
MF1267-01

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER E0C33 Family

VRE33 MIDDLEWARE MANUAL

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

Windows95, Windows98 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 1999 All rights reserved.

CONTENTS

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

i

PREFACE
This manual describes the configuration and functions of Speech Recognition Middleware VRE33 for the E0C33
Family, and explains methods for using this middleware. It is targeted to developers of applications for the E0C33
Family of microcomputers.

CONTENTS

1 Outline of VRE33 Middleware ..1
1.1 Components of the VRE33 Package..1

1.2 Basic Configuration of a Speech Recognition System..2

2 Installation ..4
2.1 Operating Environment..4

2.2 Method of Installation...4

3 Software Development ..6
3.1 Creating Speech Recognition Dictionary Data by Using the VRE33 Tool ...7

3.1.1 Outline of Recognition Dictionary Data..8
3.1.2 Gathering Speech Data to Create a Recognition Dictionary..9
3.1.3 Separating between Words and Processing PCM Data..10
3.1.4 Creating Dictionary Data..11
3.1.5 Evaluating Recognition Performance on a PC ...12
3.1.6 Converting Recognition Dictionary Data into Assembly Source Files............................13

3.2 Creating an Application and Linking to the VRE33 Library...14

4 VRE33 Tool Reference...15
4.1 Outline of VRE33 Tools ..15

4.2 Description of Tools ...17
4.2.1 getpcm.exe ...17
4.2.2 addslnt.exe..18
4.2.3 pcm_norm.exe...19
4.2.4 mpmSlct.exe...20
4.2.5 mpmDict.exe...21
4.2.6 mpmRecog.exe...23
4.2.7 bin2s.exe ...24
4.2.8 Executing from a Batch File..25

5 VRE33 Library Reference..29
5.1 Outline of VRE33 Library..29

5.2 Hardware Resources and Initialization...31

5.3 Top-level Functions..32
5.3.1 Compile Options..32
5.3.2 Defining the Dictionary...32
5.3.3 Structure of Quantified Characteristics Data..33
5.3.4 vreRecognise()...34
5.3.5 vreRecogInit() ...35
5.3.6 vreMakeDictionary() ...36
5.3.7 mpmRecognition()...37

5.4 VRE33 Library Functions...38
5.4.1 Speech-recognition Processing Functions..39
5.4.2 Input (Listen) Functions..42

5.5 Techniques for Speeding Up Processing ..46

5.6 Library Performance ..46

CONTENTS

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

ii

5.7 Combined Use with VOX33 Library...47

5.8 Program Examples...48

5.9 Precautions ...53

Appendix Verifying Operation with DMT33 Boards .. 54
A.1 System Configuration Using DMT33004 ..54

A.1.1 Hardware Configuration...54
A.1.2 Software ..56

A.2 Sample Program Execution Procedure..57

A.3 Making a Program..61

A.4 Entering Speech for Dictionary Data Creation/Evaluation on DMT Boards62
A.4.1 Entering Speech to Create Recognition Dictionary Data Using pcmrec.bat...............62
A.4.2 Evaluating Speech Recognition Using recogXXX.bat ...63

A.5 When Using the DMT33005 Board..64

1 OUTLINE OF VRE33 MIDDLEWARE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

1

1 Outline of VRE33 Middleware
VRE33 is speech-recognition middleware for the E0C33 Family of microcomputers. It is designed to perform
speech-recognition processing on the E0C33 Family chip. Speech recognition functions are supplied as library
functions, which can be used by linking with the target program.
The product also contains PC software tools for creating speech recognition dictionaries and for evaluating speech
recognition.
VRE33 middleware is ideally suited to the development of applications such as voice memos, databanks with voice
functions, PDAs, electronic stationery, and toys.

The main features of the VRE33 middleware are given below:

• Designed for use with the E0C33 Family; incorporates an A/D converter and 16-bit programmable timer.

• Can recognize 20 to 100 words in real-time using Seiko Epson’s exclusive isolated word-recognition technology.

• Supports both specific and nonspecific user-speech recognition.
Nonspecific user-speech recognition:

Creation of a recognition dictionary to recognize the speech of a number of different individuals
Specific user-speech recognition:

Speech recognition for a specific individual, allowing recognition data to be registered directly on
the actual unit

• Supports the Cepstrum and VQCode recognition data formats.
Cepstrum: Speech characteristics are turned into data. Higher recognition accuracy correlates with greater

data volume. Can be used for both specific and nonspecific user-speech recognition.
VQCode: Derived from speech characteristics (Cepstrum) by quantization. The volume of data is about 1/10

that of Cepstrum, but recognition accuracy is lower. Suitable only for specific user-speech
recognition.

CAUTION

• Be sure to fully evaluate the operation of your application system before shipping. Seiko Epson
assumes no responsibility for problems arising from use of this middleware in your commercial products.

• Rights to sell this middleware are owned solely by Seiko Epson. Resale rights are not transferred to any
third party.

• All program files included in this package, except sample programs, are copyrighted by Seiko Epson.
These files may not be reproduced, distributed, modified, or reverse-engineered without the written
consent of Seiko Epson.

1.1 Components of the VRE33 Package
The contents of the VRE33 package are listed below. When unpacking, check to see that all of the following items
are included.

(1) Tool disk (CD-ROM) 1 pc.
(2) E0C33 Family VRE33 Middleware Manual (this manual) 1 pc. each in English and Japanese
(3) Warranty card 1 pc. each in English and Japanese

1 OUTLINE OF VRE33 MIDDLEWARE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

2

1.2 Basic Configuration of a Speech Recognition System

Hardware configuration
Figure 1.2.1 shows the basic hardware configuration of a speech recognition system, including a speech
input/output unit. Such a system is built around the E0C33 chip and incorporates various peripherals, such as
external memory, amplifier, microphone, or speaker (unnecessary for speech recognition only).
Note that the VRE33 library uses one channel of the A/D converter and one channel of the 16-bit
programmable timer incorporated into the E0C33 chip. A certain volume of internal RAM is also used for
high-speed operation.

Note: The VRE33 middleware does not include a speech output unit. Separate speech processing
routines such as VOX33 middleware are required for speech output.

E0C33xxx

E0C33000
Core CPU

16-bit
programmable timerInternal RAM

External RAM External ROM

Bus interface

A/D converter

D/A converter
or 16-bit timer-based

PWM

Microphone
amp Microphone

Speaker
Power
amp

Figure 1.2.1 Hardware Configuration for Speech Input/Output Unit

1 OUTLINE OF VRE33 MIDDLEWARE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

3

Software configuration
The VRE33 library is middleware, positioned between the E0C33 hardware and user applications, performing
hardware control associated with speech input and recognition. By including or linking the top-level functions
supplied as C source files into user applications, you can easily perform speech-recognition processing,
without having to call VRE33 library functions directly from the applications.

User target application

(user's exclusive specifications)

VRE33 library top-level sources

(corrected by user, as necessary)

VRE33 library functions

(used by linking)

Hardware

(A/D and 16-bit programable timer)

Cepstrum, VQCode recognition

dictionary data assembler sources

(created by VRE33 tool)

Figure 1.2.2 Software Configuration for Speech Input/Output Unit

For detailed information on VRE33 library functions and top-level functions, see Section 5, "VRE33 Library
Reference".

VRE33 tools are PC software used to create and evaluate speech recognition dictionary data. When complete,
this data is downloaded to an E0C33 Family chip. All tools are 32-bit applications executable from a DOS
prompt, and will run under Windows 95, Windows NT 4.0, or later Windows versions.
For detailed information on VRE33 tools, see Section 4, "VRE33 Tool Reference".

2 INSTALLATION

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

4

2 Installation
This section describes the operating environment for the VRE33 tools and explains how to install the VRE33
middleware.

2.1 Operating Environment
The following are the minimum requirements for creating and evaluating speech recognition directory data with the
VRE33:

Personal computer
An IBM PC/AT or fully-compatible machine. We recommend a Pentium 90 MHz or higher CPU, and 32 MB
or more of RAM. A CD-ROM is required to install tools from the CD-ROM.

Display
An SVGA (800 × 600) monitor or better. In the Windows Control Panel, choose "Small font" among the display
options.

System software
VRE33 tools run under Microsoft® Windows® 95 or Windows NT® 4.0, or later versions of Windows (English
and Japanese versions).

Other
The "E0C33 Family C Compiler Package" is required for software development.

2.2 Method of Installation
The VRE33 library and VRE33 tools are supplied on CD-ROM. Open the self-extracting file on the CD-ROM
named "vre33vXX.exe" to install the VRE33 library and VRE33 tools in your computer. (The XX in this file name
denotes a version number. For Version 1.0, for example, the file is named "vre33v10.exe".)
Double-click on "vre33vXX.exe" to start installation. The dialog box shown below appears.

Enter the path and folder name under which you want to install
the files in the text box and click on the [Unzip] button. The
specified folder is created and all files are copied into it.
If the specified folder already exists in the specified path and
[Overwrite Files Without Prompting] is checked (turned on),
the files in the folder are overwritten without asking for your
confirmation.

2 INSTALLATION

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

5

The following shows the directories and file configuration after the program files have been copied:

 (root)\
readme.txt Supplementary explanation, etc. (in English)
readmeja.txt Supplementary explanation, etc. (in Japanese)

vretools\ VRE33 tool directory
readme.txt VRE33 tool supplementary explanation, etc. (in English)
readmeja.txt VRE33 tool supplementary explanation, etc. (in Japanese)

bin\ VRE33 tools
mpmRecog.exe Recognition behavior evaluation tool
mpmDict.exe Dictionary creation tool
mpmSlct.exe File list creation tool
bin2s.exe Binary to assembly source conversion tool
getpcm.exe PCM file conversion tool
pcm_norm.exe PCM normalization tool
addslnt.exe Silent data insertion tool

src\ Source directory
 Public tool source file

utility\ Utility directory
DMT board-based PCM sampling file
rec104\ Used for DMT33004 + DMT33AMP + DMT33MON
rec208\ Used for DMT33005 + DMT33AMP + DMT33MON

sample\ Sample directory
Sample speech, batch files, sample dictionary creation data

vrelib\ VRE33 library-related
readme.txt VRE33 library supplementary explanation, etc. (in English)
readmeja.txt VRE33 library supplementary explanation, etc. (in Japanese)

lib\ VRE33 library directory
vre.lib VRE33 library
sl104.lib Input/output library for E0C33A104
sl208.lib Input/output library for E0C33208
memMesa.o, memAsm.o, mpmFt.o, mpmVq.o

Objects retrieved from vre.lib for high-speed operation

include\ Header file directory for VRE33 library functions
vre.h VRE33 header file

src\ Library source directory
vretop.c VRE33 top-level functions
vrecache.c VRE33 internal RAM cache functions

hardsrc\ Hardware dependent source directory
Listen.s Listen.o source (E0C33A104)
LisAD.s LisAD.o source (E0C33A104)
Speak.s Speak.o source (E0C33A104)
SpkDA.s SpkDA.o source (E0C33A104)
Lis208.s Lis208.o source (E0C33208)
Lis208AD.s Lis208AD.o source (E0C33208)
Spk208.s Spk208.o source (E0C33208)
Spk208PW.s Spk208PW.o source (E0C33208)
slintr.def

(Refer to these sources when changing timer A/D or D/A channel ports.)

smpl104\ DMT33004 sample program directory

smpl208\ DMT33005 sample program directory

(For detailed information on the configuration of sample programs and how to use
them, see "readme.txt" or "readmeja.txt" in "vrelib".)

Although you can select a different directory structure and file organization, the discussions in the following pages
will assume that the files have been copied from the CD-ROM according to the directory structure given above.

3 SOFTWARE DEVELOPMENT

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

6

3 Software Development
This section describes how to develop speech-recognition processing software on the E0C33 Family chip. Shown
below is the basic flow of development:

VRE33 library

Create main program
Create speech recognition

dictionary data using
VRE33 tools

Compile

Assemble

Link

Create speech-recognition
source program using

VRE33 top-level functions

Executable object

Figure 3.1 Procedure for Developing E0C33 Speech-recognition Processing Software

1) Using VRE33 tools, create a speech recognition dictionary from PCM data into which speech to be recognized
has been sampled, and convert the created dictionary into an assembly source file.

2) Create a user application. For speech-recognition processing, use the top-level functions provided in the VRE33
library. You can include the source file for the speech recognition dictionary data created in Step1 in the user
application source.

3) Compile and assemble the source program.

4) Link the objects generated in Step 3 with the VRE33 library. This generates an executable object file.

3 SOFTWARE DEVELOPMENT

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

7

3.1 Creating Speech Recognition Dictionary Data by Using the VRE33 Tool
Figure 3.1.1 shows procedures of creating speech recognition dictionary data and VRE33 tool configuration.

Enter speech

Collect speech data required to create a dictionary

Divide by word

Test speech

Convert 10-bit data
into 16-bit PCM file

8 kHz, 16-bit monaural
little-endian format PCM file

Target board

file.pcm16-bit PCM file

file.pcm10-bit PCM file

file.pcm16-bit PCM file

file.pcm16-bit PCM file

file.pcm

file.lst

file.cep

16-bit PCM file

getpcm.exe

Use debugger
to enter speech

Repeat until all word samples
that need to be registered have
been acquired from all appropriate
individuals.

pcmrec.bat

db33.exe

Insert silence of
0.4 seconds or longeraddslnt.exe

Normalizepcm_norm.exe

Create word file list

(1) For nonspecific user-speech recognition

(2) For specific user-speech recognition

mpmSlct.exe

Create dictionary file

Create ".cep/.vqc" data
for test use.

Recognition evaluation

Recognition results

Cepstrum
dictionary file or

or file.vqc

VQCode
dictionary file

mpmDict.exe

Sound editor

DMT33004/33005
DMT33AMP
DMT33MON

Create dictionary file
and convert it into
assembly source

Create dictionary data

Evaluate recognition
result of dictionary
using test speech

Recognition
evaluation on PC

Process
16-bit PCM file

MIC

file.s

Cepstrum dictionary
assembler data

bin2s.exe
Assembly source

conversion

file.s
Assembly
source file

VQCode dictionary
assembler data

Copy into user application source,
or link to the application after assembly.

bin2s.exe

file.vqc
file.cep

file.txt

mpmDict.exe

mpmRecog.exe

Figure 3.1.1 Flowchart for Creating Speech Recognition Dictionary Data

The following provides a mere outline of usage of the VRE33 tools. For additional information, see Section 4,
"VRE33 Tool Reference".
The following explanation assumes that PATH is set to the "vretool\bin\" directory.
Example: DOS>PATH c:\e0c33\vre33\vretool\bin

3 SOFTWARE DEVELOPMENT

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

8

3.1.1 Outline of Recognition Dictionary Data

Nonspecific user-speech recognition and specific user-speech recognition
Consider the recognition of the single phrase, "Good morning." To create a recognition system for a single
individual, the dictionary needs recorded voice data for that individual only. This is referred to as specific
user-speech recognition. In this case, the dictionary is generally created by recording the user’s speech on the
actual product. Since only one data entry is required for this particular phrase, a dictionary for specific user-
speech recognition purpose is created by preparing one data entry for each word or phase to be recognized. The
VRE33 library provides the functions for recording speech and creating a dictionary on the actual machine.
The following is a dictionary structure.
Example:

extern const short goodMorning[]; Recognition data for "good morning"
 : Other recognition data

extern const short goodBye[];

/* dictionary table */

const short *Greet[10] = { When there are a total of 10 data entries
goodMorning, (words or phases)
 :

goodBy

};

General products that come with a built-in dictionary need to be able to recognize the speech of many
(nonspecific) individuals. This is referred to as nonspecific user-speech recognition. In this case, speech
characteristics and speech mannerisms will vary greatly, with sex and age being two primary factors. For this
reason, multiple instances of "good morning" recognition data are created, one for each group with the same
features (e.g. one for adult women, one for boys). In a dictionary for nonspecific user-speech recognition
purpose, one word or phrase consists of multiple data entries. You can improve the recognition rate for any
group by including samples from as many people as possible.
The following is a dictionary structure.
Example:

extern const short goodMorning_women[]; Recognition data 1 for "good morning"
extern const short goodMorning_men[]; Recognition data 2 for "good morning"

 : Other recognition data
extern const short goodBye_girls[];

extern const short goodBye_boys[];

/* dictionary table */

const short *Greet[40] = { When there are a total of 40 data entries
goodMorning_women, (words or phases)
goodMorning_men,

 :

goodBy_girls

goodBy_boys

};

Dictionary data formats (Cepstrum and VQCode)
The VRE33 tools and library support the dictionary data structure of the following two data formats:

Cepstrum
Speech characteristics encoded in 20 bytes per frame (processing unit of speech recognition, 16 ms in the case
of 8K sampling). Provides high accuracy, with correspondingly high data volume. Suitable for both specific
and nonspecific user-speech recognition.

VQCode
Derived from speech characteristics (Cepstrum) by quantization into 2-byte code. Although data volumes are
about 1/10 that of Cepstrum, accuracy is lower. Suitable only for specific user-speech recognition.

3 SOFTWARE DEVELOPMENT

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

9

3.1.2 Gathering Speech Data to Create a Recognition Dictionary
The VRE33 tools create dictionary data from PCM files in the following format:

8 kHz-sampling, 16-bit, little-endian format monaural speech file

For each word and phase to be recognized, record the speech of as many people as possible, preferably 30 people or
more. Prepare a PCM file in the above format. Record speech data for the target age and sex groups of the product. If
you cannot identify a target age or sex, we recommend dividing the target into the following groups and preparing
data for 30 or more people in each group.

1. Adult men and others
Create two recognition data types for words and phrases. The recognition rate will be moderate.

2. Adult men, adult women, boys, and girls
Create four recognition data types for words and phrases. This gives improved recognition rates.

Given below are some precautions regarding the sample gathering environment:

• Use a microphone and microphone amp as similar as possible to the ones used in the actual product.
(Recommended sample gathering tools: DMT33004/33005 + DMT33AMP + DMT33MON)

• Adjust microphone input levels properly, avoiding excessively high or low settings.

• Take measures to avoid picking up electrical noise generated by the microphone, or noise generated by vibrations
and breathing.

• Pay attention to the sample gathering environment. Choose an echo-free and quiet environment, or an environment
similar to the one in which product will be used.

To increase recognition rates, carefully choose the registered words or phrases. Choose words or phrases that are as
simple as possible, then avoid registering similar words or phrases. The following words or phrases tend to generate
high rates of incorrect recognition:

• Words differing in only their beginning syllable(s):
Example: Johnny, Tony, pony, etc.

• Words beginning with the same syllable(s):
Example: Thirteen, thirtieth, thirty,

• Words commonly pronounced differently by different people
Example: Hello, OK, etc.

• Excessively long words, or a phrase consisting of many words

• Words in which the syllables are difficult to demarcate
Example: Johnny, journey, etc.

Make sure that the speech is recorded at normal speed. The permissible range of deviation for speech pace during
recognition is ±20% to 30% of the dictionary data.

When using the DMT33004/33005 + DMT33AMP + DMT33MON to record speech, you can use the batch file
"pcmrec.bat" provided in the "vretools\utility\rec104\" directory (for DMT33004), or "vretools\utility\rec208\"
directory (for DMT33005). This batch file starts debugger db33 to control the DMT boards, allowing you to make
recordings of up to 60 seconds. Record multiple words during this time, then separate them by word in a later
process. For additional information on recording, see Appendix.

Because the PCM file created here consists of 10-bit data, it is converted into a 16-bit PCM file in "pcmrec.bat" with
the VRE33 tool "getpcm.exe".

3 SOFTWARE DEVELOPMENT

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

10

3.1.3 Separating between Words and Processing PCM Data
Demarcate individual words from the sampled speech data (PCM file). Use a general sound editor.

The dictionary data creation tool "mpmDict.exe" determines that a word is finished when a preset period of silence
(by default, 20 packets = 20 × 16 ms = approx. 0.4 seconds) elapses after termination of the speech waveform. To
delimit individual words, add a period of silence after the word (normally 0.4 seconds or longer, or equal to or longer
than the time set by "mpmDict.exe"). This period of silence can also be added with the VRE33 tool "addslnt.exe".
Example: >addslnt hello.pcm hello0.pcm 2560

In this example, "hello0.pcm" is created by adding a period of silence of 2,560 samples (20 packets × 128 samples)
after "hello.pcm".

Because "mpmDict.exe" also has an automatic distinguishing function, PCM files of a single recorded word do not
require delimiting between words using a sound editor. However, automatic delimiting may not always function
properly, due to noise and other factors. (In such cases, "mpmDict.exe" generates the message "Warning: Cannot
process file ...") In this case, while creating data, cut the periods of silence before and after the word (including the
0.4-second period of silence) and turn off the "mpmDict.exe" automatic delimiting function.

After creating a PCM file for each word, adjust the level of each word. Use the VRE33 tool "pcm_norm.exe" (it is
also included among the VOX33 voice compression/expansion tools). The "pcm_norm.exe" tool is used to adjust the
entire amplitude of sound in the PCM file so that its maximum amplitude is corrected to a specified value. The value
is specified as a percent of the maximum value of 16-bit PCM data. By default, this value is set to 90% for use in
voice-compression processing. However, for speech recognition dictionary data, specify 100%.
Example: >pcm_norm -r 100 hello0.pcm hello1.pcm

In this example, maximum amplitude for "hello0.pcm" is adjusted to 100% by the "-r 100" option, and the adjusted
data is written to "hello1.pcm". This adjustment can be processed simultaneously when delimiting words with a
sound editor.

Perform the maximum amplitude processing for all recorded words. Create dictionary data for each word for each
user-voice group. Use "mpmSlct.exe" to create folders and assign file names to allow easy selection of files by word
or by group, using the wildcard (*).
Example:

Group of adult men Words "good morning" Man 1 \men\oha1.pcm
 :
Man 30 \men\oha30.pcm
(All files can be specified by \men\oha*.pcm)

Word "goodnight" Man 1 \men\oya1.pcm
 :
Man 30 \men\oya30.pcm
(All files can be specified by \men\oya*.pcm)

Group of adult women Words "good morning" Woman 1 \women\oha1.pcm
 :
Woman 30 \women\oha30.pcm
(All files can be specified by \women\oha*.pcm)

Word "goodnight" Woman 1 \women\oya1.pcm
 :
Woman 30 \women\oya30.pcm
(All files can be specified by \women\oya*.pcm)

3 SOFTWARE DEVELOPMENT

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

11

3.1.4 Creating Dictionary Data
Use the PCM files prepared for all words in the preceding sections to create dictionary data.

First, using "mpmSlct.exe", create a list of PCM files that comprise one dictionary data entry. A single dictionary
data entry generally refers to data for one word in one user-voice group. Refer to the preceding example. The
dictionary data entry produced from the 30 "good morning" data entries for the group of adult men (\men\oha*.pcm)
constitutes one dictionary data entry. To write these 30 data to a list file, run "mpmSlct.exe", as shown below:
Example: >mpmSlct (path)\men\oha*.pcm > ohaM.lst

The list file created by this example is a text file containing the following:
Example: After the files "oha1.pcm" to "oha30.pcm" have been prepared in the "\men\" directory

>type ohaM.lst

(path)\men\oha1.pcm
(path)\men\oha2.pcm
 :

(path)\men\oha30.pcm

Create this list file for all words for each user-voice group.
Example: "Good morning" for the group of adult men: ohaM.lst

"Good morning" for the group of adult women: ohaW.lst
"Goodnight" for the group of adult men: oyaM.lst
"Goodnight" for the group of adult women: oyaW.lst

Note: The executable "mpmSlct.exe" cannot select files on a network drive that is logically regarded as a
disk partition. To create a list of data files on a network, assign a directory to the network drive, or
copy the files to a local drive.

Run "mpmDict.exe" to create recognition dictionary data.
Example: >mpmDict -f ohaM.lst ohaM.cep (1)

>mpmDict -vqc -f ohaM.lst ohaM.vqc (2)

In example (1), the recognition dictionary data entry "ohaM.cep" for Cepstrum (the default data format) is created
from the files written in "ohaM.lst". In example (2), the recognition dictionary data entry "ohaM.vqc" for VQCode is
created because the -vqc option is specified. Cepstrum is recommended for better recognition rates, but to create
dictionary data that is as compact as possible, create data for VQCode along with one for Cepstrum, then check to see
if it is usable by evaluating its recognition performance on a PC. Perform this processing for all list files.

The "mpmDict.exe" has other options available (e.g. for automatic word delimiting). Depending on the input PCM
files, you may be unable to delimit words (by default, the automatic delimiting function is enabled), in which case
you may need to specify other options or process the source PCM data. For additional information, see Section 4.2.5,
"mpmDict.exe".

3 SOFTWARE DEVELOPMENT

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

12

3.1.5 Evaluating Recognition Performance on a PC
After creation of recognition dictionary data is completed, check to see that it is actually capable of recognizing
speech by running "mpmRecog.exe" on a PC. You can perform this confirmation by preparing data files for
evaluation purpose on a PC, or by entering speech with the DMT33004/33005 + DMT33AMP + DMT33MON
boards. The explanation given here applies to the first method (i.e., preparing data files on a PC). For information on
the second method, see the Appendix.

First, prepare speech data for evaluation (16-bit PCM files). Prepare another recorded data set separate from the one
used to create recognition dictionary data. Try preparing as much data as possible, including expressions not present
in the dictionary. This helps to increase the accuracy of the evaluation. Prepare speech files for each word before
beginning, if possible. There is no need to add period of silence or adjust sound levels.

Next, create a list of the recognition dictionary data created in the preceding sections as a text file. You can use
"mpmSlct.exe" to do this.
Example: >mpmSlct (path1)*.cep > test.dic

>mpmSlct (path1)*.vqc >> test.dic
>mpmSlct (path2)*.cep >> test.dic
 :

Convert the prepared speech data into ".cep" or ".vqc" files with the executable "mpmDict.exe", and run
"mpmRecog.exe" to perform speech recognition.
Example: Evaluating with Cepstrum data created for testing

>mpmDict.exe word1.pcm temp.cep (1)
>mpmRecog text.dic temp.cep result.txt (2)

In (1), Cepstrum data is created from one PCM file for testing. In (2), recognition of "temp.cep" is checked using the
created recognition dictionary data. Evaluations can also be made by entering data not in the Cepstrum or VQCode
format used for the dictionary. Recognition results are output to "result.txt", a file in text format.
Example: Example of recognition results output

001 0x0003c606 ..\dict\thanks.cep

003 0x0012c4d6 ..\dict\hello.cep

002 0x0008c2fe ..\dict\morning.cep

The contents of each line are as follows:
<rank> <distance> <recognition dictionary data file name>

The <rank> is assigned numbers from 001 in order of <distance>, beginning with the smallest.
The <distance> represents the difference in features between the test data and recognition dictionary data. The
smaller the value, the closer the similarity. The above example indicates that the input data was closest to
"thanks.cep".

The range for <distance> within which words are assumed to be identical must be determined after examining the
actual results of evaluation. The library functions include a reject function by which words with distances greater
than a specified value are regarded as not matching.
Use this recognition result to determine whether VQCode is useable in place of Cepstrum. On an actual machine,
recognition can only be performed with one of Cepstrum or VQCode. Note that only Cepstrum can be used for
specific user-speech recognition.

If the recognition rate is poor, take appropriate corrective measures. For example, you can increase the number of
individuals from whom recognition dictionary data is gathered.

3 SOFTWARE DEVELOPMENT

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

13

3.1.6 Converting Recognition Dictionary Data into Assembly Source Files
Once you finish the recognition evaluation, convert the completed recognition dictionary data into an assembly
source file for the E0C33 assembler for inclusion in or linking to your application. To perform this conversion, use
"bin2s.exe".
Example: >bin2s thanks.cep > dict.s (using the DOS redirect function)

>bin2s morning.cep >> dict.s

In this example, "thanks.cep" is converted into the assembly source "dict.s", then the data derived by conversion
from "morning.cep" is appended to "dict.s". Each converted data entry has the input file names "thanks" and
"morning" added as global symbols. (You can change symbol names using the "-l symbol" option of "bin2s.exe".)

Example: Contents of "dict.s"
.global thanks

.align 2

thanks:

.byte 0x33 0x20 0x24 0x00 0xa9 0x09 0xe5 0x03

.byte 0x9c 0xfe 0x95 0xfe 0xf7 0xfe 0x3d 0x01

.byte 0xe6 0x01 0x0b 0xff 0xa7 0x00 0x14 0x00

 :

.byte 0xf8 0xff 0x3a 0x00

; total 724 bytes data

.global morning

.align 2

morning:

.byte 0x33 0x20 0x20 0x00 0x14 0x0a 0x1f 0x07

.byte 0x67 0x02 0x15 0x00 0x57 0xfe 0x3d 0xff

.byte 0xa6 0xff 0x20 0x00 0xf8 0xff 0x47 0x00

 :

.byte 0x22 0x00 0x9f 0xff

; total 644 bytes data

3 SOFTWARE DEVELOPMENT

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

14

3.2 Creating an Application and Linking to the VRE33 Library
You can implement speech recognition on the E0C33 chip by calls to VRE33 library functions. Note that in addition
to low-level library objects, this product contains source code for top-level functions created in C. This allows you
to create speech processing routines simply by including the functions in your program. For detailed information on
top-level and VRE33 library functions, see Section 5, "VRE33 Library Reference". Sample programs are provided
in the "vrelib\samlxxx\" directory for reference.

You must also include the source of the created recognition dictionary data in your program, or link it along with the
VRE33 library after assembly.

When creating and linking a program, watch the following:

(1) VRE33 library functions use the CPU’s internal R8 register. When linking VRE33 library including the top-
level functions (vretop.c), you cannot use the -gp option of instruction extender ext33 (optimization by global
pointer/R8).

(2) Make sure that all of the BSS sections used by VRE33 library functions are mapped to internal RAM, and use
the internal RAM for the stack.

(3) When mapping VRE33 library program code to external memory areas, reduce the number of wait states
incurred when accessing that area to one or none, as often as possible. Make sure to use 16-bit wide memory.

Information on running sample programs using the DMT33004 and DMT33AMP boards are provided for reference
in the Appendix.

4 VRE33 TOOL REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

15

4 VRE33 Tool Reference
This section describes the functions of each VRE33 tool and how to use them.

4.1 Outline of VRE33 Tools
VRE33 tools are PC software used to create and evaluate speech recognition dictionary data, which when completed
is downloaded to a E0C33 Family chip. All tools are 32-bit applications executable from a DOS prompt, and will
run under Windows 95, Windows NT 4.0, or later Windows versions. (For detailed information on operating
environments, see Section 2.1, "Operating Environment. ")
All VRE33 tools and related files are located in the "vretool" folder (directory). The configuration of VRE33 tools
and the procedure for creating recognition dictionary data are shown in Figure 4.1.1.

Enter speech

Collect speech data required to create a dictionary

Divide by word

Test speech

Convert 10-bit data
into 16-bit PCM file

8 kHz, 16-bit monaural
little-endian format PCM file

Target board

file.pcm16-bit PCM file

file.pcm10-bit PCM file

file.pcm16-bit PCM file

file.pcm16-bit PCM file

file.pcm

file.lst

file.cep

16-bit PCM file

getpcm.exe

Use debugger
to enter speech

Repeat until all word samples
that need to be registered have
been acquired from all appropriate
individuals.

pcmrec.bat

db33.exe

Insert silence of
0.4 seconds or longeraddslnt.exe

Normalizepcm_norm.exe

Create word file list

(1) For nonspecific user-speech recognition

(2) For specific user-speech recognition

mpmSlct.exe

Create dictionary file

Create ".cep/.vqc" data
for test use.

Recognition evaluation

Recognition results

Cepstrum
dictionary file or

or file.vqc

VQCode
dictionary file

mpmDict.exe

Sound editor

DMT33004/33005
DMT33AMP
DMT33MON

Create dictionary file
and convert it into
assembly source

Create dictionary data

Evaluate recognition
result of dictionary
using test speech

Recognition
evaluation on PC

Process
16-bit PCM file

MIC

file.s

Cepstrum dictionary
assembler data

bin2s.exe
Assembly source

conversion

file.s
Assembly
source file

VQCode dictionary
assembler data

Copy into user application source,
or link to the application after assembly.

bin2s.exe

file.vqc
file.cep

file.txt

mpmDict.exe

mpmRecog.exe

Figure 4.1.1 Flowchart for Creating Speech Recognition Directory Data

Note: Unless otherwise specified, VRE33 tools handle PCM files in 8-kHz, signed 16-bit, little-endian row
data format.

4 VRE33 TOOL REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

16

The recognition dictionary data creation tools consist of a series of programs for processing speech files (pcm),
converting them into dictionary data, and evaluations. They are also used to generate assembly source files for the
E0C33. All tools are 32-bit applications executable from a DOS prompt, and can also be used from a batch file. The
tools are listed in Table 4.1.1.

Table 4.1.1 List of Speech Recognition Directory Data Creation Tools
Tool Description

mpmDict.exe Creates recognition dictionary data from 16-bit PCM files.
mpmRecog.exe Tool for evaluating recognition performance using created recognition dictionary data.
mpmSlct.exe Creates a list of files to be entered into "mpmDict" and "mpmRecog".
bin2s.exe Converts recognition dictionary data files into assembly source files.
getpcm.exe * Converts 10-bit PCM data sampled on DMT boards (E0C33 chip) into 16-bit PCM files.
pcm_norm.exe Normalizes 16-bit PCM data by adjusting it to a specified maximum amplitude.
addslnt.exe Appends silent data of a specified length to the 16-bit PCM file.

∗ The source code for this tool is located in the "vretools\src\" directory. You can use it when developing
applications with VRE33.

4 VRE33 TOOL REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

17

4.2 Description of Tools
This section describes the function of each VRE33 tool and explains how each is used.
Start each tool from the DOS prompt. Usage is displayed when you start a tool without specifying command line
parameters. In the command line explanation, [] denotes optional parameters (may be omitted). Parameters in italic
indicate an appropriate value or file name.

Note: The file names that may be specified in each tool are subject to the following limitations:
• File name: Up to 32 characters
• Valid characters: a to z, A to Z, 0 to 9, _, .

4.2.1 getpcm.exe
Function: Converts 10-bit PCM data sampled on the E0C33 chip (DMT33xxx board) to 16-bit PCM files by

shifting the data 6 bits. You can change the number of shifted bits by including an optional parameter.

Usage: DOS>getpcm [-h or -?] [-s X] input.pcm output.pcm↵

Parameters: input.pcm Input file name (VOX33 10-bit PCM file)

output.pcm Output file name (16-bit PCM file)

-h or -? Display Usage (optional).

-s X Shift the input data left by X bits (optional).
The effective value of X is 0 to 6. If this option is omitted, data is shifted left 6 bits.

Example: DOS>getpcm word1_10.pcm word1_16.pcm

Reference: Located in the "vretools\utility\rec104\" directory (for DMT33004) or "vretools\utility\rec208\"
directory (for DMT33005) is the batch file "pcmrec.bat", used to create 16-bit PCM files with speech
data entered with the DMT33004/33005 + DMT33AMP + DMT33MON.

4 VRE33 TOOL REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

18

4.2.2 addslnt.exe
Function: Adds data for silence of a specified length to the input PCM file after its last line.

Usage: DOS>addslnt infile.pcm outfile.pcm [NumOfSilent]↵

Parameters: infile.pcm Input file name (16-bit PCM file)

outfile.pcm Output file name (16-bit PCM file)

NumOfSilent Number of silent data items (samples) (optional)
If this option is unspecified, the default value of 128 samples (equivalent to one
packet) is assumed.

Example: DOS>addslnt hello.pcm hello0.pcm 2560

Creates "hello0.pcm" by adding data for silence of 2560 samples
(equivalent to 20 packets) after "hello.pcm".

Reference: The recognition dictionary data creation tool "mpmDict.exe" determines that a word is finished
when it encounters data for silence of a given length. By default, this length is 20 packets equivalent,
but can be changed by specifying an optional parameter. For PCM files that have almost silence after
words, add data for silence of 2,560 samples (20 packets) in length.

4 VRE33 TOOL REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

19

4.2.3 pcm_norm.exe
Function: Changes the amplitude of speech data in 16-bit PCM files to a specified magnitude. Values that can

be represented by signed 16 bits range from -32768 (SHORT_MIN) to +32767 (SHORT_MAX). In
this program, as you convert the amplitude of the input speech, specify the maximum amplitude of
the input speech data by a percent relative to SHORT_MAX.

Usage: DOS>pcm_norm [-r XXX] [-c] input.pcm output.pcm↵

Parameters: input.pcm Input file name (16-bit PCM file)

output.pcm Output file name (16-bit PCM file)

-r XXX Coefficient of normalization (optional)
Specify the amplitude of 16-bit PCM speech data by a percent relative to the
maximum width of the amplitude. For XXX, enter a positive value ranging from 0.0 to
100.0.
When creating recognition dictionary data, specify 100.
If this option is omitted, the maximum amplitude of output sound is set to 90%.
Always insert a space between -r and XXX.

-c Read the "amp.rto" file (optional)
The "amp.rto" file in the current directory is read in as the program adjusts the
amplitude. This option is used during VOX compression, and is not used when
creating recognition dictionary data.

Example: DOS>pcm_norm -r 100 input.pcm output.pcm Change to 100%

4 VRE33 TOOL REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

20

4.2.4 mpmSlct.exe
Function: By specifying a relative path and a file name including the wildcard, this program outputs a list of

relevant files located in the specified directory and the subdirectories below it to the standard output
device. Use this program to create a list of PCM files necessary to create dictionary data or a list of
dictionary data required for recognition evaluation.

Usage: DOS>mpmSlct [-a] path&filename [> outfile]↵

Parameters: path&filename Relative path and file name (wildcard "*" can be used)

outfile Output file name (text file)
To output a list to a file, use the DOS redirect function.

-a Absolute path specification (optional)
The absolute path is added to the searched file names when they are listed.
If this option is omitted, a relative path is added.

Example: DOS>mpmSlct a*.pcm

Displays a list of PCM files beginning with "a" present in the current directory and that directory’s
subdirectories.
a1.pcm

a2.pcm

ab.pcm

 :

DOS>mpmSlct ..*.cep > cep.lst

Displays a list of files with the extension ".cep" present in the root directory and the subdirectories of
the root directory, and writes the list to the file "cep.lst".
DOS>Type cep.lst

..\dict\word1.cep

..\dict\word2.cep

..\dict\word3.cep

 :

Note: The executable "mpmSlct.exe" cannot select files on a network drive that is logically regarded as a
disk partition. To create a list of data files on a network, assign a directory to the network drive, or
copy the files to a local drive.

4 VRE33 TOOL REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

21

4.2.5 mpmDict.exe
Function: Accepts 16-bit PCM data entered for each word to create recognition dictionary data.

Usage: DOS>mpmDict [options] [infile.pcm/cep] outfile.cep/vqc↵

Parameters: infile.pcm/cep Input file name
Specify when converting a single file. When creating Cepstrum dictionary data,
specify a 16-bit PCM file (.pcm). For VQCode (when -vqc is specified), both
Cepstrum dictionary data files (.cep) and 16-bit PCM files (.pcm) can be specified.

outfile.cep/vqc Output file name (recognition dictionary data file)
".cep" = Cepstrum data file; ".vqc" = VQCode data file.
PCM files are output when the -o option is specified.

[options] The following options can be specified (may be omitted). When specifying
multiple options, separate each option with one or more spaces.

-f filename Enters the text file that contains a list of PCM files during creation of dictionary
data. When one phrase or expression has been gathered from multiple people, use
this option to enter a list of those files. The file list is in the format shown below,
with both relative and absolute paths accepted.
(path\)file1.pcm
(path\)file2.pcm
 :

(path\)fileN.pcm

This file can be created using "mpmSlct.exe".

-vqc Creates recognition dictionary data for VQCode. Can only be used for specific
user-speech recognition.

-cep Creates recognition dictionary data for Cepstrum. Can be omitted, since Cepstrum
is selected by default.

-a Turns off the automatic word delimiting function. If this option is omitted, the
function is turned on, the default value.

-o Outputs automatically delimited data as PCM files. This option is effective in
cases where you enter one PCM file (-f not specified). When this option is
specified, the specified output file name is applied to the PCM file to be output,
and a PCM file is created in place of a dictionary data file.

-m val Automatic delimiting option 1 (default value = 15)
Specify the number of packets (in units of 16 ms) for a waveform section from the
detection point to the point at which you want it to be recognized as speech.

-s val Automatic delimiting option 2 (default value = 20)
Specify the amplitude value for the waveform start point.

-d val Automatic delimiting option 3 (default value = 20)
Specify the amplitude value for the waveform end point.

-e val Automatic delimiting option 4 (default value = 20)
Specify the number of samples (in units of 16 ms) for a period of silence from the
end of a waveform to the point at which speech is finished.

4 VRE33 TOOL REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

22

Example: DOS>mpmDict -f thanks.lst thanks.cep

The recognition dictionary data "thanks.cep" is created from all the data written in the PCM data list
"thanks.lst".

Reference: About automatic delimiting parameters

-s

-m -e

-d

Figure 4.2.5.1 Automatic Delimiting Parameters

As shown above, the options -s and -m specify the amplitude threshold and waveform length
required to determine that a waveform is speech. The larger the values, the greater the possibility
that the beginning of an instance of speech will be truncated, or that short words will not be separated
from one another. If values are small, noise may be processed as data.
Options -d and -e specify the threshold at which to denote the end of an instance of speech and the
length of a period of silence. For words such as "three," the last half of which is not accented, you can
specify 10 to 15 for the -d option to ensure that the words are recognized as distinct. However, if the
values for these options are too small, words with low emphasis in the middle may be split, with the
middle incorrectly assumed to be the end of a word. In noise-prone environments, the program may
also fail to delimit words. For most situations, the optimum values are the default values. Use the
default values unless they lead to difficulties with your application.

Note: Depending on the data, words cannot be delimited automatically, in which case the following
message is displayed.
Warning: Cannot process file filename - Skip this data.

In this case, reprocess the data as described below and turn off the automatic delimiting function (by
specifying -a) before running "mpmDict.exe".
• Increase the amplitude using a sound editor.
• Cut silent and noisy sections from the speech data using a sound editor.

4 VRE33 TOOL REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

23

4.2.6 mpmRecog.exe
Function: Using the recognition dictionary data created, and by entering Cepstrum or VQCode test data, this

program evaluates how well speech is recognized. The evaluation results are output to a specified file
in text format.

Usage: DOS>mpmRecog dictfile infile.cep/vqc outfile.txt↵

Parameters: dictfile Dictionary file for recognition (text file)
This file contains a list of created recognition dictionary data files. The file list is in
the format shown below, with both relative and absolute paths accepted. It also
allows including of Cepstrum and VQCode data.
(path\)word1.cep
(path\)word2.vqc
(path\)word3.cep
 :

This file can be created using "mpmSlct.exe".

infile.cep/vqc Input file name (Cepstrum or VQCode data file)
This is the data file used to test recognition performance. This file is derived from
speech data for testing (16-bit PCM file) by processing it with "mpmDict.exe", just
as when you create recognition dictionary data. Only one word may be tested at a
time.

outfile.txt Output file name (text file)
Evaluation results (see the usage example) are output to this file.

Example: DOS>mpmRecog cep.dic test.cep result.txt

The test data "test.cep" is compared against all recognition dictionary data written in "cep.dic", and
the results are output to "result.txt". The evaluation results stored in the output file are in the
following format:
Example:
001 0x0003c606 ..\dict\thanks.cep

003 0x0012c4d6 ..\dict\hello.cep

002 0x0008c2fe ..\dict\morning.cep

The contents of each line are as follows:
<rank> <distance> <recognition dictionary data file name>

The <rank> is assigned numbers from 001 in order of <distance>, beginning with the smallest.
The <distance> represents the difference in features between the test data and recognition dictionary
data. The smaller the value, the closer the similarity. The above example indicates that the input data
was closest to "thanks.cep".

The range of <distance> in which words are assumed to be the same must be determined after
examining the actual evaluation results.

4 VRE33 TOOL REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

24

4.2.7 bin2s.exe
Function: Converts binary files (cep file, vqc file) into a text file in E0C33 assembly source format. Since

results by default are output to the standard output device (stdout), use the DOS redirect function to
save the results to a file.

Usage: DOS>bin2s [-l symbol] infile.cep/vqc > outfile.s↵

Parameters: infile.cep/vqc Input file name (binary file)

outfile.s Output file name (assembly source file)

-l symbol Definition of assembler symbol name (optional)
If this option is omitted, the input file name is used as a symbol name.

Example: 1) If the -l option is omitted, the input file name is assumed to be a symbol name for the assembler.

DOS>bin2s word1.cep > word1.s

DOS>type word1.s

.global word1

.align 2

word1:

.byte 0x33 0x20 0x24 0x00 0xa9 0x09 0xe5 0x03

.byte 0x9c 0xfe 0x95 0xfe 0xf7 0xfe 0x3d 0x01

.byte 0xe6 0x01 0x0b 0xff 0xa7 0x00 0x14 0x00

 :

.byte 0xf8 0xff 0x3a 0x00

; total 724 bytes data

DOS>

2) To use a symbol that is not the input file name, specify it using the -l option.

DOS>bin2s -l thanks word1.cep > word1.s

DOS>type word1.s

.global thanks

.align 2

thanks:

.byte 0x33 0x20 0x24 0x00 0xa9 0x09 0xe5 0x03

.byte 0x9c 0xfe 0x95 0xfe 0xf7 0xfe 0x3d 0x01

.byte 0xe6 0x01 0x0b 0xff 0xa7 0x00 0x14 0x00

 :

.byte 0xf8 0xff 0x3a 0x00

; total 724 bytes data

DOS>

Note: The specification of symbol names is subject to the following limitations.
• Symbol name length: Up to 32 characters
• Valid characters: a to z, A to Z, 0 to 9, _

4 VRE33 TOOL REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

25

4.2.8 Executing from a Batch File
Recognition dictionary data creation and evaluation tools are all 32-bit applications executable from a DOS prompt.
You can run a processing series by creating a batch file and running it from the DOS prompt. The following is an
example of processing by batch file, located in the "vretools\sample\" directory.

Example of a batch file for creating recognition dictionary data

\sample\dict1\run.bat

Lists PCM speech data having a specified name and creates Cepstrum and VQCode recognition dictionary data.

Process: 1) Create a PCM list file using "mpmSlct.exe"
2) Create Cepstrum recognition dictionary data using "mpmDict.exe"
3) Create VQCode recognition dictionary data using "mpmDict.exe"
4) Convert recognition dictionary data into an assembly source file using "bin2s.exe"

Output files: file_name.lst PCM list file
file_name.cep Cepstrum recognition dictionary data
file_nameV.vqc VQCode recognition dictionary data
dict1.s Assembly source file

File contents: @echo off

set vrepath=..\..\bin\

rem *** parameter check ***

if "%1"=="" goto ERROR

if "%2"=="" goto ERROR

rem *** Make PCM file list ***

%vrepath%mpmSlct %1 > %2.lst

rem *** Make Cepstrum data ***

%vrepath%mpmDict -f %2.lst %2.cep

%vrepath%bin2s %2.cep >> dict1.s

set vrepath=

goto END

:ERROR

echo Usage:

:END

4 VRE33 TOOL REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

26

Example: >run ..\data\men\ari*.pcm arigato

(Executed in the "vretools\sample\dict1\" directory)
Using PCM files in the "data\man\" directory beginning "ari", this batch file generates Cepstrum
the recognition dictionary data file "arigato.cep" and VQCode recognition dictionary data file
"arigato.vqc". This data is converted into assembly list format, which is then added to "dictl.s"
after the last line in "dictl.s". (If "dictl.s" does not exist, "dictl.s" is created.)
The global labels "arigato" (Cepstrum data) and "arigatoV" (VQCode data) are defined in
"dictl.s".

.global arigato

.align 2

arigato:

.byte 0x33 0x20 0x24 0x00 0xa9 0x09 0xe5 0x03

.byte 0x9c 0xfe 0x95 0xfe 0xf7 0xfe 0x3d 0x01

.byte 0xe6 0x01 0x0b 0xff 0xa7 0x00 0x14 0x00

 :

.byte 0xf8 0xff 0x3a 0x00

; total 724 bytes data

.global arigatoV

.align 2

arigatoV:

.byte 0x33 0x22 0x24 0x00 0x00 0x00 0x56 0x01

.byte 0xfe 0x02 0xfe 0x02 0xfe 0x02 0xfe 0x02

.byte 0x1e 0x02 0xe3 0x02 0xf3 0x00 0xf3 0x00

 :

.byte 0x24 0x01 0xb8 0x01 0x76 0x02

; total 78 bytes data

The file "run.bat" must be executed for each word in each user-voice group. An example for
processing this collectively is provided as "mkdict.bat".
<mkdict.bat>
del dict1.s

call run ..\data\men\ari*.pcm arigato

call run ..\data\men\kon*.pcm konnitiwa

call run ..\data\men\oha*.pcm ohayo

call run ..\data\men\oya*.pcm oyasumi

call run ..\data\men\tad*.pcm tadaima

Reference: "4.2.4 mpmSlct.exe", "4.2.5 mpmDict.exe", "4.2.7 bin2s.exe"

4 VRE33 TOOL REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

27

Example of a batch file for evaluating recognition

(1) Creating a directory

\sample\recog\mkmuldic.bat

Creates a list (text file) of Cepstrum recognition dictionary data located in a specified directory. This file is used as a
dictionary file when executing "mpmRecog.exe".

Process: Create a Cepstrum data list using "mpmSlct.exe".

Output files: file_nameCE.dic Cepstrum dictionary file (text format data list file)

File contents: @echo off

rem

rem Make dictionary bat file

rem

if "%1"=="" goto ERR

if "%2"=="" goto EXE

echo Generating Cepstrum dictionary for PC.

..\..\bin\mpmSlct %1*.cep > %2CE.dic

goto END

:EXE

echo Generating Cepstrum dictionary for PC.

..\..\bin\mpmSlct *.cep > %2CE.dic

goto END

:ERR

echo Usage:

echo mkmuldic.bat input_file_directory output_dictionary_name

echo Example:

echo mkmuldic.bat .\sample sample

:END

Example: >mkmuldic ..\dict3 greet

(Executed in the "vretools\sample\recog\" directory)
Create a list "greetCE.dic" of Cepstrum data files present in the "sample\dict3\" directory (if the
first parameter is omitted, this is the current directory).
<greetCD.dic>
..\dict3\ariM.cep

..\dict3\ariW.cep

 :

..\dict3\tadM.cep

..\dict3\tadW.cep

Reference: "4.2.4 mpmSlct.exe"

4 VRE33 TOOL REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

28

(2) Evaluating recognition

\sample\recog\recog.bat

After specifying PCM speech data for testing, this batch file evaluates how speech is recognized, using the created
dictionary data.

Process: 1) Convert test speech data into Cepstrum or VQCode data, using "mpmDict.exe".
2) Execute recognition evaluation using "mpmRecog.exe".
3) Display evaluation results on-screen.

Input files: file_name.pcm 16-bit PCM speech file for test parsing
file_name.dic Cepstrum or VQCode dictionary file (created by mkmuldic.bat)

Output files: result.txt Evaluation result file

File contents: @echo off
rem
rem execute recognition bat file
rem
@echo off
if "%1"=="" goto ERR
if "%2"=="" goto ERR
if "%3"=="" goto ERR
rem Generating feature parameter
..\..\bin\mpmDict %1 %2 temp.cep
if errorlevel 1 goto END1
rem Recognition
..\..\bin\mpmRecog %3 temp.cep result.txt
if errorlevel 1 goto END
@del temp.cep > NUL
type result.txt
rem
goto END2
:ERR
echo Usage:
echo recog.bat -cep(-vqc) input_file input_dictionary
echo Example:
echo recog.bat -cep sample.pcm sample.dic
goto END1
:END
@del temp.cep > NUL
goto END2
:END1
echo Warning: mpmdict cannot process file.
:END2

Example: >recog -cep sample.pcm greetCE.dic (Cepstrum dictionary evaluation)

>recog -vqc sample.pcm greetVQ.dic (VQCode dictionary evaluation)
(Executed in the "vretools\sample\recog\" directory)
The test speech file "sample.pcm" is converted into recognition data in the specified format
(Cepstrum or VQCode). Recognition performance is tested using the created dictionary. Results
are output to "result.txt" in the format shown below, and can also be displayed on-screen using the
TYPE command.

003 0x0011d727 ..\dict3\ariM.cep

005 0x00149970 ..\dict3\ariW.cep

 :

006 0x00150b52 ..\dict3\tadM.cep

009 0x0019869f ..\dict3\tadW.cep

Reference: "4.2.5 mpmDict.exe", "4.2.6 mpmRecog.exe"

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

29

5 VRE33 Library Reference
This section gives a detailed explanation of VRE33 library functions, as well as precautions regarding their use.

5.1 Outline of VRE33 Library

Functional outline
The VRE33 library is a set of speech-recognition processing functions in srf33 library format, used after
linking functions to the target application. The following functions can be executed by calling the required
function from the target application:
• Nonspecific user-speech recognition using quantified characteristics data (Cepstrum recognition dictionary)

created on a PC
• Specific user-speech recognition, for which quantified characteristics data for a single individual (Cepstrum

or VQCode recognition dictionary) can be registered on a PC

* VRE33 speech recognition is based on the recognition of isolated words.

This package also contains C source files for top-level functions based on VRE33 library functions and
assembly source files for initialization purposes, all or part of which may be copied for use into the target
application. These function sets permit easy implementation of speech-recognition processing functions in your
system.

Program structure
Figure 5.1.1 illustrates the structure of the application programs.

User target application

(user's exclusive specifications)

VRE33 library top-level sources

(corrected by user, as necessary)

VRE33 library functions

(used by linking)

Hardware

(A/D and 16-bit programable timer)

Cepstrum, VQCode recognition

dictionary data assembler sources

(created by VRE33 tool)

Figure 5.1.1 Program Structure

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

30

VRE33 Library Configuration
All of the VRE33 library and related files are located in the "vrelib" folder (directory). The contents of the
"vrelib" folder are given below.

vrelib\ VRE33 library-related
readme.txt VRE33 library supplementary explanation, etc. (in English)
readmeja.txt VRE33 library supplementary explanation, etc. (in Japanese)

lib\ VRE33 library directory
vre.lib VRE33 library
sl104.lib Input/output library for E0C33A104
sl208.lib Input/output library for E0C33208
memMesa.o, memAsm.o, mpmFt.o, mpmVq.o

Objects retrieved from vre.lib for high-speed operation

include\ Header file directory for VRE33 library functions
vre.h VRE33 header file

src\ Library source directory
vretop.c VRE33 top-level functions
vrecache.c VRE33 internal RAM cache functions

hardsrc\ Hardware dependent source directory
Listen.s Listen.o source (E0C33A104)
LisAD.s LisAD.o source (E0C33A104)
Speak.s Speak.o source (E0C33A104)
SpkDA.s SpkDA.o source (E0C33A104)
Lis208.s Lis208.o source (E0C33208)
Lis208AD.s Lis208AD.o source (E0C33208)
Spk208.s Spk208.o source (E0C33208)
Spk208PW.s Spk208PW.o source (E0C33208)
slintr.def

(Refer to these sources when changing timer A/D or D/A channel ports.)

smpl104\ DMT33004 sample program directory

smpl208\ DMT33005 sample program directory

(For detailed information on the configuration of sample programs and how to use
them, see "readme.txt" or "readmeja.txt" in "vrelib".)

∗ The configuration for the top-level and library functions is described later.

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

31

5.2 Hardware Resources and Initialization

Note: If you want to use other channels or ports in addition to the playback/recording hardware
resources shown below, change the sources in the "hardsrc\" directory. However, program
operation is not guaranteed after such changes are made. For detailed information on each
hardware resource, see the Technical Manual included with the microcomputer used in your
system.

Hardware resources used by input/output libraries (sl104.lib, sl208.lib)
Input/output libraries for the E0C33A104 (sl104.lib) and E0C33208 (sl208.lib) use the chip’s internal
hardware resources, shown below. For this reason, these hardware resources cannot be used in the user target
application.

• A/D converter (channel 0) and all related control registers

• K60 port and all related control registers

• 16-bit programmable timer (timer 0) and all related control registers

• A/D conversion-completed interrupt
Make sure the LisIntr0() function is entered at the A/D conversion-completed interrupt vector address. The
interrupt level is set to 4 by the LisOpen() function.
Example: .word LisIntr0 ; Vector No.64 (ADC)

Operating clock
This library assumes a value of 20 MHz (typ.) for high-speed (OSC3) clock frequency. For the E0C33208,
operation at 40 MHz (PLL in x2 mode) can be supported as specified by a compile option (CLOCK40).

Memory
The following describes precautions concerning memory:

• Make sure all BSS sections used by the VRE33 library are mapped to internal RAM.

• Use internal RAM for the stack.

• Make sure the external memory area containing VRE33 library program code is accessed within one or no
wait states, and use 16-bit wide memory.

The VRE33 library uses the following memory sizes:

• Internal RAM: Approx. 5K bytes (including BSS section, internal RAM cache, and stack)

• Internal ROM: Approx. 27K bytes (including top-level functions and output library)

• External RAM:Not needed for recognition alone.

The recognition dictionary data requires the following per-second memory sizes:

• Cepstrum: 64 × 10 × 2 bytes + 4-byte header = 1,284 bytes/second

• VQCode: 64 × 2 bytes + 6-byte header = 134 bytes/second

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

32

5.3 Top-level Functions
The top-level functions "vretop.c" are C source files used to help implement each function, and are implemented
using VRE33 library functions. Table 5.3.1 lists the top-level functions.

Table 5.3.1 List of Top-level Functions
Function name Description

int vreRecognise() Recognizes speech in real-time
void vreRecogInit() Initializes processing for rejection

(determination of mismatch)
int vreMakeDictionary() Acquires characteristics data from input speech

(to create dictionary data)
int mpmRecognition() Compares characteristics data to dictionary data

You can link the source file directly to the user application source, or paste in only those functions actually used. In
this case, include the header file from the "include\" directory into the user application.

Note: VRE33 library functions use the CPU’s internal R8 register. When linking VRE33 library including
the top-level functions (vretop.c), you cannot use the -gp option of instruction extender ext33
(optimization by global pointer/R8).

5.3.1 Compile Options
When compiling the source file for top-level functions, you can specify the compile option described below. Specify
the name as necessary when compiling (by using the -D option of gcc33).

CLOCK40
Define this name when you want to run the E0C33208 at 40 MHz. In addition to specifying this option, you also
need to set the E0C33208 chip’s PLL mode to x2 mode. Unless this option is set, the source file is compiled
for operation at 20 MHz. The sample program for the DMT33005 has been compiled with this option set.

When compiling a program for the E0C33A104, leave this option unspecified.

5.3.2 Defining the Dictionary
The following shows how to define recognition dictionary data created on a PC for use in top-level functions. You
must first include or link recognition dictionary data to the program after creating the data itself with "mpmDict.exe"
and converting it into assembly source format with "bin2s.exe". If you created the dictionary data "hello" and
"goodbye", for example, define them in the C source as shown below:

#include "vre.h"

extern const short hello[];

extern const short goodbye[];

#define GREET_NUM (2)

/* dictionary table (Cepstrum) */

const short *Greet[GREET_NUM] = {

 hello,

 goodbye

};

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

33

If user-voice groups have been divided into men and women, for example, the recognition dictionary data for the
same word will differ for men and women. In this case, the dictionary tables become as shown below:

extern const short hello_men[];

extern const short hello_women[];

extern const short goodbye_men[];

extern const short goodbye_women[];

#define GREET_NUM (4)

/* dictionary table */

const short *Greet[GREET_NUM] = {

 hello_men;

 hello_women;

 goodbye_men;

 goodbye_women;

};

5.3.3 Structure of Quantified Characteristics Data
The VRE33 library supports two types of data structures for quantified speech characteristics – Cepstrum and
VQCode. For both, all constituent elements are 2 bytes and are handled as short-type arrays.

Cepstrum data
Speech characteristics are quantified by encoding by 20 bytes per frame. Although this provides high accuracy,
it also results in high data volume. This type of data can be used for both specific and nonspecific user-speech
recognition.

* Frame: Processing unit of speech recognition, which is 16 ms for 8 kHz sampling

file ID

2 bytes

file ID: File ID (0x2033)
length: Number of frames (n + 1)

Header (4 bytes) Data (length × 20 bytes)

length cep[0][0] cep[0][1] cep[0][9] cep[1][0] cep[n][9]

2 bytes 2 bytes 2 bytes2 bytes
One frame (20 bytes)

• • • • •

• • • • •

• • • • •

Figure 5.3.3.1 Structure of Cepstrum Data

VQCode data
The quantified speech characteristics (Cepstrum frames) are quantized into 2-byte codes using a predefined
codebook (1,024 codes). One code consists of 10 bits (expressed in 2 bytes), so that data volumes are 1/10 that
of Cepstrum, but with lower accuracy. This data type can only be used for specific user-speech recognition.

file ID

2 bytes

file_ID: File ID (0x2233)
length: Number of codes (n + 1)
codebook ID: Codebook ID

Header (6 bytes) Data (length × 2 bytes)

length code 0 code 1 code n

2 bytes

codebook ID

2 bytes 2 bytes2 bytes

• • • • •

• • • • •

Figure 5.3.3.2 Structure of VQCode Data

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

34

5.3.4 vreRecognise()
Function: Recognizes speech in real-time.

Format: int vreRecognise(short *Dict[], char Mode, int DictNum, int Distance[]);

Parameters: short *Dict[] Pointer array to quantified characteristics (dictionary)
char Mode Characteristics extraction format in input data (Cepstrum, VQCode)
int DictNum Number of quantified characteristics specified in dictionary
int Distance[] Distance storage array

Return value: Recognition data number in dictionary (0 to DictNum) upon successful recognition
MPM_GET_SPEECH_TIMEOUT_ERROR (-1) Characteristics could not be extracted for

quantification within before time-out
occurred, or matching data could not be
found in the dictionary.

MPM_GET_SPEECH_BUF_FULL_ERROR (-3) The characteristics extraction buffer was
exceeded.

MPM_GET_SPEECH_NOT_IN_TIME_ERROR (-4) Input outstrips speed of speech recognition.
MPM_RECOG_THRESHOLD_ERROR (-5) Rejected.
MPM_GET_SPEECH_CONTINUE (-6) Speech interval continues without a break.

Description: Data entered from the 10-bit A/D converter is delimited into speech intervals in real-time to extract
speech characteristics for quantification. The extracted characteristics data and the recognition data
in Dict[] are compared, and a value giving the recognition data closest in distance to the
characteristics data is returned. Recognition data numbers in Dict[] begin with 0.

The Dict array stores the pointer to each Cepstrum or VQCode format recognition dictionary data.

To specify Mode, use the following constants:
MPM_GET_FEATURE (1) When converting input speech into Cepstrum data
MPM_GET_CODE (0) When converting input speech into VQCode data

For DictNum, specify the number of recognition data entries in the dictionary.

The Distance array stores distance information between input-converted characteristics data and
each recognition data entry in the dictionary. There should be as many array elements as DictNum. If
you specify 0 for Distance, nothing is stored in the array. If an error is found in dictionary data, one
of the following error codes is placed in the corresponding element of the Distance array:
MPM_NOT_MATCHING_ERROR (-3) The data volumes to be compared exceed memory

capacity, or number of frames between the input data and
dictionary data differ significantly.

MPM_FILE_FORMAT_ERROR (-4) The data format (Cepstrum or VQCode) differs.

Note: • Make sure the Dict array stores only pointers to the data type (Cepstrum or VQCode) specified by
parameter Mode. Both types of data cannot coexist.

• The time-out for recognition processing is set to 10 seconds by the parameter to
mmpGetSpeechFeature(). Change if necessary.

• Internal variables for this function must always be placed in the stack (internal RAM).

• The size of the internal variable array feature used to store the quantified characteristics of input
speech by default is set to MPM_FEATURE_LEN (approx. 1 second for Cepstrum). When using
only VQCode data, you can change this to MPM_VQCODE_LEN (size about 1/10).
short feature[MPM_FEATURE_LEN]; → short feature[MPM_VQCODE_LEN];

• This function calls another top-level function, mpmRecognition(). When using this function after
copying it into your program, always be sure to copy the mpmRecognition() function as well.

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

35

5.3.5 vreRecogInit()
Function: Initializes processing for rejection (determination of mismatch)

Format: void vreRecogInit(int threshold);

Parameters: int threshold Upper distance threshold for determination of successful recognition
(0x0 to 0x7fffffff)

Return value: None

Description: This function sets the threshold level of the reject function.
Normally, the recognition engine returns a number for the dictionary data that is closest in distance
(most similar) to the quantified characteristics data to be recognized. A dictionary data number is
always returned as a recognition result, even for an entirely different word, mere noise, or tics in
speech (e.g. "er – " or "umm"). The reject function prevents such incorrect recognition.
Use threshold to set the upper-limit value of the distance for determination of successful recognition.
If the distance between the quantified characteristics data to be recognized and the dictionary data
closest to it is smaller than the threshold set here, the recognition function assumes that the
characteristics data coincides with the dictionary data and returns the dictionary data number. If the
distance is greater than the threshold, the recognition function assumes that the characteristics data
does not coincide and returns the error code MPM_RECOG_THRESHOLD_ERROR(-5).
The appropriate threshold varies with the environment used, the performance of the analog system
(e.g. microphone and amp), and the contents of the recognition word sets. Entering a word similar to
but not actually found in the recognition dictionary to compare the distance at which erroneously
recognized and the distance at which it is correctly recognized. This helps to determine the
appropriate threshold. If threshold is set to 0x7fffffff (defined as MPM_MAX_RECOG_
THRESHOLD in "vre.h"), the reject function is disabled.

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

36

5.3.6 vreMakeDictionary()
Function: Acquires characteristics data from input speech (to create dictionary data).

Format: int vreMakeDictionary(short *Dict, int Mode, int MaxLen);

Parameters: short *Dict Buffer in which quantified characteristics data is saved
char Mode Characteristics extraction format in input data (Cepstrum, VQCode)
int MaxLen Size (short type size) of buffer (Dict)

Return value: MPM_SUCCESS (1) Succeeded

Description: The data entered from the 10-bit A/D converter is separated between speech intervals in real-time to
acquire the quantified characteristics data with which to create a dictionary. This data is used to
create dictionary data for specific user-speech recognition on the actual product. After calling
mpmGetSpeechInit(), this function repeatedly calls mpmGetSpeechFeature() until it receives
quantified characteristics data. For additional information, see mpmGetSpeechFeature().

Use Dict and MaxLen to specify the start address and size of the buffer used to save quantified
characteristics data.

To specify Mode, use the following constants:
MPM_GET_FEATURE (1) When converting input speech into Cepstrum data
MPM_GET_CODE (0) When converting input speech into VQCode data

Note: • The processing time-out is set to 3 seconds by the parameter for mpmGetSpeechFeature(). Change
if necessary.

• Internal variables for this function must always be placed in the stack (internal RAM).

• By default, the size of the internal variable array feature used to store the quantified characteristics
of input speech is set to MPM_FEATURE_LEN (approx. 1 second for Cepstrum). When using
only VQCode data, you can change this to MPM_VQCODE_LEN (size about 1/10).
short feature[MPM_FEATURE_LEN]; → short feature[MPM_VQCODE_LEN];

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

37

5.3.7 mpmRecognition()
Function: Compares characteristics data and dictionary data.

Format: int mpmRecognition(short *InData, short *Dict[], int DictNum,

int Distance[]);

Parameters: short *InData Quantified characteristics data to be recognized (compared)
short *Dict[] Pointer array to dictionary data
int DictNum Number of dictionary data entries
int Distance[] Distance storage array

Return value: Recognition data number in dictionary (0 to DictNum) upon successful recognition
MPM_ERROR (-1) All dictionary data in Dict[] resulted in errors
MPM_RECOG_THRESHOLD_ERROR (-5) Rejected

Description: InData and recognition data in Dict[] are compared, and a value for the dictionary data closest to
InData is returned. Recognition data values in Dict[] begin with 0.

The Dict array stores the pointer to the recognition dictionary data in the same format (Cepstrum or
VQCode) as in InData.

For DictNum, specify the number of recognition data entries in the dictionary.

The Distance array stores the distance between InData and each recognition data entry in the
dictionary. There must be as many array elements as DictNum. If you specify 0 for Distance, nothing
is stored in the array. If an error is found in the dictionary data, one of the following error codes is
placed in the corresponding element of the Distance array:
MPM_NOT_MATCHING_ERROR (-3) The data volumes to be compared exceed memory

capacity, or number of frames between the input data and
dictionary data differ significantly.

MPM_FILE_FORMAT_ERROR (-4) The data format (Cepstrum or VQCode) differs.

Note: • Make sure the Dict array stores only pointers to the same data type (Cepstrum or VQCode) as in
InData. Both types of data cannot coexist.

• Internal variables for this function must always be placed in the stack (internal RAM).

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

38

5.4 VRE33 Library Functions
The VRE33 library "vre.lib" contains object files that include functions required for speech-recognition processing,
while the libraries "sl104.lib" and "sl208.lib" contain object files that include functions required for speech input.
Speech recognition is implemented by linking these libraries to the user application. The VRE33 library functions
are listed in Table 5.4.1.

Table 5.4.1 List of VRE33 Library Functions

vre.lib
Function name Description

mpmGetSpeechInit() Initializes speech delimiting processing
mpmGetSpeechFeature() Inputs speech and delimits words
mpm_calc_distance() Calculates distance between two quantified

characteristics
mpmIsMpmFeature() Checks the data format (Cepstrum)
mpmIsVqCode() Checks the data format (VQCode)
mpmGetBufferLen() Gets buffer size

\src\vrecache.c
Function name Description

mpm_feature_cache() Transfers object into internal RAM cache
(used for mpmGetSpeechFeature)

mpm_recog_cache() Transfers object into internal RAM cache
(used for mpm_calc_distance)

<Reference> sl104.lib, sl208.lib (used for speech input from A/D converter)
Function name Description

LIS_SAMPLING() Gets 16-bit timer reload value (macro)
LisInit() Initializes internal library variables
LisOpen() Opens input channel
LisClose() Closes input channel
LisStart() Starts voice input
LisHalt() Halts voice input
LisAppend() Appends the voice to input data queue
LisRoom() Gets number of entries in queue
LisQueue() Gets number of entries waiting for input
LisIsRunning() Checks input status
LisOnDone() Enters recording call-back function
LisOnEmpty() Enters recording-complete call-back function
LisOnNotInTime() Enters non-real-time operating call-back function
LisIntr0() Processes voice input by interrupt

Note: The VRE33 library functions use the CPU’s internal R8 register. Therefore, when linking VRE33
library including the top-level functions, you cannot use the -gp option of instruction extender ext33
(optimization by global pointer/R8). Make sure that the BSS sections used by VRE33 library
functions are mapped to internal RAM.

The specifications for each function are explained below. For usage examples, see the source file for top-level
functions.

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

39

5.4.1 Speech-recognition Processing Functions

mpmGetSpeechInit()

Function: Initializes speech delimiting processing.

Format: int mpmGetSpeechInit(short StartThreshold, short DurThreshold,

short EndInterval, short SegMinLen, short Sampling);

Parameters: short StartThreshold Threshold for beginning of speech interval
short DurThreshold Threshold for end of speech interval
short EndInterval Length to determine completion
short SegMinLen Length of minimum speech interval
short Sampling Input speech sampling frequency

Return value: MPM_SUCCESS (1) Succeeded

Description: This function initializes speech delimiting processing by setting the parameters necessary to delimit
speech intervals.

For all of these parameters except Sampling, the following constants are defined as default values in
"vre.h":
MPM_GETSP_START_THRESHOLD (20) Used to specify StartThreshold
MPM_GETSP_DURATION_THRESHOLD (20) Used to specify DurThreshold
MPM_GETSP_END_INTERVAL (20) Used to specify EndInterval
MPM_GETSP_MIN_LEN (15) Used to specify SegMinLen

For the relationship between speech waveforms and parameters, see Figure 4.2.5.1, "Automatic
Delimiting Parameters". If speech cannot be separated into words using the default values on the
actual machine, change them according to the waveforms for standard data.

The parameter Sampling is found from the LIS_SAMPLING macro in "vre.h". For cases when the
CPU clock = 40 MHz and the sampling rate = 8 kbps, make the following specifications:
LIS_SAMPLING(40000000, 8000)

mpmGetSpeechFeature()

Function: Inputs speech and delimits words.

Format: short mpmGetSpeechFeature(int Mode, short *Buffer, int BufferLen,

int SamplePoints);

Parameters: int Mode Characteristics extraction format in input data (Cepstrum, VQCode)
short *Buffer Buffer in which to save characteristic-extracted data
int BufferLen Buffer size (short type size)
int SamplePoints Time-out duration (number of samples)

Return value: MPM_SUCCESS (1) Succeeded
MPM_GET_SPEECH_CONTINUE (0) Speech interval continues without a break
MPM_GET_SPEECH_TIMEOUT_ERROR (-1) Characteristics could not be extracted within

the time specified by SamplePoints
MPM_GET_SPEECH_BUF_FULL_ERROR (-3) The BufferLen size was exceeded
MPM_GET_SPEECH_NOT_IN_TIME_ERROR (-4) Input speed exceeds pace of speech

recognition

Description: This function parses data entered from the 10-bit A/D converter into speech intervals in real-time to
extract speech characteristics for quantification. It returns to the main routine after storing the
extracted characteristics data in Buffer. If no speech interval appears within the time specified by
SamplePoints, an error is assumed, in which case MPM_GET_SPEECH_TIMEOUT_ERROR(-1) is
returned.

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

40

To specify Mode, use the following constants:
MPM_GET_FEATURE (1) When converting input speech into Cepstrum data
MPM_GET_CODE (0) When converting input speech into VQCode data

To specify the Buffer size, the following constants are defined in "vre.h". Cepstrum requires ten
times the buffer size of VQCode.
MPM_MAX_WORD_LEN (64) Number of frames in characteristics extraction
MPM_FEATURE_HEADER_SIZE (2) Cepstrum data header size (short type)
VQ_CODE_HEADER_SIZE (3) VQCode data header size (short type)
MPM_FEATURE_LEN (MPM_MAX_WORD_LEN*10+MPM_FEATURE_HEADER_SIZE)

Buffer size for Cepstrum (short type)
MPM_VQCODE_LEN (MPM_MAX_WORD_LEN+MPM_VQ_CODE_HEADER_SIZE)

Buffer size for VQCode (short type)

MPM_MAX_WORD_LEN defines the maximum number of frames in characteristics extraction.
One frame is 16 ms for 8K sampling; the value 64 allows characteristics to be extracted for up to 1
second per word (0.016 seconds × 64 = approx. 1 second).

Specify SamplePoints by a number of samples. In the case of 8K sampling, for example, specify 10
seconds as 10*8000.

mpm_calc_distance()

Function: Calculates the distance between two quantified characteristics.

Format: int mpm_calc_distance(short *InData, short *RefData);

Parameters: short *InData Pointer to input characteristics data
short *RefData Pointer to referenced characteristics data (dictionary data)

Return value: Distance between two quantified characteristics upon successful recognition
MPM_NOT_MATCHING_ERROR (-3) The data volumes to be compared exceed memory

capacity, or number of frames between the input data and
dictionary data differ significantly.

MPM_FILE_FORMAT_ERROR (-4) The data format (Cepstrum or VQCode) differs.

Description: This function calculates the distance between the characteristics data extracted from the input
speech specified by InData and the recognition dictionary data specified by RefData, and returns the
result to the main routine.

mpmIsMpmFeature()

Function: Checks the data format (Cepstrum).

Format: int mpmIsMpmFeature(short *data);

Parameters: short *data Pointer to characteristics data

Return value: 1 for Cepstrum data
0 for any data that is not in Cepstrum format

Description: This function checks to see if data is in Cepstrum format.

mpmIsVqCode()

Function: Checks the data format (VQCode).

Format: int mpmIsVQCode(short *data);

Parameters: short *data Pointer to characteristics data

Return value: 1 for VQCode data
0 for any data that is not in VQCode format

Description: This function checks to see if data is in VQCode format.

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

41

mpmGetBufferLen()

Function: Gets buffer size.

Format: int mpmGetBufferLen(short *data);

Parameters: short *data Pointer to characteristics data

Return value: Data length

Description: This function returns the length (short type) of data, not including the header to the main routine.

mpm_feature_cache()

Function: Transfers object into the internal RAM cache (used for mpmGetSpeechFeature).

Format: void mpm_feature_cache();

Parameters: None

Return value: None

Description: This function transfers the objects (mpmAsm.o and mpmMesa.o) that need to be run at high speed
in order to execute mpmGetSpeechFeature() into the cache area specified by a linker command file.
When using an internal RAM cache, always call this function before calling
mpmGetSpeechFeature(). Since this function is written in "vrelib\src\vrecache.c", copy all of the
source contents into, or link to the user application after compiling. For additional information on
defining the linker command file, see Section 5.5, "Techniques for Speeding Up".

mpm_recog_cache()

Function: Transfers object into the internal RAM cache (used for mpm_calc_distance).

Format: void mpm_recog_cache(short *InData);

Parameters: short *InData Pointer to characteristics data

Return value: None

Description: This function transfers objects that need to run at high speed in order to execute
mpm_calc_distance() into the cache area specified by a linker command file. The objects to be
transferred are "mpmAsm.o" and "mpmFt.o" when InData is Cepstrum or "mpmAsm.o" and
"mpmVq.o" when InData is VQCode. When using an internal RAM cache, always call this function
before calling mpm_calc_distance(). Since this function is written in "vrelib\src\vrecache.c", copy
all of the source contents into, or link to the user application after compiling. For additional
information on defining the linker command file, see Section 5.5, "Techniques for Speeding Up".

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

42

5.4.2 Input (Listen) Functions
This section explains the voice input functions in "sl104.lib" and "sl208.lib".

LIS_SAMPLING()

Function: Gets the 16-bit timer reload value (macro)

Format: LIS_SAMPLING(CpuClock, SamplingRate)

Parameters: CpuClock CPU clock frequency
SamplingRate Sampling rate

Return value: 16-bit timer reload value

Description: This is the macro used to acquire the 16-bit timer reload value from the specified CPU clock
frequency and sampling rate. This macro is defined in "vre.h".

LisInit()

Function: Initializes internal library variables

Format: void LisInit(void);

Parameters: None

Return value: None

Description: This function clears the internal variables used by the library to 0.

LisOpen()

Function: Opens input channel

Format: unsigned char *LisOpen(int Channel, int ReloadValue);

Arguments: int Channel Channel number
int ReloadValue 16-bit timer set value

Return value: Terminated normally LisParams pointer corresponding to the opened channel
Terminated abnormally 0

Description: This function opens the specified input channel with a specified sampling rate. The LisParams
value returned by this function is used as an argument for other input (Lis) functions.
For ReloadValue, specify the value acquired by the LIS_SAMPLING macro.
In the following cases, the function fails to open and returns 0.
• When the specified channel is already open (For input, only channel 1 can be opened.)
• When an unavailable channel is specified
• When the reload value exceeds 16 bits
To change the channels used, modify the source in the "hardsrc\" directory.

LisClose()

Function: Closes input channel

Format: int LisClose(unsigned char *LisParams);

Parameters: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return value: Terminated normally Other than 0
Terminated abnormally 0

Description: This function closes the specified input channel. If the specified channel is not open, it returns 0.

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

43

LisStart()

Function: Starts voice input

Format: int LisStart(unsigned char *LisParams);

Parameters: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return value: Terminated normally Other than 0
Terminated abnormally 0

Description: This function starts the operation to input voice data in a specified channel. If the specified channel
is not open, it returns 0.

LisHalt()

Function: Stops voice input

Format: int LisHalt(unsigned char *LisParams);

Parameters: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return value: Terminated normally Other than 0
Terminated abnormally 0

Description: This function stops the operation to input voice data in a specified channel. If input in the specified
channel has not been started by LisStart(), it returns 0.

LisAppend()

Function: Appends data to input data queue

Format: int LisAppend(unsigned char *LisParams, void *Buffer, int Length);

Arguments: unsigned char *LisParams LisParams pointer (return value of LisOpen)
void *Buffer Pointer to the data to be entered
int Length Data size

Return value: Terminated normally Other than 0
Terminated abnormally 0

Description: This function appends the input buffer to the input queue of a channel specified by LisParams. If
input in the specified channel has not been started by LisStart() or there is no free entry in the
queue, 0 is returned.

LisRoom()

Function: Gets the number of remaining entries in the queue

Format: int LisRoom(unsigned char *LisParams);

Parameters: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return value: Number of available entries

Description: This function returns the number of available remaining entries in the input queue.
When this function is called immediately after opening an input channel, it shows the maximum
number of available entries.
The value returned during voice input operation is as follows:
(Maximum number of entries) - (Number of queued entries) - (Number of entries that are not called
back)

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

44

LisQueue()

Function: Gets the number of entries waiting for input

Format: int LisQueue(unsigned char *LisParams);

Parameters: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return value: Number of entries waiting for input

Description: This function returns the number of entries waiting for input in the input queue.
The value returned during voice input operation is as follows:
(Number of queued entries) - (Number of entries that are not called back) - (Number of entries that
are called back)

LisIsRunning()

Function: Checks input status

Format: int LisIsRunning(unsigned char *LisParams);

Parameters: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return value: When input operation is under way Other than 0
When input operation has halted 0

Description: This function returns a value indicating whether input operation in the specified input channel is
under way.

LisOnDone()

Function: Enters the recording call-back function

Format: int LisOnDone(unsigned char *LisParams, void *Callback);

Arguments: unsigned char *LisParams LisParams pointer (return value of LisOpen)
void *Callback Pointer to the call-back function to be entered

Return value: Pointer to the original call-back function

Description: This function enters the function in a specified input channel that is called back when recording
voice data. The call-back function has the following format:
void Callback(unsigned char *LisParams, void *Buffer, int Length)

LisOnEmpty()

Function: Enters the recording-complete call-back function

Format: int LisOnEmpty(unsigned char *LisParams, void *Callback);

Arguments: unsigned char *LisParams LisParams pointer (return value of LisOpen)
void *Callback Pointer to the call-back function to be entered

Return value: Pointer to the original call-back function

Description: This function enters the function in a specified input channel that is called back upon completion of
recording. The call-back function has the following format:
void Callback(unsigned char *LisParams)

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

45

LisOnNotInTime()

Function: Enters the non-real-time operating call-back function

Format: int LisOnNotInTime(unsigned char *LisParams, void *Callback);

Arguments: unsigned char *LisParams LisParams pointer (return value of LisOpen)
void *Callback Pointer to the call-back function to be entered

Return value: Pointer to the original call-back function

Description: This function enters the function in a specified input channel that is called back if voice data cannot
be recorded in real time. The call-back function has the following format:
void Callback(unsigned char *LisParams, void *Buffer, int Length)

LisIntr0()

Function: Processes voice input by interrupt

Format: void LisIntr0(void);

Parameters: None

Return value: None

Description: This function processes voice input by an interrupt. Use this function only as an interrupt vector.

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

46

5.5 Techniques for Speeding Up Processing
The library processing speed can be increased from a few percent to around 30% by mapping several objects from
"vre.lib" to internal memory before executing them. Use the U-section function of the linker to map objects to
internal memory. Write the following in the linker command file:
-objsym ; Creates object symbol
-section VRECACHEASM ; Creates section symbol
-section VRECACHE

-ucode VRECACHEASM {..\..\lib\mpmAsm.o} ; Maps into U-section
-ucode VRECACHE {..\..\lib\mpmMesa.o ..\..\lib\mpmFt.o ..\..\lib\mpmVq.o}

* Objects that can be mapped to internal memory are stored in the "lib\" directory:
mpmAsm.o, mpmMesa.o, mpmFt.o, mpmVq.o

When using the top-level functions for speech recognition, you do not need to change the sources, since the above
object transfer routines are written in top-level functions. The transfer routine itself is written in "vrecache.c", so you
can link the file after compiling.
When creating a program that calls library functions directly, call mpm_feature_cache() before calling
mpmGetSpeechFeature(), and mpm_recog_cache() before calling mpm_calc_distance() to transfer the object codes
required for each into internal memory.
Example: To call mpmGetSpeechFeature()
mpm_feature_cache();

error_code = mpmGetSpeechFeature(Mode, feature, MPM_FEATURE_LEN, 10*8000);

Note: When using the VRE33 library in combination with libraries such as the VOX33, the internal RAM
may fall short of capacity. In such cases, speech recognition can be performed without using an
internal RAM cache. However, if speech needs to be recognized in real-time, you may need to
reduce the number of words registered in the dictionary. To disable the internal RAM cache,
specify the compile option "-DNO_IRAM_CACHE" when compiling "vrecache.c". The U-section
definition in the linker command file is also not required.

5.6 Library Performance
The explanation here assumes that speech recognition occurs under the following conditions:

Operating frequency: 20 MHz
CODE section: External ROM (with 1 wait state)
BSS section and stack: Internal RAM (no wait states)
Internal RAM cache: Enabled
Dictionary word set: 5 words ("Arigato" (Thank you), "Oyasumi" (Goodnight), "Konnichiwa" (Good afternoon),

"Ohayo" (Good morning), "Tadaima" (Hello, I’m here).)

Under these conditions, if one word is about 0.7 seconds long, comparison between the data input by
mpmRecognition() and each word in the recognition dictionary data requires about 18 ms. For five words, this
amounts to about 90 ms (= 18 ms × 5). Generally, the duration of time in which you feel speech is recognized in
real-time is about 0.5 seconds. Under the above conditions, up to 30 words can be recognized simultaneously (18 ms
× 30 words = 540 ms).

Without an internal RAM cache, processing speed is about 30% slower. Each increment increase in the number of
wait states in external memory access reduces processing speed approximately 15%.

The maximum length of a recognizable word by default is 1 second. This value can be changed using
MPM_MAX_WORD_LEN in "vre.h". MPM_MAX_WORD_LEN times 16 ms is the maximum length of a
recognizable word. Note that this change affects the buffer size to be placed in the stack by vreRecognise() and
mpmRecognition(), and the stack size used by the library consequently changes.

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

47

5.7 Combined Use with VOX33 Library
The VRE33 library can be used in combination with speech output generated by the VOX33 voice
compression/expansion library. For usage examples, see the sample in the "smplXXX\sample3\" directory.

For economical use of internal RAM, the buffer SplisBuf is used for both input and output. For this reason, specify
the -d option of the linker when linking the library. Because the library object "mpmGetSp.o" includes SplisBuf,
separate it from the library when you link. It can be restored into the object file with the librarian lib33 -x option.
Example: lib33 -x vox.lib mpmGetSp.o

The internal RAM cache of VOX33 is not used.
For the purpose of real-time processing, make sure the number of wait states when accessing external memory
containing the library code is one or less, and use 16-bit wide memory.

Combined use with VOX33 may exceed internal RAM capacity. In this case, stop using the VRE33 internal RAM
cache. Disabling the internal RAM cache increases the processing time of mpmRecognition(), forcing you to reduce
the number of words to be recognized simultaneously. It also prevents you from acquiring characteristics data in
VQCode format using mpmGetSpeechFeature(). To disable the internal VRE33 RAM cache, specify the compile
option "-DNO_IRAM_CACHE" when compiling "vrecache.c", and remove any specification of internal RAM
cache from the linker command file.

You can also map the BSS sections of some objects in either library to external RAM. When the BSS sections of
either library are placed in external RAM for real-time processing, make sure the number of wait states for external
RAM access is one or less, and use 16-bit wide memory.

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

48

5.8 Program Examples
The following explains how to create speech recognition routines, using the sample programs located in the
"smpl104\" directory (for E0C33A104) and "smpl208\" directory (for E0C33208) as examples.

Setting interrupt vectors
For the A/D converter interrupt vector, set the address of the LisIntr0() function. In the sample program, the
trap table is set in "common\table.s". To use this file, set the start address of the handler routine that
corresponds to the trap vector address required for your application.
Example: common\table.s
;;
;;; Interruput Vectores
;;

 .word Boot ; 0 Reset
 .word exception ; 1 reserved
 .word exception ; 2 reserved
 .word exception ; 3 reserved
 .word exception ; 4 Zero Div.
 .word exception ; 5 reserved
 .word exception ; 6 Address Error
 .word NMI ; 7 NMI
 :
 .word LisIntr0 ; 64 ADC
 :
exception:

 jp 0

Boot routine
Initializes processing at startup. The sample boot routine is prepared as "common\boot.s", which sets up the
stack, enables interrupts, and sets bus conditions. Allocate the stack to external RAM.
Example: common\boot.s
#define STACK_INIT 0x00001800
#define PSR_INIT 0x00000110 ; InitIntr. Level 1, Intr. enable

.global Boot
Boot:
 xld.w %r4,STACK_INIT
 ld.w %sp,%r4 ; set STACK
 xld.w %r4,PSR_INIT
 ld.w %psr,%r4 ; set PSR
;
 xcall InitBusCtrl
 xcall InitCPUClock

 xcall main

Bus condition settings and other information are written in "common\demoasm.s". See this file for content
details.

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

49

Speech recognition routine
The following program example is "sample4.c", located in the "sample4" directory. This program uses
dictionary data created separately for men and women to perform nonspecific user-speech recognition. The
dictionary data is Cepstrum data "dict3.s", created by the "vretools\sample\dict3\" sample files.
Example: sample4\sample4.c
/*
 * sample4.c : VRE33 demonstration with stdio main function
 *
 * Separate dictionary data by speaker group (men and women).
 * Voice feature parameters are different in speaker group.
 *
 */

#include <stdio.h>
#include "vre.h" (*1)

extern const short ariM[]; (*2)
extern const short ariW[];
extern const short konM[];
extern const short konW[];
extern const short ohaM[];
extern const short ohaW[];
extern const short oyaM[];
extern const short oyaW[];
extern const short tadM[];
extern const short tadW[];

#define GREET_NUM (10)

/* dictionary table (Cepstrum) */
const short *Greet[GREET_NUM] = { (*3)
 ariM,
 ariW,
 konM,
 konW,
 ohaM,
 ohaW,
 oyaM,
 oyaW,
 tadM,
 tadW
};

/* Name table for print_result */
const char *Name[GREET_NUM] = {
 "arigato men",
 "arigato women",
 "konnichiwa men",
 "konnichiwa women",
 "ohayo men",
 "ohayo women",
 "oyasumi men",
 "oyasumi women",
 "tadaima men",
 "tadaima women"
};

int Distance[GREET_NUM]; /* Distance save buffer */

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

50

/* print recognition result and distance */
int print_result(int result_num, int Distance[], int DictNum)
{
 int i;

 _init_sys(); /* call _init_sys() in sys.c */
 _init_lib(); /* call ANSI lib initialize */

 if(result_num < 0)
 printf("result: %d\n", result_num);
 else
 printf("result: %s\n", Name[result_num]);

 for(i=0; i<DictNum; i++) {
 printf("%08x %s\n", Distance[i], Name[i]);
 }

 printf("\n");
}

main()
{
 int result_num;

 vreRecogInit(MPM_MAX_RECOG_THRESHOLD); (*4)

 /* Start recognition */
 for(;;) {
 result_num = vreRecognise((short**)Greet, MPM_GET_FEATURE, (*5)
 GREET_NUM, Distance);
 print_result(result_num, Distance, GREET_NUM);
 }
}

*1 Include "vrelib\include\vre.h" in source files that call the VRE33 library function.

*2 This defines the recognition dictionary data created by VRE33 tools as externally referenced. Write all
data to be used here.

*3 This defines a dictionary array whose elements are comprised by the start address of each dictionary data
in *2.

*4 This sets the threshold level for rejection in the vreRecogInit() function. The MPM_MAX_RECOG
_THRESHOLD used here is the constant defined in "vre.h". Because the value is 0x7fffffff, the reject
function is disabled.

*5 Using the vreRecognise() function, this performs speech recognition using the input data and Cepstrum
data. Upon successful recognition, the array element number (0 or greater) of the dictionary data entry
closest to the input data is returned in result_num.

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

51

The following program example is "sample2.c" in the "sample2" directory. This program creates VQCode
recognition dictionary data from input speech on the product actually used to perform specific user-speech
recognition.
Example: sample2\sample2.c
/*
 * sample2.c : VRE33 register and recognition demonstration with LED
 * Speaker dependent recognition, use VQCode as feature.
 *
 * - Make dictionary data. Push REC switch (SW4) and register your voice
 * to dictionary.
 * - Repeat registration until push Play switch (SW3).
 * - After that speak something. Result blink LED.
 *
 */

#include "vre.h"

#define WORD_NUM (10)
#define BUF_LEN (MPM_VQCODE_LEN * WORD_NUM)

short *myDict[WORD_NUM]; /* Dictonary table */ (*1)
short DictBuf[BUF_LEN]; /* Voice Future save buffer */

main()
{
 int result_num, DictNum;

 /* Make dictionary */
 DictNum = 0;
 for(;;) {
 /* push PLAY stop make dictionary */
 if((GetEvent() & 0x3) == 1)
 break;

 /* push REC add to dictonary new data */
 if((GetEvent() & 0x3) == 2) {
 myDict[DictNum] = &DictBuf[MPM_VQCODE_LEN*DictNum];
 LedON();
 Wait(200);
 vreMakeDictionary(myDict[DictNum],MPM_GET_CODE,MPM_VQCODE_LEN); (*2)
 LedOFF();
 DictNum++;
 if(DictNum >= WORD_NUM)
 break;
 }
 }

 /* Start recognition */

 vreRecogInit(MPM_MAX_RECOG_THRESHOLD); (*3)

 for(;;) {
 result_num = vreRecognise(myDict, MPM_GET_CODE, DictNum, 0); (*4)

 if(result_num < 0) continue;

 /* blink LED */
 result_num += 1;
 while(result_num--) {
 LedON();
 Wait(2000);
 LedOFF();
 Wait(2000);
 }
 }
}

5 VRE33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

52

*1 This specifies a dictionary table. The number of words that can registered is set to 10.

*2 This extracts speech characteristics for quantification from input data using the vreMakeDictionary()
function and registers the result as VQCode data in the dictionary. This operation is repeated until you
press the PLAY switch on the DMT33xxx, or until a total of 10 words has been registered.

*3 This sets the threshold level for rejection in the vreRecogInit() function. The MPM_MAX_RECOG
_THRESHOLD used here is the constant defined in "vre.h". Because the value is 0x7fffffff, the reject
function is disabled.

*4 Using the vreRecognise() function, this recognizes speech using the input data and the VQCode data
registered in the dictionary. Upon successful recognition, the array element number (0 or greater) of the
dictionary data closest to the input data is returned in result_num.

5 VRE33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

53

5.9 Precautions
(1) VRE33 library functions use the CPU’s internal R8 register. When linking the VRE33 library including top-

level functions, you cannot use the -gp option for instruction extender ext33 (optimization by global
pointer/R8).

(2) The following lists requirements for implementing speech-recognition processing in real-time:

• Make sure all BSS sections used by the VRE33 library are mapped to internal RAM.

• Use the internal RAM for the stack.

• When mapping VRE33 library program codes to an external memory area, reduce the number of wait states
incurred when accessing that area to one or less as much as possible, and use 16-bit wide memory.

• If possible, use the internal RAM cache to execute parts of objects in internal RAM. (See Section 5.5.)

(3) The speech input unit is strongly affected by DC levels, power-supply noise, and the S/N ratio. Make sure you
incorporate sufficient protective measures in the input circuit.

• Shield the lines from local 50–60 Hz noise.

• Protect the microphone to avoid picking up wind noise.

• Adjust input levels so that they are neither excessively small or large.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

54

Appendix Verifying Operation with DMT33 Boards
This section describes how to verify the operation of speech recognition by executing a sample program using E0C33
Family demonstration tools, the DMT33004, DMT33MON, and DMT33AMP.

A.1 System Configuration Using DMT33004

A.1.1 Hardware Configuration
Configure the system shown in Figure A.1.1 using the DMT33004, DMT33MON, and DMT33AMP. This system
allows you to recognize speech data that has been input from a microphone using the DMT33AMP.

COMx

EPSON

RS232C cable
(included with DMT33MON package)

DMT33MON DMT33004

1

12

DMT33AMP

JP11

Figure A.1.1 System Configured with DMT33004, DMT33MON, and DMT33AMP

DMT33004 board
The DMT33004 is a demonstration tool for the E0C33A104, a 32-bit RISC-type microcomputer. Mounted on
this board are the 128KB ROM, 1MB RAM, and 1MB flash memory, an interface connector for the
DMT33MON board, and an interface connector for the DMT33AMP board and other voice input/output
circuits. The ROM on this board contains a debugging monitor.

ROM

FLASH

SW1
(K66)

SW3
(PLAY/K64)

J2
 c

on
ne

ct
or

J3
 c

on
ne

ct
or

SW4
(REC/K65)

SW2
(K67)

DMT33MON

DMT33004

DMT33AMP/
user circuit board

High

Low

High

1

12

1

12

High

E
0C

33
A

10
4

DC IN

DC IN connector

GND
LED

AA battery 1.5V

AA battery 1.5V

AA battery 1.5V

Figure A.1.2 DMT33004 Board

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

55

DMT33MON board
RS232 connector

SW1
(RESET)

SW2
(NMI)

SW3
(DEBUG)

DMT33xxx/target board I/F connector

ONOFF

1 12

ONOFF

Figure A.1.3 DMT33MON Board

The DMT33MON interfaces with demonstration tools such as
the DMT33004 and the user target board for a debugging
monitor. By connecting the DMT33004 board to your personal
computer via the DMT33MON board, you can debug programs
on-board using the debugger (db33.exe) installed in your
computer.

Note: For the DMT33004 board, always be sure to use
the DMT33MON, which is designed to operate with
a 5-V power supply. The DMT33MONLV board,
which is designed to operate at 3.3 V, cannot be
used.

DMT33AMP board
The DMT33AMP is an optional board that adds voice input/output functions to the DMT33004, etc. It allows
voice input from a microphone and voice output from the amplifier mounted on the board. It also allows you to
test the configuration (and effect) of speaker/microphone low-pass and high-pass filters, which determine
sound quality.

J1
 c

on
ne

ct
or

DMT33004
/33005

DMT33AMP

1

12

MIC IN

JP1

JP1
Jumper switch

Selects the voice source to be output.
DMT: DMT33004/33005 output (default)
MIC: Microphone input of this board

DMT
MIC

JP9

JP10

JP3

JP5

JP6 JP7 JP8

JP4 JP2

JP11GND5V

R16

MIC AMP GAIN

AC AMP GAIN

R33

R4
TR AMP VOL

R26

POWER AMP VOL

PC

TR SP (transistor amplifier output)

Connect to the PC
headphone output
terminal

SPOUT (power amplifier output)

JP2 Selects an input for the transistor amplifier circuit.
DA: DMT33004 D/A output (default)
TM: DMT33005 PWM output

DA
TM

JP3 Selects an input for the CR 2nd order filter circuit.
DA: DMT33004 D/A output (default)
TM: DMT33005 PWM output

DA
TM

JP4 Selects a filter in the OP AMP 4th order filter
circuit (for speaker and MIC).
SP: For speaker (default)
MIC: For microphone

SP
MIC

JP5 Selects an filter in the OP AMP 4th order filter
circuit (for speaker and MIC).
SP: For speaker (default)
MIC: For microphone

SP
MIC

JP6 Selects the A/D channel on the DMT33004/33005
used to convert the MIC input.
AD0: Channel 0 (default)
AD1: Channel 1

AD1
AD0

JP7 Selects a cutoff frequency in the CR 1sr order
high-pass filter circuit.
 Short 3300pF only: 300 Hz
 Short 1500pF only: 500 Hz
 Short both: 250 Hz (default)

3300pF
1500pF

JP8 Selects whether the OP AMP 4th order filter circuit for the MIC
circuit is used or not.
MIC: Not used (default)
MLP: Used

MIC
MLP

JP9 Selects a DMT33004/33005 output signal.
TM3/TM2: DMT33004 TM3 or DMT33005 TM2
DA1/TM1: DMT33004 DA1 or DMT33005 TM1
DA1/TM1: DMT33004 DA0 or DMT33005 TM0 (default)

TM3/TM2
DA1/TM1
DA0/TM0

JP10 Selects the circuit to be used for voice output.
TR: Transistor amplifier circuit
2LP: CR 2nd order filter circuit
4LP: OP AMP 4th order filter circuit (for speaker) (default)
MLP: OP AMP 4th order filter circuit (for speaker and MIC)

TR
2LP
4LP
MLP

JP11 Selects a power amplifier input.
PC: PC headphone output
2LP: CR 2nd order filter circuit
4LP: OP AMP 4th order filter circuit (for speaker) (default)
MLP: OP AMP 4th order filter circuit (for speaker and MIC)

R26
R4
R33
R16

Volume adjustment for the power amplifier
Volume adjustment for the transistor amplifie
Gain adjustment for the AC amplifier (x2 to x12)
Gain adjustment for the microphone input (microphone amplifier) (x90 to x2000)

Note: The DMT33AMP is set for connecting the DMT33004 by default. When using with
the DMT33005, select TM using JP2 and JP3, and DA1/TM1 using JP9.

PC
2LP
4LP
MLP

Control

No.
12
11
10
9
8
7
6
5
4
3
2
1

Pin name
GND

TM3/TM2
GND

DA1/TM1
GND

DA0/TM0
GND

AD1 (K61)
GND

AD0 (K60)
VCC (5V)
VCC (5V)

J5

GND
GND

GND
GND

J3

J2

J4

Up

Down

Up

Down

Down

Up

Up

Down

Figure A.1.4 DMT33AMP Board

In systems where the DMT33AMP is used along with the DMT33004 board, the jumper switches do not need
to be changed; default settings suffice.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

56

System connections

Note: Before connecting or disconnecting the system, always turn off power to all connected boards and
equipment. For other precautions regarding the handling of each board, see the "E0C33 Family
Demonstration Board Manual".

1. Attach DMT33MON and DMT33AMP to the DMT33004.
2. Adjust the DMT33AMP’s microphone gain to minimum.
3. Connect the microphone and speaker included with the DMT33AMP package to the DMT33AMP.

A speaker is not needed for sample programs that do not involve speech output.
4. Connect the DMT33MON and PC with the RS-232C cable included with the DMT33MON package.
5. Set the DEBUG switch (SW3) on the DMT33MON to the ON position.
6. Place batteries in the battery holder attached to the DMT33004 and connect the battery holder to the

DMT33004.
7. Switch on power to the PC.

A.1.2 Software
The PC hosting the VRE33 must have the "E0C33 Family C Compiler Package" development tools installed on it.
To download your program into the DMT33004 using the debug monitor, you must have debugger (db33) ver. 1.72
or later.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

57

A.2 Sample Program Execution Procedure

Preparatory operations before startup
Since each sample program directory "vrelib\smpl104\sampleX\" contains absolute object files in executable
format, there is no need to compile or link the sample program specifically. Also provided is a batch file from
which you can launch the debugger. The following explains how to start each sample program after
downloading them to the DMT33004.

(1) Connect the boards and PC and turn on the power to each equipment according to "System connections" in
Section A.1.1.

(2) Before a program can be downloaded to the DMT33004, the debug monitor must already be active.
Reconfirm that the DMT33MON DEBUG switch (SW3) is set to the ON position, then reset the system
using the RESET switch (SW1).

(3) Make "vrelib\smpl104\sampleX\" the current directory, and run "sample.bat" from the DOS prompt.
Example: C:\E0C33\VRE33\VRELIB\SMPL104\SAMPLE1\>sample

The batch file for each sample assumes that the debugger (db33) is installed in the "c:\cc33\" directory when it
starts the debugger in debug monitor mode (-mon).
Example: \sample1\sample.bat

@echo off

start c:\cc33\db33 -p 33104_v.par -b 115200 -c sample.cmd -mon

The debugger can also be launched from the work bench (wb33). Choose the debug monitor mode from wb33
and the command file (sample.cmd) to be executed at startup time.

(4) When the debugger starts, the sample program (sample.srf) is loaded into the DMT33004’s RAM area
(beginning with address 0x600000) by the commands in "sample.cmd".

(5) Use db33’s g command ([Go] button) to run the sample program. To stop, use the debugger’s forced
break function ([Key Break] button).

The following explains how to run the sample programs and their function.

sample1
Sample1 lets you try out specific and nonspecific user-speech recognition. This sample program supports both
Cepstrum and VQCode data formats, allowing you to compare their recognition accuracy. As shown below,
you can select the desired data format using SW1 and SW2 of the DMT33004 board:
SW1 = low: Converts input speech into Cepstrum data.
SW1 = high: Converts input speech into VQCode data.
SW2 = low: Uses Cepstrum dictionary data to perform speech recognition.
SW2 = high: Uses VQCode dictionary data to perform speech recognition.

See Figure A.1.2 for the correct direction to push the switch to set it high or low. The setup status of the two
switches are read in when the program starts after a reset. If you changed switch settings after starting the
program, interrupt forcibly program execution with a forced break and execute the rstc command ([Reset
Cold] button) before executing the g command [Go] button) once again.

Demonstration of nonspecific user-speech recognition
In this demonstration, dictionary data created on a PC is used to perform speech recognition. The dictionary
data contains five words recorded for men – "Arigato" (Thank you), "Konnichiwa" (Good afternoon), "Ohayo"
(Good morning), "Oyasumi" (Goodnight), and "Tadaima" (Hello, I’m here). This dictionary data (dict2.s) was
created from a sample file in the "vretools\sample\dict2\" directory.
To run the demonstration, do the following:
(1) Execute "vrelib\smpl104\sample1\sample.bat".

(2) Bring up the [Simulated I/O] window.

(3) Execute the g command.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

58

(4) Press the PLAY switch on the DMT33004 board.

(5) Speak one of the above words into the microphone connected to the DMT33AMP. The recognition results
are displayed on the [Simulated I/O] window like the one shown below.
Example: result: 5

1: 0011efd7 arigato

2: 0013ef7b konnichiwa

3: 0011304b ohayo

4: 001547a4 oyasumi

5: 00067f17 tadaima

The value "result:" indicates the dictionary data number closest to the speech spoken into the microphone.
If your speech could not be recognized, it indicates the error code returned by vreRecognise(), which is a
negative number. The hexadecimal numbers immediately after "1:" through "5:" indicate the distance
between the input speech quantified characteristics and each dictionary data entry. In this example, the
fifth dictionary data entry "Tadaima" (Hello, I’m here), which had the lowest distance, is the recognition
result. If speech is not properly recognized, adjust the pace of your speech, or raise the DMT33AMP’s
microphone gain slightly before trying again.

(6) You can repeat step (5). To finish, click the [Key Break] button.

Demonstration of specific user-speech recognition
In this demonstration, dictionary data created by entering speech into the DMT33004 is used to perform speech
recognition. To run the demonstration, do the following:
(1) Execute "vrelib\smpl104\sample1\sample.bat".

(2) Bring up the [Simulated I/O] window.

(3) Execute the g command.

(4) Press the REC switch on the DMT33004 board.

(5) After confirming that the DMT33004’s LED indicator is lit, speak a word you want to register toward the
microphone connected to the DMT33AMP. The LED will go out to indicate that the word is registered. If
the LED does not go out, re-register the word. If you experience difficulty, raise the DMT33AMP’s
microphone gain slightly before trying again.

(6) You can register up to 10 words by repeating steps (4) and (5).

(7) When you have finished registering words into the dictionary, press the PLAY switch on the DMT33004
board.

(8) Speak one of the registered words into the microphone connected to the DMT33AMP. The recognition
results are displayed on the [Simulated I/O] window like the one shown below.
Example:result: 4

1: fffffffd

2: 000d8361

3: fffffffd

4: 00097701

The value "result:" indicates the dictionary data number closest to the speech spoken into the microphone.
If your speech could not be recognized, it indicates the error code returned by vreRecognise(), which is a
negative number. The hexadecimal numbers immediately after "1:" through "5:" indicate the distance
between the input speech quantified characteristics and each dictionary data entry. In this example, the
fourth dictionary data entry, which had the lowest distance, is the recognition result. If speech is not
properly recognized, adjust the pace of your speech, or raise the DMT33AMP’s microphone gain slightly
before trying again.

(9) You can repeat step (8). To finish, click the [Key Break] button.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

59

sample2
Sample2 lets you try specific user-speech recognition in VQCode data format. In this demonstration, VQCode
dictionary data created by entering speech into the machine in use is used to perform speech recognition.
To run the demonstration, do the following:
(1) Execute "vrelib\smpl104\sample2\sample.bat".

(2) Execute the g command.

(3) Press the REC switch on the DMT33004 board.

(4) After confirming that the DMT33004’s LED indicator is lit, speak a word you want to register toward the
microphone connected to the DMT33AMP. The LED will go out to indicate that the word is registered. If
the LED does not go out, re-register the word. If you experience difficulty, raise the DMT33AMP’s
microphone gain slightly before trying again.

(5) You can register up to 10 words by repeating steps (3) and (4).

(6) When you have finished registering words into the dictionary, press the PLAY switch on the DMT33004
board.

(7) Speak a registered word toward the microphone connected to the DMT33AMP. When recognition is
successful, the LED on the DMT33004 board will flash a number of times corresponding to the number of
the matching dictionary data entry. If recognition fails, the LED remains off. In this case, re-enter the word.
If recognition does not occur, adjust the pace of your speech or raise the DMT33AMP’s microphone gain
slightly before trying again.

(8) You can repeat step (7). To finish, click the [Key Break] button.

sample3
Sample3 lets you try out nonspecific user-speech recognition and a function for outputting audible results using
the VOX33 library. As with the "dict2.s" file used in sample1, the dictionary data contains five words
registered for men – "Arigato" (Thank you), "Konnichiwa" (Good afternoon), "Ohayo" (Good morning),
"Oyasumi" (Goodnight), and "Tadaima" (Hello, I’m here).
To run the demonstration, do the following:
(1) Execute "vrelib\smpl104\sample3\sample.bat".

(2) Execute the g command.

(3) Speak a word into the microphone connected to the DMT33AMP. When recognition is successful, the
matching dictionary data word is reproduced from the speaker connected to the DMT33AMP. The
reproduction data has been prepared as voice data compressed in VSX format, which is expanded by the
VOX33 library when reproduced from the speaker. When recognition fails, no sound is output from the
speaker. In this case, re-enter the word. If speech is not properly recognized, adjust the pace of your speech
or raise the DMT33AMP’s microphone gain slightly before trying again.

(4) You can repeat step (3). To finish, click the [Key Break] button.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

60

sample4
Sample4 lets you try out nonspecific user-speech recognition using dictionary data prepared separately for men
and women. The dictionary data contains five words registered separately for men and women – "Arigato"
(Thank you), "Konnichiwa" (Good afternoon), "Ohayo" (Good morning), "Oyasumi" (Goodnight), and
"Tadaima" (Hello, I’m here). This dictionary data (dict3.s) was created from sample files in the
"vretools\sample\dict3\" directory.
To run the demonstration, do the following:
(1) Execute "vrelib\smpl104\sample4\sample.bat".

(2) Bring up the [Simulated I/O] window.

(3) Execute the g command.

(4) Speak a word into the microphone connected to the DMT33AMP. The recognition results are displayed in
a [Simulated I/O] window like the one shown below.
Example:result: konnichiwa men

00141476 arigato men

0016a134 arigato women

000bad70 konnichiwa men

000d4839 konnichiwa women

 :

The value "result:" indicates the dictionary data number closest to the speech spoken into the microphone.
If recognition fails, it indicates the error code returned by vreRecognise(), which is 0 or a negative number.
The hexadecimal numbers on each line show the distance between the input speech’s quantified
characteristics data and each dictionary data entry. In this example, "Konnichiwa" (Good afternoon) for
men, with the lowest distance, is the recognition result. If recognition does not occur, adjust the pace of
your speech or raise the DMT33AMP’s microphone gain slightly before trying again.

(5) You can repeat step (4). To finish, click the [Key Break] button.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

61

A.3 Making a Program
The sample programs can be changed before testing, as necessary. For reference, the make procedure is explained
below.

Each sample directory (sample1 through sample4) contains a make file "sample.mak", prepared individually for each
sample. When you’ve corrected the source, use "sample.mak" to create an object file in executable format
"sample.srf". The make for each sample program requires the source files in the "common\" directory, as well as files
in the "sample\" directory.

Procedure for executing make
1. Change "vrelib\sample\sampleX\" to the current directory.
2. Enter the following command at the DOS prompt (for sample1).

C:\E0C33\VRE33\VRELIB\SAMPLE\SAMPLE1>make -f sample.mak

You can also run make from the work bench wb33. (See the "E0C33 Family C Compiler Package Manual".)

Notes: • VRE33 library functions use the CPU’s internal R8 register. When linking the VRE33 library,
avoid using the -gp option for instruction extender ext33 (optimization by global pointer/R8).

• The optional VOX33 library is required for make in sample3.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

62

A.4 Entering Speech
for Dictionary Data Creation/Evaluation on DMT Boards

A.4.1 Entering Speech to Create Recognition
Dictionary Data Using pcmrec.bat

You can also use the DMT board system as a speech input tool when you create recognition dictionary data on a PC.
Here, we explain the method for entering speech using "pcmrec.bat" in the "vretools\utility\rec104\" directory (for
DMT33004) or "vretools\utility\rec208\" directory (for DMT33005). The following explanation assumes use of a
DMT33004 system.

(1) Referring to "System connections" in Section A.1.1, connect the DMT33004, DMT33AMP, DMT33MON, and
PC. Set SW1 and SW2 on the DMT33004 to the Low position (see Figure A.1.2), and turn on the power to each
equipment.

(2) Before the speech input program can be downloaded to the DMT33004, the debug monitor must already be
active. Reconfirm that the DMT33MON DEBUG switch (SW3) is set to the ON position, then reset the system
with the RESET switch (SW1).

(3) Make "vretools\utility\rec104\" the current directory, then run "pcmrec.bat" from the DOS prompt.
Example: C:\E0C33\VRE33\VRETOOLS\UTILITY\REC104\>pcmrec test.pcm rec10.cmd

The first parameter is the file name to be output. The second parameter is the debugger command file name that
determines recording time. Six command file types are then provided as below, with the number in each file
name indicating the recording time in seconds (10 to 60 seconds).
rec10.cmd, rec20.cmd, rec30.cmd, rec40.cmd, rec50.cmd, rec60.cmd

(4) The debugger db33 starts, and after initial settings by the command file, enters standby status.

(5) Do the following to record speech and upload the data:
Each switch on the DMT33004 has the following functions:
SW3 PLAY: Reproduces speech
SW4 REC: Records speech
SW1: Clears recorded content
SW2: Uploads recorded data
NMI (DMT33MON): Stops play or recording

• Press the REC switch to enter recording mode. The LED on the DMT33004 lights. Speak a word you want to
register in the dictionary into the microphone connected to the DMT33AMP. Press the NMI switch to stop
recording. The LED goes out. Press the REC switch again to start from the point at which you stopped
recording. Recording stops and the LED goes out when the time specified by the command file expires.

• When you press the PLAY switch while idle, the recorded data is reproduced from the beginning. Use the NMI
switch to stop playback.

• To clear recorded contents, temporarily set SW1 High while idle, then set it Low again. Press the REC switch
to rerecord from the beginning.

• To upload the recorded data into the PC, temporarily set SW2 High while idle, then set it Low again.

(6) After uploading, db33 is automatically terminated, and "getpcm.exe" is subsequently executed. This creates the
8K-sampling, 16-bit little-endian PCM data file "test.pcm".

For information on performing the following operations, see the explanation in sections beginning with Section
3.1.3.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

E0C33 FAMILY EPSON
VRE33 MIDDLEWARE MANUAL

63

A.4.2 Evaluating Speech Recognition Using recogXXX.bat
To evaluate the recognition dictionary data created on a PC, you can use the DMT system as an instance of a speech
input tool. Here, we explain a method for entering speech and evaluating speech recognition using
"vretools\sample\recog\recog104.bat" (for DMT33004) or "vretools\sample\recog\recog208.bat" (for DMT33005).
The following explanation assumes use of a DMT33004 system.

(1) Referring to "System connections" in Section A.1.1, connect the DMT33004, DMT33AMP, DMT33MON, and
PC. Switch on power to each piece of equipment.

(2) Before the speech input program can be downloaded to the DMT33004, the debug monitor must already be
active. Reconfirm that the DMT33MON DEBUG switch (SW3) is set to the ON position, then reset the system
using the RESET switch (SW1).

(3) Make "vretools\sample\recog\" the current directory, then run "recog104.bat" from the DOS prompt.
Example: C:\E0C33\VRE33\VRETOOLS\SAMPLE\RECOG\>recog104 -cep greetCep.dic

The first parameter is the data format of quantified characteristics (specify -cep for Cepstrum or -vqc for
VQCode), and the second parameter is the file name for the dictionary data (list file of recognition dictionary
data) to be evaluated. The "greetCep.dic" prepared as sample contains five words – "Arigato" (Thank you),
"Konnichiwa" (Good afternoon), "Ohayo" (Good morning), "Oyasumi" (Goodnight), and "Tadaima" (Hello, I’m
here), with data for men and women listed for each entry. This dictionary data is located in the
"vretools\sample\dict3" directory.

(4) The debugger db33 starts and enters speech input mode, after initial settings by the command file.

(5) The LED on the DMT33004 lights to indicate speech input mode. Speak the word you want recognized toward
the microphone connected to the DMT33AMP. Speech input mode continues for 3 seconds, after which time the
LED goes out.

(6) After 3 seconds, db33 is automatically terminated. Subsequently, "mpmDict.exe" is executed to convert the
input speech data into the specified recognition data format, which is then evaluated for recognition by
"mpmRecog.exe". Recognition results are output to "result.txt" and also displayed on-screen.
Example:003 0x0011d727 ..\dict3\ariM.cep

005 0x00149970 ..\dict3\ariW.cep

008 0x0017de02 ..\dict3\konM.cep

010 0x001df2f6 ..\dict3\konW.cep

001 0x000c487a ..\dict3\ohaM.cep

007 0x00175ac3 ..\dict3\ohaW.cep

004 0x0014160c ..\dict3\oyaM.cep

002 0x0010f595 ..\dict3\oyaW.cep

006 0x00150b52 ..\dict3\tadM.cep

009 0x0019869f ..\dict3\tadW.cep

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

EPSON E0C33 FAMILY
VRE33 MIDDLEWARE MANUAL

64

A.5 When Using the DMT33005 Board
The DMT33005 uses an E0C33208 for its CPU. Sample programs for the DMT33005 are provided separately from
those for the DMT33004 (E0C33A104) described above. To perform testing with the DMT33005, use the programs
in the "vrelib\smpl208\" and the "vretools\utility\rec208\" directories. Operation verification can be performed in the
same way as for the DMT33004. Use DSW1 on the DMT33005 as set by default (PLL x2/20 to 30 MHz input).

When using the DMT33005 in place of the DMT33004 as shown in the system configuration in Figure A.1.1, select
TM for the DMT33AMP jumper switches JP2 and JP3, and DA1/TM1 for JP9. Other jumper switches may be used as
set, since there is no need to change settings between the DMT33004 and DMT33005.

When creating applications for the E0C33208, you must link "vrelib\lib\sl208.lib". For additional information, see
the sample linker command file.

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Muenchen, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
2.4 Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-Dong
Youngdeungpo-Ku, Seoul, 150-010, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings .

ELECTRONIC DEVICES MARKETING DIVISION

■ EPSON Electronic Devices Website

http://www.epson.co.jp/device/
Issue NOVEMBER 1999, Printed in Japan M A

	㄀ 伀甀琀氀椀渀攀 漀昀 嘀刀䔀㌀㌀ 䴀椀搀搀氀攀眀愀爀攀
	㄀⸀㄀ 䌀漀洀瀀漀渀攀渀琀猀 漀昀 琀栀攀 嘀刀䔀㌀㌀ 倀愀挀欀愀最攀
	㄀⸀㈀ 䈀愀猀椀挀 䌀漀渀昀椀最甀爀愀琀椀漀渀 漀昀 愀 匀瀀攀攀挀栀 刀攀挀漀最渀椀琀椀漀渀 匀礀猀琀攀洀

	㈀ 䤀渀猀琀愀氀氀愀琀椀漀渀
	㈀⸀㄀ 伀瀀攀爀愀琀椀渀最 䔀渀瘀椀爀漀渀洀攀渀琀
	㈀⸀㈀ 䴀攀琀栀漀搀 漀昀 䤀渀猀琀愀氀氀愀琀椀漀渀

	㌀ 匀漀昀琀眀愀爀攀 䐀攀瘀攀氀漀瀀洀攀渀琀
	㌀⸀㄀ 䌀爀攀愀琀椀渀最 匀瀀攀攀挀栀 刀攀挀漀最渀椀琀椀漀渀 䐀椀挀琀椀漀渀愀爀礀 䐀愀琀愀 戀礀 唀猀椀渀最 琀栀攀 嘀刀䔀㌀㌀ 吀漀漀氀
	㌀⸀㄀⸀㄀ 伀甀琀氀椀渀攀 漀昀 刀攀挀漀最渀椀琀椀漀渀 䐀椀挀琀椀漀渀愀爀礀 䐀愀琀愀
	㌀⸀㄀⸀㈀ 䜀愀琀栀攀爀椀渀最 匀瀀攀攀挀栀 䐀愀琀愀 琀漀 䌀爀攀愀琀攀 愀 刀攀挀漀最渀椀琀椀漀渀 䐀椀挀琀椀漀渀愀爀礀
	㌀⸀㄀⸀㌀ 匀攀瀀愀爀愀琀椀渀最 戀攀琀眀攀攀渀 圀漀爀搀猀 愀渀搀 倀爀漀挀攀猀猀椀渀最 倀䌀䴀 䐀愀琀愀
	㌀⸀㄀⸀㐀 䌀爀攀愀琀椀渀最 䐀椀挀琀椀漀渀愀爀礀 䐀愀琀愀
	㌀⸀㄀⸀㔀 䔀瘀愀氀甀愀琀椀渀最 刀攀挀漀最渀椀琀椀漀渀 倀攀爀昀漀爀洀愀渀挀攀 漀渀 愀 倀䌀
	㌀⸀㄀⸀㘀 䌀漀渀瘀攀爀琀椀渀最 刀攀挀漀最渀椀琀椀漀渀 䐀椀挀琀椀漀渀愀爀礀 䐀愀琀愀 椀渀琀漀 䄀猀猀攀洀戀氀礀 匀漀甀爀挀攀 䘀椀氀攀猀

	㌀⸀㈀ 䌀爀攀愀琀椀渀最 愀渀 䄀瀀瀀氀椀挀愀琀椀漀渀 愀渀搀 䰀椀渀欀椀渀最 琀漀 琀栀攀 嘀刀䔀㌀㌀ 䰀椀戀爀愀爀礀

	㐀 嘀刀䔀㌀㌀ 吀漀漀氀 刀攀昀攀爀攀渀挀攀
	㐀⸀㄀ 伀甀琀氀椀渀攀 漀昀 嘀刀䔀㌀㌀ 吀漀漀氀猀
	㐀⸀㈀ 䐀攀猀挀爀椀瀀琀椀漀渀 漀昀 吀漀漀氀猀
	㐀⸀㈀⸀㄀ 最攀琀瀀挀洀⸀攀砀攀
	㐀⸀㈀⸀㈀ 愀搀搀猀氀渀琀⸀攀砀攀
	㐀⸀㈀⸀㌀ 瀀挀洀开渀漀爀洀⸀攀砀攀
	㐀⸀㈀⸀㐀 洀瀀洀匀氀挀琀⸀攀砀攀
	㐀⸀㈀⸀㔀 洀瀀洀䐀椀挀琀⸀攀砀攀
	㐀⸀㈀⸀㘀 洀瀀洀刀攀挀漀最⸀攀砀攀
	㐀⸀㈀⸀㜀 戀椀渀㈀猀⸀攀砀攀
	㐀⸀㈀⸀㠀 䔀砀攀挀甀琀椀渀最 昀爀漀洀 愀 䈀愀琀挀栀 䘀椀氀攀

	㔀 嘀刀䔀㌀㌀ 䰀椀戀爀愀爀礀 刀攀昀攀爀攀渀挀攀
	㔀⸀㄀ 伀甀琀氀椀渀攀 漀昀 嘀刀䔀㌀㌀ 䰀椀戀爀愀爀礀
	㔀⸀㈀ 䠀愀爀搀眀愀爀攀 刀攀猀漀甀爀挀攀猀 愀渀搀 䤀渀椀琀椀愀氀椀稀愀琀椀漀渀
	㔀⸀㌀ 吀漀瀀ⴀ氀攀瘀攀氀 䘀甀渀挀琀椀漀渀猀
	㔀⸀㌀⸀㄀ 䌀漀洀瀀椀氀攀 伀瀀琀椀漀渀猀
	㔀⸀㌀⸀㈀ 䐀攀昀椀渀椀渀最 琀栀攀 䐀椀挀琀椀漀渀愀爀礀
	㔀⸀㌀⸀㌀ 匀琀爀甀挀琀甀爀攀 漀昀 儀甀愀渀琀椀昀椀攀搀 䌀栀愀爀愀挀琀攀爀椀猀琀椀挀猀 䐀愀琀愀
	㔀⸀㌀⸀㐀 瘀爀攀刀攀挀漀最渀椀猀攀⠀ ⤀
	㔀⸀㌀⸀㔀 瘀爀攀刀攀挀漀最䤀渀椀琀⠀ ⤀
	㔀⸀㌀⸀㘀 瘀爀攀䴀愀欀攀䐀椀挀琀椀漀渀愀爀礀⠀ ⤀
	㔀⸀㌀⸀㜀 洀瀀洀刀攀挀漀最渀椀琀椀漀渀⠀ ⤀

	㔀⸀㐀 嘀刀䔀㌀㌀ 䰀椀戀爀愀爀礀 䘀甀渀挀琀椀漀渀猀
	㔀⸀㐀⸀㄀ 匀瀀攀攀挀栀ⴀ爀攀挀漀最渀椀琀椀漀渀 倀爀漀挀攀猀猀椀渀最 䘀甀渀挀琀椀漀渀猀
	洀瀀洀䜀攀琀匀瀀攀攀挀栀䤀渀椀琀⠀ ⤀
	洀瀀洀䜀攀琀匀瀀攀攀挀栀䘀攀愀琀甀爀攀⠀ ⤀
	洀瀀洀开挀愀氀挀开搀椀猀琀愀渀挀攀⠀ ⤀
	洀瀀洀䤀猀䴀瀀洀䘀攀愀琀甀爀攀⠀ ⤀
	洀瀀洀䤀猀嘀焀䌀漀搀攀⠀ ⤀
	洀瀀洀䜀攀琀䈀甀昀昀攀爀䰀攀渀⠀ ⤀
	洀瀀洀开昀攀愀琀甀爀攀开挀愀挀栀攀⠀ ⤀
	洀瀀洀开爀攀挀漀最开挀愀挀栀攀⠀ ⤀

	㔀⸀㐀⸀㈀ 䤀渀瀀甀琀 ⠀䰀椀猀琀攀渀⤀ 䘀甀渀挀琀椀漀渀猀
	䰀䤀匀开匀䄀䴀倀䰀䤀一䜀⠀ ⤀
	䰀椀猀䤀渀椀琀⠀ ⤀
	䰀椀猀伀瀀攀渀⠀ ⤀
	䰀椀猀䌀氀漀猀攀⠀ ⤀
	䰀椀猀匀琀愀爀琀⠀ ⤀
	䰀椀猀䠀愀氀琀⠀ ⤀
	䰀椀猀䄀瀀瀀攀渀搀⠀ ⤀
	䰀椀猀刀漀漀洀⠀ ⤀
	䰀椀猀儀甀攀甀攀⠀ ⤀
	䰀椀猀䤀猀刀甀渀渀椀渀最⠀ ⤀
	䰀椀猀伀渀䐀漀渀攀⠀ ⤀
	䰀椀猀伀渀䔀洀瀀琀礀⠀ ⤀
	䰀椀猀伀渀一漀琀䤀渀吀椀洀攀⠀ ⤀
	䰀椀猀䤀渀琀爀　⠀ ⤀

	㔀⸀㔀 吀攀挀栀渀椀焀甀攀猀 昀漀爀 匀瀀攀攀搀椀渀最 唀瀀 倀爀漀挀攀猀猀椀渀最
	㔀⸀㘀 䰀椀戀爀愀爀礀 倀攀爀昀漀爀洀愀渀挀攀
	㔀⸀㜀 䌀漀洀戀椀渀攀搀 唀猀攀 眀椀琀栀 嘀伀堀㌀㌀ 䰀椀戀爀愀爀礀
	㔀⸀㠀 倀爀漀最爀愀洀 䔀砀愀洀瀀氀攀猀
	㔀⸀㤀 倀爀攀挀愀甀琀椀漀渀猀

	䄀瀀瀀攀渀搀椀砀 嘀攀爀椀昀礀椀渀最 伀瀀攀爀愀琀椀漀渀 眀椀琀栀 䐀䴀吀㌀㌀ 䈀漀愀爀搀猀
	䄀⸀㄀ 匀礀猀琀攀洀 䌀漀渀昀椀最甀爀愀琀椀漀渀 唀猀椀渀最 䐀䴀吀㌀㌀　　㐀
	䄀⸀㄀⸀㄀ 䠀愀爀搀眀愀爀攀 䌀漀渀昀椀最甀爀愀琀椀漀渀
	䄀⸀㄀⸀㈀ 匀漀昀琀眀愀爀攀

	䄀⸀㈀ 匀愀洀瀀氀攀 倀爀漀最爀愀洀 䔀砀攀挀甀琀椀漀渀 倀爀漀挀攀搀甀爀攀
	䄀⸀㌀ 䴀愀欀椀渀最 愀 倀爀漀最爀愀洀
	䄀⸀㐀 䔀渀琀攀爀椀渀最 匀瀀攀攀挀栀 昀漀爀 䐀椀挀琀椀漀渀愀爀礀 䐀愀琀愀 䌀爀攀愀琀椀漀渀⼀䔀瘀愀氀甀愀琀椀漀渀 漀渀 䐀䴀吀 䈀漀愀爀搀猀
	䄀⸀㐀⸀㄀ 䔀渀琀攀爀椀渀最 匀瀀攀攀挀栀 琀漀 䌀爀攀愀琀攀 刀攀挀漀最渀椀琀椀漀渀 䐀椀挀琀椀漀渀愀爀礀 䐀愀琀愀 唀猀椀渀最 瀀挀洀爀攀挀⸀戀愀琀
	䄀⸀㐀⸀㈀ 䔀瘀愀氀甀愀琀椀渀最 匀瀀攀攀挀栀 刀攀挀漀最渀椀琀椀漀渀 唀猀椀渀最 爀攀挀漀最堀堀堀⸀戀愀琀

	䄀⸀㔀 圀栀攀渀 唀猀椀渀最 琀栀攀 䐀䴀吀㌀㌀　　㔀 䈀漀愀爀搀

