
MF1169-01b

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER E0C33 Family

ROS33 REALTIME OS MANUAL

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

Windows95 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 1999 All rights reserved.

Table of Contents

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON i

Preface
Written for those who develop applications using the E0C33 Family of microcomputers, this manual describes the
functions provided by the Realtime OS ROS33 for the E0C33 Family, and also gives precautions on programming
for this OS.

ROS33 is a realtime OS designed to the µITRON 3.0 specifications. For information and literature relating to
µITRON, see the ITRON Home Page on the Internet.
English) http://tron.um.u-tokyo.ac.jp/TRON/ITRON/home-e.html
Japanese) http://tron.um.u-tokyo.ac.jp/TRON/ITRON/home-j.html

(Note: This address is effective as of July 1998.)
An English version of the µITRON 3.0 specifications is provided on the ROS33 disk.

Table of Contents

1 ROS33 Package .1
1.1 Features .. 1

1.2 ROS33 Package Components .. 2

1.3 Installing ROS33.. 2

2 Programming. .4
2.1 Outline of µITRON and ROS33 ... 4

2.2 List of System Calls.. 7

2.3 Creating an Application Program... 8

2.4 Customizing ROS33 ... 15

3 System Call Reference. 18
3.1 List of System Calls.. 18

3.2 List of Data Types.. 19

3.3 List of Error Codes ... 19

3.4 Details of System Calls ... 20
3.4.1 System Calls of Task Management Functions.. 20
3.4.2 System Calls of Task-Dependent Synchronization Functions............................ 23
3.4.3 System Calls of Synchronization and Communication Functions 25
3.4.4 System Calls of System Management Functions .. 30
3.4.5 System Calls of Time Management Functions.. 31
3.4.6 System Calls of Interrupt Management Functions ... 32
3.4.7 Implementation-Dependent System Calls ... 33

1 ROS33 PACKAGE

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 1

1 ROS33 Package
ROS33 is a realtime OS for the E0C33 Family of single-chip microcomputers based on µITRON 3.0. Using ROS33
in your design enables you to quickly and efficiently develop embedded applications for printers, PDAs, and various
types of control equipment.

1.1 Features
The main features of ROS33 are listed below.

• Based on µITRON 3.0. System calls up to Level S (standard) are supported.
Number of tasks: 1 to 255
Priority levels: 1 to 9
Number of event flags: 1 to 255
Number of semaphores:1 to 255
Number of mailboxes: 1 to 255
Scheduling method: Priority basis
Semaphore: Count type
Event flag: Byte type (8 bits)
Mailboxes: Passed via pointers

• Compact and high-speed kernel optimized for use in the E0C33 Family
Kernel size∗ 1:

1.7K bytesLevel R supported, no error check
2.4K bytesLevel R supported, standard
2.7K bytesLevel R supported, debug kernel
2.6K bytesLevel S supported, no error check
3.6K bytesLevel S supported, standard
3.8K bytesLevel S supported, debug kernel

Dispatch time∗ 2:
7.8 µs33 MHz, when using only the internal ROM and internal RAM
14.3 µs33 MHz, when using external ROM (2 wait states) and internal RAM
12.9 µs20 MHz, when using only the internal ROM and internal RAM
23.6 µs20 MHz, when using external ROM (2 wait states) and internal RAM

Maximum interrupt disable time∗ 2:
4.3 µs33 MHz, when using only the internal ROM and internal RAM
9.0 µs33 MHz, when using external ROM (2 wait states) and internal RAM
7.2 µs20 MHz, when using only the internal ROM and internal RAM
14.8 µs20 MHz, when using external ROM (2 wait states) and internal RAM

∗ 1 Number of tasks = 8, number of priority levels = 8, number of event flags = 8, number of semaphore = 8 and
number of mailboxes = 8

∗ 2 These values were evaluated using the ICE33 when tasks of the same priority were switched over by a rot_rdq
system call.

These are standard values for a guide and will vary according to the user's system environment and the make
condition. The net value should be evaluated on the actual system.

• Programs can be developed in C and assembly language

• Provided for each function as a modularized library
When linking, only necessary modules are selected. This enables you to minimize the size of the compiled
application.

• Comes with source code for each functional module
The number of resources can be customized to suit your system specification.

• Multiple tasks can share a common stack area (when not processed in parallel)
You can minimize the amount of RAM used in your system by your application.

1 ROS33 PACKAGE

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL2

1.2 ROS33 Package Components
The ROS33 package contains the following items. When opening your ROS33 package, check to see that all of these
items are included.
(1) Tool disk (3.5-inch floppy disk for PC/AT, 1.44 MB) 1
(2) E0C33 Family ROS33 Realtime OS Manual (this manual) 1 each in Japanese and English
(3) Warranty card 1 each in Japanese and English

1.3 Installing ROS33
ROS33 needs to be linked with the user program as it is implemented. Therefore, make sure all tools of the "E0C33
Family C Compiler Package" have been installed in your computer and are ready to run before installing ROS33
files in your computer. The basic system configuration is described below.

• Personal computer: IBM PC/AT or compatible
(Pentium 90 MHz or better; we recommend that you have more than 32 MB of memory)

• OS: Windows 95, Windows NT 4.0, or later (Japanese or English version)

All the ROS33 files are supplied on one floppy disk. Execute the self-extract file "ros33vXX.exe" on the FD to
install the files. ("XX" in the file name represents the version number, for example, "ros33v10.exe" is the file of
ROS33 ver. 1.0.)
When "ros33vXX.exe" is started up by double-clicking the file icon, the following dialog box appears.

Enter a path/folder name in the text box and then click [Unzip].
The specified folder will be created and all the files will be
copied in the folder.
When the specified folder already exists on the specified path,
the folder will be overwritten without prompting if [Overwrite
Files Without Prompting] is checked.

The directory and file configurations after copying the floppy disk contents are shown below.

 (root)\ (Default: C:\E0C33\ROS33\)
itron302.txt µITON 3.0 specification

(English version, edited by TRON Association)
readmeja.txt Supplementary explanation (in Japanese)
readme.txt Supplementary explanation (in English)

lib\ ROS33 library
ros33.lib ROS33 library

include\ Include files
itron.h ITRON common header file
ros33.h ROS33 definition file

src\ Source files
debug.c C source file for debug functions
flag.c C source file for event flag functions
intmng.c C source file for interrupt management functions
mailbox.c C source file for mailbox functions
ros33.c ROS33 main C source file
ros33asm.s Assembly source file for dispatch and ret_int functions
semapho.c C source file for semaphore functions
timemng.c C source file for time management functions
tskmng.c C source file for task management functions
tsksync.c C source file for task-dependent synchronization functions
internal.h ROS33 data type definition file

1 ROS33 PACKAGE

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 3

build\ ROS33 build files
ros33.mak make file for ROS33.lib generation

demo\
..... Demonstration program and related files

sample\
..... Sample programs and related files

Copyright: The software in the "src\" and "include\" directories is owned by Seiko Epson Corporation. Do not use
it for any purpose except for development with the E0C33 Family microcomputers.

2 PROGRAMMING

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL4

2 Programming
This chapter gives an outline of ROS33, and then shows how to create an application program and how to customize
ROS33.

2.1 Outline of µITRON and ROS33
µITRON is a realtime, multitask OS which has been developed primarily by the ITRON Technical Committee of the
TRON Association as part of the TRON Project. The purpose of developing this OS was to improve realtime
processing capabilities and program productivity in embedded systems incorporating single-chip microcomputers.

ROS33 is a µITRON 3.0 (current version) specification compliant kernel for the E0C33 Family of microcomputers.
ROS33 supports Level R (required) and Level S (standard).

∗ Regarding Levels R and S
µITRON is classified into several levels by system call functionality. Level R (required) is the essential
function for µITRON 3.0 (current version) specification kernels, and includes the basic system calls necessary
for realtime, multitask OSs. Level S (standard) includes standard system calls for realtime, multitask OSs. In
addition to these, two other levels are available: Level E (extended), which includes additional and extended
functions, and Level C (CPU dependent), which depends on the CPU and system implementation.

Figure 2.1.1 shows a conceptual diagram of a system configuration.

Task
management

functions

Task-dependent
synchronization

functions

Synchronization
and

communication
functions

System
management

functions

Time
management

functions

Interrupt
management

functions

Task 1 Task 2 Task 3 Task 4 ••• Task n

ROS33 kernel

E0C33 Family microcomputer
(Hardware)

Application program

Figure 2.1.1 Conceptual diagram of a system configuration

Functional classification
The functions of the ROS33 kernel are classified into the following six categories:

1. Task management functions
These functions manipulate task states by, for example, starting and terminating a task.

2.Task-dependent synchronization functions
These functions establish task to task-dependent synchronization by setting or waking up a task to and from
a wait state or setting or resuming a task to and from a suspend (forcible wait) state.

3. Synchronization and communication functions
These functions provide synchronization and communication independently of tasks, issuing and checking
events through a semaphore, event flag, and mailbox.

4. System management functions
These functions reference the system environment.

5. Time management functions
These functions set and reference time, and place a task in a wait state for a given time.

6. Interrupt management functions
These functions enable and disable interrupts.

2 PROGRAMMING

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 5

In addition to the above, µITRON 3.0 has several other defined functions—including connection, extended
synchronization and communication, memory pool management, and network support functions. However,
these functions are not supported by ROS33.

Tasks
In ITRON, each unit of parallel processing performed by a program is called a "task". When multiple tasks are
started (activated and ready for execution), these tasks are placed in a ready queue (execution wait queue) from
which the task with the highest priority is executed. Individual tasks are identified by a numeric value called
the "task ID". As task ID values in ROS33 range from 1 to 255, up to 255 tasks can be executed (by default, 8
tasks). Priority is represented by numeric values 1 to 9 (by default, 1 to 8)—the smaller the value, the higher
the priority. Tasks with the same priority are executed in the order they have been placed in the ready queue.
This order can be changed by a system call, however.
Tasks in executable state are changed over by a system call that causes a transition of task status or by an
interrupt. This changeover is called "dispatching". The task under execution can place itself in a wait or halt
state, allowing for the task with the next highest priority to be dispatched and placed in executable state. If a
task with a higher priority than that of the currently executed task becomes executable, that task is dispatched.
The task being executed is returned to an executable state. This is called "preempting".
Figure 2.1.2 shows the transition of task statuses in ROS33.

READY state

WAIT state

RUN state

Wait condition

Forcibly
terminate
Exit (ext_tsk)

Wait condition
is satisfied

WAIT-SUSPEND
state

Resume (rsm_tsk)Suspend (sus_tsk)

Suspend (sus_tsk)

dispatch
preempt

Resume (rsm_tsk)

Forcibly terminate
(ter_tsk)

Forcibly
terminate
(ter_tsk)

SUSPEND
state

Start (sta_tsk)
Forcibly terminate (ter_tsk)

DORMANT
state

Cancel wait
Forcibly
terminate
(ter_tsk)

() indicates a system call.

Figure 2.1.2 Transition of task statuses

RUN (execution) state
This state means that the task is currently being executed. This state remains intact until the task is placed in
WAIT or DORMANT state or interrupted by an interrupt.

READY (executable) state
This state means that the task has been placed in the ready queue after being started up, or freed from a wait or
forcible wait state. The task is currently suspended because some other task with higher priority (or a task with
the same priority but placed ahead in the queue) is being executed.

2 PROGRAMMING

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL6

WAIT state
This state means that the task is waiting for an event (message receipt, semaphore acquisition, or event flag
setting) or is left suspended due to a system call issued by the task itself. This state remains intact until an event
is issued, the task is caused to resume (freed from a wait state) by some other task being executed or by an
interrupt handler, or the task is forcibly terminated. In this wait state, semaphore and other resources remain
occupied. The resumed task is placed in the ready queue at the end of a queue of tasks with the same priority.
After being dispatched, the task has its program counters and registers restored to their previous states at the
time of the interruption, and the task begins executing from where it left off.

SUSPEND (forcible wait) state
This state means that task execution has been suspended by a system call from some other task. This state
remains intact until the task is restarted by some other task being executed or forcibly terminated. In this wait
state, semaphores and other resources remain occupied.
The resumed task is placed in the ready queue at the end of a queue of tasks with the same priority. After being
dispatched, the task has its program counters and registers restored to their previous states at the time of
interruption, and the task begins executing from where it left off.

WAIT-SUSPEND (double wait) state
This state is a case where the above WAIT state and SUSPEND state overlap each other. If one of the two wait
states is cleared, the task enters the other wait state.

DORMANT state
This state means that the task has not been started yet or has been terminated.
Unlike the wait state, the task relinquishes all resources and accepts no system calls except for startup. When
the task restarts executing after startup, its context is initialized.

Task-independent portion
Although the system in almost all cases is placed in a task execution state, it sometimes goes to a non-task
execution state, such as for execution of the OS itself. The interrupt handler and timer handler, in particular,
are closely tied to the hardware, so they are called "task-independent portions". Task-independent portions are
created in the user program along with the tasks.
Task-independent portions (interrupt handler) are executed preferentially over all tasks. When the interrupt
handler starts, the tasks currently being executed are suspended, and execution resumes after the interrupt
handler is terminated. Also, when the interrupt handler is running, dispatches or any other task transitions are
not performed. For example, even if a task is waked up within the interrupt handler and the task has a high
enough priority to be dispatched, no dispatching occurs until the interrupt handler is terminated.
Furthermore, a limited number of system calls can be used in task-independent portions.

Interrupt
Interrupts are processed as a task-independent portion, not a task. It is not necessary to define interrupt
handlers as tasks.

2 PROGRAMMING

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 7

2.2 List of System Calls
Table 2.2.1 lists the system calls supported by ROS33. For details about each system call, refer to Chapter 3,
"System Call Reference".

Table 2.2.1 List of system calls
Classification System call Function

Task management dis_dsp() Disable Dispatch
ena_dsp() Enable Dispatch
sta_tsk() Start Task
ext_tsk() Exit Issuing Task
ter_tsk() Terminate Other Task
chg_pri() Change Task Priority
rot_rdq() Rotate Tasks on the Ready Queue
rel_wai() Release Wait of Other Task
get_tid() Get Task Identifier

Task-dependent slp_tsk() Sleep Task
synchronization wup_tsk() Wake Up Other Task *

sus_tsk() Suspend Other Task
rsm_tsk() Resume Suspended Task
can_wup() Cancel Wake Up Request

Synchronization and wai_sem() Wait on Semaphore
communication preq_sem() Pall and Request Semaphore

sig_sem() Signal Semaphore *
rcv_msg() Receive Message from Mailbox
prcv_msg() Poll and Receive Message from Mailbox
snd_msg() Send Messages to Mailbox *
wai_flg() Wait on Event Flag
pol_flg() Wait for Event Flag (Polling)
set_flg() Set Event Flag *
clr_flg() Clear Event Flag

System management get_ver() Get Version Information
Time management set_tim() Set System Clock

get_tim() Get System Clock
dly_tsk() Delay Task

Interrupt loc_cpu() Lock CPU
management unl_cpu() Unlock CPU

ret_int() Return from Interrupt Handler *
Implementation- ent_int() Initialize Interrupt Handler Value *
dependent functions vcre_tsk() Create Task

In task-independent portions (interrupt handler), only the system calls marked by an asterisk (*) in the above table
can be used.

2 PROGRAMMING

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL8

2.3 Creating an Application Program
This section describes the precautions to be observed when creating an ROS33 application program by using the
program "demo.c" in the "demo\" directory and sample programs in the "sample\" directory. For details on how to
handle software development tools and how to create C and assembly sources, refer to the "E0C33 Family C
Compiler Package Manual".
The following sample programs assume that "ros33.lib" to be linked is generated under the default condition shown
on Page 15.

Rules for main function
Shown below is the main function in "demo.c".

Example:
#include "ros33.h"

void main()
{
 sys_ini();

 vcre_tsk(1, task1, 1, (UW)&(stack1[0xa0]));
 vcre_tsk(2, task2, 2, (UW)&(stack2[0xa0]));
 vcre_tsk(3, task3, 2, (UW)&(stack3[0xa0]));
 vcre_tsk(4, task4, 3, (UW)&(stack4[0xa0]));
 vcre_tsk(5, task5, 5, (UW)&(stack3[0xa0]));
 vcre_tsk(8, idle_task, 8, (UW)&(idle_stack[0xa0]));

 sta_tsk(1, 0);
 sta_tsk(2, 0);
 sta_tsk(3, 0);
 sta_tsk(4, 0);
 sta_tsk(8, 0);

 sys_sta();
}

In the main function, always be sure to call sys_ini() first and sys_sta() at the end of the function. The
function sys_ini() is used to initialize the parameters and resources used by ROS33. After this function, write
your user program. In the above example, six tasks are defined by vcre_tsk(), of which five tasks are started
by sta_tsk(). The last function sys_sta() causes the system to start executing in a multitask environment.
Furthermore, "ros33.h" must be included.

Task
All tasks to be executed must be defined using vcre_tsk() in the main function. Operation cannot be
guaranteed for system calls that use a task ID which is not defined here.
In the example of main() above, task1 is defined first.
Example: vcre_tsk(1, task1, 1, (UW)&(stack1[0xa0]));

This system call defines the task as task ID = 1 (first argument), task 1 = startup address (second argument),
priority = 1 (third argument), and the initial address of the stack used by this task = stak1[] (fourth argument).
Since this task has priority 1 (the highest priority), when this task is started it is dispatched before any other
tasks.
When the tasks are initially defined, they are in DORMANT state. Use sta_tsk() to start a task.
Example: sta_tsk(1, 0);

The first argument in sta_tsk() is a task ID. The second argument is the task startup code (int) to specify the
parameter to be passed to the task. However, because ROS33 does not use this code, always specify 0 for the
task startup code.

2 PROGRAMMING

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 9

To create each individual task, use the ordinary function format shown below. Note, however, that tasks do not
have a return value. Consider the task status transition in Figure 2.1.2 when you create tasks.
Example:
void task1(void)
{
 while(1) {
 rcv_msg(&ppk_msg, 1);
 puts(ppk_msg->msgcont);
 slp_tsk();
 }
}

This task uses rcv_msg() to receive a message from the mailbox
and output it. Then the task places itself in WAIT state using
slp_tsk(). This wait state remains effective until the task is waked
up by some other task.
If no message exists in the mailbox, task1 is set in a wait state by
rcv_msg(). When a message has been prepared, it is waked up and
performs the above processing.

Idle task
An idle task needs to be provided in the user program for times when no tasks are in an executable state.
This task must be enabled for interrupt acceptance and must be assigned the lowest priority. It also must always
be kept active in main(). An idle_task is defined in "demo.c".
Example:
void idle_task()
{

 while(1){
 asm("halt");
}

}

The operation of the OS cannot be guaranteed if the sequence returns from the idle task.

Stack
For the stack, specify a different area for each task. However, for tasks that are not processed in parallel, the
same stack area can be shared in order to suppress the amount of RAM spent for tasks. When sharing the stack
in this way, make sure that all but one task sharing the stack are in DORMANT state.
In addition to tasks, the system uses about 180 bytes (varies depending on the environment) for the stack for
initialization and other purposes. Add this stack to the total amount of stack used by tasks as you allocate the
stack area in RAM.
A sample program for sharing a stack is shown below.
Example:
#include <stdio.h>
#include "ros33.h"

const char sTask[] = "task";

void main()
{
 sys_ini();

 vcre_tsk(1, task1, 1, (UW)&(stack_common[STACK_SIZE]));
 vcre_tsk(2, task2, 1, (UW)&(stack_common[STACK_SIZE]));
 vcre_tsk(3, task_main, 2, (UW)&(stack_main[STACK_SIZE]));
 vcre_tsk(8, idle_task, 8, (UW)&(stack_idle[STACK_SIZE]));

 /* start idle task */
 sta_tsk(8, 0);

 /* start main task */
 sta_tsk(3, 0);

 sys_sta();
}

void task_main(void)
{
 sta_tsk(1, 0);
 sta_tsk(2, 0);
 slp_tsk();
}

2 PROGRAMMING

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL10

void task1(void)
{
 char str[10];
 strcpy(str, sTask);
 strcat(str, "1");
 puts(str);
 ext_tsk();
}

void task2(void)
{
 char str[10];
 strcpy(str, sTask);
 strcat(str, "2");
 puts(str);
 slp_tsk();
}

1. The same stack area is defined for both task1 and task2 using the vcre_tsk() system call.

2. task_main() enters RUN state by sys_sta() in the main function.

3. task1 enters RUN state by sta_tsk(1,0) in the main function.

4. task1 enters DORMANT state by ext_tsk(), then task_main() enters RUN state.

5. task2 enters RUN state by sta_tsk(2,0) in task_main ().

6. task2 enters WAIT state by slp_tsk(), then task_main() enters RUN state.

In this example, task1 and task2 use the same stack area. Since task1 and task 2 do not enter the same state
other than DORMANT state, stack sharing is possible.

For reference, a sample source for stack sharring is provided in the "sample\" directory.

Initializing the dispatcher
The task dispatcher uses software exception 0.
Register int_dispatch to the corresponding vector address.

Interrupt handler
Create an interrupt handler for each factor of interrupts used in your application, and write its start address to
the corresponding interrupt vector address. When the interrupt factor is generated, the corresponding interrupt
handler is executed as a task-independent portion. The tasks that have until now been executed are suspended
from execution until the interrupt handler completes its processing. Also, the E0C33 chip's trap processing is
initiated and the interrupts whose priority levels are below that of the interrupt being serviced are masked out
during this time. To enable multiple interrupts, directly set the IE bit of the PSR. For details about interrupts,
refer to the Technical Manual supplied with each E0C33 Family microcomputer.
The basic contents of the interrupt handler are shown below.
Example:
.global int_hdr
int_hdr:

pushn %r13 ; Saves %r0 to %r13 used by user routine.

call ent_int ; Calls ent_int.

xld.w %r0,IFCT_TM160
ld.w %r1,1 ; Clears interrupt factor flag.
ld.w [%r0],%r1

xcall usr_routine

popn %r13 ; Restores registers.

call ret_int

2 PROGRAMMING

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 11

1. Save the registers used by the user processing routine to the stack.

2. Call ent-int(). Here, ent_int() is an implement-dependent system call that increments the variable
"ubIntNest", which is used to examine interrupt nesting. Always be sure to call this function after saving
the registers.

3. Clear the interrupt factor flag.

4. Execute the user's interrupt processing.

5. Restore the contents of the registers that have been saved to the stack.

6. Call ret_int() to terminate the interrupt handler.

In the above example, the interrupt handler uses the stack of the task that was being executed until now. If you
want to designate a stack exclusively for the interrupt handler, switch over the SP immediately after starting
the interrupt handler and immediately before terminating it.

The system calls that can be used from the interrupt handler are limited to the following four, not including
ent_int() and ret_int() shown above.
wup_tsk() Wakes up the task in a wait state (woken up after the interrupt handler is terminated).
set_flag() Sets an event flag.
sig_sem() Returns a semaphore resource.
snd_msg() Sends a message to the mailbox.

When issuing one of these system calls from the interrupt handler, always be sure to disable interrupts
beforehand.

Timer handler
When using time management function system calls (set_tim, get_tim, dly_tsk), create a timer handler in the
user program that calls sys_clk() every 1 ms. Normally, use a 16-bit timer to generate an interrupt every 1 ms
and create a timer handler as an interrupt handler for that interrupt.
Example:
#define intstk_size 72
.comm intstk intstk_size ; Allocates an interrupt handler stack.

.global timer_hdr
timer_hdr:

;set stack area of interrupt handler
pushn %r0 ; Uses task stacks to save %r0.
ld.w %r0,%sp
pushn %r0 ; Uses task stacks to save %sp.
xld.w %r0,intstk+intstk_size
ld.w %sp,%r0 ; Switches to an interrupt handler stack.

pushn %r13 ; Because sys_clk is written in C and uses up to %13.

call ent_int ; Calls ent_int.
xld.w %r0,IFCT_TM160
ld.w %r1,1 ; Clears the interrupt factor flag.
ld.w [%r0],%r1
xcall sys_clk

popn %r13

;restore stack area of task
popn %r0
ld.w %sp,%r0
popn %r0

call ret_int

Before calling sys_clk(), always be sure to disable interrupts.
For reference, a sample program that also includes 16-bit timer settings is provided in the "sample\" directory.

2 PROGRAMMING

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL12

Usage example of a mailbox
#include <stdio.h>
#include "ros33.h"

T_MSG msg;

void task1(void)
{
 T_MSG* pk_msg;

 while(1) {
 rcv_msg(&pk_msg, 1);
 puts(pk_msg->msgcont);
 slp_tsk();
 }
}

void task2(void)
{
 while(1) {
 strcpy(msg.msgcont, "HELLO");
 msg.pNxt = 0; /* message init */
 snd_msg(1, &msg);
 slp_tsk();
 }
}

This sample program assumes that task1 and task2 are placed in the same ready queue with a priority level in
the order of task1 and task2, and there is no message in the mailbox (ID1).

1. task1 enters RUN state. The rcv_msg() in task1 requests to receive a message. task1 enters WAIT state
since the mailbox (ID1) has no message.

2. task2 enters RUN state. task1 initializes a message and sends it to the mailbox (ID1) using snd_msg. This
makes task1 enter READY state.

3. task1 enters RUN state by slp_tsk() in task2.

4. task1 outputs the received message.

For reference, a sample source that uses a mailbox is provided in the "sample\" directory.

Message structure:

The message structure T_MSG is defined in "itron.h" as follows:
typedef struct t_msg {

 struct t_msg* pNxt; ... Message header

 VB msgcont[10]; ... Message body

} T_MSG;

A message consists of a header (first 4 bytes) and a message body.
To expand a message body into 10 bytes or more, define as follows:
Example:
VB msg_buf[25];

T_MSG* pk_msg;

pk_msg = (T_MSG*)msg_buf;

The message header (pNxt) must be initialized to 0 before using the massage.

2 PROGRAMMING

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 13

Usage example of a semaphore
void task1(void)
{
 while(1) {
 wai_sem(1);
 rot_rdq(1);
 sig_sem(1);
 puts("task1");
 slp_tsk();
 }
}

void task2(void)
{
 while(1) {
 wai_sem(1);
 puts("task2");
 sig_sem(1);
 slp_tsk();
 }
}

This sample program assumes that task1 and task2 are placed in the same ready queue with a priority level in
the order of task1 and task2, and the resource of the semaphore (ID1) has not be returned.

1. task1 enters RUN state and gets the resource from the semaphore (ID1) using wai_sem().

2. task2 enters RUN state by rot_rdq() in task1.

3. task2 requests the resource from the semaphore (ID1). task2 enters WAIT state since it cannot get the
resource.

4. task1 enters RUN state and returns the resource to the semaphore (ID1) using sig_sem(). This makes task2
enter READY state.

5. task2 enters RUN state by slp_tsk() in task1.

For reference, a sample source that uses a semaphore is provided in the "sample\" directory.

Usage example of an event flag
#include <stdio.h>
#include "ros33.h"

void task1(void)
{
 UINT p_flgptn;

 while(1) {
 wai_flg(&p_flgptn, 1, 0x11, TWF_ANDW);
 printf("Flag pattern 0x%x\n", p_flgptn);
 slp_tsk();
 }
}

void task2(void)
{
 while(1) {
 set_flg(1, 0x11);
 slp_tsk();
 }
}

2 PROGRAMMING

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL14

This sample program assumes that task1 and task2 are placed in the same ready queue with a priority level in
the order of task1 and task2, and the event flag (ID1) has be set to 0x00.

1. task1 enters RUN state. task1 enters WAIT state after executing wai_flag() that waits for the event flag
(ID1) to be set to the specified status.

2. task2 enters RUN state and sets the event flag (ID1) to 0x11 using set_flg(). Since this releases the flag
waiting condition for task1, task1 enters READY state.

3. task1 enters RUN state by slp_tsk() in task2.
task2 outputs the contents of the event flag that has been released from the waiting condition using printf().

For reference, a sample source that uses an event flag is provided in the "sample\" directory.

Building an application program
The ROS33 modules are provided as the library file "ros33.lib" in the "lib\" directory. Link this library with
the user modules. When linking, specify the said directory as a library path in the linker command file. Only
those modules required for the system calls used will be linked.
Example: ;Library path

-l C:\CC33\libCC33 standard library
-l C:\ROS33\libROS33 standard library

Note that "ros33.lib" is created as a standard kernel that includes an error check function but omits debug
functions. If you want to change this function or the maximum resource value, customize the library as
necessary. (Refer to Section 2.4, "Customizing ROS33".)

Precautions

• All tasks to be executed must be defined in the main function by using vcre_tsk(). Operation cannot be
guaranteed for system calls that use an undefined task ID.

• The idle task must be enabled for interrupt acceptance and must be assigned the lowest priority.
Furthermore, do not return from the idle task.

• To enable or disable interrupts in tasks, always be sure to use system calls loc_cpu() or unl_cpu().
Operation cannot be guaranteed if PSR is changed by operating on it directly.

• The stack for each task should be prepared with an enough size.

• Before issuing a system call from the interrupt handler, make sure that interrupts are disabled.

• To enable multiple interrupts in an interrupt handler, directly set the IE (interrupt enable) bit of the PSR.

2 PROGRAMMING

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 15

2.4 Customizing ROS33
The library "ros33.lib" is created with the following features:

Resources (Valid setup range)
Number of tasks 8 (1 to 255)
Priority levels 8 (1 to 9)
Number of event flags 8 (0 to 255)
Number of semaphores 8 (0 to 255)
Number of mailboxes 8 (0 to 255)
Semaphore count value 1 (1 to 255)
Wakeup count value 1 (1 to 255)

Initial value of PSR 0x00000010 ...Interrupt enabled

Compile options
NO_ERROR_CHECK option Unspecified
DEBUG_KERNEL option Unspecified
NO_RETURN_VALUE option Unspecified
USE_GP option Unspecified

The ROS33 source files are provided in the "src\" directory, so you can customize it following the procedure
described below.

Method for changing resources
The maximum value of each resource and the initial value of PSR are defined in "include\ros33.h". Change the
contents of these definitions as necessary, then recompile the file.

Contents of definitions in "ros33.h"
// If you change resource number please edit following.

#define SMPH_NUM 8 // max semaphore, 0 to 255

#define FLG_NUM 8 // max flag, 0 to 255

#define MLBX_NUM 8 // max mailbox, 0 to 255

#define TSK_NUM 8 // max task, 1 to 255

#define MAX_TSKPRI 8 // max task priority, 1 to 9

#define SMPH_CNT 1 // semaphore count, 1 to 255

#define WUP_CNT 1 // max wakeup count 1 to 255

#define INI_PSR 0x00000010 // initial flag (%PSR value)

// default is interrupt enable

Compile options and recompilation

NO_ERROR_CHECK option
By compiling the file after specifying "-DNO_ERROR_CHECK" with a gcc33 startup command, you can
generate a very compact kernel with error check functions omitted. However, because occurrence of an error
causes the system to crash, this option can only be used when you are absolutely certain that no errors will
occur.

DEBUG_KERNEL option
By specifying "-DDEBUG_KERNEL" with a gcc33 startup command and "-d DEBUG_KERNEL" with a
pp33 startup command, you can generate a debug kernel. When a debug kernel is generated, the dispatcher (a
functional block to control dispatch in the OS) has an added function. This function calls two other functions,
which are described below:

void ros_dbg_tskcng(ID tskid)

This function is called when the task to be dispatched has been confirmed.

2 PROGRAMMING

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL16

void ros_dbg_stackerr()

This function is called when an error occurs in the stack used by a task being executed.
If the task stack area is used to exchange messages with the mailbox, the system accesses the stack for the task
being executed, which causes a stack error.

Note that these functions are not included in ROS33. Therefore, they need to be created in the user program.
For your reference, examples of these functions are provided in "src\debug.c".

NO_RETURN_VALUE option
By specifying "-DNO_RETURN_VALUE" with a gcc33 startup command, a compact kernel that has no
function to set return values can be generated. In this case, system calls do not set any return value, so
undefined values will be returned.

USE_GP option
If you want to optimize the code using a global pointer, change the address at which the global pointer
definition is defined in "ros33.h" to your desired address and specify "-DUSE_GP" with a gcc33 startup
command before compiling "tskmng.c."

Global pointer definition in "ros33.h"
// If you use global pointer please edit here

#ifdef USE_GP

#define GLOBAL_POINTER 0x00000000 // global pointer (%r8 value)

#endif

Note that a make file to generate "ros33.lib" has been created in the "build\" directory. Recompile the file after
modifying necessary points.

"ros33.mak"
macro definitions for tools & dir

TOOL_DIR = C:\CC33
GCC33 = $(TOOL_DIR)\gcc33
PP33 = $(TOOL_DIR)\pp33
EXT33 = $(TOOL_DIR)\ext33
AS33 = $(TOOL_DIR)\as33
LK33 = $(TOOL_DIR)\lk33
MAKE = $(TOOL_DIR)\make
LIB33 = $(TOOL_DIR)\lib33
DEBUG = -g
SRC_DIR = ..\src\\

macro definitions for tool flags

#for release kernel (error check)
GCC33_FLAG = -B$(TOOL_DIR)\ $(DEBUG) -S -I..\include -O
PP33_FLAG = $(DEBUG)

#for debug kernel
#GCC33_FLAG = -B$(TOOL_DIR)\ $(DEBUG) -S -I..\include -O -DDEBUG_KERNEL
#PP33_FLAG = -d DEBUG_KERNEL $(DEBUG)

#for release kernel (NO error check)
#GCC33_FLAG = -B$(TOOL_DIR)\ $(DEBUG) -S -I..\include -O -DNO_ERROR_CHECK
#PP33_FLAG = $(DEBUG)

EXT33_FLAG =
AS33_FLAG = $(DEBUG)

suffix & rule definitions

.SUFFIXES : .c .s .ps .ms .o .srf

.c.ms :
$(GCC33) $(GCC33_FLAG) (SRC_DIR)*.c
$(EXT33) $(EXT33_FLAG) $*.ps

.s.ms :
$(PP33) $(PP33_FLAG) (SRC_DIR)*.s

2 PROGRAMMING

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 17

$(EXT33) $(EXT33_FLAG) $*.ps

.ms.o :
$(AS33) $(AS33_FLAG) $*.ms

dependency list

ros33.lib : flag.o intmng.o mailbox.o ros33.o ros33asm.o semapho.o timemng.o \
 tskmng.o tsksync.o debug.o

$(LIB33) -a ros33.lib flag.o intmng.o mailbox.o ros33.o ros33asm.o \
semapho.o timemng.o tskmng.o tsksync.o debug.o

copy ros33.lib ..\lib
del ros33.lib

flag.ms : $(SRC_DIR)flag.c
flag.o : flag.ms

intmng.ms : $(SRC_DIR)intmng.c
intmng.o : intmng.ms

mailbox.ms : $(SRC_DIR)mailbox.c
mailbox.o : mailbox.ms

ros33.ms : $(SRC_DIR)ros33.c
ros33.o : ros33.ms

ros33asm.ms : $(SRC_DIR)ros33asm.s
ros33asm.o : ros33asm.ms

semapho.ms : $(SRC_DIR)semapho.c
semapho.o : semapho.ms

timemng.ms : $(SRC_DIR)timemng.c
timemng.o : timemng.ms

tskmng.ms : $(SRC_DIR)tskmng.c
tskmng.o : tskmng.ms

tsksync.ms : $(SRC_DIR)tsksync.c
tsksync.o : tsksync.ms

#for debug kernel
debug.ms : $(SRC_DIR)debug.c
debug.o : debug.ms

clean files except source

clean:
del *.o
del *.ms
del *.ps

3 SYSTEM CALL REFERENCE

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL18

3 System Call Reference
This section explains the functions of each system call.

3.1 List of System Calls
Table 3.1.1 lists the system calls supported by ROS33.

Table 3.1.1 List of system calls
Classification System call Function

Task dis_dsp(void) Disable Dispatch
management ena_dsp(void) Enable Dispatch

sta_tsk(ID tskid, INT stacd) Start Task
ext_tsk(void) Exit Issuing Task
ter_tsk(ID tskid) Terminate Other Task
chg_pri(ID tskid, TPRI tskpri) Change Task Priority
rot_rdq(TPRI tskpri) Rotate Tasks on the Ready Queue
rel_wai(ID tskid) Release Wait of Other Task
get_tid(ID *p_tskid) Get Task Identifier

Task-dependent slp_tsk(void) Sleep Task
synchronization wup_tsk(ID tskid) Wake Up Other Task *

sus_tsk(ID tskid) Suspend Other Task
rsm_tsk(ID tskid) Resume Suspended Task
can_wup(INT *p_wupcnt, ID tskid) Cancel Wake Up Request

Synchronization wai_sem(ID semid) Wait on Semaphore
and preq_sem(ID semid) Pall and Request Semaphore
communication sig_sem(ID semid) Signal Semaphore *

rcv_msg(T_MSG **ppk_msg, ID mbxid) Receive Message from Mailbox
prcv_msg(T_MSG **ppk_msg, ID mbxid) Poll and Receive Message from

Mailbox
snd_msg(ID mbxid, T_MSG *pk_msg) Send Messages to Mailbox *
wai_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode) Wait for Event Flag
pol_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode) Wait for Event Flag (Polling)
set_flg(ID flgid, UINT setptn) Set Event Flag *
clr_flg(ID flgid, UINT clrptn) Clear Event Flag

System
management

get_ver(T_VER *pk_ver) Get Version Information

Time set_tim(SYSTIME *pk_tim) Set System Clock
management get_tim(SYSTIME *pk_tim) Get System Clock

dly_tsk(DLYTIME dlytim) Delay Task
Interrupt loc_cpu(void) Lock CPU
management unl_cpu(void) Unlock CPU

ret_int(void) Return from Interrupt Handler *
Implementation- ent_int(void) Initialize Interrupt Handler Value *
dependent vcre_tsk(ID tskid, FP task, PRI itskpri, UW istkadr) Create Task

In task-independent portions (the interrupt handler), only the system calls marked by an asterisk (*) in the above
table can be used.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 19

3.2 List of Data Types
Table 3.2.1 lists the data types used for the arguments of each system call.

Table 3.2.1 List of data types
Type Definition Description

B typedef char B; Signed 8-bit integer
H typedef short H; Signed 16-bit integer
W typedef long W; Signed 32-bit integer
UB typedef unsigned char UB; Unsigned 8-bit integer
UH typedef unsigned short UH; Unsigned 16-bit integer
UW typedef unsigned long UW; Unsigned 32-bit integer
VW typedef long VW; Unpredictable data type (32-bit size)
VH typedef short VH; Unpredictable data type (16-bit size)
VB typedef char VB; Unpredictable data type (8-bit size)
*VP typedef void *VP; Pointer to an unpredictable data type
*FP typedef void (*FP)(); Program start address
INT typedef int INT; Signed 16-bit integer
UINT typedef unsigned int UINT; Unsigned 16-bit integer
BOOL typedef H BOOL; Boolean value: TRUE (1) or FALSE (0)
FN typedef short FN; Maximum 2 bytes of function code
ID typedef INT ID; Object ID number (signed 16-bit integer)
BOOL_ID typedef INT BOOL_ID; Boolean value or ID number (signed 16-bit integer)
HNO typedef INT HNO; Handler number (signed 16-bit integer)
ATR typedef UINT ATR; Object or handler attribute (unsigned 16-bit integer)
ER typedef INT ER; Error code (signed 16-bit integer)
PRI typedef INT PRI; Task priority (signed 16-bit integer)
TMO typedef INT TMO; Timeout value (signed 16-bit integer)
DLYTIME typedef TMO DLYTIME; Delay time (signed 16-bit integer)

These data types are defined in "include\itron.h".

3.3 List of Error Codes
Table 3.3.1 lists the error codes returned by system calls.

Table 3.3.1 List of error codes
Error code Value Description

E_OK 0 Normal completion
E_SYS (-5) System error
E_NOMEM (-10) Insufficient memory
E_NOSPT (-17) Feature not supported
E_INOSPT (-18) Feature not supported by ITRON/FILE specification
E_RSFN (-20) Reserved function code number
E_RSATR (-24) Reserved attribute
E_PAR (-33) Parameter error
E_ID (-35) Invalid ID number
E_NOEXS (-52) Object does not exist
E_OBJ (-63) Invalid object state
E_MACV (-65) Memory access disabled or memory access violation
E_OACV (-66) Object access violation
E_CTX (-69) Context error
E_QOVR (-73) Queuing or nesting overflow
E_DLT (-81) Object being waited for was deleted
E_TMOUT (-85) Polling failure or timeout exceeded
E_RLWAI (-86) WAIT state was forcibly released

These error codes are defined in "include\itron.h".

3 SYSTEM CALL REFERENCE

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL20

3.4 Details of System Calls

3.4.1 System Calls of Task Management Functions

Disable Dispatch dis_dsp

Format: ER dis_dsp(void);

Parameter: None

Return values: E_OK Terminated normally
E_CTX Context error (issued after loc_cpu has been executed from a task-independent

portion)

Description: This system call disables task dispatches. From this time onward until ena_dsp is issued, a task
itself will never be preempted from RUN state to READY state, though there is a possibility of
other tasks with higher priority being placed in READY state. The task is also disabled from
entering WAIT or DORMANT state. External interrupts are not disabled, however.

Enable Dispatch ena_dsp

Format: ER ena_dsp(void);

Parameter: None

Return values: E_OK Terminated normally
E_CTX Context error (issued after loc_cpu has been executed from a task-independent

portion)

Description: This system call reenables a dispatch that has been disabled by dis_dsp. If a task with higher
priority than the reenabled task itself exists in the ready queue, this task is dispatched at that point in
time and the reenabled task is preempted.
If both interrupt and dispatch are disabled by loc_cpu, dispatch is not enabled by this system call
and error code E_CTX is returned.
If this system call is issued when dispatch is already enabled, the system call is ignored and no
error is assumed.

Start Task sta_tsk

Format: ER sta_tsk(ID tskid, INT stacd);

Parameters: ID tskid Task ID number
INT stacd Task start code (not used in the system call)

Return values: E_OK Terminated normally
E_ID Illegal ID number (tskid is illegal or cannot be used)
E_NOEXS Specified task does not exist.
E_OBJ Specified task is not in DORMANT state.

Description: This system call starts the task indicated by tskid. The specified task is registered in the ready

queue, and its state is changed from DORMANT to READY. In the ready queue, it is positioned at
the end of the queue of tasks with the same priority.
If the specified task has the highest priority among the executable (READY) tasks and there is no
other task with the same priority, the task is dispatched and placed in RUN state. In this case, the
task being executed when it issued sta_tsk is made the task to be executed next at this time.
Task startup is effective for only those in DORMANT state. If you specify a task in any other state,
the task status is not changed and error code E_OBJ is returned.
The second argument "stacd" is not used in ROS33, so specify 0 for it.

Note: Before you can start a task, you must first issue the vcre_tsk system call to define that task.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 21

Exit Issuing Task ext_tsk

Format: void ext_tsk(void);

Parameter: None

Return value: None

Description: This system call terminates the task itself that issues this call. The terminated task is placed in an
DORMANT state. At the same time, the task with the highest priority in the ready queue is
dispatched and placed in RUN state. Use the sta_tsk system call to restart a task that has been
terminated by this system call.

Terminate Other Task ter_tsk

Format: ER ter_tsk(ID tskid);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
E_ID Illegal ID number (tskid is illegal or cannot be used)
E_NOEXS Specified task does not exist.
E_OBJ Specified task is in DORMANT state or the issuing task itself is specified.

Description: This system call forcibly terminates the task specified by tskid. The terminated task is placed in
DORMANT state. If you specify the issuing task itself or a task in DORMANT state, error code
E_OBJ is returned. Use the sta_tsk system call to restart a task that has been terminated by this
system call.

Change Task Priority chg_pri

Format: ER chg_pri(ID tskid, TPRI tskpri);

Parameters: ID tskid Task ID number
TPRI tskpri Task priority

Return values: E_OK Terminated normally
E_ID Illegal ID number (tskid is illegal or cannot be used)
E_NOEXS Specified task does not exist.
E_PAR Parameter error (tskpri is illegal or has an unusable value)
E_OBJ Specified task is in DORMANT state.

Description: This system call changes the current priority of the task specified by tskid to a value specified by
tskpri. The priority of any task in DORMANT (inactive) state cannot be changed. If an inactive task
is specified, error code E_OBJ is returned.
The priority changed here remains effective until the task enters DORMANT state. When the task is
placed in DORMANT state, the task's initial priority value set by vcre_tsk is restored.
If the priority of a task in the ready queue is changed, the task is moved to the last position in the
task queue with the same priority as its changed priority. This modification is also used to specify
the same priority for a task as its current priority, or change the priority of the issuing task itself.

3 SYSTEM CALL REFERENCE

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL22

Rotate Tasks on the Ready Queue rot_rdq

Format: ER rot_rdq(TPRI tskpri);

Parameter: TPRI tskpri Task priority

Return values: E_OK Terminated normally
E_PAR Parameter error (tskpri is illegal)

Description: This system call rotates a ready queue that has priorities specified by tskpri. The task at the top of
the queue with the specified priority is moved to the last position in the queue. In this system call,
you can use TPRI_RUN (priority of the task being executed) for tskpri, so that it is possible to rotate
the queue that includes the issuing task itself.
If the task of a specified priority (valid value) does not exist in the ready queue, this system call is
ignored.
This system call only affects the task queue with the specified priority, and no other task queue is
affected.

Release Wait of Other Task rel_wai

Format: ER rel_wai(ID tskid);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
E_ID Illegal ID number (tskid is illegal or cannot be used)
E_NOEXS Specified task does not exist.
E_OBJ Specified task is not in a wait state (including the issuing task itself and those in

DORMANT state).

Description: If the task specified by tskid is in WAIT state, this system call forcibly frees it (not including
SUSPEND state). Error E_RLWAI is returned for the task freed from wait state by rel_wai. This can
be used for time-out processing of tasks in a wait state. If the specified task is in WAIT-SUSPEND
state, only the WAIT state is cleared and the task goes to SUSPEND state.
If the specified task is neither in WAIT state nor in WAIT-SUSPEND state, error code E_OBJ is
returned to the task that had issued this system call.

Get Task Identifier get_tid

Format: ER get_tid(ID *p_tskid);

Parameter: ID *p_tskid Pointer to task ID number

Return values: E_OK Terminated normally
FALSE=0 Executed from a task-independent portion

Description: This system call returns the ID number of the issuing task itself. When this system call is issued
from a task-independent portion, FALSE = 0 is returned as the task ID.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 23

3.4.2 System Calls of Task-Dependent Synchronization Functions

Sleep Task slp_tsk

Format: ER slp_tsk(void);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
E_RLWAI Wait state forcibly cleared (rel_wai accepted during wait state)
E_CTX Context error (executed from a task-independent portion or when dispatch is

disabled)

Description: This system call moves the issuing task itself from RUN state to WAIT state. This wait state is
cleared by a wup_tsk system call from another task. The wait state also is forcibly cleared when
rel_wai is executed by some other task, in which case error code E_RLWAI is returned.
If sus_tsk is executed by some other task, the task is placed in WAIT-SUSPEND state.

Wake Up Other Task wup_tsk

Format: ER wup_tsk(ID tskid);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
E_ID Illegal ID number (tskid is illegal or cannot be used)
E_NOEXS Specified task does not exist.
E_OBJ Specified task is the issuing task itself or in DORMANT state.
E_QOVR Wakeup requests exceed the allowable range.

Description: This system call causes a task which the slp_tsk system call has placed in a wakeup wait state to
enter READY state. The return position in the ready queue is the last position of the task queue
having the same priority.
Tasks in WAIT-SUSPEND state go to SUSPEND state.
If the specified task has not executed slp_tsk and is not in a wait state, this wakeup request is
queued. A queued wakeup request becomes effective when the specified task executes slp_tsk
thereafter. Consequently, the specified task is not placed in a wait state by this slp_tsk.

Note: By default, the number of times wakeup requests are queued (wupcnt) is 1. However, this setting
can be customized so that they will be queued up to 255 times. (Refer to Section 2.4, "Customizing
ROS33".)

Suspend Other Task sus_tsk

Format: ER sus_tsk(ID tskid);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
E_ID Illegal ID number (tskid is illegal or cannot be used)
E_NOEXS Specified task does not exist.
E_OBJ Specified task is the issuing task itself or in DORMANT state.
E_QOVR SUSPEND request is issued more than once.

Description: This system call causes the task specified by tskid to enter SUSPEND state. If you specify a task
that is already in WAIT state, the task enters WAIT-SUSPEND state.
SUSPEND state is cleared by issuing the rsm_tsk system call.
SUSPEND requests cannot be nested (cannot be preissued a number of times).

3 SYSTEM CALL REFERENCE

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL24

Resume Suspended Task rsm_tsk

Format: ER rsm_tsk(ID tskid);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
E_ID Illegal ID number (tskid is illegal or cannot be used)
E_NOEXS Specified task does not exist.
E_OBJ Specified task is not in SUSPEND state.

Description: This system call frees the task specified by tskid from SUSPEND state and returns it to the state it
was in when sus_tsk was issued. If the task is WAIT-SUSPEND state, it enters WAIT state.
If you specify a task that is neither in WAIT state nor in WAIT-SUSPEND state, error code E_OBJ
is returned.

Cancel Wake Up Request can_wup

Format: ER can_wup(INT *p_wupcnt, ID tskid);

Parameters: INT *p_wupcnt Pointer to number of times current wakeup request is issued
ID tskid Task ID number

Return values: E_OK Terminated normally
E_ID Illegal ID number (tskid is illegal or cannot be used)
E_NOEXS Specified task does not exist.
E_OBJ Specified task is in DORMANT state.

Description: This system call clears the wakeup request counter of the task specified by tskid and invalidates the
queued task wakeup request. The wakeup request count before being cleared is set in *p_wupcnt.
By specifying TSK_SELF (0) for tskid, you can clear the wakeup request for the issuing task itself.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 25

3.4.3 System Calls of Synchronization and Communication Functions

Wait on Semaphore wai_sem
Poll and Request Semaphore preq_sem

Format: ER wai_sem(ID semid);

ER preq_sem(ID semid);

Parameter: ID semid Semaphore ID number

Return values: E_OK Terminated normally
E_ID Illegal ID number (semid is illegal or cannot be used)
E_NOEXS Specified semaphore does not exist.
E_RLWAI Wait state is forcibly cleared (rel_wai accepted during wait state).
E_TMOUT Failure during polling.
E_CTX Context error (executed from a task-independent portion or when dispatch is

disabled)

Description: The wai_sem system call acquires one resource from the semaphore specified by semid.
If a resource exists, that is, the semaphore counter = 1 or greater, the counter is decremented by 1
and the system call is terminated immediately. This means that a resource has been acquired, so
that the task continues executing. If no resource exists, i.e., the semaphore counter = 0, the task is
removed from the ready queue and placed in a semaphore queue. This task enters a wait state. If the
semaphore counter becomes 1 or greater and there is no other task at the top of the queue waiting for
the same semaphore, the semaphore counter is decremented and the task is freed from the wait state.
The task is placed back in the ready queue at the last position of the task queue having the same
priority. If the task has been in WAIT-SUSPEND state, it enters SUSPEND state.
The preq_sem system call is a polling version of wai_sem and does not have a function to enter a
wait state. If a resource has been acquired, it functions the same way as wai_sem. If it cannot
acquire any resources, it returns error code E_TMOUT.

Note: Although, by default, up to eight semaphores can be used, it can be customized up to 255
semaphores (semaphore ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)
The initial value and maximum value of a semaphore are set to 1 by default. They can be
customized up to 255. However, these values must have the same value.

Signal Semaphore sig_sem

Format: ER sig_sem(ID semid);

Parameter: ID semid Semaphore ID number

Return values: E_OK Terminated normally
E_ID Illegal ID number (semid is illegal or cannot be used)
E_NOEXS Specified semaphore does not exist.
E_QOVR Semaphore count exceeds the maximum value.

Description: This system call returns one resource to the semaphore specified by semid.
If there are no tasks waiting for the semaphore, the number of resources (semaphore counter) is
incremented by 1. If there are tasks waiting for the semaphore, the number of resources is left
unchanged so as to ensure that the task at the top of the queue will be assigned a resource. The task
assigned a resource is removed from the semaphore queue, placed in READY state, and returned to
the ready queue. If the task has been in WAIT-SUSPEND state, it enters SUSPEND state.

Note: Although, by default, up to eight semaphores can be used, it can be customized up to 255
semaphores (semaphore ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)
The initial value and maximum value of a semaphore are set to 1 by default. They can be
customized up to 255. However, these values must be a same value.

3 SYSTEM CALL REFERENCE

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL26

Receive Message from Mailbox rcv_msg
Poll and Receive Message from Mailbox prcv_msg

Format: ER rcv_msg(T_MSG **ppk_msg, ID mbxid);

ER prcv_msg(T_MSG **ppk_msg, ID mbxid);

Parameters: T_MSG **ppk_msg Pointer to pointer to message
ID mbxid Mailbox ID number

Return values: E_OK Terminated normally
E_ID Illegal ID number (mbxid is illegal or cannot be used)
E_NOEXS Specified mailbox does not exist.
E_RLWAI Wait state is forcibly cleared (rel_wai accepted during wait state).
E_TMOUT Failure during polling.
E_CTX Context error (executed from a task-independent portion or when dispatch

is disabled)

Description: This system call receives a message from the mailbox specified by mbxid.
If the message box contains messages, the pointer value that indicates the position of the first
message is set in **ppk_msg and the system call is terminated immediately. This means that the
message has been received, so the task continues executing.
If the message box does not contain a message, the task is removed from the ready queue and
placed in the message queue. The task then enters a wait state. If a message is sent along and there is
no other task at the top of the queue waiting for the same message, the pointer that indicates the
position of the message is set in **ppk_msg and the task is freed from the wait state. The task is
placed back in the ready queue at the last position of the task queue having the same priority. If the
task has been in WAIT-SUSPEND state, it enters SUSPEND state.
The prcv_msg system call is a polling version of rcv_msg and does not have a function to enter a
wait state. If a message is successfully received, it functions the same way as rcv_msg. If it cannot
receive a message, it returns error code E_TMOUT.

Note: Although, by default, up to eight mailboxes can be used, it can be customized up to 255 mailboxes
(mailbox ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)

Send Message to Mailbox snd_msg

Format: ER snd_msg(ID mbxid, T_MSG *pk_msg);

Parameters: ID mbxid Mailbox ID number
T_MSG *pk_msg Pointer to message

Return values: E_OK Terminated normally
E_ID Illegal ID number (mbxid is illegal or cannot be used)
E_NOEXS Specified mailbox does not exist.
E_PAR Parameter error (value that cannot be used by pk_msg)

Description: This system call sends a message to the mailbox specified by mbxid.
If there are tasks waiting for the message, the message is sent to the task at the first position. This
task is removed from the message queue, becomes READY, and is placed back into the ready queue.
If the task has been in WAIT-SUSPEND state, it enters SUSPEND state.
If there are no tasks waiting for the message, the message is placed in a message box queue,
waiting for a receive request. Note that it is the pointer *pk_msg that is registered in the queue, and
not the body of the message.

Note: The message must be initialized before it can be used. Initialize pk_msg->pNxt to 0 before you
start sending.
Although, by default, up to eight mailboxes can be used, it can be customized up to 255 mailboxes
(mailbox ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)

3 SYSTEM CALL REFERENCE

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 27

Message structure:

The message structure T_MSG is defined in "itron.h" as follows:
typedef struct t_msg {

 struct t_msg* pNxt; ... Message header

 VB msgcont[10]; ... Message body

} T_MSG;

A message consists of a header (first 4 bytes) and a message body.
To expand a message body into 10 bytes or more, define as follows:
Example:
VB msg_buf[25];

T_MSG* pk_msg;

pk_msg = (T_MSG*)msg_buf;

3 SYSTEM CALL REFERENCE

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL28

Wait for Event Flag wai_flg
Wait for Event Flag (Polling) pol_flg

Format: ER wai_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

ER pol_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

Parameters: UINT *p_flgptn Pointer to flag pattern
ID flgid Event flag ID number
UINT waiptn Flag wait bit pattern
UINT wfmode Flag wait mode and whether or not cleared

Return values: E_OK Terminated normally
E_ID Illegal ID number (flgid is illegal or cannot be used)
E_NOEXS Specified flag does not exist.
E_PAR Wait pattern (waiptn) is 0 or wfmode specification is illegal.
E_OBJ Object status is invalid. (Multiple tasks waiting for event flag of TA_WSGL

attribute)
E_RLWAI Wait state is forcibly cleared (rel_wai accepted during wait state).
E_TMOUT Failure during polling.
E_CTX Context error (executed from a task-independent portion or when dispatch is

disabled)

Description: This system call waits until the event flag specified by flgid is set to a specified state.
Use waitptn and wfmode to set the conditions under which you want to exit a wait state. For
wfmode, one of the following four conditions can be set:

1. TWF_ANDW AND condition
 Wait until all of the bits that have been set to 1 by waiptn are set.

2. TWF_ANDW | TWF_CLR AND condition and event flag clear
 In addition to the TWF_ANDW condition, the event flag is
cleared (all bits to 0) when the condition is met.

3. TWF_ORW OR condition
Wait until one of the bits that have been set to 1 by waiptn is set.

4. TWF_ORW | TWF_CLR OR condition and event flag clear
In addition to the TWF_ORW condition, the event flag is cleared
(all bits to 0) when the condition is met.

If the condition for exiting a wait state has already been met when this system call is issued, the task
continues executing without entering a wait state.
If the condition for exiting a wait state has not been met, the task is removed from the ready queue
and placed in a wait queue. This task is kept waiting until the wait clearing condition is met. When
the wait clearing condition is met, the task waiting for the relevant event flag is freed from wait state.
The task is placed back in the ready queue at the last position of the task queue that has the same
priority. If the task has been in WAIT-SUSPEND state, it enters SUSPEND state.

The event flag, that existed when the wait clearing condition was met, is returned to the pointer
*p_flgptn. Even if you specify TWF_CLR, the bit pattern that existed before being cleared when
the AND or OR condition was met is returned.

The pol_flg system call is a polling version of wai_flg and does not have a function to enter a wait
state. If the wait clearing condition was met, it functions the same way as wai_flg. If the condition
was not met, it returns error code E_TMOUT.

Note: Although, by default, up to eight event flags can be used, it can be customized up to 255 event flags
(event flag ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)
The event flags in ROS33 are one byte long (8 bits).
ROS33 does not allow multiple tasks to wait for the same event flag.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 29

Set Event Flag set_flg

Format: ER set_flg(ID flgid, UINT setptn);

Parameters: ID flgid Event flag ID number
UINT setptn Bit pattern to be set

Return values: E_OK Terminated normally
E_ID Illegal ID number (flgid is illegal or cannot be used)
E_NOEXS Specified flag does not exist.

Description: This system call sets the bits specified by setptn of the event flag. This event flag is specified by
flgid. This setting is made by a logical OR, so that the bits set to 1 by setptn are set and those set to
0 do not change their state. If at this time there is a task waiting for the flag, the wait pattern and
wait condition are checked. The task is removed from the flag wait queue and returned to the ready
queue if the wait condition is met. If any task was previously in WAIT-SUSPEND state, it enters
SUSPEND state.

Note: The event flags in ROS33 are one byte long (8 bits).
ROS33 does not allow multiple tasks to wait for the same event flag.

Clear Event Flag clr_flg

Format: ER clr_flg(ID flgid, UINT clrptn);

Parameters: ID flgid Event flag ID number
UINT clrptn Bit pattern to clear

Return values: E_OK Terminated normally
E_ID Illegal ID number (flgid is illegal or cannot be used)
E_NOEXS Specified flag does not exist.

Description: This system call clears the bits specified by clrptn of the event flag. This event flag is specified by
flgid. This clearing is made by a logical AND, so that the bits set to 0 by clrptn are cleared and
those set to 1 do not change state. The clr_flg system call does not dispatch the task even if the wait
condition is met.

Note: The event flags in ROS33 are one byte long (8 bits).
ROS33 does not allow multiple tasks to wait for the same event flag.

3 SYSTEM CALL REFERENCE

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL30

3.4.4 System Calls of System Management Functions

Get Version Information get_ver

Format: ER get_ver(T_VER *pk_ver);

Parameter: T_VER *pk_ver Beginning address of packet that returns version information

Return values: E_OK Terminated normally
E_PAR Parameter error (Packet address for return parameter cannot be used)

Description: This system call returns the OS version of the ITRON specification currently being executed.
The following shows the contents of pk_ver:
maker = 0x0000; Manufacturer's code
id = 0x0001; ROS33 type number
spver = 0x5302; µITRON version number (ver 3.02)
prver = 0x0000; ROS33 version number (will be changed by an update)
prno[0] = 0x0000; Unused
prno[1] = 0x0000; Unused
prno[2] = 0x0000; Unused
prno[3] = 0x0000; Unused
cpu = 0x0000; CPU information
var = 0x8000; Variation (level S)

3 SYSTEM CALL REFERENCE

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 31

3.4.5 System Calls of Time Management Functions
When using the system calls below, make sure a timer handler is provided in your user program. (Refer to Section
2.3, "Creating an Application Program".)

Set System Clock set_tim

Format: ER set_tim(SYSTIME *pk_tim);

Parameter: SYSTIME *pk_tim Packet address indicating the current time

Return values: E_OK Terminated normally
E_PAR Parameter error (pk_tim or the set time is illegal)

Description: This system call sets the system clock to the value specified by systim.
The system clock is 48 bits long, and the reference time is 1 ms.

Get System Clock get_tim

Format: ER get_tim(SYSTIME *pk_tim);

Parameter: SYSTIME *pk_tim Packet address that returns the current time

Return values: E_OK Terminated normally
E_PAR Parameter error (pk_tim is illegal)

Description: This system call returns the current system clock value to pk_tim.

Delay Task dly_tsk

Format: ER dly_tsk(DLYTIME dlytim);

Parameter: DLYTIME dlytim Delay time (in ms)

Return values: E_OK Terminated normally
E_PAR Parameter error (dlytim < 0)
E_CTX Context error (executed from a task-independent portion or when dispatch

is disabled)
E_RLWAI Wait state is forcibly cleared (rel_wai accepted during wait state).

Description: This system call causes the issuing task itself to temporarily stop executing and enter a wait state.
Use dlytim to specify how long you want the task to stop executing. Specify this time in units of 1
ms. If the specified time elapses, the task is returned to the ready queue. If the task has been placed
in WAIT-SUSPEND state while waiting for the time to expire, it enters SUSPEND state.
You can use rel_wai to forcibly clear the state while waiting for the time to expire.

3 SYSTEM CALL REFERENCE

EPSON E0C33 FAMILY ROS33 REALTIME OS MANUAL32

3.4.6 System Calls of Interrupt Management Functions

Return from Interrupt Handler ret_int

Format: void ret_int(void);

Parameter: None

Return value: None

Description: This system call terminates the interrupt handler. Even if a dispatch condition was met by a system
call that was issued in the interrupt handler, dispatch is left pending until the interrupt handler is
terminated by ret_int. This dispatch request is processed collectively upon return from the interrupt
handler as dictated by ret_int.
Because the OS does not intervene when the interrupt handler starts up, operations to save and
restore registers, etc., need to be performed by the interrupt handler. (Refer to Section 2.3,
"Creating an Application Program".)

Lock CPU loc_cpu

Format: ER loc_cpu(void);

Parameter: None

Return values: E_OK Terminated normally
E_CTX Context error (issued from a task-independent portion)

Description: This system call disables external interrupts and task dispatches.
Once this system call is made, the issuing task itself will never be changed from RUN state to
READY state, even if some other task with higher priority becomes READY. The task is also
disabled from entering WAIT or DORMANT state. If an external interrupt is requested during this
time, the corresponding interrupt handler is initiated only when the task is freed from this disable
state.
To reenable interrupt and dispatch, use the unl_cpu system call. The dispatch disable state set by
loc_cpu cannot be freed by ena_dsp.
If loc_cpu is issued when the task is disabled for dispatches by dis_dsp, the task is disabled for
interrupts as well. In this case, too, use unl_cpu to exit the disabled state.

Note: Changing the IE flag by directly accessing the CPU's PSR is prohibited.

Unlock CPU unl_cpu

Format: ER unl_cpu(void);

Parameter: None

Return values: E_OK Terminated normally
E_CTX Context error (issued from a task-independent portion)

Description: This system call reenables external interrupts and task dispatches. This system call can be used to
clear the disabled state set by either loc_cpu or dis_dsp.

Note: Changing the IE flag by directly accessing the CPU's PSR is prohibited.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY ROS33 REALTIME OS MANUAL EPSON 33

3.4.7 Implementation-Dependent System Calls

Initialize Interrupt Handler Value ent_int

Format: void ent_int(void);

Parameter: None

Return value: None

Description: This system call increments the variable ubIntNest, which is used to examine interrupt nesting
before starting the interrupt handler. Before issuing this system call, be sure to save registers at the
beginning of the interrupt handler.

Create Task vcre_tsk

Format: ER vcre_tsk(ID tskid, FP task, PRI itskpri, UW istkadr);

Parameters: ID tskid Task ID number
FP task Task startup address
PRI itskpri Priority at task startup (1 to 8, the smaller the value, the higher the priority)
UW istkadr Initial stack address

Return value: E_OK Terminated normally

Description: This system call defines a task that takes on the task ID specified by tskid and has the initial priority
specified by itskpri. You must allocate a sufficient size of memory for the stack used by each task.
Use istkadr to specify the initial stack address.
The task thus defined is in DORMANT state.
After starting the task you can change its priority. However, once the task enters DORMANT state,
its priority is restored to the one set here.

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Muenchen, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
2.4 Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-Dong
Youngdeungpo-Ku, Seoul, 150-010, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings .

ELECTRONIC DEVICES MARKETING DIVISION

■ Electronic devices information on Epson WWW server

http://www.epson.co.jp/device/
Issue FEBRUARY 1999, Printed in Japan M A

	 刀伀匀㌀㌀ 倀愀挀欀愀最攀
	⸀ 䘀攀愀琀甀爀攀猀
	⸀㈀ 刀伀匀㌀㌀ 倀愀挀欀愀最攀 䌀漀洀瀀漀渀攀渀琀猀
	⸀㌀ 䤀渀猀琀愀氀氀椀渀最 刀伀匀㌀㌀

	㈀ 倀爀漀最爀愀洀洀椀渀最
	㈀⸀ 伀甀琀氀椀渀攀 漀昀 甀䤀吀刀伀一 愀渀搀 刀伀匀㌀㌀
	䘀甀渀挀琀椀漀渀愀氀 挀氀愀猀猀椀昀椀挀愀琀椀漀渀
	吀愀猀欀猀
	吀愀猀欀ⴀ椀渀搀攀瀀攀渀搀攀渀琀 瀀漀爀琀椀漀渀
	䤀渀琀攀爀爀甀瀀琀

	㈀⸀㈀ 䰀椀猀琀 漀昀 匀礀猀琀攀洀 䌀愀氀氀猀
	㈀⸀㌀ 䌀爀攀愀琀椀渀最 愀渀 䄀瀀瀀氀椀挀愀琀椀漀渀 倀爀漀最爀愀洀
	刀甀氀攀猀 昀漀爀 洀愀椀渀 昀甀渀挀琀椀漀渀
	吀愀猀欀
	䤀搀氀攀 琀愀猀欀
	匀琀愀挀欀
	䤀渀椀琀椀愀氀椀稀椀渀最 琀栀攀 搀椀猀瀀愀琀挀栀攀爀
	䤀渀琀攀爀爀甀瀀琀 栀愀渀搀氀攀爀
	吀椀洀攀爀 栀愀渀搀氀攀爀
	唀猀愀最攀 攀砀愀洀瀀氀攀 漀昀 愀 洀愀椀氀戀漀砀
	唀猀愀最攀 攀砀愀洀瀀氀攀 漀昀 愀 猀攀洀愀瀀栀漀爀攀
	唀猀愀最攀 攀砀愀洀瀀氀攀 漀昀 愀渀 攀瘀攀渀琀 昀氀愀最
	䈀甀椀氀搀椀渀最 愀渀 愀瀀瀀氀椀挀愀琀椀漀渀 瀀爀漀最爀愀洀
	倀爀攀挀愀甀琀椀漀渀猀

	㈀⸀㐀 䌀甀猀琀漀洀椀稀椀渀最 刀伀匀㌀㌀
	䴀攀琀栀漀搀 昀漀爀 挀栀愀渀最椀渀最 爀攀猀漀甀爀挀攀猀
	䌀漀洀瀀椀氀攀 漀瀀琀椀漀渀猀 愀渀搀 爀攀挀漀洀瀀椀氀愀琀椀漀渀

	㌀ 匀礀猀琀攀洀 䌀愀氀氀 刀攀昀攀爀攀渀挀攀
	㌀⸀ 䰀椀猀琀 漀昀 匀礀猀琀攀洀 䌀愀氀氀猀
	㌀⸀㈀ 䰀椀猀琀 漀昀 䐀愀琀愀 吀礀瀀攀猀
	㌀⸀㌀ 䰀椀猀琀 漀昀 䔀爀爀漀爀 䌀漀搀攀猀
	㌀⸀㐀 䐀攀琀愀椀氀猀 漀昀 匀礀猀琀攀洀 䌀愀氀氀猀
	㌀⸀㐀⸀ 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 吀愀猀欀 䴀愀渀愀最攀洀攀渀琀 䘀甀渀挀琀椀漀渀猀
	䐀椀猀愀戀氀攀 䐀椀猀瀀愀琀挀栀 㰀搀椀猀开搀猀瀀㸀
	䔀渀愀戀氀攀 䐀椀猀瀀愀琀挀栀 㰀攀渀愀开搀猀瀀㸀
	匀琀愀爀琀 吀愀猀欀 㰀猀琀愀开琀猀欀㸀
	䔀砀椀琀 䤀猀猀甀椀渀最 吀愀猀欀 㰀攀砀琀开琀猀欀㸀
	吀攀爀洀椀渀愀琀攀 伀琀栀攀爀 吀愀猀欀 㰀琀攀爀开琀猀欀㸀
	䌀栀愀渀最攀 吀愀猀欀 倀爀椀漀爀椀琀礀 㰀挀栀最开瀀爀椀㸀
	刀漀琀愀琀攀 吀愀猀欀猀 漀渀 琀栀攀 刀攀愀搀礀 儀甀攀甀攀 㰀爀漀琀开爀搀焀㸀
	刀攀氀攀愀猀攀 圀愀椀琀 漀昀 伀琀栀攀爀 吀愀猀欀 㰀爀攀氀开眀愀椀㸀
	䜀攀琀 吀愀猀欀 䤀搀攀渀琀椀昀椀攀爀 㰀最攀琀开琀椀搀㸀

	㌀⸀㐀⸀㈀ 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 吀愀猀欀ⴀ䐀攀瀀攀渀搀攀渀琀 匀礀渀挀栀爀漀渀椀稀愀琀椀漀渀 䘀甀渀挀琀椀漀渀猀
	匀氀攀攀瀀 吀愀猀欀 㰀猀氀瀀开琀猀欀㸀
	圀愀欀攀 唀瀀 伀琀栀攀爀 吀愀猀欀 㰀眀甀瀀开琀猀欀㸀
	匀甀猀瀀攀渀搀 伀琀栀攀爀 吀愀猀欀 㰀猀甀猀开琀猀欀㸀
	刀攀猀甀洀攀 匀甀猀瀀攀渀搀攀搀 吀愀猀欀 㰀爀猀洀开琀猀欀㸀
	䌀愀渀挀攀氀 圀愀欀攀 唀瀀 刀攀焀甀攀猀琀 㰀挀愀渀开眀甀瀀㸀

	㌀⸀㐀⸀㌀ 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 匀礀渀挀栀爀漀渀椀稀愀琀椀漀渀 愀渀搀 䌀漀洀洀甀渀椀挀愀琀椀漀渀 䘀甀渀挀琀椀漀渀猀
	圀愀椀琀 漀渀 匀攀洀愀瀀栀漀爀攀 㰀眀愀椀开猀攀洀㸀
	倀漀氀氀 愀渀搀 刀攀焀甀攀猀琀 匀攀洀愀瀀栀漀爀攀 㰀瀀爀攀焀开猀攀洀㸀
	匀椀最渀愀氀 匀攀洀愀瀀栀漀爀攀 㰀猀椀最开猀攀洀㸀
	刀攀挀攀椀瘀攀 䴀攀猀猀愀最攀 昀爀漀洀 䴀愀椀氀戀漀砀 㰀爀挀瘀开洀猀最㸀
	倀漀氀氀 愀渀搀 刀攀挀攀椀瘀攀 䴀攀猀猀愀最攀 昀爀漀洀 䴀愀椀氀戀漀砀 㰀瀀爀挀瘀开洀猀最㸀
	匀攀渀搀 䴀攀猀猀愀最攀 琀漀 䴀愀椀氀戀漀砀 㰀猀渀搀开洀猀最㸀
	圀愀椀琀 昀漀爀 䔀瘀攀渀琀 䘀氀愀最 㰀眀愀椀开昀氀最㸀
	圀愀椀琀 昀漀爀 䔀瘀攀渀琀 䘀氀愀最 ⠀倀漀氀氀椀渀最⤀ 㰀瀀漀氀开昀氀最㸀
	匀攀琀 䔀瘀攀渀琀 䘀氀愀最 㰀猀攀琀开昀氀最㸀
	䌀氀攀愀爀 䔀瘀攀渀琀 䘀氀愀最 㰀挀氀爀开昀氀最㸀

	㌀⸀㐀⸀㐀 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 匀礀猀琀攀洀 䴀愀渀愀最攀洀攀渀琀 䘀甀渀挀琀椀漀渀猀
	䜀攀琀 嘀攀爀猀椀漀渀 䤀渀昀漀爀洀愀琀椀漀渀 㰀最攀琀开瘀攀爀㸀

	㌀⸀㐀⸀㔀 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 吀椀洀攀 䴀愀渀愀最攀洀攀渀琀 䘀甀渀挀琀椀漀渀猀
	匀攀琀 匀礀猀琀攀洀 䌀氀漀挀欀 㰀猀攀琀开琀椀洀㸀
	䜀攀琀 匀礀猀琀攀洀 䌀氀漀挀欀 㰀最攀琀开琀椀洀㸀
	䐀攀氀愀礀 吀愀猀欀 㰀搀氀礀开琀猀欀㸀

	㌀⸀㐀⸀㘀 匀礀猀琀攀洀 䌀愀氀氀猀 漀昀 䤀渀琀攀爀爀甀瀀琀 䴀愀渀愀最攀洀攀渀琀 䘀甀渀挀琀椀漀渀猀
	刀攀琀甀爀渀 昀爀漀洀 䤀渀琀攀爀爀甀瀀琀 䠀愀渀搀氀攀爀 㰀爀攀琀开椀渀琀㸀
	䰀漀挀欀 䌀倀唀 㰀氀漀挀开挀瀀甀㸀
	唀渀氀漀挀欀 䌀倀唀 㰀甀渀氀开挀瀀甀㸀

	㌀⸀㐀⸀㜀 䤀洀瀀氀攀洀攀渀琀愀琀椀漀渀ⴀ䐀攀瀀攀渀搀攀渀琀 匀礀猀琀攀洀 䌀愀氀氀猀
	䤀渀椀琀椀愀氀椀稀攀 䤀渀琀攀爀爀甀瀀琀 䠀愀渀搀氀攀爀 嘀愀氀甀攀 㰀攀渀琀开椀渀琀㸀
	䌀爀攀愀琀攀 吀愀猀欀 㰀瘀挀爀攀开琀猀欀㸀

