
MF1099-03

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER E0C33 Family

C COMPILER PACKAGE MANUAL
(ver. 3)

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

Windows95 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

SEIKO EPSON CORPORATION 2000 All rights reserved.C

INTRODUCTION

E0C33 FAMILY EPSON
C COMPILER PACKAGE MANUAL (ver.3)

i

Introduction
This document describes the development procedure from compiling C source files to debugging and creating the
mask data which is finally submitted to Seiko Epson. It also explains how to use each development tool of the
E0C33 Family C Compiler Package common to all the models of the E0C33 Family.

How to read the manual
This manual was edited particularly for those who are engaged in program development. Therefore, it assumes that
the reader already possesses the following fundamental knowledge:
• Knowledge about C language (based on ANSI C) and C source creation methods
• Basic knowledge about assembler language
• Basic knowledge about the general concept of program development by a C compiler and an assembler
• Basic operating methods for Windows95, Windows98 or Windows NT4.0

Please refer to manuals or general documents which describe ANSI C and Windows for the above contents.

Before installation
 See Chapter 1. Chapter 1 describes the composition of this package, and provides a general outline of each

tool.

Installation
 Install the tools following the installation procedure described in Chapter 2.

To understand the flow of program development and the operating procedure
 See the Tutorial described in Chapter 3. This will give you an overview of program development using the C

compiler to the debugger and the mask data creation using the mask data checker.

For coding
 See the necessary parts in Chapter 4. Chapter 4 describes notes on creating source files and the grammar for

the assembler language. Also refer to the following manuals when cording:
 E0C33xxx Technical Manual

Covers device specifications, and the operation and control method of the peripheral circuits.
 E0C33000 Core CPU Manual

Has the instructions and details the functions and operation of the Core CPU.

For debugging
 Chapter 16 explains details of the debugger. Sections 16.1 to 16.8 give an overview of the functions of the

debugger. See Section 16.9 for details of the debug commands. Also refer to the following manuals to
understand operations of the debugging tools:

 E0C33 Family In-circuit Emulator (ICE33) Manual
Explains the functions and handling methods of the In-Circuit Emulator ICE33.

 E0C33 Family Peripheral Circuit Board (PRC33xxx) Manual
Explains the functions and handling methods of the peripheral circuit board of the ICE33.

 E0C33 Family In-circuit Debugger (ICD33) Manual
Explains the functions and handling methods of the In-Circuit Debugger ICD33.

 E0C33 Family MON33 Debug Monitor Manual
Explains the functions and implementation of the Debug Monitor MON33.

For details of each tool
 Chapters 5 to 17 explain the details of each tool. Refer to it if necessary.

Once familiar with this package
 Refer to the listings of instructions and commands contained in Appendices.

INTRODUCTION

 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)
ii

Manual Notations
This manual was prepared by following the notation rules detailed below:

(1) Sample screens
 The sample screens provided in the manual are all examples of displays under Windows95. These displays

may vary according to the system or fonts used.

(2) Names of each part
 The names or designations of the windows, menus and menu commands, buttons, dialog boxes, and keys are

annotated in brackets []. Examples: [Command] window, [File] menu/[Exit] command ([Exit] command in
[File] menu), [Escape break] button, [q] key, etc.

(3) Names of instructions and commands
 The CPU instructions and the debugger commands that can be written in either uppercase or lowercase

characters are annotated in lowercase characters in this manual, except for user-specified symbols.

(4) Notation of numeric values
 Numeric values are described as follows:
 Decimal numbers: Not accompanied by any prefix or suffix (e. g., 123, 1000).
 Hexadecimal numbers: Accompanied by the prefix "0x" (e. g., 0x0110, 0xffff).
 Binary numbers: Accompanied by the prefix "0b" (e. g., 0b0001, 0b10).
 However, please note that some sample displays may indicate hexadecimal or binary numbers not

accompanied by any symbol.

(5) Mouse operations

To click: The operation of pressing the left mouse button once, with the cursor (pointer) placed in
the intended location, is expressed as "to click". The clicking operation of the right mouse
button is expressed as "to right-click".

To double-click: Operations of pressing the left mouse button twice in a row, with the cursor (pointer)
placed in the intended location, are all expressed as "to double-click".

To drag: The operation of clicking on a file (icon) with the left mouse button and holding it down
while moving the icon to another location on the screen is expressed as "to drag".

To select: The operation of selecting a menu command by clicking is expressed as "to select".

(6) Key operations
 The operation of pressing a specific key is expressed as "to enter a key" or "to press a key".
 A combination of keys using "+", such as [Ctrl]+[C] keys, denotes the operation of pressing the [C] key

while the [Ctrl] key is held down. Sample entries through the keyboard are not indicated in []. Moreover, the
operation of pressing the [Enter] key in sample entries is represented by ↵.

 In this manual, all the operations that can be executed with the mouse are described only as mouse operations.
For operating procedures executed through the keyboard, refer to the Windows manual or help screens.

(7) General forms of commands, startup options, and messages
 Items given in [] are those to be selected by the user, and they will work without any key entry involved.
 An annotation enclosed in < > indicates that a specific name should be placed here. For example, <file name>

needs to be replaced with an actual file name.
 Items enclosed in { } and separated with | indicate that you should chosen an item. For example, {A | B}

needs to have either A or B selected.

CONTENTS

E0C33 FAMILY EPSON iii

C COMPILER PACKAGE MANUAL (ver.3)

Contents

Chapter 1 General

 1.1 Features...1
 1.2 Tool Composition...1
 1.2.1 Composition of Package ..1
 1.2.2 Outline of Software Tools..1

Chapter 2 Installation

 2.1 Working Environment ..3
 2.2 Installation Method...4

Chapter 3 Software Development Procedures

 3.1 Software Development Flow ..6
 3.2 Tutorial (Flow of Operations with Work Bench)..9
 3.2.1 Startup of Work Bench wb33 ..9

3.2.2 Selecting Directory and Displaying File Contents...11
3.2.3 Creating Make File ..12
3.2.4 Auto-execution from Compiling to Linking ..13
3.2.5 To Execute Tools Individually ..13
3.2.6 Creating Parameter File for Debugger ...14
3.2.7 Debugging ...15
3.2.8 Creating Disassembly File ...22
3.2.9 Creating ROM Data ...23
3.2.10 Optimization ..24
3.2.11 Epilogue...25

 3.3 Debugging Environment...26
3.3.1 In-Circuit Emulator ICE33 ..26
3.3.2 Debug Monitor MON33 ..27
3.3.3 In-Circuit Debugger ICD33 ...30
3.3.4 0HPRU\ ERDUG 0(0����� ...33

 3.4 Relationship between Program Structure and Memory ..35

Chapter 4 Source Files

 4.1 File Format and File Name ...40
 4.2 Grammar of C Source ...41

4.2.1 Data Type...41
4.2.2 Library Functions and Header Files...41
4.2.3 In-line Assemble ..42

4.3 Grammar of Assembly Source..43
4.3.1 Statements..43
4.3.2 Notations of Operands ...47
4.3.3 Extended Instructions ..50
4.3.4 Additional Preprocessor Functions ..51

 4.4 Precautions for Creation of Sources ...52

Chapter 5 Work Bench

 5.1 Functions ..53
 5.2 Operations...54

5.2.1 Starting Up and Terminating wb33..54
5.2.2 Window ...55
5.2.3 Selecting File and Displaying Source ..57
5.2.4 Executing Individual Tools..58

CONTENTS

iv EPSON E0C33 FAMILY

 C COMPILER PACKAGE MANUAL (ver.3)

5.2.5 Selecting Execution Conditions ...63
5.2.6 Make ..64
5.2.7 Parameter File Generator ...73
5.2.8 Specifying a General-purpose Editor ...75
5.2.9 Entering Command Lines ..76
5.2.10 Saving and Restoring Options..76

 5.3 Error Messages..77
 5.4 Precautions..77

Chapter 6 C Compiler

 6.1 Functions...78
 6.2 Input/Output Files ...78

6.2.1 Input File..78
6.2.2 Output Files..78

 6.3 Starting Method ..79
6.3.1 Startup Format ...79
6.3.2 Startup Options ..79

6.4 Messages...82
6.5 Compiler Output ...83

6.5.1 Output Contents ...83
6.5.2 Data Representation ...84
6.5.3 Method of Using Registers ..85
6.5.4 Function Call..86
6.5.5 Stack Frame ...87

6.6 Debugging Information...88
6.6.1 Source Information ..88
6.6.2 Symbol Information ...88

 6.7 Functions of gcc33 and Usage Precautions...93

Chapter 7 Emulation Library

 7.1 Overview...94
 7.2 Floating-point Calculation Library (fp.lib) ...94

7.2.1 Function List ..94
7.2.2 Floating-point Format ..95

 7.3 Integral Remainder Calculation Library (idiv.lib) ..96
 7.4 Floating-point Calculation Library (fpp.lib) ...96

Chapter 8 ANSI Library

8.1 Overview...97
8.2 ANSI Library Function List..98

8.2.1 Input/Output Functions (io.lib) ..98
8.2.2 Utility Functions (lib.lib) ...100
8.2.3 Date and Time Functions (lib.lib) ..101
8.2.4 Mathematical Functions (math.lib) ..102
8.2.5 Character Functions (string.lib) ...103
8.2.6 Character Type Determination/Conversion Functions (ctype.lib)104
8.2.7 Variable Argument Macros (stdarg.h)..104

8.3 Declaring and Initializing Global Variables..105
8.4 Lower-level Functions ..106

8.4.1 "read" Function ..106
8.4.2 "write" Function...107
8.4.3 "_exit" Function...107

CONTENTS

E0C33 FAMILY EPSON v

C COMPILER PACKAGE MANUAL (ver.3)

Chapter 9 Preprocessor

9.1 Functions ..108
9.2 Input/Output Files...108

9.2.1 Input File..108
9.2.2 Output Files ...108

9.3 Starting Method ..109
9.3.1 Startup Format ...109
9.3.2 Startup Options ..109

9.4 Messages...110
9.5 Preprocessor Pseudo-Instructions ...111

9.5.1 Include Instruction (#include)..111
9.5.2 Define Instruction (#define)...112
9.5.3 Macro Instructions (#macro ... #endm)..114
9.5.4 Conditional Assembly Instructions
 (#ifdef ... #else ... #endif, #ifndef... #else ... #endif) ..116

9.6 Operators ..118
9.7 Debugging Information ..120
9.8 Comment Adding Function ..121
9.9 Other Functions ..121

9.9.1 ASCII to HEX Conversion ..121
9.9.2 Comment Line ...121

9.10 Process Flow...122
9.11 Sample Executions..122
9.12 Error/Warning Messages ..124

9.12.1 Errors ...124
9.12.2 Warning ...125

9.13 Precautions..125

Chapter 10 Instruction Extender

10.1 Functions ..126
10.2 Input/Output Files...126

10.2.1 Input Files ..126
10.2.2 Output Files ...127

10.3 Starting Method ..127
10.3.1 Startup Format ...127
10.3.2 Startup Options ..127

10.4 Command File ..129
10.5 Messages...130
10.6 Extended Instructions ...131

10.6.1 Arithmetic Operation Instructions ...131
10.6.2 Comparison Instructions ..132
10.6.3 Logic Operation Instructions ...133
10.6.4 Shift & Rotate Instructions ..134
10.6.5 Data Transfer Instructions (between Stack and Register) ..135
10.6.6 Data Transfer Instructions (between Memory and Register) ...136
10.6.7 Immediate Data Load Instructions ...141
10.6.8 Bit Operation Instructions..142
10.6.9 Branch Instructions ..145

10.7 Optimize Function ..147
10.7.1 Optimizing Relative Branch Instruction ..147
10.7.2 Optimization by the Global Pointer ...148
10.7.3 Optimization by Symbol Information..148

10.8 Other Functions ..149

CONTENTS

vi EPSON E0C33 FAMILY

 C COMPILER PACKAGE MANUAL (ver.3)

10.8.1 Comment Adding Function..149
10.8.2 Classification of Local Symbols ..149
10.8.3 Syntactic Check ...149

10.9 Sample Execution ...150
10.10 Error/Warning Messages...157

10.10.1 Errors ...157
10.10.2 Warning ...158

10.11 Precautions..158

Chapter 11 Assembler

11.1 Functions...159
11.2 Input/Output Files ...159

11.2.1 Input File..159
11.2.2 Output Files..159

11.3 Starting Method ..160
11.3.1 Startup Format ...160
11.3.2 Startup Options ..160

11.4 Messages ...161
11.5 Relocatable Assembling and Absolute Assembling..162

11.5.1 Relocatable Assembling...162
11.5.2 Absolute Assembling ...162

11.6 Scope...163
11.7 Definition of Sections ...164
11.8 Assembler Pseudo-Instructions...167

11.8.1 Absolute Assembling Pseudo-Instruction (.abs) ..167
11.8.2 Section Defining Pseudo-Instructions (.code, .data) ..168
11.8.3 Area Securing Pseudo-Instructions (.comm, .lcomm)..169
11.8.4 Location Counter Control Pseudo-Instruction (.org) ...171
11.8.5 Symbol Defining Pseudo-Instruction (.set)..172
11.8.6 Data Defining Pseudo-Instruction (.word, .half, .byte, .ascii, .space)173
11.8.7 Alignment Pseudo-Instruction (.align)...176
11.8.8 Global Declaring Pseudo-Instruction (.global) ..176
11.8.9 List Control Pseudo-Instructions (.list, .nolist) ..177
11.8.10 Debugging Pseudo-Instructions (.file, .endfile, .loc, .def) ...178

11.9 Assembly List File ..179
11.10 Error/Warning Messages...180

11.10.1 Errors ...180
11.10.2 Warning ...181

 11.11 Precautions..181

Chapter 12 Linker

12.1 Functions...182
12.2 Input/Output Files ...182

12.2.1 Input Files ..182
12.2.2 Output Files..183

12.3 Starting Method ..184
12.3.1 Startup Format ...184
12.3.2 Startup Options ..184

12.4 Messages ...185
12.5 Linker Commands...186

12.5.1 Linker Command File ..186
12.5.2 Linker Command List ..188

12.6 Locating Sections..193

CONTENTS

E0C33 FAMILY EPSON vii

C COMPILER PACKAGE MANUAL (ver.3)

12.7 Virtual and Shared (U) Sections ...196
12.8 Section Symbols ...199
12.9 Linking Libraries ..201
12.10 Resolving Symbols ...203
12.11 Link Map File ...204
12.12 Symbol File ..205
12.13 Error/Warning Messages ..206

12.13.1 Errors ...206
12.13.2 Warning ...207

 12.14 Precautions..208

Chapter 13 Disassembler

13.1 Functions ..209
13.2 Input/Output Files...209

13.2.1 Input Files ..209
13.2.2 Output Files ...209

13.3 Starting Method ..210
13.3.1 Startup Format ...210
13.3.2 Startup Options ..210

13.4 Messages...211
13.5 Disassembling Output...212

13.5.1 Mix Output ..212
13.5.2 Code Output...214
13.5.3 Data Output..215

13.6 Error/Warning Messages ..216
13.6.1 Errors ...216
13.6.2 Warning ...216

 13.7 Precautions..217

Chapter 14 Binary/HEX Converter

14.1 Functions ..218
14.2 Input/Output Files...218

14.2.1 Input File..218
14.2.2 Output Files ...218

14.3 Starting Method ..219
14.3.1 Startup Format ...219
14.3.2 Startup Options ..219

14.4 Messages...220
14.5 Contents of HEX File ...221

14.5.1 Motorola S3 Format...221
14.5.2 Absolute Address Output...221
14.5.3 Offset Address Output ...221

14.6 Error/Warning Messages ..222
14.6.1 Errors ...222
14.6.2 Warning ...222

 14.7 Precautions..223

Chapter 15 Librarian

15.1 Functions ..224
15.2 Input/Output Files...224

15.2.1 Input Files ..224
15.2.2 Output Files ...224

 15.3 Starting Method ..225

CONTENTS

viii EPSON E0C33 FAMILY

 C COMPILER PACKAGE MANUAL (ver.3)

15.3.1 Startup Format ...225
15.3.2 Startup Options ..225

15.4 Messages ...226
15.5 Library Editing Functions...227

15.5.1 Creating a New Library..227
15.5.2 Adding Modules to a Library...227
15.5.3 Listing Registered Modules ...228
15.5.4 Deleting Modules from a Library ..228
15.5.5 Restoring Object Files..228

15.6 Error/Warning Messages...229
15.6.1 Errors ...229
15.6.2 Warnings..229

 15.7 Precautions..229

Chapter 16 Debugger

16.1 Features...230
16.2 Input/Output Files ...230

16.2.1 Input Files ..230
16.2.2 Output File ...231

 16.3 Starting Method ..232
16.3.1 Startup Format ...232
16.3.2 Startup Options ..232
16.3.3 Startup Messages..233
16.3.4 Method of Termination ..236

 16.4 Windows ...237
16.4.1 Basic Structure of Window ..237
16.4.2 [Command] Window..239
16.4.3 [Source] Window...240
16.4.4 [Memory] Window ..243
16.4.5 [Register] Window...244
16.4.6 [Trace] Window...245
16.4.7 [Symbol] Window..247
16.4.8 [Simulated I/O] Window..248

 16.5 Tool Bar ..249
16.5.1 Tool Bar Structure..249
16.5.2 [Key break] Button ..249
16.5.3 [Load file] Button ..249
16.5.4 [Source], [Mix] and [Unassemble] Buttons ...249
16.5.5 [Go], [Go to], [Step], [Next], [Reset cold] and [Reset hot] Buttons249
16.5.6 [Soft PC break] and [Hard PC break] Buttons ...250
16.5.7 [Symbol watch], [Symbol add] and [Symbol delete] Buttons..250
16.5.8 [Display trace] and [Resume trace] Buttons...251
16.5.9 [Select source] Combo Box ...251

16.6 Menu ...252
16.6.1 Menu Structure...252
16.6.2 [File] Menu ..252
16.6.3 [Edit] Menu..252
16.6.4 [Run] Menu..252
16.6.5 [Break] Menu ...253
16.6.6 [Symbol] Menu ..253
16.6.7 [Window] Menu...254
16.6.8 [Help] Menu...254

 16.7 Method for Executing Commands ..255

CONTENTS

E0C33 FAMILY EPSON ix

C COMPILER PACKAGE MANUAL (ver.3)

16.7.1 Entering Commands from Keyboard ...255
16.7.2 Parameter Input Formats..256
16.7.3 Executing from Menu or Tool Bar...259
16.7.4 Executing from Command File..260
16.7.5 Log File..261

16.8 Debug Functions...262
16.8.1 Debugger Mode ...262
16.8.2 Loading Files ...267
16.8.3 Source Display and Symbolic Debugging Function ..268
16.8.4 Displaying and Modifying Memory Data and Register ...271
16.8.5 Executing Program ..273
16.8.6 Break Functions ...277
16.8.7 Trace Functions ...285
16.8.8 Simulated I/O...294
16.8.9 Operation of Flash Memory...296
16.8.10 Other Functions ...299
16.8.11 Big-Endian Support ...300

 16.9 Command Reference...301
16.9.1 Command List ...301
16.9.2 Commands to Operate Memory...302

 fb (fill byte) [ICD / ICE / SIM / MON] ...302
 fh (fill half) [ICD / ICE / SIM / MON]..303
 fw (fill word) [ICD / ICE / SIM / MON] ...304
 db (dump byte) [ICD / ICE / SIM / MON] ..305
 dh (dump half) [ICD / ICE / SIM / MON]...307
 dw (dump word) [ICD / ICE / SIM / MON]..309
 df (dump file) [ICD / ICE / SIM / MON] ..311
 eb (enter byte) [ICD / ICE / SIM / MON]..312
 eh (enter half) [ICD / ICE / SIM / MON] ..313
 ew (enter word) [ICD / ICE / SIM / MON] ...314
 mv (move) [ICD / ICE / SIM / MON] ...315
 mvh (move half) [ICD / (ICE) / SIM / MON] ...316
 mvw (move word) [ICD / (ICE) / SIM / MON]...317
 w (watch) [ICD / ICE / SIM / MON]...318
 rm (read memory) [ICD]..319
 16.9.3 Commands to Operate on Register ..320
 rd (register display) [ICD / ICE / SIM / MON] ...320
 rs (register set) [ICD /ICE / SIM / MON]..321
 16.9.4 Commands to Execute Program...322
 g (go) [ICD / ICE / SIM / MON] ...322
 s (step) [ICD / ICE / SIM / MON] ...324
 n (next) [ICD / ICE / SIM / MON] ..326
 16.9.5 Commands to Reset CPU...327
 rstc (cold reset CPU) [ICD / ICE / SIM / MON] ...327
 rsth (hot reset CPU) [ICD / ICE / SIM / MON]...328
 16.9.6 Interrupt Command..329
 int (interrupt) [SIM]...329
 16.9.7 Commands to Set Breaks ...330
 bp (break point set) [ICD / ICE / SIM / MON]..330
 bs (break software) [ICD / ICE / SIM / MON] ..334
 bc (break clear) [ICD / ICE / SIM / MON]..335
 bh (break hardware) [ICD / ICE / SIM / MON]...336
 bhc (break hardware clear) [ICD / ICE / SIM / MON] ..337

CONTENTS

x EPSON E0C33 FAMILY

 C COMPILER PACKAGE MANUAL (ver.3)

 bh2 (break hardware 2) [ICD / (ICE) / SIM / MON] ...338
 bhc2 (break hardware 2 clear) [ICD / (ICE) / SIM / MON]...................................339
 bd (data break) [ICD / ICE / SIM / MON]...340
 bsq (break sequential) [ICE] ..342
 ba (break area) [ICD+MEM33] ...345
 bb (break bus) [ICD+MEM33] ..347
 bl (break list) [ICD / ICE / SIM / MON]..350
 bac (break all clear) [ICD / ICE / SIM / MON] ...351
 16.9.8 Commands to Display Program ...352
 u (unassemble) [ICD / ICE / SIM / MON]...352
 sc (source code) [ICD / ICE / SIM / MON] ...354
 m (mix) [ICD / ICE / SIM / MON] ..356
 ss (search strings) [ICD / ICE / SIM / MON]...358
 16.9.9 Commands to Display Symbol Information...359
 sy (symbol list) [ICD / ICE / SIM / MON] ..359
 sa (symbol add) [ICD / ICE / SIM / MON]..364
 sd (symbol delete) [ICD / ICE / SIM / MON]..367
 sw (symbol watch) [ICD / ICE / SIM / MON]...368
 16.9.10 Commands to Load Files ...371
 lf (load file) [ICD / ICE / SIM / MON]..371
 lh (load hex) [ICD / ICE / SIM / MON]...373
 ld (load file) [ICD / ICE / SIM / MON] ...374
 16.9.11 Commands to Operate Flash Memory..375
 fls (flash memory set) [ICD / (ICE) / MON]..375
 fle (flash memory erase) [ICD / (ICE) / MON]..376
 lfl (load from flash memory) [ICE]..377
 sfl (save to flash memory) [ICE]..378
 efl (erase flash memory) [ICE]...379
 maf (map flash memory) [ICE]..380
 16.9.12 Trace Commands ...381
 tm (trace mode) [ICD / ICE / SIM] ..381
 td (trace dump) [ICD / ICE]...387
 ts (trace search) [ICD / ICE] ..391
 tf (trace file) [ICD / ICE] ...393
 16.9.13 Simulated I/O...394
 stdin (standard input) [ICD / ICE / SIM / MON]...394
 stdout (standard output) [ICD / ICE / SIM / MON]...395
 16.9.14 Other Commands ...396
 com (execute command file) [ICD / ICE / SIM / MON]..396
 cmw (execute command file with wait) [ICD / ICE / SIM / MON].......................397
 log (logging) [ICD / ICE / SIM / MON]..398
 od (option data dump) [ICE]..399
 ct (change type) [ICD / ICE / SIM / MON] ...400
 ext (extended instruction) [ICD / ICE / SIM / MON] ..402
 ma (map information) [ICD / ICE / SIM / MON]..404
 md (mode) [ICD / ICE / SIM / MON] ...405
 q (quit) [ICD / ICE / SIM / MON] ...407
 ? (help) [ICD / ICE / SIM / MON]...408
 ice (ice) [ICE] ..409

16.10 Parameter File ...410

CONTENTS

E0C33 FAMILY EPSON xi

C COMPILER PACKAGE MANUAL (ver.3)

16.11 Status/Error/Warning Messages..417
16.11.1 Status Messages ...417
16.11.2 Error Messages ..417
16.11.3 Warning Messages...420

Chapter 17 Other Tools

 17.1 Make ...421
17.1.1 Starting Method ...421
17.1.2 Messages..422
17.1.3 Make File...423
17.1.4 2-pass make ...428
17.1.5 clean...428
17.1.6 Error/Warning Messages ...429
17.1.7 Precautions...429

17.2 cwait ...430
17.2.1 Functions ...430
17.2.2 Method for Using cwait ...430

17.3 ccap...431
17.3.1 Functions ...431
17.3.2 Method for Using ccap ..431

Appendix srf33 File Structure

 A-1 srf33 Object File Structure ..433
 A-2 Library File Structure ..438

Quick Reference

CHAPTER 1: GENERAL

E0C33 FAMILY EPSON
C COMPILER PACKAGE MANUAL (ver.3)

1

��������	� �
�������

1.1 Features
The E0C33 Family C Compiler Package contains software development tools for compiling C source files,
assembling assembly source files, linking object files, debugging executable files, making mask data and other
utilities. The tools are common to all the models of the E0C33 Family.
Its principal features are as follows:

Powerful optimizing function
 The C Compiler is designed to suit to the E0C33 architecture, it makes it possible to deliver minimized codes.

The high-optimize ability does not lose most of the debugging information, and it enables C source level
debugging.

 Furthermore, the Instruction Extender also provides the optimizing function using the map/symbol
information after linking.

Useful extended instructions are provided
 The extended instructions allow the programmer to describe assembly source simply without the need of

knowing the data size. The immediate data extension using the "ext" instruction and some useful functions
that need multiple basic instructions are described with an extended instruction.

C and assembly source level debugger with a simulator function
 The debugger supports C source level debugging and assembly source level debugging. By using the ICE33,

ICD33 or MON33, the program can be debugged even when the target board is operating. It also provides a
simulator function that allows debugging on a personal computer without using the ICE33.

Integrated working environment, by Work Bench
 The Work Bench supports Windows GUI and allows a series of tools to be executed through its windows. All

the basic operations can be executed by the mouse alone.

1.2 Tool Composition

1.2.1 Composition of Package
The E0C33 Family C Compiler Package contains the elements listed below. Please check to make sure that all
elements are supplied.
1) Tool disks (CD-ROM) One
2) E0C33 Family C Compiler Package Manual (this manual) One each in English and Japanese
3) Warranty card One each in English and Japanese

1.2.2 Outline of Software Tools
The following shows the outlines of the principle tools included in the package:

(1) C Compiler (gcc33.exe)
 This tool is made based on GNU C Compiler designed by Free Software Foundation, Inc. and is compatible

with ANSI C.
 The gcc33 compile C source files to the assembly source files for the E0C33 Family. It has a powerful

optimizing ability that can generate minimized assembly codes. The gcc33 consists of three files: gcc33.exe,
cpp.exe and cc1.exe.

(2) Preprocessor (pp33.exe)
 The Preprocessor pp33 starts the processing procedure of assembly source files when developing programs in

assembler language. The pp33 expands the range of program-creating functions, such as for macro statements
that makes it possible to use a group of multiple statements as if they were one single statement and include
statements that insert other files, and thus creates assembly source files to be entered into the Instruction
Extender ext33.

CHAPTER 1: GENERAL

 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)
2

(3) Instruction Extender (ext33.exe)
 The Instruction Extender ext33 optimizes the assembly source files by decreasing the immediate extension

instructions (ext) of the E0C33000 instruction set. The extended instructions that enable program description
without the need of knowing immediate data extension are provided by the ext33. The ext33 also supports a
2-pass make that optimizes source codes using the map/symbol information after linking.

(4) Assembler (as33.exe)
 The Assembler as33 assembles assembly source files output by the ext33 and converts the mnemonics of the

source files into object codes (machine language) of the E0C33000. The results are output in an object file
that can be linked or added to a library.

(5) Linker (lk33.exe)
 The linker defines the memory locations of object codes created by the as33, and creates executable object

codes. This tool puts together multiple objects and library files into one file.

(6) Disassembler (dis63.exe)
 The Disassembler dis33 disassembles the srf33 object file output by the lk33, and creates a file that can be

referred to with mnemonic codes and source codes. This function is effective when viewing the
correspondence between source codes and absolute addresses after linking.

(7) Binary/HEX Converter (hex33.exe)
 The Mask Data Checker converts the srf33 object file output by the lk33 into a Motorola S3 format HEX file

for writing to the ROM. HEX data for the external ROM can be written to ROMs using a ROM writer. HEX
data for the internal ROM becomes the mask data.

(8) Debugger (db33.exe)
 The Debugger db33 serves to perform debugging by controlling the hardware tool (ICE33 or ICD33) or the

debug monitor (MON33). It also comes with a simulator function that allows debugging on a personal
computer. Commands that are used frequently, such as break and step, are registered on the tool bar,
minimizing the necessary keyboard operations. Moreover, it supports C and assembly source level debugging,
and various data can be displayed in multi windows, with a resultant increased efficiency in the debugging
tasks.

(9) Librarian (lib33.exe)
 The Librarian lib33 edits libraries. The lib33 can register object modules created by the as33 to libraries,

delete object modules in libraries and restore library modules to the original object files.

(10) Make (make.exe)
 The Make automatically executes from compile to link according to the command lines described in the make

file. The make file can be created by the wb33.

(11) Work Bench (wb33.exe)
 This software enables the tools mentioned above to be started up from one single window. The selection of

files, major startup options, and the startup of each tool can be executed by mouse operations alone. The
wb33 establishes an efficient working environment for development tasks.

This package contains sample programs and several utility programs. For details on those programs, please refer to
"readme.txt" (English) or "readmeja.txt" (Japanese) on the disk.

CHAPTER 2: INSTALLATION

E0C33 FAMILY EPSON 3
C COMPILER PACKAGE MANUAL (ver.3)

Chapter 2 Installation
This chapter describes the required working environments for the tools supplied in the E0C33 Family C Compiler
Package and their installation methods.

2.1 Working Environment
To use the E0C33 Family C Compiler Package, the following conditions are necessary:

Personal computer
 An IBM PC/AT or a compatible machine which is equipped with a CPU equal to or better than a Pentium 90

MHz, and 32MB or more of memory is recommended.
 To use the optional In-Circuit Emulator ICE33 or In-Circuit Debugger ICD33, the personal computer also

requires a serial port (with a D-sub 9 pin) and a parallel port (D-sub 25 pin). When using the Debug Monitor
MON33 with the DMT33MON board, only a serial port (with a D-sub 9 pin) is required.

Display
 A display unit capable of displaying 800 × 600 dots or more is necessary.

Hard drive
 The hard drive must have at least 10MB of empty space to install the E0C33 Family C Compiler Package.

CD-ROM drive
 Since the installation is done from a CD-ROM, a CD-ROM drive is required.

Mouse
 A mouse is necessary to operate the tools.

Debugging tool
 To debug the program and the target system, the optional In-Circuit Emulator (ICE33), In-Circuit Debugger

(ICD33), or Debug Monitor (MON33 and DMT33MON) is needed in addition to this software package.

System software
 The E0C33 Family C Compiler Package supports Microsoft Windows95, Windows NT4.0 or higher

version (English or Japanese version).

Other
 Please go through the precautions and restrictions given in "readmeVxx.txt" (English, Japanese) (xx indicates

version) on the disk.

CHAPTER 2: INSTALLATION

4 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

2.2 Installation Method
All the tools in the E0C33 Family C Compiler Package are supplied on one CD-ROM. Execute the self-extract file
"cc33vXX.exe" on the CD-ROM to install the files. ("XX" in the file name represents the version number, for
example, "cc33v20.exe" is the file name of ver. 2.0.)
When "cc33vXX.exe" is started up by double-clicking the file icon, the following dialog box appears.

Enter a path/folder name in the text box then click
[Unzip]. The specified folder will be created and all the
files will be copied to the folder.
When the specified folder already exists on the specified
path, the folder will be overwritten without prompting if
[Overwrite Files Without Prompting] is checked.

The following lists the configuration of directories and files after copying.

 RootDIR- readmeVxx.txt Information about tools (in English and Japanese)
 (C:\CC33\) with xx indicating version
 GNU_COPYRIGHT GNU copyright

 wb33.exe, ccap.exe Work Bench and accompanying tool
 make.exe, cwait.exe make and accompanying tool
 gcc33.exe, cpp.exe, cc1.exe C Compiler
 pp33.exe Preprocessor
 ext33.exe Instruction Extender
 as33.exe Assembler
 lk33.exe Linker
 lib33.exe Librarian
 db33.exe Debugger
 dis33.exe Disassembler
 hex33.exe Binary/HEX Converter

 vb40032.dll, olepro32.dll, msvcrt40.dll dll files for Work Bench

 lib\ - io.lib , lib.lib, math.lib, ctype.lib, string.lib, idiv.lib, fp.lib

 include\ - stdio.h, stdlib.h, time.h, math.h, errno.h, float.h, limits.h, ctype.h, string.h,
 stdarg.h

 sample\

 utility\

 Refer to the "readme.txt" (English), "readmeja.txt" (Japanese) or "*_man.txt" (English) for the contents of

the "sample" and "utility" directories.

CHAPTER 2: INSTALLATION

E0C33 FAMILY EPSON 5
C COMPILER PACKAGE MANUAL (ver.3)

Precautions on setting the OS
 • Set the display property as "Small fonts" used by the "Display" in the control panel.

 • When using a drive on the network as the tool and/or work drive, be sure to assign a drive name to it. The

network name cannot be used.

 • Do not use the COM and LPT ports for the debugging tool (ICE33, ICD33 or MON33) in other drivers and

applications. Furthermore, make sure that the port has been enabled when using a note PC as some can
disable COM ports.

 • If the debugger db33 or work bench wb33 have a problem on the GUI that causes an abnormal display,

decrease the function level of the graphics or use a low-level standard display driver which has been supplied
in the Windows package.

To delete tools
 The files are all installed in the specified directory (default is "C:\CC33\"). To delete all the tools, delete the

directory (folder).

GNU copyright
 The C Compiler gcc33 in this package is made based on the GNU C Compiler designed by Free Software

Foundation, Inc. Please read the "GNU_COPYRIGHT" text file for the license before using.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

6 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Chapter 3 Software Development Procedures
This chapter explains the flow through the basic operating methods of Work Bench wb33, from compiling
program to debugging and creating mask data. The sample programs discussed in this chapter are installed in the
"sample\tst\" and "sample\dmt33005\" directories. It is possible to practice the operations by following the manual.

3.1 Software Development Flow
Figure 3.1.1 shows the flow of software development work.

Work Bench
wb33

Make

C Compiler
gcc33

Instruction Extender
ext33

Assembler
as33

Linker
lk33

Debugger
db33

Debug tool
• ICE33+PRC33xxx
• ICD33
• DMT33MON

Simulator

Disassembler
dis33

Binary/HEX Converter
hex33

Preprocessor
pp33

file.c

file.ps

file.ms

file.o

file.srf

file.dis

file.mak

file.par

file.sa

file.sym

Librarian
lib33

file.lib ********.lib

file.s

file.map

ANSI Library
Emulation Library

SEIKO EPSON

Internal ROM data
(Mask data file)

C source files Assembly source files

Library
files

Object files

Parameter file

Make
file

External
ROM data

ROM WriterTarget Board

Absolute object file

ROM data HEX file
Disassembly

list file

Fig. 3.1.1 Software development flow

As shown in the figure, the tools of this package support for all the software processing after creating source files.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 7
C COMPILER PACKAGE MANUAL (ver.3)

The development flow is detailed below.

(1) Creating a source program
 Create source files using a general-purpose editor. A program can be created in several separate modules

(source files).

(2) Creating a make file
 Create a make file for automatic processing from compiling or preprocessing to linking. A basic make file

can be created easily on the Work Bench.

(3) Executing make
 Execute the make using the make file created to generate an srf33 object file that can be debugged.
 The make sequentially executes the necessary processes from among the ones below.

 Compiling (in case of C sources)
 The C source files are compiled by the C Compiler gcc33. The gcc33 delivers the assembly source files

(.ps) to be entered in the Instruction Extender ext33.

 Preprocessing by the Preprocessor (in case of assembly sources)
 The source files that are created in assembler language are first processed by the Preprocessor pp33.

The pp33 expands the preprocessor instructions into mnemonics that can be assembled with the
Assembler and delivers assembly source files (.ps) to be entered in the Instruction Extender ext33.

 Optimization by the Instruction Extender
 The Instruction Extender ext33 expands the extended instructions described in the source file (.ps) into

mnemonics that can be assembled with the Assembler and delivers assembly source files (.ms) to be
entered in the Assembler as33.

 Furthermore, the ext33 optimizes the assembly source by decreasing unnecessary immediate extension
instructions (ext).

 The absolute addresses of symbols cannot be defined until the linking has finished when developing
the program with multiple modules. The ext33 supports a 2-pass make that optimizes the codes using
the symbol/map files created when linking. When a 2-pass make is specified, the make executes the
ext33 and the following process again after the first linking has finished.

 Assembling
 The source files that are delivered from the Instruction Extender ext33 are assembled by the Assembler

as33. The as33 converts the source codes into machine codes and delivers the object file that can be
linked with other modules be registered to libraries.

 When a multi-module software program (multiple source files) is developed, all the source files are subjected

to the above processing.

 Linking
 One or more object files are produced by the assembling. The Linker lk33 bundles those multiple files

into one to create an executable object file mapped on the ROM. The lk33 delivers object files in srf33
format, which contains necessary information for debugging, along with other information.

(4) Debugging
 The srf33 object file that is delivered from the linker should be debugged by the Debugger db33. Using the

ICE33, ICD33 or Debug Monitor allows the programmer to perform debugging, including that for the
hardware operation. The db33 also provides a simulator mode in which the operations of the E0C33000 Core
CPU and memory models can be simulated on a personal computer.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

8 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

(5) Disassembling
 The Disassembler dis33 disassembles a linked object file for the purpose of verifying the correspondence

between source codes and absolute addresses, or for dumping data from the data area. It is not an
indispensable tool for program development, but it is suggested to use it as a utility tool.

(6) Creating ROM data/mask data
 To make the target ROM and/or the mask data, create the external ROM data HEX file and/or the internal

ROM data HEX file from the srf33 object file delivered by the Linker using the Binary/HEX converter hex33.
Finally submit the mask data (internal ROM data) to Seiko Epson.

The tools above can be executed in the Work Bench. Each tool can also be executed individually without using the
make.
Besides these tools, the Librarian lib33 is provided. The lib33 can make and edit libraries with the general-purpose
modules (object files delivered from the Assembler). It will be effective for developing applications using the
E0C33 Family in the future.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 9
C COMPILER PACKAGE MANUAL (ver.3)

3.2 Tutorial (Flow of Operations with Work Bench)
The tools described in the preceding section can readily be started up from the Work Bench wb33, which
comprises part of this package. In this section, the flow of operations with the Work Bench wb33 will be learned
by a tutorial. For details on each tool, refer to the corresponding chapter.

Files to be used
The explanation in this section presupposes that the files listed below exist in the "sample\tst\" directory.
main.c ...C source file
boot.s ...Assembly source file

The following description covers basic operation procedures from compiling/preprocessing to linking for two
sample source files (main.c and boot.s) using the make, and basic debugging procedures. Then explains the
process necessary for masking the ROM.

3.2.1 Startup of Work Bench wb33

Start up the Work Bench wb33 by double clicking the
"wb33.exe" icon located in the "cc33" folder.
The execution window opens as below.

The execution window has the list boxes for choosing
files and the buttons for starting up the tools.

Step 1) Click [Open option window]. Two option

windows open.

 [Open option window] button

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

10 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

In the [gcc-lk options] window, the start-up options from the C Compiler to the Linker can be specified. Other tool
options and the options common to all tools can be specified in the [Other options] window.
The check boxes designed to specify an option are initially selected and specified during startup of the Work
Bench wb33, and the one usually specified displays a check in it. The explanation below assumes the initial
settings, unless otherwise specified. For details, refer to Chapter 5 "Work Bench" and the chapters corresponding
to the respective tools.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 11
C COMPILER PACKAGE MANUAL (ver.3)

3.2.2 Selecting Directory and Displaying File Contents

There is a file selection part in the execution window. When the Work Bench (wb33)
starts up, it shows the drive name and the directory in which the tools are installed.
First, display the files to be used in tutorial.

Step 2) Select the "sample\tst\" directory in the directory list box.

Since the initial setting checked the [*.*] radio button, the names of all files in the "tst\"
directory appear in the file list box.
It is possible to change the file type to be displayed by selecting the radio button on the
left of each tool button. The radio buttons show the file types that can be input to the
corresponding tool.

Step 3) Click [*.c].

The file list box shows the main.c only.

To display contents of source file
The Work Bench wb33 has a text file display function.

Step 4) Double-click the source file name (main.c) in the file list box.

The output window opens and displays the contents of the main.c.

Notes: • Only text files can be displayed in this window, and

they are limited to a maximum size of 32KB. If
codes other than ASCII characters are contained in
the files, they may appear as gibberish.

 • A character string can be copied or corrected
inside the window, but changes cannot be saved.
This facility should be used only as a display
function.

To open an editor
The Work Bench wb33 can open an editor for displaying the selected text file.

[Editor] button

Step 5) Select "main.c", then click [Editor] in the execution window.

The notepad of Windows opens and displays the contents of the
main.c.
This function allows editing source files instantly.

The notepad is selected as the editor by the initial setting. It is
possible to change it to the editor always in use by entering the
start-up command (full-path name) of the editor to the [Editor
name] text box in the [other options] window.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

12 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

3.2.3 Creating Make File
The make file contains a processing procedure from compiling to linking and the procedure is automatically
executed by the make tool. The make can judge whether the files are updated or not, and executes the process only
when the necessary file has been modified or there is no target file.
The following operation creates the make file for processing the sample source files (main.c and boot.s).

To create a make file

 [Make edit] button

Step 6) Click [Make edit].

The [Make file editor] window appears.

Step 7) Select the main.c and boot.s in the file list box, then click

[New Make file].
 To select two files, first click the boot.s, then hold down

the [Ctrl] key and clock the main.c.

The make generator creates the following three files:
test.mak make file
test.cm Command file for Linker
test.cmx Command file for Instruction Extender

These files are created in text format, so they can be displayed in
the output window or with an editor.

The make editor uses the name that is entered in the [Make file
name] text box as the make file name (default is test). Modify the
name in the text box if another name is to be used. This name also
applies to the object file that will be created by linking and other
files.

The make editor creates a make file with basic contents, therefore
use it as a template and customize the contents if necessary. See
Section 17.1, "Make" for details of the contents of make file.

Use the close button to terminate the Make file editor.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 13
C COMPILER PACKAGE MANUAL (ver.3)

3.2.4 Auto-execution from Compiling to Linking
Execute the Make using the test.mak created in the previous section.

To execute the Make

[MAKE] button

Step 8) Select the "test.mak" in the file list box on the execution window, then
click [MAKE].

The Make sequentially executes preprocessing and
assembling the boot.s, compiling and assembling the
main.c and linking the object files. As a result, the
output files of the executed tools appear in the
"sample\tst\" directory.
boot.ps: Output file of the Preprocessor pp33
main.ps: Output file of the C Compiler gcc33
boot.ms, main.ms: Output file of the Instruction

Extender ext33
boot.o, main.o: Output file of the Assembler as33
test.srf, test.sym: Output file of the Linker lk33

3.2.5 To Execute Tools Individually
The tools can be executed individually. For example, to execute the Compiler only,

Step 9) Display the C source file (main.c) by selecting the [*.c] radio button (if necessary).

Step 10) Select the main.c in the file list box, then click [GCC33].

When correcting syntax errors in source files, the Compiler can only be executed in this method.
Other tools can also be executed individually with a similar operation.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

14 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

3.2.6 Creating Parameter File for Debugger
It is necessary to create a parameter file for the Debugger before starting to debug.
The Debugger db33 supports all the models of the E0C33 Family. However, since each model comes with its own
memory configuration and different PRC board, information concerning the available memory range and PRC
board is necessary for each specific mode. The parameter is used to set the information to the debugger.

To create a parameter file

[Par gen] button

Step 11) Click [Par gen].

The [Parameter file generator] window appears.

This tutorial uses the default settings for creating a
parameter file. In the actual development, memory
map information should be specified in the
[Parameter file generator] window.

Step 12) Click [Create Par file].

The parameter file 33104_1.par is created.

See Section 16.10, "Parameter File" for the contents
of the parameter file and specifying the parameters.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 15
C COMPILER PACKAGE MANUAL (ver.3)

3.2.7 Debugging
Now that an object file is created by the Make in an executable format (srf33), debugging of the program can be
performed. Although more sophisticated debugging could be done using the ICE33 or ICD33, this section explains
how to start up the Debugger db33 in the simulator mode, in which debugging can be executed on a personal
computer alone. This will enable practice and understanding of the fundamental operations of the package.

To start up the Debugger db33

 [DB33] button

Step 13) Select [SYM] at the DB33 option field in the [other options] window.
(Simulator mode specified)

Step 14) Select the parameter file (33104_1.par) in the file list box, then click

[DB33].
 To select the file name easily, select the [.par] radio button.

The window below opens when the Debugger db33 starts up.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

16 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

First, the file to be debugged should be read.

To read a file

[Load file] button

Step 15) Click [Load file]. A dialog box for file selection opens.

Step 16) Select the test.srf in the file list box of the dialog box, then click [OK]. The object

file test.srf is read.

[Reset cold]

button

Step 17) Click [Reset cold]. (The PC is set to the program start address.)

The [Source] window shows the disassembled object codes. This display can be changed for
a display of the source or for a mixed display (display of both the disassembled contents and
the source).

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 17
C COMPILER PACKAGE MANUAL (ver.3)

To display a source

[Source] button

Step 18) Click [Source] on the tool bar. The [Source] window display changes.

The [Source] window displays the contents of the source file (boot.s) which contains the
code at the current PC address. Another source (e.g. main.c) can be displayed by selecting it
from the combo box on the tool bar if the object file can refer to the source file.

To display a mix

[Mix] button

Step 19) Click [Mix] on the tool bar. The [Source] window display changes.

The [Source] window displays the results of disassembling and the contents of the source file.
This display clearly shows the correspondence between the source and the mnemonic.
The underlined line denotes the instruction (address) to be executed next.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

18 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

The program can now be executed on the file that was just read.

To execute a program

[Go] button

Step 20) Click [Go] on the tool bar.

This program infinitely repeats increments by using the variable i (address
0x0000000–0x0000003) in the RAM area as a counter. In the ICE mode, it can be seen
that the on-the-fly function updates the contents of the [Register] window in real time. In
the simulator mode, the contents of the [Register] window are not displayed until the
program is broken. Furthermore, the mouse pointer changes to the wait state (hourglass).
Such a perpetual loop should be halted with a forcible break.

To break forcibly

[Key break] button

Step 21) Click on the [Key break] on the tool bar. (The button can be clicked although
the mouse pointer is in wait state.)

This illustration shows that the program had a break at address 0x80030
(PC), and that it had executed 50740 cycles by that time. The counter set
from address 0x0 has reached 0x96F. (The addresses [0000001] to
[000000C] are for monitoring the data memory. Here, the initial settings
of addresses 0x0, 0x4, 0x8 and 0xC are shown. The memory that appears
to the right of "[0000000]=" holds address 0 on the right end and address
3 on the left end.)

The contents of the data memory at addresses other than the monitoring addresses can
also be checked in the [Memory] window.

To open the [Memory] window

[Window] menu

Step 22) Select the [Memory] command from the [Window] menu.

The [Memory] window opens and displays the contents of the memory. Display the top of
the memory using the vertical scroll bar. ("AA" at addresses other than 0–3 denotes the
initial setting in the RAM area.)
Data of the entire memory area may be verified by scrolling the screen vertically.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 19
C COMPILER PACKAGE MANUAL (ver.3)

Thus far the contents of the variable i have been checked by the address, but it is not
practical in C source level debugging. Contents of variables can also be displayed by
specifying symbol names. The information can be displayed in the [Command] window
and the [Symbol] window. The following explanation uses the [Symbol] window.

To open the [Symbol] window

[Window] menu

Step 23) Select the [Symbol] command from the [Window] menu.

To display contents of a variable, it is necessary to register the symbol to the [Symbol]
window.

To add the symbol to be monitored to the [Symbol] window

[Symbol add] button

Step 24) Place the cursor at the symbol name (variable i) displayed in the [Source]
window, then click [Symbol add] on the tool bar.

The [Symbol] window displays the information of the variable i.

Execute the program again (Steps 20 and 21). The content of the variable i will be
updated after breaking.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

20 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Since the working of the program cannot be observed very well during the operation
described above, a break will be placed at an appropriate point.

To set a break point

[Soft PC break]

button

Step 25) Place the cursor on the line at address 0x00080030 (i++), then click [Soft PC
break] on the tool bar.

A "!" mark appears at the beginning of the line at address 0x00080030, indicating that the
break point has been placed here. (Another click of [Soft PC break] in this condition will
clear the setting of the break.)
Once a break point has been set, execute the program once again.

Step 26) Click [Go] on the tool bar.

The line at address 0x00080030 is displayed with an underline, indicating the program
has broken. Repeating Step 26 thereafter will demonstrate that the variable i increases by
increments.

This method allows checking, to see whether the intended motion is being implemented
or not. If any problem is detected in the motion, the functioning will have to be looked at
more closely.
The Step and Next operations are two ways of proceeding through the program.

To execute the Step operation

[Step] button

Step 27) Click [Step] on the tool bar.

The program executes the instruction underlined in the [Source] window, and the
underline moves on to the instruction to be executed next. Each step is executed
successively as Step 27 is repeated. If the program is error-free, the register changes its
display correctly according to each step executed.
In the Step operation, all the instructions are executed on a step-by-step basis.

The Next operation is basically identical to the Step operation, except that a function,
subroutine or software interrupt routine is skipped (executed as one step). This Next
operation comes in handy, since a subroutine in which debugging was already completed
does not need to be executed step by step.

To execute the Next step

[Next] button

Step 28) Click [Next] on the tool bar.

Repeat Step 28 to see the difference between the Step and Next executions in the [Source]
window.
Note that a skip was made inside the function sub(), but the variable i is updated, and the
function was executed continuously.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 21
C COMPILER PACKAGE MANUAL (ver.3)

In the preceding paragraphs, the fundamental operations of Debugger db33 have been
discussed. A more sophisticated debugging may be implement by keying in commands in
the [Command] window from the keyboard. See Chapter 16, "Debugger" for more
information.

The following instruction explain how to quit the Debugger db33.

To quit the Debugger

[File] menu (db33)

Step 29) Select the [Exit] command from the [File] menu.

The window closes, and the Work Bench window returns.

Besides the simulator mode used in the tutorial, the Debugger db33 supports three other debugging modes: the
ICE mode that uses the In-Circuit Emulator ICE33, the Debug Monitor mode that uses the DMT33MON with the
target board in which the debug monitor has been implemented, and the ICD mode that uses the In-Circuit
Debugger ICD33 with the target board. Refer to Section 3.3 for the debugging method in each mode.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

22 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

3.2.8 Creating Disassembly File
The Disassembler dis33 disassembles the srf33 object file delivered from the Linker and creates a list file that
contains the C sources or assembly sources corresponding to the disassembled codes. This list shows the
correspondence between the sources and object codes.

To create a disassembly file

[DIS33] button

Step 30) Select the test.srf from the file list box in the Work Bench, then click
[DIS33].

 To select the file name easily, select the [*.srf] radio button.

The list file test.dis is created. Display the contents by double-clicking the file name.
See how the C source was converted into mnemonic.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 23
C COMPILER PACKAGE MANUAL (ver.3)

3.2.9 Creating ROM Data
Hex files are used for making the external ROM to be mounted on the target board and the mask data for the
internal ROM. The Binary/HEX Converter hex33 converts the specified address range of the srf33 object file
(delivered from the Linker) into a Motorola S3 format HEX file.

To create a HEX file

 [HEX33] button

Step 31) Select the test.srf in the file list box, then click [HEX33].
 To select the file name easily, select the [*.srf] radio button.

 The Binary/HEX Converter hex33 delivers the HEX file for the external ROM with the name test.sa

_c00000_c0ffff.

 The Binary/HEX Converter was executed using the default option settings of the Work Bench, so the HEX

file contains 64KB data from address 0xc00000 to address 0xc0ffff. In the actual development, the address
range must be specified according to the memory configuration of the model. It can be specified at the
HEX33 option selection part in the [other options] window.

Creating submission mask data
 When the program development for a mask ROM model has finished, the mask data for the internal ROM

should be submitted to Seiko Epson. Mask data can also be created using the Binary/HEX Converter. In this
case, make sure that the internal ROM address range is specified correctly and the [abs addr] check box is
selected to create absolute address data.

 The following setting is an example for creating 4KB of mask data within the address 0x80000 to address
0x80fff range .

 The created mask data file should be submitted after renaming to one specified by Seiko Epson.
 Example: c3264010.sa0 (mask data file for the E0C33264)

Notes on creating mask data
 To prevent file copy errors, bugs in the tools, and other problems, perform a final operation check by reading

the HEX files (.sa) in Motorola S3 format by the lh command. Do not use the srf33 file.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

24 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

3.2.10 Optimization
The development procedure have been reviewed. As the final step, this section explains optimization of the code,
one of the features of this package.
The gcc33 options select part of the [gcc-lk options] window has an [optimize] field with radio buttons that allow
specifying the optimization level. Since the effects of code optimization cannot be confirmed with a sample
program, the following shows other methods.

One method is to use a global pointer.
A global pointer is the start address of a global variable area, and a general-purpose register R8 is used exclusively
for accessing this area. This helps to reduce the number of instructions necessary to access global variables.
Initialization of the R8 register in the assembly source of the sample program is the processing performed to set up
this global pointer.
This function is an option to the Instruction Extender ext33, and is deselected by default for the Work Bench.
Therefore, make in the tutorial was not optimized by using a global pointer.
When make is performed after selecting [global pointer optimize] which is an option to the ext33, the difference in
output code can be verified. The following shows the difference in the sample program where global variable i
(address being mapped to location 0) is accessed.

When not using a global pointer
�����������������	������������������������������� �
����

����������������	��������������������������

��

��

��

�����������������	��������������������������

�����������������	��������������������������

���

���

When using a global pointer
�����������������	������������������������������� �
����

�����������������	��������������������������

���

��

�����������������	��������������������������

�����������������	��������������������������

��

The above example shows that use of a global pointer made it possible to eliminate two instructions.

Another method of optimization is 2-pass make. In 2-pass make, the program modules are linked, then processed
again by the Instruction Extender based on the absolute address information of the symbols determined by linkage
processing. This helps to delete the unnecessary "ext" instructions used for referencing the jump address labels and
symbols in external modules.

To perform 2-pass make

Step 32) Check the [2 pass] radio button in the make options select part of the [other options] window, then use

the [MAKE] button to execute make.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 25
C COMPILER PACKAGE MANUAL (ver.3)

The following shows a part of the sample file that has been optimized by 2-pass make.

For 1-pass make
��		��� �
����

��������	�����������������������������������

���

��

��

��

��

For 2-pass make
�������	������������������������������������		��� �
����

�������	������������������������������������

��

The above example shows part of a disassembly list that is created from the object file "test.srf" that was created
by executing 1-pass and 2-pass make by reading it in with the Disassembler dis33. This can also be verified in the
debugger window by setting mixed display mode.
In the above example, you will notice that since variable i is found to be located at address 0, the "ext" instruction
used for access is deleted by 2-pass make. Specifically, this processing is performed by the ext33.

3.2.11 Epilogue
This tutorial explained the basic operations of the C Compiler along with the flow of the development procedure.
For more information about each tool, refer to the chapters in this manual in which they are detailed.

To terminate the Work Bench

[Save and Exit] button

Step 33) Click [Save and Exit].

 The wb33 terminates after saving the option setting information to the wb33.sav file.
 From the next time, the wb33 will be able to start up with the current option settings by dragging wb33.sav

on the wb33 exe icon. To perform this drag and drop operation, the shortcut of wb33.exe should be created
on the desktop.

Note: The tools including the make can be invoked on the DOS prompt by entering the command or

using a batch file.

If the target system has ICE33, ICD33 or DMT33MON, refer next to the operating procedure for each tool
described in Section 3.3, "Debugging Environment".

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

26 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

3.3 Debugging Environment
Besides debugging in simulator mode, as shown in the previous section, db33 allows debugging programs
including target system operation using the Debug Monitor (MON33), In-Circuit Emulator (ICE33) or In-Circuit
Debugger (ICD33).
This section explains the outline of each debugging system and how to start debugging. Refer to each tool manual
for details. Refer to "\cc33\utility\fls33" for onboard flash writing.

Note: Make sure that all the equipment is off before connecting or disconnecting the system.

3.3.1 In-Circuit Emulator ICE33
The ICE33 is the in-circuit emulator for the E0C33 Family Model 1 microcomputers, and provides the most
advanced debugging environment. The on-chip peripheral functions are implemented with the PRC33001 board.
This system allows the use of almost all the db33 functions. It also allows up to 8 MB of external memory
emulation using the optional memory card.

System configuration
 Figure 3.3.1.1 shows the debugging system configuration using the ICE33.

COMx

LPTx

EPSON RS232C cable
(supplied with ICE33 package)

Parallel cable
(supplied with ICE33 package)

User target board

ICE33

PRC33xxx

1

TRGOUT

STOPOUT

TRC IN

BRK IN
GND 2 3 4

ICE
RUN

ICE33 EPSONSLP
/H

ALT
EM

U

POW
ER

6 5 4 3

PRE FETCH PC

2 1 0

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

P
R

C
33

00
1

Fig. 3.3.1.1 Debugging system configuration using ICE33

Starting up and checking operation
 Start up the Debugger in the ICE mode (select [ICE] in wb33).

 Before starting up the Debugger, check the following:
 1) Is the RS232C cable in use one of the specified types?
 2) Is the ICE33 connected to the COM1 port on the personal computer side?
 (When using another COM port, changes have to be done on the Work Bench wb33 side.)
 3) Is the ICE/RUN switch of the ICE33 set to ICE?
 4) Are the ICE33 DIP switches 1, 3 and 4 set in the OPEN position and switch 2 set in the ON position

(115200 bps, self-diagnostic deactivated)?
 5) Is the PRC board correctly mounted on the ICE33?
 6) Is the ICE33 switched on (Power LED lit)?

 If the above settings are not executed correctly, "time-out" errors will result, and the Debugger db33 will fail

to start up normally.

 After the Debugger is started in the ICE mode, the operations should be done like the simulator mode (refer

to Section 3.2.7). When the program is executed by the [Go] button, the contents of the PC, flags and
monitoring data in the [Register] window are real-time updated.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 27
C COMPILER PACKAGE MANUAL (ver.3)

Precautions
(1) The ICE33 emulation memory is configured according to the contents of the debugger parameter file.

Therefore, the parameter file should be created correctly according to the memory configuration of the target
system.

(2) All the ICE33 functions can be used even if the ICE33 is only connected to the COM port using the RS232C

cable. The parallel cable should be used to connect the ICE33 to the LPT port when high-speed file
downloading is required. The following shows the typical downloading speed of the different ports (the
values may vary according to the PC used and operating conditions).

 Serial transfer: Downloading to RAM 9KB/S
 Downloading to Flash memory 8KB/S
 Parallel transfer: Downloading to RAM 50KB/S
 Downloading to Flash memory 30KB/S

(3) The ICE33 is shipped with the firmware Ver. 1. It can be used with the Debugger db33 in this package.

However, the firmware Ver. 1 does not support writing to the flash memory on the target board (fls, fle),
hardware PC break 2 (bh2, bhc2) and memory copy in half word and word units (mvh, mvw). If these
functions are required, update the ICE firmware using the program located in the "cc33\utility\ice33v20\"
directory.

(4) Refer to the "E0C33 Family In-Circuit Emulator (ICE33) Manual" for more information on the ICE33.

3.3.2 Debug Monitor MON33
The Debug Monitor MON33 is a middleware designed for E0C33 Family single-chip microcomputers. It provides
program-debugging functions on the user target board or DMT33xxx boards. By connecting the board in which
MON33 has been implemented to the personal computer via the DMT33MON board, the program can be
debugged using the Debugger db33. This section explains how to debug the program using the
DMT33004/DMT33005 board in which MON33 has been implemented as a development tool.

System configuration and connection
 Figure 3.3.2.1 shows the debugging system configuration using the DMT33004/DMT33005 board.

COMx

EPSON

RS232C cable
(supplied with DMT33MON package)

DMT33MON DMT33004/DMT33005

1

12

Fig. 3.3.2.1 Debugging system using DMT33004/DMT33005 board

Starting up and checking operation
 The following sample programs are provided to check the system operation:
 For DMT33004 board: "\cc33\sample\dmt33004\led.srf"
 "\cc33\sample\dmt33004\led2.srf"
 For DMT33005 board: "\cc33\sample\dmt33005\led.srf"
 "\cc33\sample\dmt33005\led2.srf"
 These programs blink the LED on the DMT board. "led.srf" and "led2.srf" are created to be able to debug in

the RAM (0x600000~) and in the Flash memory (0x200000~), respectively.
 For the contents of the program, refer to the source file (led.s) in the directory.
 It is not necessary to execute Make when modification of the source is not needed since the executable object

files ("led.srf," "led2.srf") are provided. When the source is modified, execute Make using the make file
provided in the directory.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

28 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

(1) Starting up the Debug Monitor
 The boot routine mapped from address 0xC00000 on the DMT33004/33005 starts the debug monitor when

the K63 input port is set to "0" (the [DEBUG] switch of the DMT33MON is set to ON).
 Start up the debug monitor following the procedure below after connecting the target system to the personal

computer.

RS232 connector

SW1
(RESET)

SW2
(NMI)

SW3
(DEBUG)

DMT33xxx/target board
interface connector

ONOFF

1 12

ONOFF

Fig. 3.3.2.2 DMT33MON board layout

1) Turn SW3[DEBUG] of the DMT33MON on.
2) Turn the power of the DMT33004/33005 on.
3) Reset the DMT33004/33005

(DMT33MON SW1 [RESET] ON→OFF).
4) Turn the personal computer on and start up Windows.
5) Start up the debugger db33

(start-up method is described later).

Note: When the power of the DMT33004/33005 is turned on while the SW3 [DEBUG] of the

DMT33MON is off, the debug monitor does not start up. The DMT33004/33005 sets TTBR at
the beginning of the Flash memory (0x200000~), so the program sequence branches to the boot
address. In this case, turn the SW3 [DEBUG] on and reset the DMT33004/33005 with the SW1
[RESET] to start up the debug monitor.

(2) Debugging in the RAM
 The sample program for debugging in the RAM (0x600000~) of the DMT33004/33005 is "led.srf". When

starting up the debugger, specify the debug command file "led.cmd" with the -c option. "led.cmd" sets the
trap table address to the start address of the RAM and loads "led.srf" to the RAM.

 Operating procedure for starting up the Debugger from the DOS prompt is as follows:
 1) Start up the debug monitor as described above.
 2) Set "\cc33\sample\dmt33004\" (or "\cc33\sample\dmt33005\") as the current directory.
 3) Set a path to db33.exe.
 4) Start up the debugger with the following command at the DOS prompt.
 C:\cc33\sample\dmt33004\>db33 -mon -b 115200 -p 33104_m.par -c led.cmd

 The debugger starts in debug monitor mode and is ready to debug "led.srf". For example, the LED on the

DMT33004/33005 board will start blinking by executing the g command.

 The debug monitor does not support forced break functions such as key break.
 To suspend the program execution, "led.cmd" contains a command that sets a breakpoint at the label located

in the NMI routine of "led.srf". When the SW2 of the DMT33MON is turned on, a NMI is generated and it
suspends the program execution.

(3) Debugging in the Flash memory
 The sample program for debugging in the Flash memory (0x200000~) of the DMT33004/33005 is "led2.srf".
 To write the sample program to the Flash memory, first load the Flash erase/write routine "am29f800.srf".

Then initialize the Flash memory functions using the fls and fle commands and load the sample program into
the Flash memory using the lf command. Refer to the sample debug command file "led2.cmd" for executing
procedure.

 When starting up the debugger, specify the debug command file "led2.cmd" with the -c option. "led2.cmd"

contains debug commands for loading the Flash erase/write routine, setting the trap table address and loading
"led2.srf" to the Flash memory.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 29
C COMPILER PACKAGE MANUAL (ver.3)

 Operating procedure for starting up the Debugger from the DOS prompt is as follows:
 1) Start up the debug monitor as described above.
 2) Set "\cc33\sample\dmt33004\" (or "\cc33\sample\dmt33005\") as the current directory.
 3) Set a path to db33.exe.
 4) Start up the debugger with the following command at the DOS prompt.
 C:\cc33\sample\dmt33004\>db33 -mon -b 115200 -p 33104_m.par -c led2.cmd
 The debugger starts in debug monitor mode and is ready to debug "led2.srf". For example, the LED on the

DMT33004/33005 board will start blinking by executing the g command.

 The debug monitor does not support forced break functions such as key break.
 When the SW2 of the DMT33MON is turned on, a NMI is generated and it suspends the program execution

forcibly.

 After writing the program to the Flash memory, it can be executed by the DMT33004/33005 alone.
 1) Terminate the Debugger.
 2) Turn the system power off and then disconnect the RS232C cable.
 3) Turn SW3 [DEBUG] of the DMT33MON off and then turn the DMT33004/33005 on.
 The "led2.srf" program will be executed in the Flash memory and the LED will start blinking.

(4) Executing from wb33
 1) Start up the debug monitor as described above.
 2) Start up wb33 and then select the parameter file "\cc33\sample\dmt33004\33104_m.par"

(or "\cc33\sample\dmt33005\33104_m.par") on the execution window.
 3) Select DB33 options on the [Other options] windows.

MON, 115200 bps, command file "led.cmd" or "led2.cmd"

 4) Start up the Debugger using the [DB33] button.
 This procedure starts debugging the same as in items (2) and (3) above.

Precautions
 When debugging the user program on the DMT33004/33005 board, observe the precautions described

below.

(1) The debug monitor on the DMT33004 has been implemented by linking with the "mon33ch1.lib". Therefore,

the built-in serial interface Ch.1 cannot be used from the user program.
 The debug monitor on the DMT33005 has been implemented by linking with the "mon33ch0.lib". Therefore,

the built-in serial interface Ch.0 cannot be used from the user program.

(2) Forced break functions cannot be used in the Debug Monitor. A forced break function can be realized by

setting a hardware PC break point at a label position in the NMI or key input interrupt routine of the target
program.

 Furthermore, other debugging functions are also restricted. Refer to Chapter 16, "Debugger", for the
functions and commands that are supported by the Debug Monitor.

(3) The downloading speed is approx. 8KB/S for RAM and approx. 7KB/S for Flash memory. However, it varies

according to the PC used and operating conditions.

(4) The program to be debugged should be created so that it can be loaded and executed in the free area of the

RAM or the Flash memory on the DMT33004/33005. The program load address must be specified when
linking since it cannot be specified by the Debugger.

 The MON33 uses 0 to 0x2F of the internal RAM and 0x6FF640 to 0x6FFFFF in the external SRAM. Be
aware that the MON33 will not be able to work if the area above is rewritten. Furthermore, this precaution
applies when rewriting the memory using a memory operation command.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

30 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 CPU: E0C33A104(DMT33004)/E0C33208(DMT33005)

0xC1FFFF External ROM
 128KB 0xC021FF Boot routine

0xC00000 0xC00000 MON33 library

0x6FFFFF External RAM
1MB

0x6FFFFF
0x6FF640

 MON33 work area

0x600000

 0x6FF63F
0x600000

 Free area

0x2FFFFF Flash memory 0x2FFFFF

 1MB Free area
0x200000 0x200000

0x04FFFF Built-in I/O 0x04FFFF

 Control registers of built-in I/O
0x040000 0x040000

0x001FFF Built-in RAM

DMT33005: 8KB
0x001FFF
0x000030

 Free area
(DMT33005)

 0x00002F
0x000010

 Reserved area for MON33

 0x00000C R0 stack area
 0x000008 PC stack area

0x000000 0x000000 Debugging vector

Fig. 3.3.2.3 DMT33004/33005 memory map

(5) Refer to the "E0C33 Family MON33 Debug Monitor Manual" for more information on the Debug Monitor.

3.3.3 In-Circuit Debugger ICD33
The In-Circuit Debugger ICD33 is a development tool that controls the E0C33 on-chip debugging function
according to the command sent from the Debugger db33. It provides a trace function as well as the debugging
function the same as the Debug Monitor. This section explains how to debug the program using the ICD33 with
the DMT33005 board as a development tool.

System configuration and connection
 Figure 3.3.3.1 shows the debugging system configuration using the ICD33 and the DMT33005 board.

COMx

LPTx

EPSON

RS232C cable
(supplied with ICD33 package)

Parallel cable
(supplied with ICD33 package)

ICD33

DMT33005

TRC F
ULL

TRGOUT

BRKIN

GND
EM

U
POW

ER

1 2 3 4

ROM

FLASH

DSW1

E0C33208

LED

10 pin–10 pin
target system
interface cable
(supplied with ICD33 package)

Fig. 3.3.3.1 Debugging system using ICD33 and DMT33005

Note: The ICD33 cannot be used with the Debug Monitor. Do not connect DMT33MON to the

DMT33005 board. To use the DMT33005 board with DMT33MON, be sure to turn the [DEBUG]
switch (SW3) of the DMT33MON off.

Starting up and checking operation
 The following sample programs are provided to check the system operation:

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 31
C COMPILER PACKAGE MANUAL (ver.3)

 "\cc33\sample\dmt33005\led.srf"
 "\cc33\sample\dmt33005\led2.srf"
 These programs blink the LED on the DMT33005 board. "led.srf" and "led2.srf" are created to be able to

debug in the RAM (0x600000~) and in the Flash memory (0x200000~), respectively.
 For the contents of the program, refer to the source file (led.s) in the directory.
 It is not necessary to execute Make when modification of the source is not needed since the executable object

files ("led.srf," "led2.srf") are provided. When the source is modified, execute Make using the make file
provided in the directory.

(1) Starting up the system
 Start up the system following the procedure below after connecting the ICD33 and DMT33005 to the

personal computer.

 1) Set all the DIP switches of the ICD33to OPEN (upper position).
 2) Turn the DMT33005 on.
 3) Turn the ICD33 on.
 4) Turn the personal computer on and start up Windows.
 5) Start up the debugger db33 (start-up method is described later).

(2) Debugging in the RAM
 The sample program for debugging in the RAM (0x600000~) of the DMT33005 is "led.srf". When starting

up the debugger, specify the debug command file "led.cmd" with the -c option. "led.cmd" sets the trap table
address to the start address of the RAM and loads "led.srf" to the RAM.

 Operating procedure for starting up the Debugger from the DOS prompt is as follows:
 1) Start up the system as described above.
 2) Set "\cc33\sample\dmt33005\" as the current directory.
 3) Set a path to db33.exe.
 4) Start up the debugger with the following command at the DOS prompt.
 C:\cc33\sample\dmt33005\>db33 -icd -b 115200 -p 33104_m.par -c led.cmd

 The debugger starts in ICD mode and is ready to debug "led.srf". For example, the LED on the DMT33005

board will start blinking by executing the g command.

 The ICD33 supports the key break function. The program execution can be suspended using the [Key break]

button of the Debugger. Also the trace function is available. Refer to Chapter 16, "Debugger", for tracing.

(3) Debugging in the Flash memory
 The sample program for debugging in the Flash memory (0x200000~) of the DMT33005 is "led2.srf".
 To write the sample program to the Flash memory, first load the Flash erase/write routine "am29f800.srf".

Then initialize the Flash memory functions using the fls and fle commands and load the sample program into
the Flash memory using the lf command. Refer to the sample debug command file "led2.cmd" for executing
procedure.

 When starting up the debugger, specify the debug command file "led2.cmd" with the -c option. "led2.cmd"

contains debug commands for loading the Flash erase/write routine, setting the trap table address and loading
"led2.srf" to the Flash memory.

 Operating procedure for starting up the Debugger from the DOS prompt is as follows:
 1) Start up the system as described above.
 2) Set "\cc33\sample\dmt33005\" as the current directory.
 3) Set a path to db33.exe.
 4) Start up the debugger with the following command at the DOS prompt.
 C:\cc33\sample\dmt33005\>db33 -icd -b 115200 -p 33104_m.par -c led2.cmd

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

32 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

(4) Executing from wb33
 1) Start up the system as described above.
 2) Start up wb33 and then select the parameter file "\cc33\sample\dmt33005\33104_m.par" on the execution

window.
 3) Select DB33 options on the [Other options] windows.

ICD, 115200 bps, command file "led.cmd" or "led2.cmd"

 4) Start up the Debugger using the [DB33] button.
 This procedure starts debugging the same as in items (2) and (3) above.

Precautions
 When debugging the program using the ICD33 and DMT33005 board, observe the precautions described

below.

(1) The program to be debugged should be created so that it can be loaded and executed in the free area of the

RAM or the Flash memory on the DMT33005. The program load address must be specified when linking
since it cannot be specified by the Debugger. See Figure 3.3.2.3 for the DMT33005 memory map.

(2) The debugging functions are restricted compared to the ICE33. Refer to Chapter 16, "Debugger", for the

functions and commands that are supported by the ICD33.

(3) All the ICD33 functions can be used even if the ICD33 is only connected to the COM port using the RS232C

cable. The parallel cable should be used to connect the ICD33 to the LPT port when high-speed file
downloading is required. The following shows the typical downloading speed of the different ports (the
values may vary according to the PC used and operating conditions).

 Serial transfer: Downloading to RAM 8KB/S
 Downloading to Flash memory 7KB/S
 Parallel transfer: Downloading to RAM 30KB/S
 Downloading to Flash memory 20KB/S

(4) Refer to the "E0C33 Family In-Circuit Debugger (ICD33) Manual " for more information on the ICD33.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 33
C COMPILER PACKAGE MANUAL (ver.3)

3.3.4 Memory Board MEM33201
Memory Board MEM33201 contains an extension function to enable the ICD33 debug function and the emulation
function. This makes configuration of a better development environment possible. This section explains how to
debug when you are using the ICD33����������	
��	MEM33201 as a development tool.

System configuration and connection
 Figure 3.3.4.1 shows the debugging system configuration using the ICD33 and the DMT33005 board.

EMU
TRC

COMx

LPTx

EPSON

RS232C cable
(supplied with ICE33 package)

Parallel cable
(supplied with ICE33 package)

TRC F
ULL

TRGOUT

BRKIN

GND
EM

U
POW

ER

1 2 3 4

10pin–10pin
Target system
connect cable
(supplied with ICD33 package)

MEM33201

EPOD332XX MEM33201

EPOD33208
BREAK

5V

ICD33 BREAK IN connect clip
(attached with MEM33)

ICD33 Ver2

Fig.3.3.4.1� Debugging system using ICD33, EPOD33208, MEM33201

Make the following changes for the default settings.
EPOD33208
 JP3 1-2short Provides #RESET signal from the MEM33201
MEM33201
 JP1 1-2short Provides #RESET signal to EPOD
 JP7 1-2 short Provides VDDE to EPOD
 JP8 1-2 short Provides VDD(3.3V) to EPOD

Make sure that the ICD33 DIP SW is set to the upper (default) position.
Be sure to use Ver.2 of the ICD33 (Signal lines of TRC and EMU are fetched out by the yellow and the red lines�.

Starting up and checking operation
 The following sample programs are provided for checking the system operation:

"c:\cc33\sample\mem33201\demo.bat"
The program runs in the internal RAM and accesses the external memory.
MEM33201 detects accesses and breaks.
Refer to sample.c for the details of the program.
If you modify and use it, execute "make" using the make file in the same directory.

(1) Starting the system
 After connecting the ICD33, the EPD33208 and the MEM33201 to the personal computer, start the system

using the following procedure:

 1) Turn on the MEM33201.
 2) Use SW1 to reset the MEM33201.
 3) Turn on the ICD33.(The red EMU lamp of the ICD33 blinks.)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

34 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 4) Release SW1 of the MEM33201 ([RESET] switch). The operation is normal if the EMU lamp (red) of the
ICD33 goes off.

 5) Turn on the personal computer and start Windows.
 6) Open the DOS window.
 7) Set " c:\cc33\sample\mem33201" as the current directory.
 8) Execute demo.bat.

(2) Executing from wb33
 Use the same procedure as described in steps 1) through 5) above.
 6) Start wb33 and set " c:\cc33\sample\mem33201\33208_1.par " as the current directory.
 7) In the [Other options] windows, select DB33 options as follows:

ICD, 115200 bps, command file " sample.cmd"

8) Start the Debugger using the [DB33] button.

(3) Checking operation

1�db33 executes sample.cmd file, and sets the area and bus breaks. The system operation is OK if
ICD+MEM33 is displayed in yellow at the upper right-hand corner of db33.

2�Enter command g at the prompt for bus break to stop the target.
3�Enter command g again for area break to stop the target.
4�Enter command g again for map break to stop the target.
5�Enter command g again for map break and CE break to stop the target.
6�The following shows the command file used in this operation.
 >g
 Break by external break.
 Break by MEM33 bus break. No.1
 >g
 Break by external break.
 Break by MEM33 area break. Area1
 >g
 Break by external break.
 Break by MEM33 map break.
 >g
 Break by external break.
 Break by MEM33 map break.
 Break by MEM33 ce break. CE5(15,15+16)

 External break is also displayed because MEM33201 break uses the external break function of
ICD.

7�Use command g to exit Debugger.

Precautions
(1) If you use MEM33201,it occupies one of the chip select signals. Be sure that the break function is disabled in

the occupied area.

(2) Refer to " CHAPTER 16: DEBUGGER" for more information on the commands for MEM33201.

(3) db33 sets MEM33201 using the parameter file, in accordance with the target system.

(4) Refer to the manuals for restrictions of EPOD33208 and MEM33201.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 35
C COMPILER PACKAGE MANUAL (ver.3)

3.4 Relationship between Program Structure and Memory
This section briefly explains the concept of section management applied to the creation and linkage of source files.
Although it is not specifically have to been concerned about sections in the C source, the assembly source requires
that sections be explicitly be defined so that they can be created and linked.

In addition to programs to control the CPU and peripheral circuits, the source file contains descriptions of data
such as font data which are always fixed and do not require initialization, symbols for the variables placed in RAM,
and I/O memory control registers. Data and symbols that take on different attributes like these finally need to be
relocated into the corresponding physical memory locations by the Linker. For example, programs are relocated
into a program ROM area, fixed data are relocated into a data ROM area. For this reason, the object code is
designed to be classified into sections by attribute.
The following three types of sections exist:
1. CODE section Block for programs and fixed data that have initial values
2. DATA section Block for data that have initial values and can be accessed for read or write
3. BSS section Block that is mapped into RAM

For assembly source
 For the assembly source, use the following assembler pseudo-instructions to specify a section:
 .code pseudo-instruction Beginning of a CODE section
 .data pseudo-instruction Beginning of a DATA section
 .comm/.lcomm pseudo-instructions Symbol definition to a BSS section and area allocation

 The following shows the method of specification (see Chapter 11 for details):

• Before describing the program and fixed data to be written to the ROM, declare the beginning of a
CODE section by using the .code pseudo-instruction. The source code following this declaration is
assembled as the object of a CODE section. If no section is defined, the Assembler assumes a CODE
section from the beginning of the file.

• Before setting RAM data that have initial values, declare the beginning of a DATA section by using
the .data pseudo-instruction. The source code following this declaration is assembled as the object of a
DATA section. However, the initial values in the DATA section have to been copied to the RAM by
program.

• If the program requires to secure a variable or work area in the RAM and reference its address with a
symbol, allocate this area and define the symbol by using the .lcomm pseudo-instruction. The
Assembler allocates a specified area in the BSS section. This area is mapped in the RAM or I/O area,
with no object code created there. Symbol information enabling multiple modules to reference this area
is created as a BSS section.

 For relocatable assembly sources (including one that is created by compiling a C source), sections of the

same attribute are located together as one continuous section. Consequently, the assembled module becomes
an object that has one CODE section, one DATA section, and one BSS section. (Even undeclared sections
are created as those that do not have any actual data.)

 For an assembly source where absolute addresses are specified, sections of the same type cannot be put
together into one section. In this case, therefore, as many sections as specified separately in the source are
created.

For C source
 For C sources, there is no need to specify sections in the source because sections are declared by the C

Compiler. After the source is compiled, all instructions are located in the CODE section. Data is located in
each corresponding section according to its attribute as follows:

 Variables without an initial value (e.g., int i;): BSS section
 Variables with an initial value (e.g., int i=l;): DATA section
 Constants (e.g., const int i=1;): CODE section

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

36 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

The following shows the section definition of the sample program used in the tutorial as a simple example. Since
the assembly source program "boot.s" consists of only a program code, only the .code pseudo-instruction is used.

<boot.s>
�����������		
������

��������������

���������������������� ������������������ !��������"�#$%�

��������&������������� ���"���"��������'����������

� �(����

� �)����!**+�� ��!**+�,-.+*#�

!**+/�

� �"��)� '��0�������

� "��)� '�0'��� ���������

� "��)� '��0&������ �������"���"��������

� �(�""� ����� ������������

� �1� !**+� ���������2�"���

 (Program explanation)
 Boot processing is performed to initialize the stack and global pointers, and call the main function.
 Do not use this program in actual applications because the actual applications require setting up the

trap processing vector, etc.

<main.c>
34������(��		
������43�

34�.�������������43�

�������

�

����56�

����7�

� ����1��

�

� ��8����

 ����518������1996�

 ����7�

� � �:�516��

� ����;�

����;�

�:�5<6�

��������<��

����7�

� ���5<�=����6�

� ����7�

� � �99��

� ����;�

����;�

 (Program explanation)
 The main() function is cleared global variable i to 0 because it is used as a counter. Then an endless

loop is created by local variable j, and the sub() function is called repeatedly by using j as the
argument. The sub() function increases global variable i by one every two calls.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 37
C COMPILER PACKAGE MANUAL (ver.3)

Taking a look at the C Compiler output "main.ps" you will find that the CODE and the BSS sections are defined
by the Compiler.

<main.ps>
 ������ ��	�
����

������������������������������������� �!"���#�$���%�&'����

�������%��	(�)*+�

���!�����$'�

�������	,-(��
)*�.!�/	�(��0�����$(�0�1���������0��2+�

���!3(��)�!%(�$&	*��!-�!"�!#�

-���4�#�$���%�+�

44-
(4�#�$���%4�+�

� ��#%�
 �	��-
� ��

� �%��� �	�
�� /	�� �	�
�� *��� ���)'$�� �5���� �
%���

� �-�#&	�� �	�
�

� � +�

� � +�

� ��#��� ���

 ��
%�����

The symbol of global variable i is defined, and a 4-byte area is located in the BSS section by the ".comm"
pseudo-instruction. Since variables j and k are local variables, they are allocated to general-purpose registers and
stacks. No BSS section is used for these variables.

When these modules are linked by make in the tutorial, separate CODE sections are combined into one section.

CODE1

CODE1

DATA1 DATA1
BSS1

BSS1

tst_asm test.srf

0x0000000

0x0080000

CODE2

CODE2

DATA2

DATA2

BSS2
BSS2

tst_main

Fig. 3.4.1 Section allocation after linkage

During a linking, each file and each section can be address-specified so that they correspond to the actual memory
configuration. For details, refer to Section 12.5, "Linker Commands", and Section 12.6, "Locating Sections".

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

38 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Take a look at the link map file generated by the lk33 and the disassembly list created from the linked object file
"test.srf" by the dis33. They will show how the sections are allocated after linkage.

Link map file <test.map>
���������	�
���	
��

�������������������������	�����������	��������������������������������������

�� !�

������������������������������"�������	
�������������������������������� !�

���������	�
���	
��

�������������������������	�����������	��������������������������������������

�� !�

��������������������������������������	
�������������������������������� !�

#�������	�
���	
��

�������������������������	�����������	��������������������������������������

���$���� !�

��������������������������������������	
���������������������������$���� !�

The link map file shows the relationship between the sections in each file (File) and the located addresses
(Address).

Disassembly list file <test.dis>
�%%%%��	����������������
����&���������%%%%�
����������������'
�����������������������!	
�����������&����
���������������%%%�����������������������
��������$������%%%�����������������������
���
��(����������))*�$��"�
���$��(�������������
���"���
��+��,	
���-.�/���0����� (���	��	
��
���,�$1#�	
���
�����2�
���3��+��,	
��4-.�/���0����� (���������	
����5���	���0��
���6���
���*��� ������
��� �7����#889�� (�#889�� �98��
���)��#889:�
������������$���0�������0$����������������������� 0���7� 5��;�-.�/��
��������6�6�������7����5��;�0���������������
������������������7����5�;5��������������������� ���7� 5�;5��� (������-�
����������6�������7����5��;�0����������������$��� ���7� 5��;4-.�/��(�������������	
����
����������������0�������0��������������������"��� 0����� ��	
� (��������	
�
�������� �������0�������0�������������������
�������������$����������0$������������������
��������$�� �)�<�������0,)���������������������� 0<� #889� (�	
,	
	�=�����
��	
�������
��>%����.��	
����))*�$��"�%>�
���$��>%�����	
��������%>�
���"���
��	
��	(�
���3���
���6����	
?@�
�����������$���&�A
���5���������������������*������B�
��� 	
��<(�
���)���
��������6�6��#����7����5���;�0������������������� 	�C��(�
����������������0�������0�������������������
����������������0�������0�������������������
����������6��)����7����5�);�0���������������
�������� �"�)#����7����D5�)E;5��������������
�������$��6�������7����5��;�0�������������������� ,���?<C��(�(�<FF@�
���$��� ����B�
�������$$�$ ������7����5��$;5����������������"��� � �&�?<@(�
�������$�����3����������03������������������
�������$6�6������������5��;�0�������������������� ,���?<C��(�(�<FF@�
�������$��� ���<�������0,������������������
��� ����G�
�������$���$����
����5���������������������3������G�
�������$���6��������������������������������
���6���
���*���&�?H@�
��	
��H(�
���)������B�
�������$ �*�����
������5��$;�0��������������$���� 	,�?H�I��0�@�
�������"�������<��J�����0�������������������

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

E0C33 FAMILY EPSON 39
C COMPILER PACKAGE MANUAL (ver.3)

��� ������
���������������	
�������
������������������������ � ���
���������������	
�������
�������������������
����������������������������
���������������
��
�����������������������������
��������������
���������������	
�������
�������������������
���������������	
�������
�������������������
����������������������������
���������������
��
��� ������
����������������	�������������������������������������
���������������� !�����������������������

The above is just a quick review of the sections. For more information, refer to the chapters where the Assembler
and Linker are discussed.

CHAPTER 4: SOURCE FILES

40 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Chapter 4 Source Files
This chapter explains the rules and grammar involved with the creation of source files.

4.1 File Format and File Name
Source files should be created on a general-use word processor or editor.

File format Save data in a standard text file.

File name C source file <file name>.c
 Assembly source file <file name>.s
 Specify the <file name> with not more than 32 alphanumeric characters shown as follows:
 a–z, A–Z, 0–9 and _
 This rule applies to file names for all the E0C33 tools.
 Make sure the extension of the C source file is ".c" (small letter can only be used). If any

other extension is used, the file cannot be input to the C Compiler gcc33.

Directory name Only alphanumeric characters can be used for directory names just as for file names. Do not

use spaces or other symbols. Up to 64 characters can be used for a path name including
directory and file names.

Number of lines and number of characters
 The following shows the number of lines and the number of characters per line that can be

accepted in one C source file and one assembly source file.
 Number of lines Max. 30,000 lines
 Number of characters Max. 100 characters per line

Tab setting Place a tab stop every 8 characters. Mixed processing by the Disassembler dis33 or source

display/mixed display with the Debugger db33 of a source set at a tab interval other than of
8 characters will result in a displaced output of the source part.

EOF Make sure that each statement starts on a new line and that EOF is entered after line feed

(so that EOF will stand independent at the file end).

CHAPTER 4: SOURCE FILES

E0C33 FAMILY EPSON 41
C COMPILER PACKAGE MANUAL (ver.3)

4.2 Grammar of C Source
The C Compiler gcc33 included in this package is the GNU C Compiler (ver. 2.7.2) under ANSI C standards.
Since everything except the asm function of this compiler conforms to standard specifications, make sure C
sources are created according to ANSI C standards. If you want information about the syntax, please refer to ANSI
C textbooks generally available on the market.

4.2.1 Data Type
The gcc33 supports all data types under ANSI C. The size of each data type (in bytes) and the effective range of
values that can be expressed are listed in Table 4.2.1.1.

Table 4.2.1.1 Data type and size
Effective range of a number

-128 to 127
0 to 255
-32768 to 32767
0 to 65535
-2147483648 to 2147483647
0 to 4294967295
-2147483648 to 2147483647
0 to 4294967295
0 to 4294967295
1.175e-38 to 3.403e+38 (normalized number)
2.225e-308 to 1.798e+308 (normalized number)

Size
1
1
2
2
4
4
4
4
4
4
8

Data type
char
unsigned char
short
unsigned short
int
unsigned int
long
unsigned long
pointer
float
double

The float and double types conform to the IEEE standard format.

4.2.2 Library Functions and Header Files
This package contains an ANSI standard library and an emulation library for calculating floating-point numbers
and the remainders of divided integral numbers.

The header files in the "include" directory contain library function declarations and macro definitions. When using
a library function, include the header file that contains its declaration by using the "#include" instruction.

The table below shows the relationship between the types of library files and the header files.

Table 4.2.2.1 List of library files and functions

 ANSI standard library
Corresponding header file
stdio.h

stdlib.h

time.h
math.h, errno.h, float.h,
limits.h
string.h

ctype.h

stdarg.h

File name
io.lib

math.lib

string.lib

ctype.lib

–

Functions/macros
tmpfile*, tmpnam*, remove*, fopen*, freopen, fclose*, setbuf*,
setvbuf*, fflush*, clearerr*, feof*, ferror*, perror, fseek*, fgetpos*,
fsetpos*, ftell*, rewind*, getchar, fgetc, getc, gets, fgets, fscanf,
scanf, sscanf, fread, putchar, fputc, putc, puts, fputs, ungetc,fprintf,
printf, sprintf, vfprintf, vprintf, vsprintf, fwrite
abort, exit, atexit*,getenv*, system*, malloc, calloc, realloc, free, atoi,
atol, atof, strtol, strtoul, strtod, abs, labs, div, ldiv, rand, srand,
bsearch, qsort
time, difftime*, clock*, mktime, localtime*, gmtime, asctime*, ctime*
acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp,
ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh
memchr, memmove, strchr, strcspn, strncat, strpbrk, strstr,
memcmp, memset, strcmp, strerror, strncmp, strrchr, strtok,
memcpy, strcat, strcpy, strlen, strncpy, strspn
isalnum, iscntrl, isgraph, isprint, isspace, isxdigit, toupper, isalpha,
isdigit, islower, ispunct, isupper, tolower
va_start, va_arg, va_end

 The functions marked with an asterisk (*) are dummy functions.
 Emulation library

File name
fp.lib

idiv.lib

Functions
adddf3, subdf3, muldf3, divds3, negdf2, addds3, subds3, mulds3, divds3, negds2, fixunsdfsi,
fixdfsi, floatsidf, fixunssfsi, fixsfsi, floatsisf, truncdfsf2, extendsfdf2, fcmpd, fcmps
divsi3, udivsi3, modsi3, umodsi3

CHAPTER 4: SOURCE FILES

42 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

For details about the functions included in the libraries, refer to Chapter 7, "Emulation Library", and Chapter 8,
"ANSI Library".
When using a library function, be sure to specify the library file that contains the function used by using a linker
command when linking. The linker extracts only the necessary object modules from the specified library file as it
links them.

4.2.3 In-line Assemble
The gcc33 supports in-line assembly, so the asm statement can be used. As a result, the word "asm" is reserved for
system use.

Format: asm("<character string>");

Example 1: ���������	
�����

� � �����������

Example 2: ����������������

� � ������	�
� �����

� � � ������ ��

� � � ��	�
� �� �!"#$�

� � � ������ %�

� � � ��	�
� �"" !� �

� � � ��	�
� &'#�

� � � ������ ()�

� � � ��	�
� #&�*�

� � � ��	�
� #&�)��� Note: Up to 100 characters can be included in one line.

Example 3: +
�,-.��/0!#&#�121�11�

� � +
�,-.��30!#&#�121111�

� � ������4�

� � � ����2�
��� 5��6/0!#&#����

� � � �����
��� 5�65������ ������/0����

� � � �����
��� 5��630!#&#���� ������7�	�����	-.�������

� � � � 8�

� � 9

For details on how to write an assembly source, refer to Section 4.3, "Grammar of Assembly Source". Note that
although the extended instructions that can be processed by the Instruction Extender ext33 and assembler
pseudo-instructions (not including those used for absolute assembly) can be used in the assembly source, the
functions provided by the Preprocessor pp33 cannot be used in the assembly source.

CHAPTER 4: SOURCE FILES

E0C33 FAMILY EPSON 43
C COMPILER PACKAGE MANUAL (ver.3)

4.3 Grammar of Assembly Source

4.3.1 Statements
Each individual instruction or definition of an assembly source is called a statement. The basic composition of a
statement is as follows:

Syntax pattern

1 Mnemonic (Operand) (;Comment)
2 Assembler pseudo-instruction (Parameter) (;Comment)
3 Label: (;Comment)
4 ;Comment
5 Extended instruction Operand (;Comment)
6 Preprocessor pseudo-instruction (Parameter) (;Comment)

Example: <Statement> <Syntax Pattern>

�����������		
������ � ���

��������������� � � ���

������������������ ��� �������������������!"��������#�$%&� ��'�

��������(������������� ���#���#���������)� �������� ��'�

�

� �*���� � � ����

� �+����",,-� ��",,-�./0-,$� ����

",,-1� � � � ����

� �#��+�)� 2������� � ��3�

� #��+�)��2)� � ��������� ����

� #��+�)� 2(������ �������#���#��������� ����

� �*�##� ����� ������������ ��3�

� �4�� ",,-� ���������5�#���� ��3�

��1� �1� ��1� ��������1�

The example given above is an ordinary source description method. For increased visibility, the elements
composing each statement are aligned with tabs and spaces.

∗ 5 is the function of the Instruction Extender ext33, 6 is the function of the Preprocessor pp33, and not

statements that can be processed by the Assembler as33.

Restrictions

 • Only one statement can be described in one line. A description containing more than two instructions in one

line or a mixture of label and instruction will result in an error. However, comments may be described in the
same line with an instruction or label.

 Examples: ;OK
 BOOT:
 ld.w %r0,%r1
 ;Error
 BOOT: ld.w %r0,%r1

 • One statement cannot be described in more than one line. A statement not complete in one line will result in

an error.
 Examples: ;OK
 .byte 0x0,0x1,0x2,0x3
 .byte 0xa,0xb,0xc,0xd
 ;Error
 .byte 0x0,0x1,0x2,0x3,
 0xa,0xb,0xc,0xd

CHAPTER 4: SOURCE FILES

44 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 • The maximum describable number of characters in one line is 100 (ASCII characters).

 • The usable characters are limited to ASCII characters (alphanumeric symbols), except for use in comments.

Also, the usable symbols have certain limitations (details below). Comments can be described using other
characters than ASCII characters.

(1) Instructions (Mnemonics and Operands)
 An instruction to the CPU is generally composed of [mnemonic] + [operand]. Some instructions do not

contain an operand.

 General notation forms of instructions

 General forms: <Mnemonic>
 <Mnemonic> tab or space <Operand>
 <Mnemonic> tab or space <Operand 1>, <Operand 2>
 Examples: nop
 call SUB1
 ld.w %r0,0x4

 There is no restriction as to where the description of a mnemonic may begin in a line. A tab or space

preceding a mnemonic is ignored. Generally, mnemonics are justified left by tab setting.

 An instruction containing an operand needs to be broken with one or more tabs or spaces between the

mnemonic and the operand. If there are plural operands, the operands are separated from each other with one
comma (,). Space between operands is ignored.

 The elements of operands will be described further below.

 Types of mnemonics
 The following 61 types of mnemonics can be used in the E0C33 Family:

 adc add and bclr bnot brk bset btst call cmp div0s div0u div1 div2s div3s ext

halt int jp jreq/jreq.d jrge/jrge.d jrgt/jrgt.d jrle/jrle.d jrlt/jrlt.d jrne/jrne.d jruge/jruge.d
jrugt/jrugt.d jrule/jrule.d rult/jrult.d ld.b ld.h ld.ub ld.uh ld.w mac mirror mlt.h mlt.w
mltu.h mltu.w nop not or popn pushn ret/ret.d retd reti rl rr sbc scan0 scan1 sla
sll slp sra srl sub swap xor

 Refer to the "E0C33000 Core CPU Manual" for details of each instruction.

 Restrictions on characters
 Mnemonics can be written in uppercase (A–Z) characters, lowercase (a–z) characters, or both. For example,

"ld.w", "LD.W", and "Ld.w" are all accepted as "ld.w" instructions.
 For purposes of discrimination from symbols, this manual uses lowercase characters.
 More will be said about operands later.

CHAPTER 4: SOURCE FILES

E0C33 FAMILY EPSON 45
C COMPILER PACKAGE MANUAL (ver.3)

(2) Assembler Pseudo-Instructions
 The following 20 types of pseudo-instructions are available for the Assembler as33:

 Pseudo-Instruction Function
 .abs Specifies absolute assembling.
 .org <address> Sets an absolute address in a code (*).
 .code Declares the CODE section
 .data Declares the DATA section
 .word <data 1>[,<data 2>..,<data n>] Defines word data in the CODE/DATA section.
 .half <data 1>[,<data 2>..,<data n>] Defines half word data in the CODE/DATA section.
 .byte <data 1>[,<data 2>..,<data n>] Defines byte data in the CODE/DATA section.
 .ascii <string> Defines an ASCII character string in the CODE/DATA section.
 .space <length> Defines an blank area (0x0) in the CODE/DATA section.
 .align <value> Moves to an address boundary.
 .comm <symbol>,<length> Secures a global area in the BSS section.
 .lcom <symbol>,<length> Secures a local area in the BSS section.
 .global <symbol> Declares a global symbol.
 .set <symbol>,<address> Defines an absolute address for a symbol (*).
 .list Controls assembly list output.
 .nolist Controls assembly list output.
 .file <strings> Debugging information.
 .endfile Debugging information.
 .loc <value> Debugging information.
 .def <symbol>, ... ,endef Debugging information.
 (∗: Dedicated absolute assembling)

 Each instruction begins with a period (.).
 Examples: .data
 .align 2
 .word 1,2,3,4

 For details on the notation of each pseudo-instruction and its functionality, refer to Section 11.8 "Assembler

Pseudo-Instructions".

(3) Labels
 A label is an identifier designed to refer to an arbitrary address in the program. You can refer to a branch

destination of a program or an address in the CODE/DATA section by using a symbol defined as a label.

 Definition of a label
 A symbol described in the following format is regarded as a label.

 <Symbol>:

 Preceding spaces and tabs are ignored. It is a general practice to describe from the top of a line.
 A defined symbol denotes the address of a described location.
 An actual address value will be determined in the linking process.

 Restrictions

• A label occupies one line of a source program. An instruction described in the same line will result in an
error. However, comments may be described in the same line with a label.

• The maximum number of characters of a label is 32 (not including colons).

CHAPTER 4: SOURCE FILES

46 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

• Only the following characters can be used:
 A–Z a–z _ 0–9
 A label cannot begin with a numeral. Uppercase and lowercase are discriminated.
 Examples: ;OK ;Error
 FOO: 1label:
 _Abcd: 0_ABC:
 L1:

(4) Comments
 Comments are used to describe the meaning of a series of routines or each statement. Comments cannot

comprise part of coding.

 Definition of comment
 A character string beginning with a semicolon (;) and ending with a line feed is interpreted as a comment.
 Not only ASCII characters, but also other non-ASCII characters can be used to describe a comment.
 It can be described with a label or instruction in one line.
 Examples: ; This line is a comment line.
 LABEL: ;This is the comment for LABEL.
 ld %a,%b ;This is the comment for the instruction on the left.

 Restrictions

• A comment is limited in length to 100 characters, including: a semicolon (;); spaces before, after and
inside the comment; and a return/line feed code.

• When a comment extends to several lines, each line must begin with a semicolon.
 Examples:
 ;These are
 comment lines. The second line will not be regarded as a comment. An error will result.

 ;These are
 ; comment lines. Both lines will be regarded as comments.

(5) Blank Lines
 This assembler also allows a blank line containing only a return/line feed code. It need not be made into a

comment line using a semicolon; for example, when used as a break in a series of routines.

CHAPTER 4: SOURCE FILES

E0C33 FAMILY EPSON 47
C COMPILER PACKAGE MANUAL (ver.3)

4.3.2 Notations of Operands
This section explains the notations for the register names, symbols, and constants that are used in the operands of
instructions.

(1) Register Names
 The names of the internal registers of the E0C33000 Core CPU all contain a percentage symbol (%). Register

names may be written in either uppercase or lowercase letters.

General-purpose register (%rd, %rs, %rb) Notation
General-purpose register R0–R15 %r0–%r15 or %R0–%R15

Special register (%sd, %ss) Notation
Processor status register PSR %psr or %PSR
Stack pointer SP %sp or %SP
Arithmetic operation low register ALR %alr or %ALR
Arithmetic operation high register AHR %ahr or %AHR

 Register names placed in brackets ([]) for indirect addressing must include the % symbol.
 Examples: [%r8] [%r1]+ [%sp+imm6]

Note: A register name not containing % will be regarded as a symbol.
 Conversely, all notations beginning with % will be regarded as registers, and will give rise to an

error if it is not a register name.

(2) Numerical Notations
 The assembler supports three kinds of numerical notations: decimal, hexadecimal and binary.

 Decimal notations of values
 Notations represented with 0–9 only will be regarded as decimal numbers. To specify a negative value, put a

minus sign (-) before the value.
 Examples: 1 255 -3

 Characters other than 0–9 and the sign (-) cannot be used.

 Hexadecimal notations of values
 To specify a hexadecimal number, place "0x" before the value.
 Examples: 0x1a 0xff00

 "0x" cannot be followed by characters other than 0–9, a–f, and A–F.

Note: Only the lowercase "x" can be used. "0X" will result in an error.

 Binary notations of values
 To specify a binary number, place "0b" before the value.
 Examples: 0b1001 0b01001100

 "0b" cannot be followed by characters other than 0 or 1.

Note: Only a lowercase "b" can be used. "0B" will result in an error.

CHAPTER 4: SOURCE FILES

48 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 Specified ranges of values
 The size (specified range) of immediate data varies with each instruction.
 The specifiable ranges of different immediate data are given below.

Table 4.3.2.1 Types of immediate data and their specifiable ranges
Symbol
imm2
imm3
imm4
imm6
sign6
imm8
sign8
imm10
imm13
imm32

sign32

Type
2-bit immediate data
3-bit immediate data
4-bit immediate data
6-bit immediate data
Signed 6-bit immediate data
8-bit immediate data
Signed 8-bit immediate data
10-bit immediate data
13-bit immediate data
32-bit immediate data

Signed 32-bit immediate data

Decimal
0– 3
0– 7
0– 15
0– 63
-32– 31
0– 255
-128– 127
0– 1023
0– 8191
0– 4294967295

-2147483648–
2147483647

Hexadecimal
0x0– 0x3
0x0– 0x7
0x0– 0xf
0x0– 0x3f
0x0– 0x3f
0x0– 0xff
0x0– 0xff
0x0– 0x3ff
0x0– 0x1fff
0x0– 0xffffffff

0x0– 0xffffffff

Binary
0b0– 0b11
0b0– 0b111
0b0– 0b1111
0b0– 0b111111
0b0– 0b111111
0b0– 0b11111111
0b0– 0b11111111
0b0– 0b1111111111
0b0– 0b1111111111111
0b0–
0b11111111111111111111111111111111
0b0–
0b11111111111111111111111111111111

(3) Symbols
 In specifying an address with immediate data, you can use a symbol defined in the source files.

Note: The symbols discussed here represent addresses that can be processed by the assembler.

Symbols representing defined names and other character strings will be covered in the chapter
relating to the Preprocessor pp33.

 Definition of symbols
 Usable symbols are defined as 32-bit values by any of the following methods:

 1. It is described as a label (in CODE or DATA section)
 Example: LABEL1: LABEL1 is a symbol that indicates the address of a described

location in CODE or DATA section.

 2. It is defined with a .comm or .lcomm pseudo-instruction (in BSS section)
 Example: .comm BUF1 4 BUF1 is a symbol that indicates the address of a described

location in BSS section.

 3. It is defined with a .set pseudo-instruction (symbol definition dedicated absolute assembly)
 Example: .set ADDR1 0xff00 ADDR1 is a symbol that represents absolute address 0x0000ff00.

 Restrictions on characters

• The maximum number of symbol characters is 32. If this number is exceeded, an error will result.

• The characters that can be used are limited to the following:
 A–Z a–z _ 0–9
 Note that a symbol cannot begin with a numeral. Uppercase and lowercase characters are discriminated.

 Local and global symbols
 Defined symbols are normally local symbols that can only be referenced in the file where they are defined.

Therefore, you can define symbols with the same name in multiple files. To reference a symbol defined in
some other file, you must declare it to be global in the file where the symbol is defined by using the .global
pseudo-instruction.

∗ The symbols defined by the .comm pseudo-instruction are handled as symbols declared to be global.

Declaration by the .global pseudo-instruction is unnecessary.

CHAPTER 4: SOURCE FILES

E0C33 FAMILY EPSON 49
C COMPILER PACKAGE MANUAL (ver.3)

 Extended notation of symbols
 When referencing an address with a symbol, you normally write the name of that symbol in the operand

where an address is specified.
 Examples: call LABEL ...LABEL = sign8
 ld.w %rd, LABEL ...LABEL = sign6

 The Assembler also accepts the referencing of an address with a specified displacement as shown below.
 LABEL + imm32 LABEL + sign32
 Example: call LABEL+0x10

 Symbol mask
 The basic instructions in the E0C33000 instruction set are characterized by the fact that the immediate size

that can be specified in the operand of each instruction is limited. Consequently, an assembler error results
when a symbol whose value exceeds the size is used. When using the basic instructions, the high-order bits
must be written separately in the ext instruction. A symbol mask is used for this purpose.

 Specifically, a symbol mask is used to get the values from a symbol value that are written separately in the
ext instruction and the basic instruction, and is entered immediately after the symbol.

 When using extended instructions, the Instruction Extender ext33 attaches the necessary symbol mask as it
expands the instruction. Therefore, you do not specifically need to be concerned about the ext instruction or
symbol mask.

 Types of symbol masks
 The following 8 types of symbol masks can be used:

 Symbol mask Function
 @rh or @RH Acquires the 10 high-order bits of a relative address.
 @rm or @RM Acquires the 13 mid-order bits of a relative address.
 @rl or @RL Acquires the 8 low-order bits of a relative address.

 @h or @H Acquires the 13 high-order bits of an absolute address.
 @m or @M Acquires the 13 mid-order bits of an absolute address.
 @l or @L Acquires the 6 low-order bits of an absolute address.

 @ah or @AH Acquires the 13 high-order bits of a relative address.
 @al or @AL Acquires the 13 low-order bits of a relative address.

 Examples:
 ext LABEL@rh
 ext LABEL@rm
 call LABEL@rl Functions as "call LABEL".

 ext LABEL@h
 ext LABEL@m
 ld.w %rd, LABEL@l Functions as "ld.w %rd, LABEL".

 ext LABEL@ah
 ext LABEL@al
 ld.w %rd, [%rb] Functions as "ld.w %rd, [%rb+LABEL]".

Notes: • The symbol masks are effective only on the defined symbols. If a symbol mask is applied to a

numeric value, an error will result.

 • If a symbol mask is omitted, the lower bits effective for that instruction will be used. However,

if the bit value does not fall within the instruction range, an error or warning will be issued.

CHAPTER 4: SOURCE FILES

50 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

4.3.3 Extended Instructions
The Instruction Extender ext33 provides extended instructions for creating assembly source files. An extended
instruction is such that the contents which normally are written in multiple instructions including the ext
instruction can be written in one instruction. Extended instructions are expanded into the smallest possible basic
instructions by the Instruction Extender.

Types of extended instructions
 xadd xsub xcmp xand xoor xxor xnot xsll xsrl xsla xsra xrl xrr
 xld.b xld.ub xld.h xld.uh xld.w xbset xbclr xbtst xbnot
 xjp xjreq xjrne xjrgt xjrge xjrlt xjrle xjrugt xjruge xjrult xjrule xcall xjp.d xjreq.d

xjrne.d xjrgt.d xjrge.d xjrlt.d xjrle.d xjrugt.d xjruge.d xjrult.d xjrule.d xcall.d

 An extended instruction is derived from one of the basic instructions by adding the prefix "x". ("xoor" for the

or instruction.)

Method for using extended instructions
 The value or symbol for the expanded immediate size can be written directly in the operand.
 Examples: xcall LABEL ; ext LABEL@rh
 ; ext LABEL@rm
 ; call LABEL@rl

 xld.w %r1, sign32 ; ext sign32@h
 ; ext sign32@m
 ; ld.w sign@l

 In addition to the immediate expansion function of the basic instructions, a special operand specification like

the one shown below is accepted for some instructions.
 Examples: xadd %r0, %r1, 0x1 ; R0 ← R1 + 1
 xsub %sp, %sp, %r1 ; SP ← SP + R1
 xld.w %r0, [symbol + 0x10] ; R0 ← [symbol + 0x10]
 xjp LABEL + 5 ; Jumps to address LABEL + 5.
 xrl %r0, 15 ; Rotates the R0 content left by 15 bits.

For details about the extended instructions that include operands, refer to Section 10.6, "Extended Instructions".

Note: Extended instructions must be processed by the Instruction Extender ext33. They cannot be

input directly into the Assembler as33 (this results in an error).

CHAPTER 4: SOURCE FILES

E0C33 FAMILY EPSON 51
C COMPILER PACKAGE MANUAL (ver.3)

4.3.4 Additional Preprocessor Functions
The Preprocessor pp33 offers additional functions for the creation of assembly source files. This section will deal
only with the notations for these functions. For details on each one of the functions, refer to Chapter 9,
"Preprocessor". The preprocessor processes the notations of the said functions into mnemonic statements that can
be assembled, thereby delivering assembly source files.

Note: The statements dealt with in this section need to be processed by the preprocessor, and cannot

be entered directly into the Assembler as33. (Direct entry into the assembler will result an error.)

Preprocessor pseudo-instructions
 The following five types of pseudo-instructions are provided for the Preprocessor pp33.

 #include Insertion of file
 #define Definition of character strings and numbers
 #macro–#endm Definition of macros
 #ifdef(ifndef)–#else–#endif Conditional assembly

 All of these pseudo-instructions begin with a sharp (#).
 Examples: #include "define.h"
 #define NULL 0
 #macro ADDM $1, $2
 xld.w %r0, [$1]
 xld.w %r1, [$2]
 add %r0, %r1
 xld.w [$1], %r0
 #endm
 #ifdef TYPE1
 ld.w %r0, 0
 #else
 ld.w %r0, -1
 #endif

 For details on the notation of each pseudo-instruction and function, refer to Section 9.5 "Preprocessor

Pseudo-Instructions".

Operators
 To specify a value in the source, an expression using the following operators can be used:

 Examples
+ Addition, Plus sign +0xff, 1+2
- Subtraction, Minus sign -1+2, 0xfff-0b111
* Multiplication 0xf*5
/ Division 0x123/0x56
%% Residue 0x123%%0x56
>> Shifting to right 1>>2
<< Shifting to left 0x113<<3
& Logical product 0b1101&0b111
| Logical sum 0x123|0xff
^ Exclusive OR 12^35
~ Logical denial ~0x1234
^H Acquires bit field (31:19) 0x1234^H
^M Acquires bit field (18:6) 0x1234^M
^L Acquires bit field (5:0) 0x1234^L
^AH Acquires bit field (25:13) 0x1234^AH
^AL Acquires bit field (12:0) 0x1234^L
(,) Parentheses 1+(1+2*5)

 In the numeric parts of an expression, you can use a symbol whose value is defined by the preprocessor

pseudo-instruction #define.

CHAPTER 4: SOURCE FILES

52 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

4.4 Precautions for Creation of Sources

(1) Place a tab stop every 8 characters. Mixed processing by the Disassembler dis33 or source display/mixed

display with the Debugger db33 of a source set at a tab interval other than 8 characters will result in
displaced output of the source part.

(2) When compiling/assembling a C source or assembly source that includes debugging information, do not

include other source files (by using #include). It may cause a debugger operation error. This does not apply
to ordinary header files that do not contain sources.

(3) When describing an assembly source in absolute format, do not define two or more CODE, DATA or BSS

sections. Actually, a source file can contain two or more of the same type of sections, note, however the
program may not work correctly if the sections are not described in ascending order or because of other
problems. Therefore, the absolute source in which the same section is separately defined cannot be
guaranteed to work.

(4) When using C and assembler modules in a program, pay attention to the interface between the C functions

and assembler routines, such as arguments, size of return values and the parameter passing conventions.

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 53
C COMPILER PACKAGE MANUAL (ver.3)

Chapter 5 Work Bench
This chapter describes the functions and operating method of the Work Bench wb33.

5.1 Functions
The Work Bench wb33 (hereafter called "wb33") provides an integrated operating environment ranging from the
C Compiler or the Preprocessor to the Debugger. Its functions and features are summarized below:

• The software tools required for E0C33 Family program development can be started up from one window via

the same method of operation.

• The basic make file and debugger parameter files can be created simply without using an editor.

• Almost all operations can be performed using only the mouse. Furthermore, the standard startup options of

each tool can be selected simply by clicking on check boxes.

• When selecting a source file, you can display its contents on the screen (up to 32KB). What's more, the selected

source file can be opened by a specified editor, allowing you to efficiently edit the source for correction.

• The wb33 also allows command lines including DOS command execution to be input from the keyboard.

CHAPTER 5: WORK BENCH

54 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

5.2 Operations

5.2.1 Starting Up and Terminating wb33

To start up wb33
 Choose "Work Bench 33" from the [Program] menu to start up the wb33.

To start up the wb33, double click the "wb33.exe" icon.
Also the wb33 starts up by dragging an option file (.sav) on the "wb33.exe" icon.
When the wb33 starts up, the execution window shown below appears.

wb33 startup command
 The following shows the wb33 startup command:

 Startup command
 >wb33 [<option file name>]↵

 Startup option

<option file name>: Specify an option file in which the settings in the option windows are recorded editor
with full path.

 Example: C:CC33>wb33 c:\cc33\sample\tst\wb33.sav↵
 If this option is omitted, the option windows will be set to the default status.

To terminate wb33
 Click on the [Save and Exit] button in the execution window.

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 55
C COMPILER PACKAGE MANUAL (ver.3)

5.2.2 Window
The diagram below shows the structure of the wb33 window.

 Execution window [gcc-lk options] window

 Output window [other options] window

Execution window
 Immediately after the wb33 is started up, only the execution window is open.
 The following can be performed in the execution window:

• Choose the file you want to input into a software tool. (Refer to Section 5.2.3.)
• Execute a software tool. (Refer to Section 5.2.4.)
• Open the option windows. (Refer to the section below.)
• Create a make file. (Refer to Section 5.2.6.)
• Create a parameter file. (Refer to Section 5.2.7.)
• Display the source file and open the source file by using an editor. (Refer to Sections 5.2.3 and 5.2.8.)
• Input a command line to execute a DOS command, etc. (Refer to Section 5.2.9.)

CHAPTER 5: WORK BENCH

56 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Option windows
 When you click on the [Open option window] button in the execution window, two option windows are

opened simultaneously.

 [gcc-lk options] window
 This window allows you to select or specify the startup options of the following software tools (see Section

5.2.4.):
• C Compiler gcc33
• Preprocessor pp33
• Instruction Extender ext33
• Assembler as33
• Linker lk33

 These are options of the tools that are executed by make.

 [other options] window
 This window allows you to select or specify the startup options of the following software tools (see Section

5.2.4.):
• make
• Debugger db33
• Disassembler dis33
• Binary/HEX Converter hex33
• Librarian lib33

 In addition to the above, you can choose the wb33 options and the options common to all tools (see Section
5.2.5), as well as save and restore the settings of selected options (see Section 5.2.10).

Output window
 The output window is used to display the source or display the execution results of each software tool. It

opens up in the following two cases:
• When a software tool is executed
• When you double-click on the source file (text file) in the file list box of the execution window (see

Section 5.2.3)

Precautions to be taken when operating in wb33 windows

• The maximize buttons of the execution window and two option windows do not work, and the scroll bar is
not displayed when the window size is reduced. In this case, try using the default size as much as possible.
The output window can be maximized and returned to its original size without a problem.

• Minimization to a task bar button is supported in all windows. Each window except the execution window

can be minimized and returned to its original size independently. When the execution window is
minimized, all other windows are minimized simultaneously. The same applies when the execution
window is restored to its original size.

• The wb33 can be terminated by clicking on the [Close] button of the execution window.
 The [Close] button in the option windows closes only the window to which it is attached. Note, however,

that if the option windows are opened by the [Open option window] button again, all options selected
before the windows were closed are restored to their initial settings.

• The list and the text boxes in each window except the output window can only be used for displaying or

entering ASCII characters. For this reason, kanji and other unsupported characters are erratically
represented.

 Although the output window can display kanji, even in this window, kanji may be erratically represented
if the source file contains control characters, etc.

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 57
C COMPILER PACKAGE MANUAL (ver.3)

5.2.3 Selecting File and Displaying Source

The execution window has a list box for selecting a drive, directory or file. Use this list box
to select the file you want to be input to a software tool.

Selecting directory
 Immediately after the wb33 is started up, the drive and directory where the wb33 and

other tools are installed are selected.
 Create a work directory for program development purposes, and elect that directory.

Note: Make sure that all wb33 processing is performed in the same directory.

Furthermore, do not change the current directory by using the CD command
while the wb33 is open.

Types of files
 Immediately after the wb33 is started up, the [*.*] radio button is selected and all file names in the selected

directory are displayed in the file list box.

 Each software tool has a radio button in front of the execution button for selecting the type of file to be input

for the tool. This radio button facilitates the selection of a file.

Note: Although you can choose a file while all file types are being displayed before executing a

software tool, care must be taken because the tool will start up even if you have selected a type
of file that is not acceptable for the tool. Furthermore, the types of input files available for the
Instruction Extender and Linker change depending on which options are selected.

Updating the file list box

[Refresh] button

The file list box is updated when you choose a directory or execute a software tool; but
it is not updated when you copy a file or create a file in some other application.
The file list box can be updated by clicking on the [Refresh] button in the execution
window. Use this button whenever you want to update the list box. However, the
directory list box is not updated.

Deleting files

[Del] button

The [Del] button deletes the files selected in the file list box.

Displaying the source file
 By double-clicking on a source file name (text file) in the file list box, you can display the contents of that

file in the output window. If the output window is closed, it will be opened when you double-click on a file
name.

Only text files can be displayed in the output
window, and the display size is limited to 32KB
from the beginning of the file.
The output window is used for display-only.
Although characters can be input or copied, and
pasted in this window, no data can be saved.
If you want to display more than 32KB of text or
edit the contents of a file, use an editor (see
Section 5.2.8).

CHAPTER 5: WORK BENCH

58 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 ∗ When you choose the [smaller font] check box of the [other options] window, the font size in the output
window is reduced, allowing for a greater amount of information to be displayed at a time.

The 10-point Terminal font is used for the
reduced display. If this font is not installed in
your system, the effect of [smaller font] cannot be
guaranteed. The default font is 14-point FixedSys.

5.2.4 Executing Individual Tools
Each software tool can be executed using the buttons in the execution window.

To execute a software tool
1. Choose the startup options of the tool you want to be executed in the execution window.
2. Choose the file you want to be input to a software tool using the file list box and click on the tool's

execution button.
 Multiple input files can be selected. In this case, the software tool is executed repeatedly as many times as

the number of files selected.

About [Stop] button

 [Stop] button

 Once you execute a software tool using the execution button, processing cannot be stopped in the wb33 until

the tool (including make) finishes processing. However, if the tool is executed after selecting multiple files,
processing can be halted by using the [Stop] button. Since a software tool processes one file at a time no
matter how many files are selected, execution of the tool is halted when it finishes processing the file that
was being processed when you clicked on the [Stop] button.

The following outlines the files input and output by each software tool and the startup options of each tool that can
be selected by the wb33. (For make, refer to Section 5.2.6.) Explained below is the function of each option when
selected.
For more information, refer to the chapters where each tool is detailed.

C Compiler gcc33

Execution button:

Input file: *.c (C source file; lower-case is only allowed for ".c", ".C" cannot be used.)
Output file: *.ps (assembly source file bearing the same name as input)
Options:

 �debug info: Selection of the -g option (turned on by default)
 The information required for the C source level debug is generated in the output file.

Normally, you should choose this option.

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 59
C COMPILER PACKAGE MANUAL (ver.3)

 �define: Selection of the -D option (turned off by default)
 This option defines the macro name used in a conditional compilation. Input the

definitions in the text box to the right of this option. When defining multiple macro
names, separate each with a comma (,).

 �NO, �O, �O2, �O3: Selection of a -O, -O2 or -O3 option (O by default)
 This option selects the optimization level.
 �inline memcopy: Selection of the -mno-memcpy option (turned off by default)
 This option expands the strcpy or memcpy function in-line.
 �include path: Selection of the -I option (turned off by default)
 The directory selected in the directory list box to the right of this option is set in one of

the directories where the include file is searched.

Preprocessor pp33

Execution button:

Input file: *.s (assembly source file)
Output file: *.ps (assembly source file bearing the same name as the input)
Options:

 �debug info: Selection of the -g option (turned on by default)
 The information required for debugging at the assembly source level is generated in the

output file. Normally, you should choose this option.
 �define: Selection of the -d option (turned off by default)
 This option defines the define name used in a conditional assembly. Input the definitions

in the text box to the right of this option. When defining multiple define names, separate
each with a comma (,).

Instruction Extender ext33

Execution button:

Input files: *.ps (assembly source file)
 *.cmx (command file, specification of option required)
Output file: *.ms (assembly source file bearing the same name as the input)
Options:

 �use .cmx file: Selection of the -c option (turned off by default)
 This option inputs a command file (.cmx) and executes it. When this option is selected, be

sure to choose a .cmx file from the file list box of the execution window.
 �global pointer optimize: Selection of the -gp option (turned off by default)
 This option performs optimization by a global pointer. When this option is selected, input

the address of the global pointer in the text box to the right of this option.
 �far call is 2 inst: Selection of the -near option (turned off by default)
 This option generates two instructions (one ext + branch instruction) for a jump to a

nonexistent label in the file being processed. If this option is not selected, three
instructions (two ext + branch instruction) are generated for the jump.

 �symbol,map optimize: Selection of the -lk option (turned off by default)
 This option performs optimization using the symbol and link map files output by the

linker. The source files that have been linked can be optimized. When this option is
selected, input a common name for the symbol and map files in the text box to the right of
this option.

CHAPTER 5: WORK BENCH

60 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 �change threshold: Selection of the -j option (turned off by default)
 This option specifies the threshold value to be used for a branch instruction over a

relatively long distance. When this option is specified, input a threshold value in the text
box to the right of this option. If this option is not specified, a threshold value of
0x180000 is assumed.

Assembler as33

Execution button:

Input file: *.ms (assembly source file)
Output file: *.o (object file bearing the same name as the input)
Options:

 �debug info: Selection of the -g option (turned on by default)
 The information required for debugging is generated in the output file. Normally, you

should choose this option.
 �list file: Selection of the -l option (turned off by default)
 This option generates an assembly list file.

Linker lk33

Execution button:

Input files: *.cm (command file, specification of option required)
 *.o (object file)
Output file: *.srf (object file in srf33 format)
Options:

 �debug info: Selection of the -g option (turned on by default)
 The information required for debugging is generated in the output file. Normally, you

should choose this option.
 �use .cm file: Selection of the -c option (turned on by default)
 This option links modules according to the commands written in a command file. When

this option is selected, be sure to choose a .cm file from the file list box of the execution
window. Normally, you should specify this option.

 �symbol,map file: Selection of the - s and -m options (turned on by default)
 This option generates a symbol and a link map file. These files are used during

optimization by the Instruction Extender.

Debugger db33

Execution button:

Input file: *.par (parameter file)
Options:

Debugger mode:Selection of the -sim, -icd or -mon option
(ICD mode by default)
This option selects a debugger operating mode.

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 61
C COMPILER PACKAGE MANUAL (ver.3)

 �1 win: Selection of the -w option (turned off by default)
 This option opens only the [Command] window when the Debugger starts up. If this

option is not selected, the [Command], [Source] and [Register] windows are opened.
 �small font: Selection of the -sf option (turned off by default)
 This option changes the font used in the debugger window to 10-point Terminal. The

default font is 14-point FixedSys.

Communication rate: Selection of the -b option
 (115200 bps by default)
This option selects the rate of communication with the ICE33,
ICD33 or MON33 (DMT33MON).
When using the ICE33 or ICD33, make sure that the DIP
switch on the ICE33/ICD33 has been set correctly.

Serial port: Selection of the -comX option (com1 by default)
This option selects the personal computer's serial port.

 �db33 *.cmd file: Selection of the -c option (turned off by default)
 This option executes a specified debug command file when the Debugger starts up. When

this option is selected, choose a debug command file from the file list box located below
the option select button. This list box displays the debug command file names in the
directory currently selected in the execution window.

Parallel port: Selection of the -lptX option (No by default)
This option selects the personal computer's parallel port.

Disassembler dis33

Execution button:

Input file: *.srf (object file in srf33 the format)
Output file: *.dis (disassembly list file bearing the same name as the input)
Options:

 �src mix: Selection of the -m option (turned on by default)
 This option outputs disassembled lines to a disassembly list file with the source

corresponding to it. If a data section is encountered, its dump is output.
 �code only: Selection of the -c option (turned off by default)
 This option outputs a disassembly list of only code sections.
 �data only: Selection of the -d option (turned off by default)
 This option outputs only a dump of data sections.
 Note: These three options can be selected simultaneously, however, choose one

option at a time. If multiple options are selected simultaneously, one or all
specifications may be invalidated depending on the combination of selected
options. (Refer to Section 13.3.2.)

 �addr range: Selection of the -a option (turned off by default)
 This option specifies an address range for disassembling. When using this function, enter

the start and end addresses in the text box.

CHAPTER 5: WORK BENCH

62 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Binary/HEX Converter hex33

Execution button:

Input file: *.srf (object file in srf33 format)
Output file: *.sa* (file in Motorola S3 format bearing the same name as the input)
Options:

 Address range: Selection of an address range (0xc00000 to 0xc0ffff by default)
 This option specifies an address range in the input file representing the extent to which

the data is converted. The start and end addresses specified here must reside on the
32-byte boundaries.

 �abs addr: Selection of the -z option (turned on by default)-
 This option generates an output file that contains absolute address information. Unless

this option is selected, the output address is an offset address from the address at which
conversion is started.

 �addr to name: Selection of the -x option (turned on by default)
 This option adds information on a specified address range after the extension ".sa" of the

output file.
 Example: test.sa_c00000_c0ffff
 If this option is not selected, the extension will consist of only ".sa".

Librarian lib33

Execution button:

Input files: *.lib (library file) Selected in the execution window
 *.o (relocatable object file) Selected in the option window
Output files: *.lib (library file)
 *.o (relocatable object file)
Options:

 �list: Selection of the -l option (turned on by default)
 This option lists the object files registered in the library file in the output window

(default) in the order in which they are registered.
 �add: Selection of the -a option (turned off by default)
 This option adds the object files (can be multiple files) that are selected in the [*.o for

new, add] list box to a specified library file.
 �new: Deselecting all options (turned off by default)
 This option creates a new library file. Input the library file name in the text box located

below the option button. No extension is required. Choose the object files you want to
register from the [*.o for new, add] list box (multiple files selectable).

 If you specify a library name present in the current directory, the object files are added to
the existing file in the same way as when the [add] option is selected.

 �del: Selection of the -d option (turned off by default)
 This option deletes a specified object from the library file. Input the object name you

want deleted in the text box provided below the option button. No extension is required.
 �extract: Selection of the -x option (turned off by default)
 This option restores a specified object of the library file in the current directory as a file.

Input the object name you want restored in the text box provided below the option button.
No extension is required.

 �extract all: Selection of the -x option (turned off by default)
 This option restores all the objects of the library file in the current directory as a file.

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 63
C COMPILER PACKAGE MANUAL (ver.3)

5.2.5 Selecting Execution Conditions
This section describes the options associated with the execution of a software tool and the display of execution
results.
The options described below are the functions of the wb33, and not the startup options of any software tool. Use
the [other options] window to select these options.

[usage] check box (turned off by default)
 When you click on the execution button of a software tool after checking this check box, the startup

commands and the startup options of the tool are listed in the output window (default). The tool itself is not
executed even when an input file or option is selected.

 Example: usage display of gcc33

[no execution] check box (turned off by default)
 When you click on the execution button of a software tool after checking this check box, the startup

commands of the tool including the input files or options selected in the window are displayed in the text box
of the execution window. The tool itself is not executed.

 This is effective when you want an option that cannot be specified in the option window to be added to a
command line in the text box before executing a software tool. (Refer to Section 5.2.9.)

 Example: Execute as33 after selecting [no execution]

 If the [usage] check box is turned on simultaneously with this option, a command line for displaying usage is

displayed in the text box, and usage display is not performed.

[exe in icon] check box (turned off by default)
 While a software tool is being executed, the MS-DOS window is normally open, displaying the tool's output

messages. If this check box is turned on, the tool is minimized to a task bar when it is executed.

CHAPTER 5: WORK BENCH

64 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

5.2.6 Make
The wb33 has a function that allows it to create a basic make file.

To create a make file
1. Using the [gcc-lk options] window, set up the options for a range of software tools from the C Compiler to

the Linker.

2. Click the [Make edit] button. The [Make file editor] window will appear.

3. Input the make file in the [Make file name] text box. No extension
is required.

4. Choose all source files you want used from the file list box. Note

that the files whose extensions are not ".c" or ".s" will be ignored
even if they are selected.

5. When suffix definition is used, select the [Suffix type] check box.

The sample make file shown below was created without suffix
definition.

6. Click on the [New Make file] button.

 After the above is completed, a make file (.mak) will be created in the current directory. Two command files

(.cmx, .cm) – one for the Instruction Extender and one for the Linker – will be created simultaneously.
If suffix definition is not used., source files in the different directory can be added to the make file.
In the case, change directory in the directory list box, select the source file from the file list box, then click
[Add to Make file] button.

 make file (.mak)
 This file contains a description of execution procedures using the specified options and the source file for a

range of software tools from the C Compiler to the Linker. For details about the make file, refer to Section
17.1, "Make".

 Example: make file used in the tutorial (test.mak)
� ���������	����
���������

�

 ��������
������������������	����
���

� �

� ������������� �����

� !�������"#��������$ %�����

� &&������"#��������$ ''���

� ()������"#��������$ �*����

� +,������"#��������$ �����

� �-������"#��������$ 	����

� ��.������"#��������$ 	�����

� /+-(����"#��������$ �����

� ,���0��1������1���0���*�
���������2��1��
�'��
�����

� � � �	��������1����0������	�����
�������
�����1��������3�

� ��������
������������������	��	�%��

� �

� !�����4�+!���5."#��������$ �5,�5%�5��5���5�0�	�����

� &&���4�+!����5%��

� ()����4�+!����

� +,���4�+!����5%��

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 65
C COMPILER PACKAGE MANUAL (ver.3)

� �����������	�
��
��
�
���

� ���������������	�
��������
���

� �

� �������������������� ���! ��

� �

� "#$��%��#�&�"��"��"'��"��"!�"����

� �

� "�"��&�

� � � ()�����*�()����������*�()#+��,%+*(-"��

()�����*�()����������*�(-"'��

� �

� "�"��&�

()..��*��()..�������*��()#+��,%+*(-"��

()�����*�()����������*�(-"'��

�

� "�"!�&�

()�#��*��()�#�������*��(-"��

�

� ����'� �� �/��������0���

�

� ������������ ���! ���0�������������������������%��/!���!� !���1!!����1������������� ���! 2�1��0��!�

����� � � � ���������3���3��4�� ������������� ���! ���0���0 �������

� � � � � � � �������� ���! �� ��3/�#+�5�,%+	���0��6��'0�12�0 ���

� � � � � �1����'� �� �/������!���1���!�������������������3����

� � � � � � � � ��1��0��!"�

� ������������ ���! �� ��

�

� ����"����&�����"��7�

3!!�"!�7�

0� "!�7�

�

� ()����*�()���������*�����"��

�

� ���3!!�"��

� 3!!�"��&�()#+�5�,%+*3!!�"��

� ()..��*�()..�������*�()#+�5�,%+*3!!�"��

� ()�����*�()����������*�3!!�"'��

� 3!!�"!�&�3!!�"��

� ()�#��*�()�#�������*�3!!�"��

�

� ���0� "��

� 0� "��&�()#+�5�,%+*0� "��

()�����*�()����������*�()#+�5�,%+*0� "��

()�����*�()����������*�0� "'��

�

� 0� "!�&�0� "��

()�#��*�()�#�������*�0� "��

�

� ����'� �� �/������� ��

�

� ��!'��0�80��! �3/�9�'0���0���

�

� !'�&�

� � � ()����*�
������"0��

CHAPTER 5: WORK BENCH

66 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

���������	
��������

�������
�����������������
����������

���� �
�!"��������#�

�

� $��%��&�"�%�������'���()*���

�

� �%��&+�

,�%�-��*"�

,�%�-�(�

,�%�-����

,�%�-�'��

,�%�-���'�

,�%�-��.��

 Command file for Instruction Extender (.cmx)
 This file contains a list of the file names to be input to the Instruction Extender (the selected source files with

their extensions changed to ".ps"). When executing 2-pass make, the Instruction Extender inputs the files
written in this file in the second pass to optimize processing.

 Example: command file used in the tutorial (test.cmx)
� /��%������*��

� 0((��'��

� ���&�'��

� /��%����&,�

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 67
C COMPILER PACKAGE MANUAL (ver.3)

 Command file for Linker (.cm)
 This file contains a description of the linker commands that control the link operation. When executing make,

the linker uses the commands written in this file while executing a link operation.
 Example: command file used in the tutorial (test.cm)

���������
�	
���������������������������������
������
�������������������
�	��
�������������������
�	��
�������������������

�	
��������������������������������
������
��������������������������
�	���
��������������������������
�	���������������������������������������
��������������������������

��������������
	�� !\ ��\����

�"��
�������#����
	���������#�

�$�%�
��#�����������
�������
&������
�$�%�
��#���������

���������#�����
��������
���������
&��������
�����'�����

���������
#������
���������

 [Make gen] uses the commands that specify location addresses as comments when creating the linker

command file. Customize this file according to the memory configuration of your development system before
using it.

 For details about the linker commands, refer to Section 12.5, "Linker Commands".

To edit the make file
 To add/delete source files to/from the existing make file, open the [Make file editor] window with the

following procedure:
1. Select the make file to be edited from the file list box on the execution window.

2. Click the [Make edit] button. The [Make file editor] window appears and the [Make file contents and Del

files] list box shows the source files defined in the selected make file.

To add new source files to the make file, select the source files from
the [Add files] list box and then click the [Add to Make file] button.
The source files to be added must be prepared in the same directory
of the already defined source files.

To delete source files from the make file, select the source files to
be deleted from the [Make file contents and Del files] list box and
then click the [Del from Make file] button.

When the files are added or deleted using the [Add to Make file] or
[Del from Make file] button, the ".cm" and ".cmx" files with the
same name will be automatically modified as well as the make file.

The [Editor] button on the [Make file editor] window has the same
function as one on the execution window. It opens the text file
selected in the [Add files] list box with the editor.
The [Refresh] button updates the file list in the [Add files] list box.

CHAPTER 5: WORK BENCH

68 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Precautions on editing the make file
• When the suffix definition is chosen, the Make file editor defines the SRC_DIR macro that represents the

source file directory in the make file as follows:
 1. The SRC_DIR becomes blank when the source files are selected from the current directory (directory is

selected in the execution window).
 2. The absolute path to the source files are defined when the source files are selected from another

directory.

 Therefore, the make file must be created again or the SRC_DIR must be modified if the source file is
moved to another directory after the make file is created. Furthermore, it is necessary to modify the
SRC_DIR when the source files are located in two or more directories.

 If you don't choose a suffix definition, the make file is described in the relative path. No change in the file
is necessary if it is moved without changing the directory.

• The Make file editor adds/deletes files using the comments and the character pattern in the make file as

shown below. Do not modify the comments and patterns as the make file cannot be edited with the Make
file editor correctly

 Addition to the make file
 Original make file
 �������������	
��������

�����������
�
�
�����������������������

 ��

 �����������
�
�
�������

 ���������������������

 �������������

 �����
������

�....... ∗1
� �� !""#��� !""�$ %&#���������

 ����������

 ��������������������#�������

� ��''""#���''""�$ %&#�����������#�������

� ��()*""#���()*""�$ %&#���������

 �����������������

� ��%�""#���%�""�$ %&#���������

 ����
����

 �
�����������������#�
����

� ��&��""#� ��&��""�$ %&#�

 ����������#�
����

 � ��()*""#���()*""�$ %&#��
�����

 �
�������
�����

� ��%�""#���%�""�$ %&#��
�����

 �������������	
�������

 Example: Make file after "sys.c" is added
 �������������	
��������

 �����������
�
�
��������������������������������

 ���

 �����������
�
�
�������

 ���������������������

 �������������

 �����
������

 ������������

�....... ∗1
� �� !""#��� !""�$ %&#���������

 ����������

 ��������������������#�������

� ��''""#���''""�$ %&#�����������#�������

 � ��()*""#���()*""�$ %&#���������

 �����������������

� ��%�""#���%�""�$ %&#���������

 ����
����

 �
�����������������#�
����

� ��&��""#���&��""�$ %&#�����������#�
����

 � ��()*""#���()*""�$ %&#��
�����

 �
�������
�����

� ��%�""#���%�""�$ %&#��
�����

 ���������

 �������������������#������

� ��&��""#���&��""�$ %&#�����������#������

 � ��()*""#���()*""�$ %&#��������

 �
�������������

� ��%�""#���%�""�$ %&#��������

 �������������	
������

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 69
C COMPILER PACKAGE MANUAL (ver.3)

 File names and the dependency list are added between the comments "# dependency list start" and "#
dependency list end". Pay attention when modifying this part.

 The object file name is inserted above the line indicated by *1.
 The *1 line includes a space character, so do not delete this line.
 The object file name is inserted using the following format:
 ^^^^<file>.o^\ (^ denotes a space.)

 The dependency list is inserted above the "# dependency list end" line.
 Do not delete the "# dependency list end" line.
 The dependency list is inserted using the following format:
 ##^<file>.s/c
 <file>.ms^:^$(SRC_DIR)<file>.s/c
 <file>.o^:^<file>.ms
 (blank line)

 The macro is described with the relative path of the source file indicated between "### src definition start"

and �### src definition end. Therefore, additional description of the macro is displayed if the source file
with a different directory is added.

 The following show the format of the relative path description:

 ### src definition start↵ Do not delete this line. It shows the start of the relative path description.
 SRC1_DIR=..\sample\\↵ It defines the relative path from the make file in SRC1_DIR.
 ↵ Only line feed code is necessary for macro description which ends with "\".
 SRC2_DIR=..\demo\\↵ It defines the relative path from the make file in SRC2_DIR.
 ↵
 ### src definition end↵ It shows end of the relative path description. Do not delete this line.

 Do not insert a space.

 If macro definition is added by adding a source file with its directory different from the make file, the format

is SRCxxx_DIR=relative path, where xxx shows the maximum value of macro+1.You cannot create a make
file where xxx exceeds 2147483647.

CHAPTER 5: WORK BENCH

70 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 Deletion from the make file
 Original make file
 �������������	
��������

�

 �����������
�
�
�����������������������

 ��

�

 �����������
�
�
�������

�

 ���������������������

 �������������

 �����
������

�....... ∗1
� �� !""#��� !""�$ %&#���������

�

 ����������

 ��������������������#�������

� ��''""#���''""�$ %&#�����������#�������

� ��()*""#���()*""�$ %&#���������

 �����������������

� ��%�""#���%�""�$ %&#���������

�

 ����
����

 �
�����������������#�
����

� ��&��""#� ��&��""�$ %&#�

 ����������#�
����

 � ��()*""#���()*""�$ %&#��
�����

 �
�������
�����

� ��%�""#���%�""�$ %&#��
�����

�

 �������������	
������

 Example: Make file after "boot.s" is deleted
 �������������	
��������

�

 �����������
�
�
��������������������������������

 ���

�

 �����������
�
�
�������

�

 ���������������������

 �����
������

� �� !""#��� !""�$ %&#���������

�

 ����
����

 �
�����������������#�
����

� ��&��""#���&��""�$ %&#�����������#�
����

 � ��()*""#���()*""�$ %&#��
�����

 �
�������
�����

� ��%�""#���%�""�$ %&#��
�����

�

 �������������	
�������

 For the object file name, the Make file editor deletes the line that contains the specified file name with the

"^^^^<file>.o^\" format (^ denotes a space). Therefore, do not modify this format including the number of
spaces.

 For the dependency list, the Make file editor deletes the range from the source file name line that begins with

to the last blank line. Do not modify or delete the lines that begin with ### or the blank lines.

 Macro definition which described relative path can not be deleted from wb33. To delete from the editor,

make sure that deleted macro can not be restored by the wb33.

 Addition to and deletion from the linker command file

+,�-�����
	��������

�������

�
����

+,�-�����
	�������

 When the source file configuration in the make file is modified (files are added/deleted) using the Make file

editor, the object file configuration in the linker command file is also modified. The Make file editor
modifies the file name list between the comments ";Object files start" and ";Object files end", so do not
modify or delete these comments.

 When source files are added to the make file, the corresponding object file names are inserted above the
";Object files end" line in the linker command file.

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 71
C COMPILER PACKAGE MANUAL (ver.3)

 When source files are deleted from the make file, the lines that contain the corresponding object file name are
deleted.

 Addition to and deletion from the instruction extender command file

���������	
��

�������

�	�����

�����������

 When the source file configuration in the make file is modified (files are added/deleted) using the Make file

editor, the file configuration in the instruction extender command file is also modified. The Make file editor
modifies the file name list between the comments ";Files start" and ";Files end", so do not modify or delete
these comments.

 When source files are added to the make file, the corresponding file names are inserted above the ";Files end"
line in the instruction extender command file.

 When source files are deleted from the make file, the lines that contain the corresponding file name are
deleted.

CHAPTER 5: WORK BENCH

72 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

To execute make
1. Before executing make, customize the make file and the linker command file if necessary.

2. Choose options for the make tool from the [other options] window.

3. Choose a make file from the file list box of the execution window and click on the [MAKE] button.

 By following only the above operation, you can get an object file in srf33 format after linkage. For details

about the functions and the operation of make, refer to Section 17.1, "Make".

 Options for make

 �normal: 1-pass make (turned on by default)

This option executes make without specifying an argument for the target name.
 Since this is to make the first target in the make file, 1-pass processing is performed until a .srf file is
created or updated.

 �2 pass: 2-pass make (turned off by default)
 This option executes make by using the target name "opt" as an argument.
 The commands written in the make file are executed from "opt:" in the file. As a result, after

processing up to linkage in the first pass is completed, optimization by the Instruction Extender is
performed based on the linked symbol information. The file generated by this optimization process is
assembled and linked one more time.

 �no exe cmd: Selection of the -n option (turned off by default)
 This option executes make after specifying the -n option of make.
 The commands executed by make are only displayed: no command is actually executed. This option

may be used to verify whether there is any file that has been modified after the previous execution of
make.

MAKE clean
 The make file created by the wb33 contains a description of the commands to delete intermediate and object

files other than the sources. These commands are defined with the target name "clean".
 The following lists the commands included in a make file:

���������	��
�������
������

�������

� ������
���

� ��������

� �������
�

� �������
�

� ����������

� ������
���

 These commands can be executed by clicking the [MAKE clean] button after selecting the make file in the

wb33 execution window.

 [MAKE clean] button

 All files in the current directory that have extensions ".srf", ".o", ".ms", ".ps", ".map" and ".sym" are deleted.

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 73
C COMPILER PACKAGE MANUAL (ver.3)

5.2.7 Parameter File Generator
The parameter file required for debugging can be created simply by the wb33.
A parameter file is used to set in the Debugger db33 the memory configuration of the microcomputer to be
developed.

[Parameter file generator] window
 When you click on the [Par gen] button of the execution window, a [Parameter file generator] window opens

up.

 [Par gen] button

Use this window to specify the contents
described below. Then, when you click on the
[Create Par file] button, a parameter file is
created in the current directory.

Parameter file name
Input a file version (v) in the text box for [This
file version (0, 1,--, ff)] and the three low-order
digits (xxx) of a microcomputer type name in
the text box for [Chip name (3 characters)].
When this is specified, the parameter file is
created in the name "33xxx_v.par".

Specification of internal memory capacity
Input the internal RAM and the internal ROM
capacities respectively in the text boxes for
[Internal RAM size (0, 1,--, 256)] and [Internal
ROM size (0, 1,--, 512)] in units of KB.

Selection of boot address
Choose the radio button [0x80000] when the
system boots from the internal ROM or the
radio button [0xc00000] when booting from the
external ROM.

 Selection of external memory area
 When using an external memory, input the start address of the area to be used in the text box (in 1KB units)

and choose a memory type (RAM, ROM, I/O) using the radio button. Accessing to the area will be done in
little-endian format. It can be changed to big-endian format by choosing [Big] ∗1. When you check the
[Enable] box, the area is made available for use as specified. Up to eight areas can be specified.

 The ICE33 in-circuit emulator can contain emulation memory for up to 8MB of external memory. This helps
debug a program without having to install memory in the target board. When allocating the specified external
memory area in the emulation memory, check the [Emu] box. When using a device on the target board, do
not check on the [Emu] box. This information is ignored in the debug monitor, ICD33 or simulator mode.

∗1: When [Big] is selected, the simulator mode will process data assuming that the CPU bus is configured to

big endian method. Note, however, that any other mode needs rewriting of the BCU register in the actual
IC to set the bus to big endian. Refer to "Operations of debugging commands" in Section 16.8.11 for the
debugger operation.

CHAPTER 5: WORK BENCH

74 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Configuration for MEM33201

CEFUNC value: Choose a value so that DRAM timing can be set in the D9 bit and DA bit in the setting register(in
 E0C33208, 0x48130).

Note: This configuration synchronizes the text box(Start Address) and radio button(Memory type)

which configure the external memory area. Therefore, perform this configuration first.

Generate MEM33 information: If you use MEM33, choose this item.
MEM33 address: Configure in the area where MEM33201 is mapped(selection signal where you choose
 MEM33201 DSW6).
MEM33 delay: Use 8ns, usually.
Area10 external memory start address: Write start address of external area 10.
P30 is CE: Select this if you use P30 as the CE signal.
P34 is CE: Select this if you use P34 as the CE signal.
Area7(13) is DRAM: Select this if you set DRAM in area 7(13).
Area8(14) is DRAM: Select this if you set DRAM in area 8(14).
WRH Mask: Select this if you do not use the WRH signal(if you use x16 SRAM in BSL, BSH way).
Map break disable: Select this if you only disable map break.
CE break disable: Select this if you only disable CE break.
No CE break disable: Select this if you only disable No CE break.

Parameter file
 The following shows an example of a created parameter file.
 Example:

����� ����	� �
������������������

����� ����� �
������������������������������

��� � ����� �
�!��������"��

����#$�� ���!!� �
�����%���&�����'���(�

����) * +)� ,,,,,,,,,,,,,,,,�
�����%���&�����'���(�����-��

��+� � �
��.��������������'�����((�����

#$�� �� �
�����!���/������

�$�-�����������&��������������.��������0���12����0���1�'�-�(��&��

������������������.���������0�345'&����'�-�(��&��

�*�� �� 6���
����������*�������371�

��� 	����� 	!!!!�
�����������������5	71�

�)���8�������.��������������*����������.��������0�345'&����'�-�(��&��

$9:�

 Since the file is created as a text file, it can be customized by using an editor. For details about the contents

of this file, refer to Section 16.10, "Parameter File".

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 75
C COMPILER PACKAGE MANUAL (ver.3)

5.2.8 Specifying a General-purpose Editor
The wb33 allows you to display the source file or the execution result of a software tool by using a specified editor.
In particular, a function that allows the source (text) file selected by the wb33 to be opened directly by an editor
should prove effective in correcting the source.

To open the source file with an editor

1. Choose the text file you want to be opened from
the file list box of the execution window.
Multiple text files including a make file or
command file other than the source file can be
selected.

2. Click on the [Editor] button of the execution

window.

 [Editor] button

The editor ("notepad" by default) will start up,
bringing up the selected file(s) on the screen.

The [Editor] button in the [Make file editor]
window has the same function.

To use an editor other than "notepad"
 The default editor opened by the wb33 is "notepad". This editor can be changed by modifying the [Editor

name] text box in the [other options] window.

 Input the editor's startup command in full path here.

 Since this setting returns to the default setting when the [other options] window is closed, save it using the

[save options] button. (Refer to Section 5.2.10.)

Tag jump
 The text box on the right of the [Editor name] box is used to set an editor command for tag jump from an

error message in the output window to the corresponding source line in the editor window.
 Notepad (default editor) does not support this function. This function is effective when an editor that

supports a startup command for specifying a file name and line number is used.

 The default setting "/j# %;" is the command for Hidemaru a Japanese editor.
 When a file name and line number, a part of a message displayed in the output window, is double-clicked,

the set command is sent to the editor after replacing # with the line number and % with the file name.
 Example: boot.ms(6): Error: Invalid instruction. - define near boot.s(4)
 When boot.ms(6) is double-clicked, # is substituted with 6, % with boot.ms, and then the

command is sent to the editor. The editor will open boot.ms and show line 6 if the command is
supported.

 In the example above, boot.s(6) may also be used for tag jump.

 main.c:4: warning: data definition has no type or storage class
 In this message,main.c:4 may be used for tag jump.

CHAPTER 5: WORK BENCH

76 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

5.2.9 Entering Command Lines
The execution window has a text box to display or edit the startup commands of each software tool. The startup
options that are not supported by the check boxes or buttons of the option windows can be added (and executed)
from this text box.
Furthermore, the DOS commands such as COPY can be executed from this text box.

To execute a command line after editing it
1. Choose the options and the input file for the software tool you want to execute.

2. Turn on the [no execution] check box of the [other options] window and click on the execution button

of the software tool.
 The startup command including the selected contents will be displayed in the text box.

3. Input additional necessary options and hit the [Enter] key.

 The edited command line will be executed.

Note: Do not start up a software tool from the execution button. If you click on the execution button,

the tool will be started up with the previous command line before you edited.
 Furthermore, if a software tool is started up from a command line, the execution result cannot be

displayed in the output window or editor. No matter whether the -e option is specified, the
messages normally output at end of execution (contents of an error file) are not displayed. Also,
specification of the [exe in icon] check box is ignored. The file list box is not updated either.

To execute a DOS command
 Input a DOS command in the text box by adding ">" at the beginning of the name and hit the [Enter] key.

The system executes this DOS command.

Note: DIR cannot be used to display the results in the output window or editor. Since CD and some

other DOS commands affect the operation of the wb33, be sure to use only those commands
that copy or rename a file.

5.2.10 Saving and Restoring Options
The contents selected in the option windows can be saved to a file using the [save] button of the [other options]
window and the saved contents can be restored using the [restore] button. Since the setup contents are reset to the
default settings when the option window is opened, use this method to save settings of frequently used options and
editors.

The default file name of the settings saved is "wb33.sav". When saving multiple settings, use a different file name
for each one. No message is output to confirm whether the file can be overwritten.
The file is created in the text format.

The option settings are also saved to the option file when the wb33 is terminated by the [Save and Exit] button.
Furthermore, by dragging the created option file on the "wb33.exe" icon to start up the wb33, the saved option
settings are restored. This can also be done by specifying the option file in the command line when starting up the
wb33 from the DOS prompt.

CHAPTER 5: WORK BENCH

E0C33 FAMILY EPSON 77
C COMPILER PACKAGE MANUAL (ver.3)

5.3 Error Messages
When an error occurs in the wb33, a dialog box for displaying a message pops up. After checking the message,
click on the [OK] button to close the dialog box.
 Example:

The table below lists the error messages generated by the wb33. For the error messages output when executing a
software tool, refer to the chapters in which each software tool is discussed.

Table 5.3.1 Error messages of wb33
Message

Can not execute command
xxxxxx

Can not open file
xxxxxx

Write error
xxxxxx

Read error
xxxxxx

R/W error
xxxxx or xxxxxx
Can not delete file
xxxxxx
File size over 32KB, so cut down to 32KB
xxxxxx

Content
A tool button or command line (xxxxxx) cannot be executed.
• The command line is invalid.
• The tool or necessary file cannot be located.
The file (xxxxxx) cannot be opened.
• When executing [Make edt]
• During source display
• When saving or restoring options
Data cannot be written to the file (xxxxxx).
• When executing [Make edit]
• When saving options
The file (xxxxxx) cannot be loaded.
• During source display
• When restoring options
The file cannot be read or data cannot be written to the file.
• When executing [Make file editor]
The file cannot be deleted.
• When executing [Del]
A file (xxxxxx) exceeding 32KB in size is selected.
• During source display
Only the first 32KB part of the file can be displayed.

5.4 Precautions
Make sure a series of processing in the wb33 all are performed in the same directory.
Also, be careful not to change the current directory using the CD command while the wb33 is open.

CHAPTER 6: C COMPILER

78 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Chapter 6 C Compiler
This chapter explains how to use the C Compiler gcc33, and provides details on interfacing with the assembly
source.
For information about the standard functions of the C Compiler and the syntax of the C source programs, refer to
the ANSI C literature generally available on the market.

6.1 Functions
The C Compiler gcc33 (hereafter called "gcc33") compiles C source files to generate an assembly source file that
includes E0C33000 instruction set mnemonics, the Instruction Extender's extended instructions, and assembler
pseudo-instructions. The C Compiler gcc33 in this package is an ANSI standard C compiler. Since special syntax
is not supported, the programs developed for other types of microcomputers can be transplanted easily to the
E0C33 Family.
Furthermore, since this C Compiler has a powerful optimizing capability that allows it to generate a very compact
code, it is best suited to developing embedded applications.
This C Compiler consists of three files: gcc33.exe, cpp.exe, and ccl.exe.

The gcc33 is based on the C Compiler of Free Software Foundation, Inc. Details about the license of this compiler
are written in the text file "GNU_COPYRIGHT", therefore, be sure to read this file before using the compiler.

6.2 Input/Output Files

C Compiler
gcc33

file.c

file.ps gcc33.err

C source files

Assembly
source files

Error
file

Instruction Extender ext33
Fig. 6.2.1 Flowchart

6.2.1 Input File

C source file
 File format: Text file
 File name: <file name>.c
 Description: File in which the C source

program is described.

6.2.2 Output Files

Assembly source file
 File format: Text file
 File name: <file name>.ps (The <file name> is the same as that of the input file.)
 Output destination: Current directory
 Description: An assembly source file to be input to the Instruction Extender ext33.
 The file cannot be input to the Assembler as33 directly since it includes the extended

instructions.

Error file
 File format: Text file
 File name: gcc33.err
 Output destination: Current directory
 Description: File that is output when the startup option (-merr) is specified, and describes the

contents which the C Compiler gcc33 delivers through the Standard Output (stdout),
such as an error message. When the -merr option is specified, messages do not
appear on the screen. It is different from other tools.

CHAPTER 6: C COMPILER

E0C33 FAMILY EPSON 79
C COMPILER PACKAGE MANUAL (ver.3)

6.3 Starting Method

6.3.1 Startup Format

General form of command line

 gcc33 ^ [<Startup option>] ^ [<file name>]

 ^ denotes a space.
 [] indicates the possibility to omit.

 <file name>: Specify C source file name(s) including the extension (.c).

Operations on work bench
 Select startup options and source file(s), then click the [GCC33] button.

Multiple source files can be specified in a command line. All files can be processed at the same time. Although the
wb33 also allows multiple files to be selected, it executes the gcc33 as many times as the number of files selected.

6.3.2 Startup Options
The gcc33 comes provided with the following 11 types of startup options:

-S
Function: Output of assembly code
Specification on wb33: None (always specified)
Explanation: • This switch is used to output an assembly source file.
 • This option must always be specified. If the gcc33 is started up without this option, it

only displays Usage, and does not compile the source file.

-B<path name>\
Function: Compiler's path specification
Specification on wb33: None (unnecessary)
Explanation: • Specify the directory where the compiler proper cc1.exe and the C preprocessor

cpp.exe exist.
 • For <path name>, input a relative or an absolute path immediately following -B, then

enter a back slash (\) at the end of the name.
 • If the directory where the compiler proper and the C preprocessor exist is registered in

environment variable GCC_EXEC_PREFIX or PATH, the -B switch is unnecessary.
The priority is the -B switch, GCC_EXEC_PREFIX, and PATH, in that order.

 GCC_EXEC_PREFIX must be registered in the same format of relative or absolute
path and a \ as required for the -B switch.

 • If the -B switch and GCC_EXEC_PREFIX are nonexistent, the directory specified by
PATH or the current directory is assumed.

-E
Function: Execution of C preprocessor only
Specification on wb33: None
Explanation: • Only the C preprocessor is executed in the specified C source file, and the results are

output to the standard output device.

CHAPTER 6: C COMPILER

80 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

-I<path name>
Function: Specification of a directory that contains the include files
Specification on wb33: Check [include path] and choose a directory from the list box.
Explanation: • Specify the directory that contains the files included in the C source.
 • Input <path name> immediately after -I.
 • Multiple directories can be specified. In this case, input as many instances of -I<path

name> as necessary. The include files are searched in the order they appear in the
command line.

 • If the directory is registered in environment variable C_INCLUDE_PATH, the -I
switch is unnecessary.

 • File search is performed in order of priorities, i.e., current directory, -I switch, and
C_INCLUDE_PATH in that order.

-D<macro name>[=<replacement character>]
Function: Definition of a macro name
Specification on wb33: Check [define] and input a macro name in the text box.
Explanation: • Define a macro name. This option functions in the same way as #define. If there is

=<replacement character> specified, define its value in the macro. If not specified, the
value of the macro is set to 1.

 • Input <macro name>[=<replacement character>] immediately after -D.
 • Multiple macro names can be specified. In this case, input as many instances of

-D<macro name>[=<replacement character>] as necessary. For the wb33, separate
each instance of <macro name>[=<replacement character>] with a comma (,) as you
input them.

-O, -O2, -O3
Function: Specification of optimization
Specification on wb33: Check one of [NO], [O], [O2] or [O3].
Explanation: • Specify one of the four switches to perform optimized processing. When generating

code, the compiler optimizes it by placing emphasis on code efficiency and speed
(mainly code efficiency).

 • If no switch is specified or [NO] is selected for the wb33, code optimization is not
performed.

 • The greater the value of -O, the higher the code efficiency. However, there is a greater
possibility of causing a problem, such as absence of some debugging information in
the output. If optimization cannot be executed normally, reduce the value of
optimization. Normally, -O should be specified.

 • ����������	
�
��	
���
����
�
����	�������
���������	���������������������	����������

	��	������
	���	�����������������������
	�������	
�����������	
���	��������������

��	������������������
��	�
�
	��	
����	������������������������
 - Declare variables with "volatile". Example) volatile char IO_port1;
 - Do not specify the optimization.
 - Use "-fvolatile". Pointers are accessed as volatile objects.
 Use "-fvolatile-global". External variables are all accessed as volatile objects.

-g
Function: Addition of debugging information
Specification on wb33: Check [debug info].
Explanation: • Creates an output file containing debugging information.
 • Always specify this option when you perform the C source level debugging.
 • Refer to Section 6.6 for debugging information.

-mno-memcopy
Function: Inline expansion of strcpy and memcpy function calls
Specification on wb33: Check [inline memcpy].
Explanation: • The strcpy and memcpy function calls are expanded in-line.

CHAPTER 6: C COMPILER

E0C33 FAMILY EPSON 81
C COMPILER PACKAGE MANUAL (ver.3)

-fno-builtin
Function: Inline expansion of the fabs function call
Specification on wb33: Check [inline fabs].
Explanation: • The fabs function is not expanded inline. Calling fabs is faster.

-merr
Function: Output of error files
Specification on wb33: Non
Explanation: • Delivers in a file (gcc33.err) the contents that are output by the gcc33 via the Standard

Output (stdout), such as error messages.
 • When this option is specified, messages do not appear on the screen.

When entering options in the command line, you need to place one or more spaces before and after the option.
Example: c:\cc33\gcc33 -S -Bc:\user\local\bin\ -O -g test.c

CHAPTER 6: C COMPILER

82 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

6.4 Messages
The gcc33 delivers its messages through the Standard Output (stdout).
If the gcc33 is started up by using the wb33's [GCC33] button, the message is output to "wb33.err". When
execution is completed, a message is displayed in the output window (default).

End message
 The gcc33 outputs only the following end message when it ends normally.

 ��������������	�

Usage output
 If no file name was specified or an option was not specified correctly, the gcc33 ends after delivering the

following message concerning the usage:

��\����\������
��

�� ���

���������!"�#��	��$�%�����$ ���

&�	��$���

����!����$�� 	��
�'(��$���� 	��$�

����!&�����	���)���(�(���
��

����!�����������������(���������� $
��(�(�	*�����(�	��	���	
�(�

����!+,
����	��-.\�������������	*��
����	�-�/*��*���0����� $
������������	�
����!1,
����	��-.� ������������	*��
����	�-�/*��*��$��(
������������	�

����!2,� ���3
��$.���
���$��� ����4� ���4� ��4
��$4�

����!2,� ���.� ��
���$��� ����4� ���4� ��505�

����!����� �����
(����������������������

����!�$�!�����-� �����
(����	��$�� �� '����$�	� ��)����	 	���$	��$��$��

&(�(��

������	�$
�
� ����'������(���������������������	���

�� ������

���������!"�!+��\(��\��� �\'�$\�!&�!�	��	���

When error/warning occurs
 If an error or a warning is produced, an error/warning message will appear before the end message shows up.
 In the case of an error, the gcc33 ends without creating an output file.
 In the case of a warning, the gcc33 ends after creating an output file. However, the output file cannot be

guaranteed to work properly.

CHAPTER 6: C COMPILER

E0C33 FAMILY EPSON 83
C COMPILER PACKAGE MANUAL (ver.3)

6.5 Compiler Output
This section explains the assembly sources output by the gcc33 and the registers used by the gcc33.

6.5.1 Output Contents
After compiling C sources, the gcc33 outputs the following contents:
• E0C33000 instruction set mnemonics
• Extended instruction mnemonics
• Assembler pseudo-instructions

All but the basic instructions are output using extended instructions. Therefore, be sure to use the Instruction
Extender ext33 to process the assembly source files output by the gcc33. These files cannot be assembled directly
by the Assembler as33. Nor can the assembly source files output be put through the Preprocessor pp33.

Since the system control and MAC instructions cannot be expressed in the C source, use in-line assemble by asm
or an assembly source file to process them.
Example: asm ("mac %r12")

Assembler pseudo-instructions are output for section and data definitions. For details about the assembler
pseudo-instructions, refer to Section 11.8, "Assembler Pseudo-instructions".
The following describes the sections where instructions and data are set.

Instructions
 All instructions are located in the CODE section.

Global and static variables without initial values
 These variables are located in the BSS section.
 Example: int i; .comm i 4

Global and static variables with initial values
 These variables are located in the DATA section.
 Example: int i=1; .global i
 .data
 .align 2
 i2:
 .word 1

Constants
 Constants are located in the CODE section.
 Example: const int i=1 .global i
 .code
 .align 2
 i2:
 .word 1

For all symbols including function names and labels, symbol information by assembler pseudo-instruction .def is
inserted (when the -g option is specified). For details about the symbol information, refer to Section 6.6,
"Debugging Information".

Labels are output in the following format:
__Limm31 Jump address label
__LCimm31 Character string constant label
__Lbimm31 Beginning of block position label
__Leimm31 End of block position label
 (imm31 takes on a decimal number in the range of 0 to 2,147,483,647.)

CHAPTER 6: C COMPILER

84 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

6.5.2 Data Representation
The gcc33 supports all data types under ANSI C. Table 6.5.2.1 below lists the size of each type (in bytes) and the
effective range of numeric values that can be expressed in each type.

Table 6.5.2.1 Data type and size
Effective range of a number

-128 to 127
0 to 255
-32768 to 32767
0 to 65535
-2147483648 to 2147483647
0 to 4294967295
-2147483648 to 2147483647
0 to 4294967295
0 to 4294967295
1.175e-38 to 3.403e+38 (normalized number)
2.225e-308 to 1.798e+308 (normalized number)

Size
1
1
2
2
4
4
4
4
4
4
8

Data type
char
unsigned char
short
unsigned short
int
unsigned int
long
unsigned long
pointer
float
double

The float and double types conform to IEEE standard formats.

Store positions in memory
 The positions in the memory where data is stored depend on the type. Regardless of whether it is global or

local, data is located in the memory in as many bytes as are determined by the size beginning with an address
that can be divided by the size.

 The double type is aligned at 4-byte boundary addresses, so that the 4 low-order bytes of data (mantissa part
(31–0)) are stored in 4 bytes of low-order locations of memory, and the 4 high-order bytes of data (sign,
exponent, and mantissa part (51–32)) are stored in 4 bytes of high-order memory locations.

Structure data
 Structure data is located in the memory beginning with 4-byte boundaries (addresses divided by 4) in the

same way as stated above for the double type. Members are located in the memory according to the size of
each data type in the order they are defined.

 The following shows an example of how structure is defined, and where it is located.
 Example: struct Sample {
 char cData;
 short hData;
 char cArray[3];
 int iData;
 double dData;
 };

 +16 dData (high)
 +12 dData (low)
 +8 iData
 +4 cArray[3] Unused

↓ Start address +0 cData Unused hData
Low memory +0 +1 +2 +3

Fig. 6.5.2.1 Sample locations of structure data in the memory

 As shown in the diagram above, some unused areas may remain in the memory depending on the data type of

a member.

CHAPTER 6: C COMPILER

E0C33 FAMILY EPSON 85
C COMPILER PACKAGE MANUAL (ver.3)

6.5.3 Method of Using Registers
The following shows how the gcc33 uses general-purpose registers.

Table 6.5.3.1 Method of using general-purpose registers by gcc33
Method of use

Registers that need have to their values saved when calling a function

Scratch registers

Global pointer (unused; used by ext33)
Scratch register for expanding extended instruction (unused; used by ext33)
Register for storing returned values (8/16/32-bit data, 32 low-order bits of double-type data)
Register for storing returned values (32 high-order bits of double-type data)
Register for passing argument (1st word)
Register for passing argument (2nd word)
Register for passing argument (3rd word)
Register for passing argument (4th word)

Register
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

Registers for saving values when calling a function (R0 to R3)
 These registers are used to store the calculation results of expressions and local variables. These register

values after returning from a function must be the same as those when the function was called. Therefore, the
called function has to save and restore the register values if it modifies the register contents.

Scratch registers (R4 to R7)
 These registers are used to store the temporary calculation results of expressions and local variables. These

registers do not need to be saved when calling a function.

Global pointer (R8)
 This register is reserved for storing a global pointer. The gcc33 does not use this register.

Scratch register for expanding extended instructions (R9)
 Provided for use in assemble, this register is used by the Instruction Extender ext33 as it expands an extended

instruction. The gcc33 does not use this register.

Registers for storing returned values (R10, R11)
 These registers are used to store returned values. They are used as scratch registers before storing a returned

value.

Registers for passing arguments (R12 to R15)
 These registers are used to store arguments when calling a function. Arguments exceeding the four words are

stored in the stack before being passed. They are used as scratch registers before storing arguments.

Note: When creating assembler subroutines that are called from C routines, pay attention to the

register usage.
 • The R4 to R7 registers can be used without saving/restoring the contents.
 • The R10 and R11 registers can be used without saving/restoring the contents until a returned

value is set in the register before returning.
 • Before the R12 to R15 registers can be used, the stored arguments must be used or saved in

other locations. It is necessary to restore the contents before returning.
 • Try to use the R8 and R9 registers as little as possible.
 • Before the R0 to R3 registers can be used, the contents must be saved to stack using the

pushn instruction. Also, the saved contents must be restored from the stack using the popn
instruction.

CHAPTER 6: C COMPILER

86 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

6.5.4 Function Call

The way arguments are passed
 When calling a function, arguments up to four words are stored in registers for passing argument (R12 to

R15) while larger arguments are stored in the stack frame of the calling function (explained in the next
section) before they are passed.

 Example: func(w1, w2, w3, w4, w5, w6); ...w1→R12, w2→R13, w3→R14, w4→R15, w5&w6→Stack
 (wN: arguments equal to or smaller than word size)
 Basically, arguments are stored in R12 to R15 in the order that they are specified.

Data size of argument
 Arguments in data size of 4 bytes or less are handled in units of words (4 bytes) irrespective of the data type.

The char and short types of data are sign-extended; the unsigned char and unsigned short types are
zero-extended. Only the double type is handled in units of 8 bytes. Unless two registers among R12 to R15
are available when passing an argument of the double type, it is passed via the stack.

 Example: func(w1, d2, d3, w4); ...w1→R12, d2(L)→R13, d2(H)→R14, w4→R15, d3→Stack
(wN: arguments equal to or smaller than word size; dN: arguments of double type)

Handling of structure arguments (Note)
 If the argument is structure data, the values of structure members are passed via a stack.
 Example: struct _foo {
 int a;
 short b;
 char c;
 };

 callee(struct _foo foo, int d);

 In the above example, only d is stored in the register for passing argument (R12) and all the members of foo

are stored in the stack.

Passing argument to a function that returns structure (Note)
 When calling a function that returns structure data, the structure address where the result is stored is set in the

R12 register as the first argument before being passed to the called function. Consequently, the arguments
written in the source are successively carried down by one.

 If the structure is not used as a returned value, the compiler assigns dummy structure data to the local
variable area of the calling function and passes the address of this location.

 The called function returns the pointer passed in the first argument to the calling function as a return value.

Saving registers
 If a called function modifies the R0 to R3 registers, the function has to save and restore the register values.
 The R4 to R7 and R10 to R15 registers can be used without such a restriction.
 The R8 and R9 can also be used freely, if it does not conflict with the processing of Instruction Extender

ext33.

Returned values
 The word size or less of returned value is stored in the R10 register.
 The double-word size (double) of returned value is stored in the R10 (low-order word) and R11 (high-order

word) registers.

Note: When a source program in which a structure is passed to or returned from a subroutine, the

actual code is created so that all the members of the structure are copied using the memcpy
function. This is undesirable since it increases the code size, lowers the execution speed and
causes bugs in the compiler. Therefore, pointers should be used for passing structures as much
as possible.

CHAPTER 6: C COMPILER

E0C33 FAMILY EPSON 87
C COMPILER PACKAGE MANUAL (ver.3)

6.5.5 Stack Frame
When calling a function, the gcc33 creates the stack frame shown in Figure 6.5.5.1. The start address of the stack
frame is always a word (32-bit) boundary address.

Return address

 Allocated by call
instruction, cleared by
ret instruction

Register save area

R3 (4 registers at maximum)
 :
R0

Local variable area

Last variable defined
 :
First variable defined

↓

Low memory

SP→

Argument area

Last argument
 :
First argument stored in the stack

Allocated by function
prologue processing

Cleared by function
epilogue processing

Fig. 6.5.5.1 Stack frame

Return address
 This is the return address (1 word) to the calling function.

Register save area
 If any registers from R0 to R3 are used by the calling function, they are saved to this area in order of register

numbers beginning with the highest.
 If none of the registers from R0 to R3 is used by the calling function, this area is not allocated.

Local variable area
 If there are any local variables defined in the called function that cannot be stored in registers, an area is

allocated in the stack frame. Then they are saved sequentially beginning with the last-declared variable at
boundary addresses (4-byte boundaries for the double type) according to the data types.

 Example: {
 char c;
 short s;
 int i;
 :
 }

 +4 i
↓ Local start +0 c Unused s

Low memory +0 +1 +2 +3
Fig. 6.5.5.2 Example of local variables saved to stack

 This area is not allocated if there is no local variable that needs to be saved in the stack.

Argument area
 If there are any arguments for another function call in the called function that cannot be stored in the registers

for passing argument, an area is allocated in the stack frame (see the preceding section). All arguments are
located at 4-byte boundaries. The 32 low-order double-type bits are saved at low-order addresses, and the 32
high-order bits are saved at the high-order addresses.

 This area is not allocated if there is no function call.

Allocating and clearing the stack area
 A stack area for the return address is allocated and the address is saved to this area by the call instruction.

The address is popped from the stack and the area is cleared by the ret instruction.
 All other areas are allocated in the prologue processing of the function, and are cleared in the epilogue

processing.

CHAPTER 6: C COMPILER

88 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

6.6 Debugging Information
If the startup option -g is specified (by checking [debug info] in wb33), the gcc33 inserts assembler
pseudo-instructions in the output file as debugging information in order to allow for C source level and symbolic
debugging.

Notes: • This debugging information is required before C source level or symbolic debugging can be

performed with the Debugger db33.
 • Make sure the debugging information is created by only specifying the -g option, and not by

any other method. Also, be sure not to correct the debugging information that is output.
Corrections could cause the as33, lk33, db33 or dis33 to malfunction.

 • Unless the -g option is specified in the lk33 even though it may be specified in the gcc33
(same applies for pp33), all debugging information will be cut when linking.

 • Unless the -g option is specified in the as33 even though it may be specified in the gcc33, all
symbol information will be cut. The source information is not cut.

 • If the -g option is specified in the as33 without specifying it in the gcc33, symbol names and
address-only symbol information are added during assembly.

6.6.1 Source Information
The following three debug pseudo-instructions are output in order for the C source to be displayed in the
debugger.

1) .file "<path_name>"
 This indicates the beginning of a file. It is inserted at the start position of the file. <path_name> is the file's

path name.

2) .endfile
 This indicates the end of a file. It is inserted at the end of the file.

3) .loc <line_no>
 This indicates the line information of the source file. It is inserted at the beginning of the assembly code

corresponding to each C source line. <line_no> is the source's line number.

6.6.2 Symbol Information
Information on all functions and variables are output as a .def pseudo-instruction. The following shows the format
of this .def pseudo-instruction.

General format: .def <symbol>, <parameter>, [<parameter>,,] endef

The contents of the .def pseudo-instruction thus output are shown below for each type of symbol.

Automatic variable, structure, union, or enum-type member, argument
 .def <sym>, val <expr1>, scl <expr2>, type <expr3>, endef
 <sym> Symbol name in the C source (variable name/member name)
 <expr1> Automatic variable/argument (stack): Offset from the stack pointer (decimal)
 Automatic variable/argument (register): Register number (decimal)
 Structure or union member: Offset from the beginning of structure or union (decimal)
 enum-type member: Value indicating a member (decimal)
 <expr2> Storage class of <sym> (decimal)
 <expr3> Data type of <sym> (hex)
 This pseudo-instruction indicates that <sym> is an automatic variable or a structure, union or enum-type

member.

CHAPTER 6: C COMPILER

E0C33 FAMILY EPSON 89
C COMPILER PACKAGE MANUAL (ver.3)

Static variable, global variable, function
 .def <sym1>, val <sym2>, scl <expr1>, type <expr2>, endef
 <sym1> Symbol name in the C source (variable name/member name)
 <sym2> Relocatable symbol name corresponding to <sym1>
 <expr1> Storage class of <sym2> (decimal)
 <expr2> Data type of <sym2> (hex)
 This pseudo-instruction indicates that <sym2> is a function, static variable, or global variable that

corresponds to the C source's variable name <sym1>.

Tag declaration of structure, union or enum type (start)
 .def <sym>, scl <expr1>, type <expr2>, size <expr3>, endef
 <sym> Tag name of structure, union or enum type in the C source
 <expr1> Storage class of <sym> (decimal)
 <expr2> Data type of <sym> (hex)
 <expr3> Data size of <sym> (decimal)
 This pseudo-instruction indicates that the declared tag name is the structure, union or enum type of <sym>,

and that member information exists in the next or later .def pseudo-instruction.

Bit field member (structure or union member)
 .def <sym>, val <expr1>, scl <expr2>, type <expr3>, size <expr4>, endef
 <sym> Bit field member name
 <expr1> Bit offset from the beginning of structure or union (decimal)
 <expr2> Storage class of <sym> (decimal)
 <expr3> Data type of <sym> (hex)
 <expr4> Bit size of <sym> (decimal)
 This pseudo-instruction indicates that <sym> is a bit field member.

Tag declaration of structure, union, or enum type (end)
 .def <sym1>, val <expr1>, scl <expr2>, tag <sym2>, size <expr3>, endef
 <sym1,2> Tag name of structure, union or enum type in the C source
 <expr1> Data size of <sym1> (decimal)
 <expr2> 102 (fixed)
 <expr3> Data size of <sym1> (decimal)
 This pseudo-instruction indicates that the declared tag name is the structure, union or enum type of <sym1>,

and that the member information is ended in the immediately preceding .def pseudo-instruction.

Structure, union or enum-type variable
(automatic variable, argument, structure or union member)
 .def <sym1>, val <expr1>, scl <expr2>, tag <sym2>, size <expr3>, type <expr4>, endef
 <sym1> Symbol name in the C source (variable name/member name)
 <sym2> Tag name of the structure, union or enum-type variable indicated by <sym1>
 <expr1> Automatic variable/argument: Offset from the stack pointer (decimal)
 Structure or union member: Offset from the beginning of structure or union (decimal)
 <expr2> Storage class of <sym1> (decimal)
 <expr3> Data size of structure, union or enum type <sym2> (decimal)
 <expr4> Data type of <sym1> (hex)
 This pseudo-instruction indicates that <sym1> is the structure, union or enum-type data of structure/union

automatic variable or structure/union member of tag name <sym2>.

CHAPTER 6: C COMPILER

90 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Structure, union or enum-type variable (static variable, global variable)
 .def <sym1>, val <sym2>, scl <expr1>, tag <sym3>, size <expr2>, type <expr3>, endef
 <sym1> Symbol name in the C source (variable name/member name)
 <sym2> Relocatable symbol name corresponding to <sym1>
 <sym3> Tag name of the structure, union or enum-type variable indicated by <sym2>
 <expr1> Storage class of <sym2> (decimal)
 <expr2> Data size of structure, union or enum type of <sym3> (decimal)
 <expr3> Data type of <sym2> (hex)
 This pseudo-instruction indicates that <sym2> is a structure, union or enum type static variable or a structure

or union global variable corresponding to the C source's variable name <sym1>.

Array (automatic variable, argument, structure or union member)
 .def <sym>, val <expr1>, scl <expr2>, dim <expr_list>, size <expr3>, type <expr4>, endef
 <sym> Symbol name in the C source (variable name/member name)
 <expr1> Automatic variable/argument: Offset from the stack pointer (decimal)
 Structure or union member: Offset from the beginning of a structure or union (decimal)
 Argument (passed via register): Register number where the beginning element of the array

is stored (decimal)
 <expr2> Storage class of <sym> (decimal)
 <expr3> Data size of array (decimal)
 <expr4> Data type of array element (hex)
 <expr_list> List of values indicating the dimension of array (decimal, 4-dimension at maximum)
 Example: int array[2][3] → dim 2 3
 This pseudo-instruction indicates that <sym> is the array data of an automatic array variable or a structure or

union member.

Array (static variable, global variable)
 .def <sym1>, val <sym2>, scl <expr1>, dim <expr_list>, size <expr2>, type <expr3>, endef
 <sym1> Symbol name in the C source (variable name/member name)
 <sym2> Relocatable symbol name corresponding to <sym1>
 <expr1> Storage class of <sym2> (decimal)
 <expr2> Data size of array (decimal)
 <expr3> Data type of array element (hex)
 <expr_list> List of values indicating the array dimension (decimal, 4-dimension maximum)
 This pseudo-instruction indicates that <sym2> is a static array or a global array variable that corresponds to

the C source's variable name <sym1>.

Structure, union or enum-type array (automatic variable, structure or union member)
 .def <sym1>,val <expr1>,scl <expr2>,tag <sym2>,dim <expr_list>,size <expr3>,type <expr4>,endef
 <sym1> Symbol name in the C source (variable name/member name)
 <sym2> Tag name of the structure, union or enum type indicated by <sym1>
 <expr1> Automatic variable/argument: Offset from the stack pointer (decimal)
 Structure or union member: Offset from the beginning of the structure or union (decimal)
 <expr2> Storage class of <sym1> (decimal)
 <expr3> Data size of the structure, union or enum-type array of <sym2> (decimal)
 <expr4> Data type of the array element of <sym1> (hex)
 <expr_list> List of values indicating the array dimension (decimal, 4-dimension maximum)
 This pseudo-instruction indicates that <sym1> is the structure, union or enum-type array data of tag name

<sym2>.

CHAPTER 6: C COMPILER

E0C33 FAMILY EPSON 91
C COMPILER PACKAGE MANUAL (ver.3)

Structure, union or enum-type array (static variable, global variable)
 .def <sym1>,val <sym2>,scl <expr1>,tag <sym3>,dim <expr_list>,size <expr2>,type <expr3>,endef
 <sym1> Symbol name in the C source (variable name/member name)
 <sym2> Relocatable symbol name corresponding to <sym1>
 <sym3> Tag name of the structure, union or enum-type variable indicated by <sym2>
 <expr1> Storage class of <sym2> (decimal)
 <expr2> Data size of the structure, union, or enum type array of <sym3> (decimal)
 <expr3> Data type of the array element of <sym2> (hex)
 <expr_list> List of values indicating the array dimension (decimal, 4-dimension at maximum)
 This pseudo-instruction indicates that <sym2> is a static array or a global array variable corresponding to the

C source's variable name <sym1>.

typedef (when using standard type)
 .def <sym>, scl <expr1>, type <expr2>, endef
 <sym> Name of data type newly defined by typedef
 <expr1> Storage class of the defined data type (decimal)
 <expr2> Original data type for the newly defined data type (hex)
 This pseudo-instruction indicates that <sym> has been defined as a new data type by typedef.

typedef (when using a nonstandard type)
 .def <sym1>, scl <expr1>, tag <sym2>, size <expr2>, type <expr3>, endef
 <sym1> Name of data type newly defined by typedef
 <sym2> Tag name of original structure, union or enum type for the newly defined data type
 <expr1> Storage class of the defined data type (decimal)
 <expr2> Data size of structure, union or enum type of <sym2> (decimal)
 <expr3> Data type of structure, union or enum type of <sym2> (hex)
 This pseudo-instruction indicates that <sym1> has been defined as a new data type by typedef.

User-defined label
 .def <sym1>, val <sym2>, scl <expr1>, type <expr2>, endef
 <sym1> User-defined label name
 <sym2> Local label name corresponding to the user-defined label name
 <expr1> Storage class of user-defined label name (decimal)
 <expr2> Data type of user-defined label name (hex)
 This pseudo-instruction indicates that <sym1> is a user-defined label name corresponding to the local label

<sym2> generated by the gcc33.

Beginning and end of function or block
 .def <sym>, scl <expr>, type 0x0, endef
 <sym> "ent": Beginning of function
 "end": End of function
 "begin": Beginning of block
 "bend": End of block
 <expr> 101: Beginning of function
 111: End of function
 100: Beginning of block
 110: End of block
 This pseudo-instruction indicates that the current position is the beginning or end of a function or block.

CHAPTER 6: C COMPILER

92 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Values representing storage classes and data types
 The values representing storage classes and data types are defined as follows:

 Values of storage classes (scl)
 1 Automatic variable
 2 Global symbol (function/variable)
 3 Local symbol (function/variable)
 4 Register variable
 6 User-defined label
 8 Structure member
 9 Argument (passed via stack)
 10 Structure tag
 11 Union member
 12 Union tag
 13 Type defined by typedef
 15 Enum-type tag
 16 Enum-type member
 17 Argument (passed via register)
 18 Bit field
 100 Start position of block (begin)
 101 Start position of function (ent)
 102 End of structure, union or enum type definition
 110 End position of block (bend)
 111 End position of function (end)

 Values of data types (type)
 A B
 0x0 User-defined label 0x0 Any type other than pointer, function or array
 0x1 void 0x1 Pointer
 0x2 char 0x2 Function
 0x3 short 0x3 Array
 0x4 int
 0x5 long
 0x6 float
 0x7 double
 0x8 struct
 0x9 union
 0xA enum
 0xB Enum member
 0xC unsigned char
 0xD unsigned short
 0xE unsigned int
 0xF unsigned long

 The values of data types are calculated using the equation below:
 A + (B(1) << 4) + (B(2) << 6) ... + (B(N) << (2 + 2 * N)

 For example, a function that returns a pointer to a structure takes on the following value:
 0x8 + (0x2 << 4) + (0x1 << 6) = 0x68

CHAPTER 6: C COMPILER

E0C33 FAMILY EPSON 93
C COMPILER PACKAGE MANUAL (ver.3)

6.7 Functions of gcc33 and Usage Precautions
• The calloc function cannot be used in this compiler.

• For other details about the gcc, refer to the documents for the gcc.
 The documents can be acquired from the GNU mirror sites located in various places around the world through

Internet, etc.

CHAPTER 7: EMULATION LIBRARY

94 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Chapter 7 Emulation Library
This chapter explains the emulation library of the E0C33 Family C Compiler Package, including floating-point
number and integral remainder calculating functions.

7.1 Overview
The E0C33 Family C Compiler Package contains a floating-point calculation library (fp.lib) that supports the
arithmetic operation, comparison, and type conversion of single-precision (32-bit) and double-precision (64-bit)
floating-point numbers which conforms to IEEE format, and an integral remainder calculation library (idiv.lib)
that supports the remainder calculation of integers.
The C Compiler gcc33 calls up functions from these libraries when a floating-point number or integral remainder
calculation is performed.
Since library functions exchange data via a designated general-purpose register, they can be called from an
assembly source.
To use emulation library functions, specify fp.lib and idiv.lib as libraries during linkage. Be sure to specify these
libraries in the order of fp.lib and idiv.lib.

All emulation library functions have been created and tuned by an assembly source.

7.2 Floating-point Calculation Library (fp.lib)

7.2.1 Function List
Table 7.2.1.1 below lists the floating-point calculation library (fp.lib) functions.

Table 7.2.1.1 Floating-point calculation library (fp.lib) functions
Functionality

(%r11, %r10) ← (%r13, %r12) + (%r15, %r14)
(%r11, %r10) ← (%r13, %r12) - (%r15, %r14)
(%r11, %r10) ← (%r13, %r12) * (%r15, %r14)
(%r11, %r10) ← (%r13, %r12) / (%r15, %r14)
(%r11, %r10) ← -(%r13, %r12)
%r10 ← %r12 + %r13
%r10 ← %r12 - %r13
%r10 ← %r12 * %r13
%r10 ← %r12 / %r13
%r10 ← -%r12
%r10 ← (unsigned int) (%r13, %r12)
%r10 ← (int) (%r13, %r12)
(%r11, %r10) ← (double) %r12
%r10 ← (unsigned int) %r12
%r10 ← (int) %r12
%r10 ← (float) %r12
%r10 ← (float) (%r13, %r12)
(%r11, %r10) ← (double) %r12
%psr change ← (%r13, %r12) - (%r15, %r14)
%psr change ← %r12 - %13

Classification
Double-precision
floating-point
calculation

Single-precision
floating-point
calculation

Type conversion

Floating-point
comparison

Function name
__adddf3
__subdf3
__muldf3
__divdf3
__negdf2
__addsf3
__subsf3
__mulsf3
__divsf3
__negsf2
__fixunsdfsi
__fixdfsi
__floatsidf
__fixunssfsi
__fixsfsi
__floatsisf
__truncdfsf2
__extendsfdf2
__fcmpd
__fcmps

Addition
Subtraction
Multiplication
Division
Sign inversion
Addition
Subtraction
Multiplication
Division
Sign inversion
double → unsigned int
double → int
int → double
float → unsigned int
float → int
int → float
double → float
float → double
Comparison of double type
Comparison of float type

• If the operation resulted in an overflow or underflow, infinity or negative infinity (see next section) is returned.

• The comparison function changes the C, V, Z or N flag of the PSR depending on the result of op1 - op2, as

shown below. Other flags are not changed.

N
0
0
1

Z
0
1
0

V
0
0
0

C
0
0
1

Comparison result
op1 > op2
op1 = op2
op1 < op2

• During type conversion, values are rounded.

CHAPTER 7: EMULATION LIBRARY

E0C33 FAMILY EPSON 95
C COMPILER PACKAGE MANUAL (ver.3)

7.2.2 Floating-point Format
The C Compiler gcc33 supports the float type (single-precision, 32 bit) and the double type (double-precision, 64
bit) floating-point numbers conforming to IEEE standards.
The following shows the internal format of floating-point numbers.

Format of double-precision floating-point number
 The real number of the double type consists of 64 bits, as shown below.

63 62 52 51 0
S Exponent part Fixed-point part

 Bit 63: Sign bit (1 bit)
 Bits 62–52: Exponent part (11 bits)
 Bits 51–0: Fixed-point part (52 bits)

 When this type of value is stored in a register, it occupies two registers. For example, the result of a

floating-point calculation is stored in the R11 and R10 registers.
 R11 register: Sign bit, exponent part, and 20 high-order bits of fixed-point part (51:32)
 R10 register: 32 low-order bits of fixed-point part (31:0)

 The following shows the relationship of the effective range, floating-point representation, and internal data of

the double type.
� �0:� ������� ��������������������

� �0:� �������� ��������������������

� Maximum normalized number:� 	�
�
������� ��
�����������������

� Minimum normalized number:� ������
����� ����	���������������

� Maximum unnormalized number:�������
����� ��������������������

� Minimum unnormalized number:������������� ������������������	�

� Infinity:� � ��
�����������������

� Negative infinity:� � ��������������������

 Values 0x7ff00000 00000001 to 0x7fffffff ffffffff and 0xfff00000 00000001 to 0xffffffff ffffffff are not

recognized as numeric values.

Format of single-precision floating-point number
 The real number of the float type consists of 32 bits, as shown below.

31 30 23 22 0
S Exponent part Fixed-point part

 Bit 31: Sign bit (1 bit)
 Bits 30–23: Exponent part (8 bits)
 Bits 22–0: Fixed-point part (23 bits)

 The float type data can be stored in one register.
 The following shows the relationship of the effective range, floating-point representation, and internal data of

the float type.
� �0:� �������� �����������

� �0:� ��������� �����������

� Maximum normalized number:� ����������� ��
�
������

� Minimum normalized number:� 	�	
�������� �����������

� Maximum unnormalized number:�	�	
�������� ����
������

� Minimum unnormalized number:�	���	�������� ���������	�

� Infinity:� � ��
��������

� Negative infinity:� � �����������

 Values 0x7f800001 to 0x7fffffff and 0xff800001 to 0xffffffff are not recognized as numeric values.

Note
 The floating-point numbers in the gcc33 differ from the IEEE-based FPU in precision and functionality,

including the manner in which infinity is handled.

CHAPTER 7: EMULATION LIBRARY

96 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

7.3 Integral Remainder Calculation Library (idiv.lib)
Table 7.3.1 below lists the integral remainder calculation library (idiv.lib) functions.

Table 7.3.1 Integral remainder calculation library (idiv.lib) functions
Functionality

%r10 ← %r12 / %r13
%r10 ← %r12 / %r13
%r10 ← %r12 % %r13
%r10 ← %r12 % %r13

Classification
Integral division

Remainder

Function name
__divsi3
__udivsi3
__modsi3
__umodsi3

Signed integral division
Unsigned integral division
Signed modulo arithmetic
Unsigned modulo arithmetic

• These functions do not check the value of the input register. For this reason, if the R13 register is set to 0, a

zero-division exception occurs in the div0s or div0u instruction in the function.

7.4 Floating-point Calculation Library (fpp.lib)
The fpp.lib library in this package consists of the same functions as the fp.lib floating-point calculation library.
However, the following functions in the fpp.lib have higher operating accuracy than those of the fp.lib.

�������������	
��������	��������������

The functions in the fp.lib discard the digits under the effective range of the fixed-point part, while these four
functions in the fpp.lib calculate the under part and reflect the rounded off results to the LSB of the fixed-point
part.
They are effective when a higher operating accuracy is required in arithmetic functions such as sin, cos and tan.

CHAPTER 8: ANSI LIBRARY

E0C33 FAMILY EPSON 97
C COMPILER PACKAGE MANUAL (ver.3)

Chapter 8 ANSI Library
This chapter explains the ANSI library included in the E0C33 Family C Compiler Package.

8.1 Overview
The E0C33 Family C Compiler Package contains an ANSI library.
Each function in this library has ANSI-standard functionality. However, some file-related functions are dummy
functions due to embedded microcomputer specifications.
There are five types of ANSI library files, which are installed in the lib directory.
io.lib lib.lib math.lib ctype.lib string.lib

In addition, the following header files which contain definitions of each function are installed in the include
directory.
stdio.h stdlib.h time.h math.h errno.h float.h limits.h ctype.h string.h stdarg.h

Refer to the sample file located in the "cc33\sample\ansilib\" directory for how to use the library functions..
All source codes are located in the "cc33\utility\lib_src\" directory. Refer to the source for more information and
modify them if needed.

Note: When specifying library files including emulation library files (fp.lib, idiv.lib) during linkage,

please follow the specification priority shown below:
 io.lib lib.lib math.lib ctype.lib string.lib fp.lib idiv.lib

 The file io.lib contains functions that call the lib.lib or math.lib functions. Also, lib.lib calls the

math.lib functions. Reference between library files is only valid for functions in the library file that
is specified later. Therefore, if library files are arranged in a different order, a warning may be
generated during linkage.

CHAPTER 8: ANSI LIBRARY

98 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

8.2 ANSI Library Function List

The following explains the meaning of the entries in the Reentrant field:
d The function is reentrant.
� The function is not reentrant.
Ù Dummy function.(You need to modify it for your system.)
L The function is QRW reentrant. ÔThis refers to the global parameters, and it calls the dummy function. It can

be used as a reentrant function if there is no change in the global parameters and your created
read(),write()wrote are reentrant functions.Õ

8.2.1 Input/Output Functions (io.lib)
The table below lists the input/output functions included in io.lib.

Table 8.2.1.1 Input/output functions

Header file: stdio.h

Function Functionality Reentrant Notes

FILE *fopen(char *filename, char *mode); Dummy
Ù

FILE *freopen(char *filename, char
*mode, FILE *stream);

Dummy
Ù

int fclose(FILE *stream); Dummy
Ù

int fflush(FILE *stream); Dummy
Ù

int fseek(FILE *stream, long int offset, int
orign);

Dummy
Ù

long int ftell(FILE *stream); Dummy
Ù

void rewind(FILE *stream); Dummy
Ù

int fgetpos(FILE *stream, fpos_t *ptr); Dummy
Ù

int fsetpos(FILE *stream, fpos_t *ptr); Dummy
Ù

size_t fread(void *ptr, size_t size, size_t
count, FILE *stream);

Input array
element from
stdin.

L
Refer to global parameter stdin,_iob,

call read function.

size_t fwrite(void *ptr, size_t size, size_t
count, FILE *stream);

Output array
element to
stdout.

L
Refer to global parameter

stdout,stderr,_iob, call write function.

int fgetc(FILE *stream); Input one
character from
stdin.

L
Refer to global parameter stdin,_iob,

call read function.

int getc(FILE *stream); Input one
character from
stdin.

L
Refer to global parameter stdin,_iob,

call read function.

int getchar(); Input one
character from
stdin.

L
Refer to global parameter stdin,_iob,

call read function.

int ungetc(int c, FILE *stream); Push one
character back to
input buffer.

�

Refer to global parameter

stdin,stdout,stderr,_iob, returned

value overwrite.
char *fgets(char *s, int n, FILE *stream); Input character

string from stdin. L
Refer to global parameter stdin,_iob,

call read function.
char *gets(char *s); Input character

string from stdin. L
Refer to global parameter stdin,_iob,

call read function.
int fputc(int c, FILE *stream); Output one

character to
stdout.

L
Refer to global parameter

stdout,stderr,_iob, call write function.

int putc(int c, FILE *stream); Output one
character to
stdout.

L
Refer to global parameter

stdout,stderr,_iob, call write function.

CHAPTER 8: ANSI LIBRARY

E0C33 FAMILY EPSON 99
C COMPILER PACKAGE MANUAL (ver.3)

int putchar(int c); Output one
character to
stdout.

L

Refer to global parameter

stdout,stderr,_iob, call write function.

int fputs(char *s, FILE *stream); Output character
string to stdout. L

Refer to global parameter

stdout,stderr,_iob, call write function.
int puts(char *s); Output character

string to stdout.
L

Refer to global parameter

stdout,stderr,_iob, call write function.
int remove(char *filename); Dummy

Ù
int rename(char *oldname, char
*newname);

Dummy
Ù

void setbuf(FILE *stream, char *buf); Dummy
Ù

int setvbuf(FILE *stream, char *buf, int
type, size_t size);

Dummy
Ù

FILE *tmpfile(); Dummy
Ù

char *tmpnam(char *buf); Dummy
Ù

int feof(FILE *stream); Dummy
Ù

int ferror(FILE *stream); Dummy
Ù

void clearerr(FILE *stream); Dummy
Ù

void perror(char *s); Output error
information to
stdout.

�

Refer to global parameter

stdout,stderr,_iob, change errno call

write function.
int fscanf(FILE *stream, char *format, ...); Input from stdin

with format
specified.

�

Refer to global parameter stdout,_iob,

change errno call read function.

int scanf(char *format, ...); Input from stdin
with format
specified.

�

Refer to global parameter stdout,_iob,

change errno call read function.

int sscanf(char *s, char *format, ...); Input from
character string
with format
specified.

�

Change global parameter errno.

int fprintf(FILE *stream, char *format, ...); Output to stdout
with format
specified.

L

Refer to global parameter

stdout,stderr,_iob, call write function.

int printf(char *format, ...); Output to stdout
with format
specified.

L

Refer to global parameter

stdout,stderr,_iob, call write function.

int sprintf(char *s, char *format, ...); Output to array
with format
specified.

d

int vfprintf(FILE *stream, char *format,
va_list arg);

Output
conversion result
to stdout.

L

Refer to global parameter

stdout,stderr,_iob, call write function.

int vprintf(FILE *stream, char *format,
va_list arg);

Output
conversion result
to stdout.

L

Refer to global parameter

stdout,stderr,_iob, call write function.

int vsprintf(char *s, char *format, va_list
arg);

Output
conversion result
to array.

d

Note: The file system is disabled; stdin and stdout are enabled.
 When using stdin, you need the read function. When using stdout, you need the write function.
 Refer to 8.4 for more information.

CHAPTER 8: ANSI LIBRARY

100 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

8.2.2 Utility Functions (lib.lib)
The table below lists the utility functions included in lib.lib.

Table 8.2.2.1 Utility functions

Header file: stdlib.h

Function Functionality Reentrant Notes

void *malloc(size_t size); Allocate area.
�

Change global parameter errno,

ucNxtAlcP,ucBefAlcP,end_alloc.
void *calloc(size_t elt_count, size_t
elt_size);

Allocate array area.
�

Invalid for call from memory allocate.

void free(void *ptr); Clear area. � Invalid for call from memory allocate.
void *realloc(void *ptr, size_t size); Change area size. � Invalid for call from memory allocate.
int system(char *command); Dummy

Ù Invalid for call from memory allocate.
void exit(int status); Terminate program

normally. d
Refer to exit, terminates on the side of

called later.
void abort(); Terminate program

abnormally. d
Refer to exit, terminates on the side of

called later.
int atexit(void (*func)(void)); Dummy

Ù
char *getenv(char *str); Dummy

Ù
void *bsearch(void *key, void *base,
size_t count, size_t size, int
(*compare)(void *, void *));

Binary search.
d

void qsort(void *base, size_t count,
size_t size, int (*compare)(void *,
void *));

Quick sort.
d

int abs(int x); Return absolute value
(int type). d

long int labs(long int x); Return absolute value
(long type). d

div_t div(int n, int d); Divide int type. � Change global parameter errno.
ldiv_t ldiv(int n, int d); Divide long type. � Change global parameter errno.
int rand(); Return pseudo-random

number. �
Change global parameter seed.

void srand(unsigned int seed); Set seed of
pseudo-random number. �

Change global parameter seed.

long int atol(char *str); Convert character string
into long type. �

Change global parameter errno.

int atoi(char *str); Convert character string
into int type. �

Change global parameter errno.

double atof(char *str); Convert character string
into double type. �

Change global parameter errno.

double strtod(char *str, char **ptr); Convert character string
into double type. �

Change global parameter errno.

long int strtol(char *str, char **ptr, int
base)

Convert character string
into long type. �

Change global parameter errno.

unsigned long int strtoul(char *str,
char **ptr, int base);

Convert character string

into unsigned long type.
�

Change global parameter errno.

Note: Memory allocation and release are simply implemented as follows:
 If you perform memory allocation, it takes the necessary size in ucNxtAlcp.
 If the area is same as the one taken before, the memory is freed; otherwise, nothing is

performed.
 If it reaches end_alloc, no more allocation is performed.
 Refer to "cc33\utility\lib_src\" for more information, and modify them if needed.

CHAPTER 8: ANSI LIBRARY

E0C33 FAMILY EPSON 101
C COMPILER PACKAGE MANUAL (ver.3)

8.2.3 Date and Time Functions (lib.lib)
The table below lists the date and time functions included in lib.lib.

Table 8.2.3.1 Date and time functions

Header file: time.h

Function Functionality Reentrant Notes

clock_t clock(); Dummy
�

char *asctime(struct tm *ts); Dummy
�

char *ctime(time_t *timeptr); Dummy
�

double difftime(time_t ti, time_t t2); Dummy
�

struct tm *gmtime(time_t *t); Convert calendar
time to standard
time.

�

Change static parameter.

struct tm *localtime(time_t *t); Dummy
�

time_t mktime(struct tm *tmptr); Convert standard
time to calendar
time.

�

Change static parameter.

time_t time(time_t *tptr); Return current
calendar time. L

Refer to global parameter

gm_sec

CHAPTER 8: ANSI LIBRARY

102 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

8.2.4 Mathematical Functions (math.lib)
The table below lists the mathematical functions included in math.lib.

Table 8.2.4.1 Mathematical functions

Header files: math.h, errno.h, float.h, limits.h

Function Functionality Reentrant Notes

double fabs(double x); Return absolute value (double type). d
double ceil(double x); Round up double-type decimal part.

�
Change global parameter errno,

destruct ALR,AHR.
double floor(double x); Round down double-type decimal

part. �

Change global parameter errno,

destruct ALR,AHR.
double fmod(double x,
double y);

Calculate double-type remainder.
�

Change global parameter errno,

destruct ALR,AHR.
double exp(double x); Exponentiate (ex).

�

Change global parameter errno,

destruct ALR,AHR.
double log(double x); Calculate natural logarithm.

�

Change global parameter errno,

destruct ALR,AHR.
double log10(double x); Calculate common logarithm.

�
Change global parameter errno,

destruct ALR,AHR.
double frexp(double x, int
*nptr);

Return mantissa and exponent of
floating-point number. �

Change global parameter errno,

destruct ALR,AHR.
double ldexp(double x, int n); Return floating-point number from

mantissa and exponent. �

Change global parameter errno,

destruct ALR,AHR.
double modf(double x,
double *nptr);

Return integer and decimal parts of
floating-point number. �

Change global parameter errno,

destruct ALR,AHR.
double pow(double x, double
y);

Calculate xy.
�

Change global parameter errno,

destruct ALR,AHR.
double sqrt(double x); Calculate square root.

�
Change global parameter errno,

destruct ALR,AHR.
double sin(double x); Calculate sine.

�

Change global parameter errno,

destruct ALR,AHR.
double cos(double x); Calculate cosine.

�

Change global parameter errno,

destruct ALR,AHR.
double tan(double x); Calculate tangent.

�

Change global parameter errno,

destruct ALR,AHR.
double asin(double x); Calculate arcsine.

�

Change global parameter errno,

destruct ALR,AHR.
double acos(double x); Calculate arccosine.

�
Change global parameter errno,

destruct ALR,AHR.
double atan(double x); Calculate arctangent. � Destruct ALR,AHR.
double atan2(double y,
double x);

Calculate arctangent of y/x.
�

Change global parameter errno,

destruct ALR,AHR.
double sinh(double x); Calculate hyperbolic sine.

�
Change global parameter errno,

destruct ALR,AHR.
double cosh(double x); Calculate hyperbolic cosine.

�

Change global parameter errno,

destruct ALR,AHR.
double tanh(double x); Calculate hyperbolic tangent. � Destruct ALR,AHR.

Note: The operation is faster in Ver.3 than in Ver.1 and Ver.2.

CHAPTER 8: ANSI LIBRARY

E0C33 FAMILY EPSON 103
C COMPILER PACKAGE MANUAL (ver.3)

8.2.5 Character Functions (string.lib)
The table below lists the character functions included in string.lib.

Table 8.2.5.1 Character functions

Header file: string.h

Function Functionality Reentrant Notes

char *memchr(char *s, int c, int n); Return specified character position in the storage
area. d

int memcmp(char *s1, char *s2, int n); Compare storage areas. d

char *memcpy(char *s1, char *s2, int n); Copy the storage area. d

char *memmove(char *s1, char *s2, int n); Copy the storage area (overlapping allowed). d

char *memset(char *s, int c, int n); Set character in the storage area. d

char *strcat(char *s1, char *s2); Concatenate character strings. d

char *strchr(char *s, int c); Return specified character position found first in
the character string. d

int strcmp(char *s1, char *s2); Compare character strings. d

char *strcpy(char *s1, char *s2); Copy character string. d

size_t *strcspn(char *s1, char *s2); Return number of characters from the beginning
of the character string until the specified character
appears (multiple choices).

d

char *strerror(int code); Return error message character string. d

size_t strlen(char *s); Return length of character string. d

size_t strncat(char *s1, char *s2, int n); Concatenate character strings (number of
characters specified). d

int strncmp(char *s1, char *s2, int n); Compare character strings (number of characters
specified). d

char *strncpy(char *s1, char *s2, int n); Copy the character string (number of characters
specified). d

char *strpbrk(char *s1, char *s2); Return specified character position (multiple
choices) found first in the character string. d

char *strrchr(char *s, int c); Return specified character position found last in
the character string. d

size_t strspn(char *s1, char *s2); Return number of characters from the beginning
of the character string until the non-specified
character appears (multiple choices).

d

char *strstr(char *s1, char *s2); Return position where the specified character
string appeared first. d

char *strtok(char *s1, char *s2); Divide the character string into tokens.
�

Change static

parameter.

∗ All functions except strerror have been created and tuned by an assembly source.

CHAPTER 8: ANSI LIBRARY

104 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

8.2.6 Character Type Determination/Conversion Functions (ctype.lib)
The table below lists the character functions included in ctype.lib.

Table 8.2.6.1 Character type determination/conversion functions

Header file: ctype.h

Function Functionality Reentrant
int isalnum(char c); Determine character type (decimal or alphabet). d

int isalpha(char c); Determine character type (alphabet). d

int iscntrl(char c); Determine character type (control character). d

int isdigit(char c); Determine character type (decimal). d

int isgraph(char c); Determine character type (graphic character). d

int islower(char c); Determine character type (lowercase alphabet). d

int isprint(char c); Determine character type (printable character). d

int ispunct(char c); Determine character type (delimiter). d

int isspace(char c); Determine character type (null character). d

int isupper(char c); Determine character type (uppercase alphabet). d

int isxdigit(char c); Determine character type (hexadecimal). d

int tolower(char c); Convert character type (uppercase alphabet → lowercase). d

int toupper(char c); Convert character type (lowercase alphabet → uppercase). d

8.2.7 Variable Argument Macros (stdarg.h)
The table below lists the variable argument macros defined in stdarg.h.

Table 8.2.7.1 Variable argument macros

Header file: stdarg.h
Functionality

Initialize the variable argument group.
Return the actual argument.
Return normally from the variable argument function.

Macro
void va_start(va_list ap, type lastarg);
type va_arg(va_list ap, type);
void va_end(va_list ap);

CHAPTER 8: ANSI LIBRARY

E0C33 FAMILY EPSON 105
C COMPILER PACKAGE MANUAL (ver.3)

8.3 Declaring and Initializing Global Variables
The ANSI library functions reference the global variables listed in Table 8.3.1. Since these variables are not
defined in the library, be sure to declare and initialize them before calling a library function in the C source
program.

Table 8.3.1 Global variables required of declaration
Initial setting

_iob[N]._flg = _UGETN;
_iob[N]._buf = 0;
_iob[N]._fd = N;
 (N=0–2)
 _iob[0]: Input data for stdin
 _iob[1]: Output data for stdout
 _iob[2]: Output data for stderr
stdin = &_iob[0];

stdout = &_iob[1];

stderr = &_iob[2];

errno = 0;

seed = 1;

ucNxtAlcP = (unsigned char *)

ucBefAlcP = (unsigned char *) NULL;

end_alloc = (unsigned char *)

gm_sec = -1;

Related header file/function
stdio.h, smcvals.h
fgets, fread, fscanf, getc, getchar,
gets, scanf, ungetc, perror, fprintf,
fputs, fwrite, printf, putc, putchar,
puts, vfprintf, vprintf

stdio.h
fgets, fread, fscanf, getc, getchar,
gets, scanf, ungetc
stdio.h
fprintf, fputs, fwrite, printf, putc,
putchar, puts, vfprintf, vprintf
stdio.h
fprintf, fputs, fwrite, printf, perror,
putc, putchar, puts, vfprintf, vprintf
errno.h
fopen, freopen, fseek, fsetpos,
perror, remove, rename, tmpfile,
tmpnam, fprintf, printf, sprintf,
vprintf, vfprintf, fscanf, scanf,
sscanf
atof, atoi, calloc, div, ldiv, malloc,
realloc, strtod, strtol, strtoul
acos, asin, atan2, ceil, cos, cosh,
exp, fabs, floor, fmod, frexp, ldexp,
log, log10, modf, pow, sin, sinh,
sqrt, tan
stdlib.h
rand, srand

stdlib.h
calloc, free, malloc, realloc

stdlib.h
calloc, free, malloc, realloc

stdlib.h
calloc, malloc, realloc

time.h
time

Global variable
FILE _iob[FOPEN_MAX +1];
 FOPEN_MAX=3,
 Defined in stdio.h
File structure data for standard
input/output streams

FILE *stdin;
Pointer to standard input/output file
structure data _iob[0]
FILE *stdout;
Pointer to standard input/output file
structure data _iob[1]
FILE *stderr;
Pointer to standard input/output file
structure data _iob[2]
int errno;
Variable to store error number

unsigned int seed;
Variable to store seed of random
number
unsigned char *ucNxtAlcP;
Pointer that indicates the heap area
allocated next
unsigned char *ucBefAlcP;
Pointer that indicates the beginning of
previously allocated heap area
unsigned char *end_alloc;
Pointer that indicates the end address of
heap area
time_t gm_sec;
Elapsed time of timer function in
seconds from 0:00:00 on January 1,
1970

∗ For an example of a source file that declares and initializes these global variables, refer to lib.c in the

sample\ansilib\ directory.

CHAPTER 8: ANSI LIBRARY

106 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

8.4 Lower-level Functions
The following three functions (read, write, and _exit) are the lower-level functions called by a library function.
Since these functions depend on hardware, they are not provided in the library. If these functions are desired,
define them in the user program.
For an example of a C source file that defines these functions, refer to sys.c in the sample\ansilib\ directory.

8.4.1 "read" Function

Contents of read function

Format: int read(int fd, char *buf, int nbytes);

Argument: int fd; File descriptor denoting input
 When called from a library function, 0 (stdin) is passed.
 char *buf; Pointer to the buffer that stores input data
 int nbytes; Number of bytes transferred

Functionality: This function reads up to nbytes of data from the user-defined input buffer, and stores it in

the buffer indicated by buf.

Returned value: Number of bytes actually read from the input buffer
 If the input buffer is empty (EOF) or nbytes = 0, 0 is returned.
 If an error occurs, -1 is returned.

Library functions that call the read function:
 Direct call: fread, getc, _doscan (_doscan is a scanf-series internal function)
 Indirect call: fgetc, fgets, getchar, gets (calls getc)
 scanf, fscanf, sscanf (calls _doscan)

Definition of input buffer
Format: unsigned char READ_BUF[65]; (Variable name is arbitrary; size is fixed to 65 bytes)
 unsigned char READ_EOF;

Buffer contents: The size of the input data (1 to max. 64) is stored at the beginning of the buffer

(READ_BUF[0]). 0 denotes EOF.
 The input data is stored in READ_BUF[1], and the following locations.
 READ_EOF stores the status that indicates whether EOF is reached.

Precautions on using a simulated I/O
 When using the debugger's simulated I/O, define in the read function the global label "READ_FLASH" that

is required for the debugger to update the input buffer, then create the function so that new data will be read
into the input buffer at that position. (For details about the simulated I/O function, refer to the chapter where
the debugger is discussed.)

CHAPTER 8: ANSI LIBRARY

E0C33 FAMILY EPSON 107
C COMPILER PACKAGE MANUAL (ver.3)

8.4.2 "write" Function

Contents of write function

Format: int write(int fd, char *buf, int nbytes);

Argument: int fd; File descriptor denoting output
 When called from a library function, 1 (stdout) or 2 (stderr) is passed.
 char *buf; Pointer to the buffer that stores output data
 int nbytes; Number of transferred bytes

Functionality: The data stored in the buffer indicated by buf is written as much as indicated by nbytes to

the user-defined output buffer.

Returned value: Number of bytes actually written to the output buffer
 If data is written normally, nbytes is returned.
 If a write error occurs, a value other than nbytes is returned.

Library function that calls the write function:
 Direct call: fwrite, putc, _doprint (_doprint is printf-series internal function)
 Indirect call: fputc, fputs, putchar, puts (calls putcc)
 printf, fprintf, sprintf, vprintf, vfprintf (calls _doprint)
 perror (calls fprintf)

Definition of output buffer
Format: unsigned char WRITE_BUF[65]; (Variable name is arbitrary; size is fixed to 65 bytes)

Buffer content: The size of the output data (1 to max. 64) is stored at the beginning of the buffer

(WRITE_BUF[0]). 0 denotes EOF.
 The output data is stored in WRITE_BUF[1], and the following locations.

Precautions on using simulated I/O
 When using the debugger's simulated I/O, define in the write function the global label "WRITE_FLASH"

that is required for the debugger to update the output buffer, and create a function so that data will be output
from the output buffer at that position. (For details about the simulated I/O function, refer to the chapter
where the debugger is discussed.)

8.4.3 "_exit" Function

Contents of _exit function

Format: void _exit(void);

Functionality: Performs program terminating processing.

Argument/ Returned value: None

Library function that calls _exit function:
 Direct call: abort, exit

CHAPTER 9: PREPROCESSOR

108 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Chapter 9 Preprocessor
This chapter describes the functions of the Preprocessor pp33.

9.1 Functions
The preprocessor pp33 (hereafter called "pp33") is the C compiler package's first tool to process the assembly
source file; therefore, it provides the assembler as33 with additional functions. It expands the additional function
part described in the assembly source file to mnemonics that can be assembled. The functions provided by the
pp33 are as follows:
• Macro definition and macro invocation
• Definition of Define name
• Operators
• Insertion of other file
• Conditional assembly
• Addition of debugging information for assembly source display

9.2 Input/Output Files

Preprocessor
pp33

file.s

file.ps pp33.err

Assembly source file

Assembly
source file

Error
file

Instruction Extender ext33
Fig. 9.2.1 Flowchart

9.2.1 Input File

Source file
 File format: Text file
 File name: <file name>.s (Other extensions than ".s" can be used.)
 Description: File in which the assembly source program is described. Instructions for the pp33 and

the extended instructions can be described there.

9.2.2 Output Files

Assembly source file
 File format: Text file
 File name: <file name>.ps (The <file name> is the same as that of the input file.)
 Output destination: Current directory
 Description: File in which instructions for the pp33 are expanded into an assembling format.

Error file
 File format: Text file
 File name: pp33.err
 Output destination: Current directory
 Description: File that is output when the startup option (-e) is specified, and describes the contents

which the pp33 delivers through the Standard Output (stdout), such as an error message.

CHAPTER 9: PREPROCESSOR

E0C33 FAMILY EPSON 109
C COMPILER PACKAGE MANUAL (ver.3)

9.3 Starting Method

9.3.1 Startup Format

General form of command line

 pp33 ^ [<startup option>] ^ [<file name>]

 ^ denotes a space.
 [] indicates the possibility to omit.

 <file name>: Specify an assembly source file name including the extension (.s).

Operations on work bench
 Select options and a source file, then click the [PP33] button.

In the command line, only one source file can be specified at a time.
The wb33 allows multiple files to be selected, in which case the pp33 is executed as many times as the number of
files selected.

9.3.2 Startup Options
The pp33 comes provided with the following three types of startup options:

-d <Define name>
Function: Definition of Define name
Specification on wb33: Enter in the [define] text box.
Explanation: • Works in the same manner as you describe "#define <Define name>" at top of the

source. It is an option to control the conditional assembly at the startup. However,
unlike the #define definition, it does not perform replacement in the source.

 • One or more spaces are necessary between -d and the <Define name>.
 • Refer to Section 9.5.2 for formats and restrictions of definable names.
 • To define two or more Define names, repeat the specification of "-d <Define name>".

For the wb33, separate each <Define name> with a comma (,) as you input them.

-g
Function: Addition of debugging information
Specification on wb33: Check [debug info].
Explanation: • Creates an output file containing debugging information.
 • Always specify this function when you perform the assembly source level debugging.
 • Refer to Section 9.7 for debugging information.

-e
Function: Output of error files
Specification on wb33: None
Explanation: • Delivers also in a file (pp33.err) the contents that are output by the pp33 via the

Standard Output (stdout), such as error messages.

When entering options in the command line, you need to place one or more spaces before and after the option.
Example: c:\cc33\pp33 -g -e -d TEST1 -d TEST2 test.s

CHAPTER 9: PREPROCESSOR

110 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

9.4 Messages
The pp33 delivers its messages through the Standard Output (stdout).
If the pp33 is started up by using the wb33's [PP33] button, the message is output to "wb33.err". When execution
is completed, a message is displayed in the output window (default).

End message
 The pp33 outputs only the following end message when it ends normally.

� ����������������	
�����

Usage output
 If no file name was specified or an option was not specified correctly, the pp33 ends after delivering the

following message concerning the usage:

��������������������������

��
������������������������������ ��

!�"��#�

����

���$�
���%�&�'���%"	��

�
���%�#�

����(��#�
��)�������'�����

��������

����(��#���%��"����*)���%'��	"���%��%��)�
)��'����

����(�����%��#��'�%������%��

�)�
)�#�

����+���	*������)����'����'�����������
���

��"	
��#�

����

���(��(��(�,-�����������

When error/warning occurs
 If an error is produced, an error message will appear before the end message shows up.
 Example:��������.���#������#��%/"�����%�"���
� � ����������������	
����

 In the case of an error, the pp33 ends without creating an output file.

 If a warning is issued, a warning message will appear before the end message shows up.
 Example: �������0���#�1"�%�%�#�2)�����'�%����	*����
� � ����������������	
����

 In the case of a warning, the pp33 ends after creating an output file.

 For details on errors and warnings, refer to Section 9.12 "Error/Warning Messages".

CHAPTER 9: PREPROCESSOR

E0C33 FAMILY EPSON 111
C COMPILER PACKAGE MANUAL (ver.3)

9.5 Preprocessor Pseudo-Instructions
The principal mission of the pp33 is to expand the preprocessor pseudo-instructions, explained below, to
mnemonics that can be processed by the Assembler as33.
For clear discrimination from the assembler pseudo instructions, the preprocessor pseudo-instructions all begin
with a sharp (#). Describe the instructions always from top of the lines.
The pseudo-instructions in themselves are all in lowercase characters only. Parameters can use both uppercase and
lowercase characters, which are discriminated, respectively.
The lines of preprocessor pseudo-instructions also follow the notation rules of statements (see Chapter 4).

9.5.1 Include Instruction (#include)
The include instruction inserts the contents of a file in any location of a source file. It results useful when the same
source is shared in common among several source files.

Instruction format

 #include "<file name>"

 • A drive name or path name can as well be specified as the <file name>.
 • One or more spaces are necessary between the instruction and the "<file name>".

 Sample descriptions:
 #include "sample.def"

Expansion rule
 The specified file is inserted in the location where #include was described.
 For sample expansions, refer to Section 9.10 "Sample Executions".

Precautions
 • Only files created in text file format can be inserted.

 • Nesting is limited to maximum 2 levels. If this limit is surpassed, an error will result.

file1.s
:

#include "file2.s"
:
:
:
:
:

file2.s
:
:

#include "file3.s"
:
:
:
:

Expanded

file3.s
:
:
:
:

#include "file4.s"
:
:

Expanded

Error

"file3.s" can be included in "file2.s", but "file4.s" cannot be included in "file3.s".

 Fig. 9.5.1.1 Nesting levels of include

 • When adding a relative path to the file name, specify the relative path from the directory in which the

current source file exists.

CHAPTER 9: PREPROCESSOR

112 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

9.5.2 Define Instruction (#define)
Any substitute character string can be left defined as a Define name by the define instruction (#define), and the
details of that definition can be referred to from various parts of the program using the Define name.

Instruction format

 #define <Define name> [<Substitute character string>]

 <Define name>:
 • The first character is limited to a–z, A–Z and _.
 • The second and the subsequent characters can use a–z, A–Z, 0–9 and _.
 • Uppercase and lowercase characters are discriminated.
 • One or more spaces or tab settings are necessary between the instruction and the Define name.

 <Substitute character string>:
 • The usable characters are limited to a–z, A–Z, 0–9, _, % and . (period). They must not contain any

space or comma (,).
 Values, operators, mnemonics, labels, and register names also can be specified.
 • Uppercase and lowercase characters are discriminated.
 • One or more spaces or tab settings are necessary between the Define name and the substitute

character string.
 • The substitute character string can be omitted. In that case, NULL is defined in lieu of the substitute

character string. It can be used for the conditional assembly instruction.

 Sample definitions:
 #define TYPE1
 #define L1 LABEL_01
 #define li ld.w
 #define r1 %r1

 #define Mr1 [%r1] ...Error [] and []+ cannot be used.

Expansion rule
 If a Define name defined appears in the source, the pp33 substitutes a defined character string for that Define

name.
 Sample expansion:
 #define gp %r8
 :
 ld.w [gp], %r1 ...Expanded to "ld.w [%r8], %r1".

 When a number is specified for the substitute character string, the following rule is applied:
 • The pp33 converts the defined number into a signed 32-bit data and expands it as a hexadecimal

number.
 • #define allows the substitute character strings to describe in an expression using operators. The

Define names that have been defined can also be used as terms of the expression.

 Sample expansion:
 Before expansion
 #define A 0x12
 #define B A*2
 :
 ld.w %r2, A+B ...Expanded to "ld.w %r2, 0x36".

CHAPTER 9: PREPROCESSOR

E0C33 FAMILY EPSON 113
C COMPILER PACKAGE MANUAL (ver.3)

Precautions
• The pp33 only permits back reference of a Define name. The definition needs to have been completed

before making the reference.

• Once a Define name is defined, it cannot be canceled. However, redefinition can be made using a Define
name.

 Example: #define XH %ahr
 #define XHigh XH
 ld.w XHigh, %r1 ...Expanded to "ld.w %ahr, %r1".

• When the same Define name is defined twice or more, a warning message will appear and the redefined

character string is validated.

• No other characters than delimiters (space, tab, line feed, and comma) can be added before and after a
Define name in the source, unless they are enclosed in [] or []+. However, a symbol mask (@..) described
behind is valid.

 Examples: #define H %ah
 ld.w Hr, %r1 ;Hr = %ahr? ...Specification like this is invalid.

 #define L LABEL
 ext L@h ...Replaced with "ext LABEL@h".

• The pp33 does not check the validity of a statement following the replacement of the character string.

• The pp33 handles the defined numbers as 32-bit data. If the specified number or the calculation result is a

negative value, it is delivered as a decimal number with a minus sign. If the value is positive, it is
delivered as a hexadecimal number. Pay attention to the immediate data size, especially when it has a
minus value.

 Example: #define NUM -1 ...-1 is handled as 0xffffffff.
 ld.w %r1, NUM ...It will be expanded as "ld.w %r1, -1".
 ld.w %r1, NUM^L ...It will be expanded as "ld.w %r1, 0x3f".

CHAPTER 9: PREPROCESSOR

114 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

9.5.3 Macro Instructions (#macro ... #endm)
Any statement string can be left defined as a macro using the macro instruction (#macro), and the content of that
definition can be invoked from different parts of the program with the macro name. Unlike a subroutine, the part
that is invoking a macro is replaced with the content of the definition by the pp33.

Instruction format

 #macro <Macro name> [$1] [,$2] . . . [,$32]
 <Statement string>
 #endm

 <Macro name>:
 • The first character is limited to a–z, A–Z and _.
 • The second and the subsequent characters can use a–z, A–Z, 0–9, and _.
 • Uppercase and lowercase characters are discriminated.
 • One or more spaces or tab settings are necessary between the instruction and the macro name.

 $1–$32:
 • Dummy parameter symbols for macro definition. They are described when a macro to be defined

needs parameters. Not more than 32 symbols can be specified.
 • No other symbols than $1 to $32 can be used. You need to begin always with $1 and to arrange

them in an ascending order ($1 → $32).
 • One or more spaces or tab settings are necessary between the macro name and $1. When

describing multiple parameters, a comma (,) is necessary between one parameter and another.

 <Statement string>:
 • The following statements can be described:
 - Basic instruction (mnemonic and operand)
 - Extended instruction (see Instruction Extender)
 - Conditional assembly instruction
 - Internal branch label*
 - Comments
 • The following statements cannot be described:
 - Preprocessor pseudo-instructions (excluding conditional assembly instruction)
 - Assembler pseudo-instructions
 - Other labels than internal branch labels
 - Macro invocation

 * Internal branch label
 A macro is spread over to several locations in the source. Therefore, if you describe a label in a

macro, a double definition will result, with an error issued. So, use internal branch labels which are
only valid within a macro.

 • A maximum of 64 internal branch labels can be described per macro.
 • The labels should be arranged like this: $$1–$$64 in order of description. (Each macro should

begin with $$1.)

 Sample definition:
 #define Areg %r1
 #macro ADD $1, $2
 ld.w Areg, $1
 add Areg, $2
 #ifdef DEBUG
 cmp Areg, 0x1
 #else
 cmp Areg, 0x2
 #endif
 xjrne $$1

CHAPTER 9: PREPROCESSOR

E0C33 FAMILY EPSON 115
C COMPILER PACKAGE MANUAL (ver.3)

 ld.w [%r2], 0b11
 $$1:
 ld.w %r3, [%r2]+
 jr LABEL1
 #endm

Expansion rules
 When a defined macro name appears in the source, the pp33 inserts a statement string defined in that

location.
 If there are actual parameters described in that process, the dummy parameters ($1–$32) will be replaced

with the actual parameters in the same order as the latter are arranged.
 The internal branch labels are replaced, respectively, with __L0001–__L9999 from top of the source in the

same order as they appear.

 Sample expansion:
 When the macro ADD shown above is defined:

 Macro invocation
 #define DEBUG
 :
 ADD 1, 2
 :

 After expansion
 :
 ld.w Areg, $1 ; ADD 1, 2
 add Areg, $2
 ;#ifdef DEBUG
 cmp Areg, 0x1
 ;#else
 ; cmp Areg, 0x2
 ;#endif
 xjrne __L0001
 ld.w [%r2], 0b11
 __L0001:
 ld.w %r3, [%r2]+
 jr LABEL1
 ("__L0001" denotes the case where an internal branch label is expanded for the first time in the source.)

Precautions

• The pp33 only permits back reference of a macro invocation. The definition needs to have been completed
before making the reference.

• Once a defined macro name is defined, it cannot be canceled. If the same macro name is defined twice or

more, a warning message will appear and the redefined macro is validated.

• No other characters than delimiters (space, tab, line feed, and commas) can be added before and after a
dummy parameter in a statement, unless they are enclosed in [] or []+. However, a symbol mask (@..)
described behind is valid.

• The same character string as that of the #define and #define instruction cannot be used as a macro name.

• When the number of dummy parameters differs from that of actual parameters, an error will result.

• A maximum of 32 parameters and a maximum of 64 internal branch labels can be specified per macro. If

these limits are surpassed, an error will result.

• "__L####" used for the internal branch labels should not be employed as other label or symbol.

• Maximum 9999 internal branch labels can be expanded within one source file. If this limit is exceeded, an
error will result.

CHAPTER 9: PREPROCESSOR

116 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

9.5.4 Conditional Assembly Instructions
 (#ifdef ... #else ... #endif, #ifndef... #else ... #endif)
A conditional assembly instruction determines whether assembling should be performed within the specified range,
dependent on whether the specified name (Define name) is defined or not.

Instruction formats

 Format 1) #ifdef <Name>
 <Statement string 1>
 [#else
 <Statement string 2>]
 #endif

 If the <Name> is defined, <Statement string 1> will be subjected to the assembling.
 If the <Name> is not defined, and #else ... <Statement string 2> is described, then <Statement string 2> will

be subjected to the assembling. #else ... <Statement string 2> can be omitted.

 Format 2) #ifndef <Name>
 <Statement string 1>
 [#else
 <Statement string 2>]
 #endif

 If the <Name> is not defined, <Statement string 1> will be subjected to the assembling.
 If the <Name> is defined, and #else ... <Statement string 2> is described, <Statement string 2> will be

subjected to the assembling. #else ... <Statement string 2> can be omitted.

 <Name>:
 • Conforms to the restrictions on Define name. (See #define.)

 <Statement string>:
 • All statements, excluding conditional assembly instructions, can be described.

 Sample description:
 #ifdef TYPE1
 ld.w %r1, 0x12
 #else
 ld.w %r1, 0x13
 #endif

Name definition
 Name definition needs to have been completed by either of the following methods, prior to the execution of a

conditional assembly instruction:

 1) To define by using the startup option (-d) of the pp33.
 Example: pp33 -d TYPE1 sample.s

 2) To define in the source file by using the #define instruction.
 Example: #define TYPE1

 The #define statement is valid even in a file to be included, provided that it goes before the conditional

assembly instruction that uses its Define name. A name defined after a conditional assembly instruction will
be regarded as undefined.

 When a name is going to be used only in conditional assembly, no substitute character string needs to be

specified.

CHAPTER 9: PREPROCESSOR

E0C33 FAMILY EPSON 117
C COMPILER PACKAGE MANUAL (ver.3)

Expansion rule
 A statement string subjected to the assembling is expanded according to the expansion rule of the other

preprocessor instructions. (If no preprocessor instruction is contained, the statement will be output in a file as
is.)

 Statement strings not subjected to the assembling are delivered as comments.

Precautions

• A name specified in the condition is evaluated with discrimination between uppercase and lowercase. The
condition is deemed to be satisfied only when there is the same Define name defined.

• The #ifdef (#ifndef) instruction cannot be used for a statement string in a conditional assembly instruction,

but the #define, #macro and #include instructions can be employed.

CHAPTER 9: PREPROCESSOR

118 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

9.6 Operators
An expression that consists of operators and numbers can be used for specifying an immediate data.
The pp33 handles expressions in signed 32-bit data.
When writing expressions, do not insert a space between a term and an operator.

Types of operators

 Examples
+ Addition, Plus sign +0xff, 1+2
- Subtraction, Minus sign -1+2, 0xfff-0b111
* Multiplication 0xf*5
/ Division 0x123/0x56
%% Residue 0x123%%0x56
>> Shifting to right 1>>2
<< Shifting to left 0x113<<3
& Bit AND 0b1101&0b111
| Bit OR 0x123|0xff
^ Bit XOR 12^35
~ Bit inversion ~0x1234
^H Acquires bit field (31:19) 0x1234^H
^M Acquires bit field (18:6) 0x1234^M
^L Acquires bit field (5:0) 0x1234^L
^AH Acquires bit field (25:13) 0x1234^AH
^AL Acquires bit field (12:0) 0x1234^L
() Parenthesis 1+(1+2*5)

Priority
 The operators have the priority shown below. If there are two or more operators with the same priority in an

expression, the preprocessor calculates the expression from the left.
 1. () High priority
 2. + (plus sign), - (minus sign), ~ ↑
 ^H, ^M, ^L, ^AH, ^AL
 3. *, /, %%
 4. +, -
 5. <<, >>
 6. &
 7. ^ ↓
 8. | Low priority

Terms in expression
 The following contents can be written in the terms of an expression.

• Binary, decimal, or hexadecimal number in the effective range of values represented by 32 bits
 Unsigned integer: 0 to 4294967295 (0x0 to 0xffffffff)
 Signed integer: 0 to 2147483647 (0x0 to 0x7fffffff), -1 to -2147483648 (0xffffffff to 0x80000000)

• Define names defined for numbers (names defined by #define)

• Symbol
 If the symbol is not a Define name, the expression is limited to the following format:
 SYMBOL [+SYMBOL...] + numeric expression or SYMBOL [+SYMBOL...] - numeric expression

CHAPTER 9: PREPROCESSOR

E0C33 FAMILY EPSON 119
C COMPILER PACKAGE MANUAL (ver.3)

Examples
 #define BAR 0x1
 ld.w %r0, BAR+2 ...ld.w %r0, 0x3
 xcall LABEL+BAR*2 ...xcall LABEL+0x2
 xld.w %r1, [FOO+BAR+1] ...xld.w %r1, [FOO+0x2]
 xld.w %r1, [BAR+FOO+1] ...An error will result if FOO is not a Define name.

Precautions

• Since the operation is internally performed as 32 signed bits, caution is required depending on the type of
operation.

 Pay attention to the calculation results of the >>, / and %% operators using hexadecimal numbers.
 Examples:
 #define NUM1 0xfffffffe/2 ...-2/2 = -1 (0xffffffff)
 The / and %% operators can only be used within the signed
 32-bit range.
 #define NUM2 0xfffffffe>>1 ...-2>>1 = -1 (0xffffffff)
 Mask as (0xfffffffe>>1)&0x7fffffff.

• The calculation result is delivered as a decimal number with a minus sign if it is negative, or a

hexadecimal number if it is positive.
 Eamples:
 add %r0, -2+1 ...It will be expanded as "add %r0, -1".
 add %r0,(-2+1)&0x3f ...It will be expanded as "add %r0, 0x3f".

• Do not insert a space or a TAB between an operator and a term (number, Define name).
 Examples:
 ld.w %r0, 1+1 ...OK
 ld.w %r0, 1 + 1 ...NG
 ld.w %r0, (1+NUM1)*2 ...OK
 ld.w %r0, (1 + NUM1)*2 ...NG

CHAPTER 9: PREPROCESSOR

120 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

9.7 Debugging Information
When the startup option -g is specified ([debug info] checked on the work bench), the pp33 inserts assembler
pseudo-instructions in the output file, as the debugging information designed to correspond with the assembly
source level debugging.

Notes: • This debugging information is necessary to perform debugging on the Debugger db33, with the

assembly source displayed.
 • Make sure the debugging information is created by only specifying the -g option, and not by

any other method. Also, be sure not to correct the debugging information that is output.
Corrections could cause the as33, lk33, db33 or dis33 to malfunction.

 • Unless the -g option is specified in the lk33 even though it may be specified in the pp33 (same
applies for gcc33), all debugging information will be cut during linkage.

 • The source information created by specifying the -g option in the pp33 is not cut even when
the -g option is not specified in the as33.

 • The assembler level symbol information (symbol names and addresses only) is created when
the -g option is specified in the as33.

Assembler pseudo-instructions to be delivered
 The following three types of debugging pseudo-instructions are delivered. The characters other than those in

the underlined parts are fixed.

 1) .file "PATH_NAME"
 Indicates the beginning of a file. Inserted at top of the current file or in the start position of an included

file. PATH_NAME is the file path name.

 2) .endfile
 Indicates the end of a file. Inserted at the end of the current file
 The .file pseudo-instruction indicating the restart of the original file is inserted at the end of the include

file. The .endfile pseudo-instruction is not inserted, however.

 3) .loc LINE_NO
 Indicates the line information of the source file. Added only to the mnemonic statement (line assembled

to the object code). LINE_NO is a source line number.

Sample output
 Startup command: pp33 -g base_file.s

 Before processing:
 • Source file "base_file.s"
 ; file start
 #include "inc.def"
 ld.w %r1, [%r7]
 ld.w [%r3], %r1

 • Included file "inc.def"
 ; This is an empty file.

 After processing:
 • Assembly source file "base_file.ms"
 .file "base_file.s" Start of "base_file.s"
 ; file start (Debugging information is not added to comments.)
 ;#include "inc.def"
 .file "inc.def" Start of "inc.def"
 ; This is an empty file.
 .file "base_file.s" Resuming of "base_file.s"
 .loc 3 Line No. 3 (base_file.s)
 ld.w %r1, [%r7]
 .loc 4 Line No. 4 (base_file.s)
 ld.w [%r3], %r1
 .endfile End of "base_file.s"

CHAPTER 9: PREPROCESSOR

E0C33 FAMILY EPSON 121
C COMPILER PACKAGE MANUAL (ver.3)

9.8 Comment Adding Function
The Preprocessor instructions are all expanded to codes that can be assembled, and delivered in the output file.
Even after that, those instructions are rewritten with comments beginning with a semicolon (;), so that the original
instructions can be identified. However, note that replacements of Define names and expressions will not subsist as
comments.

The comment is added to the first line following the expansion. In case the original statement is accompanied by a
comment, that comment is also added.
A macro definition should have a semicolon (;) placed at top of the line.

Example:
 Before expansion
 #define R0 %r0

 #macro ADDM $1
 ld.w R0, $1
 add R0, [%r4]
 ld.w [%r5], R0
 #endm

 ADDM 0x10 ; [%r5] = [%r4] + 0x10

 After expansion (no debugging information)
 ;#define R0 %r0

 ;#macro ADDM $1
 ; ld.w R0, $1
 ; add R0, [%r4]
 ; ld.w [%r5], R0
 ;#endm

 ld.w %r0, 0x10 ; ADDM 0x10 ; [%r5] = [%r4] + 0x10
 add %r0, [%r4]
 ld.w [%r5], %r0

9.9 Other Functions

9.9.1 ASCII to HEX Conversion
The pp33 has the function to convert an ASCII character enclosed with ' ' in source files into a hexadecimal
number. The corresponding parts of the output assembly source file is replaced with the hexadecimal ASCII codes.

Sample conversions:
 ld.w %r1, '1' → ld.w %r1, 0x31
 ld.w %r1, '1'+1 → ld.w %r1, 0x32 ... Numeric operators can be used.

Note: Only one ASCII character can be converted.
 '\t' and '\n' can also be used as 0x9 and 0xA, respectively.

9.9.2 Comment Line
The pp33 allows comment lines that begin with "//" or "/*" as well as one that begins with semicolon (;).
The first "/" character will be converted into ";".

Sample conversions:
 //comment → ;/comment
 /*comment → ;*comment

CHAPTER 9: PREPROCESSOR

122 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

9.10 Process Flow
The following lists the instruction process flow by the pp33:

1. The statements in the conditional assembly instructions (#ifdef, #ifndef) are skipped if the condition is

unmatched.

2. Comments and the .ascii pseudo-instruction statements are delivered without conversion.

3. Each source line is separated into token and Define names are replaced with the contents defined by #define.
 A space, TAB, ";", "[", "]", "@", "," or an operator is used as a delimiter for separation.

4. Expressions that consist of numbers and operators are calculated and then replaced with the results.

5. The preprocessor pseudo-instructions such as #macro and #include are processed.

9.11 Sample Executions

Input source file (pp.s)
������� �����	�	
�

������������������������

�

����������������� � � �������������

�������������� � � � ��������!���������������

������������� � � � �������!���������"��

� ������������#�$��%%��
&'

� ����!����"���!����������(�"��

�����

� ������������#�$��%%��
&))

�

�������

��������*+,��%%���
&
-
&�
� � ����������(�"����������.�!/����!/��!��������!����

� � � � �������!����0�-12131415516617718191:1;1:<1: 1:+1:�<1:�+1=1>�

��������?���5�)� � � ������������������������(�"��!���!���?�

��������@���#�$��%%��
&
� � ���������!���!�
&
�����!���?1���!����"���

�

��������A�++���B��C��C	�C�� � ����������?����!����C�1�C	1�222�C�	�

� &��.� 5��1C�� � ��C������!��!���������

� &��.� 5�	1C	� � ��C	���������!!����=)"�!>�

� &��.� 5��1C�� � ��C����������D��="(!���������>�

CC�0� � � � ��CC��22�CCE'��������F�����"��

� ���� 5��1
�

� F��G� CC	�

� ��"� H5��I-15�	�

� ��"� 5��1��

� F�� CC��

CC	0�

������

�

� �.����*JJ$�

*JJ$0�

� �&!� ����#�$��%%�:<�

� �&!� ����#�$��%%�: �

� ��.�� 5�
1����#�$��%%�:+�

� ��.��� 5��15�
�

� ��.��� ?��1@���#�$��%%��

� A�++���B���*+,��%%��
"
�
�
�
���
� �����
&�
2
&���.�!/�
&KK�

� A�++���B���*+,��%%�-
&�
�
��
� � �����
&	
2
&	��.�!/�
&

�

� F�� *JJ$�

Included file (pp.def)
���������

��$/���������!(�����

CHAPTER 9: PREPROCESSOR

E0C33 FAMILY EPSON 123
C COMPILER PACKAGE MANUAL (ver.3)

Output file (pp.ms) when "pp33 -g pp.s" is executed
� ������ ����	��

����	� ���������

�	������	���������������

������������������ � �
��������������
� ������ ���������

��������

����	��	������������
� ������ ����	��

���������� !"#$� � �
�����������������������

��������� !"#$� � �
������������		��%���

� ���������� !&!� #''"��()���
�	������%�������������	��%���

���	��

� ���������� !&!� #''"��(**�����

�������

��������+,- #''"���(�.�(��� �
��������	��%��������	��/�����������������������	�
� � � �
���������	�0�.12131415516617718191:1;1:<1:$1:,1:#<1:#,1=1>�

��������?���5�*� � �
�����������������������	��%������	����?�

��������@� !&!� #''"��(�� �
���������������(���	�	����?1��������%���

��������A!,, #"B#�C��C��C�� �
���������?�������	�C�1�C�1�222�C���

� (���/� 5��1C�� �
�C���	�	����������		�

� (���/� 5��1C�� �
�C���	��������������=*%��>�

� (���/� 5��1C�� �
�C���	������	�D��=%���������		>�

CC�0� � � �
�CC��22�CCE)��	�������F������%���

� ���� 5��1��

� F��G� CC��

� ���%� H5��I.15���

� 	�%� 5��1��

� F�� CC��

CC�0�

������

� �/����+JJ��
+JJ�0�
� ����� ���
� �(�� �(��
� ����� ���
� �(�� �(���
� ����� ���
� ���/�� 5��1�(��
� ����� �)�
� ���/��� 5	�15���
� ����� �K�
� ���/��� 5�*1�(��
� ����� �E�
� (���/� 5��1�(��� �
�C���	�	����������		�
�� A!,, #"B#��+,- #''"�
�%������������
�������(��2�(���/�����(KK�
� (���/� 5��1�%���������
�C���	��������������=*%��>�
� (���/� 5��1��� �
�C���	������	�D��=%���������		>�
 ,����0� � � �
�CC��22�CCE)��	�������F������%���
� ���� 5��1��
� F��G� ,�����
� ���%� H5��I.15���
� 	�%� 5��1��
� F�� ,�����
 ,����0�
� ����� ��
� (���/� 5��1�(��� �
�C���	�	����������		�
�� A!,, #"B#�
� +,- #''".�(�������� �
�������(��2�(���/�����(���
� (���/� 5��1�� �
�C���	��������������=*%��>�
� (���/� 5��1��� �
�C���	������	�D��=%���������		>�
 ,����0� � � �
�CC��22�CCE)��	�������F������%���
� ���� 5��1��
� F��G� ,���)�
� ���%� H5��I.15���
� 	�%� 5��1��
� F�� ,�����
 ,���)0�
� ����� �*�
� F�� +JJ��
� ���������

CHAPTER 9: PREPROCESSOR

124 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

9.12 Error/Warning Messages
Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "pp33.err" file.
If the pp33 is started up using the wb33's [PP33] button, the message is output to "wb33.err". When execution is
completed, a message is displayed in the output window (default).

9.12.1 Errors
The errors produced in the pp33 are classified into two groups: system errors and preprocessor errors.
If a system error occurs, the pp33 will immediately terminate the processing after displaying an error message. No
assembly source file will be output.

Table 9.12.1.1 List of system error messages
Content

Cannot open the source file or included file.
The file does not exist in the specified directory.
Cannot secure memory space.
Cannot open the output file.
Cannot open the provisional working file.
Cannot write to the file.
Cannot close the file.
The statement is too long to be read. The maximum number of
characters that can be read in a line is 255.
The number of internal branch labels surpassed the limit during
micro expansion. The maximum number of internal branch
labels that can be expanded at a time is 9999, including the
included file.

Error message
Error: Cannot open file.

Error: Cannot allocate memory.
Error: Cannot open output file.
Error: Cannot open working file.
Error: Cannot write file.
Error: Cannot close file.
Error: Cannot read file. Line size is too long.

Error: Preprocessor limit:
macro label number full.

The preprocessor errors are produced when the source contains a syntax or description that cannot be processed by
the pp33. Even when these errors occur, the processing will be carried on till the last line of the input file, unless a
system error is produced. However, no assembly source file will be delivered.

Table 9.12.1.2 List of preprocessor error messages
Content

There is a syntactic error. The preprocessor pseudo-instruction
was described in a wrong format.
The limit of nesting (2 levels) was surpassed in the #include
pseudo-instruction.
There is an unknown preprocessor instruction.

33 or more formal parameters were defined.

Dummy parameters were arranged abnormally or the number
of actual parameters differs from that of dummy parameters.
Arrange the dummy parameters successively from $1 to $32.
Internal branch labels in the micro definition are abnormal.
Internal branch labels are limited to $$1 to $$64 (64 labels).
Arrange them successively from $$1.
The operator description format is illegal.

Duplicated definition of the same name was done by the
#define and #defnum pseudo-instruction.

Error message
<file name>(line No.): Error: Invalid syntax.

<file name>(line No.): Error:
Nesting level too deep.

<file name>(line No.): Error:
Unknown preprocessor instruction.

<file name>(line No.): Error:
Too many macro parameters.

<file name>(line No.): Error:
Invalid macro parameter.

<file name>(line No.): Error: Invalid macro label.

<file name>(line No.): Error: Invalid expression.

<file name>(line No.): Error: Multi symbol.

CHAPTER 9: PREPROCESSOR

E0C33 FAMILY EPSON 125
C COMPILER PACKAGE MANUAL (ver.3)

9.12.2 Warning
Even when a warning appears, the pp33 will keep on processing, and completes the processing after displaying a
warning message, unless any error is produced in addition. The assembly source file will be output.

Table 9.12.2.1 Warning message
Content

Multiple instances of the same macro name, define name, or
numeric define name are defined. The last name defined is
valid, with the others invalidated. If the same name is used in
the define or numeric define definition and the macro definition,
the define or numeric define name is given priority, and no
warning is generated.

Warning message
<file name>(line No.): Warning:

Multi define symbol.

9.13 Precautions
(1) The pp33 only checks the grammar necessary for Preprocessing. Notice that it does not check mnemonics,

operands, extended instructions and assembler pseudo-instructions, including the validity following the
expansion.

(2) If you want to display the assembly source on the screen when debugging it with the db33, be sure to specify

the -g option before executing the pp33. Note also that unless the -g option is specified in the lk33, all
debugging information is cut during linkage.

 Make sure the debugging information is created by only specifying the -g option, and not by any other
method. Also be sure not to correct the debugging information that is output. Corrections could cause the
as33, lk33, db33 or dis33 to malfunction.

CHAPTER 10: INSTRUCTION EXTENDER

126 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Chapter 10 Instruction Extender
This chapter describes the functions of the Instruction Extender ext33.

10.1 Functions
The Instruction Extender ext33 (hereafter called the "ext33") is a software tool to process the assembly source files
created by the C Compiler gcc33 and Preprocessor pp33. Specifically, it expands the extended instructions written
in the assembly source file into an assemble-ready mnemonic code as its output. Immediate extension by the ext
instruction or an operation requiring multiple instructions can be written in one extended instruction. Therefore,
when creating an assembly source, you need not be concerned with restrictions to the immediate size during
programming.
The ext33 provides the following two optimize functions that can be specified with its startup option:
• Optimization to delete unnecessary ext instructions
 Optimization based on symbol information after linkage is also available.
• Optimization by the global pointer
 The number of instructions necessary to reference a global variable can be reduced.

10.2 Input/Output Files

Instruction Extender
ext33

file.ps
file.sym

file.map

file.ms ext33.err
Assembly
source files

Link map file

Symbol file

Assembly
source files

Error
file

Assembler as33

C Compiler gcc33
or

Preprocessor pp33 Linker lk33

file.cmxCommand file

Fig. 10.2.1 Flowchart

10.2.1 Input Files

Assembly source file (when the -c option is not specified)
 File format: Text file
 File name: <file name>.ps (Other extensions than ".ps" can be used excluding ".ms".)
 Description: Files that are delivered from the gcc33 or the pp33 can be input.

Command file (when the -c option is specified)
 File format: Text file
 File name: <file name>.cmx
 Description: File in which the startup options and input files for the ext33 are described. (See Section

10.4.)

Link map file
 File format: Text file
 File name: <file name>.map
 Description: File that contains the map information indicating section addresses located by linkage.

The link map file that is output by the Linker lk33 is used for code optimization.

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 127
C COMPILER PACKAGE MANUAL (ver.3)

Symbol file
 File format: Text file
 File name: <file name>.sym
 Description: File that contains the information of the symbols defined in all linked modules and the

address information. The symbol file that is output by the Linker lk33 is used for code
optimization.

10.2.2 Output Files

Assembly source file
 File format: Text file
 File name: <file name>.ms (The <file name> is the same as that of the input file.)
 Output destination: Current directory
 Description: File in which the extended instructions are expanded into an assembling format.

Error file
 File format: Text file
 File name: ext33.err
 Output destination: Current directory
 Description: File that is output when the startup option (-e) is specified, and describes the contents

which the ext33 delivers through the Standard Output (stdout), such as an error
message.

10.3 Starting Method

10.3.1 Startup Format

General form of command line

Format 1) ext33 ^ [<startup option>] ^ [<source file name>]

Format 2) ext33 ^ [<startup option>] ^ -c ^ <command file name>

 ^ denotes a space.
 [] indicates the possibility to omit.

 <source file name>: Specify assembly source file name(s) including the extension.
 <command file name>: Specify a command file name including the extension.

Operations on work bench
 Select options and input files, then click the [EXT33] button.

Multiple source files can be specified in the command line. All specified files can be processed simultaneously.
Although the wb33 also allows multiple files to be selected, the ext33 need to be executed as many times as the
number of files selected. If files are acquired from a command file, they all are processed simultaneously.

10.3.2 Startup Options
The ext33 comes provided with the following six types of startup options:

-c <command file name>
Function: Executes a command file.
Specification on wb33: Check [use .cmx file].
Explanation: • This option acquires the startup option and input file name from the specified

command file. The startup option also can be specified in the command line without
including it in a command file.

CHAPTER 10: INSTRUCTION EXTENDER

128 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

-gp <address>
Function: Uses a global pointer.
Specification on wb33: Check [global pointer optimize], then input <address> in the text box.
Explanation: • This option optimizes code generation by using a global pointer.
 • The specified <address> is the address of the global pointer. Specify <address> in

hexadecimal (0x####) using lower-case letters (0–9, a–f).
 • For details about the global pointer, refer to Section 8.7.2.

-lk <file name>
Function: Optimizes instructions based on symbol information.
Specification on wb33: Check [symbol,map optimize]. The <file name> is taken from the contents of the text box

in the execution window.
Explanation: • This option optimizes the ext instruction based on the valid symbol information by

reading the symbol and link map files generated by the linker.
 • The symbol file (.sym) and link map file (.map) are specified by <file name> (object

file name). No extension is required.
 • For details about optimization by symbol information, refer to Section 8.7.3.

-near
Function: Expands a branch instruction into two instructions.
Specification on wb33: Check [far call is 2 inst].
Explanation: • This option expands an extended branch instruction to a nonexistent label in the

processed file into two instructions (one ext instruction + branch instruction, signed
22-bit displacement).

 • Unless -near is specified, the above instruction is expanded into three instructions (two
ext instructions + branch instruction, signed 32-bit displacement).

 • For details about the optimization of branch instructions, refer to Section 8.7.1.

-j <threshold value>
Function: Specifies the threshold of optimized branching.
Specification on wb33: Check [change threshold], then input <threshold> in the text box.
Explanation: • This option sets a threshold to determine the number of instructions expanded from an

extended branch instruction.
 • The effective range of <threshold> is 0x100 to 0x1fffff. Specify it in hexadecimal

(0x####) using lower-case letters (0–9, a–f).
 • Unless -j is specified, the threshold is set to the default value of 0x180000.
 • For details about the optimization of branch instructions, refer to Section 8.7.1.

-e
Function: Output of error files
Specification on wb33: None
Explanation: • Delivers also in a file (ext33.err) the contents that are output by the ext33 via the

Standard Output (stdout), such as error messages.

When entering options in the command line, you need to place one or more spaces before and after the option.
Examples: c:\cc33\ext33 -gp 0x0 -lk test -near -j 0x180000 -e test1.ps test2.ps
 c:\cc33\ext33 -gp 0x0 -c test.cmx

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 129
C COMPILER PACKAGE MANUAL (ver.3)

10.4 Command File
The ext33 allows the contents of the command line to be input from a command file (.cmx) specified by the -c
option.
In a command file, write the options you want to specify and the source files to be input, each entry in one line.
A comment can also be entered by inserting a semicolon (;) at the beginning of a line.

Example: sample.cmx
 ; This is a sample command file. ← Comment line
 -gp 0x80000
 -near
 -lk sample
 -e
 sample1.ps
 sample2.ps
 sample3.ps

If the same option that is included in a command file is specified from the command line, the first option
encountered is recognized as the valid option.

Example: ext33 -gp 0x0 -c sample.cmx (Specifies sample.cmx in the above example)

In this example, the "-gp 0x0" option is recognized as the valid option, and the "-gp 0x80000" option in the
command file is ignored.

CHAPTER 10: INSTRUCTION EXTENDER

130 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

10.5 Messages
The ext33 delivers its messages through the Standard Output (stdout).
If the ext33 is started up by using the wb33's [EXT33] button, the message is output to "wb33.err". When
execution is completed, a message is displayed in the output window (default).

During execution
 When two or more input files are specified, the file name being executed is displayed.

 ��������	

	 ����
���
 :
 When only one file is specified, the file name does not appear.

End message
 The ext33 outputs only the following end message when it ends normally.

 �����	��������

Usage output
 If no file name was specified or an option was not specified correctly, the ext33 ends after delivering the

following message concerning the usage:

�������	��	���	����	

��������	���	�����	���� 	��!��	�""�	

#�$��%		

				����	&������'	�����$��	

				����	&������'	())���$������	��)���	

������%	

				(�											%	����*)�	���	����	����������	

				(�+	�����$�		%	�����,�	-��	�����$�	������$���	������$�����.	�����$���$��	

				(��	$������		%	�����,�	-��	���/$�	������	�0�0	(0����������	

				(��$�								%	���)�����	$��	�1��	$��	�)$��	���$)	
	����*)���	

				(1	��������	%	���)�����	1*��	�����,$���	��������	�0��00	(0��������	

�*�*%	

				2����/���	��*�)�	����	���	$��������	

��$����%	

				����	(�	(�+	��	(��	0�3000	�����	

When error/warning occurs
 If an error is produced, an error message will appear before the end message shows up.
 Example: ������4���%	�����%	��5$���	���$��	
	 	 �����	��������

 In the case of an error, the ext33 ends without creating an output file.

 If a warning is issued, a warning message will appear before the end message shows up.
 Example: 6$�����%	7$�	����	����$�	����	��	�����	
	 	 �����	��������

 In the case of a warning, the ext33 ends after creating an output file.

 For details on errors and warnings, refer to Section 10.10 "Error/Warning Messages".

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 131
C COMPILER PACKAGE MANUAL (ver.3)

10.6 Extended Instructions
The ext33 expands the extended instructions, explained below, to mnemonics that can be processed by the
Assembler as33.
Extended instructions allow an operation that normally requires using multiple instructions including the ext
instruction to be written in one instruction. They are expanded into the absolutely necessary minimum basic
instructions according to instruction functionality and the operand's immediate size.

Symbols used in explanation
immX Unsigned X-bit immediate
signX Signed X-bit immediate
symbol Symbol to indicate memory address
label Jump address label
(X:Y) Bit field from bit X to bit Y

10.6.1 Arithmetic Operation Instructions

Types and functions of extended instructions

Function

%rd ← %rd + imm32
%rd ← %rd - imm32
%sp ← %sp + imm32
%sp ← %sp - imm32
%rd ← %rs + imm32
%rd ← %rs - imm32
%rd ← %sp + imm32
%rd ← %sp - imm32
%rd ← %rd + %sp
%rd ← %rd - %sp
%sp ← %sp + %rs
%sp ← %sp - %rs

Expansion
format

(1)
(1)
(2)
(2)
(3)
(3)
(4)
(4)
(5)
(5)
(6)
(6)

Extended instruction

xadd %rd, %rd, imm32
xsub %rd, %rd, imm32
xadd %sp, %sp, imm32
xsub %sp, %sp, imm32
xadd %rd, %rs, imm32
xsub %rd, %rs, imm32
xadd %rd, %sp, imm32
xsub %rd, %sp, imm32
xadd %rd, %rd, %sp
xsub %rd, %rd, %sp
xadd %sp, %sp, %rs
xsub %sp, %sp, %rs

These extended instructions allow a 32-bit immediate to be specified directly in an add or subtract operation.
Furthermore, they support addition or subtraction between a stack pointer SP and a general-purpose register.

Basic instructions after expansion
 xadd Expanded into the add instruction
 xsub Expanded into the sub instruction

Expansion formats

(1) xOP %rd, %rd, imm32 (OP = add, sub)
 Example: xadd %rd, %rd, imm32

�

����������	

�

���� ������������

���� �����������

���� ���������������

������≤����
�
���� ���������������

���
���������≤���	

�
���� �����������

���� ���������������

(2) xOP %sp, %sp, imm32 (OP = add, sub)
 Example: xadd %sp, %sp, imm32

imm32 ≤ 0xfff
add %sp, imm32(11:2)

0xfff < imm32 ≤ 0x7ffff
ld.w %r9, %sp
ext imm32(18:6)
add %r9, imm32(5:0)
ld.w %sp, %r9

imm32 > 0x7ffff
ld.w %r9, %sp
ext imm32(31:19)
ext imm32(18:6)
add %r9, imm32(5:0)
ld.w %sp, %r9

CHAPTER 10: INSTRUCTION EXTENDER

132 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

(3) xOP %rd, %rs, imm32 (OP = add, sub)
 Example: xadd %rd, %rs, imm32

0x1fff < imm32 ≤ 0x3ffffff
ext imm32(25:13)
ext imm32(12:0)
add %rd, %rs

imm32 ≤ 0x1fff
ext imm32(12:0)
add %rd, %rs

imm32 > 0x3ffffff
ld.w %rd, %rs
ext imm32(31:19)
ext imm32(18:6)
add %rd, imm32(5:0)

(4) xOP %rd, %sp, imm32 (OP = add, sub)
 Example: xadd %rd, %sp, imm32

0x3f < imm32 ≤ 0x7ffff
ld.w %rd, %sp
ext imm32(18:6)
add %rd, imm32(5:0)

imm32 ≤ 0x3f
ld.w %rd, %sp
add %rd, imm32(5:0)

imm32 > 0x7ffff
ld.w %rd, %sp
ext imm32(31:19)
ext imm32(18:6)
add %rd, imm32(5:0)

(5) xOP %rd, %rd, %sp (OP = add, sub)
 Example: xadd %rd, %rd, %sp

ld.w %r9, %sp
add %rd, %r9

(6) xOP %sp, %sp, %rs (OP = add, sub)
 Example: xadd %sp, %sp, %rs

ld.w %r9, %sp
add %r9, %rs
ld.w %sp, %r9

10.6.2 Comparison Instructions

Types and functions of extended instructions

Function

%rd - sign32 (Sets/resets C, V, Z and N flags in PSR)
%rd - %sp (Sets/resets C, V, Z and N flags in PSR)
%sp - %rs (Sets/resets C, V, Z and N flags in PSR)

Expansion
format

(1)
(2)
(3)

Extended instruction

xcmp %rd, sign32
xcmp %rd, %sp
xcmp %sp, %rs

These extended instructions allow you to compare a general-purpose register and a signed 32-bit immediate or a
stack pointer SP and general-purpose register.

Basic instruction after expansion
 xcmp Expanded into the cmp instruction

Expansion formats

(1) xcmp %rd, sign32

sign32 < -262144
or 262143 < sign32
ext sign32(31:19)
ext sign32(18:6)
cmp %rd, sign32(5:0)

-262144 ≤ sign32 < -32
or 31 < sign32 ≤ 262143
ext sign32(18:6)
cmp %rd, sign32(5:0)

-32 ≤ sign32 ≤ 31

cmp %rd, sign32(5:0)

(2) xcmp %rd, %sp

ld.w %r9, %sp
cmp %rd, %r9

(3) xcmp %sp, %rs

ld.w %r9, %sp
cmp %r9, %rs

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 133
C COMPILER PACKAGE MANUAL (ver.3)

10.6.3 Logic Operation Instructions

Types and functions of extended instructions

Function

%rd ← %rd & sign32
%rd ← %rd | sign32
%rd ← %rd ^ sign32
%rd ← %rs & sign32
%rd ← %rs | sign32
%rd ← %rs ^ sign32
%rd ← !sign32

Expansion
format

(1)
(1)
(1)
(2)
(2)
(2)
(3)

Extended instruction

xand %rd, %rd, sign32
xoor %rd, %rd, sign32
xxor %rd, %rd, sign32
xand %rd, %rs, sign32
xoor %rd, %rs, sign32
xxor %rd, %rs, sign32
xnot %rd, sign32

These extended instructions allow a signed 32-bit immediate to be specified directly in a logical operation.

Basic instructions after expansion
 xand Expanded into the and instruction
 xoor Expanded into the or instruction
 xxor Expanded into the xor instruction
 xnot Expanded into the not instruction

Expansion formats

(1) xOP %rd, %rd, sign32 (OP = and, oor, xor)
 Example: xand %rd, %rd, sign32

-262144 ≤ sign32 < -32
or 31 < sign32 ≤ 262143
ext sign32(18:6)
and %rd, sign32(5:0)

-32 ≤ sign32 ≤ 31

and %rd, sign32(5:0)

sign32 < -262144
or 262143 < sign32
ext sign32(31:19)
ext sign32(18:6)
and %rd, sign32(5:0)

(2) xOP %rd, %rs, sign32 (OP = and, oor, xor)
 Example: xand %rd, %rs, sign32

0x3ffffff < sign32 < 0xfffc0000
(26 bits < sign32 < -262144)
ld.w %rd, %rs
ext sign32(31:19)
ext sign32(18:6)
and %rd, sign32(5:0)

0x1fff < sign32 ≤ 0x3ffffff
(within 26 bits)
ext sign32(25:13)
ext sign32(12:0)
and %rd, %rs

0x0 ≤ sign32 ≤ 0x1fff
(within 13 bits)
ext sign32(12:0)
and %rd, %rs

0xffffffe0 ≤ sign32 ≤ 0xffffffff
(-32 ≤ sign32 ≤ -1)
ld.w %rd, %rs
and %rd, sign32(5:0)

0xfffc0000 ≤ sign32 < 0xffffffe0
(-262144 ≤ sign32 < -32)
ld.w %rd, %rs
ext sign32(18:6)
and %rd, sign32(5:0)

(3) xnot %rd, sign32

-262144 ≤ sign32 < -32
or 31 < sign32 ≤ 262143
ext sign32(18:6)
not %rd, sign32(5:0)

-32 ≤ sign32 ≤ 31

not %rd, sign32(5:0)

sign32 < -262144
or 262143 < sign32
ext sign32(31:19)
ext sign32(18:6)
not %rd, sign32(5:0)

CHAPTER 10: INSTRUCTION EXTENDER

134 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

10.6.4 Shift & Rotate Instructions

Types and functions of extended instructions

Function

Logical shift to right
Logical shift to left
Arithmetic shift to right
Arithmetic shift to left
Rotation to right
Rotation to left
Logical shift to right
Logical shift to left
Arithmetic shift to right
Arithmetic shift to left
Rotation to right
Rotation to left

Expansion
format

(1)
(1)
(1)
(1)
(1)
(1)
(2)
(2)
(2)
(2)
(2)
(2)

Extended instruction

xsrl %rd, %rs
xsll %rd, %rs
xsra %rd, %rs
xsla %rd, %rs
xrr %rd, %rs
xrl %rd, %rs
xsrl %rd, imm5
xsll %rd, imm5
xsra %rd, imm5
xsla %rd, imm5
xrr %rd, imm5
xrl %rd, imm5

These extended instructions allow a shift or rotate operation to be performed in up to 31 bits.

Basic instructions after expansion
 xsrl Expanded into the srl instruction
 xsll Expanded into the sll instruction
 xsra Expanded into the sra instruction
 xsla Expanded into the sla instruction
 xrr Expanded into the rr instruction
 xrl Expanded into the rl instruction

Expansion formats

(1) xOP %rd, %rs (OP = srl, sll, sra, sla, rr, rl)
 Example: xsrl %rd, %rs

ld.w %r9, %rs ; Stores Shift count
and %r9, 0x1f ; Checks Shift count (Shift count < 31)
cmp %r9, 0x8 ; while (Shift count > 0x8)
jrle 4 ; {
srl %rd, 0x8 ; %rd ← %rd shift 0x8
jp.d -3 ; Shift count -= 0x8
sub %r9, 0x8 ; }
rl %rd, %r9 ; %rd ← %rd shift Shift count

(2) xOP %rd, imm5 (OP = srl, sll, sra, sla, rr, rl)
 Example: xsrl %rd, imm5

imm5 = 16
srl %rd, 0x8
srl %rd, 0x8

8 < imm5 < 16
srl %rd, 0x8
srl %rd, imm5(2:0)

imm5 ≤ 8
srl %rd, imm5(3:0)

imm5 > 24
srl %rd, 0x8
srl %rd, 0x8
srl %rd, 0x8
srl %rd, imm5(2:0)

16 < imm5 ≤ 24
srl %rd, 0x8
srl %rd, 0x8
srl %rd, imm5(3:0)

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 135
C COMPILER PACKAGE MANUAL (ver.3)

10.6.5 Data Transfer Instructions (between Stack and Register)

Types and functions of extended instructions

Function

%rd ← B[%sp+imm32] (with sign extension)
%rd ← B[%sp+imm32] (with zero extension)
%rd ← H[%sp+imm32] (with sign extension)
%rd ← H[%sp+imm32] (with zero extension)
%rd ← W[%sp+imm32]
B[%sp+imm32] ← %rs(7:0)
H[%sp+imm32] ← %rs(15:0)
W[%sp+imm32] ← %rs
W[%sp+imm32] ← %sp

Expansion
format

(1)
(1)
(2)
(2)
(3)
(1)
(2)
(3)
(4)

Extended instruction

xld.b %rd, [%sp+imm32]
xld.ub %rd, [%sp+imm32]
xld.h %rd, [%sp+imm32]
xld.uh %rd, [%sp+imm32]
xld.w %rd, [%sp+imm32]
xld.b [%sp+imm32], %rs
xld.h [%sp+imm32], %rs
xld.w [%sp+imm32], %rs
xld.w [%sp+imm32], %sp

These extended instructions allow you to directly specify a displacement of up to 32 bits. Specification of imm32
can be omitted.

Basic instructions after expansion
 xld.b Expanded into the ld.b instruction
 xld.ub Expanded into the ld.ub instruction
 xld.h Expanded into the ld.h instruction
 xld.uh Expanded into the ld.uh instruction
 xld.w Expanded into the ld.w instruction

Expansion formats
 If imm32 is omitted, the ext33 assumes that [%sp+0x0] is specified as it expands the instruction.

(1) Byte data transfer (xld.b, xld.ub)
 Example: xld.b %rd, [%sp+imm32]

0x3f < imm32 ≤ 0x7ffff
ext imm32(18:6)
ld.b %rd, [%sp+imm32(5:0)]

imm32 ≤ 0x3f
ld.b %rd, [%sp+imm32(5:0)]

imm32 > 0x7ffff
ext imm32(31:19)
ext imm32(18:6)
ld.b %rd, [%sp+imm32(5:0)]

(2) Half word data transfer (xld.h, xld.uh)
 Example: xld.h %rd, [%sp+imm32]

0x7f < imm32 ≤ 0x7ffff
ext imm32(18:6)
ld.h %rd, [%sp+imm32(5:0)]

imm32 ≤ 0x7f
ld.h %rd, [%sp+imm32(6:1)]

imm32 > 0x7ffff
ext imm32(31:19)
ext imm32(18:6)
ld.h %rd, [%sp+imm32(5:0)]

(3) Word data transfer (xld.w)
 Example: xld.w %rd, [%sp+imm32]

0xff < imm32 ≤ 0x7ffff
ext imm32(18:6)
ld.w %rd, [%sp+imm32(5:0)]

imm32 ≤ 0xff
ld.w %rd, [%sp+imm32(7:2)]

imm32 > 0x7ffff
ext imm32(31:19)
ext imm32(18:6)
ld.w %rd, [%sp+imm32(5:0)]

(4) Word data transfer using SP as the source (xld.w [%sp+imm32], %sp)

0xff < imm32 ≤ 0x7ffff
ld.w %r9, %sp
ext imm32(18:6)
ld.w [%sp+imm32(5:0)], %r9

imm32 ≤ 0xff
ld.w %r9, %sp
ld.w [%sp+imm32(7:2)], %r9

imm32 > 0x7ffff
ld.w %r9, %sp
ext imm32(31:19)
ext imm32(18:6)
ld.w [%sp+imm32(5:0)], %r9

CHAPTER 10: INSTRUCTION EXTENDER

136 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

10.6.6 Data Transfer Instructions (between Memory and Register)

Types and functions of extended instructions

Function

%rd ← B[symbol±imm32] (with sign extension)
%rd ← B[symbol±imm32] (with zero extension)
%rd ← H[symbol±imm32] (with sign extension)
%rd ← H[symbol±imm32] (with zero extension)
%rd ← W[symbol±imm32]
B[symbol±imm32] ← %rs(7:0)
H[symbol±imm32] ← %rs(15:0)
W[symbol±imm32] ←%rs
W[symbol±imm32] ← %sp
%rd ← B[imm32] (with sign extension)
%rd ← B[imm32] (with zero extension)
%rd ← H[imm32] (with sign extension)
%rd ← H[imm32] (with zero extension)
%rd ← W[imm32]
B[imm32] ← %rs(7:0)
H[imm32] ← %rs(15:0)
W[imm32] ← %rs
W[imm32] ← %sp
%rd ← B[%rb+symbol±imm32] (with sign extension)
%rd ← B[%rb+symbol±imm32] (with zero extension)
%rd ← H[%rb+symbol±imm32] (with sign extension)
%rd ← H[%rb+symbol±imm32] (with zero extension)
%rd ← W[%rb+symbol±imm32]
B[%rb+symbol±imm32] ← %rs(7:0)
H[%rb+symbol±imm32] ← %rs(15:0)
W[%rb+symbol±imm32] ← %rs
W[%rb+symbol±imm32] ← %sp
%rd ← B[%rb+imm32] (with sign extension)
%rd ← B[%rb+imm32] (with zero extension)
%rd ← H[%rb+imm32] (with sign extension)
%rd ← H[%rb+imm32] (with zero extension)
%rd ← W[%rb+imm32]
B[%rb+imm32] ← %rs(7:0)
H[%rb+imm32] ← %rs(15:0)
W[%rb+imm32] ← %rs
W[%rb+imm32] ← %sp

Expansion
format

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(2)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(4)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(6)
(7)
(7)
(7)
(7)
(7)
(7)
(7)
(7)
(8)

Extended instruction

xld.b %rd, [symbol±imm32]
xld.ub %rd, [symbol±imm32]
xld.h %rd, [symbol±imm32]
xld.uh %rd, [symbol±imm32]
xld.w %rd, [symbol±imm32]
xld.b [symbol±imm32], %rs
xld.h [symbol±imm32], %rs
xld.w [symbol±imm32], %rs
xld.w [symbol±imm32], %sp
xld.b %rd, [imm32]
xld.ub %rd, [imm32]
xld.h %rd, [imm32]
xld.uh %rd, [imm32]
xld.w %rd, [imm32]
xld.b [imm32], %rs
xld.h [imm32], %rs
xld.w [imm32], %rs
xld.w [imm32], %sp
xld.b %rd, [%rb+symbol±imm32]
xld.ub %rd, [%rb+symbol±imm32]
xld.h %rd, [%rb+symbol±imm32]
xld.uh %rd, [%rb+symbol±imm32]
xld.w %rd, [%rb+symbol±imm32]
xld.b [%rb+symbol±imm32], %rs
xld.h [%rb+symbol±imm32], %rs
xld.w [%rb+symbol±imm32], %rs
xld.w [%rb+symbol±imm32], %sp
xld.b %rd, [%rb+imm32]
xld.ub %rd, [%rb+imm32]
xld.h %rd, [%rb+imm32]
xld.uh %rd, [%rb+imm32]
xld.w %rd, [%rb+imm32]
xld.b [%rb+imm32], %rs
xld.h [%rb+imm32], %rs
xld.w [%rb+imm32], %rs
xld.w [%rb+imm32], %sp

∗ "symbol±imm32" means that "symbol+imm32" and "symbol-imm32" can be specified.

These extended instructions allow memory locations to be accessed by specifying the address with a symbol or
32-bit immediate. However, the postincrement function ([]+) cannot be used.

Basic instructions after expansion
 xld.b Expanded into the ld.b instruction
 xld.ub Expanded into the ld.ub instruction
 xld.h Expanded into the ld.h instruction
 xld.uh Expanded into the ld.uh instruction
 xld.w Expanded into the ld.w instruction

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 137
C COMPILER PACKAGE MANUAL (ver.3)

Expansion formats

(1) xld.* %rd, [symbol+imm32] xld.* %rd, [symbol-imm32] (*=b, ub, h, uh, w)
 xld.* [symbol+imm32], %rs xld.* [symbol-imm32], %rs (*=b, h, w)

 • When [symbol+imm32] is specified
 Example: xld.w %rd, [symbol+imm32]

 When global pointer is not specified:

0x1f < symbol+imm32 ≤ 0x3ffff
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
ld.w %rd, [%r9]

symbol+imm32 ≤ 0x1f
ld.w %r9, symbol+imm32@l
ld.w %rd, [%r9]

symbol+imm32 > 0x3ffff
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
ld.w %rd, [%r9]

Unkmown symbol
lext symbol+imm32@h
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
ld.w %rd, [%r9]

 When global pointer (gp) is specified: (sign32 = -gp+imm32)

gp > symbol+imm32
Expanded into a format without gp
specification according to the
symbol+imm32 value.

Unknown symbol
ext symbol+sign32@ah
ext symbol+sign32@al
ld.w %rd, [%r8]

symbol+sign32 > 0x3ffffff
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
ld.w %rd, [%r9]

0x1fff < symbol+sign32 ≤ 0x3ffffff
ext symbol+sign32@ah
ext symbol+sign32@al
ld.w %rd, [%r8]

0x0 < symbol+sign32 ≤ 0x1fff
ext symbol+sign32@al
ld.w %rd, [%r8]

symbol+sign32 = 0x0
ld.w %rd, [%r8]

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [symbol+0x0] is

specified as it expands the instruction.

 • When [symbol-imm32] is specified
 Example: xld.w %rd, [symbol-imm32]
 The instruction is always expanded into the following format.

ext symbol-imm32@h
ext symbol-imm32@m
ld.w %r9, symbol-imm32@l
ld.w %rd, [%r9]

(2) xld.w [symbol+imm32], %sp xld.w [symbol-imm32], %sp

 • When [symbol+imm32] is specified

 When global pointer is not specified:

Unknown symbol
ld.w %r9, %sp
pushn %r0
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r0, symbol+imm32@l
ld.w [%r0], %r9
popn %r0

0x1f < symbol+imm32 ≤ 0x3ffff
ld.w %r9, %sp
pushn %r0
ext symbol+imm32@m
ld.w %r0, symbol+imm32@l
ld.w [%r0], %r9
popn %r0

symbol+imm32 ≤ 0x1f
ld.w %r9, %sp
pushn %r0
ld.w %r0, symbol+imm32@l
ld.w [%r0], %r9
popn %r0

symbol+imm32 > 0x3ffff
ld.w %r9, %sp
pushn %r0
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r0, symbol+imm32@l
ld.w [%r0], %r9
popn %r0

CHAPTER 10: INSTRUCTION EXTENDER

138 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 When global pointer (gp) is specified: (sign32 = -gp+imm32)

gp > symbol+imm32
Expanded into a format without gp
specification according to the
symbol+imm32 value.

Unknown symbol
ld.w %r9, %sp
pushn %r0
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r0, symbol+imm32@l
ld.w [%r0], %r9
popn %r0

symbol+sign32 > 0x3ffffff
ld.w %r9, %sp
pushn %r0
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r0, symbol+imm32@l
ld.w [%r0], %r9
popn %r0

symbol+sign32 = 0x0
ld.w %r9, %sp
ld.w [%r8], %r9

0x0 < symbol+sign32 ≤ 0x1fff
ld.w %r9, %sp
ext symbol+sign32@al
ld.w [%r8], %r9

0x1fff < symbol+sign32 ≤ 0x3ffffff
ld.w %r9, %sp
ext symbol+sign32@ah
ext symbol+sign32@al
ld.w [%r8], %r9

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [symbol+0x0] is

specified as it expands the instruction.

 • When [symbol-imm32] is specified
 The instruction is always expanded into the following format.

ld.w %r9, %sp
pushn %r0
ext symbol-imm32@h
ext symbol-imm32@m
ld.w %r0, symbol-imm32@l
ld.w [%r0], %r9
popn %r0

(3) xld.* %rd, [imm32] (*=b, ub, h, uh, w) xld.* [imm32], %rs (*=b, h, w)
 Example: xld.w %rd, [imm32]

 When global pointer is not specified:

0x1f < imm32 ≤ 0x3ffff
ext imm32(18:6)
ld.w %r9, imm32(5:0)
ld.w %rd, [%r9]

imm32 ≤ 0x1f
ld.w %r9, imm32(5:0)
ld.w %rd, [%r9]

imm32 > 0x3ffff
ext imm32(31:19)
ext imm32(18:6)
ld.w %r9, imm32(5:0)
ld.w %rd, [%r9]

 When global pointer (gp) is specified: (sign32 = -gp+imm32)

gp > imm32
Expanded into a format without gp
specification according to the
imm32 value.

sign32 > 0x3ffffff
ext imm32(31:19)
ext imm32(18:6)
ld.w %r9, imm32(5:0)
ld.w %rd, [%r9]

0x1fff < sign32 ≤ 0x3ffffff
ext sign32(25:13)
ext sign32(12:0)
ld.w %rd, [%r8]

0x0 < sign32 ≤ 0x1fff
ext sign32(12:0)
ld.w %rd, [%r8]

sign32 = 0x0
ld.w %rd, [%r8]

(4) xld.w [imm32], %sp

 When global pointer is not specified:

0x1f < imm32 ≤ 0x3ffff
ld.w %r9, %sp
pushn %r0
ext imm32(18:6)
ld.w %r0, imm32(5:0)
ld.w [%r0], %r9
popn %r0

imm32 ≤ 0x1f
ld.w %r9, %sp
pushn %r0
ld.w %r0, imm32(5:0)
ld.w [%r0], %r9
popn %r0

imm32 > 0x3ffff
ld.w %r9, %sp
pushn %r0
ext imm32(31:19)
ext imm32(18:6)
ld.w %r0, imm32(5:0)
ld.w [%r0], %r9
popn %r0

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 139
C COMPILER PACKAGE MANUAL (ver.3)

 When global pointer (gp) is specified: (sign32 = -gp+imm32)

gp > imm32
Expanded into a format without gp
specification according to the
imm32 value.

sign32 > 0x3ffffff
ld.w %r9, %sp
pushn %r0
ext imm32(31:19)
ext imm32(18:6)
ld.w %r0, imm32(5:0)
ld.w [%r0], %r9
popn %r0

0x1fff < sign32 ≤ 0x3ffffff
ld.w %r9, %sp
ext sign32(25:13)
ext sign32(12:0)
ld.w [%r8], %r9

0x0 < sign32 ≤ 0x1fff
ld.w %r9, %sp
ext sign32(12:0)
ld.w [%r8], %r9

sign32 = 0x0
ld.w %r9, %sp
ld.w [%r8], %r9

(5) xld.* %rd, [%rb+symbol+imm32] xld.* %rd, [%rb+symbol-imm32] (*=b, ub, h, uh, w)
 xld.* [%rb+symbol+imm32], %rs xld.* [%rb+symbol-imm32], %rs (*=b, h, w)

 • When [%rb+symbol+imm32] is specified
 Example: xld.w %rd, [%rb+symbol+imm32]

Unknown symbol
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
add %r9, %rb
ld.w %rd, [%r9]

symbol+imm32 > 0x3ffffff
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
add %r9, %rb
ld.w %rd, [%r9]

0x1fff < symbol+imm32 ≤ 0x3ffffff
ext symbol+imm32@ah
ext symbol+imm32@al
ld.w %rd, [%rb]

0x0 < symbol+imm32 ≤ 0x1fff
ext symbol+imm32@al
ld.w %rd, [%rb]

symbol+imm32 = 0x0
ld.w %rd, [%rb]

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+symbol+0x0] is

specified as it expands the instruction.

 • When [%rb+symbol-imm32] is specified
 Example: xld.w %rd, [%rb+symbol-imm32]
 The instruction is always expanded into the following format.

ext symbol-imm32@h
ext symbol-imm32@m
ld.w %r9, symbol-imm32@l
add %r9, %rb
ld.w %rd, [%r9]

(6) xld.w [%rb+symbol+imm32], %sp xld.w [%rb+symbol-imm32], %sp

 • When [%rb+symbol+imm32] is specified

symbol+imm32 > 0x3ffffff
and %rb = %r0
ld.w %r9, %sp
pushn %r1
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r1, symbol+imm32@l
add %r1, %rb
ld.w [%r1], %r9
popn %r1

symbol+imm32 > 0x3ffffff
and %rb ≠ %r0
ld.w %r9, %sp
pushn %r0
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r0, symbol+imm32@l
add %r0, %rb
ld.w [%r0], %r9
popn %r0

symbol+imm32 = 0x0
ld.w %r9, %sp
ld.w [%rb], %r9

0x0 < symbol+imm32 ≤ 0x1fff
ld.w %r9, %sp
ext symbol+imm32@al
ld.w [%rb], %r9

0x1fff < symbol+imm32 ≤ 0x3ffffff
ld.w %r9, %sp
ext symbol+imm32@ah
ext symbol+imm32@al
ld.w [%rb], %r9

CHAPTER 10: INSTRUCTION EXTENDER

140 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Unknown symbol, %rb = %r0
ld.w %r9, %sp
pushn %r1
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r1, symbol+imm32@l
add %r1, %rb
ld.w [%r1], %r9
popn %r1

Unknown symbol, %rb ≠ %r0
ld.w %r9, %sp
pushn %r0
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r0, symbol+imm32@l
add %r0, %rb
ld.w [%r0], %r9
popn %r0

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+symbol+0x0] is
specified as it expands the instruction.

 • When [%rb+symbol-imm32] is specified
 The instruction is always expanded into one of the following formats.

%rb = %r0
ld.w %r9, %sp
pushn %r1
ext symbol-imm32@h
ext symbol-imm32@m
ld.w %r1, symbol-imm32@l
add %r1, %rb
ld.w [%r1], %r9
popn %r1

%rb ≠ %r0
ld.w %r9, %sp
pushn %r0
ext symbol-imm32@h
ext symbol-imm32@m
ld.w %r0, symbol-imm32@l
add %r0, %rb
ld.w [%r0], %r9
popn %r0

(7) xld.* %rd, [%rb+imm32] (*=b, ub, h, uh, w) xld.* [%rb+imm32], %rs (*=b, h, w)
 Example: xld.w %rd, [%rb+imm32]

imm32 > 0x3ffffff
ext imm32(31:19)
ext imm32(18:6)
ld.w %r9, imm32(5:0)
add %r9, %rb
ld.w %rd, [%r9]

0x1fff < imm32 ≤ 0x3ffffff
ext imm32(25:13)
ext imm32(12:0)
ld.w %rd, [%rb]

0x0 < imm32 ≤ 0x1fff
ext imm32(12:0)
ld.w %rd, [%rb]

imm32 = 0x0
ld.w %rd, [%rb]

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+0x0] is specified

as it expands the instruction.

(8) xld.w [%rb+imm32], %sp

imm32 > 0x3ffffff and %rb = %r0
ld.w %r9, %sp
pushn %r1
ext imm32(31:19)
ext imm32(18:6)
ld.w %r1, imm32(5:0)
add %r1, %rb
ld.w [%r1], %r9
popn %r1

imm32 > 0x3ffffff and %rb ≠ %r0
ld.w %r9, %sp
pushn %r0
ext imm32(31:19)
ext imm32(18:6)
ld.w %r0, imm32(5:0)
add %r0, %rb
ld.w [%r0], %r9
popn %r0

imm32 = 0x0
ld.w %r9, %sp
ld.w [%rb], %r9

0x0 < imm32 ≤ 0x1fff
ld.w %r9, %sp
ext imm32(12:0)
ld.w [%rb], %r9

0x1fff < imm32 ≤ 0x3ffffff
ld.w %r9, %sp
ext imm32(25:13)
ext imm32(12:0)
ld.w [%rb], %r9

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+0x0] is specified

as it expands the instruction.

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 141
C COMPILER PACKAGE MANUAL (ver.3)

10.6.7 Immediate Data Load Instructions

Types and functions of extended instructions

Function

%rd ← symbol±imm32
%rd ← sign32

Expansion
format

(1)
(2)

Extended instruction

xld.w %rd, symbol±imm32
xld.w %rd, sign32

∗ "symbol±imm32" means that "symbol+imm32" and "symbol-imm32" can be specified.

These extended instructions allow a 32-bit immediate to be loaded directly into a general-purpose register. A
symbol also can be used for immediate specification.

Basic instruction after expansion
 xld.w Expanded into the ld.w instruction

Expansion formats

(1) xld.w %rd, symbol+imm32 xld.w %rd, symbol-imm32

 • When symbol+imm32 is specified

0x1f < symbol+imm32 ≤ 0x3ffff
ext symbol+imm32@m
ld.w %rd, symbol+imm32@l

symbol+imm32 ≤ 0x1f
ld.w %rd, symbol+imm32

symbol+imm32 > 0x3ffff
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %rd, symbol+imm32@l

Unknown symbol
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %rd, symbol+imm32@l

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that symbol+0x0 is specified
as it expands the instruction.

 • When symbol-imm32 is specified
 The instruction is always expanded into the following format.

ext symbol-imm32@h
ext symbol-imm32@m
ld.w %rd, symbol-imm32@l

(2) xld.w %rd, sign32

-262144 ≤ sign32 < -32
or 31 < sign32 ≤ 262143
ext sign32(18:6)
ld.w %rd, sign32(5:0)

-32 ≤ sign32 ≤ 31

ld.w %rd, sign32(5:0)

sign32 < -262144
or 262143 < sign32
ext sign32(31:19)
ext sign32(18:6)
ld.w %rd, sign32(5:0)

CHAPTER 10: INSTRUCTION EXTENDER

142 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

10.6.8 Bit Operation Instructions

Types and functions of extended instructions

Function

B[symbol±imm32] bit test
B[symbol±imm32] bit clear
B[symbol±imm32] bit set
B[symbol±imm32] bit negation
B[imm32] bit test
B[imm32] bit clear
B[imm32] bit set
B[imm32] bit negation
B[%rb+symbol±imm32] bit test
B[%rb+symbol±imm32] bit clear
B[%rb+symbol±imm32] bit set
B[%rb+symbol±imm32] bit negation
B[%rb+imm32] bit test
B[%rb+imm32] bit clear
B[%rb+imm32] bit set
B[%rb+imm32] bit negation
B[%sp+imm32] bit test
B[%sp+imm32] bit clear
B[%sp+imm32] bit set
B[%sp+imm32] bit negation

Expansion
format

(1)
(1)
(1)
(1)
(2)
(2)
(2)
(2)
(3)
(3)
(3)
(3)
(4)
(4)
(4)
(4)
(5)
(5)
(5)
(5)

Extended instruction

xbtst [symbol±imm32], imm3
xbclr [symbol±imm32], imm3
xbset [symbol±imm32], imm3
xbnot [symbol±imm32], imm3
xbtst [imm32], imm3
xbclr [imm32], imm3
xbset [imm32], imm3
xbnot [imm32], imm3
xbtst [%rb+symbol±imm32], imm3
xbclr [%rb+symbol±imm32], imm3
xbset [%rb+symbol±imm32], imm3
xbnot [%rb+symbol±imm32], imm3
xbtst [%rb+imm32], imm3
xbclr [%rb+imm32], imm3
xbset [%rb+imm32], imm3
xbnot [%rb+imm32], imm3
xbtst [%sp+imm32], imm3
xbclr [%sp+imm32], imm3
xbset [%sp+imm32], imm3
xbnot [%sp+imm32], imm3

∗ "symbol±imm32" means that "symbol+imm32" and "symbol-imm32" can be specified.

These extended instructions allow a memory address for manipulating bits to be specified with a symbol or 32-bit
immediate.

Note: The second operand (imm3) used to specify a bit number does not cause an error in the ext33

providing that it is within the range of values represented by unsigned 32 bits. It is output as the
operand of a basic instruction directly as is. Note that the effective range of the basic
instructions is 3 unsigned bits.

Basic instructions after expansion
 xbtst Expanded into the btst instruction
 xbclr Expanded into the bclr instruction
 xbset Expanded into the bset instruction
 xbnot Expanded into the bnot instruction

Expansion formats

(1) xOP [symbol+imm32], imm3 xOP [symbol-imm32], imm3 (OP = btst, bclr, bset, bnot)

 • When [symbol+imm32] is specified
 Example: xbtst [symbol+imm32], imm3

 When global pointer is not specified:

0x1f < symbol+imm32 ≤ 0x3ffff
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
btst [%r9], imm3

symbol+imm32 ≤ 0x1f
ld.w %r9, symbol+imm32@l
btst [%r9], imm3

symbol+imm32 > 0x3ffff
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
btst [%r9], imm3

Unknown symbol
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
btst [%r9], imm3

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 143
C COMPILER PACKAGE MANUAL (ver.3)

 When global pointer (gp) is specified: (sign32 = -gp+imm32)

gp > symbol+imm32
Expanded into a format without gp
specification according to the
symbol+imm32 value.

Unknown symbol
ext symbol+sign32@ah
ext symbol+sign32@al
btst [%r8], imm3

symbol+sign32 > 0x3ffffff
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
btst [%r9], imm3

0x1fff < symbol+sign32 ≤ 0x3ffffff
ext symbol+sign32@ah
ext symbol+sign32@al
btst [%r8], imm3

0x0 < symbol+sign32 ≤ 0x1fff
ext symbol+sign32@al
btst [%r8], imm3

symbol+sign32 = 0x0
btst [%r8], imm3

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [symbol+0x0] is

specified as it expands the instruction.

 • When [symbol-imm32] is specified
 The instruction is always expanded into the following format.

ext symbol-imm32@h
ext symbol-imm32@m
ld.w %r9, symbol-imm32@l
btst [%r9], imm3

(2) xOP [imm32], imm3 (OP = btst, bclr, bset, bnot)
 Example: xbtst [imm32], imm3

 When global pointer is not specified:

0x1f < imm32 ≤ 0x3ffff
ext imm32(18:6)
ld.w %r9, imm32(5:0)
btst [%r9], imm3

imm32 ≤ 0x1f
ld.w %r9, imm32(5:0)
btst [%r9], imm3

imm32 > 0x3ffff
ext imm32(31:19)
ext imm32(18:6)
ld.w %r9, imm32(5:0)
btst [%r9], imm3

 When global pointer (gp) is specified: (sign32 = -gp+imm32)

gp > imm32
Expanded into a format without gp
specification according to the
imm32 value.

sign32 > 0x3ffffff
ext imm32(31:19)
ext imm32(18:6)
ld.w %r9, imm32(5:0)
btst [%r9], imm3

0x1fff < sign32 ≤ 0x3ffffff
ext sign32(25:13)
ext sign32(12:0)
btst [%r8], imm3

0x0 < sign32 ≤ 0x1fff
ext sign32(12:0)
btst [%r8], imm3

sign32 = 0x0
btst [%r8], imm3

(3) ���� � ����	
����	������������� � ���� � ����	
������������������ � ��������
����������
��������

 • When [%rb+symbol+imm32] is specified
 Example: xbtst [%rb+symbol+imm32], imm3

Unknown symbol
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
add %r9, %rb
btst [%r9], imm3

symbol+imm32 > 0x3ffffff
ext symbol+imm32@h
ext symbol+imm32@m
ld.w %r9, symbol+imm32@l
add %r9, %rb
btst [%r9], imm3

0x1fff < symbol+imm32 ≤ 0x3ffffff
ext symbol+imm32@ah
ext symbol+imm32@al
btst [%rb], imm3

0x0 < symbol+imm32 ≤ 0x1fff
ext symbol+imm32@al
btst [%rb], imm3

symbol+imm32 = 0x0
btst [%rb], imm3

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+symbol+0x0] is

specified as it expands the instruction.

CHAPTER 10: INSTRUCTION EXTENDER

144 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 • When [%rb+symbol-imm32] is specified
 Example: xbtst [%rb+symbol-imm32], imm3
 The instruction is always expanded into the following format.

ext symbol-imm32@h
ext symbol-imm32@m
ld.w %r9, symbol-imm32@l
add %r9, %rb
btst [%r9], imm3

(4) xOP [%rb+imm32], imm3 (OP = btst, bclr, bset, bnot)
 Example: xbtst [%rb+imm32], imm3

imm32 > 0x3ffffff
ext imm32(31:19)
ext imm32(18:6)
ld.w %r9, imm32(5:0)
add %r9, %rb
btst [%r9], imm3

0x1fff < imm32 ≤ 0x3ffffff
ext imm32(25:13)
ext imm32(12:0)
btst [%rb], imm3

0x0 < imm32 ≤ 0x1fff
ext imm32(12:0)
btst [%rb], imm3

imm32 = 0x0
btst [%rb], imm3

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+0x0] is specified

as it expands the instruction.

(5) xOP [%sp+imm32], imm3 (OP = btst, bclr, bset, bnot)
 Example: xbtst [%sp+imm32], imm3

imm32 > 0x7ffff
ld.w %r9, %sp
ext imm32(31:19)
ext imm32(18:6)
add %r9, imm32(5:0)
btst [%r9], imm3

0x3f < imm32 ≤ 0x7ffff
ld.w %r9, %sp
ext imm32(18:6)
add %r9, imm32(5:0)
btst [%r9], imm3

0x0 < imm32 ≤ 0x3f
ld.w %r9, %sp
add %r9, imm32(5:0)
btst [%r9], imm3

imm32 = 0x0
ld.w %r9, %sp
btst [%r9], imm3

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 145
C COMPILER PACKAGE MANUAL (ver.3)

10.6.9 Branch Instructions

Types and functions of extended instructions

Function

Subroutine call
Subroutine call (with delayed branch operation)
Unconditional jump
Unconditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Subroutine call
Subroutine call (with delayed branch operation)
Unconditional jump
Unconditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)
Conditional jump
Conditional jump (with delayed branch operation)

Expansion
format

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)

Extended instruction

xcall label+imm32
xcall.d label+imm32
xjp label+imm32
xjp.d label+imm32
xjreq label+imm32
xjreq.d label+imm32
xjrne label+imm32
xjrne.d label+imm32
xjrgt label+imm32
xjrgt.d label+imm32
xjrge label+imm32
xjrge.d label+imm32
xjrlt label+imm32
xjrlt.d label+imm32
xjrle label+imm32
xjrle.d label+imm32
xjrugt label+imm32
xjrugt.d label+imm32
xjruge label+imm32
xjruge.d label+imm32
xjrult label+imm32
xjrult.d label+imm32
xjrule label+imm32
xjrule.d label+imm32
xcall sign32
xcall.d sign32
xjp sign32
xjp.d sign32
xjreq sign32
xjreq.d sign32
xjrne sign32
xjrne.d sign32
xjrgt sign32
xjrgt.d sign32
xjrge sign32
xjrge.d sign32
xjrlt sign32
xjrlt.d sign32
xjrle sign32
xjrle.d sign32
xjrugt sign32
xjrugt.d sign32
xjruge sign32
xjruge.d sign32
xjrult sign32
xjrult.d sign32
xjrule sign32
xjrule.d sign32

These extended instructions allow a branch destination to be specified using a label with displacement included or
a signed 32-bit immediate. The branch conditions of these conditional jump instructions are the same as those of
the basic instructions.

CHAPTER 10: INSTRUCTION EXTENDER

146 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Basic instructions after expansion
 xcall/xcall.d Expanded into the call/call.d instruction
 xjp/xjp.d Expanded into the jp/jp.d instruction
 xjreq/xjreq.d Expanded into the jreq/jreq.d instruction
 xjrne/xjrne.d Expanded into the jrne/jrne.d instruction
 xjrgt/xjrgt.d Expanded into the jrgt/jrgt.d instruction
 xjrge/xjrge.d Expanded into the jrge/jrge.d instruction
 xjrlt/xjrlt.d Expanded into the jrlt/jrlt.d instruction
 xjrle/xjrle.d Expanded into the jrle/jrle.d instruction
 xjrugt/xjrugt.d Expanded into the jrugt/jrugt.d instruction
 xjruge/xjruge.d Expanded into the jruge/jruge.d instruction
 xjrult/xjrult.d Expanded into the jrult/jrult.d instruction
 xjrule/xjrule.d Expanded into the jrule/jrule.d instruction

Expansion formats

(1) xOP label+imm32 (OP = call, call.d, jp, jp.d, jr*, jr*.d)
 Example: xcall label+imm32

When expanded into 2 instructions
ext label+imm32@rm
call label+imm32@rl

When expanded into 1 instruction
call label+imm32

When expanded into 3 instructions
ext label+imm32@rh
ext label+imm32@rm
call label+imm32@rl

 Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that "label+0x0" is specified
as it expands the instruction. For details on how the number of instructions when expanded is determined,
refer to Section 10.7.1, "Optimizing Relative Branch Instruction".

(2) xOP sign32 (OP = call, call.d, jp, jp.d, jr*, jr*.d)
 Example: xcall sign32

-2097152 ≤ sign32 < -256
or 254 < sign32 ≤ 2097150
ext sign32(21:9)
call sign32(8:1)

-256 ≤ sign32 ≤ 254

call sign32(8:1)

sign32 > 2097150
or sign32 < -2097152
ext sign32(31:22)<<0x3
ext sign32(21:9)
call sign32(8:1)

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 147
C COMPILER PACKAGE MANUAL (ver.3)

10.7 Optimize Function

10.7.1 Optimizing Relative Branch Instruction
The E0C33000's basic relative branch instruction allows branch to any location within a signed 9-bit (LSB = 0)
relative address range by using a single instruction. Branching to an address beyond this range requires extension
by the ext instruction.
The ext33 allows you to write an extended branch instruction without worrying about the ext instruction as
described in Section 10.6.9. Thus instruction is then expanded so that control is transferred a relative distance to
the branch destination label by using the fewest possible instructions.

The following extended branch instructions can be optimized:
xcall xjp xjreq xjrne xjrgt xjrge xjrlt xjrle xjrugt xjruge xjrult xjrule
xcall.d xjp.d xjreq.d xjrne.d xjrgt.d xjrge.d xjrlt.d xjrle.d xjrugt.d xjruge.d xjrult.d xjrule.d

The basic branch instructions written by adding the ext instruction are not optimized.

The number of instructions (1 to 3 instructions) that derive from expansion are determined according to the
following conditions:
• Relative distance between the extended branch instruction and branch destination label
• Whether the extended branch instruction and branch destination label exist in the same file
• Whether the -near option is specified
• Whether there is symbol file/link map file specification by the -lk option
• Relative distance determination threshold 0x180000 (default) or value specified by the -j option

The number of instructions derived by expansion are determined in the following manner by resolving the above
conditions:

Table 10.7.1.1 Number of instructions derived by expansion
Number of expanded

instructions
1
2
2
2
3
2
3

-near flag

–
–
–

Specified
Not specified

Specified
Not specified

Instruction and
label positions
In the same file
In different files

–
–
–
–
–

Relative distance
(absolute value) ∗1

0 to 126 ∗2

To threshold value ∗3
To 0x7ffffff ∗4

Unknown relative distance

∗1: The value indicates the number of instructions from the extended branch

instruction to the branch destination label.
∗2: Up to 125 when branching toward to a higher address.
∗3: Up to the threshold value - 1 when branching toward to a higher address in the

same file.
∗4: Up to 0x7fffffe when branching toward to a higher address in the same file.

The threshold value is half of the value specified using -j option. When using the -j
option's default value of 0x180000, the threshold value will be 0xc0000. Values in ()
apply when branching to a lower address. The threshold value may be decreased due to
distance judgment when branching toward to a lower address.

The following shows the basic format after expansion.
Example: xcall sign32
 1 instruction 2 instructions 3 instructions
 call sign32(8:1) ext sign32(21:9) ext sign32(31:22)<<0x3
 call sign32(8:1) ext sign32(21:9)
 call sign32(8:1)

An expansion result different from those shown above may be obtained depending on method of label
specification. For details, refer to Section 10.6.9.

CHAPTER 10: INSTRUCTION EXTENDER

148 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

When the -lk option is specified, branching to a different file based on the postlink symbol information can be
optimized. However, since execution by cashing into the internal RAM is possible, branching to a label in a
different file – although in the object file it may be branching within the 1-instruction range – is expanded as
consisting of at least two instructions.

10.7.2 Optimization by the Global Pointer
Memory access by an extended instruction using a symbol is accomplished by using the R9 register as a scratch
register, and is expanded in the following manner:
Example: xld.w [i],%r10 (Example of expansion before linkage)
 ext i+0x0@h
 ext i+0x0@m
 ld.w %r9,i+0x0@l
 ld.w [%r9],%r10

When accessing a memory-resident global variable, for example, the number of instructions derived from
expansion can be reduced by setting the start address of the global variable area as a global pointer in advance.
Since the ext33 uses the R8 register as a global pointer, the address of the global pointer must be set to the R8
register in the initialize routine in advance. Note that the memory accessible range is limited to within +26-bit
space from the global pointer address.
Specification for the ext33 is made by using the -gp <address> option ([global pointer optimize] in the wb33).
When this option is specified, the ext33 assumes that the R8 register is set as a global pointer to the specified
<address> as it processes the program.
If a global pointer is specified, the above example will be expanded as follows:
Example: xld.w [i],%r10 (Example of expansion before linkage)
 ext i+0x0@ah
 ext i+0x0@al
 ld.w [%r8],%r10

In this case, since no scratch register is used, the number of instructions for each access can be reduced by one.

10.7.3 Optimization by Symbol Information
When creating one program by linking multiple relocatable modules, it should be noted that the absolute address
of each instruction in the assembly source is not determined until after the modules are linked. Optimization at this
phase is limited to those instructions that can be solved within the same file.
For this reason, the ext33 is designed in such a way that symbol information can be obtained from the symbol and
link map files output by the linker by specifying the -lk option. Since each of these files contains information
about the absolute addresses of the symbols that are determined after linkage, the symbols defined in other files
can be referenced.
Therefore, make sure all source files including the ext33 are processed temporarily way up to the linking phase,
then re-execute the ext33 after specifying the -lk option. The ext33 optimizes the extended instructions that are
used to access memory locations using indeterminate symbols as it generates an assembly source file. Then, after
this is done, assemble and link the source files one more time.
To generate the symbol and link map files, you need to specify the -m and -s options when starting up the linker.
If the variable i, which was used as an example in the preceding section, is assumed to be located in the 4th byte
from the address indicated by the global pointer, then the first ext instruction will be deleted as follows:
Example: xld.w [i],%r10 (Example of expansion using postlink symbol information)
 ext i+0x0@al
 ld.w [%r8],%r10

Furthermore, if there is a memory access that is out of the accessible range by the global pointer, this function
disables the global pointer optimization.
The ext33 checks to see if the symbol and map files bearing the file name specified by the -lk option are created in
the same directory. If one or both of the two files cannot be found, the ext33 outputs a warning and stops
performing -lk option-based optimization. Therefore, these files must always be stored under the same name in the
same directory.

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 149
C COMPILER PACKAGE MANUAL (ver.3)

10.8 Other Functions

10.8.1 Comment Adding Function
When expanding extended instructions to create an assembly source file, the ext33 replaces these extended
instructions with comments that begin with a semicolon (;) in order to show information about the contents of the
extended instructions before they are expanded. The comments are added after the first line of instruction derived
by expansion. If there is any comment accompanying the original statement, that comment is included among the
added comments.

Example: Before expansion
 xcall main ; goto main

 After expansion
 ext main@rm ; xcall main ; goto main
 call main@rl

10.8.2 Classification of Local Symbols
The ext33 classifies the local labels that are valid in only the files generated by the Preprocessor and Compiler,
then changes the labels "��L????" used in extended relative branch instructions to "��LX????." The changed
labels have already been referenced in their file.
As a result, the Assembler as33 interprets the information on labels beginning with "��LX" as being local;
therefore, this information is not output to the object file.

Local symbols used in any other instructions are not changed even if they are labeled "��L????".

10.8.3 Syntactic Check
The ext33 only checks the syntax of extended instructions and the assembler pseudo-instructions listed below.

Assembler pseudo-instructions checked by ext33
.org, .space, .align, .comm, .lcomm, .set pseudo-instructions
 These instructions are checked to see if the address-specifying operand is within the effective range of values

represented by 32 bits.
.ascii pseudo-instruction
 This instruction is checked to see if character strings are enclosed with double quotations (").

An error results if any extended instruction or one of the above assembler pseudo-instructions is written in a
syntactically incorrect manner. If the operand value is invalid, a warning is output, and processing continues.

The syntax of the basic instructions is not checked. Nor is the validity of the instructions derived by expansion
checked.

CHAPTER 10: INSTRUCTION EXTENDER

150 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

10.9 Sample Execution

Input file (ext.ps)
��������� 	

������

��

���

�

� �����������

���� �

�

����������������������������

�

��������

� ������ !�"�#� � �����������������

� ������ !�	�$%�%	� � �����&������������������

� ������ !���$%�%	'(� �����&��'�������

�

� ����� !�	�!���#�	�()*�"�� ������������������������&�

�

� ����� !�	(�!�)�#���######���������������������������������

� ����� !�"�#&					#####�

�

� ����� !��"� � �������������+����

� ���� !���!�"� � ����,�������+����

� � � � ���������������������������������������

�

� ������ !�	�-#�	�()*".� ��������������������

� �����&� !�)�-$%�%	.� �����&�����������

� �&���� -/�00	'#�(##.��� �����&�����������'��������

� �����+� !�	#�-!��'#����.� �����������1��

� ����&� -!��.�!��� � �����������1��

� �����+� !�	�-!�)'#�	�()*".������������'�������������������

� ����+� !�)�-!�		'$%�%	.� ����,������'����&�����������

� �&���� -!�
'/�00	'#�(##.��� ����,������'����&�����������'��������

� � � � ������������������+������+�������&������&���

� � � � �������&������&������&������&����

�

� ���� 2�� � ������������������1��

� ���,���� ����� � �����&���������1��

� � � � ���������������3������������,������,������������������

� � � � ����������,�������,�������������������������

�

����������������������

�

�������� � ��������������������,����������������

�

� ������ !�"�#� � ����������

� ������ !�#�#�	�()*�"� ��+���

� ������ !�#�#&	#	#	� ��&������

� ������ !�	�$%�%	� � �����&���

� ������ !���$%�%	'(� �����&��'������4+�������&��5�

� ������ !���$%�%	'#�)�

� ������ !���$%�%	'#&		#�

�

�����������&� ����������&������+�����������������

�

� ����� !�	�!���#�	�()*�"�� �����������6��	�

� ���&� !���!�	�#�	�()� �����������6����

� ����� !�#�!�	�	� � �����������6���

� ���&� !���!���)� � �����������6��(�

� ����� !�	�!���!��� ������/����������

� ���&� !���!���!�	� ������/����������

�

�

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 151
C COMPILER PACKAGE MANUAL (ver.3)

�����������	�����	�����
� �

�� � ������	����	��������
������������	�
����

�

� ����� �	����	���������������������	���������

� ���	� �	����	���������� �������	���������

� ���	� �	���	������ �������	���������

� ���
� �	���������������

�

����	�����������	����������		���	�� � �
����	�
����

�

� ��	�� �	���� � ��!!���
��� �
������

� ����� �	����� � ��!!���
��� �
������

� ��	�� �	���"� � ��!!���
��� �
������

� ����� �	#���� � ��!!���
��� �
������

� �		� �	"��	�� � ��	���
�	�� �
�

�

������$������% ������ ������%��������������
������	����
�
������
�

�� � �������
����	�
����	�!&
�������%
�����	����

�

� ����$� �	��'�������#�(� ��!!���
�����	���������

� ����% � �	��'��)*+(� ��!!���
�����	���������

� ���� � '��(���	�� � ��!!���
�����	���������

� ����%�� �	��'�(� � ��!!���
�����	���������

� ������ �	��',)-)�(� ���.!�������	���������

� ����
� '+/00�(��� � ���.!�������	���������

� ��
�
� '+/00�1�����(��� ���.!�������	����1������
������

� ����
� '+/00�1����(��� ���.!�������	����1������
������

� ����	� '+/00�1�(��� ���.!�������	����1������
������

�

������$������% ������ ������%��������������
������	����
�
������
�

�� � �������
����	�
����	�!&
��23�	���
4�����	����

�

� ����$� �	���'���1���������(������	���
4�������

� ����% � �	���'���1�����(� �����	���
4�������

� ������ '���(��	"� � �����	���
4�������

� ����
� '���1����(��� �����	���
4�������

�

������$������% ������ ������%��������������
������	����
�
������
�

�� � �������
����	�
����	�!&
��	���
�	�	���
4�����	����

�

� ����$� �	��'�	��1�������#�(���1�!!���
�����	���������

� ����% � �	��'�	��1��)*+(� ��1�!!���
�����	���������

� ���� � '�	��1��(���	�� ��1�!!���
�����	���������

� ����%�� �	��'�	��(�� ��1�!!���
�����	���������

� ������ �	��'�	��1,)-)�(� ��1��.!�������	���������

� ����
� '�	��1+/00�(��� ��1��.!�������	���������

� ��
�
� '�	�1+/00�1�����(��� ��1��.!�������	����1������
������

� ����
� '�	�1+/00�1����(��� ��1��.!�������	����1������
������

� ����	� '�	"1+/00�1�(��� ��1��.!�������	����1������
������

�

������$� � �����$�	�����	�
����	�!����	���
�	���	�+��%���	
�

�

� ����$� '���(�����

� ����$� '���1����#�(�����

� ����$� '�������(�����

� ����$� '+/00�(�����

� ����$� '+/00�1�(�����

� ����$� '�	�(�����

� ����$� '�	#1������(�����

� ����$� '�	"1,)-)�(�����

� ����$� '�	"1,)-)�1���(�����

�

���5����5	�6���5	�����5	�
���5	�����5	�
���5	�����5	%�
���5	%�����5	%�
�

���5	%��������������$
 ���� � 	���
4���	��� ��

�

CHAPTER 10: INSTRUCTION EXTENDER

152 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

������

� ��	
�� �� � �����������������������
��

� ������ ���� � �����������������������
�

� ������ ���������� � �����������������������
��

� �����
�� � !� � ��"#�$��������������
��

� ������ % &&�� � ��"#�$��������������
�

� ���'��� ����� � ��"#�$��������������
��

�

�
�����

(�!����

�
)���� ����*+,-��

�

�
.����% &&��*�

Output file (ext.ms) when "ext33 -gp 0x0 text.ps" is executed
(* In actual operation, a comment may be output at a different position.)
�����
	"� �//-

��

��"��	���"�'�.��0��������������������"��'.����"�

������0������.'����1��'"��0��������������"�������#�

�

�
)����� !�

� !��

�

��"'����#��0�������	������"�

�

�����
)�

� ��
)� 2��1���� � �����
)� 2��1�� � �����������������

� ���� (�!��3���45� �����
)� 2��1(�!��� � ��"#�$������������������

� ���� (�!��3���4��

� ��
)� 2��1(�!��3���4��

� ���� (�!��3��*45� �����
)� 2�1(�!��3*� ��"#�$��3�00"���

� ���� (�!��3��*4��

� ��
)� 2�1(�!��3��*4��

�

� ��
)� 2��12�� � ������� 2��12�1����*+,-��� �����	������0�������1��"'$�

� ���� ��*,�

� ���� ����+/�

� ���� 2��1�����

�

� ��
)� 2��*12��+� � ������� 2��*12��+1��00������������	������0�������1�����1������

� ���� ���0���

� ���� ����

� ���� 2��*1����

� ���� ��0� � ������� 2��1�$�����������

� ���� 2��1����

�

� "��� 2��1���� � ���"��� 2��1�� � ������������"5�0��

� ��
)� 2�/12��� � ������ 2�-12��� � ������"����"5�0��

� ���� 2�/1���0�

� .�	� 2�/1����

� ����� *�

� ��� 2�-1����

� �	
�� ���

� "'$� 2�/1����

� ��� 2�-12�/�

� � � � ��0����"��1��"��1��"��1��"��1����1�����

�

� ���� ��/��� � �����
)� 2��16����*+,�7� �����������������""�

� ���� ��+,��

� ��
)� 2��162��7�

� ���� (�!��3���4�5� �����
'$� 2�+16(�!��7� ��"#�$��������""�

� ���� (�!��3���4���

� ��
'$� 2�+162��7�

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 153
C COMPILER PACKAGE MANUAL (ver.3)

� ���� �����	
��

��� �������� ������	
��

���� ����������������	��������

� ���� �����	
��

���

� ����� ������
���

� ����
��� � ������ �� ���
����!	
������ ���!�����"#��

� ��� �� ���
����!	
�����

� ����� ���!	
�
����$� �������� ���!����$� � ���!�����"#��

� ����
�%�� � ������ �� ��������&	
���'�&(��������"�����	�"����"����������

� ����
�&(��

� ��� �� ��������&��

� ����)*+*�	
�
��� �������� ��&������)*+*��� ����,"�����	���������������

� ����)*+*�	
�
���

� ���-� ��%�)*+*�	
�
���

� ��� ��%������

� ����� ��&����%��

� ���� �����	
��

��� �������� ���%	�����	
��

���� �

� � � � ����,"�����	���������������	��������

� ���� �����	
��

���

� ���-� ��%������	
��

���

� ��� ��%���%�

� ����� ���%��
���

� � � � ����������-������ �������������� �����������

� � � � ���������������.�������������/���

�

� 0!�
���� � ���0!� 1�� � ��"����"�������"#��

� ���� 2��+���� � ���0�,���� 2��+� � �������������"#��

� ���� 2��+����

� 0�,���� 2��+����

� � � � �������0!���0��3���0�/����0�,����0�,����0������0������

� � � � �������0� ,����0� ,����0� �����0� �����.���

�

����������"����!����

�

������-� � ����"����"��������,"������!���"�/�

�

� ���-� ����
�
� � ������-� ����
� � ����."���

� ����
���(� � ������-� ��
�
���'�&($�� ������

� ����
���&%�

� ���-� ��
�
�'��

� ���-� ��
�
��&� � ������-� ��
�
��
�
�� ���"/���

� ����)*+*�	
�
��� ������-� ����)*+*�� � ���������

� ����)*+*�	
�
���

� ���-� ����)*+*�	
�
���

� ����)*+*�	
����� ������-� ����)*+*�	�� ��������	������4������.��"/5�

� ����)*+*�	
�����

� ���-� ����)*+*�	
�����

� ����)*+*�	
�&��� ������-� ����)*+*�	
�&�

� ����)*+*�	
�&���

� ���-� ����)*+*�	
�&���

� ����)*+*�	
�(��� ������-� ����)*+*�	
���
�

� ����)*+*�	
�(���

� ���-� ����)*+*�	
�(���

�

��������� �� ���/��� ����"�����".��!���"�/��

�

� ���-� �������� � ������ ��������
���'�&($��� ��'��!��/��6����

� ����
���(�

� ����
���&%�

� ��� ����
�'��

� ����
�%� � ���� �� ��������
���'�&� ��'��!��/��6����

� ����
�'�&�

� � �� ��������

� ����
��� � ������ ��
������� � ��'��!��/��6��'�

� ��� ��
�����

� � �� ����
�&� � ���� �� ��������&� � ��'��!��/��6����

� ���-� ��%���!� � ������ ����������!� ��������.��!"����

CHAPTER 10: INSTRUCTION EXTENDER

154 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

� ���� ��������

� 	�
�� ������� � ������� ���������� ������������	���

� ���� ��������

� 	�
�� �������

�

������������������������� �

�� � �����������������������	�����	�����������

�

� 	�
�� ���������� � ������� �������������������������������� �
��

� ���� �������

� ���� ����

� ���� ���������

� ���� ��!� � ������� ���"������������� ����������� �
"�

� ���� �������

� ��� ���"������

� ���� ��������� � ������� ��������#��� ����������� �
��

� ���� ���� � ������� ��$��������������

� ���� ��$���"��

�

�����	����		����������	����������	� �%��������������

�

� ��	� ������$� � �����	� ����$� � �������������%���� �
��

� �		� ������$� � ����		� ������� � �������������%���� �
"�

� �		� ������!�

� ���� ������$� � ������� �����!� � �������������%���� �
��

� ���� ������$�

� ���� ��������

� �	�� ��&���$� � ����	�� ��&���� � �������������%���� �
��

� �	�� ��&���$�

� �	�� ��&���$�

� �	�� ��&���!�

� 	�
�� ������$� � ������ ��!���$� � ������������%����

� ���� ���������

� ��� ������$�

� '�	�� ��

� ��� ��!���$�

� '
�� #��

� ���� ������$�

� ��� ��!�����

�

���	�
����	�
�%���	�
%���	�
�����	�
�������������	����������������

�� � 	����������������������(�������	������������

�

� ���� ������ � ���	�
�� ����)���"���&$*� �������������������� �
��

� ���� ���&$�

� 	�
�� ����)��$*�

� ���� ������ � ���	�
�%� ��"�)��+,�*� �������������������� �
"�

� 	�
�%� ��"�)��$*�

� ���� ���� � ���	�
%�)��*������ � �������������������� �
��

� 	�
%�)��$*�����

� 	�
��� ����)��$*� � ���	�
��� ����)�*� � �������������������� �
��

� ���� -+.+�/���0�%� ���	�
�� ����)-+.+�*� ���1���	��������� �
��

� ���� -+.+�/���0�	�

� 	�
�� ����)��$*�

� ���� �233�/���0�%� ��������)�233�*��� � ���1���	��������� �
"�

� ���� �233�/���0�	�

� �����)��$*�����

� ���� �233�/�����0�%� ��������)�233�/�����*�"� ���1���	���������/�������� �
��

� ���� �233�/�����0�	�

� �����)��$*���"�

� ���� �233�/����0�%� ��������)�233�/����*��� ���1���	���������/�������� �
"�

� ���� �233�/����0�	�

� �����)��$*�����

� ���� �233�/���0�%� �����	��)�233�/�*��� ���1���	���������/�������� �
��

� ���� �233�/���0�	�

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 155
C COMPILER PACKAGE MANUAL (ver.3)

� ����� ����	
���

�

�������
�������
������
�������
������
������
������
������
�������

�� � ����
������������������������ �������!����������

�

� ���� ����� � �������� ��"#
����$��	������������!��%��"�

� ���� ��""""�

� ����� ��"#
����$��	�

� ���� ���� � ��������� ��"�
����$��&&&	� �����������!��%��&�

� ������ ��"�
����$��&&	�

� ����� ����$���	
��'� �������� ����	
��'� � �����������!��%��(�

� ����� ��)
���� � �������� ����$��"	
#� �����������!��%���

� ���� ��)
��"�

� ����� ���)	
��#�

�

�������
�������
������
�������
������
������
������
������
�������

�� � ����
�������������������������*������������!����������

�

� ���� ��)"�� � �������� ��"
���"#$��"&(#+�	���$�������������������%��"�

� ���� ��#+��

� ����� ��"
���"#	�

� ���� ������ � ��������� ��&
���"$��,-.	� ��$�������������������%��&�

� ������ ��&
���"	�

� ���� ���� � �������� ���"($"�	
���(� ��$�������������������%��(�

� ����� ���"(
��(�

� ������ ��
���"&	�� ��������� ��
���"&	�� ��$�������������������%���

� ���� /,0,"$���1�� �������� ��#
���""$/,0,"	� ��$��2�������������%��"�

� ���� /,0,"$���1��

� ����� ��)
/,0,"$���1��

� ���� ��)
��""�

� ����� ��#
���)	�

� ���� .344"$���1�� �������� ���"�$.344"	
"� ��$��2�������������%��&�

� ���� .344"$���1��

� ����� ��)
.344"$���1��

� ���� ��)
��"��

� ����� ���)	
��"�

� ���� .344"$����1�� �������� ���)$.344"$����	
&� ��$��2�������������$��������%��"�

� ���� .344"$����1��

� ����� ��)
.344"$����1��

� ���� ��)
��)�

� ����� ���)	
��&�

� ���� .344"$��"�1�� �������� ����$.344"$��"�	
(� ��$��2�������������$��������%��&�

� ���� .344"$��"�1��

� ����� ��)
.344"$��"�1��

� ���� ��)
����

� ����� ���)	
��(�

� ���� .344"$��"1�� �������� ���'$.344"$"	
� ��$��2�������������$��������%��(�

� ���� .344"$��"1��

� ����� ��)
.344"$��"1��

� ���� ��)
��'�

� ����� ���)	
���

�

�������� � ������������������������������*����������.���������

�

� ����� ��)
���� � �������� ����	
����

� ����� ����$���	
��)�

� ����� ��)
���� � �������� ����$��&+�	
����

� ���� ��)"�

� ����� ����$��&�	
��)�

� ����� ��)
���� � �������� ���"&(�	
����

� ������ ����

� ���� �����

� ����� ���
����

� ����� ����	
��)�

� ����� ����

CHAPTER 10: INSTRUCTION EXTENDER

156 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

� ����� ���	�
�� � ������� �������	�
��

� ��
��� ����

� ��� �����������

� ��� �����������

� ����� ���	�����������

� ����� �����	����

� ����� ����

� ����� ���	�
�� � ������� ���������	�
��

� ��
��� ����

� ��� �����������

� ��� �����������

� ����� ���	�����������

� ����� �����	����

� ����� ����

� ����� ���	�
�� � ������� �����	�
��

� ����� �����	����

� ����� ���	�
�� � ������� ��� ��!�����	�
��

� ��� �"�

� ����� ��� �	����

� ����� ���	�
�� � ������� ���#�$%&%��	�
��

� ��
��� ����

� ��� $%&%�������

� ��� $%&%�������

� ����� ���	$%&%�������

� '��� ���	��#�

� ����� �����	����

� ����� ����

� ����� ���	�
�� � ������� ���#�$%&%��(���	�
��

� ��
��� ����

� ��� $%&%���")���

� ��� $%&%���")���

� ����� ���	$%&%���")���

� '��� ���	��#�

� ����� �����	����

� ����� ����

�

��*�	�*��+	�*���	�*�,�	�*�,�	�*���	�*���	�*��,�	�*��,�	�*�����

��*����	�"'���'����-������ � ���'�-.��!�'�"�
�

�

/0%12�

� *���� 3(� � ��-����-'������'�-.��/����

� ��� ��� � ��*��+�)��� ��-����-'������'�-.��/��(�

� *��+� ����

� ��� �(�� � ��*���� ��������� ��-����-'������'�-.��/��4�

� ��� ���

� *���� ���

� *�,���� 5��&� � ��
6�!������'�-.��/����

� ��� ��������� � ��*�,�� ������ ��
6�!������'�-.��/��(�

� ��� ���������

� *�,�� ���������

� *��,�� /0%1� � ��*��,�� /0%1� ��
6�!������'�-.��/��4�

�

� ��'�'�

$%&%�2�

� ������ ��(4�� #)�

�

� �"������������

�

CHAPTER 10: INSTRUCTION EXTENDER

E0C33 FAMILY EPSON 157
C COMPILER PACKAGE MANUAL (ver.3)

10.10 Error/Warning Messages
Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "ext33.err" file.
If the ext33 is started up using the wb33's [EXT33] button, the message is output to "wb33.err". When execution is
completed, a message is displayed in the output window (default).

10.10.1 Errors
The errors produced in the ext33 are classified into two groups: system errors and extender errors.

System errors refer to those that make it impossible to carry on the processing. If a system error occurs, the ext33
will immediately terminate the processing after displaying an error message. No assembly source file will be
output.

Table 10.10.1.1 List of system error messages
Content

Cannot secure memory space.
Cannot open the source file.
The file does not exist in the specified directory.
Cannot open the source file.
An illegal input file name was specified.
Cannot open the output file.
Cannot open the error file.
Cannot open the command file.
The file does not exist in the specified directory.
Cannot write to the error file.
Cannot write to the output file.

Error message
Error: Cannot allocate memory.
Error: Cannot open input file "<file name>".

Error: Invalid input filename "<file name>".

Error: Cannot open output file "<file name>".
Error: Cannot open error file "ext33.err".
Error: Cannot open command file "<file name>".

Error: Cannot write error file.
Error: Cannot write output file "<file name>".

The extender errors are produced when the command line, command file or source file contains a syntax or
description that cannot be processed by the ext33. No assembly source file will be output.

Table 10.10.1.2 List of extender error messages
Content

File name is excessively long. A file name, including path, must
be 255 characters or less.
<description> in command file is invalid. Write one option and
one input file in each line. Begin a comment with ";" and do not
write it on the same line as the other option or input file.
Command file format is invalid. The file format specified here is
not that of a text file.
Parameter of the -j option is invalid. The threshold must be
specified within a range of 0x100 to 0x1fffff.
Parameter of the -gp option is invalid. Specify an effective
hexadecimal address.
There are too many input files. More than 682 input files are
specified.
No input file is specified.
Extended instruction has a syntax error.

Error message
Error: Too long filename "<file name>".

Error: Invalid command file description
"<description>".

Error: Invalid command file format.

Error: Invalid jump threshold "<parameter>".

Error: Invalid GP address "<parameter>".

Error: Too many input files.

Error: No input file is specified.
<file name>(line No.): Error: Invalid syntax. ∗1

∗1 When the source file that contains debugging information is input, the ext33 displays "near <file name>(line
No.>)" after the message. It consists of the original source file name (*.c, *.s) and the line number indicated
in the debugging information.

CHAPTER 10: INSTRUCTION EXTENDER

158 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

10.10.2 Warning
Even when a warning appears, the ext33 will keep on processing, and completes the processing after displaying a
warning message, unless any error is produced in addition. The assembly source file will be output.

Table 10.10.2.1 List of warning messages
Content

Link map file cannot be found. Processing is continued after
the specification of the -lk option is invalidated.
Symbol file cannot be found. Processing is continued after
the specification of the -lk option is invalidated.
Map information corresponding to the input file does not
exist in the link map file. Processing is continued after the
specification of the -lk option is invalidated.
This is an invalid map file format. Processing is continued
after the specification of the -lk option is invalidated.
This is an invalid symbol file format. Processing is continued
after the specification of the -lk option is invalidated.
Information of <symbol> cannot be found in the symbol file.
Processing is continued by assuming that <symbol> is
undefined.
Operand address exceeds the effective range of values
represented by 32 bits.
Invalid boundary address is specified. An address whose
LSB is not 0 is specified in an extended instruction that
handles half word data. An address whose two lower bits are
not 0 is specified in an extended instruction that handles
word data.
A value exceeding the effective range is specified in the
operand of an extended instruction.

Warning messages
Warning: Map file "<file name>" does not exist.

Warning: Symbol file "<file name>" does not exist.

<file name>: Warning: No map information in
map file.

<file name>: Warning: Invalid map file format.

<file name>: Warning: Invalid symbol file format.

<file name>: Warning: Cannot find the symbol
"<symbol>" in symbol table. ∗1

<file name>: Warning: Operand exceeds
maximum address. ∗1

<file name>: Warning: Invalid address operand. ∗1

<file name>: Warning: Invalid operand value. ∗1

∗1 When the source file that contains debugging information is input, the ext33 displays "near <file name>(line

No.>)" after the message. It consists of the original source file name (*.c, *.s) and the line number indicated
in the debugging information.

10.11 Precautions

(1) In the ext33, the general-purpose register R8 is reserved for use as a global pointer and the register R9 is

reserved for use as a scratch register for extended instructions. Do not use these two registers when creating
assembly sources.

(2) The ext33 only performs the syntactic check that is necessary for the expansion and optimization of extended

instructions. The validity of the instructions derived by expansion is not checked. Nor does the ext33 check
the mnemonics, operands, or assembler pseudo-instructions (except a few).

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 159
C COMPILER PACKAGE MANUAL (ver.3)

Chapter 11 Assembler
This chapter describes the functions of the Assembler as33.
For the syntax of the assembly sources, refer to Section 4.3, "Grammar of Assembly Source".

11.1 Functions
The Assembler as33 (hereafter called the "as33") assembles (translates) assembly source files that are delivered by
the Instruction Extender and creates object files in the machine language.
The functions and features of the as33 are summarized below:
• Supports the absolute assembling and the relocatable assembling.
• Allows to develop programs by module.
• Can deliver debugging information for purposes of symbolic debugging.

11.2 Input/Output Files

Assembler
as33

file.ms

file.o as33.err
Object file

(Relocatable or
absolute)

Assembly
source file

Error
file

file.lst
Assembly
list file

Linker lk33

Instruction Extender ext33

Fig. 11.2.1 Flowchart

11.2.1 Input File

Assembly source file
 File format: Text file
 File name: <File name>.ms (Other extenders than ".ms" can be used. A path can also be

specified.)
 Description: File in which a source program is described. Usually, a file delivered by the Instruction

Extender ext33 is input there.
 If source files were created that only describe basic instructions and assembler

pseudo-instructions, they can be input into the as33 directly.

11.2.2 Output Files

Object file
 File format: Binary file in srf33 format
 File name: <File name>.o (The <File name> is the same as that of the input file.)
 Output destination: Current directory
 Description: File in which symbol information and debugging information are added to the

program code (machine language).
 For the srf33 format, refer to Appendix, "srf33 File Structure".

CHAPTER 11: ASSEMBLER

160 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Assembly list file
 File format: Text file
 File name: <File name>.lst (The <File name> is the same as that of the input file.)
 Output destination: Current directory
 Description: Assembly source file in which assembled results (address and object code) are added

to each line. It is delivered when the startup option (-l) is specified.
 For specific examples, refer to Section 11.9 "Assembly List File".

Error file
 File format: Text file
 File name: as33.err
 Output destination: Current directory
 Description: File delivered when the startup option (-e) is specified. It records error messages and

other information which the as33 delivers via the Standard Output (stdout).

11.3 Starting Method

11.3.1 Startup Format

General form of command line

 as33 ^ [<startup option>] ^ [<file name>]

 ^ denotes a space.
 [] indicates the possibility to omit.

 <file name>: Specify an assembly source file name including the extension.

Operations on work bench
 Select options and a source file, then click the [AS33] button.

In the command line, only one source file can be specified at a time.
The wb33 allows multiple files to be selected, in which case the as33 is executed as many times as the number of
files selected.

11.3.2 Startup Options
The as33 comes provided with the following three types of startup options:

-g
Function: Addition of debugging information
Specification on wb33: Check [debug info].
Explanation: • Creates an output file containing symbolic debugging information.
 • Always specify this function when you perform symbolic debugging.
 • Even if this option is not selected, the debugging information added in the C Compiler

gcc33 or the Preprocessor pp33 for source display will not be cut off.

-l
Function: Output of assembly list file
Specification on wb33: Check [list file].
Explanation: • Outputs an assembly list file.

-e
Function: Output of error files
Specification on wb33: None
Explanation: • Delivers also in a file (as33.err) the contents that are output by the as33 via the

Standard Output (stdout), such as error messages.

When entering options in the command line, you need to place one or more spaces before and after the option.
Example: c:\cc33\as33 -g -e -l test.ms

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 161
C COMPILER PACKAGE MANUAL (ver.3)

11.4 Messages
The as33 delivers its messages through the Standard Output (stdout).
If the as33 is started up by using the wb33's [AS33] button, the message is output to "wb33.err". When execution
is completed, a message is displayed in the output window (default).

End message
 The as33 outputs only the following end message when it ends normally.

 ���������	
������

Usage output
 If no file name was specified or an option was not specified correctly, the as33 ends after delivering the

following message concerning the usage:

����������������������

	
���������	��������������	����� !!��

"�#��$�

����#����%
���
&�'�()���&#��*�

����
&�$�

����+��$���
,-���
��)�����#���������

����+��$���&��#�����,���&)
��#��
&��&�
�.�-��)����

����+��$���
,-�������)����

�,��,�$�

����
�.�-��)������
��

���������)�������������

�����
��)��������#���������

��#����$�

����#����+��+��+���#��������

When error/warning occurs
 If an error is produced, an error message will appear before the end message shows up.
 Example: ��������/�$����
�$��&0#����&���,-��
&���&�#���
� � ���������	
������

 In the case of an error, the as33 ends without creating an output file.

 If a warning is issued, a warning message will appear before the end message shows up.
 Example:� �������� 1�$�2#�&�&�$��,����-��#&����

� � ���������	
������

 In the case of a warning, the as33 ends after creating an output file.

 For details on errors and warnings, refer to Section 11.10 "Error/Warning Messages".

CHAPTER 11: ASSEMBLER

162 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

11.5 Relocatable Assembling and Absolute Assembling
The as33 supports both the relocatable assembling and the absolute assembling. It even allows to develop software
with relocatable modules and absolute modules existing in a mixed fashion.

11.5.1 Relocatable Assembling
The relocatable assembling is a method that assembles files without fixing addresses, so that the program will be
able to work wherever on the memory the modules may be mapped. Therefore, no absolute address specification
will be made in the source files. The C Compiler delivers assembly source files in the relocatable format.

In the relocatable assembling, the assembler performs the processing by applying the relative addresses from top of
each section to the individual codes.
This information is output in the object file along with the codes, and all the addresses are determined by the
processing of the Linker lk33.
Modules assembled by this method can freely be combined with other modules. This will let you use
general-purpose modules thus assembled relocatably as a library in the software development for other models.
For relocation by the Linker lk33, refer to Chapter 12, "Linker".
Refer to Chapter 15, "Librarian", for making libraries using the output objects.

The .abs pseudo-instruction, .org pseudo-instruction, and .set pseudo-instruction cannot be employed in the
relocatable source files.

11.5.2 Absolute Assembling
The absolute assembling is a method that assembles source files by priory specifying the addresses where codes
are to be mapped.
However, since the usefulness of the source files for various purposes is lost when they are linked with other
modules, do not use this method unless you are creating a simple test program.
The absolute assembling is specified by the .abs pseudo-instruction written in the first line of the source file, and
the address are set by using the .org pseudo-instruction. The .org pseudo-instruction and the .set pseudo-instruction
to define absolute addresses can be employed only in the absolute source.

Example:
 .abs ...Specifies the absolute assembling.
 .code
 .org 0x80000 ...Maps the following codes from address 0x80000.
 .word 0x80004
BOOT:
 ext 0x20
 ld.w %r8,0x0
 ld.w %sp,%r8 ; set SP
 ld.w %r8,0x0 ; set global pointer
 :
 .data
 .org 0xC0000 ...Maps the following data from address 0xC0000.
 .word 0x12345678

This method causes all the codes in that file to have absolute addresses. It cannot make part of a file relocatable.
However, even when a program is created in the form of one absolute source file, it needs to be passed through the
Linker lk33 in order to obtain an execution file in which final addresses are defined. (In case of one file, remove
the check on the [use .cm file] in the Work Bench wb33 for linking.)

Make sure there is only one instance of the CODE section, DATA section, and BSS section in each absolute file.
Basically, create a relocatable assembly source file, then relocate it by using the map function of the lk33.

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 163
C COMPILER PACKAGE MANUAL (ver.3)

11.6 Scope
Symbols defined in each source file can freely be referred to within that file. Such reference range of symbols is
termed scope.
This scope remains the same both in the relocatable and the absolute assembling. Usually, reference can be made
only within a defined file. If a symbol that does not exist in that file is referenced, the as33 creates the object file
assuming that the symbol is an undefined symbol, leaving the problem to be solved by the lk33.
If your development project requires the use of multiple source files, it is necessary for the scope to be extended to
cover other source files. The as33 has the pseudo-instructions (.global, .comm) that can be used for this purpose.
Use these instructions to declare that the symbol is a global symbol, so that it can referenced in other source files.
Symbols that can be referenced in only the file where they are defined are called "local symbols". Symbols that are
declared to be global are called "global symbols". Local symbols – even when symbols of the same name are
specified in two or more different files – are handled as different symbols. Global symbols – if defined as
overlapping in multiple files – cause a warning to be generated in the lk33.

Example:
 file1: file in which global symbol is defined
 .global SYMBOL ...Global declaration of a symbol which is to be defined in this file.
SYMBOL:
 :
 :
LABEL: ...Local symbol
 : (Can be referred to only in this file)
 .comm VAR1 4

 file2: file in which a global symbol is referred
 ext SYMBOL@rh
 ext SYMBOL@m
 call SYMBOL@rl ...Symbol externally referred
 :
 ext VAR1@h
 ext VAR1@m
 ld.w %r1, VAR1@l ...Symbol externally referred
LABEL: ...Local symbol
 : (Treated as a different symbol from LABEL of file1)

The as33 regards the symbols SYMBOL and VAR1 in the file2 as those of undefined addresses in the assembling,
and includes that information in the object file it delivers. Those addresses are finally determined by the processing
of the linker.

CHAPTER 11: ASSEMBLER

164 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

11.7 Definition of Sections
In addition to the programs that control the CPU and peripheral circuits, the source file contains permanently fixed
data, such as character generators, which does not require initialization, symbols for the variables stored in RAM
and I/O memory control registers. These data and symbols, which bear different attributes, must finally be
relocated into the corresponding physical memory locations by the linker, for example, programs must be
relocated into the program area in ROM, and fixed data into the data area in ROM. For this reason, the Assembler
is designed in such a way that the object code is classified by attribute into each section.
The following three sections exist:
1. CODE section Block for programs
2. DATA section Block for the data to be written into ROM
3. BSS section Block that is mapped into RAM, etc.

To allow to specify these sections in assembly source files, the as33 comes provided with pseudo-instructions.
Since the Compiler generates pseudo-instructions, you need not be concerned about sections when programming
the C source.

CODE section
 The .code pseudo-instruction defines a CODE section. A statement from this instruction to an instruction that

defines some other section is assumed to be a program code/data, and is an object for the CODE section. The
source file will be regarded as a CODE section by default. Therefore, the part that goes from top of the file,
to another section will be processed as CODE section.

DATA section
 The .data pseudo-instruction defines a DATA section. A statement from this instruction to an instruction that

defines some other section is assumed to be data, and is an object for the DATA section. Therefore, nothing
but the symbols to reference addresses and the pseudo-instructions to define data (.word, .half, .byte, .ascii,

 .space), those to define alignment (.align), and comments can be written in this area.
 Although data can be written in the CODE section too, if you want the data blocks to be stored separately

from programs after they are linked, data must be written in the DATA section.

BSS section
 The .comm pseudo-instruction and the .lcomm pseudo-instruction are designed to define the symbol and size

of a variables area. When either one of the instructions is described, the symbol will be set in a BSS section.
Although the BSS section basically consists in a RAM area, it can as well be used as a data memory area,
such as I/O memory. Code definition in this area is meaningless in embedded type microcomputers, such as
those of the E0C33 Family. When some other instruction or definition follows the .comm or .lcomm
pseudo-instruction, the section changes to the type defined prior to the BSS section.

 Although this section has no actual data as an object, it is required to generate symbol and map information.

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 165
C COMPILER PACKAGE MANUAL (ver.3)

Section management for relocatable source
 In the relocatable assembling, identical sections will be joined together in order to create an object file

composed of three integrated sections of CODE, DATA and BSS. Even for a section having no data
described or no definition made, the section information will be delivered in the object file.

 Sample definition of sections

 :
 CODE1 (Program)
 :
.data
 :
 DATA1 (Data definition)
 :
.comm RAM0,1
 :
 BSS1 (RAM area definition)
 :
.code
 :
 CODE2 (Program)
 :
.data
 :
 DATA2 (Data definition)
 :
.code
 :
 CODE3 (Program)
 :

 If you define sections in the manner shown above, the as33 will create an absolute object file composed in

the following manner:

(0x00000000) CODE1

 CODE2

 CODE3

CODE section

(0x00000000) DATA1

 DATA2
DATA section

(0x00000000) BSS1 BSS section

CHAPTER 11: ASSEMBLER

166 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Section management for absolute source
 When a source program is divided with the pseudo-instructions mentioned above or the .org

pseudo-instruction in the absolute assembling, the assembler will create the object file by treating all of the
divided parts as independent sections. Moreover, when the types of sections are to be modified with the
section defining pseudo-instructions, the start address of each individual section has to be specified using
the .org pseudo-instruction.

 Sample definition of sections

.abs
.code
.org 0x80100
 :
 CODE1 (Program) → Section 1
 :
.data
.org 0x80f00 ...If this specification is omitted, a DATA section begins from the address
 : following CODE1.
 DATA1 (Data definition) → Section 2
 :
.org 0x0
.comm RAM0,1 → Section 3 (BSS area definition)

 If you define sections in the manner indicated above, the as33 will create an absolute object file having three

sections.

Precaution
 When there appears in a section a statement which is designed for other section, an error will be issued.
 Example: .data
 ld.w %r1, %r0 ...Error

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 167
C COMPILER PACKAGE MANUAL (ver.3)

11.8 Assembler Pseudo-Instructions
The assembler pseudo-instructions are not converted to execution codes, but they are designed to control the
assembler or to set data.
For discrimination from other instructions, all the assembler pseudo-instructions begin with a period (.). Describe
all the instructions in lowercase. Parameters are discriminated between uppercase and lowercase.

11.8.1 Absolute Assembling Pseudo-Instruction (.abs)

.abs pseudo-instruction

Instruction format

 .abs

Function
 Specifies the absolute assembling. With this specification done, the as33 performs assembling by handling

the file as an absolute file. The top of a file is at address 0x0 by default.

Precautions
 • The .abs pseudo-instruction needs to be specified ahead of other basic instructions and pseudo-instructions.

Describe it in the first line of a file.

 • The pseudo-instructions (.org, .set) dedicated to the absolute assembling cannot be used without the .abs

pseudo-instruction described. If they are used in such situation, an error will result.

CHAPTER 11: ASSEMBLER

168 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

11.8.2 Section Defining Pseudo-Instructions (.code, .data)

.code pseudo-instruction

Instruction format

 .code

Function
 Declares the start of a CODE section. Statements following this instruction are assembled as those to be

mapped in the CODE section, until another section is declared.
 The CODE section is set by default in the as33. Therefore, the .code pseudo-instruction can be omitted at top

of a source file. Always describe it when you change a section to a CODE section. For details on the sections,
refer to Section 11.7 "Definition of Sections".

Precautions
 • A CODE section can be divided among multiple locations of a source file for purposes of definition

(describing the .code pseudo-instruction in the respective start positions).
 However, not that multiple CODE section cannot be defined in an absolute source file. The total of sections

that can be defined in one source file is maximum 3 in the absolute assembling.

 • In the case of an absolute source, be sure to specify an address by the .org pseudo-instruction in the line

preceding or following the .code pseudo-instruction.

.data pseudo-instruction

Instruction format

 .data

Function
 Declares the start of a DATA section. Statements following this instruction are assembled as those to be

mapped in the DATA section, until another section is declared.
 For details on the sections, refer to Section 11.7 "Definition of Sections".

Precautions
 • In a DATA section, nothing other than the data defining pseudo-instructions (.word, .half, .byte, .ascii

and .space), .alignment pseudo-instructions (.align), location counter control pseudo-instructions (.org),
symbols, and comments can be described. If anything else is described, it will result in an error.

 • A DATA section can be divided among multiple locations of a source file for purposes of definition

(describing the .data pseudo-instruction in the respective start positions).
 However, not that multiple DATA section cannot be defined in an absolute source file. The total of sections

that can be defined in one source file is maximum 3 in the absolute assembling.

 • In the case of an absolute source, be sure to specify an address by the .org pseudo-instruction in the line

preceding or following the .data pseudo-instruction.

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 169
C COMPILER PACKAGE MANUAL (ver.3)

11.8.3 Area Securing Pseudo-Instructions (.comm, .lcomm)

.comm pseudo-instruction

Instruction format

 .comm <Symbol>[,] <Size>

<Symbol>: Symbols for memory access (address reference)
 • The 1st character is limited to a–z, A–Z and _.
 • The 2nd and the subsequent character can use a–z, A–Z, 0–9 and _.
 • Up to 32 characters can be used for symbol names.
 • Uppercase and lowercase are discriminated.
 • One or more spaces, tabs or a comma (,) are necessary between instruction and symbol.

<Size>: Number of bytes of the area to be secured
 • Only decimal, binary and hexadecimal numbers can be described.
 • One or more spaces, tabs or a comma (,) are necessary between symbol and size.

 Sample description:
 .comm FOO 4

Function
 Sets an area of the specified size in the BSS section, and creates a symbol indicating its top address with the

specified name. By using this symbol, you can describe an instruction to access the memory. The symbols
created by the .comm pseudo-instruction become global symbols, which can be referred to externally from
other modules.

 Only the .comm and .lcomm pseudo-instructions are processed as BSS sections. If some other statement
follows the .comm or .lcomm pseudo-instruction, the previous section type applies from that point.

 For details on the sections, refer to Section 11.7 "Definition of Sections".

Precautions
 • A BSS section can be divided among multiple locations of a source file for purposes of definition (describing

the .comm pseudo-instruction in the respective start positions).
 However, not that multiple BSS section cannot be defined in an absolute source file. The total of sections that

can be defined in one source file is maximum 256 in the absolute assembling.

 • The address to be assigned the symbol is adjusted to the boundary according to the data size.
 Data size: 1 Byte boundary
 2 Half word boundary
 3 or more Word boundary

CHAPTER 11: ASSEMBLER

170 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

.lcomm pseudo-instruction

Instruction format

 .lcomm <Symbol>[,] <Size>

 <Symbol>: Symbols for memory access (address reference)
 • The 1st character is limited to a–z, A–Z and _.
 • The 2nd and the subsequent character can use a–z, A–Z, 0–9 and _.
 • Up to 32 characters can be used for symbol names.
 • Uppercase and lowercase are discriminated.
 • One or more spaces, tabs or a comma (,) are necessary between instruction and symbol.

 <Size>: Number of bytes of the area to be secured
 • Only decimal, binary and hexadecimal numbers can be described.
 • One or more spaces, tabs or a comma (,) are necessary between symbol and size.

 Sample description:
 .lcomm BAR 0x10

Function
 Sets an area of the specified size in the BSS section, and creates a symbol indicating its top address with the

specified name. By using this symbol, you can describe an instruction to access the memory. The symbols
created by the .lcomm pseudo-instruction are local symbols, which cannot be referred to from other modules.

 Only the .lcomm and .comm pseudo-instructions are processed as BSS sections. If some other statement
follows the .lcomm or .comm pseudo-instruction, the previous section type applies from that point.

 For details on the sections, refer to Section 11.7 "Definition of Sections".

Precautions
 • A BSS section can be divided among multiple locations of a source file for purposes of definition (describing

the .lcomm pseudo-instruction in the respective start positions).
 However, not that multiple BSS section cannot be defined in an absolute source file. The total of sections that

can be defined in one source file is maximum 256 in the absolute assembling.

 • The address to be assigned the symbol is adjusted to the boundary according to the data size.
 Data size: 1 Byte boundary
 2 Half word boundary
 3 or more Word boundary

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 171
C COMPILER PACKAGE MANUAL (ver.3)

11.8.4 Location Counter Control Pseudo-Instruction (.org)

.org pseudo-instruction

Instruction format

 .org <Address>

 <Address>: Absolute address specification
 • Only decimal, binary and hexadecimal numbers can be described.
 • The addresses that can be specified are from 0 to 0xfffffff.
 • One or more spaces, tabs or a comma (,) are necessary between the instruction and the

address.

 Sample description:
 .org 0
 .org 0x80000

Function
 Specifies an absolute address in an absolute assembly source file. The as33 performs assembling by assuming

that statements following this instruction start from the specified address.

Precautions
 • The .org pseudo-instruction cannot be used (within a relocatable source), if the .abs pseudo-instruction was

not described. If used under such condition, an error will result.

 • The .org pseudo-instruction specifies a section start address with the operand value. Note, however, if an odd

address is specified, the address may be adjusted to the boundary address according to the subsequent
instruction or definition.

CHAPTER 11: ASSEMBLER

172 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

11.8.5 Symbol Defining Pseudo-Instruction (.set)

.set pseudo-instruction

Instruction format

 .set <Symbol>[,] <Address>

 <Symbol>: Symbols for memory access (address reference)
 • The 1st character is limited to a–z, A–Z and _.
 • The 2nd and the subsequent character can use a–z, A–Z, 0–9 and _.
 • Uppercase and lowercase are discriminated.
 • One or more spaces, tabs or a comma (,) are necessary between the instruction and the

symbol.

 <Address>: Absolute address specification
 • Only decimal, binary, and hexadecimal numbers can be described.
 • The addresses that can grammatically be specified are from 0 to 0xfffffff.
 • One or more spaces, tabs or a comma (,) are necessary between the instruction and the

address.

 Sample description:
 .set DATA1 0x80000

Function
 Defines an absolute address (32-bit) for a symbol.

Precautions
 • The .set pseudo-instruction cannot be used (within a relocatable source), if the .abs pseudo-instruction was

not described. If used in such situation, an error will result.

 • The set symbol becomes a local symbol. To use it as a global symbol, global declaration using the .global

pseudo-instruction is necessary.

Reference
 To define general-use data and character strings, use the #define pseudo-instruction of the preprocessor. (See

Section 9.5.2.)

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 173
C COMPILER PACKAGE MANUAL (ver.3)

11.8.6 Data Defining Pseudo-Instruction (.word, .half, .byte, .ascii, .space)

.word pseudo-instruction

Instruction format

 Format 1) .word <Data>[[,] <Data> . . . [,] <Data>]
 Format 2) .word <Symbol>

 <Data>: Word data (32 bits)
 • Only decimal, binary and hexadecimal numbers can be described.
 • The data that can be specified are from 0 to 0xffffffff.
 • One or more spaces, tabs or a comma (,) are necessary between the instruction and the first

data and between one data and another.

 <Symbol>: Symbol name that has been defined

 Sample description:
 .word 0x10000000 0x20000000 0x30000000 0x4000000
 .word 256
 .word FOO

Function
 Format 1) Defines word data. Data can be defined in a CODE section or DATA section.

 Format 2) Defines the symbol value as a word data. Data can be defined in a CODE section or DATA

section.

Precautions
 • The .word pseudo-instruction can be used in a CODE section or a DATA section.

 • Two or more data can be defined at a time in Format 1. However, one line is limited to 255 characters,

including blank characters.

 • The defined data is located beginning with a word boundary address unless it is immediately preceded by

the .align pseudo-instruction. If the current position is not a word boundary address, 0x00 is set in the
interval from that position to the nearest word boundary address.

.half pseudo-instruction

Instruction format

 .half <Data>[[,] <Data> . . . [,] <Data>]

 <Data>: Half word data (16 bits)
 • Only decimal, binary and hexadecimal numbers can be described.
 • The data that can be specified are from 0 to 0xffff.
 • One or more spaces, tabs or a comma (,) are necessary between the instruction and the first

data and between one data and another.

 Sample description:
 .half 0xfffc 0xfffd 0xfffe 0xffff
 .half 256

Function
 Defines half word data. Data can be defined in a CODE section or DATA section.

Precautions
 • The .half pseudo-instruction can be used in a CODE section or a DATA section.

 • Two or more data can be defined at a time. However, one line is limited to 255 characters, including blank

characters.

 • The defined data is located beginning with a half word boundary address, unless it is immediately preceded

by the .align pseudo-instruction. If the current position is an odd address, 0x00 is set at the current position.

CHAPTER 11: ASSEMBLER

174 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

.byte pseudo-instruction

Instruction format

 .byte <Data>[[,] <Data> . . . [,] <Data>]

 <Data>: Byte data (8 bits)
 • Only decimal, binary and hexadecimal numbers can be described.
 • The data that can be specified are from 0 to 0xff.
 • One or more spaces, tabs or a comma (,) are necessary between the instruction and the first

data and between one data and another.

 Sample description:
 .byte 0xfc 0xfd 0xfe 0xff
 .byte 255

Function
 Defines byte data. Data can be defined in a CODE section or DATA section.

Precautions
 • The .byte pseudo-instruction can be used in a CODE section or a DATA section.

 • Two or more data can be defined at a time. However, one line is limited to 255 characters, including blank

characters.

 • The defined data is located at the current address, unless it is immediately preceded by the .align

pseudo-instruction. If byte data is defined at an even address of the CODE section and an instruction is
written next, 0x00 is set at an odd address next to the data-defined address to ensure that the instruction will
begin with a half word boundary.

.ascii pseudo-instruction

Instruction format

 .ascii "<Character string>"

 <Character string>:
 ASCII character string
 • The character code that can be specified are from 0 to 0xff.
 • ASCII characters and an escape sequence that begins with a symbol "\" can be written in a

character string. For example, if you want to set double quotations in a character string, write
\"; to set a \, write \\.

 • One or more spaces, tabs or a comma (,) are necessary between the instruction and the
character string.

 Sample description:
 .ascii "abcd \"E\" fg" (=abcd "E" fg)

Function
 Defines a character string. Data can be defined in a CODE section or DATA section.

Precautions
 • The .ascii pseudo-instruction can be used in a CODE section or a DATA section.

 • The defined data is located beginning with the current address first, unless it is immediately preceded by

the .align pseudo-instruction.

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 175
C COMPILER PACKAGE MANUAL (ver.3)

.space pseudo-instruction

Instruction format

 .space <Size>

 <Size>: Number of bytes to be filled with 0x0
 • Only decimal numbers can be described.
 • The size that can be specified are from 1 to 2147483647.
 • One or more spaces, tabs or a comma (,) are necessary between the instruction and the size.

 Sample description:
 .space 16

Function
 An area of the specified size is set to 0x0. Such an area can be defined in a CODE or a DATA section.

Precautions
 • The .space pseudo-instruction can be used in a CODE section or a DATA section. If used in a BSS section,

an error will result.

 • An area of the specified size beginning from the current address is set to 0x0, unless it is immediately

preceded by the .align pseudo-instruction.

Regarding the alignment of definition data
Unless it is immediately preceded by the .align pseudo-instruction, data is located beginning with a boundary
address matched to the data size by a data definition pseudo-instruction.
In the CODE section, instructions are located beginning with a half word boundary. Therefore, it is possible that a
blank space occurs in an interval from the last address of defined data to the next instruction or data. The blank
addresses are filled with 0x0.
Examples:
 jp SYMBOL
 .byte 0x41 ...������������	��
�����
 ld.w %r1, %r7

 .word 0x00
 .byte 0x01 ...T�
����������	������
�������	��
�����
 .word 0x02

CHAPTER 11: ASSEMBLER

176 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

11.8.7 Alignment Pseudo-Instruction (.align)

.align pseudo-instruction

Instruction format

 .align <Boundary specifying value>

 <Boundary specifying value>:
 Value to specify a boundary
 • The values that can be specified are 0 to 8.
 • Specify alignment to a 2� through 2� byte boundary.
 • One or more spaces, tabs or a comma (,) are necessary between the instruction and

specification value.

 Sample description:
 .align 2 (aligned to a 4-byte boundary)

Function
 The data that appears immediately after this pseudo-instruction is aligned to a 2� byte boundary. (N =

boundary specification value)

Precaution
 The .align pseudo-instruction is valid for only the immediately following data definition pseudo-instruction.

Therefore, when defining data that requires alignment, you need to use the .align pseudo-instruction for each
data definition pseudo-instruction.

11.8.8 Global Declaring Pseudo-Instruction (.global)

.global pseudo-instruction

Instruction format

 .global <Symbol>

 <Symbol>: Symbol to be defined in the current file
 • One or more spaces, tabs or a comma (,) are necessary between the instruction and the

symbol.

 Sample description:
 .global SUB1

Function
 Makes global declaration of a symbol. The declaration made in a file with a symbol defined converts that

symbol to a global symbol which can be referred to from other modules.

Precautions
 • The symbols referenced from other modules must be declared to be global. The symbols defined by

the .comm pseudo-instruction are global symbols, so there is no need to use the .global pseudo-instruction to
make a declaration.

 • The symbols not declared in the current file are processed as global symbols that are declared in some other

file.

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 177
C COMPILER PACKAGE MANUAL (ver.3)

11.8.9 List Control Pseudo-Instructions (.list, .nolist)

.nolist pseudo-instruction

Instruction format

 .nolist

Function
 Controls output to the assembly list file.
 The .nolist pseudo-instruction stops output to the assembly list file after it is issued.
 By default (unless otherwise specified) all statements are output to the assembly list file.

Precaution
 The as33 delivers assembly list files only when it is started up with the -l option specified. Therefore, this

instruction is invalid, if the -l option was not specified.

.list pseudo-instruction

Instruction format

 .list

Function
 Controls output to the assembly list file.
 The .list pseudo-instruction resumes from there the output which was stopped by the .nolist

pseudo-instruction.

Precaution
 The as33 delivers assembly list files only when it is started up with the -l option specified. Therefore, this

instruction is invalid, if the -l option was not specified.

CHAPTER 11: ASSEMBLER

178 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

11.8.10 Debugging Pseudo-Instructions (.file, .endfile, .loc, .def)

.file, .endfile, .loc pseudo-instructions

Instruction formats

 (1) .file "<File name>"
 (2) .endfile
 (3) .loc <Line No.>

Function
 These pseudo-instructions are used to add source information to the object file, and are generated by the C

Compiler gcc33 and the Preprocessor pp33.
 The as33 outputs object files in srf33 format, including debugging information conforming to these

instructions. This debugging information is necessary to perform source level debugging by the Debugger
db33. Even when the -g option of the as33 is not specified, the debugging information will not be cut off.

 The .file pseudo-instruction outputs information indicating the source file's start position. The code following
this pseudo-instruction is the content of the file specified by <file name>. It is inserted at the beginning of the
source file or an include file at a place where a file is changed.

 The .endfile pseudo-instruction outputs information indicating the end position of the file. It is not inserted at
the end position of an include file.

 The .loc pseudo-instruction outputs information indicating the line numbers of instructions in the source file.
It is not added to comments or anywhere other than instruction lines.

.def pseudo-instruction

Instruction format

 .def <Symbol name> [, <Parameter>, . . . <Parameter>], endef

Function
 This pseudo-instruction is used to add the C source's symbol information to the object file, and is generated

for each symbol by the gcc33. The pp33 does not generate this information.
 When the -g option is specified, the as33 outputs the object file in srf33 format, including the debugging

information that conforms to this instruction. This debugging information is required when the Debugger
db33 symbolic-debugs the C source. If the -g option of the as33 is not specified, this debugging information
is cut.

 <parameter> indicates such information as symbol type and storage class. For details, refer to Section 6.6,

"Debugging Information".

Insertion of debugging information by C Compiler and Preprocessor
 When the -g option is specified ([debug info] checked on the work bench) as a start option of the gcc33 and

pp33, the gcc33 and pp33 will insert debugging pseudo-instructions in the output file (assembly source file).
The pp33 does not insert the .def pseudo-instruction.

 Therefore, you do not have to describe these pseudo-instructions in creating source files.

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 179
C COMPILER PACKAGE MANUAL (ver.3)

11.9 Assembly List File
The assembly list file is an assembly source file that carries assembled results (addresses and object codes) added
to the first half of each line. It is delivered only when the startup option (-l) is specified.
If the .nolist pseudo-instruction is written in the source, no contents from that position to the end of the file or
the .list pseudo-instruction are output.

Its file format is a text file, and the file name, <File name>.lst. (The <File name> is the same as that of the input
source file.)
The format of each line of the assembly list file is as follows:

Address Code Source Statement

Example:
������������������������ ������ ��		
����

��������������������������		
������������

��������������������������		
���	�����

������������������������

�� �!��� ���������������	���"#���
������$%&�

��������������������������������'������� ����� ����	�����	��
���(�!����� ��

������������������������

������������������������ �)	���

������������������������ �*	���#++,���#++,�-./,+$�

�����������������������#++,0�

������������������������ ��)� ��

�������1��)������������� �
� � ��� ��� ���*� (�!2� !���

�������3��3)�!���������� ���*� (�!2� ��

������������������������ ��)� �

�������!����!���������� ���*� (��2(�!� ����
����

������������������������ ��)� ��

����������3)�!���������� ���*� (�!2� �� ����
���	�����	��
���

������������������������ ��)� ��

�������)��)������������� �
� ����4�5� ���)���� ����� ���	
	������

����������)������������� �
� ����4���

���������)������������)���� ����4���

������������������������ ��)� 1�

���������������������� 6�� #++,� ��� 6�� #++,� ��������
7��		��

������������������������ �

������������������������ ���
��

����������������������� �*	������

��������������������

������������������������

������������������������ �)	���
���1�

������������������������ ���������

Content of address
 In the case of an absolute module, an absolute address will be delivered in hexadecimal number.
 In the case of a relocatable module, a relative address will be delivered in hexadecimal number from the top

of each section.

Content of code
 CODE section: The instruction codes and the defined data are delivered in hexadecimal numbers.
 DATA section: The data defined by the data defining pseudo-instruction are delivered.
 BSS section: Irrespective of the size of the secured area, 00 is always delivered here.

 ∗ Only the address defined for a symbol (top address of the secured area) is delivered as the address of the

BSS section.

Precaution
 The assembler sets the operand (immediate data) of the code that refers to a symbol to 0. The immediate data

will be decided by the linker.

CHAPTER 11: ASSEMBLER

180 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

11.10 Error/Warning Messages
Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "as33.err" file.
If the as33 is started up using the wb33's [AS33] button, the message is output to "wb33.err". When execution is
completed, a message is displayed in the output window (default).

11.10.1 Errors
The errors produced in the as33 are classified into two groups: system errors and assembler errors.

Table 11.10.1.1 List of system error messages
Content

Cannot secure memory space.
Cannot open the file.
Cannot read/write from/to the opened file.

Error message
<file name>: Error: Out of memory
<file name>: Error: File open error
<file name>: Error: File access error

The assembler errors are produced when the source contains a syntax or description which cannot be processed by
the as33. No object file will be delivered. An assembly list file will be delivered, including error messages.

Table 11.10.1.2 List of assembler error messages
Content

The source file has the extension (.o) same as the output file.
The file name exceeds 255 characters.
The path (directory and file name) exceeds 255 characters.
The line exceeds the limit number of characters.
The symbol name surpassed the limit number of characters.
The numeric data exceeds the limit number of digit.
There are more than two statements described in one line.
There is an illegal character in the statement.
Non-existing instruction was used.
The specified register name has an error.
A non-existing pseudo-instruction was used.
The symbol mask has a description error.
The description of the instruction has an error.
The description of the pseudo-instruction has an error.
The same symbol name was declared in multiple locations.
The same symbol name was defined in multiple locations.
There is an impermissible statement described in the current
section.
The address is duplicated.
The limit number of sections was surpassed.

Error message
Error: Invalid file name.
Error: Filename length limit exceeded - 255.
Error: Directory path length limit exceeded - 255.
Error: Line length limit exceeded - 255.
Error: Symbol name length limit exceeded - 32.
Error: Token length limit exceeded - 64.
Error: Multiple statements on the same line.
Error: Invalid statement syntax.
Error: Invalid instruction. - "<instruction>"
Error: Invalid register. - "<register>"
Error: Invalid directive. - "<directive>"
Error: Invalid symbol mask. - "<mask>"
Error: Invalid instruction syntax.
Error: Invalid directive syntax.
Error: Multiply declared symbol. - "<symbol>"
Error: Multiply defined symbol. - "<symbol>"
Error: Incorrect section type for statement.

Error: Memory mapping conflict.
Error: Section count limit exceeded - 256.

 ∗ "Error" is preceded by an input file name and a line number displayed in the form of "<file name>(<line
No.>)". If the source file that includes the debugging information is input, the message is followed by "near
<file name>(<line No.>)". This consists of the original source file name (*.c, *.s) and line number indicated
by the debugging information.

CHAPTER 11: ASSEMBLER

E0C33 FAMILY EPSON 181
C COMPILER PACKAGE MANUAL (ver.3)

11.10.2 Warning
When a warning appears, the assembler will keep on processing, and terminates the processing after displaying a
warning message, unless any other error is produced. An object file and assembly list file will be delivered.

Table 11.10.2.1 List of warning messages
Content

The operand value exceed the specifiable range.
An invalid escape sequence is used in the .ascii pseudo-
instruction.
The character code represented in oct or hex in the .ascii
pseudo-instruction exceeds 0xff.
No value written in hex is found for the hex value specification
in the .ascii pseudo-instruction.

Warning message
Warning: Numeric range.
Warning: Unknown escape sequence.

Warning: Escape sequence out of range for
character.

Warning: \x used with no following hex digits.

 ∗ "Warning" is preceded by an input file name and a line number displayed in the form of "<file name>(<line

No.>)." If the source file that includes the debugging information is input, the message is followed by "near
<file name>(<line No.>)." This consists of the original source file name (*.c, *.s) and line number indicated
by the debugging information.

11.11 Precautions

(1) The maximum number of object files that can be linked are 4,000 files including library modules. If this limit

is exceeded, an error occurs in the linker.

(2) When performing C source-level or symbolic debugging with the db33, always be sure to specify the -g

option before you execute the as33.
 Even when the -g option is specified in the gcc33 (the same applies in the case of the pp33), all symbol

information is cut unless the -g option is specified in the as33. The source information is not cut. Conversely,
if the -g option is specified in the as33 but no -g option is specified in the gcc33 (the same applies in the case
of the pp33), symbol information consisting only of symbol names and addresses is added during assembly.
Furthermore, unless the -g option is specified in the lk33, all debugging information is cut during linkage.

 Make sure that the debugging information (debug pseudo-instructions) in the source file is created only by

specifying the -g option of the gcc33 and pp33, and not by any other method. Also be sure not to correct the
debugging information that is output. Corrections could cause the as33, lk33, db33 or dis33 to malfunction.

CHAPTER 12: LINKER

182 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Chapter 12 Linker
This chapter describes the functions of the Linker lk33.

12.1 Functions
The Linker lk33 (hereafter called the "lk33") is a software that generates executable object files. It provides the
following functions:
• Links together multiple object modules including libraries to create one executable object file.
• Resolves external reference from one module to another.
• Relocates relative addresses to absolute addresses.
• Delivers debugging information, such as line numbers and symbol information, in the object file created after

linking.
• Capable of outputting link map files and symbol files.

12.2 Input/Output Files

file.cm

lk33.err

Command file

Link map file

Symbol file

Error
file

Debugger db33
Disassembler dis33

Binary/HEX Converter hex33

Instruction Extender ext33

Assembler as33

Linker
lk33

file.o

file.srf

file.sym

file.lib ********.lib

file.map

ANSI Library
Emulation Library

User
Library

Library files

Object files

Absolute
object file

Fig. 12.2.1 Flowchart

12.2.1 Input Files

Object file

File format: Binary file in srf33 format
File name: <File name>.o
Description: Object file of individual modules created by the Assembler as33.

Library file
File format: Binary file in library format
File name: <File name>.lib
Description: ANSI library files, emulation library files and user library files created by the Librarian lib33.

Linker command file

File format: Text file
File name: <File name>.cm
Description: File to specify object file names to be input and the start address of each section.
 Since the template of a command file is created by [Make edit] of the wb33, correct it with a

general-purpose editor before use.
 It is input to the lk33 when the -c startup option is specified.
 For its contents, refer to Section 12.5 "Linker Commands".

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 183
C COMPILER PACKAGE MANUAL (ver.3)

Absolute object file
 File format: Binary file in srf33 format
 File name: <File name>.srf
 Description: Executable object file generated by the Linker lk33. This file can be linked only when

the -inclink option is specified. Note that ".srf" files cannot be relocated by specifying
an address since those absolute addresses have been decided.
Furthermore, the absolute object file for the loader that was generated with the -ld
option cannot be linked.

12.2.2 Output Files

Absolute object file
 File format: Binary file in srf33 format
 File name: <File name>.srf
 Output destination: Current directory
 Description: Object file in executable format that can be input in the Debugger db33. All the modules

comprising one program are linked together in the file, and the absolute addresses that
all the codes will be mapped are determined. It also contains the necessary debugging
information in srf33 format.

 The file name is decided in the following manner:
 In case of one single module:
 The same name as the input object file.
 When link command files are input:
 The same name as that of the file to be linked first, or a name specified by the

command.
 For the contents of the output object file, refer to Appendix,"srf33 File Structure".

Link map file
 File format: Text file
 File name: <File name>.map
 Output destination: Current directory
 Description: Mapping information file showing from which address of a section each input file was

mapped. The file is delivered when the -m startup option is specified.
 This file is used to optimize the codes by the Instruction Extender ext33.

Symbol file
 File format: Text file
 File name: <File name>.sym
 Output destination: Current directory
 Description: Symbols defined in all the modules and their address information are delivered in this

file. The file is delivered when the -s startup option is specified.
 This file is used to optimize the codes by the Instruction Extender ext33.

Error file
 File format: Text file
 File name: lk33.err
 Output destination: Current directory
 Description: File delivered when the startup option (-e) is specified. It records the information which

the lk33 outputs to the Standard Output (stdout), such as error messages.

CHAPTER 12: LINKER

184 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

12.3 Starting Method

12.3.1 Startup Format

General form of command line

Format 1) Linking of multi modules
 lk33 ^ [<Startup option>] ^ -c ^ <Linker command file name>

Format 2) Linking of single module
 lk33 ^ [<Startup option>] ^ <Input object file name>

 ^ denotes a space.
 [] indicates the possibility to omit.

 The extension should be included in the file name.
 Format 2 can also specify two or more object files. Note, however, that the limitation of DOS

command lines applies to the number of characters in Format 2.

Operations on work bench

Format 1) Linking of multi modules
 Select options and a command file, then click the [LK33] button. The [use .cm file] button must be

selected.

Format 2) Linking of single module
 Remove the check on the [use .cm file] button and select object files (.o), then click the [LK33] button.

12.3.2 Startup Options
The lk33 comes provided with the following five types of startup options:

-g
Function: Addition of debugging information
Specification on wb33: Check [debug info].
Explanation: • Creates an output file containing debugging information.
 • Always specify this function when you perform source level debugging. Failure to

specify it will cut off the debugging information which was added by the C Compiler
gcc33, Preprocessor pp33 and Assembler as33.

-c <Linker command file name>
Function: Specification of linker command file
Specification on wb33: Check [use .cm file].
Explanation: • Inputs a linker command file.

-s
Function: Output of symbol file
Specification on wb33: Check [symbol,map file].
Explanation: • Outputs a symbol file.

-m
Function: Output of link map file
Specification on wb33: Check [symbol,map file].
Explanation: • Outputs a link map file.

-e
Function: Output of error file
Specification on wb33: None
Explanation: • Delivers also in a file (lk33.err) the contents to be output by the lk33 through the

Standard Output (stdout), such as error messages.

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 185
C COMPILER PACKAGE MANUAL (ver.3)

The options can be described in the command file except for the -c option.

When inputting options in the command line, one or more spaces are necessary before and after the option.
Example: c:\cc33\lk33 -g -e -s -m -c test.cm

Note: When specifying a command file with the -c option, write other options at positions preceding the

-c option or within the command file. Any options entered after the -c option are ignored.

12.4 Messages
The lk33 delivers its messages through the Standard Output (stdout).
If the lk33 is started up by using the wb33's [LK33] button, the message is output to "wb33.err". When execution
is completed, a message is displayed in the output window (default).

End message
 The lk33 outputs only the following end message when it ends normally.

 ��������	
���

Usage output
 If no file name was specified or an option was not specified correctly, the lk33 ends after delivering the

following message concerning the usage:

�������������������

��	����������������������������� !!��

"#$��%�

����
����&�	����#'�()�
��$��#*�

�	����#%�

����+��%�	��,-��
���)�
���
���������

����+��%������$����.,����)���$���������,�	,��)�
��

����+#�%������$���#��.�
���)���$�������#����

����+��%������$����$	���)���$��������$	��

����+-�����$�/�
��%����-,���
����-���$�#�)��������$�/�
����-���

�,�	,�%�

������/����.0�-��)�
����#�)��

��$�	
�%�

����
����+��+��+#�+��+-���#��-��

When error/warning occurs
 If an error is produced, an error message will appear before the end message shows up.
 Example: �����%�1����$����
�.$
�.##�#��.�
��
� � ��������	
���

 In the case of an error, the lk33 ends without creating an output file.

 If a warning is issued, a warning message will appear before the end message shows up.
 Example: ��#���%�2$�����%�"���#�
3��������$
�#��.�
�4�"5 4��
� � ��������	
���

 In the case of a warning, the lk33 ends after creating an output file, but that operation is not guaranteed.

 For details on errors and warnings, refer to Section 12.13 "Error/Warning Messages".

CHAPTER 12: LINKER

186 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

12.5 Linker Commands
Besides the startup options, the lk33 offers linker commands that can be specified in the linker command file. To
link multiple modules, it is necessary to create a linker command file and input it in the lk33 by the -c option.

12.5.1 Linker Command File
To simplify the keystroke in the command line at the time of startup, you can execute the link processing through
the lk33 by inputting a linker command file that holds the necessary specifications described.

Sample linker command file

��������
	
������� � ���������
�������������������

	��������� � ���������
�������������������

	������� � ��������
�������������������

�

	
���������������� � ��!����"��#��������
���������������������#���������

�

	��#�$%������&���� ��������"��#�"'���'��$%��'�

�

�(�����$����)�

	'��*\��++\'���� � ��(�����$�����
)����)�

�

����
,���'��#�'��

	���������#� � � ���,��,��#�'����%��

�

���-�
��#�'���

�������� � � ��.��,��#�'���

��������

�

�(�����$�#�'���

���'��� � � ��(�����$�#�'���

'���'���

%��)�'���

�����"�'���

�$���'���

#��'���

���/�'���

Create the linker command file in line with the following rules:

File format
 The linker command file is a general text format as shown above.
 Create it on a general-purpose editor. Or a template is created by the Make file editor of the wb33, so use that

file after correcting it.
 The extension of the file name should be described as ".cm".

Command description
 All commands should begin with a hyphen (-). Each individual command needs to be delineated with more

than one space, tab, or line feed. For better visibility, it is recommended to describe each command in a
separate line.

 Up to 2048 characters can be described in one line.

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 187
C COMPILER PACKAGE MANUAL (ver.3)

Notes: • Describe all commands in lowercase characters. Uppercase characters will not be accepted.

 • A numeric value to specify an address should be described in the hexadecimal format

(0x####). Decimal and binary notations will not be accepted.

 • When a command which is only permitted in single setting is specified in a duplicated manner,

the last entered command will be effective.
 Example: -code 0x0080000
 -code 0x0080100 ...-code 0x0080100 is effective.
 If the command is duplicate-sensitive (e.g., -code{ }, -ucode{ }), an error results.

 • The following characters can only be accepted for symbol names, U section names and file

names:
 1st character: a–z, A–Z
 2nd and the subsequent character: a–z, A–Z, 0–9, _
 "." , "\", and ":"can also be used in file (path) names.

Specification of input and library files
 Make sure the object or library file names to be input are written at the end of the link command file. Also,

be sure to write the library file after the object file. File location by linkage is performed in such a way that
unless otherwise specified, the files are located in the order they are written.

 Write each file name including the extension (.o, .lib, .srf).
 Specifying only a library file without writing an object file name is not permitted.

Comment
 A comment can be described in the linker command file.
 As in the source file, the character string from a semicolon (;) to the end of the line is regarded as a comment.

Blank line
 A blank line carrying only blank characters and a line feed will be ignored. It need not be converted to a

comment.

CHAPTER 12: LINKER

188 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

12.5.2 Linker Command List
The following 21 types of linker commands are provided for the lk33 (including the startup options that can be
specified in a command line):

Table 12.5.2.1 Linker command list
���������

	
�����������������������∗���∗��
���
������������
�������∗��
���
�����������������∗��
���
��������������������������∗��
���
������������������∗��
	����������������������

	
�����������������������
�����

	���������
��������������

	�������������������

�������������
��������������� 		�������

	�����������������!��"��������������������

	������������������#$#��������������������

	����������������� 		��������������������

	������������%������!��"��������������������

	������������%�������#$#��������������������

	����������� 		��������������������

!��������������������

	
�������������
�����������

���
��������&&���������������������� �

"������������������������ �

!�������

'��

'��

'�
'��

'��

'��

'��

'��

'������

'��

'�����

'�����

'��

'������

'������

'���
'��(���

'�������

'���

'��������
 ∗1: Startup options
 ∗2: Cannot be used in the command file.

The following explains each linker command. (For details on startup options, refer to Section 12.3.2.)
Actual usage examples and link results are described in the next section.

-w command
Format: -w
Sample description: -w
Explanation: • If the -w command is specified, no warning is output for duplicate global labels in the

BSS section.
Default: If this command is not specified, all warning messages are output.

-l command
Format: -l <Library search path>
Sample description: -l c:\cc33\lib
Explanation: • This command specifies the directory where libraries can be searched.
 • At least one space or tab is required between -l and <Library search path>.
 • Up to four library search paths can be specified. To specify multiple directories, specify

the -l option for each directory.
Default: Unless this command is specified, only the current directory is searched.
 A path name can be included in each written library file name.

-o command
Format: -o <Output file name>.srf
Sample description: -o test.srf
Explanation: • This command specifies an output file name.
 • At least one space or tab is required between -o and <Output file name>.
Default: Unless this command is specified, the linker uses the first file name that appears in the input

object files written in the command file to generate the output file.

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 189
C COMPILER PACKAGE MANUAL (ver.3)

-defsym command
Format: -defsym <Symbol name> = <Value>
Sample description: -defsym BOOT = 0x0080000
Explanation: • Use this command to define the value of a global symbol.
 • At least one space or tab is required between -defsym and <Symbol name>.
 • The maximum number of symbols that can be defined by this command is 256.
Default: Unless this command is specified, no global symbol is set.

-d command
Format: -d
Sample description: -d
Explanation: • If multiple areas bearing the same global symbol name are set in the BSS section, this

command deletes all but one area.
 • The area that remains valid is the largest one which appears first among the input object

file names specified.
Default: Unless this command is specified, the areas with invalid symbols are not deleted.
Note: A warning is issued if global symbols of the same name are defined.
 This command is valid in only the BSS section; it is ignored in all other sections.

-code command
Format 1: -code <Address>
Format 2: -code <Section name>
Sample description: -code 0x0c00000
 -code EXTERNAL_ROM
Explanation: • This command sets the start address of an area where a relocatable CODE section is

located. The CODE sections in the files specified in format 3 or 4, and those in absolute
object files are unaffected.

 • <Section name> can only be specified when the section name and start address are set by
the -section command.

 • At least one space or tab is required between -code and <Address/Section name>.
 • Specify a 4-byte boundary address for <Address>. If something else is specified, a

warning is issued, in which case the two low-order bits of the specified address are
ignored.

Default: Unless this command is specified, the CODE section begins from 0x0080000.

Format 3: -code <Address> {<File name> ... <File name> }
Format 4: -code <Section name> {<File name> ... <File name> }
Sample description: -code 0x0080100 {test1.o test2.o}
 -code BLOCK2 {test1.o, test2.o}
Explanation: • This command locates the CODE sections of the relocatable object files specified in { }

sequentially in the order the files are specified beginning with a specified address.
 • When specifying multiple files, insert at least one space or tab between each <File name>.
 • Others are the same as in format 1 or 2.

-data command
Format 1: -data <Address>
Format 2: -data <Section name>
Sample description: -data 0x0081000
 -data DATA1
Explanation: • This command sets the start address of an area where a relocatable DATA section is

located. The DATA sections in the files specified in format 3 or 4 and those in absolute
object files are unaffected.

 • <Section name> can only be specified when the section name and start address are set by
the -section command.

 • At least one space or tab is required between -data and <Address/Section name>.

CHAPTER 12: LINKER

190 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 • Specify a 4-byte boundary address for <Address>. If something else is specified, a
warning is issued, in which case the two low-order bits of the specified address are
ignored.

Default: Unless this command is specified, the DATA section is located after the CODE section that is
located at the highest address.

Format 3: -data <Address> {<File name> ... <File name> }
Format 4: -data <Section name> {<File name> ... <File name> }
Sample description: -data 0x0080100 {test1.o test2.o}
 -data DATA1 {test1.o test2.o}
Explanation: • This command locates the DATA sections of the relocatable object files specified in { }

sequentially in the order the files are specified beginning with a specified address.
 • When specifying multiple files, insert at least one space or tab between each <File name>.
 • Others are the same as in format 1 or 2.

-bss command
Format 1: -bss <Address>
Format 2: -bss <Section name>
Sample description: -bss 0x0000100
 -bss VARIABLES
Explanation: • This command sets the start address of an area where a relocatable BSS section is located.

The BSS sections in the files specified in format 3 or 4 and those in absolute object files
are unaffected.

 • <Section name> can only be specified when the section name and start address are set by
the -section command.

 • At least one space or tab is required between -bss and <Address/Section name>.
 • Specify a 4-byte boundary address for <Address>. If something else is specified, a

warning is issued, in which case the two low-order bits of the specified address are
ignored.

Default: Unless this command is specified, is the BSS section begins from 0x0000000.

Format 3: -bss <Address> {<File name> ... <File name> }
Format 4: -bss <Section name> {<File name> ... <File name> }
Sample description: -bss 0x0000100 {test1.o test2.o}
Explanation: • This command locates the BSS sections of the relocatable object files specified in { }

sequentially in the order the files are specified beginning with the specified address.
 • When specifying multiple files, insert at least one space or tab between each <File name>.
 • Others are the same as in format 1 or 2.

-ucode command
Format 1: -ucode <Address>
Format 2: -ucode <Section name>
Sample description: -ucode 0x1000
 -ucode CACHE
Explanation: • This command sets the start address of a virtual CODE section. The CODE sections of the

relocatable object file for which format 1 and 2 settings of the -code command are applied
are linked by resolving the symbol addresses in such a way that they can be located and
executed beginning with the specified address. The row data positions are left intact as
specified by -code, and are not modified. The CODE sections of absolute object files are
unaffected. Specify this command when executing a program written in ROM after
transferring it to RAM.

 • <Section name> can only be specified when the section name is set by the -section
command.

 • At least one space or tab is required between -ucode and <Address/Section name>.
 • Specify a 4-byte boundary address for <Address>. If something else is specified, a

warning is issued, in which case the two low-order bits of the specified address is ignored.
Default: Unless this command is specified, no virtual CODE section is set.

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 191
C COMPILER PACKAGE MANUAL (ver.3)

Format 3: -ucode <Address> {<File name> ... <File name> }
Format 4: -ucode <Section name> {<File name> ... <File name> }
Sample description: -ucode 0x1000 {test1.o test2.o}
 -ucode CACHE {test1.o test2.o}
Explanation: • This command sets the start address of a shared CODE section. The CODE sections of all

relocatable object files specified in { } are linked by resolving the symbol addresses in
such a way that they can be located and executed in the same area (the shared area that
begins from a specified address or the specified start address of the shared section). This
command should prove effective when one RAM area is shared by multiple specified
object codes, and execution is repeated by sending the code to the RAM area via a
time-multiplexed transfer.

 • At least one space or tab is required between each <File name>.
 • Others are the same as in format 1 or 2.

-udata command
Format 1: -udata <Address>
Format 2: -udata <Section name>
Sample description: -udata 0x1000
 -udata INITDATA
Explanation: • This command sets the start address of a virtual DATA section. The DATA sections of

the relocatable object file for which the format 1 and 2 settings of the -data command are
applied are linked by resolving the symbol addresses in such a way that they can be
located and executed beginning with the specified address. The row data positions are left
intact as specified by -data and not modified. The DATA sections of absolute object files
are unaffected. Specify this command when using data written in ROM (e.g., variables
requiring initialization) after transferring it to RAM.

 • <Section name> can only be specified when a section name is set by the -section
command.

 • At least one space or tab is required between -udata and <Address/Section name>.
 • Specify a 4-byte boundary address for <Address>. If something else is specified, a

warning is issued, in which case the two low-order bits of the specified address are
ignored.

Default: Unless this command is specified, no virtual DATA section is set.

Format 3: -udata <Address> {<File name> ... <File name> }
Format 4: -udata <Section name> {<File name> ... <File name> }
Sample description: -udata 0x1000 {test1.o test2.o}
 -udata INITDATA {test1.o test2.o}
Explanation: • This command sets the start address of a shared DATA section. The DATA sections of all

relocatable object files specified in { } are linked by resolving the symbol addresses in
such a way that they can be located and executed in the same area (the shared area that
begins from the specified address or the specified start address of the shared section). This
command should prove effective in cases in which one RAM area is shared by multiple
specified object data, and execution is repeated by sending data to the RAM area via a
time-multiplexed transfer.

 • When specifying multiple files, insert at least one space or tab between each <File name>.
 • Others are the same as in format 1 or 2.

-ubss command
Format 1: -ubss <Address> {<File name> ... <File name> }
Format 2: -ubss <Section name> {<File name> ... <File name> }
Sample description: -ubss 0x1000 {test1.o test2.o}
 -ubss TMP {test1.o test2.o}

CHAPTER 12: LINKER

192 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Explanation: • This command sets the start address of a shared BSS section. The BSS sections of all
relocatable object files specified in { } are linked by resolving the symbol addresses in
such a way that they can be located and used in the same area (the shared area that begins
from the specified address or the specified start address of the shared section). The BSS
sections of absolute object files are unaffected. This command should prove effective in
cases in which one RAM area is shared by multiple specified object data, and the data is
used separately via a time-multiplexed transfer.

 • <Section name> can only be specified when the section name is set by the -section
command.

 • At least one space or tab is required between -ubss and <Address/Section name>.
 • At least one space or tab is required between each <File name>.
 • Specify a 4-byte boundary address for <Address>. If something else is specified, a

warning is issued, in which case the two low-order bits of the specified address are
ignored.

Default: Unless this command is specified, no shared BSS section is set.

-objsym command
Format: -objsym
Sample description: -objsym
Explanation: • This command creates three types of symbols indicating the start address, end address,

and size of each section located in the input file (refer to Section 12.8). These symbols
can be used in the source file when creating a routine for transfer to virtual or shared
sections.

Default: Unless this command is specified, no symbol is created.

-section command
Format 1: -section <Section name>
Format 2: -section <Section name> = <Address>
Sample description: -section TMP
 -section CACHE = 0x1000
Explanation: • This command defines a section name.
 • Format 1 is used for virtual and shared sections, where an address following the last

address of the default BSS area (specified by the -bss command) is the start address of the
virtual or shared section. Format 2 defines a section name and its start address, which can
be used to specify any section.

 • At least one space or tab is required between -section and <Section name>.
 • The size of an area is determined by setting a section specifying command, and three

types of symbols are created indicating the start address, the end address after being
located (at maximum use), and the size (refer to Section 12.8). These symbols can be used
in the source file when creating a routine for transfer to virtual or shared sections.

-ld
Format: -ld
Sample description: -ld
Explanation: • Creates an srf33 file for the loader ld33 instead of a standard absolute object file. Refer to

readme.txt (English) or readmeja.txt (Japanese) located in the "utility\ld33\" directory for
the loader ld33.

Default: Unless this command is specified, a standard absolute object file is created.
Note: When creating this file, the -ucode, -udata and -ubss commands for specifying U sections

cannot be used. Furthermore, 2-pass make optimization cannot be performed.

-inclink
Format: -inclink
Sample description: -inclink
Explanation: • Enables absolute object files (.srf) as link files. When this command is specified, .srf files

can be linked similar to the absolute object files generated by the as33. However, absolute
object files for the loader that are created with the -ld command cannot be linked.

Default: Unless this command is specified, ".srf" files cannot be linked

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 193
C COMPILER PACKAGE MANUAL (ver.3)

12.6 Locating Sections

Standard location of relocatable file
 Each relocatable object file has one CODE, one DATA, and one BSS section.
 When multiple relocatable object files are linked, sections of the same type in all files except a specified file

are combined into one section. Entries within each section are arranged in the order in which the input files
are written in the command file (or command line).

 The start address of each section (absolute address after linkage) can be specified by a linker command. If
this address is not specified, it is determined in the following manner:

 CODE section: The CODE section is located beginning with address 0x0080000 (area 3, start address of
internal ROM).

 DATA section: After all CODE sections in the input files are located, the DATA section is located
immediately following the CODE section that is located at the highest address.

 BSS section: The BSS section is located beginning with address 0x0000000 (area 0, start address of
internal RAM).

 For example, if two relocatable object files, sample1.o and sample2.o, are linked without specifying a section

address, each section in these files is located as shown below. Each section in each object file starts at a
4-byte boundary address.

 Example: lk33 sample1.o sample2.o

CODE1

DATA1

BSS1

sample2.o sample1.srf

sample1.o

0x0000000

0x0080000

CODE2
DATA2

BSS2

CODE1

DATA1

BSS1

CODE2

DATA2

BSS2

Before linkage After linkage

Fig. 12.6.1 Example of standard linkage

 When an absolute object file is generated by the lk33, the CODE, DATA, and BSS sections are output to the

file in that order. For the contents of the object files thus output, refer to Appendix, "srf33 File Structure".

To specify the start address of a relocatable section...
 If you want sections to be located beginning with an address that is not the default address shown above, use

the -code, -data, or -bss commands to specify the start address of each type of section.
 The command formats are shown below:
 -code <Address> Sets a CODE section.
 -data <Address> Sets a DATA section.
 -bss <Address> Sets a BSS section.

 For example, if you want the start addresses of the CODE and the BSS sections in Figure 12.6.1 to be

changed to address 0x0c00000 and address 0x0010000, respectively, input a command file like the one
shown below before linking the object files.

 Example: Command file
 -code 0x0c00000
 -bss 0x0010000
 sample1.o
 sample2.o

CHAPTER 12: LINKER

194 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

To locate sections in a specific file beginning with a specific address...
 You can specify a relocatable object file by using the -code { }, -data { }, and -bss { } commands, so that

only the sections of that file will be located beginning with the specified address. Multiple files can be
specified, in which case the sections are located in the order that they are specified beginning with the start
address.

 The command formats are shown below:
 -code <Address> {<File name> ...} Sets a CODE section.
 -data <Address> {<File name> ...} Sets a DATA section.
 -bss <Address> {<File name> ...} Sets a BSS section.

 Example: Command file
 -code 0x0080000
 -bss 0x0000000
 -code 0x0c00000 {sample2.o sample3.o}
 sample1.o
 sample2.o
 sample3.o

CODE2

CODE2

DATA2
DATA2

BSS2

BSS2

sample3.o sample1.srf

sample2.o

0x0000000

0x0080000

0x0C00000

CODE3

CODE3

DATA3

DATA3

BSS3

BSS3

CODE1

CODE1

DATA1

DATA1

BSS1
sample1.o

BSS1

Before linkage After linkage

Fig. 12.6.2 Example of how sections in a specific file are located

 In all relocatable object files other than those specified with the -code { }, -data { }, and -bss { } commands,

sections are located at default addresses or addresses set by -code <Address/Section name>, -data
<Address/Section name>, and -bss <Address/Section name>.

Specifying the start address with a section name
 The -section command can be used to define a section name and its start address.
 The command format is shown below:
 -section <Section name> = <Address>

 The <Section name> defined by the -section command can be used in place of <Address> specified by the

-code, -data, and -bss commands or the -code { }, -data { }, and -bss { } commands described above.
However, these addresses must first be defined by the -section command before they can be used.

 Example: -section CODE1 = 0x0080100
 -section DATA1 = 0x0081000
 -code CODE1 {test1.o} ; Locates the CODE section of the test1.o in section CODE1.
 -data DATA1 {test1.o} ; Locates the DATA section of the test1.o in section DATA1.

 The start address specified for each section by the -section command is the start address of each section.

Specification of <Address> in the -section command cannot be omitted.
 When a section name is defined, the lk33 generates three types of section symbols indicating its start address,

end address, and size (refer to Section 12.8). These symbols can be used at the source as global symbols.

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 195
C COMPILER PACKAGE MANUAL (ver.3)

Locating absolute files
 An absolute object file has the absolute address of each of its sections already determined before linkage,

therefore the sections in this file are located at those addresses preferentially over other sections. (The lk33
locates the absolute object file before relocatable object files.) The absolute object files are unaffected by
commands that specify addresses, such as the -code, -data, or -bss command.

 Example: Command file
 -code 0x0081000
 sample1.o ; Absolute object file
 sample2.o ; Relocatable object file

CODE1

DATA1

BSS1

sample2.o sample1.srf

sample1.o

0x0000000

0x0010000

0x0081000

0x0090000

0x00A0000

0x0010000

0x0090000

0x00A0000

CODE2
DATA2

BSS2

CODE1

DATA1

BSS1

CODE2

DATA2

BSS2

Before linkage After linkage

Fig. 12.6.3 Example of how an absolute object file is located

Priority of address specification
 Address specifications are resolved according to the following order of priorities:
 1. Settings in absolute object file
 2. Settings by -code { }, -data { }, and -bss { } commands
 3. Settings by -code, -data, and -bss commands
 4. Default settings

 Sections in absolute object files are located at the addresses specified in the source preferentially over all

other sections.
 Sections in relocatable object files are located in such a way that those specified by the -code { }, -data { },

and -bss { } commands are located before other sections, and the sections in remaining other files are located
beginning with the addresses set by the -code, -data, and -bss commands or the default addresses.

 Sections in two or more files having the same priority are located in the order the file names are written in the
command file (or command line) in the upward address direction.

Section alignment
 Sections are always located at 4-byte boundaries irrespective of their types. If the specified start address of a

section does not reside on a 4-byte boundary, a warning is issued, in which case the two low-order bits of the
address are treated as 0.

CHAPTER 12: LINKER

196 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

12.7 Virtual and Shared (U) Sections
Virtual and shared sections (U sections) do not have real data created by the linker, therefore real data is copied
from some other area into this area before it is actually accessed or executed. The U sections are used for this
purpose. The U sections are normally located in RAM.
If symbol information is created at addresses where real data is stored such as when using variables in the C
language which have the initial values or copying a program from external memory into RAM for high-speed
operation, the program or data cannot be operated or used in RAM. In such a case, set an area that is actually
executed as a U section, then logically locate the program or data in that area before linking the modules. The
symbol information of the modules located in the U section will be generated as the internal addresses of the U
section.

Note: The expression "locate in a U section" actually means a logical location for obtaining the

execution address from the U section. Although the -ucode, -udata, or other similar commands
are used for logical location into a U section, the addresses at which real data is stored are
determined by the -code or -data commands (commands that do not specify a file name) or by
default settings.

The program or data located in a U section must be copied in advance to an area where the program or data is
actually used. Because run-time relocation is required, no absolute object file can be located in a U section.
There are two types of U sections: a virtual section and a shared section.

Virtual section
 Equivalents of the -code and -data commands that locate the real data of the CODE and DATA sections are

the commands -ucode and -udata which are used for the U sections.
 These commands can be used in the following formats to specify the start addresses of the virtual CODE and

virtual DATA sections.
 -ucode <Address> Sets a virtual CODE section.
 -udata <Address> Sets a virtual DATA section.

 When one of these commands is specified, symbols are interpreted assuming that the default CODE section

(specified by -code <Address>) or DATA section (specified by -data <Address>) is executed in the virtual
section that starts from a specified address.

 Example: Command file
 -udata 0x01000
 sample1.o
 sample2.o

CODE1

DATA1

BSS1

sample2.o

sample1.srf

sample1.o

0x0000000

0x0001000

0x0080000

Virtual section
CODE2
DATA2

BSS2

CODE1

DATA1

BSS1

CODE2

DATA2

BSS2

Before linkage After linkage

0x0000000

0x0001000

0x0080000

Real data

Execution
address

CODE1

DATA1

BSS1

CODE2

DATA2

DATA1

DATA2

BSS2

At execution

Fig. 12.7.1 Example of how data is located in a virtual section

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 197
C COMPILER PACKAGE MANUAL (ver.3)

Shared section
 By specifying a relocatable object file with the -ucode { }, -udata { }, or -ubss { } commands, you can locate

only the sections in that file, parallel to a shared section. Multiple files are located beginning with the same
start address.

 -ucode <Address> {<File name> ...} Sets a shared CODE section.
 -udata <Address> {<File name> ...} Sets a shared DATA section.
 -ubss <Address> {<File name> ...} Sets a shared BSS section.

 Example: Command file
 -ucode 0x0a000 {sample1.o sample2.o}
 sample1.o
 sample2.o

CODE1

DATA1

BSS1

sample2.o

sample1.srf

sample1.o

0x0000000

0x000A000

0x0080000

Shared section
CODE2
DATA2

BSS2

CODE1

DATA1

BSS1

CODE2

DATA2

BSS2

Before linkage After linkage

0x0000000

0x000A000

0x0080000

Real data

Execution
address

CODE1

DATA1

BSS1

CODE2

DATA2

BSS2

At CODE1 execution

0x0000000

0x000A000

0x0080000

Real data

Execution
address

CODE1

DATA1

BSS1

CODE2

DATA2

CODE2CODE1

BSS2

At CODE2 execution

Fig. 12.7.2 Example of how data is located in a shared section

Named U section
 A U section can have its name defined by the -section command. The command format is shown below.
 Format 1) -section <Section name>
 Format 2) -section <Section name> = <Address>

 This command creates one U section that is assigned a specified name. Multiple U sections can be defined in

this way. For this purpose, write the -section command as many times as necessary.
 The names defined here can be used in place of <Address> of the -ucode, -udata, and -ubss commands or the

-ucode { }, -udata { }, and -ubss { } commands described above. However, these addresses must first be
defined by the -section command before they can be used.

 Example:
 -section CACHE = 0x300
 -section INITDATA = 0x100
 -ucode CACHE {test1.o} ; Locates the CODE section of the test1.o to U section CACHE.
 -udata INITDATA {test1.o} ; Locates the DATA section of the test1.o to U section INITDATA.

 The start address of a defined U section is set as follows:

Format 1) Address immediately following the end of the default BSS section. This address is determined
after locating all BSS sections in the input object files.

Format 2) Specified address

 When a section name is defined, the lk33 generates three types of section symbols indicating its start address,

end address, and size (see the next section). Since these symbols can be used in the source as global symbols,
you can use them to copy real data.

CHAPTER 12: LINKER

198 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Location and size of U section
 A U section starts from the address specified by a command. The size of a virtual section equals the total size

of the located sections. The size of a shared section is that of the largest section of multiple shared sections.
 When defining a U section, be careful with its address because the addresses overlapping between U sections

or between a U section and another normal section are accepted.

Section alignment
 U sections are always located at 4-byte boundaries irrespective of their types. If the specified start address of

a U section does not reside on a 4-byte boundary, a warning is generated, in which case the two low-order
bits of the address are treated as 0.

How to use U sections
 To allocate real program codes and variables successively into U sections, specification in the order as below

is effective unless the absolute addresses are otherwise specified.

 ↑ RAM: Lower address
 (1) Variables without an initial value (BSS)
 (2) Variables with an initial value (DATA)
 (3) Program codes 1 (replication of a CODE area in the ROM)
 (4) Program codes 2 (replication of a CODE area in the ROM)
 :
 ↓ RAM: Higher address

 To allocate as above, specify with the following command in the command file:

 Sample command file
 -section INITDATA
 -section CACHE1
 -section CACHE2

 -udata INITDATA
 -ucode CACHE1 {main.o}
 -ucode CACHE2 {sub.o}

 main.o
 sub.o

 The link map file after linking shows that the blocks (1) to (4) have been located in the order from lower

address to higher address.

 Sample link map file

���������	�
���	
��

������������������� �	��� �	��� ��� �����

������������������� ��������� ��	
��� ←���� �� !"�

����������������#�� ������$�� �%&��� ←���� �� !"�

���������	�
���	
��

������������������� �	��� �	��� � ��� �����

������'������������ ��������� ��	
��� ←�$�� �� !"�

������'������������ ��������� �%&��� ←�$�� �� !"�

(�������	�
���	
��

������������������� �	��� �	��� � ��� �����

����������))))))))� ��������� ��	
��� ←���� $� !"�

����������))))))))� ��������� �%&��� ←���� $� !"�

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 199
C COMPILER PACKAGE MANUAL (ver.3)

12.8 Section Symbols
The lk33 can generate section symbols (global symbols) that indicate the addresses and sizes of located sections.
These symbols can be used in the source.

Default DATA section symbol
 Unless the -data command is specified, the default data section (located following the CODE section) has the

following section symbols automatically generated:

 ��START_DEFAULT.DATA Defines the start address of the default DATA section.
 ��END_DEFAULT.DATA Defines the end address of a default DATA section.
 ��SIZEOF_DEFAULT.DATA Defines the size (in bytes) of the default DATA section.

Note: This symbol name can not be used in C source because it has ".".
 Use it only in Assembler source.

Creating section symbols using the -objsym command
 When the -objsym command is written in a command file, the lk33 generates the following symbols for each

section in each input file to indicate section information after relocation:

 ��START_<File name>_<Section> Defines the start address of a relocated section.
 ��END_<File name>_<Section> Defines an address next to the end address of a relocated section.
 ��SIZEOF_<File name>_<Section> Defines the size (in bytes) of a relocated section.

 Example: If the input file name is "test.o", the start address of the CODE section is 0x80000, and the size is

0x100
 Symbol name Symbol value
 __START_test_code 0x80000
 __END_test_code 0x80100
 __SIZEOF_test_code 0x100

 The path and extension of <File name> are cut irrespective of how they are written in a command file. The

start address and size defined to a symbol are the same as the contents output to the link map file (real data
address), and the end address is determined by the "start address" + "size".

Section name by -section command
 When a section name is defined by the -section command, the following symbols are created to indicate the

information of the named section regardless of whether a -objsym command is specified:

 ��START_<Section name> Defines the start address of a named section.
 ��END_<Section name> Defines the end address of a named section.
 ��SIZEOF_<Section name> Defines the size (in bytes) of a named section.

 Here, <Section name> is the name specified by the -section command.
 The start address defined to a symbol is the address that is specified by the -section command or an address

immediately following the end of a default BSS section.
 The size in the case of virtual sections (-ucode, -udata) equals the total size of the located sections. The size

in the case of shared sections (-ucode { }, -udata { }, -ubss { }) is the same as that of the largest section
among those located.

 The end address is determined by the "start address" + "size".

CHAPTER 12: LINKER

200 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Example using section symbols in the assembly source
 Example: When transferring the CODE section of test.o to U section "CACHE1"

 Transfer routine in the source file
 xld.w %r12, __START_CACHE1
 xld.w %r13, __START_test1_code
 xld.w %r14, __SIZEOF_test1_code

 HCOPY_LOOP:
 ld.uh %r4, [%r13]+ ; Transfers the instruction code.
 ld.h [%r12]+, %r4
 sub %r14, 2
 jrgt HCOPY_LOOP

 Setting U section by using the linker command
 -objsym
 -section CACHE1 = 0x300
 -ucode CACHE1 {test.o}
 test.o

Note: Do not define symbols in the source that are assigned the same name as the section symbols

used.

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 201
C COMPILER PACKAGE MANUAL (ver.3)

12.9 Linking Libraries
Libraries are linked after all other input object files are located.

Searching the library module
 Only when an unresolved external reference symbol exists in the input object, the lk33 searches library files

in the order that they are written in a command file. It then reads in and links only the first module found that
has the unresolved symbol. When an external reference is resolved, the lk33 stops searching for the
subsequent modules or library files. Consequently, even when a specified library file contains multiple
instances of the symbol to be searched, all but the first-found module are ignored. If the library does not exist
in the current directory, the directory specified by the -l command is searched.

 External reference between library files can be resolved only in the currently processed library file or in the

library files to be searched next. External references defined in an already searched library file are not
resolved. Therefore, be careful with the order in which library files are specified.

Location of library modules
 The addresses at which library modules are located cannot be specified. Each section in the linked library

modules is located in the default section of the same type (i.e., a section in which all unspecified relocatable
sections are located).

 Example: Command file
 -l c:\cc33\lib
 sample1.o ; Relocatable object file
 sample2.o ; Relocatable object file
 sample.lib ; Library file (module n is used)

CODE1

DATA1

BSS1

sample2.o

sample.lib

Module 1

sample1.srf

sample1.o

Before linkage

After linkage

0x0000000

0x0080000

CODE2

LIB CODE1
LIB DATA1
LIB BSS1

LIB CODE2
LIB DATA2
LIB BSS2

LIB CODEn

LIB CODEn

LIB DATAn

LIB DATAn

LIB BSSn

LIB BSSn

DATA2

BSS2
CODE1

DATA1

BSS1

CODE2

DATA2

BSS2
Module 2

Module n

Fig. 12.9.1 Example of how library modules are located

CHAPTER 12: LINKER

202 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Allocate library module to the address appointed
Library modules can be allocated to the address appointed by command -code {}, -data {}, and -bss {}.
Assign "library name : ������ name" as a file name. This file name must be same as the name displayed in
the "����" column of the Link map file.

The following is a sample which allocates strcpy.o in string.lib from address 0xca0000.

Sample command file
-l c:\cc33\lib
-code 0xca0000 {c:\cc33\lib\string.lib:strcpy.o}
test.o
string.lib

Sample link map file
Code Section mapping
Address Vaddress Size File ID Attr
00080000 -------- 00000010 test.o 0 REL
00ca0000 -------- 0000000c c:\cc33\lib\string.lib:strcpy.o 0 REL

Note: • If you have any trouble with this function, restore the library module to the relocatable object file
and then execute the link command.

 •The library file in itself can not be allocated to the address pointed. The following sample
 presents this error:

Sample command file(wrong)

-l c:\cc33\lib
-code 0xca0000 {c:\cc33\lib\string.lib} � Library cannot be assigned a directory.
test.o
string.lib

Location of library modules in the U section
 No library file can be specified in the -code { }, -data { }, and -bss { } commands, as well as in the -ucode

{ }, -udata { }, and -ubss { } commands.
 If you want to use a library file in a U section, restore the desired library module to the relocatable object file

before linking.

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 203
C COMPILER PACKAGE MANUAL (ver.3)

12.10 Resolving Symbols

Procedure for resolving global symbols
 The lk33 follows the procedure described below to resolve symbols:

(1) The lk33 adds global symbol information to the internal table sequentially in the order of the input object

files specified. If an undefined symbol is referenced, the lk33 searches the table and when the matching
symbol information is found, applies the content of that information. If no information is found in the table,
the symbol is kept pending until it is defined in a subsequent input file.

(2) If two or more global symbols of the same name are defined, a warning is output. The lk33 uses the first

symbol information encountered when searched in order of input files as the valid symbol, and continues
processing. (This does not apply to the global symbols defined in the BSS section.)

(3) Only when an unresolved external reference is found after searching all input object files, the lk33 searches

library files in the order in which they are entered. When the desired symbol definition is found, the lk33
links that module. If a symbol of the same name is defined in a multiple library module, a warning is
generated, in which case the first encountered module is linked.

(4) If an unresolved external reference in the library module to be linked is defined in one of the input object

files or in the currently processed library file, this definition is applied. If it is not defined, the unresolved
external reference is kept pending until it is defined in a subsequent library file.

 An external reference between library files can be resolved only in the currently processed file or in the
library files to be searched next. External references defined in an already searched library file are not
resolved.

(5) If an undefined external reference still exists after all library files are searched, a warning is output, and the

lk33 does not relocate the instructions which reference the symbol. The bits in the instruction codes that
require modification become 0x0.

Global symbols defined twice or more in the BSS section
 If two or more global symbols of the same name are defined by the .comm pseudo-instruction, the symbol

definition with the largest size is assumed to be the valid symbol. If there are two or more symbol definitions
with the largest size, the definition first encountered during the search in the order of input files is assumed to
be the valid symbol. The lk33 outputs a warning and continues processing. No warning is output if the -w
command is specified.

 The -d command deletes the areas of the symbols that have been invalidated by the above processing. The

deleted areas in the BSS section are closed up before sections are relocated.
 The -d command is valid only in the BSS section, and does not delete invalid symbol areas in any other

section.

CHAPTER 12: LINKER

204 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

12.11 Link Map File
The link map file serves to refer to the mapping information of modules of each section.
Furthermore, this file can be input to the Instruction Extender ext33 along with a symbol file for code
optimization.
It is output if you specify the -m option in the command file or command line.
The file format is a text file, and its file name is "<File name>.map". (<File name> is the same as that of the output
object file.)

Sample link map file
���������	�
���	
��

������������������� �	��� �	��� ��� �����

������������������� ��������� ������� �� �� �

�����������������!� ������"�� ��	
��� �� �� �

�������!��������#!� ������"�� $����� �� �� �

�������!��������#!� ������!�� ������ �� �� �

���������	�
���	
��

������������������� �	��� �	��� ��� �����

�����%%!����������� ��������� ������� %� �� �

�����%%!����������� ������&�� ��	
��� %� �� �

�����%!���������&�� ��������� $����� %� �� �

�����%"���������!!� ��������� ������ %� �� �

'�������	�
���	
��

������������������� �	��� �	��� ��� �����

������������������� ��������� ������� �� �� �

������������������� ������&�� ��	
��� �� �� �

������&������������ �������!� $����� �� �� �

������"!����������� ��������� ������ �� �� �

Contents of link map file

Address Indicates the start address of each section. Sections that have a value in Vaddress indicate an
address where real data is stored.

Vaddress Indicates the execution address in the U section.

Size Indicates the section size.

File Indicates the file names of the linked module.

ID Indicates the section ID of each section in each object file.

Attr Indicates the attribute of the section:
 REL: Means that it is a relocatable section.
 ABS: Means that it is an absolute section.

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 205
C COMPILER PACKAGE MANUAL (ver.3)

12.12 Symbol File
The symbol file serves to refer to the symbols defined in all the modules and their address information.
Furthermore, this file can be input to the Instruction Extender ext33 along with a link map file for code
optimization.
It is output if you specify the -s option in the command file or command line.
The file format is a text file, and its file name is "<File name>.sym". (<File name> is the same as that of the output
object file.)

Sample symbol file
������� �	�
� �
��	�� ���
� ����
���

�

������ �������� ����� ������� ���������

	� �������� ���� ������� ���������

����
�� ��	��� ���� ������� ���������

 !!�� ��	��� ���
� ������� ���������

��	� ��	��� ���
� ������� ���������

	� �"����� ����� ������ ���������

#��
� $������ ����� ������� ���������

%� %� %� %� %�

&&���'�&(�()*�� ++�"��++� ���� ������� �����,���

&&*#�&(�()*�� ++�"��++� ���� ������� �����-���

&&�./*!�&(�()*�� ++�"��++� ���� ������� �����0���

%� %� %� %� %�

Contents of symbol file

Symbol Indicates all the defined symbols in order of processing.
 The section symbols created by the lk33 are output at the end of the file.

File Indicates the name of the object file in which symbols are defined.
 The section symbol is $$lk33$$.

Section Indicates the section type.
 code: CODE section
 data: DATA section
 bss: BSS section
 uscn: U section

Type Indicates the attribute of symbols.
 global: Means a global symbol.
 local: Means a local symbol.

Address Indicates the absolute address defined for a symbol.

CHAPTER 12: LINKER

206 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

12.13 Error/Warning Messages
Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "lk33.err" file.
If the lk33 is started up using the wb33's [LK33] button, the message is output to "wb33.err". When execution is
completed, a message is displayed in the output window (default).

12.13.1 Errors
The errors produced in the lk33 are classified into three groups: system errors, command file errors, and linker
errors.
In case an error occurs, the lk33 will immediately terminate the processing after displaying an error message. No
object file will be output. The link map file and the symbol file will be delivered only in the part which was
processed prior to the occurrence of the error.

Table 12.13.1.1 List of system error messages
Content

Cannot open the input file (*.o, *.lib).
Cannot open the output file.
Cannot open the temporary file.
Cannot secure memory space.
Cannot read the file.

Error message
<file name>: Error: Cannot open input file.
<file name>: Error: Cannot open output file.
Error: Cannot open working file.
Error: Cannot allocate memory.
Error: Cannot read a file.

Table 12.13.1.2 List of command file error messages

Content
There is a linker command described that cannot be
recognized, in the proximity of line # inside linker command file.
There is an error in the description of a linker command
parameter, in the proximity of line # inside linker command file.
The section name specified near the # line in the linker
command file is not defined.
The section name specified near the # line in the linker
command file does not have its address defined.

Error message
link command: Error: Unknown option

near line = #.
link command: Error: Invalid parameter

near line = #.
link command: Error: Not define section name

near line = #.
link command: Error: Uninitialized section name

near line = #.

Table 12.13.1.3 List of linker error messages

�

Content
The mapping address of the CODE section deviates the
linkable range. Specification by the -code command exceeds
the 0x0– 0xffffffff range, or the mapping address of data
exceeded the above range in the linking process.
The mapping address of the DATA section deviates the
linkable range. Specification by the -data command exceeds
the 0x0– 0xffffffff range, or the mapping address of data
exceeded the above range in the linking process.
The mapping address of the BSS section deviates the linkable
range. Specification by the -bss command exceeds the
0x0– 0xffffffff range, or the mapping address of data exceeded
the above range in the linking process.
The number of object files to be linked exceeded the limit
(4,000 files).
The number of output sections exceeded the limit (256
sections).
The number of sections to be located in a default section
exceeded the limit (4,000 sections).
The number of library files exceeded the limit (256 files).
The number of global symbols in the BSS section exceeded
the limit (1,024 symbols).
The number of object symbols exceeded the limit (36,000
symbols).
The number of U sections exceeded the limit (256 sections).

Error message
<file name>: Error: Code section map out of
 range.

<file name>: Error: Data section map out of
 range.

<file name>: Error: Bss section map out of
range.

Error: Too many object files.

Error: Too many output sections.

Error: Too many input sections.

Error: Too many library files.
Error: Too many global bss symbol.

Error: Too many object symbols.

CHAPTER 12: LINKER

E0C33 FAMILY EPSON 207
C COMPILER PACKAGE MANUAL (ver.3)

Content
The number of section symbols exceeded the limit (256
symbols).
The number of U section symbols exceeded the limit (256
symbols).
The object file to be linked is not specified.
The input file is not an srf33 object file or a library file.

There is a problem in the srf33 object file.
Redo the processing from the C Compiler gcc33 or
Preprocessor pp33.

Error message
Error: Too many section symbols.

Error: Too many U section symbols.

Error: No object files.
<file name>: Error: Not SRF33 Object file

or library file.
Error: Chain information size is greater than

file size.
Error: Chain seek address is greater than

file size.
Error: Undefined symbol type.
Error: Undefined relocation type.

12.13.2 Warning
Even when a warning appears, the lk33 continues with the processing. It completes the processing after displaying
a warning message, unless an error takes place in addition. Object file, link map file, and symbol file will all be
delivered, but the operation of the program is not guaranteed.

Table 12.13.2.1 List of warning messages
Content

<symbol> defined in <file name1> was already defined in <file
name2>. Correct it in the source file. The symbol definition that
appears first according to the order of files to be linked is
effective. If the -w command is specified, this warning is not
output for duplicate global labels in the BSS section.
An undefined symbol was referred. The lk33 does not relocate
the instructions which refer the symbol. The bits in the
instruction codes that require modification become 0x0.
The instruction exceeds the relocatable range. Only the bits
that can be inserted in the instruction are modified after the
relocation addresses are calculated.
The section is duplicated from <address>.

The <section> of the <file name> written in the command file
cannot be relocated.
The relocatable section <section> of <file name> cannot be
found.
The <address 1> specified in the command file is adjusted for
alignment as <address 2>.
Section information cannot be accessed. The srf33 object file is
erratic.
The -ucode, -udata or -ubss command has been specified with
the -ld command. Or, the input file contains a relocation type
that is not allowed for ld33.

Warning message
<file name1>: Warning: '<symbol>' already

defined in '<file name2>'.

<file name>: Warning: unresolved external
symbol '<symbol>'.

<file name>: Warning: Out of relocation range,
Address = <address>.

<file name>: Warning: Section mapping conflict,
Address = <address>.

link command: Warning: Cannot mapping to
USection '<file name>(<section>)'.

link command: Warning: Cannot find relocatable
section '<file name>(<section>)'.

link command: Warning: Alignment <address 1>
-> <address 2>.

Warning: Cannot access section information.

Warning: Invalid loader information.

CHAPTER 12: LINKER

208 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

12.14 Precautions

(1) The address range in which sections can be located is 0x0 to 0xfffffff. No error will occur in the linker as

long as all modules are located within this range. However, care must be taken because the memory capacity
will be limited depending on the microcomputer model to be developed.

(2) The maximum number of object files that can be linked is 4,000. If this limit is exceeded, an error results.

(3) The number of sections and U sections that can be output are both 256. If there are more sections to be output,

an error results.

(4) The maximum number of library files that can be specified when linking is 256. If this limit is exceeded, an

error results. Note also that only up to four library search paths can be specified by the -l command.

(5) Up to 256 section symbols and 256 U section symbols can be generated. If this limit is exceeded, an error

results.

CHAPTER 13: DISASSEMBLER

E0C33 FAMILY EPSON 209
C COMPILER PACKAGE MANUAL (ver.3)

Chapter 13 Disassembler
This chapter describes the functions of Disassembler dis33.

13.1 Functions
The Disassembler dis33 (hereafter called the "dis33") inputs the object files in the srf33 format and outputs the
disassembled contents of the object's code part in list form, while corresponding to the source one to one. It also
delivers a dump output of the data part. It is effective to verify a program following its linking or debugging. The
output can be selected by specifying an appropriate startup option.

13.2 Input/Output Files

Disassembler
dis33

file.srf

file.dis dis33.err
Disassembly

list file

Absolute
object file

Source
files

Error
file

file.s
file.c

Linker lk33

Fig. 13.2.1 Flowchart

13.2.1 Input Files

Object file
 File format: Binary file in srf33 format
 File name: <File name>.srf, or <File name>.o
 Description: Object file created by the Linker lk33 or Assembler as33. To deliver the source in a

mixed output, the file needs to contain debugging information.

Source file
 File format: Text file
 File name: <File name>.c and <File name>.s
 Description: When the source is delivered in a mixed output, the source file will also be input

according to the source file name information contained in the object file mentioned
above.

13.2.2 Output Files

Disassembler file
 File format: Text file
 File name: <File name>.dis (<File name> is the same as that of the input file.)
 Output destination: Current directory
 Description: Disassembled contents of the input file are delivered. For contents of the output, refer to

Section 13.5 "Disassembling Output".

Error file
 File format: Text file
 File name: dis33.err
 Output destination: Current directory
 Description: File that is delivered when the startup option (-e) is specified. It records the information

which the dis33 outputs to the Standard Output (stdout), such as error messages.

CHAPTER 13: DISASSEMBLER

210 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

13.3 Starting Method

13.3.1 Startup Format

General form of command line

 dis33 ^ [<startup option>] ^ <file name>

 ^ denotes a space.
 [] indicates the possibility to omit.

 <file name>: Specify an srf33 object file name including the extension.

Operations on work bench
 Select options and an object file, then click the [DIS33] button.

13.3.2 Startup Options
The dis33 comes provided with the following five types of startup options:

-m
Function: Source mixed output
Specification on wb33: Check [src mix].
Explanation: • Reads a source file and delivers source codes in correspondence with disassembled

codes.
 • To specify this option, the object file to be input needs to contain debugging

information.

-c
Function: Output of code section only
Specification on wb33: Check [code only].
Explanation: • Delivers only the disassemble result of the code section. Does not dump data.

-d
Function: Output of data section only
Specification on wb33: Check [data only].
Explanation: • Delivers only the dump result of the data section. Does not disassemble the code

section.

-a <start address> <end address>
Function: Specification of address range
Specification on wb33: Check [addr range] and enter the start and end addresses in the text box.
Explanation: • Specifies an address range to be disassembled.
 • One address range can only be specified. The start and end addresses must be specified

as a hexadecimal number. "-a" , <start address> and <end address> must be separated
with one or more spaces.

 • When a value exceeding 28 bits (0x0fffffff) is specified for the address, it is handled
as 0c0fffffff. When the start address is higher than the end address or the address is
specified not a hexadecimal number, an error occurs and the usage message will be
displayed.

 • If this option is not specified, all the addresses in the specified file will be
disassembled.

-e
Function: Output of error files
Specification on wb33: None
Explanation: • Delivers also in a file (dis33.err) the contents to be output by the dis33 through the

Standard Output (stdout), such as error messages.

When entering an option in the command line, one or more spaces are necessary before and after the option.
Example: c:\cc33\dis33 -e -m test.srf

CHAPTER 13: DISASSEMBLER

E0C33 FAMILY EPSON 211
C COMPILER PACKAGE MANUAL (ver.3)

Combination of -m, -c and -d
The explanations given above refer to the case where only one function is specified. When the functions are
specified in combination with one another, they change as detailed further below. There is no rule established for
the order of combination.

Without any option specified Delivers a disassembling output of the code section and dump output.
-c -m Delivers a mixed output of the code section.
-d -m Delivers only a dump output of the data section.
-c -d Delivers an empty file.
-c -d -m Delivers an empty file.

13.4 Messages
The dis33 delivers its messages through the Standard Output (stdout).
If the dis33 is started up by using the wb33's [DIS33] button, the message is output to "wb33.err". When execution
is completed, a message is displayed in the output window (default).

End message
 The dis33 outputs only the following end message when it ends normally.

� ���������	��
���	���

Usage output
 If no file name was specified or an option was not specified correctly, the dis33 ends after delivering the

following message concerning the usage:

���������	���������������
��������������������������� ���!""���
#����$�
����%�����&����'�(�)*�	��'���+�
����'�$�
����,���������$����%-
��	���*�	���%����������
����,���������$���'�����%��������	��
�%��.�����-�
������
����,
��������$���'�����%��������	��
�%���'	��
����,%��������$���'�����%���%-����'	��
����,���%%����!��%%����/�
��������������$����
�*��%��������	�������
�����������������%%����!�,������%%����0�����%�
���	�'-�����
�����������������%%����/�,��'%��%%����0�����%�
���	�'-�����
�-�-$�
�������������	��*�	����%����
����1���*�	���%����������
�����	�$�
����%�����,��,��,��2�32222�2�3****�����	����*�

When error/warning occurs
 If an error is produced, an error message will appear before the end message shows up.
 Example: �����$���'4����'�*�	�0������*��
� � ���������	��
���	��

 In the case of an error, the dis33 ends without creating an output file.

 If a warning is issued, a warning message will appear before the end message shows up.
 Example: 5��'�'�$����%��-���'*������'��
� � ���������	��
���	��

 In the case of a warning, the dis33 ends after creating an output file.

 For details on errors and warnings, refer to Section 13.6 "Error/Warning Messages".

CHAPTER 13: DISASSEMBLER

212 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

13.5 Disassembling Output

13.5.1 Mix Output
When the mixed output (-m option) is specified, the code output is delivered with the contents of the source file
added.
The dis33 acquires and reads the source file name from the debugging information of the srf33 file entered in it.
Therefore, the source section will not be output, if you did not specify the -g option designed for addition of
debugging information in the processing of the C Compiler gcc33 or Preprocessor pp33, Assembler as33 and
Linker lk33.
It will also deliver a hexadecimal dump output after outputting the code section, if there is a data section and the -c
option is not specified. (For details, refer to Section 13.5.3 "Data Output".)

Output format

����������������	
��������������������������

�����������������	
���������������������������

 -- <Source file name*> --
 : : : : :
 (Disassembly code) (Source code)
 : : : : :

�������������������

�������������������������������� ��!�����"��������#��$�

�� ����� (Data)
 : : : : : : : : : : : : : : : : :

Addr Indicates the address of a code/data in hexadecimal number.

Code Indicates an object code in hexadecimal number.

Unassemble Indicates a mnemonic code resulting from disassembling.

Line Indicates a line number of the source file in decimal number.

Source Indicates a statement in the source file.

∗ The names of the source file/included file which were referred to are delivered in their respective start

positions.

Sample output

Source file "sample1.s"
%�&�����'()*)��+� ��� ,��-�����������&��."�/�0�

%�&����1'()*)��+����� ,�2
�	�
�-�������3� �����+��

�

� 4����

� 45���"667�� ,�"667�8#�76/�

"6679�

� +
45� 3� :�'()*)�

�
45� 3�-:3� � ,������'�

�
45� 3� :1'()*)� ,�����2
�	�
�-�������

� +��

� ����� ,�2���������

� +;-� "667� ,���&����<�
��-�

� �

%���
������-
��4��

Source file "sample2.s"
%���
������-
��4��

Source file "sample3.s"
� 4����

� 45�������

CHAPTER 13: DISASSEMBLER

E0C33 FAMILY EPSON 213
C COMPILER PACKAGE MANUAL (ver.3)

Source file "sample4.c"
�������

�

�����	�

����
�

� �������

�

� ������

� ���������������	�

� ����
�

� � ���������

� ������

������

Disassembling output

��

��� ������

�!�"���������������������������

�!#�!���������������������������

��$$$����%��&'��$$$�

���&��(�������)*+,+�-!� ���%��������������#./�0�1�

���#��(�������2)*+,+�-� ��3������%�������4�!����-�

���5���

���"��� '�����

���6��� '7����/889�� ��/889�:;�980�

���<��/889=�

�!"��#��-������-#��������������>��� -��'7� 4�!?)*+,+�

�!<�<�!���'7����4�!?-��������������

�!!��!&���'7����4�%?4�!�����������!��� ��'7� 4�%?4�!� ������)�

�!��<�!���'7����4�!?-�����������@��� ��'7� 4�!?2)*+,+�������3������%�������

�!�����-������-���������������&��� -����� ����� ��3���������

�!;�&�5���������-5������������������

�!&�&;A���%������-����������������&&��� -�%� /889� ���������B����%�

�!&#����%�����������������������

��$$$����%��"'��$$$�

���&���������

���#���

���5�������	�

���"������
�

���6��� �������

���<���

�!&"�<�/���'7����4�&&?-����������>��� ������

�!&<��"��-������-"������������������

�!&!�5�!/���'7����C4�!D?4�&&�����������

���!��� ���������������	�

���@��� ����
�

�!&���"��-������-"���������������&��� � �����

�!&��5!����'7����4�&?C4�!D�����������

�!&;�<&����������4�&?-&�������������

�!#��"��-������-"������������������

�!##�5�!����'7����C4�!D?4�&�����������

�!#"�&;A/��%������-����������������!��� ���������������	�

���&&��� ������

�!#<�<"���������������������������&#��������

�

������������������

�������������&��#��5��"��6��<��>��!��@�����/��������;��A�

�!#�������������������������&����#����

 The source lines corresponding to the codes and the contents of the sources preceding them are delivered.
 Sources without actual codes and included files without actual codes will not be delivered either.
 If one source line is expanded into codes of two or more lines as in the case of a for statement, such a source

line may appear at various places.
 If the source file does not exist, "no source" is output to the source field.

CHAPTER 13: DISASSEMBLER

214 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

13.5.2 Code Output
When mixed output (-m option) is not specified, the code section of an input srf33 file is disassembled in order of
the addresses, and delivered in the following format:

Output format

��������������	
������������

���������������	
��

 : : :
 (Disassembly code)
 : : :

Addr Indicates the address of a code in hexadecimal number.

Code Indicates an object code in hexadecimal number.

Unassemble Indicates a mnemonic code resulting from disassembling.

Sample output

Source file
��	��

� �����

� �������������

� ����������

�

� �������������

� ���� �����

�

� �������������

������

� �
��� ��!������

�
��� ��! ���

�
��� ��!����

"�#��$��

� %�
&�

� ��� "��#��$� �

Disassembling output
��������������	
������������

�������������������	
��

��

�������'��������������������������������

�

����������()������������)���������������

�

�����������'����&�������'���������������

�������'�*����
������ ��!��������������

�������)������
������ ��! �������������

�������*�*����
������ ��!��������������

��������������%�
&����������������������

����������(�����������������������������

 A line is fed where the addresses are discontinuous.

CHAPTER 13: DISASSEMBLER

E0C33 FAMILY EPSON 215
C COMPILER PACKAGE MANUAL (ver.3)

13.5.3 Data Output
The data section is dumped out in hexadecimal numbers by the amount corresponding to its size in order of the
addresses. If the input file has no data, no data output will take place. If you specify the -d option alone and input a
file without data, an empty file will be delivered.

Output format

�������������������

���������	
�	��	��	�	��	��	��	��	��	��	��	��	��	��	��	��

�

 (Data)
 : : : : : : : : : : : : : : : : :

Addr Indicates an address of data in hexadecimal number. It is the start address of that line (16

addresses).

+0 to +F Indicates data corresponding to 16 addresses in hexadecimal numbers. Address without data

defined will remain in blank.

Sample output

Data definition in the source file
� ������

� �����
��

��

�������

� ��� !�
���

� ��� !�
���

� ��� !�
�"�

�

� �����
���
��

�������

� �#����
��

� �#����
���

� �#����
���

Disassembling output
�����������������

����������	
�	��	��	�	��	��	��	��	��	��	��	��	��	��	��	��

�

�

�������������������������
��

�
��

�
��

�

�

�

��

�������������
�

�

�

�
��

�

�

�
��

�

�

�

 A line is fed where the addresses are discontinuous. Also, a space is inserted at addresses that do not have

data.

CHAPTER 13: DISASSEMBLER

216 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

13.6 Error/Warning Messages
Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "dis33.err" file.
If the dis33 is started up using the wb33's [DIS33] button, the message is output to "wb33.err". When execution is
completed, a message is displayed in the output window (default).

13.6.1 Errors
The errors produced in the dis33 are classified into two groups: system errors and input file format errors.
When an error occurs, the dis33 immediately terminates the processing after displaying an error message. It will
not output any disassembler file.

Table 13.6.1.1 List of system error messages
Content

Cannot open the file.
Cannot close the file.
Cannot write to the file.
Cannot close the object file.
The section information cannot be loaded due to a memory
allocation error.
The debug information cannot be loaded due to a memory
allocation error.
The section information cannot be loaded due to a file read
error.
The debug information cannot be loaded due to a file read
error.

Error message
Error: Cannot open file, <file name>.
Error: Cannot close file, <file name>.
Error: Cannot write to file, <file name>.
Error: Cannot close SROFF file.
Error: Cannot load data,

memory allocation failure.
Error: Cannot load debug information,

memory allocation failure.
Error: Cannot load data,

file read failure, <file name>.
Error: Cannot load debug information,

file read failure, <file name>.

Table 13.6.1.2 List of input file error messages
Content

".dis" is specified for the input file name.
These errors are produced when there is an error in the
information contained in the input srf33 object file. In such
case, check to make sure that the files in the phases ranging
from the source through linking retain consistency, and redo
the processing from the C compiler or preprocessor by using
definitive source files.

Error message
Error: Invalid file name <file name>.
Error: Too many sections.
Error: Cannot load data,

please check SROFF file.
Error: Cannot load debug information,

please check SROFF file.

13.6.2 Warning
Even if a warning is issued, the dis33 keeps on processing, and completes the processing after displaying a
warning message, unless any error is produced in addition. It will output the disassembler file.

Table 13.6.2.1 Warning message
Content

The input file does not contain debugging information.
This warning is produced only when you activated a mixed
output by specifying the -m option. Since there is no debugging
information, the disassembler cannot output a source, but only
delivers a disassembling output.
Cannot open the source file for mixed output. "no source" is
output for the source field.
The source lines are insufficient. The source might be
modified.

Warning message
Warning: No debug information.

Warning: Cannot open file, <file name>.

Warning: Line number of source file is invalid.

CHAPTER 13: DISASSEMBLER

E0C33 FAMILY EPSON 217
C COMPILER PACKAGE MANUAL (ver.3)

13.7 Precautions
To obtain a source mixed output by the dis33, pay heed to the following aspects:

(1) When describing a source, set the tab every 8 characters. If any other tab setting is made, the output position

will appear displaced.

(2) The dis33 acquires and reads a source file name from the debugging information data of the input srf33 file.

Therefore, you need to input an object file created in the processing of the C Compiler gcc33 or Preprocessor
pp33, Assembler as33 and Linker lk33, with the -g option specified for addition of debugging information.

 In the case where an object file which holds debugging information for source display is linked with another
object file which does not have such information, only the file with debugging information will be delivered
in a source mixed output.

(3) Pay attention to the consistency of the source file to the object file to be input. If the source file is modified

after the object file was created, you will not be able to obtain an output with correct correspondence between
the codes and the source. Or, an error will result, and no output will be delivered.

CHAPTER 14: BINARY/HEX CONVERTER

218 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Chapter 14 Binary/HEX Converter
This chapter describes the functions of the Binary/HEX Converter hex33.

14.1 Functions
The Binary/HEX Converter hex33 (hereafter called the "hex33") inputs the object files in srf33 format and outputs
a specified address range to a file after converting it into Motorola S3 format data. The areas in the specified
address range that do not have data are filled with 0xff. For the addresses of converted data, you can specify
absolute addresses or offset addresses from a specified start address.
Use the hex33 in the following cases:
• When creating the mask data by extracting the internal ROM data from completed srf33 object file
• When creating the data you want to be written into the external ROM of the target board or product
• When verifying the completed program with the Debugger for final acceptance

14.2 Input/Output Files

Binary/HEX Converter
hex33

file.srf

file.sa* hex33.errROM data file

Absolute
object file

Error
file

Linker lk33

Fig. 14.2.1 Flowchart

14.2.1 Input File

Object file
 File format: Binary file in srf33 format
 File name: <File name>.srf
 Description: Object file created by the Linker lk33.

14.2.2 Output Files

HEX file
 File format: HEX file in Motorola S3 format
 File name: <File name>.sa* (<File name> is the same as that of the input file.)
 Output destination: Current directory
 Description: File in which the specified address range of the input file is converted in Motorola S3

format.

Error file
 File format: Text file
 File name: hex33.err
 Output destination: Current directory
 Description: File that is delivered when the startup option (-e) is specified. It records the information

which the hex33 outputs to the Standard Output (stdout), such as error messages.

CHAPTER 14: BINARY/HEX CONVERTER

E0C33 FAMILY EPSON 219
C COMPILER PACKAGE MANUAL (ver.3)

14.3 Starting Method

14.3.1 Startup Format

General form of command line

 hex33 ^ [<startup option>] ^ <start address> ^ <end address> ^ <file name>

 ^ denotes a space.
 [] indicates the possibility to omit.

 <start address>: Specify the conversion start address in a hexadecimal number.
 <end address>: Specify the conversion end address in a hexadecimal number.
 <file name>: Specify an srf33 object file name including the extension.

 ∗ A 32-bit boundary address should be specified for the <start address> and <end address>.
 The specified number is handled as a hexadecimal number even if "0x" is not prefixed.

Operations on work bench
 Select options, conversion range and an object file, then click the [HEX33] button.

14.3.2 Startup Options
The hex33 comes provided with the following four types of startup options:

-x
Function: Adds a specified address to the extension.
Specification on wb33: Check [addr to name].
Explanation: • If this option is specified, the hex33 adds a specified start and an end address to the

extension of the file to be generated.
 Example: test.sa_c00000_c0ffff
 It can tell you which part of the data it is at a glance.

-z
Function: Outputs an absolute address.
Specification on wb33: Check [abs addr].
Explanation: • If this option is specified, the hex33 uses absolute addresses for the converted address

part when generating the output file. Unless this option is specified, the addresses are
converted to offset addresses where the specified start address is assumed to be
address 0.

Note: • Be sure to specify this option when creating mask data.

-r
Function: Checks a section.
Specification on wb33: Check [abs addr].
Explanation: • If this option is specified, the hex33 checks whether all converted sections are within a

specified address range. If there is any section that exceeds the specified range, an
error is assumed.

-e
Function: Outputs an error file.
Specification on wb33: None
Explanation: • Delivers also in a file (hex33.err) the contents to be output by the hex33 through the

Standard Output (stdout), such as error messages.

When entering an option in the command line, one or more spaces are necessary before and after the option.
Example: c:\cc33\hex33 -e -x -z test.srf

CHAPTER 14: BINARY/HEX CONVERTER

220 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

14.4 Messages
The hex33 delivers its messages through the Standard Output (stdout).
If the hex33 is started up by using the wb33's [HEX33] button, the message is output to "wb33.err". When
execution is completed, a message is displayed in the output window (default).

End message
 The hex33 outputs only the following end message when it ends normally.

� �������	�����
������

Usage output
 If no file name was specified or an option was not specified correctly, the hex33 ends after delivering the

following message concerning the usage:

�����������������������������

�����	����������� ��!� "�� #!��$%%��

&����'�

����������(��	���)�*�����������+�*�����������+�*,	�����
�+�

 �	���'�

����-��'�����./������,	���������������

����-��'��������������������������������,	�����
�������	���

����-0�'�
�1��/�����������������2���.��

����-��'�/��/1���������3	�	�������������������

 .�.'�

��������,	��������4����5*�����������+5*�����������+��

��������,	����������������

���
���'�

����������-��-0�67777�67,,,���
������,�

When error/warning occurs
 If an error is produced, an error message will appear before the end message shows up.
 Example: �����'����.�,	���	������#8���,	����
� � �������	�����
������

 In the case of an error, the hex33 ends without creating an output file.

 If a warning is issued, a warning message will appear before the end message shows up.
 Example: 9���	��'���/	���	�,��
�	���/��	��	�����,�.����
� � �������	�����
�����

 In the case of a warning, the hex33 ends after creating an output file.

 For details on errors and warnings, refer to Section 14.6 "Error/Warning Messages".

CHAPTER 14: BINARY/HEX CONVERTER

E0C33 FAMILY EPSON 221
C COMPILER PACKAGE MANUAL (ver.3)

14.5 Contents of HEX File

14.5.1 Motorola S3 Format
The hex33 converts srf33 object files into the Motorola S3 format that supports 32-bit addressing.

The diagram below shows the format of each line in the output file.

S3 length(1) address(4) data(1) ----- data(1) sum(1) \n

 :
S7 length(1) 00000000 sum(1) \n

Numbers in () are bytes.

S3: Indicates that the line is a data record.
S7: Indicates that the line is an end record (end of data).
length: Indicates the record length of "address + data + sum". The data records output by the hex33 are always

0x25, while the end records are 0x05.
address: Indicates the address where the head data in a record is placed.
data: This is 32-byte data. This is not included in the end record.
sum: This is a checksum (1's complement) from "length" to the last data.
\n: This is a return code.

The end records are always S70500000000FA.

14.5.2 Absolute Address Output
If the -z option is specified, an absolute address is placed in the "address" part of the output file.

Example of dump of an output file
��������������������������	��
����	�����������
��
�������	���������������	����

������������������
�
�	���
��������	
�����
�������������
�	����������������	���

���

����������	���

� � � � ��

���

���

���

���������������

Shown above is an example of a file that was created after specifying 0x80000 for the start address, 0x80fff for the
end address, and the -z option.
Data records for 32 addresses each are generated, with the address part ranging from 00080000 to 00080fe0. All
areas that do not have data are filled with 0xff.

14.5.3 Offset Address Output
If the -z option is omitted, an offset address from the specified start address is placed in the "address" part of the
output file.

Example of dump of an output file
��������������������������	��
����	�����������
��
�������	���������������	����

������������������
�
�	���
��������	
�����
�������������
�	����������������		��

���

����������	���

� � � � ��

���

���

���

���������������

Shown above is a conversion result of the example in the preceding page generated without specifying the -z
option. The addresses in the "address" part are offset addresses from address 0x80000.

CHAPTER 14: BINARY/HEX CONVERTER

222 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

14.6 Error/Warning Messages
Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "hex33.err" file.
If the hex33 is started up using the wb33's [HEX33] button, the message is output to "wb33.err". When execution
is completed, a message is displayed in the output window (default).

14.6.1 Errors
The errors produced in the hex33 are classified into two groups: system errors and input file format errors.
When an error occurs, the hex33 immediately terminates the processing after displaying an error message. It will
not output any HEX file.

Table 14.6.1.1 List of system error messages
Content

Cannot open the file.
Cannot write to the file.
Cannot read the file.
Cannot secure memory space.

Error message
Error: File open error.
Error: File write error.
Error: File read error.
Error: Memory allocation error.

Table 14.6.1.2 List of input file error messages

Content
Cannot open the file <file name>.
The input file is not an object file in srf33 format.
The conversion start address is invalid. The specified
address either exceeds the effective range of
0x00000000 to 0x0fffffff or does not reside on 32-byte
boundaries.
The conversion end address is invalid. The specified
address either exceeds the effective range of
0x00000000 to 0x0fffffff or does not reside on 32-byte
boundaries.
The converted data exceeded a specified address range.
These errors occur when the input srf33 object files
contain erroneous information. Check all the files from the
source to the linked files for consistency. If necessary,
reprocess from the C Compiler and Preprocessor using
the final source files.

Error message
Error: "<file name>" file could not be opened.
Error: Input file is not SRF33 file.
Error: Start address error.

Error: End address error.

Error: Out of area in address <address>.
Error: Chain information size is greater than file size.
Error: Chain seek address is greater than file size.
Error: File control flag error.
Error: Section address error.
Error: Section ID error.
Error: Data conflicted at <address>.

14.6.2 Warning
Even if a warning is issued, the hex33 keeps on processing, and completes the processing after displaying a
warning message, unless any error is produced in addition. It will output the HEX file.

Table 14.6.2.1 Warning message
Content

There is no section information chain in the input file. This
warning is produced when the input srf33 object files
contain erroneous information. Check all the files from the
source to the linked files for consistency. If necessary,
reprocess from the C Compiler and Preprocessor using
the final source files.

Warning message
Warning: Section information chain is not found.

CHAPTER 14: BINARY/HEX CONVERTER

E0C33 FAMILY EPSON 223
C COMPILER PACKAGE MANUAL (ver.3)

14.7 Precautions

(1) Specify hexadecimal 32-byte boundary addresses for the conversion start and end addresses.

(2) When converting internal ROM data into mask data, for the conversion start end addresses, specify the start

and end addresses of the internal ROM of the model being developed, and produce the output file in absolute
addresses (by specifying the -z option). Even if the program size is small, the HEX file must be created for all
areas to the end address of the internal ROM.

CHAPTER 15: LIBRARIAN

224 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Chapter 15 Librarian
This chapter describes the functions of the Librarian lib33.

15.1 Functions
The librarian lib33 (hereafter called the "lib33") is a software tool for editing the srf33 format library files. It
allows you to create a library from the relocatable object files output by the Assembler as33. A library of
general-purpose modules will help you reduce the time and cost required for developing a product using the
E0C33 Family of microcomputers in the future.
The lib33 has the following features:
• Adds the relocatable object files output by the Assembler as33 to an existing library file.
• Creates a new library file from the relocatable object files output by the Assembler as33.
• Outputs a list of modules in a library file.
• Deletes specified modules from a library file.
• Restores specified modules in a library file to the original relocatable object file.

Once the created or edited library file is specified during linkage, only the necessary modules in that file are linked
with other object files.

15.2 Input/Output Files

lib33.err
Error
file

Linker lk33

Assembler as33

Librarian
lib33

file.o

file.o
file.lib

file.lib Library fileRelocatable
object files

Relocatable
object files Library file

Fig. 15.2.1 Flowchart

15.2.1 Input Files

Library file (except when creating a new library)
 File format: Binary file in srf33 library format
 File name: <File name>.lib
 Description: This is a library file included with the package or one that is created by the lib33.

Relocatable object file (when creating a library or adding to a library)
 File format: Binary file in srf33 format
 File name: <File name>.o
 Description: This is a relocatable object file created by the Assembler as33.

15.2.2 Output Files

Library file (when creating a new library or adding/deleting modules)
 File format: Binary file in srf33 library format
 File name: <File name>.lib
 Output destination: Current directory
 Description: This file is comprised of multiple relocatable object modules. For the contents of a

library file, refer to Appendix, "srf33 File Structure".

CHAPTER 15: LIBRARIAN

E0C33 FAMILY EPSON 225
C COMPILER PACKAGE MANUAL (ver.3)

Relocatable object file (when restoring modules)
 File format: Binary file in srf33 format
 File name: <File name>.o
 Output destination: Current directory
 Description: The specified modules are restored to the original relocatable object file.

Error file
 File format: Text file
 File name: lib33.err
 Output destination: Current directory
 Description: File that is delivered when the startup option (-e) is specified. It records the information

which the lib33 outputs to the Standard Output (stdout), such as error messages.

15.3 Starting Method

15.3.1 Startup Format

General form of command line

 lib33 ^ [<startup option>] ^ <library file name> ^ [<object file name>]

 ^ denotes a space.
 [] indicates the possibility to omit.

 <library file name>: Specify a library file you want to edit including the file name extension.
 <object file name>: Specify a file you want to be registered, deleted, or restored including the file name

extension. Multiple object files can be specified.

Operations on work bench
 Select options and input files, then click the [LIB33] button.

15.3.2 Startup Options
The lib33 comes provided with the following five types of startup options:
The actual method will be described later.

-a
Function: Adds an object file to a library.
Specification on wb33: Check [add]. (addition)
Explanation: • If an existing library is specified, the specified object file is added to the library.
 • If a new library file name is specified, a library file is created from the specified object

file.

-d
Function: Deletes an object file from a library.
Specification on wb33: Check [del].
Explanation: • The specified object file is deleted from the specified library.

-l
Function: Displays object files registered in a library.
Specification on wb33: Check [list].
Explanation: • The object files in the specified library are listed in the order they are stored.
 • These files are listed on a standard output device (stdout).

-x
Function: Restores library modules to the original object files.
Specification on wb33: Check [extract] (Only specified modules are restored) or [extract all] (All modules are

restored)

CHAPTER 15: LIBRARIAN

226 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Explanation: • If an object file name is specified, only the specified modules in the library are
restored to the previous object file.

 • If no object file name is specified, all the modules in the library are restored to the
previous object files.

The -a, -d, -l and -x options cannot be specified simultaneously; they can only be specified one at a time.
If none of these options are specified, a new library file is created from the specified object file (check [new] in the
wb33).

-e
Function: Output of error files
Specification on wb33: None
Explanation: • Delivers also in a file (lib33.err) the contents to be output by the lib33 through the

Standard Output (stdout), such as error messages.

When entering an option in the command line, one or more spaces are necessary before and after the option.
Example: c:\cc33\lib33 -e -a sample.lib test1.o test2.o

15.4 Messages
The lib33 delivers its messages through the Standard Output (stdout).
If the lib33 is started up by using the wb33's [LIB33] button, the message is output to "wb33.err". When execution
is completed, a message is displayed in the output window (default).

End message
 The lib33 outputs only the following end message when it ends normally.

� �����������	
�����

Usage output
 If no file name was specified or an option was not specified correctly, the lib33 ends after delivering the

following message concerning the usage:

���������������������

�	�������������������������� ���!""��

#$��%�

����������&	���	�'�(�������)*��+�(*��$+�

����	�$%�

����)�%���	�,-��	��*�����.�������

����)��%������/�*��$��*��������$�����

���	*������������

����)��%�����

��$�*�	
������������

����)��%���$��������������$��������-	����$�	*���������

����)��%�����-��

��$�*�	
������������

�,��,�%�

�����0������������*����������

���
��%�

����������)�����-������,�-�	���-�	�

When error/warning occurs
 If an error or a warning is produced, an error message or a warning message will appear before the end

message shows up.
 Example: �$�����%����	�%�����	��	���*���
� � �����������	
����

 In the case of an error, the lib33 ends without creating an output file.
 In the case of a warning, the lib33 ends after creating an output file.
 For details on errors and warnings, refer to Section 15.6 "Error/Warning Messages".

CHAPTER 15: LIBRARIAN

E0C33 FAMILY EPSON 227
C COMPILER PACKAGE MANUAL (ver.3)

15.5 Library Editing Functions

15.5.1 Creating a New Library
To create a new library, execute the lib33 by specifying no option but -e.

lib33 <Library file name> <Object file name> ... <Object file name>

Example: c:\cc33\lib33 test.lib test1.o test2.o test3.o

A library file is created in the specified name. Object files are stored in it in the order in which they are specified.

When creating a library file in the wb33, check the [new] button in the [other options] window and input a library
file name in the text box located below the button. (The extension ".lib" is unnecessary.) Choose the object files
that you want to be registered in the library from the file list box of the [other options] window.

Notes: • Only the srf33 format relocatable object files (*.o) can be registered in a library. Absolute object

files cannot be registered in a library.

 • If an existing library name is specified, it is overwritten with the specified object files.

 • The maximum number of object modules that can be registered in one library file is 4000. If

this limit is exceeded, an error results.

15.5.2 Adding Modules to a Library
To add object files to an existing library, execute the lib33 using the following startup command:

lib33 -a <Library file name> <Object file name> ... <Object file name>

Example: c:\cc33\lib33 -a test.lib test1.o test2.o test3.o

By specifying the -a option and an existing library file name, you can add the specified object files to that library.
The object files are registered at the end of the library file in the order in which they are specified.

When adding modules to a library in the wb33, choose a library file name from the file list box of the execution
window and object file names to be added from the file list box of the [other options] window. Since no directory
can be specified for the object files, the object files you want must be prepared in the same directory as that of the
library file before selecting them. When you check the [add] button to execute the command, the selected object
files are registered in the library.

Notes: • If a nonexistent library file name is specified, a new library file is created in that library name.

 • Only the srf33 format relocatable object files (*.o) can be registered in a library. Absolute object

files cannot be registered in a library.

 • If the specified object file has the same name as an already registered module, a warning is

issued, but the specified file is added at the end of the library in the same name. Then, if the
object file name is specified in a delete command, both modules are deleted.

 • The maximum number of object modules that can be registered in one library file is 4000. If this

limit is exceeded, an error results.

CHAPTER 15: LIBRARIAN

228 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

15.5.3 Listing Registered Modules
To view a list of the object files registered in a library, execute the lib33 using the following startup command:

lib33 -l <Library file name>

Example: c:\cc33\lib33 -l string.lib
 The files list in string.lib
 strerror.o
 strcat.o
 strchr.o
 :
 memset.o
 strtok.o
 Librarian Completed

All object file names included in the specified library are listed in the order they are stored. This list is displayed
on (output to) a standard output device (stdout). If the -e option is specified, the list is also output to the
"lib33.err".

When executing this command in the wb33, choose <Library file name> from the file list box of the execution
window and check the [list] button to execute the command.

15.5.4 Deleting Modules from a Library
The library modules that have become unnecessary can be deleted from the library file.

lib33 -d <Library file name> <Object file name> ... <Object file name>

Example: c:\cc33\lib33 -d test.lib test1.o test2.o

If multiple object files with the same name are registered in the specified library, all of them are deleted.

When executing this command in the wb33, choose <Library file name> from the file list box of the execution
window and input the <Object file name> that you want deleted in the text box below the [del] button of the [other
options] window (extension ".o" is unnecessary). Only one object file name can be specified in this text box at a
time. If you want to delete multiple object files, execute the lib33 as many times as the number of files to be
deleted or input all these file names from the command line.
When you check the [del] button to execute the command, the specified object file is deleted from the library.

15.5.5 Restoring Object Files
The modules registered in a library can be restored to the original srf33 format relocatable object files. To restore
modules to the original object file, execute the following startup command.

lib33 -x <Library file name> <Object file name> ... <Object file name>

Example: c:\cc33\lib33 -x test.lib test1.o test2.o

If the command is executed without specifying <Object file name>, all modules in the library are restored to the
original object files. Even when modules in a library are restored in this way, the contents of the library file remain
intact. If multiple modules with the specified name are registered in the library file, the last module registered is
restored.

When executing this command in the wb33, choose <Library file name> from the file list box of the execution
window and input the <Object file name> that you want restored in the text box on the right side of the [extract all]
button of the [other options] window (extension ".o" is unnecessary). Only one object file name can be specified in
this text box at a time. If you want to restore multiple object files, execute the lib33 as many times as the number
of files to be restored or input all these file names from the command line.
When you check the [extract] button to execute the command, the specified object file is restored.
If you want to restore all the modules, check the [extract all] button to execute the command.

CHAPTER 15: LIBRARIAN

E0C33 FAMILY EPSON 229
C COMPILER PACKAGE MANUAL (ver.3)

15.6 Error/Warning Messages
Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "lib33.err" file.
If the lib33 is started up using the wb33's [LIB33] button, the message is output to "wb33.err". When execution is
completed, a message is displayed in the output window (default).

15.6.1 Errors
When an error occurs, the lib33 immediately terminates the processing after displaying an error message. It will
not create any output file.

Table 15.6.1.1 List of error messages

�

��������

�������������	��
����

�	�������
������������
���������������	����
�����������
������

�	����������
�������������	��������������������	���������������	��
����������������
����������	������������������������������������

������������

��������������

�
��������� ������ �������������
����

�
��������� ������ �!�����
�����������
����

����� �"����������
�����

15.6.2 Warnings
Even if a warning is issued, the lib33 keeps on processing, and completes the processing after displaying a
warning message, unless any error is produced in addition. It will create the output file, but the results are not
guaranteed.

Table 15.6.2.1 List of warning messages
Content

The specified object is not a srf33 format relocatable object file.
The specified object file is already registered. Even in this case,
the specified file is added at the end of the library.
The object file specified to be deleted or restored cannot be
found in the library.

Warning message
<file name>: Warning: Not srf33 object file
Warning: Multiple object file '<file name>'

Warning: Cannot find '<file name>' in library

15.7 Precautions

(1) Only the srf33 format relocatable object files (*.o) can be registered in a library. Absolute object files cannot

be registered in a library. Note also that the maximum number of object modules that can be registered in one
library is 4000.

(2) If, after specifying an object file that has the same name as that of an already registered module, you execute

a command to add it to a library, a warning is generated but the file itself is added at the end of the library in
the same name. Then, when the object file name is specified in a delete command, both modules are deleted;
therefore, be careful.

CHAPTER 16: DEBUGGER

230 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Chapter 16 Debugger
This chapter describes how to use the Debugger db33.

16.1 Features
The Debugger db33 (hereinafter called the "db33") is used to debug your program after reading an object file in
the srf33 format that is generated by the linker or a ROM data file in Motorola S3 format.
It has the following features and functions:
• Various data can be referenced at the same time using multiple windows.
• Frequently used commands can be executed from tool bars and menus using a mouse.
• In addition to using the ICE33, ICD33 or Debug Monitor to debug your program, a software emulator function

is available that allows program debugging on personal computers.
• Supports C and assembly source level debugging functions.
• In addition to continuous program execution, two types of C source/assembler level single-stepping are

supported.
• Hardware and software break functions, as well as a data break function that allows the memory access

condition to be specified are available.
• Furthermore, the following useful functions are also provided:

- A real-time display function for showing flags and watch addresses on-the-fly
- A time display function for showing execution time by both duration and number of cycles
- A trace function that allows data to be searched and saved
- An automatic command execution function using a command file
- A simulated I/O function that allows input/output to be evaluated in the debugger

16.2 Input/Output Files

Debugger

db33

file.srf
file.cmd

srf33 object file
Command file

file.log

Log file

from Linker

ICE33

ICD33

MON33, DMT33MON
file.sa

Motolora S3
HEX file

33xxxxxx
.par

Parameter file

file.c
file.s

Source file(s)

Fig. 16.2.1 Flowchart

16.2.1 Input Files

Parameter file
 File format: Text file
 File name: <file name>.par
 Description: This file contains memory information on each microcomputer model and is indispensable for

starting the debugger.The [Par gen] button of the Work Bench wb33 allows you to create a
parameter file that contains the basic parameters of the E0C33 Family.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 231
C COMPILER PACKAGE MANUAL (ver.3)

The following files are read by the debugger according to command specification.

Object file
 File format: Binary file in the srf33 format
 File name: <file name>.srf
 Description: This is an absolute object file generated by the Linker lk33. This file is read into the debugger

by the lf command. By reading a file in the srf33 format that contains debug information, you
can perform source level debugging.

ROM data HEX file
 File format: HEX file in Motorola S3 format
 File name: <file name>.sa
 Description: This is a load image file of the ROM created by the Binary/HEX converter hex33, and is read

into the debugger by the lh command. This file cannot be used for source level debugging
because it has no debugging information, but you can use it to check the operation of final
program data.

Source file
 File format: Text file
 File name: <file name>.c (C source), <file name>.s (assembly source)
 Description: This is the source file of the above object file. It is read when the debugger performs source

display.

Command file
 File format: Text file
 File name: <file name>.cmd
 Description: This file contains a description of debug commands to be executed successively. By writing a

series of frequently used commands in this file, you can save the time and labor required for
entering commands from the keyboard. This command is read in and executed using the com
or cmw command.

16.2.2 Output File

Log file
 File format: Text file
 File name: <file name>.log
 Description: This file contains information on executed commands and execution results that are output to a

file. Output of this file can be controlled by the log command.

CHAPTER 16: DEBUGGER

232 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.3 Starting Method

16.3.1 Startup Format

General form of command line

 db33 ^ [<startup option>] ^ -p ^ <parameter file name>

 ^ denotes a space.
 [] indicates the possibility to omit.

Operation on work bench
 Select the parameter file and options, then click the [DB33] button.

16.3.2 Startup Options
The db33 has eight startup options available.

-p <file name>.par
Function: Specifies a parameter file (essential setup item).
Specification on wb33: Select from the file list box in the execution window.
Explanation: • Specify a parameter file (create a template by the wb33 and modify it according to the

model to be developed).
 • You cannot debug a program unless you have this file.

-sim/-mon/-icd/-ice
Function: Specifies debugger mode.
Specification on wb33: Select a mode from the combo box (ICD, MON, ICE, SIM).
Explanation: • The db33 is started up in the specified mode.

-sim Simulator mode
-mon Debug monitor mode
-icd ICD mode
-ice ICE mode

 • Unless this option is specified, the db33 is started in ICE mode.

-c <file name>.cmd
Function: Specifies a command file.
Specification on wb33: Check [db33 *.cmd file] and select the command file from the list box.
Explanation: • If you want a series of commands to be executed immediately after the db33 starts up,

use this option to specify a command file that describes those commands.

-w
Function: Specifies a window at startup.
Specification on wb33: Check [1 win].
Explanation: • If you specify this option, only the [Command] window opens when the db33 starts up.

Specify this option when saving the log.
 • Unless this option is specified, the [Command] window, [Source] window, and

[Register] window open simultaneously.

-comX
Function: Specifies a communication port.
Specification on wb33: Select from a list box (com1, com2, com3 com4, com5, com6, com7, or com8).
Explanation: • This option specifies the communication port through which a personal computer is

communicated with the ICE33, ICD33 or MON33. Specify a port number (1–8) in the
X part of this option. The port that can be used for this purpose varies among different
personal computers.

 • Unless this option is specified, the com1 port is used.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 233
C COMPILER PACKAGE MANUAL (ver.3)

-b <baud rate>
Function: Specifies a communication transmission rate.
Specification on wb33: Select from a list box (4800, 9600, 19200, 38400, 57600 or 115200).
Explanation: • This option specifies the baud rate on the personal computer. For <baud rate>, select

one from 4800, 9600, 19200, 38400, 57600 or 115200. The baud rate selections vary
among different personal computers.

 • Unless this option is specified, the baud rate is set to 38400 bps in ICE or debug
monitor mode and 115200 bps in ICD mode.

 • The baud rate on the ICE33/ICD33 is set using the DIP switch mounted on the
ICE33/ICD33.

-sf
Function: Specifies display with the small font.
Specification on wb33: Check [small font].
Explanation: • The characters displayed in the db33 window are set to "Terminal 10pt".
 • Unless this option is specified, FixedSys 14pt is used.

-lptX
Function: Specifies a parallel port.
Specification on wb33: Select from a list box (no lpt, lpt1, or lpt2).
Explanation: • This option specifies the parallel port through which a personal computer is

communicated with the ICE33 or ICD33. Specify a port number (1 or 2) in the X part
of this option. The port that can be used for this purpose varies among different
personal computers.

 • If this option is specified, the lf and lh commands download files at high speed using a
parallel port.

Note: Do not use the COM and LPT ports for the db33 in other drivers and applications. Furthermore,

make sure that the port has been enabled when using a note PC as some can disable COM
ports.

When entering an option in a command line, make sure that there is at least one space before and after the option.
Example: c:\cc33\db33 -p 33104_1.par -c startup.cmd -sf -com1 -b 38400

16.3.3 Startup Messages
When the db33 starts up, it outputs the following message in the [Command] window.

When starting up in ICE mode (with -ice option specified, default)

�������������	���
�

�

�����������������������������������
�

�

���� �����!����������������������"���

��#"�����#�#$�����%�&�������������"���

�����#&�'�������������������������"���

�#�#$�����%�&���#$�������(�

��#��

���������������	��)�����(�

�

���������������������#$��(�

�

*��+�#""��))�������������(�

�

�����#�"�,��)����������(�
�
�

�����#�"�)�#��)���������(�

�

�����#�"!#���,��)�������(�
�
�

����)%�!#���,��)�������(�
�
�

��-.���)�����������������(�$����"�

�$�&#����$�$���)�'�����(�
/*�

/#��������������������������������"���

0�

CHAPTER 16: DEBUGGER

234 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 When the db33 starts up in ICE mode, it first performs the tests and initializing operations described below
then displays the above message.

 1. Test the ICE33 connections.
 2. Read a parameter file and check its contents.
 3. Read and check the hardware version.
 4. Initialize the ICE33.
 5. Mapping
 6. Reset the ICE33.
 7. Initialize debugging information.

 If an error or warning appears during any of the above processes, the db33 halts subsequent processing after

displaying an error or warning message. In this case, quit the db33 temporarily, and eliminate the cause of
error before restarting the db33.

 Before starting up the db33 in ICE mode, please be sure to check the following:
 • The ICE33 is connected to your computer with the designated RS-232C cable and parallel cable.
 • Ports are specified correctly.
 • The baud rate is set correctly.
 • The PRC board is mounted correctly in place.
 • The power of the ICE33 is turned on.
 • The ICE33 and PRC board are not in a reset condition.
 • The ICE33 is not in the free-run or self-diagnostic mode.
 • The specified COM and LPT ports are not used in other applications.

When starting up in ICD mode (with -icd option specified)

�������������	���
�

�

�����������������������������������
�

���� �����!����������������������"���

��#"�����#�#$�����%�&�������������"���

�����#&�'�������������������������"���

�#�#$�����%�&���#$�������(�

��#��

���������������	��)�����(�

�

���������������������#$��(�

�

����)%�!#���*��)�������(�
�
�

+#����� ��� ������)����(����

,#��������������������������������"���

���� �����!����,�,���������������"���!�������)���,�,��-.����������#�#$�����%�&���

/�

 When the db33 starts up in ICD mode, it first performs the tests and initializing operations described below

then displays the above message.
 1. Test the ICD33 connections.
 2. Read a parameter file and check its contents.
 3. Initialize the ICD33.
 4. Initialize debugging information.

 If an error or warning appears during any of the above processes, the db33 halts subsequent processing after

displaying an error or warning message. In this case, quit the db33 temporarily, and eliminate the cause of
error before restarting the db33.

 Before starting up the db33 in ICD mode, please be sure to check the following:
 • The ICD33 is connected to your computer with the designated RS-232C cable and parallel cable.
 • Ports are specified correctly.
 • The baud rate is set correctly.
 • The target board is connected correctly.
 • The power of the ICD33 and target board are turned on.
 • The specified COM and LPT ports are not used in other applications.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 235
C COMPILER PACKAGE MANUAL (ver.3)

When starting up in debug monitor mode (with -mon option specified)

�������������	���
�

�

�����������������������������������
�

�

���� �����!����"�����������������#���

��$#�����$�$%�����&�'�������������#���

�����$'�(�������������������������#���

�$�$%�����&�'���$%�������)�

��$��

���������������	��*�����)�

�

���������������������$%��)�

�

"���*&�!$���+��*�������)�
�
�

"$��������������������������������#���

,�

 When the db33 starts up in debug monitor mode, it first performs the tests described below then displays the

above message.
 1. Test the MON33 connections.
 2. Read a parameter file and check its contents.
 3. Initialize debugging information.

 If an error or warning appears during any of the above processes, the db33 halts subsequent processing after

displaying an error or warning message. In this case, quit the db33 temporarily, and eliminate the cause of
error before restarting the db33.

 Before starting up the db33 in debug monitor mode, please be sure to check the following:
 • The DMT33MON board is connected to your computer with the designated RS-232C cable.
 • The communication port is specified correctly.
 • The baud rate is set correctly.
 • The target board is connected correctly.
 • The MON33 has been activated on the target board.

When starting up in simulator mode (with -sim option specified)

�������������	���
�

�

�����������������������������������
�

�

���� �����!����*�%�'$�����������#���

��$#�����$�$%�����&�'�������������#���

�����$'�(�������������������������#���

�$�$%�����&�'���$%�������)�

��$��

���������������	��*�����)�

�

���������������������$%��)�

�

-��.�$##��**�������������)�

�

"$��������������������������������#���

,�

 When started up in simulator mode, the db33 performs the following test and initialization before displaying

the above messages.
 1. Read a parameter file and check its contents.
 2. Initialize the simulator.
 3. Mapping
 4. Reset the simulator.
 5. Initialize debugging information.

 If an error or warning is encountered during the above processing, the db33 halts subsequent processing after

displaying an error or warning message. In this case, quit the db33 temporarily and create or select the correct
parameter file before restarting the db33.

CHAPTER 16: DEBUGGER

236 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Usage output
 If no parameter file was specified or an option was not specified correctly, the db33 displays the following

message concerning the usage:

�������������	���
�

�

�����������������������������������
�

�

���� !�����

"�����
������!�!#����$%�&��'�(���)�'�*�*##!+"$%�&�)�'�,)�'�*#-)�'����!�"$�!��)�'� %)�'&��-)�

�����������������������!�!#�����%�&��

�����(���������������� �&�*��"��������#"��

������� �#�������������� �#�&!���#"��

�������#+��������������"�����#+����#"��

��������*"������������������#"��

��������*�������������������#"��

������"�%!�&����������������#"��

�����*����������������*##!+"�%�&��

�����,������������������+�+&��*##!+"�,�+",�

�����*#-��-.��/������*#����0�"�%!�&��*#��

�����������������������!�"��!��0�1/220��3220���4220��/122�"�%!�&��0�563220���5422�'��)�

���������������������������������"�%!�&���!�"��!���������#"���/122�

���������������������������������"�%!�&���!�"��!���������#"����5422�

���������������������������������"�%!�&���!�"��!�����"�����#+����#"���/122�

����� %���������������"� �&!��,���� #!&&�%+��

�����&��-��-.��4�������!�!&&�&�����

7�

 When this message appears on the screen, temporarily quit the db33 and then start it up again correctly.

16.3.4 Method of Termination
To terminate the debugger, select [Exit] from the [File] menu.

 [File] menu

You can also input the q command in the [Command] window to terminate the debugger.

78

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 237
C COMPILER PACKAGE MANUAL (ver.3)

16.4 Windows
This section describes the types of windows used by the db33.

16.4.1 Basic Structure of Window
The diagram below shows the window structure of the db33.

 [Source] window [Trace] window [Symbol] window [Register] window

[Command] window [Simulated I/O] window [Memory] window

When the debugger starts up, the [Command], [Source], and [Register] windows are displayed by default. If you
specify the -w option when starting up the debugger, only the [Command] window is displayed on the screen.
Other windows are displayed by selecting the appropriate menu commands.

CHAPTER 16: DEBUGGER

238 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Features common to all windows

(1) Resizing and moving a window
 Each window can be resized as needed by dragging the boundary of the window with the mouse. The

[Minimize] and [Maximize] buttons work in the same way as in general Windows applications. Each window
can be moved to your desired display position by dragging the window's title bar with the mouse. However,
windows can only be resized and moved within the range of the application window.

 All windows except [Command] can be closed as necessary.

(2) Scrolling a window
 All windows except for the [Register] window can be scrolled. Use one of the following three methods to

scroll a window:
 1. Click on an arrow button or enter an arrow key (cursor movement) to scroll a window one line at a

time (except for the [Command] window).
 2. Click on the scroll bar of a window to scroll it one page (current window size) at a time.
 3. Drag the scroll bar handle of a window to move it to the desired area.

(3) Other
 The arrow keys can only be used in the [Command], [Source] and [Simulated I/O] windows. In all the

windows, edit commands such as cut and paste cannot be used. However, the [Command] window supports a
text-paste command.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 239
C COMPILER PACKAGE MANUAL (ver.3)

16.4.2 [Command] Window

Contents displayed
 The [Command] window displays command execution results such as a db33 message, break information,

map information, and trace search conditions. However, some command execution results are displayed in
the other window. The contents of these execution results are displayed when their corresponding windows
are open. If the corresponding window is closed, the execution result is displayed in the [Command] window.

 Only the contents displayed in the [Command] window are output to a log file. (Refer to the explanation of
the log command.)

 For the displayed command execution results, refer to the explanation of each command.

Operation

 Opening and closing the window
 The [Command] window always opens when the db33 starts up. It cannot be closed, but can be minimized.

 Entering commands
 You can enter and execute all the debug commands in the [Command] window.
 When the prompt ">" appears at the bottom line of the [Command] window, the system accepts a command

entered from the keyboard.
 If some other window is selected, click on the [Command] window. A cursor will blink behind the prompt,

indicating that you are ready to input a command.

 Command history
 The ↑ and ↓ keys can be used to display up to 20 of the latest executed commands and the displayed

command can be executed again by pressing [Enter].

 See Section 16.7.1, "Entering Commands from Keyboard", for entering command.

Restrictions
• The maximum number of characters that can be displayed or input in one line of the [Command] window

is 255, including null characters.

• The maximum number of lines that can be scrolled is 256. The contents displayed or input preceding these

lines are deleted.

CHAPTER 16: DEBUGGER

240 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.4.3 [Source] Window

Contents displayed

 Program code display
 The [Source] window displays the contents of the program loaded.
 You can select one of the following three display modes:

 1. Mixed display (selected by [Mix] button or m command)

 [Mix] button

 In this mode, the window displays the addresses, codes, disassembled contents, and corresponding source

line numbers and source statements.

 2. Source display (selected by [Source] button or sc command)

 [Source] button

 In this mode, the window displays the addresses, corresponding source line numbers and source statements.

The displayed address is the address of the first instruction in the source. Only the source that includes the
current PC position is displayed.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 241
C COMPILER PACKAGE MANUAL (ver.3)

 3. Disassemble display (selected by [Unassemble] button or u command)

 [Unassemble] button

 In this mode, the window displays the addresses, codes, and disassembled contents. This format is selected

when the db33 starts up.

 Display of source line numbers and source statements
 The source line numbers and source statements can only be displayed when the srf33 object file including

debug information for source display is loaded. Furthermore, the source statements that are actually
displayed from this file are those which have had the -g option specified by the C compiler or preprocessor.

 The db33 displays the source lines corresponding to the address of each code and the source statements
bearing information on the source lines up to the immediately preceding code. Therefore, uncoded source
statements written after the end of code are not displayed.

 Underlined display (current PC)
 The underlined line indicates the line to be executed next (the line of the current PC address). In the mixed

display and disassemble display modes, the entire line is underlined. In the source display mode, the entire
line is underlined only when the current PC falls upon the address of the first instruction in the source.
Otherwise, the address part is not underlined.

 ! and ? (breakpoint)
 The "!" displayed immediately before or after an address indicates that the address is a breakpoint. The "!"

displayed immediately before an address indicates a software break and the "!" displayed immediately after
an address indicates a hardware break.

 If a breakpoint is set somewhere other than the first instruction address displayed in the source display mode,
it is marked with "?" in place of "!".

 Display of unused areas
 The unmapped areas in the memory specified by a parameter file are marked with words "no map".

 Others
 If no source code corresponding to the address is loaded in the mixed display mode, "no source" is displayed

in the source part.

Operation

 Opening and closing the window
 The [Source] window opens simultaneously when you start up the db33. However, if the -w option is

specified, this window is not opened automatically.
 The [Source] window can be opened by using the [Source] command on the [Window] menu or can be

closed by clicking on the close box.

CHAPTER 16: DEBUGGER

242 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 Changing display format
 Execute the m, sc or u command as explained above. (Contents will be displayed beginning with the current

PC address.) Or click on each button. (The display will be switched over from the currently displayed address
or line number to another.)

 Updating display contents
 The contents displayed in the [Source] window are updated automatically in the following cases:
 • When a program is loaded (lf, lh or lfl command)
 • When a program is executed (g, s or n command)
 • When display format is changed (m, sc or u command)
 • When the CPU is reset (rstc or rsth command)
 When contents are redisplayed, the start position is the address indicated by the current PC. When the CPU is

reset, contents are displayed beginning with the boot address.
 The contents displayed in the [Source] window are not updated for any other reason even when the contents

of program memory are modified by a command (e, f or mv). To bring up the last content on the screen,
perform one of the following operations:

 1. Execute one of the m, sc or u commands.
 2. Click on the vertical scroll bar.

 Setting breakpoints
 Software breakpoints, hardware breakpoints and a temporary breakpoint can be specified from the window.

Position the cursor at an address line where you want a breakpoint to be set (cannot be set at a source-only
line). Then...

 • Click on the [Soft PC break] or [Hard PC break] button. A software or hardware breakpoint will be set at

that address. The breakpoint here can be cleared by performing the same operation at this address as you
did above.

 [Soft PC break] button [Hard PC break] button

 • When you click on the [Go to] button, the program starts running beginning with the current PC and

breaks before executing the line at which the cursor is placed.

 [Go to] button

 Displaying and registering symbols
 Symbols whose contents you want to be displayed and those registered in the [Symbol] window can be

selected from the [Source] window.
 When in the mix display or source display mode, position the cursor in or immediately before or after a

symbol you want to choose. (The symbol name is taken including "*", ".", "->", "[", and "]".) Then...

 • Click on the [Symbol watch] button. The content of the symbol will be displayed in the [Command]

window.

 [Symbol watch] button (The [Watch] command on the [Symbol] menu can also be used.)

 • When you click on the [Symbol add] button, the symbol is registered in the [Symbol] window.

 [Symbol add] button (The [Add] command on the [Symbol] menu can also be used.)

Restrictions
• The maximum number of characters that can be displayed in one line of the [Source] window is 255

(including the first ! or ?).

• The [Source] window can be used for display only; it cannot be used to input anything from the keyboard

or edit the displayed contents.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 243
C COMPILER PACKAGE MANUAL (ver.3)

16.4.4 [Memory] Window

Contents displayed
 The [Memory] window displays a dumped result the entire memory area in hexadecimal. The content of any

desired memory location can be viewed by scrolling the display. The contents of unmapped memory
addresses in each model are marked with asterisks (*).

 Display format
 Data can be displayed in units of bytes, half words, or words as set by the db, dh, or dw commands.

Displaying in half word or word units are performed according to the endian format of the area set in the
parameter file.

 Examples: Display in byte units (db command)
 � �������������������	��
���������������������������������

� � ���

� � ��������������������������������

 Display in half word units (dh command)
 � ���������������������
��������������������������

� � ���

� � ������������������������������

 Display in word units (dw command)
 � ����������������������
�������������������

� � ���

� � ������������������������������

Operation

 Opening and closing the window
 The [Memory] window is not opened automatically when the debugger starts up. It can, however, be opened

by choosing the [Memory] command from the [Window] menu.
 To close the window, click on the close box of the window.

 Display format and changing display start address
 Execute the db, dh or dw command as explained earlier. These commands can also be used to specify the

display start address.

 Updating display contents
 Even if the memory contents are modified by a command (e, f, or mv), the contents displayed in the

[Memory] window are not updated at that point in time. The contents displayed in the [Memory] window are
cleared when a file is loaded (lf, lh or lfl command).

 To bring up the latest content on the screen, perform one of the following operations:
 1. Execute one of the db, dh or dw commands.
 2. Click on the vertical scroll bar.
 The [Memory] window while the program is being executed (g, s, or n) is updated when a break occurs or

every step. (default)

Restriction
 The [Memory] window is used for display only, and cannot be used to input anything from the keyboard or

edit the displayed contents.

CHAPTER 16: DEBUGGER

244 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.4.5 [Register] Window

Contents displayed
 The [Register] window displays the following contents:

 Register contents
 The contents of general-purpose registers (R0 to R15) and special registers (PC,

SP, PSR, AHR, and ALR) are displayed. The contents of the PSR register are
displayed individually for each flag.

 Execution counter
 The total number of cycles executed and a total execution time since the

execution counter is actuated after a reset are displayed by adding up the count
values. For details about the execution counter, refer to Section 16.8.5,
"Executing Program".

 Watch memory data
 The debugger allows you to specify four memory addresses and monitor the contents of those memory

locations. The contents of these four watch data addresses (4 bytes each from a specified address) are
displayed in the [Register] window. The default watch data addresses set at startup time are addresses 0, 4, 8,
and C. The data is displayed in the endian format specified by the parameter file. If watch data addresses are
specified using symbols (w command), symbol names also are displayed after data.

 ICE CPU status (in ICE mode)
 In the ICE mode, the CPU status in the ICE33 is displayed on the right side of the PC display data. The

display contents are listed below. The CPU status is not displayed in other modes.
SLP Indicates that the CPU is in the SLEEP mode.
HLT Indicates that the CPU is in the HALT mode.
OSC3 Indicates that the CPU is operating with the high-speed clock (OSC3).
OSC1 Indicates that the CPU is operating with the low-speed clock (OSC1).
RESET Indicates that the CPU is in a reset state.
NO VCC Indicates that no supply voltage is fed to the CPU.
NO CLK Indicates that no operating clock is fed to the CPU.
WAIT Indicates that the CPU is in a wait state.

 Updating display contents
 The contents displayed in the [Register] window are updated automatically in the following cases:
 • When register contents are dumped (rd command)
 • When the CPU is reset (rstc or rsth command)
 • When register values are changed (rs command)
 • When watch data addresses are set (w command)
 • When the execution counter display mode is changed (md command)
 • When option data or flash memory contents are loaded (lo or lfl command)
 • After program execution is completed (g, s or n command)
 The numeric value display part is left blank during continuous program execution (g command) in any mode

other than on-the-fly mode or when single-stepping the program (s or n command) in the final step mode.
 If the program is executed (g command) after turning the on-the-fly function on in the ICE mode, the display

contents of the PC, PSR flag, and watch data are updated in real time every one to 0.1 second. All other
contents are left blank until program execution breaks.

Operation

 Opening and closing the window
 The [Register] window opens automatically when you start up the db33. However, this window is not opened

automatically if you specify the -w option at startup.
 The [Register] window can be opened by using the [Register] command on the [Window] menu, and can be

closed by clicking on the close box of the window.

Restriction
 The [Register] window is used for display only, and cannot be used to input anything from the keyboard or

edit the displayed contents.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 245
C COMPILER PACKAGE MANUAL (ver.3)

16.4.6 [Trace] Window

Contents displayed
 The [Trace] window displays the trace data that indicates the execution result of each instruction.
 Refer to Section 16.8.7, "Trace Functions", for details of the trace mode and trace information.
 Note that the debug monitor mode does not support the trace function.

 (1) ICE mode

 In ICE mode, the trace result can be displayed for up to 32,768 cycles by reading it from the ICE33 trace

memory. Two methods of trace are supported: normal and single delay.
 The following lists the trace contents:
 • Executed cycle number
 • Executed address, code, disassembled content
 • Memory access contents (address, R/W and data)
 • Input to TRCIN pin
 • Bus operation type
 • Source codes (tm command option)

 (2) ICD mode

 In ICD mode, the trace result can be displayed by reading it from the ICD33 trace memory. Two methods of

trace are supported: all trace mode and area trace mode.
 The following lists the trace contents:
 • Executed cycle number
 • Executed address, code, disassembled content
 • Number of clocks
 • PC-analyze method
 • Source line number and code

CHAPTER 16: DEBUGGER

246 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 (3) Simulator mode

 In simulator mode, when the trace function is turned on (tm command), all of the subsequent program

execution is displayed as traced by the debugger (except for file output).
 The following lists the trace contents:
 • Number of executed instructions
 • Executed address, code, and disassembled content
 • Data memory access contents (address, R/W, and data)
 • Source codes (tm command option)
 • Register contents (tm command option)

Operation

 Opening and closing the window
 The [Trace] window does not open automatically when the debugger starts up. The [Trace] window can be

opened by using the [Trace] command on the [Window] menu, and can be closed by clicking on the close
box of the window.

 Updating display

 ICE mode
 The contents of the [Trace] window are cleared when you execute the target program.
 To display the latest contents of this window, execute the td command or temporarily close the [Trace]

window and then reopen it.

 ICD mode
 The contents of the [Trace] window are cleared when you execute the target program.
 To display the latest trace information after the execution has suspended, execute the td command or

temporarily close the [Trace] window and then reopen it.
 Clicking the [Display trace] button while the program is being executed suspends tracing and displays the

trace data in the trace memory to the [Trace] window. After that, clicking the [Resume trace] button clears
the [Trace] window and resumes tracing.

 [Display trace] button [Resume trace] button

 Simulator mode
 When the trace function is turned on (tm command), trace results are successively displayed as you execute

the program (g, s, or n command) and the display is halted simultaneously when program execution stops.
 If the trace function is turned off (default), the display will not be updated even when you execute a program.

Restrictions
 • The [Trace] window is used for display only, and cannot be used to input anything from the keyboard or

edit the displayed contents.

 • In the simulator mode, the contents of this window can be scrolled for up to 255 lines. In the ICE/ICD

mode, all the contents of the ICE33/ICD33 trace memory can be displayed.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 247
C COMPILER PACKAGE MANUAL (ver.3)

16.4.7 [Symbol] Window

Contents displayed
 This window displays the contents of the symbols registered in the watch table. Up to 99 symbols can be

registered. For the display format of symbols, refer to the explanation of the sa command.

 Updating display
 The contents displayed in the [Symbol] window are updated automatically in the following cases:
 • After program execution (g, s, or n command) is completed
 Contents are not updated during single-stepping (s or n command) in the final step display mode.
 • When symbols are registered (sa command)
 Contents are redisplayed when an already registered symbol is specified by the sa command.
 • When symbols are deleted (sd command)
 The contents displayed in the [Symbol] window are not updated even when the contents of symbol addresses

are modified by a command (e, f, or mv).

Operation

 Opening and closing the window
 The [Symbol] window does not open automatically when the debugger starts up. The [Symbol] window can

be opened by using the [Symbol] command on the [Window] menu, and can be closed by clicking on the
close box of the window.

 Registering symbols for display
 To display the content of a symbol in the [Symbol] window, you must first register the symbol. Follow one

of the two methods below to register a symbol:
 1. Execute the sa command.
 2. Change the [Source] window's display mode to "Mix" or "Source" and position the cursor in or

immediately before or after a symbol name you want to be registered. Then click on the [Symbol add]
button.

 [Symbol add] button (The [Add] command on the [Symbol] menu can also be used.)

 Deleting registered symbols
 When a symbol does not need to be watched, delete it from the window by following one of the two methods

described below:
 1. Execute the sd command.
 2. Place the cursor at the symbol line in the [Symbol] window that you want deleted. Then click on the

[Symbol delete] button.

 [Symbol delete] button (The [Delete] command on the [Symbol] menu can also be used.)

Note
 The debugger reads the contents of symbols from the target in byte units and re-arranges the read data to byte,

half-word or word data according to the symbol size before displaying. Note that data cannot be displayed if
the big/little endian settings are different between the BCU on the target and the parameter file read in the
debugger.

CHAPTER 16: DEBUGGER

248 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.4.8 [Simulated I/O] Window

Contents displayed
 Using the simulated I/O function, this window displays the contents that are input from stdin and those that

are output to stdout.

Operation

 Opening and closing the window
 The [Simulated I/O] window is not opened when the debugger starts up. Choose the [StdIO] command from

the [Window] menu to open it.
 This window opens automatically in the following cases:
 • When the input source of the data is set in the window by the stdin command and a breakpoint specified

by the program is encountered
 • When the output destination of data is set in the window by the stdout command and a breakpoint

specified by the program is encountered
 To close the window, click on its close box.

 Entering data
 The data taken in from stdin can be input from this window. For details, refer to Section 16.8.8, "Simulated

I/O".

Restriction
 The maximum number of lines that can be displayed in the [Simulated I/O] window is 256.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 249
C COMPILER PACKAGE MANUAL (ver.3)

16.5 Tool Bar
This section outlines the tool bar available with the db33.

16.5.1 Tool Bar Structure
The db33 has 14 buttons and a combo box in its tool bar, each one assigned to a frequently used command.

16.5.2 [Key break] Button

[Key break]

This button forcibly breaks execution of the target program. This function can be used to cause
the program to break when the CPU is placed in standby (HALT or SLEEP) mode as you
execute the target program or when the program has fallen into an endless loop.
Note that the debug monitor mode does not support this function.

16.5.3 [Load file] Button

[Load file]

This button reads an object file in the srf33 format into the debugger. It performs the same
function when the lf command is executed. When you click [Load file], a dialog box for opening
a file appears on the screen, allowing you to choose the file you want to be debugged.

16.5.4 [Source], [Mix] and [Unassemble] Buttons

[Source]

This button switches the display of the [Source] window to the source mode.

[Mix]

This button switches the display of the [Source] window to the mix mode (disassemble &
source).

[Unassemble]

This button switches the display of the [Source] window to the disassemble mode.

The display is switched between these modes based on the source line number or address shown at the top of the
[Source] window. These buttons are valid only when the [Source] window is open.

16.5.5 ������������������	
�����	������	�	�������������	�	��������������

[Go]

This button executes the target program beginning with the address indicated by the current PC.
It performs the same function when the g command is executed.

[Go to]

This button executes the target program from the address indicated by the current PC to the
cursor position in the [Source] window (i.e. the address of that line). It performs the same
function when the g <address> command is executed.
To select this button, the [Source] window must be open and you must have clicked on the
address line where you want the program to break. Selecting a break address by clicking on the
address line is valid for only the lines that have actual code, and is invalid for the source-only
lines.

[Step]

This button executes one instruction step of the target program beginning with the address
indicated by the current PC. It performs the same function when the s command is executed.

[Next]

This button executes one instruction step of the target program beginning with the address
indicated by the current PC. Functions and subroutines are executed as one step. This button
performs the same function when the n command is executed.

CHAPTER 16: DEBUGGER

250 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

[Reset cold]

This button cold-resets the CPU. It performs the same function when the rstc command is
executed.

[Reset hot]

This button hot-resets the CPU. It performs the same function when the rsth command is
executed.

16.5.6 [Soft PC break] and [Hard PC break] Buttons

[Soft PC break]

Use this button to set and reset a software breakpoint at the address where the cursor is located
in the [Source] window. (See Section 16.8.6, "Break Functions" for details.) This function is
valid only when the [Source] window is open. Note that selecting a break address by clicking
on the address line is valid for only the lines that have actual code and is invalid for the
source-only lines.

[Hard PC break]

Use this button to set and reset a hardware breakpoint at the address where the cursor is located
in the [Source] window. (See Section 16.8.6, "Break Functions" for details.) This function is
valid only when the [Source] window is open. Note that selecting a break address by clicking
on the address line is valid for only the lines that have actual code and is invalid for the
source-only lines.

16.5.7 [Symbol watch], [Symbol add] and [Symbol delete] Buttons

[Symbol watch]

The content of the symbol at the cursor position of the [Source] window is displayed in the
[Command] window. It performs the same function when the sw command is executed. This
function is valid only when the [Source] window is open.

[Symbol add]

The symbol at the cursor position of the [Source] window is registered in the [Symbol]
window. It performs the same function when the ss command is executed. This function is
valid only when the [Source] window is open.

[Symbol delete]

The symbol on the line where the cursor is positioned in the [Symbol] window is deleted from
the [Symbol] window. It performs the same function when the sd command is executed. This
function is valid only when the [Symbol] window is open.

Obtaining symbol names
 The [Symbol watch] and [Symbol add] buttons get the character string which is pointed with the cursor in the

[Source] window and use it as a symbol name. However, the cursor must be placed in or immediately before
or after the symbol name, and the character string must consist of the following characters only. Other
characters including blank characters (space, etc.) are regarded as a delimiter of the character string.

 a–z A–Z 0–9 * . -> []
 Example: "↓" indicates cursor position.
 Obtained character string (symbol name)
 a↓ = b; a
 a = b*c↓; c
 a = b+*c↓; *c
 stru↓ct1->a = b; struct1->a
 stru↓ct1 -> a = b; struct1

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 251
C COMPILER PACKAGE MANUAL (ver.3)

16.5.8 [Display trace] and [Resume trace] Buttons

[Display trace]

Clicking this button while the program is being executed in ICD mode suspends tracing and
displays the trace data in the ICD33 trace memory to the [Trace] window.

[Resume trace]

Clicking this button while the program is being executed in ICD mode resumes tracing.

16.5.9 [Select source] Combo Box

[Select source]

This box is used to select the source file name of the program to be displayed in the
[Source] window. The source file names listed in this box are obtained from the
debugging information in the loaded object file. Therefore, this function can only be used
when an srf33 object file with source information is loaded, otherwise this box displays
"no source" and does not allow the selection. This box also deactivates when the [Source]
window is closed or while command parameters are input in the guidance mode.
Source files can be selected regardless of the display mode for the [Source] window.
When a source file name is selected in this box, the [Source] window displays the codes
from the top of the file.
This operation is not regarded as a command execution, so it does not appear in the
command history or the log file.
When the loaded object file contains two or more sources, the source file names are listed
in alphabetical order. If a multiple source file is included in some locations of the object,
the file name appears only once.
This box is used only for selection and does not allow entering file names.

CHAPTER 16: DEBUGGER

252 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.6 Menu
This section outlines the menu bar available with the db33.

16.6.1 Menu Structure
The db33 menu bar has six menu items, each including frequently-used commands.

Each menu command can be selected from the keyboard (by entering the menu and underlined command
characters after pressing the [Alt] key), as well as selected with the mouse.

16.6.2 [File] Menu

[Load File...]
This menu command performs the same function as the [Load file] button on the
tool bar. The keyboard shortcut [Ctrl]+[O] is also allowed for the selection.

[Exit]
Terminates the db33.

Window list
Lists the currently opened window names (including minimized windows). The
check mark indicates the active window. When a window name is selected in this
list, the selected window will become active.

16.6.3 [Edit] Menu

[Paste]
This paste command is valid only for the [Command] window. The command
copied from log or other files can be executed after pasting it to the [Command]
window using this menu command. The keyboard shortcut [Ctrl]+[V] is also
allowed.

16.6.4 [Run] Menu

[Go]
This menu command performs the same function as the [Go] button on the tool bar.

[Go to]
This menu command performs the same function as the [Go to] button on the tool
bar.

[Step]
This menu command performs the same function as the [Step] button on the tool
bar.

[Next]
This menu command performs the same function as the [Next] button on the tool
bar.

[Reset Cold]
This menu command performs the same function as the [Reset cold] button on the
tool bar.

[Reset Hot]
This menu command hot-resets the CPU. It performs the same function when the
rsth command is executed.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 253
C COMPILER PACKAGE MANUAL (ver.3)

16.6.5 [Break] Menu

[Soft PC...]
This menu command sets and resets software PC break addresses. It performs the same
function as executing the bp command. When this command is selected, a dialog box
appears on the screen, allowing you to set break addresses in up to 16 locations.

[Hard PC...]
This menu command sets and resets a hardware PC break address. It performs the same
function as executing the bh/bh2 command. When this command is selected, a dialog box
appears on the screen, allowing you to set a hardware PC break address.

[Data...]
This menu command sets data break conditions. It performs the same function as
executing the bd command. When this command is selected, a dialog box appears on the
screen, allowing you to set break conditions.

[Sequential...]
This menu command sets sequential break conditions. It performs the same function as
executing the bsq command. When this command is selected, a dialog box appears on the
screen, allowing you to set break conditions. This menu command is valid only in the ICE
mode.

[Area break]
This menu command sets area break conditions. It performs the same function as
executing the ba command. When this command is selected, a dialog box appears on the
screen, allowing you to set break conditions.

�Bus�break��
This menu command sets bus break conditions. It performs the same function as executing
the bb command. When this command is selected, a dialog box appears on the screen,
allowing you to set break conditions.

[All clear]
This menu command clears all the break conditions. It performs the same function as
executing the bac command.

Refer to Section 16.8.6, "Break Functions", for details of each break function.

16.6.6 [Symbol] Menu

[Watch]
This menu command performs the same function as the [Symbol watch] button on the tool
bar. This function is valid only when the [Source] window is open.

[Add]
This menu command performs the same function as the [Symbol add] button on the tool
bar. This function is valid only when the [Source] window is open.

[Delete]
This menu command performs the same function as the [Symbol delete] button on the tool
bar. This function is valid only when the [Symbol] window is open.

CHAPTER 16: DEBUGGER

254 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.6.7 [Window] Menu

[Command]
This menu command activates the [Command] window.

[Source]
This menu command opens the [Source] window. This menu command is invalid when the
[Source] window is already open.

[Memory]
This menu command opens the [Memory] window. This menu command is invalid when
the [Memory] window is already open.

[Register]
This menu command opens the [Register] window. This menu command is invalid when
the [Register] window is already open.

[Trace]
This menu command opens the [Trace] window. This menu command is invalid when the
[Trace] window is already open.
[Symbol]
This menu command opens the [Symbol] window. This menu command is invalid when the
[Symbol] window is already open.

[StdIO]
This menu command opens the [Simulated I/O] window. This menu command is invalid
when the [Simulated I/O] window is already open.

16.6.8 [Help] Menu

[About db33...]
This menu command displays the version of the db33. By clicking on the [OK] button, the
dialog box will close, returning to the debugger window.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 255
C COMPILER PACKAGE MANUAL (ver.3)

16.7 Method for Executing Commands
All debug functions can be performed by executing debug commands. This section describes how to execute these
commands. Refer to the description of each command for command parameters and other details.

To execute a debug command, activate the [Command] window and input the command from the keyboard. You
can use the menu and tool bar to execute frequently-used commands.

16.7.1 Entering Commands from Keyboard
Select the [Command] window (by clicking somewhere on the [Command] window). When the prompt ">"
appears on the last line in this window and a cursor is blinking behind it, the system is ready to accept a command
from the keyboard. Input a debug command at the prompt position. The commands are not case-sensitive; they can
be input in either uppercase or lowercase.

General command input format

>command [parameter [parameter ... parameter]] ↵

• A space is required between a command and parameter.
• A space, comma (,) or tab is required between parameters.

Use the arrow keys (←, →), [Back Space] key, or [Delete] key to correct erroneous input.
When you hit the [Enter] key after entering a command, the system executes that command. (If a command
you are entering is accompanied by guidance, the command is executed when you input the necessary data
according to the displayed guidance.)

Input example:
��↵ (Only a command is input.)

�������	�
���↵ (A command and parameter are input.)

Command input accompanied by guidance
For commands that cannot be executed unless you specify a parameter or the commands that modify the
existing data, a guidance mode is entered when only a command is input. In this mode, the system brings up
a guidance field, so you input a parameter there.

Input example:
����↵
���������������	�
���↵ ...Input data according to the guidance (underlined part).
�

 Commands requiring parameter input as a precondition
 The com command shown in the above example reads a command file into the debugger. Commands like this

that require an entered parameter as a precondition are not executed until you input the parameter and press
the [Enter] key. If a command has multiple parameters to be input, the system brings up the next guidance, so
be sure to input all necessary parameters sequentially. If you press the [Enter] key without entering a
parameter in some guidance session of a command, the system assumes the command is canceled and does
not execute it.

 Commands that replace existing data after confirmation
 The commands that rewrite memory or register contents one by one provide you with the option of skipping

guidance (do not modify the contents), returning to the immediately preceding guidance, or terminating
during the input session.

 [Enter] key Skips input.
 [^] & [Enter] key Returns to the immediately preceding guidance.
 [q] & [Enter] key Terminates the input session.

CHAPTER 16: DEBUGGER

256 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Input example:
���↵ ...Command to modify data memory.�
������	

��������↵ ...Inputs the start address.�
������������		↵ ...Modifies address 0 to 0xAA.�
�������������↵ ...Returns to the immediately preceding address.�
��������������↵ ...Inputs address 0 back again.�
������������↵ ...Skips address 1. (Contents not modified)�
��������������↵�
�������������↵ ...Terminates the input session.�
��

Successive execution using the [Enter] key
 The commands listed below can be executed successively by using only the [Enter] key after executing once.

Successive execution here means repeating the previous operation or continuous display of the previous
contents.

 Execution commands: g, s, n
 Display commands: sc, m, u, db, dh, dw, od, td, sy, sw, com, cmw, ss

 The successive execution function is terminated when some other command is executed.

 For the com and cmw commands that execute a command file, all the commands described in the command

file are executed. This function is useful to execute a series of commands successively. For example, after the
command file that contains the s and db commands is executed once, pressing [Enter] executes the step and
memory dump (byte) operations repeatedly.

Command history
 The [Command] window supports a command history function. Up to 20 of the latest executed commands

can be redisplayed at the prompt position using the ↑ or ↓ key and the displayed command can be executed
by pressing [Enter].

 Furthermore, the [F3] key can be used to redisplay the previously executed command.

16.7.2 Parameter Input Formats

Numeric value
 The parameters to specify addresses or data in a command are set to be input in hexadecimal by default. The

0x normally added at the beginning of a hexadecimal number can be omitted for input here. The characters
that are recognized as hexadecimal are numbers 0 to 9 and alphabets a to f and A to F only.

 Some parameters used to specify a number of execution steps or step No. in a command are set to be input in

decimal by default. The characters that can be used in these parameters are only numbers 0 to 9.
 For details about these parameters, refer to the explanation of each command.

 The numeric values in the following formats are always accepted regardless of the default settings:
 Numeric values that begin with 0x: These values are regarded as hexadecimal numbers. Only the

lower-case x is accepted, so a 0X is not recognized as a valid numeric
value. The characters that can be used after the 0x are numbers 0 to 9
and letters a to f and A to F only.

 Numeric values that begin with +: These values are regarded as decimal numbers. A negative number
will result in an error. Only numbers 0 to 9 can be used after the +.

Note: If an hexadecimal number is input by omitting the "0x" for an address specifying parameter

whose default input is in hexadecimal from, the db33 assumes that a symbol is specified, and
searches for the symbol information first. Therefore, when using the symbols represented by a
hexadecimal or decimal number, you want to specify an address by using a number, be sure to
add the "0x" when you input it.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 257
C COMPILER PACKAGE MANUAL (ver.3)

Address specification by line number
 The line numbers in the source file can be used to specify an address. However, this is limited to cases in

which you are debugging a srf33 format object file that contains information on the source line numbers.
 Use the following format to specify a line number:

 Line number specification: [<file name>]#<line No.>

 <file name>: Source file name
 The <file name> can be omitted when specifying a symbol in the current file (one that contains

a code corresponding to the current PC). If a symbol that does not exist in the current file is
specified without entering a file name, an error results.

 <line No.>: Line number
 The <line No.> can only be specified in decimal form. Adding a "+" or "-" results in an error.

 Examples: main.c#100
 #100

Address specification by symbol
 Symbols can be used to specify an address. However, this is limited to cases in which you are debugging a

srf33 format object file that contains symbol information.
 Use one of the following two formats to specify a symbol:

Note: The term "current", as used in the current source files and current functions in the explanation

below, means that the file or function contains a code corresponding to the current PC.

 Format 1: <symbol>

 <symbol>: Symbol name
 • A pointer (*), structure member (->, .), or array ([,]) can also be specified. Notation must

conform to the C language syntax. "*" can be specified up to three nest levels and "[]" can
be specified up to the fourth dimension.

 • The characters that can be used here are limited to numbers 0 to 9, letters a to z and A to Z,
and the symbols ->, ., and *. Upper-case and lower-case letters are distinguished.

 Examples: i
 *message1
 struct1->member1
 struct2[5]

 When a symbol is specified in this format, the db33 searches for the symbol in the order shown below until it

finds the address of that symbol.
 1. Current block
 2. Current function
 3. Static symbol in the current source file
 4. External symbol

 If no corresponding symbol is found, it is assumed to be a hexadecimal number. In this case, an error results

if any character other than 0 to 9, a to f or A to F is used.

CHAPTER 16: DEBUGGER

258 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 Format 2: [<file>]/[<function>]/<symbol>

 The parameters in [] can be omitted. However, "/" cannot be omitted.

 <file>: Source file name
 • When specifying the current source file, input a period (.).
 • See "Types of specification" below for specification when it is omitted.
 <function>: Function name
 • When specifying the current function, input a period (.).
 • See "Types of specification" below for specification when it is omitted.
 <symbol>: Symbol name
 • Up to three asterisks (*) can be added at the beginning of a symbol name.
 • Structure members (->, .) can be specified in up to 10 hierarchical levels.
 • Arrays ([,]) can be specified in up to the 4th dimension.
 • The characters that can be used here are limited to numbers 0 to 9, letters a to z and A to Z,

and the symbols ->, ., and *. Upper-case and lower-case letters are distinguished.
Parentheses () cannot be specified.

 Types of specification:
 //symbol Global symbol
 /./symbol Auto/static symbol in the current function
 .//symbol Static symbol in the current source file
 file//symbol Static symbol in the specified source file
 /function/symbol Auto/static symbol for the specified external function
 ./function/symbol Auto/static symbol for the specified function in the current source file
 file/function/symbol Auto/static symbol for the specified function in the specified source file

 Precautions on specifying array

 1) When type information is included
 In a one-dimensional array, offsets are calculated according to the size of the type even if the specified

element number is greater than the actual number of elements. This does not result in an error.
 In two-dimensional or higher-order arrays, this relationship is checked, so that if a specified element

number is greater than the actual number of elements, an error is assumed.

 2) When no type information is included
 In a one-dimensional array, offsets are calculated in byte units. This does not result in an error.
 Two-dimensional or higher-order arrays cannot be specified.

 Other restrictions
 If one of the following cases applies when specifying an address, an error is assumed because no address can

be obtained:
 1) When a register variable is specified (because no addresses are assigned)
 2) When the specified pointer variable indicates an unmapped area

Entering file name
 A file name can be input using up to 127 characters, including a path. When specifying a file name that does

not exist in the current directory, be sure to add a path.
 The characters that can be used here are limited to numbers 0 to 9, letters a to z and A to Z, and the symbols

_, ., and /. Upper-case and lower-case letters are distinguished.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 259
C COMPILER PACKAGE MANUAL (ver.3)

16.7.3 Executing from Menu or Tool Bar
The menu and tool bar are assigned frequently-used commands as described in Sections 16.5 and 16.6. A
command can be executed simply by selecting your desired menu command or clicking on the tool bar button.
Table 16.7.3.1 lists the commands assigned to the menu and tool bar.

Table 16.7.3.1 Commands that can be specified from menu or tool bar

�

Window

–

[Source]

[Source]

[Source]

–

[Source]

–

–

–

–

[Source]

[Source]

–

–

–

–

–

[Source]

[Source]

[Symbol]

–

–

–

–

–

–

–

–

–

–

Button

–

–

–

–

–

–

–

–

–

–

–

–

Menu

[File]-[Load File..]

–

–

–

[Run]-[Go]

[Run]-[Go to]

[Run]-[Step]

[Run]-[Next]

[Run]-[Reset cold]

[Run]-[Reset hot]

[Break]-[Soft PC...]

[Break]-[Hard PC...]

[Break]-[Data...]

[Break]-[Sequential...]

[Break]-[All clear]

[Break]-[Area break]

[Break]-[bus break]

[Symbol]-[Watch]

[Symbol]-[Add]

[Symbol]-[Delete]

–

–

[Window]-[Command]

[Window]-[Source]

[Window]-[Memory]

[Window]-[Register]

[Window]-[Trace]

[Window]-[Symbol]

[Window]-[StdIO]

–

Function

Loads a srf33 file.

Produces mixed display.

Produces source display.

Produces disassemble display.

Executes the program.

Executes the program until <address>.

Instructs one step at a time.

Steps and skips.

Cold-resets the CPU.

Hot-resets the CPU.

Sets software breakpoints.

Sets hardware breakpoints.

Sets data break conditions.

Sets sequential break conditions.

Clears all break conditions.

Sets area break conditions.

Sets bus break conditions.

Displays symbols.

Registers the symbols to be monitored.

Deletes the registered symbols.

Displays ICD on-chip trace data

Resumes ICD on-chip tracing

Activates the [Command] window.

Opens the [Source] window.

Opens the [Memory] window.

Opens the [Register] window.

Opens the [Trace] window.

Opens the [Symbol] window.

Opens the [Simulated I/O] window.

Forcibly breaks program execution.

Command

lf

m

sc

u

g

g <address>

s

n

rstc

rsth

bp

bh, bh2

bd

bsq

bac

ba

bb

sw

sa

sd

–

–

–

–

–

–

–

–

–

–

The window column of the above table indicates the window that must be opened before selecting the tool bar
buttons or menu commands.
A command executed from the menu or tool bar is not displayed in the prompt section of the [Command] window.
The execution result is displayed in the corresponding window.

CHAPTER 16: DEBUGGER

260 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.7.4 Executing from Command File
Another method for executing commands is to use a command file that contains descriptions of a series of debug
commands. By reading a command file into the debugger you can execute the commands written in it.

Creating a command file
 Create a command file as a text file using an editor.
 Although there are no specific restrictions on the extension of a file name, Seiko Epson recommends using

".cmd".

Example of a command file
 The example below shows a command file included in the simulated I/O sample files.
 Example: File name = simIO.cmd
� � ��������	�
�� ...Loads the file.�
� �
���� � ...Cold-resets the CPU.�
� � ������ � ...Sets stdout conditions.�
� � ��

� � ������������

� � ����������

� � ��

� � ����� � ...Sets stdin conditions.�
� � ��

� � �����������

� � ���������

� � ��

� � ���� !��� � ...Sets a software break point.�

 You can use a command file to write the commands that come with a guidance mode. In this case, be sure to

break the line for each guidance input item as you write a command. In the above example, the contents
following stdout and stdin are guidance items.

Reading in and executing a command file
 There are two methods to read a command file into the debugger and to execute it, as described below.

 (1) Execution by the startup option
 By specifying the -c option in the db33 startup command, you can execute one command file when the

debugger starts up.
 Example: Startup command of the db33
 db33 -c startup.cmd -p 33104_1.par

 (2) Execution by a command
 The db33 has the com and cmw commands available that you can use to execute a command file.
 The com command reads in a specified file and executes the commands in that file sequentially in the order

they are written.
 The cmw command performs the same function as the com command except that each command is executed

at intervals specified by the md command (1 to 256 seconds).
 Examples: com startup.cmd
 cmw test.cmd

 The commands written in the command file are displayed in the [Command] window.

Successive execution using a command file
 After a command file is executed once, pressing [Enter] alone can execute all the commands described in the

command file repeatedly. The successive execution function is terminated when some other command is
executed.

Restriction
 You can read in another command file from within a command file. However, nesting of these command files

is limited to a maximum of five levels. An error is assumed and the subsequent execution is halted when the
com or cmw command at the sixth level is encountered.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 261
C COMPILER PACKAGE MANUAL (ver.3)

16.7.5 Log File
The executed commands and the execution results can be saved to a file in text format that is called a "log file".
This file allows you to verify the debug procedures and contents.

Command example

 >log test.log

 After being set to the log mode by the log command (after output starts), a log is saved until the log

command is executed next.

Contents saved to a log
 The contents displayed in the [Command] window are saved to a log file. The results of commands executed

from tool bars or menus, the execution results shown elsewhere, and all other contents not displayed in the
[Command] window are not saved.

 Therefore, if log management is desired, Seiko Epson recommends specifying the -w option before you start
up the Debugger db33, and recording a log of execution results only in the [Command] window.

CHAPTER 16: DEBUGGER

262 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.8 Debug Functions
This section outlines the debug features of the db33, classified by function.
See Section 16.9, "Command Reference", for details about each debug command.

16.8.1 Debugger Mode
The db33 supports four debugger mode selectable with startup option.

Note: If the specified debugger mode option does not match with the connected debugging target

system, a dialog box appears to show a warning message. In this case, terminate the db33 and
then restart the db33 with the correct option specification.

ICE mode

COMx

LPTx

EPSON RS232C cable
(supplied with ICE33 package)

Parallel cable
(supplied with ICE33 package)

User target board

ICE33

PRC33xxx

1

TRGOUT

STOPOUT

TRC IN

BRK IN
GND 2 3 4

ICE
RUN

ICE33 EPSONSLP
/H

ALT
EM

U

POW
ER

6 5 4 3

PRE FETCH PC

2 1 0

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

P
R

C
33

00
1

Fig. 16.8.1.1 Debugging system using ICE33

 Specification at startup
 Startup option: Specify -ice (can be omitted)
 Specification on wb33: Select [ICE]

 When the debugger starts up in ICE mode, "ICE" is displayed on the tool bar.

 The ICE mode is used to debug a program using the ICE33 in-circuit emulator. In this mode, therefore,

program execution and trace utilizes the internal memory of the ICE33. All functions available with the
ICE33 can be utilized. It is also possible to debug hardware functions after connecting the target board to the
ICE33.

 When invoking the debugger in ICE mode, make sure that the ICE33 is connected firmly and that its power

is turned on.
 Each area in the ICE33 is initialized as follows:
 Internal ROM, ROM area assigned in the emulation memory (EROM): 0xff
 RAM area assigned in the emulation memory (ERAM): 0xaa
 Other IO, RAM, ROM areas: Not initialized

 Refer to the "E0C33 Family In-Circuit Emulator (ICE33) Manual" for operating the ICE33.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 263
C COMPILER PACKAGE MANUAL (ver.3)

ICD mode

COMx

LPTx

EPSON

RS232C cable
(supplied with ICD33 package)

Parallel cable
(supplied with ICD33 package)

ICD33

DMT33005

TRC F
ULL

TRGOUT

BRKIN

GND
EM

U
POW

ER

1 2 3 4

ROM

FLASH

DSW1

E0C33208

LED

10 pin–10 pin
target system
interface cable
(supplied with ICD33 package)

Fig. 16.8.1.2 Debugging system using ICD33 and DMT33005

 Specification at startup
 Startup option: Specify -icd
 Specification on wb33: Select [ICD] (initial setting)

 When the debugger starts up in ICD mode, "ICD" is displayed on the tool bar.

 The ICD mode is used to debug a program using the ICD33 in-circuit debugger. In this mode, the program is

executed on the target board and trace information is sampled in the ICD33 memory.
Note that the following functions cannot be used in ICD mode:
• Loading/dumping option data
• Sequential break
• Map break

 When invoking the debugger in ICD mode, make sure that the ICD33 and the target board are connected

firmly and they are turned on.
 Furthermore, when using the trace function, the DIP switch SW4 must be set to OPEN.
 Refer to the "E0C33 Family In-Circuit Debugger (ICD33) Manual" for operating the ICD33.

CHAPTER 16: DEBUGGER

264 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

ICD+MEM33 mode

EMU
TRC

COMx

LPTx

EPSON

RS232C cable
(supplied with ICE33 package)

Parallel cable
(supplied with ICE33 package)

TRC F
ULL

TRGOUT

BRKIN

GND
EM

U
POW

ER

1 2 3 4

10pin–10pin
Target system
connect cable
(supplied with ICD33 package)

MEM33201

EPOD332XX MEM33201

EPOD33208
BREAK

5V

ICD33 BREAK IN connect clip
(attached with MEM33)

ICD33 Ver2

Fig. 16.8.1.3 Debugging system using ICD33, EPOD33208, MEM33201�

 Specification for startup
 Startup option: Specify -icd
 Specification on wb33: Select [ICD]

 Note: Specification for startup is the same as that of the ICD mode.
 Specify the ICD mode or ICD+MEM33 mode in the parameter file.
 Refer to "16.10" for more information on the parameter file.

 When the debugger starts in the ICD+MEM33 mode, " ICD+MEM33" appears on the tool bar.

 The ICD+MEM33 mode is used to debug a program using the ICD33 in-circuit debugger. If you use

MEM33201, the break function can be extended.
 The following can be extended:
 • Bus break
 • Area break

• CE break
 • Map break(per 32KB)

 When invoking the debugger in the ICD+MEM33 mode, make sure that the ICD33,MEM33201, and the

EPOD33208 are connected firmly and they are turned on.
 Refer to "Software Development Procedures 3.3.4 " for details on turning them on.
 Refer to "E0C33 Family In-Circuit Debugger(ICD33) Manual" for details on operating ICD33.
 Refer to "E0C33 Family MEM33201 Manual" for details on operating MEM33201.
 Refer to "E0C33 Family EPOD33208 Manual" for details on operating EPOD33208.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 265
C COMPILER PACKAGE MANUAL (ver.3)

Debug monitor mode

COMx

EPSON

RS232C cable
(supplied with DMT33MON package)

DMT33MON DMT33004/DMT33005

1

12

Fig. 16.8.1.4 Debugging system using DMT33004/DMT33005 board

 Specification at startup
 Startup option: Specify -mon
 Specification on wb33: Select [MON]

 When the debugger starts up in debug monitor mode, "MON" is displayed on the tool bar.

 The debug monitor mode is used to debug a program using the target board with the DMT33MON board.

The Debug Monitor (MON33) must be implemented to the target board.
Note that the following functions cannot be used in debug monitor mode:
• On-the-fly mode
• Loading/dumping option data
• Sequential break
• Map break
• Tracing
• Execution time/cycle measurement
• Key break

 When invoking the debugger in debug monitor mode, make sure that DMT33MON and the target board are

connected firmly and they are turned on.
 Furthermore, the Debug Monitor on the target board must be activated.
 Refer to the "E0C33 Family MON33 Debug Monitor Manual" for details of the Debug Monitor.

Simulator mode

 Specification at startup
 Startup option: Specify -sim
 Specification on wb33: Select [SIM]

 When the debugger starts up in simulator mode, "SIM" is displayed on the tool bar.

 The simulator mode is used to simulate target program execution in the internal memory of a personal

computer; therefore, other debugging tools are not required. In this mode, however, you cannot evaluate the
ICE33 dependent functions and the I/O functions of the target system. What is possible in this mode is
simulation of the core CPU, memory model, and interrupt.

 The sequential break and some other functions available in ICE mode are not supported in simulator mode.
The trace method in simulator mode differs from other modes. See the description of each command for
details.

 Each area in simulator mode is initialized as follows:
 RAM: 0xaa
 ROM: 0xff
 I/O: 0x00

CHAPTER 16: DEBUGGER

266 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Precaution for ICE, ICD and debug monitor mode
 When the program execution is suspended, the ICE33 and ICD33 switch the CPU operating clock to the

high-speed (OSC3) clock and halt all the peripheral functions except for the DRAM refresh operation. In the
Debug Monitor, the same status occurs instantaneously when a break occurs or program execution starts,
however it returns to the previous status immediately.

 Therefore, the system that does not use an OSC3 clock cannot be debugged.
 When the OSC3 oscillation circuit is stopped and the system is operating with the low-speed clock (OSC1,

32 kHz), the OSC3 oscillation circuit will start oscillating immediately after a break occurs. However, an
erroneous operation may result since the oscillation is unstable. Do not suspend the program execution while
the OSC3 oscillation is stopped, even in SLEEP status.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 267
C COMPILER PACKAGE MANUAL (ver.3)

16.8.2 Loading Files

File types
 The db33 can read a file in srf33 format or Motorola S3 format in the debugging process.
 Table 16.8.2.1 lists the files that can be read in by the debugger and the load commands.

 Table 16.8.2.1 Files and load commands
Button

–

Menu

[File]-[Load File..]

–

Extension

.srf

.sa

Command

lf

lh

Generation tool

Linker

Binary/HEX converter

File type

srf33

Motorola S3

Debugging a program at the source level
 To debug a program using the source display and symbols, you must have the object file in srf33 format read

into the debugger. If any other program file is read, only the disassemble display is produced.
 For the source level debugging of the program written in the target ROM, the ld command is provided. This

command reads only the debugging information from the object file in srf33 format.

Precautions
 The lf and lh commands loads only the portions that contain code and data. The previous data remains

unaffected in all other portions.
 If the source display is required, the source files are read into the debugger in addition to the above files

according to debugging information in the srf33 object file. For this reason, the source file must be
maintained under the same conditions in both content and place of storage (directory) as when the srf33
object file was generated. Up to 32,767 lines one source file can be read in.

CHAPTER 16: DEBUGGER

268 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.8.3 Source Display and Symbolic Debugging Function
The db33 allows you to debug a program while displaying the C and assembly source statements. Address
specification using a symbol and displaying the contents of symbols are also possible.

Displaying program code
 When the [Source] window is left open, you can display the program to be debugged in that window. The

display mode can be changed between the three modes available.

 (1) Disassemble display

 (2) Mixed display

 (3) Source display

 In the source display mode, only the current source (the one that contains a code corresponding to the current

PC) or the source selected in the [Select source] box is displayed.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 269
C COMPILER PACKAGE MANUAL (ver.3)

Table 16.8.3.1 Commands/tool bar buttons to switch display mode
ButtonCommand

u

m

sc

Display mode

Disassemble

Mixed

Source

 When these commands are executed, the [Source] window has its display contents updated so that the current

PC address is always displayed in the window. Furthermore, these commands can also be used to specify the
display start address.

 If the [Source] window is not open, each command displays the above contents in the [Command] window.
 Each button can only be used when the [Source] window is open. When the display mode is switched using

the toolbar button, the [Source] window displays the same part of the currently displayed codes and does not
change it to the current PC address.

 In the source display mode, you can specify a search character string so that the contents will be displayed

beginning with the searched position.

Table 16.8.3.2 Source character string search command
Command

ss
Function

Character string search

Operating symbols
 When debugging a srf33 format object file after reading it into the db33, you can use the symbols defined in

the source file to debug the program.

 (1) Address specification by symbol
 When entering a command that has <address> in its parameter from the [Command] window or entering an

address in the dialog box, you can specify the address by using a symbol. For details on how to specify, refer
to Section 16.7.2, "Parameter Input Formats".

 (2) Displaying symbol information
 The symbol information (e.g., address, content, scope, class, and type) that is used in the program under

debug can be displayed in the [Command] window. Commands are available that allow you to display a
condition-specified list or verify variables after program execution. For details about display contents, refer
to the explanation of the sy command.

 Display examples: ����������������	

������������������
� � �����������������������������

� � ����������������������������������

� � ����������������	����������������������

� � �������������������������������� !�

� � �	���������������������������� !

Note: The debugger reads the contents of symbols from the target in byte units and re-arranges the read

data to byte, half-word or word data according to the symbol size before displaying. Note that data
cannot be displayed if the big/little endian settings are different between the BCU on the target and
the parameter file read in the debugger.

CHAPTER 16: DEBUGGER

270 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 (3) Monitoring symbols in [Symbol] window

 The [Symbol] window can have up to 99 symbols registered (in watch symbol table). This facility allows you

to monitor, for example, the contents of variables that are modified by program execution.

Table16.8.3.3 Commands/menu commands/tool bar buttons to display symbol list
Button

–

Menu

[Symbol]-[Watch]

–

[Symbol]-[Add]

[Symbol]-[Delete]

Command

sw

sy

sa

sd

Function

Displaying symbols

Displaying symbol list

Registering monitor symbols

Deleting monitor symbols

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 271
C COMPILER PACKAGE MANUAL (ver.3)

16.8.4 Displaying and Modifying Memory Data and Register
The db33 has functions to operate on the memory and registers. Each memory area is set to the debugger
according to the map information that is given in a parameter file. Memory access and data display in half word or
word units are performed in little-endian format by default. It can be changed so that the specified area will be
accessed in big-endian format using the parameter file.

Operating on memory area
 Following operations can be performed on the memory area:

 (1) Dumping data memory

 The contents of the memory are displayed in hexadecimal dump format. If the [Memory] window is open, the

contents of the [Memory] window are updated; if not open, the contents of data memory are displayed in the
[Command] window. (db, dh and dw commands)

 (2) Entering/modifying data
 The data at a specified address is rewritten by entering hexadecimal data. (eb, eh and ew commands)

 (3) Rewriting a specified area
 An entire specified area is rewritten with specified data. (fb, fh and fw commands)

 (4) Copying a specified area
 The content of a specified area is copied to another area. (mv, mvh and mvw commands)

 (5) Monitoring memory

Four memory locations, each with area to store a word (4 bytes), can be
registered as watch data addresses. The registered watch data can be
verified in the [Register] window. When operating in ICE mode, the
content of this window is updated in real time at 1 to 0.1-second intervals
by the on-the-fly function. Addresses 0, 4, 8, and C are made the watch
data addresses by default.
Note that data of the internal RAM area is not updated in real time since
accesses to the internal RAM area cannot be detected from outside the
chip. It will be updated after the target program breaks.

← Monitor data

CHAPTER 16: DEBUGGER

272 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Table 16.8.4.1 Commands to operate on data memory

�

Command
db (byte units), dh (half word units), dw (word units)
eb (byte units), eh (half word units), ew (word units)
fb (byte units), fh (half word units), fw (word units)
mv (byte units), mvh (half word units), mvw (word units)
w (word units)

Function
Dumping memory
Entering/modifying data
Rewriting specified area
Copying specified area
Setting watch data address

 ∗ Updating of the [Memory] window
 When you open the [Memory] window using the [Memory] command on the [Window] menu, the contents

of the memory are displayed in the window. The data at all addresses can be checked by scrolling the
window, or you can use the d* (db, dh, dw) command to specify an address so the window starts displaying
the memory contents beginning with the specified address.

 When the [Memory] window is open you may modify the address displayed in the window, but the display
contents of the [Memory] window will not be updated by that modification. To update the display contents,
you need to execute the d* command or scroll the [Memory] window in the vertical direction.

 The [Memory] window is cleared by reading a file. In such a case, redisplay the window using the method
described above.

 When the program is executed successively, the [Memory] window will be updated immediately after a break
occurs. During step execution, the [Memory] window is updated every step. This automatic update function
can be disabled using the md command.

 ∗ Updating the [Source] window
 When the [Source] window is open you may modify the content of an address displayed in the window, but

the display contents of the [Source] window is not updated by that modification. To update the display
contents, you need to temporarily switch the display mode of the [Source] window using a command or
scroll the [Source] window in the vertical direction. Note that when code is modified, the disassemble result
changes, but the display contents of source do not change.

Notes: • When an address in which no registers have been allocated in the internal I/O area is read,

CPU-last-read data is displayed.

 • The ICD33 reads memory data 8 bytes at a time. Therefore, data may be read exceeding the

range specified using a command (to maximum 7 bytes ahead). Pay attention when reading
the I/O memory since some registers change their status by reading.

 • When writing data to the internal ROM emulation memory on the EPOD33XXX through the

ICD33 or MON33, byte-access commands (eb, fb, mv) cannot be used. Be sure to use a
half-word- or word-access command (eh, ew, fh, fw, mvh, mvw). The file load commands (lf, lh)
always write data in half-word units.

Operating registers
 Following operations can be performed on registers:

 (1) Displaying registers
 Register contents can be displayed in the [Register] or [Command] window.
 General-purpose registers: R0 to R15
 Special registers: PC, SP, PSR, AHR, ALR

 When operating in ICE mode, the contents of the PC and PSR register are updated in real time every 0.2

seconds (default) by the on-the-fly function. (See Section 16.8.5, "Executing Program".)

 (2) Modifying register values
 The contents of the above registers can be set to any desired value.

Table 16.8.4.2 Commands/menu commands to operate registers
Command

rd
rs

Menu
[Window]-[Register]

–

Function
Displaying registers
Modifying register values

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 273
C COMPILER PACKAGE MANUAL (ver.3)

16.8.5 Executing Program
The debugger can execute the target program successively or execute source lines/instructions one step at a time
(single-stepping).

Successive execution

 (1) Successive execution commands
 The successive execution command execute the loaded program successively from the current PC address.

Table 16.8.5.1 Commands/menu commands/tool bar buttons for successive execution
ButtonMenu

[Run]-[Go]

[Run]-[Go to]

Command

g

g <address>

Function

Successive execution

Successive execution to the
specified address

 (2) Stopping successive execution
 Using the successive execution command, you can specify a temporary break addresses that are only

effective during program execution.
 The temporary break address also can be specified from the [Source] window.

If you click on the address line 0x8001A
shown in the [Source] window (after
moving the cursor to that line) and click
on the [Go to] button, for example, the
program starts executing from the
current PC and breaks before executing
the instruction at 0x8001A.

 Except being stopped by this temporary break, the program continues execution until it is stopped by one of

the following causes:
 • Break conditions set by a break setup command are met.
 • You click on the [Key break] button. (not available in debug monitor mode)
 • Some other break factor occurs.

 [Key break] button

 ∗ When the program does not stop, use this button to forcibly stop it.

 (3) On-the-fly function
 When operating in ICE mode, you can use the on-the-fly function to display the PC, PSR register, and watch

data values every 0.2 seconds (default) during successive execution. These contents are displayed in the
relevant positions of the [Register] window. If the [Register] window is closed, they are displayed in the
[Command] window. In the initial debugger settings, the display update interval of the on-the-fly function is
set to 5 times per second. It can be modified to 0 (OFF)–10 (times) per second using the md command. This
function provides a complete real-time display that is implemented using the ICE33 hardware.

 The on-the-fly function in ICD mode displays a message that indicates trace-memory-full in the [Register]
window (or the [Command] window) and real-time trace data. The md command is used to set the update
interval similar to ICE mode.

 The on-the-fly function is available only in ICE and ICD modes. In other modes, the display of all windows
except the [Register] window remains unchanged; changes are cleared during successive execution.

CHAPTER 16: DEBUGGER

274 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Single-stepping

 (1) Types of single-stepping
 There are two types of single-stepping available:

 • Stepping through all codes (STEP)

In this single-stepping, the program is executed in units of addresses or source codes – i.e., one address
or source code at a time – depending on the [Source] window's display mode as shown below:
Disassemble display mode: Address units
Mixed display mode: Address units
Source display mode: Source code units

 • Stepping through codes except functions and subroutines (NEXT)
 When a C source function call, assembly source subroutine call, or software interrupt is encountered,

each called function, subroutine, or interrupt routine is executed as one step. All codes in the current
function or subroutine except calls are executed in the same way as in STEP.

 In either case, the program starts executing from the current PC.

Table 16.8.5.2 Commands/menu commands/tool bar buttons for single-stepping
ButtonMenu

[Run]-[Step]

[Run]-[Next]

Command

s

n

Function

Stepping through all codes

Stepping through all codes except
functions and subroutines

 When executing single-stepping by command input, you can specify the number of steps to be executed, up

to 65,535 steps. When using menu commands or tool bar buttons, the program is executed one step at a time.

 In the following cases, single-stepping is terminated before a specified number of steps is executed:
 • When you click on the [Key break] button (not available in debug monitor mode)
 • When a break factor except for user set break occurs

 Single-stepping is not halted by breaks set by the user such as a PC breakpoint or data break.

 [Key break] button

 ∗ When the program does not stop, use this button to forcibly stop it.

 (2) Display during single-stepping
 In the initial debugger settings, the display is updated every step as follows:
 When the [Source] window is open, the underline designating the next address to be executed moves every

step as the program is stepped through.
 The display contents of the [Register] and [Memory] windows are also updated every step.
 The display mode can be switched over by the md command so that the display contents of the [Register]

window are updated at only the last step in a specified number of steps and the [Memory] window is not
updated automatically.

 (3) HALT and SLEEP states and interrupts
 In the ICE33, interrupts are disabled during single-stepping.
 The halt and slp instructions are executed even during single-stepping, in which case the CPU is placed in a

standby mode. The CPU can be released from the standby mode by generating an external interrupt or by
pressing the [Key break] button.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 275
C COMPILER PACKAGE MANUAL (ver.3)

Measuring execution cycles/execution time

 (1) Execution counter and measurement mode
 The ICE33 contains three 31-bit execution counters allowing you to measure the program execution time (2

systems) and the number of bus cycles executed (1 system).
 The ICD33 contains a 29-bit execution counter that can be set for measuring execution time (sec or µsec) or

number of cycles using the md command.
 The execution counter for simulator mode counts only the number of instructions executed.
 Note that the execution counter is not available in debug monitor mode.

Table 16.8.5.3 Measurement units and accuracy of the execution counter
ICD mode
1 ±1 µsec

50 ±50 nsec
1 ±16 cycle

–

Simulator mode
–
–
–

1 ±0 instruction

ICE mode
1 ±1 µsec

50 ±50 nsec
1 ±1 cycle

–

Execution counter
Execution time 1
Execution time 2
Bus cycle
Instruction

 The following lists the maximum values that can be measured by the execution counter:
 ICE mode ICD mode
 Execution time 1: 2147483647 µsec = approx. 36 min. 536870911 µsec = approx. 9 min.
 Execution time 2: 2147483647 x 50 nsec = approx. 107 sec. 536870911 x 50 nsec = approx. 27 sec.
 Bus cycle: 2147483647 cycles 536870911 x 4 = 2147483644 cycles

 (2) Displaying measurement results
 The measurement result is displayed in the [Register] window. This display is cleared during program

execution and is updated after completion of execution. If the [Register] window is closed, the measurement
result can be displayed in the [Command] window using the rd command. The execution results of
single-stepping are also displayed here.

 If the count exceeds the counter size, the system indicates "over flow".

 (3) Integrating mode and reset mode
 In the initial debugger settings, the execution counter is set to an integrating mode. In this mode, the

measured values are combined until the counter is reset.

 The reset mode can be set by the md command. In this mode, the counter is reset each time the program is

executed. In successive execution, the counter is reset when the program is made to start executing by
entering the g command and measurement is taken until the execution is terminated (break occurs).

 In single-stepping, the counter is reset when the program is made to start executing by entering the s or n
command and measurement is taken until execution of a specified number of steps is completed. The counter
is reset every step if execution of only one step is specified or execution is initiated by a tool bar button or
menu command.

 (4) Resetting execution counter
 The execution counter is reset in the following cases:
 • When the execution counter mode is switched over by the md command (from integrating mode to reset

mode)
 • When program execution is started in reset mode

CHAPTER 16: DEBUGGER

276 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Resetting the CPU
 The CPU is cold-reset when the rstc command ([Reset Cold] command on the [Run] menu, or the [Reset

cold] button) is executed, or is hot-reset when the rsth command (or [Reset Hot] command on the [Run]
menu, or the [Reset hot] button) is executed.

 When the CPU is reset, the internal circuits are initialized as follows:

 (1) Internal registers of the CPU
 R0–R15: 0xaaaaaaaa
 PC: Boot address (∗)
 SP: 0x0aaaaaa8
 PSR: 0x00000000
 AHR, ALR: 0xaaaaaaaa

* The boot address is the 4-byte value stored from the beginning of the vector table that is specified by the
TTBR register. At cold-reset, the TTBR register is initialized to 0x80000 or 0xc00000. At hot-reset, the
TTBR register retains the set value.

 (2) The execution counter is reset to 0.

 (3) The [Source] and [Register] windows are redisplayed.
 Because the PC is set to the boot address, the [Source] window is redisplayed beginning with that address.
 The [Register] window is redisplayed with the internal registers initialized as described above.

 The memory contents are not modified.

Note: The function of the rstc command changes according to the debugger mode.

 ICE mode
 The process above is executed and the E0C33 chip is also reset. The target board is not reset.

 ICD mode
 The process above is executed and the E0C33 chip is also reset. The target board is not reset.
 Furthermore, when the target system is in a free-run state, the rstc command suspends the

program execution forcibly before resetting. The target system connected to the ICD33 enters a
free-run state when the target board is reset. The rstc command can be used to suspend the
program execution in this case.

 Debug monitor mode
 The rstc command functions the same as the rsth command. It does not reset the E0C33 chip

and does not initialize the TTBR register.

 Simulator mode
 The boot address is determined by the MCU/MPU specification in the parameter file.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 277
C COMPILER PACKAGE MANUAL (ver.3)

16.8.6 Break Functions
The target program is made to stop executing by one of the following causes:
• Break command conditions are satisfied.
• The [Key break] button is activated. (not available in debug monitor mode)
• The ICE33/ICD33 BRKIN pin is pulled low.
• A map break or similar break occurs.

Break by command
 The db33 has four types of break functions that allow the break conditions to be set by a command. When the

set conditions in one of these break functions are met, the program under execution is made to break.

 (1) Software PC break
 This function causes the program to break when the PC matches the address set by a command. The program

is made to break before executing the instruction at that address. Up to 16 addresses can be set as the
breakpoints.

 When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.

 ���������	
����������������

� ��

Table 16.8.6.1 Command/menu command/tool bar button to set software PC breakpoint
ButtonMenu

[Break]-[Soft PC...]

Command

bp

Function

Setting/canceling breakpoints

This dialog box appears on the screen when you select the
[Soft PC...] command from the [Break] menu.
Up to 16 addresses can be registered in the breakpoint list.

Registering break addresses
Enter an address in the [Break at] text box, then press [Enter]
or click the [Set] button. Addresses can be entered using the
symbols.

Clearing the break point
Select the address to be cleared from the [Break list] box, then
click the [clear] button.

Enabling/disabling the break point
When a break address is registered, it is configured as an
enabled break point. The enabled break point is indicated with
"/E" in the list. It can be disabled without clearing the
registered address. To disable a break point, select the address
from the list, then click the [Disable] button. The "/E" symbol
changes to "/D" indicating that the break point is disabled.
The [Enable] button switches the disabled break point (/D) to
be enabled. (/E).

 When using the bp command, follow the guidance displayed in the [Command] window as you enter
addresses. The addresses which have a valid (enabled) breakpoint set are marked with a prefix "!" or "?" as
they are displayed in the [Source] window.

 "!": When a breakpoint is set at the displayed address
 "?": When a breakpoint is set somewhere other than the beginning address of the source code in the source

display mode

CHAPTER 16: DEBUGGER

278 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 Using the [Soft PC Break] button allows you to set and cancel breakpoints easily.

 Click on the address line in the [Source] window at which you want the program to break (after moving the

cursor to that position) and then click on the [Soft PC Break] button. A "!" symbol will be placed at the
beginning of the line indicating that a breakpoint has been set there, and the address is registered in the
breakpoint list. Clicking on the line that begins with a "!" and then the [Soft PC Break] button cancels the
breakpoint you have set, in which case the address is deleted from the breakpoint list.

 ∗ Software PC breaks are implemented by embedding the BRK instruction. Therefore, software PC breaks

cannot be used for the ROM on the target board where instructions cannot be embedded. In this case, use a
hardware PC break.

Note: When setting a software PC break point or hardware PC break point to extended instructions

with ext or delayed branch instructions, only the first address can be specified.
 ext xxxx ... Can be set. jr*.d xxxx ... Can be set.
 ext xxxx ... Cannot be set. Delayed instruction ... Cannot be set.
 Extended instruction ... Cannot be set.

 (2) Hardware PC break
 Hardware PC break is implemented by using the debug mode of the E0C33000 core CPU. This break

operation can be simulated even in the simulator mode. This function causes the program to break when the
PC matches the address set by a command. The program is made to break before executing the instruction at
that address. Up to two addresses can be set as hardware breakpoints.

 When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.

� ���������	��
����������������or ����������	��
���������������
� ��

Table 16.8.6.2 Commands to set hardware PC breakpoint
Menu

[Break]-[Hard PC...]

Command
bh, bh2

bhc, bhc2

Function
Setting breakpoint
Canceling breakpoint

Button

This dialog box appears on the screen when you select the [Hard
PC...] command from the [Break] menu.
Up to two addresses are allowed for hardware PC breakpoints.
To set a hardware PC breakpoint, enter an address in the [Break at]
text box, then press [Enter] or click the [Set] button. Addresses can be
entered using the symbols.
Clicking the [Clear] button clears the breakpoint.

 ∗ The [Hard PC Break] button is used to set a breakpoint in the [Source] window similar to the [Soft PC Break]

button. The address set as a hardware PC breakpoint is marked with a suffix "!" or "?" as it is displayed in the
[Source] window (see "Software PC Break").

Note: The hardware PC break function is disabled when the area trace function is set in ICD mode.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 279
C COMPILER PACKAGE MANUAL (ver.3)

 (3) Data break
 This break function allows you to cause a break when a location in the specified memory address is accessed.

In addition to specifying a memory address, you can specify whether you want a break to be caused by a read
or write as the break condition. Both the read/write operations can also be specified, so that a break will be
generated for whichever operation, read or write, is attempted.

 A break occurs after completing the cycle in which an operation to satisfy the above specified condition is
performed.

 When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.

� ���������	�
���������

� ��

Table 16.8.6.3 Command/menu command to set data break
Menu

[Break]-[Data...]
Command

bd
Function

Setting/canceling data break conditions

This dialog box appears on the screen when you select the
[Data...] command from the [Break] menu.
Enter an address in the [Break at] text box, and select an
access condition from the radio buttons.
In this example, a break occurs when data is read or written
from/to memory addresses 0x8.
When using the bd command, follow the guidance shown in
the [Command] window as you enter the break conditions.
The address can also be specified using a symbol.

 (4) Sequential break (only in the ICE mode)
 For sequential breaks, you can specify one to three addresses, data patterns, data masks, and bus operation

types. A break occurs when the program performs each specified type of bus operation in the order of
specified addresses.

 Specify data patterns and masks in a 16-bit hexadecimal number.
 Choose a bus operation type from the nine types listed below:
 0. All All bus operations
 1. Inst Instruction fetch
 2. VecR Vector fetch
 3. DatR Data read
 4. DatW Data write
 5. StkR Read from stack
 6. StkW Write to stack
 7. DmaR Ready by DMA
 8. DmaW Write by DMA

 The sequential break function can only be used in ICE mode.
 When this break occurs, the db33 displays the following message in the [Command] window and stands by

waiting for command input.
� ��������������
�����������

� ��

Table 16.8.6.4 Command/menu command to set sequential break
Menu

[Break]-[Sequential]
Command

bsq
Function

Setting/canceling sequential break conditions

CHAPTER 16: DEBUGGER

280 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

This dialog box appears on the screen when you
select the [Sequential...] command from the
[Break] menu.
Enter an address, data pattern and data mask in
each text box and select a bus operation type from
the combo box, then click the [Add] button. The
entered break condition is set in order from Hit
No.1 to 3.
The address can also be specified using a symbol.

 When using the bsq command, follow the guidance shown in the [Command] window as you enter the break

conditions.

 Example:
 No. Address Data pattern Data mask Bus operation
 1 0x00c80000 0x0000 0xffff Inst
 2 0x00e00001 0x0001 0xff00 DatW

 In this example, a break occurs when the CPU writes 1 to address 0xe00001 after executing the instruction at

address 0xc80000. The data mask 0xffff in No.1 specifies the mask in all the data pattern bits (the data
pattern is omitted from the break condition). The data mask 0xff00 in No.2 specifies that the low-order 8 bits
of the data pattern is compared with the low-order 8 bits of the actual access data.

Note: The sequential break function is not available in ICD, debug monitor, and simulator modes.

 (5) Area break (only in the ICD+MEM33 mode)
 This break function allows you to break when a CE area in the specified memory address is accessed. You

can specify the area within or out of the range. Do not specify the area through multiple CE areas. Both read
and write operations can also be specified, so that a break is generated for whenever the specified read or
write is attempted.

 A break occurs after completing the cycle in which an operation to satisfy the specified condition above is
performed. Because the MEM33201 uses the external break of the ICD33 to break, it does not stop right after
the memory access.

 When this break occurs, the db33 displays the following message in the [Command] window and waits for
command input:

 Break using external break.
 Break using MEM33 area break. AreaX

Table 16.8.6.5 Command/menu command to set area break
���������

	
���������
������
���
��������������

�
���

���
������
���
���

�������

��

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 281
C COMPILER PACKAGE MANUAL (ver.3)

This dialog box appears on the screen when you select the
[Area break] command from the [Break] menu.
You can select the checkbox [Area breakX] to turn the area
break on or off.
Select Inside or Outside of the specified address using the
radio button [Side].Enter the specific address in the [Top
address]text box and the [Bottom address]text box. Select
how you access in the [Operation] combo box.
Press [OK] when you finish the settings.
If you press [Cancel], data will not be saved.
In this example, a break occurs when address 0xC0FFFF is
read from address 0xC00000.
A break occurs when address 0x11FFFF from address
0x100000 or address 0x1FFFFF from address 0x121000 is
read or written.

 When using the ba command, follow the instructions shown in the [Command] window as you enter the

break conditions. The address can also be specified using a symbol.

Note: The Area break function cannot be used in the ICD, ICE, debug monitor, and simulator modes.
 A break by MEM33201 using ICD33 external break occurs after the memory is accessed a few

times when you access the break conditions. Therefore, a break occurs not just after the
memory is accessed.

(6) Bus break (only in the ICD+MEM33 mode)
 You can specify the address, address mask, CE mask, data, data mask, path operation, bus width, break mode,

and break counter. You can set 6 break conditions if the bus width is 16 bits and 3 break conditions can be
set if the bus width is 32 bits. A break occurs after completing the cycle in which an operation to satisfy the
above specified condition is performed.

 When this break occurs, the db33 displays the following message in the [Command] window and waits for
command input:

Break using external break.
 Break using MEM33 bus break.

Table 16.8.6.6 Command/menu command to set Bus break

�����

����	
���������	
��

����	���

���

���������

���������	��������������	
�����������

CHAPTER 16: DEBUGGER

282 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

This dialog box appears on the screen when you select the
[Bus break] command from the [Break] menu.
Select Bus width using the radio button [Bus width].
Select Break mode using the radio button [Break mode].
Sequential mode matches from the smallest number
referring to a break condition.
Enter the value in the [Break counter] text box. The counter

breaks after the specified number of times. In the
Sequential mode, a break occurs after the last break pass
times.

Enter the value in the [Address] text box.
Enter the value in the [Address mask] text box.
Select CE mask from the [CE mask] combo box.
Enter the value in the [Data] text box.
Enter the value in the [Data mask] text box.
Select Operation from the [Operation] combo box.

 When setting the Bus break condition, use the [Number] text box to set or cancel the condition. Number must

be serial. After you choose Number, enter the break conditions and press the [Set] button if you want to set
or press [Delete] if you want to delete. To end the settings, press the [OK] button. If you press the [Cancel]
button, data will not be saved.

 In this example, a break occurs when address 0x1234567X is read from address 0xC00000.
 A break occurs when data (word) is written to address 0xC00004 .

 When using the bb command, follow the instructions shown in the [Command] window as you enter the

break conditions. The address can also be specified using a symbol.

Note: The Bus break function cannot be used in the ICD, ICE, debug monitor, and simulator modes.
 A break by MEM33201 using the ICD33 external break occurs after the memory is accessed a

few times when you access the break conditions. Therefore, a break occurs not just after the
memory is accessed.

Forced break by [Key break] button
 [Key break] button

 The [Key break] button can be used to forcibly terminate the program under execution when the program has
fallen into an endless loop or cannot exit a standby (HALT or SLEEP) state.

Note: This break function is not available in the debug monitor mode.

Pulling ICE33 BRKIN pin low (only in ICE or ICD mode)
 The program is made to break by entering a low pulse to the ICE33/ICD33 BRKIN pin when operating in

ICE/ICD mode.
 When this break occurs, the db33 displays the following message in the [Command] window and stands by

waiting for command input.
� ����������	
������������

� ��

Notes: • This function is not available in the debug monitor and simulator modes.

 • In the ICD33, there is a delay time of approximately 1.5 µsec between a pulse input to the

BRKIN pin and the actual break generation.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 283
C COMPILER PACKAGE MANUAL (ver.3)

Map break and break by executing illegal instruction
 The program also breaks when one of the following errors is encountered during program execution:

Note: The following break functions are not available in ICD and debug monitor modes.

 (1) Write to data ROM area
 A break occurs when the program writes data to the ROM area set by the parameter file.
 When this break occurs, the db33 displays the following message in the [Command] window and stands by

waiting for command input.
� ���������	�
�
������������

� ��

 (2) Access to no-map area
 A break occurs when the program accesses a no-map area that has not be defined in the parameter file.
 When this break occurs, the db33 displays the following message in the [Command] window and stands by

waiting for command input.
� ���������������
���������������

� ��

 (3) Accessing outside stack area (only in ICE mode)
 A break occurs when the program accesses an area outside the stack area using the SP.
 This break will occur only in ICE mode.
 When this break occurs, the db33 displays the following message in the [Command] window and stands by

waiting for command input.
� �������������������������

� ��

 (4) Execution of an illegal instruction (only in the simulator mode)
 A break occurs when an illegal instruction (code not generated by the Assembler as33 in which case the

instruction is marked by "*" in disassemble display) is executed in simulator mode.
 When this break occurs, the db33 displays the following message in the [Command] window and stands by

waiting for command input.
� ���������
������
�������
����

� ��

Notes: • In the ICE33, a bus access to the internal RAM area does not generate a map break or

sequential break, since it cannot be detected from outside the chip. However, a no-map area
break can occur when instructions are executed in the internal RAM.

 • If the CPU is cold-reset while it is executing the program in ICE, ICD or debug monitor mode,

the on-chip-supported hardware PC break point (including temporary break used in the go
command or internal next operation) and the data break condition are cleared. When the
program execution breaks by another break factor, the break conditions are set again. Be
aware that no hardware PC or data breaks will occur until the conditions are reset.

CE break and Map break on ICD+MEM mode

Note: The following two break functions are set by memory map information in the parameter file.

(1) CE break
 MEM33201 contains the CE break function.
 Each of the CE is assigned an attribute (R/W, Read Only, or Access) and a break occurs if the access is

illegal .
� ����������������������������� 	!����!������������������"��#�

� ��

CHAPTER 16: DEBUGGER

284 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

(2)� Map break
 MEM33201 contains the map break function.
 It changes the attributes to enable/disable access to each 32kb area. Break occurs when there is an illegal

access.
 The following massage is output.
� ���������	
	�������������

� ��

Notes: • When the bus action frequency is over 30MHz, illegal CE break is difficult to occur.
 No CE break is the case when RD/WR access occurs without CE.

 When this case happens, use ;!MEM33_MAP_NOCE_DISABLE and set DISABLE.

 •CE break and map break are invalid when address, CE pin etc. are not displayed on the
microchip computer.

•An access occurs which makes a break same as the bus break and the area break. After that,
the bus access occurs a few times, and then a break occurs.
This is because the break function of MEM33201 is a pipeline for bus access space.

•Area which maps the break function of MEM33201(default is CE 9 area) becomes the area
only for register to break. Therefore, other devices cannot be mapped. In addition, do not post
break and so on.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 285
C COMPILER PACKAGE MANUAL (ver.3)

16.8.7 Trace Functions
The db33 has a function to trace program execution.
Note that the method of operation and functionality differ depending on the debugger mode..

Trace function in ICE mode

 (1) Trace memory and trace information
 The ICE33 contains trace memory. When the program executes instructions in the trace range according to

the trace mode, the trace information on each bus cycle is taken into this memory. The trace memory has the
capacity to store information for 32768 cycles. When the trace information exceeds this capacity, the data is
overwritten, the oldest data first, unless operating in single-delay trigger mode. Consequently, the trace
information stored in the trace memory is always within 32768 cycles. The trace memory is cleared when a
program is executed, starting to trace the new execution data.

 The following lists the trace information that is taken into the trace memory in every bus cycle. This list is

corresponded to display in the [Trace] window.

Cycle: Trace cycle (decimal) The last information taken into the trace memory becomes 00000.
Address: CPU-instruction-fetch address (hexadecimal)
 "--------" is displayed for a non instruction-fetch access.
Code: Instruction code fetched by the CPU (hexadecimal)
 "----" is displayed for a non instruction-fetch access.
Unassemble: Disassembled content of the fetched instruction
 "--------" is displayed for a non instruction-fetch access.
Address: Address accessed by the CPU (hexadecimal)
 "--------" is displayed for an instruction-fetch access.
Data: Read/write data (hexadecimal)
 "----" is displayed for an instruction-fetch access.
Clk: Number of clocks used in the bus operation (1 to 7)
 "V" is displayed when 8 or more clocks are used.
Type: Bus operation type:
 Inst: Instruction fetch, VecR: Vector read, DatR: Data read, DatW: Data write
 StkR: Stack read, StkW: Stack write, DmaR: DMA read, DmaW: DMA write
 Access size:
 B: Byte access, H: Half word access, W: Word access
 Memory type:
 SRAM, DRAM, BROM (burst ROM), IRAM (internal RAM), I/O (internal I/O)
 DBUG (for ICE development), ERR (others)
TRC: Input to TRCIN pin (denoted by L when low-level signal is input)
T: Trace trigger point (placed at the beginning of the line)
 Displayed only for the bus cycle that meets trace trigger conditions.
File: Source file name (displayed only when source display is selected by the tm command)
Line: Source line number (displayed only when source display is selected by the tm command)
SourceCode: Source code (displayed only when source display is selected by the tm command)

CHAPTER 16: DEBUGGER

286 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 (2) Trace modes
 Two trace modes are available, depending on the method for sampling trace information.

Table 16.8.7.1 Trace mode setup command
Command

tm
Function

Setting trace mode and condition

 1. Normal trace mode
 In this mode, the trace information on all bus cycles is taken into the trace memory during program execution.

Therefore, until a break occurs, the trace memory always contains the latest information on bus cycles up to
the one that is executed immediately beforehand.

 2. Single delay trigger trace mode
 In this mode as in other modes, trace is initiated by a start of program execution. When the trace trigger

condition that is set by a command is met, trace is performed beginning from that point (trace trigger point)
before being halted according to the next setting, which is also set by a command.

 • If the trace trigger point is set to "start"
 Trance is halted after sampling trace information for 32768 cycles beginning from the trace trigger point. In

this case, the trace information at the trace trigger point is the oldest information stored in the trace memory.
 If the program stops before tracing all 32768 cycles, trace information on some cycles preceding the trace

trigger point may be left in the trace memory within its capacity.

Execution started
Trace trigger point

Trace sampling range

32768 cycle

Fig. 16.8.7.1 Trace range when "start" is selected

 • If the trace trigger point is set to "middle"
 Trace is halted after sampling trace information for 16384 cycles beginning from the trace trigger point. In

this case, the trace information of 16384 cycles before and after the trace trigger point are sampled into the
trace memory.

 If the program stops before tracing about 16384 cycles, trace information for the location 16384 cycles
before the trace trigger point may be left in the trace memory, according to its capacity.

Execution started
Trace trigger point

Trace sampling range

(16384 cycle) 16384 cycle

Fig. 16.8.7.2 Trace range when "middle" is selected

 • If the trace trigger point is set to "end"
 Trace is halted after sampling trace information at the trace trigger point. In this case, the trace information at

the trace trigger point is the latest information stored in the trace memory.
 If the program stops before tracing the trace trigger point, the system operates in the same way as in normal

mode.

Execution started
Trace trigger point

Trace sampling range

32768 cycle

Fig. 16.8.7.3 Trace range when "end" is selected

 If the program is halted in the middle of single delay trigger trace, bus cycles are traced from the beginning

when trace is executed next.
 In addition to the above mode settings, the tm command allows you to set a trace trigger condition (address,

data pattern, or bus operation type).

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 287
C COMPILER PACKAGE MANUAL (ver.3)

 (3) Displaying and searching trace information
 The sampled trace information can be displayed in the [Trace] window by a command. If the [Trace] window

is closed, the information is displayed in the [Command] window. In the [Trace] window, you can see the
entire trace memory data by scrolling the window. The trace information can be displayed beginning from a
specified cycle. The display contents are as described above.

Table 16.8.7.2 Command to display trace information

Command
td

Function
Displaying trace information

 You also can specify a search condition and display the trace information that matches your specified

condition. The search condition can be selected from the following:
 1. Accessed memory address (or the entire memory space)
 2. Bus operation type

 When the above condition is specified, the db33 starts searching. When the trace information that matches

the specified condition is found, the db33 displays the number of occurrences in the [Command] window.
The search data is displayed in the [Trace] window (or in the [Command] window if the [Trace] window is
closed).

Table 16.8.7.3 Command to search trace information

Command
ts

Function
Search trace information

 The [Trace] window is cleared by executing a program. After a program terminates executing, use the above

command to redisplay the trace information.

 (4) Saving trace information
 After the trace information is displayed in the [Trace] window using the td or ts commands, the trace

information within the specified range can be saved to a file.

Table16.8.7.4 Command to save trace information
Command

tf
Function

Saving trace information

CHAPTER 16: DEBUGGER

288 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Precautions on trace in ICE mode
 (1) After a single-step execution or a break occurs, information of the pre-fetched instructions that have not been

executed are displayed. When the target program execution is suspended by a software PC break, the fetch
cycle information of the brk instruction that was inserted for the software PC break is also displayed. (See
example below.)

 (2) When the program starts a successive execution from an address set as a software PC break point, the ICE33
executes single-stepping before starting the successive execution. Therefore, redundant trace information
pre-fetched by the single-stepping may be displayed. (See example below.)

 (3) For source-level step execution, the ICE33 repeats single-stepping internally. Therefore, a lot of pre-fetch
information of all the steps will be displayed.

 (4) Because of the reason stated above, the execution time measured by the execution counter increases by the
number of pre-fetch cycles.

 (5) Trace data for read/write of the internal RAM cannot be referred since the bus access is undetectable.
 (6) During data transfer by the high-speed DMA, data cannot be traced properly.

 Example of pre-fetch data display during step execution

�� Sample execution program (software PC breaks are set at the addresses with "!")�
������������	��
���������	���������������������������� �����������
��
��� �������� ���
�����
��	�������� ����������� ���
�� ��
���������������
����������������������������!����"#��� �#$%� �� &�&��#$%�
��������'������
����������������������������
�����������	�"#��������	������������������
�������	�'()�*���������+)����������������������*�� ,--.� ��$%+$%$�/��&&��
��000��#$%�"�000�
���12������#$%�"�))3�	�!�21�
���	��12����#$%���& �#��21�
���!���
��$%��$��
���4���
���#$%56�
����������	����7�8%�������������������������3������9�
� � � � � ... Successive execution from 0x80004�
,�
#:�;/��&+��#�
����;�
#:� ... Broken at 0x8000�
���� � � � ... Displays trace data�
��/"�
�����
����&�
�<%#��
�;�
�������������������
���=#�#���:��./�
����.>��
�����3�����������	��
���������	��������������0000000�0000���%���?��>�@�
���0000000�0000���%���?��>�@�
�����4��������������������������������������0000000�0000���%���?��>�@ ... Pre-fetch cycles�
���0000000�0000���%���?��>�@ ... by single-stepping (2)�
�����!��������������������������������������0000000�0000���%���?��>�@�
�����	���������������������������������������0000000�0000���%���?��>�@�
�������������������;�:����������������������0000000�0000���%���?��>�@� ... Software break inst. (1)�
�������������'������
������������������������0000000�0000���%���?��>�@�
���
����
��/"�
�����
����&�
�<%#��
�;�
�������������������
���=#�#���:��./�
����.>��
�����4��������������
������������������������0000000�0000���%���?��>�@�
�������������'������
������������������������0000000�0000���%���?��>�@�
�����!����������	�"#��������	��������������0000000�0000���%���?��>�@�
�����	������	�'()�*���������+)�������������0000000�0000���%���?��>�@�
��������������	����7�8%��������������������0000000�0000�	��%���?��>�@�
�����������������,������������������������0000000�0000���%���?��>�@�
���
����
��/"�
�����
����&�
�<%#��
�;�
�������������������
���=#�#���:��./�
����.>��
�����	���������	����7�8%��������������������0000000�0000���%���?��>�@ ... Executed�
����������������,������������������������0000000�0000���%���?��>�@ ... Pre-fetch cycle (1)�
�������������������
������������������������0000000�0000���%���?��>�@ ... Pre-fetch cycle (1)�
��

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 289
C COMPILER PACKAGE MANUAL (ver.3)

Trace function in ICD mode

 (1) Trace memory and trace information
 The ICD33 contains a trace memory that has the capacity to store information for 131072 cycles. The ICD33

stores the information of instruction execution cycles in the trace memory using the debugging signals output
from the E0C33 chip and other methods.

 The following lists the trace information that is taken into the trace memory in every cycle. This list is

corresponded to display in the [Trace] window.

Cycle: Trace cycle (decimal)
The last information taken into the trace memory becomes 000000.

Address: CPU-instruction-execution address (hexadecimal)
Code: Instruction code executed by the CPU (hexadecimal)
Unassemble: Disassembled content of the instruction code
Clk: Number of clocks used for executing the instruction
 By default, the cumulative clock count from start of tracing is displayed. It can be changed so

that the number of clocks for each executed instruction is displayed.
Method: Trace analytical method (to get the executed PC address)
 SPC: Analyzed with the start PC address

 TRG: Analyzed with the trigger address
 DPC: Analyzed with the DPCO signal

 RET: Analyzed with the call/ret statement
 MAP: Analyzed with the map information
 RTI: Analyzed with the reti statement
 ---: Cannot be analyzed
File: Source file name (which includes the executed instruction)
Line: Source line number
SourceCode: Source code

 (2) Trace mode and trace condition
 Two trace modes are available, depending on the trace range.

Table 16.8.7.5 Trace mode setup command
Command

tm
Function

Setting trace mode and condition

 1. All trace mode
 In this mode, trace is initiated by a start of program execution. It continues until a break occurs when "with

overwriting" is selected as the trace condition. If the trace memory becomes full, the oldest data will be
overwritten with the new trace data. If the trace condition is set to "without overwriting", trace is terminated
when the trace memory is full.

CHAPTER 16: DEBUGGER

290 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 2. Area trace mode
 Trace information is taken into the trace memory only when the program within the specified area is

executed. The program execution can be suspended at the trace area end address. In this mode, the time
measurement condition (all or area) can also be specified.

 In addition to the trace mode above, the clock (Clk in the trace information) count method can be selected

(accumulating or instruction units).

 (3) Displaying and searching trace information
 The sampled trace information can be displayed in the [Trace] window by a command. If the [Trace] window

is closed, the information is displayed in the [Command] window.

Table 16.8.7.6 Command to display trace information
Command

td
Function

Displaying trace information

 Furthermore, a search command is provided to display the trace information of the cycle that executes the

specified address and the previous and subsequent cycles. The search data is displayed in the [Trace] window
(or in the [Command] window if the [Trace] window is closed).

Table 16.8.7.7 Command to search trace information

Command
ts

Function
Search trace information

 The [Trace] window is cleared by executing a program. After a program terminates executing, use the above

command to redisplay the trace information.

 (4) Displaying and searching trace information
 The ICD33 allows trace data display without suspending the program execution. By clicking the [Display

trace] button, the ICD33 suspends tracing and displays the sampled trace memory data to the [Trace] window.
The trace operation can be resumed by clicking the [Resume trace] button.

 [Display trace] button [Resume trace] button

 The ts and tf commands cannot be used while the program is being executed.
 The [Display trace] button functions similar to the td command while the program execution is in break

status.

 (5) Saving trace information
 After the trace information is displayed in the [Trace] window using the td or ts commands, the trace

information within the specified range can be saved to a file.

Table16.8.7.8 Command to save trace information
Command

tf
Function

Saving trace information

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 291
C COMPILER PACKAGE MANUAL (ver.3)

ICD trace operation and precautions
 The trace function in ICD mode is implemented using the method below.

 The following four signals should be input to the ICE33 from the target CPU.
 DST0, DST1, DST2....... Signals that indicate the CPU execution status, such as sequential instruction

execution, relative branch operation, absolute branch operation and idle status.
 DPCO Serial data signal that indicates the branch destination PC address. This signal is

output when an absolute branch operation is performed.

 The ICD33 reads this 4-bit information for up to 128K clocks in synchronization with the CPU clock.
 The db33 gets the PC value by performing the following flow analysis using the above information and the

disassemble information in the db33.
 • DST0–2 = sequential instruction execution: +1 instruction
 • DST0–2 = relative branch: The number of instructions to the branch destination is

calculated from the disassemble information.
 • DST0–2 = absolute branch: The branch destination is determined from the DPCO

information.

 However, this analysis cannot be done if the trace-start point and the corresponding PC value are not

determined.
 The db33 determines the PC value using the method below. The symbols in the Method column in the trace

information represent the method used .

 Method: SPC Determined from the PC value at the start of program execution if it is fixed.

 (All trace mode without overwriting)
 Method: DPC Determined from the complete DPCO information of an absolute branch operation.
 Method: MAP Determined from the incomplete DPCO information of an absolute branch operation and

the complement map information. DPCO information is output when the following
absolute branch instruction is executed or by an interrupt vector jump operation.

 call %rb, call.d %rb, jp %rb, jp.d %rb, ret, ret.d, reti, int
 Method: TRG Determined by using the trigger address in area trace mode.
 Method: RET Determined from the correspondence between a call statement and a ret statement.
 Method: RTI Determined from the correspondence between an interrupt and a reti statement.

 As a result, there are some restrictions as listed below.

 (1) Restriction in overwrite mode
 When tracing a looped routine that repeats a relative branch, it will not be able to analyze until the PC

value is determined.
 As a solution for tracing such routines, there is a way to output DPCO information by generating an

interrupt in several ms cycles using the 8-bit timer (see sample in "cc33\sample\icdtrc").

 (2) Restriction in area trace mode
 Usually the hardware PC break function enables two break addresses. The area trace mode uses them as

the trigger addresses, so they cannot be used for the hardware PC break function until area trace mode is
cancelled.

 (3) Restriction in all trace mode without overwriting
 The ICD firmware executes the following process when the program execution is started from a software

PC break point.
 1. Clears the software PC break point set at the execution start address.

2. Executes only the first instruction step.
3. Sets the start address as a software PC break again.
4. Executes the following instructions successively.

 Therefore, the db33 cannot use the PC value at the start of program execution for analyzing.
 When resuming execution of a program that has been suspended at a software PC break point, perform

step execution to skip from the software PC break point before executing the program successively.

CHAPTER 16: DEBUGGER

292 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 The following shows restrictions common to all modes:

 (4) Restriction on absolute branch
 If two or more absolute branches occur within a 27-clock period, the complete PC values cannot be

determined. Although the db33 tries a recovery process using the map information and the call–ret
nesting information, the PC values may not be analyzed.

 (5) Restriction on the execution program
 When a program is loaded by the lf or lh command, the db33 keeps the program information and uses

the disassemble information for the PC value analysis. Therefore, there may be differences between the
internal analysis information and the target program in the following cases:

 • when the program to be executed has been stored in a ROM
 • when the target program copies/moves the execution routine dynamically
 • when the program area is modified using a db33 command
 In those cases, load the necessary part of the program from the target to the db33 using the rm command.

 (6) Simulated I/O
 The simulated I/O function uses the software PC break, step execution and source step execution

functions, so do not use it with the trace function simultaneously.

 The following shows the precautions regarding to ICD33 hardware:

 (7) Setting the ICD33
 To use the trace function in ICD mode, the DIP switch SW4 on the ICD33 must be set to OPEN (upper

position). Furthermore, the debugging signals required for tracing (DST0, DST1, DST2, DPCO) must be
connected between the target board and the ICD33 using the 10-pin interface cable.

 (8) Upper limit clock frequency for ICD trace function
 The operating clock frequency is limited to 50 MHz when the ICD33 trace function is used. A higher

frequency causes data error.
 When using a 50 MHz or higher CPU operating clock, disable the ICD trace function using the DIP

switch (SW4) in the ICD33. Furthermore, the speed of the E0C33 BCU (bus) should be set to 1/2 or less
of the CPU core operating speed (using the #X2SPD pin).

 The ICD functions other than the trace function operate at the same speed as the bus and the maximum
frequency is 40 MHz.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 293
C COMPILER PACKAGE MANUAL (ver.3)

Trace function in simulator mode
 In the simulator mode, you can specify trace function ON/OFF, display method, and write to a file. When the

trace function is turned on, the trace result is displayed on the screen or saved to a file every time an
instruction is executed.

Table 16.8.7.9 Command to set trace mode

Command
tm

Function
Turning trace mode on or off

 The following lists the trace information that is displayed on the screen in simulator mode:

 <1st line of each trace information>

Number: Executed instruction number (decimal).
 This is the executed instruction number after the CPU is reset or trace is turned on.
Address: Executed instruction address (hexadecimal).
Code: Instruction code (hexadecimal).
Unassemble: Disassembled content.
Address: Accessed memory address (hexadecimal).
Type: Bus operation type.
 rB: Byte data read, rH: Half word data read, rW: Word data read
 wB: Byte data write, wH: Half word data write, wW: Word data write
Data: Read/write data (hexadecimal).
File: Source file name (displayed only when source display is selected by the tm command).
Line: Source line number (displayed only when source display is selected by the tm command).
SourceCode: Source code (displayed only when source display is selected by the tm command).

 <Lines 2–4 of each trace information>
 These lines are displayed when register option is selected with the tm command.
 The register values appear in the order shown below.
 R0 R1 R2 R3 R4 R5 R6 R7
 R8 R9 R10 R11 R12 R13 R14 R15
 SP AHR ALR PSR (displayed in flag units)

 Trace information is displayed in the [Trace] window when display to the window is selected. If the [Trace]

window is closed, the information is displayed in the [Command] window.
 When saving to a file is selected, the information is output to the file and is not displayed in the window.
 Unlike in ICE mode, there is no need to input any specific command to display trace information. Trace

information is displayed automatically according to the successive execution or single-stepping of a program.
 The [Trace] window allows you to see trace information for the last 255 instructions. The trace information

for instructions beyond that are deleted.

CHAPTER 16: DEBUGGER

294 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.8.8 Simulated I/O
The db33's simulated I/O function allows you to evaluate external input/output functions such as a serial interface
by means of a standard input/output (stdin, stdout) or file input/output.

Table 16.8.8.1 Commands to set simulated I/O
Command

stdin
stdout

Function
Input setting
Output setting

Input by stdin
 Use the stdin command to set the following conditions:
 • Break address
 • Input buffer address (buffer size fixed to 65 bytes)
 • Input device – [Simulated I/O] window or a file

 After setting these conditions, execute the program in continuous mode.

 When [Simulated I/O] window is selected
 When a set break address is reached, the db33 opens the [Simulated I/O] window and waits for data to be

input from the keyboard. When input data (up to 64 bytes) and hit the [Enter] key, the db33 writes the input
data to a specified buffer, then restarts program execution at the address where it left off.

 When a file is selected
 If a file is selected, the db33 inputs data from the specified file to a specified buffer when it breaks. Then the

db33 restarts program execution at the address where it left off. In this case, the [Simulated I/O] window is
not opened.

Output by stdout
 Use the stdout command to set the following conditions:
 • Break address
 • Output buffer address (buffer size fixed to 65 bytes)
 • Output device – [Simulated I/O] window or a file or both

 After setting these conditions, execute the program in continuous mode.

 When [Simulated I/O] window is selected
 When a set break address is reached, the db33 opens the [Simulated I/O] window and displays the contents

set in the buffer in the [Simulated I/O] window. Then the db33 restarts program execution at the address
where it left off.

 When a file is selected
 If a file is selected, the db33 outputs the buffer contents to a specified file. Then the db33 restarts program

execution at the address where it left off. In this case, the [Simulated I/O] window is not opened.

 Data can be output to both the [Simulated I/O] window and the file.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 295
C COMPILER PACKAGE MANUAL (ver.3)

Program definitions for simulated I/O
 Before the simulated I/O function described above can be used, you must write the following definitions in

the program.

 Input/output buffer definition
 Define the global buffers used by the db33 to input or output data in the following format:

 Input buffer definition: unsigned char READ_BUF[65] (.comm READ_BUF 65)
 Output buffer definition: unsigned char WRITE_BUF[65] (.comm WRITE_BUF 65)

 For these buffer names, you can use any desired name that conforms to symbol name designations. Fix the

buffer size to 65 bytes. When executing the stdin and stdout commands, use this symbol name to specify a
buffer address.

 When data is input, the size (1 to 64) of the actually input data is placed in READ_BUF[0]. If EOF is input,

READ_BUF[0] is set to 0. The input data is stored in READ_BUF[1] and following elements.
 When outputting data, write the size of the output data (1 to 64) to WRITE_BUF[0], and the output data to

WRITE_BUF[1] and following elements. To output EOF, write 0 to WRITE_BUF[0].
 Thus, a data stream of up to 64 bytes can be input and output between the db33 and the program.

 Data updating global label definition
 Define the global labels shown below at a position where data is fed into the input buffer by the db33 and a

position where data is output from the output buffer.

 Input position: .global READ_FLASH
 READ_FLASH:
 Output position: .global WRITE_FLASH
 WRITE_FLASH:

 For these labels, you can use any desired name. When executing the stdin and stdout commands, use this

symbol name to specify the break address.

 In the C source, define these labels in the lower-level functions "write" and "read" (see Section 8.4) of the

standard I/O library function.

 For actual examples, refer to the sample programs and debugger command files installed in the

sample\simio\ directory.

 When a break occurs at the READ_FLASH label, the db33 reads data that input to the [Simulated I/O]

window or the file and load it to the defined input buffer. Then the db33 resume executing the program.
 When a break occurs at the WRITE_FLASH label, the db33 output data that stored in the output buffer to the

[Simulated I/O] window or the file, then resume executing the program.

Precautions
 Make sure the break addresses specified by the stdin and stdout commands do not overlap the software break

addresses.
 Since software breaks are used for this purpose inside the chip, the ROM area of the target board cannot be

specified.
 Use only ASCII characters for input and output. If binary data (0x0 and 0x1a in particular) is used, the db33

may operate erratically.
 The part of the program to input/output data by stdin and/or stdout should be successively executed using the

go command. Do not execute it by single-stepping and make sure that no break occurs in or around the part.

CHAPTER 16: DEBUGGER

296 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.8.9 Operation of Flash Memory
The db33 supports flash memory on the target board and the ICE33 flash memory for free-run.

Operation of the flash memory on the target board
 The db33 comes provided with the utility and commands that write/erase the flash memory in the E0C33

chip or on the target board. They can be used in ICE (note), ICD and debug monitor mode.

Table 16.8.9.1 Flash memory operation commands
Command

fls
fle

Function
Seting flash memory
Erasing flash memory

Note: To use the commands with the ICE33, the ICE firmware must be Ver. 2.0 or higher.
 Since the ICE33 is shipped with the firmware Ver. 1.x, update the ICE firmware using the program

located in the "cc33\utility\ice33v20\" directory. For the update procedure, refer to the "readme.txt"
of the updater.

 Data should be written to the flash memory by the procedure shown below.
 The examples in this section are extracted from "cc33\sample\dmt33004\led2.cmd".
 For more information, refer to the "readme.txt" for the flash support utility fls33. ("fls33" and "readme.txt"

can be installed using "cc33\utility\fls33\fls33vXX.exe".)

 (1) Loading the flash routine
 Load the flash routine (erase and write routines) into a memory such as the internal RAM using the lf

command.
 Example:
� �������\���	�
������ ���

 Actual erasing/writing will be done by this routine.
 The flash routine provided by Seiko Epson uses 0x40 to 0x7ff (2KB) of the internal RAM.

Note: Use the flash routine provided by Seiko Epson or create an original routine.
 The Seiko Epson routines mainly support AMD type flash memories and can be installed by

executing "cc33\utility\fls33\fls33.exe". The source and required files are included, so the routine
can be modified if necessary.

 (2) Setting the flash condition
 Set the flash memory start and end addresses, and the entry addresses of the erase and write routines loaded

in Step (1) into the db33.
 Example:
� ���� �������������������

� �� ��������������

� ������� �����������������������������������

� ������� ����������������������������������

� � �!"#$��!$� ���������������������%��������

� � �!"# &�'� ���������������������%��������

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 297
C COMPILER PACKAGE MANUAL (ver.3)

 (3) Erasing the flash memory
 Erase all or the specified sector range of the flash memory.
 The contents of the flash memory change to 0xff.
 Example:
� ���� ��������	����
������

� ������� �������
���	���	������	�������������

� ��� ��	�������	�����
���������	����������
����

� ��� ��	����������
���������
��	�������	�����
�������������������	�����	�������	����

 First set the flash memory control register address. Normally it is the flash memory start address.
 Then, specify the sector range to be erased. When the start and end numbers are specified as 0 and 0, the

flash memory will be all erased. If 1 and 3 are specified, only sectors 1 to 3 will be erased. The number of
sectors and sector size are different according to the device.

 Be sure to execute the fle command after the fls command. To maintain the contents of the flash memory,
specify -1 and 0 as the sector range. The process except for erasing will be performed.

 (4) Writing to the flash memory
 The lf or lh command is used to write data to the flash memory.
 Example:
� ���������	�� � �������������������������

 Data for the start and end addresses set by the fls command in Step (1) is sent to the write routine to perform

flash writing. Other data is written similar to writing to RAM. An error will result if a time-out occurs during
writing or the flash memory has not been erased (not 0xff).

 The ew and eh commands can be used for writing as well as the lf and lh commands. For the flash memory

with 8-bit data width, the eb command can also be used.

CHAPTER 16: DEBUGGER

298 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Operation of the ICE33 flash memory for free-run
 The ICE33 in-circuit emulator contains flash memory. This memory is designed to allow data to be

transferred to and from the ICE33 internal ROM emulation memory by a command.
 The flash memory retains data even when the ICE33 is turned off. By writing the program, data, option data

and map information under debug into the flash memory before turning off the power, you can call it up and
continue debugging next time. Also, even when operating the ICE33 in free-run mode (in which a program is
executed using only the ICE33), you may need to write the program into the flash memory.

 The following operations can be performed on the flash memory:

 (1) Read from flash memory
 Data is loaded from the flash memory into the internal ROM emulation memory.

 (2) Write to flash memory
 Data in the internal ROM emulation memory is saved to the flash memory. Also, the contents of the

parameter file can be written to the flash memory as necessary. After writing to the flash memory in this way,
you can protect it against read and write.

 (3) Erasing flash memory
 All contents of the flash memory are erased.

 (4) Displaying flash memory map information
 The flash memory map, chip name, version of the parameter file used and other information are displayed.

 The flash memory can only be altered in ICE mode.

Table 16.8.9.2 Commands to operate on flash memory
Command

lfl
sfl
efl

maf

Function
Reading from flash memory
Writing to flash memory
Erasing flash memory
Displaying flash memory map information

∗ Free-run of ICE33
 When operating the ICE33 in free-run mode (with the program executed using only the ICE33), the ICE33

uses the data written in the flash memory. Therefore, before the ICE33 can be used in free-run mode, the
entire program, data, and option data must be written into the flash memory. However, data not in the
internal ROM cannot be saved.

 To operate the ICE33 in free-run mode, set the ICE/RUN switch to the RUN position and turn on the power.
During free-run, map breaks caused by operation in the program and data areas set by a parameter file are
effective. When a map break occurs, the PC LED on the ICE33 stops and the EMU LED turns off. All other
break settings are invalid because they cannot be written into the flash memory.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 299
C COMPILER PACKAGE MANUAL (ver.3)

16.8.10 Other Functions
In addition to the primary functions described hitherto, the db33 supports several other useful functions as listed
below. For details, refer to sections where each command is explained.

Map display function (ma command)
 Displays map information, chip name, and parameter file version.

Type conversion function (ct command)
 Returns input numeric values or character strings after converting them into different formats.

Reverse conversion into an extended instruction (ext command)
 Specifying the address of an immediate-extended instruction with the ext instruction converts the instruction

into an extended instruction format of the instruction extender including the extended immediate data and
displays the results.

CHAPTER 16: DEBUGGER

300 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.8.11 Big-Endian Support
The tools from the C compiler to the linker and the libraries support only the little-endian format. Be aware that
the C compiler cannot create srf files that can be loaded to big-endian areas. However, data can be processed in
big-endian format with the debugger.

To specify big-endian area
 The map information in the parameter file is used to set endian information to the debugger. To set the area

format to big-endian, describe letter "B" after the <end address>. However, the E0C33 chip to be developed
must be a model that supports big-endian format. Furthermore, the internal memory (ROM, RAM and I/O)
cannot be set to big-endian. In addition to specify this parameter file at invocation of the db33, the endian
control register in the E0C33 chip must be set correctly (refer to the "Technical Manual").

 In simulator mode, the endian format is determined by the parameter file only.
 Refer to Section 16.10 for details of the parameter file.

Operations of debugging commands

 (1) db, dh, dw, fb, fh, fw, mv, mvh, mvw, eb, eh, ew commands
 These commands read/write data in byte, half word and word units according to the data type, so data is

processed and displayed with the endian format of the area to be accessed.

 (2) sy, sa, sw (@) commands
 These commands read data in byte units regardless of the data type, and then configures the read data

according to the specified data type. Data is displayed after swapped if the endian format and data type need
it. Therefore, data is not displayed correctly if the endian settings of the BCU and the parameter file are
different.

 (3) lh, lf commands
 These commands swap data according to the endian format and write in half word units. Therefore, a

program created by the C compiler cannot be loaded to a big-endian area properly.

 (4) sfl, lfl commands
 The sfl command does not save the endian information. The lfl command makes the map information by

adding the endian information in the parameter file to the information read from the ICE33. Therefore, the
parameter file used when data was saved by the sfl command must be specified when invoking the debugger.

 (5) Watched data
 Data in the watched address set by the w command is handled in word units, so it is displayed according to

the endian format of the area.

Difference in simulator mode
 In simulator mode, the address including the TTBR register can be set to big-endian. In this case, the trap

table base address should be set as follows:
 The contents to be written to 0x48134 in little-endian must be written to 0x48137.
 The contents to be written to 0x48135 in little-endian must be written to 0x48136.
 The contents to be written to 0x48136 in little-endian must be written to 0x48135.
 The contents to be written to 0x48137 in little-endian must be written to 0x48134.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 301
C COMPILER PACKAGE MANUAL (ver.3)

16.9 Command Reference

16.9.1 Command List

Table 16.9.1.1 Command list

Classification

Memory operation

Register operation

Program
execution

CPU reset

Interrupt
Break

Program display

Symbol
information

Load file

Flash memory
operation

Trace

Simulated I/O

Others

Command

fb
fh
fw
db
dh
dw
df
eb
eh
ew
mv
mvh
mvw
w
rm
rd
rs
g
s
n
rstc
rsth
int
bp
bs
bc
bh
bhc
bh2
bhc2
bd
bsq
ba
bb
bl
bac
u
sc
m
ss
sy
sa
sd
sw
lf
lh
ld
fls
fle
lfl
sfl
efl
maf
tm
td
ts
tf
stdin
stdout
com
cmw
log
od
ct
ext
ma
md
q
?

Function

Fills memory area (byte units).
Fills memory area (half word units).
Fills memory area (word units).
Dumps memory data (byte units).
Dumps memory data (half word units).
Dumps memory data (word units).
Dumps memory data to file.
Enters memory data (byte units).
Enters memory data (half word units).
Enters memory data (word units).
Copies memory area (byte units).
Copies memory area (half word units).
Copies memory area (word units).
Sets watch data address.
Reads target memory data.
Displays register contents.
Modifies register contents.
Executes program successively.
Executes program step.
Executes program step with skip.
Cold-resets CPU.
Hot-resets CPU.
Produces interrupt (simulator mode only).
Sets/cancels software PC breakpoint.
Sets software PC breakpoint.
Cancels software PC breakpoint.
Sets hardware PC breakpoint 1.
Cancels hardware PC breakpoint 1.
Sets hardware PC breakpoint 2.
Cancels hardware PC breakpoint 2.
Sets data break condition.
Sets sequential break condition.
Sets area break condition.
Sets bus break condition.
Displays all break conditions.
Clears all break conditions.
Sets disassemble display mode.
Sets source display mode.
Sets mixed display mode.
Searches character string.
Lists symbol information.
Registers symbol to [Symbol] window.
Deletes symbol from [Symbol] window.
Displays symbol information.
Loads srf33 format file.
Loads Motorola S3 format file.
Loads debug information.
Sets up target flash memory.
Erases target flash memory.
Reads from ICE33 flash memory.
Writes to ICE33 flash memory.
Erases ICE33 flash memory.
Displays ICE33 flash memory map.
Sets trace mode.
Displays trace information.
Searches trace information.
Saves trace information.
Simulates data input.
Simulates data output.
Executes command file.
Executes command file with interval.
Turns log output on or off.
Dumps option data.
Converts/display data.
Converts into extended instruction format.
Displays map information.
Sets debugger mode.
Terminates debugger.
Displays command usage.

Mode support
ICD
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

–
�

�

�

�

�

�

�

�

–
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

–
–
–
–
�

�

�

�

�

�

�

�

�

–
�

�

�

�

�

�

P No.

302
303
304
305
307
309
311
312
313
314
315
316
317
318
319
320
321
322
324
326
327
328
329
330
334
335
336
337
338
339
340
342
345
347
350
351
352
354
356
358
359
364
367
368
371
373
374
375
376
377
378
379
380
381
387
391
393
394
395
396
397
398
399
400
402
404
405
407
408

ICE
�

�

�

�

�

�

�

�

�

�

�

�∗1
�∗1

�

–
�

�

�

�

�

�

�

–
�

�

�

�

�

�

�

�

�

–
–
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

SYM
�

�

�

�

�

�

�

�

�

�

�

�

�

�

–
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

–
–
–
�

�

�

�

�

�

�

�

�

�

�

�

�

–
–
–
–
–
–
�

–
–
–
�

�

�

�

�

–
�

�

�

�

�

�

MON
�

�

�

�

�

�

�

�

�

�

�

�

�

�

–
�

�

�

�

�

�

�

–
�

�

�

�

�

�

�

�

–
–
–
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

–
–
–
–
–
–
–
–
�

�

�

�

�

–
�

�

�

�

�

�

Mode support: � =Can be used (same function/display in all modes) � = Supported by ICE firmware Ver. 2.0 or higher
� = Can be used (function/display differ depending on the mode) – = Cannot be used � =Only MEM33 is used
∗1: Data is copied in byte units if the ICE firmware version is lower than 2.0.

CHAPTER 16: DEBUGGER

302 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.9.2 Commands to Operate Memory

fb (fill byte) [ICD / ICE / SIM / MON]

� Function
This command rewrites the entire contents of a specified memory area with the specified byte data.

� Formats
(1) fb (guidance mode)
(2) fb <address1> <address2> <data> (direct input mode)
 <address1>: Start address of specified range (hexadecimal or symbol)
 <address2>: End address of specified range (hexadecimal or symbol)
 <data>: Write data (hexadecimal)
 Conditions: 0x0 ≤ address1 ≤ address2 ≤ 0xfffffff, 0x0 ≤ data ≤ 0xff

� Input examples

Format 1) ���↵�
 �������		�
�������������↵ ...Start address is input. (symbol can be used)
 ��	����		�
�������������↵ ...End address is input. (symbol can be used)
 ����������
�������↵ ...Write data is input.
� ��

� ∗ Command execution can be canceled by entering the [Enter] key only.

Format 2) ���������������������↵�
� �

In both of these examples, the entire memory area from 0x0 to 0xf is rewritten with data 0x1.
 ���		�� �
� ���

Using symbols)
 ����!���!��!���!���

When rewriting the codes generated from an assembly source, line numbers can be used for specifying
the addresses.

� Notes
• The addresses specified here must be within the range of 0 to 0xfffffff. An error results if this limit is exceeded.

In Format 1, a guidance is displayed prompting you to input an address again. In Format 2, the command input
is canceled.

 Error: Address range (0-0xFFFFFFF).

• An error results if the start address is larger than the end address.
 Error: address1 > address2

• This command does not issuer an error even if the address range specified for write includes an unused area.

All valid locations except the unused area are rewritten with the specified data.

• Data must be input within a range of 8 bits (0 to 0xff). An error results if this limit is exceeded. In Format 1, a

guidance is displayed prompting you to input data again. In Format 2, command input is canceled.
 Error: Data range (0-0xFF).

• The fb command does not update the display contents of the [Memory] and [Source] windows. To update the

display contents, redisplay the window with the display command or scroll the window in the vertical direction.
 The source displayed in the [Source] window remain unchanged even if the program area is rewritten.

• If a large memory area is rewritten at one time in ICE mode, a time-out error may occur, because such

operation takes a long time.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 303
C COMPILER PACKAGE MANUAL (ver.3)

fh (fill half) [ICD / ICE / SIM / MON]

� Function
This command rewrites the entire contents of a specified memory area with the specified half word data.
The memory area is rewritten in the endian format specified with the parameter file (default: little endian).

� Formats
(1) fh (guidance mode)
(2) fh <address1> <address2> <data> (direct input mode)
 <address1>: Start address of specified range (hexadecimal or symbol)
 <address2>: End address of specified range (hexadecimal or symbol)
 <data>: Write data (hexadecimal)
 Conditions: 0x0 ≤ address1 ≤ address2 ≤ 0xffffffe (half word boundary), 0x0 ≤ data ≤ 0xffff

� Input examples

Format 1) ���↵�
� �������		�
�������������↵� ...Start address is input. (symbol can be used)�
� ��	����		�
������������
↵� ...End address is input. (symbol can be used)�
� ����������
�������↵� ...Write data is input.�
� ��

� ∗ Command execution can be canceled by entering the [Enter] key only.

Format 2) ������������������
��↵�
� �

In both of these examples, the entire memory area from 0x0 to 0xf (0xe+1) is rewritten with data
0x0001 (when the area is set to little endian).

 ���		�� �
� ���

Using symbols)
 ����!���!��!���!���

When rewriting the codes generated from an assembly source, line numbers can be used for specifying
the addresses.

� Notes
• Since data is rewritten in units of 16 bits, specify half word boundary addresses (even addresses) for the area

start and end addresses. If odd addresses are specified, a warning is generated and the LSBs of the specified
addresses are rewritten to 0 as the area is set.

 Warning: Round down to multiple of 2.

• The addresses specified here must be within the range of 0 to 0xfffffff. An error results if this limit is exceeded.

In Format 1, a guidance is displayed prompting you to input an address again. In Format 2, the command input
is canceled.

 Error: Address range (0-0xFFFFFFF).

• An error results if the start address is larger than the end address.
 Error: address1 > address2

• This command does not issuer an error even if the address range specified for write includes an unused area.

All valid locations except the unused area are rewritten with the specified data.

• Data must be input within a range of 16 bits (0 to 0xffff). An error results if this limit is exceeded. In Format 1,

a guidance is displayed prompting you to input data again. In Format 2, command input is canceled.
 Error: Data range (0-0xFFFF).

• The fh command does not update the display contents of the [Memory] and [Source] windows. To update the

display contents, redisplay the window with the display command or scroll the window in the vertical direction.
 The source displayed in the [Source] window remain unchanged even if the program area is rewritten.

• If a large memory area is rewritten at one time in ICE mode, a time-out error may occur, because such

operation takes a long time.

CHAPTER 16: DEBUGGER

304 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

fw (fill word) [ICD / ICE / SIM / MON]

� Function
This command rewrites the entire contents of a specified memory area with the specified word data.
The memory area is rewritten in the endian format specified with the parameter file (default: little endian).

� Formats
(1) fw (guidance mode)
(2) fw <address1> <address2> <data> (direct input mode)
 <address1>: Start address of specified range (hexadecimal or symbol)
 <address2>: End address of specified range (hexadecimal or symbol)
 <data>: Write data (hexadecimal)
 Conditions: 0x0 ≤ address1 ≤ address2 ≤ 0xffffffc (word boundary), 0x0 ≤ data ≤ 0xffffffff

� Input examples

Format 1) ���↵�
� �������		�
�������������↵� ...Start address is input. (symbol can be used)�
� ��	����		�
�������������↵� ...End address is input. (symbol can be used)�
� ����������
�������↵� ...Write data is input.�
� ��

� ∗ Command execution can be canceled by entering the [Enter] key only.

Format 2) ���������������������↵�
� �

In both of these examples, the entire memory area from 0x0 to 0xf (0xc+3) is rewritten with data
0x0001 (when the area is set to little endian).

 ���		��� ��������!�
� ���

Using symbols)
� ����"���"��"���"����

When rewriting the codes generated from an assembly source, line numbers can be used for specifying
the addresses.

� Notes
• Since data is rewritten in units of 32 bits, specify word boundary addresses for the area start and end addresses.

If invalid addresses are specified, a warning is generated and the two least significant bits of the specified
addresses are rewritten to 0 as the area is set.

 Warning: Round down to multiple of 4.

• The addresses specified here must be within the range of 0 to 0xfffffff. An error results if this limit is exceeded.

In Format 1, a guidance is displayed prompting you to input an address again. In Format 2, the command input
is canceled.

 Error: Address range (0-0xFFFFFFF).

• An error results if the start address is larger than the end address.
 Error: address1 > address2

• This command does not issuer an error even if the address range specified for write includes an unused area.

All valid locations except the unused area are rewritten with the specified data.

• Data must be input within a range of 32 bits (0 to 0xffffffff). An error results if this limit is exceeded. In

Format 1, a guidance is displayed prompting you to input data again. In Format 2, command input is canceled.
 Error: Data range (0-0xFFFFFFFF).

• The fw command does not update the display contents of the [Memory] and [Source] windows. To update the

display contents, redisplay the window with the display command or scroll the window in the vertical direction.
 The source displayed in the [Source] window remain unchanged even if the program area is rewritten.

• If a large memory area is rewritten at one time in ICE mode, a time-out error may occur, because such

operation takes a long time.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 305
C COMPILER PACKAGE MANUAL (ver.3)

db (dump byte) [ICD / ICE / SIM / MON]

� Function
This command displays the contents of the memory in a 16 bytes/line hexadecimal dump format.

� Formats
(1) db (direct input mode)
(2) db <address1> (direct input mode)
(3) db <address1> <address2> (direct input mode)
 <address1>: Start address to display (hexadecimal or symbol)
 <address2>: End address to display (hexadecimal or symbol)
 Condition: 0x0 ≤ address1 ≤ address2 ≤ 0xfffffff

� Display

 (1) When [Memory] window is open

In Format 1, the [Memory] window is
redisplayed beginning with address 0x0.
In Formats 2 and 3, the [Memory] window is
redisplayed in such a way that <address1> is
displayed at the uppermost line.

 Even when <address1> specifies somewhere in 16 addresses/line, data is displayed beginning with the top of

that line. For example, even though you may have specified address 0x8 for <address1>, data is displayed
beginning with address 0x0 as shown in the diagram. However, if an address near the uppermost part of the
memory, such as 0xfffff0, is specified for <address1>, the last line displayed in the window in this case is
0xffffff0, that is, the specified address is not at the top of the window.

 Since the [Memory] window can be scrolled to show the entire memory, specification of <address2> in
Format 3 does not have any specific effect. In both Formats 2 and 3, the display you get is entirely the same.

 (2) When [Memory] window is closed
 Data is displayed in the [Command] window.
 In Format 1, the db33 displays data for 16 lines (default) from address 0x0 before it stands by, waiting for a

command input.
���↵�
�������������	��
���������������������������������������

��

������	���

�����������������������������������

��

��

 In Format 2, the db33 displays data for 16 lines (default) from <address1> before it stands by, waiting for

command input. If the line at address 0xffffff0 is displayed, the db33 waits for command input regardless of
whether it has displayed all 16 lines.

 If some midway address of a line is specified, columns preceding that address are left blank.
���������↵�
�������������	��
���������������������������������������

��

���������������������
������������	�������������������	���

�����������������������������������

��

��

 "**" indicates that the address is not mapped.

CHAPTER 16: DEBUGGER

306 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 In Format 3, the db33 displays data from <address1> to <address2> before it waits for command input. Even
when you specify a display range of more than 16 lines (default), display is halted at the 16th line (same as in
Format 2).
��������↵�
�����	���
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��

��

��

��

 (3) Number of lines displayed in the [Command] window
 The number of lines displayed in the [Command] window by the db command every time it is executed is set

to 16 by default. This default setting can be changed to any value within a range of 1 to 1,000 [lines] by the
md command.

 (4) Logging
 To save the command execution results to a log file, close the [Memory] window and display the results in

the [Command] window. If the [Memory] window is opened, the display contents will not be saved in the file
because the [Command] window does not display the results.

 (5) Successive display
 Once you execute the db command, data can be displayed successively with the [Enter] key only until some

other command is executed.
 When you hit the [Enter] key, the [Memory] window is scrolled one full screen.
 When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the

previously displayed address.
���↵�
�����	���
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��

��

��

�����������������������������������

��

�↵�
�����	���
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��

��

��

�����������������������������������

��

�↵�

 (6) Using symbols
� ����������↵�

� Notes
• Both the start and end addresses specified here must be within the range of 0 to 0xfffffff. An error results if this

limit is exceeded.
 Error: Address range (0-0xFFFFFFF).

• An error results if the start address is larger than the end address.
 Error: address1 > address2

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 307
C COMPILER PACKAGE MANUAL (ver.3)

dh (dump half) [ICD / ICE / SIM / MON]

� Function
This command displays the contents of the memory in a 8 half words/line hexadecimal dump format.
Data is displayed in the endian format specified with the parameter file (default: little endian).

� Formats
(1) dh (direct input mode)
(2) dh <address1> (direct input mode)
(3) dh <address1> <address2> (direct input mode)
 <address1>: Start address to display (hexadecimal or symbol)
 <address2>: End address to display (hexadecimal or symbol)
 Condition: 0x0 ≤ address1 ≤ address2 ≤ 0xfffffff

� Display

 (1) When [Memory] window is open

In Format 1, the [Memory] window is
redisplayed beginning with address 0x0.
In Formats 2 and 3, the [Memory] window is
redisplayed in such a way that <address1> is
displayed at the uppermost line.

 Even when <address1> specifies somewhere in 16 addresses/line, data is displayed beginning with the top of

that line. For example, even though you may have specified address 0x8 for <address1>, data is displayed
beginning with address 0x0 as shown in the diagram. However, if an address near the uppermost part of the
memory, such as 0xfffff0, is specified for <address1>, the last line displayed in the window in this case is
0xffffff0, that is, the specified address is not at the top of the window.

 Since the [Memory] window can be scrolled to show the entire memory, specification of <address2> in
Format 3 does not have any specific effect. In both Formats 2 and 3, the display you get is entirely the same.

 (2) When [Memory] window is closed
 Data is displayed in the [Command] window.
 In Format 1, the db33 displays data for 16 lines (default) from address 0x0 before it stands by, waiting for a

command input.
���↵�
����������������	����
�������������������������
������������������
������������������
�����������������������������������
�����������������
��

 In Format 2, the db33 displays data for 16 lines (default) from <address1> before it stands by, waiting for

command input. If the line at address 0xffffff0 is displayed, the db33 waits for command input regardless of
whether it has displayed all 16 lines.

 If some midway address of a line is specified, columns preceding that address are left blank.
���������↵�
����������������	����
�������������������������
��
������������
��������	���������������������������
�����������������������������������
��
��

 "****" indicates that the address is not mapped.

CHAPTER 16: DEBUGGER

308 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 In Format 3, the db33 displays data from <address1> to <address2> before it waits for command input. Even
when you specify a display range of more than 16 lines (default), display is halted at the 16th line (same as in
Format 2).
��������↵�
�����	����
����
����
���
����
����
����
����
��

��

��

��

 (3) Number of lines displayed in the [Command] window
 The number of lines displayed in the [Command] window by the dh command every time it is executed is set

to 16 by default. This default setting can be changed to any value within a range of 1 to 1,000 [lines] by the
md command.

 (4) Logging
 To save the command execution results to a log file, close the [Memory] window and display the results in

the [Command] window. If the [Memory] window is opened, the display contents will not be saved in the file
because the [Command] window does not display the results.

 (5) Successive display
 Once you execute the dh command, data can be displayed successively with the [Enter] key only until some

other command is executed.
 When you hit the [Enter] key, the [Memory] window is scrolled one full screen.
 When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the

previously displayed address.
���↵�
�����	����
����
����
���
����
����
����
����
��

��

��

�����������������������������������

���

�↵�
�����	����
����
����
���
����
����
����
����
��

��

��

�����������������������������������

���

�↵�

 (6) Using symbols
� ����������↵�

� Notes
• If any address is specified that is not aligned to half word boundaries, the LSB of the specified address is set to

0 as the display range is set.

• Both the start and end addresses specified here must be within the range of 0 to 0xfffffff. An error results if this

limit is exceeded.
 Error: Address range (0-0xFFFFFFF).

• An error results if the start address is larger than the end address.
 Error: address1 > address2

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 309
C COMPILER PACKAGE MANUAL (ver.3)

dw (dump word) [ICD / ICE / SIM / MON]

� Function
This command displays the contents of the memory in a 4 words/line hexadecimal dump format.
Data is displayed in the endian format specified with the parameter file (default: little endian).

� Formats
(1) dw (direct input mode)
(2) dw <address1> (direct input mode)
(3) dw <address1> <address2> (direct input mode)
 <address1>: Start address to display (hexadecimal or symbol)
 <address2>: End address to display (hexadecimal or symbol)
 Condition: 0x0 ≤ address1 ≤ address2 ≤ 0xfffffff

� Display

 (1) When [Memory] window is open

In Format 1, the [Memory] window is
redisplayed beginning with address 0x0.
In Formats 2 and 3, the [Memory] window is
redisplayed in such a way that <address1> is
displayed at the uppermost line.

 Even when <address1> specifies somewhere in 16 addresses/line, data is displayed beginning with the top

of that line. For example, even though you may have specified address 0x8 for <address1>, data is displayed
beginning with address 0x0 as shown in the diagram. However, if an address near the uppermost part of the
memory, such as 0xfffff0, is specified for <address1>, the last line displayed in the window in this case is
0xffffff0, that is, the specified address is not at the top of the window.

 Since the [Memory] window can be scrolled to show the entire memory, specification of <address2> in
Format 3 does not have any specific effect. In both Formats 2 and 3, the display you get is entirely the same.

 (2) When [Memory] window is closed
 Data is displayed in the [Command] window.
 In Format 1, the db33 displays data for 16 lines (default) from address 0x0 before it stands by, waiting for a

command input.
���↵�
����������������������
�������������������
��������������
��������������
�����������������������������������
��������������
��

 In Format 2, the db33 displays data for 16 lines (default) from <address1> before it stands by, waiting for

command input. If the line at address 0xffffff0 is displayed, the db33 waits for command input regardless of
whether it has displayed all 16 lines.

 If some midway address of a line is specified, columns preceding that address are left blank.
���������↵�
����������������������
�������������������
��
����������������
�������	��������������������
�����������������������������������
��
��

 "********" indicates that the address is not mapped.

CHAPTER 16: DEBUGGER

310 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 In Format 3, the db33 displays data from <address1> to <address2> before it waits for command input. Even
when you specify a display range of more than 16 lines (default), display is halted at the 16th line (same as in
Format 2).
��������↵�
�����	������
��������
�������
��������
��

��

��

��

 (3) Number of lines displayed in the [Command] window
 The number of lines displayed in the [Command] window by the dw command every time it is executed is set

to 16 by default. This default setting can be changed to any value within a range of 1 to 1,000 [lines] by the
md command.

 (4) Logging
 To save the command execution results to a log file, close the [Memory] window and display the results in

the [Command] window. If the [Memory] window is opened, the display contents will not be saved in the file
because the [Command] window does not display the results.

 (5) Successive display
 Once you execute the dw command, data can be displayed successively with the [Enter] key only until some

other command is executed.
 When you hit the [Enter] key, the [Memory] window is scrolled one full screen.
 When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the

previously displayed address.
���↵�
�����	������
��������
�������
��������
��

��

��

�����������������������������������

��

�↵�
�����	������
��������
�������
��������
��

��

��

�����������������������������������

��

�↵�

 (6) Using symbols
� ����������↵�

� Notes
• If any address is specified that is not aligned to word boundaries, the two least significant bits of the specified

address are set to 0 as the display range is set.

• Both the start and end addresses specified here must be within the range of 0 to 0xfffffff. An error results if this

limit is exceeded.
 Error: Address range (0-0xFFFFFFF).

• An error results if the start address is larger than the end address.
 Error: address1 > address2

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 311
C COMPILER PACKAGE MANUAL (ver.3)

df (dump file) [ICD / ICE / SIM / MON]

� Function
This command outputs the contents of the memory in a 16 byte/line hexadecimal dump format as a text or binary
file.

� Formats
 df (guidance mode)

� Input examples
Following the guidance prompt, enter the address range to be written to a file, file format and the file name.

 ���↵�
� �����������������������↵ ... Start address is input.�
� �����������������������↵� ... End address is input.�
� ������� ��!�"#������	"$�%�&�"""'�	↵� ... File format is selected.�
� �������(��'�����"�%�↵�� � ... File name is input.�
�)�*+�����,���������-����������������"�
�)�*+�����,���������-����������������"�
�)�*+�����,���������-����������������"�
�)�*+�����,���������-����������������"�
� ��

 The specified file is created as follows (in case of text format):

����������������	�����
��.�����������/����#�����0�������
����������������	�����
��.�����������/�
��
	�
��

�
.�
���
����������������	�����
��.�����������/�
��
	�
��

�
.�
���
������	���������	�����
��.�����������/�
��
	�
��

�
.�
���
�����������������������������������

� Notes
• Both the start and end addresses specified here must be within the range of 0 to 0xfffffff. An error results if this

limit is exceeded.
 Error: Address range (0-0xFFFFFFF).

• An error results if the start address is larger than the end address.
 Error: address1 > address2

CHAPTER 16: DEBUGGER

312 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

eb (enter byte) [ICD / ICE / SIM / MON]

� Function
This command rewrites the contents of the memory with the entered byte data (hexadecimal).
Data can be written to continuous memory locations beginning with a specified address, according to guidance
mode.

� Formats
(1) eb (guidance mode)
(2) eb <address> (guidance mode)
 <address>: Start address from which to write data (hexadecimal or symbol)
 Conditions: 0x0 ≤ address ≤ 0xfffffff, 0x0 ≤ data ≤ 0xff

� Input examples
Addresses and current data are displayed as guidance.

Format 1) ���↵�
� ������	

��������↵ ...Start address is input.�
� ��������������↵� � ...Data is input in hexadecimal.�
� �������������↵� � ...Command is terminated.�
� ��

Format 2) �����↵�
� ��������������↵�
� �������������↵� � ...Returned to the previous address.�
� ������������↵� � ...Input is skipped.�
� �������������↵�
� ��

In both of these examples, the content of address 0x0 is rewritten with data 0x00.
 ��	

��
� ���

Using symbols)
 ������ !�↵

� Notes
• The start address specified here must be within the range of 0 to 0xfffffff. An error results if this limit is

exceeded. In Format 1, guidance is displayed to prompt you to input an address again. In Format 2, your
command input is canceled.

 Error: Address range (0-0xFFFFFFF).

• For unused addresses in the memory map, data is marked by "**" as displayed on the screen. Although it is

possible to specify an unused address or display guidance, entering data in this case results in an error. If you
encounter any address marked by "**", hit the [Enter] key to skip that address or terminate the command.

 Error: No map area.

• Data must be input by using a hexadecimal number in the range of 8 bits (0 to 0xff). An error results if this

limit is exceeded. Guidance is displayed to prompt you to input data at the same address again.
 Error: Data range (0-0xFF).

• During guidance-assisted input, the addresses are not changed even when you perform an operation to move to

an address ahead of address 0 or an operation that results in exceeding address 0xfffffff.

• The eb command does not update the display contents of the [Memory] and [Source] windows. To update the

display contents, redisplay the window with the display command or scroll the window in the vertical direction.
 The source displayed in the [Source] window remain unchanged even if the program area is rewritten.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 313
C COMPILER PACKAGE MANUAL (ver.3)

eh (enter half) [ICD / ICE / SIM / MON]

� Function
This command rewrites the contents of the memory with the entered half word data (hexadecimal).
Data can be written to continuous memory locations beginning with a specified address, according to guidance
mode. The memory is rewritten in the endian format specified with the parameter file (default: little endian).

� Formats
(1) eh (guidance mode)
(2) eh <address> (guidance mode)
 <address>: Start address from which to write data (hexadecimal or symbol)
 Conditions: 0x0 ≤ address ≤ 0xffffffe (half word boundary), 0x0 ≤ data ≤ 0xffff

� Input examples
Addresses and current data are displayed as guidance.

Format 1) ���↵�
� ������	

��������↵� ...Start address is input.�
� ������������������↵� ...Data is input in hexadecimal.�
� ���������������↵� � ...Command is terminated.�
� ��

Format 2) �����↵�
� ������������������↵�
� ���������������↵� � ...Returned to the previous address.�
� ��������������↵� � ...Input is skipped.�
� ���������������↵�
� ��

In both of these examples, the content of address 0x0 (to 0x1) is rewritten with data 0x1234 (in case of
little endian format).

 ��	

��
� ���

Using symbols)
 ���� �!�↵

� Notes
• Since data is rewritten in units of 16 bits, specify a half word boundary address (even address) for the start

address. If odd address is specified, a warning is generated and the LSB of the specified address is rewritten to
0.

 Warning: Round down to multiple of 2.

• The start address specified here must be within the range of 0 to 0xfffffff. An error results if this limit is

exceeded. In Format 1, guidance is displayed to prompt you to input an address again. In Format 2, your
command input is canceled.

 Error: Address range (0-0xFFFFFFF).

• For unused addresses in the memory map, data is marked by "****" as displayed on the screen. Although it is

possible to specify an unused address or display guidance, entering data in this case results in an error. If you
encounter any address marked by "****", hit the [Enter] key to skip that address or terminate the command.

 Error: No map area.

• Data must be input by using a hexadecimal number in the range of 16 bits (0 to 0xffff). An error results if this

limit is exceeded. Guidance is displayed to prompt you to input data at the same address again.
 Error: Data range (0-0xFFFF).

• During guidance-assisted input, the addresses are not changed even when you perform an operation to move to

an address ahead of address 0 or an operation that results in exceeding address 0xfffffff.

• The eh command does not update the display contents of the [Memory] and [Source] windows. To update the

display contents, redisplay the window with the display command or scroll the window in the vertical direction.
 The source displayed in the [Source] window remain unchanged even if the program area is rewritten.

CHAPTER 16: DEBUGGER

314 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

ew (enter word) [ICD / ICE / SIM / MON]

� Function
This command rewrites the contents of the memory with the entered word data (hexadecimal).
Data can be written to continuous memory locations beginning with a specified address, according to guidance
mode. The memory is rewritten in the endian format specified with the parameter file (default: little endian).

� Formats

(1) ew (guidance mode)
(2) ew <address> (guidance mode)
 <address>: Start address from which to write data (hexadecimal or symbol)
 Conditions: 0x0 ≤ address ≤ 0xffffffc (word boundary), 0x0 ≤ data ≤ 0xffffffff

� Input examples
Addresses and current data are displayed as guidance.

Format 1) ���↵�
� ������	

��������↵� � ...Start address is input.�
� ��������������������������↵� ...Data is input in hexadecimal.�
� �������������������↵� � ...Command is terminated.�
� ��
Format 2) �����↵�
� ��������������������������↵�
� �������������������↵� � ...Returned to the previous address.�
� ������������������↵� � ...Input is skipped.�
� �������������������↵�
� ��

In both of these examples, the content of address 0x0 (to 0x3) is rewritten with data 0x12345678 (in
case of little endian format).

 ��	

��
� ���

Using symbols)
 ���� ↵

� Notes
• Since data is rewritten in units of 32 bits, specify a word boundary address for the start addresses. If an invalid

address is specified, a warning is generated and the two least significant bits of the specified address is
rewritten to 0.

 Warning: Round down to multiple of 4.

• The start address specified here must be within the range of 0 to 0xfffffff. An error results if this limit is

exceeded. In Format 1, guidance is displayed to prompt you to input an address again. In Format 2, your
command input is canceled.

 Error: Address range (0-0xFFFFFFF).

• For unused addresses in the memory map, data is marked by "********" as displayed on the screen. Although

it is possible to specify an unused address or display guidance, entering data in this case results in an error. If
you encounter any address marked by "********", hit the [Enter] key to skip that address or terminate the
command.

 Error: No map area.

• Data must be input by using a hexadecimal number in the range of 16 bits (0 to 0xffffffff). An error results if

this limit is exceeded. Guidance is displayed to prompt you to input data at the same address again.
 Error: Data range (0-0xFFFFFFFF).

• During guidance-assisted input, the addresses are not changed even when you perform an operation to move to

an address ahead of address 0 or an operation that results in exceeding address 0xfffffff.

• The ew command does not update the display contents of the [Memory] and [Source] windows. To update the

display contents, redisplay the window with the display command or scroll the window in the vertical direction.
 The source displayed in the [Source] window remain unchanged even if the program area is rewritten.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 315
C COMPILER PACKAGE MANUAL (ver.3)

mv (move) [ICD / ICE / SIM / MON]

� Function
This command copies the contents of a specified memory area to another area in byte units.

� Formats
(1) mv (guidance mode)
(2) mv <address1> <address2> <address3> (direct input mode)
 <address1>: Start address of source area to be copied from (hexadecimal or symbol)
 <address2>: End address of source area to be copied from (hexadecimal or symbol)
 <address3>: Address of destination area to be copied to (hexadecimal or symbol)
 Conditions: 0x0 ≤ address1 ≤ address2 ≤ 0xfffffff, 0x0 ≤ address3 ≤ 0xfffffff

� Input examples

Format 1) ���↵�
� �������		�
��������↵� ...Start address of the source area is input.�
� ��	����		�
��������↵� ...End address of the source area is input.�
� �
�����������		�
��������↵�...Destination address is input.�
� ��

 ∗ Command execution can be canceled by entering the [Enter] key only.

Format 2) ������������↵�
� ��

In both of these examples, the contents of the memory area from address 0x0 to 0xff are copied to
locations following 0x300.

Using symbols)
 ������������������������↵

� Notes
• The addresses specified here must be within the range of 0 to 0xfffffff. An error results if this limit is exceeded.

In Format 1, guidance is displayed prompting you to input an address again. In Format 2, the command input is
canceled.

 Error: Address range (0-0xFFFFFFF).

• An error results if the start address of the source area to be copied from is larger than its end address.
 Error: address1 > address2

• If an unmapped area is included in the specified range of source addresses, the data in that area is assumed to be

0xf0 as data is copied from the source to the destination.

• If an unmapped area is included in the specified range of destination addresses, data is copied to only the

effective locations, not including the unmapped area.

• If the destination address is smaller than the start address of the source area, data is first copied sequentially

from the start address. Conversely, if the destination address is larger than the start address of the source area,
data is first copied sequentially from the end address. Consequently, data is copied normally even when the
destination address is set within the source area to be copied from.

• If the end address of the destination area exceeds 0xfffffff, the move operation is terminated when data is

copied up to that address location.

• The mv command does not update the display contents of the [Memory] and [Source] windows. To update the

display contents, redisplay the window with the display command or scroll the window in the vertical direction.
 The source displayed in the [Source] window remain unchanged even if the program area is rewritten.

• If a large memory area is copied all at once in ICE mode, a time-out error may occur due to the size of the

operation.

CHAPTER 16: DEBUGGER

316 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

mvh (move half) [ICD / (ICE) / SIM / MON]

� Function
This command copies the contents of a specified memory area to another area in half word units. Data is copied
after converting into the set endian format if it is different between the source area and destination area.

� Formats
(1) mvh (guidance mode)
(2) mvh <address1> <address2> <address3> (direct input mode)
 <address1>: Start address of source area to be copied from (hexadecimal or symbol)
 <address2>: End address of source area to be copied from (hexadecimal or symbol)
 <address3>: Address of destination area to be copied to (hexadecimal or symbol)
 Conditions: 0x0 ≤ address1 ≤ address2 ≤ 0xfffffff, 0x0 ≤ address3 ≤ 0xfffffff

� Input examples

Format 1) ����↵�
� ���	���

	���������↵� ...Start address of the source area is input.�
� ��
����

	���������↵� ...End address of the source area is input.�
� �������������

	���������↵�...Destination address is input.�
� ��

 ∗ Command execution can be canceled by entering the [Enter] key only.

Format 2) �������������↵�
� ��

In both of these examples, the contents of the memory area from address 0x0 to 0xff are copied to
locations following 0x300.

Using symbols)
 �������������������������↵

� Notes
• If any address is specified that is not aligned to half word boundaries, the LSB of the specified address is

corrected to 0.

• The addresses specified here must be within the range of 0 to 0xfffffff. An error results if this limit is exceeded.

In Format 1, guidance is displayed prompting you to input an address again. In Format 2, the command input is
canceled.

 Error: Address range (0-0xFFFFFFF).

• An error results if the start address of the source area to be copied from is larger than its end address.
 Error: address1 > address2

• If an unmapped area is included in the specified range of source addresses, the data in that area is assumed to be

0xf0 as data is copied from the source to the destination.

• If an unmapped area is included in the specified range of destination addresses, data is copied to only the

effective locations, not including the unmapped area.

• If the destination address is smaller than the start address of the source area, data is first copied sequentially

from the start address. Conversely, if the destination address is larger than the start address of the source area,
data is first copied sequentially from the end address. Consequently, data is copied normally even when the
destination address is set within the source area to be copied from.

• If the end address of the destination area exceeds 0xfffffff, the move operation is terminated when data is

copied up to that address location.

• The mvh command does not update the display contents of the [Memory] and [Source] windows. To update the

display contents, redisplay the window with the display command or scroll the window in the vertical direction.
 The source displayed in the [Source] window remain unchanged even if the program area is rewritten.

• If a large memory area is copied all at once in ICE mode, a time-out error may occur due to the size of the

operation.

• When using this command in ICE mode, the ICE firmware must be Ver. 2.0 or higher.

If the version is less than 2.0, data will be copied in byte units.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 317
C COMPILER PACKAGE MANUAL (ver.3)

mvw (move word) [ICD / (ICE) / SIM / MON]

� Function
This command copies the contents of a specified memory area to another area in word units. Data is copied after
converting into the set endian format if it is different between the source area and destination area.

� Formats
(1) mvw (guidance mode)
(2) mvw <address1> <address2> <address3> (direct input mode)
 <address1>: Start address of source area to be copied from (hexadecimal or symbol)
 <address2>: End address of source area to be copied from (hexadecimal or symbol)
 <address3>: Address of destination area to be copied to (hexadecimal or symbol)
 Conditions: 0x0 ≤ address1 ≤ address2 ≤ 0xfffffff, 0x0 ≤ address3 ≤ 0xfffffff

� Input examples

Format 1) ����↵�
� ���	���

	���������↵� ...Start address of the source area is input.�
� ��
����

	���������↵� ...End address of the source area is input.�
� �������������

	���������↵�...Destination address is input.�
� ��

 ∗ Command execution can be canceled by entering the [Enter] key only.

Format 2) �������������↵�
� ��

In both of these examples, the contents of the memory area from address 0x0 to 0xff are copied to
locations following 0x300.

Using symbols)
 �������������������������↵

� Notes
• If any address is specified that is not aligned to word boundaries, the low-order 2 bits of the specified address

are corrected to 0.

• The addresses specified here must be within the range of 0 to 0xfffffff. An error results if this limit is exceeded.

In Format 1, guidance is displayed prompting you to input an address again. In Format 2, the command input is
canceled.

 Error: Address range (0-0xFFFFFFF).

• An error results if the start address of the source area to be copied from is larger than its end address.
 Error: address1 > address2

• If an unmapped area is included in the specified range of source addresses, the data in that area is assumed to be

0xf0 as data is copied from the source to the destination.

• If an unmapped area is included in the specified range of destination addresses, data is copied to only the

effective locations, not including the unmapped area.

• If the destination address is smaller than the start address of the source area, data is first copied sequentially

from the start address. Conversely, if the destination address is larger than the start address of the source area,
data is first copied sequentially from the end address. Consequently, data is copied normally even when the
destination address is set within the source area to be copied from.

• If the end address of the destination area exceeds 0xfffffff, the move operation is terminated when data is

copied up to that address location.

• The mvw command does not update the display contents of the [Memory] and [Source] windows. To update

the display contents, redisplay the window with the display command or scroll the window in the vertical
direction.

 The source displayed in the [Source] window remain unchanged even if the program area is rewritten.

• If a large memory area is copied all at once in ICE mode, a time-out error may occur due to the size of the

operation.

• When using this command in ICE mode, the ICE firmware must be Ver. 2.0 or higher.

If the version is less than 2.0, data will be copied in byte units.

CHAPTER 16: DEBUGGER

318 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

w (watch) [ICD / ICE / SIM / MON]

� Function
This command registers four memory locations as the watch data addresses. Memory contents equivalent to 4
bytes at each watch address are displayed in the [Register] window.

� Format
 w (guidance mode)

� Input example
As guidance, the watch data addresses currently set at four locations are displayed sequentially beginning with the
lowest address. Skip the watch address that you do not want to be modified by entering the [Enter] key only. Enter
a new address for the watch address that you want to be modified. You can also use the [^] key (returns to the
previous address) and the [q] key (quit).

� ��↵�
� �������	�

������������������	

↵ ...Watch address is input.�
� ���������

������������������	
↵�
� ���������

��������������������↵ ...Variable i is specified.�
� ��������

�������������������↵ ...Not changed.�
� ��

� Notes
• When the db33 starts up, four locations at addresses 0, 4, 8, and 0xc are initially set as the watch data

addresses.

• The addresses specified here must be within the range of 0 to 0xfffffff. An error results if this limit is exceeded.

Guidance is displayed prompting you to input an address again.
 Error: Address range (0-0xFFFFFFF).

• The watch data addresses are set in units of 4 bytes. A warning results if you specify an address that is outside

the word boundary, with your specified address rounded down to a multiple of 4 (lower 2 bits are 0).
 Warning: Round down to multiple of 4.

• Be aware that a value is displayed as the watch data even if an address that is not mapped is registered. The

value in this case is 0xf0 in simulator mode and indeterminate in ICE mode.

• The watch data is displayed in the endian format specified by the parameter file.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 319
C COMPILER PACKAGE MANUAL (ver.3)

rm (read memory) [ICD]

� Function
This command reads the program on the target board to the debugger. The read data is used for trace analysis to
reflect the change. This command should be used after the program on the target memory is modified using a
memory operation command or another method.

� Formats
(1) rm (guidance mode)
(2) rm <address1> <address2> (direct input mode)
 <address1>: Start address of the area to be read (hexadecimal or symbol)
 <address2>: End address of the area to be read (hexadecimal or symbol)
 Condition: 0x0 ≤ address1 ≤ address2 ≤ 0xfffffff

� Input examples

Format 1) ���↵�
� ����������	

�����↵� ...Start address is input.�
� ����������	

�������	↵� ...End address is input.�
� ��

� ∗ Command execution can be canceled by entering the [Enter] key only.

Format 2) �������	↵�
� �

In both of these examples, the contents of the target memory from 0x0 to 0x7fe is read in the debugger.

Using symbols)
 �����������������↵

� Notes
• Both the start and end addresses specified here must be within the range of 0 to 0xfffffff. An error results if this

limit is exceeded.
 Error: Address range (0-0xFFFFFFF).

• An error results if the start address is larger than the end address.
 Error: address1 > address2

CHAPTER 16: DEBUGGER

320 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.9.3 Commands to Operate on Register

rd (register display) [ICD / ICE / SIM / MON]

� Function
This command displays the contents of the registers, execution counter, and watch data.

� Format
 rd

� Display

 (1) Contents of display
 The following lists the contents displayed by this command.

PC: Program counter
R0–R15: General-purpose register
SP: Stack pointer
PSR: Processor status register
AHR: Arithmetic operation high register
ALR: Arithmetic operation low register
IL: Interrupt level
MO: MAC overflow flag
DS: Dividend sign flag
IE: Interrupt enable flag
C: Carry flag
V: Overflow flag
Z: Zero flag
N: Negative flag
s, us: Execution time (effective only in ICE/ICD mode)
cycle/inst: Execution cycle/instruction count
[xxxxxxxx]: Watch data at four locations

 ∗ Watch data is always displayed even if it resides in an unused area, so be careful.

 (2) When the [Register] window is open
 When the [Register] window is open, all of the above contents are displayed in the [Register] window

according to the program execution. When you use the rd command, the display of the [Register] window is
updated.

 (3) When [Register] window is closed
 Data is displayed in the [Command] window in the same format as the [Register] window.

 (4) Logging
 To save the command execution results to a log file, close the [Register] window and display the results in

the [Command] window. If the [Register] window is opened, the display contents will not be saved in the file
because the [Command] window does not display the results.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 321
C COMPILER PACKAGE MANUAL (ver.3)

rs (register set) [ICD /ICE / SIM / MON]

� Function
This command modifies the register values.

� Formats
(1) rs (guidance mode)
(2) rs <name> <data> (direct input mode)
 <name>: Register name or flag name
 <data>: Data to be set (hexadecimal)

� Input examples

Format 1) The name of each register and its current value are displayed as guidance. Skip the register that you do

not want to be modified by hitting the [Enter] key only. Input a new value using a hexadecimal number
for the register that you do want to be modified. You also can use the [^] key (returns to the previous
address) and the [q] key (quit).
���↵�
��������	���
�↵�
�������↵�
�������↵�
�������↵�
���������

���
���↵�
�������↵�
��������������↵�
��������������↵�
��������������↵�
��������������↵�
��������������↵�
��������������↵�
��������������↵�
��������������↵�
�����	�����↵�
������↵�
������↵�
��

 After you execute the command, the [Register] window is updated to show the contents you have
input.

 If you used the [q] key to stop entering in the middle, the contents input up to that time are updated.

Format 2) ��������↵�� ...R0 register is modified.�
� �������↵�� ...C flag is set.

� Notes
• An error results if you input a value exceeding the effective bit size of the register/flag. In Format 1, a guidance

is displayed prompting you to input data again. In Format 2, command input is canceled.
 Error: Invalid value.

• The set value of the PC is forcibly rounded down to 16-bit boundaries (LSB = 0). Even when an odd address is

specified, no error is assumed.

• The set value of the SP is forcibly rounded down to 32-bit boundaries (low-order 2 bits = 0).

CHAPTER 16: DEBUGGER

322 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.9.4 Commands to Execute Program

g (go) [ICD / ICE / SIM / MON]

� Function
This command executes the target program from the current PC address.

� Formats
(1) g (direct input mode)
(2) g <address> (direct input mode)
 <address>: Temporary break address (hexadecimal, symbol or source line number)
 Condition: 0x0 ≤ address ≤ 0xffffffe

� Operation

 (1) Operation of format 1
� �"↵�

 ∗ The same function as this command input can be performed by selecting the [Go] command on the [Run]

menu or the [Go] button on the tool bar.

 [Go] button

 The target program is executed from the address indicated by the PC. Program execution is continued until it

is made to break for one of the following causes:
 • The set break condition is met
 • The [Key break] button is clicked (not supported in debug monitor mode)
 • A map break, etc., occurs

 (2) Operation of format 2
 In Format 2, a temporary break address can be specified. The break addresses set here remain effective until

some other command is executed.
 �"������↵
 �"�#	$�%&'��↵ ...Specification with a line number
 �"�()��↵ ...Specification with a symbol

 ∗ The same function as this command input can be performed by selecting the [Go to] command on the [Run]

menu or the [Go to] button on the tool bar. In this case, the temporary break address must be specified by
clicking on the desired address line in the [Source] window before the command can be executed. The
address on the line where the cursor is located during execution is the temporary break address.

 [Go to] button

 The target program is executed from the address indicated by the PC. Program execution is made to break by

one of the causes listed in (1) above or when an instruction at the specified temporary break address is
fetched (the break occurs before executing that instruction).

 (3) Entering the [Enter] key after break
 When program execution breaks, the db33 stands by waiting for a command input after displaying a break

status message (see Section 16.11.1).
 Example: ���	*��+���#,-�	�+����	*%�
�� � �

 When you hit the [Enter] key here, program execution is resumed from the PC address (break address).

Temporary break address settings are also valid.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 323
C COMPILER PACKAGE MANUAL (ver.3)

 (4) Window display by program execution

 <ICE mode>
 In the initial debugger settings, the on-the-fly function is turned on.
 During program execution, the PC, flag, and watch data contents in the [Register] window are updated in real

time every 1–0.1 seconds by the on-the-fly function. All other contents are left blank.
 If the [Register] window is closed, the above contents are displayed in the [Command] window. The

on-the-fly function can be turned off by the md command. In this case, all numeric values in the [Register]
window are left blank during program execution. The [Register] window is updated after a break.

 The [Source] window is updated after a break in such a way that the break address is displayed within the

window.

 If the [Trace] window is open, the display contents are cleared as the program is executed. To update this

display, use the td or the ts command after a break.

 If the [Memory] window is open, the display contents are cleared as the program is executed. It is updated

after a break.

 <Other modes>
 In other modes, the on-the-fly display above is disabled. For this reason, all numeric values in the [Register]

window are left blank during program execution. The [Register] window is updated after a break.

 The [Source] window is updated after a break in such a way that the break address is displayed within the

window.

 If the [Trace] window is open with the trace mode turned on, the trace results are successively displayed as

the program is executed. If the [Trace] window is closed, the trace results are displayed in the [Command]
window. No trace results are displayed if the trace mode is turned off or when the trace information is being
saved to a file.

 If the [Memory] window is open, the display contents are cleared as the program is executed. It is updated

after a break.

 (5) Saving on-the-fly information to log file
 To save the on-the-fly information to a file, close the [Register] window and display the information in the

[Command] window.

 (6) Execution counter
 The execution counter displayed in the [Register] window indicates the number of cycles/instructions

executed or the execution time (only in ICE/ICD mode) of the target program. (See Section 16.8.5 for
details.)

 In the initial debugger settings, the execution counter is set to an integration mode. If this mode is changed to
a reset mode by the md command, the execution counter is cleared to 0 each time the g command is executed.
The counter is also reset simultaneously when execution is restarted by hitting the [Enter] key.

� Notes
• The temporary break address must be specified within the range of the program memory area available for each

microcomputer model. An error results if this limit is exceeded.
 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• If for a temporary breakpoint you specify a source line that does not have a real code by a line number or in the

[Source] window, the temporary breakpoint is set at the address of the code that exists immediately after the
specified line.

• If the current PC is a boot address (0x80000 or 0xc00000), the CPU is cold reset immediately before the db33

starts executing the program.

CHAPTER 16: DEBUGGER

324 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

s (step) [ICD / ICE / SIM / MON]

� Function
This command single-steps the target program by executing one instruction at a time, beginning with the current
PC position.

� Formats
(1) s (direct input mode)
(2) s <step> (direct input mode)
 <step>: Number of steps to be executed (decimal)
 Condition: 0 ≤ step ≤ 65535

� Operation

 (1) Units of single-stepping operation
 In this single-stepping operation, the program is executed in units of addresses or source codes – i.e., one

address or source code at a time – depending on the [Source] window's display mode as shown below:
 Disassemble display mode: Address units
 Mixed display mode: Address units
 Source display mode: Source code units

 (2) Operation of Format 1
 ��↵

 ∗ The same function as this command input can be obtained by selecting the [Step] command on the [Run]

menu or the [Step] button on the tool bar.

 [Step] button

 The program at the address indicated by the PC executes one step.

 (3) Operation of Format 2
� ���	
↵�

 The program executes a specified number of steps from the address indicated by the PC.
 Program execution is terminated due to one of the break factors even before the specified number of steps is

completed.

 (4) Hitting the [Enter] key after the end of execution
 When program execution is completed by stepping through instructions, the db33 stands by waiting for

command input. If you hit the [Enter] key here, the db33 single-steps the program in the same way again.

 (5) Window display during single-stepping
 In the initial debugger settings, the display is updated every step as follows:
 When the [Source] window is open, the underline designating the next address to be executed moves every

step as the program is stepped through. The display contents of the [Register] window are also updated every
step. This default display mode (all steps display mode) can be switched over by the md command so that the
display contents are updated at only the last step in a specified number of steps (last step display mode).

 Unlike in successive executions (g command), the [Register] window is not blanked even if the execution is

not terminated immediately.

 If the [Memory] window is open, the display contents are updated every step.

 If the [Trace] window is open in ICE/ICD mode, the display contents are cleared as the program is executed.

To update this display, use the td or the ts command after the specified steps are executed.

 If the [Trace] window is open with the trace mode turned on in simulator mode, the trace results are

successively displayed as the program is executed. If the [Trace] window is closed, the trace results are
displayed in the [Command] window. No trace results are displayed if the trace mode is turned off or when
the trace information is being saved to a file.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 325
C COMPILER PACKAGE MANUAL (ver.3)

(6) HALT and SLEEP states and interrupts
 In the ICE33, interrupts are disabled during single-stepping.
 The halt and slp instructions are executed even during single-stepping, in which case the CPU is placed in a

standby mode. The CPU can be released from the standby mode by generating an external interrupt or by
pressing the [Key break] button.

 (7) Execution counter
 The execution counter displayed in the [Register] window indicates the number of cycles/instructions

executed or the execution time (only in ICE/ICD mode) of the target program. (See Section 16.8.5 for
details.)

 In the initial debugger settings, the execution counter is set to an integration mode. If this mode is changed to
a reset mode by the md command, the execution counter is cleared to 0 each time the s command is executed.
The counter is also reset simultaneously when execution is restarted by hitting the [Enter] key.

� Notes
• The number of steps in Format 2 must be specified within the range of 0 to 65535. An error results if this limit

is exceeded.
 Error: Step range (0-65535).

• If the current PC is a boot address (0x80000 or 0xc00000), the CPU is cold reset immediately before the db33

starts executing the program.

• When an infinity-loop such as "jp 0x0" is executed in source-level stepping, the step operation will not be

terminated. In this case, forcibly terminate the execution using the [Key break] button.

CHAPTER 16: DEBUGGER

326 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

n (next) [ICD / ICE / SIM / MON]

� Function
This command single-steps the target program by executing one instruction at a time beginning with the current
PC position.

� Formats
(1) n (direct input mode)
(2) n <step> (direct input mode)
 <step>: Number of steps executed (decimal)
 Condition: 0 ≤ step ≤ 65535

 ∗ The same function as the command input in Format 1 can be obtained by selecting the [Next] command on

the [Run] menu or the [Next] button on the tool bar.

 [Next] button

� Operation
This command basically operates in the same way as the s command.
However, the difference is that if a C source function call or assembly source subroutine call is encountered, each
called function or subroutine is executed as one step. For other functions, refer to its explanation of s command.

� Note
The number of steps in Format 2 must be specified within the range of 0 to 65535. An error results if this limit is
exceeded.
 Error: Step range (0-65535).

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 327
C COMPILER PACKAGE MANUAL (ver.3)

16.9.5 Commands to Reset CPU

rstc (cold reset CPU) [ICD / ICE / SIM / MON]

� Function
This command cold-resets the CPU.

� Format
 rstc (direct input mode)

 ∗ The same function as this command input can be obtained by selecting the [Reset cold] command on the

[Run] menu or the [Reset cold] button on the tool bar.

 [Reset cold] button

� Contents of reset
When the CPU is reset, the internal circuits are initialized as follows:

 (1) Internal registers of the CPU
 R0–R15: 0xaaaaaaaa
 PC: Boot address (address pointed by the content of 0x80000 or 0xc00000)
 SP: 0x0aaaaaa8
 PSR: 0x00000000
 AHR, ALR: 0xaaaaaaaa

 (2) The execution counter is reset to 0.

 (3) The [Source] and [Register] windows are redisplayed.
 Because the PC is set to the boot address, the [Source] window is redisplayed beginning with that address.
 The [Register] window is redisplayed with the internal registers initialized as described above.

The memory contents and the debugging status such as break and trace conditions are not modified.
Refer to the "Technical manual" of each model for the bus and I/O initial statuses when using in a mode other than
simulator mode.

� Note
The function of the rstc command changes according to the debugger mode.

ICE mode
The process above is executed and the E0C33 chip is also reset. The target board is not reset.

ICD mode
The process above is executed and the E0C33 chip is also reset. The target board is not reset.
Furthermore, when the target system is in a free-run state, the rstc command suspends the program execution
forcibly before resetting. The target system connected to the ICD33 enters a free-run state when the target board is
reset. The rstc command can be used to suspend the program execution in this case.

Debug monitor mode
The rstc command functions the same as the rsth command. It does not reset the E0C33 chip and does not initialize
the TTBR register.

Simulator mode
The boot address is determined by the MCU/MPU specification in the parameter file.

CHAPTER 16: DEBUGGER

328 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

rsth (hot reset CPU) [ICD / ICE / SIM / MON]

� Function
This command hot-resets the CPU.

� Format
 rsth (direct input mode)

 ∗ The same function as this command input can be obtained by selecting the [Reset hot] command on the

[Run] menu or the [Reset hot] button on the tool bar.

 [Reset hot] button

� Contents of reset
The registers and execution counter are initialized and the windows are redisplayed in the same way as for the rstc
command.
The PC value (boot address) is specified by the TTBR register.
The memory contents and the debugging status such as break and trace conditions are not modified.
When using in ICE mode, the bus and I/O statuses are maintained.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 329
C COMPILER PACKAGE MANUAL (ver.3)

16.9.6 Interrupt Command

int (interrupt) [SIM]

� Function
This command simulates the generation of interrupts.
When you specify an interrupt type with this command, your specified interrupt is generated the next time the
db33 starts executing the program.

� Formats
(1) int (direct input mode)
(2) int <type> <level> (direct input mode)
 <type>: Interrupt type (decimal)
 <level>: Interrupt level (decimal)
 Conditions: 0 ≤ type ≤ 215, 0 ≤ level ≤ 15

� Input examples

Format 1) ����↵
 When the parameters are omitted, the db33 will issuer a NMI.

Format 2) ��������↵
 In Format 2, a number and level of a maskable interrupt can be set.

� Notes
• The int command can only be used in simulator mode.

• The interrupt type must be specified within the range of 0 to 215. An error results if this limit is exceeded.
 Error: Interrupt type (0-215).

• The interrupt level must be specified within the range of 0 to 15. An error results if this limit is exceeded.
 Error: Interrupt level (0-15).

• TTBR is effective even in simulator mode.

CHAPTER 16: DEBUGGER

330 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.9.7 Commands to Set Breaks

bp (break point set) [ICD / ICE / SIM / MON]

� Function
This command sets and clears software PC breakpoints and displays the breakpoints set. When the PC matches the
set address as the program is executed, the program breaks before executing the instruction at that address. Up to
16 addresses can be set as the breakpoints. Each breakpoint can be enabled and disabled as necessary.

� Formats
(1) bp (guidance mode)
(2) bp <No.> <status> [<address>] (direct input mode)
 <No.>: Breakpoint No. (decimal)
 <status>: Status to be set (1=set, 2=enable, 3=disable, 4=clear)
 <address>: Break address (hexadecimal, symbol or line number; can be set when <status>=1)
 Conditions: 0 ≤ No. ≤ 15, 0x0 ≤ address ≤ 0xfffffff (16-bit boundary address)

� Input examples

 (1) Displaying the breakpoints that have been set
 Format 1 displays the contents of current settings.

���↵�
�����������	
������������������������������
�������������������
������������
�������������������������������
�������������������
������������
�������������������������������
�������������������
�	����������
�������������������������������
�������������������
������������
�������������������������������
�������������������
������������
��������������������	����������
�������������������
������������
�������������������������������
�������������������
������������
�������������������������������
�������������������
����������↵�� ...Terminated by [Enter] key.�
��

 The contents of 16 breakpoints set are displayed.
 "********" indicates the breakpoints that have not been set yet.
 The mark "/D" added at a break address denotes Disabled; the mark "/E" denotes Enabled.
 A break occurs at the address marked by "/E".

 The breakpoints whose addresses are set and which are enabled (/E) are prefixed by "!" when displayed in the

[Source] window. However, if in the source display mode a breakpoint is set somewhere other than the
beginning address of the source, it is marked with "?" instead of "!".

 (2) Setting new break addresses

 Format 1) First display the current settings as (1) above, then enter setting items as follows:

����������	↵�� � � � ...Input a breakpoint No. to be set.�
���� �������!�����"���!���	�#!���������↵� ...Choose "1. set".�
$��%�""�������������↵� � � ...Input the break address in hexadecimal.�
��

 Break addresses can be specified using line numbers or symbols.

�����������↵��
���� �������!�����"���!���	�#!���������↵�
$��%�""������������#&�	↵� � � ...Break address is input with line number.�
��

 To quit in the middle of guidance, input only the [Enter] key and nothing else.

 Format 2) Input a command as follows:
 ����	��������↵� ...Breakpoint No. 4 is set at address 0x80030.
 ������������#&�	↵ ...Breakpoint No. 5 is set at line number 24 of main.c.

 An already set breakpoint number can be specified. In this case, the breakpoint is changed to a newly input

address. All set breakpoints are enabled (/E).

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 331
C COMPILER PACKAGE MANUAL (ver.3)

 A break address that is set for some other breakpoint number cannot be specified. If duplicate break
addresses are specified, an error results.

 When the above example is executed, the breakpoint list is modified as shown below:

���↵�
�����������	
������������������������������
�������������������
������������
�������������������������������
�������������������
������������
�������������������������������
�������������������
�	����������
�������������������������������
�������������������
������������
���������	��������������������
�������������������
������������
��������������������	����������
�������������������
������������
�������������������������������
�������������������
������������
�������������������������������
�������������������
����� �!���

 (3) Re-enabling a disabled breakpoint
 No break occurs at breakpoints whose addresses are marked with /D (No. 3 in the above example). To

re-enable such a disabled break, execute one of the commands shown below:

 Format 1) After displaying the current settings, input the following command:

����� �!���� ...Input a breakpoint No. to be re-enabled.�
����"�������#�����$���#���	��#� ����!��� ...Choose "2. enable".�
��

 An error results if you specify a breakpoint number that has no address set.
 To quit in the middle of guidance, input only the [Enter] key and nothing else.

 Format 2) Input the following command:
 �������↵� � ...Enables breakpoint No. 3.

����
�����������	
������������������������������
�������������������
������������
�������������������������������
�������������������
������������
�������������������������������
�������������������
�	����������
�������������������������������
�������������������
������������
���������	��������������������
�������������������
������������
��������������������	����������
�������������������
������������
�������������������������������
�������������������
������������
�������������������������������
�������������������
����� �!�� ...Breakpoint No. 3 is marked with /E, indicating that it has been enabled.�

 (4) Disabling a valid breakpoint
 A break occurs at breakpoints whose addresses are marked with /E. To disable one of these breakpoints while

leaving its set address intact, execute a command as shown below:

 Format 1) After displaying the current settings, input the following command:

����� �!���� ...Input the breakpoint number to be disabled.�
����"�������#�����$���#���	��#� ����!��� ...Choose "3. disable".�
��

 An error results if you specify a breakpoint number that has no address set.
 To quit in the middle of guidance, input only the [Enter] key and nothing else.

 Format 2) Input the following command:
 �������↵� � ...Disables breakpoint No. 2.

����
�����������	
������������������������������
�������������������
������������
�������������������������������
�������������������
������������
�������������������������������
�������������������
�	����������
�������������������������������
�������������������
������������
���������	��������������������
�������������������
������������
��������������������	����������
�������������������
������������
�������������������������������
�������������������
������������
�������������������������������
�������������������
����� �!�� ...Breakpoint No. 2 is marked with /D, indicating that it has been disabled.�

CHAPTER 16: DEBUGGER

332 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 (5) Clearing a breakpoint

 Format 1) After displaying the current settings, input the following command:

���������	
� ...Input a breakpoint number to be cleared.�
��������������������������
������������
� ...Choose "4. clear".�
��

 An error results if you specify a breakpoint number that has no address set.
 To quit in the middle of guidance, input only the [Enter] key and nothing else.

 Format 2) Input the following command:
 ����
�
↵� � ...Clears breakpoint No. 4.

����

���	�������
�����������������������	����������������������������

���	������������������������������	����������������������������

���	������� �����������������������	����������������������������

�
�	�������������������������������	����������������������������

�!�	�����������������"�
�����������	����������������������������

�#�	�����������������������������
�	����������������������������

�$�	�����������������������������!�	����������������������������

���	�����������������������������#�	����������������������������

���������	 ...Breakpoint No. 4 has had its setting cleared.�

� Setting breakpoints from menu
Choose the [Soft PC...] command from the [Break] menu. The following dialog box will appear.

Registering break addresses
Enter an address in the [Break at] text box using a
hexadecimal number, symbol or source line number, then
press [Enter] or click the [Set] button. The entered address is
registered to the break point list in ascending order from
No.1.

Clearing the break point
Select the address to be cleared from the [Break list] box, then
click the [clear] button.

Enabling/disabling the break point
To disable a break point, select the address from the list, then
click the [Disable] button. The "/E" symbol changes to "/D"
indicating that the break point is disabled. The [Enable]
button switches the disabled break point (/D) to be enabled.
(/E).

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 333
C COMPILER PACKAGE MANUAL (ver.3)

� Notes
• Valid breakpoint No. are 1 to 16. Specifying a number greater than 16 results in an error.
 Error: Invalid value.

• Addresses can only be input if you choose "1. set". An error results if you input an address in the direct input

mode (Format 2) and the selected item is not "1. set".
 Error: Invalid value.

• Since PC addresses constitute break conditions, breakpoints must always be set at 16-bit boundary addresses. If

an odd address is specified, the LSB of the specified address is forcibly set to 0.

• If a source line that does not have real code is specified by a line number or in a window, a warning is issued.

In this case, the breakpoint is set at the address of the code that exists immediately after the specified line.
 Warning: Invalid line, move to next valid line.

• The addresses must be specified within the range of the memory area available for each microcomputer model.

An error results if this limit is exceeded. In Format 1, guidance is displayed prompting you to input an address
again. In Format 2, the command input is canceled.

 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• An error results if you set an address that has already been set.
 Error: Already exist input address.

• An error results if you attempt to enable/disable or cancel a break address that has not been set. In Format 1,

guidance is displayed prompting you to input an address again.
 Error: Invalid break number.

 In Format 2, the error message is not displayed but the command input is canceled.

• Software PC breaks are implemented by embedding the BRK instruction. Therefore, software PC breaks cannot

be used for the ROM on the target board where instructions cannot be embedded. In this case, use a hardware
PC break.

• When setting a software PC break point to extended instructions with ext or delayed branch instructions, only

the first address can be specified.
 ext xxxx ... Can be set. jr*.d xxxx ... Can be set.
 ext xxxx ... Cannot be set. Delayed instruction ... Cannot be set.
 Extended instruction ... Cannot be set.

CHAPTER 16: DEBUGGER

334 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

bs (break software) [ICD / ICE / SIM / MON]

� Function
This command sets a software PC break address at a breakpoint number that has not yet been set.

� Formats

(1) bs (guidance mode)
(2) bs <address> (direct input mode)
 <address>: Break address (hexadecimal, symbol or line number)
 Condition: 0x0 ≤ address ≤ 0xfffffff (16-bit boundary address)

� Input examples

Format 1) ���↵�
� ����	��

������������↵� � ...Specify an address in hexadecimal form.�
� ����

� ����	��

�����������������↵�� ...Specify an address by a line number.�
� ��

Format 2) ��������↵� � � ...Specify an address in hexadecimal form.�
� �������������↵� � � ...Specify an address by a line number.�
� ��

 The specified addresses are assigned to breakpoints that has not yet been set sequentially beginning with the

smallest breakpoint number. The breakpoints set in this way are enabled (marked /E).

� Setting by using the tool bar button
Software PC breakpoints can be set by using the [Soft PC break] button of the [Source] window in the same way
as with the bs command explained above.

 [Soft PC break] button

Click on an address line that you want set (by moving the cursor) in the [Source] window, then press the [Soft PC
break] button. The selected line will be prefixed by "!" or "?" indicating that a breakpoint (enabled) is set there.

� Notes
• The above operation results in an error if 16 breakpoints have already been set.
 Error: Cannot set address any more.

• Since PC addresses constitute break conditions, breakpoints must always be set at 16-bit boundary addresses. If

an odd address is specified, the LSB of the specified address is forcibly handled as 0.

• If a source line that does not have real code is specified by a line number or in a window, a warning is issued

(when the [Soft PC break] button is used, warning message is not displayed). In this case, the breakpoint is set
at the address of the code that exists immediately after the specified line.

 Warning: Invalid line, move to next valid line.

• The addresses must be specified within the range of the memory area available for each microcomputer model.

An error results if this limit is exceeded. In Format 1, guidance is displayed prompting you to input an address
again. In Format 2, the command input is canceled.

 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• An error results if you set an address that has already been set.
 Error: Already exist input address.

• Software PC breaks are implemented by embedding the BRK instruction. Therefore, software PC breaks cannot

be used for the ROM on the target board where instructions cannot be embedded. In this case, use a hardware
PC break.

• When setting a software PC break point to extended instructions with ext or delayed branch instructions, only

the first address can be specified.
 ext xxxx ... Can be set. jr*.d xxxx ... Can be set.
 ext xxxx ... Cannot be set. Delayed instruction ... Cannot be set.
 Extended instruction ... Cannot be set.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 335
C COMPILER PACKAGE MANUAL (ver.3)

bc (break clear) [ICD / ICE / SIM / MON]

� Function
This command cancels the software PC breakpoints set by using the bp command, bs command, the [Soft PC...]
command on the [Break] menu, or the [Soft PC break] button.

� Format
 bc <address> (direct input mode)
 <address>: Break address (hexadecimal, symbol or line number)
 Condition: Only the addresses set as breakpoints can be specified for <address>.

� Input examples
 ���������↵ ...Specify an address in hexadecimal form.
 ����	
������↵ ...Specify an address by a line number.
 �

� Clearing by using the tool bar button
Software PC breakpoints can be cleared by using the [Soft PC break] button of the [Source] window in the same
way as explained above.

 [Soft PC break] button

Click on an address line that has had a breakpoint set (one that is prefixed by "!" or "?") in the [Source] window,
then press the [Soft PC break] button. The selected break address will be cleared.

� Notes
• Breakpoints can be cleared by using the bp command or the [Soft PC] command on the [Break] menu. (Refer to

the bp command.)

• If an odd address is specified, its LSB is forcibly handled as 0.

• If a source line that does not have real code is specified by a line number or in the [Source] window, a warning

is issued (when the [Soft PC break] button is used, warning message is not displayed). In this case, the
breakpoint that exists immediately after the specified line is cleared.

 Warning: Invalid line, move to next valid line.

• An error results if you specify a break address that has not been set.
 Error: Invalid break number.

CHAPTER 16: DEBUGGER

336 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

bh (break hardware) [ICD / ICE / SIM / MON]

� Function
This command sets hardware PC breakpoint 1 and displays the breakpoint set.

� Formats
(1) bh ...Display (direct input mode)
(2) bh <address> ...Setting (direct input mode)
 <address>: Break address (hexadecimal, symbol or line number)
 Condition: 0x0 ≤ address ≤ 0xfffffff (16-bit boundary address)

� Input examples

Format 1) ���↵�
� �

���������������↵� � ...If no breakpoint is set�

 ���↵�
� �

���������������������↵� � ...If a breakpoint is set by a line number�

Format 2) ��������↵� � � ...Specify an address in hexadecimal form.�

� �������������↵� � � ...Specify an address by a line number.�

 This breakpoint can only be set at one address location. The last address specified is valid.
 If the [Source] window is open, the address which has had a hardware PC breakpoint set is marked with "!"

immediately after it. If in the source display mode a breakpoint is set somewhere other than the beginning
address of the source, the address is marked with "?" instead of "!".

� Setting from the menu

This dialog box appears on the screen when you select the [Hard PC...]
command from the [Break] menu. This dialog box is used for both
hardware PC breaks 1 and 2 set by the bh and bh2 commands.
To set a hardware PC breakpoint, enter the desired address in the text box
using a hexadecimal number, symbol or source line number, then press
[Enter] or click the [Set] button.

� Setting by using the tool bar button
A hardware PC breakpoint can be set using the [Hard PC break] button of the [Source] window in the same way as
with the bh command explained above.

 [Hard PC break] button

Click on an address line that you want set (by moving the cursor) in the [Source] window, then press the [Hard PC
break] button. The selected line is set as a hardware PC break point.

� Notes
• The addresses must be specified within the range of the memory area available for each microcomputer model.

An error results if this limit is exceeded. In Format 1, guidance is displayed prompting you to input an address
again. In Format 2, the command input is canceled.

 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• When setting a hardware PC break point to extended instructions with ext or delayed branch instructions, only

the first address can be specified.
 ext xxxx ... Can be set. jr*.d xxxx ... Can be set.
 ext xxxx ... Cannot be set. Delayed instruction ... Cannot be set.
 Extended instruction ... Cannot be set.

• The hardware PC break function is disabled when the area trace function is set in ICD mode. However, the set

address is maintained and it will be enabled when the area trace function is cancelled.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 337
C COMPILER PACKAGE MANUAL (ver.3)

bhc (break hardware clear) [ICD / ICE / SIM / MON]

� Function
This command cancels the hardware PC breakpoint 1 set using the bh command or the [Hard PC...] command on
the [Break] menu.

� Format
 bhc (direct input mode)

� Input example
 ����↵ ...Cancels the hardware PC breakpoint 1 set.
 �

� Clearing from the menu
When you choose the [Hard PC...] command from the [Break] menu, a dialog box appears (see the bh command).
To clear the set hardware PC breakpoint 1, select break address 01 and then click the [Clear] button.

� Clearing by using the tool bar button
Hardware PC breakpoints can be cleared using the [Hard PC break] button of the [Source] window in the same
way as explained above.

 [Hard PC break] button

Click on an address line that has had a breakpoint set (indicated by "!" or "?"after the address) in the [Source]
window, then press the [Hard PC break] button. The selected break address will be cleared.

CHAPTER 16: DEBUGGER

338 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

bh2 (break hardware 2) [ICD / (ICE) / SIM / MON]

� Function
This command sets hardware PC breakpoint 2 and displays the breakpoint set.

� Formats
(1) bh2 ...Display (direct input mode)
(2) bh2 <address> ...Setting (direct input mode)
 <address>: Break address (hexadecimal, symbol or line number)
 Condition: 0x0 ≤ address ≤ 0xfffffff (16-bit boundary address)

� Input examples

Format 1) ����↵�
� ����	

�����������↵� � ...If no breakpoint is set�

 ����↵�
� ����	

�����������������↵� � ...If a breakpoint is set by a line number�

Format 2) ���������↵� � � ...Specify an address in hexadecimal form.�

� ��������������↵� � � ...Specify an address by a line number.�

 This breakpoint can only be set at one address location. The last address specified is valid.
 If the [Source] window is open, the address which has had a hardware PC breakpoint set is marked with "!"

immediately after it. If in the source display mode a breakpoint is set somewhere other than the beginning
address of the source, the address is marked with "?" instead of "!".

� Setting from the menu

This dialog box appears on the screen when you select the [Hard PC...]
command from the [Break] menu. This dialog box is used for both
hardware PC breaks 1 and 2 set by the bh and bh2 commands.
To set a hardware PC breakpoint, enter the desired address in the text box
using a hexadecimal number, symbol or source line number, then press
[Enter] or click the [Set] button.

� Setting by using the tool bar button
A hardware PC breakpoint can be set using the [Hard PC break] button of the [Source] window in the same way as
with the bh2 command explained above.

 [Hard PC break] button

Click on an address line that you want set (by moving the cursor) in the [Source] window, then press the [Hard PC
break] button. The selected line is set as a hardware PC break point.

� Notes
• The addresses must be specified within the range of the memory area available for each microcomputer model.

An error results if this limit is exceeded. In Format 1, guidance is displayed prompting you to input an address
again. In Format 2, the command input is canceled.

 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• When setting a hardware PC break point to extended instructions with ext or delayed branch instructions, only

the first address can be specified.
 ext xxxx ... Can be set. jr*.d xxxx ... Can be set.
 ext xxxx ... Cannot be set. Delayed instruction ... Cannot be set.
 Extended instruction ... Cannot be set.

• The hardware PC break function is disabled when the area trace function is set in ICD mode. However, the set

address is maintained and it will be enabled when the area trace function is cancelled.

• When using this command in ICE mode, the ICE firmware must be Ver. 2.0 or higher.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 339
C COMPILER PACKAGE MANUAL (ver.3)

bhc2 (break hardware 2 clear) [ICD / (ICE) / SIM / MON]

� Function
This command cancels the hardware PC breakpoint 2 set using the bh2 command or the [Hard PC...] command on
the [Break] menu.

� Format
 bhc2 (direct input mode)

� Input example
 �����↵ ...Cancels the hardware PC breakpoint 2 set.
 �

� Clearing from the menu
When you choose the [Hard PC...] command from the [Break] menu, a dialog box appears (see the bh2 command).
To clear the set hardware PC breakpoint 2, select break address 02 and then click the [Clear] button.

� Clearing by using the tool bar button
Hardware PC breakpoints can be cleared using the [Hard PC break] button of the [Source] window in the same
way as explained above.

 [Hard PC break] button

Click on an address line that has had a breakpoint set (indicated by "!" or "?"after the address) in the [Source]
window, then press the [Hard PC break] button. The selected break address will be cleared.

� Notes
When using this command in ICE mode, the ICE firmware must be Ver. 2.0 or higher.

CHAPTER 16: DEBUGGER

340 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

bd (data break) [ICD / ICE / SIM / MON]

� Function
This command sets and clears data break conditions and displays the conditions set.
This command allows you to specify the following break conditions:
1. Memory address to be accessed (one location)
2. Memory read/write (three conditions: read, write, or read or write)

The program breaks after completing a memory access that satisfies the above conditions.

� Formats
(1) bd (guidance mode)
(2) bd <mode> <address> {r | w | *} (direct input mode)
 <mode>: Set/clear specification (1=set, 2=clear)
 <address>: address (hexadecimal or symbol)
 r, w, *: Access condition (enter either one)
 r: Read
 w: Write
 *: Read or write
 Condition: 0x0 ≤ address ≤ 0xfffffff

� Input examples

 (1) Displaying data break conditions
 Format 1 displays the contents of current settings.

���↵�
����	

��������������
�������������
��
	�������	������ �↵�� ...Terminated by [Enter] key.�
��

 Shown above is an example in which data break conditions have not been set yet.

 (2) Setting data break conditions

 Format 1) After displaying the current settings as described in (1), input the following command:

��
	�������	������ ��↵� ...Choose "1. set".�
����	

����������↵� � ...Input an address in hexadecimal form.�
����!�"�"�#����↵� � ...Input access conditions (* for R/W).�
��

 Addresses can be specified using a symbol.

��
	�������	������ ��↵�
����	

��������↵� � ...Input an address using a symbol.�
����!�"�"�#���$↵�
��

 To quit in the middle of guidance, input only the [Enter] key and nothing else.

 Format 2) Input the following command:
 �����������↵� � ...Set address to 0x100 and access condition to R/W.
 ��������$↵ ...Set address to variable i and access condition to W.

 If conditions have already been set, the previous conditions are changed to the newly input conditions.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 341
C COMPILER PACKAGE MANUAL (ver.3)

 (3) Clearing data break conditions

 Format 1) After displaying the current settings, input the command shown below:

����
���������	�

���
�������	���
����������������������� ...Choose "2. clear".�
��

 To quit in the middle of guidance, input only the [Enter] key and nothing else.

 Format 2) Input the following command:
 �����↵

� Setting from the menu

This dialog box appears on the screen when you select the
[Data...] command from the [Break] menu.
Enter an address in the [Address] text box using a hexadecimal
number or a symbol.
Use one of the radio buttons to choose an access condition.
To clear, click on the [Clear] button.

� Notes
• The addresses must be specified within the range of the memory area available for each microcomputer model.

An error results if this limit is exceeded. In Format 1, guidance is displayed prompting you to input an address
again. In Format 2, the command input is canceled.

 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• The program stops one to several instructions after the break condition is satisfied.

CHAPTER 16: DEBUGGER

342 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

bsq (break sequential) [ICE]

� Function
This command sets, clears, and displays a sequential break.
Up to three combinations of an address, data pattern, data mask and bus operation type can be set. A break occurs
when the CPU executes a bus operation that satisfies the set conditions in the order these conditions are set.

� Formats
(1) bsq (guidance mode)
(2) bsq <mode> <hit> [<condition1> [<condition2> [<condition3>]]] (direct input mode)
 <mode>: Set/clear specification (1=set, 2=clear)
 <hit>: Sequence specification (1=Hit 1 only, 2=Hits 1 and 2, 3: Hits 1 to 3)
 <condition>: Break condition (<address> <data> <mask> <bus type>)
 <address>: Address (hexadecimal, symbol or line number)
 <data>: Data pattern (16-bit hexadecimal number to be compared.)
 <mask>: Data mask (16-bit hexadecimal number for masking the data bits.)
 Bits set at "0" specify the data bit to be compared, and bits set at "1" specify the
 data bits to be masked.
 <bus type>: Bus operation type (decimal number from 0 to 8)
 0: All All bus operation
 1: Inst Instruction fetch
 2: VecR Vector fetch
 3: DatR Data resd
 4: DatW Data write
 5: StkR Stack resd
 6: StkW Stack write
 7: DmaR DMA read
 8: DmaW DMA write
 Condition: 0x0 ≤ address ≤ 0xfffffff

� Input examples

 (1) Displaying sequential break conditions
 Format 1 displays the contents of current settings.

����↵�
���	�
�
����������������������
��������������������
���������������������
��������������������
�����
�
����������������������
�����������������		�
���������������������
��������������������
�����
�
����������������������
��������������������
���������������������
��������������������
	������� !������"�↵�� ...Terminated by [Enter] key.�
��

 Shown above is an example where conditions 1 and 2 are set. The asterisks "****" in condition 3 indicate
that no condition has been set. The data mask "0000" indicates that the specified data pattern bits will all be
compared. In this example, a break occurs when the CPU fetches instruction code 0x6c00 from address
0xc80000 and then instruction code 0x6c11 from address 0xc80002. When the CPU accesses the addresses in
the retrograde order or only condition 2 is met, no break occurs.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 343
C COMPILER PACKAGE MANUAL (ver.3)

 (2) Setting sequential break conditions

 Format 1) After displaying the current settings as described in (1), input a command as shown below:

����������	�
��������↵� � � ...Choose "1. set".
�����������������
	�
�����������������↵ ...Choose a sequence. (3=Hits 1 to 3)
�����������������������↵�� � ...Address set in condition 1

�
�!
������"���������↵�� � ...Press [Enter] alone to skip guidance. (not changed)�

�
��
�#��������������↵
$����%!�������		���&������'��(���
�(�)�
�*�+�,�#(�"�,�#*�-� �
(��� �
*�����&�����↵�
�����������������������↵�� � ...Address set in condition 2

�
�!
������"���������↵��

�
��
�#��������������↵
$����%!�������		���&������'��(���
�(�)�
�*�+�,�#(�"�,�#*�-� �
(��� �
*�����&�����↵�
�������������........���������↵� � ...Input an address for condition 3.

�
�!
������....����������↵� � ...Input a data pattern for condition 3.�

�
��
�#����....������/↵� � ...[^] key returns to the previous guidance.

�
�!
��������������������↵� � ...Input a data pattern for condition 3 again.�

�
��
�#����....����������↵� � ...Input a data mask for condition 3.
$����%!�������		���&������'��(���
�(�)�
�*�+�,�#(�"�,�#*�-� �
(��� �
*�����&�����)↵�
0� � � � � ...Choose a bus operation type for condition 3.�

 In this example, conditions 1 and 2 are left as previous settings, and condition 3 is newly set.
 Condition 3 specifies that program execution breaks when byte data 0x12 is written to address 0xd000000.

Since the data pattern must be specified in 16 bits, a data mask is required for setting a byte access condition.
In a byte access, the high-order 8 bits of the data bus are used when an even address is accessed and the
low-order 8 bits of the data bus are used for an odd address. Therefore, to set a condition as a byte access
with a write data 0x12 for example, specify 0x1200 for the data pattern and mask the low-order 8-bits using
the data mask 0x00ff. For an odd address, specify 0x0012 for the data pattern and 0xff00 for the data mask.

 A symbol or source line number can be used to specify an address.

�������������........���↵� � ...Sample entry of a symbol �
�������������........���
����1�) ↵� ...Sample entry of a line number �

 To quit in the middle of guidance, press the [q] key and then the [Enter] key. When the command is

suspended, already specified contents are validated.

 When setting two or three conditions, input the conditions in order of the sequence number. The conditions

cannot be input from condition 2 or 3. A sequential break can occur when all the set conditions are met in the
set sequence.

 Format 2) Input a command as follows:
 0���������������"���������� ↵�

� ... This is the same specification as condition 1described in (1). The parameters must be separated with a
 space. Conditions 2 and 3 are cleared if they have been set.

 Even when setting multiple conditions, input all conditions in one line.
 0���������������"������������������"����������↵�
 Condition 1 Condition 2

 (3) Clearing sequential break conditions

 Format 1) After displaying the current settings, input a command as shown below:

0���↵�
������������������2�� �
����������	�
��������↵� ...Choose "2. clear".�
0�

 All conditions set will be cleared.

 Format 2) Input a command as follows:
 0�����↵

CHAPTER 16: DEBUGGER

344 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

� Notes
• The bsq command can only be used in ICE mode.

• A sequential break occurs only when all the set conditions are met in the set sequence. The break does not

occur if only part of condition is met.

• The break conditions must continuously be specified from condition 1. The bsq command does not allow

settings such as conditions 1 and 3, or conditions 2 and 3. However, it is unnecessary to set three conditions.

• The addresses must be specified within the range of the memory area available for each microcomputer model.

An error will result if this limit is exceeded.
 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• If the number of parameters entered in direct input mode is incorrect, an error will result.
 Error: Number of parameter.

• If the entered number is illegal or it cannot be recognized as a symbol, an error will result.
 Error: Invalid value.

• The sequential break does not occur in the internal RAM area, since the bus operation cannot be detected from

outside the chip.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 345
C COMPILER PACKAGE MANUAL (ver.3)

ba (break area) [ICD+MEM33]

� Function
This command sets, clears, and displays an area break.
Break area, inside area, outside area, and the type of bus operation can be set.

� Formats
(1) ba (guidance mode)
(2) ba <number> <mode> <side> <top address> <bottom address> <operation>(direct input mode)
 <number>: Specify area break number (1 or 2)
 <mode>: Set or clear (1=set, 2=clear)
 <side>: Specify side of area (1=inside, 2=outside)
 <top address>: Start address of area (hexadecimal, symbol or source line number)
 <bottom address>: End address of area (hexadecimal, symbol or source line number)
 <operation >: Specify bus operation (1=read,2=write,3=read/write)

� Input examples

 (1) Displaying area break conditions

����

����������	
�

��������������
�������

�������������
���	������

�������������
���	������

���������������
�����

�����������
�

��������������
����������

�������������
����������

�������������
����������

���������������
����������

������������������	�� ��!�
 ...Terminated by [Enter] key.�
�

 The above is an example where area break 1 is set. The asterisks "********" in area break 2 indicates that no
condition has been set.

 (2) Setting area break conditions

 Format 1) After displaying the current settings as described in (1), input a command as shown below:

������������������	�� ��!�
�↵� � � ...Specify "area break 2".
	"������"#$����������"""!�
	↵� � � ...Choose "1. set".
	"��������"��������"""!�
�↵� � � ...Choose "2. outside".
����������������������!�
�	����↵�� � ...Start address of the area
����������������������!�
�	%%%%↵�� � ...End address of the area
	"�����"������&"����"""!�
	↵� � � ...Choose "1. read".
>

 In this example, area break 2 is set.
 A break occurs when address 0x21ffff is read from address 0x210000.

 To quit in the middle of the operation, press the [Enter] key. When the command is suspended, the area break

condition cannot be saved.

 Format 2) Input a command as follows:

������	����	������	%%%%�	↵�
� ... This is the same as condition 1 described in (1). The parameters must be separated with
 a space.

 (3) Clearing area break conditions

 Format 1) After displaying the current settings, input a command as shown below:

CHAPTER 16: DEBUGGER

346 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

���↵�
��������	
���	��
����
��	����	���
���	������������↵� ...Specify area break 2.�
���	�������	����������������↵� ...Choose "2. clear".�
��

 Area break 2 will be cleared.

 Format 2) Input a command as follows:
 �����

� Notes
• The ba command can only be used in the ICD+MEM33 mode.

• For extended break using MEM33201, the target does not stop immediately after a break because the break

makes use of the ICD33 external break.

An error occurs if the top address and the bottom address are not the same. (The top address and the bottom
address must be the same for a single CE).

• An error occurs if the internal memory area is specified (MEM33 is not supported at area0, area1 and

area2(0-0x7FFFF).

• Start address and end address must be an area which can be accessed by the CEFUNC specified in the

parameter file. The following message is displayed when an error occurs:
 Invalid address or invalid CEFUNC of parameter file.

• If the specification of the parameter file and the configuration of BCU is different, a break will not occur

correctly.
Be sure that configuration of the BCU becomes default after a cold reset.

• Use this command so that the address and the target memory do not conflict.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 347
C COMPILER PACKAGE MANUAL (ver.3)

bb (break bus) [ICD+MEM33]

� Function
This command sets, clears, and displays a bus break.
Bus width, break mode, break counter, address, address mask, CE mask, data, data mask, and the type of bus
operation can be set.

� Formats
 bb (guidance mode)

� Input examples

 (1) Displaying bus break conditions

����

������	
�����������

������������	�������

����������
��������

�����������������������

�		����������������������

�		����������������������

�������������������

��
������������������

��
������������������

 !���
�������������
��

"��
���"�#����"""$���
�����%�

�
�

 The above is an example where 16 bit width, or mode, one bus break and zero break count are set. A break
occurs when 0x2 is written to the address 0x100000.

 (2) Setting bus break conditions

 Format 1) After displaying the current settings as described in (1), input a command as shown below:

"��
���"�#����"""$���
�����↵� � � ...Choose "1. set".
������	
��"���
��"&���
�$����
��↵� � ...Skip only by using the [Enter] key(No

 change).
������������	��"����"��%���
��#�$�����↵� � ... Skip only by using the [Enter] key(No

change).
��������������
��'�(�))&)*�����↵� � � ...Skip only by using the [Enter] key(No

 change).
�������������������'(�*������↵� � � ...Enter a sequential number.
�		��������������������↵� � � ...Skip only by using the [Enter] key(No

 change).
��������"+�����"�����$������↵�� � � ...Skip only by using the [Enter] key(No

 change).
��
���������������↵�� � � � ...Skip only by using the [Enter] key(No

 change).
��
����������������↵�� � � � ...Skip only by using the [Enter] key(No

 change).
 !���
����"���	��"���
��&"�,��$����	���↵�� � ...Skip only by using the [Enter] key(No

 change).
�		���������������������������↵� � � ...Enter the address of condition 2.
�		����������������������↵�� � � ...Skip only by using the [Enter] key(No

 change).
���������"+�����"�����$������↵�� � � ...Skip only by using the [Enter] key(No

 change).
��
�����������������&↵�� � � ...Enter the data of condition 2.
��
������������������↵��� � � ...Skip only by using the [Enter] key(No

 change).
 !���
�����"���	��"���
��&"�,��$����	��↵�� � ...Skip only by using the [Enter] key(No

CHAPTER 16: DEBUGGER

348 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 change).
>

 In this example, condition 2 is added without changing condition 1.
 A break occurs when address 0x12 or address 0x13 is read from address 0x200000, even though a break is

set to occur only when address 0x12 is read from address 0x200000.

 (3) Clearing bus break conditions

 Format 1) After displaying the current settings, input a command as shown below:

���↵�
��������	
���	��
����
���	�������	����������������↵� ...Choose "2. clear".�
��

 Bus break will be cleared.

(4) Explanation for each item

Bus width 1.16bit 2.32bit ? 16bit :... This sets the bus width of data. 6 in 16 bit width and 3 in 32 bit

width be set.
Bus break mode 1.or 2.sequential ? or: ...This sets the bus break mode. In the or mode, a break occurs
 when at least a match is found.
 In the sequential mode, a break occurs when the number is
 accessed in accordance with the order from the smallest number
 referring to a break condition. If the break conditions are not
 matched sequentially or only one condition is matched, a break
 does not occur.

Bus break counter(0-65535) 0 : ... A break occurs when the number of times the break conditions is

reached.If the counter is 0, a break occurs when a match is found.
If the counter is 1, a break occurs if it is a counter of the last break.

Number of bus break(1-6) 1 :2...Enter the number conditions to meet.

Address1 00200000 : ...Enter address.

Address mask1 FFFFFF : ...Enter address mask. 0 indicates a mask.

CE mask1 1.yes 2.no ? no: ...CE signal can be masked. Choose "1.yes" to mask.

Data1 0012 : ...Enter data.

Data mask1 FFFF : ...Enter data mask. 0 indicates a mask.

Operation1 1.read 2.write 3.r/w ? read : ...Enter bus operation.

� Notes
• The bb command can only be used in the ICD+MEM33 mode.

• For extended break using MEM33201, the target does not stop immediately after a break because ICD33 uses

its external break.

• Start address and end address must be an area which can be accessed by the CEFUNC specified in the

parameter file. The following message is displayed when an error occurs:
 Invalid address or invalid CEFUNC of parameter file.

• If the specification of the parameter file and the configuration of BCU are different, a break will not occur

correctly.
Be sure that the configuration of BCU becomes default after a cold reset.

• Use this command so that the address and the target memory do not conflict.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 349
C COMPILER PACKAGE MANUAL (ver.3)

• An error will occur if the internal memory area is specified (MEM33 is not supported at area0, area1 and
area2(0-0x7FFFF).).

• At least one memory access is needed to be placed in between memory accesses corresponding to the break

conditions in the 32-bit sequential mode. If successive accesses are made, the second condition is not matched.

CHAPTER 16: DEBUGGER

350 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

bl (break list) [ICD / ICE / SIM / MON]

� Function
This command lists all break conditions.

� Format
 bl (direct input mode)

� Display
This command displays all contents that are displayed individually by each break setting command.
The following list is an example in ICE mode.

���↵�
�	
�����������
������������������������������������ ��������������������
���� ������������������������ ��������������������
�!�� ������������������������ ��������������������
�"�� ������������������������ ��������������������
�#�� ���������������������!�� ��������������������
�$�� ���������������������"�� ��������������������
�%�� ���������������������#�� ��������������������
�&�� ���������������������$�� ��������������������
'��(�����������
)((��**����������������������������
'��(�����������
)((��**���� �
+�����������
)((��**�������������
,�-� ������,�
���.��������������
'����
�)((��**�����������������
�+����/��������������
�+������*������������
�01/������������2�*��
'����
�)((��**����������������
�+����/����������!�!�
�+������*������������
�01/������������3��,�
'��!�
�)((��**�������� �
�+����/��������� �
�+������*������� �
�01/������������ �

 �

� Note
The display contents are changed depending on the debugger mode.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 351
C COMPILER PACKAGE MANUAL (ver.3)

bac (break all clear) [ICD / ICE / SIM / MON]

� Function
This command clears all break conditions set by commands (software PC breakpoint, hardware PC break point,
data break and sequential break).

� Format
 bac (direct input mode)

CHAPTER 16: DEBUGGER

352 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.9.8 Commands to Display Program

u (unassemble) [ICD / ICE / SIM / MON]

� Function
This command displays a program in disassembly format.

� Formats
(1) u (direct input mode)
(2) u <address> (direct input mode)
 <address>: Display start address (hexadecimal, symbol or line number)
 Condition: 0x0 ≤ address ≤ 0xfffffff

� Display

 (1) When [Source] window is open

 Address: Memory address
 Code: Object code
 Unassemble: Disassembled contents of program

 ∗ The address line of the current PC is underlined.

 In Format 1, display in the [Source] window is changed to the disassemble display mode. At the same time,

code is displayed beginning with the current PC address.

 The [Unassemble] button performs the same function as you input the command in Format 1. However, the

display location is not changed.

 [Unassemble] button

 In Format 2, display in the [Source] window is changed to the disassemble display mode. At the same time,

code is displayed beginning with <address>.

 (2) When [Source] window is closed
 The 16 lines (default) of disassembled result are displayed in the [Command] window. The db33 then waits

for a command input.
 In Format 1, this display begins with the current PC (displayed in the [Register] window); in Format 2, the

display begins with <address>.

��������↵� � � ...Address can be specified using a symbol or line number.�
���������������	�
����������������������
��
�������������������
���������������������������������������
���
��

 The number of display lines in the [Command] window can be changed using the md command.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 353
C COMPILER PACKAGE MANUAL (ver.3)

 (3) Logging
 To save the command execution results to a log file, close the [Source] window and display the results in the

[Command] window. If the [Source] window is open, the display contents will not be saved in the file
because the [Command] window does not display the results.

 (4) Successive display
 If you execute the u command after entering it from the keyboard, code can be displayed successively by

entering the [Enter] key only until some other command is executed.
 When you hit the [Enter] key, the [Source] window is scrolled one full screen.
 When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the

previously displayed address.

� Notes
• Specify the display start address within the range of 0 to 0xfffffff. An error results if this limit is exceeded.
 Error: Address range (0-0xFFFFFFF).

• "no map" is displayed for address locations outside the mapped memory area.

CHAPTER 16: DEBUGGER

354 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

sc (source code) [ICD / ICE / SIM / MON]

� Function
This command displays the source file contents of the program along with addresses and line numbers.

� Formats
(1) sc (direct input mode)
(2) sc <address> (direct input mode)
 <address>: Display start address (hexadecimal, symbol or line number)
 Condition: 0x0 ≤ address ≤ 0xffff

� Display

 (1) When [Source] window is open

 Address: Memory address
 Line: Line numbers in source file
 SourceCode: Source code

 ∗ The address line of the current PC is underlined.

 In Format 1, display in the [Source] window is changed to the source display mode. At the same time, code is

displayed beginning with the current PC address.

 The [Source] button performs the same function as you input the command in Format 1. However, the

display location is not changed.

 [Source] button

 In Format 2, display in the [Source] window is changed to the source display mode. At the same time, code is

displayed beginning with <address>.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 355
C COMPILER PACKAGE MANUAL (ver.3)

 (2) When [Source] window is closed
 The 16 lines (default) of source code are displayed in the [Command] window. The db33 then waits for a

command input.
 In Format 1, this display begins with the current PC (displayed in the [Register] window); in Format 2, the

display begins with <address>.

��������	�
�↵� � ...Address can be specified using a hexadecimal number or symbol.�
���������������������������	������	�	�����
������������������������������������
������������������
������������������������
������������������
������������������������
���� ����������������!�
��������������� �� ����"��
������������������
���� ������������� ��#����
���� ���$��������� %����"#������"&&��
������������������ ����!�
���� ������������� � �'(�"���
������������������ ����)�
���� ����������������)�
������������������
��

 The number of display lines in the [Command] window can be changed using the md command.

 (3) Logging
 To save the command execution results to a log file, close the [Source] window and display the results in the

[Command] window. If the [Source] window is open, the display contents will not be saved in the file
because the [Command] window does not display the results.

 (4) Successive display
 If you execute the sc command after entering it from the keyboard, code can be displayed successively by

entering the [Enter] key only until some other command is executed.
 When you hit the [Enter] key, the [Source] window is scrolled one full screen.
 When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the

previously displayed address.

� Notes
• Source code and line numbers can only be displayed if the srf33 object file that contains the source information

has been read.

• In the source display mode, only one source file can be displayed at a time. Even when addresses are

contiguous, you cannot display multiple source files in succession.

• Specify the display start address within the range of 0 to 0xfffffff. An error results if this limit is exceeded.
 Error: Address range (0-0xFFFFFFF).

• If you specify an unmapped memory address or an address that does not have source information, the display

mode is changed to "Mixed". In this case, the source display part is blank.

CHAPTER 16: DEBUGGER

356 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

m (mix) [ICD / ICE / SIM / MON]

� Function
This command displays the disassembled result of a program and the contents of the program source file.

� Formats
(1) m (direct input mode)
(2) m <address> (direct input mode)
 <address>: Display start address (hexadecimal, symbol or line number)
 Condition: 0x0 ≤ address ≤ 0xfffffff

� Display

 (1) When [Source] window is open

 Address: Memory address
 Code: Object code
 Unassemble: Disassembled contents
 Line: Line numbers in source file
 SourceCode: Source code

 ∗ The address line of the current PC is underlined.

 In Format 1, display in the [Source] window is changed to the mixed display mode. At the same time, code is

displayed beginning with the current PC address.

 The [Mix] button performs the same function as you input the command in Format 1. However, the display

location is not changed.

 [Mix] button

 In Format 2, display in the [Source] window is changed to the mixed display mode. At the same time, the

disassembled contents and the source is displayed beginning with <address>.

 In the mixed display mode, multiple source files can be displayed in succession. A source file name is

displayed at a position where files change.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 357
C COMPILER PACKAGE MANUAL (ver.3)

 (2) When [Source] window is closed
 The 16 lines (default) of mixed display are produced in the [Command] window. The db33 then waits for a

command input.
 In Format 1, this display begins with the current PC (displayed in the [Register] window); in Format 2, the

display begins with <address>.

�������� � ...Address can be specified using a hexadecimal number or line number.�
�������	
��
��� �������
���
�������	�����������������		�� ��������������	���� ��!����
�������	��"������������#���$���		�����������
�������	%������������������� ���������������		��� &'��(�!�������))*�
��	���� ������
�������	���+�������������	������������������	"��� � �,(�*��
�������	+�	��-�.�������� -������������������
������������	��������������� 	��������������		��� &'��(�!�������))*�
����������	+/0���������� &������������������
��	
��� ����1�
��������
���
���'���������������������������	-������1�
������������
���2���������������������������
��	����
��	����,(3*�
��

 The number of display lines in the [Command] window can be changed using the md command.

 (3) Logging
 To save the command execution results to a log file, close the [Source] window and display the results in the

[Command] window. If the [Source] window is open, the display contents will not be saved in the file
because the [Command] window does not display the results.

 (4) Successive display
 If you execute the m command after entering it from the keyboard, code can be displayed successively by

entering the [Enter] key only until some other command is executed.
 When you hit the [Enter] key, the [Source] window is scrolled one full screen.
 When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the

previously displayed address.

� Notes
• Source code and line numbers can only be displayed if the srf33 object file that contains the source information

has been read.

• Specify the display start address within the range of 0 to 0xfffffff. An error results if this limit is exceeded.
 Error: Address range (0-0xFFFFFFF).

• "no map" is displayed for address locations outside the mapped memory area.

• If, although source line information is included, the source file cannot be read, a "no source" message is

displayed.

CHAPTER 16: DEBUGGER

358 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

ss (search strings) [ICD / ICE / SIM / MON]

� Function
This command searches the source file for a specified character string and starts displaying the source contents
from the position where the character string is found. This command is valid only when the [Source] window is
open in the source display mode.

� Format
 ss <string> (direct input mode)
 <string>: Search character string

� Input example

 ��������↵�
� ��

 The source contents are displayed in the [Source] window beginning with a position where the first instance

of main is found in the current source (one that contains the code corresponding to the current PC
address). Then when you press the [Enter] key, the next instance of main is searched.

 If the specified character string is not found, the following message is displayed:
 Error: Not found input string.

� Notes
• An error results if the ss command is executed when the [Source] window is closed.
 Error: Source window not opened.

• Also, if the [Source] window is not in the source display mode when the command is executed, an error results.
 Error: Current mode is not source mode.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 359
C COMPILER PACKAGE MANUAL (ver.3)

16.9.9 Commands to Display Symbol Information

sy (symbol list) [ICD / ICE / SIM / MON]

� Function
This command displays symbol information, source file, functions, or tag list in the [Command] window. Symbols
can be conditionally searched after specifying a search range or a search character string.

� Format
 sy [<option>] (direct input mode)
 <option>: Specification of display item and search condition
 When omitted: List of all symbols
 #: File list
 /: Function list
 @: Tag list
 @<string>: Tag list beginning with character string <string>
 [<file>]/[<function>>]/: List of symbols in a specified file or function
 [<file>]/[<function>]/<string>: List of symbols in a specified file or function beginning with

character string <string>

 <file>: Source file name
 <function>: Function name
 <string>: Search character string
 Condition: 1 ≤ number of characters in string ≤ 255

 Symbols searched by [<file>]/[function]/
 // Global symbols
 /./ Auto/static symbols in current function
 .// Static symbols in current source file
 file// Static symbols in specified source file
 /function/ Symbols in specified function
 ./function/ Auto/static symbols in specified function of current source file
 file/function/ Symbols in specified function of specified source file

 ∗ The current source files and current functions refer to those that contain the code corresponding to the current

PC.

CHAPTER 16: DEBUGGER

360 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

� Display
A list is displayed in the [Command] window in alphabetical order. By default, up to 16 lines are displayed at a
time (can be changed by the md command). If there are more than 16 lines of display items, the window is placed
in a command input state after displaying 16 lines. Therefore, input only the [Enter] key and nothing else to
display the remaining other lines.

 (1) Symbol list
 Symbol information is displayed in the following format:
 <symbol>, <address>, <scope>, <class>, <type>

 <symbol>: Indicates a symbol name.
 <address>: Indicates the address of a symbol. The display content varies with the symbol's storage class.

Storage class Display content
null, extern, static, label 8-digit hexadecimal address
auto, argument SP + offset (0xXX)
register, reg parameter Register number (R0 to R15)
bit field Bit field size

 <scope>: Indicates a file name/function name.
 Extern symbols are left blank. For static symbols, only a file name is displayed. For the

variables defined within a block, the start and the end addresses of the block are
displayed. (<start addr> ... <end addr>)

 <class>: Indicates a storage class.
 null, auto, extern, static, register, label, argument, reg parameter
 <type>: Indicates the type of symbol.
 null, void, char, short, int, long, float, double, struct tag, union tag, enum tag, unsigned char,

unsigned short, unsigned int, unsigned long
 If the symbol is a pointer, array, or function, these types of symbols are followed by "*", "[]"

(including declaration content), or "()".

 Displaying all symbols
 To display all symbols, input a command as follows:

���↵� � � � ...���������	�
���������	���
������			
			������������������������
������		�					������������������
������ !��		
			�
������"��#�������$��%��&�#�'()*�
�������!��		
			
+����������������������$��%��&�#��
���������������������,�
�����������		�				�������"��#���-�%��./�
�����		
			
�������"��#�����#�������0�'�*�
�↵�� � � � ...�	�������
�������	����
��������������	��	�����
%12����	������������3�����#�$����#��%������
%1������4	������������3�����#�$����#��%������
���������������������,�
�5�6����40��������7#�����#�$����#�������
��

 Listing names after specifying search range
 A file name and function name ([<file>]/[function]/) can be specified using an option.

������↵� � � ...����	������	����������������������
������ !��		
			�
������"��#�������$��%��&�#�'()*�
�����!��58��		�)�������"��#���������
9�2���� !��		
				�������"��#�������$��%��&�#�'()*�
���������������������,�
#��%��		�			4�������"��#��������./�
���%��		
			�	������"��#�������$��%������
��

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 361
C COMPILER PACKAGE MANUAL (ver.3)

 Listing symbols after specifying the search range and search character string
 The symbols in a search range that begin with a specified character string are searched and displayed.

������������↵� � ...��������	�
��������	��������
�������������	����������������
�	
��	��
��

 (2) Source file list
 A file list is displayed in the following format:
 <file>(<line>), <start addr> . . <end addr> [, <start addr> . . <end addr>]

 <file>: Indicates a source file name.
 <line>: Indicates the number of lines in the source file.
 If no source file is read into the debugger, "not read" is displayed.
 <start addr>: Indicates the start address of the area where code is located in hexadecimal form.
 <end addr>: Indicates the end address of the area where code is located in hexadecimal form.
 If the code is located in multiple areas, multiple instances of <start addr> and <end addr> are

displayed.
 If the code exists in an include file, <end addr> is followed by "<include file name>".

 To display a list of source files, input the following command:

�����↵�
������ !��"����#�����$�����!%�
����� &���"����#�'�������'���
��
"���� �%�"����#�'���(���'��&%%�
����"���� ��������#�'��%$!��'��)���
��\���\���"���� ��������#�'�!(�$��'�!(���
��\���*�*�+��� ��������#�'�!(
���'�!(
��
��

 (3) Function list
 A function list is displayed in the following format:
 <file>
 <function>() <start addr> . . <end addr>

 <file>: Indicates a source file name.
 File names are displayed one at a time for each source file. Even a file that does not have

functions (assembly source) is displayed.
 <function>: Indicates a function name.
 Functions are displayed for each source file.
 <start addr>: Indicates the start address of the area where the function is located in hexadecimal form.
 <end addr>: Indicates the end address of the area where the function is located in hexadecimal form.

 To display a list of functions, input the following command:

�����↵�
�������
������
������,�� #�'�������'����%�
������������� #�'����$��'���&%�
�������� #�'���&$��'���-&�
����.���� #�'���-!��'���
��
"�����
����������"�� #�'���(���'��&%%�
����"�����
����*��� #�'��%$!��'��)���
��

CHAPTER 16: DEBUGGER

362 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 (4) Tag list
 A tag list is displayed in the following format:
 <file>
 offset <type> <tag> {
 <offset> <m type> <member>
 :
 } (total <size>)

 <file>: Indicates a source file name.
 File names are indicated one at a time for each source file. Files where no tag is declared are

not displayed.
 <type>: Indicates a type of tag.
 <tag>: Indicates a name of tag.
 <offset>: Indicates a member offset in hexadecimal form.
 <m type>: Indicates a member type.
 <member>: Indicates a member name.
 <size>: Indicates a size (bytes) in decimal form.

 Displaying all tags
 To display all tags, input the following command:

�����↵�
���	
�
������������
�������
����������������������
�
�������������������������
�������������
���������������������������
��������������������������
������������
���� ����
��������������!��������"�
�����������������"���
!���������
����������������������
�↵�� � � ...��������	
����	����	��
������	�����������������	��
������������������#������
���������������� $���
�����������������
����� �����
���������������������%�
������������������#������
��

 Listing tags after specifying the search character string
 The tags that begin with the specified character string are searched and displayed.

������↵� � � ...�������������	����	����	
�	���������	
�	��
���	
�
������������
�������
����������������������
�
�������������������������
�������#�������������!����
�������&������������������
������$������������������
������$������������������
������$#�������������'����
������$&������������������
���������������������������
��������������������������
�������	
�
������������
�������
����������������������
�
�������������������������
��

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 363
C COMPILER PACKAGE MANUAL (ver.3)

 Bit fields are displayed as follows.
 "offset" indicates each bit offset value from the beginning address.

�������������	��
������
���������������������������
��������
���������������������������
���������
���������������������������
��������
���������������������������
���������
���������������������������
���������
��������������������
�����

 "enum" type is displayed as follows.
 "value" indicates the value of each member.

� ����������!��"��!��
����������������!�!�!
�����"��
����������������!�!�!
�����"��
����������������!�!�!
�����"��
�������#��������!�!�!
�����"���
�����������

� Notes
• Symbol information can only be displayed if the srf33 format object file that contains debugging information is

read into the debugger.

• Search character strings <string> that are upper case are distinguished from these that are lower case. Up to 255

characters can be specified.

CHAPTER 16: DEBUGGER

364 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

sa (symbol add) [ICD / ICE / SIM / MON]

� Function
This command registers specified symbols (variables) in a symbol watch table. Up to 99 symbols can be
registered. The contents of registered symbols can be monitored in the [Symbol] window. A display format can be
specified along with the symbols to be registered.

� Formats
(1) sa Display (direct input mode)
(2) sa <symbol> [-<switch>] Register (direct input mode)
 <symbol>: Symbol name
 -<switch>: Specification of display format
 -b<size> Binary
 -d<size> Signed decimal
 -u<size> Unsigned decimal
 -h<size> Hexadecimal
 -c 8-bit integer
 -f 32-bit real number
 -df 64-bit real number
 <size> specifies the number of bits; specify 8, 16, 32, or 64 (e.g., -b8, -h32). If this specification

is omitted, symbols are displayed in a size that suits the symbol type.
 You cannot specify 64 bits for -d and -u.
 Default: Applied when -<switch> is omitted
 • Symbol with an unknown type: Displayed in 32-bit hex.
 • int, short, long: Displayed in both decimal and hex.
 • char: ASCII code displayed in decimal and hex.

� Input examples

 (1) Display
 If you input only sa and nothing else (Format 1), the contents of the registered symbols are displayed.

 When [Symbol] window is open
 The contents displayed in the [Symbol] window are updated.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 365
C COMPILER PACKAGE MANUAL (ver.3)

 When [Symbol] window is closed
 The contents are displayed in the [Command] window. By default, 16 lines are displayed at a time. To

display the next lines, press the [Enter] key. The number of lines displayed at a time can be changed by the
md command.
���↵�
�����	
������������������������������������
����	
������������������������������������
�����	
�������������������������������������
����	
������������������������������������
��� �!"#���������������!�!�������������������
��� �!"�#����������������!�������������������
�$�%&��'�����������$������������������������
���()�%�&�*���$+����,�,��++�-������%.��/01%�&������'��02����
����()�%�&�*���$+����,�,����������%.��/01%�&������'�����&3��*�02����
���4)�%�&�*���$+�������������%.��/01%�&������'�����&3��*��2'����
���4)�%�&�*���$+�������������%.��/01%�&������'���2'����
��

 Display contents
 The contents of each symbol are displayed in the following formats:
 <No.> <symbol>(<address>) = <value>, <scope>, <class>, <type>

 <No.>: Indicates a registered number in the watch symbol table.
 <symbol>: Indicates a symbol name.
 <address>: Indicates a symbol's address in 8-digit hexadecimal form. Register variables are indicated by R0

to R15.
 <value>: Indicates a stored value according the -<switch> specification made when registered. A

hexadecimal number is prefixed by "0x" and a binary number is prefixed by "0b". A negative
number is prefixed by "-", but nothing is added in the case of positive numbers. If the stored
value is out of scope, "out of scope" is displayed.

 <scope>: Indicates a file name/function name.
 Extern symbols are left blank. For static symbols, only a function name is displayed.
 <class>: Indicates a storage class.
 null, auto, extern, static, register, label, argument, reg parameter
 <type>: Indicates a type of symbol.
 null, void, char, short, int, long, float, double, struct tag, union tag, enum tag, unsigned char,

unsigned short, unsigned int, unsigned long
 If the symbol is a pointer, array or function, these types of symbols are followed by "*", "[]"

(including declaration content) or "()".

 (2) Registering symbols
 The following shows an example in which symbols are registered by specifying -<switch>.
 ����02�2���-(�↵ ...Register chChar as 8-bit binary representation.
 ������!/���'����-���↵ ...Register stA member "ulCount" as a 32-bit unsigned decimal representation.
 ����&5''.�-2↵ ...Register a size conforming to iLoop type as a hexadecimal representation.
 ����*��0&%���-*6↵ ...Register dDecimal as a double-type representation.
 ����7.��'����-���↵ ...Register pointer "plCount" as a 32-bit signed decimal representation.

 When the command is executed, information on the registered symbols is displayed in the [Symbol]

window. If the [Symbol] window is closed, the information is displayed in the [Command] window. The
registered symbols are assigned a registration number (1 to 99).

CHAPTER 16: DEBUGGER

366 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 ∗ Symbols can also be registered by using the [Add] command on the [Symbol] menu or the [Symbol add]
button.

 [Symbol add] button

 Place the [Source] window in the mixed or source display mode, then place the cursor in or immediately

before or after the symbol name that you want registered. Then click on the [Symbol add] button or choose
the [Add] command from the [Symbol] menu to register the symbol in the watch symbol table. Information
on this symbol is displayed in the [Symbol] or the [Command] window.

 These menu commands and buttons can be selected only when the [Source] window is active. No display

format can be set. Information is displayed in the default format that conforms to the selected symbol type.

� Notes
• Symbols can only be registered and displayed if the srf33 format object file that contains debugging

information is read into the debugger.

• Structure or union members cannot be registered collectively. Be sure to register each member separately. For

this reason, even when you are using the [Add] command on the [Symbol] menu or the [Symbol add] button to
register, you cannot select symbols by placing the cursor in front of "->" or ".".

• An error results if the specified symbol cannot be found.
 Error: Symbol not found. ...Symbol cannot be found.

• If the specified symbol is out of the scope or it points to a no-map area, the symbol information is displayed as

below.
 <symbol> = out of the scope,Symbol is out of the scope.
 <symbol> = symbol points to no map area,No-map area is pointed.

• The maximum number of symbols that can be registered is 99. If this limit is exceeded, an error results.
 Error: Cannot add symbol any more.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 367
C COMPILER PACKAGE MANUAL (ver.3)

sd (symbol delete) [ICD / ICE / SIM / MON]

� Function
This command deletes a symbol displayed in the [Symbol] window (registered in the watch symbol table) from the
window (table).

� Format
 sd <number> (direct input mode)
 <number>: Registration number of the symbol (decimal)
 Condition: 1 ≤ number ≤ number of registered symbols (max. 99)

� Input example

 �����↵ ...Delete symbol No. 2.
 �

 When a symbol is deleted, the symbol numbers following it are each decreased by one.

 ∗ Symbols can also be deleted using the [Delete] command on the [Symbol] menu or the [Symbol delete]

button.

 [Symbol delete] button

 Place the cursor at the symbol information line in the [Symbol] window that you want deleted, then click on

the [Symbol delete] button or choose the [Delete] command from the [Symbol] menu. The symbol will be
deleted.

 These menu commands and buttons can be selected only when the [Symbol] window is active.

� Note
An error results if a number greater than 99 or an unregistered number is specified.
 Error: No symbol at the number.

CHAPTER 16: DEBUGGER

368 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

sw (symbol watch) [ICD / ICE / SIM / MON]

� Function
This command displays the current value of a specified symbol in the [Command] window. Each symbol
individually or a range of symbols collectively can be specified. You also can specify a display format.

� Formats
(1) sw <symbol> [-<switch>] (direct input mode)
(2) sw @<symbol> [-<switch>] (direct input mode)
(3) sw <scope> (direct input mode)
 <symbol>: Symbol name
 -<switch>: Specification of display format
 -b<size> Binary
 -d<size> Signed decimal
 -u<size> Unsigned decimal
 -h<size> Hexadecimal
 -c 8-bit integer
 -f 32-bit real number
 -df 64-bit real number
 <size> specifies the number of bits; specify 8, 16, 32, or 64 (e.g., -b8, -h32). If this specification

is omitted, symbols are displayed in a size that suits the symbol type.
 You cannot specify 64 bits for -d and -u.
 Default: Applied when -<switch> is omitted
 • Symbol with an unknown type: Displayed in 32-bit hex.
 • int, short, long: Displayed in both decimal and hex.
 • char: ASCII code displayed in decimal and hex.
 <scope>: Specification of a range of symbols to be listed ([<file>]/[function]/)
 // Global symbols
 /./ Auto/static symbols in the current function
 .// Static symbols in the current source file
 file// Static symbols in the specified source file
 /function/ Symbols in the specified function
 ./function/ Auto/static symbols in the specified function of the current source file
 file/function/ Symbols in the specified function of the specified source file

� Display

 (1) Displaying each symbol individually
 In Format 1, symbol information is displayed by specifying one symbol at a time.

��������	
����↵� � ...��������	
�������	��������������	��
����	
��� ��!�"#$��%&��
��

����'�()�	
���*��↵� � ...��������	
�����������������	�����������������������
'�()�	
���������������������������������� ��!�"#$��%&��
��

 For details on the display contents, refer to the explanation of the sa command.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 369
C COMPILER PACKAGE MANUAL (ver.3)

 ∗ Symbol display in Format 1 can also be performed using the [Watch] command on the [Symbol] menu or the
[Symbol watch] button.

 [Symbol watch] button

 Place the [Source] window in the mixed or source display mode, and place the cursor in or immediately

before or after the symbol name that you want displayed. Then click on the [Symbol watch] button or choose
the [Watch] command from the [Symbol] menu to display the symbol in the [Command] window.

 These menu commands and buttons can be selected only when the [Source] window is active. No display
format can be set. Information is displayed in the default format that conforms to the selected symbol type.

 (2) Displaying structure/union members and array elements
 In Format 2, members of a structure/union or elements of an array can be specified to display the contents.

For details on the display contents, refer to the explanation of the sa command.
 By default, 16 lines of symbol information are displayed. To display the following information, press the

[Enter] key. The number of lines displayed at a time can be changed by the md command.

 Displaying array elements
 Example: char buf[2][2][2]

��������↵�
���	
�	
�	
��

�
�������
������������������ ��������!"���#�$�	��	��	���
���	
�	
�	%��

�%�������
�&'�()������������ ��������!"���#�$�	��	��	���
������������������������������������*�
���	%�	%�	%��

�)�������
�+
�(�������������� ��������!"���#�$�	��	��	���
��

��������	
�	%�	
�↵�
���	
�	%�	
��

���������
�,&�(%%������������� ��������!"���#�$�	��	��	���
���	
�	%�	%��

���������
�%-��,������������ ��������!"���#�$�	��	��	���
������������������������������������*�
���	%�	%�	%��

�)�������
�+
�(�������������� ��������!"���#�$�	��	��	���
��

 Displaying members of a structure
 Example: struct STRUCT_UNION{
 int iAddr
 char cFlag;
 char *pcFlag;
 char cAry[3][3]
 union ExchangeType stSize;
 };

������!.!$��!/0�!%��1$2↵�
�!.!$��!/0�!%��1$2	
�	
��

3%3�������
�%
�%������������ �������!$��!���#�$�	��	���

�!.!$��!/0�!%��1$2	
�	%��

3%��������
�
3�3������������ �������!$��!���#�$�	��	���

������������������������������������*�

�!.!$��!/0�!%��1$2	��	���

3%-�������
�
-�%������������� �������!$��!���#�$�	��	���

��

������!.!$��!/0�!%��!.�40↵�
�!.!$��!/0�!%��!.�40�

3�
���
�&35%,�%)������������ �������!$��!�����"��+��#��60/270�

�!.!$��!/0�!%��!.�40���-#�$�

3�
�������
�%)��������������� ���������"������6�08��#�$�	3��

�!.!$��!/0�!%��!.�40���.#"$!�

3�
���
�,�%)��3
)%������������ ���������"������6�08��#"$!�	���

�!.!$��!/0�!%��!.�40��9:"�6�

3�
���
�&35%,�%)�3%
)�)%)''������������ ���������"������6�08���!�	%��

��

�

 For structures, the sw command displays all members at 1-level lower than the specified member. Two or

more lower-level members are not displayed.

CHAPTER 16: DEBUGGER

370 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 (3) Listing the specified range of symbols
 In Format 2, you can specify the range of files and functions, and display a list of symbols included in the

specified range.
������↵� � � � ...��������	�
�������
�	
�����
���
���	
�� �!"#��$%&'�
���	
(�)*���+���&+�����%���,�����������������--��
.�/0�
�� �!"#��$%&'�
��������������������������������1�
��# ���+����������+���%+�+�2���,%%&&�����������������������
��� �������	���������������,�%33��&3��������������������� ������
��

 For details about display contents, refer to the explanation of the sa command.
 By default, 16 lines of symbols are displayed. To display the next symbols, press the [Enter] key. The

number of lines displayed at a time can be changed by the md command.

� Notes
• Symbol information can only be displayed if the srf33 format object file that contains debugging information is

read into the debugger.

• An error results if the specified symbol cannot be found.
 Error: Symbol not found. ...Symbol cannot be found.

• If the specified symbol is out of the scope or it points to a no-map area, the symbol information is displayed as

below.
 <symbol> = out of the scope,Symbol is out of the scope.
 <symbol> = symbol points to no map area,No-map area is pointed.

• "->" and "." are not distinguished.

• Pointers (*) can be specified up to three nest levels and array elements can be specified up to the fourth

dimension.

• Structures, unions and bit fields can be specified up to 10 levels. However, it is limited to 9 levels for the "sw

@" command that adds a member.

• Array elements (number in []) can only be specified in a decimal number.

• Symbol length including a scope is limited to a maximum of 127 characters.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 371
C COMPILER PACKAGE MANUAL (ver.3)

16.9.10 Commands to Load Files

lf (load file) [ICD / ICE / SIM / MON]

� Function
This command loads the object file in srf33 format into the debugger.

� Formats
(1) lf (guidance mode)
(2) lf <file name> (direct input mode)
 <file name>: File name to be loaded

� Input examples

Format 1) ���↵�
� ������	
�����������↵ ...Input a file name including the extension.
 �

Format 2) ����������↵�
� �

 ∗ The [Load File..] command on the [File] menu or the [Load file] button on the tool bar can also be used to

load a file. Use the dialog box that appears on the screen to select a file.

 [Load file] button

After selecting a directory and file, click on the [Open]
button (or double-click the file name).

The directory selected here becomes the current
directory.

� Notes

• Only the srf33 object file in the executable format (generated by the linker) can be loaded by the lf command.
 Error: Cannot load data, please check SRF33 file.

• If you want to use source display and symbols when debugging a program, the object file must be in the srf33

format that contains debug information loaded into the debugger. A warning results if the loaded file does not
contain debug information. The actual data is useful, however.

 Warning: No debug information, <file name>.

• The object file in the srf33 format contains the source file information, including the directory structure.

Therefore, the source file cannot be loaded unless it resides in a specified directory within the object file as
viewed from the current directory.

 When loading a file using a menu command or tool bar button, the directory you select in the dialog box
becomes the current directory.

 When using the lf command, the current directory is not modified.
 Seiko Epson recommends that you basically perform a series of operations from the C Compiler

gcc33/Preprocessor pp33 to the Debugger db33 in the same directory (after making it the current directory).

• Up to 32767 lines in one source file can be loaded.

• If the [Source] window is open when loading a file, its contents are updated. The program contents are

displayed in the currently set display mode beginning with the current PC. The PC is not modified by loading a
file.

CHAPTER 16: DEBUGGER

372 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

• When a file is read in, the current debugging information and the symbol registration information in the
[Symbol] window are invalidated. However, break information is left intact, so clear all break information
using the bac command before loading a file. Furthermore, if the [Memory] window is open, all of its contents
will be cleared. In this case, redisplay the [Memory] window by executing a dump (db, dh or dw) command or
clicking on the vertical scroll bar.

• If an error occurs when loading a file, portions of the file that have already been read will remain in the

emulation memory. However, in this case, you cannot use the source display or symbols to debug the program.
Nor can you see to what extent the file has been loaded. Furthermore, the db33 forcibly switches the [Source]
window in disassemble display mode.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 373
C COMPILER PACKAGE MANUAL (ver.3)

lh (load hex) [ICD / ICE / SIM / MON]

� Function
This command loads the Motorola S3 format file output from the hex33 into the debugger.

� Formats
(1) lh (guidance mode)
(2) lh <file name> <offset> (direct input mode)
 <file name>: File name to be loaded (path can also be specified)
 <offset>: Offset address

� Input examples

Format 1) ���↵�
� ������	
���������	↵ ...Input a file name including the extension.
 ������������������↵ ...Specify the offset address.
 �

 Specify offset = 0 for the Motorola S3 format that has absolute addresses attached when generated.

Format 2) ��������	������↵
 �

� Notes
• With the Motorola S3 format program file loaded, you cannot use the source display or symbols to debug a

program.

• If the [Source] window is open when loading a file, its contents will be updated. The program contents are

displayed in disassemble mode beginning with the current PC. The PC is not modified by loading a file.

• If an error occurs when loading a file, portions of the file that have already been read are left as they were

loaded.

• An error results if you specify an offset address that will cause the file to be loaded into an unmapped memory

area.
 Error: No map area.

CHAPTER 16: DEBUGGER

374 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

ld (load file) [ICD / ICE / SIM / MON]

� Function
This command loads the debugging information included in the specified srf33 object file into the debugger.

� Formats
(1) ld (guidance mode)
(2) ld <file name> (direct input mode)
 <file name>: File name to be loaded (path can also be specified)

� Input examples

Format 1) ���↵�
� ������	
���������	↵ ...Input a file name including the extension.
 �

Format 2) ��������	↵�
� �

� Notes
• The ld command does not change data except for the debugging information. This command should be used

only when the program has been loaded, such as debugging for the program written to the ROM.

• Only the srf33 object file in the executable format (generated by the linker) can be loaded by the ld command.
 Error: Cannot load data, please check SRF33 file.

• A warning results if the loaded file does not contain debug information.
 Warning: No debug information, <file name>.

• The object file in the srf33 format contains the source file information, including the directory structure.

Therefore, the source file cannot be loaded unless it resides in a specified directory within the object file as
viewed from the current directory.

 Seiko Epson recommends that you basically perform a series of operations from the C Compiler
gcc33/Preprocessor pp33 to the Debugger db33 in the same directory (after making it the current directory).

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 375
C COMPILER PACKAGE MANUAL (ver.3)

16.9.11 Commands to Operate Flash Memory

fls (flash memory set) [ICD / (ICE) / MON]

� Function
This command initializes the flash memory information used to write data to the flash memory on the target
system.

� Format
 fls (guidance mode)

� Input example

����↵�
��������	�
	����
���������������� � ...Undefined address�
��������������
������������������

��
����
��	�������
��������������

��
�	��
��	�������
��������������

����	��������
����������
���↵�� � ...Choose "1. set".�
�������	�
	����
������������������������↵� ...Flash start address�
�������������
��������������������������↵� ...Flash end address�
�
����
��	�������
����������������������� ���↵� ...Erase-routine start address�
�
�	��
��	�������
�����������������������!�"↵� ...Write-routine start address�
��

 * �����������	
�������������������������

� Notes
• The fls command can be used only for the flash memory on the target system and does not affect the ICE33

flash memory. Furthermore, simulator mode does not support this command.

• To erase and write data of the flash memory on the target system, a data write/erase routine must be loaded to

the specified address before using this command. Refer to the "readme.txt" of the flash support utility fls33 for
the flash write/erase routine.
("fls33" and "readme.txt" can be installed using "cc33\utility\fls33\fls33vXX.exe".)

• When using this command in ICE mode, the ICE firmware must be Ver. 2.0 or higher.

CHAPTER 16: DEBUGGER

376 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

fle (flash memory erase) [ICD / (ICE) / MON]

� Function
This command erases the contents of the flash memory on the target system.

� Format
 fle (guidance mode)

� Input example

����↵�
����	
�������	�
������������ � ...Flash start address set by fls�
��	�
	����������������������� � ...Undefined address�
�����������������������������
���	
�������	�
��������������������↵� ...Flash start address�
�	�
	��������������������������↵� ...Specify the range to be erased.�
�������������������������������↵� Start = End = 0: erase all�
������	������������� � ...The return value from the erase routine is displayed.�
��

 * �����������	
�������������������������

� Notes

• The fle command can be used only for the flash memory on the target system and cannot be used for the ICE33
flash memory. Furthermore, simulator mode does not support this command.

• To erase the flash memory on the target system, a data write/erase routine must be loaded to the target memory

and the fls command must be executed before using this command. If the erase routine has not been loaded, an
error will result when the fle command is executed.

 Error: Erase routine is not set.

• This command must be executed before writing data to the flash memory on the target system.

• When using this command in ICE mode, the ICE firmware must be Ver. 2.0 or higher.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 377
C COMPILER PACKAGE MANUAL (ver.3)

lfl (load from flash memory) [ICE]

� Function
This command loads the memory contents from the flash memory of the ICE33 into the target memory.
It therefore allows you to debug the program beginning from the contents previously saved to the flash memory up
to latest one.

� Format
 lfl (guidance mode)

� Input example

����↵�
�����	
��
����	��	����������������	�������↵� ...Confirmation of whether or not to load�
�	�������	����������	��������������������	���
��

 Choose 2 if you want to stop loading memory contents.

� Notes
• The lfl command is designed specifically for the ICE33 flash memory and does not support the flash memory

on the target system. Therefore, this command can be used only in ICE mode.

• If the flash memory is protected against read/write or has been erased, an error will result and memory contents

will not be loaded into the target memory.
 Error: Flash ROM is protected. ...If the flash memory is protected.

• Even if the flash memory and target memory are mapped differently, memory contents are loaded and the map

is rewritten.

• If an error occurs when loading data, portions of the data that have already been read into the target memory

are left as they were loaded.

CHAPTER 16: DEBUGGER

378 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

sfl (save to flash memory) [ICE]

� Function
This command writes the contents of the target memory in the ICE33 into the ICE33 flash memory.
Writing to the flash memory allows the ICE33 to be operated in free-run mode. Furthermore, the next debug
session can be continued immediately from the current contents in the flash memory.
The flash memory can be write-protected.

� Format
 sfl (guidance mode)

� Input example
According to the guidance, protect the flash memory and confirm whether you want contents to be written to the
flash memory.

����↵�
�
�	��	������� � �
!������"#!����#���###���↵ ...�������������������������
$
��!�%��%
��	����&�������"#!����#���###��"↵� ...����������������������������������
��&���	�������� � �
!�#################�������
�

 Choose 2 when prompted for confirmation if you want to stop writing memory contents.

� Notes
• The sfl command is designed specifically for the ICE33 flash memory and does not support the flash memory

on the target system. Therefore, this command can be used only in ICE mode.

• If the flash memory is write-protected, an error results and memory contents are not written to the flash

memory.
 Error: Flash ROM is protected.

 The write-protect can be removed by erasing the flash memory with the efl command.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 379
C COMPILER PACKAGE MANUAL (ver.3)

efl (erase flash memory) [ICE]

� Function
This command erases the contents of the ICE33 flash memory (including map information) and removes its protect
function.

� Format
 efl (direct input mode)

� Input example

����↵�
�����	
��
����	�������������������	�������↵� ...��������	���
��
�������
���������������	�������������������������	���
��

� Note
The efl command is designed specifically for the ICE33 flash memory and does not support the flash memory on
the target system. Therefore, this command can be used only in ICE mode.

CHAPTER 16: DEBUGGER

380 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

maf (map flash memory) [ICE]

� Function
This command displays the ICE33 flash memory map, chip name, version of the parameter file used and other
information.

� Format
 maf (direct input mode)

� Display examples

 (1) When the flash memory is not write-protected:

����↵�
���	�
�������������������������
���������������������
���������
�
���
������������������������������������
�� ������������������������������
!�"�����
������#������
������������������������������
��������������������������$��
��	�%���&��
��������
�
���������������������'����$��
���������������������(������
���������������������(������
�������������������������������"�����
� ...Emulation memory settings�
��������������������'�����$����"�����
�
���������������������'������)&������ ...Stack area settings�
����������������������������)&�������
��

 (2) When the flash memory is write-protected:

����↵�
�����������#����	����)��*+� � ...Protection status�
���	�
�������������������������
���������������������
���������
�
���
������������������������������������
�� ������������������������������
!�"�����
������#������
������������������������������
��������������������������$��
��	�%���&��
��������
�
���������������������'����$��
���������������������(������
���������������������(������
�������������������������������"�����
�
��������������������'�����$����"�����
�
���������������������'������)&������
����������������������������)&�������
��

 (3) When the flash memory is initialized:

����↵�
�����������#����
�����		�*+�
��

� Note
The maf command is designed specifically for the ICE33 flash memory and does not support the flash memory on
the target system. Therefore, this command can be used only in ICE mode.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 381
C COMPILER PACKAGE MANUAL (ver.3)

16.9.12 Trace Commands

tm (trace mode) [ICD / ICE / SIM]

� Function

 (1) ICE mode
 In ICE mode, this command displays and sets a trace mode and trace trigger conditions.

 Trace mode
 The following two trace modes can be set:

 1) Normal trace mode
 The data written to the trace memory is always the latest trace information.

 2) Single-delay trigger trace mode
 The following three types of trace sampling areas can be specified with respect to the trace trigger point

(establishment of trace trigger condition):
 1. start ...Trace information is collected beginning with the trace trigger point.
 2. middle ...Trace information before and after the trace trigger point is collected.
 3. end ...Trace information is collected until the trace trigger point is reached.

 Trace trigger conditions
 The following three types of trace trigger conditions can be set:

 1) Address
 One memory address can be specified. The trace trigger is generated on condition that the CPU accesses

this address.

 2) Data pattern
 Specify the data pattern that the CPU reads or writes to the above address. You can specify a 16-bit

pattern, setting each bit as desired. Selected bits or all bits can be masked out for exclusion from trace
trigger conditions.

 3) Bus operation type
 Specify a bus operation type in which operation the CPU accesses the above address. One of the

following bus operation types can be selected:
 0. All ...All bus operations
 1. Inst ...Instruction fetch
 2. VecR ...Vector fetch
 3. DatR ...Data read
 4. DatW ...Data write
 5. StkR ...Read from stack
 6. StkW ...Write to stack
 7. DmaR ...Read by DMA
 8. DmaW ...Write by DMA

 When one of these conditions is satisfied, a point in time (trace trigger point) at which single-delay trigger

trace or pulse output from the ICE33's TRGOUT pin is controlled.

 (2) ICD mode
 In ICD mode, this command displays and sets a trace mode and trace trigger addresses.

 Trace mode
 The following two trace modes can be set:

 1) All trace mode
 Trace is initiated by a start of program execution. The trace information is written to the trace memory

regardless of the address executed.

 2) Area trace mode
 Trace information is taken into the trace memory only when the program within the range from trigger

address 1 to trigger address 2 is executed.

CHAPTER 16: DEBUGGER

382 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 Trace condition in all trace mode
 In all trace mode, a trace memory write condition can be specified.

 1) Overwrite enabled
 The trace operation does not stop even if the trace memory (131072 cycles) is full and new data is

overwritten to the oldest data. Consequently, the data written to the trace memory is always the latest trace
information.

 2) Overwrite disabled
 Trace information is written to the trace memory until the memory becomes full, and then the trace

operation stops.

 Trace conditions in area trace mode
 In area trace mode, the following two conditions can be set:

 1) Break at trigger address 2
 The program execution can be suspended or continued at trace trigger address 2 after tracing the specified

area.

 2) Time measurement mode
 A measurement range of the program execution time can be selected from the following two types:
 All measurement mode: The execution time is measured from start to break of the program execution.
 Area measurement mode: Only the time while the program is executed within the range between trigger

addresses 1 and 2 is measured.

 In addition to the conditions above, the clock counter (Clk in the trace information) display mode can be set

either to count accumulating from start of tracing or to count in instruction units.
 Example:
 Counter display mode = "accumulate"
� ����������	�

��������

������������������������������

� ��

� ���

� ���

� ������������� ���������!����"	�#���$����������� �������

� �������������������������%�

 Counter display mode = "each instruction"
� ����������	�

��������

������������������������������

� ��

� ���

� ���

� ������������� ���������!����"	�#���$�������������������

� �������������������������%�

 (3) Simulator mode
 In the simulator mode, only the following operation can be selected:

 1) Trace function ON/OFF
 When the trace function is turned ON, trace information is collected according to program execution.

 2) Display of register value
 You can choose to collect register contents, in addition to basic trace information.

 3) Output destination of trace information
 An output destination for the collected trace information can be selected from a window or file. If you

choose a window, the trace information is displayed in the [Trace] window or (if the [Trace] window is
closed) in the [Command] window. When selecting a file, specify the desired file name too.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 383
C COMPILER PACKAGE MANUAL (ver.3)

� Format
 tm (guidance mode)

� Input examples for ICE mode

 (1) Displaying current setup contents
 When the tm command is executed, the current setup contents are displayed first.
 ���↵
� ����	��
�	������
����� � ... or "single delay"�
� ����	��������������������
� ���������	����������
� ���������������������
� ���	����������������
� ��������
���
��
�����
 ��
�����������	��	���������
������↵ ...���������	��
������������	�������������		�����
 �

 (2) Changing settings
 According to the guidance that appears after the current setup contents are displayed, input or choose the

desired new setup contents.
 ��
�����������	��	���������
�������↵ ...�������"2.single delay".
� �����	������	���������������������↵� � ...����	���	����������������
� ���������	�����������↵�� � ...���������	��
�	�������	�����		�������	�����������
� ����������������������↵�
� � �����	����������������!	�"�#����"�$����%�&�'��"�(�'��%�)����"�*����%�����������↵�
 ����������������	��#�	���������������↵� � ...Choose a trigger position.
 ��������
���
���
��������
 ��	������
�������↵� ...Choose a display option.
 �

 In this example, single delay trigger mode is selected so that the trace starts when the CPU fetches the

instruction at address 0xc00100.
 The guidance for selecting a trigger position appears only when single delay trigger mode is selected. It is not

displayed when normal mode is selected.

 The specified data pattern is 0x0000 but it does not affect the trigger condition since all the data bits are

masked by the data mask 0xffff. In this example, the trace trigger condition is satisfied when the CPU fetches
an instruction from address 0xc00100 regardless of the fetched instruction code. When including a data
read/write in the trigger condition, data must be specified in 16 bits. Therefore, a data mask is required for
setting a byte access condition. For example, to set a condition as a byte access with data 0x12, specify
0x1200 for the data pattern and mask the low-order 8-bits using the data mask 0x00ff. For an odd address,
specify 0x0012 for the data pattern and 0xff00 for the data mask.

 The display option allows selection of the [Trace] window display format. When "1. Normal" is selected, the

[Trace] window displays only the information traced in the ICE33. When "2. Source" is selected, the source
codes are displayed as well as the trace information.

 A symbol or source line number can be used to specify an address.

�����	������	��������������↵� � ...Sample entry of a symbol �
�����	������	������������������+�$↵� ...Sample entry of a line number �

 To quit in the middle of guidance, press the [q] key and then the [Enter] key. When the command is

suspended, already specified contents are validated.
 To return to the immediately preceding guidance, press the [^] key and then the [Enter] key.

� Note for ICE mode
The trigger address must be specified within the range of the memory area available for each microcomputer
model. An error results if this limit is exceeded. In this case, the system brings up a guidance for entering
addresses again.
 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

CHAPTER 16: DEBUGGER

384 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

� Input examples for ICD mode

 (1) Displaying current setup contents
 When the tm command is executed, the current setup contents are displayed first.
 ���↵
� ����	��
�	���������������	�� � ...or "all"�
� �	������	��������������
� � ...or "yes"�
� �	����	��
�	��������������� � ...or "area"�
� �����	������	������������������
� �����	������	������������������
� ����	������	�����������
�� � ...or "off"�
� �
���	�����������
�	������������	� ...or "each instruction"�
 ����	��
�	�� ����� ��	�� !���	���"↵ ...��������↵��	
��������������������������	����
 �

 (2) Changing settings
 According to the guidance that appears after the current setup contents are displayed, input or choose the

desired new setup contents.

 Setting all trace mode
 ����	��
�	�� ����� ��	�� !���	����↵ ...Choose "1.all".
� �	������	�� �	��� �
� !��
���↵� � ...Choose overwrite condition.�
� �
���	�����������
�	�� ���������	�� 	��#����������
�� !����������	���↵�
 �� � � � � � ...Choose counter display mode.

 In this example, all trace mode is selected, overwrite to the trace memory is enabled and the counter display

mode is set to instruction units.

 Setting area trace mode
 ����	��
�	�� ����� ��	�� !��������↵ ...Choose "2.area".
 �	����	��
�	�� ����� ��	�� !��������↵ ...Choose time measurement condition.
� �����	������	����!����������$�����↵� � ...Enter trigger address 1.�
� �����	������	����!����������$�����↵� � ...Enter trigger address 2.�
� ����	������	����
���
%%� !�
����↵� � ...Enable/disable address 2 break function.�
� �
���	�����������
�	�� ���������	�� 	��#����������
�� !����������	���↵�
� � � � � � � ...Choose counter display mode.�
� &��������'����(����	�������
����
��	�������	�	����
�	 �
 �

 In this example, the trace mode and the time measurement mode are set to "area". The trace range is set to

0x600000–0x60010 and break at 0x600100 is enabled. The clock count in the trace information will be
displayed with the accumulated value.

 To quit in the middle of guidance, press the [q] key and then the [Enter] key. When the command is

suspended, already specified contents are validated.
 To return to the immediately preceding guidance, press the [^] key and then the [Enter] key.
 To skip a guidance, press the [Enter] key.

� Note for ICE mode
• The trigger address must be specified within the range of the memory area available for each microcomputer

model. An error results if this limit is exceeded. In this case, the system brings up a guidance for entering
addresses again.

 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• The hardware PC break function is disabled when the area trace function is set. However, the set hardware PC

break address is maintained and it will be enabled when the area trace function is cancelled.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 385
C COMPILER PACKAGE MANUAL (ver.3)

� Input examples for simulator mode

 (1) Turning the trace mode on

����

����	��
���������������
↵� � � ...�����������	
����������

��������������
����������	����	���������	����	����	�������	������
↵�
�����������	�
������������	�������
↵� � ...����	���������������������������	������
��

����
����	��
���������������
↵� � � ...�����������	
���������� �
��������������
����������	����	���������	����	����	�������	��������
�����������	�
������������	��������↵� � ...����	��������������������������	������
���	���	������	������↵�� � � ...���
����	���������������	����
 !��
�� ��� ��� ��� "�� #�� $� � � ...��������������	�������������
 %�� &��
!�

�
��
��
��
"�
'(��)* �)+ �
��

 When the program is executed after the above is set up, trace information is displayed or output for every

instruction executed. Command execution is terminated only when you input the [Enter] key in the middle of
guidance. Refer to "Displaying trace information in the simulator mode" for the display option.

 (2) Turning the trace mode off

���↵�
����	��
����������������↵� � � ...�����������	
�����������
��

� Displaying trace information in the simulator mode
If, when turning the trace mode on, a window is set for the output destination, the trace information is displayed in
the [Trace] window irrespective of whether the program is run continuously or stepwise. If the [Trace] window is
closed, the information is displayed in the [Command] window.
If a file is selected, the information is output to a file, and is not displayed in any window.

The [Trace] window shows the trace information from the latest one to that of maximum 255 instructions before.
The following shows display examples according to the display option selected by the tm command.

When "1. normal" is selected:

CHAPTER 16: DEBUGGER

386 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

When "3. source" is selected:

When "4. register, source" is selected:

When "2. register" is selected from the display option, the display format is the same as "4" but the source part is
not displayed.
Trace information is displayed in the [Command] window by using the same format as shown above.
The following lists the trace information that is displayed on the screen in simulator mode:

 <1st line of each trace information>

Number: Executed instruction number (decimal).
 This is the executed instruction number after the CPU is reset or trace is turned on.
Address: Executed instruction address (hexadecimal).
Code: Instruction code (hexadecimal).
Unassemble: Disassembled content.
Address: Accessed memory address (hexadecimal).
Type: Bus operation type.
 rB: Byte data read, rH: Half word data read, rW: Word data read
 wB: Byte data write, wH: Half word data write, wW: Word data write
Data: Read/write data (hexadecimal).
File: Source file name (displayed only when source display is selected by the tm command).
Line: Source line number (displayed only when source display is selected by the tm command).
SourceCode: Source code (displayed only when source display is selected by the tm command).

 <Lines 2–4 of each trace information>
 These lines are displayed when register option is selected with the tm command.
 The register values appear in the order shown below.
 R0 R1 R2 R3 R4 R5 R6 R7
 R8 R9 R10 R11 R12 R13 R14 R15
 SP AHR ALR PSR (displayed in flag units)

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 387
C COMPILER PACKAGE MANUAL (ver.3)

td (trace dump) [ICD / ICE]

� Function
This command displays the trace information that is sampled into the trace memory in the ICE33/ICD33.

� Format
 td [<No.>] (direct input mode)
 <No.>: Trace cycle No. (decimal)
 When omitted, trace data is displayed beginning with the latest data.
 Condition: ICE mode 0 (latest data) ≤ No. ≤ 32767 (oldest data)
 ICD mode 0 (latest data) ≤ No. ≤ 131071 (oldest data)

� Display

 (1) When the [Trace] window is open
 ���↵�
� �

 When the td command is executed after breaking the program, the [Trace] window redisplays the latest data.

The most recently traced data is shown on the bottom line of the window. All trace data can be displayed by
scrolling the window.

 When a trace cycle No. is specified, the data of a specified cycle is displayed on the bottom line of the
window. In this case too, all trace data can be displayed by scrolling the window.

Display example in ICE mode

When "normal" is selected from the display option of the tm command:

When "source" is selected from the display option of the tm command:

CHAPTER 16: DEBUGGER

388 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 The following lists the contents of trace information displayed in ICE mode:
Cycle: Trace cycle (decimal). The last information taken into the trace memory becomes 00000.
Address: CPU-instruction-fetch address (hexadecimal).
 "--------" is displayed for a non instruction-fetch access.
Code: Instruction code fetched by the CPU (hexadecimal).
 "----" is displayed for a non instruction-fetch access.
Unassemble: Disassembled content of the fetched instruction.
 "--------" is displayed for a non instruction-fetch access.
Address: Address accessed by the CPU (hexadecimal).
 "--------" is displayed for an instruction-fetch access.
Data: Read/write data (hexadecimal).
 "----" is displayed for an instruction-fetch access.
Clk: Number of clocks used in the bus operation (1 to 7).
 "V" is displayed when 8 or more clocks are used.
Type: Bus operation type:
 Inst: Instruction fetch, VecR: Vector read, DatR: Data read, DatW: Data write
 StkR: Stack read, StkW: Stack write, DmaR: DMA read, DmaW: DMA write
 Access size:
 B: Byte access, H: Half word access, W: Word access
 Memory type:
 SRAM, DRAM, BROM (burst ROM), IRAM (internal RAM), I/O (internal I/O)
 DBUG (for ICE development), ERR (others)
TRC: Input to TRCIN pin (denoted by L when low-level signal is input).
T: Trace trigger point (placed at the beginning of the line).
 Displayed only for the bus cycle that meets trace trigger conditions.
File: Source file name (displayed only when source display is selected by the tm command).
Line: Source line number (displayed only when source display is selected by the tm command).
SourceCode: Source code (displayed only when source display is selected by the tm command).

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 389
C COMPILER PACKAGE MANUAL (ver.3)

Display example in ICD mode

 The following lists the contents of trace information displayed in ICD mode:

Cycle: Trace cycle (decimal)
The last information taken into the trace memory becomes 000000.

Address: CPU-instruction-execution address (hexadecimal)
Code: Instruction code executed by the CPU (hexadecimal)
Unassemble: Disassembled content of the instruction code
Clk: Number of clocks used for executing the instruction
 By default, the cumulative clock count from start of tracing is displayed. It can be changed so

that the number of clocks for each executed instruction is displayed.
Method: Trace analytical method (to get the executed PC address)
 SPC: Analyzed with the start PC address

 TRG: Analyzed with the trigger address
 DPC: Analyzed with the DPCO signal

 RET: Analyzed with the call/ret statement
 MAP: Analyzed with the map information
 RTI: Analyzed with the reti statement
 ---: Cannot be analyzed
File: Source file name (which includes the executed instruction)
Line: Source line number
SourceCode: Source code

 In ICD mode, the trace information can also be displayed while the program is being executed. By clicking

the [Display trace] button, the ICD33 suspends tracing and displays the sampled trace memory data to the
[Trace] window. The trace operation can be resumed by clicking the [Resume trace] button.

 [Display trace] button [Resume trace] button

 (2) When the [Trace] window is closed
 16 lines (default) of trace data are displayed in the [Command] window. The number of display lines can be

changed using the md command.
 The latest data is shown on the bottom line of the window if trace cycle No. is omitted. When a trace cycle

No. is specified, data of the specified cycle is shown on the bottom line.

 (3) Logging
 To save the command execution results to a log file, close the [Trace] window and display the results in the

[Command] window. If the [Trace] window is open, the display contents will not be saved in the file because
the [Command] window does not display the results.

CHAPTER 16: DEBUGGER

390 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 (4) Successive display
 Once you execute the td command, data can be displayed successively with the [Enter] key only until some

other command is executed.
 When you hit the [Enter] key, the [Trace] window is scrolled forward one full screen.
 When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the

previously displayed address.

 The direction of display is such that each time you input the [Enter] key, data on older execution cycles is

displayed (FORWARD). This direction can be reversed (BACKWARD) by entering the [B] key. To return
the display direction to FORWARD, input the [F] key. If the [Trace] window is open, the direction in which
the window is scrolled is also changed.

 �������↵ ...Started display in FORWARD.
 (Data on cycle Nos. 115 to 100 is displayed.)
 ��↵ ...Changed to BACKWARD.
 (Data on cycle Nos. 99 to 84 is displayed.)
 �↵ ...Continued display in BACKWARD.
 (Data on cycle Nos. 84 to 69 is displayed.)
 ��↵ ...Changed back to FORWARD.
 (Data on cycle Nos. 99 to 84 is displayed.)
 �

� Notes for ICE mode
• Specify the trace cycle No. within the range of 0 to 32767. An error results if this limit is exceeded.
 Error: Trace range (0-32767).

• For reasons of the ICE33 operation timing, the trace data at the boundary of operations, such as in the fetch

cycle at which trace starts or the execution cycle at which trace ends, will not always be stored in memory.

• After a single-step execution or a break occurs, information of the pre-fetched instructions that have not been

executed are displayed. When the target program execution is suspended by a software PC break, the fetch
cycle information of the brk instruction that was inserted for the software PC break is also displayed.

• When the program starts a successive execution from an address set as a software PC break point, the ICE33

executes single-stepping before starting the successive execution. Therefore, redundant trace information
pre-fetched by the single-stepping may be displayed.

• For source-level step execution, the ICE33 repeats single-stepping internally. Therefore, a lot of pre-fetch

information of all the steps will be displayed.

• Trace data for read/write of the internal RAM cannot be referred since the bus access is undetectable.

• During data transfer by the high-speed DMA, data cannot be traced properly.

� Notes for ICD mode
• Specify the trace cycle No. within the range of 0 to 131071. An error results if this limit is exceeded.
 Error: Trace range (0-131071).

• In ICD mode, the debugger analyzes trace data based on the 4-bit information delivered from the CPU using

the disassembled program information. Therefore there are some restrictions. Refer to "ICD trace operation and
precautions" in Section 16.8.7 for details.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 391
C COMPILER PACKAGE MANUAL (ver.3)

ts (trace search) [ICD / ICE]

� Function
This command searches trace information from the trace memory under a specified condition.
In ICE mode, the search condition can be selected from two available conditions:

1. Address
 The cycle in which a specified address was accessed is searched. This condition can be specified to search the

entire memory area.
2. Bus operation type
 The cycle in which a specified bus operation was performed is searched. A bus operation type can be selected

from the following:
 0. All ...All bus operations 5. StkR ...Stack read cycle
 1. Inst ...Instruction fetch cycle 6. StkW ...Stack write cycle
 2. VecR ...Vector fetch cycle 7. DmaR ...DMA read cycle
 3. DatR ...Data read cycle 8. DmaW ...DMA write cycle
 4. DatW ...Data write cycle

In ICD mode, a program execution address can be specified as the search condition.

It is also possible to display the information before and after the searched line in the range of 0 to 256 lines each.

� Format
 ts (guidance mode)

� Input example

 ICE mode

���↵�
����	
������������������������������↵ ...��������	
�	�������
���������������
�����	��	��
���������������������������	���� ����!� ��"�#���$��%���$"�&� '���(� '�"�)))����
*�'+���,-��������������.�#%��������↵ ...∗1
*�'+���,-��,�����������.�#%��������↵ ...∗2
/���������	������)���������� ...����	������
�����������
���	������
�

 ICD mode

���↵�
����	
����������������������������(����(↵ ...��������	
�	����
*�'+���,-��������������.�#%��������↵ ...∗1
*�'+���,-��,�����������.�#%��������↵ ...∗2
/������������	������)��(���������� ...����	������
�����������
���	������
�

 ∗1 Number of lines to display the data preceding the searched line
 ∗2 Number of lines to display the data following the searched line

� Displaying search results
The search result (occurrences found) is displayed in the [Command] window.
The trace information is displayed in order of the trace cycle number.

 (1) When the [Trace] window is open
 The searched trace information is displayed in the [Trace] window.
 The [Trace] window is switched to the search mode so that the searched data can be displayed successively

by scrolling the window in the vertical direction. This display mode remains effective until you input the td
command.

 (2) When the [Trace] window is closed
 The 16 lines (default) of searched data are displayed in the [Command] window. The number of display lines

can be changed using the md command. The display mode here is the same as with the td command. Also, if
the search result includes more than 16 occurrences, data is displayed in the same way as for the td command.

CHAPTER 16: DEBUGGER

392 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

� Notes
• The ts command can only be used in ICE and ICD modes.

• The address must be specified within the range of the memory area available for each microcomputer model.

An error results if this limit is exceeded. In this case, the system brings up a guidance for entering addresses
again.

 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 393
C COMPILER PACKAGE MANUAL (ver.3)

tf (trace file) [ICD / ICE]

� Function
This command saves a specified range of data in the trace memory or from the search results of the ts command (if
immediately after execution of the ts command) to a file.

� Format
 tf (guidance mode)

� Input example

 ICE mode

���↵
�������	�
����������������������������↵ ...Save start cycle number is input.
�����	�
���������������������������↵ ...Save end cycle number is input.
��
�������������\���������↵ ...File name is input.
�� ��!!��"�����#$��$��	�
�� ...Displays the progress in 1000 cycle units.
�� ��!!��"�$���#$��	�
���
�� ��!!��"��#���	�
���
�

 ICD mode

���↵
�������	�
�������������$�$��$������$���↵ ...Save start cycle number is input.
�����	�
����������������������������↵ ...Save end cycle number is input.
��
�������������\���������↵ ...File name is input.
%�����"�������������
&�'��"���
���
�

� Notes
• The tf command can only be used in ICE and ICD modes.

• When an existing file is specified, the file is overwritten with new data.

• The search results of the ts command are saved in the same order of the numbers displayed beginning with the

smallest number.

CHAPTER 16: DEBUGGER

394 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.9.13 Simulated I/O

stdin (standard input) [ICD / ICE / SIM / MON]

� Function
This command sets up the environment necessary to input data from the [Simulated I/O] window or a file, and pass
it on to the program. Use this command to set up the following conditions:
• Break address (a position at which the db33 takes in data)
• Input buffer address (a 65-byte buffer)
• Input device ([Simulated I/O] window or a file)

For preparation on the program side, refer to Section 16.8.8, "Simulated I/O".

� Format
 stdin (guidance mode)

� Input examples

 (1) Setting

������↵�
�	
������	
��������������� ...������������	�
��� �
����
	����	
��������������
���
�������
�	�������↵� � ...�����������������
�	
������	
���������������↵� � ...���������������������
����
	����	
����������� �↵� � ...���������	�������������������
!�"���#$�
����%���$%�������
�������↵� ...�	�
������������
����������
������������	����
�

 If the program is run continuously after setting up the above, the db33 stops executing at the position of a

label READ_FLASH in the program, and brings up the [Simulated I/O] window. When you input data in the
window and press the [Enter] key, the db33 takes in the input data into the input buffer (READ_BUF), then
restarts executing the program.

 If you chose "2. file" in the input mode, input a file name too.

!�"���#$�
����%���$%�������
�������↵� �
���
���#
�����"����&�↵� ...�	�
������������������������
����������������	���������
�

 If you chose a file for the input source, the db33 takes in one line of data from a specified file at the break

position without bringing up the [Simulated I/O] window.

 To terminate command execution, input only the [Enter] key in the middle of guidance.

 (2) Clearing

������↵�
�	
������	
�����'''('�)*������������� ...������������	�
��������
����
	����	
����''''''+(������� ���
���
�������
�	�������↵� � ...�����������
�������
�

 The data input function is deactivated.

� Notes
• The break address you set in the stdin command cannot overlap any software PC breakpoint. In such a case,

clear the software PC breakpoint before you execute the stdin command. Overlapping with a hardware PC
breakpoint is accepted.

• The break and buffer addresses must be specified within the range of the memory area available for each

microcomputer model. An error results if this limit is exceeded. In this case, the system brings up a guidance
for entering addresses again.

 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• When using the simulated I/O function in ICE mode, the display response time is improved by setting the baud

rate to 115200bps and the on-the-fly interval to 0 (md command).

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 395
C COMPILER PACKAGE MANUAL (ver.3)

stdout (standard output) [ICD / ICE / SIM / MON]

� Function
This command sets up the environment necessary to output data from a specified output buffer to the [Simulated
I/O] window or a file. Use this command to set up the following conditions:
• Break address (a position at which the db33 outputs data)
• Output buffer address (a 65-byte buffer)
• Output device ([Simulated I/O] window or a file or both)

For preparation on the program side, refer to Section 16.8.8, "Simulated I/O."

� Format
 stdout (guidance mode)

� Input examples

 (1) Setting

�������↵�
�	
������	
��������������� ...������������	�
���
����
	����	
��������������
���
�������
�	�������↵� � ...�����������������
�	
������	
��������������� ↵� � ...���������������������
����
	����	
������������!�↵� � ...����������	�������������������
"��#���$��
����%&'��%�����&�
�(�%&'��%�)��&�
������(↵� ...�	�
���������������������
�&�
�'�$
������#����*�↵� � ...�	�
����������������������
�������������	����
��

 If the program is run continuously after the above is set up, the db33 stops executing at the position of a label

WRITE_FLASH in the program and brings up the [Simulated I/O] window. Next, the db33 outputs data
from a specified buffer (WRITE_BUF) to the [Simulated I/O] window and a specified file. If you only
specified a file for the output destination, the [Simulated I/O] window is not opened.

 To terminate command execution, input only the [Enter] key in the middle of guidance.

 (2) Clearing

�������↵�
�	
������	
�����+++,+�-+����������� �� ...������������	�
��������
����
	����	
����+++++++.��������!���
���
�������
�	�������↵� � ...�����������
�������
�

 The data output function is deactivated.

� Notes
• The break address you set in the stdout command cannot overlap any software PC breakpoint. In such a case,

clear the software PC breakpoint before you execute the stdout command. Overlapping with a hardware PC
breakpoint is accepted.

• The break and buffer addresses must be specified within the range of the memory area available for each

microcomputer model. An error results if this limit is exceeded. In this case, the system brings up a guidance
for entering addresses again.

 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• When using the simulated I/O function in ICE mode, the display response time is improved by setting the baud

rate to 115200bps and the on-the-fly interval to 0 (md command).

CHAPTER 16: DEBUGGER

396 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.9.14 Other Commands

com (execute command file) [ICD / ICE / SIM / MON]

� Function
This command reads a command file and successively executes the debug commands written in that file.

� Formats
(1) com (guidance mode)
(2) com <file name> (direct input mode)
 <file name>: Command file name

� Input examples

File name = startup.cmd
 ���������	
� � ...��������	
������������
��
���������
�������������������������������
��
� 	���
������
� ����	���
�
��
� �����
� ������	������
�
� �������

 ����↵�
� ��	
����
��������������↵� ...Command file name is input.�
� �	���
������
� ������
� ��������
� ��

The commands written in the file are displayed in the [Command] window as they are executed.

� Notes

• Another command file can be read in from within a command file. However, the nesting of command files is
limited to a maximum of five levels. An error will result if a com (or cmw) command at the sixth level is
encountered, and the subsequent execution will be halted.

 Error: Cannot open file, <file name>.

• By specifying the -c option with the db33 startup command, you can execute one command file simultaneous

with the startup of the debugger.
 Example: db33 -c startup.cmd -p 88104_1.par

• Once the commands described in the specified command file are executed by entering the com command, the

commands can be executed repeatedly by pressing the [Enter] key until another command is executed similarly
to the g, s and n commands.

 For example, if the command file "test.cmd" contains the following two commands, they can be repeatedly
executed after once the com command is executed.

 s
 db 800100 ... Contents of test.cmd

 ������
�����↵ ... Executes "s" and "db 800100".
 �↵ ... Repeats execution of the above commands.
 �↵ ... Repeats execution of the above commands.

 This makes it possible to repeat multiple commands using the [Enter] key only.

• The [Key break] button can be used to suspend the command execution by a command file. When a command

that takes a long execution time (fill command for large area, etc.) is executed, keep the mouse button pressed
until the operation is accepted.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 397
C COMPILER PACKAGE MANUAL (ver.3)

cmw (execute command file with wait) [ICD / ICE / SIM / MON]

� Function
This command reads a command file and executes the debug commands written in that file at predetermined time
intervals.
The execution interval of each command can be set in a range of 1 to 256 seconds (in 1-second increments) using
the md command. In the initial debugger settings, the execution interval is 1 second.

� Formats
(1) cmw (guidance mode)
(2) cmw <file name> (direct input mode)
 <file name>: Command file name

� Input example

 ����↵�
� ���	�
��	����
����������↵� ...Command file name is input.
 : ...Commands are executed.

� Notes
• Another command file can be read in from within a command file. However, the nesting of command files is

limited to a maximum of five levels. An error will result if a cmw (or com) command at the sixth level is
encountered, and the subsequent execution will be halted.

 Error: Cannot open file, <file name>.

• If the cmw command is written in the command file that you want to be read by the com command, all other

commands following that command in the file (even when a com command is included) will be executed at
predetermined time intervals.

• The cmw allows repeat execution by the [Enter] key similar to the com command.

• The [Key break] button can be used to suspend the command execution by a command file. When a command

that takes a long execution time (fill command for large area, etc.) is executed, keep the mouse button pressed
until the operation is accepted.

CHAPTER 16: DEBUGGER

398 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

log (logging) [ICD / ICE / SIM / MON]

� Function
This command saves the input commands and the execution results of the commands that are displayed in the
[Command] window to a file.

� Formats
(1) log (guidance mode)
(2) log <file name> (direct input mode)
 <file name>: Log file name

� Saved contents
The contents displayed in the [Command] window are written as displayed directly to the log file.
The commands executed from a tool bar or menu and the execution results displayed in other windows are not
displayed in the [Command] window, so they are not output to a file either. To save a log, close all windows other
than the [Command] window before you execute the log command.

� Input examples

 �	��↵�
� ��	
����
����	���	��↵ ...Log file name is input.
 	����� ...�
��
����
	�

����������
 �
 : ������
	�
������������
������
���
�����������������������
������
��
 �	��↵�
 	������ ...�����������
	�

����������
 �

� Notes
• When an existing file is specified, the file is overwritten with new data.

• When outputting a log, close all windows other than the [Command] window and increase the number of lines

for the execution results to be displayed in the [Command] window (16 lines by default) by using the md
command. This will help you reduce the labor and time required for key operation.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 399
C COMPILER PACKAGE MANUAL (ver.3)

od (option data dump) [ICE]

� Function
This command displays option data in the [Command] window in a hexadecimal dump format after reading it from
the ICE33.

� Format
 od (guidance mode)

� Input example
Input the start and end addresses of the display range sequentially in the order given by the guidance.

���↵�
����������	

����↵�
����������	

�����↵�
���

�������������������

��

• The start and end addresses can be omitted by entering the [Enter] key only.
 If the start address is omitted, data is displayed beginning with address 0.
 If the end address is omitted, the end address of the option area is assumed.

• The maximum number of lines that can be displayed at once is 16 (default). Even if you specify the end address

in an attempt to display more than 16 lines, the db33 will only display data for 16 lines and then stand by
waiting for a command input. The following addresses are displayed by entering the [Enter] key. The number
of display lines can be changed using the md command.

• Data in unused areas is marked by an "*" as it is displayed in the window.

� Notes
• The od command cannot be executed in the modes other than ICE mode.
 Error: Command is not supported at present mode.

• Both the start and end addresses must be specified within the setup range of the option. An error results if this

limit is exceeded.
 Error: Address range (0-0x3FFF). ...Specified address is outside the range.

• An error results if the start address is larger than the end address.
 Error: address1 > address2

• The default value of option data is 0.

CHAPTER 16: DEBUGGER

400 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

ct (change type) [ICD / ICE / SIM / MON]

� Function
This command converts the input numeric values and character strings to other display formats before displaying
them on the screen.

� Formats
(1) ct (guidance mode)
(2) ct <value> (direct input mode)
(3) ct <option><value> (direct input mode)
 <value>: Numeric value to be converted (decimal, hexadecimal, real number)
 <option>: : ...Converts binary
 Converts hexadecimal to double type
 ' ...Converts hexadecimal to character string
 " ...Converts character string to hexadecimal

� Input examples

 (1) Guidance input

���↵�
 �	�
�����!"#$↵� � � ...Input the numeric value to be converted.�
%��������&&&&&&&&&&&&&&&&&&��&&&&&&���&&��
'
(������&&&&"&")�
��

 (2) Converting a binary number
 Add a colon (:) at the beginning of a binary number when you input it. The input binary number is converted

to a decimal, hexadecimal and single-precision real number representation.
�����&�&&&&&�↵�
�
�������*$�
'
(������&&&&&&#��
�	�������)�&+##&&�+
,&##� � ..."float" is displayed down to 9 decimal places.�
��

 (3) Converting a decimal number
 Add a minus sign (-) to a negative number when you input it. Do not add a "+" for any positive number. The

input decimal number is converted to a binary and hexadecimal number.
�����!"#$*↵�
%��������&&&&&&&&&&&&&&&����&&&�&&�&&&&&&�
'
(������&&&�-!#&�
����,�↵�
%���
'
(���������������
��

 (4) Converting a hexadecimal number

 Conversion to binary, decimal or single-precision real number representation
 Normal hexadecimal representation is converted to a binary, decimal and single-precision real number

representation.
����&(#��%��↵�
%��������&&&&&&&&&�&&&&&��&�&�&����&&��&��
�
�������#"&"+!��
�	�������*&"&)"..$+
,&")�
��

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 401
C COMPILER PACKAGE MANUAL (ver.3)

 Conversion to character string
 To convert a hexadecimal number to a character string, add an apostrophe (') at the beginning of the number

and separate each byte with a space, tab or comma when you input it. Up to 16 bytes can be converted.
 The ASCII code that can be displayed (0x20 to 0x7F) is converted to characters, while all other codes are

turned to spaces. The "0x" is not required for the hexadecimal numbers input.
������������	�����
���↵�
�����������������
��

 Conversion to a double-precision real number representation
 To convert a hexadecimal number to a double-precision real number, input 8 bytes of a hexadecimal number

after adding a period (.) at the beginning of the number. Insert a space, tab or comma between the four
high-order and four low-order bytes. The "0x" is not required for the hexadecimal numbers input.
�����	����������������↵� �
����� �����!!!!!!
�	���"��� #$$$� ..."double" is displayed down to 16 decimal places.�
��

 (5) Converting a character string
 Add a double quotation (") at the beginning of a character string when you input it. Up to 16 characters can

be input. The input character string is converted to a hexadecimal number.
�����%���↵�
& '�������������	�����
��

 (6) Converting a real number
 A real number is converted to a binary and hexadecimal number of a single-precision and double-precision

real number size.
������(
↵�
���)�*���$$���������$$$$$$$$$$$$$$$$$$$$$�
���)�*���$$������������$$�
& ')�*���	��$$$$$�
& ')�*���	���$$$$$$$$$$$$�
��

� Notes
• The input binary, decimal, and hexadecimal numbers are handled as a 32-bit numeric value. If a number

exceeding 32 bits is input, the conversion result is displayed as "------".

• For decimal and real numbers, specification of a negative number (marked with "-") is accepted.

• Converted decimal numbers are signed 32-bit data.

CHAPTER 16: DEBUGGER

402 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

ext (extended instruction) [ICD / ICE / SIM / MON]

� Function
This command calculates the immediate data extended by the ext instruction and returns the result in the extended
instruction format of the instruction extender.

� Format
(1) ext (guidance mode)
(2) ext <address> (direct input mode)
 <address>: Target instruction address (hexadecimal, symbol or source line number)
 Condition: 0x0 ≤ address ≤ 0xfffffff

� Input examples

 Guidance mode

�
(�↵�
/���
������+&�&&↵� ...Input a target instruction address.
 :�

 Direct input mode

�
(��+&�&&↵�
������

 (1) Branch instruction

 When the ext instruction has not been used:
� ����
�������
��������������

� �&&&&&���&&&&������

� �&&&&!����-&���0������&(��

� �
(���&&&&!�

� (0�������&(�
�����������1&(&&�&&&!&2�

� ��

 For branch instructions, the immediate data is extended with 0 at the LSB. () indicates the branch destination
address.

 When the ext instruction has been used:
� ����
�������
��������������

� �&&&&&���&&&&������

� �&&&&!����&�&��
(�����&(�&�

� �&&&&#����&&&��
(�����&(&�

� �&&&&*����-&���0������&(��

� �
(���&&&&*�

� (0�������&(+&&&&&�������1&(&&�#&&&*2�

� ��

 (2) Other instructions

� ����
�������
��������������

� �&&&&&���&&&&������

� �&&&&!�����&&��
(�����&(�&&�

� �&&&&#���"&!���	�3���4��564�!7�

� �
(���&&&&#�

� (�3����4��64�!8&(�&&7�

� ��

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 403
C COMPILER PACKAGE MANUAL (ver.3)

� Notes
• An error results if an address of the instruction that cannot be extended by the ext instruction is specified.
 Error: Target instruction cannot be extended.

• Up to two ext instructions immediately preceding the specified address are effective for the calculation.

• The address must be specified within the range of the memory area available for each microcomputer model.

An error results if this limit is exceeded.
 Error: Address range (0-0xFFFFFFF). ...If an address exceeding 0xfffffff is specified.
 Error: No map area. ...If an unused address is specified.

• Specify a half word boundary address (even address) for the address. If odd address is specified, a warning is

generated and the LSB of the specified address is rewritten to 0.
 Warning: Round down to multiple of 2.

CHAPTER 16: DEBUGGER

404 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

ma (map information) [ICD / ICE / SIM / MON]

� Function
This command displays the map information that is set by a parameter file.

� Format
 ma (direct input mode)

� Display
After the command is input, the db33 displays the chip name, version of the parameter file, and map information
in each area.

Example: map information when the area from 0x600000 to 0x6fffff is set to big endian.

����
�����	��
�����������������������
�����
�
�����
��
����	���������
�	�
�	���������
��������������������������
��
���������
�������������������
!�"�����	��
���#���
��$	���"�
%��	����"��������%
&��
��������������������������'���
�
���#������	���������	�
���������������������(����'��
��������)����������)��������
������������������������'��
�������*����������*�������'������������+,�-�
	%��	�
�����������������������������
�"�����	�
�������*����������*���������./���
��
��

�

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 405
C COMPILER PACKAGE MANUAL (ver.3)

md (mode) [ICD / ICE / SIM / MON]

� Function
This command sets the debugger modes described below.

1. Step display for single-step execution results and [Memory] window
 When the step display mode is set to on, the execution results of all steps will be displayed during single-step (s,

n command) operation. When the step display mode is set to off, the execution result of only the last step will
be displayed. The register values are updated when their contents are displayed in the [Register] window; they
are displayed in the [Command] window if the [Register] window is closed. If the [Source] window is open, the
displayed lines are underlined as they are executed according to the setting of this mode.

 The [Memory] window while the step display mode is on updates its display contents every step during
single-step operation or updates after a break has occurred during successive execution. When the step display
mode is off, the [Memory] window is not updated automatically. To update the window, it is necessary to
execute a memory dump command or to scroll the window.

2. Mode of execution counter
 This can be selected from the integration mode or the reset mode. In reset mode, the counter value is reset to 0

each time you enter a program execution command (including execution by the [Enter] key).
 The value of the execution counter is also reset when you switch the integration mode to the reset mode.

3. ICD execution counter function (only for ICD mode)
 The measurement unit of the ICD33 execution counter can be selected from three types: cycle units, second

units and µsec units.

4. Number of lines for displaying command execution results
 When displaying the execution results of the commands listed below in the [Command] window, you can

choose the number of lines that you want displayed at a time from 1 to 1,000 lines.
 Applicable commands: db, dh, dw, sc, m, u, sy, sw, sa, sd, od, td, ts

5. cmw command wait time
 A cmw command wait time can be set in the range of 1 to 256 seconds (in 1-second increments).

6. TAB stop
 The TAB stops used in the source display can be set every 2, 4, or 8 characters.

7. Displaying on-the-fly information (only for ICE and ICD modes)
 You can choose the display interval of the on-the-fly information from 0 to 10 (times) per second. When 0 is

chosen, the on-the-fly information will not be displayed.

Default values of debugger modes
��������

�	

	������	�

�

�����	��

������	�

�

�����������

�
������

�	

	������	�

�

�����	��

������	�

�

�����������

�������

�	

	������	�

��� ������!����

�����	��

������	�

�

"�������#������	�

�������

�	

	������	�

�

�����	��

������	�

�

"�������#������	�

����

���#����#��!

��������	����	�������

�$���������	����	��

��� ��������#��!���	��

��%�%��������

&'(����#

�)�*�)��!���	����	

CHAPTER 16: DEBUGGER

406 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

� Format
 md (guidance mode)

� Input example
The db33 displays the contents of current settings to provide guidance that you can follow as you perform the
operations below.

���↵�
�����	
����������
�����	��������	���������
���

���
��������������������������

���
������
����
�������������

���������������	���
����������
���

�����	��������������������������

�	���������������������������

�
���������
����	������ ������!����

��

�����	
����������
�����	��������	��������"�
�#"����"""$��
���↵�
���
��������������������"���������#"��������"""$��������������#↵�
���
������
����
���"�����#"����%��&�'"����%�&�$�������������#↵�
���������������	���
����(��)))���
���������"""$��������
�������↵�
�����	�������������������(�# ���������������"""$���������������↵�
�	���������������������#*�+*�����,����������"""$���������������↵�
�
���������
����	�����)�(��)������!��������"""$� ������!�����#↵�
��

The above example applies to the ICD mode. In other modes, the set value and guidance for "Counter function" is
not displayed. In simulator and debug monitor mode, the set value and guidance for "On the fly interval" is not
displayed.
If you enter the [Enter] key only in the middle of a guidance, the previously set data will not be modified.
To quit in the middle, press the [q] key and then the [Enter] key. The contents you have input up until that time
will be modified.
The [^] key allows you to return to the immediately preceding guidance.

� Note
The actual interval of the on-the-fly display is obtained from the expression below.
(1 [sec] / Count set) + (Overhead of the PC, RS232C interface and ICE33 [sec]) = display interval [sec]

The overhead varies depending on the performance of the PC and baud rate of the RS232C interface. Be aware
that there is a 0.05 sec to 0.1 sec overhead in this system.

The debugger checks a break generation and simulated I/O status in the on-the-fly interval. To improve these
responses, set the on-the-fly interval to 10 or 0 (OFF).

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 407
C COMPILER PACKAGE MANUAL (ver.3)

q (quit) [ICD / ICE / SIM / MON]

� Function
This command quits the debugger.
If the COM port, parallel port, log file, or command file are open, they will close when you execute this command.

� Format
 q (direct input mode)

 ∗ The db33 can also be terminated by selecting the [Exit] command from the [File] menu.

CHAPTER 16: DEBUGGER

408 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

? (help) [ICD / ICE / SIM / MON]

� Function
This command displays the input format of each command.

� Formats
(1) ? (direct input mode)
(2) ? <n> (direct input mode)
(3) ? <command> (direct input mode)
 <n>: Command group number (decimal)
 <command>: Command name
 Condition: 0 ≤ n ≤ 8

� Display
When you input the command in Format 1 or 2, the db33 displays a list of commands classified by function.
Use the command in Format 3 if you want to display the input format of each individual command.

Format 1)

��↵�
� ������	
��

� �������
���

� �������
���� !��"��#�� ������������ ����

� ������$
��������������#������������������������������ �������

� ������%
���#�����# �����������������#��#����#����#�����#���#����#�#���#���#�� �&��#�����'()��# ���

� � �����*�

� ������+
��� ���������# ����'�,����������������������������������

� ������-
�������������������������������������#������������������ ����"���

� ������.
������������������������������������� � � �������#�����������#�

� /#� �������0��	0���������������	��������0����0���������� ���������� ���0��0��

��

Format 2)

���	↵�
������	
�������

���&��##����*�����&��##�� #�*�����&��##�����*��

���&��������*�����&������ #�*�����&���������*��

���&���������*�����&������� #�*�����&����������*��

���&����*�����&������ #�*�����&���������*���&�������#�*��

��&� ����� � *��

���&�� �������*�

�/#� �������0����0���������� ���������� ���0��0��

��

Format 3)

�����↵�
���&��##����*
���##����������������� � �

�� ��
����� ���	� ������ � ���������##�� � ������ ���	���� �����

������������������������������������##���������������� ����

�������1� ��� ���������
 ���	������������� ��� �������

�������)����� ���������
 ������������������� �������

�������2 � ��� ��������
� � ������������� � �� ������

���������������������������������&� �
3�343�55*�

�

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 409
C COMPILER PACKAGE MANUAL (ver.3)

ice (ice) [ICE]

� Function
This command sends specified data directly to the ICE33. After transmitting data, the db33 displays returned data
from the ICE33 in hexadecimal form.

� Format
 ice (guidance mode)

� Input examples

 ����↵�
� ���	�
��������������������↵
 ������������������
� �

 ����↵�
� ���	�
�������������������
↵
 ������������������
� ������������������
� ������������������������
� �

 ����↵�
� ���	�
��������������������↵�
� �������� !���"�↵�
� #���������$$$%�&'�"�()����)�������$$$*%�&'�
� !������������"��↵
� #���������$$$%�&'�"�()����)�������$$$*%�&'�
� !������
�����"��↵
� #���������$$$%�&'�"�()����)�������$$$*%�&'�
� !������������"��↵
� #���������$$$%�&'�"�()����)�������$$$*%�&'�
� !������������"��↵
� #���������$$$%�&'�"�()����)�������$$$*%�&'�
� !������+�����"��↵
� #���������$$$%�&'�"�()����)�������$$$*%�&'�
� !������,�����"
�↵
� #���������$$$%�&'�"�()����)�������$$$*%�&'�
� !������������"↵�
� !������-������

�
� !�������������
� !�����������.�����������//�!���+����/!����������������������
� ��
� ���������������
� 0�����������!��
� �

 To quit in the middle, press the [q] key and then the [Enter] key. The [^] key allows you to return to the

immediately preceding guidance.
 The transfer data should be input as a hexadecimal number within the range from 0x00 to 0xff or a decimal

number within the range from +0 to +255. Up to 8192 bytes of message are allowed for transmission.
 When only the [Enter] key is pressed or data for Data8192 is input, the db33 transmits the input data with the

size and BCC.

� Notes
• The ice command is used in-house for the development of the ICE33 by Seiko Epson, and is not provided for

use by general users.

• This command does not support a parallel data transfer.

• This command cannot be suspended by the [Key break] button. The time out period is set to 150 seconds.

CHAPTER 16: DEBUGGER

410 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

16.10 Parameter File
Before the db33 can be started up, you must have a parameter file that contains a description of memory map and
PRC board (a peripheral circuit board provided for each model to be installed in the ICE33) information. The db33
and the ICE33 use the contents written in this parameter file to configure a memory map, and they handle errors
such as address specifications outside the effective memory area or map breaks.
The basic parameter file can be created using the [Par gen] button of the wb33. This is a text format file, so you
can customize it before use by adding a specification for an external memory area, etc. to suit your application
needs.

The parameter file name created by the wb33 comes in the following format:

<chip name>_<parameter file version>.par

Example: 33104_01.par

The following shows a sample parameter file.

Sample parameter file
����� ����	� � �
������������������ � �������

����� ����� � �
�������������������������� � ����!��

 ��"� ����� � �
�#��������$�� � � �������

����%&�� ���##� � �
�����'���(�����)���*� � ����	��

����+","-+�� �
�����'���(�����)���*�����/�� ����0��

��-� � � �
��1��������1�������)�����**����� ����2��

%&�� �� � �
�����#���3������ � ����4��

�

�&�/�����������(��������������1��������5���67����5���6�)�/�*��(�� �������

�

&��,�� 	������ 	#####� �
���/�������,����6�

&����� ���������#####� �
���/������������6�

�

������������������1���������5�!02)(����)�/�*��(�� � � ����8��

�

�,�� �� 4 � �
����������,�������!96�

��� 	����� 	####��
�����������������2	96�

�,�� !������ !#####� �
��1������� :,+����6��������;���)���*��

&�,�� 	������ 	�4###� �
���/�������,��������!96������/�����������(��

&���� 	������)####� �
���/���������������!0296������/�����������(��

&��� 	������ 	�####� �
���/��������������2	96������/�����������(��

�,�� 2������ 2#####� 6�
��1�������+�,����6��������;���)���*��

&���� ������� �#####� �
���/�����������������6������/�����������(��

�

�+���<�������1��������������,����������1��������5�!02)(����)�/�*��(�� ��������

�

+",�9� �� �##� �
�������������<�������96�

+",�9� 2������ 2#####�
��1�����������<��������6�

�

��&�������#;/������ � � � � � ��������

�

=�&���>�&� � 8� �
��&�����**������&��/�)����

=�&���>�& -?�� ��� �
��& -?��3��/��

=�&���>@&:,A� !� �
��&����*���(�

=�&���>�&��&�� �������
�,�������1������������(��������**�����

=�&���>����� � �
��������&�

=�&���>��	�� � �
���	����&�

=�&���>�&4>@�,�� � �
�,���4�������@�,��

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 411
C COMPILER PACKAGE MANUAL (ver.3)

������������	
��� � � ��������������	
���

���������
������� � � ���
�������

������������	�������� � ���������� �!����"���!#��

�����������	������� � � ��������$��!����"���!#��

��������%&���	������� � ��������'(�$��!����"���!#��

�

�%	� � � � � � � �)))��*��

�

∗ A description from ";" to the end of the line is regarded as a comment.
∗ ";!" is not regarded as a comment.

CHAPTER 16: DEBUGGER

412 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Explanation of contents

 (1) Chip name
 Write a chip name.
 CHIP <chip name>

 (2) Internal ROM size
 Write the internal ROM size.
 IROM <size>

 Only a hexadecimal number can be used to write the size. (The "0x" is unnecessary.)
 The specified sized area that begins from address 0x80000 is mapped as the internal ROM area. If 0 is

specified, size = 0 (internal ROM is not used).

 (3) Option size
 Write the size (up to 16KB) of the function options set for each model.
 FOPT <size>

 Only a hexadecimal number can be used to write the size. (The "0x" is unnecessary.)

 (4) PRC board version
 Write a version range of the PRC board matched to the model being developed.
 PRC VER <version (1)> <version (2)>

 Write a small version number for version (1) and a larger one for version (2) using an 8-bit hexadecimal

number. If the model corresponds to only one version of PRC board, write the same value for both.
 When the db33 is started up in the ICE mode, it checks the PRC board version, and if the mounted PRC

board does not fall within the range of version (1) to version (2), it issues a warning. For PRC board versions
matched to each model, refer to the manual of the PRC board. When version (1) is set to 00 and version (2) is
set to ff, any version of the PRC board is permitted to use for debugging.

 (5) PRC status
 Specify the PRC board's status bits to be checked at startup in the ICE mode.
 PRC STATUS <bit 15><bit 14>...<bit 0>

 Specify 1, 0, or * for 16 status bits. If you specify 1 or 0 and the PRC board's corresponding status bit is

found to be different from that found in a startup check, the db33 issues a warning. If you specify an asterisk
(*) for a bit, the bit is masked and is not checked. For details on how to set the status bits, refer to the manual
of the PRC board. When all the bits are specified with *, the PRC board is permitted to use for debugging
regardless of the status bits.

 (6) MCU/MPU mode
 Specify whether you want the CPU to be started up in the MCU mode (booted from 0x80000 of internal

ROM) or in the MPU mode (booted from 0xc00000 of external ROM).
 • To specify the MCU mode: MCU
 • To specify the MPU mode: MPU

 This specification is valid in the simulator mode.

 (7) Parameter file version
 Write the version of the parameter file.
 VER <version>

 Use a hexadecimal number 0 to ff for this specification. This is provided for version management by the user.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 413
C COMPILER PACKAGE MANUAL (ver.3)

 (8) Emulation memory allocation
 The ICE33 allows you to use up to eight areas of emulation memory, each area with a size of 1M

bytes. External memory areas can be allocated to this emulation memory when debugging them. When using
emulation memory, specify whether you want each area to be used as RAM or as ROM.

 • To use an area as RAM
 EMRAM <start address> <end address> (Multiple entries accepted; or can be omitted)
 • To use an area as ROM
 EMROM <start address> <end address> (Multiple entries accepted; or can be omitted)

 Specify each area in 1M-byte units, ranging from start address X00000 to end address Xfffff (X = 1 to

ff). Areas specified for EMROM are read-only, and no data can be written to the area by a program. Areas
specified for EMRAM can be accessed for read and write by a program.

 This specification is valid in the ICE mode.
 If you do not use emulation memory (i.e., internal memory-only system or evaluated using memory mounted

on a target board), omit this specification.

 (9) Setting the memory map
 Specify the memory area to be used. The information set here is used for a map break.

 Mapping of the emulation memory (for ICE33)
 Set the areas used in the emulation memory (1M bytes each) that have been declared in (8) using the formats

shown below:
 • To set an area used as RAM
 ERAM <start address> <end address> (Multiple entries accepted; or can be omitted)
 • To set an area used as ROM
 EROM <start address> <end address> (Multiple entries accepted; or can be omitted)
 • To set an I/O area
 EIO <start address> <end address> (Multiple entries accepted; or can be omitted)

 The areas specified for ERAM can be accessed for read and write, and are initialized with 0xaa.
 The areas specified for EROM are write-only, and are initialized with 0xff. When a write to this area is

attempted, a break occurs.
 The areas specified for EIO can be accessed for read and write, and are initialized with 0x00.

 The address ranges are limited to the emulation memory areas set in (8). Specify a start address that resides

on a 256-byte boundary. Specify an end address so that the area size is an integer multiple of 256 bytes.
 No error is assumed even when you specify a memory map that does not match the memory attribute (ROM

or RAM) specified in (8).

 Mapping of other types of memory
 Set a I/O map of the internal RAM, internal I/O, and the memory or I/O mounted on the target board using

the formats shown below:
 • To set RAM area (read/writable area)
 RAM <start address> <end address> (Multiple entries accepted; or can be omitted)
 • To set ROM area (write-only area)
 ROM <start address> <end address> (Multiple entries accepted; or can be omitted)
 • To set I/O area (read/writable area)
 IO <start address> <end address> (Multiple entries accepted; or can be omitted)

 The internal ROM does not need to be mapped for ROM here because it is mapped by IROM setting.
 Specify a start address that resides on a 256-byte boundary. Specify an end address so that the area size is an

integer multiple of 256 bytes.

CHAPTER 16: DEBUGGER

414 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 If the addresses set here overlap the areas used in emulation memory specified by EMRAM and/or EMROM,
the RAM, ROM, or IO settings made here have priority. Namely, if an access to the overlapping area is made,
it is the target board that is accessed and the emulation memory is not used. Thus the 1M-byte emulation
memory can be further divided into areas that use the emulation memory and other areas that do not use the
emulation memory.

 Up to 31 maps can be set, for all RAM, ROM, IO, ERAM, EROM, and EIO included.

 Specification of big-endian areas
 By default, the mapped areas are set as little-endian areas. To change the area format to big-endian, describe

letter "B" after the <end address> (select [Big] when creating in the wb33). However, the E0C33 chip to be
developed must be a model that supports big-endian format. Furthermore, the internal memory (ROM, RAM
and I/O) cannot be set to big-endian.

 In addition to specify this parameter file at invocation of the db33, the endian control register in the E0C33
chip must be set correctly (refer to the "Technical Manual").

 In simulator mode, the endian format is determined by the parameter file only.
 This setting affects memory operation and file loading in half word or word units.

(10) Setting stack area
 Specify an area you want to be used as the stack.
 STACK <start address> <end address> (Multiple entries accepted; or can be omitted)

 Up to 8 stack areas can be set.
 Specify a start address that resides on a 256-byte boundary. Specify an end address so that the area size is an

integer multiple of 256 bytes.

 This setting is valid in ICE mode, so that when a stack operation is performed on a non-specified area, a

break occurs. However, a stack operation performed on the internal RAM that starts from address 0 is
excluded from break generation and, hence, does not cause a break. Therefore, STACK settings for areas in
the internal RAM can be omitted.

 This setting does not affect the SP operation by a program.

(11) Debug using MEM33201

The following needs to be set. MEM33201 is used matching with ICD33.

1.Specify the mem33 board address
Example 1: ;!MEM33_CE 4 ;Specify mem33 board to CE4.

 Make sure that you set it.

Specify MEM33_CE in 4-10. (00 is set in the
debugger for CEFUNC same as mem33).

2.Specify the CEFUNC
Example 1: ;!MEM33_CEFUNC 00 ;00 is set for CEFUNC in the user application.

A warning is displayed when an invalid map is
accessed by the CEFUNC value.

 Specify 00,01,10,11 MEM33_MAP_CEFUNC.
 Make sure that you set it.

3.Specify area 10
Example 1: ;!MEM33_CE10EX c08000 ;Specify start address of the external access for area

10.
 Default address is c00000.
 In this example, from c00000 through c07fff are

internal ROM/
4.Specify DRAM area

Example 1: ;! MEM33_CE7_DRAM ;Specify when area 7 or area 13 are DRAM.
Example 2: ;! MEM33_CE8_DRAM ;Specify when area 8 or area 14 are DRAM.
 Default setting is SRAM.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 415
C COMPILER PACKAGE MANUAL (ver.3)

5.Specification when P30 and P34 are used as CE
Example 1: ;! MEM33_ P30 ;P30 is used as CE.
Example 2: ;! MEM33_ P34 ;P34 is used as CE.
 By Default, P30 and P34 are not used as CE.

6.Specify delay for memory access

Example 1: ;!MEM33_CE10EX 0 ;Specify 0 for delay.
 Specify a value from 0 through 3.
 Default is 2. Usually do not specify except 2.

7.Specify WRH signal

Example 1: ;!MEM33_ WRH_MASK ;Ignore WRH signal.
 By default, break by WRH is available.

Using BSH or BSL by x16 SRAM make the WRH
signal available.

8.Make map break disable

Example 1: ;! MEM33_MAP_DISABLE ;Make map break disable.
 By default, map break is available.

9.Make CE break disable

Example 1: ;! MEM33_ CE _DISABLE ;Make CE break disable.
 By default, CE break is available.

10.Make no ce break disable
Example 1: ;! MEM33_ NOCE _DISABLE ;Make no ce break disable.
 By default, no ce break is available.

This sets ability for no ce break of CE break and
MAP break.
no ce break occurs when it is accessed by RD,WR
even though CE is not low.

(12) End mark
 Always be sure to write END at the end of a parameter file.

Precautions on creating a parameter file
 • Write each setup item in order of numbers (1) to (11).

 • Items (1) to (6) and (11) cannot be omitted.

 • Write item names (e.g., CHIP, IROM) with uppercase letters.

 • Write each item from the beginning of the line and insert at least one space or tab between

parameters. Parameters required for each item cannot be omitted.

 • Make sure each memory map is set in units of 256 bytes, and that emulation memory is set in units of 1M

bytes. A warning is generated if nonconforming boundary addresses are specified.

CHAPTER 16: DEBUGGER

416 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Parameter file created by wb33
 When using a parameter file created by using the [Par gen] button of the wb33, pay attention especially to the

following when you customize it:

 • Option size (FOPT)
 The option size is set to 0. If you are developing a model which has function options, be sure to set the size.

 • PRC board version (PRC VER)
 The PRC version is set to "00 ff" so that any desired PRC board can be used. If you are using multiple PRC

boards, correct this setting to limit the versions.

 • Internal I/O area (RAM, IO)
 The internal I/O area set by IO is 64K bytes from 0x40000 to 0x4ffff. Correct this setting to suit the I/O area

of the model.

 • Emulation memory allocation, and external memory and I/O mapping
 If you chose an external memory area in the [Parameter file generator] window, these items are set as

follows:

 When the [Emu] button is selected:
 [RAM] button: The emulation memory is configured using EMRAM, and ERAM is set so that the

entire emulation memory area is used as RAM.
 [ROM] button: The emulation memory is configured using EMROM, and EROM is set so that the

entire emulation memory area is used as ROM.
 [IO] button: The emulation memory is configured using EMRAM, and EIO is set so that the entire

emulation memory area is used as I/O.

 When the [Emu] button is not selected:
 [RAM] button: RAM is set so that the entire area is accessed as a target RAM.
 [ROM] button: ROM is set so that the entire area is accessed as a target ROM.
 [IO] button: IO is set so that the entire area is accessed as a target I/O (same as RAM).

 Correct or add memory maps as required for the system you are developing.

 • Stack area (STACK)
 Only when you choose the [RAM] button to specify the external memory, a stack area of 512K bytes

beginning with a specified start address is set. Correct this setting whenever necessary.

 • Configure MEM33201
 When Generate MEM33 information check box is selected, information on MEM33 is produced.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 417
C COMPILER PACKAGE MANUAL (ver.3)

16.11 Status/Error/Warning Messages
This section describes the messages that are displayed in the [Command] window by the debugger.

16.11.1 Status Messages
When the target program breaks, the db33 displays one of the following messages to indicate the cause of the
break immediately before it stands by for a command input.

Table 16.11.1.1 Status messages
Message Content

Break by software PC break. Break caused by software PC breakpoint
Break by hardware PC break. Break caused by hardware PC breakpoint
Break by hardware PC break 2. Break caused by hardware PC breakpoint
Break by temporary break. Break caused by temporary breakpoint
Break by data break. Break caused by data break condition
Break by read memory. Data break caused by reading memory
Break by write memory Data break caused by writing to memory
Break by sequential break. Break caused by sequential break condition
Break by key break, xxxx. Break at address xxxx caused by [Key break] button
Break by accessing no map area Break caused by accessing no map area
Break by writing ROM area Break caused by writing to ROM area
Break by out of SP area Break caused by accessing outside stack area
Break by external break Break caused by signal input to ICE33/ICD33 BRKIN pin
Break by illegal instruction Break caused by executing illegal instruction in simulator mode
Break by MEM33 bus break. Break caused by MEM33 bus break condition
Break by MEM33 ce break. Break caused by MEM33 ce break condition
Break by MEM33 area break. Break caused by MEM33 area break condition
Break by MEM33 map break. Break caused by MEM33 map break

16.11.2 Error Messages

Table 16.11.2.1 Error messages

(alphabetical order)

Error message Content
address1 > address2 The beginning address is larger than end address.
Address is in no map area. The specified address (symbol) is out of the mapped area.
Address is not 2 byte boundary. The program code address is not a 2-byte boundary address.
Address range (0-0xFFFFFFF). The address is out of the range.
Already exist input address. The address has been set to a break point.
Aymbol not in scope. The symbol cannot be found in the scope.
Break number (1-16). The software PC break point number is out of the range.
Cannot add symbol any more. 99 symbols have been registered.
Cannot allocate memory. Memory cannot be allocated.
Cannot close file. The file cannot be closed.
Cannot get file status. The file information is incorrect.
Cannot get input, please check the system. An error has occurred during input process.
Cannot get memory. Memory allocation has failed.
Cannot load data, file open failure. The srf33 file load has failed; the file cannot be opened.
Cannot load data, file read failure. The srf33 file load has failed; the file cannot be read.
Cannot load data, memory allocation failure. The srf33 file load has failed; memory cannot be allocated.
Cannot load data, please check SRF33 file. The srf33 file load has failed; some file other than srf33 executable

format is specified.
Cannot load debug information, The debug information load has failed; the debug information is
debug information is wrong. illegal. (Program/ data is loaded successfully.)
Cannot load debug information, file open failure. The debug information load has failed; the source file cannot be

opened. (Program/ data is loaded successfully.)
Cannot load debug information, file read failure. The debug information load has failed; the source file cannot be

read. (Program/ data is loaded successfully.)
Cannot load debug information, The debug information load has failed; memory cannot be
allocation failure. allocated. (Program/ data is loaded successfully.)
Cannot load debug information, The debug information load has failed; the srf33 format is
please check SRF33 file. illegal. (Program/ data is load successfully.)

CHAPTER 16: DEBUGGER

418 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Error message Content
Cannot load debug information, too many lines.The debug information load has failed; too many source lines

are included. (Program/ data is loaded successfully.)
Cannot open com port. The COM port or baud rate cannot be set.
Cannot open file any more. The number of files exceeds the limit.
Cannot open file. The file cannot be opened.
Cannot open parallel port. The parallel port cannot be opened.
Cannot open parameter file. The parameter file cannot be opened.
Cannot open stdio file. The stdio file cannot be opened.
Cannot read chip name. Chip name information (.par file) cannot be read.
Cannot read emulation memory map. Emulation memory map information (.par file) cannot be read.
Cannot read FO area size. FOPT size information (.par file) cannot be read.
Cannot read IROM size. Internal ROM size information (.par file) cannot be read.
Cannot read MCU/MPU information. MCU/MPU mode information (.par file) cannot be read.
Cannot read parameter file version. Parameter file version information (.par file) cannot be read.
Cannot read PRC board status. PRC board status information (.par file) cannot be read.
Cannot read PRC board version. PRC board version information (.par file) cannot be read.
Cannot read stdin file. The stdin file cannot be read.
Cannot set address any more. 16 software PC break points have been set.
Cannot set hardware PC break. The hardware PC break point cannot be set.
Cannot set software PC break. The software PC break point cannot be set.
Cannot set temporary break. Temporary break point cannot be set.
Cannot write flash memory. Data cannot be written to the flash memory.
Cannot write log file. Log data cannot be written to the file.
Cannot write stdout file. The output data cannot be written to the stdout file.
Cannot write trace file. Trace data cannot be written to the file.
Chip name should be 5 characters. The chip name length is not 5 characters.
Chip name should be start with "33". The chip name must begin with 33.
Command is not supported at present mode. A command not supported for the current mode (ICE or simulator) is

executed.
Communication data size error. The communication data size is incorrect.
Communication error. Overrun, framing, or BCC error has occurred during transmission

from/to the ICE33.
CPU down. The PRC board operates erratically.
CPU is not running. The ICE33 CPU has stopped operating.
CPU is running. The ICE33 CPU is executing.
Current mode is not source mode. String search ia only available in the source display mode.
Data alignment error. Alignment in the srf file is incorrect.
Data incomplete. The file structure is illegal.
Data range (0-0xFF). The input data is out of the range.
Data range (0-0xFFFF). The input data is out of the range.
Data range (0-0xFFFFFFFF). The input data is out of the range.
Debug data failure. The debugging data is illegal.
Diagnostic test failure. The ICE33 self-diagnosis resulted in error.
Duplicate input address. Same break address is set twice.
Duplicate input break number. Same break point number is set twice.
Empty file. The file does not contain data.
Erase routine is not set. A flash memory erase routine has not been defined.
File end during guidance input. The command file has ended in the middle of the parameters of the

guidance format.
File not found. The file cannot be found.
Flash memory error. Error in writing or erasing flash memory.
Flash memory is not mapped. The ICE flash memory is not mapped.
Flash ROM is protected. Flash memory is protected against access.
Fo address range (0-0x3FFF). The option dump address is out of the range.
Format error. The format is illegal.
Function not found. The function cannot be found.
ICE is busy. The ICE33 is busy processing a job.
ICE is free run mode. The ICE33 is operating in free-run mode.
ICE is maintenance mode. The ICE33 is placed in maintenance mode.
ICE is not mapped. The ICE built-in memory is not mapped.
ICE system error. ICE system error has occurred.
Interrupt level (0-15). The interrupt level is out of the range.

CHAPTER 16: DEBUGGER

E0C33 FAMILY EPSON 419
C COMPILER PACKAGE MANUAL (ver.3)

Error message Content
Interrupt type (0-215). The interrupt type is out of range.
Invalid break address. The break address has not been set.
Invalid break number. The break point number has not been set.
Invalid command or parameter. The specified command or parameter is invalid.
Invalid emulation memory map. The emulation memory map information (.par file) is invalid.
Invalid file name. The file name is invalid.
Invalid group number. The command group number is invalid.
Invalid map command or invalid sequence. The map file contains an illegal character or incorrect sequence.
Invalid memory map. The memory map information (.par file) is invalid.
Invalid parameter. The parameter is incorrect.
Invalid stack map. The stack map information (.par file) is invalid.
Invalid value. The input value is illegal.
IROM size is too long. The IROM size is too large.
No "END" in parameter file. There is no end mark (END) in the parameter file.
No map area. The input address is out of the mapped area.
No symbol at the number. Symbol is not registered in the specified number.
Not ASCII character. The string contains some other ASCII character.
Not defined ID. ICE33's response ID is invalid.
Not found input strings. The string cannot be found.
Number of emulation memory is wrong. The number of emulation memory block in the parameter file is invalid.
Number of parameter. The number of parameters in the command is invalid.
On tracing. The ICE33 is tracing execution data.
Over max include file number. The number of include files exceeds the limit.
Parallel interface time out. The file cannot be loaded through the parallel interface within the

predefined time.
Parallel port is busy. The parallel port is in busy status.
Pointer pointed no map area. The pointer variable has pointed out of the mapped area.
Post line range (0-256). The number of post-display line in the trace search is out of the range.
Pre line range (0-256). The number of pre-display line in the trace search is out of the range.
Register variable cannot be changed to address. Addresses cannot be specified with a register variables.
Reset timeout. The ICE33 CPU cannot be reset.
Sequential break format error. The sequential break condition is invalid.
Shared RAM is busy. An ICE33 internal error has occurred.
Source window not opened. The [Source] window is closed.
Start block > End block. The end block number is greater than the start block number.
Start cycle number > End cycle number. The end cycle number is greater than the start cycle number.
Stdout data size. The output data size in the output buffer is illegal.
Step range (1-65535). The step count is out of the range.
Symbol is too long. The symbol name is too long.
Symbol not found. The symbol cannot be found.
Target down. The PRC board does not operate correctly or remains reset.
Target instruction cannot be extended. The instruction cannot be extended by ext.
Time out. Communication time-out. ∗1
Too many include. Number of included files exceeds the limit.
Too many source file. The source file is too large.
Trace range (0-32767). The trace cycle number is invalid.
Verify error. Verify error when writing to flash memory.
Wrong data. Data in the file is incorrect.
Wrong header. The file header is incorrect.
Address mask range (0-0xFFFFFF). The address mask is out of the range.
Data mask range (0-0xFFFF). The data mask is out of the range.
Data mask range (0-0xFFFFFFFF). The data mask is out of the range.
Invalid value of MEM33_CE(4-10). The CE is out of the range.
Invalid value of MEM33_CE10EX The area 10 external memory start address is out of the range.
(C00000-FFFFFF).
Invalid value of MEM33_CEFUNC(00,01,10,11).The CEFUNC is out of the range.
Invalid value of MEM33_DELAY(0-3). The DELAY is out of the range.
No "MEM33_CEFUNC" in parameter file. No MEM33_CEFUNC is found.
Invalid address or invalid CEFUNC of The address is invalid or CEFUNC of parameter is out of range.
parameter file.
Top address and bottom address should be same CE. Top address and Bottom address are not same.

CHAPTER 16: DEBUGGER

420 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 Error message Content
MEM33 is not supported at area0,area1 and MEM33 dosn't supportd area0,area1 and area2.
area2(0-0x7FFFF).
Top address > Bottom address. The top address is larger than the bottom address.
Invalid value(0-65535). The value is out of the range.
Invalid address or invalid CEFUNC of The address is invalid or CEFUNC of parameter is out of range.
parameter file.

∗1: A time-out error occurs in the following processing if no response is returned from the ICE33 within a

predetermined time:
 • Initial connection 2.5 seconds
 • Escape Break 1 second
 • Map initialization 150 seconds
 • f or mv execution 150 seconds
 • lfl or sfl execution 150 seconds
 • g, s, or n execution No time-out is set.
 • Others 6 seconds

16.11.3 Warning Messages

Table 16.11.3.1 Warning messages

(alphabetical order)
Warning message Content

Debugger mode does not match with a target. The debugger mode speified by the option (-icd, -ice, -mon) does not
match with the connected target system.

Emulation memory address is not The emulation memory map address in the parameter file
1M byte boundary. is not a 1MB boundary address.
FO size (0-0x4000), map as 0x4000. The FO size is incorrect, so it is mapped as 0x4000.
FO size should be an even number, The FO size must be an even number, so it is mapped as
map as 0xXXXXXXXX. 0xXXXXXXXX.
Invalid line, move to next valid line. The source line has no address. The next effective address is used.
IROM size (0-0x80000), map as 0x80000. The IROM size is incorrect, so it is mapped as 0x80000.
Line number of source file is invalid. The line number is not included in the source file.
Memory map is not 256 byte boundary. The memory map (.par file) must be specified in 256-byte units.
No debug information. The srf33 file does not have the debug information.
No source, display on mix mode. There is no source information. The program is displayed in mix mode.
Number of source line exceeded 65535. The line number is out of the range.
PRC status does not match. The PRC board status is different from the parameter file.
PRC version does not match. The PRC board version is different from the parameter file.
Round down to multiple of 16. The input address is adjusted to a 16-byte boundary.
Round down to multiple of 2. The input address is adjusted to a 2-byte boundary.
Round down to multiple of 4. The input address is adjusted to a 4-byte boundary.
Stack map is not 256 byte boundary. The stack map (.par file) must be specified in 256-byte units.
MEM33 break information was over written Break information may be destroyed by overwriting MEM33 by user
by user program. program.
MEM33 not found. MEM33 is not found in the address specified parameter file.
Cannot set CE break(XXX-XXX). Cannot set CE break to MEM33.
Duplicate memory map attribute There are ROM,RAM,IO in the same area.
(CE break as RAM XXX-XXX)
Cannot set map break(XXX-XXX). Cannot set CE break to MEM33.
Memory map is not 32k byte boundary Memory map is not 32k byte boundary.
(XXX-XXX).
Duplicate MEM33 address(CE) with MEM33 address is duplicatd with memory map.
memory map(XXX-XXX).
Area10 external memory start address Area10 external memory start address is not 32k byte boundary.
is not 32k byte boundary(XXX).

CHAPTER 17: OTHER TOOLS

E0C33 FAMILY EPSON 421
C COMPILER PACKAGE MANUAL (ver.3)

Chapter 17 Other Tools
This chapter explains the other tools that are included in the E0C33 Family C Compiler package.

17.1 Make
The E0C33 Family C Compiler Package contains a make tool (hereafter referred to as the "make") that efficiently
processes compilation to linkage.
Based on the dependence relationship between the sources written in a make file and the files output by each tool,
the make uses the necessary tools to update the files to the latest version. For example, if only one source file is
corrected, the make executes compilation or operation from preprocess to assemble only for that file. Other
modules only have object files read in during linkage, and are not processed sufficiently to include assembly.
The make in this package only supports the dependency lists, suffix definitions, and macro definitions necessary to
perform the above processing.
It provides the subset functions of make in UNIX.

17.1.1 Starting Method

Startup format

 make ^ [<option>] ^ [<target name>]

 ^ denotes a space.
 [] indicates the possibility to omit.

 Example: c:\cc33\make -f test.mak opt

 Operations on work bench
 Select options and a make file (.mak), then click the [MAKE] button.

Options
 The make comes provided with the following three types of startup options:

-f <file name>
Function: Specifies a make file.
Specification on wb33: Always specify (choose a file name from the list box).
Explanation: The make reads in a make file specified by <file name> (extension included), and

processes its contents.
Default: Unless the -f option is specified, a file named "makefile" is input as the make file.

-h
Function: Outputs usage.
Specification on wb33: Check [usage].
Explanation: Only a message about how to use the standard output device (stdout) is output

before terminating.

-n
Function: Displays commands.
Specification on wb33: Check [no exe cmd].
Explanation: Only the command to be processed by make is output to the standard output device

(stdout) and no operation actually is performed on it. This is effective for verifying
the dependence relationship of files.

CHAPTER 17: OTHER TOOLS

422 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Target name
 Specify the target name for the command to be executed. If this specification is omitted, the first target that

appears in the make file is executed.

 A make file created by the Make file editor of the wb33 has commands and target names (opt, clean) to

implement two functions recorded in it, in addition to the dependency lists used to update files.
 opt: Target name to execute commands for 2-pass make
 clean: Target name for commands to erase all but source file
 To execute these targets from the wb33, perform the following operation after selecting the make file:
 To executes opt, select [2 pass] on the [Other option] window and then click [MAKE].
 To executes clean, click [MAKE clean].

17.1.2 Messages
The make delivers its messages through the Standard Output (stdout).
If the wb33 is started up by using the wb33's [MAKE] button, the message is output to "wb33.err". When
execution is completed, a message is displayed in the output window (default).

Execution message
 During execution, the make outputs the command under execution; when completed, it outputs an end

message.
 Example:

��\����\����������	
������
����������������
�������
��\����\����������������	
�������
���������
�������
��\����\	���������	
����
��
����
������
�������
��\����\������������
������	
�����
�
�������
�������

� �	�����
�������

 ∗ When executed in the wb33, the make uses ccap to save messages to a file, "wb33.err", while at the same

time counting the error/warnings encountered in each tool and the compiler messages. The count values are
displayed after the make's end message.

� �	�����
�������

 0 error(s), 0 warning(s), 0 compiler message(s)

Usage output
 If no file name was specified or an option was not specified correctly, the make ends after delivering the

following message concerning the usage:

�	��� �����!"��#�������
�������$��%�&�'�()*���'*+��*,���--��
.�	����
����
	���/�������0�/�	����0�
*��������
����� �1 �����	
�2���
	�� �����	
��
�����$�����3��3��3�	���
���������������

	�������3�����
��	
�����
����
	���� ������
	��
����
	���� ������
	������+�

When error/warning occurs
 If an error or a warning is produced, an error/warning message will appear before the end message shows up.
 Example: 4	���������	
������ ����3������	���
� � �	�����
������

 For details on errors and warnings, refer to Section 17.1.6 "Error/Warning Messages".

CHAPTER 17: OTHER TOOLS

E0C33 FAMILY EPSON 423
C COMPILER PACKAGE MANUAL (ver.3)

17.1.3 Make File
The make file is a text file that contains a description of the dependence relationship of the files and the commands
to be executed. A basic make file can be created using the Make file editor on the wb33, so use it after entering
additions or corrections as necessary.
Shown below is an example of a make file.

make file example (without suffix definition)
���������	����
��������� � � ...Comment�
�

��������
������������������	����
���

�

�������������\����� � � � ...Macro definition�
 �������!"��������#\$�����
%%������!"��������#\&&���
'(������!"��������#\�)����
*+������!"��������#\�����
�,������!"��������#\	����
-*,'����!"��������#\�����
+����������

�

��������
������������������	��	�$��

�

 �����.�* ���/0!"��������#\�/+�/$�/���
%%���.�* ����/$��

'(����.�* ���/$&�1)1��

+���.� ����/$��

�,���.�* ����/$�/��/��/���

'(�����-(�.�* ���/	�������/���

�

��
�&��
�����	����

�

����2����������2�������2������2��� ...Dependency list�
� !"�,��#�!"�,���.�* #�����2��� � ...Command line�
�

����2�����!"+������#����2��

� !"%%��#�!"%%���.�* #�!"+������#����2��

� !"'(���#�!"'(����.�* #�����2&��

����2��������2���

� !"*+��#�!"*+���.�* #�����2���

�

����2�����!"+������#����2��

� !" ����#�!" �����.�* #�!"+������#����2��

� !"'(���#�!"'(����.�* #�����2&��

����2��������2���

� !"*+��#�!"*+���.�* #�����2���

�

���&�����3���������4�&���������

�

�&���

� !"-*,'#�/������2����

� !"��������#\�����4�
� !"'(���#�!"'(�����-(�.�* #�����2��)�

� !"-*,'#�/������2����

�

���	����
�	������	����)��&����5����

�

�	�����

�
�	�62����

�
�	�62��

�
�	�62���

�
�	�62&��

�

CHAPTER 17: OTHER TOOLS

424 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Dependency list
 The make is executed according to a dependency list that is written in the following formats:

 Format 1: <target file name>:<dependent file name 1>[^<dependent file name2>...]
 [TAB <command 1>
 TAB <command 2>
 :]

 Format 2: <target name>
 TAB <command 1>
 [TAB <command 2>
 :]

 ^ denotes a space.
 [] indicates that entries in brackets can be omitted.
 The command lines must begin with a TAB (space is not allowed).

Format 1
 In Format 1, the dependent files necessary to obtain a target file is specified, and in cases when no target file

has been created or the dependent file has not been updated, the command that follows is executed.

 Example: test.srf : test.cm boot.o main.o
 $(LK33) $(LK33_FLAG) test.cm

 In this example, the target file "test.srf" depends on "test.cm", "boot.o", and "main.o".
 If the target file "test.srf" is nonexistent or there is any dependent file that is newer than the target file, the

command "$(LK33)$(LK33_FLAG)test.cm" (link by lk33) is executed. The $(<name>) written here is
replaced with a macro defined by <name>.

 If the dependent file is some other target
 If the dependent file is specified as the target of some other dependency list, the other dependency list is

evaluated first. For example, since the dependent file "boot.o" is associated with the next two dependency
lists, the make is performed first in those lists.

 boot.ms : $(SRC_DIR)boot.s
 $(PP33) $(PP33_FLAG) $(SRC_DIR)boot.s
 $(EXT33) $(EXT33_FLAG) boot.ps

... If the ext33's output file "boot.ms" is nonexistent or the source file "boot.s" is
newer than "boot.ms", the pp33 and ext33 are executed.

 boot.o : boot.ms
 $(AS33) $(AS33_FLAG) boot.ms

... If the as33's output file "boot.o" is nonexistent or "boot.ms" is newer than
"boot.o", the as33 is executed.

 If the dependent file is nonexistent
 If the described dependent file cannot be found and there is no dependent file specified for other targets, an

error is assumed.

 If the command line is nonexistent
 Nothing is executed. However, if a target file and a suffix list (described later) that has the extension of the

first dependent file are written, the command associated with it is executed.

CHAPTER 17: OTHER TOOLS

E0C33 FAMILY EPSON 425
C COMPILER PACKAGE MANUAL (ver.3)

Format 2
 If no dependent file is written, <target name> is used only as a label. By specifying a <target name> with the

make's startup command, it is possible to execute the written command.
 Example: Commands executed by make -f text.mak clean
 �������
� � ����	
���
� � ����	
��
� � ����	
���
� � ����	
���

 If no <target name> is specified in the startup command, the first dependency list written in the file is used to

execute the make.

Command line
 The cc33 tool names and DOS prompt commands can be written in a command line. However, the colon (:)

to indicate a drive cannot be written directly in the command line. When specifying a path in the command
line, prepare a macro definition of the path before using it.

 The following two symbols can be inserted at the beginning of a command line:
 @ Turns off the echo display of the command line in which this symbol is inserted.
 Example: @copy test.s test.sbk
 Normally, the command line executed is output to stdout. Command lines that begin with @ are not

output.
 - Even if the command has resulted in an error (terminated for some reason other than exit(0)), the error is

ignored and the command that follows is executed.
 Example: -make -f test mak -n
 Normally, the make is terminated with a command in error.

 A predefined macro can be referenced in the command line. Furthermore, the following two macro symbols

can be used.
 $* This is replaced with the target file name (not including the extension) currently being processed.
 Example: test.dis: test.srf
 $(TOOL_DIR)\dis33 $*.dis
 $@ This is replaced with the target file name (including the extension) currently being processed.
 Example: 33xxxxx.sa: test.sa_80000_80fff
 copy test.sa_80000_80fff $@

 These macro symbols cannot be used anywhere other than in a command line.

Macro definition
 You can define a macro in a make file and reference a defined macro from a command line. The following

shows the formats in which a macro can be defined and referenced.

 Definition: <macro name> = <macro body>
 Reference: $(<macro name>)

 Examples:
 TOOL_DIR = C:\CC33 ...Macro definition
 GCC33 = $(TOOL_DIR)\gcc33 ...Macro definition and
 GCC33_FLAG = -B$(TOOL_DIR)\ -S -g -O macro reference in macro definition
 $(GCC33) $(GCC33_FLAG) $(SRC_DIR)main.c ...Macro reference in a command line
 boot.ms : $(SRC_DIR)boot.s ...Macro reference of a dependence file name

 The colon (:) used to specify a drive can only be used in macro definition, except when you use it

immediately after a target name or in a comment. Therefore, when specifying a path in a command line or
dependent file, use a macro that is defined in advance, as shown by the above examples.

 Macros cannot be referenced in the following places:
 • Lines preceding macro definition
 • Target file names
 • Lines where a suffix is defined or the first line of a suffix list

CHAPTER 17: OTHER TOOLS

426 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

 ∗ Precautions about writing "\" at the end of a macro
 If \<CR> is written at the end of a line, it is assumed that this line continues to the next line. Therefore, when

defining a path that ends with \ as a macro, write the following:
 Example: When defining "c:\e0c33\"
 SRC_DIR = c:\e0c33\\ ...Write two \.
 ...Insert one blank line (CR only).
 <next statement>

Comments
 A statement from # to the end of the line is regarded as a comment. Characters other than the ASCII code can

be written in a comment.
 Example: # make file made by wb33

 However, any comment cannot be written in a command line because it will be assumed to be part of the

execution command.

Suffix definition and suffix list
 If you write a suffix definition and a suffix list, you can omit commands in a dependency list. When creating

a make file in the wb33, check the [suffix type] option. If this option is specified, a suffix definition and a
suffix list are included in the make file thus created.

 Dependency list with no suffix defined

�������������	
���

�������������������������
���

������������������������������������

������������ !�"# �������

����������$$������$$������������ !�"# �������

����������%&'������%&'����������������

���������������

������������������������������������

��
��������� !�"# ���
���

�����������!!�������!!������������ !�"# ���
���

����������%&'������%&'�����������
����

��
�������
����

�������������������������������
����

 Example with suffix defined

���(��
)�*��(�����
�
�
����

�+��#&%�������������������� � ...Suffix definition�

������ � � � ...Suffix list�
�����������!!�������!!������������ !�"# ��,��

����������%&'������%&'����������,���

������

����������$$�������$$������������� !�"# ��,��

����������%&'������%&'����������,���

������

��������������������������������,���

�������������	
���

�������������������������
���

������������������������������������

������������ !�"# ������� � ...Dependency list�
���������������

��
��������� !�"# ���
���

��
�������
����

CHAPTER 17: OTHER TOOLS

E0C33 FAMILY EPSON 427
C COMPILER PACKAGE MANUAL (ver.3)

 Suffix definition
 Before a suffix list can be used, you must first define the file extensions used in the suffix list. The following

shows the format of a suffix definition:

 Format: .SUFFIXES : .xxx .yyy .zzz

 Example: .SUFFIXES : .c .s .ps .ms .o .srf

 Suffix list
 The following shows the format of a suffix list:

 Format: <.extension of dependent file 1><.extension of target file>:
 TAB <command 1>
 [TAB <command 2>
 :]

 Example: main.o : main.ms ...Dependency list

 .ms.o : ...Suffix list
 $(AS33) $(AS33_FLAG) $*.ms ...$* is a macro symbol that is replaced
 with a target name (main).

 The suffix list in this example corresponds to a dependency list that has a target file whose extension is ".o"

and dependent file 1 (first dependent file written) whose extension is ".ms". Thus, when commands in this
dependency list are omitted, commands in the suffix list are executed.

 Since one suffix list corresponds to multiple dependency lists that have the same combination of extensions,

it helps you simplify a description of dependency lists when there is a large number of files.

Restriction on characters
 The table below lists the characters that can be used in each item of a make file. Do not use any other

characters.

Table 17.1.3.1 Usable characters in make files
Usable characters

a to z A to Z 0 to 9 _ - .
a to z A to Z 0 to 9 _ - . / \ $()
a to z A to Z 0 to 9 _ -
a to z A to Z 0 to 9 _ - . / \ : $()
a to z A to Z 0 to 9 _ - .
cc33 tools and DOS prompt commands (note)
$* $@ $()
Any character that can be displayed

Item
Dependency list Target name

 Dependent file name
Macro Macro name

 Macro body
Suffix
Command line

Comment
(note) The colon (:) to indicate a drive cannot be used in a command line. Use a path

specification defined as a macro in advance.

 • Write a file name (including path), a macro name, and a command line of not more than 100 characters

respectively.
 • Create a macro body of not more than 1,000 characters.

CHAPTER 17: OTHER TOOLS

428 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

17.1.4 2-pass make
The make file created by the wb33 contains a description of the 2-pass make commands necessary to optimize
code generation after reading in the symbol and map files linked by the ext33. These commands are included in a
make file so that they can be executed when you execute the make after specifying target name "opt" (choosing [2
pass] in the wb33).
The following lists the commands included in a make file:

���������	���
������	����	���

�����

� �����������������	�� � � ...(1)�
� ������� !"�\#$	���� � � ...(2)�
� ���%�&&�����%�&&�'�%�(��)�������#�*� � ...(3)�
� �����������������	�� � � ...(4)�

(1) The files are processed through to linking.
(2) A tool called "cwait" is used to provide a 2-second wait time. This wait time is provided to ensure that make

in the second pass will be executed without failure.
(3) The ext33 is executed by entering link map and symbol files and by specifying the optimize option (-lk).
(4) The make is executed again to create an absolute object file.

For optimization using the link map and symbol files, refer to Section 10.7.3, "Optimization by Symbol
Information".

17.1.5 clean
The make file created by the wb33 contains a description of the commands to delete intermediate and object files
other than the source. These commands are included in a make file so that they can be executed when you execute
the make after specifying the target name "clean" (click [MAKE clean] after selecting a make file in the wb33).
The following lists the commands included in a make file:

��#+�	
�,�+������+����*#������-.#��

#+�	
��

� ,�+�/��.��

� ,�+�/���

� ,�+�/����

� ,�+�/����

� ,�+�/��	��

� ,�+�/�����

All files in the current directory that have extensions ".srf", ".o", ".ms", ".ps", ".map", and ".sym" are deleted.

CHAPTER 17: OTHER TOOLS

E0C33 FAMILY EPSON 429
C COMPILER PACKAGE MANUAL (ver.3)

17.1.6 Error/Warning Messages
Error and warning messages are displayed/output through the Standard Output (stdout).
If the make is started up using the wb33's [MAKE] button, the message is output to "wb33.err". When execution is
completed, a message is displayed in the output window (default).

If an error/warning occurs in the make itself, the make immediately stops processing after displaying a message. If
an error occurs in the tool executed by a command that begins with "-" within the make file, the make continues
processing. For error messages generated by tools, refer to the chapters where each tool is described.

The table below lists the error and warning messages generated by the make.

Table 17.1.6.1 Error/warning messages
Content

make file cannot be opened.
Temporary file cannot be opened.
Syntactically erroneous. Use line number indicated by # to
locate an error. Lines ending with \<CR> are assumed to
continue to the next line and not included in line counts.
Suffix is not defined yet.
Macro name is not defined yet.
Error occurred during the processing of module XXXX.
Memory is insufficient.
One character string exceeds 1,000 characters.
Target cannot be found.
Target file is nonexistent.
Command is terminated abnormally. (X = exit code)
Last target has already been updated. Terminated without
executing a command.

Error/warning message
Error: Cannot open XXXXXXXX
Error: Cannot open tmp file
Error: Invalid syntax near line #

Error: Invalid suffix .XXX
Error: Invalid macro name XXXX
Error: Abnormal termination in XXXX
Error: Not enough memory
Error: Too long string
Error: No target found
Error: Don't know how to make XXXX
Error: Command exit with X
Warning: XXXX is up-to-date

17.1.7 Precautions
The make included in the E0C33 Family C Compiler Package does not support any other functions (e.g., default
settings of macro and suffix or macro symbols such as $< and $?). Only the functions described here are
supported. Therefore, be careful if you are regularly using the make in UNIX.

If EXIT code = 0 is returned when executing a command line, the make suspends execution of the commands that
follow. However, when a EXE file is executed under Windows95, the EXIT code always returns to 0 regardless of
whether any error appears.
Although the make performs special processing on the cc33 tool to determine the status of the EXIT code, it
cannot make such a determination in other EXE files, and therefore continues processing. Thus, you should be
careful when using the make in Windows95. This problem does not occur in Windows NT 4.0.

The Make file editor of the wb33 can add/delete files to/from a make file. Since this function uses comments and
character patterns in the make file, pay attention when editing the make file using an editor. If the necessary
comments and character patterns are deleted, the Make file editor will not be able to edit the make file. Refer to
"Precautions on editing the make file" in Section 5.2.6 for more information.

CHAPTER 17: OTHER TOOLS

430 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

17.2 cwait

17.2.1 Functions
The cwait is used to create a wait time of several seconds. Therefore, this tool is used in the make file created by
the wb33 to provide a time allowance when executing a 2-pass make.

17.2.2 Method for Using cwait

Startup format

 cwait ^ [<number of seconds>]

 ^ denotes a space.
 [] indicates the possibility to omit.

 <number of seconds>: Specify a wait time in seconds. This duration can be specified in the range of 0 to

TBD seconds.
 Example: c:\cc33\cwait 2 ... Create a 2-second wait time.

Usage output
 No message is displayed when executing cwait. However, the following message is displayed if it is started

up without specifying a time in seconds.

� ��������	�
�
�

���	������������������������������
�

�������

���� �����!����"�� �#$%�

�
�&'���

���� �����(�

CHAPTER 17: OTHER TOOLS

E0C33 FAMILY EPSON 431
C COMPILER PACKAGE MANUAL (ver.3)

17.3 ccap

17.3.1 Functions
This tool produces a file from the messages output to the console (standard output or standard error) by other tools
or commands.
When executing a tool using the wb33's execution button, the tool's messages are output to a file called "wb33.err"
by the ccap, and when execution of the tool is completed, the contents output to wb33.err are displayed in the
output window (or editor).

17.3.2 Method for Using ccap

Startup format

 ccap ^ [<option>] ^ <output file name> ^ "<execution command>"

 ^ denotes a space.
 [] indicates the possibility to omit.

 <output file name>: Specify a file name to which you want the messages to be output.
 <execution command>: Input the startup command of the tool to be executed.

Options
 The ccap comes provided with the following four types of startup options:

-a
Function: Adds to an existing file.
Explanation: If this option is specified, the output contents are added at the end of an existing file. If

no file exist, the ccap creates a new file.
Default: Unless this option is specified, the contents are overwritten to a specified file (if the file

exists) or (if the file does not exist) the ccap creates a new file.

-o
Function: Outputs only a file.
Explanation: The messages of the execution command are output to only a file, and not output to the

console.
Default: Unless this option is specified, the messages are output to both console and file.

-c
Function: Disables outputting execution command line.
Explanation: If this option is specified, the execution command line is output to neither the console

nor a file.
Default: Unless this option is specified, the execution command line is output along with

messages.

-e
Function: Error count
Explanation: If this option is specified, the ccap outputs a count of the error messages output by the

execution command. The messages counted are those which begin with the following
character strings:

 Error Count of the error messages
 Warning Count of the warning messages
 .c: Count of the gcc33 messages
 .h: Count of the gcc33 messages
Default: Error messages are not counted.

 When entering an option, you need to place one or more spaces before and after the option.
 Example: c:\cc33\ccap -a -o -e wb33.err "gcc33 -S test.c"

CHAPTER 17: OTHER TOOLS

432 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Usage output
 If no file name or execution command was specified or an option was not specified correctly, the ccap ends

after delivering the following message concerning the usage:

�����

�����	
������
��
������

�������������������������������� ��

!���
"�

���������#�������$�%������&'�	
(�)��**��+�	��
)�

�������"�

����&��"����
�+�*�+
�

����&��"�+���,	
������	
��������

����&��"�+���,	
���**��+�
����

����&
�"�+���	���
��������

���*�	
"�

���������&��&��&�������	
�����)������*�	
��)�

Error messages
 The following shows the error messages generated by the ccap:
 Error: Cannot execute ...The specified "execution command" cannot be executed.
 Error: Cannot open output file ...The output file cannot be opened.

APPENDIX: SRF33 FILE STRUCTURE

E0C33 FAMILY EPSON 433
C COMPILER PACKAGE MANUAL (ver.3)

Appendix srf33 File Structure

A-1 srf33 Object File Structure
The structure of the srf33 format files created by the Assembler as33 and Linker lk33 is explained below. (srf33 is
an abbreviation for "Seiko Epson Relocatable File Format" for the E0C33.)

Note: The structure of the srf33 file for the loader created with the -ld command of the lk33 is different

from that of the standard srf33 file shown in this section. Refer to the readme.txt (English) or
readmeja.txt (Japanese) located in the "utility¥ld33¥" directory of the srf33 file for the loader.

srf33 control header

srf33 control header

Section information 1
Section information 1

Relocation information 1

Relocation information 1

Extern information 1

Extern information 1

:

Actual data 1

Actual data 1

:

:

Section information 2

Relocation information 2

Extern information 2

Actual data 2

Section information n

:

Section information n

Relocation information n

Relocation information n

:

Extern information n
Extern information n

Actual data n

Actual data n

Debugging control
information 1

Debugging control
information 1

File-name information 1

File-name information 1

Statement information 1

Symbol information 1

Statement information 1

Symbol information 1

Debugging control
information 2

File-name information 2

Statement information 2

Symbol information 2

Debugging control
information m

:
Debugging control

information m

File-name information m

Statement information m

Symbol information m

File-name information m

Statement information m

Symbol information m

Composition of srf33 Layout in file
Fig. A.1 Structure of srf33 object file

srf33 control header
 The srf33 file always has one srf33 header at its top. The srf33 control header carries chains (in-file

positional information) toward Section Information 1 and Debugging Control Information 1.

APPENDIX: SRF33 FILE STRUCTURE

434 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

Section information
 An object file created by the assembler has three pieces of section information (one each for CODE, DATA

and BSS) in the case of relocatable modules, or has one to three section information (one or zero each for
CODE, DATA and BSS) in the case of absolute modules. In the modules after the linking process,
continuous relocatable sections are grouped together, but other sections (individually defined section and
absolute sections) exist independently of each other. The section information after the linking process is
grouped together in the CODE Section, DATA Section, and BSS Section in the order of the addresses in each
sections. The section information in the CODE section, DATA section, and the BSS section, which do not
have actual data, is also delivered.

 Each piece of section information contains the attribute of that section (CODE, DATA, or BSS), mapping
addresses, chains to relocation information/extern information/actual information, actual data size, and so on.
It also has a chain to the following section information.

Relocation information
 Necessary information for relocation of the linker. It is contained in the object file created by the assembler.

The relocation information is not delivered in the object file after the linking process.
 The relocation information contains relocation types for instruction codes in the section, positions in the

section, index to the extern information to be referred to, and so on.

Extern information
 Symbol information necessary for linking. It is contained in the object file created by the assembler. The

extern information is not delivered in the object file after the linking process.
 The extern information contains the names and types of symbols used in the section, the positions in the

section, and so on.

Actual data
 Actual data of each section (although the BSS section does not hold any data). In the case of the CODE

section, two bytes are used for one code (instruction). In the DATA section, each piece of data takes up one,
two or four bytes.

Debugging control information
 The debugging control information is created in a quantity equal to the number of linked object modules, and

contains the file name information of each module, statement information, symbol information size, and
chains. It also carries a chain that goes to the following debugging control information. The debugging
control information is arranged in order of the linked modules.

 The debugging control information, as well as the file name information, the statement information, and the
symbol information, are delivered when the processing is executed from the C Compiler gcc33/ Preprocessor
pp33 through Linker lk33, with the -g option specified. The source display and the use of symbols take place
according to this debugging control information. Even when there is no part following the debugging control
information (or if such part is available but it cannot be read successfully) the debugging can be executed by
disassembling display, as long as the portion up to the actual data can be read correctly.

File-name information
 File-name information created by the .file pseudo-instruction. It contains information on the file names of

each module, included-file names, and their respective directory structures. It is primarily referred to by the
debugger when it displays source codes.

Statement information
 Consists of line-number information and file-switching information created by the .loc and .endfile

pseudo-instructions. It is mainly referred to by the debugger to establish correspondence between actual data
and source codes.

Symbol information
 Contains information on all the symbols defined in the module. It is referred to in the symbol display or in

the address specification using symbols.

APPENDIX: SRF33 FILE STRUCTURE

E0C33 FAMILY EPSON 435
C COMPILER PACKAGE MANUAL (ver.3)

<Reference: Contents of Information>

* Chain: Denotes the connection to the continuing information by the number of bytes from the top of the file.

If that number is 0 (zero), there is no continuing information.
 Index: Number to identify a section or symbol. First ID No. is 0 (zero).

(1) srf33 Control Header

The following OR values:
0x0001: Relocatable file
0x0002: Absolute file
0x0004: Execution format (Linker output file)
0x0008: Debugging information included
0x0010: Library file
0x0000: Boot address
0x3300 (Version: 33, Revision: 00)
0x00000000: There is no section information.
Other than 0: Chain
0x00000000: There is no debugging information.
Other than 0: Chain

Contents
2

2
2
4

4

ByteInformation
File control flag

Entry address
srf33 version information
Section-information chain

Debugging-control information chain

c_fatt

c_pentry
c_ver
c_scnptr

c_debptr

(2) Section Information (Maximum 65535)

0x00000000: Terminal end of section information
Other than 0: Chain
0x0001: CODE section
0x0002: DATA section
0x0003: BSS section
0x0004: Dummy section
0x0000 (unused)
0x0001: Absolute, 0x0002: Relocatable
0x00000000– 0x0fffffff
0x00000000: There is no relocation information.
Other than 0: Chain
0x00000000: When the relocation information chain is 0.
Other than 0: Byte size
0x00000000: There is no extern information.
Other than 0: Chain
0x00000000: When the extern information chain is 0.
Other than 0: Byte size
0x00000000: When the extern information chain is 0.
Other than 0: Number of pieces of information
0x00000000:There is no actual data (always 0 in BSS).
Other than 0: Chain
0x00000000: When the chain to actual data is 0 in CODE/
DATA section, or when there is no BSS area in BSS section.
Other than 0: Byte size of actual data in CODE/DATA
section. Byte size of BSS area in BSS section.
0x0000– 0xffff

Contents
4

2

2
2
4
4

4

4

4

4

4

4

2

ByteInformation
Chain to the following section

Section type

Linking method
Section attribute
Section start address
Relocation information chain

Relocation information byte size

Extern information chain

Extern information byte size

Number of pieces of extern information

Chain to actual data

Actual data byte size

Section ID

s_nxptr

s_scntyp

s_lnktyp
s_scnatt
s_off
s_rcptr

s_rcsiz

s_exptr

s_exsiz

s_excnt

s_rdptr

s_dsiz

s_scnndx

(3) Relocation Information

0x0001: 8-bit relative symbol, SYMBOL<0x200
0x0002: 32-bit relative symbol (31:22), SYMBOL@rh
0x0003: 32-bit relative symbol (21:9), SYMBOL@rm
0x0004: 32-bit relative symbol (8:1), SYMBOL@rl
0x0005: 26-bit relative symbol (25:13), SYMBOL+sign32@ah
0x0006: 26-bit relative symbol (12:0), SYMBOL+sign32@al
0x0007: 32-bit absolute symbol (31:19), SYMBOL+imm32@h
0x0008: 32-bit absolute symbol (18:6), SYMBOL+imm32@m
0x0009: 32-bit absolute symbol (5:0), SYMBOL+imm32@l
0x000a: 32-bit absolute symbol (31:0), SYMBOL
0x00000000– Word size of the section to which this information belongs
0x00000000– Number of pieces of extern information in the section to be
referred
0x0000– Number of sections in the same file

0x00000000 (offset 0)– 0xffffffff

Contents
2

4
4

2

4

ByteInformation
Relocation type

Offset in the section
Index of the extern information to be
referred
Section ID to which the extern
information to be referred belongs
Offset from the symbol

r_rctyp

r_scnoff
r_exndx

r_scnndx

r_symoff

APPENDIX: SRF33 FILE STRUCTURE

436 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

(4) Extern Information

0x00000000– Word size of the section to which this information belongs
0x00000000– 0xffffffff (corresponds to .comm, .lcomm)
0x00000000 (used only inside the linker)
Reserved area
0x0001: Global symbol
0x0002: Local symbol
0x0003: Extern symbol
0x00– 0x20
Symbol name, ∗: Max. 32 bytes

Contents
4
4
4

2

1
∗

ByteInformation
Offset in the section
Symbol size
Section ID to which the extern
information to be referred belongs
Extern type

Length of symbol name
Symbol name

e_scnoff
e_size
e_scnndx

e_extyp

e_namsiz
e_exnam

(5) Actual Data
 CODE section: One code is output in 2 bytes. (in order of upper to lower)
 DATA section: One piece of data is output in 1 byte (byte), 2 bytes (half word) or 4 bytes (word). (in order

of upper to lower)
 BSS section: Does not hold any actual data.

(6) Debugging Control Information

0x00000000: Terminal end of debugging control information
Other than 0: Chain
0x00000000: There is no file-name information.
Other than 0: Chain
0x00000000: When the file-name information chain is 0.
Other than 0: Byte size
0x00000000: When the file-name information chain is 0.
Other than 0: Number of pieces of information
0x00000000: There is no statement information.
Other than 0: Chain
0x00000000: When the statement-information chain is 0.
Other than 0: Byte size
0x00000000: There is no symbol-information.
Other than 0: Chain
0x00000000: When the symbol-information chain is 0.
Other than 0: Byte size
0x00000000: When the symbol-information chain is 0.
Other than 0: Number of pieces of information

Contents
4

4

4

4

4

4

4

4

4

ByteInformation
Debugging-control-information chain

File-name-information chain

File-name-information byte size

Number of pieces of file-name
information
Statement-information chain

Statement-information byte size

Symbol-information chain

Symbol-information byte size
(symbol info.+special statement info.)
Number of pieces of symbol information
(symbol info.+special statement info.)

d_nxptr

d_flptr

d_flsiz

d_flcnt

d_stptr

d_stsiz

d_syptr

d_sysiz

d_sycnt

(7) File-Name Information

0x0000 (unused)
0x00– 0xff
0x00– 0xff
Path and file name, ∗: Max. 510 bytes

Contents
2
1
1
∗

ByteInformation
Type
Length of directory name
Length of source file name
Source file information

f_ftyp
f_dirsiz
f_fnamsiz
f_fnam

(8) Statement Information
<General Statement Information> ∗ Line information of source (Statement information when top is other than 0xff)

0x00000000– Last line of source file
0x0000 (unused)
0x00000000– Actual size of reference section
0x0000– Number of sections in the srf33 file to be debugged

Contents
4
2
4
2

ByteInformation
Number of lines in the source file
Statement
Offset in the reference section
Reference section ID

t_line
t_stat
t_scnoff
t_scnndx

<Special Statement Information> ∗ Switching information of source file (Top at 0xff)

0xffff: Start of source-file-name reference range
0cfffe: End of source-file-name reference range
0x00000000– Number of pieces of file-name information within the same
debugging-control information
0x00000000– Actual size of reference section

0x0000– Number of sections in the srf33 file to be debugged

Contents
2

4

4

2

ByteInformation
Type of statement information

Index to file-name information

Offset in last CODE section of source
file
Reference section ID

t_type

t_flndx

t_fnoff

t_scnndx

APPENDIX: SRF33 FILE STRUCTURE

E0C33 FAMILY EPSON 437
C COMPILER PACKAGE MANUAL (ver.3)

(9) Symbol Information
<General Symbol Information>

0x00000000– Number of pieces of symbol information within the same
debugging-control information
0xffffffff: Invalid symbol information
0x00000000– 0xffffffff
y_typ[0](3:0) y_typ[1] & y_typ[0](7:4)
0: no type 0: no derived type
1: void 1: pointer
2: char 2: function
3: short int 3: array
4: int (combination of above values)
5: long int
6: float
7: double
8: structure
9: union
10: enum
11: member of enum
12: unsigned char
13: unsigned short
14: unsigned int
15: unsigned long
0x0000– Number of sections in the srf33 file to be debugged
0: null 16: member of enumeration
1: automatic variable 17: register parameter
2: external symbol 18: bit field
3: static 19: auto argument
4: register variable 20: dummy entry (end of block)
5: external definition 100: beginning of block ".begin"
6: label 101: beginning of function ".ent"
7: undefined label 102: end of structure
8: member of structure 103: file name
9: function argument 104: line # reformatted as symbol
10: structure tag table entry
11: member of union 105: duplicate tag
12: union tag 106: ext symbol in dmert public lib
13: type definition 110: end of block ".bend"
14: undefined static 111: end of function ".end"
15: enumeration tag
0x00– 0xff
0x00– 0x20
Symbol name, ∗: Max. 32 bytes

Contents
4

4
2

2
1

1
1
∗

ByteInformation
Symbol ID

Symbol value
Symbol type

Reference section ID
Storage class

Number of AUX entry
Length of symbol name
Symbol name

y_symndx

y_value
y_typ

y_scnndx
y_sclass

y_auxcnt
y_namsiz
y_symnam

<AUX Entry>

0x00000000– 0xffffffff

0x00000000– 0xffffffff
0x00000000– 0xffffffff∗0xffffffff

Contents
4

4
4∗4

ByteInformation
Index to tag name of structure, union or
enumeration
Size of structure, union or array
Dimensions of array

x_tagndx

x_size
x_dimen

APPENDIX: SRF33 FILE STRUCTURE

438 EPSON E0C33 FAMILY
 C COMPILER PACKAGE MANUAL (ver.3)

A-2 Library File Structure
The structure of the library files created by the Librarian lib33 is explained below.

Library header

Library symbol table 1

Object module information 1

:

Library symbol table n

Object file 1

Object module information n

Object file n

:

Composition of library file
Fig. A.2 Structure of library file

Library header
The library file always has one library header at its top.
The library header contains the library file name, file size
and the pointer (in-file positional information) toward the
first object module.

Object module information
Object module information is created for each object
module. It contains the object file name, file size and the
pointer toward the corresponding library symbol table.

Library symbol table
This is the global symbol information table corresponding
to each object module. The library symbol table is not
created for the object module that has no global symbol. It
contains the symbol table size and information of each
global symbol (symbol name and pointer toward the
corresponding object module information).

<Reference: Contents of Information>

(1) Library Header

0x0010
Library file size
0x3300 (Version: 33, Revision: 00)
Offset of the object module information from the beginning of the file
0x00– 0xff
Path and file name, ∗: Max. 510 bytes

Contents
2
4
2
4
1
∗

ByteInformation
File control flag
Size of entire library
srf33 version information
Pointer to first object module
Length of library file name
Library file name

l_att
l_size
l_ver
l_objptr
l_namsiz
f_fnam

(2) Object Module Information

0xffffffff
Object file size
Offset of the corresponding library symbol table from the beginning of the
file.
0x00– 0xff
Path and file name, ∗: Max. 510 bytes

Contents
4
4
4

1
∗

ByteInformation
File control flag
Object file size
Pointer to library symbol table

Length of object file name
Object file name

o_att
o_size
o_lsymptr

l_namsiz
f_fnam

(3) Library Symbol Table

Total size of library symbol table
Contents

4
ByteInformation

Table sizelst_size
Individual global symbol information follows the table size information.

Offset of the object module information from the beginning of the file
0x00– 0x20
Symbol name, ∗: Max. 32 bytes

Contents
4
1
∗

ByteInformation
Pointer to object module information
Length of global symbol
Global symbol name

ls_objptr
ls_namsiz
ls_glnam

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
Unit 2.4, Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings .

ELECTRONIC DEVICES MARKETING DIVISION

� EPSON Electronic Devices website

http://www.epson.co.jp/device/ First issue JUNE 1998 M , Printed JUNE 2000 in Japan BW

	䤀渀琀爀漀搀甀挀琀椀漀渀
	䠀漀眀 琀漀 爀攀愀搀 琀栀攀 洀愀渀甀愀氀
	䴀愀渀甀愀氀 一漀琀愀琀椀漀渀猀

	 䜀攀渀攀爀愀氀
	⸀ 䘀攀愀琀甀爀攀猀
	⸀㈀ 吀漀漀氀 䌀漀洀瀀漀猀椀琀椀漀渀
	⸀㈀⸀ 䌀漀洀瀀漀猀椀琀椀漀渀 漀昀 倀愀挀欀愀最攀
	⸀㈀⸀㈀ 伀甀琀氀椀渀攀 漀昀 匀漀昀琀眀愀爀攀 吀漀漀氀猀

	㈀ 䤀渀猀琀愀氀氀愀琀椀漀渀
	㈀⸀ 圀漀爀欀椀渀最 䔀渀瘀椀爀漀渀洀攀渀琀
	㈀⸀㈀ 䤀渀猀琀愀氀氀愀琀椀漀渀 䴀攀琀栀漀搀

	㌀ 匀漀昀琀眀愀爀攀 䐀攀瘀攀氀漀瀀洀攀渀琀 倀爀漀挀攀搀甀爀攀猀
	㌀⸀ 匀漀昀琀眀愀爀攀 䐀攀瘀攀氀漀瀀洀攀渀琀 䘀氀漀眀
	㌀⸀㈀ 吀甀琀漀爀椀愀氀 ⠀䘀氀漀眀 漀昀 伀瀀攀爀愀琀椀漀渀猀 眀椀琀栀 圀漀爀欀 䈀攀渀挀栀⤀
	㌀⸀㈀⸀ 匀琀愀爀琀甀瀀 漀昀 圀漀爀欀 䈀攀渀挀栀 眀戀㌀㌀
	㌀⸀㈀⸀㈀ 匀攀氀攀挀琀椀渀最 䐀椀爀攀挀琀漀爀礀 愀渀搀 䐀椀猀瀀氀愀礀椀渀最 䘀椀氀攀 䌀漀渀琀攀渀琀猀
	㌀⸀㈀⸀㌀ 䌀爀攀愀琀椀渀最 䴀愀欀攀 䘀椀氀攀
	㌀⸀㈀⸀㐀 䄀甀琀漀ⴀ攀砀攀挀甀琀椀漀渀 昀爀漀洀 䌀漀洀瀀椀氀椀渀最 琀漀 䰀椀渀欀椀渀最
	㌀⸀㈀⸀㔀 吀漀 䔀砀攀挀甀琀攀 吀漀漀氀猀 䤀渀搀椀瘀椀搀甀愀氀氀礀
	㌀⸀㈀⸀㘀 䌀爀攀愀琀椀渀最 倀愀爀愀洀攀琀攀爀 䘀椀氀攀 昀漀爀 䐀攀戀甀最最攀爀
	㌀⸀㈀⸀㜀 䐀攀戀甀最最椀渀最
	㌀⸀㈀⸀㠀 䌀爀攀愀琀椀渀最 䐀椀猀愀猀猀攀洀戀氀礀 䘀椀氀攀
	㌀⸀㈀⸀㤀 䌀爀攀愀琀椀渀最 刀伀䴀 䐀愀琀愀
	㌀⸀㈀⸀　 伀瀀琀椀洀椀稀愀琀椀漀渀
	㌀⸀㈀⸀ 䔀瀀椀氀漀最甀攀

	㌀⸀㌀ 䐀攀戀甀最最椀渀最 䔀渀瘀椀爀漀渀洀攀渀琀
	㌀⸀㌀⸀ 䤀渀ⴀ䌀椀爀挀甀椀琀 䔀洀甀氀愀琀漀爀 䤀䌀䔀㌀㌀
	㌀⸀㌀⸀㈀ 䐀攀戀甀最 䴀漀渀椀琀漀爀 䴀伀一㌀㌀
	㌀⸀㌀⸀㌀ 䤀渀ⴀ䌀椀爀挀甀椀琀 䐀攀戀甀最最攀爀 䤀䌀䐀㌀㌀
	3.3.4 Memory Board MEM33201

	㌀⸀㐀 刀攀氀愀琀椀漀渀猀栀椀瀀 戀攀琀眀攀攀渀 倀爀漀最爀愀洀 匀琀爀甀挀琀甀爀攀 愀渀搀 䴀攀洀漀爀礀

	㐀 匀漀甀爀挀攀 䘀椀氀攀猀
	㐀⸀ 䘀椀氀攀 䘀漀爀洀愀琀 愀渀搀 䘀椀氀攀 一愀洀攀
	㐀⸀㈀ 䜀爀愀洀洀愀爀 漀昀 䌀 匀漀甀爀挀攀
	㐀⸀㈀⸀ 䐀愀琀愀 吀礀瀀攀
	㐀⸀㈀⸀㈀ 䰀椀戀爀愀爀礀 䘀甀渀挀琀椀漀渀猀 愀渀搀 䠀攀愀搀攀爀 䘀椀氀攀猀
	㐀⸀㈀⸀㌀ 䤀渀ⴀ氀椀渀攀 䄀猀猀攀洀戀氀攀

	㐀⸀㌀ 䜀爀愀洀洀愀爀 漀昀 䄀猀猀攀洀戀氀礀 匀漀甀爀挀攀
	㐀⸀㌀⸀ 匀琀愀琀攀洀攀渀琀猀
	㐀⸀㌀⸀㈀ 一漀琀愀琀椀漀渀猀 漀昀 伀瀀攀爀愀渀搀猀
	㐀⸀㌀⸀㌀ 䔀砀琀攀渀搀攀搀 䤀渀猀琀爀甀挀琀椀漀渀猀
	㐀⸀㌀⸀㐀 䄀搀搀椀琀椀漀渀愀氀 倀爀攀瀀爀漀挀攀猀猀漀爀 䘀甀渀挀琀椀漀渀猀

	㐀⸀㐀 倀爀攀挀愀甀琀椀漀渀猀 昀漀爀 䌀爀攀愀琀椀漀渀 漀昀 匀漀甀爀挀攀猀

	㔀 圀漀爀欀 䈀攀渀挀栀
	㔀⸀ 䘀甀渀挀琀椀漀渀猀
	㔀⸀㈀ 伀瀀攀爀愀琀椀漀渀猀
	㔀⸀㈀⸀ 匀琀愀爀琀椀渀最 唀瀀 愀渀搀 吀攀爀洀椀渀愀琀椀渀最 眀戀㌀㌀
	㔀⸀㈀⸀㈀ 圀椀渀搀漀眀
	㔀⸀㈀⸀㌀ 匀攀氀攀挀琀椀渀最 䘀椀氀攀 愀渀搀 䐀椀猀瀀氀愀礀椀渀最 匀漀甀爀挀攀
	㔀⸀㈀⸀㐀 䔀砀攀挀甀琀椀渀最 䤀渀搀椀瘀椀搀甀愀氀 吀漀漀氀猀
	㔀⸀㈀⸀㔀 匀攀氀攀挀琀椀渀最 䔀砀攀挀甀琀椀漀渀 䌀漀渀搀椀琀椀漀渀猀
	㔀⸀㈀⸀㘀 䴀愀欀攀
	㔀⸀㈀⸀㜀 倀愀爀愀洀攀琀攀爀 䘀椀氀攀 䜀攀渀攀爀愀琀漀爀
	㔀⸀㈀⸀㠀 匀瀀攀挀椀昀礀椀渀最 愀 䜀攀渀攀爀愀氀ⴀ瀀甀爀瀀漀猀攀 䔀搀椀琀漀爀
	㔀⸀㈀⸀㤀 䔀渀琀攀爀椀渀最 䌀漀洀洀愀渀搀 䰀椀渀攀猀
	㔀⸀㈀⸀　 匀愀瘀椀渀最 愀渀搀 刀攀猀琀漀爀椀渀最 伀瀀琀椀漀渀猀

	㔀⸀㌀ 䔀爀爀漀爀 䴀攀猀猀愀最攀猀
	㔀⸀㐀 倀爀攀挀愀甀琀椀漀渀猀

	㘀 䌀 䌀漀洀瀀椀氀攀爀
	㘀⸀ 䘀甀渀挀琀椀漀渀猀
	㘀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㘀⸀㈀⸀ 䤀渀瀀甀琀 䘀椀氀攀
	㘀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㘀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㘀⸀㌀⸀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㘀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㘀⸀㐀 䴀攀猀猀愀最攀猀
	㘀⸀㔀 䌀漀洀瀀椀氀攀爀 伀甀琀瀀甀琀
	㘀⸀㔀⸀ 伀甀琀瀀甀琀 䌀漀渀琀攀渀琀猀
	㘀⸀㔀⸀㈀ 䐀愀琀愀 刀攀瀀爀攀猀攀渀琀愀琀椀漀渀
	㘀⸀㔀⸀㌀ 䴀攀琀栀漀搀 漀昀 唀猀椀渀最 刀攀最椀猀琀攀爀猀
	㘀⸀㔀⸀㐀 䘀甀渀挀琀椀漀渀 䌀愀氀氀
	㘀⸀㔀⸀㔀 匀琀愀挀欀 䘀爀愀洀攀

	㘀⸀㘀 䐀攀戀甀最最椀渀最 䤀渀昀漀爀洀愀琀椀漀渀
	㘀⸀㘀⸀ 匀漀甀爀挀攀 䤀渀昀漀爀洀愀琀椀漀渀
	㘀⸀㘀⸀㈀ 匀礀洀戀漀氀 䤀渀昀漀爀洀愀琀椀漀渀

	㘀⸀㜀 䘀甀渀挀琀椀漀渀猀 漀昀 最挀挀㌀㌀ 愀渀搀 唀猀愀最攀 倀爀攀挀愀甀琀椀漀渀猀

	㜀 䔀洀甀氀愀琀椀漀渀 䰀椀戀爀愀爀礀
	㜀⸀ 伀瘀攀爀瘀椀攀眀
	㜀⸀㈀ 䘀氀漀愀琀椀渀最ⴀ瀀漀椀渀琀 䌀愀氀挀甀氀愀琀椀漀渀 䰀椀戀爀愀爀礀 ⠀昀瀀⸀氀椀戀⤀
	㜀⸀㈀⸀ 䘀甀渀挀琀椀漀渀 䰀椀猀琀
	㜀⸀㈀⸀㈀ 䘀氀漀愀琀椀渀最ⴀ瀀漀椀渀琀 䘀漀爀洀愀琀

	㜀⸀㌀ 䤀渀琀攀最爀愀氀 刀攀洀愀椀渀搀攀爀 䌀愀氀挀甀氀愀琀椀漀渀 䰀椀戀爀愀爀礀 ⠀椀搀椀瘀⸀氀椀戀⤀
	㜀⸀㐀 䘀氀漀愀琀椀渀最ⴀ瀀漀椀渀琀 䌀愀氀挀甀氀愀琀椀漀渀 䰀椀戀爀愀爀礀 ⠀昀瀀瀀⸀氀椀戀⤀

	㠀 䄀一匀䤀 䰀椀戀爀愀爀礀
	㠀⸀ 伀瘀攀爀瘀椀攀眀
	㠀⸀㈀ 䄀一匀䤀 䰀椀戀爀愀爀礀 䘀甀渀挀琀椀漀渀 䰀椀猀琀
	㠀⸀㈀⸀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀甀渀挀琀椀漀渀猀 ⠀椀漀⸀氀椀戀⤀
	㠀⸀㈀⸀㈀ 唀琀椀氀椀琀礀 䘀甀渀挀琀椀漀渀猀 ⠀氀椀戀⸀氀椀戀⤀
	㠀⸀㈀⸀㌀ 䐀愀琀攀 愀渀搀 吀椀洀攀 䘀甀渀挀琀椀漀渀猀 ⠀氀椀戀⸀氀椀戀⤀
	㠀⸀㈀⸀㐀 䴀愀琀栀攀洀愀琀椀挀愀氀 䘀甀渀挀琀椀漀渀猀 ⠀洀愀琀栀⸀氀椀戀⤀
	㠀⸀㈀⸀㔀 䌀栀愀爀愀挀琀攀爀 䘀甀渀挀琀椀漀渀猀 ⠀猀琀爀椀渀最⸀氀椀戀⤀
	㠀⸀㈀⸀㘀 䌀栀愀爀愀挀琀攀爀 吀礀瀀攀 䐀攀琀攀爀洀椀渀愀琀椀漀渀⼀䌀漀渀瘀攀爀猀椀漀渀 䘀甀渀挀琀椀漀渀猀 ⠀挀琀礀瀀攀⸀氀椀戀⤀
	㠀⸀㈀⸀㜀 嘀愀爀椀愀戀氀攀 䄀爀最甀洀攀渀琀 䴀愀挀爀漀猀 ⠀猀琀搀愀爀最⸀栀⤀

	㠀⸀㌀ 䐀攀挀氀愀爀椀渀最 愀渀搀 䤀渀椀琀椀愀氀椀稀椀渀最 䜀氀漀戀愀氀 嘀愀爀椀愀戀氀攀猀
	㠀⸀㐀 䰀漀眀攀爀ⴀ氀攀瘀攀氀 䘀甀渀挀琀椀漀渀猀
	㠀⸀㐀⸀ ∀爀攀愀搀∀ 䘀甀渀挀琀椀漀渀
	㠀⸀㐀⸀㈀ ∀眀爀椀琀攀∀ 䘀甀渀挀琀椀漀渀
	㠀⸀㐀⸀㌀ ∀开攀砀椀琀∀ 䘀甀渀挀琀椀漀渀

	㤀 倀爀攀瀀爀漀挀攀猀猀漀爀
	㤀⸀ 䘀甀渀挀琀椀漀渀猀
	㤀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㤀⸀㈀⸀ 䤀渀瀀甀琀 䘀椀氀攀
	㤀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㤀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㤀⸀㌀⸀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㤀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㤀⸀㐀 䴀攀猀猀愀最攀猀
	㤀⸀㔀 倀爀攀瀀爀漀挀攀猀猀漀爀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	㤀⸀㔀⸀ 䤀渀挀氀甀搀攀 䤀渀猀琀爀甀挀琀椀漀渀 ⠀⌀椀渀挀氀甀搀攀⤀
	㤀⸀㔀⸀㈀ 䐀攀昀椀渀攀 䤀渀猀琀爀甀挀琀椀漀渀 ⠀⌀搀攀昀椀渀攀⤀
	㤀⸀㔀⸀㌀ 䴀愀挀爀漀 䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⌀洀愀挀爀漀 ⸀⸀⸀ ⌀攀渀搀洀⤀
	㤀⸀㔀⸀㐀 䌀漀渀搀椀琀椀漀渀愀氀 䄀猀猀攀洀戀氀礀 䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⌀椀昀搀攀昀 ⸀⸀⸀ ⌀攀氀猀攀 ⸀⸀⸀ ⌀攀渀搀椀昀Ⰰ ⌀椀昀渀搀攀昀⸀⸀⸀ ⌀攀氀猀攀 ⸀⸀⸀ ⌀攀渀搀椀昀⤀

	㤀⸀㘀 伀瀀攀爀愀琀漀爀猀
	㤀⸀㜀 䐀攀戀甀最最椀渀最 䤀渀昀漀爀洀愀琀椀漀渀
	㤀⸀㠀 䌀漀洀洀攀渀琀 䄀搀搀椀渀最 䘀甀渀挀琀椀漀渀
	㤀⸀㤀 伀琀栀攀爀 䘀甀渀挀琀椀漀渀猀
	㤀⸀㤀⸀ 䄀匀䌀䤀䤀 琀漀 䠀䔀堀 䌀漀渀瘀攀爀猀椀漀渀
	㤀⸀㤀⸀㈀ 䌀漀洀洀攀渀琀 䰀椀渀攀

	㤀⸀　 倀爀漀挀攀猀猀 䘀氀漀眀
	㤀⸀ 匀愀洀瀀氀攀 䔀砀攀挀甀琀椀漀渀猀
	㤀⸀㈀ 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㤀⸀㈀⸀ 䔀爀爀漀爀猀
	㤀⸀㈀⸀㈀ 圀愀爀渀椀渀最

	㤀⸀㌀ 倀爀攀挀愀甀琀椀漀渀猀

	　 䤀渀猀琀爀甀挀琀椀漀渀 䔀砀琀攀渀搀攀爀
	　⸀ 䘀甀渀挀琀椀漀渀猀
	　⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	　⸀㈀⸀ 䤀渀瀀甀琀 䘀椀氀攀猀
	　⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	　⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	　⸀㌀⸀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	　⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	　⸀㐀 䌀漀洀洀愀渀搀 䘀椀氀攀
	　⸀㔀 䴀攀猀猀愀最攀猀
	　⸀㘀 䔀砀琀攀渀搀攀搀 䤀渀猀琀爀甀挀琀椀漀渀猀
	　⸀㘀⸀ 䄀爀椀琀栀洀攀琀椀挀 伀瀀攀爀愀琀椀漀渀 䤀渀猀琀爀甀挀琀椀漀渀猀
	　⸀㘀⸀㈀ 䌀漀洀瀀愀爀椀猀漀渀 䤀渀猀琀爀甀挀琀椀漀渀猀
	　⸀㘀⸀㌀ 䰀漀最椀挀 伀瀀攀爀愀琀椀漀渀 䤀渀猀琀爀甀挀琀椀漀渀猀
	　⸀㘀⸀㐀 匀栀椀昀琀 ☀ 刀漀琀愀琀攀 䤀渀猀琀爀甀挀琀椀漀渀猀
	　⸀㘀⸀㔀 䐀愀琀愀 吀爀愀渀猀昀攀爀 䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀戀攀琀眀攀攀渀 匀琀愀挀欀 愀渀搀 刀攀最椀猀琀攀爀⤀
	　⸀㘀⸀㘀 䐀愀琀愀 吀爀愀渀猀昀攀爀 䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀戀攀琀眀攀攀渀 䴀攀洀漀爀礀 愀渀搀 刀攀最椀猀琀攀爀⤀
	　⸀㘀⸀㜀 䤀洀洀攀搀椀愀琀攀 䐀愀琀愀 䰀漀愀搀 䤀渀猀琀爀甀挀琀椀漀渀猀
	　⸀㘀⸀㠀 䈀椀琀 伀瀀攀爀愀琀椀漀渀 䤀渀猀琀爀甀挀琀椀漀渀猀
	　⸀㘀⸀㤀 䈀爀愀渀挀栀 䤀渀猀琀爀甀挀琀椀漀渀猀

	　⸀㜀 伀瀀琀椀洀椀稀攀 䘀甀渀挀琀椀漀渀
	　⸀㜀⸀ 伀瀀琀椀洀椀稀椀渀最 刀攀氀愀琀椀瘀攀 䈀爀愀渀挀栀 䤀渀猀琀爀甀挀琀椀漀渀
	　⸀㜀⸀㈀ 伀瀀琀椀洀椀稀愀琀椀漀渀 戀礀 琀栀攀 䜀氀漀戀愀氀 倀漀椀渀琀攀爀
	　⸀㜀⸀㌀ 伀瀀琀椀洀椀稀愀琀椀漀渀 戀礀 匀礀洀戀漀氀 䤀渀昀漀爀洀愀琀椀漀渀

	　⸀㠀 伀琀栀攀爀 䘀甀渀挀琀椀漀渀猀
	　⸀㠀⸀ 䌀漀洀洀攀渀琀 䄀搀搀椀渀最 䘀甀渀挀琀椀漀渀
	　⸀㠀⸀㈀ 䌀氀愀猀猀椀昀椀挀愀琀椀漀渀 漀昀 䰀漀挀愀氀 匀礀洀戀漀氀猀
	　⸀㠀⸀㌀ 匀礀渀琀愀挀琀椀挀 䌀栀攀挀欀

	　⸀㤀 匀愀洀瀀氀攀 䔀砀攀挀甀琀椀漀渀
	　⸀　 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	　⸀　⸀ 䔀爀爀漀爀猀
	　⸀　⸀㈀ 圀愀爀渀椀渀最

	　⸀ 倀爀攀挀愀甀琀椀漀渀猀

	 䄀猀猀攀洀戀氀攀爀
	⸀ 䘀甀渀挀琀椀漀渀猀
	⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	⸀㈀⸀ 䤀渀瀀甀琀 䘀椀氀攀
	⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	⸀㌀⸀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	⸀㐀 䴀攀猀猀愀最攀猀
	⸀㔀 刀攀氀漀挀愀琀愀戀氀攀 䄀猀猀攀洀戀氀椀渀最 愀渀搀 䄀戀猀漀氀甀琀攀 䄀猀猀攀洀戀氀椀渀最
	⸀㔀⸀ 刀攀氀漀挀愀琀愀戀氀攀 䄀猀猀攀洀戀氀椀渀最
	⸀㔀⸀㈀ 䄀戀猀漀氀甀琀攀 䄀猀猀攀洀戀氀椀渀最

	⸀㘀 匀挀漀瀀攀
	⸀㜀 䐀攀昀椀渀椀琀椀漀渀 漀昀 匀攀挀琀椀漀渀猀
	⸀㠀 䄀猀猀攀洀戀氀攀爀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	⸀㠀⸀ 䄀戀猀漀氀甀琀攀 䄀猀猀攀洀戀氀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀愀戀猀⤀
	⸀㠀⸀㈀ 匀攀挀琀椀漀渀 䐀攀昀椀渀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⸀挀漀搀攀Ⰰ ⸀搀愀琀愀⤀
	⸀㠀⸀㌀ 䄀爀攀愀 匀攀挀甀爀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⸀挀漀洀洀Ⰰ ⸀氀挀漀洀洀⤀
	⸀㠀⸀㐀 䰀漀挀愀琀椀漀渀 䌀漀甀渀琀攀爀 䌀漀渀琀爀漀氀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀漀爀最⤀
	⸀㠀⸀㔀 匀礀洀戀漀氀 䐀攀昀椀渀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀猀攀琀⤀
	⸀㠀⸀㘀 䐀愀琀愀 䐀攀昀椀渀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀眀漀爀搀Ⰰ ⸀栀愀氀昀Ⰰ ⸀戀礀琀攀Ⰰ ⸀愀猀挀椀椀Ⰰ ⸀猀瀀愀挀攀⤀
	⸀㠀⸀㜀 䄀氀椀最渀洀攀渀琀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀愀氀椀最渀⤀
	⸀㠀⸀㠀 䜀氀漀戀愀氀 䐀攀挀氀愀爀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀最氀漀戀愀氀⤀
	⸀㠀⸀㤀 䰀椀猀琀 䌀漀渀琀爀漀氀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⸀氀椀猀琀Ⰰ ⸀渀漀氀椀猀琀⤀
	⸀㠀⸀　 䐀攀戀甀最最椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⸀昀椀氀攀Ⰰ ⸀攀渀搀昀椀氀攀Ⰰ ⸀氀漀挀Ⰰ ⸀搀攀昀⤀

	⸀㤀 䄀猀猀攀洀戀氀礀 䰀椀猀琀 䘀椀氀攀
	⸀　 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	⸀　⸀ 䔀爀爀漀爀猀
	⸀　⸀㈀ 圀愀爀渀椀渀最

	⸀ 倀爀攀挀愀甀琀椀漀渀猀

	㈀ 䰀椀渀欀攀爀
	㈀⸀ 䘀甀渀挀琀椀漀渀猀
	㈀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㈀⸀㈀⸀ 䤀渀瀀甀琀 䘀椀氀攀猀
	㈀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㈀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㈀⸀㌀⸀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㈀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㈀⸀㐀 䴀攀猀猀愀最攀猀
	㈀⸀㔀 䰀椀渀欀攀爀 䌀漀洀洀愀渀搀猀
	㈀⸀㔀⸀ 䰀椀渀欀攀爀 䌀漀洀洀愀渀搀 䘀椀氀攀
	㈀⸀㔀⸀㈀ 䰀椀渀欀攀爀 䌀漀洀洀愀渀搀 䰀椀猀琀

	㈀⸀㘀 䰀漀挀愀琀椀渀最 匀攀挀琀椀漀渀猀
	㈀⸀㜀 嘀椀爀琀甀愀氀 愀渀搀 匀栀愀爀攀搀 ⠀唀⤀ 匀攀挀琀椀漀渀猀
	㈀⸀㠀 匀攀挀琀椀漀渀 匀礀洀戀漀氀猀
	㈀⸀㤀 䰀椀渀欀椀渀最 䰀椀戀爀愀爀椀攀猀
	㈀⸀　 刀攀猀漀氀瘀椀渀最 匀礀洀戀漀氀猀
	㈀⸀ 䰀椀渀欀 䴀愀瀀 䘀椀氀攀
	㈀⸀㈀ 匀礀洀戀漀氀 䘀椀氀攀
	㈀⸀㌀ 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㈀⸀㌀⸀ 䔀爀爀漀爀猀
	㈀⸀㌀⸀㈀ 圀愀爀渀椀渀最

	㈀⸀㐀 倀爀攀挀愀甀琀椀漀渀猀

	㌀ 䐀椀猀愀猀猀攀洀戀氀攀爀
	㌀⸀ 䘀甀渀挀琀椀漀渀猀
	㌀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㌀⸀㈀⸀ 䤀渀瀀甀琀 䘀椀氀攀猀
	㌀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㌀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㌀⸀㌀⸀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㌀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㌀⸀㐀 䴀攀猀猀愀最攀猀
	㌀⸀㔀 䐀椀猀愀猀猀攀洀戀氀椀渀最 伀甀琀瀀甀琀
	㌀⸀㔀⸀ 䴀椀砀 伀甀琀瀀甀琀
	㌀⸀㔀⸀㈀ 䌀漀搀攀 伀甀琀瀀甀琀
	㌀⸀㔀⸀㌀ 䐀愀琀愀 伀甀琀瀀甀琀

	㌀⸀㘀 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㌀⸀㘀⸀ 䔀爀爀漀爀猀
	㌀⸀㘀⸀㈀ 圀愀爀渀椀渀最

	㌀⸀㜀 倀爀攀挀愀甀琀椀漀渀猀

	㐀 䈀椀渀愀爀礀⼀䠀䔀堀 䌀漀渀瘀攀爀琀攀爀
	㐀⸀ 䘀甀渀挀琀椀漀渀猀
	㐀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㐀⸀㈀⸀ 䤀渀瀀甀琀 䘀椀氀攀
	㐀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㐀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㐀⸀㌀⸀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㐀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㐀⸀㐀 䴀攀猀猀愀最攀猀
	㐀⸀㔀 䌀漀渀琀攀渀琀猀 漀昀 䠀䔀堀 䘀椀氀攀
	㐀⸀㔀⸀ 䴀漀琀漀爀漀氀愀 匀㌀ 䘀漀爀洀愀琀
	㐀⸀㔀⸀㈀ 䄀戀猀漀氀甀琀攀 䄀搀搀爀攀猀猀 伀甀琀瀀甀琀
	㐀⸀㔀⸀㌀ 伀昀昀猀攀琀 䄀搀搀爀攀猀猀 伀甀琀瀀甀琀

	㐀⸀㘀 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㐀⸀㘀⸀ 䔀爀爀漀爀猀
	㐀⸀㘀⸀㈀ 圀愀爀渀椀渀最

	㐀⸀㜀 倀爀攀挀愀甀琀椀漀渀猀

	㔀 䰀椀戀爀愀爀椀愀渀
	㔀⸀ 䘀甀渀挀琀椀漀渀猀
	㔀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㔀⸀㈀⸀ 䤀渀瀀甀琀 䘀椀氀攀猀
	㔀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㔀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㔀⸀㌀⸀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㔀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㔀⸀㐀 䴀攀猀猀愀最攀猀
	㔀⸀㔀 䰀椀戀爀愀爀礀 䔀搀椀琀椀渀最 䘀甀渀挀琀椀漀渀猀
	㔀⸀㔀⸀ 䌀爀攀愀琀椀渀最 愀 一攀眀 䰀椀戀爀愀爀礀
	㔀⸀㔀⸀㈀ 䄀搀搀椀渀最 䴀漀搀甀氀攀猀 琀漀 愀 䰀椀戀爀愀爀礀
	㔀⸀㔀⸀㌀ 䰀椀猀琀椀渀最 刀攀最椀猀琀攀爀攀搀 䴀漀搀甀氀攀猀
	㔀⸀㔀⸀㐀 䐀攀氀攀琀椀渀最 䴀漀搀甀氀攀猀 昀爀漀洀 愀 䰀椀戀爀愀爀礀
	㔀⸀㔀⸀㔀 刀攀猀琀漀爀椀渀最 伀戀樀攀挀琀 䘀椀氀攀猀

	㔀⸀㘀 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㔀⸀㘀⸀ 䔀爀爀漀爀猀
	㔀⸀㘀⸀㈀ 圀愀爀渀椀渀最猀

	㔀⸀㜀 倀爀攀挀愀甀琀椀漀渀猀

	㘀 䐀攀戀甀最最攀爀
	㘀⸀ 䘀攀愀琀甀爀攀猀
	㘀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㘀⸀㈀⸀ 䤀渀瀀甀琀 䘀椀氀攀猀
	㘀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀

	㘀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㘀⸀㌀⸀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㘀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀
	㘀⸀㌀⸀㌀ 匀琀愀爀琀甀瀀 䴀攀猀猀愀最攀猀
	㘀⸀㌀⸀㐀 䴀攀琀栀漀搀 漀昀 吀攀爀洀椀渀愀琀椀漀渀

	㘀⸀㐀 圀椀渀搀漀眀猀
	㘀⸀㐀⸀ 䈀愀猀椀挀 匀琀爀甀挀琀甀爀攀 漀昀 圀椀渀搀漀眀
	㘀⸀㐀⸀㈀ 嬀䌀漀洀洀愀渀搀崀 圀椀渀搀漀眀
	㘀⸀㐀⸀㌀ 嬀匀漀甀爀挀攀崀 圀椀渀搀漀眀
	㘀⸀㐀⸀㐀 嬀䴀攀洀漀爀礀崀 圀椀渀搀漀眀
	㘀⸀㐀⸀㔀 嬀刀攀最椀猀琀攀爀崀 圀椀渀搀漀眀
	㘀⸀㐀⸀㘀 嬀吀爀愀挀攀崀 圀椀渀搀漀眀
	㘀⸀㐀⸀㜀 嬀匀礀洀戀漀氀崀 圀椀渀搀漀眀
	㘀⸀㐀⸀㠀 嬀匀椀洀甀氀愀琀攀搀 䤀⼀伀崀 圀椀渀搀漀眀

	㘀⸀㔀 吀漀漀氀 䈀愀爀
	㘀⸀㔀⸀ 吀漀漀氀 䈀愀爀 匀琀爀甀挀琀甀爀攀
	㘀⸀㔀⸀㈀ 嬀䬀攀礀 戀爀攀愀欀崀 䈀甀琀琀漀渀
	㘀⸀㔀⸀㌀ 嬀䰀漀愀搀 昀椀氀攀崀 䈀甀琀琀漀渀
	㘀⸀㔀⸀㐀 嬀匀漀甀爀挀攀崀Ⰰ 嬀䴀椀砀崀 愀渀搀 嬀唀渀愀猀猀攀洀戀氀攀崀 䈀甀琀琀漀渀猀
	㘀⸀㔀⸀㔀 嬀䜀漀崀Ⰰ 嬀䜀漀 琀漀崀Ⰰ 嬀匀琀攀瀀崀Ⰰ 嬀一攀砀琀崀Ⰰ 嬀刀攀猀攀琀 挀漀氀搀崀 愀渀搀 嬀刀攀猀攀琀 栀漀琀崀 䈀甀琀琀漀渀猀
	㘀⸀㔀⸀㘀 嬀匀漀昀琀 倀䌀 戀爀攀愀欀崀 愀渀搀 嬀䠀愀爀搀 倀䌀 戀爀攀愀欀崀 䈀甀琀琀漀渀猀
	㘀⸀㔀⸀㜀 嬀匀礀洀戀漀氀 眀愀琀挀栀崀Ⰰ 嬀匀礀洀戀漀氀 愀搀搀崀 愀渀搀 嬀匀礀洀戀漀氀 搀攀氀攀琀攀崀 䈀甀琀琀漀渀猀
	㘀⸀㔀⸀㠀 嬀䐀椀猀瀀氀愀礀 琀爀愀挀攀崀 愀渀搀 嬀刀攀猀甀洀攀 琀爀愀挀攀崀 䈀甀琀琀漀渀猀
	㘀⸀㔀⸀㤀 嬀匀攀氀攀挀琀 猀漀甀爀挀攀崀 䌀漀洀戀漀 䈀漀砀

	㘀⸀㘀 䴀攀渀甀
	㘀⸀㘀⸀ 䴀攀渀甀 匀琀爀甀挀琀甀爀攀
	㘀⸀㘀⸀㈀ 嬀䘀椀氀攀崀 䴀攀渀甀
	㘀⸀㘀⸀㌀ 嬀䔀搀椀琀崀 䴀攀渀甀
	㘀⸀㘀⸀㐀 嬀刀甀渀崀 䴀攀渀甀
	㘀⸀㘀⸀㔀 嬀䈀爀攀愀欀崀 䴀攀渀甀
	㘀⸀㘀⸀㘀 嬀匀礀洀戀漀氀崀 䴀攀渀甀
	㘀⸀㘀⸀㜀 嬀圀椀渀搀漀眀崀 䴀攀渀甀
	㘀⸀㘀⸀㠀 嬀䠀攀氀瀀崀 䴀攀渀甀

	㘀⸀㜀 䴀攀琀栀漀搀 昀漀爀 䔀砀攀挀甀琀椀渀最 䌀漀洀洀愀渀搀猀
	㘀⸀㜀⸀ 䔀渀琀攀爀椀渀最 䌀漀洀洀愀渀搀猀 昀爀漀洀 䬀攀礀戀漀愀爀搀
	㘀⸀㜀⸀㈀ 倀愀爀愀洀攀琀攀爀 䤀渀瀀甀琀 䘀漀爀洀愀琀猀
	㘀⸀㜀⸀㌀ 䔀砀攀挀甀琀椀渀最 昀爀漀洀 䴀攀渀甀 漀爀 吀漀漀氀 䈀愀爀
	㘀⸀㜀⸀㐀 䔀砀攀挀甀琀椀渀最 昀爀漀洀 䌀漀洀洀愀渀搀 䘀椀氀攀
	㘀⸀㜀⸀㔀 䰀漀最 䘀椀氀攀

	㘀⸀㠀 䐀攀戀甀最 䘀甀渀挀琀椀漀渀猀
	㘀⸀㠀⸀ 䐀攀戀甀最最攀爀 䴀漀搀攀
	㘀⸀㠀⸀㈀ 䰀漀愀搀椀渀最 䘀椀氀攀猀
	㘀⸀㠀⸀㌀ 匀漀甀爀挀攀 䐀椀猀瀀氀愀礀 愀渀搀 匀礀洀戀漀氀椀挀 䐀攀戀甀最最椀渀最 䘀甀渀挀琀椀漀渀
	㘀⸀㠀⸀㐀 䐀椀猀瀀氀愀礀椀渀最 愀渀搀 䴀漀搀椀昀礀椀渀最 䴀攀洀漀爀礀 䐀愀琀愀 愀渀搀 刀攀最椀猀琀攀爀
	㘀⸀㠀⸀㔀 䔀砀攀挀甀琀椀渀最 倀爀漀最爀愀洀
	㘀⸀㠀⸀㘀 䈀爀攀愀欀 䘀甀渀挀琀椀漀渀猀
	㘀⸀㠀⸀㜀 吀爀愀挀攀 䘀甀渀挀琀椀漀渀猀
	㘀⸀㠀⸀㠀 匀椀洀甀氀愀琀攀搀 䤀⼀伀
	㘀⸀㠀⸀㤀 伀瀀攀爀愀琀椀漀渀 漀昀 䘀氀愀猀栀 䴀攀洀漀爀礀
	㘀⸀㠀⸀　 伀琀栀攀爀 䘀甀渀挀琀椀漀渀猀
	㘀⸀㠀⸀ 䈀椀最ⴀ䔀渀搀椀愀渀 匀甀瀀瀀漀爀琀

	㘀⸀㤀 䌀漀洀洀愀渀搀 刀攀昀攀爀攀渀挀攀
	㘀⸀㤀⸀ 䌀漀洀洀愀渀搀 䰀椀猀琀
	㘀⸀㤀⸀㈀ 䌀漀洀洀愀渀搀猀 琀漀 伀瀀攀爀愀琀攀 䴀攀洀漀爀礀
	昀戀 ⠀昀椀氀氀 戀礀琀攀⤀
	昀栀 ⠀昀椀氀氀 栀愀氀昀⤀
	昀眀 ⠀昀椀氀氀 眀漀爀搀⤀
	搀戀 ⠀搀甀洀瀀 戀礀琀攀⤀
	搀栀 ⠀搀甀洀瀀 栀愀氀昀⤀
	搀眀 ⠀搀甀洀瀀 眀漀爀搀⤀
	搀昀 ⠀搀甀洀瀀 昀椀氀攀⤀
	攀戀 ⠀攀渀琀攀爀 戀礀琀攀⤀
	攀栀 ⠀攀渀琀攀爀 栀愀氀昀⤀
	攀眀 ⠀攀渀琀攀爀 眀漀爀搀⤀
	洀瘀 ⠀洀漀瘀攀⤀
	洀瘀栀 ⠀洀漀瘀攀 栀愀氀昀⤀
	洀瘀眀 ⠀洀漀瘀攀 眀漀爀搀⤀
	眀 ⠀眀愀琀挀栀⤀
	爀洀 ⠀爀攀愀搀 洀攀洀漀爀礀⤀

	㘀⸀㤀⸀㌀ 䌀漀洀洀愀渀搀猀 琀漀 伀瀀攀爀愀琀攀 漀渀 刀攀最椀猀琀攀爀
	爀搀 ⠀爀攀最椀猀琀攀爀 搀椀猀瀀氀愀礀⤀
	爀猀 ⠀爀攀最椀猀琀攀爀 猀攀琀⤀

	㘀⸀㤀⸀㐀 䌀漀洀洀愀渀搀猀 琀漀 䔀砀攀挀甀琀攀 倀爀漀最爀愀洀
	最 ⠀最漀⤀
	猀 ⠀猀琀攀瀀⤀
	渀 ⠀渀攀砀琀⤀

	㘀⸀㤀⸀㔀 䌀漀洀洀愀渀搀猀 琀漀 刀攀猀攀琀 䌀倀唀
	爀猀琀挀 ⠀挀漀氀搀 爀攀猀攀琀 䌀倀唀⤀
	爀猀琀栀 ⠀栀漀琀 爀攀猀攀琀 䌀倀唀⤀

	㘀⸀㤀⸀㘀 䤀渀琀攀爀爀甀瀀琀 䌀漀洀洀愀渀搀
	椀渀琀 ⠀椀渀琀攀爀爀甀瀀琀⤀

	㘀⸀㤀⸀㜀 䌀漀洀洀愀渀搀猀 琀漀 匀攀琀 䈀爀攀愀欀猀
	戀瀀 ⠀戀爀攀愀欀 瀀漀椀渀琀 猀攀琀⤀
	戀猀 ⠀戀爀攀愀欀 猀漀昀琀眀愀爀攀⤀
	戀挀 ⠀戀爀攀愀欀 挀氀攀愀爀⤀
	戀栀 ⠀戀爀攀愀欀 栀愀爀搀眀愀爀攀⤀
	戀栀挀 ⠀戀爀攀愀欀 栀愀爀搀眀愀爀攀 挀氀攀愀爀⤀
	戀栀㈀ ⠀戀爀攀愀欀 栀愀爀搀眀愀爀攀 ㈀⤀
	戀栀挀㈀ ⠀戀爀攀愀欀 栀愀爀搀眀愀爀攀 ㈀ 挀氀攀愀爀⤀
	戀搀 ⠀搀愀琀愀 戀爀攀愀欀⤀
	戀猀焀 ⠀戀爀攀愀欀 猀攀焀甀攀渀琀椀愀氀⤀
	ba (break area)
	bb (break bus)
	戀氀 ⠀戀爀攀愀欀 氀椀猀琀⤀
	戀愀挀 ⠀戀爀攀愀欀 愀氀氀 挀氀攀愀爀⤀

	㘀⸀㤀⸀㠀 䌀漀洀洀愀渀搀猀 琀漀 䐀椀猀瀀氀愀礀 倀爀漀最爀愀洀
	甀 ⠀甀渀愀猀猀攀洀戀氀攀⤀
	猀挀 ⠀猀漀甀爀挀攀 挀漀搀攀⤀
	洀 ⠀洀椀砀⤀
	猀猀 ⠀猀攀愀爀挀栀 猀琀爀椀渀最猀⤀

	㘀⸀㤀⸀㤀 䌀漀洀洀愀渀搀猀 琀漀 䐀椀猀瀀氀愀礀 匀礀洀戀漀氀 䤀渀昀漀爀洀愀琀椀漀渀
	猀礀 ⠀猀礀洀戀漀氀 氀椀猀琀⤀
	猀愀 ⠀猀礀洀戀漀氀 愀搀搀⤀
	猀搀 ⠀猀礀洀戀漀氀 搀攀氀攀琀攀⤀
	猀眀 ⠀猀礀洀戀漀氀 眀愀琀挀栀⤀

	㘀⸀㤀⸀　 䌀漀洀洀愀渀搀猀 琀漀 䰀漀愀搀 䘀椀氀攀猀
	氀昀 ⠀氀漀愀搀 昀椀氀攀⤀
	氀栀 ⠀氀漀愀搀 栀攀砀⤀
	氀搀 ⠀氀漀愀搀 昀椀氀攀⤀

	㘀⸀㤀⸀ 䌀漀洀洀愀渀搀猀 琀漀 伀瀀攀爀愀琀攀 䘀氀愀猀栀 䴀攀洀漀爀礀
	昀氀猀 ⠀昀氀愀猀栀 洀攀洀漀爀礀 猀攀琀⤀
	昀氀攀 ⠀昀氀愀猀栀 洀攀洀漀爀礀 攀爀愀猀攀⤀
	氀昀氀 ⠀氀漀愀搀 昀爀漀洀 昀氀愀猀栀 洀攀洀漀爀礀⤀
	猀昀氀 ⠀猀愀瘀攀 琀漀 昀氀愀猀栀 洀攀洀漀爀礀⤀
	攀昀氀 ⠀攀爀愀猀攀 昀氀愀猀栀 洀攀洀漀爀礀⤀
	洀愀昀 ⠀洀愀瀀 昀氀愀猀栀 洀攀洀漀爀礀⤀

	㘀⸀㤀⸀㈀ 吀爀愀挀攀 䌀漀洀洀愀渀搀猀
	琀洀 ⠀琀爀愀挀攀 洀漀搀攀⤀
	琀搀 ⠀琀爀愀挀攀 搀甀洀瀀⤀
	琀猀 ⠀琀爀愀挀攀 猀攀愀爀挀栀⤀
	琀昀 ⠀琀爀愀挀攀 昀椀氀攀⤀

	㘀⸀㤀⸀㌀ 匀椀洀甀氀愀琀攀搀 䤀⼀伀
	猀琀搀椀渀 ⠀猀琀愀渀搀愀爀搀 椀渀瀀甀琀⤀
	猀琀搀漀甀琀 ⠀猀琀愀渀搀愀爀搀 漀甀琀瀀甀琀⤀

	㘀⸀㤀⸀㐀 伀琀栀攀爀 䌀漀洀洀愀渀搀猀
	挀漀洀 ⠀攀砀攀挀甀琀攀 挀漀洀洀愀渀搀 昀椀氀攀⤀
	挀洀眀 ⠀攀砀攀挀甀琀攀 挀漀洀洀愀渀搀 昀椀氀攀 眀椀琀栀 眀愀椀琀⤀
	氀漀最 ⠀氀漀最最椀渀最⤀
	漀搀 ⠀漀瀀琀椀漀渀 搀愀琀愀 搀甀洀瀀⤀
	挀琀 ⠀挀栀愀渀最攀 琀礀瀀攀⤀
	攀砀琀 ⠀攀砀琀攀渀搀攀搀 椀渀猀琀爀甀挀琀椀漀渀⤀
	洀愀 ⠀洀愀瀀 椀渀昀漀爀洀愀琀椀漀渀⤀
	洀搀 ⠀洀漀搀攀⤀
	q (quit)
	? (help)
	椀挀攀 ⠀椀挀攀⤀

	㘀⸀　 倀愀爀愀洀攀琀攀爀 䘀椀氀攀
	㘀⸀ 匀琀愀琀甀猀⼀䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㘀⸀⸀ 匀琀愀琀甀猀 䴀攀猀猀愀最攀猀
	㘀⸀⸀㈀ 䔀爀爀漀爀 䴀攀猀猀愀最攀猀
	㘀⸀⸀㌀ 圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀

	㜀 伀琀栀攀爀 吀漀漀氀猀
	㜀⸀ 䴀愀欀攀
	㜀⸀⸀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㜀⸀⸀㈀ 䴀攀猀猀愀最攀猀
	㜀⸀⸀㌀ 䴀愀欀攀 䘀椀氀攀
	㜀⸀⸀㐀 ㈀ⴀ瀀愀猀猀 洀愀欀攀
	㜀⸀⸀㔀 挀氀攀愀渀
	㜀⸀⸀㘀 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㜀⸀⸀㜀 倀爀攀挀愀甀琀椀漀渀猀

	㜀⸀㈀ 挀眀愀椀琀
	㜀⸀㈀⸀ 䘀甀渀挀琀椀漀渀猀
	㜀⸀㈀⸀㈀ 䴀攀琀栀漀搀 昀漀爀 唀猀椀渀最 挀眀愀椀琀

	㜀⸀㌀ 挀挀愀瀀
	㜀⸀㌀⸀ 䘀甀渀挀琀椀漀渀猀
	㜀⸀㌀⸀㈀ 䴀攀琀栀漀搀 昀漀爀 唀猀椀渀最 挀挀愀瀀

	䄀瀀瀀攀渀搀椀砀 猀爀昀㌀㌀ 䘀椀氀攀 匀琀爀甀挀琀甀爀攀
	䄀ⴀ 猀爀昀㌀㌀ 伀戀樀攀挀琀 䘀椀氀攀 匀琀爀甀挀琀甀爀攀
	䄀ⴀ㈀ 䰀椀戀爀愀爀礀 䘀椀氀攀 匀琀爀甀挀琀甀爀攀

