MF1169-01b EPSON

CMOS 32-BIT SINGLE CHIP MicRocoMPUTER EOC33 Family

ROS33 REALTIME OS MANUAL

ENERGY

SAVING
EPSON

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

Windows95 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 1999 All rights reserved.

Table of Contents

Preface
Written for those who develop applications using the EOC33 Family of microcomputers, this manual describes the
functions provided by the Realtime OS ROS33 for the EOC33 Family, and also gives precautions on programming
for thisOS.

ROS33 isaredtime OS designed to the WITRON 3.0 specifications. For information and literature relating to
MITRON, see the I TRON Home Page on the Internet.
English) http://tron.um.u-tokyo.ac.jp/TRON/ITRON/home-e.html
Japanese) http://tron.um.u-tokyo.ac.jp/ TRON/ITRON/home-j.html
(Note: Thisaddressis effective as of July 1998.)
An English version of the WITRON 3.0 specifications is provided on the ROS33 disk.

Tableof Contents

L ROSB3 PaCKAgE ..ottt e e 1
I T LT £ S TP 1

1.2 ROS33 Package COmMPONENTSttt e e e e aaaes 2

1.3 INStalliNg RO S 33 .. . 2

P2 S o T 1= 0 10 011 o 4
2.1 Outline of ITRON @Nd RO S 33 ... ittt e aaaas 4

2.2 List Of SYSIEM CallS. ... e 7

2.3 Creating an ApPlICAtioN PrOGIam.uuie et 8

2.4 CUSIOMIZING ROS B3 ..o ittt e e e e ettt aaans 15

3 System Call ReferenCe. e 18
3.1 LiSt Of SYStEM CallS.neereit e 18

I I Qo) DT L= T)Y =T S PPN 19

3.3 LISt Of EXTOF COUBS ... ettt ettt ettt et aens 19

3.4 Details Of SYSIEM CallSvneiii e 20

3.4.1 System Calls of Task Management FUNCLIONS.............cocoviiiiiiiiiiiceeas 20

3.4.2 System Calls of Task-Dependent Synchronization Functions............................ 23

3.4.3 System Calls of Synchronization and Communication Functions 25

3.4.4 System Calls of System Management FUNCLIONSccooiiiiiiiiiiieene 30

3.4.5 System Calls of Time Management FUNCLIONS.............cocviiiiiiiiiiieens 31

3.4.6 System Calls of Interrupt Management FUNCLIONSccoviiiiiiiiiiineens 32

3.4.7 Implementation-Dependent System CallS..........cooviiiiiiiiiii e 33

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON i

1 ROS33 PACKAGE

1 ROS33 Package

ROS33 isarealtime OS for the EOC33 Family of single-chip microcomputers based on pl TRON 3.0. Using ROS33
inyour design enablesyou to quickly and efficiently develop embedded applications for printers, PDAS, andvarious
types of control equipment.

1.1 Features

Themain features of ROS33 are listed below.

» Based on WITRON 3.0. System calls upto Level S(standard) are supported.
Number of tasks: 1to 255
Priority levels: 1t09
Number of event flags: 1 to 255
Number of semaphores:1 to 255
Number of mailboxes: 1 to 255
Scheduling method: Priority basis

Semaphore: Count type
Event flag: Byte type (8 bits)
Mailboxes: Passed via pointers
» Compact and high-speed kernel optimized for usein the EOC33 Family
Kernel sizel:

1.7K bytes......Level R supported, no error check
2.4K bytes......Level R supported, standard

2.7K bytes......Level R supported, debug kernel
2.6K bytes......Level Ssupported, no error check
3.6K bytes......Level Ssupported, standard

3.8K bytes......Level Ssupported, debug kernel

Dispatch time"2:
SNV T— 33 MHz, when using only the internal ROM and internal RAM
143 US e 33 MHz, when using external ROM (2 wait states) and internal RAM
129 US e 20 MHz, when using only the internal ROM and internal RAM
23.6 US .o 20 MHz, when using external ROM (2 wait states) and internal RAM

33 MHz, when using only the internal ROM and internal RAM

33 MHz, when using external ROM (2 wait states) and internal RAM

20 MHz, when using only the internal ROM and internal RAM

20 MHz, when using external ROM (2 wait states) and internal RAM

(1 Number of tasks= 8, number of priority levels=8, number of event flags = 8, number of semaphore =8 and
number of mailboxes=8

[2 These values were evaluated using the ICE33 when tasks of the same priority were switched over by arot_rdq
systemcall.

These are standard values for aguide and will vary according to the user's system environment and the make

condition. The net value should be evaluated on the actual system.

» Programs can be developed in C and assembly language

Provided for each function as amodularized library
When linking, only necessary modules are selected. This enables you to minimize the size of the compiled

application.

» Comes with source codefor each functional module
The number of resources can be customized to suit your system specification.

» Multipletasks can share acommon stack area (when not processed in parallel)
Y ou can minimize the amount of RAM used in your system by your application.

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 1

1 ROS33 PACKAGE

1.2 ROS33 Package Components

The ROS33 package contains the following items. When opening your ROS33 package, check toseethat all of these
items areincluded.

(2) Tool disk (3.5-inch floppy disk for PC/AT, 1.44 MB) 1
(2) EOC33 Family ROS33 Realtime OS Manua (this manual) 1 each in Japanese and English
(3) Warranty card 1 each in Japanese and English

1.3 Installing ROS33

ROS33 needs to be linked with the user program as it isimplemented. Therefore, make sure all tools of the "E0C33
Family C Compiler Package" have beeninstalled in your computer and are ready to run before installing ROS33
filesin your computer. The basic system configuration is described below.

 Personal computer: 1BM PC/AT or compatible
(Pentium 90 MHz or better; we recommend that you have more than 32 MB of memory)
*0OS: Windows 95, Windows NT 4.0, or later (Japanese or English version)

All the ROS33 files are supplied on one floppy disk. Execute the self-extract file "ros33vXX.exe" onthe FD to
install thefiles. ("XX" in thefile name represents the version number, for example, "ros33v10.exe" isthefile of
ROS33 ver. 1.0.)

When "ros33vX X.exe" is started up by double-clicking the fileicon, the following dialog box appears.

WinZip Sell-Extractor [ROS33VXX.EXE] Enter a path/folder namein the text box and then click [Unzip].
Ta unzip all fles in ROS 33604 EXE o the Urdo The specified folder will be created and all the files will be
specified folder press the Unzip buttan, Copied inthefolder.

il R | | When the specified folder already exists on thespecifiedpath,

O the folder will be overwritten without prompting if [Overwrite

v Ovenarite Files ‘ithout Prompting about Eiles Without Prompti ng] is checked.

ddi il

Help

2 Mico Mak Computing, Inc. WL WINZID. Com

Thedirectory and file configurations after copying the floppy disk contents are shown below.

(root)\ (Default: C:\EOC33\ROS33\)

itron302.txt MITON 3.0 specification
(English version, edited by TRON Association)
readmeja.txt Supplementary explanation (in Japanese)
readme.txt Supplementary explanation (in English)
17) W ROS33 library
ros33.lib ROS33 library
include\ ... Includefiles
itron.h ITRON common header file
ros33.h ROS33 definition file
s Sourcefiles
debug.c C source file for debug functions
flag.c C source file for event flag functions
intmng.c C source file for interrupt management functions
mailbox.c C source filefor mailbox functions
ros33.c ROS33 main C source file
ros33asm.s Assembly source filefor dispatch and ret_int functions
semapho.c C source file for semaphore functions
timemng.c C source file for time management functions
tskmng.c C source file for task management functions
tsksync.c C source file for task-dependent synchronization functions
internal.h ROS33 datatype definitionfile

2 EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

1 ROS33 PACKAGE

build\ ... ROS33 build files
ros33.mak make file for ROS33.lib generation

demo\
..... Demonstration program and related files

sample\
..... Sample programs and related files

Copyright: The softwareinthe"src\" and "include\" directoriesisowned by Seiko Epson Corporation. Do hot use
it for any purpose except for development with the EOC33 Family microcomputers.

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 3

2 PROGRAMMING

2 Programming

This chapter gives an outline of ROS33, and then shows how to create an applicationprogram and how to customize
ROS33.

2.1 Outline of uITRON and ROS33

HITRON isarealtime, multitask OS which has been developed primarily by the ITRON Technical Committeeof the
TRON Association as part of the TRON Project. The purpose of developing this OS wasto improve reatime
processing capabilities and program productivity in embedded systems incorporating single-chip microcomputers.

ROS33 isapl TRON 3.0 (current version) specification compliant kernel for the EOC33 Family of microcomputers.
ROS33 supports Level R (required) and Level S(standard).

ORegarding Levels R and S
MITRON isclassified into severa levelsby system call functionality. Level R (required) isthe essential
function for Wl TRON 3.0 (current version) specification kernels, and includes the basic system calls necessary
for realtime, multitask OSs. Level S (standard) includes standard system calls for realtime, multitask OSs. In
addition to these, two other levelsare available: Level E (extended), which includes additional and extended
functions, and Level C (CPU dependent), which depends on the CPU and system implementation.

Figure 2.1.1 shows a conceptual diagram of asystem configuration.

Application program

Task 1 Task 2 Task 3 Task 4 oo Taskn

ROS33 kernel

Task Task-dependent|Synchronization System Time Interrupt
management| synchronization and management | management | management
functions functions communication| functions functions functions

functions

EOC33 Family microcomputer
(Hardware)

Figure 2.1.1 Conceptual diagram of a system configuration

Functional classification
The functions of the ROS33 kernel are classified into the following six categories:

1. Task management functions
These functions manipulate task states by, for example, starting and terminating atask.

2. Task-dependent synchronization functions
These functions establish task to task-dependent synchronization by setting or waking up atask toandfrom
await state or setting or resuming atask to and from a suspend (forcible wait) state.

3. Synchronization and communication functions
These functions provide synchronization and communication independently of tasks, issuing and checking
events through a semaphore, event flag, and mailbox.

4. System management functions
These functions reference the system environment.

5. Time management functions
These functions set and reference time, and place atask in await state for agiven time.

6. Interrupt management functions
These functions enable and disable interrupts.

4 EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

2 PROGRAMMING

In addition to the above, LITRON 3.0 has severa other defined functions—including connection, extended
synchronization and communication, memory pool management, and network support functions. However,
these functions are not supported by ROS33.

Tasks
In ITRON, each unit of parallel processing performed by aprogram iscalled a"task". When multipletasksare
started (activated and ready for execution), these tasks are placed in aready queue (executionwait queue) from
which the task with the highest priority is executed. Individual tasks are identified by anumeric value called
the"task ID". Astask ID valuesin ROS33 range from 1 to 255, up to 255 tasks can be executed (by default, 8
tasks). Priority isrepresented by numeric values 1 to 9 (by default, 1 to 8)—the smaller the value, the higher
the priority. Tasks with the same priority are executed in the order they have been placed in the ready queue.
This order can be changed by a system call, however.
Tasksin executable state are changed over by asystem call that causes atransition of task status or by an
interrupt. This changeover iscalled "dispatching”. Thetask under execution can placeitself in await or halt
state, allowing for thetask with the next highest priority to be dispatched and placed in executable state. If a
task with ahigher priority than that of the currently executed task becomes executable, that task isdispatched.
Thetask being executed isreturned to an executable state. Thisiscalled "preempting”.
Figure 2.1.2 shows thetransition of task statusesin ROS33.

dispatch
READY state preempt RUN state
ro4 Wait condition Wait condition
Is satisfied WAIT state Forcibly terminate
(ter_tsk)
Suspend (sus_tsk) Resume (rsm_tsk)
Forcibly
E WAIT-SUSPEND terminate
state (ter_tsk) |
Cancel wait .
Suspend (sus_tsk X Forcibly
pend (sus 1K) ™S GSPEND terminate
Resume (rsm_tsk) state W
Forcibly
Start (sta_tsk) DORMANT terminate
Forcibly terminate (ter_tsk) state Exit (ext_tsk)

() indicates a system call.
Figure 2.1.2 Transition of task statuses

RUN (execution) state
This state meansthat thetask is currently being executed. This state remains intact until thetask isplaced in
WAIT or DORMANT state or interrupted by an interrupt.

READY (executable) state

This state meansthat the task has been placed in the ready queue after being started up, or freed from await or
forcible wait state. Thetask is currently suspended because some other task with higher priority (or atask with
the same priority but placed ahead in the queue) is being executed.

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 5

2 PROGRAMMING

WAIT state

This state meansthat the task iswaiting for an event (message recei pt, ssmaphore acquisition, or event flag
setting) or isleft suspended dueto asystem call issued by the task itself. This state remainsintact until an event
isissued, thetask is caused to resume (freed from await state) by some other task being executed or by an
interrupt handler, or the task isforcibly terminated. In thiswait state, semaphore and other resourcesremain
occupied. Theresumed task is placed in the ready queue at the end of aqueue of tasks with the same priority.
After being dispatched, the task hasits program counters and registers restored to their previous states at the
time of theinterruption, and the task begins executing from whereit left off.

SUSPEND (forcible wait) state

This state means that task execution has been suspended by a system call from some other task. This state
remains intact until the task isrestarted by some other task being executed or forcibly terminated. In thiswait
state, semaphores and other resources remain occupied.

The resumedtask is placed in the ready queue at the end of a queueof taskswith the same priority. Afterbeing
dispatched, the task hasits program counters and registers restored to their previous states at the time of
interruption, and the task begins executing from where it left off.

WAIT-SUSPEND (double wait) state
This state is acase where the above WAIT state and SUSPEND state overlap each other. If one of thetwowait
statesis cleared, the task enters the other wait state.

DORMANT state

This state means that the task has not been started yet or has been terminated.

Unlike thewait state, the task relinquishes all resources and accepts no system calls except for startup. When
the task restarts executing after startup, its context isinitialized.

Task-independent portion
Although the system in almost all casesis placed in atask execution state, it sometimes goes to a non-task
execution state, such as for execution of the OS itself. The interrupt handler and timer handler, in particular,
are closely tied to the hardware, so they are called "task-independent portions". Task-independent portionsare
created in the user program along with the tasks.
Task-independent portions (interrupt handler) are executed preferentially over all tasks. When the interrupt
handler starts, the tasks currently being executed are suspended, and execution resumes after theinterrupt
handler isterminated. Also, when the interrupt handler is running, dispatches or any other task transitions are
not performed. For example, even if atask iswaked up within the interrupt handler and the task hasahigh
enough priority to be dispatched, no dispatching occurs until the interrupt handler isterminated.
Furthermore, alimited number of system calls can be used in task-independent portions.

Interrupt
Interrupts are processed as atask-independent portion, not atask. It isnot necessary to define interrupt
handlers as tasks.

6 EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

2.2 List of System Calls

2 PROGRAMMING

Table 2.2.1 lists the system calls supported by ROS33. For details about each system call, refer to Chapter 3,

"System Call Reference”.

In task-independent portions (interrupt handler), only the system calls marked by an asterisk (*) in the above table

can be used.

Table 2.2.1 List of system calls

Classification System call Function
Task management dis_dsp() Disable Dispatch
ena_dsp() Enable Dispatch
sta_tsk() Start Task
ext_tsk() Exit Issuing Task
ter_tsk() Terminate Other Task
chg_pri() Change Task Priority
rot_rdq() Rotate Tasks on the Ready Queue
rel_wai() Release Wait of Other Task
get_tid() Get Task Identifier
Task-dependent slp_tsk() Sleep Task
synchronization wup_tsk() Wake Up Other Task *
sus_tsk() Suspend Other Task
rsm_tsk() Resume Suspended Task
can_wup() |Cancel Wake Up Request
Synchronization and wai_sem() |Wait on Semaphore
communication preg_sem() |Pall and Request Semaphore
sig_sem() Signal Semaphore *
rcv_msg() Receive Message from Mailbox
prcv_msg() |Poll and Receive Message from Mailbox
snd_msg() |Send Messages to Mailbox *
wai_flg() Wait on Event Flag
pol_flg() Wait for Event Flag (Polling)
set_flg() Set Event Flag *
clr_flg() Clear Event Flag
System management| get_ver() Get Version Information
Time management set_tim() Set System Clock
get_tim() Get System Clock
dly_tsk() Delay Task
Interrupt loc_cpu() Lock CPU
management unl_cpu() Unlock CPU
ret_int() Return from Interrupt Handler *
Implementation- ent_int() Initialize Interrupt Handler Value *
dependent functions vcre_tsk() Create Task

EOC33 FAMILY ROS33 REALTIME OS MANUAL

EPSON

2 PROGRAMMING

2.3 Creating an Application Program

This section describes the precautions to be observed when creating an ROS33 application program by using the
program "demo.c" in the "demo\" directory and sample programsin the "samplée\" directory. For details on how to
handl e software development tools and how to create C and assembly sources, refer to the "EOC33 Family C
Compiler Package Manual”.

The following sample programs assume that "ros33.1ib" to be linked is generated under the default condition shown
on Page 15.

Rules for main function
Shown below isthe main functionin "demo.c".

Example:

#i ncl ude "ros33. h"

voi d main()

{
sys_ini();
vere_tsk(1, taskl, 1, (UW &(stackl[O0xa0]));
vere_tsk(2, task2, 2, (UW &(stack2[0xa0]))
vere_tsk(3, task3, 2, (UW&(stack3[0xa0]));
vcre_tsk(4, task4, 3, (UW &(stack4[O0xa0]));
vere_tsk(5, task5, 5, (UW&(stack3[0xa0]));
vcre_tsk(8, idle_task, 8, (UWN&(idle_stack[0xa0]));
sta_tsk(1, 0);
sta_tsk(2, 0);
sta_tsk(3, 0);
sta_tsk(4, 0);
sta_tsk(8, 0);
sys_sta();

}

In the main function, always be sureto call sys ini() first and sys_sta() at the end of the function. The
function sys ini() isused toinitialize the parameters and resources used by ROS33. After this function, write
your user program. In the above example, six tasks are defined by vcre_tsk(), of which five tasks are started
by sta_tsk(). Thelast function sys_sta() causes the system to start executing in amultitask environment.
Furthermore, "ros33.h" must be included.

Task
All tasksto be executed must be defined using vere_tsk() in the main function. Operation cannot be
guaranteed for system calls that use atask ID which isnot defined here.
In the example of main() above, taskl isdefined first.
Example: vere_tsk(1, taskl, 1, (UW&(stackl[0xa0]));

This system call definesthetask astask ID =1 (first argument), task 1 = startup address (second argumert),
priority = 1 (third argument), and the initial address of the stack used by thistask = stak1]] (fourth argument).
Sincethistask has priority 1 (the highest priority), when thistask is started it is dispatched before any other
tasks.

When thetasks areinitialy defined, they arein DORMANT state. Use sta_tsk() to start atask.

Example: sta_tsk(1, 0);

Thefirst argument in sta_tsk() isatask ID. The second argument is the task startup code (int) to specify the
parameter to be passed to the task. However, because ROS33 does not use this code, always specify O for the
task startup code.

8 EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

2 PROGRAMMING

To create each individual task, use the ordinary function format shown below. Note, however, that tasksdonot
have areturn value. Consider thetask status transition in Figure 2.1.2 when you create tasks.
Example: Thistask uses rcv_msg() to receive amessage from the mailbox
void taskl(void) and output it. Then the task places itself in WAIT state using
{ while(1) { slp_tsk(). Thiswait state remains effective until the task iswaked
rcv_nsg(&ppk_msg, 1); UPbysomeother task.
put s(ppk_nsg- >nmsgcont) ; If no message exists inthe mailbox, task1 is set in await state by

sl p_tsk(); rcv_msg(). When amessage has been prepared, it iswaked up and
) } performs the above processing.
Idle task

Anidle task needs to be provided in the user program for times when no tasks are in an executable state.
Thistask must be enabled for interrupt acceptance and must be assignedthelowest priority. It also must always

be kept active inmain(). Anidle_task isdefined in "demo.c".
Example:
voi d idle_task()
{

whi | e(1){

asm("halt");

}

}

The operation of the OS cannot be guaranteed if the sequence returns from theidle task.

Stack
For the stack, specify adifferent areafor each task. However, for tasksthat are not processed in parallel, the
same stack areacan be shared in order to suppress the amount of RAM spent for tasks. When sharing thestack
in thisway, make surethat all but onetask sharing the stack arein DORMANT state.
In addition to tasks, the system uses about 180 bytes (varies depending on the environment) for the stack for
initialization and other purposes. Add this stack to the total amount of stack used by tasks as you allocate the
stack areain RAM.
A sample program for sharing astack is shown below.

Example:
#i ncl ude <stdio. h>
#i ncl ude "ros33. h"

const char sTask[] = "task";

voi d main()

{
sys_ini();
vere_tsk(1l, taskl, 1, (UW &(stack_conmon[STACK S| ZE]));
vere_tsk(2, task2, 1, (UW &(stack_conmon[STACK SI ZE]));
vere_tsk(3, task_main, 2, (UW&(stack_mai n[STACK Sl ZE]));
vere_tsk(8, idle_task, 8, (UW&(stack_idle[STACK SIZE]));
/* start idle task */
sta_tsk(8, 0);
/* start main task */
sta_tsk(3, 0);
sys_sta();

}

void task_main(void)

{
sta_tsk(1, 0);
sta_tsk(2, 0);
sl p_tsk();

}

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 9

2 PROGRAMMING

voi d taskl(void)

{
char str[10];
strcpy(str, sTask);
strcat(str, "1");
puts(str);
ext_tsk();

}

voi d task2(void)

{
char str[10];

strcpy(str, sTask);
strcat(str, "2");
puts(str);

sl p_tsk();

The same stack areais defined for both task1 and task2 using the vere_tsk() system call.
task_main() enters RUN state by sys sta() in the main function.

taskl enters RUN state by sta tsk(1,0) in the main function.

taskl enters DORMANT stateby ext_tsk(), then task_main() enters RUN state.

task2 enters RUN state by sta_tsk(2,0) intask_main ().

o o M W N =

task2 enters WAIT state by slp_tsk(), then task_main() enters RUN state.

In thisexample, task1 and task2 use the same stack area. Since task1 and task 2 do not enter the same state
other than DORMANT state, stack sharing is possible.

For reference, asample source for stack sharringis provided inthe"sample\" directory.

Initializing the dispatcher

Thetask dispatcher uses software exception 0.
Register int_dispatch to the corresponding vector address.

Interrupt handler

Create an interrupt handler for each factor of interrupts used in your application, and write its start addressto
the corresponding interrupt vector address. When the interrupt factor is generated, the corresponding interrupt
handler is executed as atask-independent portion. The tasks that have until now been executed are suspended
from execution until the interrupt handler completes its processing. Also, the EOC33 chip's trap processing is
initiated and the interrupts whose priority levels are below that of the interrupt being serviced are masked out
during thistime. To enable multipleinterrupts, directly set the |E bit of the PSR. For details about interrupts,
refer to the Technical Manual supplied with each EOC33 Family microcomputer.

The basic contents of the interrupt handler are shown below.

Example:
. gl obal int_hdr
int_hdr:
pushn % 13 ;. Saves %r0to %r13 used by user routine.
cal | ent _int ; Callsent_int.
xl d. w % 0, | FCT_TML60
Id.w % 1,1 ; Clearsinterrupt factor flag.
Id. w [%0],% 1
xcal | usr_routine
popn % 13 ; Restores registers.
cal | ret_int

10

EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

2 PROGRAMMING

1. Savetheregisters used by the user processing routine to the stack.

Call ent-int(). Here, ent_int() isan implement-dependent system call that increments the variable
"ublntNest", which is used to examine interrupt nesting. Always be sure to call this function after saving
theregisters.

3. Clear theinterrupt factor flag.

4. Executethe user'sinterrupt processing.

5. Restore the contents of the registers that have been saved to the stack.
6. Cal ret_int() to terminate the interrupt handler.

In the above example, theinterrupt handler uses the stack of thetask that was being executed until now. If you
want to designate astack exclusively for the interrupt handler, switch over the SPimmediately after starting
theinterrupt handler and immediately before terminating it.

The system calls that can be used from the interrupt handler are limited to the following four, not including
ent_int() and ret_int() shown above.

wup_tsk() Wakes up thetask in await state (woken up after the interrupt handler is terminated).
set_flag() Setsan event flag.

sig_sem() Returns a semaphore resource.

snd_msg() Sends a message to the mailbox.

When issuing one of these system calls from theinterrupt handler, always be sure to disable interrupts
beforehand.

Timer handler
When using time management function system calls (set_tim, get_tim, dly_tsk), create atimer handler in the
user program that calls sys clk() every 1 ms. Normally, use a 16-bit timer to generate an interrupt every 1 ms
and create atimer handler as an interrupt handler for that interrupt.

Example:
#define intstk_size 72
.commintstk intstk_size ; Allocatesan interrupt handler stack.
.global tiner_hdr
timer_hdr:
;set stack area of interrupt handler
pushn % 0 . Uses task stacks to save %r0.
Id.w % 0, %sp
pushn % 0 ; Uses task stacks to save %sp.
xld.w % 0,intstk+intstk_size
Id.w Y%sp, % 0 ;. Switches to an interrupt handler stack.
pushn % 13 ; Because sys clk iswritten in C and uses up to %13.
cal | ent _int ; Cdlsent_int.
xld. w % 0, | FCT_TML60
Id. w % 1,1 ; Clearsthe interrupt factor flag.
Id.w [%0],%1
xcal | sys_cl k
popn % 13
;restore stack area of task
popn % 0
Id.w %sp, % 0
popn % 0
cal | ret_int

Before calling sys_clk(), aways be sureto disable interrupts.
For reference, asample program that also includes 16-bit timer settings is provided in the "samplé\" directory.

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 11

2 PROGRAMMING

Usage example of a mailbox

#i ncl ude <stdio. h>
#i ncl ude "ros33. h"
T_MSG nsg;

void taskl(void)

{
T_MSG* pk_nsg;

while(1) {
rcv_nsg(&k_nsg, 1);
put s(pk_msg->nsgcont) ;
sl p_tsk();

}
voi d task2(void)

while(l) {
strcpy(nsg. nsgcont, "HELLO');
nmsg. pNxt = 0; /* message init */
snd_nsg(1l, &mrsQg);
sl p_tsk();

}

This sample program assumes that task1 and task?2 are placed in the same ready queue with a priority level in
the order of task1 and task2, and there is no message in the mailbox (ID1).

1. taskl enters RUN state. Thercv_msg() in task1 requests to receive amessage. taskl enters WAIT state
since the mailbox (ID1) has no message.

2. task2 enters RUN state. taskl initializes amessage and sendsit to the mailbox (ID1) using snd_msg. This
makestaskl enter READY state.

3. taskl enters RUN state by slp_tsk() in task2.

4. taskl outputs the received message.

For reference, a sample sourcethat uses amailbox is provided in the "sampl@" directory.
Messagestruct ure:

The message structure T_MSG isdefined in "itron.h" asfollows:
typedef struct t_nsg {

struct t_nmsg* pNxt; ... Message header
VB nsgcont [10]; ... Message body
} T_MSG

A message consists of aheader (first 4 bytes) and amessage body.
To expand amessage body into 10 bytes or more, define as follows:
Example:

VB nsg_buf [25];

T_MSG* pk_nsg;

pk_nsg = (T_MSG*) nsg_buf;

The message header (pNxt) must be initialized to O before using the massage.

12

EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

2 PROGRAMMING

Usage example of a semaphore

void taskl(void)

{
while(1l) {
wai _sem(1);
rot_rdq(1);

sig_sen(1);
puts("taskl");
sl p_tsk();

}

voi d task2(void)
{
while(l) {
wai _sen(1);
puts("task2");
sig_senm(1l);
sl p_tsk();

}

This sample program assumes that task1 and task2 are placed in the same ready queue with apriority level in
the order of task1 and task2, and the resource of the semaphore (ID1) has not be returned.

1. taskl enters RUN state and gets the resource from the semaphore (ID1) using wai_sem().
2. task2 enters RUN state by rot_rdq() intaskl.

3. task2 requests the resource from the semaphore (ID1). task2 enters WAIT state since it cannot get the
resource.

4. taskl enters RUN state and returns the resource to the semaphore (ID1) using sig_sem(). This makes task2
enter READY state.

5. task2 enters RUN state by slp_tsk() intaskl.

For reference, a sample sourcethat uses a semaphoreis provided in the"samplé" directory.

Usage example of an event flag

#i ncl ude <stdio. h>
#i ncl ude "ros33. h"

void taskl(void)

{
U NT p_flgptn;
while(1l) {
wai _flg(&_flgptn, 1, 0x11, TW_ANDW ;
printf("Flag pattern Ox%\n", p_flgptn);
sl p_tsk();
}
}
voi d task2(void)
{
while(1l) {
set _flg(l, Ox11);
sl p_tsk();
}
}

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 13

2 PROGRAMMING

This sample program assumes that task1 and task?2 are placed in the same ready queue with apriority level in
the order of task1 and task2, and the event flag (ID1) has be set to 0x00.

1

taskl enters RUN state. task1 enters WAIT state after executing wai_flag() that waits for the event flag
(ID1) to be set to the specified status.

task2 enters RUN state and sets the event flag (1D1) to Ox11 using set_flg(). Since thisreleases the flag
waiting condition for taskl, task1 enters READY state.

taskl enters RUN stateby slp_tsk() in task2.
task2 outputs the contents of the event flag that has been released from the waiting conditionusing printf().

For reference, asample sourcethat uses an event flag is provided in the "sample" directory.

Building an application program

The ROS33 modules are provided as the library file "ros33.1ib" in the "lib\" directory. Link thislibrary with
the user modules. When linking, specify the said directory as alibrary path in the linker command file. Only
those modules required for the system calls used will be linked.

Example: ; Li brary path

-l C\CC33\1ibCC33 standard library
-1 C\ROS33\libROS33 standard library

Note that "ros33.lib" is created as a standard kernel that includes an error check function but omits debug
functions. If you want to change this function or the maximum resource value, customize thelibrary as
necessary. (Refer to Section 2.4, "Customizing ROS33".)

Precautions

All tasksto be executed must be defined in the main function by using vere_tsk(). Operation cannot be
guaranteed for system calls that use an undefined task ID.

Theidletask must be enabled for interrupt acceptance and must be assigned the lowest priority.
Furthermore, do not return from theidle task.

To enable or disable interruptsin tasks, aways be sureto use system calls loc_cpu() or unl_cpu().
Operation cannot be guaranteed if PSR ischanged by operating on it directly.

The stack for each task should be prepared with an enough size.
Before issuing asystem call from theinterrupt handler, make sure that interrupts are disabled.
To enable multiple interrupts in an interrupt handler, directly set the IE (interrupt enable) bit of the PSR.

14

EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

2 PROGRAMMING

2.4 Customizing ROS33

Thelibrary "ros33.lib" is created with the following features:

Resources (Valid setup range)
Number of tasks 8 (1to255)
Priority levels 8 (1t09)
Number of event flags 8 (0 to 255)
Number of semaphores 8 (0 to255)
Number of mailboxes 8 (0 to 255)
Semaphore count value 1 (1to255)
Wakeup count value 1 (1to255)

Initial value of PSR 0x00000010 ...Interrupt enabled

Compile options

NO_ERROR_CHECK option Unspecified
DEBUG_KERNEL option Unspecified
NO_RETURN_VALUE option Unspecified
USE_GP option Unspecified

The ROS33 source files are provided in the "src\" directory, so you can customize it following the procedure
described below.

Method for changing resources
The maximum value of each resource and the initial value of PSR are defined in"include\ros33.h". Changethe
contents of these definitions as necessary, then recompile thefile.

Contents of definitions in "ros33.h"
/1 If you change resource nunber please edit follow ng.

#def i ne SMPH_NUM 8 /1 max semaphore, 0 to 255
#defi ne FLG_NUM 8 /1 max flag, 0 to 255

#def i ne MLBX_NUM 8 /1 max mailbox, 0 to 255
#def i ne TSK_NUM 8 /1 max task, 1 to 255
#define MAX_TSKPRI 8 /! max task priority, 1 to 9
#defi ne SMPH_CNT 1 /'l semaphore count, 1 to 255
#defi ne WUP_CNT 1 /1 max wakeup count 1 to 255
#define I NI _PSR 0x00000010 /1 initial flag (%°SR val ue)

/1 default is interrupt enable

Compile options and recompilation

NO_ERROR_CHECK option

By compiling the file after specifying "-DNO_ERROR_CHECK" with agcc33 startup command, you can
generate avery compact kernel with error check functions omitted. However, because occurrence of an error
causes the system to crash, this option can only be used when you are absolutely certain that no errorswill
occur.

DEBUG_KERNEL option

By specifying "-DDEBUG_KERNEL" with agec33 startup command and "-d DEBUG_KERNEL" with a
pp33 startup command, you can generate a debug kernel. When adebug kernel is generated, the dispatcher (a
functional block to control dispatch inthe OS) has an added function. Thisfunction calls two other functions,
which are described below:

voi d ros_dbg_t skcng(|l D tski d)
Thisfunction is called when the task to be dispatched has been confirmed.

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 15

2 PROGRAMMING

voi d ros_dbg_stackerr ()

Thisfunctionis called when an error occurs in the stack used by atask being executed.

If thetask stack areais used to exchange messages with the mailbox, the system accesses the stack for the task
being executed, which causes astack error.

Note that these functions are not included in ROS33. Therefore, they need to be created in the user program.
For your reference, examples of these functions are provided in "src\debug.c”.

NO_RETURN_VALUE option

By specifying "-DNO_RETURN_VALUE" with agcc33 startup command, acompact kernel that has no
function to set return values can be generated. In this case, system calls do not set any return value, so
undefined valueswill be returned.

USE_GP option

If you want to optimize the code using aglobal pointer, change the address at which the global pointer
definition isdefined in "ros33.h" to your desired address and specify "-DUSE_GP" with agcc33 startup
command before compiling "tskmng.c."

Global pointer definition in "ros33.h"

/1 If you use gl obal pointer please edit here

#i f def USE_GP

#defi ne GLOBAL_PO NTER 0x00000000 // global pointer (% 8 val ue)
#endi f

Note that amake file to generate "ros33.lib" has been created in the "build\" directory. Recompilethe fileafter
modifying necessary points.

"ros33.mak"
macro definitions for tools & dir

TOOL_DIR = C\CC33

GCC33 = $(TOOL_DI R)\gce33
PP33 = $(TOOL_DI R)\ pp33
EXT33 = $(TOOL_DI R)\ ext 33
AS33 = $(TOOL_DIR)\as33
LK33 = $(TOOL_DIR)\Ik33
MAKE = $(TOOL_DI R)\ make

LI B33 = $(TOOL_DI R)\Ii b33
DEBUG = -g
SRC DIR = . .\src\\

macro definitions for tool flags

#for rel ease kernel (error check)

GCC33_FLAG = -B$(TOOL_DIR)\ $(DEBUG -S -I..\include -O

PP33_FLAG = $(DEBUG

#for debug kernel

#GCC33_FLAG = -B$(TOOL_DI R\ $(DEBUG -S -1..\include -O - DDEBUG_KERNEL
#PP33_FLAG = -d DEBUG KERNEL $(DEBUG)

#for rel ease kernel (NO error check)

#GOC33_FLAG = -B$(TOOL_DIR)\ $(DEBUG -S -1..\include - O - DNO ERROR_CHECK
#PP33_FLAG = $(DEBUG)

EXT33_FLAG =

AS33_FLAG = $(DEBUG)

suffix & rule definitions
.SUFFIXES : .c .s .ps .ms .0 .srf

.C.nNB
$(GOC33) $(GOC33_FLAG $(SRC DI R)$*.c
$(EXT33) $(EXT33_FLAG $*.ps

.S.NB
$(PP33) $(PP33_FLAG $(SRC DR S$*.s

16

EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

$(EXT33) $(EXT33_FLAG) $*.ps

.NB.0 !
$(AS33) $(AS33_FLAG $*.ms

dependency i st

2 PROGRAMMING

ros33.1ib : flag.o intmg.o mail box. o ros33.0 ros33asm o senmapho.o ti mermg. o \

tskmmg. o tsksync. o debug. o

$(LIB33) -aros33.1ib flag.o intmg.o mailbox.o ros33.0 ros33asmo \

senmapho. o ti mermg. o tskmmg. o t sksync. o debug. o

copy ros33.lib ..\lib
del ros33.1ib

flag.ms : $(SRC_DIR)flag.c
flag.o : flag.ns

intrmg.nms : $(SRC DIR)i ntimg. c
intrmg. o : intmg. s

mai | box. ms : $(SRC_DI R) mai | box. ¢
mai | box. o : mail box. ms

ros33.ns : $(SRC_DIR)ros33.c
ros33.0 : ros33.ms

ros33asmms : $(SRC DI R ros33asms
ros33asmo : ros33asm ns

semapho. ns : $(SRC_DI R) semapho. ¢
semapho. o : senapho. ns

timermg. ms @ $(SRC_DIR)ti nemmg. ¢
timermg.o : timemg.ns

tskmmg. ms @ $(SRC DI R)t skmmg. ¢
tskmmg. o : tskmmg. ns

tsksync.ms : $(SRC DI R)tsksync.c
tsksync.o : tsksync. nms

#f or debug kerne
debug. ms : $(SRC DI R) debug. ¢
debug. o : debug. ns

clean files except source

cl ean:
del *.o
del *.nms
del *.ps

EOC33 FAMILY ROS33 REALTIME OS MANUAL

EPSON

17

3 SYSTEM CALL REFERENCE

3 System Call Reference

This section explains the functions of each system call.

3.1 List of System Calls

Table 3.1.1 lists the system calls supported by ROS33.

Table 3.1.1 List of system calls

Classification

System call

Function

Task
management

dis_dsp(void)

Disable Dispatch

ena_dsp(void)

Enable Dispatch

sta_tsk(ID tskid, INT stacd)

Start Task

ext_tsk(void)

Exit Issuing Task

ter_tsk(ID tskid)

Terminate Other Task

chg_pri(ID tskid, TPRI tskpri)

Change Task Priority

rot_rdq(TPRI tskpri)

Rotate Tasks on the Ready Queue

rel_wai(ID tskid)

Release Wait of Other Task

get_tid(ID *p_tskid)

Get Task Identifier

Task-dependent
synchronization

slp_tsk(void)

Sleep Task

wup_tsk(ID tskid)

Wake Up Other Task *

sus_tsk(ID tskid)

Suspend Other Task

rsm_tsk(ID tskid)

Resume Suspended Task

can_wup(INT *p_wupcnt, ID tskid)

Cancel Wake Up Request

Synchronization
and
communication

wai_sem(ID semid)

Wait on Semaphore

preq_sem(ID semid)

Pall and Request Semaphore

sig_sem(ID semid)

Signal Semaphore *

rcv_msg(T_MSG **ppk_msg, ID mbxid)

Receive Message from Mailbox

prcv_msg(T_MSG **ppk_msg, ID mbxid)

Poll and Receive Message from
Mailbox

snd_msg(ID mbxid, T_MSG *pk_msg)

Send Messages to Mailbox *

wai_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode)

Wait for Event Flag

pol_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode)

Wait for Event Flag (Polling)

set_flg(ID flgid, UINT setptn)

Set Event Flag *

clr_fig(ID flgid, UINT clrptn)

Clear Event Flag

System get_ver(T_VER *pk_ver) Get Version Information

management

Time set_tim(SYSTIME *pk_tim) Set System Clock

management |get_tim(SYSTIME *pk_tim) Get System Clock
dly_tsk(DLYTIME dlytim) Delay Task

Interrupt loc_cpu(void) Lock CPU

management |unl_cpu(void) Unlock CPU

ret_int(void)

Return from Interrupt Handler *

Implementation-
dependent

ent_int(void)

Initialize Interrupt Handler Value *

vcre_tsk(ID tskid, FP task, PRI itskpri, UW istkadr)

Create Task

In task-independent portions (the interrupt handler), only the system calls marked by an asterisk (*) in the above
table can be used.

18

EPSON

EOC33 FAMILY ROS33 REALTIME OS MANUAL

3 SYSTEM CALL REFERENCE

3.2 List of Data Types

Table 3.2.1 lists the data types used for the arguments of each system call.

Table 3.2.1 List of data types

Type Definition Description
B typedef char B; Signed 8-bit integer
H t ypedef short H; Signed 16-bit integer
W t ypedef |ong W Signed 32-bit integer
uB t ypedef unsigned char UB; Unsigned 8-bit integer
UH typedef unsigned short UH Unsigned 16-bit integer
uw t ypedef unsigned | ong uw Unsigned 32-bit integer
vw t ypedef |ong VW Unpredictable data type (32-bit size)
VH t ypedef short VH; Unpredictable data type (16-bit size)
VB t ypedef char V/B; Unpredictable data type (8-hit size)
*VP t ypedef void *\/P; Pointer to an unpredictable data type
*FP t ypedef void (*FP) () ; |Program start address
INT typedef int | NT; Signed 16-bit integer
UINT typedef unsigned int Ul NT; Unsigned 16-bit integer
BOOL typedef H BOOL; Boolean value: TRUE (1) or FALSE (0)
FN typedef short FN; Maximum 2 bytes of function code
ID typedef | NT I D Object ID number (signed 16-bit integer)
BOOL_ID |typedef |NT BOOL_| D; |Boolean value or ID number (signed 16-bit integer)
HNO typedef | NT HNO, Handler number (signed 16-bit integer)
ATR typedef Ul NT ATR, Object or handler attribute (unsigned 16-bit integer)
ER typedef | NT ER, Error code (signed 16-bit integer)
PRI typedef | NT PRI ; Task priority (signed 16-bit integer)
TMO typedef | NT TMG, Timeout value (signed 16-bit integer)
DLYTIME |[typedef TMO DLYTI ME; |Delay time (signed 16-bit integer)

These datatypes are defined in "includé\itron.h".

3.3 List of Error Codes

Table 3.3.1lists the error codes returned by system calls.

Table 3.3.1 List of error codes

Error code Value Description
E_OK 0 Normal completion
E_SYS (-5) | System error
E_NOMEM (-10) | Insufficient memory
E_NOSPT (-17) | Feature not supported
E_INOSPT (-18) | Feature not supported by ITRON/FILE specification
E_RSFN (-20) | Reserved function code number
E_RSATR (-24) | Reserved attribute
E_PAR (-33) | Parameter error
E_ID (-35) | Invalid ID number
E_NOEXS (-52) | Object does not exist
E_OBJ (-63) | Invalid object state
E_MACV (-65) | Memory access disabled or memory access violation
E_OACV (-66) | Object access violation
E_CTX (-69) | Context error
E_QOVR (-73) | Queuing or nesting overflow
E_DLT (-81) | Object being waited for was deleted
E_TMOUT (-85) | Polling failure or timeout exceeded
E_RLWAI (-86) | WAIT state was forcibly released

These error codes are defined in "include\itron.h".

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 19

3 SYSTEM CALL REFERENCE

3.4 Details of System Calls

3.4.1 System Calls of Task Management Functions

Disable Dispatch dis_dsp
Format: ER di s_dsp(void);
Parameter: None
Return values. E_ K Terminated normally
E _CTX Context error (issued after loc_cpu has been executed from a task-independent
portion)

Description: Thissystem call disablestask dispatches. From thistime onward until ena_dsp isissued, atask
itself will never be preempted from RUN state to READY state, though thereis a possibility of
other tasks with higher priority being placed in READY state. Thetask isalso disabled from
entering WAIT or DORMANT state. External interrupts are not disabled, however.

Enable Dispatch ena_dsp
Format: ER ena_dsp(void);
Parameter: None
Return values: E_CK Terminated normally
E CTX Context error (issued after loc_cpu has been executed from a task-independent
portion)

Description: Thissystem call reenables adispatch that has been disabled by dis_dsp. If atask with higher
priority than the reenabled task itself exists in the ready queue, thistask isdispatched at that pointin
time and the reenabled task is preempted.

If both interrupt and dispatch are disabled by loc_cpu, dispatch isnot enabled by this system call
and error code E_CTX isreturned.

If this system call isissued when dispatch isalready enabled, the system call isignored and no
error isassumed.

Start Task sta_tsk

Format: ER sta_tsk(ID tskid, INT stacd);

Parameters: |ID tskid TaskID number
I NT stacd Task start code (not used inthe system call)

Return values: E_OK Terminated normally
E ID Illegal ID number (tskid isillegal or cannot be used)
E_NOEXS Specified task does not exist.
E _OBJ Specified task isnot in DORMANT state.

Description: Thissystem call startsthe task indicated by tskid. The specified task isregistered in the ready
gueue, and its state is changed from DORMANT to READY . In the ready queue, it is positioned at
the end of the queue of taskswith the same priority.

If the specified task has the highest priority among the executable (READY') tasks and thereisno
other task with the same priority, thetask isdispatched and placed in RUN state. In this case, the
task being executed when it issued sta_tsk is made thetask to be executed next at thistime.

Task startup is effective for only thosein DORMANT state. If you specify atask in any other state,
thetask statusisnot changed and error code E_OBJisreturned.

The second argument "stacd" is not used in ROS33, so specify O for it.

Note: Before you can start atask, you must first issue thevere tsk system call to define that task.

20 EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

3 SYSTEM CALL REFERENCE

Exit Issuing Task ext_tsk

Format: voi d ext_tsk(void);
Parameter: None
Return value: None

Description: Thissystem call terminates the task itself that issues thiscall. The terminated task isplaced in an
DORMANT state. At the same time, the task with the highest priority in theready queue is
dispatched and placed in RUN state. Usethe sta_tsk system call to restart atask that has been
terminated by this system call.

Terminate Other Task ter_tsk
Format: ER ter_tsk(IDtskid);
Parameter: IDtskid Task ID number
Return values. E_CK Terminated normally
E ID Illegal 1D number (tskid isillegal or cannot be used)
E_NOEXS Specified task does not exist.
E _OBJ Specified task isin DORMANT state or theissuing task itself is specified.

Description: Thissystem call forcibly terminates the task specified by tskid. Theterminated task isplaced in
DORMANT state. If you specify theissuing task itself or atask in DORMANT state, error code
E_OBJisreturned. Usethe sta_tsk system call to restart atask that has been terminated by this

system call.
Change Task Priority chg_pri
Format: ER chg_pri(IDtskid, TPRI tskpri);

Parameters:. |ID tskid Task ID number
TPRI tskpri Task priority

Return values: E_CK Terminated normally
EID Illegal 1D number (tskid isillegal or cannot be used)
E_NOEXS Specified task does not exist.
E PAR Parameter error (tskpri isillegal or has an unusable value)
E_0OBJ Specified task isin DORMANT state.

Description: Thissystem call changesthe current priority of the task specified by tskid to avalue specified by
tskpri. The priority of any task in DORMANT (inactive) state cannot be changed. If aninactivetask
isspecified, error code E_OBJisreturned.

The priority changed here remains effective until the task entersDORMANT state. Whenthetask is
placed in DORMANT state, the task's initial priority value set by vcre_tsk isrestored.

If the priority of atask in theready queue is changed, the task is moved to the last position in the
task queue with the same priority as its changed priority. Thismodification is also used to specify
the same priority for atask as its current priority, or change the priority of theissuing task itself.

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 21

3 SYSTEM CALL REFERENCE

Rotate Tasks on the Ready Queue rot_rdq

Format: ER rot _rdg(TPRI tskpri);
Parameter: TPRI tskpri Task priority

Return values: E_OK Terminated normally
E_PAR Parameter error (tskpri isillegal)

Description: Thissystem call rotates aready queue that has priorities specified by tskpri. Thetask at the top of
the queue with the specified priority ismoved to the last position in the queue. In this system call,
you can use TPRI_RUN (priority of thetask being executed) for tskpri, sothat itispossibletorotate
the queue that includes the issuing task itself.

If the task of aspecified priority (valid value) does not exist in the ready queue, thissystem call is

ignored.
This system call only affectsthe task queue with the specified priority, and no other task queue is
affected.
Release Wait of Other Task rel_wai
Format: ERrel _wai(IDtskid);
Parameter: ID tskid Task ID number
Return values. E_ K Terminated normally
EID Illegal ID number (tskidisillegal or cannot be used)
E_NOEXS Specified task does not exist.
E _OBJ Specified task isnot in await state (including theissuing task itself and thosein

DORMANT state).

Description: If thetask specified by tskid isin WAIT state, this system call forcibly frees it (not including
SUSPEND state). Error E_RLWAI isreturned for the task freed fromwait state by rel_wai. Thiscan
be used for time-out processing of tasksin await state. If the specified task isinWAIT-SUSPEND
state, only the WAIT stateis cleared and the task goes to SUSPEND state.

If the specified task isneither in WAIT state nor in WAIT-SUSPEND state, error code E_OBJis
returned to the task that had issued this system call.

Get Task ldentifier get_tid

Format: ER get _tid(ID *p_tskid);
Parameter: I D *p_tskid Pointertotask ID number

Return values: E_CK Terminated normally
FALSE=0 Executed from atask-independent portion

Description: Thissystem call returnsthe ID number of theissuing task itself. When this system call isissued
from atask-independent portion, FALSE =0 isreturned as thetask ID.

22 EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

3 SYSTEM CALL REFERENCE

3.4.2 System Calls of Task-Dependent Synchronization Functions

Sleep Task slp_tsk
Format: ER sl p_tsk(void);
Parameter: IDtskid Task ID number
Return values. E_CK Terminated normally
E_RLWAI Wait state forcibly cleared (rel_wai accepted during wait state)
E CTX Context error (executed from atask-independent portion or when dispatchis
disabled)

Description: Thissystem call moves theissuing task itself from RUN state to WAIT state. Thiswait state is
cleared by awup_tsk system call from another task. Thewait state also isforcibly cleared when
rel_wai isexecuted by some other task, in which case error code E_ RLWAI isreturned.

If sus_tsk isexecuted by some other task, thetask isplaced in WAIT-SUSPEND state.

Wake Up Other Task wup_tsk
Format: ER wup_tsk(IDtskid);
Parameter: IDtskid Task ID number
Return values: E_CK Terminated normally
EID Illegal 1D number (tskid isillegal or cannot be used)
E_NOEXS Specified task does not exist.
E _OBJ Specified task istheissuing task itself or in DORMANT state.
E QOVR Wakeup requests exceed the allowable range.

Description: Thissystem call causes atask which theslp_tsk system call has placed in awakeup wait state to
enter READY state. Thereturn position in the ready queue isthelast position of the task queue
having the same priority.

Tasksin WAIT-SUSPEND state go to SUSPEND state.

If the specified task has not executed slp_tsk and isnot in await state, thiswakeup request is
queued. A queued wakeup request becomes effective when the specified task executesslp_tsk
thereafter. Consequently, the specified task isnot placed in await state by thisslp_tsk.

Note: By default, the number of times wakeup requests are queued (wupcnt) is 1. However, this setting
can be customized so that they will be queued up to 255 times. (Refer to Section 2.4, " Customizing
ROS33".)
Suspend Other Task sus_tsk
Format: ER sus_tsk(IDtskid);
Parameter: IDtskid Task ID number
Return values: E_CK Terminated normally
E ID Illegal ID number (tskid isillegal or cannot be used)
E_NOEXS Specified task does not exist.
E _OBJ Specified task istheissuing task itself or in DORMANT state.
E QOVR SUSPEND request isissued more than once.

Description: Thissystem call causes the task specified by tskid to enter SUSPEND state. If you specify atask
that isaready in WAIT state, the task enters WAIT-SUSPEND state.
SUSPEND state is cleared by issuing thersm_tsk system call.
SUSPEND reguests cannot be nested (cannot be preissued anumber of times).

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 23

3 SYSTEM CALL REFERENCE

Resume Suspended Task rsm_tsk
Format: ER rsmtsk(IDtskid);
Parameter: ID tskid Task ID number
Return values: E_OK Terminated normally
EID Illegal ID number (tskid isillegal or cannot be used)
E_NOEXS Specified task does not exist.
E _OBJ Specified task isnot in SUSPEND state.

Description: Thissystem call frees the task specified by tskid from SUSPEND state and returnsit to the state it
wasinwhen sus_tsk wasissued. If thetask isSWAIT-SUSPEND state, it enters WAIT state.
If you specify atask that isneither in WAIT state nor in WAIT-SUSPEND state, error codeE_OBJ

isreturned.
Cancel Wake Up Request can_wup
Format: ER can_wup(INT *p_wupcnt, ID tskid);
Parameters: | NT *p_wupcnt Pointer to number of times current wakeup request isissued
ID tskid Task ID number
Return values. E_ K Terminated normally
EID Illegal ID number (tskid isillegal or cannot be used)
E_NOEXS Specified task does not exist.
E _OBJ Specified task isin DORMANT state.

Description: Thissystem call clearsthe wakeup request counter of the task specified by tskid and invalidates the
queued task wakeup request. The wakeup request count before being cleared isset in *p_wupcnt.
By specifying TSK_SELF (0) for tskid, you can clear the wakeup request for theissuing task itself.

24 EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

3 SYSTEM CALL REFERENCE

3.4.3 System Calls of Synchronization and Communication Functions

Wait on Semaphore wai_sem
Poll and Request Semaphore preq_sem
Format: ER wai _sem(ID senmid);

ER preq_sem ID semd);
Parameter: I D senid Semaphore |D number
Return values: E_CK Terminated normally

EID Illegal ID number (semid isillegal or cannot be used)

E_NOEXS Specified semaphore does not exist.

E_RLWAI Wait state isforcibly cleared (rel_wai accepted during wait state).

E_TMOUT Failure during polling.

E CTX Context error (executed from atask-independent portion or when dispatch is

disabled)

Description: Thewai_sem system call acquires one resource from the semaphore specified by semid.
If aresource exists, that is, the semaphore counter = 1 or greater, the counter is decremented by 1
and the system call isterminated immediately. This means that a resource has been acquired, so
that the task continues executing. If no resource exists, i.e., the ssmaphore counter = 0, thetask is
removed from the ready queue and placed in a semaphore queue. Thistask enters await state. If the
semaphore counter becomes 1 or greater and there is no other task at thetop of thequeuewaitingfor
the same semaphore, the semaphore counter is decremented and the task is freed from the wait state.
Thetask is placed back in the ready queue at the last position of thetask queue having the same
priority. If thetask hasbeenin WAIT-SUSPEND state, it enters SUSPEND state.
The preq_sem system call isapolling version of wai_sem and does not have afunction to enter a
wait state. If aresource has been acquired, it functions the same way as wai_sem. If it cannot
acquire any resources, it returns error code E_TMOUT.

Note: Although, by default, up to eight semaphores can be used, it can be customized up to 255
semaphores (semaphore ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)
Theinitial value and maximum value of a semaphore are set to 1 by default. They can be
customized up to 255. However, these values must have the same value.

Signal Semaphore sig_sem
Format: ER sig_sem ID senmd);
Parameter: ID senid Semaphore ID number
Return values: E_CK Terminated normally
E ID Illegal ID number (semid isillegal or cannot be used)
E_NOEXS Specified semaphore does not exist.
E QOVR Semaphore count exceeds the maximum value.

Description: Thissystem call returns one resource to the semaphore specified by semid.
If there are no tasks waiting for the semaphore, the number of resources (semaphore counter) is
incremented by 1. If there are tasks waiting for the semaphore, the number of resourcesisleft
unchanged so as to ensure that the task at the top of the queue will be assigned aresource. The task
assigned aresource isremoved from the semaphore queue, placed in READY state, and returnedto
theready queue. If thetask has beenin WAIT-SUSPEND state, it enters SUSPEND state.

Note: Although, by default, up to eight semaphores can be used, it can be customized up to 255
semaphores (semaphore ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)
Theinitial value and maximum value of a semaphore are set to 1 by default. They can be
customized up to 255. However, these values must be asame value.

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 25

3 SYSTEM CALL REFERENCE

Receive Message from Mailbox rcv_msg
Poll and Receive Message from Mailbox prcv_msg
Format: ER rcv_nsg(T_MSG **ppk_nsg, |ID nbxid);

ER prcv_nsg(T_MSG **ppk_nsg, I D nbxid);

Parameters: T_MSG **ppk_nsg Pointer to pointer to message
1D nmbxi d Mailbox ID number

Return values: E_OK Terminated normally
EID Illegal ID number (mbxidisillegal or cannot be used)
E_NOEXS Specified mailbox does not exist.
E_RLWAI Wait state isforcibly cleared (rel_wai accepted during wait state).
E_TMOUT Failure during polling.
E _CTX Context error (executed from atask-independent portion or when dispatch

is disabled)

Description: Thissystem call receives amessage from the mailbox specified by mbxid.
If the message box contains messages, the pointer value that indicates the position of the first
message is set in **ppk_msg and the system call isterminated immediately. This meansthat the
message has been received, so thetask continues executing.
If the message box does not contain a message, the task is removed from the ready queue and
placed in the message queue. Thetask then enters await state. If amessageissent alongandthereis
no other task at thetop of the queue waiting for the same message, the pointer that indicatesthe
position of the message isset in **ppk_msg and the task isfreed from the wait state. Thetask is
placed back in the ready queue at the last position of the task queue having the same priority. If the
task has beenin WAIT-SUSPEND state, it enters SUSPEND state.
The prev_msg system call isapoalling version of rcv_msg and does not have afunction to enter a
wait state. If amessage is successfully received, it functions the same way as rcv_msg. If it cannot
receive amessage, it returns error code E_TMOUT.

Note: Although, by default, up to eight mailboxes can be used, it can be customized up to 255 mailboxes
(mailbox ID =1 to 255). (Refer to Section 2.4, "Customizing ROS33".)

Send Message to Mailbox snd_msg

Format: ER snd_nsg(ID nbxid, T_MSG *pk_nsg);

Parameters: 1D nmbxi d Mailbox ID number
T_MSG *pk_nsg Pointer to message

Return values: E_OK Terminated normally
EID Illegal ID number (mbxidisillegal or cannot be used)
E_NOCEXS Specified mailbox does not exist.
E _PAR Parameter error (value that cannot be used by pk_msg)

Description: Thissystem call sends amessage to the mailbox specified by mbxid.
If there are tasks waiting for the message, the message is sent to thetask at thefirst position. This
task is removed from the message queue, becomesREADY , and is placed back into the ready queue.
If the task has been in WAIT-SUSPEND state, it enters SUSPEND state.
If there are no tasks waiting for the message, the message is placed in amessage box queue,
waiting for areceive request. Note that it isthe pointer * pk_msg that isregistered in the queue, and
not the body of the message.

Note: The message must be initialized beforeit can be used. Initialize pk_msg->pNxt to O before you

start sending.
Although, by default, up to eight mailboxes can be used, it can be customized up to 255 mailboxes
(mailbox ID =1 to 255). (Refer to Section 2.4, "Customizing ROS33".)

26

EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

3 SYSTEM CALL REFERENCE

Messagestructure:
The message structure T_MSG isdefined in "itron.h" as follows:
typedef struct t_msg {

struct t_nsg* pNxt; ... Message header
VB msgcont [10]; ... Message body
} T_MSG

A message consists of aheader (first 4 bytes) and amessage body.
To expand amessage body into 10 bytes or more, define as follows:
Example:

VB msg_buf [25];

T_MSG* pk_nsg;

pk_nmsg = (T_MSG*) nsg_buf;

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 27

3 SYSTEM CALL REFERENCE

Wait for Event Flag wai_flg
Wait for Event Flag (Polling) pol_flg
Format: ER wai _flg(U NT *p_flgptn, IDflgid, U NT waiptn, U NT wf node);

Parameters:

Return values:

Description:

Note:

ER pol _flg(UNT *p_flgptn, IDflgid, UNT waiptn, U NT wf node);
U NT *p_fl gptn Pointertoflag pattern

ID flgid Event flag ID number

U NT wai ptn Flag wait bit pattern

U NT wf node Flag wait mode and whether or not cleared

E K Terminated normally

EID Illegal ID number (flgidisillegal or cannot be used)

E_NOEXS Specified flag does not exist.

E_PAR Wait pattern (waiptn) is0 or wfmode specificationisillegal.

E_OBJ Object status isinvalid. (Multiple tasks waiting for event flag of TA_WSGL
attribute)

E_RLWAI Wait state isforcibly cleared (rel_wai accepted during wait state).

E_TMOUT Failure during polling.

E _CTX Context error (executed from atask-independent portionor when dispatchis
disabled)

This system call waitsuntil the event flag specified by flgid is set to aspecified state.
Use waitptn and wfmode to set the conditions under which you want to exit await state. For
wfmode, one of thefollowing four conditions can be set:

1. TWF_ANDW AND condition
Wait until all of the bitsthat have been set to 1 by waiptn are set.
2. TWF_ANDW |TWF_CLR AND condition and event flag clear
In addition to the TWF_ANDW condition, the event flag is
cleared (all bitsto 0) when the condition is met.
3. TWF_ORW OR condition
Wait until one of the bitsthat have been set to 1 by waiptn is set.
4. TWF_ORW | TWF_CLR OR condition and event flag clear
In addition to the TWF_ORW condition, the event flag is cleared
(al bitsto 0) when the condition is met.

If the condition for exiting await state has already been met when this system call isissued, thetask
continues executing without entering await state.

If the condition for exiting await state has not been met, the task isremoved from the ready queue
and placed in await queue. Thistask iskept waiting until thewait clearing condition is met. When
the wait clearing condition is met, the task waiting for the relevant event flag is freed fromwait state.
Thetask isplaced back in the ready queue at the last position of thetask queue that has the same
priority. If the task has beenin WAIT-SUSPEND state, it enters SUSPEND state.

The event flag, that existed when the wait clearing condition was met, isreturned to the pointer
*p_flgptn. Even if you specify TWF_CLR, the bit pattern that existed before being cleared when
the AND or OR condition was met is returned.

Thepol_flg system call isapolling version of wai_flg and does not have afunction to enter await
state. If thewait clearing condition was met, it functions the same way as wai_flg. If the condition
was not met, it returnserror code E_TMOUT.

Although, by default, up to eight event flags can be used, it can be customized up to 255 event flags
(eventflag ID =1 to 255). (Refer to Section 2.4, "Customizing ROS33".)

The event flags in ROS33 are one byte long (8 hits).

ROS33 does not allow multiple tasksto wait for the same event flag.

28

EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

3 SYSTEM CALL REFERENCE

Set Event Flag set_flg

Format:

Parameters:

ER set _flg(IDflgid, UNT setptn);

ID flgid Event flag ID number
U NT setptn Bitpatternto be set

Return values: E_CK Terminated normally
E ID Illegal 1D number (flgid isillegal or cannot be used)
E_NOEXS Specified flag does not exist.

Description: Thissystem call sets the bits specified by setptn of the event flag. Thisevent flag is specified by
flgid. This setting ismade by alogical OR, so that the bits set to 1 by setptn are set and those set to
0 do not change their state. If at thistime thereisatask waiting for the flag, the wait pattern and
wait condition are checked. The task is removed from the flag wait queue and returned to the ready
queueif thewait conditionismet. If any task was previously in WAIT-SUSPEND state, it enters
SUSPEND state.

Note: The event flags in ROS33 are one byte long (8 bits).
ROS33 does not allow multiple tasks to wait for the same event flag.

Clear Event Flag clr_flg

Format: ER clr_flg(IDflgid, UNT clrptn);

Parameterss ID flgid Event flag ID number

Return values:

Description:

Note:

U NT clrptn Bitpatterntoclear

E K Terminated normally
E ID Illegal 1D number (flgidisillegal or cannot be used)
E_NOEXS Specified flag does not exist.

This system call clearsthe bits specified by clrptn of the event flag. This event flag is specified by
flgid. Thisclearing is made by alogica AND, so that the bits set to O by clrptn are cleared and
those set to 1 do not change state. The clr_flg system call does not dispatch the task even if thewait
condition is met.

The event flags in ROS33 are one byte long (8 bits).
ROS33 does not allow multiple tasksto wait for the same event flag.

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 29

3 SYSTEM CALL REFERENCE

3.4.4 System Calls of System Management Functions

Get Version Information get_ver

Format:
Parameter:

Return values:

Description:

ER get _ver(T_VER *pk_ver);
T_VER *pk_ver Beginning address of packet that returns version information

E K Terminated normally
E_PAR Parameter error (Packet addressfor return parameter cannot be used)

This system call returnsthe OS version of the ITRON specification currently being executed.
The following shows the contents of pk_ver:

naker = 0x0000; Manufacturer's code

id = 0x0001; ROS33 type number

spver = 0x5302; U TRON version number (ver 3.02)

prver = 0x0000; ROS33 version number (will be changed by an update)
prno[0] = 0x0000; Unused

prno[1] = 0x0000; Unused

prno[2] = 0x0000; Unused

prno[3] = 0x0000; Unused

cpu = 0x0000; CPU information

var = 0x8000; Variation (level S)

30

EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

3 SYSTEM CALL REFERENCE

3.4.5 System Calls of Time Management Functions

When using the system calls bel ow, make sure atimer handler is provided in your user program. (Refer to Section

2.3, "Creating an Application Program".)

Set System Clock set_tim
Format: ER set _tim SYSTIME *pk_tim);
Parameter: SYSTI ME *pk_tim Packet addressindicating the current time
Return values. E_ (K Terminated normally
E PAR Parameter error (pk_tim or the set timeisillegal)
Description: Thissystem call sets the system clock to the value specified by systim.
The system clock is48 hitslong, and thereference timeis1 ms.
Get System Clock get_tim
Format: ER get _tim SYSTIME *pk_tim);
Parameter: SYSTI ME *pk_tim Packet addressthat returnsthe current time
Return values: E_CK Terminated normally
E PAR Parameter error (pk_tim isillegal)
Description: Thissystem call returnsthe current system clock value to pk_tim.
Delay Task dly_tsk
Format: ER dly tsk(DLYTIME dlytim);
Parameter: DLYTIME dlyti m Deay time(inms)
Return values: E_OK Terminated normally
E_PAR Parameter error (dlytim < 0)
E _CTX Context error (executed from atask-independent portion or when dispatch
is disabled)
E_RLWAI Wait state isforcibly cleared (rel_wai accepted during wait state).

Description: Thissystem call causes theissuing task itself to temporarily stop executing and enter await state.
Usedlytim to specify how long you want the task to stop executing. Specify thistimein units of 1
ms. If the specified time elapses, the task isreturned to the ready queue. If thetask has been placed
in WAIT-SUSPEND state while waiting for the timeto expire, it enters SUSPEND state.

You can userel_wai to forcibly clear the state while waiting for thetime to expire.

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON

31

3 SYSTEM CALL REFERENCE

3.4.6 System Calls of Interrupt Management Functions

Return from Interrupt Handler ret_int

Format: void ret_int(void);
Parameter: None
Return value: None

Description: Thissystem call terminates the interrupt handler. Even if adispatch condition was met by asystem
call that wasissued in theinterrupt handler, dispatch isleft pending until the interrupt handler is
terminated by ret_int. This dispatch request is processed collectively upon return from the interrupt
handler as dictated by ret_int.

Because the OS does not intervene when theinterrupt handler starts up, operations to save and
restore registers, etc., need to be performed by the interrupt handler. (Refer to Section 2.3,
"Creating an Application Program".)

Lock CPU loc_cpu
Format: ER | oc_cpu(void);
Parameter: None
Return values: E_CK Terminated normally
E CTX Context error (issued from atask-independent portion)

Description: Thissystem call disables external interrupts and task dispatches.
Oncethis system call is made, theissuing task itself will never be changed from RUN state to
READY state, even if some other task with higher priority becomes READY . Thetask isalso
disabled from entering WAIT or DORMANT state. If an external interrupt is requested during this
time, the corresponding interrupt handler isinitiated only when thetask isfreed from thisdisable
state.
To reenable interrupt and dispatch, use the unl_cpu system call. The dispatch disable state set by
loc_cpu cannot be freed by ena_dsp.
If loc_cpu isissued when thetask isdisabled for dispatches by dis_dsp, the task is disabled for
interrupts as well. In this case, too, use unl_cpu to exit the disabled state.

Note: Changing the |E flag by directly accessing the CPU's PSR is prohibited.
Unlock CPU unl_cpu
Format: ER unl _cpu(void);

Parameter: None

Return values: E_OK Terminated normally
E CTX Context error (issued from atask-independent portion)

Description: Thissystem call reenables external interrupts and task dispatches This system call can be used to
clear the disabled state set by either loc_cpu or dis_dsp.

Note: Changing the |E flag by directly accessing the CPU's PSR is prohibited.

32 EPSON EOC33 FAMILY ROS33 REALTIME OS MANUAL

3 SYSTEM CALL REFERENCE

3.4.7 Implementation-Dependent System Calls

Initialize Interrupt Handler Value ent_int

Format: void ent_int(void);
Parameter: None
Return value: None

Description: Thissystem call increments the variable ublntNest, which is used to examine interrupt nesting
before starting the interrupt handler. Before issuing this system call, be sure to save registers at the
beginning of theinterrupt handler.

Create Task vcre_tsk

Format: ER vcre_tsk(IDtskid, FP task, PRl itskpri, UWistkadr);

Parameters:. 1D tskid Task ID number
FP task Task startup address
PRI itskpri Priority at task startup (1 to 8, the smaller the value, the higher the priority)
UW i st kadr Initia stack address

Return value: E_CK Terminated normally

Description: Thissystem call definesatask that takes on thetask 1D specified by tskid and hastheinitial priority
specified by itskpri. You must allocate a sufficient size of memory for the stack used by each task.
Useistkadr to specify theinitial stack address.
The task thus defined isin DORMANT state.
After starting the task you can change its priority. However, once the task entersDORMANT state,
its priority isrestored to the one set here.

EOC33 FAMILY ROS33 REALTIME OS MANUAL EPSON 33

EPSON

International Sales Operations

AMERICA ASIA
EPSON ELECTRONICS AMERICA, INC. - CHINA -
- HEADQUARTERS - EPSON (CH|NA) CO,, LTD.

1960 E. Grand Avenue
El Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway

San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290

Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120

Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170

Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15

80992 Muenchen, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110
- GERMANY -

SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

2.4 Doncastle House, Doncastle Road

Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de I' Atlantique, LP 915 Les Conquerants

Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG

Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3

Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360
Telex: 24444 EPSONTB

Fax: 02-2712-9164

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.

Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00

Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-Dong

Youngdeungpo-Ku, Seoul, 150-010, KOREA

Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department

IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department | (Europe & U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Il (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

ENERGY
SAVING

EPSON

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices
assists in creating the products of our customers’ dreams.
Epson IS energy savings

EPSON

SEIKO EPSON CORPORATION

m Electronic devices information on Epson WWW server

http:/www.epson.co.jp/device/ l Issue FEBRUARY 1999, Printed in Japan & A

	㄀ 刀伀匀㌀㌀ 倀愀挀欀愀最攀
	㄀⸀㄀ 䘀攀愀琀甀爀攀猀
	㄀⸀㈀ 刀伀匀㌀㌀ 倀愀挀欀愀最攀 䌀漀洀瀀漀渀攀渀琀猀
	㄀⸀㌀ 䤀渀猀琀愀氀氀椀渀最 刀伀匀㌀㌀

	㈀ 倀爀漀最爀愀洀洀椀渀最
	㈀⸀㄀ 伀甀琀氀椀渀攀 漀昀 甀䤀吀刀伀一 愀渀搀 刀伀匀㌀㌀
	䘀甀渀挀琀椀漀渀愀氀 挀氀愀猀猀椀昀椀挀愀琀椀漀渀
	吀愀猀欀猀
	吀愀猀欀ⴀ椀渀搀攀瀀攀渀搀攀渀琀 瀀漀爀琀椀漀渀
	䤀渀琀攀爀爀甀瀀琀

	㈀⸀㈀ 䰀椀猀琀 漀昀 匀礀猀琀攀洀 䌀愀氀氀猀
	㈀⸀㌀ 䌀爀攀愀琀椀渀最 愀渀 䄀瀀瀀氀椀挀愀琀椀漀渀 倀爀漀最爀愀洀
	刀甀氀攀猀 昀漀爀 洀愀椀渀 昀甀渀挀琀椀漀渀
	吀愀猀欀
	䤀搀氀攀 琀愀猀欀
	匀琀愀挀欀
	䤀渀椀琀椀愀氀椀稀椀渀最 琀栀攀 搀椀猀瀀愀琀挀栀攀爀
	䤀渀琀攀爀爀甀瀀琀 栀愀渀搀氀攀爀
	吀椀洀攀爀 栀愀渀搀氀攀爀
	唀猀愀最攀 攀砀愀洀瀀氀攀 漀昀 愀 洀愀椀氀戀漀砀
	唀猀愀最攀 攀砀愀洀瀀氀攀 漀昀 愀 猀攀洀愀瀀栀漀爀攀
	唀猀愀最攀 攀砀愀洀瀀氀攀 漀昀 愀渀 攀瘀攀渀琀 昀氀愀最
	䈀甀椀氀搀椀渀最 愀渀 愀瀀瀀氀椀挀愀琀椀漀渀 瀀爀漀最爀愀洀
	倀爀攀挀愀甀琀椀漀渀猀

	㈀⸀㐀 䌀甀猀琀漀洀椀稀椀渀最 刀伀匀㌀㌀
	䴀攀琀栀漀搀 昀漀爀 挀栀愀渀最椀渀最 爀攀猀漀甀爀挀攀猀
	䌀漀洀瀀椀氀攀 漀瀀琀椀漀渀猀 愀渀搀 爀攀挀漀洀瀀椀氀愀琀椀漀渀

	㌀ 匀礀猀琀攀洀 䌀愀氀氀 刀攀昀攀爀攀渀挀攀
	㌀⸀㄀ 䰀椀猀琀 漀昀 匀礀猀琀攀洀 䌀愀氀氀猀
	㌀⸀㈀ 䰀椀猀琀 漀昀 䐀愀琀愀 吀礀瀀攀猀
	㌀⸀㌀ 䰀椀猀琀 漀昀 䔀爀爀漀爀 䌀漀搀攀猀
	㌀⸀㐀 䐀攀琀愀椀氀猀 漀昀 匀礀猀琀攀洀 䌀愀氀氀猀
	㌀⸀㐀⸀㄀ 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 吀愀猀欀 䴀愀渀愀最攀洀攀渀琀 䘀甀渀挀琀椀漀渀猀
	䐀椀猀愀戀氀攀 䐀椀猀瀀愀琀挀栀 㰀搀椀猀开搀猀瀀㸀
	䔀渀愀戀氀攀 䐀椀猀瀀愀琀挀栀 㰀攀渀愀开搀猀瀀㸀
	匀琀愀爀琀 吀愀猀欀 㰀猀琀愀开琀猀欀㸀
	䔀砀椀琀 䤀猀猀甀椀渀最 吀愀猀欀 㰀攀砀琀开琀猀欀㸀
	吀攀爀洀椀渀愀琀攀 伀琀栀攀爀 吀愀猀欀 㰀琀攀爀开琀猀欀㸀
	䌀栀愀渀最攀 吀愀猀欀 倀爀椀漀爀椀琀礀 㰀挀栀最开瀀爀椀㸀
	刀漀琀愀琀攀 吀愀猀欀猀 漀渀 琀栀攀 刀攀愀搀礀 儀甀攀甀攀 㰀爀漀琀开爀搀焀㸀
	刀攀氀攀愀猀攀 圀愀椀琀 漀昀 伀琀栀攀爀 吀愀猀欀 㰀爀攀氀开眀愀椀㸀
	䜀攀琀 吀愀猀欀 䤀搀攀渀琀椀昀椀攀爀 㰀最攀琀开琀椀搀㸀

	㌀⸀㐀⸀㈀ 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 吀愀猀欀ⴀ䐀攀瀀攀渀搀攀渀琀 匀礀渀挀栀爀漀渀椀稀愀琀椀漀渀 䘀甀渀挀琀椀漀渀猀
	匀氀攀攀瀀 吀愀猀欀 㰀猀氀瀀开琀猀欀㸀
	圀愀欀攀 唀瀀 伀琀栀攀爀 吀愀猀欀 㰀眀甀瀀开琀猀欀㸀
	匀甀猀瀀攀渀搀 伀琀栀攀爀 吀愀猀欀 㰀猀甀猀开琀猀欀㸀
	刀攀猀甀洀攀 匀甀猀瀀攀渀搀攀搀 吀愀猀欀 㰀爀猀洀开琀猀欀㸀
	䌀愀渀挀攀氀 圀愀欀攀 唀瀀 刀攀焀甀攀猀琀 㰀挀愀渀开眀甀瀀㸀

	㌀⸀㐀⸀㌀ 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 匀礀渀挀栀爀漀渀椀稀愀琀椀漀渀 愀渀搀 䌀漀洀洀甀渀椀挀愀琀椀漀渀 䘀甀渀挀琀椀漀渀猀
	圀愀椀琀 漀渀 匀攀洀愀瀀栀漀爀攀 㰀眀愀椀开猀攀洀㸀
	倀漀氀氀 愀渀搀 刀攀焀甀攀猀琀 匀攀洀愀瀀栀漀爀攀 㰀瀀爀攀焀开猀攀洀㸀
	匀椀最渀愀氀 匀攀洀愀瀀栀漀爀攀 㰀猀椀最开猀攀洀㸀
	刀攀挀攀椀瘀攀 䴀攀猀猀愀最攀 昀爀漀洀 䴀愀椀氀戀漀砀 㰀爀挀瘀开洀猀最㸀
	倀漀氀氀 愀渀搀 刀攀挀攀椀瘀攀 䴀攀猀猀愀最攀 昀爀漀洀 䴀愀椀氀戀漀砀 㰀瀀爀挀瘀开洀猀最㸀
	匀攀渀搀 䴀攀猀猀愀最攀 琀漀 䴀愀椀氀戀漀砀 㰀猀渀搀开洀猀最㸀
	圀愀椀琀 昀漀爀 䔀瘀攀渀琀 䘀氀愀最 㰀眀愀椀开昀氀最㸀
	圀愀椀琀 昀漀爀 䔀瘀攀渀琀 䘀氀愀最 ⠀倀漀氀氀椀渀最⤀ 㰀瀀漀氀开昀氀最㸀
	匀攀琀 䔀瘀攀渀琀 䘀氀愀最 㰀猀攀琀开昀氀最㸀
	䌀氀攀愀爀 䔀瘀攀渀琀 䘀氀愀最 㰀挀氀爀开昀氀最㸀

	㌀⸀㐀⸀㐀 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 匀礀猀琀攀洀 䴀愀渀愀最攀洀攀渀琀 䘀甀渀挀琀椀漀渀猀
	䜀攀琀 嘀攀爀猀椀漀渀 䤀渀昀漀爀洀愀琀椀漀渀 㰀最攀琀开瘀攀爀㸀

	㌀⸀㐀⸀㔀 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 吀椀洀攀 䴀愀渀愀最攀洀攀渀琀 䘀甀渀挀琀椀漀渀猀
	匀攀琀 匀礀猀琀攀洀 䌀氀漀挀欀 㰀猀攀琀开琀椀洀㸀
	䜀攀琀 匀礀猀琀攀洀 䌀氀漀挀欀 㰀最攀琀开琀椀洀㸀
	䐀攀氀愀礀 吀愀猀欀 㰀搀氀礀开琀猀欀㸀

	㌀⸀㐀⸀㘀 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 䤀渀琀攀爀爀甀瀀琀 䴀愀渀愀最攀洀攀渀琀 䘀甀渀挀琀椀漀渀猀
	刀攀琀甀爀渀 昀爀漀洀 䤀渀琀攀爀爀甀瀀琀 䠀愀渀搀氀攀爀 㰀爀攀琀开椀渀琀㸀
	䰀漀挀欀 䌀倀唀 㰀氀漀挀开挀瀀甀㸀
	唀渀氀漀挀欀 䌀倀唀 㰀甀渀氀开挀瀀甀㸀

	㌀⸀㐀⸀㜀 䤀洀瀀氀攀洀攀渀琀愀琀椀漀渀ⴀ䐀攀瀀攀渀搀攀渀琀 匀礀猀琀攀洀 䌀愀氀氀猀
	䤀渀椀琀椀愀氀椀稀攀 䤀渀琀攀爀爀甀瀀琀 䠀愀渀搀氀攀爀 嘀愀氀甀攀 㰀攀渀琀开椀渀琀㸀
	䌀爀攀愀琀攀 吀愀猀欀 㰀瘀挀爀攀开琀猀欀㸀

