Initialization for 8-bit event counter

```
orq
             intr_vectors+evcnt
timerdata8 2: db 250
                                          ;timer 1 reload data (4msec at 4mhz/64)
;*
;* 8-bit event counter (timer 0) counting between 4msec (reload timer 1) *
;*
;*** initialize routine
evcnt_init:
       1d
             br,#br_io
                                           ;set br reg. address to Offxxh
       carl osc1toosc3
                                           ; change osc1 to osc3 ***
       ld
           a,[lod vdd_ngf]
            a,#0ffh
       ср
       jrl z,evcnt_init01
;
;mode16=8-bit,chsel=timer 0,pulse output=off,cksel1=fosc3,cksel0=don't care
       ld [br:low pt_mode0],#00000011b
             a,#0ffh
       ld
       ld
            [br:low rld0],a
                                          ;set event counter init data (max.)
       ld
            [lod pre_count],a
                                          ;pre event counter data set
           a,[loc timerdata8_2]
[br:low rld1],a
       ld
       ld
                                          ;set reload data (timer 1)
;pt0:evcnt=event counter,fcsel=with noise rejector,plpol=falling edge
;psc1&0=don't care,rlmd0=reload,pset0=preset,prrun0=stop
       ld
            [br:low pt_mode1],#11000110b
;pt1:psc=fosc3/64,rlmd1=reload,pset1=preset
       ld
           [br:low pt_mode2],#00011110b
                                        ;set pt=/irq3
;ept1&0 intr. en.
;start event counter
             [br:low intr_pr1],#00001100b
       or
            [br:low intr_en1],#11000000b
       or
            [br:low pt_mode1],#0000001b
       or
       or [br:low pt_mode2],#0000001b
                                          ;start timer 1
```

```
ld
          a,sc
          a,#00111111b
      and
      or
          a,#10000000b
      ld
          sc.a
                                   ;i0 flag clear (en. /irg3 intr.)
      xor
          a,a
          [lod ovf_flag],a
      ld
                                  ;overflow flag clear
;*** start event counter (timer 0) and programmable timer 1 interrupt
:
      (user program)
loop:
      ld a,[lod ovf_flag]
         a,#0ffh
nz,evcnt_init00
     ср
                                   ;event counter overflow ?
      jrs
                                   ;--> normal
;*** event counter overflow processing
;
     (user program)
;
;*** normal processing
evcnt_init00:
    (user program)
event_init02:
jrs loop ;-->
;*** end processing
      and [br:low pt_mode1],#11111110b
                                  ;stop event counter
      and
          [br:low pt_mode2],#11111110b
                                  ;stop timer 1
evcnt_init01:
      carl osc3toosc1
                                  ; change osc3 to osc1 ***
      ret
(3) Interrupt processing for 8-bit event counter
;*
;*
                                                    *
   programmable timer 1 interrupt processing routine (reload mode)
;*
pt1_intr:
      push ale
;
      ld
          br,#br_io
                                  ;set br reg. address to Offxxh
;
      ld
         (real event counter counting dat
(br:low pt_model],#1111110b
[br:low pt_model],#00000010b
a,[lod pre count1]
                                  ;read event counter counting data
      ld
      and
      or
                                  ;set event counter next data (max.)
      ld
          a,[lod pre_count]
      sub a,[lod count]
                                   ;a-reg. = input count number (4 msec)
;
;
;
      programmable timer 1 processing (based on event counter counting data)
;
;
      ld
          a,[lod count]
          ld
      and
      pop
          ale
      rete
```

12 PROGRAMMABLE TIMER

```
Source List
```

```
;*
;* event counter (timer 0) interrupt processing routine (counter overflow) *
;*
evcnt_intr:
     push ale
;
      ld br,#br_io
                                  ;set br reg. address to Offxxh
;
          a,#0ffh
      ld
      ld
          [lod ovf_flag],a
                                  ; event counter overflow flag set
      and [br:low pt_mode1],#11111110b
                                 ;event counter stop
;
;
;
      event counter overflow processing
;
;
      and
          [br:low intr_fac1],#01000000b ;clear fpt0 interrupt flag
      pop
          ale
      rete
      end
```

```
Control of programmable timer 4
        external
                    oscltoosc3,osc3toosc1
        external
                    vdd_ngf
        public
                    measure_init,measure_intr
        public
                    count, ovf_flag, k1x_intr
                    000006h
measure_vector equ
                                                ;measure interrupt vector offset
                    00000ah
klx_vector equ
                                                ;klx interrupt vector offset
                    003000h
                                                ;program start address offset
рm
              eau
br_io
              equ
                    Offh
                                                ; base reg. address (set i/o area)
pt_mode0
                    00ff30h
                                                ;pulse width measure mode set reg. 0
              equ
pt_mode1
              equ
                     00ff31h
                                                ;pulse width measure mode set reg. 1
                    00ff33h
                                                ;pulse width measure (low) reload data
;pulse width measure (high) reload data
rld0
              equ
                    00ff34h
rld1
              equ
ptd0
                    00ff35h
              equ
                                                ;pulse width measure (low) count data
ptd1
                    00ff36h
                                                ;pulse width measure (high) count data
              equ
                                                ; interrupt selection reg. for k1x
_
sik1
                    00ff51h
              eau
kcp1
              equ
                    00ff53h
                                                ; interrupt comparison reg. for klx
k1d
              equ
                    00ff55h
                                                ; input data from k1x
                    00ff21h
intr_pr1
              equ
                                               ; interrupt priority reg. 1
intr_en1
              equ
                    00ff23h
                                                ; interrupt enable reg. 1
intr_fac1
                    00ff25h
                                                ; interrupt factor flag reg. 1
              equ
        data
count:
              dw
                    [1]
                                                ;pulse width measured data
ovf_flag:
              db
                     [1]
                                                ;event counter overflow flag
        code
Vector address setting for 16-bit pulse width measurement timer interrupt
intr_vectors:
        orq
              intr_vectors+measure_vector
        dw
              measure_intr
                                               ;pulse width measure overflow interrupt
;
        org
              intr_vectors+k1x_vector
        dw
              k1x_intr
                                               ;k1x interrupt processing routine
;
(4) Initialization for 16-bit pulse width measurement timer
        orq
              intr vectors+pm
;*****
;*
;* 16-bit pulse width measurement (timer 0) between k10 "low" input term *
:*
      ;*** initialize routine
measure_init:
        1d
              br,#br_io
                                                ;set br reg. address to Offxxh
        carl oscltoosc3
                                               ; change osc1 to osc3 ***
              a,[lod vdd_ngf]
        ld
                                               ;vdd ng flag
              a,#0ffh
        ср
        jrl
              z,measure_init01
;model6=16-bit,chsel=timer 0,pulse output=off,cksel1=don't care,cksel0=fosc3
        1d
              [br:low pt_mode0],#00011001b
        ld
              ba,#0ffffh
        ld
              [lod rld0],ba
                                                ;set measure counter init data (max.)
;pt0:evcnt=timer,fcsel=pulse width measurement,plpol=low level measurement
;psc=fosc3/1,rlmd0=reload,pset0=preset,prrun0=stop
            [br:low pt_mode1],#01000110b
        ld
        1d
              [br:low kcp1],#0000001b
                                               ;k10 falling edge ("h" -> "l")
              into failing edge ("h"
;k10 interrupt enable
;set pt & pkl=/irq3
;pr:low pt_model],#0000001b
;start rult
        ld
        or
        or
                                               ;start pulse measurement
        or
        ld
              a,sc
        and
              a,#00111111b
              a,#10000000b
        or
        14
              sc,a
                                               ;i0 flag clear (en. /irq3 intr.)
        xor
              a,a
        ld
              [lod ovf_flag],a
                                               ;overflow flag clear
```

```
Source List
```

```
;*** start measure counter (16-bit timer 0)
;
     (user program)
wait_loop:
      ld
          a,[lod ovf_flag]
      cp a,#0ffh
irs nz.measure init00
                                     ;measure counter overflow ?
                                      ;--> normal
;*** measure counter overflow processing
      (user program)
;
;
      jrs
          measure_init02
;*** normal processing
measure_init00:
;
     (user program)
;
measure_init02:
jrs wait_loop ;
                                     :-->
                                            *****
;*** end processing
      and [br:low pt_mode1],#11111110b
                                     ;stop measure counter
measure_init01:
      carl osc3toosc1
                                      ; change osc3 to osc1 ***
      ret
(4) Interrupt processing for 16-bit pulse width measurement timer
;**
       ;*
;* measure counter (16-bit timer 0) interrupt processing routine (overflow) *
;*
measure_intr:
      push ale
;
           br,#br_io
      ld
                                      ;set br reg. address to Offxxh
;
         a,#0ffh
      ld
      ld [lod ovf_flag],a                         ;event counter overflow flag set
and [br:low pt_model],#1111110b                    ;measure counter stop
;
;
     measure counter overflow processing
;
;
;
          [br:low intr_fac1],#1000000b
      and
                                     ;clear fpt1 interrupt flag
      σοσ
           ale
      rete
;*
;*
     klx interrupt processing routine
;*
k1x_intr:
      push ale
;
     ld br,#br_io
                                      ;set br reg. address to Offxxh
;
          [br:low kcp1],#0000001b
      bit
                                     ;kcp setting ?
      jrs
          z,klx_intr01
;falling edge -> rising edge
      and [br:low kcp1],#11111110b
                                     ;set rising edge
       jrs
          k1x_intr00
;rising edge -> falling edge
k1x intr01:
          [br:low kcp1],#00000001b
ba,[lod ptd0]
      or
                                     ;set falling edge
      ld
      ld
          [lod count],ba
                                      ;read measure count data
          [br:low pt_mode1],#00000010b
                                     ;set measure counter init data (max.)
      or
k1x_intr00:
      and
          [br:low intr_fac1],#00100000b
                                     ;clear fk1 interrupt flag
      qoq
           ale
      rete
       end
```

```
Control of programmable timer 5
        external
                   oscltoosc3,osc3toosc1
       external
                  vdd_ngf
       public
                  pulsout_init
.
br_io
                  Offh
                                           ;base reg. address (set i/o area)
            equ
pt_mode0
                  00ff30h
                                           ;programmable timer mode set reg. 0
           equ
equ
                  00ff31h
                                           ;programmable timer mode set reg. 1
pt model
rld0
                  00ff33h
                                           ;programmable timer 0 reload data
            eau
                   00ff34h
rld1
            equ
                                           ;programmable timer 1 reload data
hzr2
                  00ff71h
                                           ;r2x output control reg.
             equ
r2d
            equ
                  00ff75h
                                           ;r2x output data
;
intr_prl
            equ 00ff21h
                                           ; interrupt priority reg. 1
            equ
                  00ff23h
                                           ;interrupt enable reg. 1
intr_en1
intr_fac1
             equ
                  00ff25h
                                           ; interrupt factor flag reg. 1
       code
(5) 16-bit reload timer pulse output
;pulse output=66.4ms(approx. 15hz)
timerdata16: dw 33200 ;timer16 reload data (33
                                        ;timer16 reload data (33.2ms at 4mhz/4)
;*
;*
       pulse out (16-bit) control
;*
;*** initialize routine
pulsout_init:
       ld
             br,#br io
                                           ;set br reg. address to Offxxh
        carl osc1toosc3
                                           ; change osc1 to osc3 ***
       ld
             a,[lod vdd_ngf]
                                           ;vdd ng flag
             a,#0ffh
       ср
       jrl z,pulsout_init00
;
            [br:low r2d],#1000000b
                                          ;r27="h" (enable ptout)
             [br:low hzr2],#01111111b
       or
       and
                                           ;r27=complementary output
;mode16=16-bit,chsel=timer0,ptout=off,cksel1=don't care,cksel0=fosc3
       ld [br:low pt_mode0],#00011001b
             ba,[loc timerdata16]
       ld
                                           ;set 16-bit counter data (timer 0 & 1)
       1d
            [lod rld0],ba
;pt0:evcnt=timer,fcsel=normal timer,plpol=don't care,psc=fosc3/4,rlmd0=reload
;pset0=preset
             [br:low pt_mode1],#00001110b
       ld
           [br:low pt_model],#00000001b ;start timer 0
[br:low pt_mode0],#00000100b ;start ptout
       or
       or
;*** start pulse out (16-bit)
;
       (user program)
;*** end processing
            [br:low pt_mode0],#11111011b ;stop ptout
[br:low pt_mode1],#1111110b ;stop timer 0
       and
       and
             [br:low pt_mode1],#11111110b
pulsout_init00:
       carl osc3toosc1
                                           ; change osc3 to osc1 ***
       ret
       end
```

13 LCD CONTROLLER

I/O Map

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF10	D7	-	_	-	-	-		Constantry "0" when
	D6	_	_	-	-	—		, i i i i i i i i i i i i i i i i i i i
	D5	-	_	-	-	-		being read
	D4	LCCLK	CL output control for expanded LCD driver	On	Off	0	R/W	
	D3	LCFRM	FR output control for expanded LCD driver	On	Off	0	R/W	
	D2	DTFNT	LCD dot font selection	5 x 5 dots	5 x 8 dots	0	R/W	
	D1	LDUTY	LCD drive duty selection	1/16 duty	1/32 duty	0	R/W	*1
	D0	SGOUT	R/W register	1	0	0	R/W	Reserved register
00FF11	D7	_	-	-	-	-		"0" when being read
	D6	DSPAR	LCD display memory area selection	Display area 1	Display area 0	0	R/W	
	D5	LCDC1	LCD display control			0	R/W	
			LCDC1 LCDC0 LCD display					These bits are reset
			1 1 All LCDs lit				L	to (0, 0) when
	D4	LCDC0	1 0 All LCDs out			0	R/W	SLP instruction
			0 1 Normal display					is executed.
			0 0 Drive off					
	D3	LC3	LCD contrast adjustment			0	R/W	
	D2	LC2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	R/W	
	D1	LC1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D0	LC0	0 0 0 0 Light			0	R/W	

*1 When 1/8 duty has been selected by mask option, setting of this register becomes invalid.

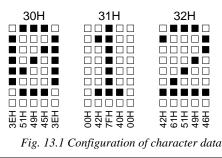
Specifications

Control of LCD controller

(1) Icd_init: Initialization for LCD controller

Sets the LCD controller as follows:

- LCD dot matrix type
 LCD drive duty
 LCD display control
 Contrast
 S x 8
 1/32
 Normal display
 Middle (8/16)
- CL output ON
- FR output ON

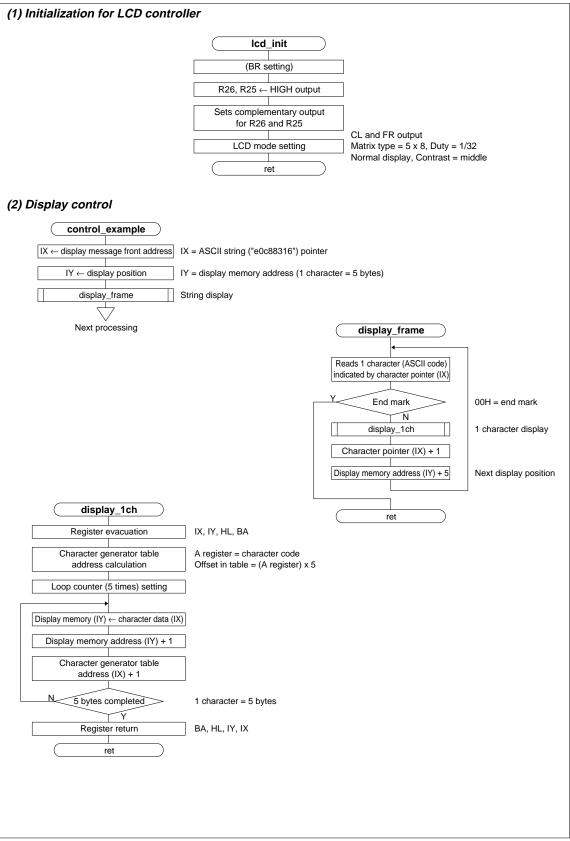

(2) control_example, display_frame, display_1ch: Display control

By specifying the front address of the string stored in memory and the display memory address (display position), data in the character generator table are written to display memory and are shown on the LCD panel.

The message to be displayed is an ASCII code string and "00H" should be added to the end of the string as an end mark.

Display example: "e" "0" "c" "8" "8" "3" "1" "6" 00H

5 x 8-dot character data are stored in the character generator ascii_table in ASCII code order. A character is configured with 5 bytes of data. Consequently, data for the character code "n" should be stored in 5 bytes from ascii_table + (n x 5) address.


Notes

(1) R26 and R25 terminals are common to the normal DC output port and CL output, and FR output. When performing CL and FR output to expand the LCD driver externally, set the R26 and R25 registers at "1" and control the signal ON/OFF using the LCCLK and LCFRM registers.

(2) Maximum drive dot number of the E0C88348/317/316 is 1,632 dots (51 segments × 32 commons).

(3) Maximum drive dot number of the E0C88308 is 1,312 dots (41 segments × 32 commons).

Flowchart

Source List

```
Control of LCD controller
       public
                 lcd_init,display_frame,display_1ch
offset
                 30h*5
                                        ;ascii code table address offset
            equ
                 Offh
br_io
            equ
                                        ;base reg.address (set i/o area)
lcd_mode0 equ
                00ff10h
                                       ;lcd controller mode set reg. 0
lcd_mode1
                 00ff11h
                                       ;lcd controller mode set reg. 1
           eau
                 00ff71h
hzr2
            equ
                                       ;r2x output control data
r2d
                 00ff75h
                                       ;r2x output data
            equ
lcd ram0
           equ
                00f800h
                                       ;lcd ram line 0 top address
          equ
lcd_ram1
                00f900h
                                       ;lcd ram line 1 top address
lcd_ram2
                 00fa00h
                                       ;lcd ram line 2 top address
           equ
lcd_ram3
                00fb00h
                                       ;lcd ram line 3 top address
            equ
;
      code
(1) Initialization for LCD controller
; *
:*
      lcd display control
;*
;*** initialize routine
lcd_init:
                                     ;set br reg. address to 0ffxxh
;r26,r25="h" (fr,cr enable)
           br,#br_io
[br:low r2d],#01100000b
       ld
       or
      and [br:low hzr2],#1001111b
                                       ;r26,r25=complementary output
;lcclk,lcfrm=on,dttyp=5*8,lduty=1/32
                                                                       (1)
      ld [br:low lcd mode0],#00011000b
;srsel=don't care (when 1/32),lcdc=normal,lc=middle contrast
      ld
          [br:low lcd_mode1],#00011000b
      ret
;
(2) Display control
     ;*** control program example routine
control_example:
       ld ix,#loc frame00
                                       ;display message
       ld iy,#lod lcd_ram0+1*5
carl display_frame
                                       display address;
                                       ;display frame ***
;
       (user program)
;
;*
                                                          *
;*
       dispaly frame
                                                          *
;*
       ix : message top address
;*
         iy : display top address
                                                          *
;*
;*** control routine
                                                                       (2)
display_frame:
       ld
           a,[ix]
       ср
           a,#00h
                                        ;end mark ?
       jrs z,display_frame00
                                        ;exit
;
       cars display_1ch
                                       ;display 1 character ***
       inc
            ix
            iy,#5
       add
                                       ;display address + 5 (5*8 dots)
       jrs display_frame
                                       ;up end mark detect
display_frame00:
      ret
```

Source List

;* ;* display 1 character (from ascii code to 5*8 dots dot matrix) * ix : message pointer index ;* ;* iy : store pointer index ;* display_1ch: push ix push iv push hl push ba ld 1,#5 mlt ;hl <- a-reg*5 add hl,#loc ascii_table ;hl <- hl + ascii_table top addres ld ix,hl ld b,#5 ;5 bytes data display_1char00: ld [iy],[ix] inc ix inc iy djr nz,display_1char00 ; pop ba (2)pop hl pop iy рор ix ret ; ;*** messeage frame example frame00: ascii "e0c88316" db 00h ;end mark ; ;*** ascii character table (example) ascii_table: ; character code 00h to 2fh have not been used in this example ; ; ascii_table+offset orq ;"0",30h db 3eh,51h,49h,45h,3eh db 00h,42h,7fh,40h,00h ;"1",31h ;"2",32h 42h,61h,51h,49h,46h db (user defined) ; character generator table (5*8 dots) ; (user defined) ; end

14 SOUND GENERATOR

I/O Map

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF44	D7	-	_	-	-	_		Constantry "0" when
	D6	BZSTP	One-shot buzzer forcibly stop	Forcibly stop	No operation	_	W	being read
	D5	BZSHT	One-shot buzzer trigger/status R	Busy	Ready	0	R/W	
			W	Trigger	No operation			
	D4	SHTPW	One-shot buzzer duration width selection	125 msec	31.25 msec	0	R/W	
	D3	ENRTM	Envelope attenuation time	1 sec	0.5 sec	0	R/W	
	D2	ENRST	Envelope reset	Reset	No operation	-	W	"0" when being read
	D1	ENON	Envelope On/Off control	On	Off	0	R/W	*1
	D0	BZON	Buzzer output control	On	Off	0	R/W	
00FF45	D7	-	_	-	-	_		"0" when being read
	D6	DUTY2	$\begin{array}{c} \text{Buzzer signal duty ratio selection} \\ \underline{\begin{array}{c} \text{DUTY2-1} \\ 2 \end{array} } \\ \underline{\begin{array}{c} \text{Buzzer frequency (Hz)} \\ 4096.0 \end{array} } \\ \underline{\begin{array}{c} \text{Buzzer frequency (Hz)} \\ 4096.0 \end{array} } \\ \underline{\begin{array}{c} \text{2730.7} \end{array} \\ \underline{\begin{array}{c} \text{2340.6} \\ 2048.0 \end{array} } \\ \underline{\begin{array}{c} \text{1638.4} \end{array} \\ \underline{\begin{array}{c} \text{1365.3} \end{array} } \\ \underline{1170.3} \end{array} } \end{array}$			0	R/W	
	D5	DUTY1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	R/W	
	D4	DUTY0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D3	-	_			_		"0" when being read
	D2	BZFQ2	Buzzer frequency selection			0	R/W	
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				 	
	D1	BZFQ1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	
	D0	BZFQ0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	R/W	

*1 Reset to "0" during one-shot output.

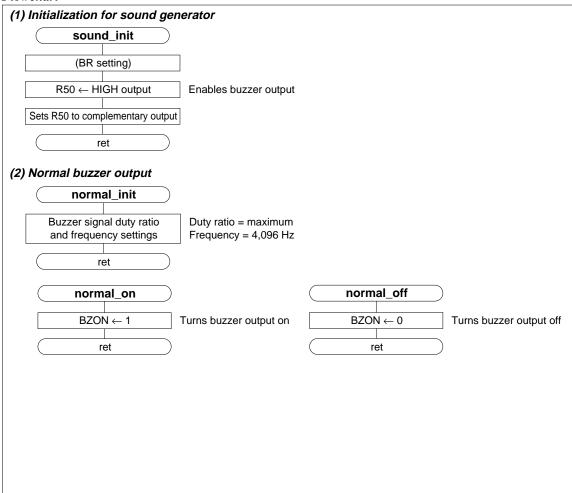
Specifications

Control of sound generator

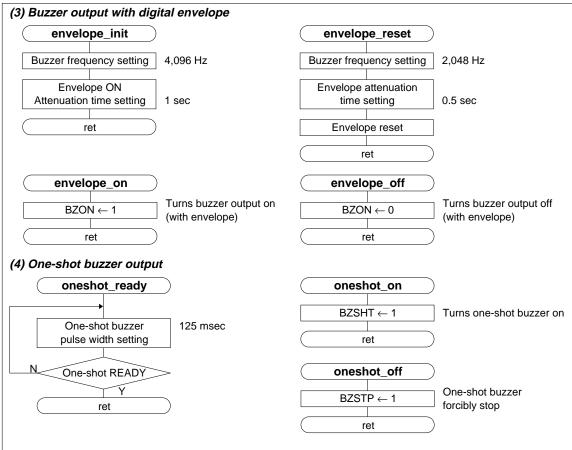
(1) sound_init: Initialization for sound generator Enables the buzzer output from R50 terminal.

(2) normal_init, normal_on, normal_off: Normal buzzer output

The normal_init routine sets the duty ratio of the buzzer signal to maximum and the frequency to 4,096 Hz. There is buzzer output when normal_on has been called until normal_off is called.


(3) envelope_init, envelope_on, envelope_reset, envelope_off: Buzzer output with digital envelope The envelope_init routine sets the buzzer signal frequency to 4,096 Hz and the envelope attenuation time to 1 sec and then turns the envelope ON.

There is buzzer output when envelope_on has been called until envelope_off is called. The envelope_reset routine re-sets the buzzer signal frequency to 2,048 Hz and the envelope attenuation time to 0.5 sec and then resets the envelope. The envelope is reset by calling envelope_reset during output period of a buzzer with envelope.


(4) oneshot_ready, oneshot_on, oneshot_off: One-shot buzzer output

The oneshot_ready routine sets the one-shot buzzer pulse width to 125 msec and waits until the one-shot buzzer output has shifted to READY status. One-shot buzzer output is done by calling oneshot_on. Buzzer output is 125 msec when called by oneshot_on, but even in that time, the one-shot buzzer output can be forcibly terminated by calling oneshot_off.

Flowchart

Flowchart

Note

The R50 terminal is common to the normal DC output port and the buzzer output. When a buzzer circuit has been configured with the R50 terminal, set the R50 register to "1" and control the signal ON/OFF using the BZON register.

Source List

;

Control of sound generator public sound_init normal_init,normal_on,normal_off public public envelope_init, envelope_on, envelope_reset, envelope_off public oneshot_ready, oneshot_on.oneshot_off ; br io Offh ;base reg. address (set i/o area) eau sound_mode0 00ff44h equ ; sound generator mode set reg. 0 sound_model 00ff45h ; sound generator mode set reg. 1 equ 00ff70h ;expand output control reg. hzr_ex eau r5d equ 00ff78h ;r5x output data code

(1) Initialization for sound generator

: * * ; * ;* sound genertator control * ;* sound_init: ;set br reg. address to Offxxh 1d br,#br io [br:low r5d],#11111110b ;r50="l" (bzon enable) and and [br:low hzr_ex],#10111111b ;r50=complementary output ret ;

(2) Normal buzzer output

ret

;

;*** sound normal normal_init: ld [br:low sound model],#0000000b iduty=max.,bzfg=4096hz ret ;*** normal on: [br:low sound_mode0],#0000001b ;bzon=enable or ret ;*** normal_off: and [br:low sound_mode0],#11111110b ;bzon=disable

(3) Buzzer output with digital envelope

;*** sound envelope envelope_init: ld [br:low sound_mode1],#0000000b ;duty=don't care,bzfg=4096hz [br:low sound_mode0],#00001010b ;enrtm=1sec,enon=on or ret ;*** envelope_on: or [br:low sound_mode0],#0000001b ;bzon=enable (with envelope) ret ;*** ;envelope reset then on(change envelope release time & buzzer frequency) envelope_reset: (3)[br:low sound_mode1],#00000100b ld ;duty=don't care,bzfq=2048hz ld a,[br:low sound_mode0] and a,#00000011b ;enrtm=0.5sec or a,#00000100b ;envelope reset ld [br:low sound_mode0],a ret ;*** envelope off: [br:low sound_mode0],#11111110b ;bzon=disable and ret ;

(1)

(2)

(4)

Source List

(4) One-shot buzzer output ;*** sound_oneshot oneshot_ready: [br:low sound_mode0],#00010000b ;one shot width=125ms [br:low sound_mode0],#00100000b ;one shot ready ? or bit jrs nz,oneshot_ready ; ret ;*** oneshot_on: a,[br:low sound_mode0] ld and a,#00011111b a,#00100000b or ld [br:low sound_mode0],a ;one shot buzzer on ret ;*** oneshot_off: ld a,[br:low sound_mode0] and a,#00011111b a,#01000000b or ld [br:low sound_mode0],a ;no status read stop ret ;

end

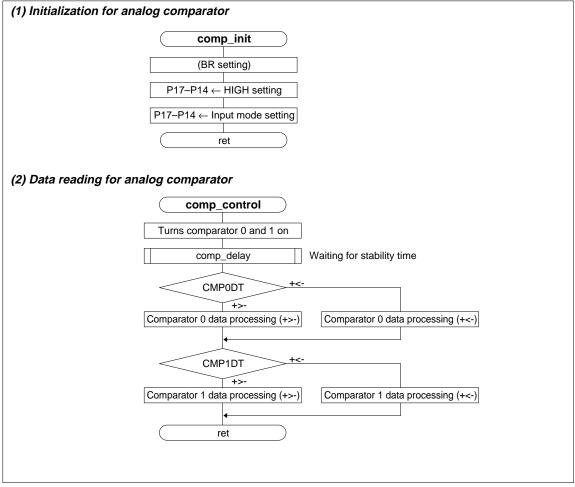
15 ANALOG COMPARATOR

I/O Map

Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF13	D7	-	_	-	-	-		
	D6	-	_	-	-	-		Constantly "0" when
	D5	-	_	-	-	-		being read
	D4	_	-	-	-	-		
	D3	CMP1ON	Comparator 1 On/Off control	On	Off	0	R/W	
	D2	CMP0ON	Comparator 0 On/Off control	On	Off	0	R/W	
	D1	CMP1DT	Comparator 1 data	+ > -	+ < -	0	R	
	D0	CMP0DT	Comparator 0 data	+>-	+ < -	0	R	

Specifications

Control of analog comparator


(1) comp_init: Initialization for analog comparator

Sets I/O port P17–P14 to the input mode in order to prevent a malfunction.

(2) comp_control: Data reading for analog comparator

Sets the analog comparator to ON and reads the comparator data after calling a delay routine. Executes subsequent processing according to the results of the read.

Flowchart

Notes

- (1) A delay routine for the operation stabilization waiting time (3 msec, maximum) of the analog comparator is not included in this program example, so it is necessary to create it using a hardware timer or software timer. (external call: comp_delay)
- (2) P17–P14 terminals are common to the analog comparator inputs (CMPM0, CMPP0, CMPM1 and CMPP1) and the I/O port, and these are switched to I/O port terminals when the analog comparator is turned OFF. Consequently, for an I/O port which is used for an analog comparator, be sure to set in input mode.

Source List

```
Control of analog comparator
        external comp_delay
public comp_init,comp_control
       public
;
br_io
             equ
                   Offh
                                            ;base reg. address (set i/o area)
comp_mode
                   00ff13h
                                            ;analog comparator mode set reg.
             equ
ioc1
             equ
                   00ff61h
                                            ;plx i/o control reg.
                   00ff63h
p1d
                                            ;plx port data
             equ
       code
(1) Initialization for analog comparator
;*
                                                                 *
;*
                                                                 *
       comparator control
;*
;*** initialize routine
comp_init:
        14
             br,#br_io
                                           ;set br reg. address to Offxxh
             [br:low pld],#11110000b
[br:low ioc1],#00001111b
                                                                                (1)
        or
                                           ;set p17-14="h"
                                            ;set p17-14=input mode
        and
        ret
(2) Data reading for analog comparator
                 *****
    ******
;*** control routine
comp_control:
             [br:low comp_mode],#00001100b
                                         ;comparator 0&1 on
       or
        carl comp_delay
                                            ; comparator stable delay ***
       bit
             [br:low comp_mode],#0000001b
                                            ;comparator 0 on ?
             z,comp_control00
       irs
; comparator 0 : + > -
;
            comp_control01
        jrs
 comparator 0 : + < -
comp_control00:
;
comp_control01:
                                                                               (2)
       bit [br:low comp_mode],#00000010b ;comparator 1 on ?
        jrs
             z,comp_control02
; comparator 1 : + > -
;
 jrs comp_control03
comparator 1 : + < -
;
comp_control02:
; comparator processing end
comp_control03:
       and
             [br:low comp_mode],#00001100b
       ret
;
        end
```

16 SVD (SUPPLY VOLTAGE DETECTION) **CIRCUIT**

I/O Мар

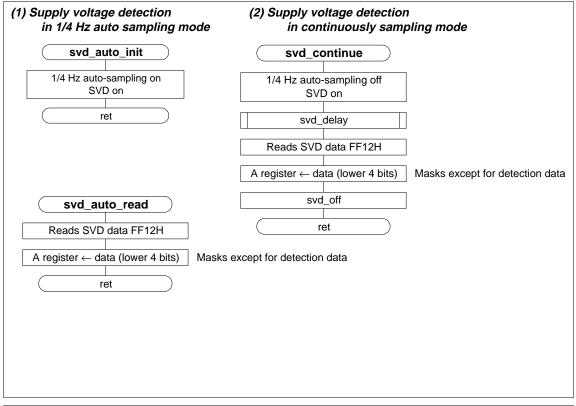
Address	Bit	Name	Function	1	0	SR	R/W	Comment
00FF12	D7	-	_	-	-	-		Constantry "0" when
	D6	-	_	-	-	-		being read
	D5	SVDSP	SVD auto-sampling control	On	Off	0	R/W	These registers are
								reset to "0" when
	D4	SVDON	SVD continuous sampling control/status R	Busy	Ready	1→0*1	R/W	SLP instruction
			W	On	Off	0		is executed.
	D3	SVD3	SVD detection level			X	R	*2
	D2	SVD2	<u>SVD3</u> <u>SVD2</u> <u>SVD1</u> <u>SVD0</u> <u>Detection level</u> Level 15			Χ	R	
	D1	SVD1	1 1 1 0 Level 14			Х	R	
	D0	SVD0	: : : : : : 0 0 0 0 Level 0			X	R	

*1 After initial reset, this status is set "1" until conclusion of hardware first sampling.

*2 Initial values are set according to the supply voltage detected at first sampling by hardware. Until conclusion of first sampling, SVD0–SVD3 data are undefined.

Specifications

Control of SVD circuit


(1) svd_auto: Supply voltage detection in 1/4 Hz auto sampling mode

After setting the 1/4 Hz auto-sampling mode to turn the SVD circuit ON, reads out SVD detection data into the A register.

(2) svd_continue: Supply voltage detection in continuously sampling mode

Sets the continuous sampling mode (cancels the 1/4 Hz auto-sampling mode) to turn the SVD circuit ON, and reads out SVD detection data into A register after calling a delay routine.

Flowchart

Notes

- A delay routine that waits data decision time (approximately 7.8 msec or more) for the SVD circuit has not been included in this program example, so it is necessary to create a separate routine using a hardware timer or software timer. (external call: svd_delay)
- (2) In the continuous sampling mode, when reading the detection data without waiting the data decision time (approximately 7.8 msec or more), previous data that has not been updated will be read.

Source List

```
Control of SVD circuit
       external
                 svd_delay
       public
                 svd_auto_init, svd_auto_read, svd_contine
;
br_io
                 Offh
                                         ;base reg. address (set i/o area)
            equ
svd_mode
                 00ff12h
                                         ; supply voltage detector mode set reg.
            equ
       code
;
(1) Supply voltage detection in 1/4 Hz auto sampling mode
;*
                                                             *
;*
       svd control
                                                             *
;*
                                                             *
;*** auto sampling mode
svd_auto_init:
            [br:low svd_mode],#00100000b
       or
                                        ;auto sampling
       ret
;
                                                                          (1)
;
            a,[br:low svd_mode]
       1d
                                        read svd data
       and
            a,#0fh
       ret.
(2) Supply voltage detection in continuously sampling mode
* * * * * * * * * * * * * * * * *
;*** continuos mode
svd_continue:
       ld
            a,[br:low svd_mode]
       and a,#00011111b
                                         ;auto sampling off
            a,#00010000b
                                         ;svd on
       or
       1d
            [br:low svd_mode],a
;
;
                                                                          (2)
       carl svd_delay
                                         ;svd stable delay
;
       ld
            a,[br:low svd_mode]
                                         ;read svd data
            a,#0fh
       and
            [br:low svd_mode],#00001111b
       and
                                        ;svd off
       ret
;
       end
```

17 INTERRUPT (EXCEPTION) PROCESSING

I/O Map

Address	Bit	Name	Function	1		0	SR	R/W	Comment
00FF20		PK01 PK00	K00–K07 interrupt priority register	PK01	PK0	0	0	R/W	
	D5	PSIF1 PSIF0	Serial interface interrupt priority register	PSIF1 PSW1	PSIF PSW	0 0 Priority	0	R/W	
	D3	PSW1	Stopwatch timer interrupt priority register	PTM1 1 1	$\frac{PIM}{1}$	Level 3 Level 2	0	R/W	
		PSW0 PTM1	Clock timer interrupt priority register	0	1 0	Level 1 Level 0	0	R/W	
00FF21	D0 D7	PTM0				_	-	IC W	
001121	D6	_	_	_		_	_		Constantly "0" wher
	D5	_							being read
	D3			_					being read
			_	PPT1	PPT	– 0 Priority	_		
		PPT1 PPT0	Programmable timer interrupt priority register	PK11 1			0	R/W	
	D1 D0	PK11 PK10	K10 and K11 interrupt priority register	1 0 0	0 1 0	Level 2 Level 1 Level 0	0	R/W	
00FF22	D7	_	_		0		_		"0" when being read
		ESW100	Stopwatch timer 100 Hz interrupt enable register						
		ESW10	Stopwatch timer 10 Hz interrupt enable register						
		ESW1	Stopwatch timer 1 Hz interrupt enable register						
		ETM32	Clock timer 32 Hz interrupt enable register	Interru	ıpt	Interrupt	0	R/W	
		ETM8	Clock timer 8 Hz interrupt enable register	enabl	le	disable	0	10, 11	
		ETM2	*						
		ETM1	Clock timer 2 Hz interrupt enable register Clock timer 1 Hz interrupt enable register						
00FF23	-	EPT1	Programmable timer 1 interrupt enable register						
006623		EPT0	Programmable timer 1 interrupt enable register						
	D5	EK1	K10 and K11 interrupt enable register						
	D4	EK0H	K04-K07 interrupt enable register	Interru	ıpt	Interrupt	0	R/W	
	D3	EK0L	K00-K03 interrupt enable register	enabl	le	disable	0	K/ W	
	D2	ESERR	Serial I/F (error) interrupt enable register						
	D1	ESREC	Serial I/F (receiving) interrupt enable register						
	D0	ESTRA	Serial I/F (transmitting) interrupt enable register						
00FF24	D7	_	-	-		-	_		"0" when being read
	D6	FSW100	Stopwatch timer 100 Hz interrupt factor flag	(R)		(R)			
	D5	FSW10	Stopwatch timer 10 Hz interrupt factor flag	Interru	ıpt	No interrupt			
	D4	FSW1	Stopwatch timer 1 Hz interrupt factor flag	factor	is	factor is			
	D3	FTM32	Clock timer 32 Hz interrupt factor flag	genera	ted	generated	0	R/W	
		FTM8	Clock timer 8 Hz interrupt factor flag						
		FTM2	Clock timer 2 Hz interrupt factor flag	(W))	(W)			
		FTM1	Clock timer 1 Hz interrupt factor flag	Rese	et	No operation			
00FF25		FPT1	Programmable timer 1 interrupt factor flag	(R)		(R)			
	D6	FPT0	Programmable timer 0 interrupt factor flag	Interru	ıpt	No interrupt			
	D5	FK1	K10 and K11 interrupt factor flag	factor	is	factor is			
	D4	FK0H	K04–K07 interrupt factor flag	genera	ted	generated	0	D 737	
	D3	FK0L	K00–K03 interrupt factor flag				0	R/W	
	D2	FSERR	Serial I/F (error) interrupt factor flag	(W)		(W)			
		FSREC	Serial I/F (receiving) interrupt factor flag	Rese		No operation			
		FSTRA	Serial I/F (transmitting) interrupt factor flag						
		- · · · ·	i (1				1	1

Specifications

Interrupt (exception) processing

Setting of interrupt vector address

(1) main: Interrupt level setting and enables interrupt

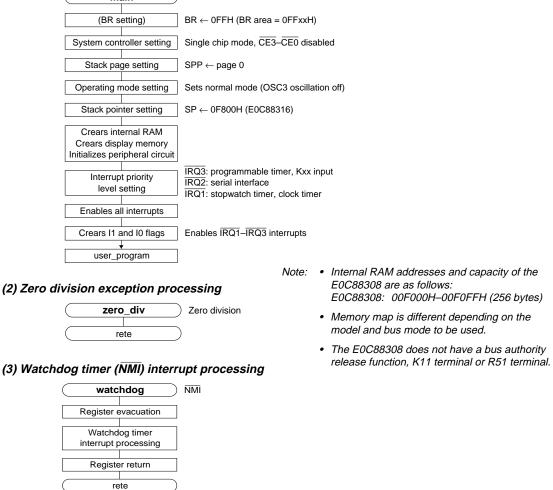
Sets an interrupt level (IRQ3–IRQ1) as the below for all interrupts and enables interrupts in the initialization routine (example for 88316 single chip mode) which is executed by reset exception processing.

IRO3

- Programmable timer interrupt **IRQ3**
- Input port interrupt
- Serial interface interrupt IRQ2
- Stopwatch timer interrupt IRQ1 IRO1
- Clock timer interrupt

(2) zero div: Zero division exception processing

(3) watchdog: Watchdog timer (NMI) interrupt processing


(4) xxx intr: Interrupt processing for peripheral circuit

Notes

The interrupt level $(\overline{IRQ3}-\overline{IRQ1})$ can be set to adapt to the system. (1)

- (2)Be sure to initialize peripheral circuits which use an interrupt and set interrupt generation conditions beforehand to enable each interrupt.
- (3) Interrupt processing for a peripheral circuit enables all interrupts, and exception processing with an interrupt vectors is a precondition. Since an interrupt flag is set by the generation of an interrupt regardless of the interrupt enable register and interrupt flags (I1 and I0), a procedure for polling interrupt factor flags by software can also be used.
- (4)Since the watchdog timer (NMI) interrupt cannot be masked, be sure to declare the watchdog timer (NMI) interrupt processing routine and the vector address, regardless of whether or not the watchdog timer is used.
- To reset the interrupt factor flag, write "1" into the corresponding flags alone, using the AND or LD (5)instruction. When the OR logic operation instruction has been used, "1" is written for the interrupt factor flags that have been set to "1" within the same address and those flags are then clear.
- The interrupt flags (I1 and I0) have not been reset in the interrupt processing routine of this (6) program example, so an interrupt lower than the set level is disabled at the time of generation. When you wish to accept the next interrupt after an interrupt has been generated, re-setting of the interrupt flags or resetting the interrupt factor flag is necessary after due consideration for the nesting level.
- (7)When permitting interrupt nesting, be careful of the stack size.
- (8)Vector addresses for software interrupts can be set up to 109 and to optional address (two bytes which begin with an even address) from 000026H to 0000FEH.
- (9) The vector addresses 000024H and 000025H cannot be used since this is a system reserved area.
- (10) In this program example for interrupt (exception) processing, the vector address setting and program have been allocated from 000100H for the sake of convenience.
- (11) Do not execute the SLP instruction for 2 msec after a NMI interrupt has occurred (when fosc1 is 32.768 kHz).

Flowchart (1) Interrupt level setting and enables interrupt main

(4) Interrupt processing for peripheral circuit

(xxx_intr)	xxx_intr	lr	nterrupt factor flag
	pt1_intr	FPT1	Programmable timer 0
Register evacuation	pt0_intr	FPT0	Programmable timer 1
	k1x_intr	FK1	K10 and K11 input port
	k0h_intr	FK0H	K07–K04 input port
	k0l_intr	FK0L	K03–K00 input port
Interrupt processing routine	serr_intr	FSERR	Serial interface error
interrupt processing routine	srv_intr	FSREC	Serial interface receiving
	str_intr	FSTRA	Serial interface transmitting
	sw100_intr	FSW100	Stopwatch timer 100 Hz
Clears interrupt factor flag	sw10_intr	FSW10	Stopwatch timer 10 Hz
Clears Interrupt lactor hag	sw1_intr	FSW1	Stopwatch timer 1 Hz
Register return	rtm32_intr	FTM32	Clock timer 32 Hz
Register return	rtm8_intr	FTM8	Clock timer 8 Hz
rete	rtm2_intr	FTM2	Clock timer 2 Hz
liele	rtm1_intr	FTM1	Clock timer 1 Hz
rete	rtm8_intr rtm2_intr	FTM2	Clock timer 2 Hz

Source List

Interrupt (exception) processing

pub pub pub pub pub pub	lic lic lic lic	<pre>user_program main,zero_div,wau pt1_intr,pt0_intr k1x_intr,k0h_intr serr_intr,srv_intr sw100_intr,sw10_i clock32_intr,cloc</pre>	r r,k01_intr tr,str_intr
, br io	equ	Offh	;base req. address (set i/o area)
mcu	equ	00ff00h	imcu mode system control reg.
spp	equ	00ff01h	;stack pointer page address
mode	equ	00ff02h	;mcu//mpu mode control address
sp_316	equ	00f800h	;e0c88316 stack top address
intr_pr0	equ	00ff20h	; interrupt priority reg. 0
intr_pr1	equ	00ff21h	; interrupt priority reg. 1
intr_en0	equ	00ff22h	;interrupt enable reg. 0
intr_en1	equ	00ff23h	;interrupt enable reg. 1
intr_fac0	equ	00ff24h	;interrupt factor reg. 0
intr_fac1	equ	00ff25h	;interrupt factor reg. 1
;			
reserve	equ	000024h	;e0c88316 system reserve
soft_intr	ewu	000026h	<pre>;software interrupt vector</pre>
offset	equ	000100h	<pre>;program start address offset</pre>
code	9		

Setting of interrupt vector address

intr_vectors:			
;system interrupt vecto	rs		
dw main		;reset vector	
dw zero_div	,	;zero divide	
dw watchdog	r	;watchdog timer(/nmi))
;e0c88316 peripheral ir	terrupt vectors (irq le	evels can set by softw	are)
dw pt1_int;		;programmable timer 1	l(/irq3)
dw pt0_intr		;programmable timer ()(/irq3)
dw k1x_int:		;klx input port	(/irq3)
dw k0h_int:		;k07-04 input port	(/irq3)
dw k01_int:		;k03-00 input port	(/irq3)
dw serr_int	r	;serial error	(/irq2)
dw srv_int:		;serial receive	(/irq2)
dw str_intr		;serial transmission	(/irq2)
dw sw100_ir	ltr	;stopwatch 100hz	(/irq1)
dw sw10_int	r	;stopwatch 10hz	(/irql)
dw sw1_int:		;stopwatch 1hz	(/irq1)
dw clock32_	intr	;clock timer 32hz	(/irq1)
dw clock8_i	ntr	;clock timer 8hz	(/irql)
dw clock2_i	ntr	;clock timer 2hz	(/irq1)
dw clock1_i	ntr	;clock timer 1hz	(/irq1)
;e0c88316 system reserv	e		
org intr_vec	tors+reserve		
;software intrrupt vect	ors (i.e bios handler a	and/or general purpose	routine(s))
org intr_vec	tors+soft_intr		
;			

Source List

```
(1) Interrupt level setting and enables interrupt
      org
          intr_vectors+offset
;*
;*
      main routine (mcu single chip mode)
;*
main:
;
      ld
          br,#br_io
;mcu & spp write icludes system interrupt flag reset
      ld [br:low mcu],#00110000b
      ld
           [br:low spp],#0h
          [br:low mode],#0000000b
      ld
          sp,#sp_316
      1d
;
;
; ram, lcd ram clear and i/o initialize
                                                                 (1)
;pk0(/irq3),psif(/irq2),psw(/irq1),ptm(/irq1)
      ld [br:low intr_pr0],#11100101b
;ppt(/irq3),pk1(/irq3)
      ld [br:low intr_pr1],#00000101b
;esw100,10,1(en),etm32,8,2,1(en.)
      ld
          [br:low intr_en0],#01111111b
;ept(en.),ek1(en.)ek0b(en.),ek0a(en.),eserr(en.),esrec(en.),estra(en.)
          [br:low intr_en1],#11111111b
      ld
;en. /nmi,/irq3,/irq2,/irq1
      and sc,#00111111b
                                   ;i1 & i0 flag clear
;wait for interrupt
      jrl
         user_program
;
(2) Zero division exception processing
;*
; *
      zero divide
;*
        *****
; * * * * * * * * *
zero_div:
                                                                 (2)
      rete
(3) Watchdog timer (NMI) interrupt processing
                ******
;***
;*
                                                     *
;*
      watchdog timer (/nmi)
; *
watchdog:
      push ale
      ld
          br,#br_io
                                   ;set br reg. address to Offxxh
;
                                                                 (3)
;watchdog timer (/nmi) interrupt processing
;
      pop
           ale
      rete
```

II-104

```
Source List
```

(4) Interrupt processing for peripheral circuit ;* ; * programmable timer 1 (/irq3) ;* pt1_intr: push ale ; programmable timer 1 interrupt processing ; (4); and [br:low intr_fac1],#1000000b ;clear fpt1 interrupt flag pop ale rete ;* ;* programmable timer 0 (/irq3) ;* ; * * * * * * * * * * * * * * pt0_intr: push ale ; programmable timer 0 interrupt processing ; (4); [br:low intr_fac1],#01000000b ;clear fpt0 interrupt flag and pop ale rete ;* ;* k1x input port (/irq3) ;* ;*** ***** ******* klx_intr: push ale ; ; k1x input port interrupt processing (4); and [br:low intr_fac1],#00100000b ;clear fk1 interrupt flag pop ale rete ;* ;* k0h input port (/irq3) ; * k0h_intr: push ale ; k0h input port interrupt processing ; (4); [br:low intr_fac1],#00010000b ;clear fk0b interrupt flag and pop ale rete ;*** ****** ;* ;* k01 input port 0 (/irg3) ;* k01_intr: push ale ; k01 input port interrupt processing ; (4); [br:low intr_fac1],#00001000b ;clear fk0a interrupt flag and pop ale rete ***** ;*** ;* ;* serial error (/irq2) ;* serr_intr: push ale : ; serial error interrupt processing (4); and [br:low intr_fac1],#00000100b ;clear fserr interrupt flag qoq ale rete

17 INTERRUPT (EXCEPTION) PROCESSING

```
Source List
```

```
;*
;*
     serial receive (/irg2)
;*
; * * * * * * * * *
        *******
srv_intr:
     push ale
;
     serial receive interrupt processing
;
                                                     (4)
;
     and
         [br:low intr_fac1],#00000010b ;clear fsrec interrupt flag
     pop
         ale
     rete
* *
;*
; *
     serial transmission (/irq2)
;*
str_intr:
     push ale
;
    serial transmission interrupt processing
;
                                                     (4)
;
     and
         [br:low intr_fac1],#0000001b ;clear fstra interrupt flag
     pop
        ale
     rete
; *
;*
     stopwatch 100hz (/irq1)
;*
sw100_intr:
     push ale
;
     stopwatch 100hz interrupt processing
;
                                                     (4)
;
         [br:low intr_fac0],#01000000b ;clear fsw100 interrupt flag
     and
     pop
        ale
     rete
;*
;*
     stopwatch 10hz (/irq1)
;*
sw10_intr:
    push ale
;
     stopwatch 10hz interrupt processing
;
                                                     (4)
;
         [br:low intr_fac0],#00100000b ;clear fsw10 interrupt flag
     and
     pop
         ale
     rete
             *****
;******
     ***********
;*
;*
     stopwatch 1hz (/irq1)
;*
sw1_intr:
     push ale
;
     stopwatch 1hz interrupt processing
;
                                                     (4)
;
     and
         [br:low intr fac0],#00010000b ;clear fsw1 interrupt flag
     pop
         ale
     rete
;*
;*
     clock timer 32hz (/irq1)
;*
clock32 intr:
     push ale
;
     clock timer 32hz interrupt processing
;
                                                     (4)
;
         [br:low intr_fac0],#00001000b ;clear ftm32 interrupt flag
     and
     pop
         ale
     rete
```

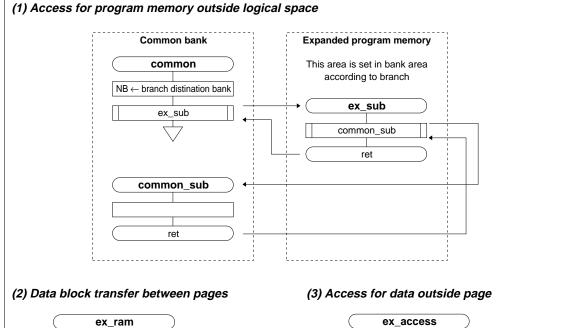
```
Source List
```

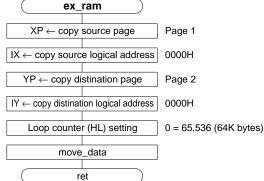
```
;*
;*
    clock timer 8hz (/irq1)
;*
clock8_intr:
    push ale
;
    clock timer 8hz interrupt processing
;
                                                (4)
;
        [br:low intr_fac0],#00000100b ;clear ftm8 interrupt flag
    and
    pop
       ale
    rete
;*
                                       *
;*
    clock timer 2hz (/irq1)
;*
clock2_intr:
    push ale
;
;
    clock timer 2hz interrupt processing
                                                (4)
;
    and
        [br:low intr_fac0],#00000010b ;clear ftm2 interrupt flag
    pop
       ale
;*
;*
    clock timer 1hz (/irq1)
;*
clock1_intr:
    push ale
;
    clock timer 1hz interrupt processing
;
                                                (4)
;
        [br:low intr_fac0],#0000001b ;clear ftm1 interrupt flag
    and
    pop
       ale
    rete
;
    end
```

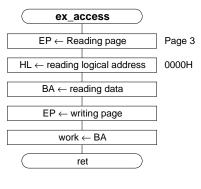
18 EXPANDED MODE

Specifications

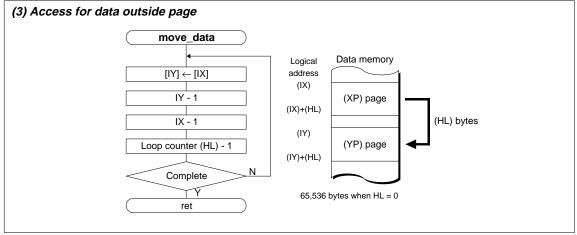
Memory access in expanded mode


(1) common, common_sub, ex_sub: Access for program memory outside logical space Branches to a bank outside logical space by setting NB register.


(2) ex_ram, move_data: Data block transfer between pages By setting expand page register, copies data (64K bytes) in page 1 to page 2. (Register indirect addressing)


(3) ex_access: Access for data outside page

Accesses a data memory area outside of the current page using expand page register.


Flowchart

Flowchart

Notes

- "boc" is the unary operator which calculates a bank value from the physical address.
 "loc" is the unary operator which calculates a logical address in bank from the physical address.
- (2) "pod" is the unary operator which calculates a page value from the physical address."lod" is the unary operator which calculates a logical address in page from the physical address.

Source List

	public public	common,common_s ex_sub	sub		
) Acce	ess for prog	ram memory outsid	de logical space		
,	code		3		
*****	********	*****	* * * * * * * * * * * * * * * * * * * *	* * * * *	
	common ar	ea (bank0 = 000000)	h -> 007fffh) example	*	
	oonmon ui		ii · · · · · · · · · · · · · · · · · ·	*	
	********	*****	*****	* * * * *	_
mmon:					
	ld nb, carl ex_	#boc ex_sub	;set new bank (externa ;external bank sub rou		
	curr ch_	bub		ceine cuir	
	********	*****	* * * * * * * * * * * * * * * * * * * *		
				*	
	common su	b-routine		*	
	*******	****	*****	****	
mmon_s	sub:				(1
					(1
*****	ret *********	*****	*****	* * * * *	
				*	
	external	area (bank1 -> 15	= 008000h -> 07ffffh) example	*	
				*	
sub:	********	*****	*****	* * * * *	
_sub.					
	carl com	mon_sub	;common bank sub routi	ne call ***	
	ret				
	end				

18 EXPANDED MODE

Source List

; src_data ;source data (page1=010000h -> 01ffffh) equ 10000h dst_data equ 20000h ;destination data (page2=020000h -> 02ffffh) ; 30000h ;external work area ex_work equ : work: dw [1] code ; (2) Data block transfer between pages ;* ;* * external ram page control ;* ex_ram: ;source data page address ;source data logical top address ;destination data page address ;destination data logical top address :0 = 65 526 (64) but xp,#pod src_data ld ld ix,#lod src_data yp,#pod dst_data ld ld iy,#lod dst_data hl,#0 ;0 = 65,536 (64k byte) ld carl move_data ret ; * * (2); * move block data ;* move_data: ld [iy],[ix] inc iy inc ix dec hl jrs nz,move_data ; ret (3) Access for data outside page ;* ;* external page data read and write ; * ex_access: ld ep, #pod ex_work hl,#lod ex_work ld ld ba,[hl] (3)ep, #pod work 1d ld [lod work],ba ret end

II-110

P17	IMHMI	←		P17	P17	Τ							MPM1						P17								MPM1						P17								MPM1					-
P16		←			P16								CMPP1 CMPM1						P16			t					CMPP1 CMPM1						P16								CMPP1 CMPM					
P15 1		←		-	P15							MPM0							P15							MPM0	0						P15							MPM0	U					-
P14 F	NPP0C	←	s	_	P14 1							CMPP0 CMPMC							P14]		\vdash					CMPP0 CMPM0	\vdash						P14]							CMPP0 CMPM0						-
P13 F	λ Ω	←	ermina	13 F	P13 F	-		-			ΔĂ					-			P13 F		-				Δ <u>λ</u>	5	-						P13 F						Ωλ	5						
P12 P	SOUT SCLK SKDY (MPPUCMPMU CMPPT CMPM)	←	I/O port terminals		P12 P		-				SOUT SCLK SRDY								P12 P		\vdash	$\left \right $			<u>SCLK SRDY</u>		$\left \right $					_	P12 P						SCLK SRDY							
P11 P	N N	←	~	-	P11 F						DUT SC								P11 F		\vdash				SOUT SC								P11 F						SOUT SG							
		←			P10 F						SIN SC								P10 F			\vdash			SIN SC								P10 F						SIN SC							_
P00~07	-	←		-	P00~07	← €	_	←	←	←	←	←	←	←	←	←	←	←	D0~7	←	←	<	←			←	←	←	←	←	←	←	D0~7	←	←	←	←	←	←	←	←	←	←	← •		_ ~
	BACK				R51 P0		-	_		BACK									R51 D					BACK									R51 D					BACK							_	
1 1	BZ BA	' ←			R50 R:		-	-		BA								ΒZ	-		-	\vdash		BA			\vdash					ΒZ	R50 R:					BA							-	ΒZ
R35~37		_			R35~37 R				4																					4		-	R35~37 R	_		_		4	_					_	_	
L		'		-					<u> </u>				-				Т		4 R35~37					*					<u> </u>	-	T	-		_		-	-	-		-	-			-		_
R33 R34	J.	← 			8 R34		\downarrow										FOUT		8 R34												FOUT		8 R34												FOUT	_
⊢÷-	E.	←			R33	← •	- -	-	~	←	←	←	←	←	←	←	←	←	R33				CEI										R33				CE3								\downarrow	
<u> </u>	CE?	←			R32	← •	-	-	~	←	←	←	~	←	←	←	←	←	R32			E											R32		-	E										_
	5	←		_	R31	← •	-	-	~	<i>←</i>	←	←	←	←	<i>←</i>	←	←	←) R31	1	E												R31	-	E											_
· · ·	CEC CEC	~	Output port terminals	_	R30	← •	-	←	~	<i>←</i>	←	←	←	←	<i>←</i>	← П	←	~	R30	B										Г			_	CEO										н		
R26 R27	Ŋ.	←	ort tern	R27	R27											TOUT			R27											TOUT			R27											TOUT		_
	¥.	~			R26										똜				R26										FR				R26										R			
	5	←	õ		R25									5					R25									ರ					R25									ರ				
<u> </u>	ΥN Υ	←		R24	R24	← •	- •	-	~	~	←	~	←	←	←	←	~	~	WR	~	←	~		~	-	~	←	←	←	~	←	~	<u>WR</u>			~	←	~	~	~	~	~	←	← •	÷	
R23		←			R23	← •	- •	←	~	~	←	~	←	←	←	←	←	~	ß	~	←	~	-	~	-	←	←	~	~	~	←	←	<u>B</u>		~	~	←	~	~	~	~	~	←	← •		<u>(</u>
R20~22	116~18	←		R20~22	R20~22	← •	_	←	←	←	←	←	←	←	←	←	←	←	R20~22	←	←	←	←	~	←	←	←	←	←	←	←	←	A16~18	←	←	←	←	←	←	←	←	←	←	← •		←
	4 C1~8A	←		_	R10~17 F	← €		←	←	←	←	←	←	↓	←	←	←	←	A8~15 F	←	 ←	←	←			←	 ←	←	←	←	←	←	A8~15 /	←	←	←	←	←	←	←	←	←	¢	← •		
	-	_				-	+					-																					-												+	
R00~(A0~1	~			R00~07	← •	-	-	~	←	←	←	~	←	←	←	←	~	A0~7	<i>←</i>	←	<i>←</i>	~	~	~	←	←	←	~	~	~	~	A0~7		←	~	←	←	~	~	~	~	~	← •	÷	<u>(</u>
K11		Ι	linals		K11					BREQ									K11					BREO									K11					BREQ								_
	E VIN	←	rt term		K10	← •	_ [·	←	←	←	←	←	←	←	←	←	←	←	K10	(←	<i>←</i>	←	~	~	←	←	←	←	~	←	←	K10	←	←	←	←	←	~	←	←	←	←	← •	⊢ [·	<u>(</u>
K00~07		←	Input port terminals	K00~07	K00~07	← •	-	-	<u> </u>	←	←	←	←	<i>←</i>	←	←	←	←	K00~07	←	←	←	<i>–</i>			←	←	←	←	←	←	~	K00~07	-	←	~	←	<i>←</i>	←	~	←	←	←	← •	÷	
	316			-	_	invalid)	invalid)	invalid)	invalid)		face	r 0	r 1			, at	ut .	F							face	r 0	1			but	Jut			ţ		J		0	face	r ()	r 1			out	out	
E0C88348 E0C88317	E0C88:	E0C88308	Crocial autout	phecial o	(Initial setting)	CE0 output (invalid)	CEI output (invalid)	CE2 output (invalid)	CE3 output (invalid)	Bus release	Serial interface	Comparator 0	Comparator	CL output	FR output	TOUT output	FOUT output	BZ output	(No special output)	CE0 output	CEI output	CE2 output	CE3 output	Bus release	Serial interface	Comparator 0	Comparator	CL output	FR output	TOUT output	FOUT output	BZ output	(No special output)	CE0 output	CE1 output	CE2 output	CE3 output	Bus release	Serial interface	Comparator 0	Comparator	CL output	FR output	TOUT output	FOUT output	BZ output
		500				<u>اا ت</u>	ان	เบี	Ū	<u>m</u>	<u> N</u>	ΙÚ	Ŭ	10	<u> 丘</u>	<u>l</u> É	ΙĔ.	<u> </u>			UI	ΠÜ	ΠÜ	<u>i</u>	<u>N</u> N	ΙŬ	ΙŪ	10	Ē	ΙÉ	L T	B			<u>ט</u>	יט	טו	B	Ň	Ŭ	Ŭ	U U	Ē	É	Г,	B
Terminal configuration	denending on model		Due mode		Single chip														Expanded 64K														Expanded 512K	(MIN & MAX)												
)inal c	ending				Singl														Expa														Expa	(IW)												
Term	deb	den n	CPU	mode	MCU																																									_

Appendix A Table of Input/Output Port Terminals

R.24 R.25 R.26 R.23 R.26 R.31 R.26 R.31 R.26 R.31 R.26 R.31 R.32 R.33 R.34 R.30 R.31 R.31 <th< th=""><th><u></u></th><th></th><th></th><th></th><th></th><th>1</th><th>1</th><th></th><th>1</th><th></th><th></th><th>-</th><th>1</th><th>1</th><th></th><th>1</th><th>1</th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th>1</th><th>_</th><th></th><th></th><th></th></th<>	<u></u>					1	1		1			-	1	1		1	1					1				_						1	_			
al confuentin Economic in the confluentin the confluentin Economic in the confluent												CMPM														CMPM										
al confuentin Economic in the confluentin the confluentin Economic in the confluent	P16 CMPP1											CMPPI														CMPPI										
al confuentin Economic in the confluentin the confluentin Economic in the confluent	P15 CMPMC		P15	P15							CMPM0							P15							CMPM0											
al confuentin Economic in the confluentin the confluentin Economic in the confluent	P14 CMPP0 ↑	nals	P14								CMPP0							P14							CMPP0											
al confuentin Economic in the confluentin the confluentin Economic in the confluent	P13 ↑	t termi		P13						<u>SRDY</u>								P13						SRDY												
al confuentin Economic in the confluentin the confluentin Economic in the confluent	P12 SCLK	/O por	P12	P12						SCLK								P12						<u>SCLK</u>												
al confuention EC088393 P T C0000 Equation EC08800 F T C T T T T T T T T T T T T T T T T T	P11 SOUT	-	P11	P11						SOUT								P11						SOUT											set.	
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td>P10 SIN</td><td></td><td>P10</td><td>P10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>P10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>een s</td><td></td></tr<>	P10 SIN		P10	P10														P10																	een s	
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td>P00~07 D0~7</td><td></td><td>P00~07</td><td>D0~7</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>D0~7</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>¢</td><td></td><td></td><td></td><td>'e not b</td><td></td></tr<>	P00~07 D0~7		P00~07	D0~7	←	←	←	←	←	←	←	←	←	←	←	←	←	D0~7	←	←	←	←	←	←	←	←	←	←	←	←	¢				'e not b	
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td>R51 BACK</td><td></td><td>R51</td><td>R51</td><td></td><td></td><td></td><td></td><td>BACK</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>R51</td><td></td><td></td><td></td><td></td><td>BACK</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ls hav</td><td></td></tr<>	R51 BACK		R51	R51					BACK									R51					BACK												ls hav	
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ΒZ</td><td>R50</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ΒZ</td><td></td><td></td><td></td><td>mina</td><td></td></tr<>																	ΒZ	R50					-								ΒZ				mina	
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td>35~37 -</td><td></td><td>35~37</td><td>835~37</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>R35~37</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>Ļ</td><td>←</td><td>←</td><td>Ļ</td><td></td><td></td><td></td><td>X37 ter</td><td></td></tr<>	35~37 -		35~37	835~37	←	←	←	←	←	←	←	←	←	←	←	←	←	R35~37	←	←	←	←	←	←	←	←	←	Ļ	←	←	Ļ				X37 ter	
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td>1 001 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>OUT</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TUO</td><td></td><td></td><td></td><td></td><td>35-I</td><td></td></tr<>	1 001 1															OUT														TUO					35-I	
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td>R33 ↑ 1 ↑</td><td></td><td></td><td></td><td></td><td></td><td></td><td>CE3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>F</td><td></td><td></td><td></td><td></td><td>so, F</td><td></td></tr<>	R33 ↑ 1 ↑							CE3														E								F					so, F	
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>CE2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>CE2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>et. A</td><td></td></tr<>							CE2														CE2														et. A	
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>CEI</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>R31</td><td></td><td><u>CEI</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>t be s</td><td></td></tr<>						CEI												R31		<u>CEI</u>															t be s	
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td></td><td>lals</td><td></td><td></td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td><u>CE0</u></td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>~</td><td>←</td><td>←</td><td>←</td><td>¢</td><td></td><td></td><td>W.</td><td>anno</td><td>peuc</td></tr<>		lals			←	←	←	←	←	←	←	←	←	←	←	←	←	<u>CE0</u>	←	←	←	←	←	←	←	←	~	←	←	←	¢			W.	anno	peuc
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td></td><td>termir</td><td></td><td>R27</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>rour</td><td></td><td></td><td>R27</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>rout</td><td></td><td></td><td></td><td></td><td>ne ro</td><td>ion c</td><td>a chi</td></tr<>		termir		R27											rour			R27											rout					ne ro	ion c	a chi
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td></td><td>ut port</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Æ</td><td></td><td></td><td></td><td>R26</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>FR</td><td></td><td></td><td></td><td></td><td></td><td>le sai</td><td>funct</td><td>hein</td></tr<>		ut port												Æ				R26										FR						le sai	funct	hein
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td>R25 CL</td><td>Outp</td><td>R25</td><td>R25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ъ</td><td></td><td></td><td></td><td></td><td>R25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ъ</td><td></td><td></td><td></td><td></td><td></td><td></td><td>s in th</td><td>ease</td><td>si uit</td></tr<>	R25 CL	Outp	R25	R25									Ъ					R25									Ъ							s in th	ease	si uit
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td>R24 WR</td><td></td><td>R24</td><td>WR</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td><u>WR</u></td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>Ļ</td><td></td><td></td><td>tting</td><td>us rel</td><td>160</td></tr<>	R24 WR		R24	WR	←	←	←	←	←	←	←	←	←	←	←	←	←	<u>WR</u>	←	←	←	←	←	←	←	←	←	←	←	←	Ļ			tting	us rel	160
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td>↑ RD RD</td><td></td><td>R23</td><td>RD</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>RD</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>↓</td><td>←</td><td>←</td><td>¢</td><td></td><td></td><td>out se</td><td>the b</td><td>317/3</td></tr<>	↑ RD RD		R23	RD	←	←	←	←	←	←	←	←	←	←	←	←	←	RD	←	←	←	←	←	←	←	←	←	↓	←	←	¢			out se	the b	317/3
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td></td><td></td><td>R20~22</td><td>R20~22</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>A16~18</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>¢</td><td>←</td><td>←</td><td>←</td><td>Ļ</td><td>Ļ</td><td>←</td><td>Ļ</td><td></td><td></td><td>ial out</td><td>uls and</td><td>88348/</td></tr<>			R20~22	R20~22	←	←	←	←	←	←	←	←	←	←	←	←	←	A16~18	←	←	←	←	←	¢	←	←	←	Ļ	Ļ	←	Ļ			ial out	uls and	88348/
Image Configuration ECOE83315 EQCE83317 EVID BTEG K00-07 Imput Port terminals Bus mode Special output ECOE8330 1 1 1 Bus mode Special output CED output 1 1 1 1 Expanded 64K (No special output 7 1 1 1 Expanded 64K Special output 7 7 1 7 CED output 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 Comparator 1 7 7 7 7 7 Comparator 1 7 7 7 7 7 MIN & MAX) Comput 7 7 7 7 <tr< td=""><td></td><td></td><td></td><td></td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>A8~15</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>←</td><td>¢</td><td>←</td><td>←</td><td>¢</td><td></td><td></td><td>er spec</td><td>termina</td><td>PDC er</td></tr<>					←	←	←	←	←	←	←	←	←	←	←	←	←	A8~15	←	←	←	←	←	←	←	←	←	¢	←	←	¢			er spec	termina	PDC er
I Expand (MIN) (MIN) (MIN) (MIN)	00~07 F				←	←	←	←	←	←	←	←	←	←	←	←	←		←	←	←	←	←		←	←	←	4	←	←	¢			ç to oth	d R51	when th
I Expand (MIN) (MIN) (MIN) (MIN)	- <u>260</u> -	sle			_		\vdash	\vdash	REQ	-	\vdash					-		_					REQ				_						;	rding	11 an	vluc
I Expand (MIN) (MIN) (MIN) (MIN)	×10	terminé	K10 K	K10 k	←	←	←	←	B E	←	←	←	←	←	←	←	←		←	←	←	←	↑ BI	←	←	←	←	←	←	←	←			l accc	no K	, beau
I Expand (MIN) (MIN) (MIN) (MIN)	×00~07 -	Input port	20~00		~	←	←	←	←	←	←	~	←	←	←	←	←		←	←	←	←	←	4	←	←	~	4	4	4	4			decide	lere are	od neo
I Expand (MIN) (MIN) (MIN) (MIN)					hut	out	ut	out	se	erface	tor 0	tor 1	I	t	utput	ıtput	It		hut	nt	nt	out	lse	erface	tor 0	tor 1	ıt	ıt	utput	ıtput	It			will be	3308, tł	minale
I Expand (MIN) (MIN) (MIN) (MIN)			special	No specia	CEO out	CE1 out	CE2 outp	CE3 out	Bus relea	Serial int	Compara	Compara	CL outpt	FR outpr	TOUT of	FOUT of	BZ outpt	No specia	CE0 out	CE1 out	CE2 out	CE3 out	Bus relea	Serial int	Compara	Compara	CL outpu	FR outpt	TOUT OI	FOUT of	BZ outpr			items	E0C8	137 ter
Z dept model model MIPU	inal configuration		Bus mode	Expanded 64K		<u></u>	<u></u>	<u></u>							<u> </u>	<u> </u>						<u>, , , , , , , , , , , , , , , , , , , </u>						-			1			ote: • Blank	• In the i	• R35_R
	Termi depe	CPU	mode	MPU																														Ž		

Appendix B Instruction List

8-bit Trnsfer Instructions (1/3)

M	nemonic	Machine Code	Operation	Cyclo	Byte					SC	;				Comment
			Operation	Cycle	Бую	11	10) (JI	DN	1	V	С	Ζ	Comment
LD	A,A	40	A←A	1	1	-	-		_		-	-	-	-	
	A,B	41	A←B	1	1	-	-		_		-	-	-	-	
	A,L	42	A←L	1	1	-	-		_		-	-	-	-	
	A,H	43	А←Н	1	1	_	-		_		-	-	-	_	
	A,BR	CE,C0	A←BR	2	2	_	_				-	_	_	_	
	A,SC	CE,C1	A←SC	2	2	-	-		-		-	-	-	-	
	A,#nn	B0,nn	A←nn	2	2	_	_		_		-	-	-	_	
	A,[BR: <i>ll</i>]	44, <i>ll</i>	$A \leftarrow [BR:ll]$	3	2	-	-		_		-	-	-	—	
	A,[hh <i>ll</i>]	CE,D0,ll,hh	A←[hh <i>ll</i>]	5	4	_	-		_		-	_	_	—	
	A,[HL]	45	A←[HL]	2	1	-	-				-	-	-	_	
	A,[IX]	46	A←[IX]	2	1	-	-		_		-	-	-	_	
	A,[IY]	47	A←[IY]	2	1	_	_		_		-	_	_	_	
	A,[IX+dd]	CE,40,dd	A←[IX+dd]	4	3	-	_		_		-	-	_	_	
	A,[IY+dd]	CE,41,dd	A←[IY+dd]	4	3	_	_		_		-	-	_	_	
	A,[IX+L]	CE,42	A←[IX+L]	4	2	_	_		_		-	_	_	_	
	A,[IY+L]	CE,43	A←[IY+L]	4	2	_	_		_		-	_	_	_	
	A,NB	CE,C8	A←NB	2	2	-	-		_		-	-	_	_	
	A,EP	CE,C9	A←EP	2	2	_	_		_		-	_	_	_	MODEL2/3
	A,XP	CE,CA	A←XP	2	2	_	_		_		-	_	_	_	only
	A,YP	CE,CB	A←YP	2	2	-	_		_		_	_	_	_	, , , , , , , , , , , , , , , , , , ,
LD	B,A	48	В←А	1	1	-	_		_		-	_	_	_	
	B,B	49	B←B	1	1	-	_		_		-	_	_	_	
	B,L	4A	B←L	1	1	_	_		_		-	_	_	_	
	B,H	4B	В←Н	1	1	-	_		_		-	_	_	_	
	B,#nn	B1,nn	B←nn	2	2	-	_		_		_	_	_	_	
	B,[BR: <i>ll</i>]	4C, <i>ll</i>	B←[BR: <i>ll</i>]	3	2	_	_		_		_	_	_	_	
	B,[hh <i>ll</i>]	CE,D1,ll,hh	B←[hh <i>ll</i>]	5	4	-	_		_		_	_	_	_	
	B,[HL]	4D	B←[HL]	2	1	_	_		_		_	_	_	_	
	B,[IX]	4E	B←[IX]	2	1	-	_		_		-	_	_	_	
	B,[IY]	4F	B←[IY]	2	1	-	_		_		_	_	_	_	
	B,[IX+dd]	CE,48,dd	B←[IX+dd]	4	3	_	_		_		-	_	_	_	
	B,[IY+dd]	CE,49,dd	B←[IY+dd]	4	3	-	_		_		-	_	_	_	
	B,[IX+L]	CE,4A	B←[IX+L]	4	2	_	_		_		-	_	_	_	
	B,[IY+L]	CE,4B	B←[IY+L]	4	2	-	_		_		-	_	_	_	
LD	L,A	50	L←A	1	1	_	_		_		_	_	_	_	
	L,B	51	L←B	1	1	-	_		_		-	_	_	_	
	L,L	52	L←L	1	1	_	_		_		-	_	_	_	
	L,H	53	L←H	1	1	_	_		_		_	_	_	_	
	L,#nn	B2,nn	L←nn	2	2	-					_		_	_	
	L,[BR: <i>ll</i>]	54,11	L←[BR: <i>ll</i>]	3	2	-	_		_		_	_	_	_	
	L,[hh <i>ll</i>]	CE,D2,ll,hh	L←[hh <i>ll</i>]	5	4	-	_		_		-	_	_	_	
	L,[HL]	55	L←[HL]	2	1	-	_				_	_	_	_	
	L,[IX]	56	L←[IX]	2	1	1_	_				_	_	_	_	
	L,[IY]	57	L←[IY]	2	1	-	_				-	_	_	_	
	L,[IX+dd]	CE,50,dd	L←[IX+dd]	4	3	1_	_				_	_	_	_	
	L,[IY+dd]	CE,51,dd	L←[IY+dd]	4	3	_	_				_	_	_	_	
	L,[IX+L]	CE,52	L←[IX+L]	4	2	-							_	_	
	L,[IY+L]	CE,52 CE,53	L←[IY+L]	4	2								_	_	
	<u>-</u> ,[' ' ⁺ <u>-</u>]	сц,55		1 +	L ²	1	_	-			·	-	_	-	

* New code bank register NB and expand page registers EP/XP/YP are set only for MODEL2/3. In MODEL0/1, instructions that access these registers cannot be used.

Meemonic Machine Code Operation Cycle Byte Hou Don V C Z Comment ILD H.A. 58 HA 1 1 -	N	Inemonic	Machine Code	Operation	Cyclo	Buto				SC				Comment
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Operation	Cycle	Бую	1	0	U	DΝ	V	С	Ζ	Comment
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LD				1	1		_	_		-	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			59		1	1	-	_	-		-	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				H←L	1	1	-	_	-		-	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		H,H	5B	Н←Н	1	1		-	-		-	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		H,#nn	B3,nn	H←nn	2	2	-	-	-		-	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		H,[BR: <i>ll</i>]	5C, <i>ll</i>	H←[BR: <i>ll</i>]	3	2	-	-	-		-	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		H,[hh <i>ll</i>]	CE,D3,ll,hh	H←[hh <i>ll</i>]	5	4	-	_	-		-	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		H,[HL]	5D	H←[HL]	2	1	-	_	_		_	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			5E	H←[IX]	2	1	-	_	_		_	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		H,[IY]	5F	H←[IY]	2	1		_	_		-	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		H,[IX+dd]	CE,58,dd	H←[IX+dd]	4	3		_	_		_	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		H,[IY+dd]	CE,59,dd	H←[IY+dd]	4	3	-	-	-		-	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		H,[IX+L]	CE,5A	H←[IX+L]	4	2		_	-		_	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		H,[IY+L]	CE,5B	H←[IY+L]	4	2	_	_	_		_	-	١	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LD	BR,A	CE,C2	BR←A	2	2		_	_		_	-	١	
		BR,#hh	B4,hh	BR←hh	2	2		_	-		-	_	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LD	SC,A	CE,C3	SC←A	3	2	\$	\$	\$	\$	\$	\$	↕	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		SC,#nn	9F,nn	SC←nn	3	2	\$	\$	\$	\$ \$	\$	\$	↕	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LD	[BR: <i>ll</i>],A	78, <i>ll</i>	[BR: <i>ll</i>]←A	3	2	_	_	_		_	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[BR: <i>ll</i>],B	79, <i>ll</i>	[BR: <i>ll</i>]←B	3	2	_	_	_		_	-	-	
		[BR: <i>ll</i>],L	7A, <i>ll</i>	[BR: <i>ll</i>]←L	3	2		_	_		_	_	_	
				[BR: <i>ll</i>]←H	3	2	_	_	_		_	-	-	
$ \begin{bmatrix} [BR:II], [HL] & 7D, II & [BR:II] \leftarrow [HL] & 4 & 2 & - & - & - & - & - & - & - & - & -$			DD, <i>ll</i> ,nn		4	3	_	_	_		_	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[BR: <i>ll</i>],[HL]	7D, <i>ll</i>	[BR: <i>ll</i>]←[HL]	4	2		_	_		_	_	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				[BR: <i>ll</i>]←[IX]	4	2	_	_	_		_	_	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			7F, <i>ll</i>	[BR: <i>ll</i>]←[IY]	4	2	_	_	_		_	-	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LD		CE,D4,ll,hh		5	4		_	_		_	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				[hh <i>ll</i>]←B	5	4		_	_		_	_	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			5	4	_	_	_		_	_	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			CE,D7,ll,hh		5	4		_	_		_	_	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LD				2	1		_	_		_	_	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			69		2	1		_	_		_	_	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6A		2	1		_	_		_	_	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6B		2	1		_	_		_	_	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			B5,nn		3	2		_	_		_	_	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					4	2		_	_		_	_	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					3			_	_		_	_	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								_	_		_	_	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							_	_	_		_	_	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								_	_		_	_	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								_	_		_	_	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-					_	_	_		_	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								_	_		_	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LD						_	_	_		_	_	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-					_	_	_		_	_	_	
[IX],H 63 [IX]←H 2 1							_	_	_		_	_	_	
							_	_	_		_	_	_	
							_	_	_		_	_	_	

8-bit Trnsfer Instructions (2/3)

						Г				;	sc					
Mn	emonic	Machine Code	Operation	Cycle	Byte	11	I	0	U		N	'	V	С	Ζ	Comment
LD	[IX],[BR: <i>ll</i>]	64, <i>ll</i>	$[IX] \leftarrow [BR:ll]$	4	2	-		-	-	_	-		-	-	-	
	[IX],[HL]	65	[IX]←[HL]	3	1	-		_	-	_	_		-	-	-	
	[IX],[IX]	66	$[IX] \leftarrow [IX]$	3	1	-		_	-	_	-		-	_	-	
	[IX],[IY]	67	[IX]←[IY]	3	1	-		_	-	_	-		-	-	-	
	[IX],[IX+dd]	CE,68,dd	[IX]←[IX+dd]	5	3	-		_	-	_	-		-	_	-	
	[IX],[IY+dd]	CE,69,dd	[IX]←[IY+dd]	5	3	-		_	-	_	_		-	_	_	
	[IX],[IX+L]	CE,6A	[IX]←[IX+L]	5	2	-		_	-	_	-		-	_	-	
	[IX],[IY+L]	CE,6B	[IX]←[IY+L]	5	2	-		_	-	_	_		-	_	_	
LD	[IY],A	70	[IY]←A	2	1	-		_	_	_	-		_	_	_	
	[IY],B	71	[IY]←B	2	1	-		_	_	_	_		-	_	_	
	[IY],L	72	[IY]←L	2	1	-		_	_	_	_		-	_	_	
	[IY],H	73	[IY]←H	2	1	-		_	_	_			_	_	_	
	[IY],#nn	B7,nn	[IY]←nn	3	2	_		_	_	_	_		_	_	_	
	[IY],[BR: <i>ll</i>]	74,11	[IY]←[BR: <i>ll</i>]	4	2	-		_	_	_			_	_	_	
	[IY],[HL]	75	[IY]←[HL]	3	1	_		_	_	_			_	_	_	
	[IY],[IX]	76	[IY]←[IX]	3	1	-		_	_	_	_		_	_	_	
	[IY],[IY]	77	[IY]←[IY]	3	1	-	_	_	_	_			_	_	_	
	[IY],[IX+dd]		[IY]←[IX+dd]	5	3	-		_	_				_	_	_	
	[IY],[IY+dd]		[IY]←[IY+dd]	5	3	_		_	_	_			_	_	_	
	[IY],[IX+L]	CE,7A	[IY]←[IX+L]	5	2	_			_	_			_	_	_	
	[IY],[IY+L]	CE,7B	[IY]←[IY+L]	5	2			_	_				_	_		
LD	[IX+dd],A	CE,44,dd	[IX+dd]←A	4	3											
	[IX+dd],A [IX+dd],B	CE,4C,dd	[IX+dd]←A [IX+dd]←B	4	3	F		_	_				_	_	-	
	[IX+dd],L	CE,54,dd	[IX+dd]←L	4	3	F			_	_			_	_		
	[IX+dd],E [IX+dd],H	CE,5C,dd	[IX+dd]←H	4	3	-		_	_				_	_	_	
LD	[IX+dd],I [IY+dd],A	CE,45,dd		4	3	-		_	_	_			_	_	_	
	[IY+dd],A [IY+dd],B	CE,4D,dd	[IY+dd]←A	4	3	-		_		_				_		
		CE,4D,dd CE,55,dd	[IY+dd]←B	4	3	-	-	_	_	_				_		
	[IY+dd],L		[IY+dd]←L	-	-	-		_	-	_			-	_		
	[IY+dd],H	CE,5D,dd	[IY+dd]←H	4	3	-		_	_	_			_	_	_	
LD	[IX+L],A	CE,46	[IX+L]←A	4	2	-		_	_	_			_	_	_	
	[IX+L],B	CE,4E	[IX+L]←B	4	2	-	-	_	-	-			-	_	_	
	[IX+L],L	CE,56	[IX+L]←L	4	2	-		_	-	_			-	_	_	
	[IX+L],H	CE,5E	[IX+L]←H	4	2	-		_	-	_			_	-	-	
LD	[IY+L],A	CE,47	[IY+L]←A	4	2	-		_	-	_			_	-	-	
	[IY+L],B	CE,4F	[IY+L]←B	4	2	-		_	-	_			_	-	-	
	[IY+L],L	CE,57	[IY+L]←L	4	2	-		_	-	-	_		-	-	_	
	[IY+L],H	CE,5F	[IY+L]←H	4	2	-		_	-	_			-	-	-	
LD	NB,A	CE,CC	NB←A	3	2	-	-	_	-		_		-	_	-	
	NB,#bb	CE,C4,bb	NB←bb	4	3	-	-	_	-	_	_		-	-	-	-
LD	EP,A	CE,CD	EP←A	2	2	-		_	-	-	_		-	-	-	-
	EP,#pp	CE,C5,pp	EP←pp	3	3	-		-	-	-	_		-	-	-	MODEL2/3
LD	XP,A	CE,CE	XP←A	2	2	-		_	-	-			-	-	-	only
	XP,#pp	CE,C6,pp	XP←pp	3	3	-		_	-	_	_		_	-	-	
LD	YP,A	CE,CF	YP←A	2	2	-		_	-	-	_		-	-	-	
	YP,#pp	CE,C7,pp	YP←pp	3	3	-		_	-	_	_		-	_	-	
EX	A,B	CC	A↔B	2	1	-		_	-	_	_		-	-	-	
	A,[HL]	CD	A⇔[HL]	3	1	Ŀ		_	_	-	_			_	_	
SWAP	А	F6	$A({\rm H}){\longleftrightarrow} A({\rm L})$	2	1	-		_	_	-			_	-	_	
	[HL]	F7	$[HL](H) \leftrightarrow [HL](L)$	3	1	-		_	-	_	_		_	-	_	

8-bit Trnsfer Instructions (3/3)

* New code bank register NB and expand page registers EP/XP/YP are set only for MODEL2/3. In MODEL0/1, instructions that access these registers cannot be used.

16-bit Trnsfer Instructions (1/2)

LD BA,BA CF,E0 BA+-BA 2 2	М	Inemonic	Machine Code	Operation	Cycle	Byto					SC					Comment
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IVI			Operation	Сусіе	Dyte	11	10	U	D) N	I	V	С	ŻΖ	Comment
BA,IX CF,E2 BA<-IX 2 2 - - - - BA,Y CF,E3 BA<-IY	LD		CF,E0	BA←BA	2	2	-	-	-	-		-	-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BA,HL	CF,E1	BA←HL	2	2	-	-	-	-		-	-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BA,IX	CF,E2	BA←IX	2	2	-	-	-	-		-	-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BA,IY	CF,E3	BA←IY	2	2	-	-	-	-		-	-	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BA,SP	CF,F8	BA←SP	2	2	-	-	-	-		-	-	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BA,PC	CF,F9	BA←PC+2	2	2	-	-	-	-		-	-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BA,#mmnn	C4,nn,mm	BA←mmnn	3	3	-	-	-	-		-	-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BA,[hh <i>ll</i>]	B8, <i>ll</i> ,hh	A ($[hhll], B$ ($[hhll+1]$	5	3	-	-	-	-		-	-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BA,[HL]	CF,C0	A (HL], B (HL +1]	5	2	-	-	-	-		-	-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		BA,[IX]	CF,D0	$A {\leftarrow} [IX], B {\leftarrow} [IX{+}1]$	5	2	-	_	-	-			-	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		BA,[IY]	CF,D8	$A \leftarrow [IY], B \leftarrow [IY+1]$	5	2	-	_	_	-			_	_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		BA,[SP+dd]	CF,70,dd	$A \leftarrow [SP+dd], B \leftarrow [SP+dd+1]$	6	3	-	_	_	-			_	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LD	HL,BA	CF,E4	HL←BA	2	2	-	_	-	-			_	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		HL,HL	CF,E5	HL←HL	2	2	-	_	-	-			_	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HL,IX	CF,E6	HL←IX	2	2	-	_	-	-			_	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HL,IY	CF,E7	HL←IY	2	2	-	_	_	-			_	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		HL,SP	CF,F4	HL←SP	2	2	-	_	_	-			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HL,PC	CF,F5	HL←PC+2	2	2	-	_	_	-			_	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HL,#mmnn	C5,nn,mm	HL←mmnn	3	3	-	_	_	-			_	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HL,[hh <i>ll</i>]	B9, <i>ll</i> ,hh	L←[hh <i>ll</i>], H←[hh <i>ll</i> +1]	5	3	-	_	_	-			_	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HL,[HL]	CF,C1	L←[HL], H←[HL+1]	5	2	-	_	_	-			_	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HL,[IX]	CF,D1	$L \leftarrow [IX], H \leftarrow [IX+1]$	5	2	-	_	_	-			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HL,[IY]	CF,D9	$L \leftarrow [IY], H \leftarrow [IY+1]$	5	2	-	_	_	-			_	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		HL,[SP+dd]	CF,71,dd	$L \leftarrow [SP+dd], H \leftarrow [SP+dd+1]$	6	3	-	_	_	-			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LD	IX,BA	CF,E8	IX←BA	2	2	-	_	_	-			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IX,HL	CF,E9	IX←HL	2	2	-	_	_	-			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IX,IX	CF,EA	IX←IX	2	2	-	_	_	_		-	_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IX,IY	CF,EB	IX←IY	2	2	-	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IX,SP	CF,FA	IX←SP	2	2	-	_	_	-			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IX,#mmnn	C6,nn,mm	IX←mmnn	3	3	-	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IX,[hh <i>ll</i>]	BA,ll,hh	IX(L) \leftarrow [hh <i>ll</i>], IX(H) \leftarrow [hh <i>ll</i> +1]	5	3	-	_	_	-			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IX,[HL]	CF,C2	$IX(L) \leftarrow [HL], IX(H) \leftarrow [HL+1]$	5	2	-	_	_	-			_	_		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		IX,[IX]	CF,D2	$IX(L) \leftarrow [IX], IX(H) \leftarrow [IX+1]$	5	2	-	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IX,[IY]	CF,DA	$IX(L) \leftarrow [IY], IX(H) \leftarrow [IY+1]$	5	2	-	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			CF,72,dd		6	3	-	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LD	IY,BA	CF,EC	IY←BA	2	2	-	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IY,HL	CF,ED	IY←HL	2	2	_	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IY,IX	CF,EE	IY←IX	2	2	_	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IY,IY	CF,EF	IY←IY	2	2	_	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					2	2	_	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	C7,nn,mm	IY←mmnn	3	3	_	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					5	3	_	_	_	_			_	_		
$ \begin{array}{ c c c c c c c c } \hline IY, [IX] & CF, D3 & IY(L) \leftarrow [IX], IY(H) \leftarrow [IX+1] & 5 & 2 & - & - & - & - & - & - & - & - & -$					5	2	_	_	_	_			_	_		
IY,[IY] CF,DB IY(L)←[IY], IY(H)←[IY+1] 5 2					5	2	_	_	_	_			_	_		
							_	_	_	_			_	_		
= -1		IY,[SP+dd]	CF,73,dd	$IY(L) \leftarrow [SP+dd], IY(H) \leftarrow [SP+dd+1]$	6	3	_	_	_	_			_	_		

M	Inemonic	Machine Code	Operation	Cycle	Byte	11	10	U	S D	-	V	С	7	Comment
LD	SP,BA	CF,F0	SP←BA	2	2	_	-	_	_	_	_	_	_	
	SP,[hh <i>ll</i>]	CF,78,11,hh	$SP(L) \leftarrow [hhll], SP(H) \leftarrow [hhll+1]$	6	4	-	_	_	_	_	_	_	_	
	SP,HL	CF,F1	SP←HL	2	2	-	_	_	_	_	_	_	_	
	SP,IX	CF,F2	SP←IX	2	2	-	_	_	_	_	_	_	_	
	SP,IY	CF,F3	SP←IY	2	2	-	_	_	_	_	_	_	_	
	SP,#mmnn	CF,6E,nn,mm	SP←mmnn	4	4	-	_	_	_	_	_	_	_	
LD	[hh <i>ll</i>],BA	BC,ll,hh	[hh <i>ll</i>]←A, [hh <i>ll</i> +1]←B	5	3	-	_	-	_	_	_	_	_	
	[hh <i>ll</i>],HL	BD,ll,hh	[hh <i>ll</i>]←L, [hh <i>ll</i> +1]←H	5	3	-	_	_	_	_	_	_	_	
	[hh <i>ll</i>],IX	BE,ll,hh	$[hhll] \leftarrow IX(L), [hhll+1] \leftarrow IX(H)$	5	3	-	_	_	_	_	-	_	_	
	[hh <i>ll</i>],IY	BF,ll,hh	$[hhll] \leftarrow IY(L), [hhll+1] \leftarrow IY(H)$	5	3	-	_	-	_	_	_	_	_	
	[hh <i>ll</i>],SP	CF,7C,ll,hh	$[hhll] \leftarrow SP(L), [hhll+1] \leftarrow SP(H)$	6	4	-	_	_	_	_	-	_	_	
LD	[HL],BA	CF,C4	[HL]←A, [HL+1]←B	5	2	-	_	_	_	_	_	_	_	
	[HL],HL	CF,C5	[HL]←L, [HL+1]←H	5	2	-	_	_	_	_	-	_	_	
	[HL],IX	CF,C6	$[HL] \leftarrow IX(L), [HL+1] \leftarrow IX(H)$	5	2	-	_	_	_	_	-	_	_	
	[HL],IY	CF,C7	$[HL] {\leftarrow} IY(L), \ [HL+1] {\leftarrow} IY(H)$	5	2	-	-	-	-	_	_	_	_	
LD	[IX],BA	CF,D4	$[IX] \leftarrow A, [IX+1] \leftarrow B$	5	2	-	-	-	-	_	_	_	_	
	[IX],HL	CF,D5	[IX]←L, [IX+1]←H	5	2	-	_	-	-	_	_	_	_	
	[IX],IX	CF,D6	$[IX]{\leftarrow}IX(L),\ [IX{+}1]{\leftarrow}IX(H)$	5	2	-	_	-	-	_	_	_	_	
	[IX],IY	CF,D7	$[IX]{\leftarrow}IY({\rm L}),\ [IX{+}1]{\leftarrow}IY({\rm H})$	5	2	-	_	-	-	_	_	_	_	
LD	[IY],BA	CF,DC	$[IY] \leftarrow A, [IY+1] \leftarrow B$	5	2	-	_	-	-	_	_	_	_	
	[IY],HL	CF,DD	[IY]←L, [IY+1]←H	5	2	-	_	-	-	_	_	_	_	
	[IY],IX	CF,DE	$[IY] {\leftarrow} IX(L), \ [IY+1] {\leftarrow} IX(H)$	5	2	-	_	-	-	_	_	_	_	
	[IY],IY	CF,DF	$[IY] {\leftarrow} IY({\rm L}), \ [IY{+}1] {\leftarrow} IY({\rm H})$	5	2	-	-	-	-	_	-	_	—	
LD	[SP+dd],BA	CF,74,dd	$[SP+dd] \leftarrow A, [SP+dd+1] \leftarrow B$	6	3	-	-	-	_	_	-	_	—	
	[SP+dd],HL	CF,75,dd	$[SP+dd] \leftarrow L, [SP+dd+1] \leftarrow H$	6	3	-	-	-	-	_	-	_	—	
	[SP+dd],IX	CF,76,dd	$[SP+dd]{\leftarrow}IX({\rm L}),~[SP+dd+1]{\leftarrow}IX({\rm H})$	6	3	-	-	-	-	_	-	_	—	
	[SP+dd],IY	CF,77,dd	$[SP+dd] {\leftarrow} IY({\rm L}), \ [SP+dd+1] {\leftarrow} IY({\rm H})$	6	3	-	-	-	-	_	-	_	—	
EX	BA,HL	C8	BA↔HL	3	1	-	-	-	-	-	-	-	-	
	BA,IX	C9	BA↔IX	3	1	-	-	-	-	_	-	_	-	
	BA,IY	CA	BA⇔IY	3	1	-	-	-	-	-	-	-	-	
	BA,SP	СВ	BA⇔SP	3	1	-	_	_	_	-	_	-	-	

16-bit Trnsfer Instructions (2/2)

8-bit Arithmetic and Logic Operation Instructions (1/4)

	Inemonic Machine Code		Aaching Code Operation							S	С				Commont
IVII	nemonic	Machine Code	Operation	Cycle	Byte	11		0	U	D	Ν	V	С	Ζ	Comment
ADD	A,A	00	A←A+A	2	1	-		-	*	★	¢	¢	\$	\$	
	A,B	01	A←A+B	2	1	-		-	★	★	↕	\$	\$	\$	
	A,#nn	02,nn	A←A+nn	2	2	-		_	★	★	\$	¢	\$	\$	
	A,[BR: <i>ll</i>]	04,11	$A \leftarrow A + [BR:ll]$	3	2	-		-	★	★	\$	\$	\$	\$	
	A,[hh <i>ll</i>]	05, <i>ll</i> ,hh	$A \leftarrow A + [hhll]$	4	3	-		-	★	★	↕	↕	\$	\$	
	A,[HL]	03	$A \leftarrow A + [HL]$	2	1	-		-	★	★	€	¢	\$	\$	
	A,[IX]	06	$A \leftarrow A + [IX]$	2	1	-	-	-	*	★	¢	¢	\$	\$	
	A,[IY]	07	$A \leftarrow A + [IY]$	2	1	-		-	★	★	€	¢	\$	\$	
	A,[IX+dd]	CE,00,dd	$A \leftarrow A + [IX + dd]$	4	3	-		-	★	★	\$	\$	\$	\$	
	A,[IY+dd]	CE,01,dd	$A \leftarrow A + [IY + dd]$	4	3	-		-	★	★	↕	↕	\$	\$	
	A,[IX+L]	CE,02	$A \leftarrow A + [IX + L]$	4	2	-		-	★	★	↕	↕	\$	\$	
	A,[IY+L]	CE,03	$A \leftarrow A + [IY + L]$	4	2	-		-	★	★	\$	¢	\$	\$	
	[HL],A	CE,04	[HL]←[HL]+A	4	2	-		_	★	★	\$	¢	\$	\$	
	[HL],#nn	CE,05,nn	[HL]←[HL]+nn	5	3	-		-	★	★	\$	\$	\$	\$	
	[HL],[IX]	CE,06	[HL]←[HL]+[IX]	5	2	-		-	★	★	\$	¢	\$	\$	
	[HL],[IY]	CE,07	[HL]←[HL]+[IY]	5	2	-		-	★	★	\$	↕	\$	\$	
ADC	A,A	08	A←A+A+C	2	1	-		-	★	★	\$	¢	\$	\$	
	A,B	09	A←A+B+C	2	1	-		_	★	★	\$	¢	\$	\$	
	A,#nn	0A,nn	A←A+nn+C	2	2	-		-	★	★	\$	\$	\$	\$	
	A,[BR: <i>ll</i>]	0C, <i>ll</i>	$A \leftarrow A + [BR: ll] + C$	3	2	-		_	★	★	\$	\$	\$	\$	
	A,[hh <i>ll</i>]	0D,ll,hh	$A \leftarrow A + [hhll] + C$	4	3	-		-	★	★	\$	¢	\$	\$	
	A,[HL]	0B	A←A+[HL]+C	2	1	-		-	★	★	\$	¢	\$	\$	
	A,[IX]	0E	$A \leftarrow A + [IX] + C$	2	1	-		-	★	★	\$	¢	\$	\$	
	A,[IY]	0F	$A \leftarrow A + [IY] + C$	2	1	-		-	*	★	\$	¢	\$	\$	
	A,[IX+dd]	CE,08,dd	$A \leftarrow A + [IX + dd] + C$	4	3	-		-	★	★	\$	\$	\$	\$	
	A,[IY+dd]	CE,09,dd	$A \leftarrow A + [IY + dd] + C$	4	3	-	-	-	★	★	¢	↕	\$	\$	
	A,[IX+L]	CE,0A	$A \leftarrow A + [IX + L] + C$	4	2	-	-	-	★	★	¢	¢	\$	\$	
	A,[IY+L]	CE,0B	$A \leftarrow A + [IY + L] + C$	4	2	Ŀ		-	*		¢	\$	\$	\$	
	[HL],A	CE,0C	[HL]←[HL]+A+C	4	2	Ŀ	-		*		¢	¢	\$	\$	
	[HL],#nn	CE,0D,nn	[HL]←[HL]+nn+C	5	3	-			★			¢	\$	\$	
	[HL],[IX]	CE,0E	[HL]←[HL]+[IX]+C	5	2	-		-	★	★	\$	¢	\$	\$	
	[HL],[IY]	CE,0F	[HL]←[HL]+[IY]+C	5	2	-	-	-	★			¢	\$	\$	
SUB	A,A	10	A←A-A	2	1	-	-		★		¢	¢	\$	\$	
	A,B	11	A←A-B	2	1	Ŀ		_	★			¢	\$	\$	
	A,#nn	12,nn	A←A-nn	2	2	-		-	★	★	¢	¢	\$	\$	
	A,[BR: <i>ll</i>]	14, <i>ll</i>	A←A-[BR: <i>ll</i>]	3	2	-	-	-	*	★	¢	¢	\$	\$	
	A,[hh <i>ll</i>]	15, <i>ll</i> ,hh	A←A-[hh <i>ll</i>]	4	3	-	-	-	★	★	¢	¢	\$	\$	
	A,[HL]	13	A←A-[HL]	2	1	-		-	★	★	\$	¢	\$	\$	
	A,[IX]	16	A←A-[IX]	2	1	-	-	-	★	★	¢	¢	\$	\$	
	A,[IY]	17	A←A-[IY]	2	1	-		-	★	★	¢	¢	\$	\$	
	A,[IX+dd]	CE,10,dd	A←A-[IX+dd]	4	3	_	-	-	*	★	¢	¢	\$	\$	
	A,[IY+dd]	CE,11,dd	A←A-[IY+dd]	4	3	-	-	-	★	★	€	¢	\$	\$	
	A,[IX+L]	CE,12	A←A-[IX+L]	4	2	-	-	-	*	★	€	¢	\$	\$	
	A,[IY+L]	CE,13	A←A-[IY+L]	4	2	Ŀ	-	-	*	★	¢	¢	\$	\$	
	[HL],A	CE,14	[HL]←[HL]-A	4	2	-			★			\$	\$	\$	
	[HL],#nn	CE,15,nn	[HL]←[HL]-nn	5	3	-		-	★	★	\$	\$	\$	\$	
	[HL],[IX]	CE,16	[HL]←[HL]-[IX]	5	2	-			★			\$	\$	\$	
	[HL],[IY]	CE,17	[HL]←[HL]-[IY]	5	2	[-	-	-	★	★	¢	¢	\$	\$	

NA	nemonic	Machine Code	Operation	Cyclo	Byte		SC 1 10 U D N V C						Comment		
IVI	Temonic		Operation	Cycle	Бую	11	10	υ	JI	DN	١	V	С	Ζ	Comment
SBC	A,A	18	A←A-A-C	2	1	-	-	- *	r 1	★ (;	\$	\$	\$	
	A,B	19	А←А-В-С	2	1	-	-	- *	r 7	★ (;	\$	\$	\$	
	A,#nn	1A,nn	A←A-nn-C	2	2	-	-	- 🖈	r 7	★ (;	\$	\$	\$	
	A,[BR: <i>ll</i>]	1C, <i>ll</i>	A←A-[BR: <i>ll</i>]-C	3	2	-	-	- *	r 7	★ (;	\$	\$	\$	
	A,[hh <i>ll</i>]	1D, <i>ll</i> ,hh	A←A-[hh <i>ll</i>]-C	4	3	-	-	- *	r 1	★ (;	\$	¢	\$	
	A,[HL]	1B	A←A-[HL]-C	2	1	-	-	- *	r 1	★ (;	\$	↕	↕	
	A,[IX]	1E	A←A-[IX]-C	2	1	-	-	- *	r 7	★ (;	\$	↕	↕	
	A,[IY]	1F	A←A-[IY]-C	2	1	-	-	- 🖈	r 7	★ (;	\$	\$	\$	
	A,[IX+dd]	CE,18,dd	A←A-[IX+dd]-C	4	3	-	-	- *	r 7	★ (;	\$	↕	\$	
	A,[IY+dd]	CE,19,dd	A←A-[IY+dd]-C	4	3	-	-	- *	r 7	★ (;	\$	↕	↕	
	A,[IX+L]	CE,1A	A←A-[IX+L]-C	4	2	-	-	- *	r 1	★ (;	\$	↕	\$	
	A,[IY+L]	CE,1B	A←A-[IY+L]-C	4	2	-	-	- *	r 7	★ (;	\$	↕	\$	
	[HL],A	CE,1C	[HL]←[HL]-A-C	4	2	-	-	- *	r 1	★ :	;	\$	\$	\$	
	[HL],#nn	CE,1D,nn	[HL]←[HL]-nn-C	5	3	-	-	- *	r 7	★ :	;	\$	\$	\$	
	[HL],[IX]	CE,1E	[HL]←[HL]-[IX]-C	5	2	-	-	- 🖈	r 7	★ (;	\$	¢	\$	
	[HL],[IY]	CE,1F	[HL]←[HL]-[IY]-C	5	2	-	-	- 🔺	r 1	★ :	;	\$	\$	\$	
AND	A,A	20	A←A∧A	2	1	-	-					_	_	\$	
	A,B	21	A←A∧B	2	1	-	-			- ;	;	-	_	\$	
	A,#nn	22,nn	A←A∧nn	2	2	-	-			- (-	-	\$	
	A,[BR: <i>ll</i>]	24, <i>ll</i>	$A \leftarrow A \land [BR:ll]$	3	2	-	-			- ;	;	-	_	\$	
	A,[hh <i>ll</i>]	25, <i>ll</i> ,hh	A←A∧[hh <i>ll</i>]	4	3	-	-			- ;	;	_	_	\$	
	A,[HL]	23	A←A∧[HL]	2	1	-	-			- ;	;	_	_	\$	
	A,[IX]	26	A←A∧[IX]	2	1	-	-			- (;	-	_	\$	
	A,[IY]	27	A←A∧[IY]	2	1	-	-			- (;	-	_	\$	
	A,[IX+dd]	CE,20,dd	$A \leftarrow A \land [IX+dd]$	4	3	-	-			- (;	-	_	\$	
	A,[IY+dd]	CE,21,dd	$A \leftarrow A \land [IY+dd]$	4	3	-	-			- ;	;	-	—	\$	
	A,[IX+L]	CE,22	$A \leftarrow A \land [IX+L]$	4	2	-	-			- ;	;	-	—	\$	
	A,[IY+L]	CE,23	$A \leftarrow A \land [IY+L]$	4	2	-	-			- ;	;	-	—	\$	
	B,#nn	CE,B0,nn	B←B∧nn	3	3	-	-			- (;	-	_	\$	
	L,#nn	CE,B1,nn	L←L∧nn	3	3	-	-			- (;	-	_	\$	
	H,#nn	CE,B2,nn	H←H∧nn	3	3	-	-			- (;	-	_	↕	
	SC,#nn	9C,nn	SC←SC∧nn	3	2	\downarrow	ļ	, ↓		↓ ↓	l	\downarrow	\downarrow	\downarrow	
	[BR: <i>ll</i>],#nn	D8, <i>ll</i> ,nn	[BR: <i>ll</i>]←[BR: <i>ll</i>]∧nn	5	3	-	-			- (;	-	—	\$	
	[HL],A	CE,24	[HL]←[HL]∧A	4	2	-	-			- (;	-	_	\$	
	[HL],#nn	CE,25,nn	[HL]←[HL]∧nn	5	3	-	-			- (;	-	_	\$	
	[HL],[IX]	CE,26	[HL]←[HL]∧[IX]	5	2	-	-			- (;	-	_	\$	
	[HL],[IY]	CE,27	$[HL] \leftarrow [HL] \land [IY]$	5	2	-	-			- ;	;	-	_	\$	
OR	A,A	28	A←A∨A	2	1	-	-			- (;	-	_	↕	
	A,B	29	A←A∨B	2	1	-	-			- ;	;	-	—	\$	
	A,#nn	2A,nn	A←A∨nn	2	2	-	-			- (;	-	_	\$	
	A,[BR: <i>ll</i>]	2C, <i>ll</i>	$A \leftarrow A \lor [BR:ll]$	3	2	-	-			- (;	-	_	\$	
	A,[hh <i>ll</i>]	2D,ll,hh	$A \leftarrow A \lor [hhll]$	4	3	-	-			- (;	-	_	\$	
	A,[HL]	2B	A←A∨[HL]	2	1	-	-			- ;	;	_	-	\$	
	A,[IX]	2E	$A \leftarrow A \lor [IX]$	2	1	-	-			- ;	;	_	-	\$	
	A,[IY]	2F	A←A∨[IY]	2	1	-	-			- ;	;	-	_	\$	
	A,[IX+dd]	CE,28,dd	A←A∨[IX+dd]	4	3	-	_				;	_	_	\$	
	A,[IY+dd]	CE,29,dd	A←A∨[IY+dd]	4	3	-	-				;	_	_	\$	
	A,[IX+L]	CE,2A	A←A∨[IX+L]	4	2	-	_			- (;	_	_	\$	

8-bit Arithmetic and Logic Operation Instructions (2/4)

8-bit Arithmetic and Logic Operation Instructions (3/4)

	nomonio	Mashina Cada	Operation	Cuala	Duto					S	SC					Commont
	nemonic	Machine Code	Operation	Cycle	Byte	11	10	C	U	D	Ν	٧	/ (С	Ζ	Comment
OR	A,[IY+L]	CE,2B	$A \leftarrow A \lor [IY+L]$	4	2	-	-	-	-	-	\$	-		-	€	
	B,#nn	CE,B4,nn	B←B∨nn	3	3	-	-	-	-	-	¢	-		_	\$	
	L,#nn	CE,B5,nn	L←L∨nn	3	3	-	-	-	_	_	¢	-		_	¢	
	H,#nn	CE,B6,nn	H←H∨nn	3	3	-	-	-	-	-	¢	-		_	\$	
	SC,#nn	9D,nn	SC←SC∨nn	3	2	Î	1	Ì	Î	1	Î	1		1	1	
	[BR: <i>ll</i>],#nn	D9, <i>ll</i> ,nn	$[BR:ll] \leftarrow [BR:ll] \lor nn$	5	3	-	-	-	-	-	¢	-		_	\$	
	[HL],A	CE,2C	[HL]←[HL]∨A	4	2	-	-	-	_	-	¢	-		_	\$	
	[HL],#nn	CE,2D,nn	[HL]←[HL]∨nn	5	3	-	-	-	_	_	¢	-		_	¢	
	[HL],[IX]	CE,2E	[HL]←[HL]∨[IX]	5	2	-	-	-	-	_	¢	-		_	\$	
	[HL],[IY]	CE,2F	[HL]←[HL]∨[IY]	5	2	-	-	-	-	-	¢	-		_	¢	
XOR	A,A	38	$A \leftarrow A \forall A$	2	1	-	-	-	-	-	¢	-		_	\$	
	A,B	39	$A \leftarrow A \forall B$	2	1	-	_	-	_	-	¢	_			\$	
	A,#nn	3A,nn	A←A∀nn	2	2	-	-	-	-	-	\$	_		_	\$	
	A,[BR: <i>ll</i>]	3C, <i>ll</i>	$A \leftarrow A \forall [BR:ll]$	3	2	-	-	-	_	-	\$	-		_	\$	
	A,[hh <i>ll</i>]	3D, <i>ll</i> ,hh	$A \leftarrow A \forall [hhll]$	4	3	-	-	-	-	-	¢	-		_	\$	
	A,[HL]	3B	$A \leftarrow A \forall [HL]$	2	1	-	-	-	-	_	¢	-		_	\$	
	A,[IX]	3E	$A \leftarrow A \forall [IX]$	2	1	-	-	-	-	-	¢	-		_	\$	
	A,[IY]	3F	$A \leftarrow A \forall [IY]$	2	1	-	-	-	_	_	\$	-			\$	
	A,[IX+dd]	CE,38,dd	$A \leftarrow A \forall [IX+dd]$	4	3	-	-	-	_	_	¢	-		_	¢	
	A,[IY+dd]	CE,39,dd	$A \leftarrow A \forall [IY+dd]$	4	3	-	-	-	-	-	¢	-		_	\$	
	A,[IX+L]	CE,3A	$A \leftarrow A \forall [IX+L]$	4	2	-	-	_	-	_	↕	_		_	\$	
	A,[IY+L]	CE,3B	$A \leftarrow A \forall [IY+L]$	4	2	-	-	-	-	-	\$	-		_	\$	
	B,#nn	CE,B8,nn	B←B∀nn	3	3	-	-	-	-	-	¢	-		_	\$	
	L,#nn	CE,B9,nn	L←L∀nn	3	3	-	-	-	-	-	¢	-		_	\$	
	H,#nn	CE,BA,nn	H←H∀nn	3	3	-	-			-	¢	-			\$	
	SC,#nn	9E,nn	SC←SC∀nn	3	2	\$	1	;	¢	¢	¢	1)	\$	\$	
	[BR: <i>ll</i>],#nn		[BR: <i>ll</i>]←[BR: <i>ll</i>]∀nn	5	3	-	-	-	-	-	¢	-		_	\$	
	[HL],A	CE,3C	[HL]←[HL]∀A	4	2	-	-	-	_	-	¢	-		_	\$	
	[HL],#nn	CE,3D,nn	[HL]←[HL]∀nn	5	3	_	-	-	-	-	\$	-		_	\$	
	[HL],[IX]	CE,3E	[HL]←[HL]∀[IX]	5	2	_	-	-	-	-	¢	-		_	\$	
	[HL],[IY]	CE,3F	[HL]←[HL]∀[IY]	5	2	_	-	-	-	-	¢	-		_	\$	
CP	A,A	30	A-A	2	1	-	-	-	-	-	\$	1		\$	\$	
	A,B	31	A-B	2	1	-	-	-	_	-	¢	1		\$	\$	
	A,#nn	32,nn	A-nn	2	2	-	-	-	-	-	\$	1		\$	\$	
	A,[BR: <i>ll</i>]	34, <i>ll</i>	A-[BR: <i>ll</i>]	3	2	-	-	-	-	-	¢		;	\$	\$	
	A,[hh <i>ll</i>]	35, <i>ll</i> ,hh	A-[hh <i>ll</i>]	4	3	-					¢		2		\$	
	A,[HL]	33	A-[HL]	2	1						¢			\$	\$	
	A,[IX]	36	A-[IX]	2	1	-					¢			\$	\$	
	A,[IY]	37	A-[IY]	2	1	-	-	-	-	-	¢				\$	
	A,[IX+dd]	CE,30,dd	A-[IX+dd]	4	3	-	-	-	-	-	¢	1		\$	\$	
	A,[IY+dd]	CE,31,dd	A-[IY+dd]	4	3	-	-	-	-	-	\$	1		\$	\$	
	A,[IX+L]	CE,32	A-[IX+L]	4	2	-	-	-	-	-	\$	1		\$	\$	
	A,[IY+L]	CE,33	A-[IY+L]	4	2	-			_			1		\$	\$	
	B,#nn	CE,BC,nn	B-nn	3	3	-	-	-	_	-		1		\$	\$	
	L,#nn	CE,BD,nn	L-nn	3	3	-	-	-	_	-		1		\$	\$	
	H,#nn	CE,BE,nn	H-nn	3	3	-	-	-	-	-		1		\$	\$	
	BR,#hh	CE,BF,hh	BR-hh	3	3	_			-		\$	1		\$	\$	
	[BR: <i>ll</i>],#nn	DB, <i>ll</i> ,nn	[BR: <i>ll</i>]-nn	4	3	-	-	-	_	-	€	1	;	\$	\$	

Mr	nemonic	Machine Code	Operation	Cycle	Byte				SC				Comment
	lomonio		oporation	oyolo	DJio	1	0 ι	J	ΟN	V	С	Ζ	Common
CP	[HL],A	CE,34	[HL]-A	3	2				- 1	\$	¢	\$	
	[HL],#nn	CE,35,nn	[HL]-nn	4	3				- 1	\$	\$	\$	
	[HL],[IX]	CE,36	[HL]-[IX]	4	2				- 1	\$	\$	\$	
	[HL],[IY]	CE,37	[HL]-[IY]	4	2				- 1	\$	\$	\$	
BIT	A,B	94	A∧B	2	1				- 1	_	_	\$	
	A,#nn	96,nn	A∧nn	2	2				- 1	_	_	\$	
	B,#nn	97,nn	B∧nn	2	2				- 1	_	_	\$	
	[BR: <i>ll</i>],#nn	DC,ll,nn	[BR: <i>ll</i>]^nn	4	3				- 1	_	_	\$	
	[HL],#nn	95,nn	[HL]^nn	3	2				- 1	_	_	\$	
INC	А	80	A←A+1	2	1					_	_	\$	
	В	81	B←B+1	2	1					_	_	\$	
	L	82	L←L+1	2	1					_	_	\$	
	Н	83	H←H+1	2	1					_	_	\$	
	BR	84	BR←BR+1	2	1					_	_	\$	
	[BR: <i>ll</i>]	85, <i>ll</i>	[BR: <i>ll</i>]←[BR: <i>ll</i>]+1	4	2					_	_	\$	
	[HL]	86	[HL]←[HL]+1	3	1					_	_	\$	
DEC	A	88	A←A-1	2	1					_	_	\$	
	В	89	B←B-1	2	1					_	_	\$	
	L	8A	L←L-1	2	1					-	_	\$	
	Н	8B	H←H-1	2	1					_	_	\$	
	BR	8C	BR←BR-1	2	1					_	_	\$	
	[BR: <i>ll</i>]	8D, <i>ll</i>	[BR: <i>ll</i>]←[BR: <i>ll</i>]-1	4	2					_	_	\$	
	[HL]	8E	[HL]←[HL]-1	3	1					_	_	\$	
CPL	A	CE,A0	A←Ā	3	2				- 1	_	_	\$	
	В	CE,A1	B←B	3	2				- 1	_	_	\$	
	[BR: <i>ll</i>]	CE,A2,ll	$[BR:ll] \leftarrow \overline{[BR:ll]}$	5	3				- 1	_	_	\$	
	[HL]	CE,A3	[HL]←[HL]	4	2				- 1	_	_	\$	
NEG	A	CE,A4	A←0-A	3	2		_ /	r 7	★ ↓	\$	\$	\$	
	В	CE,A5	В←0-В	3	2		- 1	T 7	★ ↓	\$	\$	\$	
	[BR: <i>ll</i>]	CE,A6, <i>ll</i>	[BR: <i>ll</i>]←0-[BR: <i>ll</i>]	5	3		- 1	T 7	★ ↓	\$	\$	\$	
	[HL]	CE,A7	[HL]←0-[HL]	4	2		_ +	r 7	★ ‡	\$	\$	\$	
MLT		CE,D8	HL←L*A	12	2					0	0	\$	MODEL1/3
DIV		CE,D9	L←HL/A, H←Remainder	13	2					\$	0	\$	only

8-bit Arithmetic and Logic Operation Instructions (4/4)

* Multiplication and division instructions are set only for MODEL1/3. In MODEL0/2, these instructions cannot be used.

16-bit Arithmetic Operation Instructions (1/2)

Mr	nemonic	Machine Code	Operation	Cycle	Byte	1	1	0	U		SC N	\	v	С	Z	Comment
ADD	BA,BA	CF,00	BA←BA+BA	4	2	_			_					\$	\$	
	BA,HL	CF,01	BA←BA+HL	4	2	-			_					\$	\$	
	BA,IX	CF,02	BA←BA+IX	4	2	-			_					\$	\$	
	BA,IY	CF,03	BA←BA+IY	4	2	-			_					\$	\$	
	BA,#mmnn	C0,nn,mm	BA←BA+mmnn	3	3	-			_					\$	\$	
	HL,BA	CF,20	HL←HL+BA	4	2	-			_					\$	\$	
	HL,HL	CF,21	HL←HL+HL	4	2				_					\$	\$	
	HL,IX	CF,22	HL←HL+IX	4	2	-		_	_	_	\$			\$	\$	
	HL,IY	CF,23	HL←HL+IY	4	2	-		_	_	_	\$	_		\$	\$	
	HL,#mmnn	C1,nn,mm	HL←HL+mmnn	3	3	-		_	_	_	\$			\$	\$	
	IX,BA	CF,40	IX←IX+BA	4	2	-	-	_	_	_	\$			\$	\$	
	IX,HL	CF,41	IX←IX+HL	4	2	-		_	_					\$	\$	
	IX,#mmnn	C2,nn,mm	IX←IX+mmnn	3	3	-		_	_	_	\$			\$	\$	
	IY,BA	CF,42	IY←IY+BA	4	2	-								\$	\$	
	IY,HL	CF,43	IY←IY+HL	4	2	-			_					\$	\$	
	IY,#mmnn	C3,nn,mm	IY←IY+mmnn	3	3	-			_					\$	\$	
	SP,BA	CF,44	SP←SP+BA	4	2	_		_						, \$	\$	
	SP,HL	CF,45	SP←SP+HL	4	2	-		_	_					, \$	\$	
	,	CF,68,nn,mm	SP←SP+mmnn	4	4	-			_					\$	\$	
ADC	BA,BA	CF,04	BA←BA+BA+C	4	2	-		_	_	_				; ‡	\$	
	BA,HL	CF,05	BA←BA+HL+C	4	2	-			_					; \$	\$	
	BA,IX	CF,06	BA←BA+IX+C	4	2				_					\$	\$	
	BA,IY	CF,07	BA←BA+IY+C	4	2	-		_		_				\$	\$	
	BA.#mmnn	CF,60,nn,mm	BA←BA+mmn+C	4	4	-		_	_	_	-			\$	\$	
	HL,BA	CF,24	HL←HL+BA+C	4	2	-		_	_	_				\$	\$	
	HL,HL	CF,25	HL←HL+HL+C	4	2	-		_	_	_				\$	\$	
	HL,IX	CF,26	HL←HL+IX+C	4	2	-	-	_	_	_				\$	\$	
	HL,IY	CF,27	HL←HL+IY+C	4	2	-		_	_	_	\$			\$	\$	
	HL,#mmnn	CF,61,nn,mm	HL←HL+mmnn+C	4	4	-		_	_	_	\$			\$	\$	
SUB	BA,BA	CF,08	BA←BA-BA	4	2	-		_	_	_	\$	_		\$	\$	
	BA,HL	CF,09	BA←BA-HL	4	2	-		_	_	_	\$			\$	\$	
	BA,IX	CF,0A	BA←BA-IX	4	2	-		_	_	_	\$			\$	\$	
	BA,IY	CF,0B	BA←BA-IY	4	2	-	-	_	_	_	\$			\$	\$	
	BA,#mmnn	D0,nn,mm	BA←BA-mmnn	3	3	-		_	_	_	\$			\$	\$	
	HL,BA	CF,28	HL←HL-BA	4	2	-		_	_	_				\$	\$	
	HL,HL	CF,29	HL←HL-HL	4	2	-		_	_	_				\$	\$	
	HL,IX	CF,2A	HL←HL-IX	4	2	-		_	_	_	\$		\$	\$	\$	
	HL,IY	CF,2B	HL←HL-IY	4	2	-	-	_	_	_	\$		\$	\$	\$	
	HL,#mmnn	D1,nn,mm	HL←HL-mmnn	3	3	-		_	_	_	\$		\$	\$	\$	
	IX,BA	CF,48	IX←IX-BA	4	2	-		_	_	_	\$		\$	\$	\$	
	IX,HL	CF,49	IX←IX-HL	4	2	-		_	_	_	\$		\$	\$	\$	
	IX,#mmnn	D2,nn,mm	IX←IX-mmnn	3	3	-		_	_	_	\$,	\$	\$	\$	
	IY,BA	CF,4A	IY←IY-BA	4	2	-	-	_	_	_	\$			\$	\$	
	IY,HL	CF,4B	IY←IY-HL	4	2	-	-	_	_	_	\$			\$	\$	
	IY,#mmnn	D3,nn,mm	IY←IY-mmnn	3	3	-	-	_	_	_	\$,	\$	\$	\$	
	SP,BA	CF,4C	SP←SP-BA	4	2	-			_					\$	\$	
	SP,HL	CF,4D	SP←SP-HL	4	2	-			_					\$	\$	
	SP,#mmnn	-	SP←SP-mmnn	4	4	-			_					\$	\$	

M	nemonic	Machine Code	Operation	Cyclo	Byte				S	С				Comment
	lemonic		Operation	Cycle	Dyte	11	10	U	D	Ν	V	С	Ζ	Comment
SBC	BA,BA	CF,0C	ВА←ВА-ВА-С	4	2	-	-	-	_	\$	\$	\$	↕	
	BA,HL	CF,0D	BA←BA-HL-C	4	2		-	_	_	\$	\$	\$	\$	
	BA,IX	CF,0E	BA←BA-IX-C	4	2		_	_	_	\$	\$	\$	\$	
	BA,IY	CF,0F	BA←BA-IY-C	4	2		-	_	_	\$	\$	\$	\$	
	BA,#mmnn	CF,62,nn,mm	BA←BA-mmnn-C	4	4		-	_	_	\$	\$	\$	\$	
	HL,BA	CF,2C	HL←HL-BA-C	4	2		-	_	_	\$	\$	\$	\$	
	HL,HL	CF,2D	HL←HL-HL-C	4	2		_	_	_	\$	\$	\$	\$	
	HL,IX	CF,2E	HL←HL-IX-C	4	2		_	_	_	\$	\$	\$	\$	
	HL,IY	CF,2F	HL←HL-IY-C	4	2		_	_	_	\$	\$	\$	\$	
	HL,#mmnn	CF,63,nn,mm	HL←HL-mmnn-C	4	4		_	_	_	\$	\$	\$	\$	
CP	BA,BA	CF,18	BA-BA	4	2		_	_	_	\$	\$	\$	\$	
	BA,HL	CF,19	BA-HL	4	2		_	_	_	\$	\$	\$	\$	
	BA,IX	CF,1A	BA-IX	4	2		_	_	_	\$	\$	\$	\$	
	BA,IY	CF,1B	BA-IY	4	2		_	_	_	\$	\$	\$	\$	
	BA,#mmnn	D4,nn,mm	BA-mmnn	3	3		_	_	_	\$	\$	\$	\$	
	HL,BA	CF,38	HL-BA	4	2		_	_	_	\$	\$	\$	\$	
	HL,HL	CF,39	HL-HL	4	2		_	_	_	\$	\$	\$	\$	
	HL,IX	CF,3A	HL-IX	4	2		_	_	_	\$	\$	\$	\$	
	HL,IY	CF,3B	HL-IY	4	2		_	_	_	\$	\$	\$	\$	
	HL,#mmnn	D5,nn,mm	HL-mmnn	3	3		_	_	_	\$	\$	\$	\$	
	IX,#mmnn	D6,nn,mm	IX-mmnn	3	3		_	_	_	\$	\$	\$	\$	
	IY,#mmnn	D7,nn,mm	IY-mmnn	3	3	1	-	_	_	\$	\$	\$	\$	
	SP,BA	CF,5C	SP-BA	4	2		_	_	_	\$	\$	\$	\$	
	SP,HL	CF,5D	SP-HL	4	2		_	_	_	\$	\$	\$	\$	
	SP,#mmnn	CF,6C,nn,mm	SP-mmnn	4	4		_	_	_	\$	\$	\$	\$	
INC	BA	90	BA←BA+1	2	1		_	_	_	_	_	_	\$	
	HL	91	HL←HL+1	2	1		_	_	_	_	_	_	\$	
	IX	92	IX←IX+1	2	1		-	_	_	_	_	_	\$	
	IY	93	IY←IY+1	2	1		-	_	_	_	_	_	\$	
	SP	87	SP←SP+1	2	1	_	_	_	_	_	_	_	\$	
DEC	BA	98	BA←BA-1	2	1	_	_	_	_	_	_	_	\$	
	HL	99	HL←HL-1	2	1	_	-	-	-	_	_	_	\$	
	IX	9A	IX←IX-1	2	1	_	-	_	-	-	_	_	\$	
	IY	9B	IY←IY-1	2	1	_	_	-	-	_	_	_	\$	
	SP	8F	SP←SP-1	2	1	_	_	_	_	_	_	_	\$	

16-bit Arithmetic Operation Instructions (2/2)

Auxiliary Operation Instructions

Mn	emonic	Machine Code	Operation	Cycle	Byte	11	10	U		SC N	V	С	Z	Comment
PACK		DE	B A A imit in → mn	2	1	-	-	-	-	-	-	-	-	
UPCK		DF	A B A mn→0m0n	2	1	-	_	_	_	_	_	_	_	
SEP		CE,A8	B A B A 0******* 1******* → 11111111 1*******	3	2		-	_	_	_	_	_	-	

Rotate/Shift Instructions (1/2)

М	nemonic	Machine Code	Operation	Cycle	Byto				S	С				Comment
			Operation	Cycle	Буіе	11	10	U	D	Ν	V	С	Ζ	Comment
RL	A	CE,90	C ← 76543210 ← A	3	2	-	-	-	-	\$	-	\$	\$	
	В	CE,91	[C ← 76543210 ← B	3	2	-	_	_	-	\$	_	\$	\$	
	[BR: <i>ll</i>]	CE,92, <i>ll</i>	[C ← 76543210 ← [BR: <i>ll</i>]	5	3	-	-	_	-	\$	_	\$	\$	
	[HL]	CE,93	[C ← 76543210 ← [HL]	4	2	-	-	-	-	\$	-	\$	\$	
RLC	A	CE,94	C ◀ 76543210 ◀ A	3	2	-	_	_	-	\$	_	\$	\$	
	В	CE,95	C ◀ 76543210 ◀ B	3	2	-	_	_	-	\$	_	\$	\$	
	[BR: <i>ll</i>]	CE,96, <i>ll</i>	C ◀ 76543210 ◀ [BR: <i>ll</i>]	5	3	-	_	_	-	\$	_	\$	\$	
	[HL]	CE,97	C ← 76543210 ← [HL]	4	2	-	-	-	-	\$	-	\$	\$	
RR	A	CE,98	►76543210→C A	3	2	-	-	-	-	\$	-	¢	\$	
	В	CE,99	►76543210→C B	3	2	-	-	-	-	\$	-	¢	\$	
	[BR: <i>ll</i>]	CE,9A, <i>ll</i>	►76543210 → C [BR: <i>ll</i>]	5	3	-	-	-	-	\$	-	\$	\$	
	[HL]	CE,9B	►76543210→C [HL]	4	2				_					
RRC	A	CE,9C	→76543210→C A	3	2	-	_	_	-	\$	_	\$	\$	
	В	CE,9D	►76543210 B	3	2				-				-	
	[BR: <i>ll</i>]	CE,9E, <i>ll</i>	►76543210 [BR: <i>ll</i>]	5	3	-	-	-	-	\$	-	\$	\$	
	[HL]	CE,9F	►76543210 [HL]	4	2	-	-	-	-	\$	-	\$	\$	
SLA	A	CE,80	$\begin{bmatrix} C \\ \hline 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ \hline 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	3	2	-	-	-	-	\$	\$	\$	\$	
	В	CE,81	C ← 76543210 ← 0 B	3	2	-	-	-	-	\$	\$	\$	\$	
	[BR: <i>ll</i>]	CE,82, <i>ll</i>	C ← 76543210 ← 0 [BR: <i>ll</i>]	5	3	-	_	_	-	\$	\$	\$	\$	
	[HL]	CE,83	C ← 7 6 5 4 3 2 1 0 ← 0 [HL]	4	2	-	-	-	-	\$	\$	\$	\$	
SLL	A	CE,84	$C \leftarrow 76543210 \leftarrow 0$	3	2	-	_	-	-	\$	_	\$	\$	
	В	CE,85	C ← 76543210 ← 0 B	3	2	-	_	-	-	\$	_	\$	\$	
	[BR: <i>ll</i>]	CE,86, <i>ll</i>	C ← 76543210 ← 0 [BR: <i>ll</i>]	5	3	-	-	-	-	\$	_	\$	€	
	[HL]	CE,87	C ← 76543210 ← 0 [HL]	4	2	-	-	-	-	\$	_	\$	\$	

M	nemonic	Machine Code	Operation	Cycle	B vte					S	SC				Comment
		Miderinie Oode	operation	Oyele	Dyie	ľ	1 10)	U	D	Ν	V	С	Ζ	Comment
SRA	A	CE,88	►76543210→C	3	2	-		-	-	_	€	0	\$	\$	
	В	CE,89	►76543210→C B	3	2	-		-	-	-	\$	0	\$	\$	
	[BR: <i>ll</i>]	CE,8A, <i>ll</i>	►76543210→C [BR: <i>ll</i>]	5	3	-		-	-	-	\$	0	\$	\$	
	[HL]	CE,8B	►76543210→C [HL]	4	2	-		-	-	_	\$	0	\$	\$	
SRL	A	CE,8C	$0 \rightarrow 76543210 \rightarrow C$ A	3	2	-		-	-	_	0	-	\$	\$	
	В	CE,8D	0→76543210→C B	3	2	-		-	-	_	0	-	\$	\$	
	[BR: <i>ll</i>]	CE,8E, <i>ll</i>	0 → 7 6 5 4 3 2 1 0 → C [BR: <i>ll</i>]	5	3	-		-	-	-	0	-	\$	\$	
	[HL]	CE,8F	0→76543210→C [HL]	4	2	-		-	-	-	0	-	\$	\$	

Rotate/Shift Instructions (2/2)

Stack Control Instructions

Mn	emonic	Machine Code	Operation	Cycle	Byto				S	С				Comment
IVII	lemonic		Operation	Cycle	Dyte	11	10	U	D	Ν	V	С	Ζ	Comment
PUSH	А	CF,B0	[SP-1]←A, SP←SP-1	3	2	-	-	-	-	-	-	-	-	
	В	CF,B1	[SP-1]←B, SP←SP-1	3	2	-	-	_	-	_	_	-	-	
	L	CF,B2	[SP-1]←L, SP←SP-1	3	2	-	_	-	-	-	-	-	-	
	Н	CF,B3	[SP-1]←H, SP←SP-1	3	2	-	-	-	-	-	-	-	-	
	BR	A4	[SP-1]←BR, SP←SP-1	3	1	-	-	-	-	-	-	-	-	
	SC	A7	[SP-1]←SC, SP←SP-1	3	1	_	-	_	-	—	-	-	-	
	BA	A0	$[\text{SP-1}] {\leftarrow} \text{B}, [\text{SP-2}] {\leftarrow} \text{A}, \text{SP} {\leftarrow} \text{SP-2}$	4	1	_	-	-	-	—	-	-	-	
	HL	A1	$[\text{SP-1}] {\leftarrow} \text{H}, [\text{SP-2}] {\leftarrow} \text{L}, \text{SP} {\leftarrow} \text{SP-2}$	4	1	—	-	—	—	—	-	-	-	
	IX	A2	$[SP-1]{\leftarrow}IX(H), [SP-2]{\leftarrow}IX(L), SP{\leftarrow}SP-2$	4	1	-	-	_	-	_	-	-	-	
	IY	A3	$[SP-1] {\leftarrow} IY({\tt H}), [SP-2] {\leftarrow} IY({\tt L}), SP {\leftarrow} SP-2$	4	1	_	-	—	—	—	-	-	-	
	EP	A5	[SP-1]←EP, SP←SP-1	3	1	_	-	—	—	-	-	-	-	
	IP	A6	$[\text{SP-1}]{\leftarrow}\text{XP}, [\text{SP-2}]{\leftarrow}\text{YP}, \text{SP}{\leftarrow}\text{SP-2}$	4	1	-	-	-	_	—	-	-	-	
PUSH	ALL	CF,B8	PUSH BA, HL, IX, IY, BR	12	2	-	-	-	-	-	-	-	-	
	ALE	CF,B9	PUSH BA, HL, IX, IY, BR, EP, IP	15	2	-	-	-	_	-	-	-	-	MODEL2/3 only
POP	A	CF,B4	$A \leftarrow [SP], SP \leftarrow SP+1$	3	2	_	-	—	-	—	-	-	-	
	В	CF,B5	$B \leftarrow [SP], SP \leftarrow SP+1$	3	2	-	-	-	_	—	—	-	-	
	L	CF,B6	$L \leftarrow [SP], SP \leftarrow SP+1$	3	2	-	-	-	_	-	-	-	-	
	Н	CF,B7	$H \leftarrow [SP], SP \leftarrow SP + 1$	3	2	_	-	—	-	-	-	-	-	
	BR	AC	BR←[SP], SP←SP+1	2	1	-	-	-	-	-	-	-	-	
	SC	AF	SC←[SP], SP←SP+1	2	1	↕	\$	\$	\$	\$	\$	↕	↕	
	BA	A8	$A \leftarrow [SP], B \leftarrow [SP+1], SP \leftarrow SP+2$	3	1	_	-	—	-	—	-	-	-	
	HL	A9	$L \leftarrow [SP], H \leftarrow [SP+1], SP \leftarrow SP+2$	3	1	_	-	—	-	-	-	-	-	
	IX	AA	$IX(L) {\leftarrow} [SP], IX(H) {\leftarrow} [SP{+}1], SP {\leftarrow} SP{+}2$	3	1	-	_	-	-	-	-	-	-	
	IY	AB	$IY(L) \leftarrow [SP], IY(H) \leftarrow [SP+1], SP \leftarrow SP+2$	3	1	-	-	_	-	_	-	-	-	
	EP	AD	EP←[SP], SP←SP+1	2	1	-	-	-	-	-	-	-	-	
	IP	AE	$YP \leftarrow [SP], XP \leftarrow [SP+1], SP \leftarrow SP+2$	3	1	_	_	_	_	_	_	_	_	
POP	ALL	CF,BC	POP BR, IY, IX, HL, BA	11	2	-	-	-	-	-	_	-	-	
	ALE	CF,BD	POP IP, EP, BR, IY, IX, HL, BA	14	2	_	_	-	_	_	_	_	_	MODEL2/3 only

* Expand page registers EP/XP/YP are set only for MODEL2/3. In MODEL0/1, instructions that access these registers cannot be used.

Branch Instructions (1/4)

м	Inemonic	Machine	Condition	Operation	Cycle	Byte				S	С			
	memoriic	Code	Condition	Operation	Cycle	Бую	11	10	U	D	Ν	V	С	Ζ
JRS	rr	F1,rr	Unconditionable	MODEL0/1 PC←PC+rr+1 MODEL2/3 PC←PC+rr+1, CB←NB	2	2	_	_	_	_	_	_	_	_
JRS	C,rr	E4,rr	C=1	<i>MODEL0/1</i> If Condition is true,	2	2	-	-	-	-	-	_	-	-
	NC,rr	E5,rr	C=0	then PC←PC+rr+1 else PC←PC+2	-									
	Z,rr	E6,rr	Z=1	MODEL2/3 If Condition is true,										
	NZ,rr	E7,rr	Z=0	then $PC \leftarrow PC+rr+1$, $CB \leftarrow NB$ else $PC \leftarrow PC+2$, $NB \leftarrow CB$										
JRS	LT,rr	CE,E0,rr	[N∀V]=1		3	3	-	-	-	-	-	-	-	-
	LE,rr	CE,E1,rr	$Z \vee [N \forall V] = 1$											
	GT,rr	CE,E2,rr	Z∨[N∀V]=0	MODEL0/1										
	GE,rr	CE,E3,rr	[N∀V]=0	If Condition is true,										
	V,rr	CE,E4,rr	V=1	then PC←PC+rr+2										
	NV,rr	CE,E5,rr	V=0	else PC←PC+3										
	P,rr	CE,E6,rr	N=0											
	M,rr	CE,E7,rr	N=1											
	F0,rr	CE,E8,rr	F0=1											
	F1,rr	CE,E9,rr	F1=1											
	F2,rr	CE,EA,rr	F2=1	MODEL2/3										
	F3,rr	CE,EB,rr	F3=1	If Condition is true,										
	NF0,rr	CE,EC,rr	F0=0	then PC←PC+rr+2, CB←NB										
	NF1,rr		F1=0	else PC←PC+3, NB←CB										
	NF2,rr	CE,EE,rr	F2=0											
	NF3,rr	CE,EF,rr	F3=0											
JRL	qqrr	F3,rr,qq	Unconditionable	MODEL0/1 PC←PC+qqrr+2 MODEL2/3 PC←PC+qqrr+2, CB←NB	3	3	-	-	_	_	-	-	-	-
JRL	C,qqrr	EC,rr,qq	C=1	MODEL0/1 If Condition is true,	3	3	-	-	-	_	-	_	-	-
	NC,qqrr	ED,rr,qq	C=0	then PC \leftarrow PC+qqrr+2 else PC \leftarrow PC+3										
	Z,qqrr	EE,rr,qq	Z=1	MODEL2/3 If Condition is true,										
	NZ,qqrr	EF,rr,qq	Z=0	then PC \leftarrow PC+qqrr+2, CB \leftarrow NB else PC \leftarrow PC+3, NB \leftarrow CB										
DJR	NZ,rr	F5,rr	B=0	$MODEL0/1$ $B \leftarrow B-1, If B=0,$ then PC \leftarrow PC+rr+1 else PC ← PC+2 $MODEL2/3$ $B \leftarrow B-1, If B=0,$ then PC ← PC+rr+1, CB ← NB else PC ← PC+2, NB ← CB	4	2	_	_	_	_		_	_	\$

Branch Instructions (2/4)

Mr	nemonic	Machine	Condition	Operation	Cycle	Byto					SC			
IVI	lemonic	Code	Condition	Operation	Cycle	Буге	11	10) U	C) N	V	С	Ζ
JP	HL	F4	Unconditionable	MODEL0/1 PC←HL	2	1	-	-		_		-	-	-
				MODEL2/3 PC←HL, CB←NB										
	[kk]	FD,kk	Unconditionable	$MODEL0/1$ PC(L) \leftarrow [00kk],	4	2	-	_		-		-	-	-
				PC(H)←[00kk+1]										
				$MODEL2/3$ PC(L) \leftarrow [00kk]										
		70		$PC(H) \leftarrow [00kk+1], CB \leftarrow NB$										
CARS	rr	F0,rr	Unconditionable		4	2	-	-		-		-	-	-
				$[SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L),$										
				$SP \leftarrow SP-2, PC \leftarrow PC + rr + 1$										
				MODEL2/3 (Minimum mode)										
				$[SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L),$ $SP \leftarrow SP-2, PC \leftarrow PC+rr+1, CB \leftarrow NB$										
				MODEL2/3 (Maximum mode)	5									
				[SP-1]←CB, [SP-2]←PC(H),	5									
				$[SP-3] \leftarrow PC(L), SP \leftarrow SP-3,$										
				$PC \leftarrow PC + rr + 1, CB \leftarrow NB$										
CARS	C,rr	E0,rr	C=1	\neg MODEL0/1		2	_	_		_		_	_	
0/ 110	0,	20,11	0-1	If Condition is true		_								
				then $[SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L),$	4									
				SP←SP-2, PC←PC+rr+1										
	NC,rr	E1,rr	C=0	else PC←PC+2	2									
		1,11	C=0	MODEL2/3 (Minimum mode)										
				If Condition is true										
				then [SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L),	4									
	Z,rr	E2,rr	Z=1	$SP \leftarrow SP-2, PC \leftarrow PC+rr+1,$										
	2,11	E2,11	2-1	CB←NB										
				else PC←PC+2, NB←CB	2									
				MODEL2/3 (Maximum mode)										
	NZ,rr	E3,rr	Z=0	If Condition is true	_									
	NZ,II	E3,11	2-0	then [SP-1] \leftarrow CB, [SP-2] \leftarrow PC(H),	5									
				$[SP-3] \leftarrow PC(L), SP \leftarrow SP-3,$										
				$PC \leftarrow PC + rr + 1, CB \leftarrow NB$ else PC \constraint PC + 2, NB \constraint CB	2									
CARS	LT,rr	CE,F0,rr	[N∀V]=1		2	3	_							
CAILO	LE,rr	CE,F1,rr	$Z \sim [N \forall V] = 1$	If Condition is true		5								
	GT,rr	CE,F2,rr	$Z \vee [N \forall V] = 0$	then $[SP-1] \leftarrow PC(H)$, $[SP-2] \leftarrow PC(L)$,	5									
	GE,rr	CE,F3,rr	$[N\forall V]=0$	$SP \leftarrow SP-2, PC \leftarrow PC + rr+2$	_									
	V,rr	CE,F4,rr	V=1	else PC←PC+3	3									
	NV,rr	CE,F5,rr	V=1 V=0	MODEL2/3 (Minimum mode)										
	P,rr	CE,F6,rr	N=0	If Condition is true										
	M,rr	CE,F7,rr	N=0 N=1	then [SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L),	5									
	F0,rr	CE,F8,rr	F0=1	SP←SP-2, PC←PC+rr+2,										
	F1,rr	CE,F9,rr	F1=1	CB←NB										
	F2,rr	CE,F9,II CE,FA,rr	F1=1 F2=1	else PC←PC+3, NB←CB	3									
			F2=1 F3=1	MODEL2/3 (Maximum mode)										
	F3,rr	CE,FB,rr		If Condition is true										
	NF0,rr	CE,FC,rr	F0=0	then [SP-1] \leftarrow CB, [SP-2] \leftarrow PC(H),	6									
	NF1,rr	CE,FD,rr	F1=0	$[SP-3] \leftarrow PC(L), SP \leftarrow SP-3,$										
	NF2,rr	CE,FE,rr	F2=0	$PC \leftarrow PC + rr + 2, CB \leftarrow NB$										
	NF3,rr	CE,FF,rr	F3=0	\square else PC \leftarrow PC+3, NB \leftarrow CB	3									

Branch Instructions (3/4)

Mr	nemonic	Machine	Condition	Operation	Cycle	Byte				SC			
IVII	lemonic	Code	Condition	Operation	Cycle	Dyte	11	10	U	I D	1 1	/ C	Z
CARL	qqrr	F2,rr,qq	Unconditionable	$MODELO/1$ [SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L), SP \leftarrow SP-2, PC \leftarrow PC+qqrr+2 $MODEL2/3 (Minimum mode)$ [SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L), SP \leftarrow SP-2, PC \leftarrow PC+qqrr+2, CB \leftarrow NB MODEL2/3 (Maximum mode)	5	3	-	_	-				_
				$[SP-1] \leftarrow CB, [SP-2] \leftarrow PC(H),$ $[SP-3] \leftarrow PC(L), SP \leftarrow SP-3,$ $PC \leftarrow PC + qqrr + 2, CB \leftarrow NB$	Ū								
CARL	C,qqrr	E8,rr,qq	C=1	MODEL0/1 If Condition is true then [SP-1]←PC(H), [SP-2]←PC(L), SP←SP-2, PC←PC+qqrr+2		3	_	_	-				_
	NC,qqrr	E9,rr,qq	C=0	else PC \leftarrow PC+3 $\overline{MODEL2/3 (Minimum mode)}$ If Condition is true then [SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L), CPL (PD 2) PC(L) = 22	3								
	Z,qqrr	EA,rr,qq	Z=1	SP \leftarrow SP-2, PC \leftarrow PC+qqrr+2, CB \leftarrow NB else PC \leftarrow PC+3, NB \leftarrow CB MODEL2/3 (Maximum mode) If Condition is true	3								
	NZ,qqrr	EB,rr,qq	Z=0	then [SP-1] \leftarrow CB, [SP-2] \leftarrow PC(H), [SP-3] \leftarrow PC(L), SP \leftarrow SP-3, PC \leftarrow PC+qqrr+2, CB \leftarrow NB else PC \leftarrow PC+3, NB \leftarrow CB	6								
CALL	[hh <i>l</i>]	FB,//,hh	Unconditionable	$\begin{array}{c} MODEL0/l\\ [SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L),\\ SP \leftarrow SP-2, PC(L) \leftarrow [hhll],\\ PC(H) \leftarrow [hhll+1]\\ \hline\\ MODEL2/3 (Minimum mode)\\ [SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L),\\ SP \leftarrow SP-2, PC(L) \leftarrow [hhll],\\ PC(H) \leftarrow [hhll+1], CB \leftarrow NB\\ \hline\\ MODEL2/3 (Maximum mode)\\ [SP-1] \leftarrow CB, [SP-2] \leftarrow PC(H),\\ [SP-3] \leftarrow PC(L), SP \leftarrow SP-3,\\ PC(L) \leftarrow [hhll], PC(H) \leftarrow [hhll+1],\\ CB \leftarrow NB\\ \end{array}$	7	3	-	-					_

Branch Instructions (4/4)

м	nemonic	Machine Code	Operation	Cycle	Byte					SC				Comment
101			Operation	Cycic	Dyic	11	10	U	D	Ν	V	С	Ζ	Comment
INT	[kk]	FC,kk	$MODEL0/1$ [SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L),	7	2	-	-	-	-	-	-	-	-	
			[SP-3]←SC, SP←SP-3,											
			$PC(L) \leftarrow [00kk], PC(H) \leftarrow [00kk+1]$											
			MODEL2/3 (Minimum mode)											
			$[SP-1] \leftarrow PC(H), [SP-2] \leftarrow PC(L),$											
			[SP-3]←SC, SP←SP-3,											
			$PC(L) \leftarrow [00kk], PC(H) \leftarrow [00kk+1],$											
			CB←NB											
			MODEL2/3 (Maximum mode)	8										
			[SP-1]←CB, [SP-2]←PC(H),											
			$[SP-3] \leftarrow PC(L), [SP-4] \leftarrow SC,$											
			SP \leftarrow SP-4, PC(L) \leftarrow [00kk],											
			PC(H)←[00kk+1], CB←NB											
RET		F8	MODEL0/1, MODEL2/3 (Minimum mode)	3	1	-	-	-	-	-	-	-	-	
			$PC(L) \leftarrow [SP], PC(H) \leftarrow [SP+1],$											
			SP←SP+2											
			MODEL2/3 (Maximum mode)	4										
			$PC(L) \leftarrow [SP], PC(H) \leftarrow [SP+1],$											
			$CB \leftarrow [SP+2], NB \leftarrow CB, SP \leftarrow SP+3$											
RETE		F9	MODEL0/1, MODEL2/3 (Minimum mode)	4	1	\$	¢	\$	\$	\$	\$	¢	\$	
			$SC \leftarrow [SP], PC(L) \leftarrow [SP+1],$											
			$PC(H) \leftarrow [SP+2], SP \leftarrow SP+3$											
			MODEL2/3 (Maximum mode)	5										
			$SC \leftarrow [SP], PC(L) \leftarrow [SP+1],$											
			$PC(H) \leftarrow [SP+2], CB \leftarrow [SP+3],$											
			NB←CB, SP←SP+4											
RETS		FA	MODEL0/1, MODEL2/3 (Minimum mode)	5	1	-	-	-	-	-	-	-	-	
			$PC(L) \leftarrow [SP], PC(H) \leftarrow [SP+1],$											
			SP←SP+2, PC←PC+2											
			MODEL2/3 (Maximum mode)	6										
			$PC(L) \leftarrow [SP], PC(H) \leftarrow [SP+1],$											
			$CB \leftarrow [SP+2], NB \leftarrow CB, SP \leftarrow SP+3,$,										
			PC←PC+2											

System Control Instructions

Mn	emonic	Machine Code	Operation	Cycle	Buto				S	С				Comment
	lemonic	Machine Code	Operation	Cycle	Dyte	11	10	U	D	Ν	۷	С	Ζ	Comment
NOP		FF	No Operation	2	1	-	-	-	-	-	-	-	-	
HALT		CE,AE	HALT	3	2	I	-	-	_	-	-	-	-	
SLP		CE,AF	SLEEP	3	2		-	-	_	-	-	-	-	

Appendix C Programming Notes

System Controller and Bus Control

- All the interrupts including MMI are masked, until you write the optional value into both the "00FF00H" and "00FF01H" addresses. Consequently, even if you do not change the content of this address (You use the initial value, as is.), you should still be sure to perform the writing operation using the initialization routine.
- (2) When setting stack fields, including page addresses as well, you should write them in the order of the register SPP ("00FF01H") and the stack pointer SP.

Example: When setting the "178000H" address

עם	EP, #00A
LD	HL, $\#0FF01H$ During this period the
LD	[HL], #17H interrupts (including
LD	SP, $\#8000H \square \frac{\text{Interrupts}}{\text{NMI}}$ are masked.

Watchdog Timer

- (1) The watchdog timer must reset within 3-second cycles by software.
- (2) Do not execute the SLP instruction for 2 msec after a \overline{NMI} interrupt has occurred (when fosc1 is 32.768 kHz).

Oscillation Circuit and Operating Mode

- When the high speed CPU operation is not necessary, you should operate the peripheral circuits according to the setting outline indicate below.
 - CPU operating clock OSC1
 - OSC3 oscillation circuit OFF (When the OSC3 clock is not necessary for some peripheral circuits.)
 - Operating mode Low power mode (When VDD–VSS is 3.5 V or less) or Normal mode (When VDD–VSS is 3.5 V or more)
- (2) Do not turn the OSC3 oscillation circuit ON in the low power mode.
 Do not switch over the operating mode (normal mode ↔ high speed mode) in the OSC3 oscillation circuit ON status, as this will cause faulty operation.

- (3) When turning ON the OSC3 oscillation circuit after switching the operating mode, you should allow a minimum waiting time of 5 msec.
- (4) Since several msec to several tens of msec are necessary for the oscillation to stabilize after turning the OSC3 oscillation circuit ON. Consequently, you should switch the CPU operating clock (OSC1 → OSC3) after allowing for a sufficient waiting time once the OSC3 oscillation goes ON. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7/Technical Hardware, "ELECTRICAL CHARACTERISTICS".)
- (5) When switching the clock from OSC3 to OSC1, be sure to switch OSC3 oscillation OFF with separate instructions. Using a single instruction to process simultaneously can cause a malfunction of the CPU.

Input Port (K Port)

When changing the input terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an input port. In particular, special attention should be paid to key scan for key matrix formation. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec] RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

Output Port (R port)

(1) Since the special output signals (CL, FR, TOUT, FOUT and BZ) are generated asynchronously from the output control registers (LCCLK, LCFRM, PTOUT, FOUTON, BZON, BZSHT and BZSTP), when the signals is turned ON or OFF by the output control register settings, a hazard of a 1/2 cycle or less is generated.

- (2) When the FOUT frequency is made "fosc3/n", you must turn on the OSC3 oscillation circuit before outputting FOUT. A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, if an abnormality occurs as the result of an unstable FOUT signal being output externally, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before turning outputting FOUT. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7/Technical Hardware, "ELECTRICAL CHARACTERISTICS".) At initial reset, OSC3 oscillation circuit is set to OFF state.
- (3) The SLP instruction has executed when the special output signals (TOUT, FOUT and BZ) are in the enable status, an unstable clock is output for the special output at the time of return from the SLEEP state. Consequently, when shifting to the SLEEP state, you should set the special output signal to the disable status prior to executing the SLP instruction.

I/O Port (P Port)

(1) When changing the port terminal from LOW level to HIGH with the built-in pull-up resistor, a delay in the waveform rise time will occur depending on the time constant of the pull-up resistor and the load capacitance of the terminal. It is necessary to set an appropriate wait time for introduction of an I/O port. Make this wait time the amount of time or more calculated by the following expression.

Wait time = RIN x (CIN + load capacitance on the board) x 1.6 [sec] RIN: Pull up resistance Max. value CIN: Terminal capacitance Max. value

(2) When the analog comparator is used, "0" must always be set for the I/O control registers (IOC14–IOC15 or IOC16–IOC17, or both) of I/O ports which will become input terminals.

Serial Interface

 (1) Be sure to initialize the serial interface mode in the transmitting/receiving disable status (TXEN = RXEN = "0").

- (2) Do not perform double trigger (writing "1") to TXTRG (RXTRG) when the serial interface is in the transmitting (receiving) operation. Furthermore, do not execute the SLP instruction. (When executing the SLP instruction, set TXEN = RXEN = "0".)
- (3) In the clock synchronous mode, since one clock line (SCLK) is shared for both transmitting and receiving, transmitting and receiving cannot be performed simultaneously. (Half duplex only is possible in clock synchronous mode.) Consequently, be sure not to write "1" to RXTRG (TXTRG) when TXTRG (RXTRG) is "1".
- (4) When a parity error or flaming error is generated during receiving in the asynchronous mode, the receiving error interrupt factor flag FSERR is set to "1" prior to the receiving complete interrupt factor flag FSREC for the time indicated in Table C.1. Consequently, when an error is generated, you should reset the receiving complete interrupt factor flag FSREC to "0" by providing a wait time in error processing routines and similar routines. When an overrun error is generated, the receiving complete interrupt factor flag FSREC is not set to "1" and a receiving complete interrupt is not generated.

Table C.1	Time difference between FSERR
a	nd FSREC on error generation

Clock source	Time difference				
fosc3 / n	1/2 cycles of fosc3 / n				
Programmable timer	1 cycle of timer 1 underflow				

(5) When the demultiplied signal of the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the serial interface.

A time interval of several msec to several 10 msec, from the turning ON of the OSC3 oscillation circuit to until the oscillation stabilizes, is necessary, due to the oscillation element that is used. Consequently, you should allow an adequate waiting time after turning ON of the OSC3 oscillation, before starting transmitting/ receiving of serial interface. (The oscillation start time will vary somewhat depending on the oscillator and on the externally attached parts. Refer to the oscillation start time example indicated in Chapter 7/Technical Hardware, "ELECTRICAL CHARACTERISTICS".) At initial reset, the OSC3 oscillation circuit is set to OFF status.

Clock Timer

(1) The clock timer is actually made to RUN/STOP in synchronization with the falling edge of the 256 Hz signal after writing to the TMRUN register. Consequently, when "0" is written to the TMRUN, the timer shifts to STOP status when the counter is incremented "1". The TMRUN maintains "1" for reading until the timer actually shifts to STOP status. Figure C.1 shows the timing chart of the RUN/ STOP control.

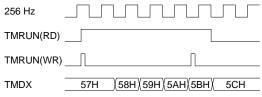


Fig. C.1 Timing chart of RUN/STOP control

(2) The SLP instruction is executed when the clock timer is in the RUN status (TMRUN = "1"). The clock timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (TMRUN = "0") prior to executing the SLP instruction.

Stopwatch Timer

(1) The stopwatch timer is actually made to RUN/ STOP in synchronization with the falling edge of the 256 Hz signal after writing to the SWRUN register. Consequently, when "0" is written to the SWRUN, the timer shifts to STOP status when the counter is incremented "1". The SWRUN maintains "1" for reading until the timer actually shifts to STOP status. Figure C.2 shows the timing chart of the RUN/ STOP control.

256 Hz		
SWRUN(RD)		
SWRUN(WR)		
SWDX	27 28 29 30	31 32

Fig. C.2 Timing chart of RUN/STOP control

(2) The SLP instruction is executed when the stopwatch timer is in the RUN status (SWRUN = "1"). The stopwatch timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (SWRUN = "0") prior to executing the SLP instruction.

Programmable Timer

(1) The programmable timer is actually made to RUN/STOP in synchronization with the falling edge of the input clock after writing to the PRUN0(1) register. Consequently, when "0" is written to the PRUN0(1), the timer shifts to STOP status when the counter is decremented "1". The PRUN0(1) maintains "1" for reading until the timer actually shifts to STOP status. Figure C.3 shows the timing chart of the RUN/ STOP control.

Input clock							
PRUN0/PRUN1(RD)							
PRUN0/PRUN1(WR)					Γ		
PTD0X/PTD1X	42H	(41⊦	1) 40H	(3FH)	(3EH)	30	н

Fig. C.3 Timing chart of RUN/STOP control

The event counter mode is excluded from the above note.

(2) The SLP instruction is executed when the programmable timer is in the RUN status (PRUN0(1) = "1"). The programmable timer operation will become unstable when returning from SLEEP status. Therefore, when shifting to SLEEP status, set the clock timer to STOP status (PRUN0(1) = "0") prior to executing the SLP instruction. In the same way, disable the TOUT signal

In the same way, disable the 1001 signal (PTOUT = "0") to avoid an unstable clock output to the R27 output port terminal.

- (3) Since the TOUT signal is generated asynchronously from the register PTOUT, when the signal is turned ON or OFF by the register setting, a hazard of a 1/2 cycle or less is generated.
- (4) When the OSC3 oscillation circuit is made the clock source, it is necessary to turn the OSC3 oscillation ON, prior to using the programmable timer.

From the time the OSC3 oscillation circuit is turning ON until oscillation stabilizes, an interval of several msec to several 10 msec is necessary. Consequently, you should allow an adequate waiting time after turning the OSC3 oscillation circuit ON before starting the count of the programmable timer. (The oscillation start time will vary somewhat depending on the oscillator and on external parts. Refer to the oscillation start time example indicated in Chapter 7/Technical Hardware, "ELECTRICAL CHARACTERISTICS".)

At initial reset, OSC3 oscillation circuit is set to OFF status.

(5) When the 16-bit mode has been selected, be sure to read the counter data in the order of PTD00– PTD07 and PTD10–PTD17. Moreover, the time interval between reading PTD00–PTD07 and PTD10–PTD17 should be 0.73 msec or less.

LCD Controller

- (1) Since the CL and FR signals are generated asynchronously from the output control registers LCCLK and LCFRM, when the signals is turned ON or OFF by setting of the registers LCCLK and LCFRM, a hazard of a 1/2 cycle or less is generated.
- (2) When the SLP instruction is executed, display control registers LCDC0 and LCDC1 are automatically reset to "0" by hardware. Furthermore, in the SLEEP status, HIGH (VDD) level is output for the CL and FR signals. (When registers R25D and R26D are set to "1".)

Sound Generator

- (1) Since the BZ signal is generated asynchronously from the register BZON, when the signal is turned ON or OFF by the register setting, a hazard of a 1/2 cycle or less is generated.
- (2) The SLP instruction has executed when the BZ signal is in the enable status (BZON = "1" or BZSHT = "1"), an unstable clock is output from the R50 output port terminal at the time of return from the SLEEP status. Consequently, when shifting to the SLEEP status, you should set the BZ signal to the disable status (BZON = BZSHT = "0") prior to executing the SLP instruction.
- (3) The one-shot output is only valid when the normal buzzer output is OFF (BZON = "0") status. The trigger is invalid during ON (BZON = "1") status.

Analog Comparator

- To reduce current consumption, turn the analog comparator OFF (CMP0ON = CMP1ON = "0") when it is not necessary.
- (2) After the analog comparator has been turned ON, a maximum time of 3 msec is necessary until output stabilizes. Consequently, you should allow an adequate waiting time after turning the analog comparator ON, before reading the comparison result.
- (3) Since the input terminals of the analog comparator are common to the I/O ports, the I/O control registers (IOC14–IOC17) corresponding to the channel to be used must be set to the input mode.

SVD (Supply Voltage Detection) Circuit

- To reduce current consumption, turn the SVD circuit OFF (SVDON = SVDSP = "0") when it is not necessary.
- (2) When executing an SLP instruction while the SVD circuit is operating, the stop operation of the OSC1 oscillation circuit is kept waiting until the sampling is completed. The two bits of SVDON and SVDSP are automatically reset to "0" by hardware while waiting for completion of sampling.

Interrupt (Exception) Processing

- (1) When executing the RETE instruction without resetting the interrupt factor flag after an interrupt has been generated, the same interrupt will be generated. Consequently, the interrupt factor flag corresponding to that routine must be reset (writing "1") in the interrupt processing routine.
- (2) Beware. If the interrupt flags (I0 and I1) have been rewritten (set to lower priority) prior to resetting an interrupt factor flag after an interrupt has been generated, the same interrupt will be generated again.
- (3) An exception processing vector is fixed at 2 bytes, so it cannot specify a branch destination bank address. Consequently, to branch from multiple banks to a common exception processing routine, the front portion of an exception processing routine must be described within the common area (000000H–007FFFH).

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -1960 E. Grand Avenue El Segundo, CA 90245, U.S.A. Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West 150 River Oaks Parkway

San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central 1450 East American Lane, Suite 1550 Schaumburg, IL 60173, U.S.A. Phone: +1-847-517-7667 Fax: +1-847-517-7601

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast 301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast 3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

1700 Spinnaker Drive Alpharetta, GA 30005, U.S.A. Phone: +1-770-754-4872 Fax: +1-770-753-0601

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -Riesstrasse 15 80992 Muenchen, GERMANY Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

SALES OFFICE

Altstadtstrasse 176 51379 Leverkusen, GERMANY Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

2.4 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- HONG KONG, CHINA -

EPSON HONG KONG LTD. 20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

- CHINA -

SHANGHAI EPSON ELECTRONICS CO., LTD.

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone: 21-6485-5552 Fax: 21-6485-0775

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD. 10F, No. 287, Nanking East Road, Sec. 3

Taipei, TAIWAN, R.O.C. Phone: 02-2717-7360 Fax: 02-2712-9164 Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2 HsinChu 300, TAIWAN, R.O.C. Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192 Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-Dong Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department

IC Marketing & Engineering Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I

(Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia)

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "**Saving**" **Technology**, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings**.

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic devices information on Epson WWW server