MF1099-03 EPSON

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER EQC33 Family

C CompiLER PACKAGE MANUAL
(ver. 3)

ENERGY

SAVING
EPSON

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

Windows95 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 2000 All rights reserved.

INTRODUCTION

I ntroduction

This document describes the development procedure from compiling C source files to debugging and creating the
mask data which is finally submitted to Seiko Epson. It aso explains how to use each development tool of the
E0C33 Family C Compiler Package common to al the models of the EOC33 Family.

How to read the manual

This manual was edited particularly for those who are engaged in program development. Therefore, it assumes that
the reader already possesses the following fundamenta knowledge:

¢ Knowledge about C language (based on ANSI C) and C source creation methods

» Basic knowledge about assembler language

» Basic knowledge about the general concept of program development by a C compiler and an assembler

e Basic operating methods for Windows®95, Windows®98 or Windows NT®4.0

Please refer to manuals or general documents which describe ANSI C and Windows® for the above contents.

Beforeinstallation

See Chapter 1. Chapter 1 describes the composition of this package, and provides a genera outline of each
tool.

Installation
Instal the tools following the installation procedure described in Chapter 2.

To understand the flow of program development and the operating procedure
See the Tutorial described in Chapter 3. Thiswill give you an overview of program development using the C
compiler to the debugger and the mask data creation using the mask data checker.

For coding
See the necessary parts in Chapter 4. Chapter 4 describes notes on creating source files and the grammar for
the assembl er language. Also refer to the following manuals when cording:
EO0C33xxx Technical Manual
Covers device specifications, and the operation and control method of the peripherd circuits.
EO0C33000 Core CPU Manual
Has the instructions and details the functions and operation of the Core CPU.

For debugging
Chapter 16 explains details of the debugger. Sections 16.1 to 16.8 give an overview of the functions of the
debugger. See Section 16.9 for details of the debug commands. Also refer to the following manuals to
understand operations of the debugging tools:
EO0C33 Family In-circuit Emulator (ICE33) Manual
Explains the functions and handling methods of the In-Circuit Emulator ICE33.
EOC33 Family Peripheral Circuit Board (PRC33xxx) Manual
Explains the functions and handling methods of the periphera circuit board of the ICE33.
EO0C33 Family In-circuit Debugger (ICD33) Manual
Explains the functions and handling methods of the In-Circuit Debugger ICD33.
EOC33 Family MON33 Debug Monitor Manual
Explains the functions and implementation of the Debug Monitor MON33.

For details of each tool
Chapters 5 to 17 explain the details of each tool. Refer to it if necessary.

Once familiar with this package
Refer to the listings of instructions and commands contained in Appendices.

EOC33 FAMILY EPSON i
C COMPILER PACKAGE MANUAL (ver.3)

INTRODUCTION

Manual Notations
Thismanual was prepared by following the notation rules detailed below:

(1) Sample screens
The sample screens provided in the manual are all examples of displays under Windows®95. These displays
may vary according to the system or fonts used.

(2) Names of each part
The names or designations of the windows, menus and menu commands, buttons, dialog boxes, and keys are
annotated in brackets []. Examples: [Command] window, [File] menu/[Exit] command ([Exit] command in
[File] menu), [Escape break] button, [q] key, etc.

(3) Names of instructions and commands
The CPU instructions and the debugger commands that can be written in either uppercase or lowercase
characters are annotated in lowercase characters in this manual, except for user-specified symbols.

(4) Notation of numeric values
Numeric values are described as follows:

Decimal numbers: Not accompanied by any prefix or suffix (e. g., 123, 1000).
Hexadecimal numbers: Accompanied by the prefix "0x" (e. g., 0x0110, Oxffff).
Binary numbers: Accompanied by the prefix "0b" (e. g., 0b0001, 0b10).

However, please note that some sample displays may indicate hexadecimal or binary numbers not
accompanied by any symbol.

(5) Mouse operations
Toclick: The operation of pressing the left mouse button once, with the cursor (pointer) placed in
theintended location, is expressed as "to click". The clicking operation of the right mouse
button is expressed as "to right-click".
Todoubleclick: Operations of pressing the left mouse button twice in a row, with the cursor (pointer)
placed in the intended location, are al expressed as "to double-click".

Todrag: The operation of clicking on afile (icon) with the left mouse button and holding it down
while moving the icon to another location on the screen is expressed as "to drag”.
To select: The operation of selecting a menu command by clicking is expressed as "to select".

(6) Key operations
The operation of pressing a specific key is expressed as "to enter akey" or "to press akey".
A combination of keys using "+", such as [Ctrl]+[C] keys, denotes the operation of pressing the [C] key
while the [Ctrl] key is held down. Sample entries through the keyboard are not indicated in []. Moreover, the
operation of pressing the [Enter] key in sample entriesis represented by .
In this manual, all the operations that can be executed with the mouse are described only as mouse operétions.
For operating procedures executed through the keyboard, refer to the Windows manual or help screens.

(7) General forms of commands, startup options, and messages
Itemsgivenin [] are those to be selected by the user, and they will work without any key entry involved.
An annotation enclosed in < > indicates that a specific name should be placed here. For example, <file name>
needs to be replaced with an actual file name.
Items enclosed in { } and separated with | indicate that you should chosen an item. For example, {A | B}
needs to have either A or B selected.

ii EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CONTENTS

Contents
Chapter 1 General
L1 FEAIUIES.....cvectee ettt e h e et ee e R R e en e 1
1.2 Tool Composition................. .1
1.2.1 Composition of Package... L1

122

OUtliNe Of SOFtWEIE TOOIS......ucviieieteiitee ettt b e st b e b sae 1

Chapter 2 Installation

2.1 WOrKiNG ENVITONIMENTcuiiiiieririrteieieiesine st sests e e st s tes st st st b b eb s ee bbb es st bebanas 3
2.2 InStAl@tion MEOG...........cccoiiiiiiiiii e 4

Chapter 3 Software Development Procedures

3.1 Software DEVE OPMENT FIOWc.ccoiiiiiieiitie ittt st e 6
3.2 Tutoria (Flow of Operations with WOrk BenCh).........ccvverereireerieiieesse st seeneee 9
3.21 Startup of WOrk BENCh WH33c.ooiiieeree ettt seenen 9
3.2.2 Sdecting Directory and Displaying File CONtENES.........cccourririeeienenineerisiseseeieiee e 11
3.2.3 Creating Make Fil@ ..ottt bbb st 12
3.24 Auto-execution from Compiling t0 LINKIiNGccceveeeiriererinieireiserese s enesessenenns 13
3.25 To Execute TOOIS INAIVIAUAITY ...c.oovveueiieiiieiiciriece e 13
3.2.6 Creating Parameter File for DEDUGOESccooiririruririeeeiire ettt sttt 14
B.2.7 DEDUGUING -.eeueeuererteiettiesereeestees i et ae b st ese st se e ee bt es e bbb e bt ne st ee bbb e st e bt e bebeiea 15
3.28 Creating DiSassembIly FIlE.....ccociieiieirieiercis et 22
3.2.9 Creating ROM Data.......ccceovreruireeiieeienirietesiseesesesee st sesseseesesessessssesessesessesessssesessessesensesensans 23
3.2.10 OPLMIZAION ...ttt sttt st et eb ke be e st e bbb e st e e eb e bbb 24
3211 EPIOGUE. ettt e bbb bbbt 25
3.3 DebUgQiNG ENVIFONMENL......c.cciiieiieeiietiieiee st ese e e st s st sse e sse e seeseneesenes 26
3.3.1 In-Circuit EMUIEIOr ICES3 ..ot 26
3.3.2 Debug MONITOr MONS3c.ciiieiirieieteiei ettt eb st se bbb bbbt e e se et benen 27
3.3.3 IN-Circuit DEDUGQEr ICD33.....c.cueeirieeeieieere st se et se bbb et ss bbb 30
3.34 Memory board MEMB33201occoiiiiiiiiiiircircireee e 33
3.4 Relationship between Program Structure and MEMONYcccvvereeireeeniereinesese s seesesesseseeees 35

Chapter 4 SourceFiles

4.1 FileFormat @nd FilE NAME......ccociiieireiere ettt sttt s s s st e e e e eneneenen 40
4.2 Grammar OF € SOUICE.......cueierireerieeiteeeiireetes e e e seeseseese e s esesssses e e e e steneseeneseenessesensesasenenseneesenes 41
N R D T €= Y/ o= OSSO OO T ST TSOUPO P UR PP PPN 41
4.2.2 Library Functions and HEader FilES..........cciiiirriricee et 41
4.2.3 IN-lNEASSEMDIE........ciieiieieieete e sttt ettt e e s aese st ee s e es e e et neneens 42
4.3 Grammar Of ASSEMDIY SOUICE........ccirieiieirieeniete ettt sttt s sae e eee e seeseneneenen 43
G T RS = (141 g1 £ OSSP P SO 43
4.3.2 NOtatioNS Of OPEIANAS......ccoiirereeteieeriirerire sttt et e ee st b s st se bbb st se et beieae 47
4.3.3 EXtENAEU INSITUCTIONSc.evieeiiceie ettt st s nnne 50
4.3.4 Additional Preprocessor FUNCHIONS.........ceruiiiierrere et seesesiesesie s e seeseessensssesenns 51
4.4 Precautions for Creation 0f SOUICESc.cieecieeiiteieiieiieeisie sttt e et se s e s eneenesen 52

Chapter 5 Work Bench

B FUNCHIONS ...ttt ettt et e R et st r et b e et 53
5.2 Operations........ccceeeneeereeesieieneeseresieieenes .54
5.2.1 Starting Up and Terminating wb33. 54
522 WINAOW ..ovvecvereiinereeenieereeeeeneens .55
5.2.3 Selecting File and Displaying Source 57
5.2.4 EXxecuting INividual TOOIS......cccouriiirurieueiieiniresiseetete ettt se et st bbb 58

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CONTENTS

5.2.5 Seecting EXeCUtion CONAItIONS.......cccieiieierireiineeiineeteieese et e s seeneseenene s 63
D28 IMBKE ..ttt bbb £ bbb R e bbb et en et 64
5.2.7 Parameter File GENEIBLONcouiueuciiuiiirereeisie ettt sttt bbb s 73
5.2.8 Specifying aGenera-purpose EQITONccvoveiverireineerereeese e 75
5.2.9 ENtering ComMMEaN LiNESccouierrerireineeeneeteeiesesesesie e s s se e ssesassssessenessenesessesessenens 76
5.2.10 Saving and RESIOING OPLiONS.......ccouurtrireeteeereseisirieietesesesesesesesas e sesese s bssssssesesesssessnas 76
5.3 EITON MESSAJES....c.euiieiteeeit etttk ettt ettt etk e sk bbbt se e e bt bt ee e bbbt b e nn e nnene 7
B4 PrECAULIONS.cuterieeerieeiecttiei e se et es et es ettt se st st eee R s e st e e r e bt n e e ener s 77

Chapter 6 C Compiler

B.1 FUNMCHIONS.....ucuiuiatireetetcie sttt ettt b bbb bbb s s e ee bbbt e e et s e b b et b e s et sseee bbbt ane et 78
6.2 Input/Output Files..
6.2.1 Input File....

6.2.2 Output Files .78
6.3 SHArTING MEINOM ..ottt ettt bbbt st b ettt een bt enee 79
6.3.1 SEAUDP FOMMELcviieieeeiie sttt et et st se et sr e e e s e 79
(S 2 - o (1o 1 o LTSS 79
B.4 IMIESSAOES. ... ettt ettt ettt bbb a et h e Rtk E e e e h et en st b e e 82
6.5 COMPIIET OULPUL ...ttt ettt ettt st st s b bbb st et bbbt ettt rsebebene s 83
6.5.1 OULPUL CONLENES.......veueeeeiteiiestee ettt s et e e e e e e e ne e et e e e e neennenrens 83
6.5.2 Data REDIESENLAIIONeveeeeeeeeeteeirietesietese ettt et s s e sae st ste e seesesees s sesen e nenesneseesenes 84
6.5.3 Method Of USING REGISIENSc.cviririiiieeririirisieieieiei ettt s a s st 85
6.5.4 FUNCHON Call.....coouiuiiiirieieieie ettt bbb sttt en et 86
B.5.5 SACK FTAIME ...ttt 87
6.6 DELUGGING INFOMMBLION.ttt ettt se e e et e erenene 88
6.6.1 SOUICE INFOMMELION ...ttt sttt bttt bbbt b bbbt enee 88
6.6.2 SymbBOl INfOIMELION........cueuiiiiiiieeiee ettt et et 88
6.7 Functions of gcc33 and USage PreCaULiONS..........cerveereriiirecireees e e se e e sreneee 93

Chapter 7 Emulation Library

7.1 OVEIVIEW. ..o .94
7.2 Floating-point Calculation Library (fp.lib).. .94
721 Function List.....ccceeeeennenerininenes .94
7.2.2 Floating-point FOrmatcocovurueeunens .95
7.3 Integral Remainder Calculation Library (idiv.lib)96
7.4 Floating-point Calculation Library (fPp.1ih)coceeeirrirereee s 96

Chapter 8 ANSI Library

8.1 OVEIVIBW ..ttt et e et e R et e R s et e e e r e r e 97
8.2 ANSI Library FUNCHON LiSt......cocirieeieeiiie s s et ses e st se e saenennenens 98
8.2.1 Input/Output FUNCLIONS (10.111) ...cueuieiiiicececicee e 98
8.2.2 Utility FUNCHONS (ID.1ID) ...oveeieeiieiieie e e 100
8.2.3 Dateand Time FUNctions (IiD.110)ccoireiiriesee e e 101
8.2.4 Mathematica FUNCtioNS (Math.liD)c.ccerieiiiriiee e 102
8.2.5 Character FUNCIONS (SNG.IID) ..o 103
8.2.6 Character Type Determination/Conversion Functions (Ctype.lib)c.coccoeoeeeennnncnienes 104
8.2.7 Variable Argument Macros (StAarg.n).......cceeueeirerrennene e 104

8.3 Declaring and Initializing Global Variables.
8.4 Lower-level Functions..
8.4.1 "read" Function..
8.4.2 "write" Function.
LS T = (1l U o ' o TSR 107

iv EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CONTENTS

Chapter 9 Preprocessor

9.1 FUNCHIONS ...ttt ettt ettt e st se s e st s et seaeeeebe e et e e et anbebensaaesesse s eneneenesennens 108
9.2 Input/Output Files... ..108
9.2.1 InputFile..... ..108

9.2.2 Output Files. .
9.3 Starting Method......... ..109
9.3.1 Startup Format ...
9.3.2 Startup Options... .
9.4 MESSAES.....ccvveeereiereiniieeenens ..110
9.5 Preprocessor Pseudo-Instructions...
9.5.1 Include Instruction (#include).. .
9.5.2 Define Ingtruction (#define)............... 112
9.5.3 Macro Instructions (#macro ... #endm)..
9.5.4 Conditional Assembly Instructions

(#ifdef ... #else ... #endif, #ifndef... #else ... HeNdif)ooceeiiriece e 116

I O 0= = o] £ OO TP P VPP PPN 118
9.7 Debugging INFOIMELIONcveveiiieiie ettt e st sttt ene e s e eneean 120
9.8 Comment Adding FUNCLIONcocuuiiieieiiire ettt ettt s 121
0.9 OthEr FUNCLIONS ...ttt ettt sttt bbbt st b bbbt sttt b bbb st ebe et sn ettt 121
9.9.1 ASCI t0 HEX CONVEISIONcovuvriiiiiiiineeeereieiese s ss e st seenns 121
9.9.2 COMIMENE LINEviiieiiirie ettt st 121
.10 PrOCESS FIOWuiuiiiieeet ettt ettt st b ettt en bbb 122
9.11 SAMPIE EXECULIONS.vveeiiiire ettt ettt sttt bbb b et st bbbt bbbttt 122
9.12 ErrOr/WarNiNGg MESSAJEScuviuereeeerieeiieeesereesestesesteesseseseesesessessssssessenesenessensssensssesessesensesensnsen 124
L 0Nt (o] (= TSR PR T 124
9.12.2 WBIMING -..ceieetiteieieieire et tee st ettt et b et bbb st eb bbb st bbbt e b et et eees 125
.13 PIECAULIONS.....evveueeeairee ittt st ee ettt bbb b b e st se bbb s s s eEeb b e bt st e bbb bbbttt e bt 125

Chapter 10 Instruction Extender

T0.1 FUNCHIONS ..ttt ettt b bbb bbb st e£ £ bbb bbb b b e bttt ee bbbt enas 126
10.2 Input/Output Files. ..126
10.2.1 Input Files..... ..126
10.2.2 Output Files.. 127
10.3 Starting Method....... 127

10.3.1 Startup Format ..
10.3.2 Startup Options.

10.6 Extended Instructions..

10.6.1 Arithmetic Operation Instructions 131
10.6.2 COMPAriSON INSEFUCHIONS.......cutuiiirerieeeieie ettt sese e ee bbb ee bbb enas 132
10.6.3 LOQiC Operation INSITUCHIONSccceueerurueeierisirieeeiesesese et ss b ss s se s enas 133
10.6.4 Shift & ROEE INSITUCHIONSc.cuviiieeeeeeee s e s 134
10.6.5 DataTransfer Instructions (between Stack and REGISLEN)cvveereereeenerierereeereeene 135
10.6.6 DataTransfer Instructions (between Memory and REGISEr)ovvrurureeeninenereninicee s 136
10.6.7 Immediate Data L 0oad INSIIUCHIONS.c.covuiuririeieeie st se bbb 141
10.6.8 Bit Operation INSITUCHIONS.....cciverireiireerireeieieten e st eseseseeesees s e s seeseseesenesssneses 142
10.6.9 Branch INSITUCLIONS.......cccveveeiiireresiieer et 145
10.7 OPLMIZE FUNCHION ...ttt ettt st ettt st benas 147
10.7.1 Optimizing Relative Branch INSIIUCHIONc.cciiiniririieieiccireses e e 147
10.7.2 Optimization by the GIObal POINLENcccveeireireierrics e e 148
10.7.3 Optimization by Symbol INfOrmMation..........cceeveeriveiereireeeer e 148
10.8 OLhEr FUNCLIONS ...c.eeei ettt ettt s bbbt st b b st et bbb 149
EOC33 FAMILY EPSON v

C COMPILER PACKAGE MANUAL (ver.3)

CONTENTS

10.8.1 Comment AddiNg FUNCHION.......cceotiieereeirieeiieieece ettt seene 149
10.8.2 Classification of LOCal SYyMBOIS.......ccoiiiriririieine st et 149
10.8.3 SYNLACHC CHECK ...ttt e e et 149
10.9 SAMPIE EXECULIONvveeeie sttt sttt st ee e e st s e e s e e e s s eneneseenensesenensenetenes 150
10.10 Error/Warning MESSAOES.c.ccueuieertireerereererestenessesessestssesesssssseesessesensasesssseseeseseessnsssesessesensenenes 157
FO.10.1 EFTOIS 1ottt ettt et b e et ee et e s b et e 157
T0.10.2 WAINING -evviueueereeetsisieteses et st eesbese e st eess et bebes e st sesb e b e b e et ees e s s bt ebeb e e st eese et b besennas st 158
JO.LL PrECAULIONS. ...c.veeeerereeeierereires s eses et se s i st ses e s s ettt e e bt e s s r et e e eeen s nana 158

Chapter 11 Assembler

D11 FUNCHIONS...cucieietitetetes ettt st bbb st sttt e bk es b st s ee bbb e st e b et b e b b et st et et b et e nebenen 159
11.2 Input/Output Files...
11.2.1 Input File..

11.2.2 Output Files.. ...159
11,3 SATING MENOU ...ttt bbbttt st e b bbbt ettt 160
11.3. 1 SEATUP FOMMEL ..o e 160
IS 2 S = (0 o @ o1 o] 3 TSRS 160
D04 IMIESSAES.eveneetentet ettt sttt etttk bbbt s e et 1o b e st eh bR bR E et et en et n s 161
11.5 Relocatable Assembling and Absolute ASSEMBIING........cciriririreiriir e 162
11.5.1 Relocatable ASSEMBIING.....ccveireeeieesieireeer et e e neens 162
11.5.2 ADSOIULE ASSEMDIINGveeetinieieiee e e e e 162
D018 STOPE....cueieiueteetene ettt sttt a st h ek ee ket h st h e s b s Rt e Rt ek ek E R R e eh et et e e b n s 163
11.7 DEfiNition Of SECHONS......cciiririeerieieieteie ettt ettt ettt st st b bbb ee st st eb et 164
11.8 Assembler PSEUAO-INSIIUCLIONS.cvrvrieeeereieire st 167
11.8.1 Absolute Assembling Pseudo-1NStruction (Las)cveereeereriereveeireeereee e 167
11.8.2 Section Defining Pseudo-Instructions (.code, .data)cceeerirereririnieeeeeerireseresieieieens 168
11.8.3 Area Securing Pseudo-Instructions (.comm, .[COMM)........cccernrinieineieneinriniseseeieeneens 169
11.8.4 Location Counter Control Pseudo-INStruction (LOrQ)c.eovveeireeereeeerieesesenesienesseneseens 171
11.85 Symbol Defining Pseudo-INStruCtion ((SEL)eoveveerreririeirerireee s s 172
11.8.6 DataDefining Pseudo-Instruction (.word, .half, .byte, .ascii, .Space)coverrvrirenecnnns 173
11.8.7 Alignment Pseudo-1NStruction (Lalign)........cceeeenerieeririnieieieenese s 176
11.8.8 Global Declaring Pseudo-Instruction (.global)cccoeeereereieneiniciire e 176
11.8.9 List Control Pseudo-Instructions (.list, .NOHSL)ceererererereierieineeeeie e 177
11.8.10 Debugging Pseudo-Instructions (.file, .endfile, .10, .dEf)cvvrereeeiiiiirrcciee 178
11,9 ASSEMDIY LISt FilB. ittt bbbttt ettt bbbt 179
12.10 Error/Warning MESSAGES.c.ciueuieertireeieeeteesienessesessestssesessssesessessesensasesssseseeseseesensssesessesensenenes 180
0 0 R 4 T O P T 180
11.00.2 WWAIMING -eviviieieereeeirisieseseee st seebe b st ees e bbb s e st se bbb et e e e bbb e b eb e st ee s s et b besennae et 181
TT.01 PrECAULIONS. ...cueeeeetetetee st retesiebetes st e b b e be e st ses e e bbb ebes et ee b eb b e e e ea s bbb eb e b e sttt seebebebebenenenennas 181

Chapter 12 Linker

D2.1 FUNCHIONS. ..ttt sttt ses e bbb b st e e e bt es b bt seeb bbb e st b et b e b s et st et et b et e nebennn 182
122 INPUYOULPUL FTTES....viieteeieeiee ettt ettt s e s st ee et es e s e ese et s 182
1221 INPUL FITES ..ottt ettt sttt st et e nnenennene 182
12.2.2 OULPUL FIIES. ...ttt et bbbt et b bt 183
123 SATING MENOM ...ttt st sttt bbbt ettt 184
12.3. 1 SEATUP FOMMEL ... e e e sb e s 184
B2 7S - (0] o @ o1 o] o TSRS 184
D24 IMIESSAOES.ecvmeeteniet ettt sttt ettt etk bbbt E et 1 b e bt e bR bRt E et e h e en bt 185
12,5 LiNKEr COMMENAS....c.ciierertetrieieriseireseseetetese s e seseses e ses st ee bbb e et e se bbb b et se e st se bt nbebebabens 186
1251 Linker COMMAENG File.......cccuoiririiriieiiriiire ettt 186
1252 Linker COmMMAENG LiSt....ccooirirrerireieiiiiireseerereieese st ensrese e 188
12,6 LOCAHING SECLIOMS......ececteuiuierereeteieieueieseststseseebesese st seebbsbssebeses s s se b ebebeae st et sb b et e b ebensssee st ebebenenaneas 193
vi EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CONTENTS

12.7 Virtua and Shared (U) SECHONS.........cevveririeeiiriririetese st sttt saenens 196
12,8 SECHON SYMDBOIS ...ttt bbb s bbbt sttt s 199
129 LinKiNG LIDrariEs.cooiiiiiiieie ettt ettt et st 201
12.10 RESOIVING SYMDOIS......cieiiuirieiirieriee sttt sesbe e be e s benensenenaenens 203
1211 LINK M@ FIlE ettt 204
12,12 SYMBIOL FITE ettt e bbb bbb ee bbb e 205
12.13 Error/Warning MESSAOEScueueueuerirerererieieietesesesssssestesesesesesestsssbesesesesssssssbesssess st sessssssesesessnsaes 206

J2.13. 1 EITOIS ittt et e e 206

12,132 WAINING ceeieeeeeeeieeieie et e seeseseeses e s st e e e e e seeseseeseneesesentes e senensenesseneseesensnsenensn 207
T12.04 PrECAULIONS. .. c.cueueirteteteteue st st etsesie e seses e bbbt eae st e e e be bbb e he et seeeb e bt e re e bbb e bt e et st et et be s 208

Chapter 13 Disassembler

131 FUNCHIONS ...ttt et s et ee R et eeer ettt e n s 209
13.2 Input/Output Files. ..209
1321 INPUL FILES ..ttt ettt sttt 209
B © U o 10| 1= OSSR 209
13.3 SHAING MENOA ..ot sttt st s s neneenen 210
13.3. 1 SEAUP FOMMAL ...ttt b et en 210
13.3.2 SEATUP OPLIONS.....eiuiuiiiaeririete ettt ettt et se bbb b ettt b e st ettt b e st et be e s 210
1314 IMIESSAQES. ...ccueueeteeierie ettt ettt eb e ee ettt e s e ea s b e et h e e Rt h et eee nh e e e e e n e e e e nn e e ne s e e e neen 211
13.5 DisassemMbliNg OULPUL.......c.e.erteririeeiiee s seetesieeeseete s e e te e te e seesessesesae e e sesestenessenessenessenessnnens 212
1351 IMIX OULPULviuieeeeteieiet et ettt bbb st e bbb st ees b bbb b s ae e st bbb ebenas 212
13.5.2 COUE OULPUL.....ueveeerirereseeeete e seseseses b ieseb st e seebe e ese s bbb ebebes e st ee bbb e e st b ee et eb et ene s 214
13.5.3 DAAOULPUL....c.vieereiriie sttt sttt sttt sr s ae b s saesh s s sbenn e nae et eneeb e et esennene 215
13.6 Error/Warning MESSAGEScoueuerueeieesiiereeseseeeesessesestesesteesseseseeseseesessssessssenessensesenessenessenessssens 216
L3081 EFTOFS ottt ettt bbb et e et h e b e bttt e et e en s 216
13.8.2 WWAINING c.euveeeteiiiereeee ittt s b st b bbb st e e bbbt ee bbbt e b e st ee st e bbb enas 216
137 PrECAULIONS. ...ttt ettt ettt st s e eeer et e ner et e 217

Chapter 14 Binary/HEX Converter

14.1 Functions..........
14.2 Input/Output Files.
1421 Input File....
14.2.2 Output Files..
14.3 Starting Method........
14.3.1 Startup Format ..
14.3.2 Startup Options.

145 Contentsof HEX File..

1451 MotorolaS3 Format.... .221
14.5.2 ADSOIUtE AOrESS OULPUL......cucuiirereiieieteieire sttt b e se bbb st 221
14.5.3 OFfSet AAAreSS OULPULccvueuiiiiirieeeiee et se bbb sttt eb bt 221
14.6 Error/Warning MESSAGEScoueuerueeieerireereeseseesesessesestesesseesseseseeseseesessesensssesessensesensssenessenessesens 222
G = o =SSP 222
T4.8.2 WWAINING c.euveeeteeeiereeee et st se bbb st b bbb st e e £ b e bt ee e bbbt eb e st as st en bbb eenas 222
TA.7 PrECALLIONS.....eucuieetieeeteteiee sttt et es et e e bbb e st s es bbb bea £t 8eb e bRt ee e e bbb e bt et st ee e bbb enan 223

Chapter 15 Librarian

15.1 Functions.......... .224

15.2 Input/Output Files. .224

15.2.1 Input Files..... 224

15.2.2 Output Files.. .224

153 SArtiNG MEINOUottt st 225
EOC33 FAMILY EPSON vii

C COMPILER PACKAGE MANUAL (ver.3)

CONTENTS

15.3. 1 SEATUP FOMMEL ...t e 225
15.3.2 SEATUP OPLIONS ...uiiuiirieieieieiire ettt sttt se bbb bbbt e et sb bt bebens 225
D54 IMIESSAES. ...ttt sttt ettt ee kbbbt b e b e bt e bRt h et e h et en ettt 226
15.5 Library EQiting FUNCHIONS.........ccuiiririeieeeieeee sttt s st see e e s es e s e senenes 227
1551 Creating @NEW LibDrary.....ccooeeirieiieireierisesese et sese st enssnesesnens 227
15.5.2 Adding MOUIESTO @ LIBIAYc.uiucieiiiriresieice et 227
15.5.3 Listing RegiStered MOQUIEScuiuiuiiirireeieis ettt st et 228
15.5.4 Deeting Modulesfrom @Librarycccoeoveiveineenecesese s 228
1555 ReStOrNNG ODJEC FIlES.....coiueieeeiireeiirietiisiese sttt es st nenennene 228
15.6 ErrOr/Warning IMESSAGES.........eueueutuerererestrieietesesessresessesssess st sessssssesesesasestssssesetesesessssssssesesssanssenens 229
T5.8. 1 EFTOFS oottt bt e bbbt e e e b r e 229
15.6.2 WAITINGS. .cueveueienirieetsieeiie et se st ste s se s s e eesen et seebe e eben st enessenesae e sesesesseneesensnsenennens 229
15,7 PrECAULIONS. ...c.eeieeeereeeiie st sttt eee e s eb e st a s s e ne s n s r et neeenn b nr e 229

Chapter 16 Debugger

T6.1 FEALUIES. ...ttt ettt et R e e et 230
16.2 INPUYOULPUL FITES.....viieteeieiee ettt ettt sttt s st st es e es e es e se et s 230
16.2. 1 INPUE FILES ..ttt st ettt eb et 230
16.2.2 OULPUL FIlE ettt e bbb st st 231
16.3 SHAiNG MENOAoviniieieie e sttt st n et ne et et ens 232
16.3. 1 SEATUP FOMMEL ... e e sb e s 232
16.3.2 SEATUP OPLIONS ...ttt ettt et bbbt se bbb bt se st ees bbbt benens 232
16.3.3 SEAIUP IMESSAOES......cueeiiatetinieien sttt st bbbt e et b et es et e e r e nn e 233
16.3.4 Method Of TEMINGLIONcvirireerieiectii e 236
16.4 WINUOWS.....cieriieretisiese e st es s st s ee et ee Rt e e r b et ne e n e resennrna 237
16.4.1 BasiC SrUCtUre Of WINOGOWcccueuivieiiriririsie ettt st e sb s 237
16.4.2 [ComMMAN] WINGOW......cocueiiriiiieeeieietne ettt st e et es et 239
16.4.3 [SOUICE] WINOOWcvieiieeeiieeteestenisienesie st eesre ettt sesse e sesnesessenessensesensanesensens 240
16.4.4 [MEMOIY] WINGOWo.veviieriierereetesesteeseeesiesesee et eseeseseeseessenessenesseseesesessssessesensesensanens 243
16.4.5 [REGISIE] WINGOW.......coiuiiiririeieirieeneeiisieee ettt seses e et st seb b nae 244
16.4.6 [TraCE] WINGOWc.eeereteieiseriists ettt se et ettt et en bbb 245
16.4.7 [SYMDBOI] WINUOW......cveeiieiieieiesiieiesie ettt se et e sseneneene 247
16.4.8 [SIMUlEE 1/O] WINUOW.......coveviieeiieririeseeeere e e e seese e esenessssesse e e e seeneseenen 248
L6.5 TOOI Buiuiiiieirieieeieirise sttt ettt ettt b b st ek b bbbt st e bbb et e bbbt et ene e 249
16.5.1 TOOI BAr SEIUCKUIE.......cevieiiieiieeseeecte ettt s bbb sttt 249
16.5.2 [Key Break] BULLONc.coceiiiieesiee ettt sttt seenennne 249
16.5.3 [LOB fIl€] BULLONeeveeeeiieiiieienieie sttt st et nnene 249
16.5.4 [Source], [Mix] and [Unassemble] BUIEONScccouririrururieeniininiisesieeee e seenens 249
16.5.5 [Go], [Goto], [Step], [Next], [Reset cold] and [Reset hot] BULONScccoeevrueieienceninns 249
16.5.6 [Soft PC break] and [Hard PC break] BULtONS..........cccceverieirieireire e 250
16.5.7 [Symbol watch], [Symbol add] and [Symbol delete] BUttons...........ccoveevreeeneerenenieninnns 250
16.5.8 [Display trace] and [ReSUME traCe] BULLONS...........couourirerurieieieniiiieesieeese e 251
16.5.9 [Select SoUrce] COomBO BOXc.cucucuiriiririrerieieieene st esese sttt st sbene e 251
T6.8 IMBNU ..ottt Rt n et ener e 252
16.6.1 MENU SITUCIUE......o.eevieeiieeiie et e e 252
16.6.2 [FHIE] MENU ..ottt bbb bbb e bbbt 252
16.6.3 [EQIt] IMEBNU....uiuiiiuiiiiceetee ettt e e bbbt ettt eb et 252
16.6.4 [RUN] MENU....cuiiiiiiieiiee ettt sttt st st st eae e eeesene b esensenenenne 252
16.6.5 [Break] MENU......coiiirieeeieetieireee ettt n s 253
16.6.6 [SYMBOI] MENU ...ciiiiiiitiire ettt ettt e bbbt benen 253
16.6.7 [WINAOW] IMENU....cuiiiieitiieit ittt e st sttt eb et 254
16.6.8 [HEIP] MENU....ouiiiierciciie ettt 254
16.7 Method for EXeCUting COMMENGS........ccuueeiierirerieeeeeseesiesessestesesieseseesseseseesesessessesesessenensenes 255
viii EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CONTENTS

16.7.1 Entering Commands from Keyboard...........ccoeerveiiienneieeere et seens 255
16.7.2 Parameter INPUL FOIMEES.......c..ioiieeiieiiee ettt et 256
16.7.3 Executing from Menu OF TOOI Bar.........cccoueuirrueeineniiiris it 259
16.7.4 Executing from CommMand File..........ccoeeirierireenreresese et s seenes 260
16.7.5 LOG FilEuiiicecieree ettt e e s 261
16.8 DEDUG FUNCLIONS.covttiiiire ettt ettt sttt sttt ettt b b bt s s bbbttt e b bt ns 262
16.8.1 Debugger Mode... ..262
16.8.2 L0oading FIlES.....ccvvvieieeeerieeseeereetee e ..267
16.8.3 Source Display and Symbolic Debugging Function... ..268
16.8.4 Displaying and Modifying Memory Data and REQISLENcouururrerueeienereriririsieieeeenes 271
16.8.5 EXECULING PrOGram .. .cucucuiiiiriierieeste ettt bbb sttt 273
16.8.6 Break FUNCHIONS.......oviiieciiiciiie ettt et 277
16.8.7 TraCeFUNCHIONScovviiiieeiie ettt e 285
16.8.8 Simulated I/O.......ccvueuueeee ..294
16.8.9 Operation of Flash Memory296
16.8.10 Other Functions................ ..299
16.8.11 Big-Endian Support300
16.9 Command Reference........... ..301
16.9.1 COMMEANG LISt ..uiuiieiieieieieeiine sttt sttt bbb sttt 301
16.9.2 Commands t0 OPErate MEMOIYcoveurrerurrerieiieresieeseeseseeseessesestesessenesseneseeneseeseseesenenses 302
fb (fill byte) [ICD /ICE/ SIM / MON] ...ccutuiiiririerereieenerenesee e 302

fh (fill half) [ICD / ICE/ SIM / MON] ..ottt 303

fw (fill word) [ICD/ICE/SIM / MON] ..
db (dump byte) [ICD/ICE/ SIM / MON] ...

dh (dump haf) [ICD/ICE/SIM / MON].... ..307
dw (dumpword) [ICD / ICE/ SIM / MON] ...coueuiuiiiniinininieesieee e 309
df (dumpfile) [ICD / ICE/ SIM / MON] ...ccueiieiieiieireeseeeseree s 311
eb (enter byte) [ICD /ICE/ SIM / MON].....ccccouemriemreirrirreeereereeeseensesenseseenenes 312
eh (enter haf) [ICD/ICE/ SIM / MON] ..ccoooviimnmreererieeeeree s 313
ew (enter word) [ICD / ICE/ SIM / MON] ..ot 314
mv (Move) [ICD / ICE/ SIM / MON] ...ttt 315

mvh (movehalf) [ICD/ (ICE)/SIM / MON] ..
mvw (moveword) [ICD/ (ICE)/ SIM / MON]...

w (watch) [ICD /ICE/SIM / MON]............... ..318
rm (read MEMOTY) [ICD]...cccouiririeteieiire ettt 319
16.9.3 Commands to Operate 0N REJISIENcoveevrerieririeieee et eees e e seseeneenes 320
rd (register display) [ICD / ICE/ SIM / MON] ...ccooverieirieeinreeeseesee e seenenene 320
rs (register set) [ICD /ICE / SIM / MON]oovmrvemreieeeeeeeeeeeeeceseeeseeseeeeeene e 321
16.9.4 Commandsto EXECULE PrOgram.........cccourririrueirieeneineris it ses s sss e sesnesese e s 322
g (gO) [ICD /ICE/ SIM I MON] ..ottt 322

s (step) [ICD/ICE/SIM/MON].
n (next) [ICD/ICE/SIM/MON].... .
16.9.5 Commandsto Reset CPU........c.cooeurieueeieenenenenieeeienas .327
rstc (cold reset CPU) [ICD / ICE/ SIM / MON]coovuiuiueiiriniineieeeeseneneereeeseeeens 327
rsth (hot reset CPU) [ICD / ICE/ SIM / MON]
16.9.6 INLErTUPE COMMENG.......cuiuiuiirerteeeeeie ettt ettt se e bbb bbb b s st e b bbb e s esene s
INt (INEETUPE) [SIM] ettt s
16.9.7 ComMANAS L0 SEt BIEAKS......coocviveviueieiiire ettt st
bp (break point set) [ICD / ICE/ SIM / MON]....cooteeiieiienirene e
bs (break software) [ICD /ICE/SIM / MON].
bc (break clear) [ICD/ICE/SIM / MON].......
bh (bresk hardware) [ICD / ICE/ SIM / MON] .
bhc (break hardware clear) [ICD / ICE/ SIM / MON]cceviviinreneeeeeee e 337

EOC33 FAMILY EPSON ix
C COMPILER PACKAGE MANUAL (ver.3)

CONTENTS

bh2 (break hardware 2) [ICD / (ICE) / SIM / MON]ccccviemrierierrenreereereneene 338
bhc2 (break hardware 2 clear) [ICD / (ICE) / SIM / MON]cccoovrerirureeniiiienes 339
bd (databreak) [ICD /ICE/ SIM / MON]ccoriirrireerireeneeereeiee e 340
bsg (break sequential) [ICE]covvverieerieeine ettt s 342
ba (break aread) [ICD+MEMS33]coovvieriereceree e 345
bb (break bus) [ICDHMEMS33]c.cuvvieeiiiiinieeireeie s 347
bl (bresk list) [ICD /ICE/SIM / MON]......... ..350
bac (bresk all clear) [ICD /ICE/SIM / MON]351
16.9.8 Commandsto Display Programccccccevevrrvcnns ...352
U (unassemble) [ICD / ICE/ SIM / MON]cceutuirinirererinieeeneeesisises e 352
sc (sourcecode) [ICD / ICE/ SIM / MON] ...t 354
m (MiX) [ICD/ICE/ SIM / MON] ..ot 356
ss (search strings) [ICD / ICE/ SIM / MON]....ccouiierneneneie e 358
16.9.9 Commandsto Display Symbol Information.............. ...359
sy (symbol list) [ICD/ICE/SIM / MON]359
sa (symbol add) [ICD / ICE/ SIM / MON]..... ..364

sd (symbol delete) [ICD / ICE/ SIM / MON].

sw (symbol watch) [ICD /ICE/SIM / MON] ...368
16.9.10 CommANdStO LOBO FilEScocuiuieiieiiirireeieiee ettt et 371
If (load file) [ICD /ICE/ SIM I MON] ..o 371
Ih (load hex) [ICD / ICE/ SIM / MON]......cooiuemriemrermreerieeireeseeesee e 373
Id (loadfile) [ICD /ICE/ SIM / MON]coviiiieiiieiitieeieiee e 374
16.9.11 Commandsto Operate Flash Memory.................. .375

fls (flash memory set) [ICD / (ICE) / MON]...

fle (flash memory erase) [ICD / (ICE) / MON] ...376
Ifl - (load from flash memory) [ICE].......cccoovurrieireinenrrnise e 377
Sfl - (saveto flash MemOory) [ICE].......ooieieiirireneeiee et 378
efl (eraseflash MemMOrY) [ICE] ..ottt e 379
maf (Map flash MemMOory) [ICE]ccvoviveenrireeerreer e s 380
16.9.12 Trace COMMANGScueuiiirereeieteieseresetsesieeesesesess st sseasss e seses st essbesese e st essssbebesesesenssnnnas 381
tm (tracemode) [ICD / ICE / SIM] ..cuiuiieieieenireeirieeieieiere e 381
td (tracedump) [ICD / ICH].......... ..387

ts (trace search) [ICD/ ICE] ..

tf (tracefile) [ICD/ICE]393
16.9.13 SIMUIAEA /O ...ttt ettt eaen 394
stdin (standard input) [ICD / ICE/ SIM / MON] ...c.ooeireireirrecseesee e 394
stdout (standard output) [ICD / ICE/ SIM / MON]ccveerieire e 395
16.9.14 Other COMMANGScceueueueirirertririeiereseeresesaeseseae st st ssses e sesesesess e st s sbese e e sesesbebesebenssneas 396
com (execute command file) [ICD / ICE/ SIM / MON]....ccooeueiiniinirinieieicienenenene 396
cmw (execute command file with wait) [ICD / ICE/ SIM / MON]ccccvvrenene. 397
log (logging) [ICD/ICE/ SIM / MON] ...cccecerirerirririeireneneneenes398

od (option datadump) [ICE].......cevueuueee399
ct (changetype) [ICD/ICE/SIM /MON]ccceucn.400
ext (extended instruction) [ICD / ICE/ SIM / MON]c.coovviirverireineeiee e 402
ma (map information) [ICD / ICE/ SIM / MON]cccceovireinenenenerieeseeeeneeeeeeees 404
md (Mode) [ICD / ICE/ SIM / MON] w..oooeeeeeeeeeeeeeeeeeeees s eeeeeeeeeeeesaees e 405
g (QUit) [ICD /ICE/ SIM / MON] c.ccoovoeeeeeeeeeieeeeeeeee e eeeeeeeeeeessessseee e sneane 407
? (help) [ICD /ICE/ SIM / MON] ...cuiiiiririieiieieiriie ettt 408
oI (=) N X = SRS SPSSR 409
16.10 Parameter Fil .. .ottt ettt et ettt etk ben e 410
x EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CONTENTS

16.11 StatUSError/Warning MESSAGES.........cuierureerereerireeeneesestetesseesesseseesesessessssssessesessensssenessesseesens 417
16.11.1 SEBIUSIMESSAGES......cueveuiieuirieirteie stk ee ekt b et sttt a et ee st ek bbbt en et en s 417
16.11.2 EXTOr MESSAGEScveviureieieie st sttt ettt sttt ettt b et et en et 417
16.11.3 WalNiNG MESSAES.ueuereerereriereeeeseeseseeeesestesesteesseseseeseseesenessssessesessenessenesseseseesenessenenses 420

Chapter 17 Other Tools

D71 MK ittt ettt et a ettt et ae etk e et e et en bR ene A st eae e s e s et ea et et e be et neseeae 421
17.1.1 Starting Method 421
1712 Messages....... 422
17.1.3 MakeFile... .423
17.1.4 2-passmake ..428
1715 clean...coonvcircecinens .428
17.1.6 Error/Warning Messages429
17.1.7 Precautions..........c....... ..429

D7.2 OWEIE vttt ettt s bbb s s bbb b e e R bbbk Re bbbttt a bbb enaes 430
17.2.1 FUNCHONS ..c.oecvceitecre sttt ettt r et s e n ettt r s s 430
17.2.2 Method fOr USING CWAITcoiveuieeeiieieiiriee ettt seene e neean 430

17.3 COBD.ereeeeeeeeeeeeeeeeeeeeeeeeeeee s ee s e e eee et s s e et enannean 431
17.3.1 FUNCHONS ...ttt ettt ettt sttt b st ee bbb st bbb bt st ee bbb s 431
HIACHZR V1= aToTo B (o LU= oo o= o JO RS R 431

Appendix srf33 File Structure

A-1 SIF33 ODJECE FIlE STUCIUIEeeeeeeeeeiet e sttt erenene 433
A-2 LIDrary FIlE STUCIUIE......cecviieieieiesere ettt sttt st s s st eae st ee e ee s sesensene e 438

Quick Reference

EOC33 FAMILY EPSON Xi
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 1: GENERAL

Chapter 1 General

1.1 Features

The EOC33 Family C Compiler Package contains software development tools for compiling C source files,
assembling assembly source files, linking object files, debugging executable files, making mask data and other
utilities. The tools are common to all the models of the EOC33 Family.

Its principal festuresare asfollows:

Power ful optimizing function
The C Compiler isdesigned to suit to the EOC33 architecture, it makes it possible to deliver minimized codes.
The high-optimize ability does not lose most of the debugging information, and it enables C source level
debugging.
Furthermore, the Instruction Extender also provides the optimizing function using the map/symbol
information after linking.

Useful extended instructionsare provided
The extended instructions allow the programmer to describe assembly source simply without the need of
knowing the data size. The immediate data extension using the "ext" instruction and some useful functions
that need multiple basic instructions are described with an extended instruction.

C and assembly source level debugger with a smulator function
The debugger supports C source level debugging and assembly source level debugging. By using the ICE33,
1CD33 or MON33, the program can be debugged even when the target board is operating. It also provides a
simulator function that allows debugging on a personal computer without using the ICE33.

Integrated working environment, by Work Bench
The Work Bench supports Windows GUI and allows a series of tools to be executed through its windows. All
the basic operations can be executed by the mouse alone.

1.2 Tool Composition

1.2.1 Composition of Package
The EOC33 Family C Compiler Package contains the elements listed below. Please check to make sure that all
elements are supplied.

1) Tool disks (CD-ROM) One
2) EOC33 Family C Compiler Package Manual (this manual) One each in English and Japanese
3) Warranty card One each in English and Japanese

1.2.2 Outline of Software Tools
The following shows the outlines of the principle toolsincluded in the package:

(1) C Compiler (gcc33.exe)
This tool is made based on GNU C Compiler designed by Free Software Foundation, Inc. and is compatible
with ANSI C.
The gce33 compile C source files to the assembly source files for the EOC33 Family. It has a powerful
optimizing ability that can generate minimized assembly codes. The gcc33 consists of three files: gcc33.exe,
cpp.exe and ccl.exe.

(2) Preprocessor (pp33.exe)
The Preprocessor pp33 starts the processing procedure of assembly source files when developing programsin
assembler language. The pp33 expands the range of program-creating functions, such asfor macro statements
that makes it possible to use a group of multiple statements as if they were one single statement and include
statements that insert other files, and thus creates assembly source files to be entered into the Instruction
Extender ext33.

EOC33 FAMILY EPSON 1
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 1: GENERAL

(3) Instruction Extender (ext33.exe)
The Instruction Extender ext33 optimizes the assembly source files by decreasing the immediate extension
instructions (ext) of the EOC33000 instruction set. The extended instructions that enable program description
without the need of knowing immediate data extension are provided by the ext33. The ext33 also supports a
2-pass make that optimizes source codes using the map/symbol information after linking.

(4) Assembler (as33.exe)
The Assembler as33 assembles assembly source files output by the ext33 and converts the mnemonics of the
source files into object codes (machine language) of the EOC33000. The results are output in an object file
that can be linked or added to alibrary.

(5) Linker (Ik33.exe)
The linker defines the memory locations of object codes created by the as33, and creates executable object
codes. Thistool putstogether multiple objects and library filesinto onefile.

(6) Disassembler (dis63.exe)
The Disassembler dis33 disassembles the srf33 object file output by the Ik33, and creates a file that can be
referred to with mnemonic codes and source codes. This function is effective when viewing the
correspondence between source codes and absolute addresses after linking.

(7) Binary/HEX Converter (hex33.exe)
The Mask Data Checker converts the srf33 object file output by the 1k33 into a Motorola S3 format HEX file
for writing to the ROM. HEX datafor the externad ROM can be written to ROMs using a ROM writer. HEX
datafor the internal ROM becomes the mask data.

(8) Debugger (db33.exe)
The Debugger db33 serves to perform debugging by controlling the hardware tool (ICE33 or ICD33) or the
debug monitor (MON33). It also comes with a simulator function that alows debugging on a persona
computer. Commands that are used frequently, such as break and step, are registered on the tool bar,
minimizing the necessary keyboard operations. Moreover, it supports C and assembly source level debugging,
and various data can be displayed in multi windows, with a resultant increased efficiency in the debugging
tasks.

(9) Librarian (lib33.exe)
The Librarian 1ib33 edits libraries. The 1ib33 can register object modules created by the as33 to libraries,
delete object modulesin libraries and restore library modules to the original object files.

(10) Make (make.exe)
The Make automatically executes from compile to link according to the command lines described in the make
file. The make file can be created by the wb33.

(11) Work Bench (wb33.exe)
This software enables the tools mentioned above to be started up from one single window. The selection of
files, major startup options, and the startup of each tool can be executed by mouse operations aone. The
wh33 establishes an efficient working environment for development tasks.

This package contains sample programs and several utility programs. For details on those programs, please refer to
"readme.txt" (English) or "readmeja.txt" (Japanese) on the disk.

2 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 2: INSTALLATION

Chapter 2 Installation

This chapter describes the required working environments for the tools supplied in the EOC33 Family C Compiler
Package and their installation methods.

2.1 Working Environment
To use the EOC33 Family C Compiler Package, the following conditions are necessary:

Personal computer
An IBM PC/AT or a compatible machine which is equipped with a CPU equal to or better than a Pentium 90
MHz, and 32MB or more of memory is recommended.
To use the optiona In-Circuit Emulator ICE33 or In-Circuit Debugger ICD33, the personal computer also
requires aseria port (with aD-sub 9 pin) and a parallel port (D-sub 25 pin). When using the Debug Monitor
MON33 with the DMT33MON board, only a serial port (with a D-sub 9 pin) is required.

Display
A display unit capable of displaying 800 x 600 dots or moreis necessary.
Hard drive
The hard drive must have at least 10MB of empty space to install the EOC33 Family C Compiler Package.

CD-ROM drive
Since the installation is done from a CD-ROM, a CD-ROM driveisrequired.

Mouse
A mouse is necessary to operate the tools.

Debugging tool
To debug the program and the target system, the optional In-Circuit Emulator (ICE33), In-Circuit Debugger
(1CD33), or Debug Monitor (MON33 and DMT33MON) is needed in addition to this software package.

System software
The EOC33 Family C Compiler Package supports Microsoft® Windows®95, Windows NT®4.0 or higher
version (English or Japanese version).

Other

Please go through the precautions and restrictions given in "readmeVxx.txt" (English, Japanese) (xx indicates
version) on the disk.

EOC33 FAMILY EPSON 3
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 2: INSTALLATION

2.2 Installation Method

All thetoolsin the EOC33 Family C Compiler Package are supplied on one CD-ROM. Execute the self-extract file

"cc33vXX.exe' on the CD-ROM to instal the files.
example, "cc33v20.exe" isthe file name of ver. 2.0.)

("XX" in the file name represents the version number, for

When "cc33vXX.exe" is started up by double-clicking the fileicon, the following dialog box appears.

WinZip Self-Extractor [CC33VxIX EXE] E
To unzip all files in CC33X EXE ta the specified Unzip
folder press the Unzip button. —
Unzip Ta Folder: Run WinZip
[occ33 Closs

¥ Dwenwrite Files ‘Without Prompting
About

]

Help

2 Mica Mak Computing, Inc. WAL WINZID. com

Enter a path/folder name in the text box then click
[Unzip]. The specified folder will be created and al the
fileswill be copied to the folder.

When the specified folder aready exists on the specified
path, the folder will be overwritten without prompting if
[Overwrite Files Without Prompting] is checked.

The following lists the configuration of directories and files after copying.

RootDIR- readmeV xx.txt
(C:\CC33Y)
GNU_COPYRIGHT

wh33.exe, ccap.exe
make.exe, cwait.exe

Information about tools (in English and Japanese)
with xx indicating version
GNU copyright

Work Bench and accompanying tool
make and accompanying tool

gce33.exe, cpp.exe, ccl.exe C Compiler

pp33.exe Preprocessor

ext33.exe Instruction Extender

as33.exe Assembler

1k33.exe Linker

lib33.exe Librarian

db33.exe Debugger

dis33.exe Disassembler

hex33.exe Binary/HEX Converter

vb40032.dll, olepro32.dil, msvcrt40.dil dil filesfor Work Bench

lib\ - iolib, lib.lib, math.lib, ctype.lib, string.lib, idiv.lib, fp.lib

include\ - stdio.h, stdlib.h, time.h, math.h, errno.h, float.h, limits.h, ctype.h, string.h,
stdarg.h

sample\

utility\

Refer to the "readme.txt" (English), "readmejatxt” (Japanese) or "*_man.txt" (English) for the contents of

the "sample" and "utility" directories.

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 2: INSTALLATION

Precautions on setting the OS
¢ Set thedisplay property as"Small fonts" used by the "Display” in the control panel.

« When using a drive on the network as the tool and/or work drive, be sure to assign a drive name to it. The
network name cannot be used.

¢ Do not use the COM and LPT ports for the debugging tool (ICE33, ICD33 or MON33) in other drivers and
applications. Furthermore, make sure that the port has been enabled when using a note PC as some can
disable COM ports.

¢ If the debugger db33 or work bench wb33 have a problem on the GUI that causes an abnormal display,
decrease the function level of the graphics or use alow-level standard display driver which has been supplied
in the Windows package.

To delete tools
Thefilesare dl instaled in the specified directory (default is"C:\CC33\"). To delete all the tools, delete the
directory (folder).

GNU copyright
The C Compiler gce33 in this package is made based on the GNU C Compiler designed by Free Software
Foundation, Inc. Please read the"GNU_COPY RIGHT" text file for the license before using.

EOC33 FAMILY EPSON 5
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

Chapter 3 Software Development Procedures

This chapter explains the flow through the basic operating methods of Work Bench wb33, from compiling
program to debugging and creating mask data. The sample programs discussed in this chapter are instaled in the
"sample\tst\" and " sample\dmt33005\" directories. It is possible to practice the operations by following the manual.

3.1 Software Development Flow

Figure 3.1.1 shows the flow of software development work.

C source files Assembly source files

C Compiler
gcc33

Work Bench
wb33

Jp—

Assembler | Librarian
as33 1ib33 ANSI Library

Emulation Library

S ——— —
) g e

Parameter file

Debugger Disassembler Binary/HEX Converter
db33 dis33 hex33
Disassembly F———— S —)
st file |_fledis | [fle.sa | ROM data HEX file

Debug tool
* ICE33+PRC33xxx
+ICD33
* DMT3SMON External Internal ROM data

‘ ROM data (Mask data file)

‘ Target Board }—{ ROM Writer

Fig. 3.1.1 Software development flow

SEIKO EPSON

As shown in the figure, the tools of this package support for all the software processing after creating source files.

6 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

The devel opment flow is detailed below.

(1) Creating a source program
Create source files using a general-purpose editor. A program can be created in several separate modules
(sourcefiles).

(2) Creating a make file
Create a make file for automatic processing from compiling or preprocessing to linking. A basic make file
can be created easily on the Work Bench.

(3) Executing make
Execute the make using the make file created to generate an srf33 object file that can be debugged.
The make sequentially executes the necessary processes from among the ones below.

Compiling (in case of C sources)
The C sourcefiles are compiled by the C Compiler gcc33. The gee33 delivers the assembly source files
(.ps) to be entered in the Instruction Extender ext33.

Preprocessing by the Preprocessor (in case of assembly sour ces)
The source files that are created in assembler language are first processed by the Preprocessor pp33.
The pp33 expands the preprocessor instructions into mnemonics that can be assembled with the
Assembler and delivers assembly source files (.ps) to be entered in the Instruction Extender ext33.

Optimization by the I nstruction Extender
The Instruction Extender ext33 expands the extended instructions described in the source file (.ps) into
mnemonics that can be assembled with the Assembler and delivers assembly source files (.ms) to be
entered in the Assembler as33.
Furthermore, the ext33 optimizes the assembly source by decreasing unnecessary immediate extension
instructions (ext).
The absolute addresses of symbols cannot be defined until the linking has finished when developing
the program with multiple modules. The ext33 supports a 2-pass make that optimizes the codes using
the symbol/map files created when linking. When a 2-pass make is specified, the make executes the
ext33 and the following process again after the first linking has finished.

Assembling
The source files that are delivered from the Instruction Extender ext33 are assembled by the Assembler
as33. The as33 converts the source codes into machine codes and delivers the object file that can be
linked with other modules be registered to libraries.

When a multi-module software program (multiple source files) is developed, all the source files are subjected

to the above processing.

Linking
One or more object files are produced by the assembling. The Linker 1k33 bundles those multiple files
into one to create an executabl e object file mapped on the ROM. The 1k33 delivers object filesin srf33
format, which contains necessary information for debugging, along with other information.

(4) Debugging
The srf33 object file that is delivered from the linker should be debugged by the Debugger db33. Using the
ICE33, ICD33 or Debug Monitor allows the programmer to perform debugging, including that for the
hardware operation. The db33 also provides a simulator mode in which the operations of the EOC33000 Core
CPU and memory models can be simulated on a personal computer.

EOC33 FAMILY EPSON 7
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

(5) Disassembling
The Disassembler dis33 disassembles a linked object file for the purpose of verifying the correspondence
between source codes and absolute addresses, or for dumping data from the data area. It is not an
indispensable tool for program development, but it is suggested to useit as a utility tool.

(6) Creating ROM data/mask data
To make the target ROM and/or the mask data, create the external ROM data HEX file and/or the internal
ROM data HEX file from the srf33 object file delivered by the Linker using the Binary/HEX converter hex33.
Finally submit the mask data (internal ROM data) to Seiko Epson.

The tools above can be executed in the Work Bench. Each tool can also be executed individually without using the
make.

Besides these tools, the Librarian ib33 is provided. The lib33 can make and edit libraries with the general-purpose
modules (object files delivered from the Assembler). It will be effective for developing applications using the
EOC33 Family in the future.

8 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.2 Tutorial (Flow of Operations with Work Bench)

The tools described in the preceding section can readily be started up from the Work Bench wb33, which
comprises part of this package. In this section, the flow of operations with the Work Bench wb33 will be learned
by atutorial. For details on each tool, refer to the corresponding chapter.

Filesto be used

The explanation in this section presupposes that the files listed below exist in the "sample\tst\" directory.
main.c ...C sourcefile
boot.s ...Assembly source file

The following description covers basic operation procedures from compiling/preprocessing to linking for two
sample source files (main.c and boot.s) using the make, and basic debugging procedures. Then explains the
process necessary for masking the ROM.

3.2.1 Startup of Work Bench wb33

@ Start up the Work Bench wb33 by double clicking the
=] "wh33.exe" icon located in the "cc33" folder.
whd ene The execution window opens as below.
B, Work Bench 33 Verx.xx M 3 The execution window has the list boxes for choosing

DOpen option Windowsl Smpl E:i\;eand files and the buttons for starting up the tools.

Core gopm | OOmek e | Step 1) Click [Open option window]. Two option

s g | O e - windows open.

i *ps |))

(3 utiity = & voms ExTE | o e — Open option windows

e * [¥ —l [Open option window] button
" mcm L] |

as3d.exe al ¢ oag e

ool exe ~ -
C
C

L 3
([Jinclude
b

(23 sample

CCap.ese
copying.gnu

“lib
Som LS
MAR =t bt
CPp.&xe * st s MEE
cwait.exe o= dt=n
db33.exe Fefresh | Del

dis33 ene

extdd.ene
goc3d.ene LI Editar

| [N

Make edi | Par gen

EOC33 FAMILY EPSON 9
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

M. Work Bench 33 Verx.xx JE [T S |l gcc-lk options ==

| e [EPSON] j 0pen option windovs;

Dlncde

b

[zample

(270 ity x| oveme ExT33

IH— e e £ %ms o |
" *cm

 *dis

crap.ese = zpm

S Save and |
il Exit
 te GCC33| €~ *mak MAKE |
{5 PR3 | " *par B
i “ps

gl

DIS33 |

s ey |
a3l eve N =
ccl.exe * Lk33 | =i

LIB33 |

copying.anu “map ;:h :::.Emd

ERp.cuE faTn WL ke
ciwal.exe : - zay -
db33ene

diz33.exe Fiefiesh | Del |

ext3dene - -

goo3lene LI Editor | Make edit | Par gen |
| [

GCC33 [debuginfo [~ define ItESt

optimize—————— L
¢~ NO ¢ g2 | [inline memcpy
~0 03 I include path

(23 sample
Cruiy =

EXT33 [~ usze.cmxfie [~ global pointer optimize |0<0
I farcaliz2inst [~ spmbol.map optimize ItESt :map

¥ debuginfo v use.cmfile v symbolmap file

Wl other options == ES

MAKE @ nomal ¢ 2Zpass | [T noexe cmd
™ 1 win

DB fico = [115200 (=] [eomt =] [roipe =]/ T smallfant

___________________________________ I~ db33 *cmd file
DIS33 W sicmik [codeonly [data only —

I addrrange IDxD — | CiRAEFeEf

v abs addr
HEX33 [cono00 — [oDifff Ea el o riame

""" *.0 for news, add
LIB3z | list € add © new ¢ del € extract

" estract &l Jtest Jibor.o

Common options I™ usage ™ noexecution
[exeinicon [~ small fant

Editar name [notepad W‘ P2

. |b33— " double click option
Option file |wb33.zav save restore b e eltany

In the [gce-lk options] window, the start-up options from the C Compiler to the Linker can be specified. Other tool
options and the options common to al tools can be specified in the [Other options] window.

The check boxes designed to specify an option are initially selected and specified during startup of the Work
Bench wb33, and the one usually specified displays a check in it. The explanation below assumes the initia
seftings, unless otherwise specified. For details, refer to Chapter 5 "Work Bench" and the chapters corresponding

to the respective tools.

10

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.2.2 Selecting Directory and Displaying File Contents

|Elc; [EPSOM] 'I There is a file selection part in the execution window. When the Work Bench (wb33)
=T starts up, it shows the drive name and the directory in which the tools are install ed.
cyoca First, display thefilesto be used in tutorial.
=9 sample

Step 2) Select the "sampleltst\" directory in the directory list box.

Since the initial setting checked the [*.*] radio button, the names of all files in the "tst\"
directory appear in the filelist box.
I o It is possible to change the file type to be displayed by selecting the radio button on the

|boot.s left of each tool button. The radio buttons show the file types that can be input to the
corresponding tool.

Step 3) Click [*.c].
Thefilelist box shows the main.c only.
To display contents of source file
The Work Bench wh33 has atext file display function.

Step 4) Double-click the source file name (main.c) in the file list box.

The output window opens and displays the contents of the main.c.
= tst_main.c 1997.2.13 =/ -
(= © main program =/ Notes: » Only text files can be displayed in this window, and
int i; they are limited to a maximum size of 32KB. If
“ai“? codes other than ASCII characters are contained in
int j; the files, they may appear as gibberish.
i-6; . e A character string can be copied or corrected
For 3765 5 =) . inside the window, but changes cannot be saved.
il a7 This facility should be used only as a display
function.

To open an editor
The Work Bench wb33 can open an editor for displaying the selected text file.

E ditar | Step 5) Select "main.c”, then click [Editor] in the execution window.

[Editor] button

Bl main.c - Notepad [=10Ix]l The notepad of Windows opens and displays the contents of the
File Edit Seach Help .

= tst_main.c 1997.2.13 =/ = mgln.c. . . L

/% C main progran x/ This function allows editing source files instantly.

int i;

The notepad is selected as the editor by the initial setting. It is

ain() possible to change it to the editor always in use by entering the
int j; start-up command (full-path name) of the editor to the [Editor
i=0; name] text box in the [other options] window.
For (j=0 ; ; j++)
sub(j);
¥
sub(k)
int k;

{
if (kK & Bx1)
{

ite;

H

EOC33 FAMILY EPSON

11
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.2.3 Creating Make File

The make file contains a processing procedure from compiling to linking and the procedure is automatically
executed by the make tool. The make can judge whether the files are updated or not, and executes the process only
when the necessary file has been modified or thereis no target file.

The following operation creates the make file for processing the sample source files (main.c and boot.s).

To create a make file

Make edit | [Make edit] button

Wl Make file editor

(==
[(]
=9 sample

Make file contents
and Del files

I Add files

bioot. Make file
main.c is not available
Add to Make file
¥ Suffix type

Editorl Hef[eghl Del from Make file |

ME E3

Make file name

Itest

.mak .crm .crs

Step 6) Click [Make edit].
The [Make file editor] window appears.

Step 7) Select the main.c and boot.s in the file list box, then click
[New Makefile].
To select two files, first click the boot.s, then hold down
the [Ctrl] key and clock the main.c.

The make generator creates the following threefiles:
testmak makefile

test.cm Command file for Linker

test.cmx Command file for Instruction Extender

These files are created in text format, so they can be displayed in
the output window or with an editor.

The make editor uses the name that is entered in the [Make file
name] text box as the make file name (default is test). Modify the
name in the text box if another nameis to be used. This name also
applies to the object file that will be created by linking and other
files.

The make editor creates a make file with basic contents, therefore
use it as a template and customize the contents if necessary. See
Section 17.1, "Make" for details of the contents of make file.

Use the close button to terminate the Make file editor.

12

EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES
3.2.4 Auto-execution from Compiling to Linking
Execute the Make using the test.mak created in the previous section.
To execute the Make

I".mak == Step 8) Select the "test.mak" in the file list box on the execution window, then
g % click [MAKE].

MAKE |

[MAKE] button

W Output Window [_[O]x]] The Make sequentialy executes preprocessing and
C:\CC33\as33 -g boot.ms - assembling the boot.s, compiling and assembling the
Assembly Completed : Sl ; .

C:\CC33%gcc33 -BE:\GE33\ -5 —g —0 main.c main.c a.’1d linking the object files. As a r@lt, the
Compile Completed output files of the executed tools appear in the

C:\CC33\ext33 main.ps

"sample\tst\" directory.
Extend Completed

£:\CC33\as33 -g main.ms boot.ps: Output file of the Preprocessor pp33
Assembly Completed main.ps: Output file of the C Compiler gcc33
C:\GC33\1k33 -g -5 -m -¢ test.cm
Link Completed boot.ms, main.ms: Output file of the Instruction
Hake Completed Extender ext33

8 error(s), 8 warning(s), 8 compiler mess | oot o main.o: Output file of the Assembler as33

4| | v[4| testsf, test.sym: Output file of the Linker k33

3.2.5 To Execute Tools Individually

The tools can be executed individualy. For example, to execute the Compiler only,
Step 9) Display the C source file (main.c) by selecting the [*.c] radio button (if necessary).
Step 10) Select the main.c in thefilelist box, then click [GCC33].

When correcting syntax errorsin source files, the Compiler can only be executed in this method.
Other tools can aso be executed individualy with asimilar operation.

EOC33 FAMILY EPSON

13
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.2.6 Creating Parameter File for Debugger

It is necessary to create a parameter file for the Debugger before starting to debug.

The Debugger db33 supports all the models of the EOC33 Family. However, since each model comes with its own
memory configuration and different PRC board, information concerning the available memory range and PRC
board is necessary for each specific mode. The parameter is used to set the information to the debugger.

To create a parameter file

Far gen |

[Par gen] button

Wl Parameter file generator | _ (=] x|
File name : 33104_1.par)
This file wersion [0,1,-.ff] Wer. Ih_ bieate Parfile
Chip name (3 characters| 33 W

Addr 0x0, IRAM size [0,1,--.256]

BOOT addr
[z ke |F 0sc0000
fdd 04B0000, IFOM size (01,5121 [& kg | © 0xe00000

External memory areas [max 8 areas, 1MB/area, TMB boundary)

Start addr Big - Emulation Enable
1.2.--.H Memory type Endian memory setting

[ooooo I Bia [Emu | Enable
[z ooooo I Big | Ermu " Enatle
| ER I Big I Emu T Enable
|4_ 00000 ™ Big I Emu ™ Enatle
[f ooooo [~ Big I Emu [Enatle
Ig_ 00oan [~ Big I Emu" Enable
IC_ 00000 [Big I Emu[" Enable
[10" ooooo I 'Big [Emu [|Enatle

Step 11) Click [Par gen].

The [Parameter file generator] window appears.

This tutoria uses the default settings for creating a
parameter file. In the actual development, memory
map information should be specified in the
[Parameter file generator] window.

Step 12) Click [Create Par file].

The parameter file 33104 _1.par is created.

See Section 16.10, "Parameter File" for the contents
of the parameter file and specifying the parameters.

14 EPSON

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.2.7 Debugging

Now that an object file is created by the Make in an executable format (srf33), debugging of the program can be
performed. Although more sophisticated debugging could be done using the ICE33 or ICD33, this section explains
how to start up the Debugger db33 in the simulator mode, in which debugging can be executed on a persona
computer alone. Thiswill enable practice and understanding of the fundamental operations of the package.

To start up the Debugger db33

DB33 Step 13) Select [SYM] at the DB33 option field in the [other options] window.
(Simulator mode specified)

" par - u= Step 14) Select the parameter file (33104_1.par) in the file list box, then click

: ; [DB33].

To select the file name easily, select the [.par] radio button.
The window below opens when the Debugger db33 starts up.

LB33 | [DB33] button

db33(5IM) - Command MEE
Fie Edt Bun Bresk Symbal Window Help

2| BEE =2l mim wlzE] @] oo = SIM

. Source I =T 53 | e OIS I8 [=1 B
Address Code Unassemble ~||pC -9e8830060

00630000 FFFF =xx RO RE

00630002 FFFF wxx k1 =AAAAAAAA RY? =ARAARAAR
00030004 FFFF sxx k2 =AAAAAAAA R1B=ARAARAAR
00030006 FFFF sxx R3 =AAAAAAAA R11=ARAARAAR
00030008 FFFF sxx R4 =AAAAAAAA R12=ARAARAAR
0003000 FFFF sexx RS =AAAAAAAA R13=AAAAARAAR
0003000C FFFF sxx R6 =AAAAAAAA R14=AAAAAAAR
00O3000E FFFF sxx R7 =AAAAAAAA R15=AAAAAAAR
00030010 FFFF sxx ISP =DAAAAAAS PSR=00000000
00680012 FFFF === AL|

00680014 FFFF s==x IL HDO DS IE C U 2 H
00680016 FFFF === e 8 0 6 68 0 0 0
00680018 FFFF === s us
00680610 FFFF === 80660066801 cycle/inst
0068001C FFFF === 00000000]-ARARAAARA
0068001E FFFF s=xx

00680020 FFFF s==x 00000008]-ARARAAARA
00680022 FFFF s=xx - 0060060C]-ARARAAARA

4 2

| Zi|m .
W Command [_[C]]

Debugger 33 Uer x.xx
Copyright (C) SEIKD EPSON CORP. 199x

Connecting with simulator done
Reading parameter file . —_—
Initializing
Parameter file name
Uersion
Chip name : 33184
BOOT address : 88088
Mappingc.oaiiiiaiiiaiias done
>

EOC33 FAMILY EPSON 15
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

First, the file to be debugged should be read.

To read a file
E,"'l Step 15) Click [Load file]. A dialog box for file selection opens.

[Load file] button
Loak i Iatst j gl E
!ﬁteﬂsﬂ

File: name: || Open I
Filez of type: ISHDFF file [*.=rf] j Cancel |

Step 16) Select the test.srf in the file list box of the dialog box, then click [OK]. The object
filetest.srf isread.

oy | Step 17) Click [Reset cold]. (The PCis set to the program start address.)
[Reset cold]
button
Address Code Unassemble -
| 066808684 CB20 ext 0x20

00680066 G6CAE 1d.w %rg,0x0
008 AA0E AOB1 1d.w %Sp,%rs
a088000R 6CA8 1d.w %re,ox0

0068 AABC CAAA ext Bx8
0068 000E COBA ext axa
686866818 1CH2 call Bx2
6068 @612 1EF? jp axfe

608868814 8288 pushn 2ra

00888816 G6CAE 1d.w %r11,08:0

00680818 COBA ext axa

60688686817 COBA ext 8xa8

apeseaic 6CAY 1d.w %r9,6x0

60688881E 3COB 1d.w [%r2],%11

0068668208 6CAA 1d.w %ra,6xe

6068800822 2EOC 1d.w %r12,%r8

008806824 1CB5 call Bx5

a0p8AeZ6 G018 add %ra, 8z -

| 2P

The [Source] window shows the disassembled object codes. This display can be changed for
adisplay of the source or for a mixed display (display of both the disassembled contents and
the source).

16 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

To display a source

[Source] button

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

Step 18) Click [Source] on the tool bar. The [Source] window display changes.

Ml Source - boot.s - M=l
Address Line SourceCode
#8681 ; boot.s 1997.2.13
88882 ; boot program
aaap3
gaeeh #define SP_INI Bx08888 ; sp is in end of 2KB internal RAM
800085 Hdefine GP_INI Bx08688 ; global pointer %r8 is 6z@
aa886
aoeey -code
gaaes -word BOOT ; BOOT UECTOR
@8009? BOOT:
BaA3 0004 AAB16 x1ld.w %r8,SP_INI
ag@asaoee Aae11 1d.w %5p %8 ; set SP
opegeoen BAB12 1d.w %r8,GP_INI ; set global pointer
apesaeec @ee13 xcall main ; goto main
00080012 00014 xjp BOOT ; infinity loop
KV i

The [Source] window displays the contents of the source file (boot.s) which contains the
code at the current PC address. Another source (e.g. main.c) can be displayed by selecting it
from the combo box on the tool bar if the object file can refer to the sourcefile.

To display a mix

[Mix] button

Step 19) Click [Mix] on the tool bar. The [Source] window display changes.

Address Code Unassemble Line SourceCode -
!BBBBBBBH CoZ2e ext ax2a appin x1d.w %r8,SP_INI
0aagaoes 6CA8 1d.w %re,0x0
aaa8AAEE ABB1 1d.w %sp,%r8 aaa11 1d.w %sp,%r8 ; set SP
0aa8a00A GCA8 1d.w %rg,oxe aee12 1d.w %r8,GP_INI ; set global pr
0008000C CO08 ext 8x8 80613 xcall main ; goto main
HO08AABE COAA ext axa
08688618 1CH2 call ax2
00680612 1EF9 jp 8xfF9 aa614 xjp BOOT ; infinity looj
--- main.¢c -—-

88881 /= tst_main.c 1997.2.13 =/

08862 /= C main program =/

aepn3

peeey int i;

aaeas

00086 mnaing)
086886614 8288 pushn %re aaeay {

00068 int j;

aeeay -

]| A

The [Source] window displays the results of disassembling and the contents of the source file.
This display clearly shows the correspondence between the source and the mnemonic.
The underlined line denotes the instruction (address) to be executed next.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON 17

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

The program can now be executed on the file that was just read.

To execute a program

H

[Go] button

To break forcibly

Igl

[Key break] button

Step 20) Click [Go] on thetool bar.

This program infinitely repeats increments by using the variable i (address
0x0000000-0x0000003) in the RAM area as a counter. In the ICE mode, it can be seen
that the on-the-fly function updates the contents of the [Register] window in real time. In
the simulator mode, the contents of the [Register] window are not displayed until the
program is broken. Furthermore, the mouse pointer changes to the wait state (hourglass).
Such a perpetual loop should be halted with aforcible break.

Step 21) Click on the [Key break] on the tool bar. (The button can be clicked athough
the mouse pointer isin wait state.)

Ml Register

PC =00080030
RA =080812DF
R1 =AAARAAARA
R2 =AAARAAARA
R3 =AAARAAARA
R4 =AAAAAAAA
RS =AAARAAARA
R6 =AAARAAAA
R7 =AAARAAARA
SP =080887F4
AHR=AAARAAARA
IL HO DS IE C

RS =00B0BO0O| |
R9 =AAAAAAAA
R10=0000096F
R11=00000008
R12-00000001
R13=AAAAAAAA
R14=AAAAAARAR
R15=AAAAAAAR
PSR=00000008
ALR=AAAAAAAA

u

M= 3 This illustration shows that the program had a break at address 0x80030
- (PC), and that it had executed 50740 cycles by that time. The counter set
from address OxO has reached Ox96F. (The addresses [0000001] to
[000000C] are for monitoring the data memory. Here, the initial settings
of addresses 0x0, 0x4, 0x8 and OxC are shown. The memory that appears
to the right of "[0000000]=" holds address O on the right end and address
3ontheleft end.)

Z H

8080850748 cycle/inst
[6AB0BOAA]=0A8AB6F
[6ABOBOA4]=AARARAAA
[6ABOBOAS 1=AARARAAA
[BABOBOAC J=AARARAAA -

K —

H 4

The contents of the data memory at addresses other than the monitoring addresses can
also be checked in the [Memory] window.

To open the [Memory] window

Command
Source
Beqister
Trace

Symbaol
StdiD

[Window] menu

Step 22) Select the [Memory] command from the [Window] menu.

- Memory o]

addr +8 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F =
@oaoaees 6F 69 B8 B8 AA AA AR AR AA AA AR AA AA AR AA AR
00006818 AR AA AR AR AR AA AR AR AA AA AR AA AA AR AA AR
00000028 AR AA AR AR AR AA AR AR AA AA AR AA AA AR AA AR
000866638 AR AA AA AA AA AA AA AA AA AA AR AA AA AA AA AR
00000848 AR AA AR AR AR AA AR AR AA AA AR AA AA AR AA AR
00060050 AR AR AA AA AA AR AA AA AR AA AR AR AA AA AA AR
00a0aB68 AR AA AR AR AR AA AR AR AA AA AR AR AA AR AA AR
00000878 AR AA AR AR AR AA AR AR AA AA AR AA AA AR AA AR
00008B2A AR AA AA AA AA AA AA AA AA AA AR AR AA AA AA AR
00000098 AR AA AR AR AR AA AR AR AA AA AR AA AA AR AA AR
008686BAA AR AA AA AA AR AR AR AR AR AA AR AA AA AA AR HH,IJ

The [Memory] window opens and displays the contents of the memory. Display the top of
the memory using the vertical scroll bar. ("AA" at addresses other than 0-3 denotes the
initia setting in the RAM area.)

Data of the entire memory area may be verified by scrolling the screen vertically.

18

EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

Thus far the contents of the variable i have been checked by the address, but it is not
practical in C source level debugging. Contents of variables can aso be displayed by
specifying symbol names. The information can be displayed in the [Command] window
and the [Symbol] window. The following explanation uses the [Symbol] window.

To open the [Symbol] window

Help
Command
Source
kemary
Beqgister
Trace

Symbol

[Window] menu

Step 23) Select the [Symbol] command from the [Window] menu.
i Symbol =] E3

To display contents of a variable, it is necessary to register the symbol to the [Symbol]
window.

To add the symbol to be monitored to the [Symbol] window

2]

[Symbol add] button

Step 24) Place the cursor at the symbol name (variable i) displayed in the [Source]
window, then click [Symbol add] on the tool bar.

B [=] E3
Address Code Unassemble Line SourceCode =]
0008A0BY CAZ28 ext 8x28 ap618 x1d.w %r8,SP_INI
00080006 6CO8 1d.w %r8,0x0 [—
40088808 ABB1 1d.w %sp,%r8 088811 1d.u %sp,%r8 ; set SP
0008000A 6CO8 1d.w %r8,0x0 06612 1d.w %r8,GP_INI ; set global pc
0008006C COO0 ext ox0 00613 x®call main ; goto main
OBB8AOBE CHBA ext [(E3:]
00080610 1C02 call 8x2
00080012 1EF? jp 0xF9 00014 xijp BOOT ; infinity loof
-—— main.c --—-

86661 /= tst_main.c 1997.2.13 =/

86662 /x—E£ main program =/

apae3

00004

000805

aeess main()
00080614 6200 pushn %re aeae7 {

90088 int j;

apap9 -
K1 AW

The [Symbol] window displays the information of the variablei.

W Symbol H=1E3
1:i{00A000B0)= B<0OPOPOCS 288, , extern, int

Execute the program again (Steps 20 and 21). The content of the variable i will be
updated after breaking.

EOC33 FAMILY

EPSON 19

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

Since the working of the program cannot be observed very well during the operation
described above, abreak will be placed at an appropriate point.

To set a break point

[Soft PC break]
button

Step 25) Place the cursor on the line at address 0x00080030 (i++), then click [Soft PC
break] on the tool bar.

A "!" mark appears at the beginning of the line at address 0x00080030, indicating that the
break point has been placed here. (Another click of [Soft PC break] in this condition will
clear the setting of the break.)

Once a break point has been set, execute the program once again.

Step 26) Click [Go] on thetool bar.

The line a address 0x00080030 is displayed with an underline, indicating the program
has broken. Repeating Step 26 thereafter will demonstrate that the variable i increases by
increments.

This method allows checking, to see whether the intended motion is being implemented
or not. If any problem is detected in the motion, the functioning will have to be looked at
more closely.

The Step and Next operations are two ways of proceeding through the program.

To execute the Step operation

=

[Step] button

Step 27) Click [Step] on the tool bar.

The program executes the instruction underlined in the [Source] window, and the
underline moves on to the instruction to be executed next. Each step is executed
successively as Step 27 is repeated. If the program is error-free, the register changes its
display correctly according to each step executed.

In the Step operation, all the instructions are executed on a step-by-step basis.

The Next operation is basically identical to the Step operation, except that a function,
subroutine or software interrupt routine is skipped (executed as one step). This Next
operation comes in handy, since a subroutine in which debugging was already completed
does not need to be executed step by step.

To execute the Next step

|£I

[Next] button

Step 28) Click [Next] on the tool bar.

Repest Step 28 to see the difference between the Step and Next executions in the [Source]
window.

Note that a skip was made inside the function sub(), but the variablei is updated, and the
function was executed continuously.

20

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

In the preceding paragraphs, the fundamental operations of Debugger db33 have been
discussed. A more sophisticated debugging may be implement by keying in commandsin
the [Command] window from the keyboard. See Chapter 16, "Debugger” for more
information.

The following instruction explain how to quit the Debugger db33.

To quit the Debugger

Step 29) Select the [Exit] command from the [File] menu.
Load file. Ctl+D
The window closes, and the Work Bench window returns.
v 1 Command
2 Register
3 5Source

[File] menu (db33)

Besides the simulator mode used in the tutoria, the Debugger db33 supports three other debugging modes: the
ICE mode that uses the In-Circuit Emulator |CE33, the Debug Monitor mode that uses the DMT33MON with the
target board in which the debug monitor has been implemented, and the ICD mode that uses the In-Circuit
Debugger ICD33 with the target board. Refer to Section 3.3 for the debugging method in each mode.

EOC33 FAMILY EPSON 21
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.2.8 Creating Disassembly File

The Disassembler dis33 disassembles the srf33 object file delivered from the Linker and creates a list file that
contains the C sources or assembly sources corresponding to the disassembled codes. This list shows the
correspondence between the sources and object codes.

To create a disassembly file

Ix_Srf o Step 30) Select the test.sif from the file list box in the Work Bench, then click
- [DIS33].
To select the file name easily, select the [*.srf] radio button.

The list file test.dis is created. Display the contents by double-clicking the file name.

DIS33 | See how the C source was converted into mnemonic.
[DIS33] button
B Output Window M= E
--- main.c --- -
80001 /* tst_main.c 1997.2.13 =/
80802 /= C main program =/
080003
goeey int i;
080005
aeees main()
000886814 8280 pushn %re@ 8080087 {
00008 int j;
i]s 110
000806816 6COB 1d.uw %r11,0x0 o010 i=8;
00080618 COBA ext ax0
0008061A COBA ext ax0
8808861C 6CA9 1d.uw %r9,0x0
G008AG1E 3CY9B 1d.w [%r9],%r11
00080620 6CA0 1d.uw %r8,0x0 88011 for (j=8 ;3 ; j++)
88012 {
800806822 2EBC 1d.uw %r12,%r0 88013 sub{j);
980886824 1CB5 call x5
00080626 6GO18 add %r 8, 0x1 00611 fFor (j=8 ; ; j++) =
2| | o
22 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.2.9 Creating ROM Data

Hex files are used for making the external ROM to be mounted on the target board and the mask data for the
internal ROM. The Binary/HEX Converter hex33 converts the specified address range of the srf33 object file
(delivered from the Linker) into a Motorola S3 format HEX file.

To create a HEX file

I".Srf L
H

HE#®33 | [HEX33] button

Step 31) Select thetest.srf in thefilelist box, then click [HEX33].
To select the file name easily, select the [*.srf] radio button.

The Binary/HEX Converter hex33 delivers the HEX file for the externa ROM with the name test.sa
_c00000_cOffff.

The Binary/HEX Converter was executed using the default option settings of the Work Bench, so the HEX
file contains 64K B data from address 0xc00000 to address OxcOffff. In the actual development, the address
range must be specified according to the memory configuration of the model. It can be specified at the
HEX33 option selection part in the [other options] window.

Creating submission mask data
When the program development for a mask ROM model has finished, the mask data for the internal ROM
should be submitted to Seiko Epson. Mask data can also be created using the Binary/HEX Converter. In this
case, make sure that the internal ROM address range is specified correctly and the [abs addr] check box is
selected to create absolute address data.
The following setting is an example for creating 4KB of mask data within the address 0x80000 to address
0x80fff range .

[+ abs addr

HEX33 30000 — |30 [add o name

The created mask data file should be submitted after renaming to one specified by Seiko Epson.
Example: ¢3264010.sa0 (mask datafile for the EOC33264)

Notes on creating mask data
To prevent file copy errors, bugsin the tools, and other problems, perform afinal operation check by reading
the HEX files (.sa) in Motorola S3 format by the |h command. Do not use the srf33 file.

EOC33 FAMILY EPSON 23
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.2.10 Optimization

The development procedure have been reviewed. As the final step, this section explains optimization of the code,
one of the features of this package.

The gce33 options select part of the [gee-Ik options] window has an [optimize] field with radio buttons that allow
specifying the optimization level. Since the effects of code optimization cannot be confirmed with a sample
program, the following shows other methods.

One method isto use aglobal pointer.

A global pointer isthe start address of a global variable area, and a genera -purpose register R8 is used exclusively
for accessing this area. This helps to reduce the number of instructions necessary to access global variables.
Initiaization of the R8 register in the assembly source of the sample program is the processing performed to set up
this global pointer.

This function is an option to the Instruction Extender ext33, and is deselected by default for the Work Bench.
Therefore, make in the tutorial was not optimized by using aglobal pointer.

When make is performed after selecting [global pointer optimize] which is an option to the ext33, the differencein
output code can be verified. The following shows the difference in the sample program where globa variable i
(address being mapped to location 0) is accessed.

When not using a global pointer

00080032 CO00 ext 0x0 00022 i++;
00080034 CO00 ext 0x0

00080036 6C09 Id.w %r9, 0x0

00080038 309A Id.w %r10, [%r9]

0008003A 601A add %r10, Ox1

0008003GC G000 ext 0x0

0008003E CO00 ext 0x0

00080040 6C09 Id.w %r9, 0x0

00080042 3C9A Id.w [%r9], %r10

When using a global pointer

00080030 G000 ext 0x0 00022 i++;
00080032 G000 ext 0x0

00080034 308A Id.w %r10, [%r8]

00080036 601A add %r 10, 0x1

00080038 G000 ext 0x0

0008003A G000 ext 0x0

0008003C 3GC8A Id.w [%r81, %r10

The above example shows that use of aglobal pointer made it possible to eliminate two instructions.
Another method of optimization is 2-pass make. In 2-pass make, the program modules are linked, then processed
again by the Instruction Extender based on the absolute address information of the symbols determined by linkage

processing. This helps to delete the unnecessary "ext" instructions used for referencing the jump address labels and
symbolsin externa modules.

To perform 2-pass make

hAEE "~ narmal =

Step 32) Check the [2 pass] radio button in the make options select part of the [other options] window, then use
the [MAKE] button to execute make.

24 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

The following shows a part of the sample file that has been optimized by 2-pass make.

For 1-pass make

00080030 G000 ext 0x0 00022 i++;
00080032 G000 ext 0x0

00080034 308A Id.w %r10, [%r8]

00080036 601A add %r10, 0x1

00080038 G000 ext 0x0

0008003A G000 ext 0x0

0008003C 3G8A Id.w [%r81, %r10

For 2-pass make

0008002C 308A Id.w %r10, [%r8] 00022 i++;
0008002E 601A add %r 10, 0x1

00080030 3GC8A Id.w [%r81, %r10

The above example shows part of a disassembly list that is created from the object file "test.srf" that was created
by executing 1-pass and 2-pass make by reading it in with the Disassembler dis33. This can also be verified in the
debugger window by setting mixed display mode.

In the above example, you will notice that since variablei is found to be located at address 0, the "ext" instruction
used for accessis deleted by 2-pass make. Specifically, this processing is performed by the ext33.

3.2.11 Epilogue

This tutorial explained the basic operations of the C Compiler along with the flow of the development procedure.
For more information about each tool, refer to the chaptersin this manual in which they are detailed.

To terminate the Work Bench

Save and | Step 33) Click [Save and Exit].
E =it

[Save and Exit] button

The wb33 terminates after saving the option setting information to the wb33.sav file.

From the next time, the wb33 will be able to start up with the current option settings by dragging wb33.sav
on the wb33 exe icon. To perform this drag and drop operation, the shortcut of wb33.exe should be created
on the desktop.

Note: The tools including the make can be invoked on the DOS prompt by entering the command or
using a batch file.

If the target system has ICE33, ICD33 or DMT33MON, refer next to the operating procedure for each tool
described in Section 3.3, "Debugging Environment".

EOC33 FAMILY EPSON 25
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.3 Debugging Environment

Besides debugging in simulator mode, as shown in the previous section, db33 allows debugging programs
including target system operation using the Debug Monitor (MON33), In-Circuit Emulator (ICE33) or In-Circuit
Debugger (ICD33).

This section explains the outline of each debugging system and how to start debugging. Refer to each tool manual
for details. Refer to "\cc33\utility\fls33" for onboard flash writing.

Note: Make sure that all the equipment is off before connecting or disconnecting the system.

3.3.1 In-Circuit Emulator ICE33

The ICE33 is the in-circuit emulator for the EOC33 Family Model 1 microcomputers, and provides the most
advanced debugging environment. The on-chip peripheral functions are implemented with the PRC33001 board.
This system allows the use of amost all the db33 functions. It aso allows up to 8 MB of externa memory
emulation using the optional memory card.

System configuration
Figure 3.3.1.1 shows the debugging system configuration using the ICE33.

Parallel cable
(supplied with ICE33 package)
I ICE33
& E]D:“:q:ﬂ _

" comx [F=r—=t] N e B e

RS232C cable 4
supplied with ICE33 package) PRC33xxx

User target board

Fig. 3.3.1.1 Debugging system configuration using ICE33

Starting up and checking operation
Start up the Debugger in the ICE mode (select [I CE] in wb33).

D33 E - |11520D vI

Before starting up the Debugger, check the following:

1) Isthe RS232C cablein use one of the specified types?

2) IsthelCE33 connected to the COM 1 port on the persona computer side?
(When using another COM port, changes have to be done on the Work Bench wb33 side.)

3) Isthe ICE/RUN switch of the ICE33 set to ICE?

4) Are the ICE33 DIP switches 1, 3 and 4 set in the OPEN position and switch 2 set in the ON position
(115200 bps, self-diagnostic deactivated)?

5) Isthe PRC board correctly mounted on the ICE33?

6) IstheCE33 switched on (Power LED lit)?

If the above settings are not executed correctly, "time-out" errors will result, and the Debugger db33 will fail
to start up normally.

After the Debugger is started in the ICE mode, the operations should be done like the simulator mode (refer
to Section 3.2.7). When the program is executed by the [Go] button, the contents of the PC, flags and
monitoring datain the [Register] window are real-time updated.

26 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

Precautions

(1) The ICE33 emulation memory is configured according to the contents of the debugger parameter file.
Therefore, the parameter file should be created correctly according to the memory configuration of the target
system.

(2) All the ICE33 functions can be used even if the ICE33 is only connected to the COM port using the RS232C
cable. The paralel cable should be used to connect the ICE33 to the LPT port when high-speed file
downloading is required. The following shows the typicad downloading speed of the different ports (the
vaues may vary according to the PC used and operating conditions).

Serial transfer: Downloading to RAM 9KB/S
Downloading to Flash memory ~ 8KB/S
Parallel transfer: Downloading to RAM 50KB/S

Downloading to Flash memory ~ 30KB/S

(3) The ICE33 is shipped with the firmware Ver. 1. It can be used with the Debugger db33 in this package.
However, the firmware Ver. 1 does not support writing to the flash memory on the target board (fls, fle),
hardware PC break 2 (bh2, bhc2) and memory copy in half word and word units (mvh, mvw). If these
functions are required, update the ICE firmware using the program located in the "cc33\utility\ice33v20\"
directory.

(4) Refer tothe "EOC33 Family In-Circuit Emulator (ICE33) Manual" for more information on the ICE33.

3.3.2 Debug Monitor MON33

The Debug Monitor MON33 is a middleware designed for EOC33 Family single-chip microcomputers. It provides
program-debugging functions on the user target board or DMT33xxx boards. By connecting the board in which
MONS33 has been implemented to the personal computer via the DMT33MON board, the program can be
debugged using the Debugger db33. This section explans how to debug the program using the
DMT33004/DMT33005 board in which MON33 has been implemented as a devel opment tool.

System configuration and connection
Figure 3.3.2.1 shows the debugging system configuration using the DM T33004/DMT33005 board.

RS232C cable " "
(supplied with DMT33MON package) %

Fig. 3.3.2.1 Debugging system using DMT33004/DMT33005 board

Starting up and checking operation
The following sample programs are provided to check the system operation:
For DMT33004 board: "\cc33\sample\dmt33004\led.srf"
"\cc33\sampl e\dmt33004\l ed2.srf"
For DMT33005 board: ~ "\cc33\sample\dmt33005\Ied.srf"
"\cc33\sample\dmt33005\led2.srf"
These programs blink the LED on the DMT board. "led.srf" and "led2.srf" are created to be able to debug in
the RAM (0x600000~) and in the Flash memory (0x200000~), respectively.
For the contents of the program, refer to the sourcefile (led.s) in the directory.
It is not necessary to execute Make when modification of the source is not needed since the executabl e object
files ("led.srf," "led2.srf") are provided. When the source is modified, execute Make using the make file
provided in the directory.

EOC33 FAMILY EPSON 27
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

@

Starting up the Debug Monitor

The boot routine mapped from address 0xCO0000 on the DM T33004/33005 starts the debug monitor when
the K63 input port is set to "0" (the [DEBUG] switch of the DMT33MON is set to ON).

Start up the debug monitor following the procedure below after connecting the target system to the persona
computer.

RS232 connector 1) Turn SW3[DEBUG] of the DMT33MON on.
H_H H_H 2) Turn the power of the DM T33004/33005 on.

3) Reset the DM T33004/33005
[o o
OFF +— ON @‘ \@ OFF«J ON (DMT33MON SW1 [RESET] ON—OFF).

DDD?W

oesue) 4) Turn the personal computer on and start up Windows.
5) Start up the debugger db33

DMT33xxx/target board

interface connector

Q

O

(start-up method is described | ater).

Fig. 3.3.2.2 DMT33MON board layout

Note: When the power of the DMT33004/33005 is turned on while the SW3 [DEBUG] of the

@

©)

DMT33MON s off, the debug monitor does not start up. The DMT33004/33005 sets TTBR at
the beginning of the Flash memory (0x200000~), so the program sequence branches to the boot
address. In this case, turn the SW3 [DEBUG] on and reset the DMT33004/33005 with the SW1
[RESET] to start up the debug monitor.

Debugging in the RAM

The sample program for debugging in the RAM (0x600000~) of the DMT33004/33005 is "led.srf". When

starting up the debugger, specify the debug command file "led.cmd” with the -c option. "led.cmd” sets the

trap table address to the start address of the RAM and loads "led.srf" to the RAM.

Operating procedure for starting up the Debugger from the DOS prompt is as follows:

1) Start up the debug monitor as described above.

2) Set "\cc33\sample\dmt33004\" (or "\cc33\sample\dmt33005\") as the current directory.

3) Set apath to db33.exe.

4) Start up the debugger with the following command at the DOS prompt.
C:\cc33\sample\dmt33004\>db33 -mon -b 115200 -p 33104 _m.par -c led.cmd

The debugger starts in debug monitor mode and is ready to debug "led.srf". For example, the LED on the
DMT33004/33005 board will start blinking by executing the g command.

The debug monitor does not support forced break functions such as key break.

To suspend the program execution, "led.cmd" contains a command that sets a breakpoint at the label located
in the NMI routine of "led.srf". When the SW2 of the DMT33MON is turned on, a NMI is generated and it
suspends the program execution.

Debugging in the Flash memory

The sample program for debugging in the Flash memory (0x200000~) of the DMT33004/33005 is"led2.srf".
To write the sample program to the Flash memory, first load the Flash erase/write routine "am29f800.srf".
Then initialize the Flash memory functions using the fls and fle commands and load the sample program into
the Flash memory using the If command. Refer to the sample debug command file "led2.cmd" for executing
procedure.

When starting up the debugger, specify the debug command file "led2.cmd" with the -c option. "led2.cmd"
contains debug commands for loading the Flash erase/write routine, setting the trap table address and loading
"led2.srf" to the Flash memory.

28

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

Operating procedure for starting up the Debugger from the DOS prompt is as follows:

1) Start up the debug monitor as described above.

2) Set "\cc33\sample\dmt33004\" (or "\cc33\sample\dmt33005\") as the current directory.

3) Set a path to db33.exe.

4) Start up the debugger with the following command at the DOS prompt.
C:\cc33\sample\dmt33004\>db33 -mon -b 115200 -p 33104 m.par -c led2.cmd

The debugger starts in debug monitor mode and is ready to debug "led2.srf". For example, the LED on the

DMT33004/33005 board will start blinking by executing the g command.

The debug monitor does not support forced break functions such as key break.
When the SW2 of the DMT33MON is turned on, a NMI is generated and it suspends the program execution
forcibly.

After writing the program to the Flash memory, it can be executed by the DM T33004/33005 alone.
1) Terminate the Debugger.

2) Turn the system power off and then disconnect the RS232C cable.

3) Turn SW3 [DEBUG] of the DMT33MON off and then turn the DM T33004/33005 on.

The "led2.srf" program will be executed in the Flash memory and the LED will start blinking.

Executing from wb33

1) Start up the debug monitor as described above.

2) Start up wb33 and then select the parameter file "\cc33\sample\dmt33004\33104_m.par"
(or "\cc33\sample\dmt33005\33104_m.par") on the execution window.

3) Select DB33 options on the [Other options] windows.
MON, 115200 bps, command file "led.cmd" or "led2.cmd"

DB33 - r
Im I |1152DEI I v db33 = cmd file

’hd2cmd
4) Start up the Debugger using the [DB33] button.

This procedure starts debugging the same asin items (2) and (3) above.

Precautions

@

@

©)

©

When debugging the user program on the DMT33004/33005 board, observe the precautions described
below.

The debug monitor on the DMT33004 has been implemented by linking with the "mon33chl.lib". Therefore,
the built-in seria interface Ch.1 cannot be used from the user program.
The debug monitor on the DMT33005 has been implemented by linking with the "mon33ch0.lib". Therefore,
the built-in seria interface Ch.0 cannot be used from the user program.

Forced break functions cannot be used in the Debug Monitor. A forced break function can be realized by
setting a hardware PC break point a alabel position in the NMI or key input interrupt routine of the target
program.

Furthermore, other debugging functions are aso restricted. Refer to Chapter 16, "Debugger”, for the
functions and commands that are supported by the Debug Monitor.

The downloading speed is approx. 8KB/S for RAM and approx. 7KB/S for Flash memory. However, it varies
according to the PC used and operating conditions.

The program to be debugged should be created so that it can be loaded and executed in the free area of the
RAM or the Flash memory on the DMT33004/33005. The program load address must be specified when
linking since it cannot be specified by the Debugger.

The MON33 uses 0 to Ox2F of the internal RAM and Ox6FF640 to Ox6FFFFF in the external SRAM. Be
aware that the MON33 will not be able to work if the area above is rewritten. Furthermore, this precaution
applies when rewriting the memory using a memory operation command.

EOC33 FAMILY EPSON 29
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

CPU: EOC33A104(DMT33004)/E0C33208(DMT33005)
OXC1FFFF External ROM

128KB 0xCO21FF |Boot routine

0xC00000 0xC00000 |MONS33 library
OX6FFFFF External RAM OX6FFFFF MON33 work area

1MB OX6FF640 |

Ox6FF63F Free area

0x600000 0x600000 |
Ox2FFFFF Flash memory |OX2FFFFF |

1MB Free area
0x200000 0x200000 |
OXO4FFFF Built-in 1/0 OXQ4FFFF |

Control registers of built-in 1/0

0x040000 0x040000

O0x001FFF Built-in RAM O0X001FFF |Free area
DMT33005: 8KB |0x000030 |(DMT33005)

0x00002F Reserved area for MON33
0x000010

0x00000C |RO stack area

0x000008 |PC stack area

0x000000 0x000000 |Debugging vector
Fig. 3.3.2.3 DMT33004/33005 memory map

(5) Refer to the "EOC33 Family MON33 Debug Monitor Manua" for more information on the Debug Monitor.

3.3.3 In-Circuit Debugger ICD33

The In-Circuit Debugger ICD33 is a development tool that controls the EOC33 on-chip debugging function
according to the command sent from the Debugger db33. It provides a trace function as well as the debugging
function the same as the Debug Monitor. This section explains how to debug the program using the ICD33 with
the DM T33005 board as a devel opment tool .

System configuration and connection
Figure 3.3.3.1 shows the debugging system configuration using the ICD33 and the DM T33005 board.

Parallel cable
(supplied with ICD33 package)

o

comx >

RS232C cable 10 pin-10 pin
(supplied with ICD33 package) target system

interface cable
(supplied with ICD33 package)

Fig. 3.3.3.1 Debugging system using ICD33 and DMT33005

Note: The ICD33 cannot be used with the Debug Monitor. Do not connect DMT33MON to the
DMT33005 board. To use the DMT33005 board with DMT33MON, be sure to turn the [DEBUG]
switch (SW3) of the DMT33MON off.

Starting up and checking operation
The following sample programs are provided to check the system operation:

30 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

"\cc33\sample\dmt33005\Ied.srf"

"\cc33\sampl e\dmt33005\| ed2.srf"

These programs blink the LED on the DMT33005 board. "led.srf" and "led2.srf" are crested to be able to
debug in the RAM (0x600000~) and in the Flash memory (0x200000~), respectively.

For the contents of the program, refer to the sourcefile (led.s) in the directory.

It is not necessary to execute Make when modification of the sourceis not needed since the executable object
files ("led.srf," "led2.srf") are provided. When the source is modified, execute Make using the make file
provided in the directory.

(1) Starting up the system
Start up the system following the procedure below after connecting the ICD33 and DMT33005 to the
personal computer.

1) Set al the DIP switches of the ICD33to OPEN (upper position).
2) Turn the DMT33005 on.

3) Turn the ICD33 on.

4) Turn the personal computer on and start up Windows.

5) Start up the debugger db33 (start-up method is described later).

(2) Debugging in the RAM
The sample program for debugging in the RAM (0x600000~) of the DMT33005 is "led.srf". When starting
up the debugger, specify the debug command file "led.cmd” with the -c option. "led.cmd" sets the trap table
address to the start address of the RAM and loads "led.srf" to the RAM.
Operating procedure for starting up the Debugger from the DOS prompt is as follows:
1) Start up the system as described above.
2) Set "\cc33\sample\dmt33005\" as the current directory.
3) Set a path to db33.exe.
4) Start up the debugger with the following command at the DOS prompt.
C:\cc33\sample\dmt33005\>db33 -icd -b 115200 -p 33104 _m.par -c led.cmd

The debugger startsin ICD mode and is ready to debug "led.srf". For example, the LED on the DMT33005
board will start blinking by executing the g command.

The 1CD33 supports the key break function. The program execution can be suspended using the [Key break]
button of the Debugger. Also the trace function is available. Refer to Chapter 16, "Debugger”, for tracing.

(3) Debugging in the Flash memory
The sample program for debugging in the Flash memory (0x200000~) of the DMT33005 is"led2.srf".
To write the sample program to the Flash memory, first load the Flash erase/write routine "am29f800.sr".
Then initiaize the Flash memory functions using the fls and fle commands and load the sample program into
the Flash memory using the If command. Refer to the sample debug command file "led2.cmd" for executing
procedure.

When starting up the debugger, specify the debug command file "led2.cmd" with the -c option. "led2.cmd"

contains debug commands for loading the Flash erase/write routine, setting the trap table address and loading

"led2.srf" to the Flash memory.

Operating procedure for starting up the Debugger from the DOS prompt is as follows:

1) Start up the system as described above.

2) Set "\cc33\sample\dmt33005\" as the current directory.

3) Set apath to db33.exe.

4) Start up the debugger with the following command at the DOS prompt.
C:\cc33\sample\dmt33005\>db33 -icd -b 115200 -p 33104 m.par -c led2.cmd

EOC33 FAMILY EPSON 31
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

(4) Executing from wb33

1) Start up the system as described above.

2) Start up wb33 and then select the parameter file "\cc33\sample\dmt33005\33104_m.par" on the execution
window.

3) Select DB33 options on the [Other options] windows.
1CD, 115200 bps, command file "led.cmd" or "led2.cmd"

DE3Z ||::[:n v[|1152DIZI v|
| db33 * cmd file

ICD

FOM
led?2.cmd

4) Start up the Debugger using the [DB33] button.
This procedure starts debugging the same asin items (2) and (3) above.

Precautions

@

@

©)

“

When debugging the program using the ICD33 and DMT33005 board, observe the precautions described
below.

The program to be debugged should be created so that it can be loaded and executed in the free area of the
RAM or the Flash memory on the DMT33005. The program load address must be specified when linking
since it cannot be specified by the Debugger. See Figure 3.3.2.3 for the DM T33005 memory map.

The debugging functions are restricted compared to the ICE33. Refer to Chapter 16, "Debugger”, for the
functions and commands that are supported by the ICD33.

All the ICD33 functions can be used even if the ICD33 is only connected to the COM port using the RS232C
cable. The paralel cable should be used to connect the ICD33 to the LPT port when high-speed file
downloading is required. The following shows the typical downloading speed of the different ports (the
vaues may vary according to the PC used and operating conditions).

Serid transfer: Downloading to RAM 8KB/S
Downloading to Flash memory ~ 7KB/S
Parallel transfer: Downloading to RAM 30KB/S

Downloading to Flash memory ~ 20KB/S
Refer to the "EOC33 Family In-Circuit Debugger (ICD33) Manua " for more information on the ICD33.

32

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.3.4 Memory Board MEM33201

Memory Board MEM 33201 contains an extension function to enable the ICD33 debug function and the emulation
function. This makes configuration of a better development environment possible. This section explains how to
debug when you are using the ICD33, EPOD33208 and MEM 33201 as a devel opment tool.

System configuration and connection
Figure 3.3.4.1 shows the debugging system configuration using the ICD33 and the DM T33005 board.

Parallel cable EMU
(supplied with ICE33 package)

.
LPTx || =]
i

= comx E}:\u:u:j;

RS232C cable 10pin-10pin
(supplied with ICE33 package) Target system
‘e connect cable
(supplied with ICD33 package

MEM33201

ICD33 Ver2

&

ICD33 BREAK IN connect clip
(attached with MEM33)

EPOD33208

7
EPOD332XX MEM33201

Fig.3.3.4.1 Debugging system using ICD33, EPOD33208, MEM33201

Make the following changes for the default settings.

EPOD33208

JP3 1-2short Provides #RESET signal from the MEM 33201
MEM33201

JP1 1-2short Provides #RESET signa to EPOD

JP7 1-2 short Provides VDDE to EPOD

JP8 1-2 short Provides VDD(3.3V) to EPOD

Make sure that the ICD33 DIP SW is set to the upper (default) position.
Besureto use Ver.2 of the ICD33 (Signal lines of TRC and EMU are fetched out by the yellow and the red lines) .

Starting up and checking operation
The following sample programs are provided for checking the system operation:
"c:\cc33\samplélmem33201\demo.bat"
The program runsin the internal RAM and accesses the external memory.
MEM 33201 detects accesses and breaks.
Refer to sample.c for the details of the program.
If you modify and useiit, execute "make" using the make file in the same directory.

(1) Starting the system

After connecting the ICD33, the EPD33208 and the MEM 33201 to the personal computer, start the system
using the following procedure:

1) Turn on the MEM33201.
2) Use SW1 to reset the MEM33201.
3) Turn on the ICD33.(The red EMU lamp of the ICD33 blinks.)

EOC33 FAMILY EPSON

33
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

4) Release SW1 of the MEM 33201 ([RESET] switch). The operation is normal if the EMU lamp (red) of the
1CD33 goes off.

5) Turn on the personal computer and start Windows.

6) Open the DOS window.

7) Set" c:\cc33\sample\mem33201" as the current directory.

8) Execute demo.bat.

(2) Executing from wb33
Use the same procedure as described in steps 1) through 5) above.
6) Start wh33 and set " ¢:\cc33\sample\mem33201\33208_1.par " asthe current directory.
7) Inthe [Other options] windows, select DB33 options as follows:
1CD, 115200 bps, command file" sample.cmd"”

D33 I D .I I vI
115200 W db33 = cmd file

(3) Checking operation

1) db33 executes sample.cmd file, and sets the area and bus breaks. The system operation is OK if
ICD+MEM33 isdisplayed in yellow at the upper right-hand corner of db33.
2) Enter command g at the prompt for bus break to stop the target.
3) Enter command g again for area break to stop the target.
4) Enter command g again for map break to stop the target.
5) Enter command g again for map break and CE break to stop the target.
6) The following shows the command file used in this operation.
>g
Break by externa break.
Break by MEM33 bus break. No.1
>0
Break by external bresk.
Break by MEM 33 area break. Areal
>g
Break by external bresk.
Break by MEM33 map break.
>g
Break by external break.
Break by MEM33 map break.
Break by MEM 33 ce break. CE5(15,15+16)

8) Start the Debugger using the [DB33] button.

External break is also displayed because MEM 33201 break uses the external break function of
ICD.

7) Use command g to exit Debugger.

Precautions
(1) If you use MEM33201,it occupies one of the chip select signals. Be sure that the break function isdisabled in
the occupied area.

(2) Referto" CHAPTER 16: DEBUGGER" for more information on the commands for MEM33201.
(3) db33 sets MEM 33201 using the parameter file, in accordance with the target system.
(4) Refer to the manualsfor restrictions of EPOD33208 and MEM33201.

34 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.4 Relationship between Program Structure and Memory

This section briefly explains the concept of section management applied to the creation and linkage of source files.
Although it is not specificaly have to been concerned about sections in the C source, the assembly source requires
that sections be explicitly be defined so that they can be created and linked.

In addition to programs to control the CPU and peripheral circuits, the source file contains descriptions of data
such as font data which are always fixed and do not require initialization, symbols for the variables placed in RAM,
and 1/0 memory control registers. Data and symbols that take on different attributes like these finally need to be
relocated into the corresponding physica memory locations by the Linker. For example, programs are relocated
into a program ROM ares, fixed data are relocated into a data ROM area. For this reason, the object code is
designed to be classified into sections by attribute.

The following three types of sections exist:

1. CODE section Block for programs and fixed data that have initia values

2. DATA section Block for data that have initial values and can be accessed for read or write

3. BSS section Block that is mapped into RAM

For assembly source
For the assembly source, use the following assembler pseudo-instructions to specify a section:
.code pseudo-instruction Beginning of a CODE section
.data pseudo-instruction Beginning of aDATA section
.comm/.Ilcomm pseudo-instructions Symbol definition to a BSS section and area allocation

The following shows the method of specification (see Chapter 11 for details):

o Before describing the program and fixed data to be written to the ROM, declare the beginning of a
CODE section by using the .code pseudo-instruction. The source code following this declaration is
assembled as the object of a CODE section. If no section is defined, the Assembler assumes a CODE
section from the beginning of thefile.

o Before setting RAM data that have initial values, declare the beginning of a DATA section by using
the .data pseudo-instruction. The source code following this declaration is assembled as the object of a
DATA section. However, the initial values in the DATA section have to been copied to the RAM by
program.

o |f the program requires to secure a variable or work area in the RAM and reference its address with a
symbol, alocate this area and define the symbol by using the .lcomm pseudo-instruction. The
Assembler alocates a specified area in the BSS section. This area is mapped in the RAM or 1/0 area,
with no object code created there. Symbol information enabling multiple modules to reference this area
is created as a BSS section.

For relocatable assembly sources (including one that is created by compiling a C source), sections of the
same attribute are located together as one continuous section. Consequently, the assembled module becomes
an object that has one CODE section, one DATA section, and one BSS section. (Even undeclared sections
are created as those that do not have any actual data.)

For an assembly source where absolute addresses are specified, sections of the same type cannot be put
together into one section. In this case, therefore, as many sections as specified separately in the source are
created.

For C source
For C sources, there is no need to specify sections in the source because sections are declared by the C
Compiler. After the source is compiled, all instructions are located in the CODE section. Data is located in
each corresponding section according to its attribute as follows:
Variables without an initial value (e.g., inti;): BSS section
Variableswith aninitial value (e.g., inti=l;): DATA section
Constants (e.g., const int i=1;): CODE section

EOC33 FAMILY EPSON 35
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

The following shows the section definition of the sample program used in the tutorial as a smple example. Since
the assembly source program "boot.s" consists of only a program code, only the .code pseudo-instruction is used.

<boot.s>
; boot.s 1997.2.13
, boot program

#define SP_INI 0x0800 ;v sp is in end of 2KB internal RAM
#tdefine GP_INI 0x0000 , global pointer %r8 is 0x0

. code

.word BOOT , BOOT VECTOR
BOOT:

xld.w %r8, SP_INI

Id. w Y%sp, %r8 , set SP

Id. w %r8,GP_INI . set global pointer

xcal | main ; goto main

Xjp BOOT v infinity loop

(Program explanation)
Boot processing is performed to initialize the stack and global pointers, and call the main function.
Do not use this program in actual applications because the actual applications require setting up the
trap processing vector, etc.

<main.c>
/* main.c 1997.2.13 */
/% C main program */

int i
main()
{
int j;
i=0;
for (j=0 ; : j++)
{
sub(j);
]
}
sub (k)
int k;
{
if (k & 0x1)
{
i++;
}
}
(Program explanation)
The main() function is cleared global variable i to O because it is used as a counter. Then an endless
loop is created by loca variable j, and the sub() function is called repeatedly by using j as the
argument. The sub() function increases global variablei by one every two cadlls.
36 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

Taking alook at the C Compiler output "main.ps" you will find that the CODE and the BSS sections are defined

by the Compiler.

<main.ps>
file “main. c”

GNU C 2.7.2 [AL 1.1, MM 40] RISC NEWS-0S compiled by CC

Ccl defaults:
—mmemcpy

Cc1 arguments (-G value = 0, Cpu = 3000,

—quiet —dumpbase -g -0 —o

gce2_compiled. :
__gnu_compiled_c:
. code
calign 1
. def main, val
.global main

. comm i 4

.endfile

ISA =1):

scl

2, type 0x24, endef

The symbol of global variable i is defined, and a 4-byte area is located in the BSS section by the ".comm"
pseudo-instruction. Since variables j and k are local variables, they are allocated to general -purpose registers and

stacks. No BSS section is used for these variables.

When these modules are linked by make in the tutorial, separate CODE sections are combined into one section.

tst_asm

CODE1

DATA1

test.srf

/- DATA2

BSS1

tst_main

DATA2

CODE2

BSS2

DATA1

CODE2

CODE1

BSS2

BSS1

0x0080000

0x0000000

Fig. 3.4.1 Section allocation after linkage

During alinking, each file and each section can be address-specified so that they correspond to the actual memory
configuration. For details, refer to Section 12.5, "Linker Commands', and Section 12.6, "L ocating Sections’.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

37

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

Take alook at the link map file generated by the 1k33 and the disassembly list created from the linked object file
"test.srf" by the dis33. They will show how the sections are alocated after linkage.

Link map file <test.map>
Code Section mapping

Address Vaddress Size File ID Attr
00080000 —————- 00000014 boot. o 0 REL
00080014 —————- 00000034 main. o 0 REL
Data Section mapping

Address Vaddress Size File ID Attr
00080048 —————- 00000000 boot. o 1 REL
00080048 ——————- 00000000 main. o 1 REL
Bss Section mapping

Address Vaddress Size File ID Attr
00000000 —————- 00000000 boot. o 2 REL
00000000 ——————- 00000004 main. o 2 REL

The link map file shows the relationship between the sections in each file (File) and the located addresses
(Address).

Disassembly list file <test.dis>
*xk+ Disassemble code and source code *¥xx
Addr Code Unassemble Line Source
00080000 0004 *x
00080002 0008 *xx
-— boot. s —
00001 ; boot.s 1997.2.13
00002 ; boot program

00003
00004 #define SP_INI 0x0800 ; spis inend of 2KB internal RAM
00005 #define GP_INI 0x0000 ; global pointer %r8 is 0x0
00006
00007 . code
00008 .word BOOT ; BOOT VECTOR
00009 BOOT:
00080004 €020 ext 0x20 00010 xld. w %r8, SP_INI
00080006 6C08 Id.w %r8, 0x0
00080008 A081 Id.w %sp, %r8 00011 Id.w %sp, %r8 ; set SP
0008000A 6C08 Id.w %r8, 0x0 00012 Id. w %r8, GP_INI ; set global pointer
0008000C CO00 ext 0x0 00013 xcal | main ; goto main
0008000E C000 ext 0x0
00080010 1C02 call 0x2
00080012 1EF9 jp 0xf9 00014 Xjp BOOT ; infinity loop
-— main.¢c —
00001 /* tst_main.c 1997.2.13 */
00002 /* C main program */
00003
00004 int i;
00005
00006 main()
00080014 0200 pushn %r0 00007 {
00008 int j;
00009
00080016 6COB Id.w %r11, 0x0 00010 i=0;
00080018 €000 ext 0x0
0008001A C000 ext 0x0
0008001C 6C09 Id.w %r9, 0x0
0008001E 3C9B Id.w [%r9], %ri1
00080020 6C00 Id.w %r0, 0x0 00011 for (j=0 ; ; j++)
00012 {
00080022 2E0C Id.w %r12, %r0 00013 sub (j);
00080024 1C05 cal | 0x5
00080026 6010 add %r0, Ox1 00011 for (j=0 ; ; j++)
00080028 1EFD jp Oxfd
00014 }
0008002A 0240 popn %r0 00015 }
0008002C 0640 ret
00016
00017 sub (k)
00018 int k;
00019 {
0008002E 701C and %r12, 0x1 00020 if (k & Ox1)
00080030 180A jreq Oxa
38 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

00080032 C000
00080034 C000
00080036 6C09
00080038 309A
0008003A 601A
0008003C C000
0008003E C000
00080040 6C09
00080042 3C9A

00080044 0640
00080046 0000

ext
ext
Id. w
Id. w
add
ext
ext
Id. w
Id. w

ret
nop

0x0

0x0

%r9, 0x0
%r10, [%r9]
%r10, 0x1
0x0

0x0

%r9, 0x0
[%r9], %r10

00021
00022

00023
00024

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

i++;

The above is just aquick review of the sections. For more information, refer to the chapters where the Assembler
and Linker are discussed.

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

EPSON

39

CHAPTER 4: SOURCE FILES

Chapter 4 SourceFiles

This chapter explains the rules and grammar involved with the creation of sourcefiles.

4.1 File Format and File Name

Source files should be created on a general-use word processor or editor.

File format

File name

Directory name

Save datain a standard text file.

C sourcefile <file name>.c

Assembly sourcefile <file name>.s

Specify the <file name> with not more than 32 alphanumeric characters shown as follows:
az,A-Z,0-9and _

Thisrule appliesto file names for al the EOC33 tools.

Make sure the extension of the C source fileis".c" (small letter can only be used). If any
other extension is used, the file cannot be input to the C Compiler gcc33.

Only aphanumeric characters can be used for directory names just as for file names. Do not
use spaces or other symbols. Up to 64 characters can be used for a path name including
directory and file names.

Number of linesand number of characters

Tab setting

EOF

The following shows the number of lines and the number of characters per line that can be
accepted in one C source file and one assembly sourcefile.

Number of lines Max. 30,000 lines

Number of characters Max. 100 characters per line

Place a tab stop every 8 characters. Mixed processing by the Disassembler dis33 or source
display/mixed display with the Debugger db33 of a source set at atab interval other than of
8 characters will result in adisplaced output of the source part.

Make sure that each statement starts on a new line and that EOF is entered after line feed
(so that EOF will stand independent at the file end).

40

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

4.2 Grammar of C Source

The C Compiler gce33 included in this package is the GNU C Compiler (ver. 2.7.2) under ANSI C standards.
Since everything except the asm function of this compiler conforms to standard specifications, make sure C
sources are created according to ANSI C standards. If you want information about the syntax, please refer to ANSI
C textbooks generally available on the market.

4.2.1 DataType
The gcc33 supports al data types under ANSI C. The size of each data type (in bytes) and the effective range of
values that can be expressed arelisted in Table 4.2.1.1.

Table 4.2.1.1 Data type and size

Data type Size Effective range of a number
char 1 |-128t0127
unsigned char | 1 |0to 255
short 2 |-32768 to 32767
unsigned short | 2 | 0 to 65535
int 4 | -2147483648 to 2147483647
unsigned int 4 |0to 4294967295
long 4 |-2147483648 to 2147483647
unsigned long | 4 | 0to 4294967295
pointer 4 |0to 4294967295
float 4 | 1.175e-38 to 3.403e+38 (normalized number)
double 8 |2.225e-308 to 1.798e+308 (normalized number)

The float and double types conform to the | EEE standard format.

4.2.2 Library Functions and Header Files
This package contains an ANSI standard library and an emulation library for caculating floating-point numbers
and the remainders of divided integral numbers.

The header filesin the "include" directory contain library function declarations and macro definitions. When using
alibrary function, include the header file that contains its declaration by using the "#include" instruction.

The table below shows the relationship between the types of library files and the header files.

Table 4.2.2.1 List of library files and functions

ANSI standard library

File name Functions/macros Corresponding header file
io.lib tmpfile*, tmpnam*, remove*, fopen*, freopen, fclose*, setbuf*, stdio.h
setvbuf*, fflush*, clearerr*, feof*, ferror*, perror, fseek*, fgetpos*,
fsetpos*, ftell*, rewind*, getchar, fgetc, getc, gets, fgets, fscanf,
scanf, sscanf, fread, putchar, fputc, putc, puts, fputs, ungetc,fprintf,
printf, sprintf, vfprintf, vprintf, vsprintf, fwrite

abort, exit, atexit*,getenv*, system*, malloc, calloc, realloc, free, atoi, | stdlib.h
atol, atof, strtol, strtoul, strtod, abs, labs, div, Idiv, rand, srand,
bsearch, gsort
time, difftime*, clock*, mktime, localtime*, gmtime, asctime*, ctime* | time.h
math.lib |acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, | math.h, errno.h, float.h,
Idexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh limits.h
string.lib | memchr, memmove, strchr, strcspn, strncat, strpbrk, strstr, string.h

memcmp, memset, strcmp, strerror, strncmp, strrchr, strtok,
memcpy, strcat, strcpy, strlen, strncpy, strspn
ctype.lib |isalnum, iscntrl, isgraph, isprint, isspace, isxdigit, toupper, isalpha, ctype.h
isdigit, islower, ispunct, isupper, tolower
- va_start, va_arg, va_end stdarg.h

The functions marked with an asterisk (*) are dummy functions.

Emulation library

File name Functions
fp.lib adddf3, subdf3, muldf3, divds3, negdf2, addds3, subds3, mulds3, divds3, negds2, fixunsdfsi,
fixdfsi, floatsidf, fixunssfsi, fixsfsi, floatsisf, truncdfsf2, extendsfdf2, fcmpd, fcmps
idiv.lib divsi3, udivsi3, modsi3, umodsi3
EOC33 FAMILY EPSON 41

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

For details about the functions included in the libraries, refer to Chapter 7, "Emulation Library”, and Chapter 8,
"ANSI Library".

When using a library function, be sure to specify the library file that contains the function used by using a linker
command when linking. The linker extracts only the necessary object modules from the specified library file as it
links them.

4.2.3 In-line Assemble
The gce33 supports in-line assembly, so the asm statement can be used. As aresult, the word "asm" is reserved for
system use.

Format: asm("<character string>");

Example 1: /* HALT mode */
asm(“halt”)

Example2: /* Trap Tablex/
asm(”.word BOOT

.space 8

.word ZERO_DIV

.space 4

.word ADDR_ERR

.word NMI

. space 32

.word INT1

.word INT27); Note: Up to 100 characters can be included in oneline.

Example 3: #define SP_INI 0x0800
#tdefine GP_INI 0x0000

BOOT () {
asm(“xld.w %r8, SP_INI");
asm(“1d.w %sp, %r8”): /* set SP x/

asm(“ld.w %r8, GP_INI"); /* set global pointer */

}

For details on how to write an assembly source, refer to Section 4.3, "Grammar of Assembly Source". Note that
although the extended instructions that can be processed by the Instruction Extender ext33 and assembler
pseudo-instructions (not including those used for absolute assembly) can be used in the assembly source, the
functions provided by the Preprocessor pp33 cannot be used in the assembly source.

42 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

4.3 Grammar of Assembly Source

4.3.1 Statements
Each individual instruction or definition of an assembly source is called a statement. The basic composition of a
statement is as follows:

Syntax pattern

1 Mnemonic (Operand) (;Comment)

2 Assembler pseudo-instruction (Parameter) (;Comment)

3 Label: (;Comment)

4 ;Comment

5 Extended instruction Operand (;Comment)

6 Preprocessor pseudo-instruction (Parameter) (;Comment)

Example: <Statement> <Syntax Pattern>

; boot.s 1997.2.13 .4

; boot program 4

#tdefine SP_INI 0x0800 ; sp is in end of 2KB internal RAM ..6

#tdefine GP_INI 0x0000 ; global pointer %r8 is 0x0 6
. code .2
.word BOOT ; BOOT VECTOR .2

BOOT: .3
xld.w %r8, SP_INI .5
Id. w %sp, %r8 ; set SP 1
Id. w %r8, GP_INI , set global pointer 1
xcall main ; goto main ..5

j .5

XJjp BOOT ; infinity loop

The example given above is an ordinary source description method. For increased visibility, the elements
composing each statement are aligned with tabs and spaces.

*

5 is the function of the Instruction Extender ext33, 6 is the function of the Preprocessor pp33, and not
statements that can be processed by the Assembler as33.

Restrictions

¢ Only one statement can be described in one line. A description containing more than two instructions in one

line or amixture of label and instruction will result in an error. However, comments may be described in the
same line with an instruction or label.

Examples: ;OK
BOOT:
Id.w %r0,%r1
:Error
BOOT: Id.w %r0,%r1

One statement cannot be described in more than one line. A statement not complete in one line will result in
an error.

Examples: ;OK
.byte 0x0,0x1,0x2,0x3
.byte 0xa,0xb,0xc,0xd
:Error
.byte 0x0,0x1,0x2,0x3,
0xa,0xb,0xc,0xd
EOC33 FAMILY EPSON 43

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

¢ The maximum describable number of charactersin onelineis 100 (ASCII characters).

e The usable characters are limited to ASCII characters (al phanumeric symbols), except for use in comments.

Also, the usable symbols have certain limitations (details below). Comments can be described using other
characters than ASCI| characters.

(1) Instructions (Mnemonics and Operands)

An instruction to the CPU is generaly composed of [mnemonic] + [operand]. Some instructions do not
contain an operand.

General notation forms of instructions

General forms: <Mnemonic>
<Mnemonic> tab or space <Operand>
<Mnemonic> tab or space <Operand 1>, <Operand 2>

Examples: nop
call SuB1
ld.w %r0,0x4

There is no restriction as to where the description of a mnemonic may begin in a line. A tab or space
preceding amnemonic is ignored. Generally, mnemonics are justified |eft by tab setting.

An instruction containing an operand needs to be broken with one or more tabs or spaces between the
mnemonic and the operand. If there are plural operands, the operands are separated from each other with one
comma (,). Space between operands is ignored.

The elements of operands will be described further below.

Types of mnemonics
The following 61 types of mnemonics can be used in the EOC33 Family:

adc add and bclr bnot brk bset btst cal cmp divOs divOou divl div2s div3s ext
hat int jp jreg/jreqd jrgefjrged jrgt/jrgt.d jriefjrled jritjrit.d jrnejrned jrugeljruge.d
jrugt/jrugt.d jruleljruled rult/jrultd Idb Idh Idub Iduh Idw mac mirror mith mltw
mituh mltuw nop not or popn pushn ret/ret.d retd reti rl rr sbc scan0 scanl da
dl dp sra sl sub swap xor

Refer to the "EOC33000 Core CPU Manual" for details of each instruction.

Restrictions on characters

Mnemonics can be written in uppercase (A—Z) characters, lowercase (a—z) characters, or both. For example,
"ldw", "LD.W", and "Ld.w" are all accepted as "ld.w" instructions.

For purposes of discrimination from symbols, this manual uses lowercase characters.

More will be said about operands | ater.

44

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

(2) Assembler Pseudo-Instructions
The following 20 types of pseudo-instructions are available for the Assembler as33:

Pseudo-Instruction Function

.abs Specifies absolute assembling.

.org <address> Sets an absolute address in a code (*).
.code Declares the CODE section

.data Declaresthe DATA section

word <data 1>[,<data 2>..,<datan>] Definesword datain the CODE/DATA section.
.half <data1>[,<data2>..,<datan>] Defineshalf word datain the CODE/DATA section.
.byte <datal1>[,<data2>...<datan>] Definesbyte datain the CODE/DATA section.

.ascii - <string> Defines an ASCI| character string in the CODE/DATA section.
.space <length> Defines an blank area (0x0) in the CODE/DATA section.
dign <vaue> Moves to an address boundary.

.comm <symbol>,<length> Secures aglobal areain the BSS section.

lcom <symbol>,<length> Secures aloca areain the BSS section.

.global <symbol> Declares agloba symbol.

.set <symbol>,<address> Defines an absolute address for a symbol (*).

list Controls assembly list output.

.nolist Controls assembly list output.

file <strings> Debugging information.

.endfile Debugging information.

Jloc <value> Debugging information.

.def <symbol>, ... ,endef Debugging information.

(*: Dedicated absol ute assembling)

Each instruction begins with a period (.).
Examples: data
align 2
.word 12,34
For details on the notation of each pseudo-instruction and its functionality, refer to Section 11.8 "Assembler
Pseudo-Instructions’.

(3) Labels
A labd is an identifier designed to refer to an arbitrary address in the program. You can refer to a branch
destination of a program or an address in the CODE/DATA section by using asymbol defined as alabel.

Definition of a label
A symbol described in the following format is regarded as alabel.

<Symbol>:

Preceding spaces and tabs are ignored. It isageneral practice to describe from the top of aline.
A defined symbol denotes the address of a described location.
An actual address vaue will be determined in the linking process.

Restrictions

o A label occupies one line of a source program. An instruction described in the same line will result in an
error. However, comments may be described in the same line with alabel.

o The maximum number of characters of alabel is 32 (not including colons).

EOC33 FAMILY EPSON 45
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

o Only the following characters can be used:
A-Z az _ 09
A label cannot begin with anumeral. Uppercase and | owercase are discriminated.

Examples: ;OK ;Error
FOO: 1label:
_Abcd: 0_ABC:
L1:

(4) Comments
Comments are used to describe the meaning of a series of routines or each statement. Comments cannot
comprise part of coding.

Definition of comment
A character string beginning with a semicolon (;) and ending with aline feed isinterpreted as a comment.
Not only ASCII characters, but also other non-ASCII characters can be used to describe a comment.
1t can be described with alabel or instruction in oneline.
Examples: ; Thislineis acomment line.
LABEL: ;Thisisthe comment for LABEL.
Id %a,%b ;Thisis the comment for the instruction on the lft.

Restrictions

e A comment is limited in length to 100 characters, including: a semicolon (;); spaces before, after and
inside the comment; and areturr/line feed code.

o When acomment extends to several lines, each line must begin with a semicolon.
Examples:
;These are
comment lines. The second line will not be regarded as a comment. An error will result.

;These are
;. comment lines. Both lineswill be regarded as comments.

(5) Blank Lines
This assembler aso alows a blank line containing only a return/line feed code. It need not be made into a
comment line using a semicolon; for example, when used as a break in a series of routines.

46 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

4.3.2 Notations of Operands
This section explains the notations for the register names, symbols, and constants that are used in the operands of
instructions.

(1) Register Names

The names of the internal registers of the EOC33000 Core CPU all contain a percentage symbol (%). Register
names may be written in either uppercase or lowercase | etters.

General-purpose register (%rd, %rs, %rb) Notation

General-purpose register RO-R15 %r0—%r15 or %R0—%R15
Special register (%sd, %ss) Notation

Processor status register PSR %psr or %PSR

Stack pointer SP %sp or %SP

Arithmetic operation low register ALR %ar or %ALR
Arithmetic operation high register AHR %ahr or %AHR

Register names placed in brackets ([]) for indirect addressing must include the % symbol.
Examples: [%r8] [%rl]+ [Y%sp+imm6]

Note: A register name not containing % will be regarded as a symbol.

Conversely, all notations beginning with % will be regarded as registers, and will give rise to an
error if it is not a register name.

(2) Numerical Notations

The assembler supports three kinds of nhumerical notations: decimal, hexadecimal and binary.

Decimal notations of values

Notations represented with 0-9 only will be regarded as decima numbers. To specify a negative value, put a
minus sign (-) before the value.

Examples: 1 255 -3

Characters other than 0-9 and the sign (-) cannot be used.

Hexadecimal notations of values
To specify a hexadecimal number, place "0x" before the value.
Examples: Oxla Oxff00

"0x" cannot be followed by characters other than 0-9, af, and A—.

Note: Only the lowercase "x" can be used. "0X" will result in an error.

Binary notations of values
To specify abinary number, place "0b" before the vaue.
Examples: 0b1001 0b01001100

"0Ob" cannot be followed by characters other than 0 or 1.

Note: Only a lowercase "b" can be used. "OB" will result in an error.

EOC33 FAMILY EPSON 47
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

Specified ranges of values
The size (specified range) of immediate data varies with each instruction.
The specifiable ranges of different immediate data are given below.

Table 4.3.2.1 Types of immediate data and their specifiable ranges

Symbol Type Decimal Hexadecimal Binary
imm2 2-bit immediate data 0-3 0x0-0x3 0b0-0b11
imm3 3-bit immediate data 0-7 0x0—-0x7 0b0-0b111
imm4 4-bit immediate data 0-15 0x0—0xf 0b0-0b1111
imm6 6-bit immediate data 0-63 0x0—0x3f 0b0-0b111111
sign6 Signed 6-bit immediate data | -32-31 0x0—0x3f 0b0-0b111111
imm8 8-bit immediate data 0-255 0x0—0xff 0b0-0b11111111
sign8 Signed 8-bit immediate data |-128-127 0x0—0xff 0b0-0b11111111
imm10 | 10-bit immediate data 0-1023 0x0—0x3ff 0b0-0b1111111111
imm13 | 13-bit immediate data 0-8191 0x0—0x1fff 0b0-0b1111111111111
imm32 | 32-bit immediate data 0-4294967295 | Ox0-Oxffffffff | ObO—
0b11111111111111111111111111111111
sign32 | Signed 32-bit immediate data | -2147483648— | Ox0-Oxffffffff | ObO—
2147483647 0b11111111111111111111111111111111
(3) Symbols

In specifying an address with immediate data, you can use a symbol defined in the sourcefiles.

Note:

The symbols discussed here represent addresses that can be processed by the assembler.

Symbols representing defined names and other character strings will be covered in the chapter
relating to the Preprocessor pp33.

Définition of symbols
Usable symbols are defined as 32-bit values by any of the following methods:

1. Itisdescribed asalabel (in CODE or DATA section)
Example: LABEL1L: LABEL1 is a symbol that indicates the address of a described
location in CODE or DATA section.

2. Itisdefined with a.comm or .Ilcomm pseudo-instruction (in BSS section)
Example: .comm BUF14 BUF1 is a symbol that indicates the address of a described
location in BSS section.

3. Itisdefined with a.set pseudo-instruction (symbol definition dedicated absolute assembly)
Example: .set ADDR1O0xff00 ADDRLI1 isasymbol that represents absolute address 0x0000ff0O.

Restrictions on characters
e The maximum number of symbol charactersis 32. If this number is exceeded, an error will result.

o The charactersthat can be used are limited to the following:
A-Z az _ 09
Note that a symbol cannot begin with anumera. Uppercase and lowercase characters are discriminated.

Local and global symbols

Defined symbols are normally local symbols that can only be referenced in the file where they are defined.
Therefore, you can define symbols with the same name in multiple files. To reference a symbol defined in
some other file, you must declare it to be global in the file where the symbol is defined by using the .global
pseudo-instruction.

* The symbols defined by the .comm pseudo-instruction are handled as symbols declared to be global.
Declaration by the .global pseudo-instruction is unnecessary.

48

EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

Extended notation of symbols
When referencing an address with a symbol, you normally write the name of that symbol in the operand
where an address is specified.
Examples: call LABEL ...LABEL =sign8
ldw %rd, LABEL ..LABEL =sign6

The Assembler also accepts the referencing of an address with a specified displacement as shown below.
LABEL +imm32 LABEL + sign32
Example: call LABEL+0x10

Symbol mask

The basic instructions in the EOC33000 instruction set are characterized by the fact that the immediate size
that can be specified in the operand of each instruction is limited. Consequently, an assembler error results
when a symbol whose value exceeds the size is used. When using the basic instructions, the high-order bits
must be written separately in the ext instruction. A symbol mask is used for this purpose.

Specifically, a symbol mask is used to get the vaues from a symbol value that are written separately in the
ext instruction and the basic instruction, and is entered immediately after the symbol.

When using extended instructions, the Instruction Extender ext33 attaches the necessary symbol mask as it
expands the instruction. Therefore, you do not specifically need to be concerned about the ext instruction or
symbol mask.

Types of symbol masks
The following 8 types of symbol masks can be used:

Symbol mask Function

@rh or @RH Acquires the 10 high-order bits of arelative address.
@rmor @RM Acquires the 13 mid-order bits of arelative address.
@rl or @RL Acquires the 8 low-order bits of arelative address.

@h or @H Acquires the 13 high-order bits of an absolute address.
@m or @M Acquires the 13 mid-order bits of an absolute address.
@Il or @L Acquires the 6 low-order bits of an absolute address.

@ahor @AH Acquiresthe 13 high-order bits of arelative address.
@d or @AL Acquires the 13 low-order bits of arelative address.

Examples:

ext LABEL@rh

ext LABEL@rm

cal LABEL@I Functionsas"cal LABEL".

ext LABEL@h

ext LABEL@m

Id.w %rd, LABEL@I Functionsas"ldw %rd, LABEL".

ext LABEL@ah

ext LABEL@ad

Id.w %rd, [Yorb] Functionsas"ld.w %rd, [%rb+LABEL]".

Notes: e The symbol masks are effective only on the defined symbols. If a symbol mask is applied to a
numeric value, an error will result.

o If a symbol mask is omitted, the lower bits effective for that instruction will be used. However,
if the bit value does not fall within the instruction range, an error or warning will be issued.

EOC33 FAMILY EPSON 49
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

4.3.3 Extended Instructions

The Instruction Extender ext33 provides extended instructions for creating assembly source files. An extended
instruction is such that the contents which normally are written in multiple instructions including the ext
instruction can be written in one instruction. Extended instructions are expanded into the smallest possible basic
instructions by the Instruction Extender.

Types of extended instructions

xadd xsub xcmp xand xoor xxor xnot xdl xsl xda xsra xrl o xrr

xldb xldub xldh xlduh xldw xbset xbclr xbtst xbnot

Xjp xjreq xjrne xjrgt xjrge xjrit xjrle xjrugt xjruge xjrult xjrule xcall xjp.d xjreq.d
xjrned xjrgt.d xjrged xjrit.d xjrled xjrugt.d xjruged xjrult.d xjruled xcal.d

An extended instruction is derived from one of the basic instructions by adding the prefix "x". ("xoor" for the
or instruction.)

Method for using extended instructions

The vaue or symbol for the expanded immediate size can be written directly in the operand.

Examples: xcall LABEL ;ext LABEL@rh
;ext LABEL@rm
;call LABEL @I
xldw %rl, sign32 ; ext sign32@h
;ext sign32@m
;ldw sign@!

In addition to the immediate expansion function of the basic instructions, a special operand specification like
the one shown below is accepted for some instructions.

Examples: xadd %r0, %rl, Ox1 ;RO—R1+1
xsub %sp, %sp, Yorl ; SP« SP+R1
xldw %r0, [symbol + 0x10] ; RO < [symbol + 0x10]
Xjp LABEL +5 ; Jumps to address LABEL + 5.
xrl %r0, 15 ; Rotates the RO content |eft by 15 hits.

For details about the extended instructions that include operands, refer to Section 10.6, "Extended Instructions'.

Note: Extended instructions must be processed by the Instruction Extender ext33. They cannot be

input directly into the Assembler as33 (this results in an error).

50

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 4: SOURCE FILES

4.3.4 Additional Preprocessor Functions

The Preprocessor pp33 offers additional functions for the creation of assembly source files. This section will deal
only with the notations for these functions. For details on each one of the functions, refer to Chapter 9,
"Preprocessor”. The preprocessor processes the notations of the said functions into mnemonic statements that can
be assembled, thereby delivering assembly source files.

Note:

The statements dealt with in this section need to be processed by the preprocessor, and cannot

be entered directly into the Assembler as33. (Direct entry into the assembler will result an error.)

Preprocessor pseudo-instructions
The following five types of pseudo-instructions are provided for the Preprocessor pp33.

#include Insertion of file

#define Definition of character strings and numbers
#macro—#endm Definition of macros

#ifdef (ifndef)—#el se—#endif Conditional assembly

All of these pseudo-instructions begin with asharp (#).

Examples: #include "defineh"
#define NULL 0
#macro ADDM $1, $2
xld.w %r0, [$1]
xld.w %r1, [$2]
add %r0, %rl
xld.w [$1], %r0
#endm
#ifdef TYPEL
Id.w %r0, 0
#else
Idw %r0, -1
#endif

For details on the notation of each pseudo-instruction and function, refer to Section 9.5 "Preprocessor

Pseudo-Instructions”.

Operators
To specify avalue in the source, an expression using the following operators can be used:

Examples

+ Addition, Plussign +0xff, 1+2

- Subtraction, Minussign -1+2, Oxfff-Ob111

* Multiplication 0xf*5

/ Division 0x123/0x56

%% Residue 0x123%%0x56

>> Shifting to right 1>>2

<< Shifting to left 0x113<<3

& Logica product 0b1101&0b111

| Logica sum 0x123|0xff

N Exclusive OR 12735

~ Logical denial ~0x1234

AH Acquireshit field (31:19) 0x1234"H

M Acquires bit field (18:6) 0x1234"M

AL Acquires bit field (5:0) 0x1234"L

"AH Acquires bit field (25:13) 0x1234"AH

NAL Acquires bit field (12:0) 0x1234"L

(,) Parentheses 1+(1+2*5)

In the numeric parts of an expression, you can use a symbol whose value is defined by the preprocessor

pseudo-instruction #define.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON 51

CHAPTER 4: SOURCE FILES

4.4 Precautions for Creation of Sources

@

@

®

4

Place a tab stop every 8 characters. Mixed processing by the Disassembler dis33 or source display/mixed
display with the Debugger db33 of a source set at a tab interva other than 8 characters will result in
displaced output of the source part.

When compiling/assembling a C source or assembly source that includes debugging information, do not
include other source files (by using #include). It may cause a debugger operation error. This does not apply
to ordinary header files that do not contain sources.

When describing an assembly source in absolute format, do not define two or more CODE, DATA or BSS
sections. Actually, a source file can contain two or more of the same type of sections, note, however the
program may not work correctly if the sections are not described in ascending order or because of other
problems. Therefore, the absolute source in which the same section is separately defined cannot be
guaranteed to work.

When using C and assembler modules in a program, pay attention to the interface between the C functions
and assembler routines, such as arguments, size of return values and the parameter passing conventions.

52

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

Chapter 5 Work Bench

This chapter describes the functions and operating method of the Work Bench wh33.

5.1 Functions

The Work Bench wb33 (hereafter called "wb33") provides an integrated operating environment ranging from the
C Compiler or the Preprocessor to the Debugger. Its functions and features are summarized below:

The software tools required for EOC33 Family program development can be started up from one window via
the same method of operation.

The basic make file and debugger parameter files can be created simply without using an editor.

Almost al operations can be performed using only the mouse. Furthermore, the standard startup options of
each tool can be sdlected simply by clicking on check boxes.

When selecting a sourcefile, you can display its contents on the screen (up to 32KB). What's more, the selected
source file can be opened by a specified editor, allowing you to efficiently edit the source for correction.

The wb33 aso allows command lines including DOS command execution to be input from the keyboard.

EOC33 FAMILY EPSON 53
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

5.2 Operations

5.2.1 Starting Up and Terminating wb33

To start up wh33
Choose "Work Bench 33" from the [Program] menu to start up the wb33.
To start up the wb33, double click the "wb33.exe" icon.
E

Also the wb33 starts up by dragging an option file (.sav) on the "wb33.exe" icon.
whilewe When the wb33 starts up, the execution window shown below appears.

B Work Bench 33 Verx.xx M= B3

Open option windows | Stop | Ea_:"e and
il |

) e GCCa3 = *mak MAKEl
) " %g ppaz | O tpar "
(2 sample i pg |

(21 utiity | ¢ ovemn EXT33| €t
Fr e Cms s | P |
- - A533 |

= fem © fs3 Lpwan

as3d.ene all ~xg

col.exe LK33 | xlib

ccap.exe gy Cn C emd LIB33 |
copping.gnu " *map I I 'Em

CRp.ERe o tut at MAKE
ciwalt. exe : £ gy e
db33.exe | |

dis33 ene Refresh Del

133

32933?::,3 LI Editar | Make edit | Par gen |
Jcncoam

wb33 startup command
The following shows the wb33 startup command:

Startup command

>wb33 [<option file name>]d

Startup option

<option file name>: Specify an option file in which the settings in the option windows are recorded editor
with full path.
Example: C:CC33>wb33 c:\cc33\sampleltst\wb33.sav.
If this option is omitted, the option windows will be set to the default status.

To terminate wb33
Click on the [Save and Exit] button in the execution window.

54 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

5.2.2 Window

CHAPTER 5: WORK BENCH

The diagram below shows the structure of the wb33 window.

Execution window

[gce-lk options] window

B, Work Bench 33 Verx.xx M= B
I Sl [EPSONM] 'l Open option windows [Stop ga_‘t"e and |
= l I~ inline memcpy
C:h .
& o [rgEEss] © nmak I~ inline fabs
% csgiale (GCCEE ! HAKE | ™ include path
£ #5% [g || % | | S======c===s=s=s=s=s==czssccccoccec (0 sample =
s DE33 PP33 [debuginfo [~ define |test 23wty
Covems EXT33 | O taf T Tt T T T pEe—m———= "
e ~ g DIS33 | EXT33 [use.cmxfile [| global poirter optimize: | 1=0
- *om A533 ®°F [ormm I~ farcallis 2inst [~ symbol.map optimize It'?St ?g::;
main. o - B i | I et .
® M || gt B33 | AS33 v debuginfo [list file E [~ change threshald Igﬂ 50000
' Corh Covomd | mmm e mmmm e m oo
-
A x:‘:tap =t ; * bat MAKE LKk33 ¥ debuginfo W use.cmfile [symbal.map file
zav
clean | =
Refresh | Del | Ml other options =[] =]
oo | Makeedt | Pargen || MAKE L romal O Zpes T romecnd ™ 1 win
|ace33 finish DEZ3 fico 7| [115200 =] [eomnt = [rolt = T smallfont
——————————————————————————————————— I~ db33 " cmd fie
Dutput Window _[Ofx]| P53 I semiz [T codeonly [T dataonly -
C:\CC33\gcc33 -BC:ACC33\ -S -g -0 main.c f| I Jaddimange Jo0 | = [outti——
Compile Completed v abs addr
HEX33 I - I
______ 00000 =0} 7 add: to name S
LIE33 @& lisgt © add " mew ¢ del ¢ estract
) boot.a
i extract all ItESl libor.o main.o
Common options | Usage ™ no execution
[exeinicon [~ small font
Editar name |notepad I/i# #:

double click option
in output window

Option file |wb33.sav save restare |

Output window

Execution window

[other options] window

Immediately after the wb33 is started up, only the execution window is open.
The following can be performed in the execution window:

o Choosethefile you want to input into a software tool. (Refer to Section 5.2.3.)
o Execute a software tool. (Refer to Section 5.2.4.)

o Open the option windows. (Refer to the section below.)

o Create amakefile. (Refer to Section 5.2.6.)

o Create aparameter file. (Refer to Section 5.2.7.)
o Display the source file and open the source file by using an editor. (Refer to Sections 5.2.3 and 5.2.8.)
o Input acommand line to execute a DOS command, etc. (Refer to Section 5.2.9.)

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON 55

CHAPTER 5: WORK BENCH

Option windows

When you click on the [Open option window] button in the execution window, two option windows are
opened simultaneously.

[gee-lk options] window

This window alows you to select or specify the startup options of the following software tools (see Section
5.24.):

e C Compiler gcc33

e Preprocessor pp33

e Instruction Extender ext33

o Assembler as33

e Linker k33

These are options of the tools that are executed by make.

[other options] window

This window alows you to select or specify the startup options of the following software tools (see Section
5.2.4.):

o make

o Debugger db33

e Disassembler dis33

e Binary/HEX Converter hex33

e Librarian lib33

In addition to the above, you can choose the wb33 options and the options common to all tools (see Section
5.2.5), aswell as save and restore the settings of selected options (see Section 5.2.10).

Output window

The output window is used to display the source or display the execution results of each software tool. It

opens up in the following two cases:

o When a software tool is executed

e When you double-click on the source file (text file) in the file list box of the execution window (see
Section 5.2.3)

Precautions to be taken when operating in wb33 windows

e The maximize buttons of the execution window and two option windows do not work, and the scroll bar is
not displayed when the window size is reduced. In this case, try using the default size as much as possible.
The output window can be maximized and returned to its original size without a problem.

e Minimization to atask bar button is supported in al windows. Each window except the execution window
can be minimized and returned to its origina size independently. When the execution window is
minimized, all other windows are minimized simultaneously. The same applies when the execution
window isrestored to itsoriginal size.

e Thewb33 can be terminated by clicking on the [Close] button of the execution window.
The [Close] button in the option windows closes only the window to which it is attached. Note, however,
that if the option windows are opened by the [Open option window] button again, all options selected
before the windows were closed are restored to their initial settings.

e Thelist and the text boxes in each window except the output window can only be used for displaying or
entering ASCII characters. For this reason, kanji and other unsupported characters are erratically
represented.

Although the output window can display kanji, even in this window, kanji may be erratically represented
if the source file contains control characters, etc.

56

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

5.2.3 Selecting File and Displaying Source

tst_ma. bt

Selecting directory
Immediately after the wh33 is started up, the drive and directory where the wb33 and
other tools are installed are selected.
Create awork directory for program development purposes, and elect that directory.

The execution window has alist box for selecting adrive, directory or file. Use this list box
to select the file you want to be input to a software tool.

Note: Make sure that all wb33 processing is performed in the same directory.
Furthermore, do not change the current directory by using the CD command
while the wh33 is open.

Types of files

Immediately after the wh33 is started up, the [*.*] radio button is selected and all file names in the selected

directory are displayed in thefilelist box.

Each software tool has aradio button in front of the execution button for selecting the type of file to be input
for thetool. Thisradio button facilitates the selection of afile.

Note: Although you can choose a file while all file types are being displayed before executing a
software tool, care must be taken because the tool will start up even if you have selected a type
of file that is not acceptable for the tool. Furthermore, the types of input files available for the
Instruction Extender and Linker change depending on which options are selected.

Updating the file list box

Refiesh Thefile list box is updated when you choose a directory or execute a software tool; but
it is not updated when you copy afile or create afilein some other application.

[Refresh] button The fije list box can be updated by clicking on the [Refresh] button in the execution

window. Use this button whenever you want to update the list box. However, the

directory list box is not updated.

Deleting files

Del | The [Del] button deletes the files selected in the file list box.

[Del] button

Displaying the source file

By double-clicking on a source file name (text file) in the file list box, you can display the contents of that
file in the output window. If the output window is closed, it will be opened when you double-click on afile

name.
i Output Window [_[O]x]| Only text files can be displayed in the output
b+ main.c 1997.2.13 =/ window, and the display size is limited to 32KB
/= G main program =/ from the beginning of thefile.
int i; The output window is used for display-only.
nain(y Although characters can be input or copied, and
{ pasted in this window, no data can be saved.
int j; If you want to display more than 32KB of text or
i- 8 edit the contents of a file, use an editor (see
for (j=8 ; ; j++) Section 5.2.8).
4] ol
E0C33 FAMILY EPSON 57

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

&

When you choose the [smaller font] check box of the [other options] window, the font size in the output
window isreduced, allowing for a greater amount of information to be displayed at atime.

Commonoptions | tsage [na exccuion

/% main.c 1997.2.13 =~ - e

ld ga;giﬁ program %/ [T exeinicon v

int i; . . .

inG> The 10-point Terminal font is used for the

main
. . reduced display. If this font is not installed in
int J3 your system, the effect of [smaller font] cannot be
for Bia s s oo guaranteed. The default font is 14-point FixedSys.

sub{j>;
| ol

5.2.4 Executing Individual Tools
Each software tool can be executed using the buttons in the execution window.

To execute a software tool

1. Choose the startup options of the tool you want to be executed in the execution window.

2. Choose the file you want to be input to a software tool using the file list box and click on the tool's
execution button.
Multiple input files can be selected. In this case, the software tool is executed repeatedly as many times as
the number of files selected.

About [Stop] button

Stop | [Stop] button

Once you execute a software tool using the execution button, processing cannot be stopped in the wb33 until
the toal (including make) finishes processing. However, if the tool is executed after selecting multiple files,
processing can be halted by using the [Stop] button. Since a software tool processes one file a a time no
matter how many files are selected, execution of the tool is halted when it finishes processing the file that
was being processed when you clicked on the [Stop] button.

The following outlines the files input and output by each software tool and the startup options of each tool that can
be selected by the wh33. (For make, refer to Section 5.2.6.) Explained below is the function of each option when
selected.

For more information, refer to the chapters where each tool is detailed.

C Compiler gcc33

Execution button: || GIEC33 |

Input file: *.c (C sourcefile; lower-caseis only allowed for ".c", ".C" cannot be used.)
Output file: *.ps (assembly source file bearing the same name as input)

Options:
optimize——— [~ inling memmcpy
. NO 0z [~ inline fabs
.0 03 [~ include path

Odebug info: Selection of the -g option (turned on by default)
The information required for the C source level debug is generated in the output file.
Normally, you should choose this option.

[
[3lib
[C3 sample
[0 uility

| |

58

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

Preprocessor pp33

Execution button:

Input file:
Output file:
Options:

CHAPTER 5: WORK BENCH

Odefine: Selection of the -D option (turned off by default)

This option defines the macro name used in a conditional compilation. Input the
definitions in the text box to the right of this option. When defining multiple macro
names, separate each with acomma(,).

ONO, OO0, 002, O03: Selection of a-0O, -O2 or -O3 option (O by default)

This option selects the optimization level.

Oinline memcopy: Selection of the -mno-memcpy option (turned off by default)

This option expands the strcpy or memcpy function in-line.

Oinclude path: Selection of the -1 option (turned off by default)

The directory selected in the directory list box to the right of this option is set in one of
the directories where the include file is searched.

FF33 |

*.s (assembly sourcefile)
*.ps (assembly source file bearing the same name as the input)

FP32 [debuginfo [~ define ItESt

Odebug info: Selection of the -g option (turned on by default)

The information required for debugging at the assembly source level is generated in the
output file. Normally, you should choose this option.

Odefine: Selection of the -d option (turned off by default)

This option defines the define name used in a conditional assembly. Input the definitions
in the text box to the right of this option. When defining multiple define names, separate
each with acomma (,).

Instruction Extender ext33

Execution button:

Input files:

Output file:
Options:

EXT33 |

*.ps (assembly sourcefile)
*.cmx (command file, specification of option required)
*.ms (assembly source file bearing the same name as the input)

EXT33 [T uze .cmxfile I~ global pointer optimize IUHD
L . .8ym
[farcallis 2inst [~ symbol.map optimize ItESt .nfap

[™ change threshold ID;.;‘I 20000

Ouse .cmx file: Selection of the -c option (turned off by default)

This option inputs a command file (.cmx) and executes it. When this option is selected, be
sure to choose a.cmx file from the file list box of the execution window.

Oglobal pointer optimize: Selection of the -gp option (turned off by default)

This option performs optimization by a global pointer. When this option is selected, input
the address of the globa pointer in the text box to the right of this option.

Ofar call is2 inst: Selection of the -near option (turned off by default)

This option generates two instructions (one ext + branch instruction) for a jump to a
nonexistent label in the file being processed. If this option is not selected, three
instructions (two ext + branch instruction) are generated for the jump.

Osymbol,map optimize: Selection of the -Ik option (turned off by default)

This option performs optimization using the symbol and link map files output by the
linker. The source files that have been linked can be optimized. When this option is
selected, input acommon name for the symbol and map files in the text box to the right of
this option.

EOC33 FAMILY

EPSON 59

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

Ochange threshold: Selection of the -j option (turned off by default)

This option specifies the threshold value to be used for a branch instruction over a
relatively long distance. When this option is specified, input a threshold value in the text
box to the right of this option. If this option is not specified, a threshold value of
0x180000 is assumed.

Assembler as33

Execution button: | 4533 |

Input file: *.ms (assembly sourcefile)
Output file: *.0 (object file bearing the same name as the input)
Options: 8533 [debuginfo [listfile

Odebug info: Selection of the -g option (turned on by default)

The information required for debugging is generated in the output file. Normally, you
should choose this option.

Olist file: Selection of the -I option (turned off by default)

This option generates an assembly list file.

Linker 1k33
Execution button: | Lk33 |
Input files: *.cm (command file, specification of option required)
*.0 (object file)
Output file: *.orf (object filein srf33 format)
Options: LE33 | debuginfo W use .cmfile W symbalmap file

Odebug info: Selection of the -g option (turned on by default)

The information required for debugging is generated in the output file. Normally, you
should choose this option.

Ouse .cm file: Selection of the -c option (turned on by default)

This option links modules according to the commands written in a command file. When
this option is selected, be sure to choose a .cm file from the file list box of the execution
window. Normally, you should specify this option.

Osymbol,map file: Selection of the - sand -m options (turned on by default)

This option generates a symbol and a link map file. These files are used during
optimization by the Instruction Extender.

Debugger db33

Execution button: | DB33 |

Input file: * par (parameter file)
Options: ™ 1 win

DB33 |ico =] [115200 =] feoml =] fnolpt x| T smallfont
I db33 *cmd file

—

Debugger mode: Selection of the -sim, -icd or -mon option
(1CD mode by default)
This option selects a debugger operating mode.

60

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

O1 win: Selection of the -w option (turned off by default)
This option opens only the [Command] window when the Debugger starts up. If this
option is not selected, the [Command], [Source] and [Register] windows are opened.
Osmall font: Selection of the -sf option (turned off by default)
This option changes the font used in the debugger window to 10-point Termina. The
default font is 14-point FixedSys.
Communication rate: Selection of the -b option

(115200 bps by default)
This option selects the rate of communication with the ICE33,
1CD33 or MON33 (DMT33MON).
When using the ICE33 or ICD33, make sure that the DIP
switch on the ICE33/ICD33 has been set correctly.

Serial port: Selection of the -comX option (com1 by default)
This option selects the personal computer's seriad port.

Odb33 *.cmd file: Selection of the -c option (turned off by default)

This option executes a specified debug command file when the Debugger starts up. When
this option is selected, choose a debug command file from the file list box located below
the option select button. This list box displays the debug command file names in the
directory currently selected in the execution window.

Parallel port: Selection of the -IptX option (No by default)
no ||t

:

This option selects the personal computer's pardlel port.

Disassembler dis33

Execution button:

Input file:
Output file:
Options:

Note:

D533 |

* of (object filein srf33 the format)
* dis (disassembly list file bearing the same name as the input)
DIS33 W srcmix [codeonly [data only

[~ addr range [00 — | Dt

Osrc mix: Selection of the -m option (turned on by default)
This option outputs disassembled lines to a disassembly list file with the source
corresponding to it. If adata section is encountered, its dump is output.

Ocode only: Selection of the -c option (turned off by default)
This option outputs a disassembly list of only code sections.

Odata only: Selection of the -d option (turned off by default)
This option outputs only adump of data sections.

These three options can be selected simultaneously, however, choose one
option at a time. If multiple options are selected simultaneously, one or all
specifications may be invalidated depending on the combination of selected
options. (Refer to Section 13.3.2.)

Oaddr range: Selection of the -a option (turned off by default)
This option specifies an address range for disassembling. When using this function, enter
the start and end addresses in the text box.

EOC33 FAMILY

EPSON 61

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

Binary/HEX Converter hex33

Execution button:

Input file:
Output file:
Options:

Librarian lib33

Execution button:

Input files:
Output files:

Options:

HEx33 |

* of (object filein srf33 format)

* sa* (filein Motorola S3 format bearing the same name as the input)

¥ abs addr

¥ addr ta name

Addressrange: Selection of an address range (0xc00000 to OxcOffff by default)

This option specifies an address range in the input file representing the extent to which
the data is converted. The start and end addresses specified here must reside on the
32-byte boundaries.

Oabs addr: Selection of the -z option (turned on by default)-

This option generates an output file that contains absolute address information. Unless
this option is selected, the output address is an offset address from the address at which
conversion is started.

Oaddr to name: Selection of the -x option (turned on by default)

This option adds information on a specified address range after the extension ".sa" of the
output file.

Example: test.sa_c00000_cOffff

If this option is not selected, the extension will consist of only ".sa".

LIB33 |

* lib (library file) Selected in the execution window
*.0 (rel ocatable object file) Selected in the option window
* lib (library file)
*.0 (relocatable object file)
LE33 | ligt © add mew del © extract .0 for new, add

. bioot.o
test ;
= extract all lib or .o main.o

HEX33 |conopo = et

Olist: Selection of the -l option (turned on by default)

This option lists the object files registered in the library file in the output window
(default) in the order in which they are registered.

Oadd: Selection of the -a option (turned off by default)

This option adds the object files (can be multiple files) that are selected in the [*.o for
new, add] list box to a specified library file.

Onew: Deselecting all options (turned off by default)

This option creates a new library file. Input the library file name in the text box located
below the option button. No extension is required. Choose the object files you want to
register from the [*.o for new, add)] list box (multiple files selectable).

If you specify alibrary name present in the current directory, the object files are added to
the existing file in the same way as when the [add] option is selected.

Odel: Selection of the-d option (turned off by default)

This option deletes a specified object from the library file. Input the object name you
want deleted in the text box provided below the option button. No extension isrequired.
Oextract: Selection of the -x option (turned off by default)

This option restores a specified object of the library file in the current directory as afile.
Input the object name you want restored in the text box provided below the option button.
No extension isrequired.

Oextract all: Selection of the -x option (turned off by default)

This option restores all the objects of the library filein the current directory as afile.

62

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

5.2.5 Selecting Execution Conditions

This section describes the options associated with the execution of a software tool and the display of execution
results.

The options described below are the functions of the wb33, and not the startup options of any software tool. Use
the [other options] window to select these options.

Caommaon options ™ usage [T hoexecution
™ exeinicon [~ zmall font

[usage] check box (turned off by default)
When you click on the execution button of a software tool after checking this check box, the startup
commands and the startup options of the tool are listed in the output window (default). The tool itself is not
executed even when an input file or option is selected.
Example: usage display of gcc33

i Dutput Window o =] E3

C:ACC33\goe33
GHU € Compiler for 33 Uer 2.7.2 (Rev 0.42)
Usage :
gce33 -5 [options] filename
Options:
-g : generate debug information
-0 : optimize output code
-E : preprocess source files and output the results to stdout
-B<directory>\ : specifies the directoy which ccl.exe and cpp.exe exit

C

-I<directory> : specifies the directoy which include files exist
-D<macro=defn> : define macro "macro” as “defn"
-D<{macro> : define macro “macro” as "1°
-merr : produce log file (gcc33.err)
—fno-builtin : does not produce some C library functions inline
~mNo-memcpy : produce string variable initializer statement inline
Output:
Extended assembler source Files{.ps) for ext33
Example: [—
gce33 -S -Bc:iiwusrilocalibiny -0 -g test.c =
] s

[no execution] check box (turned off by default)
When you click on the execution button of a software tool after checking this check box, the startup
commands of the tool including the input files or options selected in the window are displayed in the text box
of the execution window. The tool itself is not executed.
This is effective when you want an option that cannot be specified in the option window to be added to a
command line in the text box before executing a software tool. (Refer to Section 5.2.9.)
Example: Execute as33 after selecting [no execution]

|E:\EE33\5333 -g tzk_azm.ms

If the [usage] check box is turned on simultaneously with this option, a command line for displaying usageis
displayed in the text box, and usage display is not performed.

[exein icon] check box (turned off by default)
While a software tool is being executed, the MS-DOS window is normally open, displaying the tool's output
messages. If this check box is turned on, the tool is minimized to atask bar when it is executed.

EOC33 FAMILY EPSON 63
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

5.2.6 Make
The wb33 has afunction that allows it to create a basic make file.

To create a make file

1. Using the [gee-1k options] window, set up the options for arange of software tools from the C Compiler to
the Linker.

2. Click the [Make edit] button. The [Make file editor] window will appear.

Bl Make file editor =I0lxl 3. Input the make file in the [Make file name] text box. No extension
Make file name R ;
isrequired.
test a]
mak .cm .omk 4. Choose al source files you want used from the file list box. Note
that the files whose extensions are not ".c" or ".s" will be ignored
Cle Ol G even if they are selected.

Make file contents

A el 5. When suffix definition is used, select the [Suffix type] check box.

main.c is not avallable The sample make file shown below was created without suffix
definition.

6. Click on the [New Makefile] button.

Add to Make file |

¥ Suffix bype:
Edwlnrl F\af,eshl Dl from Make file |

After the above is completed, a make file (.mak) will be created in the current directory. Two command files
(.cmx, .cm) —one for the Instruction Extender and one for the Linker —will be created simultaneously.

If suffix definition is not used., source files in the different directory can be added to the make file.

In the case, change directory in the directory list box, select the source file from thefilelist box, then click
[Add to Make file] button.

make file (.mak)
This file contains a description of execution procedures using the specified options and the source file for a

range of software tools from the C Compiler to the Linker. For details about the make file, refer to Section
17.1, "Make".

Example: make file used in the tutorial (test.mak)
make file made by wb33

macro definitions for tools & dir

TOOL_DIR = G:¥cc33
GCC33 = §$ (TOOL_DIR) ¥gcc33

PP33 = §(TOOL_DIR)¥pp33
EXT33 = $ (TOOL_DIR) ¥ext33
AS33 = $(TOOL_DIR) ¥as33
LK33 = §(TOOL_DIR)¥1k33

LIB33 = $(TOOL_DIR)¥1ib33
MAKE = § (TOOL_DIR) ¥make
SRC_DIR = | f you choose the suffix definition, the dependency

list of the source file is described in this macro.
macro definitions for tool flags

GCC33_FLAG = -B$ (TOOL_DIR)¥ -8 —g -0 —fno-builtin

PP33_FLAG = -g
EXT33_FLAG =
AS33_FLAG = -g
64 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

LK33_FLAG = -g -s -m —¢
EXT33_CMX_FLAG = -1k test -c

suffix & rule definitions
.SUFFIXES : .¢ .s .ps .ms .0 .srf

.c.ms -
$(GCC33) $(GCC33_FLAG) $ (SRC_DIR) $*. ¢
$ (EXT33) $ (EXT33_FLAG) $x.ps

.s.ms
$(PP33) $(PP33_FLAG) $(SRC_DIR) $*. s
$ (EXT33) $ (EXT33_FLAG) $x.ps

.ms.o -
$(AS33) $(AS33_FLAG) $x.ms

dependency |ist start

it src definition start If you do not choose the suffix definition, the macro
is i's described between #itf src definition start and #i#
src definition end by SRC1_DIR=relative path, and
the dependency |ist of the source file is described
in the macro
#i#th src definition end

test.srf : test.cm ¥
boot. o ¥
main.o ¥

$ (LK33) $(LK33_FLAG) test.cm

boot. s

boot.ms : $(SRC1_DIR)boot. s

$ (PP33) $ (PP33_FLAG) $(SRC1_DIR)boot. s
$ (EXT33) $ (EXT33_FLAG) boot. ps

boot.o @ boot.ms

$(AS33) $(AS33_FLAG) boot.ms

main.c

main.ms : $(SRC1_DIR)main. ¢
$(GCC33) $(GCC33_FLAG) $ (SRC1_DIR)main. ¢
$ (EXT33) $ (EXT33_FLAG) main. ps

main.o : main.ms
$ (AS33) $ (AS33_FLAG) main.ms

dependency list end
optimaization by 2 pass make

opt:
$ (MAKE) —f test. mak

EOC33 FAMILY EPSON 65
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

$(TOOL_DIR) ¥cwait 2
$ (EXT33) $ (EXT33_CMX_FLAG) test.cmx
$ (MAKE) —f test. mak

clean files except source

clean:
del *. srf
del *.0
del *.ms
del *.ps
del *. map
del *.sym

Command filefor Instruction Extender (.cmx)

Thisfile contains alist of the file namesto be input to the Instruction Extender (the selected source files with
their extensions changed to ".ps'). When executing 2-pass make, the Instruction Extender inputs the files
written in thisfilein the second pass to optimize processing.

Example: command file used in the tutorial (test.cmx)

;Files start

boot. ps

main. ps

;Files end

66 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

Command filefor Linker (.cm)
Thisfile contains a description of the linker commands that control the link operation. When executing make,
the linker uses the commands written in this file while executing alink operation.

Example: command file used in the tutoria (test.cm)
‘Map set

;—code 0x0080000 ; set relative code section start address
;—data 0x0081000 ; set relative data section start address

;—bss 0x0000000 ; set relative bss section start address

;—code 0x0080100 {test2.o test3.o}
;—data 0x0081100 {test2.o test3.o}
;-bss 0x0000200 {test2.o test3.o}

;Library path
=| C:\CC33\Iib

;Executable file
-o test.srf

; set code sections to absolute address
, set data sections to absolute address
, set bss sections to absolute address

;0bject files start
boot. o

main. o

;0bject files end

;Library files

vio. lib

ylib. Tib

math. lib

string. lib

ctype. lib

fp. lib

idiv. lib

[Make gen] uses the commands that specify location addresses as comments when creating the linker
command file. Customize this file according to the memory configuration of your development system before
using it.

For details about the linker commands, refer to Section 12.5, "Linker Commands”.

To edit the make file

To add/delete source files to/from the existing make file, open the [Make file editor] window with the
following procedure:
1. Select the make file to be edited from the file list box on the execution window.

2. Click the [Make edit] button. The [Make file editor] window appears and the [Make file contents and Del
fileg] list box shows the source files defined in the selected make file.

mll Haake file editor [_CIxll To add new source files to the make file, select the source files from
Make file name the [Add files] list box and then click the [Add to Make file] button.
_::L_cm - The source files to be added must be prepared in the same directory

[Hewhiskefie

Cleg es @

Make file contents

n Add files and Del files
boot.s boot &
main.c mair.c

test cm
test cmx
test mak

Add to Make file

¥ Suifix type

Editoll Fiefresh Del fram Make file |

of the dready defined sourcefiles.

To delete source files from the make file, select the source files to
be deleted from the [Make file contents and Ddl files] list box and
then click the [Del from Make file] button.

When the files are added or deleted using the [Add to Make filg] or
[De from Make file] button, the ".cm" and ".cmx" files with the
same name will be automatically modified as well as the make file.

The [Editor] button on the [Make file editor] window has the same
function as one on the execution window. It opens the text file
selected in the [Add files] list box with the editor.

The [Refresh] button updates the filelist in the [Add files] list box.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON 67

CHAPTER 5: WORK BENCH

Precautions on editing the make file

« When the suffix definition is chosen, the Make file editor defines the SRC_DIR macro that represents the

source file directory in the makefile as follows:

1. The SRC_DIR becomes blank when the source files are selected from the current directory (directory is

selected in the execution window).

2. The absolute path to the source files are defined when the source files are selected from another

directory.

Therefore, the make file must be created again or the SRC_DIR must be modified if the source file is
moved to another directory after the make file is created. Furthermore, it is necessary to modify the
SRC_DIR when the source files are located in two or more directories.

If you don't choose a suffix definition, the make file is described in the relative path. No change in the file
is necessary if it is moved without changing the directory.

* The Make file editor adds/deletes files using the comments and the character pattern in the make file as
shown below. Do not modify the comments and patterns as the make file cannot be edited with the Make

file editor correctly

Addition to the makefile
Origina makefile
dependency list start

#th src definition start
SRC1_DIR=

#ittt src definition end

test.srf : test.cm ¥

Example: Make file after "sys.c" is added
dependency list start

#ittt src definition start
SRC1_DIR=

#tth src definition end

test.srf : test.cm ¥

boot.o ¥ boot. 0 ¥
main. o ¥ main. o ¥
------ #1 sys.0 ¥
$(LK33) $(LK33FLAG) test.om “
boot. s $(LK33) $(LK33_FLAG) test.cm
boot.ms : $(SRC1_DIR)boot. s ## boot. s
$(EXT33) $(EXT33_FLAG) boot.ps $(PP33) § (PP33_FLAG) §$ (SRCI_DIR)boot. s
boot. o : boot. ms $ (EXT33) $ (EXT33_FLAG) boot. ps
$(AS33) §$ (AS33_FLAG) boot. ms boot o : boot. ms
main. $ (AS33) $ (AS33_FLAG) boot.ms
main.ms : $(SRCI_DIR)main.c ## main.
$(GCC33) . $ (GCC33_FLAG) main.ms : $(SRC1 DIR)main. ¢
$ (SRG1_DIR) main. o $(6CC33) $(GCC33_FLAG) $ (SRCI_DIR)main. o
$ (EXT33) § (EXT33_FLAG) main. ps $ (EXT33) § (EXT33_FLAG) main.ps
main.o - main.ms main.o : main.ms
$(AS33) $(AS33_FLAG) main. ms $(AS33) $(A5337FLAG) main. ms
dependency list end ## sys. ¢
sys.ms : $(SRC1_DIR)sys.c
$(GCC33) $ (GCC33_FLAG) $(SRC1_DIR)sys.c
$ (EXT33) $ (EXT33_FLAG) sys.ps
main.o : sys.ms
$ (AS33) $(AS33_FLAG) sys.ms
dependency list end
68 EPSON E0C33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

File names and the dependency list are added between the comments "# dependency list start" and "#
dependency list end". Pay attention when modifying this part.

The object file name isinserted above the line indicated by *1.
The *1 line includes a space character, so do not delete thisline.
The object file name is inserted using the following format:
aan<file>.on\ (A denotes a space.)

The dependency list isinserted above the "# dependency list end" line.
Do not delete the "# dependency list end" line.

The dependency list isinserted using the following format:
#in<file>.gc

<file>.msa:a$(SRC_DIR)<file>.s/c

<file>.on:n<file>.ms

(blank line)

The macro is described with the relative path of the source file indicated between "### src definition start”
and ” ### src definition end. Therefore, additiona description of the macro is displayed if the source file
with adifferent directory is added.

The following show the format of the relative path description:

#itt sre definition start Do not delete thisline. It showsthe start of the relative path description.
SRC1_DIR=..\sample\\d It defines the relative path from the make filein SRC1_DIR.

pl Only line feed code is necessary for macro description which ends with "\".
SRC2_DIR=..\demo\\.l It defines the relative path from the make filein SRC2_DIR.

J

#itt src definition endd It shows end of the relative path description. Do not delete thisline.

Do not insert a space.

If macro definition is added by adding a source file with its directory different from the make file, the format
is SRCxxx_DIR=relative path, where xxx shows the maximum value of macro+1.You cannot create a make
file where xxx exceeds 2147483647.

EOC33 FAMILY EPSON 69
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

Deletion from the makefile

Origina makefile Example: Make file after "boot.s" is deleted
dependency list start # dependency list start
#ittt src definition start #ittt src definition start
SRC1_DIR= SRC1_DIR=
#ittt src definition end #ittt src definition end
test.srf | test.om ¥ test.srf | test.om ¥
boot.o ¥ main.o ¥
main.o ¥
....... *1 $(LK33) $(LK33_FLAG) test.cm
$(LK33) $(LK33_FLAG) test.cm
main.c
#t boot. s main.ms : $(SRC1_DIR)main. ¢
boot.ms : $(SRC1_DIR)boot. s $(GCC33) §(GCC33_FLAG) $ (SRC1_DIR)main.c
$ (PP33) $ (PP33_FLAG) $(SRC1_DIR)boot.s $ (EXT33) $ (EXT33_FLAG) main. ps
$ (EXT33) § (EXT33_FLAG) boot. ps main.o : main.ms
boot.o : boot.ms $ (AS33) $ (AS33_FLAG) main. ms

$ (AS33) $ (AS33_FLAG) boot.ms
dependency list end

#t# main.c
main.ms : $(SRC1_DIR)main.c
$(GCC33) $ (GCC33_FLAG)

$ (SRC1_DIR)main. ¢
$ (EXT33) $ (EXT33_FLAG) main. ps
main.o : main.ms

$(AS33) §$(AS33_FLAG) main.ms
dependency list end

For the object file name, the Make file editor deletes the line that contains the specified file name with the
"ann<file>.0n\" format (» denotes a space). Therefore, do not modify this format including the number of
spaces.

For the dependency list, the Make file editor deletes the range from the source file name line that begins with
##H to the last blank line. Do not modify or delete the lines that begin with ### or the blank lines.

Macro definition which described relative path can not be deleted from wb33. To delete from the editor,
make sure that deleted macro can not be restored by the wb33.

Addition to and deletion from thelinker command file
;0bject files start

boot. o

main. o

;0bject files end

When the source file configuration in the make file is modified (files are added/deleted) using the Make file
editor, the object file configuration in the linker command file is aso modified. The Make file editor
modifies the file name list between the comments ";Object files start” and ";Object files end”, so do not
modify or delete these comments.

When source files are added to the make file, the corresponding object file names are inserted above the
";Object filesend" line in the linker command file.

70

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

When source files are deleted from the make file, the lines that contain the corresponding object file name are
deleted.

Addition to and deletion from theinstruction extender command file
JFiles start

boot. ps

main. ps

;Files end

When the source file configuration in the make file is modified (files are added/deleted) using the Make file
editor, the file configuration in the instruction extender command file is also modified. The Make file editor
modifies the file name list between the comments ";Files start" and ";Files end", so do not modify or delete
these comments.

When source files are added to the make file, the corresponding file names are inserted above the ";Files end"
linein the instruction extender command file.

When source files are deleted from the make file, the lines that contain the corresponding file name are
deleted.

EOC33 FAMILY EPSON 71
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

To execute make

1. Before executing make, customize the make file and the linker command file if necessary.
2. Choose options for the make tool from the [other options] window.
3. Choose a make file from the file list box of the execution window and click on the [MAKE] button.

By following only the above operation, you can get an object file in srf33 format after linkage. For details
about the functions and the operation of make, refer to Section 17.1, "Make".

Options for make

bAKE ¥ f (2pass | [noexe cmd

Onormal: 1-pass make (turned on by default)
This option executes make without specifying an argument for the target name.
Since thisis to make the first target in the make file, 1-pass processing is performed until a.sf fileis
crested or updated.

O2 pass: 2-pass make (turned off by default)
This option executes make by using the target name "opt" as an argument.
The commands written in the make file are executed from "opt:" in the file. As a result, after
processing up to linkage in the first pass is completed, optimization by the Instruction Extender is
performed based on the linked symbol information. The file generated by this optimization process is
assembled and linked one more time.

Ono exe cmd: Selection of the -n option (turned off by default)
This option executes make after specifying the -n option of make.
The commands executed by make are only displayed: no command is actually executed. This option
may be used to verify whether there is any file that has been modified after the previous execution of
make.

MAKE clean

The make file created by the wb33 contains a description of the commands to delete intermediate and object
files other than the sources. These commands are defined with the target name "clean".
The following lists the commandsincluded in amake file:

clean files except source

clean:
del *. srf
del *.0
del *.ms
del *.ps
del *. map
del *. sym

These commands can be executed by clicking the [MAKE clean] button after selecting the make file in the
whb33 execution window.
MAKE

e [MAKE clean] button

All filesin the current directory that have extensions".srf", ".0", ".ms", ".ps’, ".map" and ".sym" are deleted.

72

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

5.2.7 Parameter File Generator
The parameter file required for debugging can be created simply by the wb33.
A parameter file is used to set in the Debugger db33 the memory configuration of the microcomputer to be

developed.

[Parameter file generator] window
When you click on the [Par gen] button of the execution window, a [Parameter file generator] window opens

up.

Par gen | [Par gen] button

File name 33104_1.par

Crote P | 7 Bencrate WEMZD infarmafion
. h— reate Par file H B
This file version [0.1 - ff] Wer. ' MEM33 e
Chip reme [3 characters) 33 [104 ,EUSE;;[', T |
b o0 IR o (012560 2 kB O valis)
 Onc00000 | [og =] | MEMEE delay
Adel (480000, IAOM size (01-512) [1 ke E|
" Eatomal memory sress (e B arsas, 1MB/ares, 1ME bowrdar] ! o1 external mamon starl adess
Start addr Big - Emulation Enable | 00000
1.2, e Endian memory setting | |
oo SR I
| P3ECE

[Jooooo I Big I Emul™ Enable |
[ooonn I B [Emul Enable |
[+ ooooo I g [Emul" Enable |
[6 ooooo I Big [Emul Enable :
| Ol I Big [Emu [~ Enable |
5 uoon T 8ig I Emul™ Enable ;
["B e e |

I Area?(13] is DRAM
I~ Aread[14) is DRAM
™ WAH Mask

I~ Map break disable
I~ CE bieck disable
I~ Mo CE break disable

Selection of external memory area

CHAPTER 5: WORK BENCH

Use this window to specify the contents
described below. Then, when you click on the
[Create Par file] button, a parameter file is
created in the current directory.

Parameter file name

Input afile version (v) in the text box for [This
file version (0, 1,--, ff)] and the three low-order
digits (xxx) of a microcomputer type name in
the text box for [Chip name (3 characters)].
When this is specified, the parameter file is
created in the name "33xxx_v.par".

Specification of internal memory capacity
Input the internal RAM and the internal ROM
capacities respectively in the text boxes for
[Internal RAM size (0, 1,--, 256)] and [Internal
ROM size (0, 1,--, 512)] in units of KB.

Selection of boot address

Choose the radio button [0x80000] when the
system boots from the interna ROM or the
radio button [0xc00000] when booting from the
external ROM.

When using an external memory, input the start address of the areato be used in the text box (in 1KB units)
and choose a memory type (RAM, ROM, 1/0O) using the radio button. Accessing to the area will be done in
little-endian format. It can be changed to big-endian format by choosing [Big] *1. When you check the
[Enable] box, the areais made available for use as specified. Up to eight areas can be specified.

The ICE33 in-circuit emulator can contain emulation memory for up to 8MIB of external memory. This helps
debug a program without having to install memory in the target board. When alocating the specified externa
memory area in the emulation memory, check the [Emu] box. When using a device on the target board, do
not check on the [Emu] box. Thisinformation isignored in the debug monitor, ICD33 or simulator mode.

%1: When [Big] is selected, the simulator mode will process data assuming that the CPU busis configured to
big endian method. Note, however, that any other mode needs rewriting of the BCU register in the actual
I1C to set the bus to big endian. Refer to "Operations of debugging commands" in Section 16.8.11 for the

debugger operation.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

73

CHAPTER 5: WORK BENCH

Configuration for MEM 33201

CEFUNC value: Choose avaue so that DRAM timing can be set in the D9 bit and DA bit in the setting register(in
E0C33208, 0x48130).

Note: This configuration synchronizes the text box(Start Address) and radio button(Memory type)
which configure the external memory area. Therefore, perform this configuration first.

Generate MEM 33 information: If you use MEM 33, choose thisitem.

MEM33 address: Configure in the area where MEM 33201 is mapped(sel ection signal where you choose
MEM 33201 DSW6).

MEM33 delay: Use 8ns, usualy.

Areal0 external memory start address. Write start address of externa area 10.

P30 is CE: Select thisif you use P30 asthe CE signal.

P34 is CE: Select thisif you use P34 asthe CE signal.

Area7(13) isDRAM: Select thisif you set DRAM in area 7(13).

Area8(14) isDRAM: Select thisif you set DRAM in area 8(14).

WRH Mask: Select thisif you do not use the WRH signd (if you use x16 SRAM in BSL, BSH way).

Map bresk disable: Select thisif you only disable map break.

CE break disable: Select thisif you only disable CE break.

No CE break disable: Select thisif you only disable No CE break.

Parameter file
The following shows an example of a created parameter file.

Example:

CHIP 33104 ; chip name (33XXX)

IROM 1000 , internal ROM is 80000 to 80FFF
FOPT 0000 , T option size

PRC VER 00 ff ; allow any PRC board

PRC STATUS seksoksiskorsfokoroforokoforok ; allow any PRC board status

MCU ; 0x80000 internal boot address
VER 1 ; this file version

; Emulation memory allocation (max 8 areas, 1MB/area, 1MB boundary)
; Map allocation (max 31 areas, 256bytes boundary)

RAM 0 TFF , internal RAM area 2KB
10 40000 AffFf , internal 10 area 64KB

; Stack area except internal RAM area (max 8 areas, 256bytes boundary)

END

Since thefile is created as a text file, it can be customized by using an editor. For details about the contents
of thisfile, refer to Section 16.10, "Parameter File".

74 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

5.2.8 Specifying a General-purpose Editor

The wb33 alows you to display the source file or the execution result of a software tool by using a specified editor.
In particular, a function that allows the source (text) file selected by the wb33 to be opened directly by an editor
should prove effective in correcting the source.

To open the source file with an editor

e LORd 1. Choose the text file you want to be opened from
;} giin:£1qqrfz.1alq =] the file list box of the execution window.
. pred Multiple text files including a make file or
m"(; command file other than the source file can be
it i selected.
int j;
i b TP 2. Click on the [Editor] button of the execution
sun(i; window.
y Editor | [Editor] button
sub(k)
int
AT The editor ("notepad” by default) will start up,
AR bringing up the selected file(s) on the screen.
) _
L4 ’ sl The [Editor] button in the [Make file editor]

window has the same function.

To use an editor other than "notepad”
The default editor opened by the wb33 is "notepad”. This editor can be changed by modifying the [Editor
name] text box in the [other options] window.

Editar name |n|:|tepa|:| I."iﬁ X

Input the editor's startup command in full path here.

Since this setting returns to the default setting when the [other options] window is closed, save it using the
[save options] button. (Refer to Section 5.2.10.)

Tag jump
The text box on the right of the [Editor name] box is used to set an editor command for tag jump from an
error message in the output window to the corresponding source line in the editor window.
Notepad (default editor) does not support this function. This function is effective when an editor that
supports a startup command for specifying afile name and line number is used.

The default setting "/j# %,;" isthe command for Hidemaru a Japanese editor.
When a file name and line number, a part of a message displayed in the output window, is double-clicked,
the set command is sent to the editor after replacing # with the line number and % with the file name.
Example: boot.ms(6): Error: Invalid instruction. - define near boot.s(4)
When boot.ms(6) is double-clicked, # is substituted with 6, % with boot.ms, and then the
command is sent to the editor. The editor will open boot.ms and show line 6 if the command is
supported.
In the example above, boot.s(6) may aso be used for tag jump.

main.c:4: warning: data definition has no type or storage class
In this message,main.c:4 may be used for tag jump.

EOC33 FAMILY EPSON 75
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

5.2.9 Entering Command Lines

The execution window has a text box to display or edit the startup commands of each software tool. The startup
options that are not supported by the check boxes or buttons of the option windows can be added (and executed)
from this text box.

Furthermore, the DOS commands such as COPY can be executed from this text box.

To execute a command line after editing it
1. Choose the options and the input file for the software tool you want to execute.

2. Turnon the [no execution] check box of the [other options] window and click on the execution button
of the software tool.
The startup command including the selected contents will be displayed in the text box.

|E:\EE33\5333 -g tzk_azm.ms

3. Input additional necessary options and hit the [Enter] key.

The edited command line will be executed.

Note: Do not start up a software tool from the execution button. If you click on the execution button,
the tool will be started up with the previous command line before you edited.
Furthermore, if a software tool is started up from a command line, the execution result cannot be
displayed in the output window or editor. No matter whether the -e option is specified, the
messages normally output at end of execution (contents of an error file) are not displayed. Also,
specification of the [exe in icon] check box is ignored. The file list box is not updated either.

To execute a DOS command
Input a DOS command in the text box by adding ">" at the beginning of the name and hit the [Enter] key.
The system executes this DOS command.

>copy test za_B0000_SOMF 33000tst, =4

Note: DIR cannot be used to display the results in the output window or editor. Since CD and some
other DOS commands affect the operation of the wb33, be sure to use only those commands
that copy or rename a file.

5.2.10 Saving and Restoring Options

The contents selected in the option windows can be saved to a file using the [save] button of the [other options]
window and the saved contents can be restored using the [restore] button. Since the setup contents are reset to the
default settings when the option window is opened, use this method to save settings of frequently used options and
editors.

Option file Iwb33.$av savel restnrel

The default file name of the settings saved is "wb33.sav". When saving multiple settings, use a different file name
for each one. No message is output to confirm whether the file can be overwritten.
Thefileis created in the text format.

The option settings are also saved to the option file when the wb33 is terminated by the [Save and Exit] button.
Furthermore, by dragging the created option file on the "wb33.exe" icon to start up the wb33, the saved option
settings are restored. This can aso be done by specifying the option file in the command line when starting up the
wb33 from the DOS prompt.

76 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 5: WORK BENCH

5.3 Error Messages

When an error occurs in the wb33, a dialog box for displaying a message pops up. After checking the message,
click on the [OK] button to close the dialog box.

Example:
wh33 [~]

File size ower 32KB. so cut down to 32KB
azddene

A

The table below lists the error messages generated by the wh33. For the error messages output when executing a

software tool, refer to the chaptersin which each software tool is discussed.

Table 5.3.1 Error messages of wh33

Message

Content

Can not execute command
XXXXXX

A tool button or command line (xxxxxx) cannot be executed.
e The command line is invalid.
* The tool or necessary file cannot be located.

Can not open file

The file (xxxxxx) cannot be opened.

XXXXX OF XXXXXX

XXXXXX * When executing [Make edt]
¢ During source display
¢ When saving or restoring options
Write error Data cannot be written to the file (xxxxxx).
XXXXXX e When executing [Make edit]
e When saving options
Read error The file (xxxxxx) cannot be loaded.
XXXXXX e During source display
* When restoring options
R/W error The file cannot be read or data cannot be written to the file.

* When executing [Make file editor]

Can not delete file

The file cannot be deleted.

XXXXXX e When executing [Del]
File size over 32KB, so cut down to 32KB [A file (xxxxxx) exceeding 32KB in size is selected.
XXXXXX e During source display

Only the first 32KB part of the file can be displayed.

5.4 Precautions

Make sure a series of processing in the wb33 all are performed in the same directory.
Also, be careful not to change the current directory using the CD command while the wb33 is open.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

CHAPTER 6: C COMPILER

Chapter 6 C Compiler

This chapter explains how to use the C Compiler gcc33, and provides details on interfacing with the assembly
source.

For information about the standard functions of the C Compiler and the syntax of the C source programs, refer to
the ANSI C literature generally available on the market.

6.1 Functions

The C Compiler gce33 (hereafter called "gec33") compiles C source files to generate an assembly source file that
includes EOC33000 instruction set mnemonics, the Instruction Extender's extended instructions, and assembler
pseudo-instructions. The C Compiler gcc33 in this package is an ANSI standard C compiler. Since specia syntax
is not supported, the programs developed for other types of microcomputers can be transplanted easily to the
EOC33 Family.

Furthermore, since this C Compiler has a powerful optimizing capability that allows it to generate a very compact
code, it is best suited to developing embedded applications.

This C Compiler consists of three files: gcc33.exe, cpp.exe, and ccl.exe.

The gce33 is based on the C Compiler of Free Software Foundation, Inc. Details about the license of this compiler
are written in the text file "GNU_COPYRIGHT", therefore, be sure to read this file before using the compiler.

6.2 Input/Output Files

C source files 6.2.1 Input File

@J' C sourcefile

Fileformat: Textfile
C Compiler File name: <file name>.c
gces3s ‘ Description: Filein which the C source
program is described.

Assembly [T——h_ Error
source files I w file
Instruction Extender ext33
Fig. 6.2.1 Flowchart

6.2.2 Output Files

Assembly sourcefile

File format: Text file

File name: <filename>.ps (The <file name> isthe same as that of the input file.)

Qutput destination: Current directory

Description: An assembly source file to be input to the Instruction Extender ext33.
The file cannot be input to the Assembler as33 directly since it includes the extended
instructions.

Error file

File format: Text file

File name: gce33.err

Qutput destination: Current directory

Description: File that is output when the startup option (-merr) is specified, and describes the

contents which the C Compiler gcc33 delivers through the Standard Output (stdout),
such as an error message. When the -merr option is specified, messages do not
appear on the screen. It is different from other tools.

78 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

6.3 Starting Method

6.3.1 Startup Format

General form of command line

gcc33 M [<Startup option>] ~ [<file name>]

~ denotes a space.
[] indicates the possibility to omit.

<file name>: Specify C source file name(s) including the extension (.c).

Operations on work bench
Select startup options and source file(s), then click the [GCC33] button.

Multiple source files can be specified in acommand line. All files can be processed at the same time. Although the
wb33 aso allows multiple files to be selected, it executes the gcc33 as many times as the number of files selected.

6.3.2 Startup Options
The gce33 comes provided with the following 11 types of startup options:

-S

Function:
Specification on wh33:
Explanation:

-B<path name>\
Function:
Specification on wb33:
Explanation:

-E

Function:
Specification on wb33:
Explanation:

Output of assembly code
None (always specified)

This switch is used to output an assembly sourcefile.
This option must always be specified. If the gcc33 is started up without this option, it
only displays Usage, and does not compile the source file.

Compiler's path specification
None (unnecessary)

Specify the directory where the compiler proper ccl.exe and the C preprocessor
cpp.exe exist.

For <path name>, input a relative or an absolute path immediately following -B, then
enter aback slash (\) at the end of the name.

If the directory where the compiler proper and the C preprocessor exist is registered in
environment variable GCC_EXEC_PREFIX or PATH, the -B switch is unnecessary.
The priority isthe -B switch, GCC_EXEC_PREFIX, and PATH, in that order.
GCC_EXEC_PREFIX must be registered in the same format of relative or absolute
path and a\ as required for the -B switch.

If the -B switch and GCC_EXEC_PREFIX are nonexistent, the directory specified by
PATH or the current directory is assumed.

Execution of C preprocessor only
None

Only the C preprocessor is executed in the specified C source file, and the results are
output to the standard output device.

EOC33 FAMILY

EPSON 79

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

-l<path name>

Function: Specification of adirectory that contains the include files

Specification on wb33: Check [include path] and choose a directory from the list box.
Explanation: o Specify the directory that contains the files included in the C source.

o Input <path name> immediately after -1.

e Multiple directories can be specified. In this case, input as many instances of -I<path
name> as necessary. The include files are searched in the order they appear in the
command line.

o If the directory is registered in environment variable C_INCLUDE_PATH, the -I
switch is unnecessary.

e File search is performed in order of priorities, i.e., current directory, -I switch, and
C_INCLUDE_PATH in that order.

-D<macro name>[=<replacement character>]

Function: Definition of amacro name
Specification on wh33: Check [define] and input a macro name in the text box.
Explanation: o Define a macro name. This option functions in the same way as #define. If there is

=<replacement character> specified, define its value in the macro. If not specified, the
value of themacro isset to 1.

e |nput <macro name>[=<replacement character>] immediately after -D.

e Multiple macro names can be specified. In this case, input as many instances of
-D<macro name>[=<replacement character>] as necessary. For the wb33, separate
each instance of <macro name>[=<replacement character>] with a comma (,) as you

input them.

-0,-02,-03

Function: Specification of optimization

Specification on wb33: Check one of [NO], [O], [O2] or [O3].

Explanation: o Specify one of the four switches to perform optimized processing. When generating
code, the compiler optimizes it by placing emphasis on code efficiency and speed
(mainly code efficiency).

o If no switch is specified or [NQO] is selected for the wb33, code optimization is not
performed.

o The greater the value of -O, the higher the code efficiency. However, there is a greater
possibility of causing a problem, such as absence of some debugging information in
the output. If optimization cannot be executed normaly, reduce the vaue of
optimization. Normally, -O should be specified.

e When an optimization is specified, the compiler reuses the value loaded from the memory
to the register to reduce memory read/write operations. So, sometimes the memory may
not be accessed. To avoid this situation, take measures as shown below.

- Declare variableswith "volatile’. Example) volatilechar 10_port1;
- Do not specify the optimization.
- Use"-fvolatile". Pointers are accessed as volatile objects.
Use"-fvolatile-global". Externa variables are all accessed as volatile objects.
-9
Function: Addition of debugging information
Specification on wh33: Check [debug info].
Explanation: e Creates an output file containing debugging information.

o Always specify this option when you perform the C source level debugging.
o Refer to Section 6.6 for debugging information.

-mno-memcopy

Function: Inline expansion of strcpy and memcpy function calls

Specification on wb33: Check [inline memcpy].

Explanation: e Thestrcpy and memcpy function calls are expanded in-line.

80 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

-fno-builtin

Function: Inline expansion of the fabs function call

Specification on wh33: Check [inline fabs].

Explanation: e Thefabsfunction is not expanded inline. Calling fabsisfaster.

-merr

Function: Output of error files

Specification on wb33: Non

Explanation: o Ddiversin afile (gcc33.err) the contents that are output by the gcc33 viathe Standard

Output (stdout), such as error messages.
e When this option is specified, messages do not appear on the screen.

When entering options in the command line, you need to place one or more spaces before and after the option.
Example: c:\cc33\gee33 -S -Bce:\userloca\bint -O -g test.c

EOC33 FAMILY EPSON 81
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

6.4 Messages

The gce33 delivers its messages through the Standard Output (stdout).
If the gce33 is started up by using the wb33's [GCC33] button, the message is output to "wb33.err". When
execution is completed, a message is displayed in the output window (default).

End message
The gce33 outputs only the following end message when it ends normaly.

Compile Completed

Usage output
If no file name was specified or an option was not specified correctly, the gcc33 ends after delivering the
following message concerning the usage:

C:\CC33\gcec33

GNU C Compiler for EOC33 Ver 2.7.2 (Rev x.xx)

Usage:
gcc33 =S [options] filename

Options:
-g : generate debug information
-0 : optimize output code
-E : preprocess source files and output the results to stdout
-B<directory>\ : specifies the directoy which ccl.exe and cpp. exe exit
—-I<directory> : specifies the directoy which include files exist
-D<macro=defn> : define macro “macro” as “defn”

-D<macro> . define macro “macro” as "1

-merr : produce log file (gce33.err)

—-mno-memcpy : produce string variable initializer statement inline
Qutput:

Extended assembler source files(.ps) for ext33
Example:

gce33 -S —Be:\usr\local\bin\ -0 —g test.c

When error/warning occurs
If an error or awarning is produced, an error/warning message will appear before the end message shows up.
In the case of an error, the gce33 ends without creating an output file.
In the case of a warning, the gcc33 ends after creating an output file. However, the output file cannot be
guaranteed to work properly.

82 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

6.5 Compiler Output

This section explains the assembly sources output by the gcc33 and the registers used by the gec33.

6.5.1 Output Contents

After compiling C sources, the gcc33 outputs the following contents:
e EOC33000 instruction set mnemonics

e Extended instruction mnemonics

e Assembler pseudo-instructions

All but the basic instructions are output using extended instructions. Therefore, be sure to use the Instruction
Extender ext33 to process the assembly source files output by the gcc33. These files cannot be assembled directly
by the Assembler as33. Nor can the assembly source files output be put through the Preprocessor pp33.

Since the system control and MAC instructions cannot be expressed in the C source, use in-line assemble by asm
or an assembly source file to process them.
Example: asm ("mac %r12")

Assembler pseudo-instructions are output for section and data definitions. For details about the assembler
pseudo-instructions, refer to Section 11.8, "Assembler Pseudo-instructions'.
The following describes the sections where instructions and data are set.

Instructions
All instructions are located in the CODE section.

Global and static variables without initial values
These variables are located in the BSS section.
Example: int i; .commi 4

Global and static variableswith initial values
These variables are located in the DATA section.

Example: inti=1; .global i
.data
aign2
i2:
.word 1
Constants
Constants are located in the CODE section.
Example: const int i=1 .global i
.code
aign 2
i2:
.word 1

For al symbols including function names and labels, symbol information by assembler pseudo-instruction .def is
inserted (when the -g option is specified). For details about the symbol information, refer to Section 6.6,
"Debugging Information”.

Labels are output in the following format:
_ Limm31 Jump address label
_ LCimm31 Character string constant label
_ Lbimm31 Beginning of block position label
_ Leimm31 End of block position label
(imm31 takes on adecimal number in the range of 0 to 2,147,483,647.)

EOC33 FAMILY EPSON 83
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

6.5.2 Data Representation
The gce33 supports al data types under ANSI C. Table 6.5.2.1 below lists the size of each type (in bytes) and the
effective range of numeric values that can be expressed in each type.

Table 6.5.2.1 Data type and size

Data type Size Effective range of a number
char 1 |-128to 127
unsigned char | 1 |0to 255
short 2 |-32768 to 32767
unsigned short | 2 | 0 to 65535
int 4 |-2147483648 to 2147483647
unsigned int 4 | 0to 4294967295
long 4 | -2147483648 to 2147483647
unsigned long 4 | 0to 4294967295
pointer 4 | 0to 4294967295
float 4 |1.175e-38 to 3.403e+38 (normalized number)
double 8 |2.225e-308 to 1.798e+308 (normalized number)

The float and double types conform to |EEE standard formats.

Store positions in memory

The positions in the memory where data is stored depend on the type. Regardless of whether it is globa or
local, datais located in the memory in as many bytes as are determined by the size beginning with an address
that can be divided by the size.

The double type is aligned at 4-byte boundary addresses, so that the 4 low-order bytes of data (mantissa part
(31-0)) are stored in 4 bytes of low-order locations of memory, and the 4 high-order bytes of data (sign,
exponent, and mantissa part (51-32)) are stored in 4 bytes of high-order memory locations.

Structure data

Structure data is located in the memory beginning with 4-byte boundaries (addresses divided by 4) in the
same way as stated above for the double type. Members are located in the memory according to the size of
each datatypein the order they are defined.

The following shows an example of how structure is defined, and whereit is located.

Example: struct Sample {

char cData;
short hData;
char cArray[3];
int iData;
double dData;
¥
+16 dData (high)
+12 dData (low)
+8 iData
+4 cArray[3] | Unused
{ Start address +0 cData | Unused | hData
Low memory +0 +1 +2 +3

Fig. 6.5.2.1 Sample locations of structure data in the memory

As shown in the diagram above, some unused areas may remain in the memory depending on the data type of
amember.

84

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

6.5.3 Method of Using Registers
The following shows how the gcc33 uses general-purpose registers.
Table 6.5.3.1 Method of using general-purpose registers by gcc33

Reqister Method of use
RO Registers that need have to their values saved when calling a function

R4 Scratch registers

R8 Global pointer (unused; used by ext33)

R9 Scratch register for expanding extended instruction (unused; used by ext33)

R10 Register for storing returned values (8/16/32-bit data, 32 low-order bits of double-type data)
R11 Register for storing returned values (32 high-order bits of double-type data)

R12 Register for passing argument (1st word)

R13 Register for passing argument (2nd word)

R14 Register for passing argument (3rd word)

R15 Register for passing argument (4th word)

Registers for saving values when calling a function (RO to R3)
These registers are used to store the calculation results of expressions and local variables. These register
values after returning from a function must be the same as those when the function was called. Therefore, the
caled function has to save and restore the register values if it modifies the register contents.

Scratch registers (R4 to R7)
These registers are used to store the temporary calculation results of expressions and loca variables. These
registers do not need to be saved when calling a function.

Global pointer (R8)
Thisregister isreserved for storing aglobal pointer. The gcc33 does not use this register.

Scratch register for expanding extended instructions (R9)
Provided for use in assemble, thisregister is used by the Instruction Extender ext33 asit expands an extended
instruction. The gcc33 does not use thisregister.

Registers for storing returned values (R10, R11)
These registers are used to store returned values. They are used as scratch registers before storing a returned
vaue.

Registers for passing arguments (R12 to R15)
These registers are used to store arguments when caling a function. Arguments exceeding the four words are
stored in the stack before being passed. They are used as scratch registers before storing arguments.

Note: When creating assembler subroutines that are called from C routines, pay attention to the

register usage.

» The R4 to R7 registers can be used without saving/restoring the contents.

*The R10 and R11 registers can be used without saving/restoring the contents until a returned
value is set in the register before returning.

» Before the R12 to R15 registers can be used, the stored arguments must be used or saved in
other locations. It is necessary to restore the contents before returning.

* Try to use the R8 and R9 registers as little as possible.

» Before the RO to R3 registers can be used, the contents must be saved to stack using the
pushn instruction. Also, the saved contents must be restored from the stack using the popn
instruction.

EOC33 FAMILY EPSON 85
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

6.5.4 Function Call

The way arguments are passed
When calling a function, arguments up to four words are stored in registers for passing argument (R12 to
R15) while larger arguments are stored in the stack frame of the calling function (explained in the next
section) before they are passed.
Example: func(wl, w2, w3, w4, w5, wé); ..wl—-R12, w2—R13, w3—R14, w4d—R15, w5& w6— Stack
(WN: arguments equal to or smaller than word size)
Basicaly, arguments are stored in R12 to R15 in the order that they are specified.

Data size of argument
Arguments in data size of 4 bytes or less are handled in units of words (4 bytes) irrespective of the data type.
The char and short types of data are sign-extended; the unsigned char and unsigned short types are
zero-extended. Only the double type is handled in units of 8 bytes. Unless two registers anong R12 to R15
are available when passing an argument of the double type, it is passed via the stack.
Example: func(w1, d2, d3, w4); ..wl—R12, d2(L)—R13, d2(H)—»>R14, w4—R15, d3—Stack
(wN: arguments equal to or smaller than word size; dN: arguments of double type)

Handling of structure arguments (Note)
If the argument is structure data, the values of structure members are passed via a stack.
Example: struct _foo {

int a
short b;
char [

h
callee(struct _foo foo, int d);

In the above example, only d is stored in the register for passing argument (R12) and all the members of foo
are stored in the stack.

Passing argument to a function that returns structure (Note)
When calling a function that returns structure data, the structure address where the result is stored is set in the
R12 register as the first argument before being passed to the called function. Consequently, the arguments
written in the source are successively carried down by one.
If the structure is not used as a returned value, the compiler assigns dummy structure data to the loca
variable area of the caling function and passes the address of this location.
The called function returns the pointer passed in the first argument to the calling function as areturn value.

Saving registers
If acalled function modifies the RO to R3 registers, the function has to save and restore the register values.
The R4 to R7 and R10 to R15 registers can be used without such arestriction.
The R8 and R9 can aso be used freely, if it does not conflict with the processing of Instruction Extender
ext33.

Returned values
Theword size or less of returned valueis stored in the R10 register.
The double-word size (double) of returned value is stored in the R10 (low-order word) and R11 (high-order
word) registers.

Note: When a source program in which a structure is passed to or returned from a subroutine, the
actual code is created so that all the members of the structure are copied using the memcpy
function. This is undesirable since it increases the code size, lowers the execution speed and
causes bugs in the compiler. Therefore, pointers should be used for passing structures as much
as possible.

86 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

6.5.5 Stack Frame
When calling a function, the gcc33 creates the stack frame shown in Figure 6.5.5.1. The start address of the stack
frameis aways aword (32-bit) boundary address.

Allocated by call
Return address instruction, cleared by
ret instruction

R3 (4 registers at maximum)
Register save area :
RO Allocated by function
prologue processing

Last variable defined

Local variable area .
Cleared by function

First variable defined ; ;
epilogue processing

Last argument
1 Argument area :
Low memory SP— First argument stored in the stack

Fig. 6.5.5.1 Stack frame

Return address
Thisisthe return address (1 word) to the calling function.

Register save area
If any registers from RO to R3 are used by the calling function, they are saved to this areain order of register
numbers beginning with the highest.
If none of the registers from RO to R3 is used by the calling function, this areais not allocated.

Local variable area
If there are any local variables defined in the called function that cannot be stored in registers, an area is
allocated in the stack frame. Then they are saved sequentially beginning with the last-declared variable at
boundary addresses (4-byte boundaries for the double type) according to the data types.

Example: {
char c;
short S
int i
}
+4 i
l Local start +0 c | Unused | s
Low memory +0 +1 +2 +3

Fig. 6.5.5.2 Example of local variables saved to stack

Thisareais not allocated if thereis no local variable that needs to be saved in the stack.

Argument area
If there are any arguments for another function call in the called function that cannot be stored in the registers
for passing argument, an area is allocated in the stack frame (see the preceding section). All arguments are
located at 4-byte boundaries. The 32 low-order double-type bits are saved at low-order addresses, and the 32
high-order bits are saved at the high-order addresses.
Thisareais not alocated if thereis no function call.

Allocating and clearing the stack area
A stack area for the return address is alocated and the address is saved to this area by the call instruction.
The address is popped from the stack and the area is cleared by the ret instruction.
All other areas are alocated in the prologue processing of the function, and are cleared in the epilogue
processing.

EOC33 FAMILY EPSON 87
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

6.6 Debugging Information

If the startup option -g is specified (by checking [debug info] in wb33), the gcc33 inserts assembler
pseudo-instructions in the output file as debugging information in order to allow for C source level and symbolic
debugging.

Notes: e This debugging information is required before C source level or symbolic debugging can be
performed with the Debugger db33.

e Make sure the debugging information is created by only specifying the -g option, and not by
any other method. Also, be sure not to correct the debugging information that is output.
Corrections could cause the as33, 1k33, db33 or dis33 to malfunction.

e Unless the -g option is specified in the k33 even though it may be specified in the gcc33
(same applies for pp33), all debugging information will be cut when linking.

¢ Unless the -g option is specified in the as33 even though it may be specified in the gcc33, all
symbol information will be cut. The source information is not cut.

o If the -g option is specified in the as33 without specifying it in the gcc33, symbol names and
address-only symbol information are added during assembly.

6.6.1 Source Information
The following three debug pseudo-instructions are output in order for the C source to be displayed in the
debugger.

1) file "<path_name>"
This indicates the beginning of afile. It isinserted at the start position of the file. <path_name> is the file's
path name.

2) .endfile
Thisindicates the end of afile. It isinserted at the end of thefile.

3) loc <line_no>
This indicates the line information of the source file. It is inserted at the beginning of the assembly code
corresponding to each C source line. <line_no> is the source's line number.

6.6.2 Symbol Information
Information on all functions and variables are output as a .def pseudo-instruction. The following shows the format
of this .def pseudo-instruction.

General format: .def <symbol>, <parameter>, [<parameter>,,] endef

The contents of the .def pseudo-instruction thus output are shown below for each type of symbol.

Automatic variable, structure, union, or enum-type member, argument
.def <sym>, val <expr1>, scl <expr2>, type <expr 3>, endef
<sym> Symbol name in the C source (variable name/member name)
<exprl> Automatic variable/argument (stack): Offset from the stack pointer (decimal)
Automatic variable/argument (register): Register number (decimal)
Structure or union member: Offset from the beginning of structure or union (decimal)
enum-type member: Value indicating a member (decimal)
<expr2> Storage class of <sym> (decimal)
<expr3> Datatype of <sym> (hex)
This pseudo-instruction indicates that <sym> is an automatic variable or a structure, union or enum-type
member.

88 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

Static variable, global variable, function
.def <syml>, val <sym2>, scl <expr1>, type <expr2>, endef
<syml> Symbol namein the C source (variable name/member name)
<sym2> Relocatable symbol name corresponding to <sym1>
<exprl> Storage class of <sym2> (decimal)
<expr2> Datatype of <sym2> (hex)
This pseudo-instruction indicates that <sym2> is a function, static variable, or globa variable that
corresponds to the C source's variable name <sym1>.

Tag declaration of structure, union or enum type (start)
.def <sym>, scl <expr1>, type <expr2>, size <expr 3>, endef
<sym> Tag name of structure, union or enum type in the C source
<exprl> Storage class of <sym> (decimal)
<expr2> Datatype of <sym> (hex)
<expr3> Datasize of <sym> (decimal)
This pseudo-instruction indicates that the declared tag name is the structure, union or enum type of <sym>,
and that member information exists in the next or later .def pseudo-instruction.

Bit field member (structure or union member)

.def <sym>, val <expr1>, scl <expr2>, type <expr3>, size <expr4>, endef
<sym> Bit field member name
<exprl> Bit offset from the beginning of structure or union (decimal)
<expr2> Storage class of <sym> (decimal)
<expr3> Datatype of <sym> (hex)
<exprd> Bit size of <sym> (decimal)

This pseudo-instruction indicates that <sym> is a bit field member.

Tag declaration of structure, union, or enum type (end)
.def <syml>, val <exprl1>, scl <expr2>, tag <sym2>, size <expr 3>, endef
<syml,2> Tag name of structure, union or enum typein the C source
<exprl> Datasize of <sym1> (decimal)
<expr2> 102 (fixed)
<expr3> Datasize of <sym1> (decimal)
This pseudo-instruction indicates that the declared tag name is the structure, union or enum type of <sym1>,
and that the member information is ended in the immediately preceding .def pseudo-instruction.

Structure, union or enum-type variable

(automatic variable, argument, structure or union member)

.def <syml1>, val <expr1>, scl <expr2>, tag <sym2>, size <expr3>, type <expr4>, endef
<syml> Symbol namein the C source (variable name/member name)
<sym2> Tag name of the structure, union or enum-type variable indicated by <sym1>
<exprl> Automatic variable/argument: Offset from the stack pointer (decimal)

Structure or union member: Offset from the beginning of structure or union (decimal)

<expr2> Storage class of <sym1> (decimal)
<expr3> Datasize of structure, union or enum type <sym2> (decimal)
<exprd> Datatype of <syml1> (hex)

This pseudo-instruction indicates that <sym1> is the structure, union or enum-type data of structure/union

automatic variable or structure/union member of tag name <sym2>.

EOC33 FAMILY EPSON 89
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

Structure, union or enum-type variable (static variable, global variable)
.def <syml>, val <sym2>, scl <expr 1>, tag <sym3>, size <expr2>, type <expr 3>, endef

<syml>
<sym2>
<sym3>
<exprl>
<expr2>
<expr3>

Symbol namein the C source (variable name/member name)

Relocatable symbol name corresponding to <sym1>

Tag name of the structure, union or enum-type variable indicated by <sym2>
Storage class of <sym2> (decimal)

Data size of structure, union or enum type of <sym3> (decimal)

Data type of <sym2> (hex)

This pseudo-instruction indicates that <sym2> is a structure, union or enum type stetic variable or a structure
or union global variable corresponding to the C source's variable name <sym1>.

Array (automatic variable, argument, structure or union member)
.def <sym>, val <expr1>, scl <expr2>, dim <expr_list>, size <expr 3>, type <expr4>, endef

<sym>
<exprl>

<expr2>
<expr3>
<expr4>
<expr_list>

Symbol namein the C source (variable name/member name)

Automatic variable/argument: Offset from the stack pointer (decimal)

Structure or union member: Offset from the beginning of a structure or union (decimal)
Argument (passed via register): Register number where the beginning element of the array
is stored (decimal)

Storage class of <sym> (decimal)

Data size of array (decimal)

Datatype of array element (hex)

List of valuesindicating the dimension of array (decimal, 4-dimension at maximum)
Example: intarray[2][3] > dim23

This pseudo-instruction indicates that <sym> is the array data of an automatic array variable or a structure or

union member.

Array (static variable, global variable)
.def <syml>, val <sym2>, scl <expr 1>, dim <expr_list>, size <expr2>, type <expr 3>, endef

<syml>
<sym2>
<exprl>
<expr2>
<expr3>
<expr_list>

Symbol name in the C source (variable name/member name)

Relocatable symbol name corresponding to <sym1>

Storage class of <sym2> (decimal)

Datasize of array (decimal)

Data type of array element (hex)

List of valuesindicating the array dimension (decimal, 4-dimension maximum)

This pseudo-instruction indicates that <sym2> is a static array or a globa array variable that corresponds to
the C source's variable name <sym1>.

Structure, union or enum-type array (automatic variable, structure or union member)
def <syml>,val <expr1>,scl <expr2>.tag <sym2>,dim <expr_list>,size <expr3>,type <expr4>,endef

<syml>
<sym2>
<exprl>

<expr2>
<expr3>
<expr4>
<expr_list>

Symbol name in the C source (variable name/member name)

Tag name of the structure, union or enum type indicated by <symi1>

Automatic variable/argument: Offset from the stack pointer (decimal)

Structure or union member: Offset from the beginning of the structure or union (decimal)
Storage class of <sym1> (decimal)

Data size of the structure, union or enum-type array of <sym2> (decimal)

Datatype of the array element of <sym1> (hex)

List of valuesindicating the array dimension (decimal, 4-dimension maximum)

This pseudo-instruction indicates that <sym1> is the structure, union or enum-type array data of tag name

<symz2>.

90

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

Structure, union or enum-type array (static variable, global variable)
.def <syml>val <sym2> scl <expr1>tag <sym3>,dim <expr_list>,size <expr2>,type <expr 3>,endef
<syml> Symbol namein the C source (variable name/member name)
<sym2> Relocatable symbol name corresponding to <sym1>
<sym3> Tag name of the structure, union or enum-type variable indicated by <sym2>
<exprl> Storage class of <sym2> (decimal)
<expr2> Datasize of the structure, union, or enum type array of <sym3> (decimal)
<expr3> Datatype of the array element of <sym2> (hex)
<expr_list> List of valuesindicating the array dimension (decimal, 4-dimension at maximum)
This pseudo-instruction indicates that <sym2> is a static array or a globa array variable corresponding to the
C source's variable name <sym1>.

typedef (when using standard type)
.def <sym>, scl <expr1>, type <expr2>, endef
<sym> Name of datatype newly defined by typedef
<exprl> Storage classof the defined data type (decimal)
<expr2> Origina datatype for the newly defined data type (hex)
This pseudo-instruction indicates that <sym> has been defined as a new data type by typedef.

typedef (when using a nonstandard type)

.def <syml>, scl <exprl>, tag <sym2>, size <expr2>, type <expr 3>, endef
<syml> Name of datatype newly defined by typedef
<sym2> Tag name of original structure, union or enum type for the newly defined data type
<exprl> Storage class of the defined data type (decimal)
<expr2> Datasize of structure, union or enum type of <sym2> (decimal)
<expr3> Datatype of structure, union or enum type of <sym2> (hex)

This pseudo-instruction indicates that <sym1> has been defined as a new data type by typedef.

User-defined label
.def <syml1>, val <sym2>, scl <expr1>, type <expr2>, endef
<syml> User-defined label name
<sym2> Local label name corresponding to the user-defined label name
<exprl> Storage class of user-defined label name (decimal)
<expr2> Datatype of user-defined label name (hex)

This pseudo-instruction indicates that <sym1> is a user-defined label name corresponding to the local label
<sym2> generated by the gcc33.

Beginning and end of function or block
.def <sym>, scl <expr>, type 0x0, endef
<sym> "ent": Beginning of function
"end": End of function
"begin": Beginning of block
"bend": End of block
<expr> 101 Beginning of function
111 End of function
100: Beginning of block
110: End of block
This pseudo-instruction indicates that the current position is the beginning or end of afunction or block.

EOC33 FAMILY EPSON 91
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

Values representing storage classes and data types

The vaues representing storage classes and data types are defined as follows:

Values of storage classes (scl)
1 Automatic variable

2 Globa symbol (function/variable)
3 Local symbol (function/variable)
4 Register variable

6 User-defined label

8 Structure member

9 Argument (passed via stack)

10 Structure tag

11 Union member

12 Union tag

13 Type defined by typedef

15 Enum-type tag

16 Enum-type member

17 Argument (passed viaregister)

18 Bit field

100 Start position of block (begin)
101 Start position of function (ent)
102 End of structure, union or enum type definition
110 End position of block (bend)

111 End position of function (end)

Values of data types (type)

A B

0x0 User-defined label 0x0 Any type other than pointer, function or array
0x1 void Ox1 Pointer
0x2 char 0x2 Function
0x3 short 0x3 Array
0x4 int

0x5 long

0x6 float

0x7 double

0x8 struct

0x9 union

OXA enum

0xB Enum member
0xC unsigned char
0xD unsigned short
OxE unsigned int

OxF unsigned long

The vaues of data types are calculated using the equation below:
A+ (B(1)<<4)+(B(2)<<6)..+(B(N)<<(2+2* N)

For example, afunction that returns a pointer to a structure takes on the following value:

0x8 + (0x2 << 4) + (0x1 << 6) = 0x68

92 EPSON

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 6: C COMPILER

6.7 Functions of gcc33 and Usage Precautions

* Thecalloc function cannot be used in this compiler.

« For other details about the gcc, refer to the documents for the gec.

The documents can be acquired from the GNU mirror sites located in various places around the world through
Internet, etc.

EOC33 FAMILY EPSON

93
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 7: EMULATION LIBRARY

Chapter 7 Emulation Library

This chapter explains the emulation library of the EOC33 Family C Compiler Package, including floating-point
number and integral remainder calculating functions.

7.1 Overview

The EOC33 Family C Compiler Package contains a floating-point calculation library (fp.lib) that supports the
arithmetic operation, comparison, and type conversion of single-precision (32-bit) and double-precision (64-hit)
floating-point numbers which conforms to IEEE format, and an integral remainder calculation library (idiv.lib)
that supports the remainder calculation of integers.

The C Compiler gcc33 calls up functions from these libraries when a floating-point number or integral remainder
caculation is performed.

Since library functions exchange data via a designated genera-purpose register, they can be caled from an
assembly source.

To use emulation library functions, specify fp.lib and idiv.lib as libraries during linkage. Be sure to specify these
librariesin the order of fp.lib and idiv.lib.

All emulation library functions have been created and tuned by an assembly source.

7.2 Floating-point Calculation Library (fp.lib)

7.2.1 Function List
Table 7.2.1.1 below lists the floating-point caculation library (fp.lib) functions.

Table 7.2.1.1 Floating-point calculation library (fp.lib) functions

Classification Function name Functionality
Double-precision |__adddf3 Addition (%r11, %r10) < (%r13, %r12) + (%r15, %r14)
floating-point __subdf3 Subtraction (%r11, %r10) « (%r13, %r12) - (%r15, %rl4)
calculation __muldf3 Multiplication (%r11, %r10) « (%r13, %r12) * (%r15, %rl4)
__divdf3 Division (%r11, %r10) « (%r13, %r12) / (%rl5, %rl4)
negdf2 Sign inversion (%r11, %rl0) « -(%r13, %rl2)
Single-precision | __addsf3 Addition %r10 « %r12 + %rl13
floating-point __subsf3 Subtraction %r10 « %r12 - %r13
calculation __mulsf3 Multiplication %r10 < %r12 * %rl3
__divsf3 Division %r10 « %r12 / %rl3
__negsf2 Sign inversion %r10 « -%r12
Type conversion | __ fixunsdfsi double — unsigned int %r10 « (unsigned int) (%r13, %r12)
__fixdfsi double — int %r10 « (int) (%r13, %rl12)
__ floatsidf int — double (%r11, %r10) « (double) %r12
__ fixunssfsi float — unsigned int %r10 « (unsigned int) %r12
__fixsfsi float — int %r10 « (int) %r12
__floatsisf int — float %r10 « (float) %r12
__truncdfsf2 | double — float %r10 « (float) (%r13, %r12)
__extendsfdf2 | float — double (%r11, %r10) < (double) %r12
Floating-point __fempd Comparison of double type | %psr change <« (%r13, %r12) - (%r15, %r14)
comparison __femps Comparison of float type %psr change « %r12 - %13

o |f the operation resulted in an overflow or underflow, infinity or negative infinity (see next section) is returned.

e The comparison function changes the C, V, Z or N flag of the PSR depending on the result of opl - op2, as
shown below. Other flags are not changed.

Comparisonresult | C | V [Z | N
opl > op2 0 0 0 0
opl = op2 o|lo|1]o0
opl < op2 1 lofo]1
¢ During type conversion, values are rounded.
94 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 7: EMULATION LIBRARY

7.2.2 Floating-point Format

The C Compiler gce33 supports the float type (single-precision, 32 bit) and the double type (double-precision, 64
bit) floating-point numbers conforming to | EEE standards.

The following shows the internal format of floating-point numbers.

Format of double-precision floating-point number
The real number of the double type consists of 64 bits, as shown below.
63 62 52 51 0
| S | Exponent part | Fixed-point part
Bit 63: Sign bit (1 bit)
Bits 62-52: Exponent part (11 bits)
Bits51-0: Fixed-point part (52 bits)

When this type of value is stored in a register, it occupies two registers. For example, the result of a
floating-point caculation is stored in the R11 and R10 registers.

R11 register: Sign bit, exponent part, and 20 high-order bits of fixed-point part (51:32)

R10 register: 32 low-order hits of fixed-point part (31:0)

The following shows the relationship of the effective range, floating-point representation, and internal data of

the double type.
+0: 0. O0e+0 0x00000000 00000000
-0: -0. 0e+0 0x80000000 00000000

Maximum normaized number: 1. 79769e+308 Ox7fefffff ffffffff
Minimum normalized number: 2. 22507e-308 0x00100000 00000000
Maximum unnormalized number: 2. 22507¢-308 0x000fffff fFFfffff
Minimum unnormalized number: 4. 94065e-324 0x00000000 00000001
Infinity: 0x7ff00000 00000000
Negative infinity: 0xfff00000 00000000

Vaues Ox7ff00000 00000001 to Ox7fffffff ffffffff and OxfffOO00O0 00000001 to Oxffffffff ffffffff are not
recognized as numeric values.

Format of single-precision floating-point number
The real number of the float type consists of 32 hits, as shown below.
31 30 2322 0
| S | Exponent part | Fixed-point part
Bit 31: Sign bit (1 bit)
Bits 30-23: Exponent part (8 bits)
Bits22-0: Fixed-point part (23 bits)

The float type data can be stored in one register.

The following shows the relationship of the effective range, floating-point representation, and internal data of
thefloat type.

+0: 0. 0e+0f 0x00000000
-0 -0. 0e+0f 0x80000000
Maximum normalized number: 3. 40282e+38f OX7fTfffff
Minimum normalized number: 1. 17549¢-38f 0x00800000
Maximum unnormalized number: 1. 17549¢-38f 0x007fffff
Minimum unnormalized number: 1. 40129e-45f 0x00000001
Infinity: 0x7f800000
Negative infinity: 0xff800000

Values 0x7f800001 to Ox7fffffff and Oxff800001 to Oxffffffff are not recognized as numeric values.
Note

The floating-point numbers in the gcc33 differ from the IEEE-based FPU in precision and functionality,
including the manner in which infinity is handled.

EOC33 FAMILY EPSON 95
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 7: EMULATION LIBRARY

7.3 Integral Remainder Calculation Library (idiv.lib)
Table 7.3.1 below lists the integral remainder calculation library (idiv.lib) functions.

Table 7.3.1 Integral remainder calculation library (idiv.lib) functions

Classification Function name Functionality
Integral division | __ divsi3 Signed integral division %r10 « %r12 / %rl13
udivsi3 Unsigned integral division %r10 < %r12 / %rl3
Remainder __modsi3 Signed modulo arithmetic %r10 « %r12 % %r13
umodsi3 Unsigned modulo arithmetic | %r10 < %r12 % %r13

e These functions do not check the value of the input register. For this reason, if the R13 register isset to 0, a
zero-division exception occursin the divOs or divOu instruction in the function.

7.4 Floating-point Calculation Library (fpp.lib)

The fpp.lib library in this package consists of the same functions as the fp.lib floating-point caculation library.
However, the following functionsin the fpp.lib have higher operating accuracy than those of the fp.lib.
__adddf3, __subdf3, __muldf3, __divdf3

The functions in the fp.lib discard the digits under the effective range of the fixed-point part, while these four
functions in the fpp.lib calculate the under part and reflect the rounded off results to the LSB of the fixed-point
part.

They are effective when a higher operating accuracy isrequired in arithmetic functions such as sin, cos and tan.

96 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 8: ANSI LIBRARY

Chapter 8 ANSI Library

This chapter explainsthe ANSI library included in the EOC33 Family C Compiler Package.

8.1 Overview

The EOC33 Family C Compiler Package contains an ANSI library.

Each function in this library has ANS|-standard functionality. However, some file-related functions are dummy
functions due to embedded microcomputer specifications.

There are five types of ANSI library files, which areinstalled in the lib directory.

io.lib lib.lib math.lib ctype.lib string.lib

In addition, the following header files which contain definitions of each function are installed in the include
directory.
stdio.h stdlib.h time.h math.h errno.h float.h limits.h ctype.h string.h stdarg.h

Refer to the samplefile located in the "cc33\sample\ansilib\" directory for how to use the library functions..
All source codes are located in the "cc33\utility\lib_src\" directory. Refer to the source for more information and
modify them if needed.

Note: When specifying library files including emulation library files (fp.lib, idiv.lib) during linkage,
please follow the specification priority shown below:
io.lib lib.lib math.lib ctype.lib string.lib fp.lib idiv.lib

The file io.lib contains functions that call the lib.lib or math.lib functions. Also, lib.lib calls the
math.lib functions. Reference between library files is only valid for functions in the library file that
is specified later. Therefore, if library files are arranged in a different order, a warning may be
generated during linkage.

EOC33 FAMILY EPSON 97
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 8: ANSI LIBRARY

8.2 ANSI Library Function List

The following explains the meaning of the entries in the Reentrant field:

O The function is reentrant.
X The function is not reentrant.

— Dummy function.(Y ou need to modify it for your system.)
A The function isnot reentrant. (Thisrefersto the global parameters, and it calls the dummy function. It can
be used as a reentrant function if there is no change in the globa parameters and your created
read(),write()wrote are reentrant functions.)

8.2.1

Input/Output Functions (io.lib)

The table below lists the input/output functions included inio.lib.

Table 8.2.1.1

Header file: stdio.h

Input/output functions

Function Functionality Reentrant Notes

FILE *fopen(char *filename, char *mode); | Dummy —

FILE *freopen(char *flename, char | Dummy -

*mode, FILE *stream);

int fclose(FILE *stream); Dummy —

int fflush(FILE *stream); Dummy —

int fseek(FILE *stream, long int offset, int | Dummy -

orign);

long int ftell(FILE *stream); Dummy —

void rewind(FILE *stream); Dummy —

int fgetpos(FILE *stream, fpos_t *ptr); Dummy —

int fsetpos(FILE *stream, fpos_t *ptr); Dummy —

size_t fread(void *ptr, size_t size, size_t | Input array Refer to global parameter stdin,_iob,

count, FILE *stream); element from A call read function
stdin.

size_t fwrite(void *ptr, size_t size, size_t [Output array Refer to global parameter

count, FILE *stream); element to A stdout,stderr,_iob, call write function.
stdout.

int fgetc(FILE *stream); Input one Refer to global parameter stdin,_iob,
cha}racter from A call read function.
stdin.

int getc(FILE *stream); Input one Refer to global parameter stdin,_iob,
chgracter from A call read function.
stdin.

int getchar(); Input one Refer to global parameter stdin, iob,
cha_racter from A call read function.
stdin.

int ungetc(int ¢, FILE *stream); Push one Refer to global parameter
gharacter back to X stdin,stdout,stderr,_iob, returned
input buffer. .

value overwrite.

char *fgets(char *s, int n, FILE *stream); Input character Refer to global parameter stdin,_iob,
string from stdin. o call read function.

char *gets(char *s); Input character A Refer to global parameter stdin,_iob,
string from stdin. call read function.

int fputc(int c, FILE *stream); Output one Refer to global parameter
character to A stdout,stderr,_iob, call write function.
stdout.

int putc(int c, FILE *stream); Output one Refer to global parameter
character to A stdout,stderr,_iob, call write function.
stdout.

98 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 8: ANSI LIBRARY

int putchar(int c);

Output one
character to
stdout.

Refer to global parameter
stdout,stderr,_iob, call write function.

int fputs(char *s, FILE *stream);

Output character
string to stdout.

Refer to global parameter
stdout,stderr,_iob, call write function.

int puts(char *s);

Output character
string to stdout.

Refer to global parameter
stdout,stderr,_iob, call write function.

int remove(char *filename); Dummy
int rename(char *oldname, char Dummy
*newname);

void setbuf(FILE *stream, char *buf); Dummy
int setvbuf(FILE *stream, char *buf, int | Dummy
type, size_t size);

FILE *tmpfile(); Dummy
char *tmpnam(char *buf); Dummy
int feof(FILE *stream); Dummy
int ferror(FILE *stream); Dummy
void clearerr(FILE *stream); Dummy

void perror(char *s);

Output error
information to
stdout.

Refer to global parameter
stdout,stderr,_iob, change errno call
write function.

int fscanf(FILE *stream, char *format, ...);

Input from stdin

Refer to global parameter stdout,_iob,

with format change errno call read function.
specified.

int scanf(char *format, ...); Input from stdin Refer to global parameter stdout,_iob,
with format change errno call read function.
specified.

int sscanf(char *s, char *format, ...); Input from Change global parameter errno.
character string
with format
specified.

int fprintf(FILE *stream, char *format, ...); Output to stdout Refer to global parameter
with format stdout,stderr,_iob, call write function.
specified.

int printf(char *format, ...); Output to stdout Refer to global parameter
with format stdout,stderr,_iob, call write function.
specified.

int sprintf(char *s, char *format, ...); Output to array
with format
specified.

int vfprintf(FILE *stream, char *format, | Output Refer to global parameter

va_list arg); conversion result stdout,stderr,_iob, call write function.
to stdout. ~

int vprintf(FILE *stream, char *format, | Output Refer to global parameter

va_list arg); conversion result stdout,stderr,_iob, call write function.
to stdout. ~

int vsprintf(char *s, char *format, va_list | Output

arg);

conversion result
to array.

Note: The file system is disabled; stdin and stdout are enabled.

When using stdin, you need the read function. When using stdout, you need the write function.
Refer to 8.4 for more information.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

99

CHAPTER 8: ANSI LIBRARY

8.2.2 Utility Functions (lib.lib)
The table below lists the utility functionsincluded in lib.lib.

Table 8.2.2.1 Utility functions
Header file: stdlib.h

Function Functionality Reentrant Notes
void *malloc(size_t size); Allocate area. Change global parameter errno,
X
ucNxtAlcP,ucBefAlcP,end_alloc.
void *calloc(size_t elt_count, size_t Allocate array area. « Invalid for call from memory allocate.
elt_size);
void free(void *ptr); Clear area. X Invalid for call from memory allocate.
void *realloc(void *ptr, size_t size); Change area size. X Invalid for call from memory allocate.
int system(char *command); Dummy - Invalid for call from memory allocate.
void exit(int status); Terminate program o Refer to exit, terminates on the side of
normally. called later.
void abort(); Terminate program o Refer to exit, terminates on the side of
abnormally. called later.
int atexit(void (*func)(void)); Dummy —
char *getenv(char *str); Dummy —
void *bsearch(void *key, void *base, Binary search.
size_t count, size_t size, int O
(*compare)(void *, void *));
void gsort(void *base, size_t count, Quick sort.
size_t size, int (*compare)(void *, O
void *));
int abs(int x); Return absolute value o
(int type).
long int labs(long int x); Return absolute value o
(long type).
div_t div(int n, int d); Divide int type. X Change global parameter errno.
Idiv_t Idiv(int n, int d); Divide long type. X Change global parameter errno.
int rand(); Return pseudo-random « Change global parameter seed.
number.
void srand(unsigned int seed); Set seed of % Change global parameter seed.
pseudo-random number.
long int atol(char *str); Convert character string « Change global parameter errno.
into long type.
int atoi(char *str); Convert character string « Change global parameter errno.
into int type.
double atof(char *str); Convert character string « Change global parameter errno.
into double type.
double strtod(char *str, char **ptr); Convert character string « Change global parameter errno.
into double type.
long int strtol(char *str, char **ptr, int | Convert character string « Change global parameter errno.
base) into long type.
unsigned long int strtoul(char *str, Convert character string y Change global parameter errno.
*k) i .
char **ptr, int base); into unsigned long type.

Note: Memory allocation and release are simply implemented as follows:
If you perform memory allocation, it takes the necessary size in ucNxtAlcp.
If the area is same as the one taken before, the memory is freed; otherwise, nothing is
performed.
If it reaches end_alloc, no more allocation is performed.
Refer to "cc33\utility\lib_src\" for more information, and modify them if needed.

100 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

8.2.3 Date and Time Functions (lib.lib)
The table below lists the date and time functionsincluded in lib.lib.

Header file: time.h

Table 8.2.3.1 Date and time functions

CHAPTER 8: ANSI LIBRARY

Function Functionality Reentrant Notes

clock_t clock(); Dummy -

char *asctime(struct tm *ts); Dummy -

char *ctime(time_t *timeptr); Dummy -

double difftime(time_t ti, time_t t2); Dummy -

struct tm *gmtime(time_t *t); Convert calendar Change static parameter.
time to standard X
time.

struct tm *localtime(time_t *t); Dummy -

time_t mktime(struct tm *tmptr); Convert standard Change static parameter.
time to calendar X
time.

time_t time(time_t *tptr); Return current A Refer to global parameter

calendar time.

gm_sec

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

EPSON

101

CHAPTER 8: ANSI LIBRARY

8.2.4 Mathematical Functions (math.lib)

The table below lists the mathematical functions included in math.lib.

Table 8.2.4.1 Mathematical functions
Header files: math.h, errno.h, float.h, limits.h

Function Functionality Reentrant Notes
double fabs(double x); Return absolute value (double type). O

double ceil(double x); Round up double-type decimal part. Change global parameter errno,
* destruct ALR,AHR.

double floor(double x); Round down double-type decimal Change global parameter errmo,
part. 2 destruct ALR,AHR.

double fmod(double x, | Calculate double-type remainder. Change global parameter errno,
double y); ~ destruct ALR,AHR.

double exp(double x); Exponentiate (€7). » Change global parameter errno,
destruct ALR,AHR.

double log(double x); Calculate natural logarithm. Change global parameter errno,
x destruct ALR,AHR.

double log10(double x); Calculate common logarithm. Change global parameter errno,
x destruct ALR,AHR.

double frexp(double X, int [Return mantissa and exponent of Change global parameter errmo,
*nptr); floating-point number. x destruct ALR,AHR.

double Idexp(double x, int n); | Return floating-point number from Change global parameter errmo,
mantissa and exponent. % destruct ALR,AHR.

double modf(double X, [Return integer and decimal parts of Change global parameter errmo,
double *nptr); floating-point number. % destruct ALR,AHR.

double pow(double x, double | Calculate x'. Change global parameter errno,
v); 3 destruct ALR,AHR.

double sqrt(double x); Calculate square root. Change global parameter errmo,
* destruct ALR,AHR.

double sin(double x); Calculate sine. Change global parameter errno,
~ destruct ALR,AHR.

double cos(double x); Calculate cosine. Change global parameter errno,
~ destruct ALR,AHR.

double tan(double x); Calculate tangent. Change global parameter errno,
x destruct ALR,AHR.

double asin(double x); Calculate arcsine. Change global parameter errno,
x destruct ALR,AHR.

double acos(double x); Calculate arccosine. Change global parameter errno,
x destruct ALR,AHR.
double atan(double x); Calculate arctangent. X Destruct ALR,AHR.

double atan2(double 'y, | Calculate arctangent of y/x. Change global parameter errno,
double x); ~ destruct ALR,AHR.

double sinh(double x); Calculate hyperbolic sine. Change global parameter errno,
x destruct ALR,AHR.

double cosh(double x); Calculate hyperbolic cosine. Change global parameter errno,
x destruct ALR,AHR.
double tanh(double x); Calculate hyperbolic tangent. X Destruct ALR,AHR.

Note:

The operation is faster in Ver.3 than in Ver.1 and Ver.2.

102

EPSON

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 8: ANSI LIBRARY

8.2.5 Character Functions (string.lib)
The table below lists the character functionsincluded in string.lib.

Header file: string.h

Table 8.2.5.1 Character functions

Function Functionality Reentramj Notes
char *memchr(char *s, int ¢, int n); Return specified character position in the storage o
area.
int memcmp(char *s1, char *s2, int n); Compare storage areas. O
char *memcpy(char *s1, char *s2, int n); Copy the storage area. O
char *memmove(char *s1, char *s2, intn); [Copy the storage area (overlapping allowed). e
char *memset(char *s, int c, int n); Set character in the storage area. O
char *strcat(char *s1, char *s2); Concatenate character strings. e
char *strchr(char *s, int c); Return specified character position found first in o
the character string.
int strcmp(char *s1, char *s2); Compare character strings. e)
char *strcpy(char *s1, char *s2); Copy character string. O
Isize_t *strcspn(char *s1, char *s2); Return number of characters from the beginning
of the character string until the specified character O
lappears (multiple choices).
char *strerror(int code); Return error message character string. e
Isize_t strlen(char *s); Return length of character string. e
size_t strncat(char *s1, char *s2, int n); Concatenate character strings (number of o
characters specified).
int strnemp(char *s1, char *s2, int n); Compare character strings (number of characters o
Ispecified).
char *strncpy(char *s1, char *s2, int n); Copy the character string (number of characters o
specified).
char *strpbrk(char *s1, char *s2); Return specified character position (multiple o
choices) found first in the character string.
char *strrchr(char *s, int c); Return specified character position found last in o
the character string.
Isize_t strspn(char *s1, char *s2); Return number of characters from the beginning
of the character string until the non-specified O
character appears (multiple choices).
char *strstr(char *s1, char *s2); Return position where the specified character o
Istring appeared first.
char *strtok(char *s1, char *s2); Divide the character string into tokens. y Change static
parameter.
= All functions except strerror have been created and tuned by an assembly source.
EOC33 FAMILY EPSON 103

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 8: ANSI LIBRARY

8.2.6 Character Type Determination/Conversion Functions (ctype.lib)

The table below lists the char;

Table 8.2.6.1 Character type determination/conversion functions

Header file: ctype.h

acter functionsincluded in ctypelib.

Function Functionality Reentrant
int isalnum(char c); Determine character type (decimal or alphabet). @)
int isalpha(char c); Determine character type (alphabet). O
int iscntrl(char c); Determine character type (control character). O
int isdigit(char c); Determine character type (decimal). O
int isgraph(char c); Determine character type (graphic character). @]
int islower(char c); Determine character type (lowercase alphabet). @)
int isprint(char c); Determine character type (printable character). @)
int ispunct(char c); Determine character type (delimiter). @)
int isspace(char c); Determine character type (null character). O
int isupper(char c); Determine character type (uppercase alphabet). O
int isxdigit(char c); Determine character type (hexadecimal). @]
int tolower(char c); Convert character type (uppercase alphabet — lowercase). O
int toupper(char c); Convert character type (lowercase alphabet — uppercase). @)

8.2.7 Variable Argument Macros (stdarg.h)
The table below lists the variable argument macros defined in stdarg.h.

Header file: stdarg.h

Table 8.2.7.1 Variable argument macros

Macro

Functionality

void va_start(va_list ap, type

lastarg); Initialize the variable argument group.

type va_arg(va_list ap, type);

Return the actual argument.

void va_end(va_list ap);

Return normally from the variable argument function.

104

EPSON

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 8: ANSI LIBRARY

8.3 Declaring and Initializing Global Variables

The ANSI library functions reference the global variables listed in Table 8.3.1. Since these variables are not
defined in the library, be sure to declare and initialize them before calling a library function in the C source

program.

Table 8.3.1 Global variables required of declaration

File structure data for standard
input/output streams

(N=0-2)

_iob[0]: Input data for stdin

_iob[1]: Output data for stdout
iob[2]: Output data for stderr

Global variable Initial setting Related header file/function
FILE _iob[FOPEN_MAX +1]; _iob[N]._flg = _UGETN; stdio.h, smcvals.h
FOPEN_MAX=3, _iob[N]._buf = 0; fgets, fread, fscanf, getc, getchar,
Defined in stdio.h _iob[N]._fd = N; gets, scanf, ungetc, perror, fprintf,

fputs, fwrite, printf, putc, putchar,
puts, vfprintf, vprintf

FILE *stdin;
Pointer to standard input/output file
structure data _iob[0]

stdin = &_iob[0];

stdio.h
fgets, fread, fscanf, getc, getchar,
gets, scanf, ungetc

FILE *stdout;
Pointer to standard input/output file
structure data _iob[1]

stdout = &_iob[1];

stdio.h
fprintf, fputs, fwrite, printf, putc,
putchar, puts, viprintf, vprintf

FILE *stderr;
Pointer to standard input/output file
structure data _iob[2]

stderr = &_iob[2];

stdio.h
fprintf, fputs, fwrite, printf, perror,
putc, putchar, puts, vfprintf, vprintf

int errno;
Variable to store error number

ermo = 0;

errno.h

fopen, freopen, fseek, fsetpos,
perror, remove, rename, tmpfile,
tmpnam, fprintf, printf, sprintf,
vprintf, vfprintf, fscanf, scanf,
sscanf

atof, atoi, calloc, div, Idiv, malloc,
realloc, strtod, strtol, strtoul
acos, asin, atan2, ceil, cos, cosh,
exp, fabs, floor, fmod, frexp, Idexp,
log, log10, modf, pow, sin, sinh,
sqrt, tan

unsigned int seed;
Variable to store seed of random
number

seed = 1;

stdlib.h
rand, srand

unsigned char *ucNxtAlcP;
Pointer that indicates the heap area
allocated next

ucNxtAlcP = (unsigned char *)

stdlib.h
calloc, free, malloc, realloc

unsigned char *ucBefAlcP;
Pointer that indicates the beginning of
previously allocated heap area

ucBefAlcP = (unsigned char *) NULL;

stdlib.h
calloc, free, malloc, realloc

unsigned char *end_alloc;
Pointer that indicates the end address of
heap area

end_alloc = (unsigned char *)

stdlib.h
calloc, malloc, realloc

time_t gm_sec;

Elapsed time of timer function in
seconds from 0:00:00 on January 1,
1970

gm_sec =-1;

time.h
time

* For an example of a source file that declares and initializes these global variables, refer to lib.c in the

sample\ansilib\ directory.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

105

CHAPTER 8: ANSI LIBRARY

8.4 Lower-level Functions

The following three functions (read, write, and _exit) are the lower-level functions called by a library function.
Since these functions depend on hardware, they are not provided in the library. If these functions are desired,
define them in the user program.

For an example of a C sourcefile that defines these functions, refer to sys.c in the sample\ansilib\ directory.

8.4.1 "read" Function

Contents of read function
Format: int read(int fd, char *buf, int nbytes);

Argument: int fd; File descriptor denoting input
When cdled from alibrary function, O (stdin) is passed.
char *buf; Pointer to the buffer that stores input data
int nbytes; Number of bytes transferred

Functionality: ~ This function reads up to nbytes of data from the user-defined input buffer, and stores it in
the buffer indicated by buf.

Returned value: Number of bytes actually read from the input buffer
If theinput buffer is empty (EOF) or nbytes =0, 0 is returned.
If an error occurs, -1 is returned.

Library functionsthat call the read function:
Direct cal: fread, getc, _doscan (_doscan is a scanf-seriesinternd function)
Indirect call: fgetc, fgets, getchar, gets (calls getc)
scanf, fscanf, sscanf (calls _doscan)

Definition of input buffer

Format: unsigned char READ_BUF[65]; (Variable nameisarbitrary; sizeisfixed to 65 bytes)
unsigned char READ_EOF;

Buffer contents. The size of the input data (1 to max. 64) is stored at the beginning of the buffer
(READ_BUF{[Q]). 0 denotes EOF.
Theinput datais stored in READ_BUF[1], and the following locations.
READ_EOF stores the status that indicates whether EOF is reached.

Precautions on using a simulated 1/0
When using the debugger's simulated 1/0, define in the read function the global label "READ_FLASH" that
isrequired for the debugger to update the input buffer, then create the function so that new data will be read
into the input buffer at that position. (For details about the simulated 1/0 function, refer to the chapter where
the debugger is discussed.)

106 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 8: ANSI LIBRARY

8.4.2 "write" Function

Contents of write function
Format: int write(int fd, char *buf, int nbytes);

Argument: int fd; File descriptor denoting output
When called from alibrary function, 1 (stdout) or 2 (stderr) is passed.
char *buf; Pointer to the buffer that stores output data
int nbytes; Number of transferred bytes

Functionality: ~ The data stored in the buffer indicated by buf is written as much as indicated by nbytes to
the user-defined output buffer.

Returned value: Number of bytes actually written to the output buffer
If datais written normally, nbytes is returned.
If awrite error occurs, a va ue other than nbytes is returned.

Library function that calls the write function:
Direct call: fwrite, putc, _doprint (_doprint is printf-seriesinterna function)
Indirect call: fputc, fputs, putchar, puts (calls putcc)
printf, fprintf, sprintf, vprintf, vfprintf (calls _doprint)
perror (calls fprintf)

Definition of output buffer
Format: unsigned char WRITE_BUF[65]; (Variable nameisarbitrary; sizeisfixed to 65 bytes)

Buffer content: The size of the output data (1 to max. 64) is stored at the beginning of the buffer
(WRITE_BUF[0]). 0 denotes EOF.
The output dataiis stored in WRITE_BUF[1], and the following locations.

Precautions on using simulated 1/0
When using the debugger's simulated 1/O, define in the write function the global label "WRITE_FLASH"
that is required for the debugger to update the output buffer, and create a function so that data will be output
from the output buffer at that position. (For details about the simulated 1/0 function, refer to the chapter
where the debugger is discussed.)

8.4.3 " _exit" Function

Contents of _exit function
Format: void _exit(void);

Functionality: Performs program terminating processing.
Argument/ Returned value: None

Library function that calls _exit function:
Direct cal: abort, exit

EOC33 FAMILY EPSON 107
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

Chapter 9 Preprocessor

This chapter describes the functions of the Preprocessor pp33.

9.1 Functions

The preprocessor pp33 (hereafter called "pp33") is the C compiler package's first tool to process the assembly
source file; therefore, it provides the assembler as33 with additional functions. It expands the additional function
part described in the assembly source file to mnemonics that can be assembled. The functions provided by the
pp33 are asfollows:

* Macro definition and macro invocation

o Definition of Define name

o Operators

o |nsertion of other file

¢ Conditional assembly

o Addition of debugging information for assembly source display

9.2 Input/Output Files

Assembly source file
-‘
Preprocessor
pp33

Assembly Error
source file W W file

Instruction Extender ext33
Fig. 9.2.1 Flowchart

9.2.1 |Input File

Sourcefile
File format: Text file
File name: <file name>.s (Other extensions than "'.s" can be used.)
Description: File in which the assembly source program is described. Instructions for the pp33 and

the extended instructions can be described there.

9.2.2 Output Files

Assembly sourcefile

File format: Text file
File name: <file name>.ps (The <file name> is the same as that of the input file.)
Output destination: Current directory
Description: Filein which instructions for the pp33 are expanded into an assembling format.
Error file
File format: Text file
File name: pp33.err
Output destination: Current directory
Description: File that is output when the startup option (-€) is specified, and describes the contents

which the pp33 delivers through the Standard Output (stdout), such as an error message.

108 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.3 Starting Method

9.3.1 Startup Format
General form of command line
pp33~ [<startup option>] » [<file name>]

~ denotes a space.
[] indicates the possibility to omit.

<file name>: Specify an assembly source file name including the extension (.s).

Operationson work bench
Select options and a source file, then click the [PP33] button.

In the command line, only one source file can be specified at atime.
The wb33 alows multiple files to be selected, in which case the pp33 is executed as many times as the number of
files selected.

9.3.2 Startup Options
The pp33 comes provided with the following three types of startup options:

-d <Define name>

Function: Définition of Define name
Specification on wh33: Enter in the [define] text box.
Explanation: e Works in the same manner as you describe "#define <Define name>" at top of the

source. It is an option to control the conditional assembly at the startup. However,
unlike the #define definition, it does not perform replacement in the source.

e One or more spaces are necessary between -d and the <Define name>.

o Refer to Section 9.5.2 for formats and restrictions of definable names.

e To define two or more Define names, repeat the specification of "-d <Define name>".
For the wh33, separate each <Define name> with acomma (,) as you input them.

-9

Function: Addition of debugging information

Specification on wh33: Check [debug info].

Explanation: o Creates an output file containing debugging information.
o Always specify this function when you perform the assembly source level debugging.
o Refer to Section 9.7 for debugging information.

-e

Function: Output of error files

Specification on wb33: None

Explanation: o Deélivers aso in a file (pp33.err) the contents that are output by the pp33 via the

Standard Output (stdout), such as error messages.

When entering options in the command line, you need to place one or more spaces before and after the option.
Example: c\cc33\pp33 -g -e -d TEST1 -d TEST2 tests

EOC33 FAMILY EPSON 109
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.4 Messages

The pp33 delivers its messages through the Standard Output (stdout).
If the pp33 is started up by using the wb33's [PP33] button, the message is output to "whb33.err". When execution
is completed, a message is displayed in the output window (default).

End message
The pp33 outputs only the following end message when it ends normally.

Pre Processor Completed

Usage output
If no file name was specified or an option was not specified correctly, the pp33 ends after delivering the
following message concerning the usage:

Pre Processor 33 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x
Usage:
pp33 [options] filename
Options:
-e : produce log file (pp33.err)
-g . generate debug information in output file
-d string : define string
Output:
Assembler source file for ext33 (. ps)
Example:
pp33 -e -g —d TYPET test.s

When error/warning occurs
If an error is produced, an error message will appear before the end message shows up.
Example: test.s(431): Error: Invalid Syntax.
Pre Processor Gompleted

In the case of an error, the pp33 ends without creating an output file.

If awarning isissued, awarning message will appear before the end message shows up.
Example: test.s(211): Warning: Multi define symbol.
Pre Processor Completed

In the case of awarning, the pp33 ends after creating an output file.

For details on errors and warnings, refer to Section 9.12 "Error/Warning Messages'.

110 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.5 Preprocessor Pseudo-Instructions

The principal mission of the pp33 is to expand the preprocessor pseudo-instructions, explained below, to
mnemonics that can be processed by the Assembler as33.

For clear discrimination from the assembler pseudo instructions, the preprocessor pseudo-instructions all begin
with asharp (#). Describe the instructions aways from top of thelines.

The pseudo-instructions in themselves are all in lowercase characters only. Parameters can use both uppercase and
lowercase characters, which are discriminated, respectively.

The lines of preprocessor pseudo-instructions a so follow the notation rules of statements (see Chapter 4).

9.5.1 Include Instruction (#include)

The include instruction inserts the contents of afilein any location of a source file. It results useful when the same
source is shared in common among several sourcefiles.

Instruction format

#include “<file name>"

e A drive name or path name can aswell be specified as the <file name>.
o One or more spaces are hecessary between the instruction and the "<file name>".

Sample descriptions:
#include “"sample.def"

Expansion rule
The specified file isinserted in the location where #include was described.
For sample expansions, refer to Section 9.10 " Sample Executions'.

Precautions
o Only files created in text file format can be inserted.
o Nesting islimited to maximum 2 levels. If thislimit is surpassed, an error will result.
filel.s file2.s

#include' "file2.s" Jed
: Expanded| | yinciude “file3.s”
. : Expanded

"file3.s" can beincluded in "file2.s", but "filed.s" cannot beincluded in "file3.s".
Fig. 9.5.1.1 Nesting levels of include

file3.s

#include “file4.s" |+— Error

e When adding a relative path to the file name, specify the relative path from the directory in which the
current source file exists.

EOC33 FAMILY EPSON 111
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.5.2 Define Instruction (#define)
Any substitute character string can be left defined as a Define name by the define instruction (#define), and the
details of that definition can be referred to from various parts of the program using the Define name.

Instruction format
#define <Define name> [<Substitute character string>]

<Define name>:
o Thefirst character islimited to a-z, A—Z and _.
e The second and the subsequent characters can use a-z, A—Z, 0-9and _.
o Uppercase and lowercase characters are discriminated.
e One or more spaces or tab settings are necessary between the instruction and the Define name.

<Substitute character string>:

o The usable characters are limited to a-z, A—Z, 0-9, _, % and . (period). They must not contain any
space or comma. (,).
Values, operators, mnemonics, labels, and register names aso can be specified.

e Uppercase and lowercase characters are discriminated.

e One or more spaces or tab settings are necessary between the Define name and the substitute
character string.

o The substitute character string can be omitted. In that case, NULL is defined in lieu of the substitute
character string. It can be used for the conditional assembly instruction.

Sample definitions:
#define TYPEL

#define L1 LABEL_01

#define i ldw

#define rl %r1l

#define Mrl [%r1] ...Error []and[]+ cannot be used.

Expansion rule
If a Define name defined appears in the source, the pp33 substitutes a defined character string for that Define
name.
Sample expansion:
#define gp %r8

Idw [ap], %rl ...Expanded to "ld.w [%r8], %rl".

When anumber is specified for the substitute character string, the following rule is applied:
e The pp33 converts the defined number into a signed 32-bit data and expands it as a hexadecimal
number.
o #define allows the substitute character strings to describe in an expression using operators. The
Define names that have been defined can also be used as terms of the expression.

Sample expansion:

Before expansion
#define A 0x12
#define B A*2
Idw %r2, A+B ...Expanded to "ld.w %r2, 0x36".
112 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

Precautions

The pp33 only permits back reference of a Define name. The definition needs to have been completed
before making the reference.

Once a Define name is defined, it cannot be canceled. However, redefinition can be made using a Define
name.
Example: #define XH Yoahr
#define XHigh XH
Id.w XHigh, %r1 ...Expanded to "ld.w %ahr, %r1".

When the same Define name is defined twice or more, a warning message will appear and the redefined
character string is validated.

No other characters than delimiters (space, tab, line feed, and comma) can be added before and after a
Define namein the source, unlessthey areenclosed in [] or []+. However, a symbol mask (@..) described
behind isvalid.
Examples: #define H %ah

Idw Hr,%rl ;Hr=%ahr? ..Specification likethisisinvalid.

#define L LABEL
ext L@h ...Replaced with "ext LABEL@h".

The pp33 does not check the validity of a statement following the replacement of the character string.

The pp33 handles the defined numbers as 32-bit data. If the specified number or the calculation result isa
negative vaue, it is delivered as a decimal number with a minus sign. If the value is positive, it is
delivered as a hexadecima number. Pay attention to the immediate data size, especially when it has a
minus value.
Example: #define NUM -1 ...-lishandled as Oxffffffff.

Idw %rl, NUM ..Itwill beexpanded as"ldw %r1, -1".

Idw %rl, NUMAL .1t will be expanded as"ld.w %r1, Ox3f".

EOC33 FAMILY EPSON 113
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.5.3 Macro Instructions (#macro ... #endm)

Any statement string can be left defined as a macro using the macro instruction (#macro), and the content of that
definition can be invoked from different parts of the program with the macro name. Unlike a subroutine, the part
that isinvoking amacro is replaced with the content of the definition by the pp33.

Instruction format

#macro <Macro name> [$1] [$2] . .. [,$32]
<Statement string>
#endm

<Macro name>:
e Thefirst character islimited to a-z, A—Z and _.
e The second and the subsequent characters can use a-z, A—Z, 0-9, and _.
e Uppercase and lowercase characters are discriminated.
e One or more spaces or tab settings are necessary between the instruction and the macro name.

¢ Dummy parameter symbols for macro definition. They are described when a macro to be defined
needs parameters. Not more than 32 symbols can be specified.

e No other symbols than $1 to $32 can be used. You need to begin always with $1 and to arrange
them in an ascending order ($1 — $32).

e One or more spaces or tab settings are necessary between the macro name and $1. When
describing multiple parameters, acomma (,) is necessary between one parameter and another.

<Statement string>:

¢ Thefollowing statements can be described:
- Basic instruction (mnemonic and operand)
- Extended instruction (see Instruction Extender)
- Conditional assembly instruction
- Internal branch label*
- Comments

¢ Thefollowing statements cannot be described:
- Preprocessor pseudo-instructions (excluding conditional assembly instruction)
- Assembler pseudo-instructions
- Other labels than interna branch labels
- Macro invocation

* |Internal branch label
A macro is spread over to severa locations in the source. Therefore, if you describe a label in a
macro, a double definition will result, with an error issued. So, use internal branch labels which are
only valid within amacro.
e A maximum of 64 internal branch labels can be described per macro.
e The labels should be arranged like this: $$1-$$64 in order of description. (Each macro should
begin with $$1.)
Sample definition:
#define Areg %rl
#macro ADD $1, $2

Idw Areg, $1
add Areg, $2

#ifdef DEBUG
cmp Areg, Ox1

#else
cmp Areg, 0x2

#endif
Xjrne $$1

114 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

Id.w [%r2], Ob1l
$$1:

Idw %r3, [Yor2]+

jr LABEL1
#endm

Expansion rules
When a defined macro name appears in the source, the pp33 inserts a statement string defined in that
location.
If there are actual parameters described in that process, the dummy parameters ($1-$32) will be replaced
with the actual parameters in the same order as the latter are arranged.
The internal branch labels are replaced, respectively, with __ L 0001-__19999 from top of the source in the
same order as they appear.

Sample expansion:
When the macro ADD shown above is defined:

Macro invocation
#define DEBUG

ADD 1,2

After expansion
ldw Areg,$1 ; ADD 1,2
add Areg, $2

#Hifdef DEBUG
cmp Areg, Ox1

Helse
; cmp Areg, 0x2
;#endif
xjrne __ L0001
ldw [%r2], Ob1ll
__Looo1:
Idw %r3, [%r2]+
ir LABEL1

("__L0001" denotes the case where an interna branch label is expanded for the first time in the source.)

Precautions
o The pp33 only permits back reference of a macro invocation. The definition needs to have been completed
before making the reference.

e Once adefined macro name is defined, it cannot be canceled. If the same macro name is defined twice or
more, awarning message will appear and the redefined macro is validated.

o No other characters than delimiters (space, tab, line feed, and commas) can be added before and after a
dummy parameter in a statement, unless they are enclosed in [] or []+. However, a symbol mask (@..)
described behind isvalid.

e Thesame character string as that of the #define and #define instruction cannot be used as a macro name.
o When the number of dummy parameters differs from that of actua parameters, an error will result.

e A maximum of 32 parameters and a maximum of 64 internal branch labels can be specified per macro. If
these limits are surpassed, an error will result.

o " L###" used for theinterna branch labels should not be employed as other label or symbol.

e Maximum 9999 internal branch labels can be expanded within one source file. If thislimit is exceeded, an
error will result.

EOC33 FAMILY EPSON 115
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.5.4 Conditional Assembly Instructions

(#ifdef ... #else ... #endif, #ifndef... #else ... #endif)

A conditiona assembly instruction determines whether assembling should be performed within the specified range,
dependent on whether the specified name (Define name) is defined or not.

Instruction formats

Format 1) #ifdef <Name>
<Statement string 1>
[#else
<Statement string 2>]
#endif

If the <Name> is defined, <Statement string 1> will be subjected to the assembling.
If the <Name> is not defined, and #else ... <Statement string 2> is described, then <Statement string 2> will
be subjected to the assembling. #else ... <Statement string 2> can be omitted.

Format2) #ifndef <Name>
<Statement string 1>
[#else
<Statement string 2>]
#endif

If the <Name> is not defined, <Statement string 1> will be subjected to the assembling.
If the <Name> is defined, and #else ... <Statement string 2> is described, <Statement string 2> will be
subjected to the assembling. #else ... <Statement string 2> can be omitted.

<Name>:
e Conformsto the restrictions on Define name. (See #define.)

<Statement string>:
o All statements, excluding conditional assembly instructions, can be described.

Sample description:

#ifdef TYPEL

ld.w %r1, 0x12
#else

Id.w %r1, 0x13
#endif

Name definition

Name definition needs to have been completed by either of the following methods, prior to the execution of a
conditional assembly instruction:

1) To define by using the startup option (-d) of the pp33.
Example: pp33-d TYPEL sample.s

2) To definein the source file by using the #define instruction.
Example: #define TYPE1

The #define statement is valid even in a file to be included, provided that it goes before the conditional
assembly instruction that uses its Define name. A name defined after a conditional assembly instruction will
be regarded as undefined.

When a name is going to be used only in conditional assembly, no substitute character string needs to be
specified.

116

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

Expansion rule
A statement string subjected to the assembling is expanded according to the expansion rule of the other
preprocessor instructions. (If no preprocessor instruction is contained, the statement will be output in afile as
is)
Statement strings not subjected to the assembling are delivered as comments.

Precautions

o A name specified in the condition is evaluated with discrimination between uppercase and lowercase. The
condition is deemed to be satisfied only when there is the same Define name defined.

o The#ifdef (#ifndef) instruction cannot be used for a statement string in a conditional assembly instruction,
but the #define, #macro and #include instructions can be employed.

EOC33 FAMILY EPSON

117
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.6 Operators

An expression that consists of operators and numbers can be used for specifying an immediate data.

The pp33 handles expressions in signed 32-bit data.

When writing expressions, do not insert a space between aterm and an operator.

Types of operators

+ Addition, Plussign

- Subtraction, Minus sign
* Multiplication

/ Division

%% Residue

>> Shifting to right

<< Shifting to left

& Bit AND

| Bit OR

" Bit XOR

~ Bit inversion

"H Acquires bit field (31:19)
"M Acquires bit field (18:6)
AL Acquires bit field (5:0)
~AH Acquires bit field (25:13)
NAL Acquires bit field (12:0)
0) Parenthesis

Priority

Examples
+O0xff, 1+2
-1+2, Oxfff-Ob111
0xf*5
0x123/0x56
0x123%%0x56
1>>2
0x113<<3
0b1101&0b111
0x123|0xff
12735
~0x1234
0x1234"H
0x1234"M
0x1234°L
0x1234"AH
0x1234°L
1+(1+2*5)

The operators have the priority shown below. If there are two or more operators with the same priority in an
expression, the preprocessor cal culates the expression from the left.

L0

2. + (plussign), - (minus sign), ~

"H, "M, AL, "AH, "AL
*, 1, %%

+, -

<<, >>

&

N

© NG AW

Termsin expression

High priority
T

1

Low priority

The following contents can be written in the terms of an expression.

e Binary, decimal, or hexadecimal number in the effective range of values represented by 32 bits
Unsigned integer: 0 to 4294967295 (0xO0 to Oxffffffff)
Signed integer: 0 to 2147483647 (0x0 to Ox7fffffff), -1 to -2147483648 (Oxffffffff to 0x80000000)

o Define names defined for numbers (names defined by #define)

e Symbol

If the symbol is not a Define name, the expression is limited to the following format:
SYMBOL [+SYMBOL...] + numeric expression or SYMBOL [+SYMBOL...] - numeric expression

118

EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

Examples
#define BAR O0x1
ldw %r0, BAR+2 LJddw o %r0, 0x3
xcal LABEL+BAR*2 ..xcal LABEL+0x2
xldw %rl, [FOO+BAR+1] ..xldw %rl, [FOO+0x2]
xldw %rl, [BAR+FOO+1] ..An error will result if FOO is not a Define name.
Precautions
e Since the operation isinternaly performed as 32 signed bits, caution is required depending on the type of
operation.
Pay attention to the calculation results of the >>, / and %% operators using hexadecimal numbers.
Examples:

#define NUM1 Oxfffffffe/2 ...-2/2 = -1 (Oxffffffff)
The/ and %% operators can only be used within the signed
32-hit range.

#define NUM2 Oxfffffffe>>1 ...-2>>1 =-1 (Oxffffffff)
Mask as (Oxfffffffe>>1)& Ox7fffffff.

e The calculation result is delivered as a decimal number with a minus sign if it is negative, or a
hexadecimal number if it is positive.

Eamples:
add %r0, -2+1 ...It will be expanded as"add %r0, -1".
add %r0,(-2+1)& Ox3f ...It will be expanded as"add %r0, Ox3f".

e Do not insert a space or aTAB between an operator and aterm (number, Define name).

Examples:
ldw %r0, 1+1 ...0K
ldw %r0,1+1 ..NG
ldw %r0, (1+NUM1)*2 ...0OK
ldw %r0, (1 +NUM1)*2 ..NG

EOC33 FAMILY EPSON 119

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.7 Debugging Information

When the startup option -g is specified ([debug info] checked on the work bench), the pp33 inserts assembler
pseudo-instructions in the output file, as the debugging information designed to correspond with the assembly
source level debugging.

Notes: e This debugging information is necessary to perform debugging on the Debugger db33, with the
assembly source displayed.

e Make sure the debugging information is created by only specifying the -g option, and not by
any other method. Also, be sure not to correct the debugging information that is output.
Corrections could cause the as33, 1k33, db33 or dis33 to malfunction.

¢ Unless the -g option is specified in the k33 even though it may be specified in the pp33 (same
applies for gcc33), all debugging information will be cut during linkage.

e The source information created by specifying the -g option in the pp33 is not cut even when
the -g option is not specified in the as33.

e The assembler level symbol information (symbol names and addresses only) is created when
the -g option is specified in the as33.

Assembler pseudo-instructions to be delivered
The following three types of debugging pseudo-instructions are delivered. The characters other than those in
the underlined parts are fixed.

1) file" PATH_NAME"
Indicates the beginning of afile. Inserted at top of the current file or in the start position of an included
file. PATH_NAME is the file path name.

2) .endfile
Indicates the end of afile. Inserted at the end of the current file
The -file pseudo-instruction indicating the restart of the original file is inserted at the end of the include
file. The .endfile pseudo-instruction is not inserted, however.

3) locLINE_NO
Indicates the line information of the source file. Added only to the mnemonic statement (line assembled
to the object code). LINE_NO is a source line number.

Sample output
Startup command: pp33 -g base file.s

Before processing:
o Sourcefile"base file.s'
; filestart
#include "inc.def"
Id.w %r1, [%r7]
Id.w [%r3], %rl

o Included file "inc.def"
; Thisisan empty file.
After processing:
o Assembly sourcefile "base filems'

file "base file.s' Start of "base_file.s'
; file start (Debugging information is not added to comments.)
#include “inc.def"
file "inc.def" Start of "inc.def"
; Thisisan empty file.
file "base_file.s' Resuming of "base file.s'
Jloc 3 Line No. 3 (base_file.s)
Id.w %r1, [%r7]
Jloc 4 Line No. 4 (base file.s)
Id.w [%r3], %rl
.endfile End of "base file.s"
120 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.8 Comment Adding Function

The Preprocessor instructions are all expanded to codes that can be assembled, and delivered in the output file.
Even after that, those instructions are rewritten with comments beginning with a semicolon (;), so that the original
instructions can be identified. However, note that replacements of Define names and expressions will not subsist as
comments.

The comment is added to the first line following the expansion. In case the original statement is accompanied by a
comment, that comment is a so added.
A macro definition should have a semicolon (;) placed at top of theline.

Example:
Before expansion
#define RO %r0
#macro ADDM $1
Id.w RO, $1
add RO, [%r4]
Id.w [%r5], RO
#endm
ADDM 0x10 ; [%r5] = [%r4] + 0x10
After expansion (no debugging information)
;#define RO %r0
;#macro ADDM $1
; ld.w RO, $1
; add RO, [%r4]
: ld.w [%r5], RO
;#endm
Id.w %r0, 0x10 ; ADDM 0x10 ; [%r5] = [%r4] + 0x10
add %r0, [Yor4]
Id.w [%r5], %r0

9.9 Other Functions

9.9.1 ASCIlto HEX Conversion

The pp33 has the function to convert an ASCII character enclosed with ' ' in source files into a hexadecimal
number. The corresponding parts of the output assembly source file is replaced with the hexadecimal ASCII codes.

Sample conversions:
ldw 9%r1,'1' - ld.w
ldw 9%rl, '1'+1 - ld.w

%r1, 0x31

%r1, 0x32 ... Numeric operators can be used.

Note: Only one ASCII character can be converted.
\t' and "\n' can also be used as 0x9 and OxA, respectively.

9.9.2 Comment Line

The pp33 dlows comment lines that begin with "//" or "/*" aswell as one that begins with semicolon (;).
Thefirst /" character will be converted into *;".

Sample conversions:

/lcomment - ;JJlcomment
/*comment - ;*comment
EOC33 FAMILY EPSON 121

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.10 Process Flow

The following lists the instruction process flow by the pp33:

1. The statements in the conditional assembly instructions (#ifdef, #ifndef) are skipped if the condition is
unmatched.

2. Comments and the .ascii pseudo-instruction statements are delivered without conversion.

3. Each sourcelineis separated into token and Define names are replaced with the contents defined by #define.
A space, TAB, ";", "[","]", "@", "," or an operator is used as adelimiter for separation.

4. Expressionsthat consist of numbers and operators are calculated and then replaced with the results.

5. The preprocessor pseudo-instructions such as #macro and #include are processed.

9.11 Sample Executions

Input sour cefile (pp.s)
. pp. s 1997.2.20
, sample source for pp33

#tinclude “pp.def” ; include file
#tdefine SP_IRAM ; definition for #ifdef
#ifdef SP_IRAM ; condition assemble
#define SP_INIT_ADDR 0x400 ; set number to defnum symbol
#else
#define SP_INIT_ADDR 0x880000
ttendif
#define BLK_ADDR 0x0+0x10 ; defnum symbol can use with arithmetic operators
; operators © + — % /, %% >>, <<, & 1,7, 7, "H, "M, "L, "AH, "AL, ()
#tdefine gpr %r8 ; define replace define symbol to string
#define GP_INIT_ADDR 0x0 ; define treat 0x0 as string, not number
#fmacro FILL_AREA $1 $2 $3 ; macro argument is $1, $2, — $32
xld. w %rl, $1 ; $1 is start address
xld. w %r2, $2 ; $2 is fill pattern (8bit)
xld. w %r3, $3 ; $3 is fill size (byte address)
$81: ; $$1 — $$64 is local jump label
cmp %r3, 0
Jreq $$2
Id. b [br11+, %r2
sub %r3, 1
ip $$1
$$2:
#tendm
.word BOOT
BOOT:
ext SP_INIT_ADDR"H
ext SP_INIT_ADDR™M
Id. w %r0, SP_INIT_ADDR"L
Id. w %sp, %r0
Id. w gpr, GP_INIT_ADDR
FILL_AREA BLK_ADDR 0b01010101 10 v fill 0x10-0x1f with 0x55
FILL_AREA BLK_ADDR+0x10 0 10 v fill 0x20-0x2f with 0x00
ip BOOT
Included file (pp.def)
;. pp. def
v This is empty file
122 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

Output file (pp.ms) when"pp33 -g pp.s'isexecuted
Cfile “pp. s”

, pp. s 1997.2.20

, sample source for pp33

#include “pp. def” ; include file
file “pp. def”
;. pp. def
v This is empty file
file “pp. 8”
;#tdefine SP_IRAM ; definition for #ifdef
#ifdef SP_IRAM ; condition assemble
; #define SP_INIT_ADDR 0x400 ; set number to defnum symbol
Helse
; #define SP_INIT_ADDR 0x880000
stendif
#idefine BLK_ADDR 0x0+0x10 ; defnum symbol can use with arithmetic operators
; operators © + — % /, %% >>, <<, & 1,7, 7, "H, "M, "L, "AH, "AL, ()
#tdefine gpr %r8 ; define replace define symbol to string
#define GP_INIT_ADDR 0x0 ; define treat 0x0 as string, not number
;#fmacro FILL_AREA $1 $2 $3 ; macro argument is $1, $2, — $32
; xld. w %r1, $1 ; $1 is start address
xld. w %r2, $2 7 $2 is fill pattern (8bit)
; xld. w %r3, $3 ; $3 is fill size (byte address)
$81: ; $81 — $$64 is local jump label
; cmp %r3, 0
ireq $$2
Id.b [%r11+, %r2
; sub %r3, 1
: ip $$1
1$$2:
s #endm
.word BOOT
BOOT:
. loc 31
ext 0x0
. loc 32
ext 0x10
. loc 33
Id.w %r0, 0x0
. loc 34
Id. w %sp, %r0
. loc 35
Id.w %r8, 0x0
. loc 36
xld. w %r1, 0x10 ; $1 is start address ; FILL_AREA BLK_ADDR
0b01010101 10 ; fill 0x10-0x1f with 0x55
xld. w %r2, 0b01010101 ; $2 is fill pattern (8bit)
xld.w %r3, 10 ; $3 is fill size (byte address)
__L0001: ; $$1 — $$64 is local jump label
cmp %r3, 0
jreq _ 10002
Id.b [%r11+, %r2
sub %r3, 1
ip __Looo1
__L0002:
. loc 37
xld. w %r1, 0x20 ; $1 is start address ; FILL_AREA
BLK_ADDR+0x10 0 10 ; fill 0x20-0x2f with 0x00
xld.w %r2, 0 ; $2 is fill pattern (8bit)
xld.w %r3, 10 ; $3 is fill size (byte address)
__L0003: 7 $$1 — $$64 is local jump label
cmp %r3, 0
jreq __ L0004
Id.b [%r11+, %r2
sub %r3, 1
ip __ L0003
__10004:
. loc 38
ip BOOT
.endfile
EOC33 FAMILY EPSON 123

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.12 Error/Warning Messages

Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "pp33.err" file.

If the pp33 is started up using the wh33's [PP33] button, the message is output to "wb33.err". When execution is
completed, amessage is displayed in the output window (default).

9.12.1 Errors

The errors produced in the pp33 are classified into two groups. system errors and preprocessor errors.
If asystem error occurs, the pp33 will immediately terminate the processing after displaying an error message. No
assembly source file will be output.

Table 9.12.1.1 List of system error messages

Error message Content

Error: Cannot open file. Cannot open the source file or included file.
The file does not exist in the specified directory.

Error: Cannot allocate memory. Cannot secure memory space.

Error: Cannot open output file. Cannot open the output file.

Error: Cannot open working file. Cannot open the provisional working file.

Error: Cannot write file. Cannot write to the file.

Error: Cannot close file. Cannot close the file.

Error: Cannot read file. Line size is too long. The statement is too long to be read. The maximum number of
characters that can be read in a line is 255.

Error: Preprocessor limit: The number of internal branch labels surpassed the limit during

macro label number full. micro expansion. The maximum number of internal branch

labels that can be expanded at a time is 9999, including the
included file.

The preprocessor errors are produced when the source contains a syntax or description that cannot be processed by
the pp33. Even when these errors occur, the processing will be carried on till the last line of the input file, unless a
system error is produced. However, no assembly source file will be delivered.

Table 9.12.1.2 List of preprocessor error messages

Error message Content
<file name>(line No.): Error: Invalid syntax. There is a syntactic error. The preprocessor pseudo-instruction
was described in a wrong format.
<file name>(line No.): Error: The limit of nesting (2 levels) was surpassed in the #include
Nesting level too deep. pseudo-instruction.
<file name>(line No.): Error: There is an unknown preprocessor instruction.
Unknown preprocessor instruction.
<file name>(line No.): Error: 33 or more formal parameters were defined.
Too many macro parameters.
<file name>(line No.): Error: Dummy parameters were arranged abnormally or the number
Invalid macro parameter. of actual parameters differs from that of dummy parameters.

Arrange the dummy parameters successively from $1 to $32.
<file name>(line No.): Error: Invalid macro label. | Internal branch labels in the micro definition are abnormal.
Internal branch labels are limited to $$1 to $$64 (64 labels).
Arrange them successively from $$1.

<file name>(line No.): Error: Invalid expression. | The operator description format is illegal.

<file name>(line No.): Error: Multi symbol. Duplicated definition of the same name was done by the
#define and #defnum pseudo-instruction.

124 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 9: PREPROCESSOR

9.12.2 Warning

Even when awarning appears, the pp33 will keep on processing, and completes the processing after displaying a
warning message, unless any error is produced in addition. The assembly source file will be output.

Table 9.12.2.1 Warning message

Warning message Content
<file name>(line No.): Warning: Multiple instances of the same macro name, define name, or
Multi define symbol. numeric define name are defined. The last name defined is

valid, with the others invalidated. If the same name is used in
the define or numeric define definition and the macro definition,
the define or numeric define name is given priority, and no
warning is generated.

9.13 Precautions

(1) The pp33 only checks the grammar necessary for Preprocessing. Notice that it does not check mnemonics,
operands, extended instructions and assembler pseudo-instructions, including the validity following the
expansion.

(2) If you want to display the assembly source on the screen when debugging it with the db33, be sure to specify
the -g option before executing the pp33. Note aso that unless the -g option is specified in the 1k33, all
debugging information is cut during linkage.

Make sure the debugging information is created by only specifying the -g option, and not by any other
method. Also be sure not to correct the debugging information that is output. Corrections could cause the
as33, 1k33, db33 or dis33 to mafunction.

EOC33 FAMILY EPSON 125
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

Chapter 10 Instruction Extender

This chapter describes the functions of the Instruction Extender ext33.

10.1 Functions

The Instruction Extender ext33 (hereafter called the "ext33") is a software tool to process the assembly source files
created by the C Compiler gcc33 and Preprocessor pp33. Specifically, it expands the extended instructions written
in the assembly source file into an assemble-ready mnemonic code as its output. Immediate extension by the ext
instruction or an operation requiring multiple instructions can be written in one extended instruction. Therefore,
when creating an assembly source, you need not be concerned with restrictions to the immediate size during
programming.
The ext33 provides the following two optimize functions that can be specified with its startup option:
¢ Optimization to delete unnecessary ext instructions

Optimization based on symbol information after linkage is also available.
e Optimization by the global pointer

The number of instructions necessary to reference a global variable can be reduced.

10.2 Input/Output Files

C Compiler gcc33
or
Preprocessor pp33

S— . .
—— B Assembly W Link map file
Command file 1 source files
- Symbol file

Linker k33

el

Instruction Extender
ext33

b Assembly —— Error
_J source files W file

i

Assembler as33
Fig. 10.2.1 Flowchart

10.2.1 Input Files

Assembly sour ce file (when the -c option is not specified)

File format: Text file
File name: <file name>.ps (Other extensionsthan ".ps" can be used excluding ".ms".)
Description: Filesthat are delivered from the gcc33 or the pp33 can be input.
Command file (when the -c option is specified)
File format: Text file
File name: <file name>.cmx
Description: File in which the startup options and input files for the ext33 are described. (See Section
10.4.)
Link map file
File format: Text file
File name: <file name>.map
Description: File that contains the map information indicating section addresses located by linkage.

Thelink map file that is output by the Linker 1k33 is used for code optimization.

126 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

Symboal file
File format: Text file
File name: <file name>.sym
Description: File that contains the information of the symbols defined in al linked modules and the
address information. The symbol file that is output by the Linker 1k33 is used for code
optimization.

10.2.2 Output Files

Assembly sourcefile

File format: Text file

File name: <file name>.ms (The <file name> is the same as that of the input file.)

Output destination: Current directory

Description: Filein which the extended instructions are expanded into an assembling format.

Error file

File format: Text file

File name: ext33.err

Output destination: Current directory

Description: File that is output when the startup option (-€) is specified, and describes the contents
which the ext33 delivers through the Standard Output (stdout), such as an error
message.

10.3 Starting Method

10.3.1 Startup Format

General form of command line

Format 1) ext33 ~ [<startup option>] » [<source file name>]
Format 2) ext33 ~ [<startup option>] * -c ~ <command file name>

~ denotes a space.
[] indicates the possibility to omit.

<source file name>: Specify assembly source file name(s) including the extension.
<command file name>: Specify acommand file name including the extension.

Operationson work bench
Select options and input files, then click the [EXT33] button.

Multiple source files can be specified in the command line. All specified files can be processed simultaneously.
Although the wb33 also allows multiple files to be selected, the ext33 need to be executed as many times as the
number of files selected. If files are acquired from a command file, they all are processed simultaneously.

10.3.2 Startup Options

The ext33 comes provided with the following six types of startup options:

-c <command file name>

Function: Executes acommand file.
Specification on wb33: Check [use.cmx file].
Explanation: e This option acquires the startup option and input file name from the specified

command file. The startup option also can be specified in the command line without
including it in acommand file.

EOC33 FAMILY EPSON 127
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

-gp <address>

Function: Usesaglobal pointer.
Specification on wh33: Check [global pointer optimize], then input <address> in the text box.
Explanation: o Thisoption optimizes code generation by using agloba pointer.

e The specified <address> is the address of the global pointer. Specify <address> in
hexadecimal (Ox######) using lower-case letters (0-9, a-f).
o For details about the global pointer, refer to Section 8.7.2.

-lk <filename>
Function: Optimizes instructions based on symbol information.
Specification on wh33: Check [symbol,map optimize]. The <file name> is taken from the contents of the text box
in the execution window.
Explanation: e This option optimizes the ext instruction based on the vaid symbol information by
reading the symbol and link map files generated by the linker.
e The symbol file (.sym) and link map file (.map) are specified by <file name> (object
file name). No extension is required.
o For details about optimization by symbol information, refer to Section 8.7.3.

-near

Function: Expands a branch instruction into two instructions.

Specification on wb33: Check [far call is 2 inst].

Explanation: e This option expands an extended branch instruction to a nonexistent label in the
processed file into two instructions (one ext instruction + branch instruction, signed
22-bit displacement).

e Unless-near is specified, the above instruction is expanded into three instructions (two
ext instructions + branch instruction, signed 32-hit displacement).
o For details about the optimization of branch instructions, refer to Section 8.7.1.

-j <threshold value>

Function: Specifies the threshold of optimized branching.

Specification on wh33: Check [change threshold], then input <threshold> in the text box.

Explanation: e Thisoption sets athreshold to determine the number of instructions expanded from an
extended branch instruction.

e The effective range of <threshold> is 0x100 to Ox1fffff. Specify it in hexadecima
(Ox##H) using lower-case letters (0-9, a-f).

e Unless-j is specified, the threshold is set to the default value of 0x180000.

o For details about the optimization of branch instructions, refer to Section 8.7.1.

-e

Function: Output of error files

Specification on wb33: None

Explanation: e Ddivers dso in a file (ext33.err) the contents that are output by the ext33 via the

Standard Output (stdout), such as error messages.

When entering options in the command line, you need to place one or more spaces before and after the option.
Examples: c:\cc33\ext33 -gp OxO -k test -near -j 0x180000 -e testl.ps test2.ps
c\cc33\ext33 -gp Ox0 -c test.cmx

128 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

10.4 Command File

The ext33 allows the contents of the command line to be input from a command file (.cmx) specified by the -c
option.

In acommand file, write the options you want to specify and the source files to be input, each entry in oneline.

A comment can also be entered by inserting a semicolon (;) at the beginning of aline.

Example: sample.cmx
; Thisis asample command file. <« Comment line
-gp 0x80000
-near
-lk sample
-e
samplel.ps
sample2.ps
sample3.ps

If the same option that is included in a command file is specified from the command line, the first option
encountered is recognized as the valid option.

Example: ext33 -gp 0x0 -c sample.cmx (Specifies sample.cmx in the above example)

In this example, the "-gp Ox0" option is recognized as the valid option, and the "-gp 0x80000" option in the
command file isignored.

EOC33 FAMILY EPSON 129
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

10.5 Messages

The ext33 delivers its messages through the Standard Output (stdout).
If the ext33 is started up by using the wh33's [EXT33] button, the message is output to "wb33.err". When
execution is completed, a message is displayed in the output window (default).

During execution

When two or more input files are specified, the file name being executed is displayed.

filel.ps
file2. ps

When only onefileis specified, the file name does not appear.

End message

The ext33 outputs only the following end message when it ends normally.
Extend Completed

Usage output

If no file name was specified or an option was not specified correctly, the ext33 ends after delivering the
following message concerning the usage:

Extender 33 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x
Usage:
ext33 [options] filename
ext33 [options] —¢ commandfile (.cmx)
Options:
-e : produce log file (ext33.err)
-lk program : optimize with program information (program.sym, program.map)
-gp address : optimize with global pointer (0x0 - Oxffffffff)

-hear . specifies all xjmp and xcall extract 2 instruction

-j threshold : specifies jump optimization threshold (0x100 - Ox1fffff)
Output:

Assembler source file for as33(ms)
Example:

ext33 -e -1k test -gp 0x8000 test.ps

When error/warning occurs

If an error is produced, an error message will appear before the end message shows up.
Example: test.ps(431): Error: Invalid Syntax.
Extend Completed

In the case of an error, the ext33 ends without creating an output file.

If awarning isissued, awarning message will appear before the end message shows up.
Example: Warning: Map file test.map does not exist.
Extend Completed

In the case of awarning, the ext33 ends after creating an output file.

For details on errors and warnings, refer to Section 10.10 "Error/Warning Messages'.

130

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

10.6 Extended Instructions

The ext33 expands the extended instructions, explained below, to mnemonics that can be processed by the
Assembler as33.

Extended instructions allow an operation that normally requires using multiple instructions including the ext
instruction to be written in one instruction. They are expanded into the absolutely necessary minimum basic
instructions according to instruction functionality and the operand's immediate size.

Symbols used in explanation

immX Unsigned X-bit immediate

signX Signed X-bit immediate

symbol Symbol to indicate memory address
label Jump address |abel

(X:Y) Bit field from bit X to bit Y

10.6.1 Arithmetic Operation Instructions

Types and functions of extended instructions

Extended instruction Function Expansion
format
xadd %rd, %rd, imm32 %rd < %rd + imm32 (1)
xsub %rd, %rd, imm32 %rd < %rd - imm32 (1)
xadd %sp, %sp, imm32 %sp < %sp +imm32 (2)
xsub %sp, %sp, imm32 %sp < %sp - imm32 (2)
xadd %rd, %rs, imm32 %rd < %rs + imm32 3)
xsub %rd, %rs, imm32 %rd « %rs - imm32 3)
xadd %rd, %sp, imm32 %rd < %sp +imm32 (4)
xsub %rd, %sp, imm32 %rd < %sp - imm32 (4)
xadd %rd, %rd, %sp %rd < %rd + %sp (5)
xsub %rd, %rd, %sp %rd < %rd - %sp (5)
xadd %sp, %sp, %rs %sp « %sp + %rs (6)
xsub %sp, %sp, %rs %sp < %sp - %rs (6)

These extended instructions allow a 32-bit immediate to be specified directly in an add or subtract operation.
Furthermore, they support addition or subtraction between a stack pointer SP and a general-purpose register.

Basic instructions after expansion
xadd Expanded into the add instruction
xsub Expanded into the sub instruction

Expansion formats

(1) xOP %rd, %rd, imm32 (OP = add, sub)
Example: xadd %rd, %rd, imm32
imm32 < 0x3f 0x3f < imm32 < Ox7ffff imm32 > Ox7ffff

add %rd, imm32(5:0)

ext imm32(18:6)
add %rd, imm32(5:0)

ext imm32(31:19)
ext imm32(18:6)
add %rd, imm32(5:0)

(2) xOP %sp, %sp, imm32 (OP = add, sub)
Example: xadd %sp, %sp, imm32
imm32 < Oxfff Oxfff < imm32 < Ox7ffff imm32 > ox7ffff
add %sp, imm32(11:2) ldw %r9, %sp ldw %r9, %sp

ext imm32(18:6)
add %r9, imm32(5:0)
ldw %sp, %r9

ext imm32(31:19)
ext imm32(18:6)
add %r9, imm32(5:0)
Id.w_ %sp, %r9

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

131

CHAPTER 10: INSTRUCTION EXTENDER

(3) XOP %rd, %rs, imm32

(OP = add, sub)

Example: xadd %rd, %rs, imm32

imm32 < Ox1fff

Ox1fff < imm32 < Ox3ffffff

imm32 > Ox3ffffff

ext imm32(12:0)
add %rd, %rs

ext imm32(25:13)
ext imm32(12:0)
add %rd, %rs

Idw %rd, %rs

ext imm32(31:19)
ext imm32(18:6)
add %rd, imm32(5:0)

(4) xOP %rd, %sp, imm32
Example: xadd %rd, %sp, imm32

(OP = add, sub)

imm32 < 0x3f

0x3f < imm32 < Ox7ffff

imm32 > Ox7ffff

ldw %rd, %sp
add %rd, imm32(5:0)

Id.w %rd, %sp
ext imm32(18:6)
add %rd, imm32(5:0)

ldw %rd, %sp
ext imm32(31:19)
ext imm32(18:6)

add %rd, imm32(5:0)

(5) XOP %rd, %rd, %sp

(OP = add, sub)

Example: xadd %rd, %rd, %sp

ldw %r9, %sp
add %rd, %r9

(6) XOP %sp, %, %rs

(OP = add, sub)

Example: xadd %sp, %sp, %rs

ldw %r9, %sp
add %r9, %rs
Idw _ %sp, %r9

10.6.2 Comparison Instructions

Types and functions of extended instructions

Extended instruction Function Expansion
format
xcmp %rd, sign32 %rd - sign32 (Sets/resets C, V, Z and N flags in PSR) (1)
xcmp %rd, %sp %rd - %sp (Sets/resets C, V, Z and N flags in PSR) (2)
xcmp %sp, %rs %sp - %rs (Sets/resets C, V, Z and N flags in PSR) 3)

These extended instructions alow you to compare a general-purpose register and a signed 32-bit immediate or a
stack pointer SP and general-purpose register.

Basic instruction after expansion
xcmp Expanded into the cmp instruction

Expansion formats

(1) xcmp %rd, sign32

-32<sign32<31

-262144 < sign32 < -32
or 31 < sign32 < 262143

sign32 < -262144
or 262143 < sign32

cmp %rd, sign32(5:0)

ext sign32(18:6)
cmp %rd, sign32(5:0)

ext sign32(31:19)
ext sign32(18:6)
cmp __ %rd, sign32(5:0)

(2) xcmp %rd, %sp

ldw %r9, %sp
cmp %rd, %r9

(3) xcmp % sp, %rs

ldw %r9, %sp
cmp %r9, %rs

132

EPSON

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

10.6.3 Logic Operation Instructions

Types and functions of extended instructions

CHAPTER 10: INSTRUCTION EXTENDER

Extended instruction Function Expansion
format
xand %rd, %rd, sign32 %rd < %rd & sign32 1)
xoor %rd, %rd, sign32 %rd <« %rd | sign32 (1)
XXor %rd, %rd, sign32 %rd < %rd » sign32 1)
xand %rd, %rs, sign32 %rd < %rs & sign32 (2)
xoor %rd, %rs, sign32 %rd < %rs | sign32 2
Xxor %rd, %rs, sign32 %rd < %rs " sign32 2)
xnot %rd, sign32 %rd « !sign32 ?3)

These extended instructions allow a signed 32-bit immediate to be specified directly in alogical operation.

Basic instructions after expansion

xand
xoor
XXOr
xnot

Expansion formats

(1) xOP

%rd, %rd, sign32
Example: xand

Expanded into the and instruction
Expanded into the or instruction

Expanded into the xor instruction
Expanded into the not instruction

(OP = and, oor, xor)

%rd, %rd, sign32

-32<sign32 <31 -262144 < sign32 < -32 sign32 < -262144
or 31 < sign32 < 262143 or 262143 < sign32
and %rd, sign32(5:0) ext sign32(18:6) ext sign32(31:19)
and %rd, sign32(5:0) ext sign32(18:6)
and %rd, sign32(5:0)

(2) xOP

%rd, %rs, sign32
Example: xand

(OP = and, oor, xor)

%rd, %rs, sign32

0x0 < sign32 < Ox1fff
(within 13 bits)

Ox1fff < sign32 < Ox3ffffff
(within 26 bits)

Ox3ffffff < sign32 < Oxfffc0000
(26 bits < sign32 < -262144)

ext sign32(12:0) ext sign32(25:13) Idw %rd, %rs
and %rd, %rs ext sign32(12:0) ext sign32(31:19)
and %rd, %rs ext sign32(18:6)
and %rd, sign32(5:0)
0xfffc0000 < sign32 < Oxffffffe0 Oxffffffe0 < sign32 < Oxffffffff

(-262144 < sign32 < -32)

(-32 <sign32 <-1)

Idw %rd, %rs Idw %rd, %rs
ext sign32(18:6) and %rd, sign32(5:0)
and %rd, sign32(5:0)

(3) xnot %rd, sign32

-32 <sign32<31

-262144 < sign32 < -32
or 31 < sign32 < 262143

sign32 < -262144
or 262143 < sign32

not %rd, sign32(5:0)

ext sign32(18:6)
not %rd, sign32(5:0)

ext sign32(31:19)
ext sign32(18:6)
not %rd, sign32(5:0)

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

133

CHAPTER 10: INSTRUCTION EXTENDER

10.6.4 Shift & Rotate Instructions

Types and functions of extended instructions

Extended instruction Function Expansion
format
xsrl %rd, %rs Logical shift to right 1)
xsl| %rd, %rs Logical shift to left (1)
xsra %rd, %rs Arithmetic shift to right 1)
xsla %rd, %rs Arithmetic shift to left (1)
Xrr %rd, %rs Rotation to right 1)
xrl %rd, %rs Rotation to left 1)
xsrl %rd, imm5 Logical shift to right 2
xsll %rd, imm5 Logical shift to left 2
xsra %rd, imm5 Arithmetic shift to right 2
xsla %rd, imm5 Arithmetic shift to left 2)
Xrr %rd, imm5 Rotation to right 2)
xrl %rd, imm5 Rotation to left 2)

These extended instructions alow a shift or rotate operation to be performed in up to 31 bits.

Basic instructions after expansion

xsrl Expanded into the stl instruction
xdll Expanded into the dll instruction
xsra Expanded into the srainstruction
xda Expanded into the dainstruction
Xrr Expanded into the rr instruction
xrl Expanded into the rl instruction

Expansion formats

(1) xOP %rd, %rs (OP=gl,dl,sra, da, rr, rl)
Example: xsrl ~ %rd, %rs

ldw %r9, %rs ; Stores Shift count

and %r9, Ox1f ; Checks Shift count (Shift count < 31)

cmp %r9, 0x8 ; while (Shift count > 0x8)
jrle 4 i

srl %rd, 0x8 ; %rd « %rd shift 0x8
jpd -3 Shift count -= 0x8
sub %r9, Ox8 i}

rl %rd, %r9 ; %rd « %rd shift Shift count

(2) xOP %rd, imm5 (OP=srl, dl, sra, da, rr, rl)
Example: xsrl ~ %rd, imm5

imm5<8 8<imm5<16 imm5 = 16
srl %rd, imm5(3:0) srl %rd, Ox8 srl %rd, 0x8
srl %rd, imm5(2:0) srl %rd, 0x8
16 <imm5<24 imm5 > 24
srl %rd, 0x8 srl %rd, Ox8
srl %rd, 0x8 srl %rd, Ox8
srl %rd, imm5(3:0) srl %rd, Ox8
srl %rd, imm5(2:0)
134 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

10.6.5 DataTransfer Instructions (between Stack and Register)

Types and functions of extended instructions

Extended instruction Function Expansion
format
xld.b %rd, [%sp+imm32] | %rd « B[%sp+imm32] (with sign extension) 1)
xld.ub %rd, [Yosp+imm32] | %rd <« B[%sp+imm32] (with zero extension) (1)
xld.h %rd, [%sp+imm32] [%rd « H[%sp+imm32] (with sign extension) (2)
xld.uh %rd, [%osp+imm32] | %rd « H[%sp+imm32] (with zero extension) (2)
xld.w %rd, [%sp+imm32] | %rd « W[%sp+imm32] 3)
xld.b [Yosp+imm32], %rs | B[%sp+imm32] « %rs(7:0) Q)
xld.h [%osp+imm32], %rs | H[%sp+imm32] « %rs(15:0) 2
xld.w [Yosp+imm32], %rs | W[%sp+imm32] « %rs ?3)
xld.w [Y%osp+imm32], %sp | W[%sp+imm32] « %sp (4)

These extended instructions alow you to directly specify a displacement of up to 32 bits. Specification of imm32

can be

omitted.

Basic instructions after expansion

X
X
X
X
X

Id.b
Id.ub
Id.h
Id.uh
Id.w

Expansion formats
I1f imm32 is omitted, the ext33 assumes that [%sp+0x0] is specified as it expands the instruction.

(1) Bytedata transfer (xld.b, xId.ub)

Expanded into the Id.b instruction
Expanded into the Id.ub instruction
Expanded into the ld.h instruction
Expanded into the |d.uh instruction
Expanded into the Id.w instruction

Example: xId.b %rd, [%sp+imm32]
imm32 < 0x3f 0x3f < imm32 < Ox7ffff imm32 > ox7ffff
ld.b %rd, [Yosp+imm32(5:0)] ext imm32(18:6) ext imm32(31:19)
Id.b %rd, [%sp+imm32(5:0)] ext imm32(18:6)
Id.b %rd, [%sp+imm32(5:0)]

(2) Half word data transfer (xId.h, xId.uh)

Example: xld.h %rd, [%sp+imm32]
imm32 < Ox7f Ox7f <imm32 < Ox7ffff imm32 > ox7ffff
Id.h %rd, [%sp+imm32(6:1)] ext imm32(18:6) ext imm32(31:19)
Id.h %rd, [%sp+imm32(5:0)] ext imm32(18:6)
Id.h %rd, [Y%sp+imm32(5:0)]

(3) Word data transfer (xld.w)
Example: xld.w

%rd, [Yosp+imm32]

imm32 < Oxff Oxff < imm32 < Ox7ffff imm32 > Ox7ffff
Idw %rd, [Y%osp+imm32(7:2)] ext imm32(18:6) ext imm32(31:19)
Idw %rd, [%sp+imm32(5:0)] ext imm32(18:6)
Idw %rd, [Yosp+imm32(5:0)]

(4) Word data transfer using SP asthe source (xld.w [% sp+imm32], % sp)

imm32 < Oxff Oxff < imm32 < Ox7ffff imm32 > Ox7ffff
ldw %r9, %sp Idw %r9, %sp ldw %r9, %sp
ldw [%sp+imm32(7:2)], %r9 ext imm32(18:6) ext imm32(31:19)
ldw [%sp+imm32(5:0)], %r9 ext imm32(18:6)
Idw [%sp+imm32(5:0)], %r9

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

135

CHAPTER 10: INSTRUCTION EXTENDER

10.6.6 DataTransfer Instructions (between Memory and Register)

Types and functions of extended instructions

Extended instruction Function Expansion
format
xld.b %rd, [symboltimm32] %rd < B[symbol+imm32] (with sign extension) 1)
xld.ub %rd, [symbol+imm32] %rd < B[symbol+imm32] (with zero extension) (1)
xld.h %rd, [symboltimm32] %rd < H[symboltimm32] (with sign extension) 1)
xld.uh %rd, [symboltimm32] %rd < H[symbol+imm32] (with zero extension) (1)
xld.w %rd, [symboltimm32] %rd < W[symbol+imm32] 1)
xld.b [symbol+imm32], %rs B[symboltimm32] « %rs(7:0) 1)
xld.h [symbol+imm32], %rs H[symbol+imm32] « %rs(15:0) 1)
xld.w [symbol+imm32], %rs W[symbol+imm32] «%rs 1)
xld.w [symbol+imm32], %sp W[symbol+imm32] « %sp 2)
xld.b %rd, [imm32] %rd < B[imm32] (with sign extension) ?3)
xld.ub %rd, [imm32] %rd < B[imm32] (with zero extension) 3)
xld.h %rd, [imm32] %rd < H[imm32] (with sign extension) 3)
xld.uh %rd, [imm32] %rd « H[imm32] (with zero extension) 3)
xld.w %rd, [imm32] %rd « W[imm32] 3)
xld.b [imm32], %rs B[imm32] « %rs(7:0) 3)
xld.h [imm32], %rs H[imm32] « %rs(15:0) 3)
xld.w [imm32], %rs W[imm32] « %rs 3)
xld.w [imm32], %sp W[imm32] « %sp 4)
xld.b %rd, [%rb+symbol£imm32] %rd < B[%rb+symbol£imm32] (with sign extension) (5)
xld.ub %rd, [%rb+symbol+imm32] %rd < B[%rb+symbol+imm32] (with zero extension) (5)
xld.h %rd, [Yorb+symbol+imm32] %rd « H[%rb+symbol+imm32] (with sign extension) (5)
xld.uh %rd, [Yorb+symbol+imm32] %rd < H[%rb+symbol+imm32] (with zero extension) (5)
xld.w %rd, [%rb+symbol+imm32] %rd « W[%rb+symbol+imm32] (5)
xld.b [%rb+symbol+imm32], %rs B[%rb+symbol+imm32] « %rs(7:0) (5)
xld.h [%rb+symbol+imm32], %rs H[%rb+symbol+imm32] « %rs(15:0) (5)
xld.w [%rb+symbol+imm32], %rs W[%rb+symboltimm32] « %rs (5)
xld.w [%rb+symbol+imm32], %sp | W[%rb+symboltimm32] « %sp (6)
xld.b %rd, [%rb+imm32] %rd < B[%rb+imm32] (with sign extension) (7)
xld.ub %rd, [Yorb+imm32] %rd < B[%rb+imm32] (with zero extension) (7)
xld.h %rd, [Yorb+imm32] %rd « H[%rb+imm32] (with sign extension) (7)
xld.uh %rd, [Yorb+imm32] %rd < H[%rb+imm32] (with zero extension) (7)
xld.w %rd, [Yorb+imm32] %rd < W[%rb+imm32] (7)
xld.b %rb+imm32], %rs B[%rb+imm32] « %rs(7:0) (7)
xld.h %rb+imm32], %rs H[%rb+imm32] « %rs(15:0) 7)
xld.w %rb+imm32], %rs W[%rb+imm32] « %rs (7)
xld.w %rb+imm32], %sp W[%rb+imm32] « %sp (8)

"symbol+imm32" means that "symbol+imm32" and "symbol-imm32" can be specified.

These extended instructions alow memory locations to be accessed by specifying the address with a symbol or
32-bit immediate. However, the postincrement function ([]+) cannot be used.

Basic instructions after expansion

xld.b Expanded into the ld.b instruction
xld.ub Expanded into the Id.ub instruction
xld.h Expanded into the Id.h instruction
xld.uh Expanded into the |d.uh instruction
xld.w Expanded into the Id.w instruction

136

EPSON

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

Expansion formats

(1) xid.*
xld.*

xld.*
xld.*

%rd, [symbol+imm32]
[symbol+imm32], %rs

%rd, [symbol-imm32]
[symbol-imm32], %rs

(*=b, ub, h, uh, w)
(*=b, h, w)

e When [symbol+imm32] is specified

Example: xld.w %rd, [symbol+im

m32]

When global pointer is not specified:

symbol+imm32 < Oxif

0x1f < symbol+imm32 < Ox3ffff

symbol+imm32 > Ox3ffff

ldw %r9, symbol+imm32@I
Idw %rd, [%r9]

ext symbol+imm32@m
Idw %r9, symbol+imm32@I
Idw %rd, [%r9]

ext symbol+imm32@h

ext symbol+imm32@m
Idw %r9, symbol+imm32@I
Idw %rd, [%r9]

Unkmown symbol

lext symbol+imm32@h

ext symbol+imm32@m
ldw %r9, symbol+imm32@I
Id.w _ %rd, [%r9]

When global pointer (gp) is spec

ified:

(sign32 = -gp+imm32)

symbol+sign32 = 0x0 0x0 < symbol+sign32 < Ox1fff 0x1fff < symbol+sign32 < Ox3ffffff
ldw %rd, [%r8] ext symbol+sign32@al ext symbol+sign32@ah
Id.w %rd, [%r8] ext symbol+sign32@al
Idw %rd, [%r8]

symbol+sign32 > Ox3ffffff

Unknown symbol

gp > symbol+imm32

ext symbol+sign32@ah
ext symbol+sign32@al
ldw %rd, [%r8]

ext symbol+imm32@h

ext symbol+imm32@m
ldw %r9, symbol+imm32@I
Idw _ %rd, [%r9]

Expanded into a format without gp
specification according to the
symbol+imm32 value.

Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [symbol+0x0] is
specified as it expands the instruction.

e When [symbol-imm32] is specified
Example: xld.w %rd, [symbol-imm32]
Theinstruction is always expanded into the following format.

ext symbol-imm32@h
ext symbol-imm32@m
Idw %r9, symbol-imm32@I
Idw _ %rd, [%r9]
(2) xld.w [symbol+imm32], % sp xld.w [symbol-imm32], % sp

e When [symbol+imm32] is specified

When global pointer is not specified:

symbol+imm32 < Oxif 0x1f < symbol+imm32 < Ox3ffff symbol+imm32 > Ox3ffff
ldw %r9, %sp ldw %r9, %sp ldw %r9, %sp
pushn %r0 pushn %r0 pushn %r0
ldw %r0, symbol+imm32@I ext symbol+imm32@m ext symbol+imm32@h
ldw [%r0], %r9 Id.w %r0, symbol+imm32@I ext symbol+imm32@m
popn %r0 Idw [%r0], %r9 ldw %r0, symbol+imm32@I
popn %r0 ldw [%r0], %r9
popn__ %r0
Unknown symbol
Idw %r9, %sp
pushn %r0
ext symbol+imm32@h
ext symbol+imm32@m
ldw %r0, symbol+imm32@I
ldw [%r0], %r9
popn _ %r0
EOC33 FAMILY EPSON 137

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

When global pointer (gp) is spec

ified:

(sign32 = -gp+imm32)

symbol+sign32 = 0x0

0x0 < symbol+sign32 < Ox1fff

0x1fff < symbol+sign32 < Ox3ffffff

ldw %r9, %sp
ldw [%r8], %r9

ldw %r9, %sp
ext symbol+sign32@al
ldw [%r8], %r9

ldw %r9, %sp
ext symbol+sign32@ah
ext symbol+sign32@al
ldw [%r8], %r9

symbol+sign32 > 0x3ffffff

Unknown symbol

gp > symbol+imm32

ldw %r9, %sp

pushn %r0

ext symbol+imm32@h

ext symbol+imm32@m
Idw %r0, symbol+imm32@I
ldw [%r0], %r9

popn__ %r0

ldw %r9, %sp

pushn %r0

ext symbol+imm32@h

ext symbol+imm32@m
Idw %r0, symbol+imm32@I
ldw [%r0], %r9

popn__ %r0

Expanded into a format without gp
specification according to the
symbol+imm32 value.

Specification of imm32 can be omitted.

specified asit expands the instruction.

e When [symbol-imm32] is specified

@)«

Theinstruction is always expanded

into the following format.

ldw %r9, %sp

pushn %r0

ext symbol-imm32@h

ext symbol-imm32@m

Idw %r0, symbol-imm32@I

ldw [%r0], %r9

popn _ %r0

d.* %rd, [imm32] (*=b, ub, h,u

Example: xldw %rd, [imm32]

h, w) xld.*

When global pointer is not specified:

If imm32 is omitted, the ext33 assumes that [symbol+0x0] is

[imm32], %rs(*=b, h, w)

imm32 < 0x1f Ox1f < imm32 < Ox3ffff imm32 > Ox3ffff

ldw %r9, imm32(5:0) ext imm32(18:6) ext imm32(31:19)

ldw %rd, [%r9] Idw %r9, imm32(5:0) ext imm32(18:6)
Id.w %rd, [%r9] ldw %r9, imm32(5:0)

Idw _ %rd, [%r9]

When global pointer (gp) is spec

ified:

(sign32 = -gp+imm32)

sign32 = 0x0

0x0 < sign32 < ox1fff

Ox1fff < sign32 < Ox3ffffff

ldw %rd, [%r8] ext sign32(12:0) ext sign32(25:13)
Id.w %rd, [%r8] ext sign32(12:0)
Idw %rd, [%r8]
sign32 > Ox3ffffff gp > imm32
ext imm32(31:19) Expanded into a format without gp
ext imm32(18:6) specification according to the
ldw %r9, imm32(5:0) imm32 value.
Idw %rd, [%r9]
(4) xid.w [imm32], %sp
When global pointer is not specified:
imm32 < 0x1f Ox1f < imm32 < Ox3ffff imm32 > Ox3ffff
ldw %r9, %sp Id.w %r9, %sp ldw %r9, %sp
pushn %r0 pushn %r0 pushn %r0
Idw %r0, imm32(5:0) ext imm32(18:6) ext imm32(31:19)
ldw [%r0], %r9 Idw %r0, imm32(5:0) ext imm32(18:6)
popn %r0 Idw [%rO0], %r9 ldw %r0, imm32(5:0)
popn %r0 ldw [%r0], %r9
popn _ %r0
138 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

When global pointer (gp) is specified:

(sign32 = -gp+imm32)

ldw %r9, %sp
pushn %r0

ext imm32(31:19)
ext imm32(18:6)
Idw %r0, imm32(5:0)
ldw [%r0], %r9

popn__ %r0

Expanded into a format without gp
specification according to the
imm32 value.

(5) xld.* %rd, [%rb+symbol+imm32]
xld.* [%rb+symbol+imm32], %rs

xld.* %rd, [%rb+symbol-imm32]
xld.* [%rb+symbol-imm32], %rs

o When [%rb+symbol+imm32] is specified

Example: xld.w

%rd, [Yorb+symbol+imm32]

sign32 = 0x0 0x0 < sign32 < Ox1fff Ox1fff < sign32 < Ox3ffffff
ldw %r9, %sp ldw %r9, %sp ldw %r9, %sp
ldw [%r8], %r9 ext sign32(12:0) ext sign32(25:13)
ldw [%r8], %r9 ext sign32(12:0)
ldw [%r8], %r9
sign32 > Ox3ffffff gp > imm32

(*=b, ub, h, uh, w)
(*=b, h, w)

symbol+imm32 = 0x0

0x0 < symbol+imm32 < Ox1fff

0x1fff < symbol+imm32 < Ox3ffffff

ldw %rd, [%rb]

ext symbol+imm32@al
Id.w %rd, [%rb]

ext symbol+imm32@ah
ext symbol+imm32@al
Idw _ %rd, [%rb]

symbol+imm32 > Ox3ffffff

Unknown symbol

ext symbol+imm32@h ext symbol+imm32@h

ext symbol+imm32@m ext symbol+imm32@m
ldw %r9, symbol+imm32@I Id.w %r9, symbol+imm32@I
add %r9, %rb add %r9, %rb

ld.w_ %rd, [%r9] Id.w__ %rd, [%r9]

Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+symbol+0x0] is
specified as it expands the instruction.

e When [%rb+symbol-imm32] is specified
Example: xldw %rd, [%rb+symbol-imm32]
Theinstruction is always expanded into the following format.

ext symbol-imm32@h
ext symbol-imm32@m
Idw %r9, symbol-imm32@I
add %r9, %rb
Idw _ %rd, [%r9]
(6) xld.w [%rb+symbol+imm32], % sp xld.w [%rb+symbol-imm32], % sp

o When [%rb+symbol+imm32] is specified

symbol+imm32 = 0x0 0x0 < symbol+imm32 < Ox1fff Ox1fff < symbol+imm32 < Ox3ffffff
ldw %r9, %sp ld.w %r9, %sp ldw %r9, %sp
ldw [%rb], %r9 ext symbol+imm32@al ext symbol+imm32@ah
Idw [%rb], %r9 ext symbol+imm32@al
Idw _ [%rb], %r9
symbol+imm32 > Ox3ffffff symbol+imm32 > Ox3ffffff

and %rb # %r0 and %rb = %r0

ldw %r9, %sp Id.w %r9, %sp
pushn %r0 pushn %r1
ext symbol+imm32@h ext symbol+imm32@h
ext symbol+imm32@m ext symbol+imm32@m
ldw %r0, symbol+imm32@I Idw %rl, symbol+imm32@I
add %r0, %rb add %r1, %rb
ldw [%r0], %r9 ldw [%r1], %r9
popn %r0 popn %rl
EOC33 FAMILY EPSON 139

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

Unknown symbol, %rb # %r0 Unknown symbol, %rb = %r0
ldw %r9, %sp Idw %r9, %sp

pushn %r0 pushn %r1

ext symbol+imm32@h ext symbol+imm32@h

ext symbol+imm32@m ext symbol+imm32@m
ldw %r0, symbol+imm32@I Id.w %rl, symbol+imm32@I
add %r0, %rb add %rl, %rb

ldw [%r0], %r9 ldw [%r1], %r9

popn %r0 popn %rl

Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [Y%rb+symbol+0x0] is

specified as it expands the instruction.

o When [%rb+symbol-imm32] is specified

@«

®) xl

Theinstruction is aways expanded into one of the following formats.

%rb # %r0

%rb = %r0

ldw %r9, %sp Idw %r9, %sp

pushn %r0 pushn %r1

ext symbol-imm32@h ext symbol-imm32@h

ext symbol-imm32@m ext symbol-imm32@m

ldw %r0, symbol-imm32@l| Id.w %rl, symbol-imm32@!I

add %r0, %rb add %rl, %rb

ldw [%r0], %r9 ldw [%r1], %r9

popn %r0 popn %rl

d.* %rd, [%rb+imm32] (*=b, ub, h, uh, w) xld.* [%rb+imm32], %rs (*=b, h, w)

Example: xld.w %rd, [%rb+imm32]

imm32 = 0x0 0x0 < imm32 < Ox1fff Ox1fff < imm32 < Ox3ffffff

ldw %rd, [%rb] ext imm32(12:0) ext imm32(25:13)
Id.w %rd, [%rb] ext imm32(12:0)

Idw _ %rd, [%rb]

imm32 > Ox3ffffff

ext imm32(31:19)
ext imm32(18:6)
ldw %r9, imm32(5:0)
add %r9, %rb

ld.w_ %rd, [%r9]

Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+0x0] is specified

asit expands the instruction.

dw [%rb+imm32], %sp

imm32 = 0x0

0x0 < imm32 < Ox1fff

Ox1fff < imm32 < Ox3ffffff

ldw %r9, %sp
ldw [%rb], %r9

Id.w %r9, %sp
ext imm32(12:0)
Id.w [%rb], %r9

ldw %r9, %sp

ext imm32(25:13)
ext imm32(12:0)
Idw _ [%rb], %r9

imm32 > Ox3ffffff and %rb # %r0

imm32 > ox3ffffff and %rb = %r0

ldw %r9, %sp Idw %r9, %sp

pushn %r0 pushn %r1

ext imm32(31:19) ext imm32(31:19)
ext imm32(18:6) ext imm32(18:6)
ldw %r0, imm32(5:0) Idw %rl, imm32(5:0)
add %r0, %rb add %r1, %rb

ldw [%r0], %r9 ldw [%r1], %r9

popn__ %r0 popn %rl

Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+0x0] is specified

asit expands the instruction.

140

EPSON

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

10.6.7 Immediate Data Load Instructions
Types and functions of extended instructions
Extended instruction Function Expansion
format
xld.w %rd, symbol+imm32 %rd < symboltimm32 (1)
xld.w %rd, sign32 %rd « sign32 (2)

* "symbol+imm32" means that "symbol+imm32" and "symbol-imm32" can be specified.
These extended instructions alow a 32-bit immediate to be loaded directly into a general-purpose register. A
symbol also can be used for immediate specification.

Basic instruction after expansion
xld.w Expanded into the Id.w instruction

Expansion formats

(1) xidw %rd, symbol+imm32 xld.w %rd, symbol-imm32

o When symbol+imm32 is specified

symbol+imm32 < 0x1f

0x1f < symbol+imm32 < 0x3ffff

symbol+imm32 > Ox3ffff

ldw %rd, symbol+imm32

ext symbol+imm32@m
Idw %rd, symbol+imm32@I

ext symbol+imm32@h
ext symbol+imm32@m
Id.w_ %rd, symbol+imm32@I

Unknown symbol

ext symbol+imm32@h
ext symbol+imm32@m

Id.w %rd, symbol+imm32@I

Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that symbol+0x0 is specified

asit expands the instruction.

o When symbol-imm32 is specified

The instruction is always expanded into the following format.

ext symbol-imm32@h
ext symbol-imm32@m
Idw _ %rd, symbol-imm32@I

(2) xidw %rd, sign32

-32 <sign32<31

-262144 < sign32 < -32
or 31 <sign32 < 262143

sign32 < -262144
or 262143 < sign32

Idw %rd, sign32(5:0)

ext sign32(18:6)
Idw %rd, sign32(5:0)

ext sign32(31:19)
ext sign32(18:6)
Id.w_ %rd, sign32(5:0)

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

EPSON

141

CHAPTER 10: INSTRUCTION EXTENDER

10.6.8 Bit Operation Instructions

Types and functions of extended instructions

Extended instruction Function Expansion
format
xbtst [symbol+imm32], imm3 B[symboltimm32] bit test 1)
xbclr [symbol+imm32], imm3 B[symbol+imm32] bit clear (1)
xbset [symbol+imm32], imm3 B[symboltimm32] bit set 1)
xbnot [symbolimm32], imm3 B[symbol+imm32] bit negation (1)
xbtst [imm32], imm3 B[imm32] bit test (2)
xbclr [imm32], imm3 B[imm32] bit clear 2)
xbset [imm32], imm3 B[imm32] bit set 2)
xbnot [imm32], imm3 B[imm32] bit negation (2)
xbtst [%rb+symboltimm32], imm3 | B[%rb+symboltimm32] bit test ?3)
xbcelr [%rb+symbol+imm32], imm3 | B[%rb+symbol+imm32] bit clear (3)
xbset [%rb+symbol+imm32], imm3_ | B[%rb+symbol+imm32] bit set (3)
xbnot [%rb+symbol+imm32], imm3_| B[%rb+symbol+imm32] bit negation (3)
xbtst [Y%orb+imm32], imm3 B[%rb+imm32] bit test (4)
xbcelr [%rb+imm32], imm3 B[%rb+imm32] bit clear 4
xbset [%rb+imm32], imm3 B[%rb+imm32] bit set 4)
xbnot [%rb+imm32], imm3 B[%rb+imm32] bit negation (4)
xbtst [%sp+imm32], imm3 B[%sp+imm32] bit test (5)
xbclr [%sp+imm32], imm3 B[%sp+imm32] bit clear (5)
xbset [Y%osp+imm32], imm3 B[%sp+imm32] bit set (5)
xbnot [Ysp+imm32], imm3 B[%sp+imm32] bit negation (5

"symbol+imm32" means that "symbol+imm32" and "symbol-imm32" can be specified.

These extended instructions allow a memory address for manipulating bits to be specified with a symbol or 32-bit
immediate.

Note:

The second operand (imm3) used to specify a bit number does not cause an error in the ext33
providing that it is within the range of values represented by unsigned 32 bits. It is output as the
operand of a basic instruction directly as is. Note that the effective range of the basic

instructions is 3 unsigned bits.

Basic instructions after expansion

xbtst Expanded into the btst instruction
xbclr Expanded into the belr instruction
xbset Expanded into the bset instruction
xbnot Expanded into the bnot instruction

Expansion formats

(1) xOP [symbol+imm32], imm3 XOP [symbol-imm32], imm3 (OP = btst, belr, bset, bnot)

e When [symbol+imm32] is specified
Example: xbtst [symbol+imm32], imm3

When global pointer is not specified:

symbol+imm32 < Oxif 0x1f < symbol+imm32 < Ox3ffff symbol+imm32 > Ox3ffff
ldw %r9, symbol+imm32@I ext symbol+imm32@m ext symbol+imm32@h
btst [%r9], imm3 Id.w %r9, symbol+imm32@I ext symbol+imm32@m
btst [%r9], imm3 Idw %r9, symbol+imm32@I
btst [%r9], imm3
Unknown symbol
ext symbol+imm32@h
ext symbol+imm32@m
ldw %r9, symbol+imm32@I
btst [%r9], imm3
142 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

When global pointer (gp) is specified:
symbol+sign32 = 0x0 0x0 < symbol+sign32 < Ox1fff

(sign32 = -gp+imm32)
0x1fff < symbol+sign32 < Ox3ffffff

btst [%r8], imm3 ext symbol+sign32@al ext symbol+sign32@ah
btst [%r8], imm3 ext symbol+sign32@al
btst [%r8], imm3

symbol+sign32 > Ox3ffffff Unknown symbol gp > symbol+imm32

ext symbol+imm32@h ext symbol+sign32@ah Expanded into a format without gp
ext symbol+imm32@m ext symbol+sign32@al specification according to the

ldw %r9, symbol+imm32@I btst [%r8], imm3 symbol+imm32 value.

btst [%r9], imm3

Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [symbol+0x0] is
specified asit expands the instruction.

e When [symbol-imm32] is specified
Theinstruction is always expanded into the following format.

ext symbol-imm32@h
ext symbol-imm32@m
ldw %r9, symbol-imm32@I
btst [%r9], imm3
(2) xOP [imm32],imm3 (OP = btst, bclr, bset, bnot)

Example: xbtst [imm32], imm3

When global pointer is not specified:

imm32 < 0x1f Ox1f < imm32 < Ox3ffff imm32 > Ox3ffff

ldw %r9, imm32(5:0) ext imm32(18:6) ext imm32(31:19)

btst [%r9], imm3 Idw %r9, imm32(5:0) ext imm32(18:6)
btst [%r9], imm3 Idw %r9, imm32(5:0)

btst [%r9], imm3

When global pointer (gp) is specified:
sign32 = 0x0 0x0 < sign32 < Ox1fff

(sign32 = -gp+imm32)
Ox1fff < sign32 < Ox3ffffff

btst [%r8], imm3 ext sign32(12:0) ext sign32(25:13)

btst [%r8], imm3 ext sign32(12:0)

btst [%r8], imm3
sign32 > Ox3ffffff gp > imm32
ext imm32(31:19) Expanded into a format without gp
ext imm32(18:6) specification according to the
ldw %r9, imm32(5:0) imm32 value.
btst [%r9], imm3
(3) xOP [%rb+symboltimm32],imm3 xOP [%rb+symbol-imm32],imm3 (OP = btst, bclr, bset, bnot)

e When [%rb+symbol+imm32] is specified

Example: xbtst [%rb+symbol+imm32], imm3
symbol+imm32 = 0x0 0x0 < symbol+imm32 < Ox1fff 0x1fff < symbol+imm32 < Ox3ffffff
btst [%rb], imm3 ext symbol+imm32@al ext symbol+imm32@ah
btst [%rb], imm3 ext symbol+imm32@al
btst [%rb], imm3

symbol+imm32 > Ox3ffffff Unknown symbol

ext symbol+imm32@h ext symbol+imm32@h

ext symbol+imm32@m ext symbol+imm32@m
Idw %r9, symbol+imm32@I Idw %r9, symbol+imm32@I
add %r9, %rb add %r9, %rb

btst [%r9], imm3 btst [%r9], imm3

Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+symbol+0x0] is
specified as it expands the instruction.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON 143

CHAPTER 10: INSTRUCTION EXTENDER

e When [%rb+symbol-imm32] is specified

Example: xbtst [%rb+symbol-imm32], imm3

The instruction is always expanded into the following format.
ext symbol-imm32@h
ext symbol-imm32@m
ldw %r9, symbol-imm32@l
add %r9, %rb
btst [%r9], imm3

(4) xOP [%rb+imm32], imm3 (OP = btst, bclr, bset, bnot)
Example: xbtst [%rb+imm32], imm3

imm32 = 0x0 0x0 < imm32 < OxAfff

0Ox1fff < imm32 < Ox3ffffff

btst [%rb], imm3 ext imm32(12:0)
btst [%rb], imm3

ext imm32(25:13)
ext imm32(12:0)
btst [%rb], imm3

imm32 > Ox3ffffff

ext imm32(31:19)
ext imm32(18:6)
Idw %r9, imm32(5:0)
add %r9, %rb

btst [%r9], imm3

Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that [%rb+0x0] is specified

asit expands the instruction.

(5) XOP [%sp+imm32], imm3 (OP = btst, belr, bset, bnot)
Example: xbtst [%sp+imm32], imm3

ldw %r9, %sp

ext imm32(31:19)
ext imm32(18:6)
add %r9, imm32(5:0)
btst [%r9], imm3

imm32 = 0x0 0x0 < imm32 < 0x3f 0x3f < imm32 < ox7ffff
ldw %r9, %sp Idw %r9, %sp ldw %r9, %sp
btst [%r9], imm3 add %r9, imm32(5:0) ext imm32(18:6)
btst [%r9], imm3 add %r9, imm32(5:0)
btst [%r9], imm3
imm32 > Ox7ffff

144 EPSON

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

10.6.9 Branch Instructions

Types and functions of extended instructions

Extended instruction Function Expansion
format
xcall label+imm32 Subroutine call 1)
xcall.d label+imm32 Subroutine call (with delayed branch operation) (1)
Xip label+imm32 Unconditional jump 1)
xjp.d label+imm32 Unconditional jump (with delayed branch operation) (1)
xjreq label+imm32 Conditional jump (1)
xjreq.d label+imm32 Conditional jump (with delayed branch operation) 1)
xjrne label+imm32 Conditional jump 1)
xjrne.d label+imm32 Conditional jump (with delayed branch operation) 1)
xjrgt label+imm32 Conditional jump Q)
xjrgt.d label+imm32 Conditional jump (with delayed branch operation) 1)
xjrge label+imm32 Conditional jump 1)
xjrge.d label+imm32 Conditional jump (with delayed branch operation) 1)
xjrlt label+imm32 Conditional jump 1)
xjrit.d label+imm32 Conditional jump (with delayed branch operation) 1)
xjrle label+imm32 Conditional jump 1)
xjrle.d label+imm32 Conditional jump (with delayed branch operation) 1)
xjrugt label+imm32 Conditional jump 1)
xjrugt.d label+imm32 Conditional jump (with delayed branch operation) 1)
xjruge label+imm32 Conditional jump 1)
xjruge.d label+imm32 Conditional jump (with delayed branch operation) (1)
xjrult label+imm32 Conditional jump (1)
xjrult.d label+imm32 Conditional jump (with delayed branch operation) (1)
xjrule label+imm32 Conditional jump (1)
xjrule.d label+imm32 Conditional jump (with delayed branch operation) (1)
xcall sign32 Subroutine call (2)
xcall.d sign32 Subroutine call (with delayed branch operation) 2
Xjp sign32 Unconditional jump (2)
xjp.d sign32 Unconditional jump (with delayed branch operation) 2
xjreq sign32 Conditional jump (2)
xjreq.d sign32 Conditional jump (with delayed branch operation) 2)
xjrne sign32 Conditional jump 2)
xjrne.d sign32 Conditional jump (with delayed branch operation) 2)
xjrgt sign32 Conditional jump 2)
xjrgt.d sign32 Conditional jump (with delayed branch operation) 2)
xjrge sign32 Conditional jump 2)
xjrge.d sign32 Conditional jump (with delayed branch operation) 2)
xjrlt sign32 Conditional jump 2)
xjrit.d sign32 Conditional jump (with delayed branch operation) 2)
xjrle sign32 Conditional jump)
xjrle.d sign32 Conditional jump (with delayed branch operation) 2
xjrugt sign32 Conditional jump 2
xjrugt.d sign32 Conditional jump (with delayed branch operation) 2
xjruge sign32 Conditional jump 2
xjruge.d sign32 Conditional jump (with delayed branch operation) 2
xjrult sign32 Conditional jump 2
xjrult.d sign32 Conditional jump (with delayed branch operation) @)
xjrule sign32 Conditional jump @)
xjrule.d sign32 Conditional jump (with delayed branch operation) @)

These extended instructions allow a branch destination to be specified using a label with displacement included or
asigned 32-bit immediate. The branch conditions of these conditional jump instructions are the same as those of

the basic instructions.

EOC33 FAMILY

EPSON

C COMPILER PACKAGE MANUAL (ver.3)

145

CHAPTER 10: INSTRUCTION EXTENDER

Basic instructions after expansion

xcall/xcal.d Expanded into the call/call.d instruction
xjp/xjp.d Expanded into the jp/jp.d instruction
xjreg/xjreq.d Expanded into the jreg/jreg.d instruction
xjrne/xjrne.d Expanded into the jrne/jrne.d instruction
xjrgt/xjrat.d Expanded into the jrgt/jrgt.d instruction
xjrge/xjrge.d Expanded into the jrge/jrge.d instruction
xjrit/xjrit.d Expanded into the jrlt/jrit.d instruction
xjrle/xjried Expanded into thejrle/jrle.d instruction

xjrugt/xjrugt.d Expanded into the jrugt/jrugt.d instruction
xjruge/xjruge.d Expanded into the jruge/jruge.d instruction
xjrult/xjrult.d Expanded into the jrult/jrult.d instruction
xjrule/xjruled Expanded into the jrule/jrule.d instruction

Expansion formats

(1) xOP label+imm32 (OP =call, call.d, jp,jp.d,jr*,jr*.d)
Example: xcall label +imm32

When expanded into 1 instruction | When expanded into 2 instructions

When expanded into 3 instructions

call label+imm32 ext label+imm32@rm
call label+imm32@rl

ext label+imm32@rh
ext label+imm32@rm
call label+imm32@rl

Specification of imm32 can be omitted. If imm32 is omitted, the ext33 assumes that "label+0x0" is specified
as it expands the instruction. For details on how the number of instructions when expanded is determined,

refer to Section 10.7.1, "Optimizing Relative Branch Instruction”.

(2) xOP sign32 (OP =call, call.d, jp, jp.d,jr*,jr*.d)
Example: xcall sign32
-256 < sign32 < 254 -2097152 < sign32 < -256 sign32 > 2097150
or 254 < sign32 < 2097150 or sign32 < -2097152
call sign32(8:1) ext sign32(21:9) ext sign32(31:22)<<0x3
call sign32(8:1) ext sign32(21:9)
call sign32(8:1)

146 EPSON

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

10.7 Optimize Function

10.7.1 Optimizing Relative Branch Instruction

The EOC33000's basic relative branch instruction allows branch to any location within a signed 9-bit (LSB = 0)
relative address range by using a single instruction. Branching to an address beyond this range reguires extension
by the ext instruction.

The ext33 alows you to write an extended branch instruction without worrying about the ext instruction as
described in Section 10.6.9. Thus instruction is then expanded so that control is transferred a relative distance to
the branch destination label by using the fewest possible instructions.

The following extended branch instructions can be optimized:
xcal xjp xjreq xjrne xjrgt xjrge xjrit xjrle xjrugt xjruge Xxjrult Xxjrule
xcal.d xjp.d xjreq.d xjrned xjrgt.d xjrged xjrit.d xjrled xjrugt.d xjruged xjrult.d xjruled

The basic branch instructions written by adding the ext instruction are not optimized.

The number of instructions (1 to 3 instructions) that derive from expansion are determined according to the
following conditions:

* Relative distance between the extended branch instruction and branch destination label

o Whether the extended branch instruction and branch destination label exist in the same file

o Whether the -near option is specified

o Whether there is symbol file/link map file specification by the -1k option

¢ Relative distance determination threshold 0x180000 (default) or value specified by the -j option

The number of instructions derived by expansion are determined in the following manner by resolving the above
conditions:

Table 10.7.1.1 Number of instructions derived by expansion

Relative distance Instruction and -near flag Number of expanded
(absolute value) *1 label positions instructions

0to 126 *2 In the same file - 1
In different files - 2

To threshold value *3 - - 2
To Ox7ffffff *4 - Specified 2
- Not specified 3

Unknown relative distance - Specified 2
- Not specified 3

x1: The value indicates the number of instructions from the extended branch
instruction to the branch destination label.

%2 Up to 125 when branching toward to a higher address.

%3: Up to the threshold value - 1 when branching toward to a higher addressin the
samefile.

x4: Up to Ox7fffffe when branching toward to a higher addressin the samefile.

The threshold value is half of the vaue specified using -j option. When using the -j
option's default value of 0x180000, the threshold value will be 0xc0000. Vauesin ()
apply when branching to alower address. The threshold value may be decreased due to
distance judgment when branching toward to alower address.

The following shows the basic format after expansion.
Example: xcal sign32
linstruction 2instructions 3instructions
cal sign32(8:1) ext sign32(21:9) ext sign32(31:22)<<0x3
cal sign32(8:1) ext sign32(21:9)
cal sign32(8:1)

An expansion result different from those shown above may be obtained depending on method of label
specification. For details, refer to Section 10.6.9.

EOC33 FAMILY EPSON 147
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

When the -Ik option is specified, branching to a different file based on the postlink symbol information can be
optimized. However, since execution by cashing into the interna RAM is possible, branching to a labdl in a
different file — although in the object file it may be branching within the 1-instruction range — is expanded as
consisting of at least two instructions.

10.7.2 Optimization by the Global Pointer
Memory access by an extended instruction using a symbol is accomplished by using the R register as a scratch
register, and is expanded in the following manner:

Example: xldw [i],%r10 (Example of expansion before linkage)
ext i+0x0@h
ext i+0x0@m
ld.w %r9,i+0x0@I
Id.w [%r9],%r10

When accessing a memory-resident global variable, for example, the number of instructions derived from
expansion can be reduced by setting the start address of the global variable area as a global pointer in advance.
Since the ext33 uses the R8 register as a globa pointer, the address of the global pointer must be set to the R8
register in the initialize routine in advance. Note that the memory accessible range is limited to within +26-bit
space from the globa pointer address.

Specification for the ext33 is made by using the -gp <address> option ([global pointer optimize] in the wb33).
When this option is specified, the ext33 assumes that the R8 register is set as a global pointer to the specified
<address> as it processes the program.

If aglobal pointer is specified, the above example will be expanded as follows:

Example: xld.w [i],%r10 (Example of expansion before linkage)
ext i+0x0@ah
ext i+0x0@al
ld.w [%r8],%r10

In this case, since no scratch register is used, the number of instructions for each access can be reduced by one.

10.7.3 Optimization by Symbol Information

When creating one program by linking multiple relocatable modules, it should be noted that the absolute address
of each instruction in the assembly sourceis not determined until after the modules are linked. Optimization at this
phaseislimited to those instructions that can be solved within the samefile.

For this reason, the ext33 is designed in such away that symbol information can be obtained from the symbol and
link map files output by the linker by specifying the -lk option. Since each of these files contains information
about the absolute addresses of the symbols that are determined after linkage, the symbols defined in other files
can be referenced.

Therefore, make sure al source files including the ext33 are processed temporarily way up to the linking phase,
then re-execute the ext33 after specifying the -lk option. The ext33 optimizes the extended instructions that are
used to access memory locations using indeterminate symbols as it generates an assembly source file. Then, after
thisis done, assemble and link the source files one more time.

To generate the symbol and link map files, you need to specify the -m and -s options when starting up the linker.

If the variable i, which was used as an example in the preceding section, is assumed to be located in the 4th byte
from the address indicated by the globa pointer, then the first ext instruction will be deleted as follows:

Example: xldw [i],%r10 (Example of expansion using postlink symbol information)
ext i+Ox0@a
ld.w [%r8],%r10

Furthermore, if there is a memory access that is out of the accessible range by the global pointer, this function
disables the globa pointer optimization.

The ext33 checks to seeif the symbol and map files bearing the file name specified by the -Ik option are created in
the same directory. If one or both of the two files cannot be found, the ext33 outputs a warning and stops
performing -1k option-based optimization. Therefore, these files must always be stored under the same name in the
same directory.

148 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

10.8 Other Functions

10.8.1 Comment Adding Function

When expanding extended instructions to create an assembly source file, the ext33 replaces these extended
instructions with comments that begin with a semicolon (;) in order to show information about the contents of the
extended instructions before they are expanded. The comments are added after the first line of instruction derived
by expansion. If there is any comment accompanying the origina statement, that comment is included among the
added comments.

Example: Before expansion

xcall main ; goto main

After expansion

ext main@rm ; xcall main ; goto main
cdl main@rl

10.8.2 Classification of Local Symbols

The ext33 classifies the local labels that are valid in only the files generated by the Preprocessor and Compiler,
then changes the labels " L????" used in extended relative branch instructions to " LX???2." The changed
labels have already been referenced in their file.

As a result, the Assembler as33 interprets the information on labels beginning with " LX" as being local;
therefore, this information is not output to the object file.

Local symbols used in any other instructions are not changed even if they arelabeled " L?2?277".

10.8.3 Syntactic Check

The ext33 only checks the syntax of extended instructions and the assembler pseudo-instructions listed below.

Assembler pseudo-instructions checked by ext33

.org, .space, .align, .comm, .Ilcomm, .set pseudo-instructions
These instructions are checked to see if the address-specifying operand is within the effective range of values
represented by 32 bits.

.ascii pseudo-instruction
Thisinstruction is checked to seeif character strings are enclosed with double quotations (*).

An error results if any extended instruction or one of the above assembler pseudo-instructions is written in a
syntactically incorrect manner. If the operand vaueisinvalid, awarning is output, and processing continues.

The syntax of the basic instructions is not checked. Nor is the validity of the instructions derived by expansion
checked.

EOC33 FAMILY EPSON 149
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

10.9 Sample Execution

Input file (ext.ps)

, ext.ps

1997.2.23

, sample source for ext33 extended instructions
; not for execution, just for ext33 extension only

BOOT:

.word BOOT

, summary of major patterns

;oxldow

xld. w
xld. w
xld. w

xadd

xand
xnot

xsrl
Xrr

xld. w
xId. ub
xbtst
xld. uh
xld. b
xld. uh
xld. h
xbset

xjp
xjrgt.d

%r8, 0
%r 1, DATA1
%r2, DATA1+4

%r1, %r2, 0x12345678

%r14, %r15, 0xff000000 ;
%r8, 0b1111100000

%r3, 8
%r7, %r8

; immediate load
; symbol immediate load
; symbol+offset

; 3 operand for xadd, xsub

3 operand for xand, xoor, xxor

; immediate shift
; register shift

; for xsrl, xsll, xsra, xsla, xrr, xrl

%r1, [0x1234568]
%r5, [DATA1]
[COMM1+0x400], 2
%r10, [%sp+0x222]
[%sp], %r7

%r1, [%r15+0x1234568] ;
%r5, [%r11+DATA1]
[%r9+COMM1+0x400], 2

, immediate address

; symbol address

; symbol address + offset
; sp relative

; sp relative

resister + immediate address

; register + symbol address
; register + symbol address + offset

; for xId.w, xId.uh, xId.h, xld.ub, xld.b

-2
BOOT

, more detail samples

xbset, xbclr, xbtst, xbnot

; immediate relative
; symbol relative
; for xjp, xjrea, xjrne, xjrgt, xjrge, xjrit

xjrugt, xjruge, xjrult, xjrule, xcall

xjrle

voxld.ow load immediate to register operation
xld. w %r8, 0 ; decimal
xld. w %r0, 0x12345678 ; hex
xld.w %r0, 0b10101 ; binary
xld.w %r1, DATA1 ; symbol
xld. w %r2, DATA1+4 ; symbo |+offset (hex, dec, bin)
xld. w %r2, DATA1+0x5
xld. w %r2, DATAT1+0b110
, xadd, xsub add and sub, arithmetic operations
xadd %r1,%r2,0x12345678 ; 3 operand No. 1
xsub %r2, %r1, 0x12345 ; 3 operand No.2
xadd %r0, %r1, 1 ; 3 operand No. 3
xsub %r2,%r2,5 ; 3 operand No. 4
xadd %r1, %r2, %sp ; for G compiler
xsub %sp, %sp, %r1 ; for G compiler
150 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

; xand, xoor, xxor, xnot

and, or, xor, and not, logical operations

xand %r14, %r15, 0xff000000 ; 3 operand No. 1
xoor %r12,%r11, Oxfedc ; 3 operand No. 2
Xxor %r9, %r9, -1 ; 3 operand No. 3
xnot %r8, 0b1111100000

v xsrl, xsll, xsra, xsla, xrr, xrl shift operations
xsr | %r3,8 ; immediate shift No.1
xsll %rd, 15 ; immediate shift No.2
xsra %r5, 17 ; immediate shift No.3
xsla %r 6, 31 ; immediate shift No.4
Xrr %r7, %r8 , register shift

v xld.w, xld.uh, xld

xld. w
xld. uh
xld. h
xId. ub
xld. b
xbnot
xbtst
xbset
xbelr

; xld.w, xld.uh, xld.

xld. w
xld. uh
xld. b
xbset

v xld.w, xId.uh, xld.

xld. w
xld. uh
xld. h
xld. ub
xld. b
xbnot
xbtst
xbset
xbelr

;oxldow

xld.
xld.
xld.
xld.
xld.
xld.
xld.
xld.
xld.

=E=E====== = =

» Xjp, xjrea, xjrne

h, xld.ub, xld.b, xbset, xbclr, xbtst, xbnot
load, bit operation from/to absolute address

%r1, [0x1234568] ; immediate address No. 1

%r2, [OxABC] ; immediate address No.2

[10], %r3 ; immediate address No.3

%r4, [0] , immediate address No.4

%r5, [DATA1] ; symbol address No. 1

[COMM1], 1 ; symbol address No. 2
[COMM1+0x4001, 2 ; symbol| address + offset No.
[COMM1+0x10], 3 ; symbol address + offset No.2
[COMM1+1], 4 ; symbol address + offset No.3

h, xld.ub, xld.b, xbset, xbclr, xbtst, xbnot
load, bit operation from/to SP relative address

%r15, [%sp+0x4444444] ; sp relative No. 1

%r10, [%sp+0x222] ; sp relative No.2
[%sp], %r7 ; sp relative No.3
[%sp+0x14], 5 ; sp relative No. 4

h, xld.ub, xld.b, xbset, xbclr, xbtst, xbnot
load, bit operation from/to register relative address

%r1, [%r15+0x1234568] ;
%r2, [%r14+0xABC]
[%r13+10]1, %r3

%rd, [%ri2]

%r5, [%r11+DATA1]
[%r10+COMM1], 1
[%r9+COMM1+0x4001, 2
[%r8+COMM1+0x107, 3
[%r7+COMM1+1], 4

immediate address No. 1
immediate address No.2
immediate address No.3
immediate address No. 4
symbo!| address No. 1

symbol| address No. 2

symbol| address + offset No.1
symbo!| address + offset No.2
symbo!| address + offset No.3

+ o+ o+ o+ o+ o+ o+ o+ o+

load word operation from sp register for G support

[%spl, %sp
[%sp+0x24681, %sp
[0x12340], %sp
[COMM11, %sp
[COMM1+4], %sp
[%r51, %sp
[%r6+0b1100], %sp
[%r7+DATA1], %sp
[%r7+DATA1+2001, %sp

xjrgt, xjrge, xjrlt, xjrle, xjrugt, xjruge, xjrult

v xjrule, xcall and with .d relative branchs

EOC33 FAMILY

EPSON

C COMPILER PACKAGE MANUAL (ver.3)

151

CHAPTER 10: INSTRUCTION EXTENDER

NEAR:
xjp.d -2 ; immediate relative No.1
Xjreq 800 ; immediate relative No.2
xjrne 0x1000000 ; immediate relative No.3
xjrgt.d BOOT ; symbol relative No. 1
xjrge COMM1 ; symbol relative No.2
xjruge NEAR ; symbol relative No.3
.data

DATA1:

.word 0x12345678

.comm GOMM1 4

Output file (ext.ms) when"ext33 -gp OxO text.ps' isexecuted
(* In actual operation, acomment may be output at a different position.)
;ext.ps 1997.2.23

, sample source for ext33 extended instructions

; not for execution, just for ext33 extension only

.word BOOT
BOOT:

, summary of major patterns

;oxldow
Id. w %r8, 0x0 ;oxldow o %r8,0 , immediate load
ext DATA1+0x0@h voxld.w %r1, DATAT ; symbol immediate load
ext DATA1+0x0@m
Id. w %r1, DATAT+0x0@ |
ext DATA1+0x4@h ;o xld.ow %r2, DATAT+4 ; symbo|+offset
ext DATA1+0x4@m
Id. w %r2, DATA1+0x4@|
Id. w %r1, %r2 ; xadd %r1,%r2,0x12345678 ; 3 operand for xadd, xsub
ext 0x246
ext 0x1159
add %r 1, 0x38
Id. w %r14, %r15 ; xand %r14, %r15, 0xff000000 ; 3 operand for xand, xoor, xxor
ext Ox1fe0
ext 0x0
and %r 14, 0x0
ext Oxf ; xnot %r8, 0b1111100000
not %r8, 0x20
srl %r3, 0x8 ;oxsrl %r3,8 , immediate shift
Id. w %r9, %r8 ,oXrr %r7, %r8 , register shift
and %r9, 0x1f
cmp %r9, 0x8
jrle 4
rr %r7, 0x8
jp.d -3
sub %r9, 0x8
rr %r7, %r9
; for xsrl, xsll, xsra, xsla, xrr, xrl
ext 0x91a voxldow %r1, [0x1234568] , immediate address
ext 0x568
Id. w %r1, [%r8]
ext DATA1+0x0@ah ; xld.ub %r5, [DATA1] ; symbol address
ext DATA1+0x0@a
Id. ub %r5, [%r8]
152 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

ext
ext
btst
ext
Id. uh
Id. b
ext
ext
Id. uh
ext
ext
Id. w
add
Id. h
ext

ext
Id. w
add
bset

ip

ext
ext
jrgt.d

, more detail samples

;oxldow

Id. w
ext
ext
Id. w
Id. w
ext
ext
Id. w
ext
ext
Id. w
ext
ext
Id. w
ext
ext
Id. w
, xadd, xsub
Id. w
ext
ext
add
ext
ext
sub
ext
add
sub
Id. w

COMM1+0x400@ah
COMM1+0x400@a |
[%r8], 0x2

0x8

%r10, [%sp+0x22]
[%sp+0x01, %r7
0x91a

0x568

%r1, [%r15]
DATA1+0x0@h
DATA1+0x0@m
%r9, DATAT+0x0@|
%r9, %rit

%r5, [%r9]
COMM1+0x400@h

COMM1+0x400@m
%r9, COMM1+0x400@ |
%r9, %r9

[%r9], 0x2

Oxff

B0OT@rh
BOOT@rm
BOOTG@r |

; xbts

v oxld.

; xld.uh

;o xld.

; xbse
; register + symbol address + offset

;xJp
; xjrgt.d BOOT

; for

load immediate to register

%r8, 0x0

0x246

0x1159

%r0, 0x38

%r0, 0x15
DATA1+0x0@h
DATA1+0x0@m
%r1, DATA1+0x0@|
DATA1+0x4@h
DATA1+0x4@m
%r2, DATA1+0x4@|
DATA1+0x5@h
DATA1+0x5@m
%r2, DATA1+0x5@1
DATA1+0x6@h
DATA1+0x6@m
%r2, DATA1+0x6@|

;o xld.
v oxld.

;o xld.
;o xld.

v oxld.

;o xld.

;o xld.

t

; xld.uh

b

h

t

xjp, xjrea, xjrne, xjrgt, xjrge, xjrlt, xjrle

CHAPTER 10: INSTRUCTION EXTENDER

[COMM1+0x400], 2

%r10, [%sp+0x222]

[%spl, %r7

; symbol address + offset

, sp relative

%r1, [%r15+0x1234568]

%rb5, [%r11+DATA1]

[%r9+COMM1+0x400], 2

-2

; sp relative

resister + immediate address

, register + symbol address

xbtst, xbnot

; for xId.w, xId.uh, xId.h, xld.ub, xld.b,
; xbset, xbclr,

, immediate relative
, symbol relative

xjrugt, xjruge, xjrult, xjrule, xcall

operation

w
w

w

w

w

%r8, 0
%r0, 0x12345678

%r0, 0b10101
%r1, DATA1

%r2, DATAT+4

%r2, DATA1+0x5

%r2, DATAT+0b110

add and sub, arithmetic operations

%r1, %r2
0x246
0x1159
%r1, 0x38
0x9
0x345
%r2, %ri
0x1
%r0, %r1
%r2, 0x5
%r9, %sp

, xadd

; xsub

; xadd

, xsub
, xadd

%r1, %r2, 0x12345678

%r2, %r1, 0x12345

%r0, %r1, 1

%r2, %r2,5
%r1, %r2, %sp

; decimal
; hex

» binary
, symbol

;. symbol+offset (hex, dec, bin)

;3 operand No. 1

;3 operand No. 2

3 operand No. 3

;3 operand No. 4
, for C compiler

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

EPSON

153

CHAPTER 10: INSTRUCTION EXTENDER

add %r1, %r9
Id. w %r9, %sp ; xsub %sp, %sp, %r1 ; for G compiler
sub %r9, %r1
Id. w %sp, %r9
, xand, xoor, xxor, xnot
; and, or, xor, and not, logical operations
Id. w %r14, %r15 ; xand %r14, %r15, 0xff000000 ; 3 operand No. 1
ext Ox1fe0
ext 0x0
and %r 14, 0x0
ext 0x7 ., Xoor %r12,%r11, Oxfedc 3 operand No. 2
ext Ox1edc
or %r12, %r11
xor %r9, 0x3f . Xxor %r9, %r9, -1 ;3 operand No. 3
ext Oxf ; xnot %r8, 0b1111100000
not %r8, 0x20
v xsrl, xsll, xsra, xsla, xrr, xrl shift operations
srl %r3, 0x8 ;oxsrl %r3,8 ; immediate shift No. 1
sl %r4, 0x8 ;oxsll %r4, 15 , immediate shift No.2
sl %rd4, 0x7
sra %r5, 0x8 , Xsra %r5, 17 , immediate shift No.3
sra %r5, 0x8
sra %r5, 0x1
sla %r 6, 0x8 ; xsla %r 6, 31 ; immediate shift No.4
sla %r 6, 0x8
sla %r 6, 0x8
sla %r 6, 0x7
Id. w %r9, %r8 ds %r7, %r8 , register shift
and %r9, Ox1f
cmp %r9, 0x8
jrle 4
rr %r7, 0x8
Jjp.d -3
sub %r9, 0x8
rr %r7, %r9
; xld.w, xld.uh, xld.h, xld.ub, xId.b, xbset, xbclr, xbtst, xbnot
; load, bit operation from/to absolute address
ext 0x91a ;oxldow %r1, [0x1234568] , immediate address No. 1
ext 0x568
Id. w %r1, [%r8]
ext Oxabc ; xld.uh %r2, [0xABC] ; immediate address No.2
Id. uh %r2, [%r8]
ext Oxa ; xld.h [10]1, %r3 , immediate address No.3
Id.h [%r8], %r3
Id. ub Y%rd, [%r8] v xld.ub %r4, [0] ; immediate address No.4
ext DATA1+0x0@ah v xld.b %r5, [DATA1] ; symbol address No. 1
ext DATA1+0x0@a |
Id.b %r5, [%r8]
ext COMM1+0x0@ah ; xbnot [COMM1T, 1 , symbol address No.2
ext COMM1+0x0@a |
bnot [%r81, Ox1
ext COMM1+0x400@ah ; xbtst [COMM1+0x400], 2 ; symbol address + offset No. 1
ext COMM1+0x400@a |
btst [%r8], 0x2
ext COMM1+0x10@ah ; xbset [COMM1+0x10], 3 ; symbol| address + offset No. 2
ext COMM1+0x10@al
bset [%r8], 0x3
ext COMM1+0x1@ah ; xbelr [COMM1+1], 4 , symbo| address + offset No.3
ext COMM1+0x1@a l
154 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

belr [%r8], 0x4
v xld.w, xld.uh, xld.h, xld.ub, xId.b, xbset, xbclr, xbtst, xbnot
; load, bit operation from/to SP relative address
ext 0x88 ;oxld.ow %15, [%sp+0x4444444] ; sp relative No. 1
ext Ox1111
Id. w %r15, [%sp+0x4]
ext 0x8 7 xld.uh %r10, [%sp+0x222] ; sp relative No.2
|d. uh %r 10, [%sp+0x22]
Id.b [%sp+0x01, %r7 7 xld.b [%sp], %r7 ; sp relative No.3
Id. w %r9, %sp ; xbset [%sp+0x14], 5 ; sp relative No. 4
add %r9, 0x14
bset [%r9], 0x5
v xld.w, xld.uh, xld.h, xld.ub, xId.b, xbset, xbclr, xbtst, xbnot
; load, bit operation from/to register relative address
ext 0x91a ;oxldow %r1, [%r15+0x1234568] ; + immediate address No. 1
ext 0x568
Id.w %r1, [%r15]
ext Oxabc v xld.uh %r2, [%r14+0xABC] immediate address No.2
Id. uh %r2, [%ri4]
ext Oxa ; xld.h [%r13+10], %r3 immediate address No.3
Id.h [%r13], %r3
Id. ub %rd, [%r12] v xld.ub %rd, [%r12] + immediate address No.4
ext DATA1+0x0@h ;oxld. b %r5, [%r11+DATA1] symbo!| address No. 1
ext DATA1+0x0@m
Id. w %r9, DATA1+0x0@|
add %r9, %ri1
Id.b %r5, [%r9]
ext COMM1+0x0@h ; xbnot [%r10+COMM1], 1 symbol| address No.2
ext COMM1+0x0@m
Id. w %r9, COMM1+0x0@|
add %r9, %r10
bnot [%r9], Ox1
ext COMM1+0x400@h ; xbtst [%r9+COMM1+0x4001, 2 ; + symbol address + offset No. 1
ext COMM1+0x400@m
Id. w %r9, COMM1+0x400@|
add %r9, %r9
btst [%r9], 0x2
ext COMM1+0x10@h ; xbset [%r8+COMM1+0x10]1,3 ; +symbol address + offset No. 2
ext COMM1+0x10@m
Id. w %r9, COMM1+0x10@1
add %r9, %r8
bset [%r9], 0x3
ext COMM1+0x1@h ; xbelr [%r7+COMM1+1], 4 ; +symbol address + offset No. 3
ext COMM1+0x1@m
Id. w %r9, COMM1+0x1@I
add %r9, %r7
belr [%r9], 0x4
voxldow load word operation from sp register for C support
Id. w %r9, %sp voxldow [%spl, %sp
Id. w [%sp+0x01, %r9
Id. w %r9, %sp v xldow [%sp+0x24681, %sp
ext 0x91
Id.w [%sp+0x281, %r9
Id. w %r9, %sp »oxldow [0x12340], %sp
pushn %r0
ext 0x48d
Id. w %r0, 0x0
Id. w [%r01, %r9
popn %r0
EOC33 FAMILY EPSON 155

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

» Xjp, xjrea, xjrne

Id. w
pushn
ext
ext
Id. w
Id. w
popn
Id. w
pushn
ext
ext
Id. w
Id. w
popn
Id. w
Id. w
Id. w
ext
Id. w
Id. w
pushn
ext
ext
Id. w
add
Id. w
popn
Id. w
pushn
ext
ext
Id. w
add
Id. w
popn

%r9, %sp ;oxldow [COMM1], %sp
%r0

COMM1+0x0@h

COMM1+0x0@m

%r0, COMM1+0x0@|

[%r0], %r9

%r0

%r9, %sp ;o xldow [COMM1+4], %sp
%r0

COMM1-+0x4@h

COMM1+0x4@m

%r0, COMM1+0x4@|

[%r0], %r9

%r0

%r9, %sp voxld.ow [%r5], %sp
[%r5], %r9

%r9, %sp v xld.w [%r6+0b11007, %sp
Oxc

[%r6], %r9

%r9, %sp ;o xldow [%r 7+DATA1], %sp
%r0

DATA1+0x0@h

DATA1+0x0@m

%r0, DATAT+0x0@|

%r0, %r7

[%r01, %r9

%r0

%r9, %sp ;oxld.ow [%r7+DATA1+2001, %sp
%r0

DATA1+0xc8@h

DATA1+0xc8@m

%r0, DATA1+0xc8@I

%r0, %r7

[%r01, %r9

%r0

xjrgt, xjrge, xjrlt, xjrle, xjrugt, xjruge, xjrult

; Xjrule, xcall and with .d relative branchs
NEAR:
xjp.d -2 ; immediate relative No.1
ext 0x1 ; Xjreq 800 ; immediate relative No.2
jreq 0x90
ext 0x20 ; Xjrne 0x1000000 ; immediate relative No.3
ext 0x0
jrne 0x0
xjrgt.d BOOT ; symbol relative No. 1
ext COMM1@rh ; xjrge COMM1 ; symbol relative No.2
ext COMM1@rm
jrge comm1er |
jruge NEAR ; xjruge NEAR ; symbol relative No.3
. data
DATA1:
.word 0x12345678

.comm GOMM1 4

156

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 10: INSTRUCTION EXTENDER

10.10 Error/Warning Messages

Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "ext33.err" file.

If the ext33 is started up using the wb33's [EXT33] button, the message is output to "wb33.err". When execution is
completed, amessage is displayed in the output window (default).

10.10.1 Errors

The errors produced in the ext33 are classified into two groups. system errors and extender errors.

System errors refer to those that make it impossible to carry on the processing. If a system error occurs, the ext33
will immediately terminate the processing after displaying an error message. No assembly source file will be

output.

Table 10.10.1.1

Error message

List of system error messages
Content

Error: Cannot allocate memory.

Cannot secure memory space.

Error: Cannot open input file "<file name>".

Cannot open the source file.
The file does not exist in the specified directory.

Error: Invalid input filename "<file name>".

Cannot open the source file.
An illegal input file name was specified.

Error: Cannot open output file "<file name>".

Cannot open the output file.

Error: Cannot open error file "ext33.err".

Cannot open the error file.

Error: Cannot open command file "<file name>".

Cannot open the command file.
The file does not exist in the specified directory.

Error: Cannot write error file.

Cannot write to the error file.

Error: Cannot write output file "<file name>".

Cannot write to the output file.

The extender errors are produced when the command line, command file or source file contains a syntax or
description that cannot be processed by the ext33. No assembly source file will be output.

Table 10.10.1.2 List of extender error messages

Error message

Content

Error: Too long filename "<file name>".

File name is excessively long. A file name, including path, must
be 255 characters or less.

Error: Invalid command file description
"<description>".

<description> in command file is invalid. Write one option and
one input file in each line. Begin a comment with *;" and do not
write it on the same line as the other option or input file.

Error: Invalid command file format.

Command file format is invalid. The file format specified here is
not that of a text file.

Error: Invalid jump threshold "<parameter>".

Parameter of the -j option is invalid. The threshold must be
specified within a range of 0x100 to Ox1fffff.

Error: Invalid GP address "<parameter>".

Parameter of the -gp option is invalid. Specify an effective
hexadecimal address.

Error: Too many input files.

There are too many input files. More than 682 input files are
specified.

Error: No input file is specified.

No input file is specified.

<file name>(line No.): Error: Invalid syntax.

%1

Extended instruction has a syntax error.

x1 When the source file that contains debugging information is input, the ext33 displays "near <file name>(line
No.>)" after the message. It consists of the origina source file name (*.c, *.s) and the line number indicated

in the debugging information.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON 157

CHAPTER 10: INSTRUCTION EXTENDER

10.10.2 Warning
Even when awarning appears, the ext33 will keep on processing, and completes the processing after displaying a
warning message, unless any error is produced in addition. The assembly source file will be output.

Table 10.10.2.1 List of warning messages
Warning messages Content
Warning: Map file "<file name>" does not exist. Link map file cannot be found. Processing is continued after
the specification of the -Ik option is invalidated.
Warning: Symbol file "<file name>" does not exist. | Symbol file cannot be found. Processing is continued after
the specification of the -k option is invalidated.

<file name>: Warning: No map information in Map information corresponding to the input file does not
map file. exist in the link map file. Processing is continued after the
specification of the -Ik option is invalidated.
<file name>: Warning: Invalid map file format. This is an invalid map file format. Processing is continued
after the specification of the -Ik option is invalidated.
<file name>: Warning: Invalid symbol file format. This is an invalid symbol file format. Processing is continued
after the specification of the -Ik option is invalidated.
<file name>: Warning: Cannot find the symbol Information of <symbol> cannot be found in the symbol file.
"<symbol>" in symbol table. *1 Processing is continued by assuming that <symbol> is
undefined.
<file name>: Warning: Operand exceeds Operand address exceeds the effective range of values
maximum address. *1 represented by 32 bits.

<file name>: Warning: Invalid address operand. *1 | Invalid boundary address is specified. An address whose
LSB is not 0 is specified in an extended instruction that
handles half word data. An address whose two lower bits are
not 0 is specified in an extended instruction that handles
word data.

<file name>: Warning: Invalid operand value. *1 A value exceeding the effective range is specified in the
operand of an extended instruction.

*1 When the source file that contains debugging information is input, the ext33 displays "near <file name>(line
No.>)" after the message. It consists of the origina source file name (*.c, *.s) and the line number indicated
in the debugging information.

10.11 Precautions

(1) In the ext33, the genera-purpose register R8 is reserved for use as a globa pointer and the register R9 is
reserved for use as a scratch register for extended instructions. Do not use these two registers when creating
assembly sources.

(2) Theext33 only performs the syntactic check that is necessary for the expansion and optimization of extended
instructions. The validity of the instructions derived by expansion is not checked. Nor does the ext33 check
the mnemonics, operands, or assembler pseudo-instructions (except afew).

158 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

Chapter 11 Assembler

This chapter describes the functions of the Assembler as33.
For the syntax of the assembly sources, refer to Section 4.3, " Grammar of Assembly Source".

11.1 Functions

The Assembler as33 (hereafter called the "as33") assembles (trandlates) assembly source files that are delivered by
the Instruction Extender and creates object files in the machine language.

The functions and features of the as33 are summarized below:

¢ Supports the absolute assembling and the relocatable assembling.

e Allows to develop programs by module.

¢ Can deliver debugging information for purposes of symbolic debugging.

11.2 Input/Output Files

Instruction Extender ext33

———— Assembly

W source file

Assembler
as33

Object ile Assembly Error
(Relocatable or W m list file W file
absolute) G

Linker k33
Fig. 11.2.1 Flowchart

11.2.1 Input File

Assembly sourcefile

File format: Text file

File name: <File name>.ms (Other extenders than ".ms' can be used. A path can aso be
specified.)

Description: File in which a source program is described. Usually, a file delivered by the Instruction

Extender ext33 isinput there.
If source files were created that only describe basic instructions and assembler
pseudo-instructions, they can be input into the as33 directly.

11.2.2 Output Files

Object file
File format: Binary filein srf33 format
File name: <Filename>.0 (The <File name> is the same as that of the input file.)
Output destination: Current directory
Description: File in which symbol information and debugging information are added to the

program code (machine language).
For the srf33 format, refer to Appendix, "srf33 File Structure”.

EOC33 FAMILY EPSON 159
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

Assembly list file

File format: Text file

File name: <Filename>.Ist (The <File name> is the same as that of the input file.)

Output destination: Current directory

Description: Assembly source file in which assembled results (address and object code) are added

to each line. It is delivered when the startup option (-I) is specified.
For specific examples, refer to Section 11.9 "Assembly List File".

Error file
File format: Text file
File name: as33.er
Output destination: Current directory
Description: File delivered when the startup option (-€) is specified. It records error messages and

other information which the as33 delivers via the Standard Output (stdout).

11.3 Starting Method

11.3.1 Startup Format
General form of command line
as33 " [<startup option>] ~ [<file name>]

~ denotes a space.
[] indicates the possibility to omit.
<file name>: Specify an assembly source file name including the extension.

Operationson work bench
Select options and a source file, then click the [AS33] button.

In the command line, only one source file can be specified at atime.
The wb33 dlows multiple files to be selected, in which case the as33 is executed as many times as the number of
files selected.

11.3.2 Startup Options
The as33 comes provided with the following three types of startup options:

-9
Function: Addition of debugging information
Specification on wh33: Check [debug info].
Explanation: e Creates an output file containing symbolic debugging information.
o Always specify thisfunction when you perform symbolic debugging.
e Evenif thisoption is not selected, the debugging information added in the C Compiler
gce33 or the Preprocessor pp33 for source display will not be cut off.
-l
Function: Output of assembly list file
Specification on wb33: Check [list filg].
Explanation: e Outputs an assembly list file.
-e
Function: Output of error files
Specification on wb33: None
Explanation: e Ddivers dso in a file (as33.err) the contents that are output by the as33 via the

Standard Output (stdout), such as error messages.

When entering options in the command line, you need to place one or more spaces before and after the option.
Example: c\cc33\as33 -g -e -l testms

160 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.4 Messages

The as33 delivers its messages through the Standard Output (stdout).
If the as33 is started up by using the wb33's [AS33] button, the message is output to "whb33.err". When execution

is completed, a message is displayed in the output window (default).

End message
The as33 outputs only the following end message when it ends normally.

Assembly Completed

Usage output
If no file name was specified or an option was not specified correctly, the as33 ends after delivering the

following message concerning the usage:

Assembler 33 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x
Usage:
as33 [options] <filename>
Options:
-e : produce log file (as33.err)
-g . generate debug information in object file
-1 : produce list file
Output:
object file (.0)
list file (. Ist)
log file (as33.err)
Example:
as33 -e —g —| sample.ms

When error/warning occurs
If an error is produced, an error message will appear before the end message shows up.
Example: test.ms(7): Error: Invalid instruction syntax.
Assembly Completed

In the case of an error, the as33 ends without creating an output file.

If awarning isissued, awarning message will appear before the end message shows up.
Example: test.ms(12) : Warning: Numeric range.
Assembly Completed

In the case of awarning, the as33 ends after creating an output file.

For details on errors and warnings, refer to Section 11.10 "Error/Warning Messages'.

EOC33 FAMILY EPSON 161
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.5 Relocatable Assembling and Absolute Assembling

The as33 supports both the relocatable assembling and the absol ute assembling. It even alows to develop software
with relocatable modules and absol ute modules existing in a mixed fashion.

11.5.1 Relocatable Assembling

The relocatable assembling is a method that assembles files without fixing addresses, so that the program will be
able to work wherever on the memory the modules may be mapped. Therefore, no absolute address specification
will be made in the source files. The C Compiler delivers assembly source filesin the relocatable format.

In the relocatable assembling, the assembler performs the processing by applying the relative addresses from top of
each section to the individua codes.

This information is output in the object file aong with the codes, and al the addresses are determined by the
processing of the Linker 1k33.

Modules assembled by this method can freely be combined with other modules. This will let you use
general-purpose modules thus assembled relocatably as a library in the software development for other models.
For relocation by the Linker |k33, refer to Chapter 12, "Linker".

Refer to Chapter 15, "Librarian", for making libraries using the output objects.

The .abs pseudo-instruction, .org pseudo-instruction, and .set pseudo-instruction cannot be employed in the
relocatable sourcefiles.

11.5.2 Absolute Assembling

The absolute assembling is a method that assembles source files by priory specifying the addresses where codes
are to be mapped.

However, since the usefulness of the source files for various purposes is lost when they are linked with other
modules, do not use this method unless you are creating a simple test program.

The absolute assembling is specified by the .abs pseudo-instruction written in the first line of the source file, and
the address are set by using the .org pseudo-instruction. The .org pseudo-instruction and the .set pseudo-instruction
to define absolute addresses can be employed only in the absol ute source.

Example:
.abs ...Specifies the absolute assembling.
.code
.org 0x80000 ...Maps the following codes from address 0x80000.
.word 0x80004
BOOT:
ext 0x20
ld.w %r8,0x0
ld.w %sp,%r8 ; set SP
ld.w %r8,0x0 ; set globa pointer
.data
.org 0xCO0000 ...Maps the following data from address 0xC0000.

.word 0x12345678

This method causes all the codes in that file to have absolute addresses. It cannot make part of afile relocatable.
However, even when a program is created in the form of one absolute source file, it needs to be passed through the
Linker Ik33 in order to obtain an execution file in which fina addresses are defined. (In case of one file, remove
the check on the [use .cm filg] in the Work Bench wb33 for linking.)

Make sure there is only one instance of the CODE section, DATA section, and BSS section in each absolute file.
Basicaly, create arelocatable assembly source file, then relocate it by using the map function of the 1k33.

162 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.6 Scope

Symbols defined in each source file can freely be referred to within that file. Such reference range of symbols is
termed scope.

This scope remains the same both in the relocatable and the absolute assembling. Usually, reference can be made
only within a defined file. If a symbol that does not exist in that file is referenced, the as33 creates the object file
assuming that the symbol is an undefined symbol, leaving the problem to be solved by the Ik33.

If your development project requires the use of multiple sourcefiles, it is necessary for the scope to be extended to
cover other source files. The as33 has the pseudo-instructions (.global, .comm) that can be used for this purpose.
Use these instructions to declare that the symbol isagloba symbol, so that it can referenced in other source files.
Symbolsthat can be referenced in only the file where they are defined are called "local symbols'. Symbols that are
declared to be global are caled "globa symbols'. Local symbols — even when symbols of the same name are
specified in two or more different files — are handled as different symbols. Globa symbols — if defined as
overlapping in multiple files — cause awarning to be generated in the Ik33.

Example:
filel: filein which global symbol is defined
.global SYMBOL ...Global declaration of a symbol which isto be defined in thisfile.
SYMBOL:
LABEL: ...Local symbol

: (Can be referred to only in thisfile)
.comm VARL 4

file2: filein which agloba symbol is referred

ext SYMBOL @rh

ext SYMBOL@m

cal SYMBOL @l ...Symbol externally referred
ext VAR1@h

ext VAR1@m

Id.w %rl, VAR1@I ...Symbol externally referred

LABEL: ...Local symbol
: (Treated as a different symbol from LABEL of filel)

The as33 regards the symbols SYMBOL and VAR1 in thefile2 as those of undefined addresses in the assembling,
and includes that information in the object file it delivers. Those addresses are finaly determined by the processing
of thelinker.

EOC33 FAMILY EPSON 163
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.7 Definition of Sections

In addition to the programs that control the CPU and periphera circuits, the source file contains permanently fixed
data, such as character generators, which does not require initialization, symbols for the variables stored in RAM
and /O memory control registers. These data and symbols, which bear different attributes, must finaly be
relocated into the corresponding physical memory locations by the linker, for example, programs must be
relocated into the program areain ROM, and fixed data into the data areain ROM. For this reason, the Assembler
is designed in such away that the object codeis classified by attribute into each section.

The following three sections exist:

1. CODE section Block for programs

2. DATA section Block for the data to be written into ROM

3. BSS section Block that is mapped into RAM, etc.

To alow to specify these sections in assembly source files, the as33 comes provided with pseudo-instructions.
Since the Compiler generates pseudo-instructions, you need not be concerned about sections when programming
the C source.

CODE section
The .code pseudo-instruction defines a CODE section. A statement from this instruction to an instruction that
defines some other section is assumed to be a program code/data, and is an object for the CODE section. The
source file will be regarded as a CODE section by default. Therefore, the part that goes from top of the file,
to another section will be processed as CODE section.

DATA section
The .data pseudo-instruction defines a DATA section. A statement from this instruction to an instruction that
defines some other section is assumed to be data, and is an object for the DATA section. Therefore, nothing
but the symbols to reference addresses and the pseudo-instructions to define data (.word, .half, .byte, .ascii,
.space), those to define alignment (.align), and comments can be written in this area.
Although data can be written in the CODE section too, if you want the data blocks to be stored separately
from programs after they are linked, data must be written in the DATA section.

BSS section

The .comm pseudo-instruction and the .lcomm pseudo-instruction are designed to define the symbol and size
of avariables area. When either one of the instructions is described, the symbol will be set in a BSS section.
Although the BSS section basically consists in a RAM area, it can as well be used as a data memory area,
such as 1/0 memory. Code definition in this area is meaningless in embedded type microcomputers, such as
those of the EOC33 Family. When some other instruction or definition follows the .comm or .Ilcomm
pseudo-instruction, the section changes to the type defined prior to the BSS section.

Although this section has no actual data as an object, it is required to generate symbol and map information.

164 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

Section management for relocatable source
In the relocatable assembling, identical sections will be joined together in order to create an object file
composed of three integrated sections of CODE, DATA and BSS. Even for a section having no data
described or no definition made, the section information will be delivered in the object file.

Sample definition of sections

CODEl (Program)
.data -

DATAl (Data definition)
.comm - RAMO,1

B.881 (RAM area definition)
.code -

CODEZ (Program)
.data -

DATAZ (Data definition)
.code

CODES3 (Program)

If you define sections in the manner shown above, the as33 will create an absolute object file composed in
the following manner:

(0x00000000) | CODE1L
CODE2 CODE section
CODE3
(0x00000000) | DATA1 DATA section
DATA2
(0x00000000) | BSSL BSS section
EOC33 FAMILY EPSON 165

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

Section management for absolute source
When a source program is divided with the pseudo-instructions mentioned above or the .org
pseudo-instruction in the absolute assembling, the assembler will create the object file by treating al of the
divided parts as independent sections. Moreover, when the types of sections are to be modified with the
section defining pseudo-instructions, the start address of each individual section has to be specified using
the .org pseudo-instruction.

Sample definition of sections

.abs
.code
.org 0x80100
CODEZ1 (Program) — Section 1
.data
.org 0x80f00 ...If this specification is omitted, aDATA section begins from the address
: following CODE1.
DATA1 (Data definition) — Section 2
.org 0x0
.comm RAMO,1 — Section 3 (BSS area definition)
If you define sections in the manner indicated above, the as33 will create an absol ute object file having three
sections.
Precaution

When there appears in a section a statement which is designed for other section, an error will be issued.
Example: .data
ld.w %r1, %r0 ...Error

166 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.8 Assembler Pseudo-Instructions

The assembler pseudo-instructions are not converted to execution codes, but they are designed to control the
assembler or to set data.

For discrimination from other instructions, all the assembler pseudo-instructions begin with a period (.). Describe
dl theinstructionsin lowercase. Parameters are discriminated between uppercase and lowercase.

11.8.1 Absolute Assembling Pseudo-Instruction (.abs)

.abs pseudo-instruction
Instruction format

.abs

Function
Specifies the absolute assembling. With this specification done, the as33 performs assembling by handling
thefile as an absolute file. Thetop of afileisat address 0x0 by default.

Precautions
e The .abs pseudo-instruction needs to be specified ahead of other basic instructions and pseudo-instructions.
Describeit in thefirst line of afile.

¢ The pseudo-instructions (.org, .set) dedicated to the absolute assembling cannot be used without the .abs
pseudo-instruction described. If they are used in such situation, an error will result.

EOC33 FAMILY EPSON 167
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.8.2 Section Defining Pseudo-Instructions (.code, .data)

.code pseudo-instruction

Instruction format

.code

Function

Declares the start of a CODE section. Statements following this instruction are assembled as those to be
mapped in the CODE section, until another section is declared.

The CODE section is set by default in the as33. Therefore, the .code pseudo-instruction can be omitted at top
of asource file. Always describe it when you change a section to a CODE section. For details on the sections,
refer to Section 11.7 "Definition of Sections'.

Precautions
e A CODE section can be divided among multiple locations of a source file for purposes of definition

(describing the .code pseudo-instruction in the respective start positions).
However, not that multiple CODE section cannot be defined in an absolute source file. The total of sections
that can be defined in one source file is maximum 3 in the absol ute assembling.

¢ In the case of an absolute source, be sure to specify an address by the .org pseudo-instruction in the line

preceding or following the .code pseudo-instruction.

.data pseudo-instruction

Instruction format

.data

Function

Declares the start of a DATA section. Statements following this instruction are assembled as those to be
mapped in the DATA section, until another section is declared.
For details on the sections, refer to Section 11.7 "Definition of Sections”.

Precautions
e In a DATA section, nothing other than the data defining pseudo-instructions (.word, .half, .byte, .ascii

and .space), .aignment pseudo-instructions (.align), location counter control pseudo-instructions (.org),
symbols, and comments can be described. If anything elseis described, it will result in an error.

A DATA section can be divided among multiple locations of a source file for purposes of definition
(describing the .data pseudo-instruction in the respective start positions).

However, not that multiple DATA section cannot be defined in an absolute source file. The total of sections
that can be defined in one source file is maximum 3 in the absol ute assembling.

In the case of an absolute source, be sure to specify an address by the .org pseudo-instruction in the line
preceding or following the .data pseudo-instruction.

168

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.8.3 Area Securing Pseudo-Instructions (.comm, .lcomm)

.comm pseudo-instruction
Instruction format
.comm <Symbol>[,] <Size>

<Symbol>: Symbols for memory access (address reference)
e The 1st character islimited to az, A—Z and _.
e The 2nd and the subsequent character can use az, A—Z, 0-9 and _.
e Upto 32 characters can be used for symbol names.
e Uppercase and lowercase are discriminated.
¢ One or more spaces, tabs or acomma (,) are necessary between instruction and symbol.

<Size>: Number of bytes of the area to be secured
e Only decimal, binary and hexadecimal numbers can be described.
¢ One or more spaces, tabs or acomma (,) are necessary between symbol and size.

Sample description:
.comm FOO 4

Function
Sets an area of the specified size in the BSS section, and creates a symbol indicating its top address with the
specified name. By using this symbol, you can describe an instruction to access the memory. The symbols
created by the .comm pseudo-instruction become globa symbols, which can be referred to externaly from
other modules.
Only the .comm and .lcomm pseudo-instructions are processed as BSS sections. If some other statement
follows the .comm or .Icomm pseudo-instruction, the previous section type applies from that point.
For details on the sections, refer to Section 11.7 "Definition of Sections”.

Precautions
e A BSS section can be divided among multiple locations of a source file for purposes of definition (describing
the .comm pseudo-instruction in the respective start positions).
However, not that multiple BSS section cannot be defined in an absolute source file. Thetota of sections that
can be defined in one source file is maximum 256 in the absolute assembling.

e The address to be assigned the symboal is adjusted to the boundary according to the data size.
Datasize: 1 Byte boundary
2 Half word boundary
3ormore Word boundary

EOC33 FAMILY EPSON 169
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

.Icomm pseudo-instruction

In

struction format
Icomm <Symbol>[,] <Size>

<Symbol>: Symbols for memory access (address reference)
e The 1st character islimited to a—z, A—Z and _.
e The 2nd and the subsequent character can use &z, A—Z, 0-9 and _.
e Up to 32 characters can be used for symbol names.
e Uppercase and lowercase are discriminated.
e One or more spaces, tabs or acomma (,) are necessary between instruction and symbol.

<Size>: Number of bytes of the areato be secured
e Only decimal, binary and hexadecimal numbers can be described.
¢ One or more spaces, tabs or acomma (,) are necessary between symbol and size.

Sample description:
dcomm BAR 0x10

Function

Pr

Sets an area of the specified size in the BSS section, and creates a symbol indicating its top address with the
specified name. By using this symbol, you can describe an instruction to access the memory. The symbols
created by the .lcomm pseudo-instruction are local symbols, which cannot be referred to from other modules.

Only the .lcomm and .comm pseudo-instructions are processed as BSS sections. If some other statement
follows the .Icomm or .comm pseudo-instruction, the previous section type applies from that point.

For details on the sections, refer to Section 11.7 "Definition of Sections”.

ecautions

e A BSS section can be divided among multiple locations of a source file for purposes of definition (describing
the .lcomm pseudo-instruction in the respective start positions).
However, not that multiple BSS section cannot be defined in an absolute source file. The total of sections that
can be defined in one source file is maximum 256 in the absol ute assembling.

¢ The address to be assigned the symbol is adjusted to the boundary according to the data size.
Datasize: 1 Byte boundary
2 Half word boundary
3ormore Word boundary

170

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.8.4 Location Counter Control Pseudo-Instruction (.org)

.org pseudo-instruction
Instruction format
.org <Address>

<Address>: Absolute address specification
e Only decimal, binary and hexadecimal numbers can be described.
e The addresses that can be specified are from 0 to Oxfffffff.
e One or more spaces, tabs or a comma (,) are necessary between the instruction and the
address.

Sample description:
og O
.org 0x80000

Function
Specifies an absolute address in an absol ute assembly source file. The as33 performs assembling by assuming
that statements following this instruction start from the specified address.

Precautions
¢ The .org pseudo-instruction cannot be used (within a relocatable source), if the .abs pseudo-instruction was
not described. If used under such condition, an error will result.

¢ The .org pseudo-instruction specifies a section start address with the operand vaue. Note, however, if an odd
address is specified, the address may be adjusted to the boundary address according to the subsequent
instruction or definition.

EOC33 FAMILY EPSON 171
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.8.5 Symbol Defining Pseudo-Instruction (.set)
.set pseudo-instruction
Instruction format

.set <Symbol>[,] <Address>

<Symbol>: Symbols for memory access (address reference)
e The 1st character islimited to az, A—Z and _.
e The 2nd and the subsequent character can use &z, A—Z, 0-9 and _.
e Uppercase and lowercase are discriminated.
e One or more spaces, tabs or a comma (,) are necessary between the instruction and the
symbol.

<Address>: Absolute address specification
e Only decimal, binary, and hexadecimal numbers can be described.
e The addresses that can grammaticaly be specified are from 0 to Oxfffffff.
e One or more spaces, tabs or a comma (,) are necessary between the instruction and the
address.

Sample description:
set DATA1l 0x80000

Function
Defines an absolute address (32-bit) for asymbol.

Precautions
e The .set pseudo-instruction cannot be used (within a relocatable source), if the .abs pseudo-instruction was
not described. If used in such situation, an error will result.

e The set symbol becomes a loca symbol. To use it as a globa symbol, global declaration using the .global
pseudo-instruction is necessary.

Reference
To define general-use data and character strings, use the #define pseudo-instruction of the preprocessor. (See
Section 9.5.2.)

172 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.8.6 Data Defining Pseudo-Instruction (.word, .half, .byte, .ascii, .space)

.word pseudo-instruction
Instruction format

Format1) .word <Data>[[,] <Data>...[,] <Data>]
Format 2) .word <Symbol>
<Data>: Word data (32 hits)
e Only decimal, binary and hexadecimal numbers can be described.
e Thedatathat can be specified are from 0 to Oxffffffff.
e One or more spaces, tabs or a comma (,) are necessary between the instruction and the first
data and between one data and another.

<Symbol>: Symbol name that has been defined
Sample description:
.word 0x10000000 0x20000000 0x30000000 0x4000000

word 256
word FOO

Function
Format 1) Defines word data. Data can be defined in a CODE section or DATA section.
Format 2) Defines the symbol value as a word data. Data can be defined in a CODE section or DATA
section.

Precautions
e The .word pseudo-instruction can be used in a CODE section or aDATA section.
e Two or more data can be defined at a time in Format 1. However, one line is limited to 255 characters,
including blank characters.
e The defined data is located beginning with a word boundary address unless it is immediately preceded by
the .dign pseudo-instruction. If the current position is not a word boundary address, 0x00 is set in the
interval from that position to the nearest word boundary address.

.half pseudo-instruction
Instruction format
.half <Data>[[,] <Data>...[,] <Data>]
<Data>: Half word data (16 bits)
e Only decimal, binary and hexadecimal numbers can be described.
e Thedatathat can be specified are from 0 to Oxffff.
e One or more spaces, tabs or a comma (,) are necessary between the instruction and the first
data and between one data and another.
Sample description:
half Oxfffc Oxfffd Oxfffe Oxffff
.half 256

Function
Defines haf word data. Data can be defined in a CODE section or DATA section.

Precautions
e The .haf pseudo-instruction can be used in a CODE section or aDATA section.
e Two or more data can be defined at a time. However, one line is limited to 255 characters, including blank
characters.

¢ The defined data is located beginning with a half word boundary address, unless it is immediately preceded
by the .align pseudo-instruction. If the current position is an odd address, 0x00 is set at the current position.

EOC33 FAMILY EPSON 173
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

.byte pseudo-instruction
Instruction format
.byte <Data>[[,] <Data>...[,] <Data>]

<Data>: Byte data (8 bits)
e Only decimal, binary and hexadecimal numbers can be described.
e Thedatathat can be specified are from O to Oxff.

e One or more spaces, tabs or a comma (,) are necessary between the instruction and the first
data and between one data and another.

Sample description:
.byte Oxfc Oxfd Oxfe Oxff
.byte 255
Function

Defines byte data. Data can be defined in a CODE section or DATA section.

Precautions
e The .byte pseudo-instruction can be used in a CODE section or aDATA section.

e Two or more data can be defined at a time. However, one line is limited to 255 characters, including blank
characters.

e The defined data is located at the current address, unless it is immediately preceded by the .align
pseudo-instruction. If byte data is defined at an even address of the CODE section and an instruction is
written next, 0x00 is set at an odd address next to the data-defined address to ensure that the instruction will
begin with ahalf word boundary.

.ascii pseudo-instruction
Instruction format
.ascii "<Character string>"

<Character string>:
ASCI| character string
e The character code that can be specified are from 0 to Oxff.
e ASCII characters and an escape sequence that begins with a symbol “\" can be written in a
character string. For example, if you want to set double quotations in a character string, write
\"; toset a\, write\\.

e One or more spaces, tabs or a comma (,) are necessary between the instruction and the
character string.
Sample description:
ascii - “abed \"E\" fg" (=abcd "E" fg)
Function

Defines a character string. Data can be defined in a CODE section or DATA section.

Precautions
e The .ascii pseudo-instruction can be used in a CODE section or aDATA section.

e The defined data is located beginning with the current address first, unless it is immediately preceded by
the .align pseudo-instruction.

174 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

.space pseudo-instruction
Instruction format
.space <Size>

<Size>: Number of bytesto be filled with 0x0
e Only decimal numbers can be described.
e Thesizethat can be specified are from 1 to 2147483647.
e One or more spaces, tabs or acomma (,) are necessary between the instruction and the size.

Sample description:
.Space 16

Function
An area of the specified sizeis set to 0x0. Such an area can be defined in a CODE or aDATA section.

Precautions

¢ The .space pseudo-instruction can be used in a CODE section or a DATA section. If used in a BSS section,
an error will result.

e An area of the specified size beginning from the current address is set to Ox0, unless it is immediately
preceded by the .align pseudo-instruction.

Regarding the alignment of definition data

Unless it is immediately preceded by the .align pseudo-instruction, data is located beginning with a boundary
address matched to the data size by a data definition pseudo-instruction.

In the CODE section, instructions are located beginning with a half word boundary. Therefore, it is possible that a
blank space occursin an interval from the last address of defined data to the next instruction or data. The blank
addresses are filled with 0x0.

Examples:
ip SYMBOL
.byte 0x41 ...0x0 is set after 0x41.
ld.w %r1, %r7
.word 0x00
.byte 0x01 ...Three bytes of 0x0 are set after 0x01.
.word 0x02
EOC33 FAMILY EPSON 175

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.8.7 Alignment Pseudo-Instruction (.align)

.align pseudo-instruction
Instruction format
.align <Boundary specifying value>

<Boundary specifying value>:
Value to specify a boundary
e Thevauesthat can be specified are 0 to 8.
e Specify alignment to a2° through 2° byte boundary.
e One or more spaces, tabs or a comma (,) are necessary between the instruction and
specification value.

Sample description:
dign 2 (adligned to a 4-byte boundary)

Function
The data that appears immediately after this pseudo-instruction is aligned to a 2V byte boundary. (N =
boundary specification value)

Precaution
The .align pseudo-instruction is valid for only the immediately following data definition pseudo-instruction.
Therefore, when defining data that requires alignment, you need to use the .align pseudo-instruction for each
data definition pseudo-instruction.

11.8.8 Global Declaring Pseudo-Instruction (.global)

.global pseudo-instruction
Instruction format
.global <Symbol>

<Symbol>: Symbol to be defined in the current file
e One or more spaces, tabs or a comma (,) are necessary between the instruction and the
symbol.

Sample description:
globa SUB1

Function
Makes global declaration of a symbol. The declaration made in a file with a symbol defined converts that
symbol to agloba symbol which can be referred to from other modules.

Precautions
e The symbols referenced from other modules must be declared to be global. The symbols defined by
the .comm pseudo-instruction are global symbols, so there is no need to use the .global pseudo-instruction to
make a declaration.

e The symbols not declared in the current file are processed as global symbols that are declared in some other
file.

176 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.8.9 List Control Pseudo-Instructions (.list, .nolist)

.nolist pseudo-instruction
Instruction format

.nolist

Function
Controls output to the assembly list file.
The .nolist pseudo-instruction stops output to the assembly list file after it isissued.
By default (unless otherwise specified) all statements are output to the assembly list file.

Precaution
The as33 delivers assembly list files only when it is started up with the -1 option specified. Therefore, this
instruction isinvalid, if the -l option was not specified.

list pseudo-instruction
Instruction format

list

Function
Controls output to the assembly list file.
The .list pseudo-instruction resumes from there the output which was stopped by the .nolist
pseudo-instruction.

Precaution
The as33 delivers assembly list files only when it is started up with the -I option specified. Therefore, this
instruction isinvalid, if the -l option was not specified.

EOC33 FAMILY EPSON 177
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.8.10 Debugging Pseudo-Instructions (.file, .endfile, .loc, .def)

file, .endfile, .loc pseudo-instructions

Instruction formats

(1) file "<File name>"

(2) .endfile

) .loc <Line No.>
Function

These pseudo-instructions are used to add source information to the object file, and are generated by the C
Compiler gcc33 and the Preprocessor pp33.

The as33 outputs object files in srf33 format, including debugging information conforming to these
instructions. This debugging information is necessary to perform source level debugging by the Debugger
db33. Even when the -g option of the as33 is not specified, the debugging information will not be cut off.
The file pseudo-instruction outputs information indicating the source file's start position. The code following
this pseudo-instruction is the content of the file specified by <file name>. It isinserted at the beginning of the
source file or an include file at a place where afile is changed.

The .endfile pseudo-instruction outputs information indicating the end position of the file. It is not inserted at
the end position of an includefile.

The .loc pseudo-instruction outputs information indicating the line numbers of instructions in the source file.
It is not added to comments or anywhere other than instruction lines.

.def pseudo-instruction

Instruction format

.def <Symbol name> [, <Parameter>, ... <Parameter>], endef

Function

This pseudo-instruction is used to add the C source's symbol information to the object file, and is generated
for each symbol by the gcc33. The pp33 does not generate this information.

When the -g option is specified, the as33 outputs the object file in srf33 format, including the debugging
information that conforms to this instruction. This debugging information is required when the Debugger
db33 symbolic-debugs the C source. If the -g option of the as33 is not specified, this debugging information
iscut.

<parameter> indicates such information as symbol type and storage class. For details, refer to Section 6.6,
"Debugging Information”.

Insertion of debugging information by C Compiler and Preprocessor

When the -g option is specified ([debug info] checked on the work bench) as a start option of the gcc33 and
pp33, the gce33 and pp33 will insert debugging pseudo-instructions in the output file (assembly source file).
The pp33 does not insert the .def pseudo-instruction.

Therefore, you do not have to describe these pseudo-instructions in creating source files.

178

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.9 Assembly List File

The assembly list file is an assembly source file that carries assembled results (addresses and object codes) added
to thefirst half of each line. It is delivered only when the startup option (1) is specified.

If the .nolist pseudo-instruction is written in the source, no contents from that position to the end of the file or
the .list pseudo-instruction are output.

Its file format is a text file, and the file name, <File name>.Ist. (The <File name> is the same as that of the input
sourcefile.)
The format of each line of the assembly list fileis asfollows:

Address Code Source Statement

Example:
file “boot. s”
; boot.s 1997.2.13
; boot program
#idefine SP_INI 0x0800 ; sp is in end of 2KB internal RAM
#idefine GP_INI 0x0000 ; global pointer %r8 is 0x0
. code
00000000 00000000 .word BOOT ; BOOT VECTOR
BOOT:
. loc 10
00000004 020 ext 0x20 ; xld. w %r8, 0x800
00000006 6c08 Id.w %r8, 0x0
. loc 1
00000008 a081 Id.w %sp, %r8 , set SP
. loc 12
0000000a 6c08 Id. w %r8, 0x0 , set global pointer
. loc 13
0000000¢c ¢000 ext main@rh ; xcal | main ; goto main
0000000e c000 ext main@rm
00000010 1c00 call main@r |
. loc 14
00000012 1e00 ip BOOT ; Xjp BOOT ; infinity loop
.data
00000000 00000001 .word 1 2
00000002
00000000 00 .comm tmp 4
.endfile

Content of address
In the case of an absolute module, an absolute address will be delivered in hexadecimal number.
In the case of arelocatable module, arelative address will be delivered in hexadecimal number from the top
of each section.

Content of code
CODE section: The instruction codes and the defined data are delivered in hexadecimal numbers.
DATA section: The data defined by the data defining pseudo-instruction are delivered.
BSS section: Irrespective of the size of the secured area, 00 is aways delivered here.

% Only the address defined for a symbol (top address of the secured area) is delivered as the address of the
BSS section.

Precaution
The assembler sets the operand (immediate data) of the code that refers to a symbol to 0. The immediate data
will be decided by the linker.

EOC33 FAMILY EPSON 179
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.10 Error/Warning Messages

Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "as33.err" file.

If the as33 is started up using the wb33's [AS33] button, the message is output to "wb33.err". When execution is
completed, amessage is displayed in the output window (default).

11.10.1 Errors

The errors produced in the as33 are classified into two groups. system errors and assembler errors.

Table 11.10.1.1 List of system error messages

Error message Content
<file name>: Error: Out of memory Cannot secure memory space.
<file name>: Error: File open error Cannot open the file.
<file name>: Error: File access error Cannot read/write from/to the opened file.

The assembler errors are produced when the source contains a syntax or description which cannot be processed by
the as33. No object file will be delivered. An assembly list file will be delivered, including error messages.

Table 11.10.1.2 List of assembler error messages

Error message Content
Error: Invalid file name. The source file has the extension (.0) same as the output file.
Error: Filename length limit exceeded - 255. The file name exceeds 255 characters.
Error: Directory path length limit exceeded - 255. | The path (directory and file name) exceeds 255 characters.
Error: Line length limit exceeded - 255. The line exceeds the limit number of characters.
Error: Symbol name length limit exceeded - 32. | The symbol name surpassed the limit number of characters.
Error: Token length limit exceeded - 64. The numeric data exceeds the limit number of digit.
Error: Multiple statements on the same line. There are more than two statements described in one line.
Error: Invalid statement syntax. There is an illegal character in the statement.
Error: Invalid instruction. - "<instruction>" Non-existing instruction was used.
Error: Invalid register. - "<register>" The specified register name has an error.
Error: Invalid directive. - "<directive>" A non-existing pseudo-instruction was used.
Error: Invalid symbol mask. - "<mask>" The symbol mask has a description error.
Error: Invalid instruction syntax. The description of the instruction has an error.
Error: Invalid directive syntax. The description of the pseudo-instruction has an error.
Error: Multiply declared symbol. - "<symbol>" The same symbol name was declared in multiple locations.
Error: Multiply defined symbol. - "<symbol>" The same symbol name was defined in multiple locations.
Error: Incorrect section type for statement. There is an impermissible statement described in the current

section.

Error: Memory mapping conflict. The address is duplicated.
Error: Section count limit exceeded - 256. The limit number of sections was surpassed.

* "Error" is preceded by an input file name and a line number displayed in the form of "<file name>(<line
No.>)". If the source file that includes the debugging information is input, the message is followed by "near
<file name>(<line No.>)". This consists of the original source file name (*.c, *.s) and line number indicated
by the debugging information.

180 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 11: ASSEMBLER

11.10.2 Warning
When awarning appears, the assembler will keep on processing, and terminates the processing after displaying a
warning message, unless any other error is produced. An object file and assembly list file will be delivered.

Table 11.10.2.1 List of warning messages

Warning message Content

Warning: Numeric range. The operand value exceed the specifiable range.

Warning: Unknown escape sequence. An invalid escape sequence is used in the .ascii pseudo-
instruction.

Warning: Escape sequence out of range for The character code represented in oct or hex in the .ascii

character. pseudo-instruction exceeds Oxff.

Warning: \x used with no following hex digits. No value written in hex is found for the hex value specification

in the .ascii pseudo-instruction.

= "Warning" is preceded by an input file name and a line number displayed in the form of "<file name>(<line
No.>)." If the source file that includes the debugging information is input, the message is followed by "near
<file name>(<line No.>)." This consists of the original source file name (*.c, *.s) and line number indicated
by the debugging information.

11.11 Precautions

(1) The maximum number of object files that can be linked are 4,000 files including library modules. If thislimit
is exceeded, an error occursin the linker.

(2) When performing C source-level or symbolic debugging with the db33, always be sure to specify the -g
option before you execute the as33.
Even when the -g option is specified in the gcc33 (the same applies in the case of the pp33), al symbol
information is cut unlessthe -g option is specified in the as33. The source information is not cut. Conversely,
if the -g option is specified in the as33 but no -g option is specified in the gcc33 (the same appliesin the case
of the pp33), symbol information consisting only of symbol names and addresses is added during assembly.
Furthermore, unless the -g option is specified in the 1k33, all debugging information is cut during linkage.

Make sure that the debugging information (debug pseudo-instructions) in the source file is created only by
specifying the -g option of the gcc33 and pp33, and not by any other method. Also be sure not to correct the
debugging information that is output. Corrections could cause the as33, 1k33, db33 or dis33 to malfunction.

EOC33 FAMILY EPSON 181
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

Chapter 12 Linker

This chapter describes the functions of the Linker 1k33.

12.1

Functions

The Linker 1k33 (hereafter called the "Ik33") is a software that generates executable object files. It provides the

following functions:

e Linkstogether multiple object modulesincluding libraries to create one executable object file.

¢ Resolves externa reference from one module to another.

¢ Relocates relative addresses to absolute addresses.

o Ddlivers debugging information, such as line numbers and symbol information, in the object file created after
linking.

e Capable of outputting link map files and symbol files.

12.2 Input/Output Files
Assembler as33 .
User ANSI Library
G Library Emulation Library
P — -’ -» -_
command e oo] Oviecties| oo Ty [i Ty frashy
[——— = - -
Tinker Library files
1k33
S— S—
)) Absolute — Error
Link map file W’ object file W file
Symbolfie [flesym | oo
Instruction Extender ext33 Debugger db33
Disassembler dis33
Binary/HEX Converter hex33
Fig. 12.2.1 Flowchart
12.2.1 Input Files
Object file

Fileformat: Binary filein srf33 format
Filename: <File name>.0
Description: Object file of individual modules created by the Assembler as33.

Library file
Fileformat: Binary filein library format
Filename: <Filename>.lib
Description: ANSI library files, emulation library files and user library files created by the Librarian 1ib33.

Linker command file
Fileformat: Textfile
Filename: <Filename>.cm
Description: Fileto specify object file namesto be input and the start address of each section.

Since the template of a command file is created by [Make edit] of the wb33, correct it with a
general-purpose editor before use.

It isinput to the 1k33 when the -c startup option is specified.

For its contents, refer to Section 12.5 "Linker Commands'.

182

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

Absolute object file
File format:
File name:
Description:

CHAPTER 12: LINKER

Binary filein srf33 format

<File name>.srf

Executable object file generated by the Linker Ik33. This file can be linked only when
the -inclink option is specified. Note that ".srf" files cannot be relocated by specifying
an address since those absol ute addresses have been decided.

Furthermore, the absolute object file for the loader that was generated with the -Id
option cannot be linked.

12.2.2 Output Files

Absolute object file
File format:
File name:
Output destination:
Description:

Binary filein srf33 format
<File name>.srf
Current directory
Object file in executable format that can be input in the Debugger db33. All the modules
comprising one program are linked together in the file, and the absolute addresses that
al the codes will be mapped are determined. It also contains the necessary debugging
information in srf33 format.
Thefile nameis decided in the following manner:
In case of one single module:
The same name as the input object file.
When link command files are input:
The same name as that of the file to be linked first, or a name specified by the
command.

For the contents of the output object file, refer to Appendix,”srf33 File Structure”.

Link map file
File format:
File name:
Output destination:
Description:

Symboal file
File format:
File name:
Output destination:
Description:

Error file
File format:
File name:
Output destination:
Description:

Text file

<File name>.map

Current directory

Mapping information file showing from which address of a section each input file was
mapped. Thefileis delivered when the -m startup option is specified.

Thisfileis used to optimize the codes by the Instruction Extender ext33.

Text file

<File name>.sym

Current directory

Symbols defined in al the modules and their address information are delivered in this
file. Thefileis delivered when the -s startup option is specified.

Thisfileis used to optimize the codes by the Instruction Extender ext33.

Text file

1k33.err

Current directory

File delivered when the startup option (-€) is specified. It records the information which
the 1k33 outputs to the Standard Output (stdout), such as error messages.

EOC33 FAMILY

EPSON 183

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

12.3 Starting Method

12.3.1 Startup Format
General form of command line

Format 1) Linking of multi modules
Ik33 ~ [<Startup option>] ~ -c * <Linker command file name>

Format 2) Linking of single module
k33~ [<Startup option>] ~ <Input object file name>

~ denotes a space.
[] indicates the possibility to omit.

The extension should be included in the file name.
Format 2 can also specify two or more object files. Note, however, that the limitation of DOS
command lines applies to the number of charactersin Format 2.

Operations on work bench

Format 1) Linking of multi modules
Select options and a command file, then click the [LK33] button. The [use .cm filg] button must be
selected.

Format 2) Linking of single module
Remove the check on the [use .cm file] button and select object files (.0), then click the [LK33] button.

12.3.2 Startup Options
The 1k33 comes provided with the following five types of startup options:

-9

Function: Addition of debugging information

Specification on wb33: Check [debug info].

Explanation: o Creates an output file containing debugging information.

o Always specify this function when you perform source level debugging. Failure to
specify it will cut off the debugging information which was added by the C Compiler
gce33, Preprocessor pp33 and Assembler as33.

-c <Linker command file name>

Function: Specification of linker command file
Specification on wb33: Check [use .cm fil€].

Explanation: e Inputsalinker command file.

-s

Function: Output of symbol file

Specification on wh33: Check [symbol,map file].
Explanation: e Outputsasymbol file.

-m

Function: Output of link map file
Specification on wh33: Check [symbol,map file].
Explanation: e Outputsalink map file.

-e

Function: Output of error file

Specification on wh33: None

Explanation: e Dedlivers dso in afile (Ik33.err) the contents to be output by the 1k33 through the

Standard Output (stdout), such as error messages.

184 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

The options can be described in the command file except for the -c option.

When inputting options in the command line, one or more spaces are necessary before and after the option.
Example: c¢:\cc33Wk33 -g -e -s -m -c test.cm

Note: When specifying a command file with the -c option, write other options at positions preceding the
-c option or within the command file. Any options entered after the -c option are ignored.

12.4 Messages

The 1k33 ddlivers its messages through the Standard Output (stdout).
If the 1k33 is started up by using the wh33's [LK33] button, the message is output to "whb33.err". When execution
is completed, amessage is displayed in the output window (default).

End message
The Ik33 outputs only the following end message when it ends normally.

Link Completed

Usage output
If no file name was specified or an option was not specified correctly, the |k33 ends after delivering the
following message concerning the usage:

Linker 33 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x
Usage:
k33 [options] <filenames>
Options:
-e : produce log file (1k33.err)
-g : generate debug information in output file
-s . generate symbol information (. sym)
-m : generate map information (.map)
—c CommandFile : execute 1k33 commands from CommandFile (.cm)
Output:
SRF33 object file (. srf)
Example:
1k33 —e —g —-s -m —c test.cm

When error/warning occurs
If an error is produced, an error message will appear before the end message shows up.
Example: Error: Too many global bss symbol.
Link Completed

In the case of an error, the 1k33 ends without creating an output file.

If awarning isissued, awarning message will appear before the end message shows up.
Example: test.o: Warning: Unresolved external symbol ' SUB1'.
Link Completed

In the case of awarning, the k33 ends after creating an output file, but that operation is not guaranteed.

For details on errors and warnings, refer to Section 12.13 "Error/Warning Messages'.

EOC33 FAMILY EPSON 185
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

12,5 Linker Commands

Besides the startup options, the Ik33 offers linker commands that can be specified in the linker command file. To
link multiple modules, it is necessary to create alinker command file and input it in the k33 by the -c option.

12.5.1 Linker Command File
To simplify the keystroke in the command line at the time of startup, you can execute the link processing through
the 1k33 by inputting alinker command file that holds the necessary specifications described.

Samplelinker command file

;Map set

-code 0x0080000 , CODE section start address
—-data 0x0081000 ; DATA section start address
-bss 0x0000000 ; BSS section start address
-code 0x0080100 {test2.o} ; Fixing of CODE section start position of test2.o
—-defsym BOOT = 0x0080000 ; Setting of global symbol
;Library path

-] G:\CC33\Iib ; Library search path
;Executable file

-o test. srf ; Output file name

;0bject files

testl.o » Input files

test2. o

iLibrary files

io. lib ; Library files

lib. l'ib

math. | ib

string. lib

ctype. lib

fp. lib

idiv. lib

Create the linker command filein line with the following rules:

Fileformat
The linker command fileisagenera text format as shown above.
Create it on a general-purpose editor. Or atemplateis created by the Make file editor of the wh33, so use that
file after correcting it.
The extension of the file name should be described as".cm".

Command description
All commands should begin with a hyphen (-). Each individual command needs to be delineated with more
than one space, tab, or line feed. For better visibility, it is recommended to describe each command in a
separate line.
Up to 2048 characters can be described in oneline.

186 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

Notes:

CHAPTER 12: LINKER

Describe all commands in lowercase characters. Uppercase characters will not be accepted.

A numeric value to specify an address should be described in the hexadecimal format
(Ox#####). Decimal and binary notations will not be accepted.

When a command which is only permitted in single setting is specified in a duplicated manner,
the last entered command will be effective.
Example: -code 0x0080000
-code 0x0080100 ...-code 0x0080100 is effective.
If the command is duplicate-sensitive (e.g., -code{ }, -ucode{ }), an error results.

The following characters can only be accepted for symbol names, U section names and file
names:

1st character: a-z, AZ

2nd and the subsequent character: a-z, AZ, 09, _

"""\, and ":"can also be used in file (path) names.

Specification of input and library files
Make sure the object or library file names to be input are written a the end of the link command file. Also,
be sure to write the library file after the object file. File location by linkage is performed in such a way that
unless otherwise specified, the files are located in the order they are written.
Write each file name including the extension (.o, .lib, .srf).
Specifying only alibrary file without writing an object file nameis not permitted.

Comment

A comment can be described in the linker command file.
Asin the source file, the character string from a semicolon (;) to the end of thelineis regarded as a comment.

Blank line
A blank line carrying only blank characters and a line feed will be ignored. It need not be converted to a
comment.

EOC33 FAMILY EPSON 187

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

12.5.2 Linker Command List
The following 21 types of linker commands are provided for the 1k33 (including the startup options that can be
specified in acommand line):

Table 12.5.2.1 Linker command list

Command Function
-C Specifies a command file. #1, %2
-m Qutputs a link map file. =1
-s Outputs a symbol file. 1
-g Outputs debugging information. =1
-e Outputs an error file. *1
-wW Sets the warning level.
-l Specifies a library search path.
-0 Sets an output file name.
-defsym Sets a global symbol.
-d Deletes the duplicated global BSS area.
-code Sets a relocatable CODE section start address.
-data Sets a relocatable DATA section start address.
-bss Sets a relocatable BSS section start address.
-ucode Sets a virtual/shared CODE section start address.
-udata Sets a virtual/shared DATA section start address.
-ubss Sets a shared BSS section start address.
-objsym Creates section symbols.
-section Specifies an output section.
-Id Outputs an srf33 file for the loader.
-inclink Enables linking .srf files.

«1: Startup options
%2: Cannot be used in the command file.

The following explains each linker command. (For details on startup options, refer to Section 12.3.2.)
Actual usage examples and link results are described in the next section.

-w command
Format: -w
Sample description: -w
Explanation: o If the -w command is specified, no warning is output for duplicate global labels in the
BSS section.
Default: If this command is not specified, all warning messages are output.
-I command
Format: -l <Library search path>
Sample description: -l c:\cc33\lib
Explanation: e Thiscommand specifies the directory where libraries can be searched.
e At least one space or tab is required between -1 and <Library search path>.
e Up to four library search paths can be specified. To specify multiple directories, specify
the -1 option for each directory.
Default: Unless this command is specified, only the current directory is searched.
A path name can be included in each written library file name.
-0 command
Format: -0 <Output file name>.srf
Sample description: -0 test.srf
Explanation: e Thiscommand specifies an output file name.
o Atleast one space or tab is required between -0 and <Output file name>.
Default: Unless this command is specified, the linker uses the first file name that appears in the input
object files written in the command file to generate the output file.
188 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

-defsym command

Format: -defsym <Symbol name> = <Value>
Sample description: -defsym BOOT = 0x0080000
Explanation: e Usethiscommand to define the value of agloba symbol.

o At least one space or tab is required between -defsym and <Symbol name>.
e The maximum number of symbols that can be defined by this command is 256.

Default: Unless this command is specified, no global symbol is set.

-d command

Format: -d

Sample description: -d

Explanation: o If multiple areas bearing the same globa symbol name are set in the BSS section, this

command deletes all but one area.
e The areathat remains valid is the largest one which appears first among the input object
file names specified.

Default: Unless this command is specified, the areas with invalid symbols are not deleted.

Note: A warning isissued if global symbols of the same name are defined.
Thiscommand isvalid in only the BSS section; it isignored in all other sections.

-code command

Format 1: -code <Address>

Format 2: -code <Section name>

Sample description: -code 0x0c00000
-code EXTERNAL_ROM
Explanation: e This command sets the start address of an area where a relocatable CODE section is
located. The CODE sections in the files specified in format 3 or 4, and those in absolute
object files are unaffected.
e <Section name> can only be specified when the section name and start address are set by
the -section command.
o Atleast one space or tab is required between -code and <Address/Section name>.
e Specify a 4-byte boundary address for <Address>. If something else is specified, a
warning is issued, in which case the two low-order bits of the specified address are

ignored.
Default: Unless this command is specified, the CODE section begins from 0x0080000.
Format 3: -code <Address> {<File name> ... <Filename> }
Format 4: -code <Section name> {<File name> ... <File name> }

Sample description: -code 0x0080100 {test1.0 test2.0}
-code BLOCK2 {test1.0, test2.0}
Explanation: e This command locates the CODE sections of the relocatable object files specified in { }
sequentialy in the order the files are specified beginning with a specified address.
o When specifying multiplefiles, insert at least one space or tab between each <File name>.
e Othersarethe sameasinformat 1 or 2.

-data command
Format 1: -data <Address>
Format 2: -data <Section name>
Sample description: -data 0x0081000
-dataDATA1
Explanation: e This command sets the start address of an area where a relocatable DATA section is
located. The DATA sections in the files specified in format 3 or 4 and those in absolute
object files are unaffected.
e <Section name> can only be specified when the section name and start address are set by
the -section command.
o At least one space or tab is required between -data and <Address/Section name>.
EOC33 FAMILY EPSON 189

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

Default:

Format 3:
Format 4:
Sample description:

Explanation:

-bss command
Format 1:

Format 2:

Sample description:

Explanation:

Default:

Format 3:

Format 4:

Sample description:
Explanation:

-ucode command
Format 1:

Format 2:

Sample description:

Explanation:

Default:

e Specify a 4-byte boundary address for <Address>. If something else is specified, a
warning is issued, in which case the two low-order bits of the specified address are
ignored.

Unless this command is specified, the DATA section is located after the CODE section that is

located at the highest address.

-data <Address> {<Filename> ... <File name> }

-data <Section name> {<File name> ... <File name> }

-data 0x0080100 {test1.o test2.0}

-data DATAL {testl.0 test2.0}

e This command locates the DATA sections of the relocatable object files specified in { }
sequentialy in the order the files are specified beginning with a specified address.

o When specifying multiplefiles, insert at least one space or tab between each <File name>.

e Othersarethesameasin format 1 or 2.

-bss <Address>

-bss <Section name>

-bss 0x0000100

-bssVARIABLES

e Thiscommand sets the start address of an area where a relocatable BSS section islocated.
The BSS sections in the files specified in format 3 or 4 and those in absolute object files
are unaffected.

e <Section name> can only be specified when the section name and start address are set by
the -section command.

o Atleast one space or tab is required between -bss and <Address/Section name>.

e Specify a 4-byte boundary address for <Address>. If something else is specified, a
warning is issued, in which case the two low-order bits of the specified address are
ignored.

Unless this command is specified, is the BSS section begins from 0x0000000.

-bss <Address> {<File name> ... <File name> }

-bss <Section name> {<Filename> ... <Filename> }

-bss 0x0000100 {test1.o test2.0}

e This command locates the BSS sections of the relocatable object files specified in { }
sequentidly in the order the files are specified beginning with the specified address.

o When specifying multiplefiles, insert at least one space or tab between each <File name>.

e Othersarethesameasinformat 1 or 2.

-ucode <Address>

-ucode <Section name>

-ucode 0x1000

-ucode CACHE

e Thiscommand sets the start address of avirtual CODE section. The CODE sections of the
relocatable object file for which format 1 and 2 settings of the -code command are applied
are linked by resolving the symbol addresses in such away that they can be located and
executed beginning with the specified address. The row data positions are left intact as
specified by -code, and are not modified. The CODE sections of absolute object files are
unaffected. Specify this command when executing a program written in ROM after
transferring it to RAM.

e <Section name> can only be specified when the section name is set by the -section
command.

o At least one space or tab is required between -ucode and <Address/Section name>.

e Specify a 4-byte boundary address for <Address>. If something else is specified, a
warning isissued, in which case the two low-order bits of the specified addressisignored.

Unless this command is specified, no virtual CODE section is set.

190

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

Format 3:
Format 4:
Sample description:

Explanation:

-udata command
Format 1:

Format 2:

Sample description:

Explanation:

Default:

Format 3:
Format 4:
Sample description:

Explanation:

-ubss command
Format 1:

Format 2:

Sample description:

CHAPTER 12: LINKER

-ucode <Address> {<File name> ... <File name> }

-ucode <Section name> {<File name> ... <File name>}

-ucode 0x1000 { test1.0 test2.0}

-ucode CACHE {test1.0 test2.0}

e Thiscommand sets the start address of a shared CODE section. The CODE sections of al
relocatable object files specified in { } are linked by resolving the symbol addresses in
such away that they can be located and executed in the same area (the shared area that
begins from a specified address or the specified start address of the shared section). This
command should prove effective when one RAM area is shared by multiple specified
object codes, and execution is repeated by sending the code to the RAM area via a
time-multiplexed transfer.

o At least one space or tab is required between each <File name>.

e Othersarethesameasin format 1 or 2.

-udata <Address>

-udata <Section name>

-udata 0x1000

-udata INITDATA

e This command sets the start address of a virtual DATA section. The DATA sections of
the relocatable object file for which the format 1 and 2 settings of the -data command are
applied are linked by resolving the symbol addresses in such a way that they can be
located and executed beginning with the specified address. The row data positions are | eft
intact as specified by -data and not modified. The DATA sections of absolute object files
are unaffected. Specify this command when using data written in ROM (e.g., variables
requiring initialization) after transferring it to RAM.

e <Section name> can only be specified when a section name is set by the -section
command.

e At least one space or tab is required between -udata and <Address/Section name>.

e Specify a 4-byte boundary address for <Address>. If something else is specified, a
warning is issued, in which case the two low-order bits of the specified address are
ignored.

Unless this command is specified, no virtual DATA section is set.

-udata <Address> {<Filename> ... <Filename> }

-udata <Section name> {<File name> ... <File name> }

-udata 0x1000 { test1.0 test2.0}

-udata INITDATA {test1.0 test2.0}

e Thiscommand sets the start address of a shared DATA section. The DATA sections of all
relocatable object files specified in { } are linked by resolving the symbol addresses in
such a way that they can be located and executed in the same area (the shared area that
begins from the specified address or the specified start address of the shared section). This
command should prove effective in cases in which one RAM area is shared by multiple
specified object data, and execution is repeated by sending data to the RAM area via a
time-multiplexed transfer.

o When specifying multiplefiles, insert at least one space or tab between each <File name>.

e Othersarethesameasinformat 1 or 2.

-ubss <Address> {<File name> ... <File name> }
-ubss <Section name> {<File name> ... <File name> }
-ubss 0x1000 { test1.0 test2.0}

-ubss TMP {test1.0 test2.0}

EOC33 FAMILY

EPSON 191

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

Explanation:

Default:

-objsym command
Format:

Sample description:
Explanation:

Default:

-section command
Format 1:
Format 2:
Sample description:

Explanation:

-Id

Format:

Sample description:
Explanation:

Default:
Note:

-inclink

Format:

Sample description:
Explanation:

Default:

e This command sets the start address of a shared BSS section. The BSS sections of al
relocatable object files specified in { } are linked by resolving the symbol addresses in
such away that they can be located and used in the same area (the shared area that begins
from the specified address or the specified start address of the shared section). The BSS
sections of absolute object files are unaffected. This command should prove effective in
cases in which one RAM area is shared by multiple specified object data, and the data is
used separately viaatime-multiplexed transfer.

e <Section name> can only be specified when the section name is set by the -section
command.

o At least one space or tab is required between -ubss and <Address/Section name>.

o Atleast one space or tab is required between each <File name>.

e Specify a 4-byte boundary address for <Address>. If something else is specified, a
warning is issued, in which case the two low-order bits of the specified address are
ignored.

Unless this command is specified, no shared BSS section is set.

-objsym

-objsym

e This command creates three types of symbols indicating the start address, end address,
and size of each section located in the input file (refer to Section 12.8). These symbols
can be used in the source file when creating a routine for transfer to virtual or shared
sections.

Unless this command is specified, no symbol is created.

-section <Section name>

-section <Section name> = <Address>

-section TMP

-section CACHE = 0x1000

e Thiscommand defines a section name.

e Format 1 is used for virtua and shared sections, where an address following the last
address of the default BSS area (specified by the -bss command) is the start address of the
virtual or shared section. Format 2 defines a section name and its start address, which can
be used to specify any section.

o Atleast one space or tab is required between -section and <Section name>.

e The size of an area is determined by setting a section specifying command, and three
types of symbols are created indicating the start address, the end address after being
located (at maximum use), and the size (refer to Section 12.8). These symbols can be used
in the source file when creating a routine for transfer to virtua or shared sections.

-Id

-Id

o Creates an rf33 file for the loader 1d33 instead of a standard absolute object file. Refer to
readme.txt (English) or readmeja.txt (Japanese) located in the "utility\ld33\" directory for
the loader 1d33.

Unless this command is specified, a standard absol ute object file is created.

When creating this file, the -ucode, -udata and -ubss commands for specifying U sections

cannot be used. Furthermore, 2-pass make optimization cannot be performed.

-inclink

-inclink

o Enables absolute object files (.srf) aslink files. When this command is specified, .sf files
can be linked similar to the absolute object files generated by the as33. However, absolute
object filesfor the loader that are created with the -ld command cannot be linked.

Unless this command is specified, ".srf" files cannot be linked

192

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

12.6 Locating Sections

Standard location of relocatable file

Each relocatable object file has one CODE, one DATA, and one BSS section.

When multiple relocatable object files are linked, sections of the same type in all files except a specified file

are combined into one section. Entries within each section are arranged in the order in which the input files

are written in the command file (or command line).

The start address of each section (absolute address after linkage) can be specified by a linker command. If

this address is not specified, it is determined in the following manner:

CODE section: The CODE section is located beginning with address 0x0080000 (area 3, start address of
internal ROM).

DATA section: After al CODE sections in the input files are located, the DATA section is located
immediately following the CODE section that is located at the highest address.

BSS section: The BSS section is located beginning with address 0x0000000 (area O, start address of
internal RAM).

For example, if two relocatable object files, samplel.o and sample2.0, are linked without specifying a section
address, each section in these files is located as shown below. Each section in each object file starts at a
4-byte boundary address.

Example: 1k33 samplel.o sample2.0

Before linkage After linkage
CODE1 DATA2
DATAL DATAL
5SS1 CODE2
samplel.o CODEL | 640080000
CODE2 : :
DATA2 BSS2
BSS2
BSS1 |0x0000000

sample2.0 samplel.srf
Fig. 12.6.1 Example of standard linkage

When an absolute object fileis generated by the |k33, the CODE, DATA, and BSS sections are output to the
filein that order. For the contents of the object files thus output, refer to Appendix, "srf33 File Structure”.

To specify the start address of a relocatable section...
If you want sections to be located beginning with an address that is not the default address shown above, use
the -code, -data, or -bss commands to specify the start address of each type of section.
The command formats are shown below:

-code <Address> Sets a CODE section.
-data <Address> Setsa DATA section.
-bss <Address> Sets a BSS section.

For example, if you want the start addresses of the CODE and the BSS sections in Figure 12.6.1 to be
changed to address 0x0c00000 and address 0x0010000, respectively, input a command file like the one
shown below before linking the object files.
Example: Command file

-code 0x0c00000

-bss 0x0010000

samplel.o

sample2.0

EOC33 FAMILY EPSON 193
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

To locate sections in a specific file beginning with a specific address...

You can specify arelocatable object file by using the -code { }, -data{ }, and -bss{ } commands, so that
only the sections of that file will be located beginning with the specified address. Multiple files can be
specified, in which case the sections are located in the order that they are specified beginning with the start
address.

The command formats are shown below:

-code <Address> {<Filename> ...} Sets a CODE section.

-data <Address> {<Filename> ...} SetsaDATA section.

-bss <Address> {<Filename> ...} Sets a BSS section.

Example: Command file
-code 0x0080000

-bss 0x0000000
-code 0x0c00000 { sample2.0 sample3.0}
samplel.o
sample2.0
sample3.0
Before linkage After linkage
CODE1 CODES3
DATA1
Bss1 | S9PF2 Joxocooo00
samplel.o : :
DATA3
CODE2 DATA2
DATA2 DATAL
BSS2 CODE1 [0x0080000
sample2.0 H H
CODE3
DATA3 BSS3
BSS2
BSS3
BSS1 [0x0000000
sample3.0 samplel.srf

Fig. 12.6.2 Example of how sections in a specific file are located

In all relocatable object files other than those specified with the -code { }, -data{ }, and -bss{ } commands,
sections are located at default addresses or addresses set by -code <Address/Section name>, -data
<Address/Section name>, and -bss <Address/Section name>.

Specifying the start address with a section name

The -section command can be used to define a section name and its start address.
The command format is shown below:
-section <Section name> = <Address>

The <Section name> defined by the -section command can be used in place of <Address> specified by the
-code, -data, and -bss commands or the -code { }, -data { }, and -bss { } commands described above.
However, these addresses must first be defined by the -section command before they can be used.
Example: -section CODEZ1 = 0x0080100

-section DATA1 = 0x0081000

-code CODEL {testl.0} ; Locatesthe CODE section of thetestl.0 in section CODEL.

-data DATA1 {testl.o} ;Locatesthe DATA section of thetestl.oin section DATAL.

The start address specified for each section by the -section command is the start address of each section.
Specification of <Address> in the -section command cannot be omitted.

When a section name is defined, the k33 generates three types of section symbols indicating its start address,
end address, and size (refer to Section 12.8). These symbols can be used at the source as globa symbols.

194

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

Locating absolute files

CHAPTER 12: LINKER

An absolute object file has the absolute address of each of its sections aready determined before linkage,
therefore the sections in this file are located at those addresses preferentially over other sections. (The 1k33
locates the absolute object file before relocatable object files.) The absolute object files are unaffected by
commands that specify addresses, such as the -code, -data, or -bss command.

Example: Command file
-code 0x0081000

samplel.o ; Absolute object file
sample2.0 ; Relocatable object file

Before linkage

0x00A0000 CODEL
0x0090000 DATAL

00010000

samplel.o

CODE2
DATA2

BSS2

sample2.0

After linkage

DATA2
CODE1

BSS2

samplel.srf

0x00A0000

0x0090000
0x0081000

0x0010000

0x0000000

Fig. 12.6.3 Example of how an absolute object file is located

Priority of address specification

Address specifications are resolved according to the following order of priorities:

1. Settingsin absolute object file

2. Settings by -code{ }, -data{ }, and -bss{ } commands
3. Settings by -code, -data, and -bss commands

4, Default settings

Sections in absolute object files are located at the addresses specified in the source preferentialy over dl

other sections.

Sections in relocatable object files are located in such away that those specified by the -code { }, -data{ },
and -bss{ } commands are located before other sections, and the sections in remaining other files are located
beginning with the addresses set by the -code, -data, and -bss commands or the default addresses.

Sections in two or more files having the same priority are located in the order the file names are written in the
command file (or command line) in the upward address direction.

Section alignment

Sections are always located at 4-byte boundaries irrespective of their types. If the specified start address of a
section does not reside on a4-byte boundary, awarning isissued, in which case the two low-order bits of the

address are treated as 0.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

195

CHAPTER 12: LINKER

12.7 Virtual and Shared (U) Sections

Virtual and shared sections (U sections) do not have real data created by the linker, therefore real data is copied
from some other area into this area before it is actualy accessed or executed. The U sections are used for this
purpose. The U sections are normally located in RAM.

If symbol information is created at addresses where real data is stored such as when using variables in the C
language which have the initia values or copying a program from external memory into RAM for high-speed
operation, the program or data cannot be operated or used in RAM. In such a case, set an area that is actually
executed as a U section, then logically locate the program or data in that area before linking the modules. The
symbol information of the modules located in the U section will be generated as the internal addresses of the U
section.

Note: The expression "locate in a U section" actually means a logical location for obtaining the
execution address from the U section. Although the -ucode, -udata, or other similar commands
are used for logical location into a U section, the addresses at which real data is stored are
determined by the -code or -data commands (commands that do not specify a file name) or by
default settings.

The program or data located in a U section must be copied in advance to an area where the program or data is
actually used. Because run-time relocation is required, no absolute object file can be located in aU section.
There are two types of U sections: avirtual section and a shared section.

Virtual section
Equivalents of the -code and -data commands that locate the real data of the CODE and DATA sections are
the commands -ucode and -udata which are used for the U sections.
These commands can be used in the following formats to specify the start addresses of the virtual CODE and
virtual DATA sections.
-ucode <Address> Sets avirtual CODE section.
-udata <Address> Setsavirtual DATA section.

When one of these commands is specified, symbols are interpreted assuming that the default CODE section
(specified by -code <Address>) or DATA section (specified by -data <Address>) is executed in the virtua
section that starts from a specified address.

Example: Command file

-udata 0x01000

samplel.o

sample2.0

Before linkage After linkage At execution

CODE1 DATA2 DATA2 }Real data
DATAL DATAL DATAL
BSS1 CODE2 CODE2

sampleL.0 CODEL | 60080000 CODEL | 60080000
CODE2 : : : | _ Execution
DATA2 Virtual section DATA2 }EML
BSS2 0x0001000 DATAL | Jox0001000
sample2.0 BSS2 BSS2

BSS1 |0x0000000 BSS1 |0x0000000
samplel.srf

Fig. 12.7.1 Example of how data is located in a virtual section

196 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

Shared section

By specifying arel ocatable object file with the-ucode { }, -udata{ }, or -ubss{ } commands, you can locate
only the sections in that file, parallel to a shared section. Multiple files are located beginning with the same
start address.

-ucode <Address> {<Filename> ..} Sets a shared CODE section.

-udata <Address> {<Filename> ...} Sets ashared DATA section.

-ubss <Address> {<Filename> ...} Sets a shared BSS section.

Example: Command file
-ucode 0x0a000 { samplel.o sample2.0}

samplel.o
sample2.0
Before linkage After linkage At CODEL1 execution At CODE2 execution
CODE1 DATA2 DATA2 DATA2
DATA1 DATA1L DATAL
DATAL Real data
CODE2 CODE2 CODE2 |)"
BsL CODE1 CODE1]M CODE1L
samplel.0 0x0080000 0x0080000 0x0080000
CODE2 : : : : Execution : ! Execution
DATA2 :Shared section CODEL }a ress H 1. address
- <« [copE2 |)b ——
BSS2 ; ;OXOOOAOOO ; 1~ 0x000A000 - 0x000A000
sample2.0 BSS2 BSS2 BSS2
BSS1 |0x0000000 BSS1 |0x0000000 BSS1 |0x0000000
samplel.srf

Fig. 12.7.2 Example of how data is located in a shared section

Named U section

A U section can have its name defined by the -section command. The command format is shown below.
Format 1) -section <Section name>
Format 2) -section <Section name> = <Address>

This command creates one U section that is assigned a specified name. Multiple U sections can be defined in
this way. For this purpose, write the -section command as many times as necessary.
The names defined here can be used in place of <Address> of the -ucode, -udata, and -ubss commands or the
-ucode { }, -udata { }, and -ubss { } commands described above. However, these addresses must first be
defined by the -section command before they can be used.
Example:
-section CACHE = 0x300
-section INITDATA =0x100
-ucode CACHE {testl.0} ; Locates the CODE section of the test1.0 to U section CACHE.
-udata INITDATA {testl.o} ; Locatesthe DATA section of thetestl.oto U section INITDATA.

The start address of adefined U section is set asfollows:

Format 1) Address immediately following the end of the default BSS section. This address is determined
after locating al BSS sectionsin the input object files.

Format 2) Specified address

When a section name is defined, the 1k33 generates three types of section symbolsindicating its start address,
end address, and size (see the next section). Since these symbols can be used in the source as global symbols,
you can use them to copy real data.

EOC33 FAMILY EPSON 197
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

Location and size of U section

A U section starts from the address specified by a command. The size of avirtua section equals the total size
of the located sections. The size of a shared section is that of the largest section of multiple shared sections.
When defining a U section, be careful with its address because the addresses overlapping between U sections
or between a U section and another normal section are accepted.

Section alignment

U sections are always located at 4-byte boundaries irrespective of their types. If the specified start address of
a U section does not reside on a 4-byte boundary, a warning is generated, in which case the two low-order
bits of the address are treated as 0.

How to use U sections

To allocate real program codes and variables successively into U sections, specification in the order as below
is effective unless the absol ute addresses are otherwise specified.

T RAM: Lower address
(1) Variableswithout an initia value (BSS)
(2) Variableswith an initia value (DATA)
(3) Program codes 1 (replication of a CODE areain the ROM)
(4) Program codes 2 (replication of a CODE areain the ROM)

J RAM: Higher address
To allocate as above, specify with the following command in the command file:

Sample command file
-section INITDATA
-section CACHEL
-section CACHE2

-udata INITDATA
-ucode CACHE1 {main.o}
-ucode CACHE2 {sub.o}

main.o
sub.o

The link map file after linking shows that the blocks (1) to (4) have been located in the order from lower
address to higher address.

Samplelink map file
Code Section mapping

Address Vaddress Size File ID Attr
00080000 0000001c 00000040 main.o «(3) 0 REL
00080040 0000005¢ 00000020 sub.o «(4) 0 REL
Data Section mapping

Address Vaddress Size File ID Attr
00080060 00000014 00000008 main.o «(2) 1 REL
00080068 0000001c 00000000 sub.o «(2) 1 REL
Bss Section mapping

Address Vaddress Size File ID Attr
00000000 --—————- 00000004 main.o «(1) 2 REL
00000004 -——————- 00000010 sub.o «(1) 2 REL

198 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

12.8 Section Symbols

The 1k33 can generate section symbols (global symbols) that indicate the addresses and sizes of located sections.
These symbols can be used in the source.

Default DATA section symbol

Unless the -data command is specified, the default data section (located following the CODE section) has the
following section symbols automatically generated:

__START_DEFAULT.DATA Defines the start address of the default DATA section.
__END_DEFAULT.DATA Defines the end address of adefault DATA section.
__SIZEOF_DEFAULT.DATA Defines the size (in bytes) of the default DATA section.

Note: This symbol name can not be used in C source because it has ".".

Use it only in Assembler source.

Creating section symbols using the -objsym command

When the -objsym command is written in a command file, the k33 generates the following symbols for each
section in each input file to indicate section information after relocation:

__START_<Filename>_<Section> Definesthe start address of arelocated section.
__END_<File name>_<Section> Defines an address next to the end address of arelocated section.
__SIZEOF_<Filename>_<Section> Definesthe size (in bytes) of arelocated section.

Example: If the input file name is "test.0", the start address of the CODE section is 0x80000, and the size is
0x100

Symbol name Symbol value

__START _test_code 0x80000

__END_test_code 0x80100

_ SIZEOF test code 0x100

The path and extension of <File name> are cut irrespective of how they are written in a command file. The
start address and size defined to a symbol are the same as the contents output to the link map file (real data
address), and the end address is determined by the "start address” + "size".

Section name by -section command

When a section name is defined by the -section command, the following symbols are created to indicate the
information of the named section regardless of whether a-objsym command is specified:

__START_<Section name> Defines the start address of a named section.
__END_<Section name> Defines the end address of a named section.
__SIZEOF_<Section name> Defines the size (in bytes) of anamed section.

Here, <Section name> is the name specified by the -section command.

The start address defined to a symbol is the address that is specified by the -section command or an address
immediately following the end of a default BSS section.

The size in the case of virtual sections (-ucode, -udata) equals the total size of the located sections. The size
in the case of shared sections (-ucode { }, -udata{ }, -ubss { }) is the same as that of the largest section
among those located.

The end addressis determined by the "start address" + "size".

EOC33 FAMILY EPSON 199
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

Example using section symbols in the assembly source
Example: When transferring the CODE section of test.o to U section "CACHEL"

Transfer routinein the source file
xld.w %r12, _START_CACHE1
xld.w %r13, _ START _testl code
xld.w %r14, SIZEOF testl code

HCOPY _LOOP:
Id.uh %r4, [%r13]+ ; Transfers the instruction code.
Id.h [%r12]+, %r4
sub %r14, 2
jrat HCOPY _LOOP
Setting U section by using thelinker command
-objsym
-section CACHEL = 0x300
-ucode CACHEL {test.o}
test.o

Note: Do not define symbols in the source that are assigned the same name as the section symbols
used.

200 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

12.9 Linking Libraries

Libraries are linked after all other input object files are located.

Searching the library module

Only when an unresolved external reference symbol exists in the input object, the Ik33 searches library files
in the order that they are written in acommand file. It then reads in and links only the first module found that
has the unresolved symbol. When an externa reference is resolved, the 1k33 stops searching for the
subsequent modules or library files. Consequently, even when a specified library file contains multiple
instances of the symbol to be searched, all but the first-found module are ignored. If the library does not exist
in the current directory, the directory specified by the -| command is searched.

Externd reference between library files can be resolved only in the currently processed library file or in the
library files to be searched next. External references defined in an aready searched library file are not
resolved. Therefore, be careful with the order in which library files are specified.

Location of library modules

The addresses at which library modules are located cannot be specified. Each section in the linked library
modules is located in the default section of the same type (i.e., a section in which all unspecified relocatable
sections are located).

Example: Command file

-1 ¢:\cc33\lib
samplel.o ; Relocatable object file
sample2.0 ; Relocatable object file
samplelib ; Library file (module nis used)
Before linkage
CODE1
DATAL After linkage
BSS1 LIB DATAN
samplel.o DATA2
DATA2 LIB CODEn
BSS2 CODE2
COPEL | 0x0080000
sample2.0 ! H
LIB CODE1 : :
Module 1| | LIB DATAL H !
LIB BSS1 LIB BSSn
LIB CODE2
Module 2| | LIB DATA2 BSS2
LIB BSS2 BSS1 0x0000000
! ! samplel.srf
LIB CODEn
Module n| | LIB DATAN
LIB BSSn
sample.lib
Fig. 12.9.1 Example of how library modules are located
EOC33 FAMILY EPSON 201

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

Allocate library module to the address appointed
Library modules can be alocated to the address appointed by command -code {}, -data {}, and -bss {}.
Assign "library name : module name" as afile name. This file name must be same as the name displayed in
the "File" column of the Link map file.

The following is a sample which alocates strcpy.o in string.lib from address 0xca0000.

Sample command file
-I c:\cc33\lib

-code 0xcaD000 { c:\cc33\lib\string.lib:strcpy.o}
test.o

string.lib

Sample link map file

Code Section mapping

Address Vaddress Size File ID Attr
00080000 -------- 00000010 test.o 0 REL
00ca000 -------- 0000000c c:\cc33\lib\string.lib:strcpy.o 0 REL

Note: o If you have any trouble with this function, restore the library module to the relocatable object file
and then execute the link command.
oThe library file in itself can not be allocated to the address pointed. The following sample
presents this error:

Sample command file(wrong)
-1 c:\cc33\lib
-code 0xcaD000 { c:\cc33\lib\string.lib} € Library cannot be assigned a directory.
test.o
string.lib

Location of library modules in the U section
No library file can be specified in the -code { }, -data{ }, and -bss { } commands, as well as in the -ucode
{},-udata{ }, and -ubss{ } commands.
If you want to use alibrary filein aU section, restore the desired library module to the relocatable object file
before linking.

202 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

12.10 Resolving Symbols

Procedure for resolving global symbols
The 1k33 follows the procedure described below to resolve symbols:

(1) The 1k33 adds global symbol information to the internal table sequentially in the order of the input object
files specified. If an undefined symbol is referenced, the 1k33 searches the table and when the matching
symbol information is found, applies the content of that information. If no information is found in the table,
the symbol iskept pending until it is defined in a subsequent input file.

(2) If two or more globa symbols of the same name are defined, a warning is output. The 1k33 uses the first
symbol information encountered when searched in order of input files as the vaid symbol, and continues
processing. (This does not apply to the global symbols defined in the BSS section.)

(3) Only when an unresolved external reference is found after searching al input object files, the k33 searches
library files in the order in which they are entered. When the desired symbol definition is found, the 1k33
links that module. If a symbol of the same name is defined in a multiple library module, a warning is
generated, in which case the first encountered moduleis linked.

(4) If an unresolved externa reference in the library module to be linked is defined in one of the input object
files or in the currently processed library file, this definition is applied. If it is not defined, the unresolved
external referenceis kept pending until it is defined in a subsequent library file.

An external reference between library files can be resolved only in the currently processed file or in the
library files to be searched next. External references defined in an aready searched library file are not
resolved.

(5) If an undefined external reference still exists after all library files are searched, a warning is output, and the
1k33 does not relocate the instructions which reference the symbol. The bits in the instruction codes that
require modification become 0x0.

Global symbols defined twice or more in the BSS section
If two or more global symbols of the same name are defined by the .comm pseudo-instruction, the symbol
definition with the largest size is assumed to be the valid symbol. If there are two or more symbol definitions
with the largest size, the definition first encountered during the search in the order of input filesis assumed to
be the valid symbol. The Ik33 outputs a warning and continues processing. No warning is output if the -w
command is specified.

The -d command deletes the areas of the symbols that have been invalidated by the above processing. The
deleted areas in the BSS section are closed up before sections are relocated.

The -d command is valid only in the BSS section, and does not delete invalid symbol areas in any other
section.

EOC33 FAMILY EPSON 203
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

12.11 Link Map File

Thelink map file serves to refer to the mapping information of modules of each section.
Furthermore, this file can be input to the Instruction Extender ext33 dong with a symbol file for code

optimization.

Itisoutput if you specify the -m option in the command file or command line.
Thefileformat isatext file, and its file name is "<File name>.map". (<File name> is the same as that of the output

object file)

Sample link map file
Code Section mapping

Address Vaddress Size File ID Attr
00080000 ———————- 00000028 boot. o 0 REL
00080028 000002c4 0000005¢ main. o 0 REL
00080084 00000274 00000050 foo. 0 0 REL
000800d4 00000274 00000040 bar.o 0 REL
Data Section mapping

Address Vaddress Size File ID Attr
00080114 00000200 00000000 boot. o 1 REL
00080114 00000200 00000038 main. o 1 REL
0008014¢c 00000238 0000000c foo. 0 1 REL
00080158 00000a44 00000028 bar.o 1 REL
Bss Section mapping

Address Vaddress Size File ID Attr
00000000 ———————- 00000000 boot. o 2 REL
00000000 —————- 00000230 main. o 2 REL
00000230 —————- 00000024 foo. 0 2 REL
00000254 ——————- 00000020 bar.o 2 REL

Contents of link map file

Address

Vaddress
Size

File

1D

Attr

Indicates the start address of each section. Sections that have a value in Vaddress indicate an
address wherereal datais stored.

Indicates the execution address in the U section.

Indicates the section size.

Indicates the file names of the linked module.
Indicates the section ID of each section in each object file.

Indicates the attribute of the section:
REL: Meansthat it is arelocatable section.
ABS: Meansthat it is an absolute section.

204

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

12.12 Symbol File

The symbol file servesto refer to the symbols defined in al the modules and their address information.
Furthermore, this file can be input to the Instruction Extender ext33 along with a link map file for code

optimization.

Itisoutput if you specify the -s option in the command file or command line.
Thefileformat isatext file, and its file name is "<File name>.sym". (<File name> is the same as that of the output

object file)

Sample symbol file

Symbol File Section Type Address

DATA1 comm2. o data global 00080006
i comm2. o bss global 00000100
buffer main. o bss global 00000030
BOOT main. o code global 00080000
main main. o code global 00080100
i Ik21. 0 data local 00081008
Name word. o data global 0008100¢
__START_CACHET1 $$1k338$ uscn global 00000400
__END_CACHE1 $$1k338$ uscn global 000009ff

__SIZEOF_CACHE1 $$1k3388 uscn global 000005 f

Contents of symbol file

Symbol

File

Section

Type

Indicates dl the defined symbols in order of processing.
The section symbols created by the k33 are output at the end of thefile.

Indicates the name of the object file in which symbols are defined.
The section symbol is $$1k33$$.

Indicates the section type.
code: CODE section
dataz DATA section
bss: BSS section
uscn: U section

Indi cates the attribute of symbols.
global: Meansagloba symbol.
loca: Meansaloca symbol.

Address Indicates the absolute address defined for a symbol.

EOC33 FAMILY

EPSON 205

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

12.13 Error/Warning Messages

Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "Ik33.err" file.

If the Ik33 is started up using the wb33's [LK33] button, the message is output to "wb33.err". When execution is
completed, amessage is displayed in the output window (default).

12.13.1 Errors

The errors produced in the Ik33 are classified into three groups. system errors, command file errors, and linker

errors.

In case an error occurs, the 1k33 will immediately terminate the processing after displaying an error message. No
object file will be output. The link map file and the symbol file will be delivered only in the part which was

processed prior to the occurrence of the error.

Table 12.13.1.1

List of system error messages

Error message

Content

<file name>: Error: Cannot open input file.

Cannot open the input file (*.0, *.lib).

<file name>: Error: Cannot open outpult file.

Cannot open the output file.

Error: Cannot open working file.

Cannot open the temporary file.

Error: Cannot allocate memory.

Cannot secure memory space.

Error: Cannot read a file.

Cannot read the file.

Table 12.13.1.2 List of command file error messages

Error message

Content

link command: Error: Unknown option

There is a linker command described that cannot be

near line = #. recognized, in the proximity of line # inside linker command file.
link command: Error: Invalid parameter There is an error in the description of a linker command

near line = #. parameter, in the proximity of line # inside linker command file.
link command: Error: Not define section name The section name specified near the # line in the linker

near line = #. command file is not defined.
link command: Error: Uninitialized section name | The section name specified near the # line in the linker

near line = #. command file does not have its address defined.

Table 12.13.1.3
Error message

List of linker error messages
Content

<file name>: Error: Code section map out of
range.

The mapping address of the CODE section deviates the
linkable range. Specification by the -code command exceeds
the Ox0—-Oxffffffff range, or the mapping address of data
exceeded the above range in the linking process.

<file name>: Error: Data section map out of
range.

The mapping address of the DATA section deviates the
linkable range. Specification by the -data command exceeds
the Ox0-Oxffffffff range, or the mapping address of data
exceeded the above range in the linking process.

<file name>: Error: Bss section map out of
range.

The mapping address of the BSS section deviates the linkable
range. Specification by the -bss command exceeds the
0x0-Oxffffffff range, or the mapping address of data exceeded
the above range in the linking process.

Error: Too many object files.

The number of object files to be linked exceeded the limit
(4,000 files).

Error: Too many output sections.

The number of output sections exceeded the limit (256
sections).

Error: Too many input sections.

The number of sections to be located in a default section
exceeded the limit (4,000 sections).

The number of library files exceeded the limit (256 files).

Error: Too many library files.
Error: Too many global bss symbol.

The number of global symbols in the BSS section exceeded
the limit (1,024 symbols).

Error: Too many object symbols.

The number of object symbols exceeded the limit (36,000
symbols).

The number of U sections exceeded the limit (256 sections).

206

EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 12: LINKER

Error message Content
Error: Too many section symbols. The number of section symbols exceeded the limit (256
symbols).
Error: Too many U section symbols. The number of U section symbols exceeded the limit (256
symbols).

Error: No object files.
<file name>: Error: Not SRF33 Object file

The object file to be linked is not specified.
The input file is not an srf33 object file or a library file.

or library file.
Error: Chain information size is greater than There is a problem in the srf33 object file.

file size. Redo the processing from the C Compiler gcc33 or
Error: Chain seek address is greater than Preprocessor pp33.

file size.

Error: Undefined symbol type.
Error: Undefined relocation type.

12.13.2 Warning

Even when awarning appears, the k33 continues with the processing. It completes the processing after displaying
awarning message, unless an error takes place in addition. Object file, link map file, and symbol file will al be
delivered, but the operation of the program is not guaranteed.

Table 12.13.2.1 List of warning messages

Warning message

Content

<file namel>: Warning: '<symbol>' already
defined in '<file name2>'.

<symbol> defined in <file namel> was already defined in <file
name2>. Correct it in the source file. The symbol definition that
appears first according to the order of files to be linked is
effective. If the -w command is specified, this warning is not
output for duplicate global labels in the BSS section.

<file name>: Warning: unresolved external
symbol '<symbol>'.

An undefined symbol was referred. The k33 does not relocate
the instructions which refer the symbol. The bits in the
instruction codes that require modification become 0x0.

<file name>: Warning: Out of relocation range,
Address = <address>.

The instruction exceeds the relocatable range. Only the bits
that can be inserted in the instruction are modified after the
relocation addresses are calculated.

<file name>: Warning: Section mapping conflict,
Address = <address>.

The section is duplicated from <address>.

link command: Warning: Cannot mapping to
USection '<file name>(<section>)'.

The <section> of the <file name> written in the command file
cannot be relocated.

link command: Warning: Cannot find relocatable
section '<file name>(<section>)".

The relocatable section <section> of <file name> cannot be
found.

link command: Warning: Alignment <address 1>
-> <address 2>.

The <address 1> specified in the command file is adjusted for
alignment as <address 2>.

Warning: Cannot access section information.

Section information cannot be accessed. The srf33 object file is
erratic.

Warning: Invalid loader information.

The -ucode, -udata or -ubss command has been specified with
the -ld command. Or, the input file contains a relocation type
that is not allowed for Id33.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON 207

CHAPTER 12: LINKER

12.14 Precautions

(1) The address range in which sections can be located is 0x0 to Oxfffffff. No error will occur in the linker as
long as al modules are located within this range. However, care must be taken because the memory capacity
will belimited depending on the microcomputer model to be devel oped.

(2) The maximum number of object filesthat can be linked is 4,000. If thislimit is exceeded, an error results.

(3) The number of sections and U sections that can be output are both 256. If there are more sections to be output,
an error results.

(4) The maximum number of library files that can be specified when linking is 256. If this limit is exceeded, an
error results. Note also that only up to four library search paths can be specified by the -1 command.

(5) Up to 256 section symbols and 256 U section symbols can be generated. If this limit is exceeded, an error
results.

208 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 13: DISASSEMBLER

Chapter 13 Disassembler

This chapter describes the functions of Disassembler dis33.

13.1 Functions

The Disassembler dis33 (hereafter caled the "dis33") inputs the object files in the srf33 format and outputs the
disassembled contents of the object's code part in list form, while corresponding to the source one to one. It also
delivers adump output of the data part. It is effective to verify a program following its linking or debugging. The
output can be selected by specifying an appropriate startup option.

13.2 Input/Output Files

Linker k33

G S —
Theat) ooatie. oo ree
[_fles |

Disassembler
dis33

Disassembly F—— ——— Error
list file file

Fig. 13.2.1 Flowchart

13.2.1 Input Files

Object file
File format: Binary filein srf33 format
File name: <File name>.srf, or <File name>.o
Description: Object file created by the Linker 1k33 or Assembler as33. To deliver the source in a
mixed output, the file needs to contain debugging information.
Sourcefile
File format: Text file
File name: <File name>.c and <File name>.s
Description: When the source is delivered in a mixed output, the source file will also be input
according to the source file name information contained in the object file mentioned
above.

13.2.2 Output Files

Disassembler file

File format: Text file
File name: <Filename>.dis (<File name> isthe same asthat of the input file.)
Output destination: Current directory
Description: Disassembled contents of the input file are delivered. For contents of the output, refer to
Section 13.5 "Disassembling Output”.
Error file
File format: Text file
File name: dis33.err
Output destination: Current directory
Description: File that is delivered when the startup option (-€) is specified. It records the information
which the dis33 outputs to the Standard Output (stdout), such as error messages.
EOC33 FAMILY EPSON 209

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 13: DISASSEMBLER

13.3 Starting Method

13.3.1 Startup Format
General form of command line
dis33 ~ [<startup option>] <file name>

~ denotes a space.
[] indicates the possibility to omit.

<file name>: Specify an srf33 object file name including the extension.

Operations on work bench
Select options and an object file, then click the [DIS33] button.

13.3.2 Startup Options
The dis33 comes provided with the following five types of startup options:

-m

Function: Source mixed output

Specification on wh33: Check [src mix].

Explanation: e Reads a source file and delivers source codes in correspondence with disassembled
codes.

e To specify this option, the object file to be input needs to contain debugging

information.

-C

Function: Output of code section only

Specification on wh33: Check [code only].

Explanation: e Ddiversonly the disassemble result of the code section. Does not dump data.

-d

Function: Output of data section only

Specification on wb33: Check [data only].

Explanation: e Ddlivers only the dump result of the data section. Does not disassemble the code
section.

-a<start address> <end address>

Function: Specification of address range

Specification on wh33: Check [addr range] and enter the start and end addressesin the text box.

Explanation: o Specifies an address range to be disassembled.

e One address range can only be specified. The start and end addresses must be specified
as ahexadecimal number. "-a" , <start address> and <end address> must be separated
with one or more spaces.

e When a value exceeding 28 hits (OxOfffffff) is specified for the address, it is handled
as OcOfffffff. When the start address is higher than the end address or the address is
specified not a hexadecimal number, an error occurs and the usage message will be

displayed.
e |f this option is not specified, al the addresses in the specified file will be
disassembled.
-e
Function: Output of error files
Specification on wb33: None
Explanation: e Ddivers dso in afile (dis33.err) the contents to be output by the dis33 through the

Standard Output (stdout), such as error messages.

When entering an option in the command line, one or more spaces are necessary before and after the option.
Example: c¢:\cc33\dis33 -e -m test.sf

210 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 13: DISASSEMBLER

Combination of -m, -cand -d

The explanations given above refer to the case where only one function is specified. When the functions are
specified in combination with one another, they change as detailed further below. There is no rule established for
the order of combination.

Without any option specified Delivers adisassembling output of the code section and dump output.

-c-m Delivers amixed output of the code section.
-d-m Délivers only a dump output of the data section.
-c-d Déeliversan empty file.

-c-d-m Délivers an empty file.

13.4 Messages

The dis33 delivers its messages through the Standard Output (stdout).
If the dis33 is started up by using the wb33's [DIS33] button, the message is output to "wh33.err". When execution
is completed, amessage is displayed in the output window (default).

End message
The dis33 outputs only the following end message when it ends normally.

Disassemble complete

Usage output
If no file name was specified or an option was not specified correctly, the dis33 ends after delivering the
following message concerning the usage:

Disassembler 33 Ver x.xx
Copyright (C) SEIKO EPSON GCORP. 199x.

Usage:
dis33 [options] <file name>
Options:
-e . produce log file (dis33.err)
-m . generate disassemble code with source mix
- . generate disassemble code only
—-d : generate data dump only

-a address1 address?2
: specify disassemble area
address1 - start address, hexadecimal number
address?2 - end address, hexadecimal number
Output:
Disassemble file (. dis)
Log file (dis33.err)
Example:
dis33 -e -m —-a 0x80000 Ox8ffff sample.srf

When error/warning occurs
If an error is produced, an error message will appear before the end message shows up.
Example: Error: Can't open file, test.srf.
Disassemble complete

In the case of an error, the dis33 ends without creating an output file.

If awarning isissued, awarning message will appear before the end message shows up.
Example: Warning: No debug information.
Disassemble complete

In the case of awarning, the dis33 ends after creating an output file.

For details on errors and warnings, refer to Section 13.6 "Error/Warning Messages'.

EOC33 FAMILY EPSON 211
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 13: DISASSEMBLER

13.5 Disassembling Output

13.5.1 Mix Output

When the mixed output (-m option) is specified, the code output is delivered with the contents of the source file
added.

The dis33 acquires and reads the source file name from the debugging information of the srf33 file entered in it.
Therefore, the source section will not be output, if you did not specify the -g option designed for addition of
debugging information in the processing of the C Compiler gcc33 or Preprocessor pp33, Assembler as33 and
Linker 1k33.

It will also deliver a hexadecimal dump output after outputting the code section, if there is a data section and the -c
option is not specified. (For details, refer to Section 13.5.3 "Data Output”.)

Output format

$kkkk Disassemble code and source code *xkxx
Addr Code Unassemble Line Source
-- <Source file name* > --

(Disassembly code) (Source code)

s)okkokk Data skekskokk
Addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00800000 (Data)
Addr Indicates the address of a code/datain hexadecimal number.
Code Indicates an object code in hexadecimal number.

Unassemble Indicates a mnemonic code resulting from disassembling.
Line Indicates aline number of the source file in decimal number.
Source Indicates a statement in the source file.
* The names of the source file/included file which were referred to are delivered in their respective start
positions.
Sample output

Sourcefile" samplel.s’

#define SP_INI 0x0800 ; sp is in end of 2KB RAM
#define GP_INI 0x0000 ; global pointer %r8 is 0x0
. code
.word BOOT , BOOT VECTOR
BOOT:
xld. w %r8, SP_INI
Id. w %sp, %r8 , set SP
ld. w %r8,GP_INI ; set global pointer
xcal | main , goto main
Xjp BOOT v infinity loop

#include sample2.s

Sourcefile" sample2.s'
#include sampled.s

Sourcefile" sample3.s'
.data
.word 1 2

212 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

Sourcefile" sampled.c"
int i;
main ()
{
int j;

i=0;
for (j=0 ; ; j++)
{

i++;

Disassembling output

4+ Disassemble code and source code *kkk

Addr Code Unassemble
00080000 0004 *xx
00080002 0008 *xx*

00080004 €020 ext 0x20

00080006 6C08 Id.w %r8, 0x0
00080008 A081 Id.w %sp, %r8
0008000A 6C08 Id.w %r8, 0x0

0008000G G000 ext 0x0
0008000E 1C03 call 0x3

00080010 1EFA jp Oxfa
00080012 0000 nop
00080014 6COB Id.w %r11, 0x0

00080016 C004 ext 0x4
00080018 3G8B Id.w [%r8], %ri11

0008001A C004 ext 0x4
0008001G 308A Id.w %r10, [%r8]
0008001E 601A add %r10, Ox1
00080020 C004 ext 0x4
00080022 3GC8A Id.w [%r8], %r10
00080024 1EFB jp 0xfb

00080026 0640 ret
srkkk Data sorkokok

Addr
00080020

Line Source
-—— samplel. s —
00001 #define SP_INI 0x0800

00002 #define GP_INI 0x0000
00003

00004 . code

00005 .word BOOT

00006 BOOT:

00007 xld. w %r8, SP_INI

00008 Id.w %sp, %r8

00009 Id.w %r8, GP_INI

00010 xcal | main

00011 Xjp BOOT
—— sample4. ¢ —

00001 int i;

00002

00003 main()

00004 {

00005 int j;

00006

00007 i =0;

00008 for (j=0 ; ; j++)

00009 {

00010 i++;

00008 for (j=0 ; ; j++)

00011 }

00012 }

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
01 00 00 00 02 00 00 00

CHAPTER 13: DISASSEMBLER

;v sp is in end of 2KB RAM
; global pointer %r8 is 0x0

; BOOT VECTOR

; set SP
, set global pointer
; goto main

, infinity loop

The source lines corresponding to the codes and the contents of the sources preceding them are delivered.
Sources without actual codes and included files without actual codes will not be delivered either.
If one source line is expanded into codes of two or more lines asin the case of afor statement, such a source

line may appear at various places.

If the source file does not exist, "no source” is output to the source field.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

213

CHAPTER 13: DISASSEMBLER

13.5.2 Code Output

When mixed output (-m option) is not specified, the code section of an input srf33 file is disassembled in order of
the addresses, and delivered in the following format:

Output format

skkik Disassemble code xkxxx
Addr Code Unassemble

(Disassembly code)
Addr Indicates the address of a code in hexadecima number.

Code Indicates an object code in hexadecimal number.

Unassemble Indicates a mnemonic code resulting from disassembling.

Sample output

Sourcefile
. abs
. code
.org 0x80000
.word BOOT
.org 0x80080
Xjp BOOT
.org 0x80100
BOOT:
xld. w %r 8, 0x800
ld.w %sp, %r8
Id.w %r8, 0x0
STNDBY:
halt
ip STANDBY

Disassembling output
#006% Disassemble code *kkkk
Addr Code Unassemble
00080000 0100 *xx
00080002 0008 *xx

00080080 1E40 jp 0x40

00080100 €020 ext 0x20
00080102 6C08 Id.w %r8, 0x0
00080104 A081 Id.w %sp, %r8
00080106 6C08 Id.w %r8, 0x0
00080108 0080 halt

0008010A 1E00 jp 0x0

A lineisfed where the addresses are discontinuous.

214 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 13: DISASSEMBLER

13.5.3 Data Output

The data section is dumped out in hexadecimal numbers by the amount corresponding to its size in order of the
addresses. If the input file has no data, no data output will take place. If you specify the -d option alone and input a
file without data, an empty file will be delivered.

Output format

s)kkkk Data skkskokk
Addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00800000 (Data)

Addr Indicates an address of data in hexadecima number. It is the start address of that line (16
addresses).

+0to+F Indicates data corresponding to 16 addresses in hexadecimal numbers. Address without data
defined will remain in blank.
Sample output

Data definition in the sour cefile

.data

.org 0x8008
CHAR1:

.half 0x9

.half Oxa

.half 0xb

.org 0x8104
CHAR2:

.word 0x3

.word 0x4

.word 0x5

Disassembling output

,rkkk Data sekkokk
Addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00008000 09 00 OA 00 0B 00

00008100 03 00 00 00 04 00 00 00 05 00 00 00

A line is fed where the addresses are discontinuous. Also, a space is inserted at addresses that do not have

data

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

EPSON

215

CHAPTER 13: DISASSEMBLER

13.6 Error/Warning Messages

Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "dis33.err" file.

If the dis33 is started up using the wb33's [DIS33] button, the message is output to "wb33.err". When execution is
completed, amessage is displayed in the output window (default).

13.6.1 Errors

The errors produced in the dis33 are classified into two groups: system errors and input file format errors.
When an error occurs, the dis33 immediately terminates the processing after displaying an error message. It will
not output any disassembler file.

Table 13.6.1.1 List of system error messages

Error message Content

Error: Cannot open file, <file name>. Cannot open the file.

Error: Cannot close file, <file name>. Cannot close the file.

Error: Cannot write to file, <file name>. Cannot write to the file.

Error: Cannot close SROFF file. Cannot close the object file.

Error: Cannot load data, The section information cannot be loaded due to a memory
memory allocation failure. allocation error.

Error: Cannot load debug information, The debug information cannot be loaded due to a memory
memory allocation failure. allocation error.

Error: Cannot load data, The section information cannot be loaded due to a file read
file read failure, <file name>. error.

Error: Cannot load debug information, The debug information cannot be loaded due to a file read
file read failure, <file name>. error.

Table 13.6.1.2 List of input file error messages

Error message Content
Error: Invalid file name <file name>. ".dis" is specified for the input file name.
Error: Too many sections. These errors are produced when there is an error in the
Error: Cannot load data, information contained in the input srf33 object file. In such
please check SROFF file. case, check to make sure that the files in the phases ranging
Error: Cannot load debug information, from the source through linking retain consistency, and redo
please check SROFF file. the processing from the C compiler or preprocessor by using

definitive source files.

13.6.2 Warning
Even if a warning is issued, the dis33 keeps on processing, and completes the processing after displaying a
warning message, unless any error is produced in addition. It will output the disassembler file.

Table 13.6.2.1 Warning message
Warning message Content
Warning: No debug information. The input file does not contain debugging information.
This warning is produced only when you activated a mixed
output by specifying the -m option. Since there is no debugging
information, the disassembler cannot output a source, but only
delivers a disassembling output.

Warning: Cannot open file, <file name>. Cannot open the source file for mixed output. "no source" is
output for the source field.
Warning: Line number of source file is invalid. The source lines are insufficient. The source might be
modified.
216 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 13: DISASSEMBLER

13.7 Precautions
To obtain a source mixed output by the dis33, pay heed to the following aspects:

(1) When describing a source, set the tab every 8 characters. If any other tab setting is made, the output position
will appear displaced.

(2) Thedis33 acquires and reads a source file name from the debugging information data of the input srf33 file.
Therefore, you need to input an object file created in the processing of the C Compiler gcc33 or Preprocessor
pp33, Assembler as33 and Linker 1k33, with the -g option specified for addition of debugging information.

In the case where an object file which holds debugging information for source display is linked with another
object file which does not have such information, only the file with debugging information will be delivered
in a source mixed output.

(3) Pay attention to the consistency of the source file to the object file to be input. If the source file is modified
after the object file was created, you will not be able to obtain an output with correct correspondence between
the codes and the source. Or, an error will result, and no output will be delivered.

EOC33 FAMILY EPSON 217
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 14: BINARY/HEX CONVERTER

Chapter 14 Binary/HEX Converter

This chapter describes the functions of the Binary/HEX Converter hex33.

14.1 Functions

The Binary/HEX Converter hex33 (hereafter called the "hex33") inputs the object filesin srf33 format and outputs
a specified address range to a file after converting it into Motorola S3 format data. The areas in the specified
address range that do not have data are filled with Oxff. For the addresses of converted data, you can specify
absol ute addresses or offset addresses from a specified start address.

Use the hex33 in the following cases:

e When creating the mask data by extracting the internd ROM data from completed srf33 object file

e When creating the data you want to be written into the external ROM of the target board or product

¢ When verifying the completed program with the Debugger for final acceptance

14.2 Input/Output Files

Linker k33

—————) Absolute

W object file

Binary/HEX Converter
hex33

P —
] Error
ROM data file file

Fig. 14.2.1 Flowchart

14.2.1 Input File

Object file
File format: Binary filein srf33 format
File name: <File name>.srf
Description: Object file created by the Linker 1k33.

14.2.2 Output Files

HEX file
File format: HEX filein Motorola S3 format
File name: <Filename>.sa* (<File name> isthe same asthat of the input file.)
Output destination: Current directory
Description: File in which the specified address range of the input file is converted in Motorola S3
format.
Error file
File format: Text file
File name: hex33.err
Output destination: Current directory
Description: File that is delivered when the startup option (-€) is specified. It records the information
which the hex33 outputs to the Standard Output (stdout), such as error messages.
218 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 14: BINARY/HEX CONVERTER

14.3 Starting Method

14.3.1 Startup Format
General form of command line
hex33 ” [<startup option>] ~ <start address> " <end address> " <file name>

~ denotes a space.
[] indicates the possibility to omit.

<start address>: Specify the conversion start address in a hexadecimal number.
<end address>: Specify the conversion end address in a hexadecimal number.
<file name>: Specify an srf33 object file name including the extension.

A 32-bit boundary address should be specified for the <start address> and <end address>.
The specified number is handled as a hexadecima number even if "0x" is not prefixed.

Operations on work bench
Select options, conversion range and an object file, then click the [HEX33] button.

14.3.2 Startup Options

The hex33 comes provided with the following four types of startup options:

-X

Function: Adds a specified address to the extension.

Specification on wh33: Check [addr to name].

Explanation: o |f this option is specified, the hex33 adds a specified start and an end address to the
extension of the file to be generated.

Example: test.sa_c00000_cOffff
It can tell you which part of the datait isat aglance.

-z

Function: Outputs an absolute address.

Specification on wh33: Check [abs addr].

Explanation: o |f thisoption is specified, the hex33 uses absolute addresses for the converted address
part when generating the output file. Unless this option is specified, the addresses are
converted to offset addresses where the specified start address is assumed to be
address 0.

Note: o Besureto specify this option when creating mask data.

-r

Function: Checks a section.

Specification on wh33: Check [abs addr].

Explanation: o |f thisoption is specified, the hex33 checks whether all converted sections are within a
specified address range. If there is any section that exceeds the specified range, an
error is assumed.

-e

Function: Outputs an error file.

Specification on wb33: None

Explanation: o Dediversaso in afile (hex33.err) the contents to be output by the hex33 through the

Standard Output (stdout), such as error messages.

When entering an option in the command line, one or more spaces are necessary before and after the option.
Example: c¢:\cc33\hex33 -e -x -z test.srf

EOC33 FAMILY EPSON 219
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 14: BINARY/HEX CONVERTER

14.4 Messages

The hex33 delivers its messages through the Standard Output (stdout).
If the hex33 is started up by using the wb33's [HEX33] button, the message is output to "wb33.err". When
execution is completed, a message is displayed in the output window (default).

End message
The hex33 outputs only the following end message when it ends normally.

Conversion Completed

Usage output
If no file name was specified or an option was not specified correctly, the hex33 ends after delivering the
following message concerning the usage:

HEX Data Converter 33 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x
Usage:
hex33 [options] <start address> <end address> <file name>
Options:
-e : produce log file (hex33.err)
-X . add start and end addresses to the file name extension
-z : make converted address absolute
-r . check all data within start and end area
Qutput:
hex file (. sa, .sa_<start address>_<end address))
log file (hex33.err)
Example:
hex33 -x -z 80000 80fff sample.srf

When error/warning occurs
If an error is produced, an error message will appear before the end message shows up.
Example: Error: Input file is not SRF33 file.
Conversion Completed

In the case of an error, the hex33 ends without creating an output file.

If awarning isissued, awarning message will appear before the end message shows up.
Example: Warning: Section information chain is not found.
Conversion Completed

In the case of awarning, the hex33 ends after creating an output file.

For details on errors and warnings, refer to Section 14.6 "Error/Warning Messages'.

220 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 14: BINARY/HEX CONVERTER

14.5 Contents of HEX File

14.5.1 Motorola S3 Format
The hex33 converts srf33 object files into the Motorola S3 format that supports 32-bit addressing.

The diagram below shows the format of each line in the output file.

[s3] length(1) | address(4) [data@t) | - [datat) [sum@) | \n |
[s7 Tlength(r) [o00000000 [sum@ [\n |

Numbersin () are bytes.

S3: Indicates that the lineis a data record.

S7: Indicates that the lineis an end record (end of data).

length: Indicates the record length of "address + data+ sum". The data records output by the hex33 are always
0x25, while the end records are 0x05.
address: Indicates the address where the head datain arecord is placed.

data: Thisis 32-byte data. Thisis not included in the end record.
sum: Thisisachecksum (1's complement) from “length” to the last data.
\n: Thisisareturn code.

The end records are always S70500000000FA.

14.5.2 Absolute Address Output
If the -z option is specified, an absolute address is placed in the "address" part of the output file.

Example of dump of an output file

$325000800000400080020G0086G81A0086G00C000C0021CF91E00020B6C00C000C08B3C006CFC
$325000800200C2E051G1060FD1E400240061G70081800C000C08A301A6000G000C08A3C400658
$32500080040FFB2
$32500080060FFO2

$32500080FAOFF43
$32500080FCOFF23
$32500080FEOFFO3
$70500000000FA

Shown aboveis an example of afile that was created after specifying 0x80000 for the start address, 0x80fff for the
end address, and the -z option.

Data records for 32 addresses each are generated, with the address part ranging from 00080000 to 00080fe0. All
areas that do not have data arefilled with Oxff.

14.5.3 Offset Address Output
If the -z option is omitted, an offset address from the specified start address is placed in the "address' part of the
output file.

Example of dump of an output file

$325000000000400080020G0086C81A0086G00C000G0021CF91E00020B6C00C000C08B3C006C04
$325000000200G2E051C1060FD1E400240061C70081800C000C08A301A6000C000C08A3C400660
$32500000040FFBA
$32500000060FFOA

$32500000FAOFF4B
$32500000F COFF2B
$32500000FEOFFOB
$70500000000FA

Shown above is a conversion result of the example in the preceding page generated without specifying the -z
option. The addresses in the "address" part are offset addresses from address 0x80000.

EOC33 FAMILY EPSON 221
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 14: BINARY/HEX CONVERTER

14.6 Error/Warning Messages

Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "hex33.err" file.

If the hex33 is started up using the wb33's [HEX33] button, the message is output to "wb33.err". When execution
is completed, a message is displayed in the output window (default).

14.6.1 Errors

The errors produced in the hex33 are classified into two groups: system errors and input file format errors.

When an error occurs, the hex33 immediately terminates the processing after displaying an error message. It will
not output any HEX file.

Table 14.6.1.1 List of system error messages

Error message Content
Error: File open error. Cannot open the file.
Error: File write error. Cannot write to the file.
Error: File read error. Cannot read the file.
Error: Memory allocation error. Cannot secure memory space.

Table 14.6.1.2 List of input file error messages

Error message Content
Error: "<file name>" file could not be opened. Cannot open the file <file name>.
Error: Input file is not SRF33 file. The input file is not an object file in srf33 format.
Error: Start address error. The conversion start address is invalid. The specified

address either exceeds the effective range of
0x00000000 to OxOfffffff or does not reside on 32-byte
boundaries.

Error: End address error. The conversion end address is invalid. The specified
address either exceeds the effective range of
0x00000000 to OxOfffffff or does not reside on 32-byte

boundaries.
Error: Out of area in address <address>. The converted data exceeded a specified address range.
Error: Chain information size is greater than file size. | These errors occur when the input srf33 object files
Error: Chain seek address is greater than file size. contain erroneous information. Check all the files from the
Error: File control flag error. source to the linked files for consistency. If necessary,
Error: Section address error. reprocess from the C Compiler and Preprocessor using
Error: Section ID error. the final source files.

Error: Data conflicted at <address>.

14.6.2 Warning
Even if a warning is issued, the hex33 keeps on processing, and completes the processing after displaying a
warning message, unless any error is produced in addition. It will output the HEX file.

Table 14.6.2.1 Warning message

Warning message Content
Warning: Section information chain is not found. There is no section information chain in the input file. This
warning is produced when the input srf33 object files
contain erroneous information. Check all the files from the
source to the linked files for consistency. If necessary,
reprocess from the C Compiler and Preprocessor using
the final source files.

222 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 14: BINARY/HEX CONVERTER

14.7 Precautions

(1) Specify hexadecima 32-byte boundary addresses for the conversion start and end addresses.

(2) When converting internal ROM data into mask data, for the conversion start end addresses, specify the start
and end addresses of the internd ROM of the model being developed, and produce the output file in absolute
addresses (by specifying the -z option). Even if the program sizeis small, the HEX file must be created for all
aress to the end address of the internal ROM.

EOC33 FAMILY EPSON 223
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 15: LIBRARIAN

Chapter 15 Librarian

This chapter describes the functions of the Librarian lib33.

15.1 Functions

The librarian 1ib33 (hereafter called the "1ib33") is a software tool for editing the srf33 format library files. It
allows you to create a library from the relocatable object files output by the Assembler as33. A library of
general-purpose modules will help you reduce the time and cost required for developing a product using the
EOC33 Family of microcomputersin the future.

The 1ib33 has the following features:

o Adds the relocatable object files output by the Assembler as33 to an existing library file.

* Createsanew library file from the relocatable object files output by the Assembler as33.

e Outputsalist of modulesin alibrary file.

o Deletes specified modules from alibrary file.

» Restores specified modulesin alibrary fileto the original relocatable object file.

Once the created or edited library file is specified during linkage, only the necessary modulesin that file are linked
with other object files.

15.2 Input/Output Files

Assembler as33

<
Relocatable W‘- m Library file

object files

Librarian
lib33

T | ey
Relocatable .ﬂm = — .) Error
object files =JJ L'bra’y file W file

Linker k33
Fig. 15.2.1 Flowchart

15.2.1 Input Files

Library file (except when creating a new library)

File format: Binary filein srf33 library format

File name: <File name>.lib

Description: Thisisalibrary file included with the package or one that is created by the lib33.
Relocatable object file (when creating alibrary or addingto a library)

File format: Binary filein srf33 format

File name: <File name>.o0

Description: Thisisarelocatable object file created by the Assembler as33.

15.2.2 Output Files

Library file (when creating a new library or adding/deleting modules)

File format: Binary filein srf33 library format

File name: <File name>.lib

Output destination: Current directory

Description: This file is comprised of multiple relocatable object modules. For the contents of a

library file, refer to Appendix, "srf33 File Structure”.

224 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 15: LIBRARIAN

Relocatable object file (when restoring modules)

File format: Binary filein srf33 format
File name: <File name>.0
Output destination: Current directory
Description: The specified modules are restored to the original relocatable object file.
Error file
File format: Text file
File name: lib33.err
Output destination: Current directory
Description: File that is delivered when the startup option (-€) is specified. It records the information

which the lib33 outputs to the Standard Output (stdout), such as error messages.

15.3 Starting Method

15.3.1 Startup Format
General form of command line
lib33 ~ [<startup option>] ~ <library file name> ~ [<object file name>]

~ denotes a space.
[] indicates the possibility to omit.

<library file name>: Specify alibrary file you want to edit including the file name extension.
<object filename>: Specify a file you want to be registered, deleted, or restored including the file name
extension. Multiple object files can be specified.

Operationson work bench
Select options and input files, then click the [L1B33] button.

15.3.2 Startup Options
The 1ib33 comes provided with the following five types of startup options:
The actual method will be described later.

-a

Function: Adds an object fileto alibrary.

Specification on wh33: Check [add]. (addition)

Explanation: e If anexisting library is specified, the specified object file is added to the library.
o If anew library file nameis specified, alibrary fileis created from the specified object

file.

-d

Function: Deletes an object filefrom alibrary.

Specification on wb33: Check [del].

Explanation: e The specified object fileis deleted from the specified library.

-l

Function: Displays object files registered in alibrary.

Specification on wb33: Check [list].

Explanation: e Theobject filesin the specified library are listed in the order they are stored.
o Thesefilesarelisted on a standard output device (stdout).

-X

Function: Restores library modules to the original object files.

Specification on wh33: Check [extract] (Only specified modules are restored) or [extract al] (All modules are
restored)

EOC33 FAMILY EPSON 225

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 15: LIBRARIAN

Explanation: e |If an object file name is specified, only the specified modules in the library are
restored to the previous object file.
o If no object file name is specified, all the modules in the library are restored to the
previous object files.

The-a, -d, -l and -x options cannot be specified smultaneously; they can only be specified one a atime.
If none of these options are specified, anew library fileis created from the specified object file (check [new] in the
whb33).

-e

Function: Output of error files

Specification on wb33: None

Explanation: e Ddivers dso in afile (Iib33.err) the contents to be output by the 1ib33 through the

Standard Output (stdout), such as error messages.

When entering an option in the command line, one or more spaces are necessary before and after the option.
Example: c¢:\cc33\lib33 -e -a samplelib testl.o test2.0

15.4 Messages

Thelib33 delivers its messages through the Standard Output (stdout).
If thelib33 is started up by using the wb33's [LIB33] button, the message is output to "wb33.err". When execution
is completed, a message is displayed in the output window (default).

End message
Thelib33 outputs only the following end message when it ends normally.

Librarian Completed

Usage output
If no file name was specified or an option was not specified correctly, the 1ib33 ends after delivering the
following message concerning the usage:

Librarian 33 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x
Usage:
1ib33 [option] <library-file> <files>
Options:
-e . produce log file (1k33.err)
-a . add new files after an existing member of the library
—-d : delete members from the l|ibrary
-1 : display a table listing the contents of library
-X . extract members from the library
Qutput:
EOC33 library file (. lib)
Example:
1ib33 -a libc. lib putc.o getc.o

When error/warning occurs
If an error or a warning is produced, an error message or a warning message will appear before the end
message shows up.
Example: test. lib: Error: Cannot open file
Librarian Completed

In the case of an error, the 1ib33 ends without creating an output file.
In the case of awarning, the lib33 ends after creating an output file.
For details on errors and warnings, refer to Section 15.6 "Error/Warning Messages'.

226 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 15: LIBRARIAN

15.5 Library Editing Functions

15.5.1 Creating a New Library
To create anew library, execute the 1ib33 by specifying no option but -e.

lib33 <Library file name> <Object file name> ... <Object file name>
Example: c:\cc33\1ib33 test.lib test1.o test2.0 test3.0
A library fileis created in the specified name. Object files are stored in it in the order in which they are specified.

When creating alibrary file in the wb33, check the [new] button in the [other options] window and input a library
file name in the text box located below the button. (The extension ".lib" is unnecessary.) Choose the object files
that you want to be registered in the library from thefile list box of the [other options] window.

Notes: ¢ Only the srf33 format relocatable object files (*.0) can be registered in a library. Absolute object
files cannot be registered in a library.
e If an existing library name is specified, it is overwritten with the specified object files.

e The maximum number of object modules that can be registered in one library file is 4000. If
this limit is exceeded, an error results.

15.5.2 Adding Modules to a Library

To add object filesto an existing library, execute the [ib33 using the following startup command:
lib33 -a <Library file name> <Object file name> ... <Object file name>
Example: c:\cc33\1ib33 -atest.lib testl.o test2.0 test3.0

By specifying the -a option and an existing library file name, you can add the specified object files to that library.
The object files are registered at the end of the library file in the order in which they are specified.

When adding modules to alibrary in the wb33, choose a library file name from the file list box of the execution
window and object file names to be added from the file list box of the [other options] window. Since no directory
can be specified for the object files, the object files you want must be prepared in the same directory as that of the
library file before selecting them. When you check the [add] button to execute the command, the selected object
filesareregistered in the library.

Notes: e If a nonexistent library file name is specified, a new library file is created in that library name.

e Only the srf33 format relocatable object files (*.0) can be registered in a library. Absolute object
files cannot be registered in a library.

o If the specified object file has the same name as an already registered module, a warning is
issued, but the specified file is added at the end of the library in the same name. Then, if the
object file name is specified in a delete command, both modules are deleted.

e The maximum number of object modules that can be registered in one library file is 4000. If this
limit is exceeded, an error results.

EOC33 FAMILY EPSON 227
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 15: LIBRARIAN

15.5.3 Listing Registered Modules

To view alist of the object files registered in alibrary, execute the 1ib33 using the following startup command:
lib33 -I <Library file name>

Example: ¢:\cc33\lib33 -I string.lib
Thefileslist in string.lib
strerror.o
strcat.o
strchr.o

memset.o
strtok.o
Librarian Completed

All object file names included in the specified library are listed in the order they are stored. This list is displayed
on (output to) a standard output device (stdout). If the -e option is specified, the list is aso output to the
"lib33.err".

When executing this command in the wb33, choose <Library file name> from the file list box of the execution
window and check the [list] button to execute the command.

15.5.4 Deleting Modules from a Library

The library modules that have become unnecessary can be deleted from the library file.

lib33 -d <Library file name> <Object file name> ... <Object file name>

Example: c:\cc33\lib33 -d test.lib test1.0 test2.0

If multiple object files with the same name are registered in the specified library, all of them are del eted.

When executing this command in the wb33, choose <Library file name> from the file list box of the execution
window and input the <Object file name> that you want deleted in the text box below the [del] button of the [other
options] window (extension ".0" is unnecessary). Only one object file name can be specified in this text box at a
time. If you want to delete multiple object files, execute the lib33 as many times as the number of files to be
deleted or input al these file names from the command line.

When you check the [del] button to execute the command, the specified object file is deleted from the library.

15.5.5 Restoring Object Files
The modules registered in a library can be restored to the original srf33 format relocatable object files. To restore
modules to the original object file, execute the following startup command.

lib33 -x <Library file name> <Object file name> ... <Object file name>
Example: c:\cc33\1ib33 -x test.lib test1.o test2.0

If the command is executed without specifying <Object file name>, al modules in the library are restored to the
origina object files. Even when modulesin alibrary are restored in this way, the contents of the library file remain
intact. If multiple modules with the specified name are registered in the library file, the last module registered is
restored.

When executing this command in the wb33, choose <Library file name> from the file list box of the execution
window and input the <Object file name> that you want restored in the text box on the right side of the [extract all]
button of the [other options] window (extension ".0" is unnecessary). Only one object file name can be specified in
this text box at atime. If you want to restore multiple object files, execute the 1ib33 as many times as the number
of filesto be restored or input al these file names from the command line.

When you check the [extract] button to execute the command, the specified object file is restored.

If you want to restore al the modules, check the [extract all] button to execute the command.

228 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 15: LIBRARIAN

15.6 Error/Warning Messages

Error and warning messages are displayed/output through the Standard Output (stdout). If you specify the -e
option, the messages will also be delivered in the "1ib33.err" file.

If the lib33 is started up using the wh33's [LIB33] button, the message is output to "wb33.err". When execution is
completed, amessage is displayed in the output window (default).

15.6.1 Errors

When an error occurs, the 1ib33 immediately terminates the processing after displaying an error message. It will
not create any output file.

Table 15.6.1.1 List of error messages

Error message Content
<file name>: Error: Cannot open file Cannot open the file.
<file name>: Error: Not srf33 library file The specified library file is not in the srf33 library format.
Error: Max object files The number of objects in the library exceeded the upper limit. The
maximum number of objects that can be registered in one library
file is 4000.

15.6.2 Warnings

Even if a warning is issued, the lib33 keeps on processing, and completes the processing after displaying a
warning message, unless any error is produced in addition. It will create the output file, but the results are not
guaranteed.

Table 15.6.2.1 List of warning messages

Warning message Content
<file name>: Warning: Not srf33 object file The specified object is not a srf33 format relocatable object file.
Warning: Multiple object file '<file name>" The specified object file is already registered. Even in this case,
the specified file is added at the end of the library.
Warning: Cannot find '<file name>" in library The object file specified to be deleted or restored cannot be
found in the library.

15.7 Precautions

(1) Only the srf33 format relocatabl e object files (*.0) can be registered in alibrary. Absolute object files cannot
be registered in alibrary. Note also that the maximum number of object modules that can be registered in one
library is 4000.

(2) If, after specifying an object file that has the same name as that of an already registered module, you execute
acommand to add it to alibrary, awarning is generated but the file itself is added at the end of the library in
the same name. Then, when the object file name is specified in a delete command, both modules are deleted;
therefore, be careful.

EOC33 FAMILY EPSON 229
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Chapter 16 Debugger

This chapter describes how to use the Debugger db33.

16.1 Features

The Debugger db33 (hereinafter called the "db33") is used to debug your program after reading an object file in
the srf33 format that is generated by the linker or aROM datafile in Motorola S3 format.
It has the following features and functions:

Various data can be referenced at the same time using multiple windows.

Frequently used commands can be executed from tool bars and menus using a mouse.

In addition to using the ICE33, ICD33 or Debug Monitor to debug your program, a software emulator function
is available that allows program debugging on personal computers.

Supports C and assembly source level debugging functions.

In addition to continuous program execution, two types of C source/assembler level single-stepping are
supported.

Hardware and software bresk functions, as well as a data break function that allows the memory access
condition to be specified are available.

Furthermore, the following useful functions are also provided:

- A rea-timedisplay function for showing flags and watch addresses on-the-fly

- A time display function for showing execution time by both duration and number of cycles

- A trace function that allows data to be searched and saved

- An automatic command execution function using acommand file

- A simulated 1/O function that allows input/output to be evaluated in the debugger

16.2 Input/Output Files

from Linker

stf33 object file Source file(s) Parameter file
— ———

Command file —
o] o))
file.cmd .

ICE33 Debugger —
ICD33 db33

MON33, DMT33MON Motolora S3
— HEX file
file.log
Log file

Fig. 16.2.1 Flowchart

16.2.1 Input Files

Parameter file

Fileformat: Textfile

Filename: <file name>.par

Description: This file contains memory information on each microcomputer model and is indispensable for
starting the debugger.The [Par gen] button of the Work Bench wb33 alows you to create a
parameter file that contains the basic parameters of the EOC33 Family.

230 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

The following files are read by the debugger according to command specification.

Object file
File format:
File name:
Description:

Binary filein the srf33 format

<file name>.srf

Thisis an absolute object file generated by the Linker Ik33. Thisfile is read into the debugger
by the If command. By reading afile in the srf33 format that contains debug information, you
can perform source level debugging.

ROM data HEX file

File format:
File name:
Description:

Sourcefile
File format:
File name:
Description:

Command file
File format:
File name:
Description:

HEX filein Motorola S3 format

<file name>.sa

Thisis aload image file of the ROM created by the Binary/HEX converter hex33, and is read
into the debugger by the |h command. This file cannot be used for source level debugging
because it has no debugging information, but you can use it to check the operation of final
program data.

Text file

<file name>.c (C source), <file name>.s (assembly source)

This is the source file of the above object file. It is read when the debugger performs source
display.

Text file

<file name>.cmd

This file contains a description of debug commands to be executed successively. By writing a
series of frequently used commands in this file, you can save the time and labor required for
entering commands from the keyboard. This command is read in and executed using the com
or cmw command.

16.2.2 Output File

Logfile
File format:
File name:
Description:

Text file

<file name>.log

Thisfile contains information on executed commands and execution results that are output to a
file. Output of thisfile can be controlled by the log command.

EOC33 FAMILY

EPSON 231

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.3 Starting Method

16.3.1 Startup Format
General form of command line
db33 " [<startup option>] A -p * <parameter file name>
~ denotes a space.

[] indicates the possibility to omit.

Operation on work bench
Select the parameter file and options, then click the [DB33] button.

16.3.2 Startup Options
The db33 has eight startup options available.

-p <file name>.par

Function: Specifies a parameter file (essential setup item).
Specification on wh33: Select from thefile list box in the execution window.
Explanation: o Specify a parameter file (create a template by the wb33 and modify it according to the

model to be developed).
e You cannot debug a program unless you have thisfile.

-sim/-mon/-icd/-ice

Function: Specifies debugger mode.
Specification on wh33: Select amode from the combo box (ICD, MON, ICE, SIM).
Explanation: e Thedb33isstarted up in the specified mode.

-sim Simulator mode
-mon Debug monitor mode
-icd 1CD mode
-ice ICE mode
o Unlessthisoption is specified, the db33 is started in ICE mode.

-c <file name>.cmd

Function: Specifies acommand file.
Specification on wb33: Check [db33 *.cmd file] and select the command file from the list box.
Explanation: o |f you want a series of commands to be executed immediately after the db33 starts up,

use this option to specify acommand file that describes those commands.

-wW
Function: Specifiesawindow at startup.
Specification on wb33: Check [1 win].
Explanation: o If you specify this option, only the [Command] window opens when the db33 starts up.
Specify this option when saving the log.
e Unless this option is specified, the [Command] window, [Source] window, and
[Register] window open simultaneously.
-comX
Function: Specifies acommunication port.
Specification on wh33: Select from alist box (com1, com2, com3 com4, com5, com6, com7, or com8).
Explanation: e This option specifies the communication port through which a personal computer is
communicated with the ICE33, ICD33 or MON33. Specify a port number (1-8) in the
X part of thisoption. The port that can be used for this purpose varies among different
persona computers.
e Unlessthis option is specified, the com1 port is used.
232 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

-b <baud rate>

CHAPTER 16: DEBUGGER

Function: Specifies a communication transmission rate.
Specification on wh33: Select from alist box (4800, 9600, 19200, 38400, 57600 or 115200).

Explanation: .

-sf

This option specifies the baud rate on the personal computer. For <baud rate>, select
one from 4800, 9600, 19200, 38400, 57600 or 115200. The baud rate selections vary
among different personal computers.

Unless this option is specified, the baud rate is set to 38400 bps in ICE or debug
monitor mode and 115200 bpsin ICD mode.

The baud rate on the ICE33/ICD33 is set using the DIP switch mounted on the
ICE33/ICD33.

Function: Specifies display with the small font.
Specification on wh33: Check [small font].

Explanation: e The characters displayed in the db33 window are set to "Terminal 10pt".
e Unlessthis option is specified, FixedSys 14pt is used.

-IptX

Function: Specifies a parallel port.

Specification on wh33: Select from alist box (no Ipt, Iptl, or Ipt2).

Explanation: .

This option specifies the paralel port through which a personal computer is
communicated with the ICE33 or ICD33. Specify a port number (1 or 2) in the X part
of this option. The port that can be used for this purpose varies among different
persona computers.

If this option is specified, the If and Th commands download files at high speed using a
parallel port.

Note: Do not use the COM and LPT ports for the db33 in other drivers and applications. Furthermore,
make sure that the port has been enabled when using a note PC as some can disable COM

ports.

When entering an option in acommand line, make sure that thereis at |east one space before and after the option.

Example: c¢:\cc33\db33

-p 33104 lpar -c sartup.cmd -sf -coml -b 38400

16.3.3 Startup Messages
When the db33 starts up, it outputs the following message in the [Command] window.
When starting up in ICE mode (with -ice option specified, default)

Debugger 33 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

Connecting with ICE done
Reading parameter file done
Initializing done
Parameter file name I XXXXXXXX. par
Version © xx
Chip name : XXXXX
BOOT address I OXXXXXXX
PRC board version XX
PRC board status TOXXXXXXXXXXXXXXXX
ICE hardware version XX
ICE software version XX
DIAG test : omitted
Emulation memory size © xMB
Mapping............. done
>
EO0C33 FAMILY EPSON 233

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

When the db33 starts up in ICE mode, it first performs the tests and initializing operations described below
then displays the above message.

1. Test the ICE33 connections.

2. Read a parameter file and check its contents.

3. Read and check the hardware version.

4. Initialize the ICE33.

5. Mapping

6. Reset the ICE33.

7. Initidize debugging information.

If an error or warning appears during any of the above processes, the db33 halts subsequent processing after
displaying an error or warning message. In this case, quit the db33 temporarily, and eiminate the cause of
error before restarting the db33.

Before starting up the db33 in ICE mode, please be sure to check the following:

e ThelCE33isconnected to your computer with the designated RS-232C cable and parallel cable.
o Ports are specified correctly.

o Thebaud rateis set correctly.

e The PRC board is mounted correctly in place.

e The power of the ICE33 isturned on.

e TheICE33 and PRC board are not in areset condition.

e ThelCE33isnot in the free-run or self-diagnostic mode.

o The specified COM and LPT ports are not used in other applications.

When starting up in ICD mode (with -icd option specified)

Debugger 33 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

Connecting with ICD done
Reading parameter file done
Initializing done
Parameter file name I XXXXXXXX. par
Version : xx
Chip name @ XXXxx
ICD software version XX
Target connection test : OK
Mapping............. done
Connecting with MEM33............. done (when you set MEM33201 in the parameter file)
>
When the db33 starts up in ICD mode, it first performs the tests and initializing operations described below
then displays the above message.

1. Test the ICD33 connections.

2. Read a parameter file and check its contents.
3. Initiadlize the ICD33.

4. Initialize debugging information.

If an error or warning appears during any of the above processes, the db33 halts subsequent processing after
displaying an error or warning message. In this case, quit the db33 temporarily, and eiminate the cause of
error before restarting the db33.

Before starting up the db33 in ICD mode, please be sure to check the following:

e ThelCD33 isconnected to your computer with the designated RS-232C cable and parallel cable.
o Ports are specified correctly.

e Thebaud rateis set correctly.

e Thetarget board is connected correctly.

e The power of the ICD33 and target board are turned on.

o The specified COM and LPT ports are not used in other applications.

234

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

When starting up in debug monitor mode (with -mon option specified)

Debugger 33 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

Connecting with MON done
Reading parameter file done
Initializing done
Parameter file name I XXXXXXXX. par
Version : xx
Chip name : XXXXX
MON software version XX
Mapping............ done
>

When the db33 starts up in debug monitor mode, it first performs the tests described below then displays the
above message.

1. Test the MON33 connections.

2. Read a parameter file and check its contents.

3. Initialize debugging information.

If an error or warning appears during any of the above processes, the db33 halts subsequent processing after
displaying an error or warning message. In this case, quit the db33 temporarily, and eiminate the cause of
error before restarting the db33.

Before starting up the db33 in debug monitor mode, please be sure to check the following:

e The DMT33MON board is connected to your computer with the designated RS-232C cable.
e The communication port is specified correctly.

o Thebaud rateis set correctly.

e Thetarget board is connected correctly.

e The MON33 has been activated on the target board.

When starting up in simulator mode (with -sim option specified)

Debugger 33 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

Connecting with simulator done
Reading parameter file done
Initializing done
Parameter file name I XXXXXXXX. par
Version : xx
Chip name : xxxxx
BOOT address T OXXXXXXX
Mapping. done
>

When started up in simulator mode, the db33 performs the following test and initialization before displaying
the above messages.

1. Read a parameter file and check its contents.

2. Initialize the simulator.

3. Mapping

4. Reset the smulator.

5. Initidize debugging information.

If an error or warning is encountered during the above processing, the db33 halts subsequent processing after
displaying an error or warning message. In this case, quit the db33 temporarily and create or select the correct
parameter file before restarting the db33.

EOC33 FAMILY EPSON 235
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Usage output

If no parameter file was specified or an option was not specified correctly, the db33 displays the following

message concerning the usage:

Debugger 33 Ver x.xx

Copyright (C) SEIKO EPSON CORP. 199x

- usage -

db33. exe —p parameter_file [-MODE] [-c command_file] [-w] [-comX] [-b baud_rate] [-sf] [lptX]

-p . parameter file
-MODE . select debugger mode
-sim . simulator mode
-mon . debug monitor mode
-icd 1CD mode
-ice ICE mode
default ICE mode
-c . command file
-w ... open only command window
-comX (X:1-8) ... com port, default comi
-b . baud rate, 4800, 9600, 19200,
default baud rate
default baud rate
default baud rate
-sf ... display with small font
-lptX (X:1-2) ... parallel port

>

38400 (default), 57600, 115200 [bps]
ICE mode 38400

I1CD mode 115200

debug monitor mode 38400

When this message appears on the screen, temporarily quit the db33 and then start it up again correctly.

16.3.4 Method of Termination
To terminate the debugger, select [Exit] from the [File] menu.

Loadfile. Ctl+0

E xit

v 1 Command
2 Reagister
3 Source

[File] menu

Y ou can aso input the g command in the [Command] window to terminate the debugger.

>q

236 EPSON

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.4 Windows

This section describes the types of windows used by the db33.

16.4.1 Basic Structure of Window
The diagram below shows the window structure of the db33.

[Source] window [Trace] window [Symbol] window [Register] window

db33(5IM) - Memary

e Edit Run Break Symbol

8| 2| ElE] =l

Register 8 [] 3
Address Code Unassemble Line SourcéCode FC -0ob3000L
CO1F ext ax1f 08023 %r8,SP_INI ko R
00080006 6FF8 1d.u %r8,0x3F k1 -AAARARAR RY -ARAAAARA
00080008 ADB1 1d.u %Sp,%r8 00024 1d.w %sp,%r8 ; \set SP k2 =AAARARAR R10=ARAAAARA
0008000 6CO8 1d.u %rd,0x0 00025 1d.w %rB,GP_INI ; set global pc |[R3 =ARAARARA R11=AAARARAR
0008000C COOD ext 020 00026 xcall _init_sys ; call _init_sy |[R4 =ARAARARA R12=AAARARAR
00080D0E COOD ext 020 RS =AAARARAR R13=ARAAAARA
00080010 1CBA call 0x8a R6 =AAARARAR R14=ARAAAARA
08080812 COOB ext 028 08627 main ; goko main R7 =AAARRAAR R15=ARAARARA
08080814 COOB ext 028 SP =BAARRAAB PSR=00800860
08080816 1C42 call 0242 AL
08080018 COOB ext 028 08628 xgall _exit ; in last, gote |[ILHODS IE € U Z N
0808081A COOB ext 2en 90 08 68 8 0 0
0808001C 1C82 call s us
BA83081E 8088 nop Number Address Code Unassemble Address Type 8088882265 cycle/inst
808806828 2AZA cmp 00882247 BBO8B1CH 22B9 add %re,%r11 - []
60680622 202A 1d.b |pgee2248 BBBSAICG 349 1d.b [%r9],%18 886086811 uwB (] [08808864]=2A2ABABD
888808824 6554 sub 00802249 08B8O1CE 681D add %r13, 821 - L 1=4E45282R
088808826 7473 or 00802258 08B8B1CA 6818 add %11, 821 - L 1=2A2A2844
00862251 BOBAICC ZACB cmp 2r11,%r12 e —m
008062252 BBOBOICE OEF7 jrle 0xF7 o _______ 4l | «l
18062253 BBASA1DA 1EE7 jp Bxe? ' Symbol (O] x|
: memory ... 00002254 000B019E 686E crp %ri4,0x0 [yRITE_BUF[65](00000045)= ' ' BxAA 170, , extern, unsigned (
execution & |09962255 096801A0 1R8I jrne 0x3 2:READ_BUF[65](000000889)= * * 0x00 8, ., extern, unsigned char
break 00002256 0OBO1A2 ZE4A ld.w %r10,%r4
© source & syn|00862257 0008E1AN 1E17 jp ox17
file & flash|09002258 0BOBE1D2 0648 ret
trace & simy 999082259 0BOBOTIC 0648 ret .
otners ... [0900220
aroup 8: input mumher | a3 sinulated I Functin| | addr 0 +1 +2 +3 +b 15 +6 +7 +8 +9 1A +B +C +D +E iF &
Please type “7 1" to 0900226 [x** Test db33 slmula!_:ed I0 functic addr) |
o1 9000226 Please enter any string and <CR> 80000600 06 B9 B0 88 OD OA 2A 2A 2A 20 45 HE 44 20 24 24
group 1: menory 9008226 [Enter >abcd 00000810 2R OA 69 73 20 3R 20 74 72 69 6E 67 20 61 6E 64
b (Fi11 byte). h (F |3 Enter string is : abcd 00000020 20 3C 43 52 3E OA 6F GE 20 2A 2A 2A OA AR AR AR
4b (dunp byte). dh (u-_l_l exx END sxxx || [00990030 AR AR AR AA AR AA AR AR AR AA AR AR AR AR AA AR
: Pt 1= |opoooouo AR AR AR AA AA AR AR AA B0 61 62 63 64 OA BB 0O

leb {enter byte), eh {enter ha
imu (move),muh (move half),muu
w {watch data),

m {read memory)

Please type "? fb" to get us
P

00000050 BB OF 00 80 00 90 2F 61 DF 0@ 92 02 BF 060 60 60
00000060 OE D2 DO D1 36 D2 FA B> 00 B8 FA 05 02 60 34 33
00000670 F2 7F 2C 53 FA 95 26 B2 3A F> 4D 4F 6F B6 60 60
00000680 44 61 62 80 6F 06 02 80 98 OO AA AR AA AR AA AR
00000690 AR AR AR AR AR AR AR AR AA AA AA AR AA AR AA AR
00000BAD AR AR AR AR AA AR AR AR AA AA AA AR AA AR AA AR

/

[Command] window [Simulated /O] window [Memory] window

K

When the debugger starts up, the [Command], [Source], and [Register] windows are displayed by default. If you
specify the -w option when starting up the debugger, only the [Command] window is displayed on the screen.
Other windows are displayed by selecting the appropriate menu commands.

EOC33 FAMILY EPSON 237
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Features common to all windows

@

@

©)

Resizing and moving a window

Each window can be resized as needed by dragging the boundary of the window with the mouse. The
[Minimize] and [Maximize] buttons work in the same way asin general Windows applications. Each window
can be moved to your desired display position by dragging the window's title bar with the mouse. However,
windows can only be resized and moved within the range of the application window.

All windows except [Command] can be closed as necessary.

Scrolling a window
All windows except for the [Register] window can be scrolled. Use one of the following three methods to
scroll awindow:
1. Click on an arrow button or enter an arrow key (cursor movement) to scroll a window one line a a
time (except for the [Command] window).
2. Click on the scroll bar of awindow to scroll it one page (current window size) at atime.
3. Drag the scroll bar handle of awindow to move it to the desired area

Other

The arrow keys can only be used in the [Command], [Source] and [Simulated 1/0] windows. In al the
windows, edit commands such as cut and paste cannot be used. However, the [Command] window supports a
text-paste command.

238

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

16.4.2 [Command] Window

group 1: MEMOFY ... eenecececnnnnnnnn fb,fh,fuw / db,dh,dw / &
group 2: execution & register g,5,n,rstc,rsth / int |,
group 3: breakiiiiiaiaaaa.. hp,hs,hc,hh,hhc,hd,hsqLJ
group 4: source & symbol u,sc,m / s5 f sy,sa,suw,
group 5: file & flash memory 1f,1h,10 7 1f1,5f1,ef1,
group 6: trace & simulated I/0 tm,td,ts,tf 7 stdin,stc
group 7: others ...eeeeineinnnnnnnns com,cmw,log / od,ct,exl
group 8: input number method number ,data,address,1ir
Please type "? 1" to show group 1 or type "? fb" to get usac
>71

group 1: memory

fb {fill byte), fh (fill half), fuw {fill word),

db (dump byte), dh {dump half), dw (dump word},

eb (enter byte), eh (enter half), ew (enter word),

CHAPTER 16: DEBUGGER

my {move),

w {watch data)

Please type "? fb" to get usage of command "fb".
>

P

Contents displayed

The [Command] window displays command execution results such as a db33 message, break information,
map information, and trace search conditions. However, some command execution results are displayed in
the other window. The contents of these execution results are displayed when their corresponding windows
are open. If the corresponding window is closed, the execution result is displayed in the [Command] window.
Only the contents displayed in the [Command] window are output to a log file. (Refer to the explanation of
thelog command.)

For the displayed command execution results, refer to the explanation of each command.

Operation

Opening and closing the window
The [Command] window aways opens when the db33 starts up. It cannot be closed, but can be minimized.

Entering commands

Y ou can enter and execute al the debug commands in the [Command] window.

When the prompt ">" appears at the bottom line of the [Command] window, the system accepts a command
entered from the keyboard.

If some other window is selected, click on the [Command] window. A cursor will blink behind the prompt,
indicating that you are ready to input acommand.

Command history
The T and | keys can be used to display up to 20 of the latest executed commands and the displayed
command can be executed again by pressing [Enter].

See Section 16.7.1, "Entering Commands from Keyboard", for entering command.

Restrictions

e The maximum number of characters that can be displayed or input in one line of the [Command] window
is 255, including null characters.

o The maximum number of lines that can be scrolled is 256. The contents displayed or input preceding these
lines are deleted.

EOC33 FAMILY EPSON 239
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.4.3 [Source] Window

Contents displayed

Program code display
The [Source] window displays the contents of the program loaded.
Y ou can select one of the following three display modes:

1. Mixed display (selected by [Mix] button or m command)
| [Mix] button

In this mode, the window displays the addresses, codes, disassembled contents, and corresponding source
line numbers and source statements.

fldress Code Unassenble Line SourceCode -
00080014 0200 pushn Erd 00007 1
00008 int is
00003
00000016 6COB Id.w Hrl1,0x0 00010 =0
00090018 3C3B Id.w [¥rB], %10
! d, £l D) 00011 for (i=0 : 1 [+4)
00012 1
0008001C 2EOC Id.w $r12,3r0 00013 ET:14)H
000800 1E 1C05 call N
0008002016010 add £r0,0x1 o011 for (j=0 5 5 j+)
00080022 1EFD jp Oxfd
0014 H
00000024 0240 popn Erd oo0is 1
100080026 0840 ret
00018
00017 sublk)
00018 int k
00018 {
00080028 701C and $r12,0x1 00020 if (ke & 0x1)
00030024 1804 jreq 0x4
00021 i -
|l ol

2. Sour ce display (selected by [Source] button or sc command)

| [Source] button

In this mode, the window displays the addresses, corresponding source line numbers and source statements.
The displayed address is the address of the first instruction in the source. Only the source that includes the
current PC position is displayed.

Address Line SourceCode -
00080014 00007 {

nonog int j;

nonos
I[II]I]E[II]IE‘ nontin i=

IH
11 for (j=0 3 @ j++)

ooogooic oonis , sub(])z
1

tan0s0024 00015 }
1

[
00017 sub(k)
int k;

oo
anogonzg 00020 if (k& 0x1)
{
anogonzc 0002z i+

0onzs i
ooogonsz 00024 i

K|]

240 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

3. Disassemble display (selected by [Unassemble] button or u command)
El [Unassemble] button

In this mode, the window displays the addresses, codes, and disassembled contents. This format is selected
when the db33 starts up.

Address Code Unassenble .
00080014 0200 pushn &rl)

00030016 GCOB Idow Eri1,0x0

00080018 3CEE Id.w [%r8],8r11

100080014 GO0 Id ril,)

0008001C 2E0C Id.w Eri2, 30
0008001E 1C0B call (x5

00080020 6010 add £ 0x1

00080022 1EFD jp 0xfd

00080024 0240 popn £rn

100080026 0840 ret

00030028 701C and Eriz.ox

00080024 1804 jreq (x4

00080020 3084 Id.w &ri0, [#re]

0008002E BO1A add 2ri0,0x1

00080030 3084 Id.w [%r8]. 8r10

00080032 0640 ret

(0080034 FFFF otk

(N0BO03E FFFF ok

(0080038 FFFF ek

(N0BO03A FFFF ok

0003003C FFFF -

K| ol

Display of source line numbersand sour ce statements

The source line numbers and source statements can only be displayed when the srf33 object file including
debug information for source display is loaded. Furthermore, the source statements that are actually
displayed from this file are those which have had the -g option specified by the C compiler or preprocessor.
The db33 displays the source lines corresponding to the address of each code and the source statements
bearing information on the source lines up to the immediately preceding code. Therefore, uncoded source
statements written after the end of code are not displayed.

Underlined display (current PC)

The underlined line indicates the line to be executed next (the line of the current PC address). In the mixed
display and disassemble display modes, the entire line is underlined. In the source display mode, the entire
line is underlined only when the current PC falls upon the address of the first instruction in the source.
Otherwise, the address part is not underlined.

I'and ? (breakpoint)

The "!" displayed immediately before or after an address indicates that the address is a breakpoint. The "!"
displayed immediately before an address indicates a software break and the "!" displayed immediately after
an address indicates a hardware break.

If abreakpoint is set somewhere other than the first instruction address displayed in the source display mode,
it ismarked with "?" in place of "!".

Display of unused areas
The unmapped areas in the memory specified by a parameter file are marked with words "no map".

Others
I1f no source code corresponding to the address is loaded in the mixed display mode, "no source” is displayed
in the source part.

Operation

Opening and closing the window

The [Source] window opens simultaneously when you start up the db33. However, if the -w option is
specified, this window is not opened automaticaly.

The [Source] window can be opened by using the [Source] command on the [Window] menu or can be
closed by clicking on the close box.

EOC33 FAMILY EPSON 241
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Changing display format
Execute the m, sc or u command as explained above. (Contents will be displayed beginning with the current
PC address.) Or click on each button. (The display will be switched over from the currently displayed address
or line number to another.)

Updating display contents

The contents displayed in the [Source] window are updated automatically in the following cases:

o When aprogramisloaded (If, Ih or Ifl command)

e When aprogram is executed (g, Sor n command)

e When display format is changed (m, sc or u command)

o When the CPU isreset (rstc or rsth command)

When contents are redisplayed, the start position is the address indicated by the current PC. When the CPU is
reset, contents are displayed beginning with the boot address.

The contents displayed in the [Source] window are not updated for any other reason even when the contents
of program memory are modified by a command (e, f or mv). To bring up the last content on the screen,
perform one of the following operations:

1. Execute one of the m, sc or u commands.

2. Click on thevertical scroll bar.

Setting breakpoints

Software breakpoints, hardware breakpoints and a temporary breakpoint can be specified from the window.
Position the cursor at an address line where you want a breakpoint to be set (cannot be set at a source-only
line). Then...

e Click on the [Soft PC break] or [Hard PC break] button. A software or hardware breakpoint will be set at
that address. The breakpoint here can be cleared by performing the same operation at this address as you
did above.

;{!_[9 | [Soft PC break] button ml [Hard PC break] button

e When you click on the [Go to] button, the program starts running beginning with the current PC and
breaks before executing the line a which the cursor is placed.

->|| [Go to] button

Displaying and registering symbols

Symbols whose contents you want to be displayed and those registered in the [Symbol] window can be
selected from the [Source] window.

When in the mix display or source display mode, position the cursor in or immediately before or after a
symbol you want to choose. (The symbol name istaken including "*", ".", "->", "[", and "]".) Then...

e Click on the [Symbol watch] button. The content of the symbol will be displayed in the [Command]
window.
6’4:[“' [Symbol watch] button (The [Watch] command on the [Symbol] menu can also be used.)

o When you click on the [Symbol add] button, the symbol is registered in the [Symbol] window.
o] | [Symbol add] button (The[Add] command on the [Symbol] menu can also be used.)

Restrictions
e The maximum number of characters that can be displayed in one line of the [Source] window is 255
(including the first ! or ?).

e The[Source] window can be used for display only; it cannot be used to input anything from the keyboard
or edit the displayed contents.

242 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.4.4 [Memory] Window
Wivenoy mEE|

addr +@ +1 +2 +3 +4 +5 +6 +7 +8 +9 +Q +B +C +D +E +F
BoeoeooD GF 09 B8 B0 AA AA AA AA AR AA AA AA AA AR AA AR
0BBBee1e AA AR AA AA AA AA AA AA AR AA AA AA AA AR AA AR
0BBBAAZE AR AR AA AA AA AA AR AR AR AA AA AA AA AR AA AR
08800030 AA AR AA AA AA AA AA AA AR AA AA AA AA AR AA AR
BeeBeoLE AR AR AA AA AR AA AR AR AR AR AA AA AR AR AR AR
BBBBAASE AR AR AA AA AA AA AR AA AR AA AA AA AA AR AA AR
0eeBeBGe AA AR AA AA AA AA AA AA AR AA AA AA AA AR AA AR
BBBBeOYe AR AA AA AA AA AA AR AR AR AA AA AA AA AR AA AR
00000080 AA AR AR AA AA AA AA AA AR AA AA AA AA AR AR AR
08000090 AA AR AA AA AA AA AA AA AR AA AA AA AA AR AA AR
BBBBeOAB AR AR AA AA AA AA AR AR AR AA AA AA AA AR AA AR :J

Contents displayed
The [Memory] window displays a dumped result the entire memory areain hexadecimal. The content of any
desired memory location can be viewed by scrolling the display. The contents of unmapped memory
addresses in each model are marked with asterisks (*).

Display format
Data can be displayed in units of bytes, half words, or words as set by the db, dh, or dw commands.
Displaying in half word or word units are performed according to the endian format of the area set in the
parameter file.
Examples: Display in byte units (db command)
addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00000000 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

Display in half word units (dh command)
addr +0 +2 +4 +6 +8 +A +C +E
00000000 AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA

Display in word units (dw command)
addr +0 +4 +8 +C
00000000 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA

Operation

Opening and closing the window

The [Memory] window is not opened automatically when the debugger starts up. It can, however, be opened
by choosing the [Memory] command from the [Window] menu.

To close the window, click on the close box of the window.

Display format and changing display start address
Execute the db, dh or dw command as explained earlier. These commands can also be used to specify the
display start address.

Updating display contents

Even if the memory contents are modified by a command (e, f, or mv), the contents displayed in the
[Memory] window are not updated at that point in time. The contents displayed in the [Memory] window are
cleared when afileisloaded (If, Ih or Ifl command).

To bring up the latest content on the screen, perform one of the following operations:

1. Execute one of the db, dh or dw commands.

2. Click on the vertical scroll bar.

The [Memory] window while the program is being executed (g, s, or n) is updated when a break occurs or
every step. (default)

Restriction
The [Memory] window is used for display only, and cannot be used to input anything from the keyboard or
edit the displayed contents.

EOC33 FAMILY EPSON 243
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.4.5 [Register] Window

(L Lo Ccontents displayed

EE‘ :EEEZ’EEEE fa -pooaoaon The [Register] window displays the following contents:

R2 =AAAAAAAAR R10-060008865 .

R3 -AAAAAAAR R41-D0000ODD Register contents

o —hnnaaann 111-AAAAARAA The contents of general-purpose registers (RO to R15) and special registers (PC,
B aannann M1e_naneen SP, PSR, AHR, and ALR) are displayed. The contents of the PSR register are
o onaaan displayed individually for each flag.

R R Execution counter

0000002336 cycle/inst The total number of cycles executed and a total execution time since the
k oono000w] —ARRAAAAS execution counter is actuated after a reset are displayed by adding up the count
L o00nanne)-ARARAAAA values, For details about the execution counter, refer to Section 16.8.5,
, " "Executing Program™.

Watch memory data

The debugger allows you to specify four memory addresses and monitor the contents of those memory
locations. The contents of these four watch data addresses (4 bytes each from a specified address) are
displayed in the [Register] window. The default watch data addresses set at startup time are addresses 0, 4, 8,
and C. The datais displayed in the endian format specified by the parameter file. If watch data addresses are
specified using symbols (w command), symbol names also are displayed after data.

ICE CPU status (in | CE mode)
In the ICE mode, the CPU status in the ICE33 is displayed on the right side of the PC display data. The
display contents are listed below. The CPU statusis not displayed in other modes.

SLP Indicates that the CPU isin the SLEEP mode.
HLT Indicates that the CPU isin the HALT mode.
0OSC3 Indicates that the CPU is operating with the high-speed clock (OSC3).
0SC1 Indicates that the CPU is operating with the low-speed clock (OSC1).

RESET Indicates that the CPU isin areset state.
NO VCC Indicates that no supply voltageis fed to the CPU.
NO CLK Indicates that no operating clock is fed to the CPU.
WAIT Indicates that the CPU isin await state.

Updating display contents

The contents displayed in the [Register] window are updated automatically in the following cases:

o When register contents are dumped (rd command)

o When the CPU isreset (rstc or rsth command)

o When register values are changed (rs command)

o When watch data addresses are set (w command)

o When the execution counter display mode is changed (md command)

o When option data or flash memory contents are loaded (1o or Ifl command)

o After program execution is completed (g, sor n command)

The numeric value display part is left blank during continuous program execution (g command) in any mode
other than on-the-fly mode or when single-stepping the program (s or n command) in the fina step mode.

If the program is executed (g command) after turning the on-the-fly function on in the ICE mode, the display
contents of the PC, PSR flag, and watch data are updated in real time every one to 0.1 second. All other
contents are left blank until program execution breaks.

Operation

Opening and closing the window

The [Register] window opens automatically when you start up the db33. However, this window is not opened
automatically if you specify the -w option at startup.

The [Register] window can be opened by using the [Register] command on the [Window] menu, and can be
closed by clicking on the close box of the window.

Restriction

The [Register] window is used for display only, and cannot be used to input anything from the keyboard or
edit the displayed contents.

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.4.6 [Trace] Window

Contents displayed
The [Trace] window displays the trace data that indicates the execution result of each instruction.
Refer to Section 16.8.7, "Trace Functions", for details of the trace mode and trace information.
Note that the debug monitor mode does not support the trace function.

(1) ICE mode

Wl Trace [_[O]x]
Cycle Address Code Unassemble Address Data Clk Type TRC File Line SourceCode -
0o061 - 004812C 5900 2 DatW W 1/0

88868 - BB4812E 00888 2 DatW W 1/0

88059 0O88B8G4 CB24 ext 8x24 1 Inst H SRAW (area.s) 28868 x1d.h [TTBR],%r8
800538 0880866 C134 ext 8x134 1 Inst H SRAM

60057 DOB086E 3880 1d.h [%r8].%r8 1 Inst H SRAH

60056 0O8086A B486 int 0x0 - 1 Inst H SRAH (area.s) 00661 int @

BeES5 —-----= —--= —————————— 2 DatW H 1/0

88854 eese86Cc @#86B nOop 0000000000 = ———= 1 Inst H SRANM {area.s) 88862 nop

eee53 ———--—-- —-—— - acese3e 842A 7 VecR W SRAM

ape52 -——---- —-—— —————————— 8cepa32 8ace 3 VecR W SRAM

600851 BCA042A 0OBO nop - Inst H SRAH {areatC _s5) 00297 nop

60056 BCOO42C B4CH reti Inst H SRAH (areaC.s) 00298 reti J
00049 OCOO42E 0000 nop Inst H SRAN (areaC.s) 00300 nop

88848 BO8E86C B8BBA nop Inst H SRAH {area.s) 88862 nop

88047 BOBE8GE 6C8O 1d.w %r8,8x8 Inst H SRAH (area.s) 88863 x1d.w %8, (AREA_8&B:
80046 0B8BB70 CB24 ext 8x24 Inst H SRAH (area.s) 08864 x1d.b [TTBR+2],%r8
00045 0080872 C136 ext 82136 Inst H SRAH

6004y DOBOS7Y4 3480 1d.b [%r8],%r0 Inst H SRAH -
KIS A7

In ICE mode, the trace result can be displayed for up to 32,768 cycles by reading it from the ICE33 trace
memory. Two methods of trace are supported: normal and single delay.

The following lists the trace contents:

o Executed cycle number

o Executed address, code, disassembled content

o Memory access contents (address, R/W and data)

o [nput to TRCIN pin

* Bus operation type

® Source codes (tm command option)

(2) 1CD mode
W ICD Trace [_[O]>]
Cycle Address Code Unassemble Clk Hethod File Line SourceCode -
600617 8602038 DFF8 ext Bx1F+8 002842 DPC
600616 B602D3A DFF9 ext Bx1F+9 002858 DPC
600615 0602D3C 1C44 call Bxhh 002875 DPC
000614 8662014 6COC 1d.w %r12,0%0 862912 DPC (sys.c) 06081 iBytes a; /%= no read nouw */
600613 0662016 COOC ext XC 062928 DPC (sys.c) 00086 for (;3)
000612 8602018 C4B1 ext GxuLa1 062944 DPC
8806811 8662014 6CBF 1d.w %r15, 028 ap2968 DPC
880618 B66201C 6C14 1d.w Zrh, 8x1 ap2976 DPC
680809 B6B281E 68BE cmp %r14, 820 882992 DPC (sys.c) ape91 if (iReadBytes == @) /= if require
600088 0602028 1886 jreq axé ap3888 DPC
600007 8602022 C308 ext Bx308 083024 DPC (sys.c) 00096 if (READ_EOF == 1)
000006 8602024 COB9 ext Bx89 083048 DPC
600005 0602026 2485 1d.ub %r5,[%r8] 003088 DPC
600004 0662028 6815 cmp K5, 851 063089 DPC
600603 066262A 1A63 jrne Bx3 063116 DPC
000002 8602030 24FB 1d.ub %r11,[%r15] 863174 DPC (sys.c) 66161 iSize = READ_BUF[0];
8006801 8602032 6888 cmp %r11,0820 883175 DPC (sys.c) ag162 if (iSize > 8)
600000 8662834 BE14 jrle ax14 883196 DPC =
KIS iz

In ICD mode, the trace result can be displayed by reading it from the ICD33 trace memory. Two methods of
trace are supported: al trace mode and area trace mode.

The following lists the trace contents:

o Executed cycle number

o Executed address, code, disassembled content

o Number of clocks

o PC-analyze method

® Source line number and code

EOC33 FAMILY EPSON 245
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(3) Simulator mode

il Sim Tiace EEE|
Humber Address Code Unassemble File Line SourceCode -
00000059 00080026 6010 add %r0,0x1 (main.c) eoai1 fFor (j=8 ; ; j++)
00600060 00080028 1EFD jp Bxfd

80000061 DBABAA22 2EOC 1d.w %-12,%r8 (main.c) 08813 sub(j);
00000062 00080024 1CO5 call x5

00000063 BOOBOO2E 761C and %r12, 0x1 (main.c) eo620 if (k & 0x1) _I
08600864 BOA8AA3A 180A jreq Bza

00000065 BBOBABAY 864D ret (main.c) apezy H

00000066 DOOBOO26 6010 add %r0,0x1 (main.c) eoai1 fFor (j=8 ; ; j++)
666000067 00080028 1EFD jp Bxfd -

800A00GS PEABAA22 2EOC 1d.w %-12,%r8 - (main.c) 08813 sub(j);
6pAA0AGY ABOBAB24 1CA5 call 8x5]

00000070 BGOOBOO2E 761C and %r12, 0x1 - (main.c) eo620 if (k & 0x1)

00600071 00080030 180A jreq Bxa -

60A00872 BABOEAG32 COBA ext axa - (main.c) ape22 i+e;

6AA00073 AOO8AO34 COBD ext axa -

00000074 00080036 6COY 1d.w %r9,0x0 -

60000875 ABOEAG38 309A 1d.w 218, [%r9] ol

60B00B876 BBOEAA3A 681A add %18, 8x1 -

00000077 000BO03C COOO ext L= - ittt -
I A7

In simulator mode, when the trace function is turned on (tm command), all of the subsequent program
execution is displayed as traced by the debugger (except for file output).

The following lists the trace contents:

o Number of executed instructions

o Executed address, code, and disassembled content

o Data memory access contents (address, R/W, and data)

* Source codes (tm command option)

* Register contents (tm command option)

Operation

Opening and closing the window

The [Trace] window does not open automatically when the debugger starts up. The [Trace] window can be
opened by using the [Trace] command on the [Window] menu, and can be closed by clicking on the close
box of the window.

Updating display

ICE mode

The contents of the [Trace] window are cleared when you execute the target program.

To display the latest contents of this window, execute the td command or temporarily close the [Trace]
window and then reopen it.

1CD mode

The contents of the [Trace] window are cleared when you execute the target program.

To display the latest trace information after the execution has suspended, execute the td command or
temporarily close the [Trace] window and then reopen it.

Clicking the [Display trace] button while the program is being executed suspends tracing and displays the
trace data in the trace memory to the [Trace] window. After that, clicking the [Resume trace] button clears
the [Trace] window and resumes tracing.

El [Display trace] button 'Ctbl [Resume trace] button

Simulator mode

When the trace function is turned on (tm command), trace results are successively displayed as you execute
the program (g, s, or n command) and the display is halted simultaneously when program execution stops.

If the trace function is turned off (default), the display will not be updated even when you execute a program.

Restrictions

e The [Trace] window is used for display only, and cannot be used to input anything from the keyboard or
edit the displayed contents.

e In the simulator mode, the contents of this window can be scrolled for up to 255 lines. In the ICE/ICD
mode, all the contents of the ICE33/ICD33 trace memory can be displayed.

246

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.4.7 [Symbol] Window
i Symbol (O] x]

1:UDIVA(N0080014)= 0x2ECH2ED4, , extern, null

2:DI¥3(00080036)= 0x2ECH2EDd, , extern, null

3:UDIVIBCO008005C)= 0x2ECH2EDY, , extern, null

4:DI¥16(00080030)= 0x2ECH2EDY, . extern, null

G1SCAND_32(0008012C)= Dx121084CA, . extern, null
B:SCANI_32(00080150)= Dx12108ECA, . extern, null
Timirrord2(000B00CE)= 0x07403604, , extern, nul

9:bRema inder(000007FS)= * 7 0xFF -1, sample.c/main, aute, char
9:ubRemainder (D00007F4)= * 7 0x1 1, =sample.c/main, auto, unsigned char
10z uwRema inder (000007FE)= 00001 1, sample.c/main, auto, unsizned short
11:wRema inder(D00007FE)= 0x0001 1, sample.cd/main, auto, short

Contents displayed
This window displays the contents of the symbols registered in the watch table. Up to 99 symbols can be
registered. For the display format of symbals, refer to the explanation of the sa command.

Updating display
The contents displayed in the [Symbol] window are updated automatically in the following cases:
o After program execution (g, s, or n command) is completed
Contents are not updated during single-stepping (s or n command) in the final step display mode.
o When symbols are registered (sa command)
Contents are redisplayed when an aready registered symbol is specified by the sa command.
o When symbols are deleted (sd command)
The contents displayed in the [Symbol] window are not updated even when the contents of symbol addresses
are modified by acommand (e, f, or mv).

Operation

Opening and closing the window

The [Symbol] window does not open automatically when the debugger starts up. The [Symbol] window can
be opened by using the [Symbol] command on the [Window] menu, and can be closed by clicking on the
close box of the window.

Registering symbolsfor display

To display the content of a symbol in the [Symbol] window, you must first register the symbol. Follow one

of the two methods below to register asymbol:

1. Execute the sacommand.

2. Change the [Source] window's display mode to "Mix" or "Source" and position the cursor in or
immediately before or after a symbol name you want to be registered. Then click on the [Symbol add]
button.

o | [Symbol add] button (The [Add] command on the [Symbol] menu can also be used.)

Déleting registered symbols

When a symbol does not need to be watched, delete it from the window by following one of the two methods

described below:

1. Execute the sd command.

2. Place the cursor at the symbol line in the [Symbol] window that you want deleted. Then click on the
[Symbol delete] button.

;@l [Symbol delete] button (The [Delete] command on the [Symbol] menu can aso be used.)

Note
The debugger reads the contents of symbolsfrom the target in byte units and re-arranges the read data to byte,
half-word or word data according to the symbol size before displaying. Note that data cannot be displayed if
the big/little endian settings are different between the BCU on the target and the parameter file read in the
debugger.

EOC33 FAMILY EPSON 247
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.4.8

Simulate o]
ik Test db33 simulated I0 function s -
Flease enter any string and <CR>
Enter rabcdefz
Enter string iz : Enter rabodefz
[ttt END st
KN ol

[Simulated 1/0] Window

Contents displayed

Using the simulated 1/0 function, this window displays the contents that are input from stdin and those that
are output to stdout.

Operation

Opening and closing the window

The [Simulated 1/O] window is not opened when the debugger starts up. Choose the [StdlO] command from

the [Window] menu to open it.

This window opens automatically in the following cases:

e When the input source of the data is set in the window by the stdin command and a breakpoint specified
by the program is encountered

e When the output destination of data is set in the window by the stdout command and a breakpoint
specified by the program is encountered

To close the window, click on its close box.

Entering data
The data taken in from stdin can be input from this window. For details, refer to Section 16.8.8, "Simulated
110",

Restriction

The maximum number of lines that can be displayed in the [Simulated I/O] window is 256.

248

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.5 Tool Bar

This section outlines the tool bar available with the db33.

16.5.1 Tool Bar Structure

The db33 has 14 buttons and a combo box in its tool bar, each one assigned to a frequently used command.

=| BlE) ={=il»-elole] @le ads7] =[] oo o

16.5.2 [Key break] Button
This button forcibly breaks execution of the target program. This function can be used to cause
the program to break when the CPU is placed in standby (HALT or SLEEP) mode as you
execute the target program or when the program has fallen into an endless loop.
Note that the debug monitor mode does not support this function.

[Key break]

16.5.3 [Load file] Button
E"'l This button reads an object file in the sf33 format into the debugger. It performs the same
[Load file] function when the If command is executed. When you click [Load fil€e], a dialog box for opening
afile appears on the screen, allowing you to choose the file you want to be debugged.

16.5.4 [Source], [Mix] and [Unassemble] Buttons

| This button switches the display of the [Source] window to the source mode.
[Source]
| This button switches the display of the [Source] window to the mix mode (disassemble &
Mix] source).
El This button switches the display of the [Source] window to the disassemble mode.
[Unassemble]

The display is switched between these modes based on the source line number or address shown at the top of the
[Source] window. These buttons are valid only when the [Source] window is open.

16.5.5 [Go], [Go to], [Step], [Next], [Reset cold] and [Reset hot] Buttons

_.,l This button executes the target program beginning with the address indicated by the current PC.
It performs the same function when the g command is executed.

[Go]

..,|| This button executes the target program from the address indicated by the current PC to the
Got cursor position in the [Source] window (i.e. the address of that line). It performs the same
[Go to] function when the g <address> command is executed.

To select this button, the [Source] window must be open and you must have clicked on the
address line where you want the program to break. Selecting a break address by clicking on the
address line is valid for only the lines that have actual code, and is invalid for the source-only
lines.

+"| This button executes one instruction step of the target program beginning with the address
[step] indicated by the current PC. It performs the same function when the s command is executed.

+r¢| This button executes one instruction step of the target program beginning with the address
Next indicated by the current PC. Functions and subroutines are executed as one step. This button
(Next] performs the same function when the n command is executed.

EO0C33 FAMILY EPSON 249

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

o

[Reset cold]

=

[Reset hot]

This button cold-resets the CPU. It performs the same function when the rstc command is
executed.

This button hot-resets the CPU. It performs the same function when the rsth command is
executed.

16.5.6 [Soft PC break] and [Hard PC break] Buttons

kel

[Soft PC break]

[Hard PC break]

Use this button to set and reset a software breakpoint at the address where the cursor is located
in the [Source] window. (See Section 16.8.6, "Break Functions' for details.) This function is
valid only when the [Source] window is open. Note that selecting a break address by clicking
on the address line is valid for only the lines that have actual code and is invalid for the
source-only lines.

Use this button to set and reset a hardware breakpoint at the address where the cursor is located
in the [Source] window. (See Section 16.8.6, "Break Functions' for details.) This function is
vaid only when the [Source] window is open. Note that selecting a break address by clicking
on the address line is valid for only the lines that have actual code and is invalid for the
source-only lines.

16.5.7 [Symbol watch], [Symbol add] and [Symbol delete] Buttons

il
[Symbol watch]

2

[Symbol add]

%]

[Symbol delete]

The content of the symbol at the cursor position of the [Source] window is displayed in the
[Command] window. It performs the same function when the sw command is executed. This
function isvalid only when the [Source] window is open.

The symbol at the cursor position of the [Source] window is registered in the [Symbol]
window. It performs the same function when the ss command is executed. This function is
valid only when the [Source] window is open.

The symbol on the line where the cursor is positioned in the [Symbol] window is deleted from
the [Symbol] window. It performs the same function when the sd command is executed. This
function isvalid only when the [Symbol] window is open.

Obtaining symbol names
The [Symbol watch] and [Symbol add] buttons get the character string which is pointed with the cursor in the
[Source] window and use it as a symbol name. However, the cursor must be placed in or immediately before
or after the symbol name, and the character string must consist of the following characters only. Other
characters including blank characters (space, etc.) are regarded as adelimiter of the character string.
az A-Z 09 * . > []
Example: "\" indicates cursor position.

Obtained character string (symbol name)

al =b; a
a=b*cl; c
a=b+*cl; *c
strulctl->a=b; structl->a
strulctl->a=b; structl

250

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.5.8 [Display trace] and [Resume trace] Buttons
El Clicking this button while the program is being executed in ICD mode suspends tracing and
[Display trace] displaysthe trace datain the ICD33 trace memory to the [Trace] window.
Q..l Clicking this button while the program is being executed in ICD mode resumes tracing.

[Resume trace]

16.5.9 [Select source] Combo Box

| =] This box is used to select the source file name of the program to be displayed in the
i [Source] window. The source file names listed in this box are obtained from the
debugging information in the loaded object file. Therefore, this function can only be used
when an srf33 object file with source information is loaded, otherwise this box displays
"no source" and does not allow the selection. This box also deactivates when the [Source]
window is closed or while command parameters are input in the guidance mode.

Source files can be selected regardless of the display mode for the [Source] window.
When a source file name is selected in this box, the [Source] window displays the codes
from the top of thefile.

This operation is not regarded as a command execution, so it does not appear in the
command history or thelog file.

When the loaded object file contains two or more sources, the source file names are listed
in alphabetical order. If amultiple source file is included in some locations of the object,
the file name appears only once.

Thisbox isused only for selection and does not allow entering file names.

[Select source]

EOC33 FAMILY EPSON 251
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.6 Menu

This section outlines the menu bar available with the db33.

16.6.1 Menu Structure
The db33 menu bar has six menu items, each including frequently-used commands.
File Edt Bun Break Symbol “Window Help

Each menu command can be sdlected from the keyboard (by entering the menu and underlined command
characters after pressing the [Alt] key), as well as selected with the mouse.

16.6.2 [File] Menu
[Load File..]

Loadfile. Chl+0 This menu command performs the same function as the [Load file] button on the
= tool bar. The keyboard shortcut [Ctrl]+[O] is also allowed for the selection.
E xit)
[Exit]
v 1 Command Terminates the db33.
Z Register Window list
3 Source Lists the currently opened window names (including minimized windows). The

check mark indicates the active window. When a window name is selected in this
list, the selected window will become active.

16.6.3 [Edit] Menu

[Paste]
Paste LChl+y | This paste command is valid only for the [Command] window. The command

copied from log or other files can be executed after pasting it to the [Command]
window using this menu command. The keyboard shortcut [Ctrl]+HV] is dso
allowed.

16.6.4 [Run] Menu
[Go]
Go This menu command performs the same function as the [Go] button on the tool bar.
Goto [Goto]
This menu command performs the same function as the [Go to] button on the tool
bar.

[Step]
Fleset cold This menu command performs the same function as the [Step] button on the tool
Rezet hot bar.

Step
Hest

[Next]
This menu command performs the same function as the [Next] button on the tool
bar.

[Reset Cold]
This menu command performs the same function as the [Reset cold] button on the
tool bar.

[Reset Hot]
This menu command hot-resets the CPU. It performs the same function when the
rsth command is executed.

252 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.6.5 [Break] Menu

Saft PC.
Hard PLC...
Data..
Sequentil.
fuea break
Busz break

All clear

[Soft PC...]

This menu command sets and resets software PC break addresses. It performs the same
function as executing the bp command. When this command is selected, a dialog box
appears on the screen, alowing you to set break addresses in up to 16 locations.

[Hard PC..]]

This menu command sets and resets a hardware PC break address. It performs the same
function as executing the bh/bh2 command. When this command is selected, a dialog box
appears on the screen, dlowing you to set a hardware PC break address.

[Data..]]

This menu command sets data break conditions. It performs the same function as
executing the bd command. When this command is selected, a didog box appears on the
screen, allowing you to set break conditions.

[Sequential...]

This menu command sets sequential break conditions. It performs the same function as
executing the bsq command. When this command is selected, a dialog box appears on the
screen, allowing you to set break conditions. This menu command isvalid only in the ICE
mode.

[Area break]

This menu command sets area bresk conditions. It performs the same function as
executing the ba command. When this command is selected, a dialog box appears on the
screen, allowing you to set break conditions.

[Busbreak]

This menu command sets bus break conditions. It performs the same function as executing
the bb command. When this command is selected, a dialog box appears on the screen,
alowing you to set break conditions.

[All clear]
This menu command clears dl the break conditions. It performs the same function as
executing the bac command.

Refer to Section 16.8.6, "Break Functions', for details of each break function.

Add

Delata

[Symbol] Menu

[Watch]
This menu command performs the same function as the [Symbol watch] button on the tool
bar. Thisfunction isvalid only when the [Source] window is open.

[Add]
This menu command performs the same function as the [Symbol add] button on the tool
bar. Thisfunction isvalid only when the [Source] window is open.

[Delete]
This menu command performs the same function as the [Symbol delete] button on the tool
bar. Thisfunction isvalid only when the [Symbol] window is open.

EOC33 FAMILY

EPSON 253

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.6.7 [Window] Menu

[Command]
Command This menu command activates the [Command] window.
Source [Source]
ME""_'DW This menu command opens the [Source] window. This menu command is invalid when the
Begister [Source] window is already open.
Trace
Symbal [Memory]
StdIC) This menu command opens the [Memory] window. This menu command is invalid when

the [Memory] window is already open.

[Register]
This menu command opens the [Register] window. This menu command is invalid when
the [Register] window is aready open.

[Trace]

This menu command opens the [Trace] window. This menu command is invalid when the
[Trace] window is already open.

[Symbol]

This menu command opens the [Symbol] window. This menu command isinvalid when the
[Symbol] window is aready open.

[StdIO]
This menu command opens the [Simulated 1/0] window. This menu command is invalid
when the [Simulated |/O] window is already open.

16.6.8 [Help] Menu
[About db33...

About db33.. | This menu command displays the version of the db33. By clicking on the [OK] button, the
dialog box will close, returning to the debugger window.

db33 application YWersion x. xx

= copyright () 199x

254 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.7 Method for Executing Commands

All debug functions can be performed by executing debug commands. This section describes how to execute these
commands. Refer to the description of each command for command parameters and other details.

To execute a debug command, activate the [Command] window and input the command from the keyboard. You
can use the menu and tool bar to execute frequently-used commands.

16.7.1 Entering Commands from Keyboard

Select the [Command] window (by clicking somewhere on the [Command] window). When the prompt ">"
appears on the last line in this window and a cursor is blinking behind it, the system is ready to accept a command
from the keyboard. Input a debug command at the prompt position. The commands are not case-sensitive; they can
beinput in either uppercase or lowercase.

General command input format
>command [parameter [parameter ... parameter]]

® A spaceis required between acommand and parameter.
o A space, comma (,) or tab isrequired between parameters.

Usethearrow keys (<, —), [Back Space] key, or [Delete] key to correct erroneous input.

When you hit the [Enter] key after entering a command, the system executes that command. (If a command
you are entering is accompanied by guidance, the command is executed when you input the necessary data
according to the displayed guidance.)

Input example:
>gd (Only acommand isinput.)

>com test.cmd (A command and parameter are input.)

Command input accompanied by guidance
For commands that cannot be executed unless you specify a parameter or the commands that modify the
existing data, a guidance mode is entered when only a command is input. In this mode, the system brings up
aguidance field, so you input a parameter there.

Input example:

>com.

File name ? : test.cmd ..Input dataaccording to the guidance (underlined part).
>

Commands requiring parameter input as a precondition

The com command shown in the above example reads a command file into the debugger. Commands like this
that require an entered parameter as a precondition are not executed until you input the parameter and press
the [Enter] key. If acommand has multiple parameters to be input, the system brings up the next guidance, so
be sure to input al necessary parameters sequentidly. If you press the [Enter] key without entering a
parameter in some guidance session of a command, the system assumes the command is canceled and does
not executeit.

Commandsthat replace existing data after confirmation

The commands that rewrite memory or register contents one by one provide you with the option of skipping
guidance (do not modify the contents), returning to the immediately preceding guidance, or terminating
during the input session.

[Enter] key Skips input.

["] & [Enter] key Returns to the immediately preceding guidance.

[a] & [Enter] key Terminates the input session.

EOC33 FAMILY EPSON 255
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Input example:

>eb ...Command to modify data memory.

Enter address ? :0.4 ..Inputsthe start address.

00000000 02 :aa. ...Modifies address 0 to OXAA.

00000001 00 :Returns to theimmediately preceding address.
00000000 AA :10.J ...Inputs address 0 back again.

00000001 00 :J ...Skips address 1. (Contents not modified)

00000002 00 :ff.
00000003 00 :g. ...Terminates the input session.
>

Successive execution using the [Enter] key

The commands listed below can be executed successively by using only the [Enter] key after executing once.
Successive execution here means repeating the previous operation or continuous display of the previous
contents.

Execution commands. g, s, n

Display commands: sc, m, u, db, dh, dw, od, td, sy, sw, com, cmw, ss

The successive execution function is terminated when some other command is executed.

For the com and cmw commands that execute a command file, all the commands described in the command
file are executed. Thisfunction is useful to execute a series of commands successively. For example, after the

command file that contains the s and db commands is executed once, pressing [Enter] executes the step and
memory dump (byte) operations repeatedly.

Command history

The [Command] window supports a command history function. Up to 20 of the latest executed commands
can be redisplayed at the prompt position using the T or | key and the displayed command can be executed
by pressing [Enter].

Furthermore, the [F3] key can be used to redisplay the previously executed command.

16.7.2 Parameter Input Formats

Numeric value

The parameters to specify addresses or datain a command are set to be input in hexadecimal by default. The
0x normally added at the beginning of a hexadecimal number can be omitted for input here. The characters
that are recognized as hexadecimal are numbers 0 to 9 and alphabetsato f and A to F only.

Some parameters used to specify a number of execution steps or step No. in acommand are set to beinput in
decimal by default. The characters that can be used in these parameters are only numbers 0 to 9.
For details about these parameters, refer to the explanation of each command.

The numeric values in the following formats are always accepted regardless of the default settings:

Numeric valuesthat begin with Ox: These values are regarded as hexadecimal numbers. Only the
lower-case x is accepted, so a 0X is not recognized as a valid numeric
value. The characters that can be used after the Ox are numbers 0 to 9
and lettersato f and A to F only.

Numeric valuesthat begin with +: These vaues are regarded as decimal numbers. A negative number
will result in an error. Only numbers 0 to 9 can be used after the +.

Note: If an hexadecimal number is input by omitting the "0x" for an address specifying parameter

whose default input is in hexadecimal from, the db33 assumes that a symbol is specified, and
searches for the symbol information first. Therefore, when using the symbols represented by a
hexadecimal or decimal number, you want to specify an address by using a number, be sure to
add the "0x" when you input it.

256

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Address specification by line number
The line numbers in the source file can be used to specify an address. However, this is limited to cases in
which you are debugging a srf33 format object file that contains information on the source line numbers.
Use the following format to specify aline number:

Line number specification: [<file name>]#<line No.>

<filename>: Source file name
The <file name> can be omitted when specifying a symbol in the current file (one that contains
a code corresponding to the current PC). If a symbol that does not exist in the current file is
specified without entering a file name, an error results.

<lineNo.>: Line number
The <line No.> can only be specified in decimal form. Adding a"+" or "-" resultsin an error.

Examples. main.c#100
#100

Address specification by symbol
Symbols can be used to specify an address. However, this is limited to cases in which you are debugging a
srf33 format object file that contains symbol information.
Use one of the following two formats to specify a symbol:

Note: The term "current”, as used in the current source files and current functions in the explanation
below, means that the file or function contains a code corresponding to the current PC.

Format 1: <symbol>

<symbol>: Symbol name
e A pointer (*), structure member (->, .), or array ([,]) can aso be specified. Notation must
conform to the C language syntax. "*" can be specified up to three nest levelsand "[]" can
be specified up to the fourth dimension.
e The charactersthat can be used here are limited to numbers 0 to 9, lettersato z and A to Z,
and the symbols->, ., and *. Upper-case and lower-case letters are distinguished.

Examples: i
*messagel
struct1l->memberl
struct2[5]

When asymbol is specified in this format, the db33 searches for the symbol in the order shown below until it
finds the address of that symbol.

1. Current block

2. Current function

3. Static symbol in the current sourcefile

4. Externa symbol

If no corresponding symbol is found, it is assumed to be a hexadecima number. In this case, an error results
if any character other than 0t0 9, ato f or A to Fis used.

EOC33 FAMILY EPSON 257
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Format 2: [<file>]/[<function>]/<symbol>
The parametersin [] can be omitted. However, "/" cannot be omitted.

<file>: Source file name
o When specifying the current source file, input a period (.).
e See"Typesof specification” below for specification when it is omitted.
<function>: Function name
o When specifying the current function, input aperiod (.).
e See"Typesof specification” below for specification when it is omitted.
<symbol>: Symbol name
e Upto three asterisks (*) can be added at the beginning of a symbol name.
e Structure members (->, .) can be specified in up to 10 hierarchical levels.
e Arrays([,]) can be specified in up to the 4th dimension.
e The charactersthat can be used here are limited to numbers 0 to 9, lettersato z and A to Z,
and the symbols ->, ., and *. Upper-case and lower-case letters are distinguished.
Parentheses (') cannot be specified.

Types of specification:

/Isymbol Globa symbol

/.Isymbol Auto/static symbol in the current function
JIsymbol Static symbol in the current source file
file//symbol Static symbol in the specified source file

/function/symbol Auto/static symbol for the specified external function
Jfunction/symbol Auto/static symbol for the specified function in the current sourcefile
file/function/symbol Auto/static symbol for the specified function in the specified sourcefile

Precautions on specifying array

1) When type information is included
In a one-dimensiona array, offsets are calculated according to the size of the type even if the specified
element number is greater than the actual number of elements. This does not result in an error.
In two-dimensional or higher-order arrays, this relationship is checked, so that if a specified element
number is greater than the actual number of elements, an error is assumed.

2) When no type information is included
In aone-dimensional array, offsets are calculated in byte units. This does not result in an error.
Two-dimensional or higher-order arrays cannot be specified.

Other regtrictions

If one of the following cases applies when specifying an address, an error is assumed because no address can
be obtained:

1) When aregister variable is specified (because no addresses are assigned)

2) When the specified pointer variable indicates an unmapped area

Entering file name
A file name can be input using up to 127 characters, including a path. When specifying a file name that does
not exist in the current directory, be sure to add a path.
The characters that can be used here are limited to numbers 0 to 9, lettersato z and A to Z, and the symbols
_, . and /. Upper-case and lower-case | etters are distinguished.

258 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

16.7.3 Executing from Menu or Tool Bar
The menu and tool bar are assigned frequently-used commands as described in Sections 16.5 and 16.6. A
command can be executed ssmply by selecting your desired menu command or clicking on the tool bar button.
Table 16.7.3.1 lists the commands assigned to the menu and tool bar.

CHAPTER 16: DEBUGGER

Table 16.7.3.1 Commands that can be specified from menu or tool bar

Command Function Menu Button Window
If Loads a srf33 file. [File]-[Load File..] EI -
m Produces mixed display. - [Source]
sc Produces source display. - [Source]
u Produces disassemble display. - EI [Source]
g Executes the program. [Run]-[Go] :I -
g <address> Executes the program until <address>. |[Run]-[Go to] lll [Source]
S Instructs one step at a time. [Run]-[Step] il -
n Steps and skips. [Run]-[Next] +_f"| -
rstc Cold-resets the CPU. [Run]-[Reset cold] EI -
rsth Hot-resets the CPU. [Run]-[Reset hot] EI -
bp Sets software breakpoints. [Break]-[Soft PC...] ﬂl [Source]
bh, bh2 Sets hardware breakpoints. [Break]-[Hard PC...] ﬁ" [Source]
bd Sets data break conditions. [Break]-[Data...] - -
bsq Sets sequential break conditions. [Break]-[Sequential...] -
bac Clears all break conditions. [Break]-[All clear] - -
ba Sets area break conditions. [Break]-[Area break] -
bb Sets bus break conditions. [Break]-[bus break] -
sw Displays symbols. [Symbol]-[Watch] [Source]
sa Registers the symbols to be monitored. |[Symbol]-[Add] [Source]
sd Deletes the registered symbols. [Symbol]-[Delete] [Symbol]

Displays ICD on-chip trace data

Resumes ICD on-chip tracing

Activates the [Command] window.

[Window]-[Command]

REEEE

Opens the [Source] window.

[Window]-[Source]

Opens the [Memory] window.

[Window]-[Memory]

Opens the [Register] window.

[Window]-[Register]

Opens the [Trace] window.

[Window]-[Trace]

Opens the [Symbol] window.

[Window]-[Symbol]

Opens the [Simulated 1/0] window.

[Window]-[StdIO]

Forcibly breaks program execution.

The window column of the above table indicates the window that must be opened before selecting the tool bar
buttons or menu commands.
A command executed from the menu or tool bar is not displayed in the prompt section of the [Command] window.
The execution result is displayed in the corresponding window.

EOC33 FAMILY

EPSON

C COMPILER PACKAGE MANUAL (ver.3)

259

CHAPTER 16: DEBUGGER

16.7.4 Executing from Command File
Another method for executing commands is to use a command file that contains descriptions of a series of debug
commands. By reading acommand file into the debugger you can execute the commands written in it.

Creating a command file
Create acommand file as atext file using an editor.
Although there are no specific restrictions on the extension of a file name, Seiko Epson recommends using
".cmd".

Example of a command file
The example below shows a command file included in the simulated 1/O samplefiles.
Example: File name = simlO.cmd

If siml0. srf ...Loads thefile.

rstc ...Cold-resets the CPU.
stdout ...Sets stdout conditions.
1

WRITE_FLASH

WRITE_BUF

1

stdin ...Sets stdin conditions.

1

READ_FLASH

READ_BUF

1

bs _exit ...Sets a software break point.

Y ou can use a command file to write the commands that come with a guidance mode. In this case, be sure to
break the line for each guidance input item as you write a command. In the above example, the contents
following stdout and stdin are guidance items.

Reading in and executing a command file
There are two methods to read a command file into the debugger and to execute it, as described below.

(1) Execution by the startup option
By specifying the -c option in the db33 startup command, you can execute one command file when the
debugger starts up.
Example: Startup command of the db33
db33 -c startup.cmd -p 33104_1.par

(2) Execution by a command
The db33 has the com and cmw commands available that you can use to execute acommand file.
The com command reads in a specified file and executes the commands in that file sequentially in the order
they are written.
The cmw command performs the same function as the com command except that each command is executed
at intervals specified by the md command (1 to 256 seconds).
Examples: com startup.cmd
cmw test.cmd

The commands written in the command file are displayed in the [Command] window.

Successive execution using a command file
After acommand file is executed once, pressing [Enter] alone can execute all the commands described in the
command file repeatedly. The successive execution function is terminated when some other command is
executed.

Restriction
Y ou can read in another command file from within acommand file. However, nesting of these command files
islimited to a maximum of five levels. An error is assumed and the subsequent execution is halted when the
com or cmw command at the sixth level is encountered.

260 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.7.5 Log File

The executed commands and the execution results can be saved to afile in text format that is called a "log file".
Thisfile alowsyou to verify the debug procedures and contents.

Command example
>|og test.log

After being set to the log mode by the log command (after output starts), a log is saved until the log
command is executed next.

Contents saved to alog
The contents displayed in the [Command] window are saved to alog file. The results of commands executed
from tool bars or menus, the execution results shown elsewhere, and al other contents not displayed in the
[Command] window are not saved.
Therefore, if log management is desired, Seiko Epson recommends specifying the -w option before you start
up the Debugger db33, and recording alog of execution results only in the [Command] window.

EOC33 FAMILY EPSON 261
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8 Debug Functions

This section outlines the debug features of the db33, classified by function.
See Section 16.9, "Command Reference", for details about each debug command.

16.8.1 Debugger Mode
The db33 supports four debugger mode selectable with startup option.

Note: If the specified debugger mode option does not match with the connected debugging target
system, a dialog box appears to show a warning message. In this case, terminate the db33 and
then restart the db33 with the correct option specification.

ICE mode

Parallel cable

supplied with ICE33 package

(supp! j package) (cE33

LPTx

® b==] @\E/

2 comx fr f [0 D LawmE e

RS232C cable i

supplied with ICE33 package) PRC33xxx

User target board

Fig. 16.8.1.1 Debugging system using ICE33

Specification at startup
Startup option: Specify -ice (can be omitted)
Specification on wh33: Select [ICE]

When the debugger starts up in ICE mode, "ICE" is displayed on the tool bar.

The ICE mode is used to debug a program using the ICE33 in-circuit emulator. In this mode, therefore,
program execution and trace utilizes the internal memory of the ICE33. All functions available with the
ICE33 can be utilized. It is dso possible to debug hardware functions after connecting the target board to the
ICE33.

When invoking the debugger in ICE mode, make sure that the ICE33 is connected firmly and that its power
isturned on.

Each areain the ICE33 isinitialized as follows:

Internal ROM, ROM area assigned in the emulation memory (EROM): Oxff

RAM area assigned in the emulation memory (ERAM): Oxaa

Other 1O, RAM, ROM areas: Not initialized

Refer to the "EOC33 Family In-Circuit Emulator (ICE33) Manua" for operating the ICE33.

262 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

ICD mode

Parallel cable
(supplied with ICD33 package)

A I ICD33
¢$lekﬂhﬂ£ﬂ¢$’ P ‘

ERE Y1
COMXx i}:\u:ztﬁ

RS232C cable 10 pin-10 pin
(supplied with ICD33 package) target system
interface cable
(supplied with ICD33 package)

DMT33005

Fig. 16.8.1.2 Debugging system using ICD33 and DMT33005

Specification at startup
Startup option: Specify -icd
Specification on wh33: Select [ICD] (initial setting)

When the debugger starts up in ICD mode, "ICD" is displayed on the tool bar.

The ICD mode is used to debug a program using the ICD33 in-circuit debugger. In this mode, the program is
executed on the target board and trace information is sampled in the ICD33 memory.

Note that the following functions cannot be used in ICD mode:

* Loading/dumping option data

* Sequential break

* Map break

When invoking the debugger in ICD mode, make sure that the ICD33 and the target board are connected
firmly and they are turned on.

Furthermore, when using the trace function, the DIP switch SW4 must be set to OPEN.

Refer to the "EOC33 Family In-Circuit Debugger (ICD33) Manua" for operating the ICD33.

EOC33 FAMILY EPSON 263
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

ICD+MEM33 mode

Parallel cable EMU
(supplied with ICE33 package)

ICD33 BREAK IN connect clip
(attached with MEM33)

connect cable

RS232C cable 10pin—-10pin
(supplied with ICE33 package) Target system
(supplied with ICD33 package
MEM33201

)

EPOD33208

EPOD332XX MEM33201

Fig. 16.8.1.3 Debugging system using ICD33, EPOD33208, MEM33201

Specification for startup
Startup option: Specify -icd
Specification on wh33: Select [ICD]

Note: Specification for startup is the same as that of the ICD mode.
Specify the ICD mode or ICD+MEM33 mode in the parameter file.
Refer to "16.10" for more information on the parameter file.

When the debugger startsin the ICD+MEM33 mode, " ICD+MEM 33" appears on the tool bar.

The ICD+MEM33 mode is used to debug a program using the ICD33 in-circuit debugger. If you use
MEM 33201, the break function can be extended.

The following can be extended:

* Bus break

* Area break

* CE bresk

* Map break(per 32KB)

When invoking the debugger in the ICD+MEM33 mode, make sure that the ICD33,MEM 33201, and the
EPOD33208 are connected firmly and they are turned on.

Refer to " Software Development Procedures 3.3.4 " for details on turning them on.

Refer to "EOC33 Family In-Circuit Debugger(ICD33) Manual" for details on operating ICD33.

Refer to "EOC33 Family MEM 33201 Manuad" for details on operating MEM 33201.

Refer to "EOC33 Family EPOD33208 Manual" for details on operating EPOD33208.

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Debug monitor mode

DMT33MON DMT33004/DMT33005
COMx

~ RS232C cable
- (supplied with DMT33MON package)

Fig. 16.8.1.4 Debugging system using DMT33004/DMT33005 board

Specification at startup
Startup option: Specify -mon
Specification on wb33: Select [MON]

When the debugger starts up in debug monitor mode, "MON" is displayed on the tool bar.

The debug monitor mode is used to debug a program using the target board with the DMT33MON board.
The Debug Monitor (MON33) must be implemented to the target board.

Note that the following functions cannot be used in debug monitor mode:

* On-the-fly mode

« Loading/dumping option data

 Sequentia break

» Map break

* Tracing

 Execution time/cycle measurement

* Key break

When invoking the debugger in debug monitor mode, make sure that DMT33MON and the target board are
connected firmly and they are turned on.

Furthermore, the Debug Monitor on the target board must be activated.

Refer to the "EOC33 Family MON33 Debug Monitor Manual” for details of the Debug Monitor.

Simulator mode

Specification at startup
Startup option: Specify -sim
Specification on wb33: Select [SIM]

When the debugger starts up in simulator mode, "SIM" is displayed on the tool bar.

The simulator mode is used to simulate target program execution in the internal memory of a persona
computer; therefore, other debugging tools are not required. In this mode, however, you cannot evaluate the
ICE33 dependent functions and the I/O functions of the target system. What is possible in this mode is
simulation of the core CPU, memory model, and interrupt.

The sequential break and some other functions available in ICE mode are not supported in simulator mode.
The trace method in simulator mode differs from other modes. See the description of each command for
details.

Each areain simulator mode isinitialized as follows:

RAM: Oxaa

ROM: Oxff

1/0: 0x00

EOC33 FAMILY EPSON 265
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Precaution for ICE, ICD and debug monitor mode
When the program execution is suspended, the ICE33 and ICD33 switch the CPU operating clock to the
high-speed (OSC3) clock and halt al the peripheral functions except for the DRAM refresh operation. In the
Debug Monitor, the same status occurs instantaneously when a break occurs or program execution starts,
however it returns to the previous status immediately.
Therefore, the system that does not use an OSC3 clock cannot be debugged.
When the OSC3 oscillation circuit is stopped and the system is operating with the low-speed clock (OSC1,
32 kHz), the OSC3 oscillation circuit will start oscillating immediately after a break occurs. However, an
erroneous operation may result since the oscillation is unstable. Do not suspend the program execution while
the OSC3 oscillation is stopped, even in SLEEP status.

266 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8.2 Loading Files

File types
The db33 can read afilein srf33 format or Motorola S3 format in the debugging process.
Table 16.8.2.1 lists the files that can be read in by the debugger and the load commands.

Table 16.8.2.1 Files and load commands

File type Extension Generation tool Command Menu Button
srf33 .srf Linker If [File]-[Load File..] ﬁ ||
Motorola S3 .sa Binary/HEX converter Ih - -

Debugging a program at the source level
To debug a program using the source display and symbols, you must have the object file in srf33 format read
into the debugger. If any other program fileis read, only the disassemble display is produced.
For the source level debugging of the program written in the target ROM, the Id command is provided. This
command reads only the debugging information from the object file in srf33 format.

Precautions
The If and Ih commands loads only the portions that contain code and data. The previous data remains
unaffected in all other portions.
If the source display is required, the source files are read into the debugger in addition to the above files
according to debugging information in the srf33 object file. For this reason, the source file must be
maintained under the same conditions in both content and place of storage (directory) as when the srf33
object file was generated. Up to 32,767 lines one source file can beread in.

EOC33 FAMILY EPSON 267
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8.3 Source Display and Symbolic Debugging Function
The db33 alows you to debug a program while displaying the C and assembly source statements. Address
specification using a symbol and displaying the contents of symbols are also possible.

Displaying program code
When the [Source] window is left open, you can display the program to be debugged in that window. The
display mode can be changed between the three modes available.

(1) Disassembledisplay

Address Code Unassenble -
00020014 0200 pushn ~ £r0

00080016 BCOB Idow Er11,0x0

‘IJEI[IB[IEHS 3C8E Id.w [Ere]. Ern1

Ld rll 00
0008001C 2E0C Id.w £r12,Er0
0008001E 1C05 call I

0008002016010 add B, 0x1
00080022 1EFD jp Oxfd
00080024 0240 popn 8¢l
100080026 0640 ret

00080028 F0IC and Bri2,0x1
00080024 1804 jreq Oxd
0008002C 3084 Id.w 10, [2r8]
0002002E BOTA add £r10,0x1
00020020 3C24 Id.w [¥re]. ¥r10
00080032 0640 ret

00080034 FFFF s

N008003E FFFF seh

00080038 FFFF s

0008003A FFFF ke

00080030 FFFF ke -

KV 3]

(2) Mixed display

Address Code Unassenble Line SourceCode -
00020014 0200 pushn ¥r0 aooo? {
onoog int i
onooa
00020016 BCOB Id.w 8r11,0:0 onotn i=0;
00020018 3CEE Id.w [fra]. Ern1
l000&0014A BCO0 |d . 0x0 oot for (i=0 3 : j++)
ngiz
[ITE] sublj)

00080015 2E0C Idow $r12,8r0
0002001E 1C05 call x5
0008002016010 add 50, 0x1 ooott for (J=0 ; ; j+)
noog00zz 1EFD jp Oxfd

00014 i
00080024 0240 popn Er0 00015 }
100080026 040 ret
00018
00017 sub(k)
00018 int k
00019 {
00080028 701C and 3r12,0x1 00020 i (k& 0x1)
00080024 1804 jres Ox4
00021 [=
i ¥

(3) Sourcedisplay

dddress Line SourceCode N

ooogont4 oono7

int j;

oonog
oongonie oonio i=0
[L00080014! 00011

00012
0008001C 00013 sub{j);
014 i
200080024 00015 i
00018
00017 sub(k)
00018 int ks
00013
00080028 00020 if (k& 0xl)
oozl {
0008002C 00022 [+
00023 }
00080032 00024 i

K| ol

In the source display mode, only the current source (the one that contains a code corresponding to the current
PC) or the source selected in the [Select source] box is displayed.

268 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Table 16.8.3.1 Commands/tool bar buttons to switch display mode
Display mode | Command | Button

Disassemble u E] |

Mixed m I

Source sc I

When these commands are executed, the [Source] window hasiits display contents updated so that the current
PC addressis aways displayed in the window. Furthermore, these commands can also be used to specify the
display start address.

If the [Source] window is not open, each command displays the above contents in the [Command] window.
Each button can only be used when the [Source] window is open. When the display mode is switched using
the toolbar button, the [Source] window displays the same part of the currently displayed codes and does not
change it to the current PC address.

In the source display mode, you can specify a search character string so that the contents will be displayed
beginning with the searched position.

Table 16.8.3.2 Source character string search command
Function [Command |
[Character string search | ss \

Operating symbols
When debugging a srf33 format object file after reading it into the db33, you can use the symbols defined in
the source file to debug the program.

(1) Address specification by symbol
When entering a command that has <address> in its parameter from the [Command] window or entering an
address in the dialog box, you can specify the address by using a symbol. For details on how to specify, refer
to Section 16.7.2, "Parameter Input Formats'.

@

-

Displaying symbol information
The symbol information (e.g., address, content, scope, class, and type) that is used in the program under
debug can be displayed in the [Command] window. Commands are available that allow you to display a
condition-specified list or verify variables after program execution. For details about display contents, refer
to the explanation of the sy command.
Display examples: BOOT, 00080004, boot.s/, static, null

i, 00000000, , extern, int

j, RO, main.c/main, register, int

k, R12, main.c/sub, reg parameter, int

main, 00080014, , extern, int 0

sub, 00080028, , extern, int 0

Note: The debugger reads the contents of symbols from the target in byte units and re-arranges the read
data to byte, half-word or word data according to the symbol size before displaying. Note that data
cannot be displayed if the big/little endian settings are different between the BCU on the target and
the parameter file read in the debugger.

EOC33 FAMILY EPSON 269
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(3) Monitoring symbolsin [Symbol] window

SUDIVAL000800143= Dx2ECHZEDS,
2:DIVECO0080036)= 0x2EC52ED4,
3:UDIVIG(0008005C)= 0x2ECH2EDS,
4:DIYIG(00080090)= 0x2EC52ED4,
tSCAND_32 (0008012C)= 0x12108ACA,
tSCAMI_32 (00080150)= 0x12108ECA,
tmirror32 (000800C8)= 0x074096C4,
bRemainder(000007FE)= * 7 0xFF
tubRema inder(D00007F4)= 7 7 0x1
tuwRema inder(000007F6)= 00001 1
twRema inder(000007F8)= 0x0001 1,

extern, null
extern, null
., extern, null

. extern, null

nul |
nul |
nul |

, extern,
, extern,
, extern,
-1, s=zample.
1, sanple.c/mai

. sample.c/main, auto, unsizned short

sanple.c/main,

c/main, auto, char

n, auto, unsizgned char

auto, short

The [Symbol] window can have up to 99 symbols registered (in watch symbol table). This facility allows you
to monitor, for example, the contents of variables that are modified by program execution.

Table16.8.3.3 Commands/menu commands/tool bar buttons to display symbol list

Function Command Menu Button
Displaying symbols sw [Symbol]-[Watch] ﬂl
Displaying symbol list sy - -
Registering monitor symbols sa [Symbol]-[Add] Iﬁl
Deleting monitor symbols sd [Symbol]-[Delete] Iﬁl
270 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8.4 Displaying and Modifying Memory Data and Register

The db33 has functions to operate on the memory and registers. Each memory area is set to the debugger
according to the map information that is given in a parameter file. Memory access and data display in half word or
word units are performed in little-endian format by default. It can be changed so that the specified area will be
accessed in big-endian format using the parameter file.

Operating on memory area

Following operations can be performed on the memory area:

(1) Dumping data memory

B Memory M= E3 I

addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F «
@paoaees 6F 69 B8 B8 AR AA AR AA AA AA AA AA AA AA AA AA
00008818 AR AR
00000028 AR AR
000880838 AR AR
008080840 AR AR
a0a0ae58 AR AR
00008068 AR AR
000880878 AR AR
00000088 AR AR
80880898 AA AA
IBBBBBBRB AR AR

AR AA AR AA AA AR AA AA AR AR AA AR AR AR
AR AA AR AA AA AR AA AA AR AR AA AR AR AR
AR AA AR AA AA AR AA AA AR AR AA AR AR AR
AA AA AR AA AR AA AA AA AA AA AR AA AA AA
AR AA AR AA AA AR AA AA AR AR AA AR AR AR
AR AA AR AA AA AR AA AA AR AR AA AR AR AR
AR AA AR AA AA AR AA AA AR AR AA AR AR AR
AR AA AR AA AA AR AA AA AR AR AA AR AR AR
AA AA AR AA AA AA AA AA AA AA AR AA AA AA
AR AA AR AA AA AA AA AA AR AA AA AR AR RH‘:J

The contents of the memory are displayed in hexadecimal dump format. If the [Memory] window is open, the
contents of the [Memory] window are updated; if not open, the contents of data memory are displayed in the
[Command] window. (db, dh and dw commands)

(2) Entering/modifying data

The data at a specified addressis rewritten by entering hexadecimal data. (eb, eh and ew commands)

(3) Rewriting a specified area

An entire specified areaiis rewritten with specified data. (fb, fh and fw commands)

(4) Copying a specified area

The content of a specified areais copied to another area. (mv, mvh and mvw commands)

(5) Monitoring memory

Wi Register [_ o] <]
PC =000808026
RO = 9 RE

R4 =AAAAAAAA R12-00000001

R6 R1

R7 R15:

SP =000087F8 PSR=-00000000
AHR: AL

= s

00080882336 cyclefinst
[6060000A]=00000865
[B068B008%]=ANARAANAA
[Bb06B0B08 J=ANAAAANA
[BBBABBAC]=AAAAAANAA

N — H

Four memory locations, each with area to store a word (4 bytes), can be
registered as watch data addresses. The registered watch data can be
verified in the [Register] window. When operating in ICE mode, the
content of this window is updated in rea time at 1 to 0.1-second intervas
by the on-the-fly function. Addresses 0, 4, 8, and C are made the watch
data addresses by default.

Note that data of the internal RAM area is not updated in real time since
accesses to the internal RAM area cannot be detected from outside the
chip. It will be updated after the target program breaks.

<« Monitor data

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON 271

CHAPTER 16: DEBUGGER

Table 16.8.4.1 Commands to operate on data memory

Function Command
Dumping memory db (byte units), dh (half word units), dw (word units)
Entering/modifying data eb (byte units), eh (half word units), ew (word units)
Rewriting specified area fb (byte units), fh (half word units), fw (word units)
Copying specified area myv (byte units), mvh (half word units), mvw (word units)
Setting watch data address | w (word units)

* Updating of the[Memory] window

When you open the [Memory] window using the [Memory] command on the [Window] menu, the contents
of the memory are displayed in the window. The data at all addresses can be checked by scrolling the
window, or you can use the d* (db, dh, dw) command to specify an address so the window starts displaying
the memory contents beginning with the specified address.

When the [Memory] window is open you may modify the address displayed in the window, but the display
contents of the [Memory] window will not be updated by that modification. To update the display contents,
you need to execute the d* command or scroll the [Memory] window in the vertical direction.

The [Memory] window is cleared by reading afile. In such a case, redisplay the window using the method
described above.

When the program is executed successively, the [Memory] window will be updated immediately after a break
occurs. During step execution, the [Memory] window is updated every step. This automatic update function
can be disabled using the md command.

Updating the [Source] window

When the [Source] window is open you may modify the content of an address displayed in the window, but
the display contents of the [Source] window is not updated by that modification. To update the display
contents, you need to temporarily switch the display mode of the [Source] window using a command or
scroll the [Source] window in the vertical direction. Note that when code is modified, the disassemble result
changes, but the display contents of source do not change.

Notes: » When an address in which no registers have been allocated in the internal I/O area is read,

CPU-last-read data is displayed.

» The ICD33 reads memory data 8 bytes at a time. Therefore, data may be read exceeding the
range specified using a command (to maximum 7 bytes ahead). Pay attention when reading
the 1/0O memory since some registers change their status by reading.

* When writing data to the internal ROM emulation memory on the EPOD33XXX through the
ICD33 or MON33, byte-access commands (eb, fb, mv) cannot be used. Be sure to use a
half-word- or word-access command (eh, ew, th, fw, mvh, mvw). The file load commands (If, Ih)
always write data in half-word units.

Operating registers

Following operations can be performed on registers:

(1) Displayingregisters

Register contents can be displayed in the [Register] or [Command] window.
Genera-purposeregisters: RO to R15
Specia registers: PC, SP, PSR, AHR, ALR

When operating in ICE mode, the contents of the PC and PSR register are updated in real time every 0.2
seconds (default) by the on-the-fly function. (See Section 16.8.5, "Executing Program".)

(2) Modifying register values

The contents of the above registers can be set to any desired value.

Table 16.8.4.2 Commands/menu commands to operate registers

Function Command Menu
Displaying registers rd [Window]-[Register]
Modifying register values rs -
272 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8.5 Executing Program
The debugger can execute the target program successively or execute source lines/instructions one step at atime
(single-stepping).

Successive execution

(1) Successive execution commands
The successive execution command execute the loaded program successively from the current PC address.

Table 16.8.5.1 Commands/menu commands/tool bar buttons for successive execution
Function Command Menu Button

Successive execution g [Run]-[Go] —PI

Successive execution to the
specified address g <address> | [Run]-[Go to] "II

@

~

Stopping successive execution

Using the successive execution command, you can specify a temporary break addresses that are only
effective during program execution.

The temporary break address also can be specified from the [Source] window.

If you click on the address line 0x8001A
shown in the [Source] window (after
moving the cursor to that line) and click

UILIE 100 cell 0S N on the [Go to] button, for example, the
;g;g;g;éggg (- w0 program starts executing from the
B s current PC and breaks before executing

00013 {

1200 it it 08) the instruction at 0x8001A.

00021 { B

KIS} A

ode Unassenble
200 pustn #r0
00080016 BCOB Idw 3r11,0x0
00080018 3CSE Id.w [3rs],ir11
(101080014 £c00 Id .03

0008001C 2E0C Id.w 3r12,¥r0
OU0B001E 1C08 cail 06

00080028 701G and
00090024 1804 jreq D

Except being stopped by this temporary break, the program continues execution until it is stopped by one of
the following causes:

* Break conditions set by a break setup command are met.

* You click on the [Key break] button. (not available in debug monitor mode)

* Some other bresk factor occurs.

| [Key break] button

* \When the program does not stop, use this button to forcibly stop it.

3

<

On-the-fly function

When operating in |CE mode, you can use the on-the-fly function to display the PC, PSR register, and watch
data values every 0.2 seconds (default) during successive execution. These contents are displayed in the
relevant positions of the [Register] window. If the [Register] window is closed, they are displayed in the
[Command] window. In theinitia debugger settings, the display update interval of the on-the-fly function is
set to 5 times per second. It can be modified to O (OFF)—10 (times) per second using the md command. This
function provides a complete real-time display that isimplemented using the ICE33 hardware.

The on-the-fly function in ICD mode displays a message that indicates trace-memory-full in the [Register]
window (or the [Command] window) and real-time trace data. The md command is used to set the update
interval similar to ICE mode.

The on-the-fly function is available only in ICE and ICD modes. In other modes, the display of all windows
except the [Register] window remains unchanged; changes are cleared during successive execution.

EOC33 FAMILY EPSON 273
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Single-stepping

(1) Typesof single-stepping
There are two types of single-stepping available:

o Stepping through all codes (STEP)
In this single-stepping, the program is executed in units of addresses or source codes — i.e., one address
or source code at atime — depending on the [Source] window's display mode as shown below:
Disassemble display mode: Address units
Mixed display mode: Address units
Source display mode: Source code units

o Stepping through codes except functions and subroutines (NEXT)
When a C source function call, assembly source subroutine call, or software interrupt is encountered,
each called function, subroutine, or interrupt routine is executed as one step. All codes in the current
function or subroutine except calls are executed in the same way asin STEP.

In either case, the program starts executing from the current PC.

Table 16.8.5.2 Commands/menu commands/tool bar buttons for single-stepping

Function Command Menu Button
Stepping through all codes s [Run]-[Step] *, I

Stepplng through all godes except n [Run]-[Next] "F‘I
functions and subroutines

When executing single-stepping by command input, you can specify the number of steps to be executed, up
to 65,535 steps. When using menu commands or tool bar buttons, the program is executed one step at atime.

In the following cases, single-stepping is terminated before a specified number of stepsis executed:
* When you click on the [Key break] button (not available in debug monitor mode)
o When abreak factor except for user set break occurs

Single-stepping is not halted by breaks set by the user such as a PC breakpoint or data break.

| [Key break] button

* When the program does not stop, use this button to forcibly stop it.

(2) Display during single-stepping
Intheinitial debugger settings, the display is updated every step as follows:
When the [Source] window is open, the underline designating the next address to be executed moves every
step as the program is stepped through.
The display contents of the [Register] and [Memory] windows are also updated every step.
The display mode can be switched over by the md command so that the display contents of the [Register]
window are updated at only the last step in a specified number of steps and the [Memory] window is not
updated automatically.

(3) HALT and SLEEP statesand interrupts
In the ICES3, interrupts are disabled during single-stepping.
The halt and dp instructions are executed even during single-stepping, in which case the CPU is placed in a
standby mode. The CPU can be released from the standby mode by generating an external interrupt or by
pressing the [Key break] button.

274 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Measuring execution cycles/execution time

@

Execution counter and measurement mode

The ICE33 contains three 31-bit execution counters alowing you to measure the program execution time (2
systems) and the number of bus cycles executed (1 system).

The ICD33 contains a 29-hit execution counter that can be set for measuring execution time (sec or psec) or
number of cycles using the md command.

The execution counter for simulator mode counts only the number of instructions executed.

Note that the execution counter is not available in debug monitor mode.

Table 16.8.5.3 Measurement units and accuracy of the execution counter

Execution counter ICE mode ICD mode Simulator mode
Execution time 1 1 +1 usec 1 +1 usec -
Execution time 2 50 £50 nsec 50 +50 nsec -

Bus cycle 1 +1 cycle 1 +16 cycle -
Instruction - - 1 0 instruction

The following lists the maximum values that can be measured by the execution counter:

ICE mode ICD mode

Executiontime 1: 2147483647 usec = approx. 36 min. 536870911 psec = approx. 9 min.
Execution time 2: 2147483647 x 50 nsec = gpprox. 107 sec. 536870911 x 50 nsec = approx. 27 sec.
Buscycle: 2147483647 cycles 536870911 x 4 = 2147483644 cycles

(2) Displaying measurement results
The measurement result is displayed in the [Register] window. This display is cleared during program
execution and is updated after completion of execution. If the [Register] window is closed, the measurement
result can be displayed in the [Command] window using the rd command. The execution results of
single-stepping are also displayed here.
If the count exceeds the counter size, the system indicates "over flow".

(3) Integrating mode and reset mode
In the initial debugger settings, the execution counter is set to an integrating mode. In this mode, the
measured values are combined until the counter is reset.
The reset mode can be set by the md command. In this mode, the counter is reset each time the program is
executed. In successive execution, the counter is reset when the program is made to start executing by
entering the g command and measurement is taken until the execution is terminated (break occurs).
In single-stepping, the counter is reset when the program is made to start executing by entering the s or n
command and measurement is taken until execution of a specified number of steps is completed. The counter
is reset every step if execution of only one step is specified or execution is initiated by a tool bar button or
menu command.

(4) Resetting execution counter
The execution counter isreset in the following cases:
o When the execution counter mode is switched over by the md command (from integrating mode to reset

mode)
o \When program execution is started in reset mode
EO0C33 FAMILY EPSON 275

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Resetting the CPU
The CPU is cold-reset when the rstc command ([Reset Cold] command on the [Run] menu, or the [Reset
cold] button) is executed, or is hot-reset when the rsth command (or [Reset Hot] command on the [Run]
menu, or the [Reset hot] button) is executed.
When the CPU isreset, theinternal circuits areinitialized as follows:

(2) Internal registersof the CPU
RO-R15: Oxaaaaaaa8.
PC: Boot address (*)
SP: 0xOasaaaa3
PSR: 0x00000000

AHR, ALR: Oxasasaasa

* The boot address is the 4-byte value stored from the beginning of the vector table that is specified by the
TTBR register. At cold-reset, the TTBR register is initialized to 0x80000 or 0xc00000. At hot-reset, the
TTBR register retains the set value.

(2) Theexecution counter isreset to 0.

(3) The[Source] and [Register] windows areredisplayed.
Because the PC is set to the boot address, the [Source] window is redisplayed beginning with that address.
The [Register] window is redisplayed with the internal registersinitialized as described above.

The memory contents are not modified.

Note: The function of the rstc command changes according to the debugger mode.

ICE mode
The process above is executed and the EOC33 chip is also reset. The target board is not reset.

ICD mode

The process above is executed and the EOC33 chip is also reset. The target board is not reset.
Furthermore, when the target system is in a free-run state, the rstc command suspends the
program execution forcibly before resetting. The target system connected to the ICD33 enters a
free-run state when the target board is reset. The rstc command can be used to suspend the
program execution in this case.

Debug monitor mode
The rstc command functions the same as the rsth command. It does not reset the EOC33 chip
and does not initialize the TTBR register.

Simulator mode
The boot address is determined by the MCU/MPU specification in the parameter file.

276 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8.6 Break Functions

The target program is made to stop executing by one of the following causes:
¢ Break command conditions are satisfied.

e The[Key break] button is activated. (not available in debug monitor mode)
e The ICE33/ICD33 BRKIN pinis pulled low.

o A map break or similar break occurs.

Break by command
The db33 has four types of break functions that allow the break conditionsto be set by acommand. When the
set conditionsin one of these break functions are met, the program under execution is made to break.

(1) Software PC break
This function causes the program to break when the PC matches the address set by a command. The program
is made to break before executing the instruction at that address. Up to 16 addresses can be set as the
breakpoints.
When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.
Break by software PC break.

>
Table 16.8.6.1 Command/menu command/tool bar button to set software PC breakpoint
Function Command Menu Button
Setting/canceling breakpoints bp [Break]-[Soft PC...] {!E'J |
This dialog box appears on the screen when you select the
[Soft PC...] command from the [Break] menu.
IB'eak a Up to 16 addresses can be registered in the breakpoint list.
80028
Registering break addresses
Bzt il Enter an address in the [Break at] text box, then press [Enter]
WHIEE , Elear or click the [Set] button. Addresses can be entered using the

Enable

Disable

EE
T
IEEE
ez |

Cloze

symbols.

Clearing the break point
Select the address to be cleared from the [Break list] box, then
click the [clear] button.

Enabling/disabling the break point

When a break address is registered, it is configured as an
enabled break point. The enabled break point is indicated with
"/E" in the list. It can be disabled without clearing the
registered address. To disable a break point, select the address
from thelist, then click the [Disable] button. The"/E" symbol
changes to "/D" indicating that the break point is disabled.
The [Enable] button switches the disabled break point (/D) to
be enabled. (/E).

When using the bp command, follow the guidance displayed in the [Command] window as you enter
addresses. The addresses which have a vaid (enabled) breakpoint set are marked with a prefix "I" or "?" as

they are displayed in the [Source] window.

"I": When a breakpoint is set at the displayed address
"?": When a breakpoint is set somewhere other than the beginning address of the source code in the source

display mode

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON 277

CHAPTER 16: DEBUGGER

Using the [Soft PC Break] button allows you to set and cancel breakpoints easily.

Address Code Unassemble Line SourceCode -
0000014 0200 pushn K0 00007 {
00008 int i

00080016 6CAB Id.w Br11, 00 00010 [ENH
00050018 3CEB Id.w [3r8].2r11
100020014 BC00 1d S NIE] 00011 for {i=0 13 j++)

0008001C 2E0C Id.w Sriz,&rn 00013 sub(i)s
0008001E 1606 cal | 0x6
0008002018010 add £r0.0x1 00011 for (i=0 5 5 i+4)
000$0022 1EFD jp 0xfd

00050024 0240 popn 8o 00015 }
100080026 0R40 ret

016
00017 sublk)
00018 int k;

i
00080028 701C snd £r12,0x1 00020 if Gk B 0xl)
00050024 1804 jreq 0x4
o002t { -

I il

Click on the address line in the [Source] window at which you want the program to break (after moving the
cursor to that position) and then click on the [Soft PC Break] button. A "!" symbol will be placed at the
beginning of the line indicating that a breakpoint has been set there, and the address is registered in the
breakpoint list. Clicking on the line that begins with a "!" and then the [Soft PC Break] button cancels the
breakpoint you have set, in which case the address is deleted from the breakpoint list.

= Software PC breaks are implemented by embedding the BRK instruction. Therefore, software PC bresks
cannot be used for the ROM on the target board where instructions cannot be embedded. In this case, use a
hardware PC break.

Note: When setting a software PC break point or hardware PC break point to extended instructions
with ext or delayed branch instructions, only the first address can be specified.
ext Xxxx ... Can be set. jred xxxx ... Can be set.
ext Xxxx ... Cannot be set. Delayed instruction ... Cannot be set.
Extended instruction ... Cannot be set.

(2) Hardware PC break
Hardware PC break is implemented by using the debug mode of the EOC33000 core CPU. This break
operation can be simulated even in the simulator mode. This function causes the program to break when the
PC matches the address set by a command. The program is made to break before executing the instruction at
that address. Up to two addresses can be set as hardware breakpoints.
When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.
Break by hardware PC break. or Break by hardware PC break?2.

>
Table 16.8.6.2 Commands to set hardware PC breakpoint
Function Command Menu Button
Setting breakpoint bh, bh2 Breakl-[Hard PC
Canceling breakpoint bhc, bhc2 [Break]-{Har - m
This dialog box appears on the screen when you select the [Hard
Bg’gg:f‘: PC...] command from the [Break] menu.
Broakeai it Clear Up to two addresses are alowed for hardware PC breakpoints.
W To set a hardware PC breskpoint, enter an address in the [Break ét]
L Cose | text box, then press [Enter] or click the [Set] button. Addresses can be

entered using the symbols.
Clicking the [Clear] button clears the breakpoint.

The[Hard PC Break] button is used to set a breakpoint in the [Source] window similar to the [Soft PC Break]
button. The address set as a hardware PC breakpoint is marked with a suffix "!1" or "?" asit is displayed in the
[Source] window (see " Software PC Break").

Note: The hardware PC break function is disabled when the area trace function is set in ICD mode.

278 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(3) Data break
This break function allows you to cause a break when alocation in the specified memory address is accessed.
In addition to specifying a memory address, you can specify whether you want a break to be caused by aread
or write as the break condition. Both the read/write operations can also be specified, so that a break will be
generated for whichever operation, read or write, is attempted.
A break occurs after completing the cycle in which an operation to satisfy the above specified condition is
performed.
When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.
Break by data break.

>
Table 16.8.6.3 Command/menu command to set data break
\ Function [Command | Menu \
[Setting/canceling data break conditions | bd | [Break]-[Data..] |
This dialog box appears on the screen when you select the
[Data...] command from the [Break] menu.
il e Enter an address in the [Break af] text box, and select an

IDDDDDDE4 access condition from the radio buttons.

Break Condition

In this example, a break occurs when data is read or written
" 1ead address from/to memory addresses 0x8.
€ wiite address When using the bd command, follow the guidance shown in
& v addiess the [Command] window as you enter the break conditions.
The address can also be specified using a symbol.

()8 I Cancel Clear |

(4) Sequential break (only in the ICE mode)
For sequentia breaks, you can specify one to three addresses, data patterns, data masks, and bus operation
types. A break occurs when the program performs each specified type of bus operation in the order of
specified addresses.
Specify data patterns and masksin a 16-bit hexadecimal number.
Choose a bus operation type from the nine types listed bel ow:
0. All All bus operations
1 Inst Instruction fetch
2. VecR Vector fetch
3. DatR Dataread
4. DatwW Datawrite
5. StkR Read from stack
6. StkW Write to stack
7.DmaR Ready by DMA
8.Dmaw Writeby DMA

The sequentid break function can only be used in ICE mode.

When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.

Break by sequential break.

>
Table 16.8.6.4 Command/menu command to set sequential break
\ Function [Command | Menu |
[Setting/canceling sequential break conditions | bsq [[Break]-[Sequential] |
E0C33 FAMILY EPSON 279

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

This dialog box appears on the screen when you
select the [Sequentia..] command from the
[Break] menu.
. [rTeR
Address: Enter an address, data pattern and data mask in
D ata Pattern: |594 each text box and select a bus operation type from
Data Mask: |DE|E|E|— the combo box, then click the [Add] button. The

entered break condition is set in order from Hit

Tupe: IDatW 'I Add No.1to 3.

The address can aso be specified using a symbol.

Braak at match all condition:
HitM O, Address, DataPattern, DataMask, Typpe, Symbol

HIT1 00030800 0000 FF Inst main
HIT2 00030802 0000 Fif Inst

Ok Cancel Clear

When using the bsq command, follow the guidance shown in the [Command] window as you enter the break
conditions.

Example:

No. Address Data pattern Data mask Bus operation
1 0x00c80000 0x0000 Oxffff Inst

2 0x00e00001 0x0001 0xff00 DatW

In this example, a break occurs when the CPU writes 1 to address 0xe00001 after executing the instruction at
address 0xc80000. The data mask Oxffff in No.1 specifies the mask in all the data pattern bits (the data
pattern is omitted from the break condition). The data mask 0xff00 in No.2 specifies that the low-order 8 bits
of the data pattern is compared with the low-order 8 bits of the actual access data.

Note: The sequential break function is not available in ICD, debug monitor, and simulator modes.

(5) Areabreak (only in the | CD+MEM 33 mode)

This break function alows you to break when a CE area in the specified memory address is accessed. You
can specify the area within or out of the range. Do not specify the area through multiple CE areas. Both read
and write operations can also be specified, so that a break is generated for whenever the specified read or
write is attempted.
A break occurs after completing the cycle in which an operation to satisfy the specified condition above is
performed. Because the MEM 33201 uses the external break of the ICD33 to break, it does not stop right after
the memory access.
When this break occurs, the db33 displays the following message in the [Command] window and waits for
command input:

Break using external break.

Break using MEM 33 area break. AreaX

Table 16.8.6.5 Command/menu command to set area break
Function | Command | Menu
| Setting/canceling area break conditions | ba | [Break]-[Area break] |

280

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

Area break E

Area breakl

Side
& Irside

€ Outside

Top address

Area break2 [V

Side————
7 Inside
& Outside

Top address

|00c00000

Battom address

|00120000

Battom address

IDDEDFFFF IDD1 20FFF

Operation Operation

I read j I 1w j
Cancel |

CHAPTER 16: DEBUGGER

This dialog box appears on the screen when you select the
[Areabreak] command from the [Break] menu.

Y ou can select the checkbox [Area breakX] to turn the area
break on or off.

Select Inside or Outside of the specified address using the
radio button [Side].Enter the specific addressin the [Top
address]text box and the [Bottom address]text box. Select
how you access in the [Operation] combo box.

Press [OK] when you finish the settings.

If you press [Cancel], datawill not be saved.

In this example, abreak occurs when address OXCOFFFF is
read from address 0xC00000.

A break occurs when address Ox11FFFF from address
0x100000 or address Ox 1FFFFF from address 0x121000 is
read or written.

When using the ba command, follow the instructions shown in the [Command] window as you enter the
break conditions. The address can also be specified using a symbol.

Note: The Area break function cannot be used in the ICD, ICE, debug monitor, and simulator modes.
A break by MEM33201 using ICD33 external break occurs after the memory is accessed a few
times when you access the break conditions. Therefore, a break occurs not just after the
memory is accessed.

(6) Busbreak (only in the |CD+MEM 33 mode)

Y ou can specify the address, address mask, CE mask, data, data mask, path operation, bus width, break mode,
and break counter. You can set 6 break conditions if the buswidth is 16 bits and 3 break conditions can be
set if the bus width is 32 bits. A break occurs after completing the cycle in which an operation to satisfy the
above specified condition is performed.
When this break occurs, the db33 displays the following message in the [Command] window and waits for

command input:

Break using external break.
Break using MEM 33 bus break.

Table 16.8.6.6 Command/menu command to set Bus break

Function

| Command | Menu

| Setting/canceling bus break conditions | bb | [Break]-[Bus break] |

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

EPSON 281

CHAPTER 16: DEBUGGER

This dialog box appears on the screen when you select the
i [FEeu— [Bus break] command from the [Break] menu.
Humber = 1t : : : ;
- Select Bus width using the radio button [Buswidth].
ddgess |00 R Select Break mode using the radio button [Break mode].
fgdn;:?k”;j;‘;] FFFFFF ~Break made— Sequential mode matches from the smallest number
R e [o referring to abreak condition.
[€ sequentia Enter the valuein the [Bresk counter] text box. The counter
Data g -
Doamesk [FRRFT—S] | ek courter breaks gfter the specified number of times. In the
[Dmask) [065535) Sequential mode, a break occurs after the last break pass
Operation |'EaEl [| |D times.
Set Delste Enter the value in the [Address] text box.

Enter the value in the [Address mask] text box.
Nurnber Addr Addit ask, Cetdask, D ata.D atald ask O peration, symbol SeleCt CE mad(_from the [CE ma§<] Combo bOX.
T, DOCO0000 FFFFF e 12345678 FPFFTFFD 1ead Enter the value in the [Data] text box.
2. 00C00004 FFFFFF no 00000000 00000000 write .
Enter the value in the [Data mask] text box.
Select Operation from the [Operation] combo box.

Cancel | Al clear |

When setting the Bus break condition, use the [Number] text box to set or cancel the condition. Number must
be serial. After you choose Number, enter the break conditions and press the [Set] button if you want to set
or press [Delete] if you want to delete. To end the settings, press the [OK] button. If you press the [Cancel]
button, datawill not be saved.

In this example, abreak occurs when address 0x1234567X is read from address 0xC00000.
A break occurs when data (word) is written to address 0xC00004 .

When using the bb command, follow the instructions shown in the [Command] window as you enter the
break conditions. The address can also be specified using a symbol.

Note: The Bus break function cannot be used in the ICD, ICE, debug monitor, and simulator modes.
A break by MEM33201 using the ICD33 external break occurs after the memory is accessed a
few times when you access the break conditions. Therefore, a break occurs not just after the
memory is accessed.

Forced break by [Key break] button

| [Key break] button

The [Key break] button can be used to forcibly terminate the program under execution when the program has
falleninto an endlessloop or cannot exit astandby (HALT or SLEEP) state.

Note: This break function is not available in the debug monitor mode.

Pulling ICE33 BRKIN pin low (only in ICE or ICD mode)
The program is made to break by entering a low pulse to the ICE33/ICD33 BRKIN pin when operating in
ICE/ICD mode.
When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.
Break by external break.
>

Notes: * This function is not available in the debug monitor and simulator modes.

¢ In the ICD33, there is a delay time of approximately 1.5 pusec between a pulse input to the
BRKIN pin and the actual break generation.

282 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Map break and break by executing illegal instruction

The program aso breaks when one of the following errorsis encountered during program execution:

Note: The following break functions are not available in ICD and debug monitor modes.

@

@

©

4

=

Writeto data ROM area

A break occurs when the program writes data to the ROM area set by the parameter file.

When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.

Break by writing ROM area.

>

Accessto no-map area

A break occurs when the program accesses a no-map area that has not be defined in the parameter file.

When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.

Break by accessing no map area.

>

Accessing outside stack area (only in | CE mode)

A break occurs when the program accesses an area outside the stack area using the SP.

This break will occur only in ICE mode.

When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.

Break by out of SP area.

>

Execution of an illegal instruction (only in the simulator mode)

A break occurs when an illegal instruction (code not generated by the Assembler as33 in which case the
instruction is marked by "*" in disassemble display) is executed in simulator mode.

When this break occurs, the db33 displays the following message in the [Command] window and stands by
waiting for command input.

Break by illegal instruction.

>

Notes: «In the ICE33, a bus access to the internal RAM area does not generate a map break or

sequential break, since it cannot be detected from outside the chip. However, a no-map area
break can occur when instructions are executed in the internal RAM.

« If the CPU is cold-reset while it is executing the program in ICE, ICD or debug monitor mode,
the on-chip-supported hardware PC break point (including temporary break used in the go
command or internal next operation) and the data break condition are cleared. When the
program execution breaks by another break factor, the break conditions are set again. Be
aware that no hardware PC or data breaks will occur until the conditions are reset.

CE break and Map break on ICD+MEM mode

Note: The following two break functions are set by memory map information in the parameter file.

@

CE break
MEM 33201 contains the CE break function.
Each of the CE is assigned an attribute (R/W, Read Only, or Access) and a break occurs if the access is

illegal .
Break by MEM33 ce break. ceb5 (when the break occurs on CEb)
>
EO0C33 FAMILY EPSON 283

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(20 Map break
MEM33201 containsthe map break function.
It changes the attributes to enable/disable access to each 32kb area. Break occurs when there is an illegal
access.
The following massage is output.
Break by MEM33 map break.

>

Notes:

* When the bus action frequency is over 30MHz, illegal CE break is difficult to occur.
No CE break is the case when RD/WR access occurs without CE.
When this case happens, use ;!'MEM33_MAP_NOCE_DISABLE and set DISABLE.

*CE break and map break are invalid when address, CE pin etc. are not displayed on the
microchip computer.

*An access occurs which makes a break same as the bus break and the area break. After that,
the bus access occurs a few times, and then a break occurs.
This is because the break function of MEM33201 is a pipeline for bus access space.

*Area which maps the break function of MEM33201(default is CE 9 area) becomes the area
only for register to break. Therefore, other devices cannot be mapped. In addition, do not post
break and so on.

284

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8.7 Trace Functions
The db33 has a function to trace program execution.
Note that the method of operation and functionality differ depending on the debugger mode..

Trace function in ICE mode

(1) Tracememory and trace information
The ICE33 contains trace memory. When the program executes instructions in the trace range according to
the trace mode, the trace information on each bus cycle is taken into this memory. The trace memory has the
capacity to store information for 32768 cycles. When the trace information exceeds this capacity, the data is
overwritten, the oldest data first, unless operating in single-delay trigger mode. Consequently, the trace
information stored in the trace memory is aways within 32768 cycles. The trace memory is cleared when a
program is executed, starting to trace the new execution data.

Cycle Address Code U Address Data Clk Type TRC File Line SourceCode -
88861 8pu812C 5988 2 DatWw W I/0

00060 BO4812E 0060 2 DatWw W L[/0

00059 0080864 CO24 ext Bx24 Inst H SRAHM (area.s) 00060 x1ld.h [TTBR],%r0
Do053 0080866 C134 ext ox134 Inst H SRAM

88057 88868868 3888 1d.h [%r8],%8 Inst H SRAM

08056 088886A Bu88 int (23] 1 Inst H SRAM (area.s) ap861 int @

8p@s5 --——---- —-—— —-—————-—— DatW H I/0

60054 0O8G84C OBB6 nop 1 Inst H SRAM {area.s) 80062 nop

#8053 ------- ---- ---——-—-—- 6C00036 042 7 UecR W SRAH

0ee52 —-----= —--— —m—————-—— BCo0O32 0OCH 3 UecR W SRAM

88851 BCHB42A BBBE nop
08058 8CAA42C BuCH reti

Inst H SRAM (areaC.s) 88297 nop
Inst H SRAM (areaC.s) 88298 reti _|
Inst H SRAM (areatC.s) a8388 nop
Inst H SRAM {area.s) 80062 nop

80049 BCAB42E ABBE nop
00048 0O8GBGC OBBE nop

00047 0OBO8GE 6C80 1d.w %ra,0x8 Inst H SRAM (area.s) 00863 x1d.w %r0,(AREA_S&0:

00046 0080870 CO2Y4 ext X2y Inst H SRAM (area.s) 00064 x1d.b [TTBR+2],%r0

88845 08888872 C136 ext B8x136 Inst H SRAM

88844 8888874 3486 1d.b [%r8],%8 Inst H SRAM -
EIN] a7

The following lists the trace information that is taken into the trace memory in every bus cycle. Thislist is
corresponded to display in the [Trace] window.

Cycle: Tracecycle (decima) The last information taken into the trace memory becomes 00000.
Address: CPU-instruction-fetch address (hexadecimal)
B " isdisplayed for a non instruction-fetch access.
Code: Instruction code fetched by the CPU (hexadecimal)
"----" is displayed for a non instruction-fetch access.
Unassemble; Disassembled content of the fetched instruction
———————— " is displayed for a non instruction-fetch access.
Address: Address accessed by the CPU (hexadecimal)
-------- " isdisplayed for an instruction-fetch access.

Data: Read/write data (hexadecimal)
"----" is displayed for an instruction-fetch access.
Clk: Number of clocks used in the bus operation (1 to 7)
"V" is displayed when 8 or more clocks are used.
Type: Bus operation type:

Inst: Instruction fetch, VecR: Vector read, DatR: Dataread, DatW: Datawrite
StkR: Stack read, StkW: Stack write, DmaR: DMA read, DmaW: DMA write
Access size:
B: Byte access, H: Half word access, W: Word access
Memory type:
SRAM, DRAM, BROM (burst ROM), IRAM (internal RAM), 1/O (internal 1/0)
DBUG (for ICE development), ERR (others)

TRC: Input to TRCIN pin (denoted by L when low-level signal isinput)
T: Tracetrigger point (placed at the beginning of theline)
Displayed only for the bus cycle that meets trace trigger conditions.
File: Source file name (displayed only when source display is selected by the tm command)
Line Source line number (displayed only when source display is selected by the tm command)
SourceCode: Source code (displayed only when source display is selected by the tm command)
EO0C33 FAMILY EPSON 285

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(2) Trace modes
Two trace modes are available, depending on the method for sampling trace information.

Table 16.8.7.1 Trace mode setup command
\ Function [Command |
[Setting trace mode and condition | tm |

1. Normal trace mode
In this mode, the trace information on al bus cyclesis taken into the trace memory during program execution.
Therefore, until a break occurs, the trace memory aways contains the latest information on bus cycles up to
the one that is executed immediately beforehand.

2. Singledelay trigger trace mode
In this mode as in other modes, trace is initiated by a start of program execution. When the trace trigger
condition that is set by a command is met, trace is performed beginning from that point (trace trigger point)
before being halted according to the next setting, which is also set by a command.

o |f thetracetrigger point isset to " start”
Trance is halted after sampling trace information for 32768 cycles beginning from the trace trigger point. In
this case, the trace information at the trace trigger point is the oldest information stored in the trace memory.
If the program stops before tracing al 32768 cycles, trace information on some cycles preceding the trace
trigger point may be left in the trace memory within its capacity.

Trace trigger point
Execution started qoerp

32768 cycle
‘ Trace sampling range !

Fig. 16.8.7.1 Trace range when "start" is selected

o If thetracetrigger point isset to " middle"
Trace is halted after sampling trace information for 16384 cycles beginning from the trace trigger point. In
this case, the trace information of 16384 cycles before and after the trace trigger point are sampled into the
trace memory.
If the program stops before tracing about 16384 cycles, trace information for the location 16384 cycles
before the trace trigger point may be left in the trace memory, according to its capacity.

Trace trigger point
Execution started qoerp

v

| (16384 cycle) | 16384 cycle |
‘ Trace sampling range !

Fig. 16.8.7.2 Trace range when "middle" is selected

o |f thetracetrigger point isset to" end"
Traceis halted after sampling trace information at the trace trigger point. In this case, the trace information at
the trace trigger point isthe latest information stored in the trace memory.
If the program stops before tracing the trace trigger point, the system operates in the same way as in normal
mode.

Trace trigger point
Execution started qoerp

v

32768 cycle
‘ Trace sampling range !

Fig. 16.8.7.3 Trace range when "end" is selected

If the program is halted in the middle of single delay trigger trace, bus cycles are traced from the beginning
when trace is executed next.

In addition to the above mode settings, the tm command allows you to set a trace trigger condition (address,
data pattern, or bus operation type).

286 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(3) Displaying and searching trace infor mation
The sampled trace information can be displayed in the [Trace] window by a command. If the [Trace] window
is closed, the information is displayed in the [Command] window. In the [Trace] window, you can see the
entire trace memory data by scrolling the window. The trace information can be displayed beginning from a
specified cycle. The display contents are as described above.

Table 16.8.7.2 Command to display trace information
\ Function [Command |
[Displaying trace information | td |

You aso can specify a search condition and display the trace information that matches your specified
condition. The search condition can be selected from the following:

1. Accessed memory address (or the entire memory space)

2. Bus operation type

When the above condition is specified, the db33 starts searching. When the trace information that matches
the specified condition is found, the db33 displays the number of occurrences in the [Command] window.
The search data is displayed in the [Trace] window (or in the [Command] window if the [Trace] window is

closed).
Table 16.8.7.3 Command to search trace information
\ Function [Command |
[Search trace information | ts

The [Trace] window is cleared by executing a program. After a program terminates executing, use the above
command to redisplay the trace information.

(4) Saving traceinformation
After the trace information is displayed in the [Trace] window using the td or ts commands, the trace
information within the specified range can be saved to afile.
Table16.8.7.4 Command to save trace information
\ Function [Command |
[Saving trace information | tf
EO0C33 FAMILY EPSON 287

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Precautions on trace in ICE mode

@

@

After asingle-step execution or abreak occurs, information of the pre-fetched instructions that have not been
executed are displayed. When the target program execution is suspended by a software PC break, the fetch
cycle information of the brk instruction that was inserted for the software PC break is aso displayed. (See
example below.)

When the program starts a successive execution from an address set as a software PC break point, the ICE33
executes single-stepping before starting the successive execution. Therefore, redundant trace information
pre-fetched by the single-stepping may be displayed. (See example below.)

(3) For source-level step execution, the ICE33 repeats single-stepping internally. Therefore, a lot of pre-fetch
information of al the steps will be displayed.
(4) Because of the reason stated above, the execution time measured by the execution counter increases by the
number of pre-fetch cycles.
(5) Tracedatafor read/write of theinternal RAM cannot be referred since the bus access is undetectable.
(6) During datatransfer by the high-speed DMA, data cannot be traced properly.
Example of pre-fetch data display during step execution
>m Sample execution program (software PC breaks are set at the addresses with "1")
100080004 €020 ext 0x20 00010 xId.w %r8, SP_INI
00080006 6C08 Id.w %r8, 0x0
00080008 A081 Id.w %sp, %r8 00011 Id.w ‘%sp, %r8 , set SP
0008000A 6C08 Id.w %r8, 0x0 00012 Id.w %r8, GP_INI , set gp
10008000C CO00 ext 0x0 00013 xcall main ; goto main
0008000E €000 ext 0x0
00080010 1C02 call 0x2
00080012 1EF9 jp 0xf9 00014 xjp BOOT ; infinity loop
-—— main.c ——
00001 /* tst_main.c 1997.2.13 */
00002 /% C main program */
00003
00004 int i;
00005
00006 main()
00080014 0200 pushn %r0 00007 {
g ... Successive execution from 0x80004
Break by software PC break ... Broken at 0x8000
>td ... Displays trace data
Cycle Address Gode Unassemble Address Data Clk Type TRC
00007 0080004 C020 ext 0x20 1 Inst H SRAM
00006 0080006 6G0O8 Id.w %r8,0x0 - 1 Inst H SRAM
00005 0080008 A081 Id.w %sp, %r8 1 Inst H SRAM ... Prefetch cycles
00004 008000A 6C08 Id.w %r8,0x0 e ——— 1 Inst H SRAM ... by single-stepping (2)
00003 0080008 A081 Id.w %sp,%r8 - 1 Inst H SRAM
00002 008000A 6C08 Id.w %r8,0x0 1 Inst H SRAM
00001 008000GC C400 brk === —— 1 Inst H SRAM ... Software break inst. (1)
00000 008000E G000 ext oxo 1 Inst H SRAM
>s
>td
Cycle Address Gode Unassemble Address Data Clk Type TRC
00005 008000C CO00 ext oxo 0 1 Inst H SRAM
00004 008000E G000 ext oxo 1 Inst H SRAM
00003 0080010 1602 cal | ox2 1 Inst H SRAM
00002 0080012 1EF9 jp oxfo 0 1 Inst H SRAM
00001 0080014 0200 pushn %0 —————— —— 2 Inst H SRAM
00000 0080016 6COB Id.w %r11,0x0 o —— 1 Inst H SRAM
>s
>td
Cycle Address Gode Unassemble Address Data Clk Type TRC
00002 0080014 0200 pushn %0 —————— —— 1 Inst H SRAM ... Executed
00001 0080016 6COB Id.w %r11,0x0 1 Inst H SRAM ... Pre-fetch cycle (1)
00000 0080018 G000 ext oxo 1 Inst H SRAM ... Pre-fetch cycle (1)
>
288 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

Trace function in ICD mode

(1) Tracememory and traceinformation
The ICD33 contains atrace memory that has the capacity to store information for 131072 cycles. The ICD33
stores the information of instruction execution cycles in the trace memory using the debugging signals output
from the EOC33 chip and other methods.

000017 B602DE8 DFFE
000016 B602DEA DFF9
000015 0602DEC 1C44
06066814 6602614 6COC
06066813 6602616 COAC
060812 8602618 cuael
apeA11 868261A 6CBF
apeA1e 868201C 6C14
080809 B682B1E 68BE
080808 8682628 1886
000007 8602022 C308
000006 8602024 CO89
000005 B602026 2485
060064 6602628 6815
060063 6602620 1063
060002 86502030 24FB
ap0A61 8682832 686B
ap0ABA 08582034 BE14

K]

ext
ext
call
1d.uw
ext
ext
1d.w
1d.w
cmp
jreq
ext
ext
1d.ub
cmp
jrne
1d.ub
cmp
jrie

Ox1FF8
Bx1FF9
Ox4y
%12, 0x0
Bxc
ax401
%r15, 68
%ra, Bx1
%14, 828
Bz6
0x308
0x89
%r5,[%r8]
%5, 0x1
0x3

%11, [%r15]

%r11, 628
ax1y

Clk HMethod File

802842 DPC
802858 DPC
80287% DPC
602912 DFC
602928 DFC
602944 DPC
882968 DPC
882976 DPC
882992 DPC
883808 DPC
8036824 DPC
803648 DPC
0036388 DPC
603689 DFC
603118 DFC
603174 DPC
883175 DPC
883196 DPC

{5ys.
{5ys5.

(sys.

{sys.

{5ys5.
{5ys.

)
c)

c)
c)

Line SourceCode

00681 iBytes
00686 for (;;
88891 if
00096 if
aa101

8102 if

CHAPTER 16: DEBUGGER

= 8; F* no read now =/

{iReadBytes == @)

(READ_EOF == 1)

iSize = READ_BUF[0];

(iSize > 8)

/= if require

W 1CD Trace M= B

Cycle Address Code Unassemble

AP

The following lists the trace information that is taken into the trace memory in every cycle. This list is
corresponded to display in the [Trace] window.

Cycle:

Trace cycle (decimal)

The last information taken into the trace memory becomes 000000.

Address:
Code:

CPU-instruction-execution address (hexadecimal)
Instruction code executed by the CPU (hexadecimal)
Unassemble; Disassembled content of the instruction code
Number of clocks used for executing the instruction

By default, the cumulative clock count from start of tracing is displayed. It can be changed so
that the number of clocks for each executed instruction is displayed.

Clk:
Method:
SPC:
TRG:
DPC:
RET:
MAP:
RTI:
File: Sourcefile
Line Source line number

Trace analytical method (to get the executed PC address)
Analyzed with the start PC address
Analyzed with the trigger address

Anayzed with the DPCO signal

Analyzed with the call/ret statement

SourceCode: Source code

(2) Trace mode and trace condition
Two trace modes are available, depending on the trace range.

1. All trace mode

Analyzed with the map information
Anayzed with the reti statement

Cannot be analyzed
name (which includes the executed instruction)

Table 16.8.7.5 Trace mode setup command

Function

[Command

[Setting trace mode and condition

[tm

In this mode, trace is initiated by a start of program execution. It continues until a break occurs when "with
overwriting” is selected as the trace condition. If the trace memory becomes full, the oldest data will be
overwritten with the new trace data. If the trace condition is set to "without overwriting", trace is terminated
when the trace memory isfull.

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

EPSON

289

CHAPTER 16: DEBUGGER

2. Areatrace mode

@3

4

G

N

=

=

Trace information is taken into the trace memory only when the program within the specified area is
executed. The program execution can be suspended at the trace area end address. In this mode, the time
measurement condition (all or area) can aso be specified.

In addition to the trace mode above, the clock (Clk in the trace information) count method can be selected
(accumulating or instruction units).

Displaying and sear ching trace infor mation
The sampled trace information can be displayed in the [Trace] window by a command. If the [Trace] window
is closed, the information is displayed in the [Command] window.

Table 16.8.7.6 Command to display trace information
\ Function [Command |
[Displaying trace information | td |

Furthermore, a search command is provided to display the trace information of the cycle that executes the
specified address and the previous and subsequent cycles. The search datais displayed in the [Trace] window
(or in the [Command] window if the [Trace] window is closed).

Table 16.8.7.7 Command to search trace information
\ Function [Command |
[Search trace information [ts

The [Trace] window is cleared by executing a program. After a program terminates executing, use the above
command to redisplay the trace information.

Displaying and sear ching trace infor mation

The ICD33 allows trace data display without suspending the program execution. By clicking the [Display
trace] button, the ICD33 suspends tracing and displays the sampled trace memory data to the [Trace] window.
The trace operation can be resumed by clicking the [Resume trace] button.

El [Display trace] button C{Pl [Resume trace] button

Thetsand tf commands cannot be used while the program is being executed.
The [Display trace] button functions similar to the td command while the program execution is in break
status.

Saving traceinformation
After the trace information is displayed in the [Trace] window using the td or ts commands, the trace
information within the specified range can be saved to afile.

Table16.8.7.8 Command to save trace information
\ Function [Command |
[Saving trace information [tf \

290

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

ICD trace operation and precautions
The trace function in ICD mode isimplemented using the method below.

The following four signals should be input to the ICE33 from the target CPU.
DSTO, DST1, DST2....... Signals that indicate the CPU execution status, such as sequential instruction
execution, relative branch operation, absolute branch operation and idle status.
DPCO ..ot Serial datasignd that indicates the branch destination PC address. Thissignal is
output when an absolute branch operation is performed.

The ICD33 reads this 4-bit information for up to 128K clocks in synchronization with the CPU clock.

The db33 gets the PC value by performing the following flow analysis using the above information and the
disassembl e information in the db33.

» DST0-2 = sequential instruction execution: +1 instruction

* DST0-2 = relative branch: The number of instructions to the branch destination is
calculated from the disassembl e information.

* DST0-2 = absol ute branch: The branch destination is determined from the DPCO
information.

However, this analysis cannot be done if the trace-start point and the corresponding PC value are not
determined.

The db33 determines the PC value using the method below. The symbolsin the Method column in the trace
information represent the method used .

Method: SPC ~ Determined from the PC value at the start of program execution if it is fixed.
(All trace mode without overwriting)

Method: DPC Determined from the complete DPCO information of an absolute branch operation.

Method: MAP Determined from the incomplete DPCO information of an absolute branch operation and
the complement map information. DPCO information is output when the following
absol ute branch instruction is executed or by an interrupt vector jump operation.
cal %rb, call.d %rb, jp %rb, jp.d %rb, ret, ret.d, reti, int

Method: TRG Determined by using the trigger address in area trace mode.

Method: RET Determined from the correspondence between a call statement and aret statement.

Method: RTI Determined from the correspondence between an interrupt and areti statement.

Asaresult, there are some restrictions as listed below.

(1) Restriction in overwrite mode
When tracing a looped routine that repeats a relative branch, it will not be able to analyze until the PC
value is determined.
As a solution for tracing such routines, there is a way to output DPCO information by generating an
interrupt in several ms cycles using the 8-bit timer (see sample in "cc33\sampl \icdtrc").

(2) Restriction in areatrace mode
Usually the hardware PC break function enables two break addresses. The area trace mode uses them as
the trigger addresses, so they cannot be used for the hardware PC break function until area trace mode is
cancelled.

(3) Restriction in all trace mode without overwriting
The ICD firmware executes the following process when the program execution is started from a software
PC break point.
1. Clearsthe software PC break point set at the execution start address.
2. Executes only thefirst instruction step.
3. Setsthe start address as a software PC break again.
4. Executes the following instructions successively.
Therefore, the db33 cannot use the PC value at the start of program execution for analyzing.
When resuming execution of a program that has been suspended at a software PC break point, perform
step execution to skip from the software PC break point before executing the program successively.

EOC33 FAMILY EPSON 2901
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

The following shows restrictions common to al modes:

(4) Restriction on absolute branch
If two or more absolute branches occur within a 27-clock period, the complete PC vaues cannot be
determined. Although the db33 tries a recovery process using the map information and the call-ret
nesting information, the PC values may not be analyzed.

(5) Restriction on the execution program

When a program is loaded by the If or ITh command, the db33 keeps the program information and uses
the disassemble information for the PC value analysis. Therefore, there may be differences between the
internal analysisinformation and the target program in the following cases:

« when the program to be executed has been stored in aROM

« when the target program copies/moves the execution routine dynamically

« when the program area is modified using a db33 command

In those cases, load the necessary part of the program from the target to the db33 using the rm command.

(6) Simulated 1/0
The simulated /O function uses the software PC break, step execution and source step execution
functions, so do not useit with the trace function simultaneously.

The following shows the precautions regarding to ICD33 hardware:

(7) Setting the ICD33
To use the trace function in ICD mode, the DIP switch SW4 on the ICD33 must be set to OPEN (upper
position). Furthermore, the debugging signas required for tracing (DSTO0, DST1, DST2, DPCO) must be
connected between the target board and the ICD33 using the 10-pin interface cable.

(8) Upper limit clock frequency for ICD trace function
The operating clock frequency is limited to 50 MHz when the ICD33 trace function is used. A higher
frequency causes data error.
When using a 50 MHz or higher CPU operating clock, disable the ICD trace function using the DIP
switch (SW4) in the ICD33. Furthermore, the speed of the EOC33 BCU (bus) should be set to 1/2 or less
of the CPU core operating speed (using the #X2SPD pin).
The ICD functions other than the trace function operate at the same speed as the bus and the maximum
frequency is40 MHz.

292

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

Trace function in simulator mode

CHAPTER 16: DEBUGGER

In the simulator mode, you can specify trace function ON/OFF, display method, and write to afile. When the
trace function is turned on, the trace result is displayed on the screen or saved to a file every time an

instruction is executed.

Table 16.8.7.9 Command to set trace mode

\ Function [Command |
[Turning trace mode on or off | tm
wSntoce A=
Nunber Address Code Unassemble Address Type Data File Line SourceCode -
B800687F4 AARAAAAA AARAAARA IL:8 HO:8 DS:z8 IE:8 C:8 U:zB Z:8 N:@
000008132 080888682E 781C and %r12,881 0 e o (main.c) a8e82e if (k & Bx1)
000007F4% AARAAAAA AARAAARA IL:8 HO:9 DS:z0 IE:0 C:9 U:z@ Z2:1 N:@
0800808133 00080838 1884 jreq Bxa 0 e s e
0000087F4 AARAAAAR AAAAAAAR IL:0 HO:9 DS:0 IE:@ C:8 V-0 2:1 N:B
06000134 00088686844 8648 ret B808B7F4 W 0068886826 (main.c) 8882y H
0000087F8 AARAAAAR AAAAAAAR IL:0 HO:9 DS:0 IE:@ C:8 V-0 2:1 N:B
00000135 00080026 6010 add Zre,0x1 0 —mm——e o o (main.c) [ELRR] for (j=8 ; ; j++)
0000087F8 AARAAAAR AAAAAAAR IL:0 HO:9 DS:0 IE:@ C:8 V-0 Z2:8 N:B =
KN ¥
The following lists the trace information that is displayed on the screen in simulator mode:
<1st line of each trace information>
Number: Executed instruction number (decimal).
Thisisthe executed instruction number after the CPU is reset or traceis turned on.
Address: Executed instruction address (hexadecimal).
Code: Instruction code (hexadecimal).
Unassemble: Disassembled content.
Address: Accessed memory address (hexadecimal).
Type: Bus operation type.
rB: Byte dataread, rH: Half word dataread, rW: Word data read
wB: Byte datawrite, wH: Half word data write, wW: Word data write
Data: Read/write data (hexadecimal).
File: Source file name (displayed only when source display is selected by the tm command).
Line Source line number (displayed only when source display is selected by the tm command).

SourceCode: Source code (displayed only when source display is selected by the tm command).

<Lines 24 of each traceinformation>

These lines are displayed when register option is selected with the tm command.
The register values appear in the order shown below.

RO R1 R2 R3 R4
R8 R9 R10 R11 R12

RS R6 R7
R13 R14 R15

SP AHR ALR PSR (displayed in flag units)

Trace information is displayed in the [Trace] window when display to the window is selected. If the [Trace]
window is closed, the information is displayed in the [Command] window.
When saving to afileis selected, the information is output to the file and is not displayed in the window.

Unlike in ICE mode, there is no need to input any specific command to display trace information. Trace
information is displayed automatically according to the successive execution or single-stepping of a program.
The [Trace] window allows you to see trace information for the last 255 instructions. The trace information
for instructions beyond that are deleted.

EOC33 FAMILY EPSON 293
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8.8 Simulated I/0O

The db33's simulated 1/O function alows you to evduate external input/output functions such as a seria interface
by means of a standard input/output (stdin, stdout) or file input/output.

Table 16.8.8.1 Commands to set simulated 1/0

Function Command
Input setting stdin
Output setting stdout

Input by stdin
Use the stdin command to set the following conditions:
o Bresk address
o |nput buffer address (buffer size fixed to 65 bytes)
o [nput device — [Simulated 1/0] window or afile

After setting these conditions, execute the program in continuous mode.

When [Simulated 1/0] window is selected

When a set break address is reached, the db33 opens the [Simulated I/O] window and waits for data to be
input from the keyboard. When input data (up to 64 bytes) and hit the [Enter] key, the db33 writes the input
data to a specified buffer, then restarts program execution at the address where it 1 eft off.

When afileisseected

If afileis selected, the db33 inputs data from the specified file to a specified buffer when it breaks. Then the
db33 restarts program execution at the address where it |eft off. In this case, the [Simulated 1/O] window is
not opened.

Output by stdout
Use the stdout command to set the following conditions:
o Bresk address
o Output buffer address (buffer size fixed to 65 bytes)
o QOutput device — [Simulated I/0] window or afile or both

After setting these conditions, execute the program in continuous mode.

When [Simulated 1/0] window is selected

When a set break address is reached, the db33 opens the [Simulated 1/0] window and displays the contents
set in the buffer in the [Simulated 1/0O] window. Then the db33 restarts program execution at the address
whereit |ft off.

When afileisseected
If afileis selected, the db33 outputs the buffer contents to a specified file. Then the db33 restarts program
execution at the address where it l€ft off. In this case, the [Simulated 1/0] window is not opened.

Data can be output to both the [Simulated I/O] window and thefile.

294 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Program definitions for simulated 1/0
Before the smulated 1/0 function described above can be used, you must write the following definitions in
the program.

Input/output buffer definition
Define the global buffers used by the db33 to input or output datain the following format:

Input buffer definition: unsigned char READ_BUF[65] (.comm READ_BUF 65)
Output buffer definition: unsigned char WRITE_BUF[65] (.comm WRITE_BUF 65)

For these buffer names, you can use any desired name that conforms to symbol name designations. Fix the
buffer size to 65 bytes. When executing the stdin and stdout commands, use this symbol name to specify a
buffer address.

When datais input, the size (1 to 64) of the actually input datais placed in READ_BUF[Q]. If EOF is input,
READ_BUF[0] isset to 0. Theinput datais stored in READ_BUF[1] and following elements.

When outputting data, write the size of the output data (1 to 64) to WRITE_BUF[Q], and the output data to
WRITE_BUF[1] and following elements. To output EOF, write 0 to WRITE_BUF[0].

Thus, a data stream of up to 64 bytes can be input and output between the db33 and the program.

Data updating global label definition
Define the global 1abels shown below at a position where datais fed into the input buffer by the db33 and a
position where data is output from the output buffer.

Input position: .global READ_FLASH
READ_FLASH:

Output position: .global WRITE_FLASH
WRITE_FLASH:

For these labels, you can use any desired name. When executing the stdin and stdout commands, use this
symbol name to specify the break address.

In the C source, define these labels in the lower-level functions "write" and "read" (see Section 8.4) of the
standard 1/O library function.

For actual examples, refer to the sample programs and debugger command files installed in the
sample\simio\ directory.

When a bresk occurs a the READ_FLASH label, the db33 reads data that input to the [Simulated /O]
window or the file and load it to the defined input buffer. Then the db33 resume executing the program.
When a break occurs at the WRITE_FLASH label, the db33 output data that stored in the output buffer to the
[Simulated I/O] window or thefile, then resume executing the program.

Precautions
Make sure the break addresses specified by the stdin and stdout commands do not overlap the software break
addresses.
Since software breaks are used for this purpose inside the chip, the ROM area of the target board cannot be
specified.
Use only ASCII characters for input and output. If binary data (0x0 and Oxlain particular) is used, the db33
may operate erratically.
The part of the program to input/output data by stdin and/or stdout should be successively executed using the
go command. Do not execute it by single-stepping and make sure that no break occursin or around the part.

EOC33 FAMILY EPSON 295
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8.9 Operation of Flash Memory
The db33 supports flash memory on the target board and the |CE33 flash memory for free-run.

Operation of the flash memory on the target board
The db33 comes provided with the utility and commands that write/erase the flash memory in the EOC33
chip or on the target board. They can be used in ICE (note), ICD and debug monitor mode.

Table 16.8.9.1 Flash memory operation commands

Function Command
Seting flash memory fls
Erasing flash memory fle

Note: To use the commands with the ICE33, the ICE firmware must be Ver. 2.0 or higher.
Since the ICE33 is shipped with the firmware Ver. 1.x, update the ICE firmware using the program
located in the "cc33\utility\ice33v20\" directory. For the update procedure, refer to the "readme.txt"
of the updater.

Data should be written to the flash memory by the procedure shown bel ow.

The examples in this section are extracted from " cc33\sample\dmt33004\led2.cmd"”.

For more information, refer to the "readme.txt" for the flash support utility fIs33. ("fIs33" and "readme.txt"
can beinstalled using "cc33\utility\fls33\fIs33vX X.exe".)

(1) Loading the flash routine
Load the flash routine (erase and write routines) into a memory such as the internal RAM using the If
command.

Example:
If flsh\am29f800. srf ;load flash erase and write routine to IRAM area

Actual erasing/writing will be done by thisroutine.
The flash routine provided by Seiko Epson uses 0x40 to Ox7ff (2KB) of theinternal RAM.

Note: Use the flash routine provided by Seiko Epson or create an original routine.
The Seiko Epson routines mainly support AMD type flash memories and can be installed by
executing "cc33\utility\fls33\fls33.exe". The source and required files are included, so the routine
can be modified if necessary.

(2) Setting the flash condition
Set the flash memory start and end addresses, and the entry addresses of the erase and write routines loaded
in Step (1) into the db33.

Example:
fls ;flash set command
1 ;1:set 2:clear
200000 ;flash area start address is 0x200000
2fFFFf ;flash area end address is Ox2fffff
FLASH_ERASE ,flash erase routine top address
FLASH_LOAD ;flash load routine top address
296 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(3) Erasing the flash memory
Erase al or the specified sector range of the flash memory.
The contents of the flash memory change to Oxff.

Example:

fle ;flash erase command

200000 :flash contorol regester is 0x200000

0 ;erase start block 0:all area 1-19:section

0 ;erase end block 1-19:sector if start block is 0 ,then this parameter is ignored.

First set the flash memory control register address. Normally it is the flash memory start address.

Then, specify the sector range to be erased. When the start and end numbers are specified as 0 and 0, the
flash memory will be all erased. If 1 and 3 are specified, only sectors 1 to 3 will be erased. The number of
sectors and sector size are different according to the device.

Be sure to execute the fle command &fter the fls command. To maintain the contents of the flash memory,
specify -1 and 0 as the sector range. The process except for erasing will be performed.

(4) Writing to the flash memory
Thelf or Th command is used to write data to the flash memory.
Example:
If led2. srf ;load to 0x200000 (flash)

Data for the start and end addresses set by the fls command in Step (1) is sent to the write routine to perform
flash writing. Other datais written similar to writing to RAM. An error will result if atime-out occurs during
writing or the flash memory has not been erased (not 0xff).

The ew and eh commands can be used for writing as well as the If and |h commands. For the flash memory
with 8-bit data width, the eb command can also be used.

EOC33 FAMILY EPSON 297
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Operation of the ICE33 flash memory for free-run

The ICE33 in-circuit emulator contains flash memory. This memory is designed to allow data to be
transferred to and from the ICE33 internal ROM emulation memory by a command.

The flash memory retains data even when the ICE33 is turned off. By writing the program, data, option data
and map information under debug into the flash memory before turning off the power, you can call it up and
continue debugging next time. Also, even when operating the ICE33 in free-run mode (in which aprogramis
executed using only the ICE33), you may need to write the program into the flash memory.

The following operations can be performed on the flash memory:

(1) Read from flash memory

Dataisloaded from the flash memory into the internal ROM emulation memory.

(2) Writeto flash memory

Data in the interna ROM emulation memory is saved to the flash memory. Also, the contents of the
parameter file can be written to the flash memory as necessary. After writing to the flash memory in this way,
you can protect it against read and write.

(3) Erasing flash memory

All contents of the flash memory are erased.

(4) Displaying flash memory map information

The flash memory map, chip name, version of the parameter file used and other information are displayed.

The flash memory can only be dtered in ICE mode.

Table 16.8.9.2 Commands to operate on flash memory

Function Command
Reading from flash memory Ifl
Writing to flash memory sfl
Erasing flash memory efl
Displaying flash memory map information maf

* Free-run of ICE33

When operating the ICE33 in free-run mode (with the program executed using only the ICE33), the ICE33
uses the data written in the flash memory. Therefore, before the ICE33 can be used in free-run mode, the
entire program, data, and option data must be written into the flash memory. However, data not in the
internal ROM cannot be saved.

To operate the ICE33 in free-run mode, set the ICE/RUN switch to the RUN position and turn on the power.
During free-run, map breaks caused by operation in the program and data areas set by a parameter file are
effective. When amap break occurs, the PC LED on the ICE33 stops and the EMU LED turns off. All other
break settings are invalid because they cannot be written into the flash memory.

298

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8.10 Other Functions
In addition to the primary functions described hitherto, the db33 supports severa other useful functions as listed
below. For details, refer to sections where each command is explained.

Map display function (ma command)
Displays map information, chip name, and parameter file version.

Type conversion function (ct command)
Returns input numeric values or character strings after converting them into different formats.

Reverse conversion into an extended instruction (ext command)
Specifying the address of an immediate-extended instruction with the ext instruction converts the instruction
into an extended instruction format of the instruction extender including the extended immediate data and
displays the results.

EOC33 FAMILY EPSON 299
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.8.11 Big-Endian Support

The tools from the C compiler to the linker and the libraries support only the little-endian format. Be aware that
the C compiler cannot create sif files that can be loaded to big-endian areas. However, data can be processed in
big-endian format with the debugger.

To specify big-endian area

The map information in the parameter file is used to set endian information to the debugger. To set the area
format to big-endian, describe letter "B" after the <end address>. However, the EOC33 chip to be developed
must be a model that supports big-endian format. Furthermore, the internal memory (ROM, RAM and 1/O)
cannot be set to big-endian. In addition to specify this parameter file at invocation of the db33, the endian
control register in the EOC33 chip must be set correctly (refer to the "Technical Manua").

In simulator mode, the endian format is determined by the parameter file only.

Refer to Section 16.10 for details of the parameter file.

Operations of debugging commands

(1) db, dh, dw, b, th, fw, mv, mvh, mvw, eb, eh, ew commands

@

€

4

G

~

~

=

~

These commands read/write data in byte, half word and word units according to the data type, so data is
processed and displayed with the endian format of the areato be accessed.

sy, sa, sw (@) commands

These commands read data in byte units regardiess of the data type, and then configures the read data
according to the specified data type. Data is displayed after swapped if the endian format and data type need
it. Therefore, data is not displayed correctly if the endian settings of the BCU and the parameter file are
different.

Ih, If commands
These commands swap data according to the endian format and write in haf word units. Therefore, a
program created by the C compiler cannot be loaded to a big-endian area properly.

sfl, Iff commands

The sfl command does not save the endian information. The Ifl command makes the map information by
adding the endian information in the parameter file to the information read from the ICE33. Therefore, the
parameter file used when data was saved by the sfl command must be specified when invoking the debugger.

Watched data
Data in the watched address set by the w command is handled in word units, so it is displayed according to
the endian format of the area.

Difference in simulator mode

In simulator mode, the address including the TTBR register can be set to big-endian. In this case, the trap
table base address should be set as follows:

The contents to be written to 0x48134 in little-endian must be written to 0x48137.

The contents to be written to 0x48135 in little-endian must be written to 0x48136.

The contents to be written to 0x48136 in little-endian must be written to 0x48135.

The contents to be written to 0x48137 in little-endian must be written to 0x48134.

300

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

16.9

Command Reference

CHAPTER 16: DEBUGGER

16.9.1

Command List

Table 16.9.1.1 Command list

L N Mode support

Classification ~ (Command Function CD ICE | SYM | MON P No.
Memory operation |fb Fills memory area (byte units). [] (] L] 302
fh Fills memory area (half word units). (] L]]] 303

fw Fills memory area (word units). [[J [J [304

db Dumps memory data (byte units).] L]]] 305

dh Dumps memory data (half word units). [° [J [307

dw Dumps memory data (word units). [J] [] [J 309

df Dumps memory data to file. [L [[J 311

eb Enters memory data (byte units). (] [] (] L] 312

eh Enters memory data (half word units). [L [[J 313

ew Enters memory data (word units). (] [] (] L] 314

mv Copies memory area (byte units). [[[J [J 315

mvh Copies memory area (half word units). [] A=l [] [316

mvw Copies memory area (word units). [J A=l [J [J 317

w Sets watch data address. [J [J [] [J 318

rm Reads target memory data. [] - — — 319

Register operation |rd Displays register contents. O O O O 320
rs Modifies register contents. (]] (]] 321

Program g Executes program successively. [L] (] L] 322
execution s Executes program step. (]] (]] 324
n Executes program step with skip. [J]] [J 326

CPU reset rstc Cold-resets CPU. [] [] [] [] 327
rsth Hot-resets CPU. [] [J [] [] 328

Interrupt int Produces interrupt (simulator mode only). - - [] - 329
Break bp Sets/cancels software PC breakpoint. [[[J [J 330
bs Sets software PC breakpoint.]]]] 334

bc Cancels software PC breakpoint. [[[[J 335

bh Sets hardware PC breakpoint 1. [J [J [] [J 336

bhc Cancels hardware PC breakpoint 1. [[J [[J 337

bh2 Sets hardware PC breakpoint 2. [] A (] L] 338

bhc2 Cancels hardware PC breakpoint 2. [A [[J 339

bd Sets data break condition. (] L] (] L] 340

bsq Sets sequential break condition. - [J - - 342

ba Sets area break condition. u - - - 345

bb Sets bus break condition.] - - - 347

bl Displays all break conditions. O O O O 350

bac Clears all break conditions. o O o o 351

Program display |{u Sets di ble display mode. [] [[] [352
sc Sets source display mode. (]]]] 354

m Sets mixed display mode. [J [J [J [J 356

ss Searches character string. (]] (]] 358

Symbol sy Lists symbol information.] [J] [J 359
information sa Registers symbol to [Symbol] window. (]]]] 364
sd Deletes symbol from [Symbol] window. [[J [[367

sw Displays symbol information. [] [] [] [] 368

Load file If Loads srf33 format file. [[] [[J 371
lh Loads Motorola S3 format file. [J [J [J [373

Id Loads debug information. [] [J [] [J 374

Flash memory fls Sets up target flash memory. [J A - [J 375
operation fle Erases target flash memory. [A - [J 376
Ifl Reads from ICE33 flash memory. - L] - 377

sfl Writes to ICE33 flash memory. - [) 378

efl Erases ICE33 flash memory. - L] - - 379

maf Displays ICE33 flash memory map. - [] - — 380

Trace tm Sets trace mode. o o o - 381
td Displays trace information. e e - - 387

ts Searches trace information. o o - - 391

tf Saves trace information. o O - - 393

Simulated I/O stdin Simulates data input.]]] [J 394
stdout Simulates data output. [] [] [] [] 395

Others com Executes command file. [J [] [[396
cmw Executes command file with interval. [] [] [] [] 397

log Turns log output on or off. [J] [J [J 398

od Dumps option data. - [] - - 399

ct Converts/display data. [[) [[400

ext Converts into extended instruction format. [J [] [J [] 402

ma Displays map information. [[J [J [J 404

md Sets debugger mode. o o o o 405

q Terminates debugger. (] [(] L] 407

? Displays command usage. [] [] [] [] 408

Mode support: @ =Can be used (same function/display in all modes) A = Supported by ICE firmware Ver. 2.0 or higher
o

an be used (function/display differ depending on the mode) —= Cannot be used M =Only MEM33 is used
: Data is copied in byte units if the ICE firmware version is lower than 2.0.

EOC33 FAMILY

EPSON

C COMPILER PACKAGE MANUAL (ver.3)

301

CHAPTER 16: DEBUGGER

16.9.2 Commands to Operate Memory
fb (fill byte) [ICD/ICE/SIM/MON]

M Function
This command rewrites the entire contents of a specified memory areawith the specified byte data.

B Formats
1 fb (guidance mode)
(20 fb <addressl> <address2> <data> (direct input mode)

<addressl>: Start address of specified range (hexadecimal or symbol)
<address2>: End address of specified range (hexadecimal or symbol)
<data>: Write data (hexadecimal)

Conditions: 0x0 < addressl < address? < Oxfffffff, 0x0 < data < Oxff

B | nput examples

Format 1) >fbd

Start address ? : 0000000 ...Start addressisinput. (symbol can be used)

End address ? : 000000f. ...End addressisinput. (symbol can be used)

Data pattern ? : 14 ..Write dataisinput.

>

= Command execution can be canceled by entering the [Enter] key only.

Format 2) >fb 0000000 000000f 1.4

>

In both of these examples, the entire memory area from 0x0 to Oxf is rewritten with data Ox1.

addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00000000 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

Using symbols)
>fb LABEL1 LABEL2 0

When rewriting the codes generated from an assembly source, line numbers can be used for specifying
the addresses.

H Notes
e The addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif this limit is exceeded.
In Format 1, aguidance is displayed prompting you to input an address again. In Format 2, the command input
is canceled.
Error: Address range (0-OxFFFFFFF).

e Aneror resultsif the start addressis larger than the end address.
Error: addressl > address2

e This command does not issuer an error even if the address range specified for write includes an unused area
All valid locations except the unused area are rewritten with the specified data.

e Data must be input within arange of 8 bits (0 to 0xff). An error results if this limit is exceeded. In Format 1, a
guidance is displayed prompting you to input data again. In Format 2, command input is canceled.
Error: Data range (0-OxFF).

e The fb command does not update the display contents of the [Memory] and [Source] windows. To update the
display contents, redisplay the window with the display command or scroll the window in the vertical direction.
The source displayed in the [Source] window remain unchanged even if the program areais rewritten.

e |If alarge memory area is rewritten at one time in ICE mode, a time-out error may occur, because such
operation takes along time.

302 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

fh (fill half) [ICD/ICE/SIM/MON]

B Function
This command rewrites the entire contents of a specified memory area with the specified half word data.
The memory areais rewritten in the endian format specified with the parameter file (default: little endian).

B Formats
1) fh (guidance mode)
(20 fh <addressl> <address2> <data> (direct input mode)

<addressl>: Start address of specified range (hexadecimal or symbol)

<address2>: End address of specified range (hexadecimal or symbol)

<data>: Write data (hexadecimal)

Conditions: 0x0 < addressl < address2 < Oxffffffe (half word boundary), 0x0 < data < Oxffff

B | nput examples

Format 1) >fhd
Start address ? : 0000000 ...Start addressisinput. (symbol can be used)
End address ? : 000000e. ...End addressisinput. (symbol can be used)
Data pattern ? : 14 ..Write dataisinput.
>

= Command execution can be canceled by entering the [Enter] key only.
Format 2) >fh 0000000 000000e 1.4
>

In both of these examples, the entire memory area from 0x0 to Oxf (Oxe+1) is rewritten with data

0x0001 (when the areais set to little endian).
addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00000000 01 00 01 00 O1 00 O1 00 01 00 O1 00 O1 00 O1 00

Using symbols)
>fh LABEL1 LABEL2 0

When rewriting the codes generated from an assembly source, line numbers can be used for specifying
the addresses.

H Notes
e Since data is rewritten in units of 16 bits, specify half word boundary addresses (even addresses) for the area
start and end addresses. If odd addresses are specified, a warning is generated and the LSBs of the specified
addresses are rewritten to 0 asthe arealis set.
Warning: Round down to multiple of 2.

e The addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif thislimit is exceeded.
In Format 1, a guidance is displayed prompting you to input an address again. In Format 2, the command input
is canceled.

Error: Address range (0-OxFFFFFFF).

e Aneror resultsif the start addressis larger than the end address.
Error: addressl > address2

e This command does not issuer an error even if the address range specified for write includes an unused area.
All valid locations except the unused area are rewritten with the specified data.

e Datamust be input within arange of 16 bits (0 to Oxffff). An error resultsif this limit is exceeded. In Format 1,
aguidance is displayed prompting you to input data again. In Format 2, command input is canceled.
Error: Data range (0-OXFFFF).

e The fh command does not update the display contents of the [Memory] and [Source] windows. To update the
display contents, redisplay the window with the display command or scroll the window in the vertical direction.
The source displayed in the [Source] window remain unchanged even if the program areais rewritten.

e |If alarge memory area is rewritten at one time in ICE mode, a time-out error may occur, because such
operation takes along time.

EOC33 FAMILY EPSON 303
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

fw (fill word) [ICD/ICE/SIM/MON]

B Function
This command rewrites the entire contents of a specified memory area with the specified word data.
The memory areais rewritten in the endian format specified with the parameter file (default: little endian).

B Formats
1) fw (guidance mode)
(20 fw <addressl> <address2> <data> (direct input mode)

<addressl>: Start address of specified range (hexadecimal or symbol)

<address2>: End address of specified range (hexadecimal or symbol)

<data>: Write data (hexadecimal)

Conditions: 0x0 < addressl < address2 < Oxffffffc (word boundary), Ox0 < data < Oxffffffff

B | nput examples

Format 1) >fw.
Start address ? : 0000000 ...Start addressisinput. (symbol can be used)
End address ? : 000000c. ...End addressisinput. (Symbol can be used)
Data pattern ? : 14 ..Write dataisinput.
>

= Command execution can be canceled by entering the [Enter] key only.
Format 2) >fw 0000000 000000c 1.4
>

In both of these examples, the entire memory area from 0x0 to Oxf (Oxc+3) is rewritten with data

0x0001 (when the areais set to little endian).
addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00000000 01 00 00 00 O1 00 00 00 01 00 00 00 01 00 00 00

Using symbols)
>fw LABEL1 LABEL2 0
When rewriting the codes generated from an assembly source, line numbers can be used for specifying
the addresses.

H Notes
e Sincedatais rewritten in units of 32 hits, specify word boundary addresses for the area start and end addresses.
If invalid addresses are specified, a warning is generated and the two least significant bits of the specified
addresses are rewritten to O as the arealis set.
Warning: Round down to multiple of 4.

e The addresses specified here must be within the range of 0 to Oxfffffff. An error results if thislimit is exceeded.
In Format 1, aguidance is displayed prompting you to input an address again. In Format 2, the command input
is canceled.

Error: Address range (0-OxFFFFFFF).

e Anerror resultsif the start addressis larger than the end address.
Error: addressl > address2

e This command does not issuer an error even if the address range specified for write includes an unused area
All valid locations except the unused area are rewritten with the specified data.

e Data must be input within a range of 32 bits (0 to Oxffffffff). An error results if this limit is exceeded. In
Format 1, aguidanceis displayed prompting you to input data again. In Format 2, command input is canceled.
Error: Data range (0-OxFFFFFFFF).

e The fw command does not update the display contents of the [Memory] and [Source] windows. To update the
display contents, redisplay the window with the display command or scroll the window in the vertica direction.
The source displayed in the [Source] window remain unchanged even if the program areais rewritten.

e If alarge memory area is rewritten a one time in ICE mode, a time-out error may occur, because such
operation takes along time.

304 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

db (dump byte) [ICD/ICE /SIM/MON]

B Function
This command displays the contents of the memory in a 16 bytes/line hexadecima dump format.

B Formats
(1) db (direct input mode)
(20 db <addressl> (direct input mode)

(3) db <addressl> <address2> (direct input mode)
<addressl>: Start addressto display (hexadecima or symbol)
<address2>: End addressto display (hexadecimal or symbol)
Condition: 0x0 < addressl < address? < Oxfffffff

H Display
(1) When [Memory] window is open
(I = 1=]| |n Format 1, the [Memory] window is
Ioao0non ¥ 0o Ga 0 an ah aa aa aa aa an an o an aa aa]| redisplayed beginning with address Ox0.
0000DIZ0 hA AA AA AA AA AA A4 A4 AR AR AR ad ad ad aa aa | |1 FOrmais2and 3, the[Memory] window is
§0aABAD Aa Aa Aa Aa Aa ha a4 ad ad ad ad ad ad aa aa aa | ioPIayed insuchaway that <addressl>is
0 AR AR AA RA AR AR AR AA AR AR AR AA AR AR AR AR displayaj at the uppermost line.

00080068 AA AA AR AA AA AR AR AR AA AR AR AR AA AR AR AR
B0AABA70 AA AA AR AA AA AR AR AA AR AR AR AA AA AR AR AR
B0AABABA AA AA AR AR AA AR AR AR AA AR AR AA AA AR AR AR
60880690 AA AR AR AR AA AR AR AR AR AR AR AR AR AR AR AR
000000A0 AA AA AR AA AA AR AR AA AR AR AR AA AR AR AR RRLI

Even when <address1> specifies somewhere in 16 addresses/line, datais displayed beginning with the top of
that line. For example, even though you may have specified address 0x8 for <address1>, data is displayed
beginning with address 0x0 as shown in the diagram. However, if an address near the uppermost part of the
memory, such as Oxfffff0, is specified for <address1>, the last line displayed in the window in this case is
Oxffffff0, that is, the specified addressis not at the top of the window.

Since the [Memory] window can be scrolled to show the entire memory, specification of <address2> in
Format 3 does not have any specific effect. In both Formats 2 and 3, the display you get is entirely the same.

@

~

When [Memory] window is closed
Dataisdisplayed in the [Command] window.
In Format 1, the db33 displays data for 16 lines (default) from address Ox0 before it stands by, waiting for a
command input.

>dbd

addr +0 +1 +2 +3 +4 +b +6 +7 +8 +9 +A +B +C +D +E +F
00000000 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
00000010 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

000000FO AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
>

In Format 2, the db33 displays data for 16 lines (default) from <address1> before it stands by, waiting for
command input. If the line at address Oxffffff0 is displayed, the db33 waits for command input regardless of
whether it has displayed all 16 lines.
If some midway address of alineis specified, columns preceding that address are | eft blank.

>db 7fff8.4

addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0007FFFO sk kk ckk kk kk kk kk kK
00080000 04 00 08 00 20 CO 08 6C 81 A0 08 6C 00 GO 03 1C

000800FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
>

"**" jndicates that the address is not mapped.

EOC33 FAMILY EPSON 305
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

3

4

G

~

=

~

In Format 3, the db33 displays data from <address1> to <address2> before it waits for command input. Even
when you specify adisplay range of more than 16 lines (default), display is hated at the 16th line (same asin

Format 2).
>db 0 174
addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00000000 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
00000010 AA AA AA AA AA AA AA AA
>

Number of linesdisplayed in the [Command] window

The number of lines displayed in the [Command] window by the db command every timeit is executed is set
to 16 by default. This default setting can be changed to any value within a range of 1 to 1,000 [lines] by the
md command.

Logging

To save the command execution results to a log file, close the [Memory] window and display the results in
the [Command] window. If the [Memory] window is opened, the display contents will not be saved in the file
because the [Command] window does not display the results.

Successive display
Once you execute the db command, data can be displayed successively with the [Enter] key only until some
other command is executed.
When you hit the [Enter] key, the [Memory] window is scrolled one full screen.
When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the
previously displayed address.
dbd
addr +0 +1 +2 +3 +4 +b +6 +] +8 +9 +A +B +C +D +E +F
00000000 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
00000010 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

000000F0 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
>

addr +0 +1 +2 +3 +4 +b +6 +7 +8 +9 +A +B +C +D +E +F
00000100 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
00000110 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

000001F0 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
>

(6) Using symbols

>db LABEL1.

H Notes

Both the start and end addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif this
limit is exceeded.
Error: Address range (0-OxFFFFFFF).

e Anerror resultsif the start addressis larger than the end address.

Error: addressl > address2

306

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

dh (dump half) [ICD/ICE /SIM/MON]

M Function

This command displays the contents of the memory in a8 haf words/line hexadecimal dump format.
Dataisdisplayed in the endian format specified with the parameter file (default: little endian).

B Formats
(1) dh (direct input mode)
(2) dh <addressl> (direct input mode)

(3) dh <addressl> <address2> (direct input mode)
<addressl>: Start addressto display (hexadecima or symbol)
<address2>: End addressto display (hexadecimal or symbol)
Condition: 0x0 < addressl < address? < Oxfffffff

H Display

(1) When [Memory] window is open

In Format 1, the [Memory] window is

adir D B b T - - I
0000000 ARGA ARAA ARAA ARAA ARAA ARAA ARKL ARRA redisplayed beginning with address 0x0.
00000010 ARAA ANAA AARA AARA AAAA ABAA BARL AAAA In Formats 2 and 3, the [Memory] window is

00000090 AAA AL ALAA AAMA AAAA ABAA ABGA AAAA , : -
00000030 ARAA AMAA AARL ARAA AAAA ABAL AAAA AAAD redisplayed in such away that <address1>is
00000040 A%A4 ALAL ALAA AAAA AAAA AGAA AGA AAAA displayed at the uppermost line.

00000050 AMAA AL ALAA AAAA AAAA ABAA ABGA AMAA
00000080 4444 AAAL AGAA AAAA AAAA ABAA AGA AAAA
00000070 %44 AAAL ALAL AAAA AAAA ABA AGL AAAA
00000080 AN AAAL AAAA AAMA AAAA ABAA ABGA AAAA

=l

Even when <address1> specifies somewhere in 16 addresses/line, data is displayed beginning with the top of
that line. For example, even though you may have specified address 0x8 for <address1>, data is displayed
beginning with address 0x0 as shown in the diagram. However, if an address near the uppermost part of the
memory, such as Oxfffff0, is specified for <address1>, the last line displayed in the window in this case is
Oxffffff0, that is, the specified addressis not at the top of the window.

Since the [Memory] window can be scrolled to show the entire memory, specification of <address2> in
Format 3 does not have any specific effect. In both Formats 2 and 3, the display you get is entirely the same.

@

~

When [Memory] window is closed
Dataisdisplayed in the [Command] window.
In Format 1, the db33 displays data for 16 lines (default) from address 0x0 before it stands by, waiting for a
command input.

>dha

addr +0 +2 +4 +6 +8 +A +C +E
00000000 AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA
00000010 AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA

000000F0 AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA
>

In Format 2, the db33 displays data for 16 lines (default) from <address1> before it stands by, waiting for
command input. If the line at address OxffffffO is displayed, the db33 waits for command input regardiess of
whether it has displayed all 16 lines.
If some midway address of alineis specified, columns preceding that address are | eft blank.

>dh 7fff84

addr +0 +2 +4 +6 +8 +A +C +E
0007FFFO skkk kkkk kkkk kkkok
00080000 0004 0008 C020 6C0O8 A081 6G08 CO00 1C03

000800F0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
>

"k ndicates that the address is not mapped.

EOC33 FAMILY EPSON 307
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

3

4

G

~

=

~

In Format 3, the db33 displays data from <address1> to <address2> before it waits for command input. Even
when you specify adisplay range of more than 16 lines (default), display is hated at the 16th line (same asin

Format 2).
>dh 0 174
addr 0 +2 +4 +6 +8 +A +C +E
00000000 AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA
00000010 AAAA AAAA AAAA AAAA
>

Number of linesdisplayed in the [Command] window

The number of lines displayed in the [Command] window by the dh command every timeit is executed is set
to 16 by default. This default setting can be changed to any value within a range of 1 to 1,000 [lines] by the
md command.

Logging

To save the command execution results to a log file, close the [Memory] window and display the results in
the [Command] window. If the [Memory] window is opened, the display contents will not be saved in the file
because the [Command] window does not display the results.

Successive display
Once you execute the dh command, data can be displayed successively with the [Enter] key only until some
other command is executed.
When you hit the [Enter] key, the [Memory] window is scrolled one full screen.
When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the
previously displayed address.
dhd
addr +0 +2 +4 +6 +8 +A +C +E
00000000 AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA
00000010 AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA

OOOObOFO AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA
>

addr 0 +2 +4 +6 +8 +A +C +E
00000100 AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA
00000110 AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA

000001F0 AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA
>

(6) Using symbols

>dh LABEL1.

H Notes

If any address is specified that is not aligned to half word boundaries, the LSB of the specified addressis set to
0 asthedisplay rangeis set.

Both the start and end addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif this
limit is exceeded.
Error: Address range (0-OxFFFFFFF).

e Aneror resultsif the start addressis larger than the end address.

Error: addressl > address2

308

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

dw (dump word) [ICD/ICE /SIM/MON]

B Function
This command displays the contents of the memory in a4 words/line hexadecimal dump format.
Dataisdisplayed in the endian format specified with the parameter file (default: little endian).

B Formats
(1) dw (direct input mode)
(2) dw <addressl> (direct input mode)

(3) dw <addressl> <address2> (direct input mode)
<addressl>: Start addressto display (hexadecima or symbol)
<address2>: End addressto display (hexadecimal or symbol)
Condition: 0x0 < addressl < address? < Oxfffffff

H Display

(1) When [Memory] window isopen

In Format 1, the [Memory] window is

P + +8 T - - L
00000000 ABABAAGS AAGAAAAL AAAAAAAN BAAALAAA E| redisplayed beginning with address 0x0.

00000010 ASAAAAAL AALAARAL AAAAARAL AAARAALA In Formats 2 and 3, the [Memory] window is
00000020 ABABARAL AALAARAD AAAAAANA ARARAAAL ; ; ;
00000030 ASAAAAAA ABARRAAL AAAAAAAA AAAXAAAA redisplayed in such away that <address1> is
00000040 ARABARAL ALARAALA AAARARAN ARARALLA displayed at the uppermost line.

00000050 ABABARAL AALAARAD AAAAAANA ARARAAAL
D000D0B0 ABABARAA AALAABAD AAAAAABA ABAAAAAR
00000070 ABABARAL AALAARAD ASAAAANA ALARAAAL
00000080 ABABARAL AALAARAD ASAAAANA ARARAAAL

=l

Even when <address1> specifies somewhere in 16 addresses/line, data is displayed beginning with the top
of that line. For example, even though you may have specified address 0x8 for <address1>, datais displayed
beginning with address 0x0 as shown in the diagram. However, if an address near the uppermost part of the
memory, such as Oxfffff0, is specified for <address1>, the last line displayed in the window in this case is
Oxffffff0, that is, the specified addressis not at the top of the window.

Since the [Memory] window can be scrolled to show the entire memory, specification of <address2> in
Format 3 does not have any specific effect. In both Formats 2 and 3, the display you get is entirely the same.

@

~

When [Memory] window is closed
Datais displayed in the [Command] window.
In Format 1, the db33 displays data for 16 lines (default) from address 0x0 before it stands by, waiting for a
command input.

>dw.

addr +0 +4 +8 +C
00000000 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
00000010 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA

000000F0 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
>

In Format 2, the db33 displays data for 16 lines (default) from <address1> before it stands by, waiting for
command input. If the line at address OxffffffO is displayed, the db33 waits for command input regardiess of
whether it has displayed all 16 lines.
If some midway address of alineis specified, columns preceding that address are | eft blank.

>dw 7fff84

addr +0 +4 +8 +C
0007FFFO sokskskkokokok kokokokokkdok
00080000 00080004 6C08C020 6C08A081 1C03CO00

000800F0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
>

"rkkkxxxk! ndicates that the addressis not mapped.

EOC33 FAMILY EPSON 309
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

3

4

G

~

=

~

In Format 3, the db33 displays data from <address1> to <address2> before it waits for command input. Even
when you specify adisplay range of more than 16 lines (default), display is hated at the 16th line (same asin

Format 2).
>dw 0 174
addr +0 +4 +8 +C
00000000 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
00000010 AAAAAAAA AAAAAAAA
>

Number of linesdisplayed in the [Command] window

The number of lines displayed in the [Command] window by the dw command every timeit is executed is set
to 16 by default. This default setting can be changed to any value within a range of 1 to 1,000 [lines] by the
md command.

Logging

To save the command execution results to a log file, close the [Memory] window and display the results in
the [Command] window. If the [Memory] window is opened, the display contents will not be saved in the file
because the [Command] window does not display the results.

Successive display

Once you execute the dw command, data can be displayed successively with the [Enter] key only until some
other command is executed.

When you hit the [Enter] key, the [Memory] window is scrolled one full screen.

When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the

previously displayed address.
>dw.
addr +0 +4 +8 +C

00000000 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
00000010 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA

OOOObOFO AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
>

addr +0 +4 +8 +C
00000100 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
00000110 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA

00000200 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
>

(6) Using symbols

>dw LABEL1.

H Notes

If any address is specified that is not aligned to word boundaries, the two least significant bits of the specified
address are set to 0 as the display rangeis set.

Both the start and end addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif this
limit is exceeded.
Error: Address range (0-OxFFFFFFF).

e Aneror resultsif the start addressis larger than the end address.

Error: addressl > address2

310

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

df (dump file) [ICD/ICE/SIM/MON]

B Function
This command outputs the contents of the memory in a 16 byte/line hexadecimal dump format as a text or binary

file

B Formats
df (guidance mode)

B I nput examples
Following the guidance prompt, enter the address range to be written to afile, file format and the file name.

>dfd

Start address :00600000. ... Start addressis input.
End address :0061ffffd ... End addressisinput.

File type (1.Binary 2.Text) ...? 24 ... Fileformat is selected.
File name ? @ df. txtJ ... File nameisinput.

Processing 00600000-00607FFF address.
Processing 00608000-0060FFFF address.
Processing 00610000-00617FFF address.
Processing 00618000-0061FFFF address.
>

The specified fileis created as follows (in case of text format):

addr +0 +1 +2 +3 +4 +b +6 +7 +8 +9 +A +B +C +D +E +F
00600000 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46
00600010 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46
00600020 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

H Notes
¢ Both the start and end addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif this
limit is exceeded.
Error: Address range (0-OxFFFFFFF).

e Anerror resultsif the start addressis larger than the end address.
Error: addressl > address2

EOC33 FAMILY EPSON 311

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

eb (enter byte) [ICD/ICE/SIM/MON]

B Function

This command rewrites the contents of the memory with the entered byte data (hexadecimal).

Data can be written to continuous memory locations beginning with a specified address, according to guidance
mode.

B Formats
1) eb (guidance mode)
(2) eb <address> (guidance mode)

<address>: Start address from which to write data (hexadecimal or symbol)
Conditions: 0x0 < address < Oxfffffff, 0x0 < data < Oxff

B | nput examples
Addresses and current data are displayed as guidance.

Format 1) >eb.

Enter address ? :0. ...Start addressisinput.
00000000 AA :00.d ...Dataisinput in hexadecimal.
00000001 AA :qJ ...Command is terminated.

>

Format2) >eb 04

00000000 AA :004

00000001 AA " ...Returned to the previous address.

00000000 00 :. ...Input is skipped.

00000001 AA :q.

>

In both of these examples, the content of address 0xO0 is rewritten with data 0x00.
addr +0 +1 +2 +3 +4 +b +6 +] +8 +9 +A +B +C +D +E +F

00000000 00 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

Using symbols)
>eb CAHR14

H Notes
e The start address specified here must be within the range of 0 to Oxfffffff. An error results if this limit is
exceeded. In Format 1, guidance is displayed to prompt you to input an address again. In Format 2, your
command input is canceled.
Error: Address range (0-OxFFFFFFF).

e For unused addresses in the memory map, data is marked by "**" as displayed on the screen. Although it is
possible to specify an unused address or display guidance, entering data in this case results in an error. If you
encounter any address marked by "**", hit the [Enter] key to skip that address or terminate the command.

Error: No map area.

e Data must be input by using a hexadecimal number in the range of 8 bits (0 to 0xff). An error results if this
limit is exceeded. Guidance is displayed to prompt you to input data at the same address again.
Error: Data range (0-OxFF).

¢ During guidance-assisted input, the addresses are not changed even when you perform an operation to move to
an address ahead of address 0 or an operation that results in exceeding address Oxfffffff.

e The eb command does not update the display contents of the [Memory] and [Source] windows. To update the
display contents, redisplay the window with the display command or scroll the window in the vertical direction.
The source displayed in the [Source] window remain unchanged even if the program areais rewritten.

312 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

eh (enter half) [ICD/ICE /SIM/MON]

W Function

This command rewrites the contents of the memory with the entered half word data (hexadecimal).

Data can be written to continuous memory locations beginning with a specified address, according to guidance
mode. The memory isrewritten in the endian format specified with the parameter file (default: little endian).

B Formats
1) eh (guidance mode)
(2) eh <address> (guidance mode)

<address>: Start address from which to write data (hexadecimal or symbol)
Conditions: 0x0 < address < Oxffffffe (half word boundary), 0x0 < data < Oxffff

B | nput examples
Addresses and current data are displayed as guidance.

Format 1) >ehd

Enter address ? :0. ...Start addressisinput.
00000000 AAAA :1234. ...Dataisinput in hexadecimal.
00000002 AAAA g ...Command is terminated.

>

Format 2) >eh 04
00000000 AAAA :1234.1

00000002 AAAA "4 ...Returned to the previous address.
00000000 1234 ...Input is skipped.

00000002 AAAA :qu

>

In both of these examples, the content of address 0x0 (to Ox1) is rewritten with data 0x1234 (in case of
little endian format).
addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00000000 34 12 AA AA AA AA AA AA AA AA AA AA AA AA AA AA
Using symbols)
>eh VAR1d

H Notes
e Since data is rewritten in units of 16 bits, specify a half word boundary address (even address) for the start
address. If odd address is specified, awarning is generated and the LSB of the specified address is rewritten to
0.
Warning: Round down to multiple of 2.

e The start address specified here must be within the range of 0 to Oxfffffff. An error results if this limit is
exceeded. In Format 1, guidance is displayed to prompt you to input an address again. In Format 2, your
command input is canceled.

Error: Address range (0-OxFFFFFFF).

e For unused addresses in the memory map, datais marked by "****" as displayed on the screen. Although it is
possible to specify an unused address or display guidance, entering datain this case results in an error. If you
encounter any address marked by "****" hit the [Enter] key to skip that address or terminate the command.

Error: No map area.

e Data must be input by using a hexadecimal number in the range of 16 bits (0 to Oxffff). An error results if this
limit is exceeded. Guidance is displayed to prompt you to input data at the same address again.
Error: Data range (0-OXFFFF).

¢ During guidance-assisted input, the addresses are not changed even when you perform an operation to move to
an address ahead of address 0 or an operation that results in exceeding address Oxfffffff.

e The eh command does not update the display contents of the [Memory] and [Source] windows. To update the
display contents, redisplay the window with the display command or scroll the window in the vertical direction.
The source displayed in the [Source] window remain unchanged even if the program areais rewritten.

EOC33 FAMILY EPSON 313
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

ew (enter word) [ICD/ICE/SIM/MON]

W Function

This command rewrites the contents of the memory with the entered word data (hexadecimal).

Data can be written to continuous memory locations beginning with a specified address, according to guidance
mode. The memory isrewritten in the endian format specified with the parameter file (default: little endian).

W Formats
1) ew (guidance mode)
(2) ew <address> (guidance mode)

<address>: Start address from which to write data (hexadecimal or symbol)
Conditions: 0x0 < address < Oxffffffc (word boundary), 0x0 < data < Oxffffffff

B | nput examples
Addresses and current data are displayed as guidance.

Format 1) >ew.]

Enter address ? :0d ...Start address isinput.
00000000 AAAAAAAA 112345678 ...Dataisinput in hexadecimal.
00000002 AAAAAAAA g ...Command is terminated.

>

Format 2) >ew 04
00000000 AAAAAAAA 12345678

00000002 AAAAAAAA :~Returned to the previous address.
00000000 12345678 :Input is skipped.

00000002 AAAAAAAA g

>

In both of these examples, the content of address 0x0 (to 0x3) is rewritten with data 0x12345678 (in
case of little endian format).
addr +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00000000 78 56 34 12 AA AA AA AA AA AA AA AA AA AA AA AA
Using symbols)
dew i

H Notes
e Since dataisrewritten in units of 32 bits, specify aword boundary address for the start addresses. If an invalid
address is specified, a warning is generated and the two least significant bits of the specified address is
rewritten to 0.
Warning: Round down to multiple of 4.

e The start address specified here must be within the range of 0 to Oxfffffff. An error results if this limit is
exceeded. In Format 1, guidance is displayed to prompt you to input an address again. In Format 2, your
command input is canceled.

Error: Address range (0-OxFFFFFFF).

e For unused addresses in the memory map, data is marked by "********" a5 displayed on the screen. Although
it is possible to specify an unused address or display guidance, entering data in this case results in an error. If
you encounter any address marked by "******xxt it the [Enter] key to skip that address or terminate the
command.

Error: No map area.

e Data must be input by using a hexadecimal number in the range of 16 bits (0 to Oxffffffff). An error results if
thislimit is exceeded. Guidance is displayed to prompt you to input data at the same address again.
Error: Data range (0-OxXFFFFFFFF).

e During guidance-assisted input, the addresses are not changed even when you perform an operation to move to
an address ahead of address 0 or an operation that results in exceeding address Oxfffffff.

e The ew command does not update the display contents of the [Memory] and [Source] windows. To update the
display contents, redisplay the window with the display command or scroll the window in the vertical direction.
The source displayed in the [Source] window remain unchanged even if the program areais rewritten.

314 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

mv (move) [ICD/ICE /SIM/MON]

B Function
This command copies the contents of a specified memory areato another areain byte units.

B Formats
1 mv (guidance mode)
(20 mv <addressl> <address2> <address3> (direct input mode)

<address1>: Start address of source areato be copied from (hexadecimal or symbol)
<address2>: End address of source areato be copied from (hexadecima or symbol)
<address3>: Address of destination area to be copied to (hexadecimal or symbol)
Conditions: 0x0 < addressl < address? < Oxfffffff, 0x0 < address3 < Oxfffffff

B | nput examples

Format 1) >mv.J
Start address ? :0004 ...Start address of the source areaisinput.
End address ? :0ffd ...End address of the source areaiis input.
Destination address ? :300. ...Destination addressisinput.
>

= Command execution can be canceled by entering the [Enter] key only.
Format2) >mv 0 ff 3004
>
In both of these examples, the contents of the memory area from address Ox0 to Oxff are copied to
locations following 0x300.

Using symbols)
>mv LABEL1 LABEL2 LABEL3.J

H Notes
e The addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif thislimit is exceeded.
In Format 1, guidance is displayed prompting you to input an address again. In Format 2, the command input is
canceled.
Error: Address range (0-OxFFFFFFF).

e Anerror resultsif the start address of the source area to be copied from is larger than its end address.
Error: addressl > address2

o If an unmapped areaisincluded in the specified range of source addresses, the datain that areais assumed to be
0xf0 as dataiis copied from the source to the destination.

e |f an unmapped area is included in the specified range of destination addresses, data is copied to only the
effective locations, not including the unmapped area.

o If the destination address is smaller than the start address of the source area, data is first copied sequentially
from the start address. Conversdly, if the destination address is larger than the start address of the source area,
datais first copied sequentially from the end address. Consequently, data is copied normally even when the
destination address is set within the source areato be copied from.

e |f the end address of the destination area exceeds Oxfffffff, the move operation is terminated when data is
copied up to that address location.

e Themv command does not update the display contents of the [Memory] and [Source] windows. To update the
display contents, redisplay the window with the display command or scroll the window in the vertical direction.
The source displayed in the [Source] window remain unchanged even if the program areais rewritten.

o If alarge memory area is copied all at once in ICE mode, a time-out error may occur due to the size of the
operation.

EOC33 FAMILY EPSON 315
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

mvh (move half) [ICD/ (ICE) / SIM / MON]

W Function
This command copies the contents of a specified memory area to another area in haf word units. Data is copied
after converting into the set endian format if it is different between the source area and destination area

B Formats
(1) mvh (guidance mode)
(20 mvh <addressl> <address2> <address3> (direct input mode)

<address1>: Start address of source area to be copied from (hexadecimal or symbol)
<address2>: End address of source areato be copied from (hexadecimal or symbol)
<address3>: Address of destination area to be copied to (hexadecimal or symbol)
Conditions: 0x0 < addressl < address2 < Oxfffffff, 0xO < address3 < Oxfffffff

B Input examples

Format 1) >mvhd

Start address ? :0004 ...Start address of the source areais input.
End address ? :0ffd ...End address of the source areais input.
Destination address ? :300. ...Destination addressisinpuit.

>

= Command execution can be canceled by entering the [Enter] key only.
Format2) >mvh 0 ff 300
>
In both of these examples, the contents of the memory area from address Ox0 to Oxff are copied to
locations following 0x300.

Using symbols)
>mvh LABEL1 LABEL2 LABEL3.4

H Notes

o |If any address is specified that is not aligned to half word boundaries, the LSB of the specified address is
corrected to 0.

e The addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif thislimit is exceeded.
In Format 1, guidance is displayed prompting you to input an address again. In Format 2, the command input is
canceled.

Error: Address range (0-OxFFFFFFF).

e Aneror resultsif the start address of the source area to be copied from islarger than its end address.
Error: addressl > address2

o If an unmapped areaisincluded in the specified range of source addresses, the datain that areais assumed to be
0xfO as datais copied from the source to the destination.

e If an unmapped area is included in the specified range of destination addresses, data is copied to only the
effective locations, not including the unmapped area.

o |f the destination address is smaller than the start address of the source area, data is first copied sequentially
from the start address. Conversdly, if the destination address is larger than the start address of the source area,
datais first copied sequentially from the end address. Consequently, data is copied normally even when the
destination address is set within the source areato be copied from.

o If the end address of the destination area exceeds Oxfffffff, the move operation is terminated when data is
copied up to that address location.

e Themvh command does not update the display contents of the [Memory] and [Source] windows. To update the
display contents, redisplay the window with the display command or scroll the window in the vertical direction.
The source displayed in the [Source] window remain unchanged even if the program areais rewritten.

o If alarge memory area is copied all at once in ICE mode, a time-out error may occur due to the size of the
operation.

e When using this command in |CE mode, the ICE firmware must be Ver. 2.0 or higher.
If the versionisless than 2.0, datawill be copied in byte units.

316 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

mvw (move word) [ICD/ (ICE) / SIM / MON]

W Function
This command copies the contents of a specified memory area to another areain word units. Data is copied after
converting into the set endian format if it is different between the source area and destination area.

B Formats
1) mvw (guidance mode)
(20 mvw <addressl> <address2> <address3> (direct input mode)

<address1>: Start address of source area to be copied from (hexadecimal or symbol)
<address2>: End address of source areato be copied from (hexadecimal or symbol)
<address3>: Address of destination area to be copied to (hexadecima or symbol)
Conditions: 0x0 < addressl < address2 < Oxfffffff, OxO < address3 < Oxfffffff

B I nput examples

Format 1) >mvw.
Start address ? :0004 ...Start address of the source areaisinput.
End address ? :0ffd ...End address of the source areaiisinput.
Destination address ? :300. ...Destination addressisinput.

* Command execution can be canceled by entering the [Enter] key only.
Format2) >mvw 0 ff 300
>
In both of these examples, the contents of the memory area from address 0x0 to Oxff are copied to
locations following 0x300.

Using symbols)
>mvw LABEL1 LABEL2 LABEL3.

H Notes
o |f any address is specified that is not aligned to word boundaries, the low-order 2 bits of the specified address
are corrected to 0.

e The addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif thislimit is exceeded.
In Format 1, guidance is displayed prompting you to input an address again. In Format 2, the command input is
canceled.

Error: Address range (0-OxFFFFFFF).

e Anerror resultsif the start address of the source area to be copied from is larger than its end address.
Error: addressl > address2

e |f an unmapped areaisincluded in the specified range of source addresses, the datain that areais assumed to be
0xfO as datais copied from the source to the destination.

e |f an unmapped area is included in the specified range of destination addresses, data is copied to only the
effective locations, not including the unmapped area.

o |f the destination address is smaller than the start address of the source area, data is first copied sequentially
from the start address. Conversdly, if the destination address is larger than the start address of the source area,
datais first copied sequentially from the end address. Consequently, data is copied normaly even when the
destination address is set within the source area to be copied from.

o If the end address of the destination area exceeds Oxfffffff, the move operation is terminated when data is
copied up to that address location.

e The mvw command does not update the display contents of the [Memory] and [Source] windows. To update
the display contents, redisplay the window with the display command or scroll the window in the vertical
direction.

The source displayed in the [Source] window remain unchanged even if the program areais rewritten.

o If alarge memory area is copied all at once in ICE mode, a time-out error may occur due to the size of the
operation.

¢ When using this command in ICE mode, the | CE firmware must be Ver. 2.0 or higher.
If the version is lessthan 2.0, datawill be copied in byte units.

EOC33 FAMILY EPSON 317
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

w (watch) [ICD/ICE/SIM/MON]

M Function

This command registers four memory locations as the watch data addresses. Memory contents equivaent to 4
bytes at each watch address are displayed in the [Register] window.

B Format
w (guidance mode)

B Input example

As guidance, the watch data addresses currently set at four locations are displayed sequentially beginning with the
lowest address. Skip the watch address that you do not want to be modified by entering the [Enter] key only. Enter
a new address for the watch address that you want to be modified. You can aso use the [*] key (returns to the
previous address) and the [q] key (quit).

oW
Address1 00000000 11004 ..Watch addressisinput.
Address2 00000004 11044
Address3 00000008 lid ..Variablei is specified.
Address4 00000006 o ...Not changed.
>

H Notes

e When the db33 starts up, four locations a addresses O, 4, 8, and Oxc are initialy set as the watch data
addresses.

e The addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif thislimit is exceeded.
Guidance is displayed prompting you to input an address again.
Error: Address range (0-OxFFFFFFF).
e Thewatch data addresses are set in units of 4 bytes. A warning results if you specify an address that is outside

the word boundary, with your specified address rounded down to a multiple of 4 (lower 2 bits are 0).
Warning: Round down to multiple of 4.

e Beaware that a value is displayed as the watch data even if an address that is not mapped is registered. The
vauein this case is 0xf0 in simulator mode and indeterminate in |CE mode.

e Thewatch dataisdisplayed in the endian format specified by the parameter file.

318 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

rm (read memory) [IcD]

B Function

This command reads the program on the target board to the debugger. The read data is used for trace analysis to
reflect the change. This command should be used after the program on the target memory is modified using a
memory operation command or another method.

B Formats

1) rm (guidance mode)

(20 rm <addressl> <address2> (direct input mode)
<addressl>: Start address of the areato be read (hexadecimal or symbol)
<address2>: End address of the area to be read (hexadecimal or symbol)
Condition: 0x0 < addressl < address? < Oxfffffff

B | nput examples
Format 1) >rm.

Start address ? @ 0 ...Start addressisinput.
End address ? : 7fed ...End addressisinput.
>

* Command execution can be canceled by entering the [Enter] key only.
Format2) >rm 0 7fed
>

In both of these examples, the contents of the target memory from 0x0 to Ox7fe isread in the debugger.

Using symbols)
>rm LABEL1 LABEL2.

H Notes
¢ Both the start and end addresses specified here must be within the range of 0 to Oxfffffff. An error resultsif this
limit is exceeded.
Error: Address range (0-OxFFFFFFF).

e Aneror resultsif the start addressislarger than the end address.
Error: addressl > address2

EOC33 FAMILY EPSON 319
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.3 Commands to Operate on Register

rd (register display)

[ICD/ICE / SIM / MON]

B Function

This command displays the contents of the registers, execution counter, and watch data.

B Format
rd

H Display
(1) Contentsof display

The following lists the contents displayed by this command.

PC:

PC -=00080026 RO-R15:
R6 =PAGAEECY RS -0OOAAGAO sp:

R1 =AAAAAAAA RO =0OOAGOOO :

R2 =AAAAAAAA R10-00800065 PSR:

R3 =AAAAAAAA R11=00000000 AHR:
R4 =AAAAAAAA R12=008808061

RS =ARAAAAAA R13=AAAAAAARA ALR:
R6 =AAAAAAAA R14=AAAAAAAA IL:

R7 =AAAAAAAA R15=AAAAAAAA .

SP —000007FS PSR=00000000 MO:
AHR=AAAAAAAR ALR=ARAAAAAA DS:
ILMO DS IE C U 2 N IE:

B @ 8 B @ B @8 8 C'.
8080082336 cyclefinst V:
[ABAAAAA]=06000065

[00000084 |=AAAARAARA Z:
[ABBAABA8]=AAAAAAAA N:
[BBBAABAC]=AAAAAAAA s us

4] | || cyclefinst:

[XXXXXXXX]:

Program counter
General-purpose register

Stack pointer

Processor status register
Arithmetic operation high register
Arithmetic operation low register
Interrupt level

MAC overflow flag

Dividend sign flag

Interrupt enable flag

Carry flag

Overflow flag

Zeroflag

Negative flag

Execution time (effective only in ICE/ICD mode)
Execution cycle/instruction count
Watch data at four locations

* Watch datais always displayed even if it residesin an unused area, so be careful.

(2) When the [Register] window isopen

When the [Register] window is open, al of the above contents are displayed in the [Register] window
according to the program execution. When you use the rd command, the display of the [Register] window is

updated.

(3) When [Register] window is closed
Datais displayed in the [Command] window in the same format as the [Register] window.

(4) Logging
To save the command execution results to a log file, close the [Register] window and display the results in
the [Command] window. If the [Register] window is opened, the display contentswill not be saved in thefile
because the [Command] window does not display the results.

320 EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

rs (register set) [ICD /ICE / SIM / MON]

B Function
This command modifies the register values.

M Formats

@
@

(guidance mode)
<name> <data> (direct input mode)

<name>: Register name or flag name
<data>: Datato be set (hexadecimal)

B I nput examples

Format 1) The name of each register and its current value are displayed as guidance. Skip the register that you do

not want to be modified by hitting the [Enter] key only. Input a new vaue using a hexadecima number
for the register that you do want to be modified. You also can use the [*] key (returns to the previous

address) and the [g] key (quit).
>rsd

PG =00080004: 1

RO =AAAAAAAA:0.J

R1 =AAAAAAAA:0.J

R2 =AAAAAAAA:0J

R14=AAAAAAAA: O
R15=AAAAAAAA: 0
IL = :
MO =
DS =
IE
C
Vv
YA
N
SP =AAAAAAA8: 100
AHR=AAAAAAAA: 0
ALR=AAAAAAAA: 0

>

After you execute the command, the [Register] window is updated to show the contents you have

input.

If you used the [q] key to stop entering in the middle, the contents input up to that time are updated.

Seeeeee®
tttttttt

Format2) >rs r0 0J ...RO register is modified.

M Notes
An error results if you input a value exceeding the effective bit size of the register/flag. In Format 1, a guidance
is displayed prompting you to input data again. In Format 2, command input is canceled.

>rs ¢ 14 ..Cflagissat.

Error: Invalid value.

The set value of the PC is forcibly rounded down to 16-bit boundaries (LSB = 0). Even when an odd addressis
specified, no error is assumed.

The set value of the SPisforcibly rounded down to 32-bit boundaries (low-order 2 bits = 0).

EOC33 FAMILY EPSON 321
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.4 Commands to Execute Program

g9

(go) [ICD/ICE/SIM/MON]

M Function
This command executes the target program from the current PC address.

B Formats
@ g (direct input mode)
(2) g <address> (direct input mode)

<address>: Temporary break address (hexadecimal, symbol or source line number)
Condition: 0x0 < address < Oxffffffe

H Operation

®

@

~

@3

=

Operation of format 1
>gd

The same function as this command input can be performed by selecting the [Go] command on the [Run]
menu or the [Go] button on the tool bar.

—lrl [Go] button

The target program is executed from the address indicated by the PC. Program execution is continued until it
is made to bresk for one of the following causes:

o The set break condition is met

» The [Key break] button is clicked (not supported in debug monitor mode)

o A map bresk, etc., occurs

Operation of format 2
In Format 2, atemporary break address can be specified. The break addresses set here remain effective until
some other command is executed.

>g 80100
>g main. ctt20. ...Specification with aline number
>g SUB14 ...Specification with a symbol

The same function as this command input can be performed by selecting the [Go to] command on the [Run]
menu or the [Go to] button on the tool bar. In this case, the temporary break address must be specified by
clicking on the desired address line in the [Source] window before the command can be executed. The
address on the line where the cursor is located during execution is the temporary break address.

-lr|| [Go to] button

The target program is executed from the address indicated by the PC. Program execution is made to break by
one of the causes listed in (1) above or when an instruction at the specified temporary break address is
fetched (the break occurs before executing that instruction).

Entering the [Enter] key after break
When program execution breaks, the db33 stands by waiting for a command input after displaying a break
status message (see Section 16.11.1).

Example: Break by temporary break.
>

When you hit the [Enter] key here, program execution is resumed from the PC address (bresk address).
Temporary break address settings are also valid.

322

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(4) Window display by program execution

<ICE mode>

In theinitial debugger settings, the on-the-fly function isturned on.

During program execution, the PC, flag, and watch data contents in the [Register] window are updated in rea
time every 1-0.1 seconds by the on-the-fly function. All other contents are left blank.

If the [Register] window is closed, the above contents are displayed in the [Command] window. The
on-the-fly function can be turned off by the md command. In this case, al numeric vaues in the [Register]
window areleft blank during program execution. The [Register] window is updated after abreak.

The [Source] window is updated after a break in such a way that the break address is displayed within the
window.

If the [Trace] window is open, the display contents are cleared as the program is executed. To update this
display, use the td or the ts command after a break.

If the [Memory] window is open, the display contents are cleared as the program is executed. It is updated
after abreak.

<Other modes>
In other modes, the on-the-fly display above is disabled. For this reason, all numeric values in the [Register]
window areleft blank during program execution. The [Register] window is updated after abreak.

The [Source] window is updated after a break in such a way that the break address is displayed within the
window.

If the [Trace] window is open with the trace mode turned on, the trace results are successively displayed as
the program is executed. If the [Trace] window is closed, the trace results are displayed in the [Command)]
window. No trace results are displayed if the trace mode is turned off or when the trace information is being
saved to afile.

If the [Memory] window is open, the display contents are cleared as the program is executed. It is updated
after abreak.

(5) Savingon-the-fly information to log file
To save the on-the-fly information to a file, close the [Register] window and display the information in the
[Command] window.

(6) Execution counter
The execution counter displayed in the [Register] window indicates the number of cycles/instructions
executed or the execution time (only in ICE/ICD mode) of the target program. (See Section 16.8.5 for
details.)
Intheinitial debugger settings, the execution counter is set to an integration mode. If this mode is changed to
areset mode by the md command, the execution counter is cleared to 0 each time the g command is executed.
The counter is also reset simultaneously when execution is restarted by hitting the [Enter] key.

M Notes

The temporary break address must be specified within the range of the program memory area available for each
microcomputer model. An error results if thislimit is exceeded.

Error: Addressrange (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.

Error: No map area. ...If an unused address is specified.

If for atemporary breakpoint you specify a source line that does not have areal code by aline number or in the
[Source] window, the temporary breakpoint is set at the address of the code that exists immediately after the
specified line.

If the current PC is a boot address (0x80000 or 0xc00000), the CPU is cold reset immediately before the db33
starts executing the program.

EOC33 FAMILY EPSON 323
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

s (step) [ICD/ICE/SIM/MON]

B Function
This command single-steps the target program by executing one instruction at a time, beginning with the current
PC position.

B Formats

2 s (direct input mode)

(2) s <step> (direct input mode)
<step>: Number of steps to be executed (decimal)
Condition: 0 < step < 65535

H Operation

(1) Unitsof single-stepping oper ation
In this single-stepping operation, the program is executed in units of addresses or source codes — i.e., one
address or source code at a time — depending on the [Source] window's display mode as shown below:
Disassemble display mode: Address units
Mixed display mode: Address units
Source display mode: Source code units

(2) Operation of Format 1
>sd

* The same function as this command input can be obtained by selecting the [Step] command on the [Run]
menu or the [Step] button on the tool bar.

*, | [Step] button

The program at the address indicated by the PC executes one step.

(3) Operation of Format 2
>s 104
The program executes a specified number of steps from the addressindicated by the PC.
Program execution is terminated due to one of the break factors even before the specified number of stepsis
compl eted.

(4) Hitting the [Enter] key after the end of execution
When program execution is completed by stepping through instructions, the db33 stands by waiting for
command input. If you hit the [Enter] key here, the db33 single-steps the program in the same way again.

(5) Window display during single-stepping
Intheinitial debugger settings, the display is updated every step as follows:
When the [Source] window is open, the underline designating the next address to be executed moves every
step as the program is stepped through. The display contents of the [Register] window are also updated every
step. This default display mode (all steps display mode) can be switched over by the md command so that the
display contents are updated at only the last step in a specified number of steps (last step display mode).
Unlike in successive executions (g command), the [Register] window is not blanked even if the execution is
not terminated immediately.
If the [Memory] window is open, the display contents are updated every step.
If the [Trace] window is open in ICE/ICD mode, the display contents are cleared as the program is executed.
To update this display, usethe td or the ts command after the specified steps are executed.
If the [Trace] window is open with the trace mode turned on in simulator mode, the trace results are
successively displayed as the program is executed. If the [Trace] window is closed, the trace results are
displayed in the [Command] window. No trace results are displayed if the trace mode is turned off or when
the trace information is being saved to afile.

324 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(6) HALT and SLEEP statesand interrupts

In the ICES33, interrupts are disabled during single-stepping.

The halt and dlp instructions are executed even during single-stepping, in which case the CPU is placed in a
standby mode. The CPU can be released from the standby mode by generating an external interrupt or by
pressing the [Key break] button.

(7) Execution counter

The execution counter displayed in the [Register] window indicates the number of cycles/instructions
executed or the execution time (only in ICE/ICD mode) of the target program. (See Section 16.8.5 for
details.)

Intheinitial debugger settings, the execution counter is set to an integration mode. If this mode is changed to
areset mode by the md command, the execution counter is cleared to O each time the s command is executed.
The counter is also reset simultaneously when execution is restarted by hitting the [Enter] key.

H Notes

The number of stepsin Format 2 must be specified within the range of 0 to 65535. An error resultsif this limit

is exceeded.
Error: Step range (0-65535).

If the current PC is a boot address (0x80000 or 0xc00000), the CPU is cold reset immediately before the db33
starts executing the program.

When an infinity-loop such as "jp 0x0" is executed in source-level stepping, the step operation will not be
terminated. In this case, forcibly terminate the execution using the [Key break] button.

EOC33 FAMILY EPSON 325
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

n (next) [ICD/ICE/SIM/MON]

B Function
This command single-steps the target program by executing one instruction at a time beginning with the current
PC position.

B Formats
@ n (direct input mode)
(2) n <step> (direct input mode)

<step>: Number of steps executed (decimal)
Condition: 0 < step < 65535

* The same function as the command input in Format 1 can be obtained by selecting the [Next] command on
the [Run] menu or the [Next] button on the tool bar.

af‘l [Next] button

H Operation

This command basically operates in the same way as the s command.

However, the difference is that if a C source function call or assembly source subroutine call is encountered, each
called function or subroutine is executed as one step. For other functions, refer to its explanation of scommand.

H Note
The number of steps in Format 2 must be specified within the range of 0 to 65535. An error results if this limit is
exceeded.

Error: Step range (0-65535).

326 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.5 Commands to Reset CPU
rstc (cold reset CPU) [ICD/ICE/SIM/MON]

B Function
This command cold-resets the CPU.

B Format
rstc (direct input mode)

% The same function as this command input can be obtained by selecting the [Reset cold] command on the
[Run] menu or the [Reset cold] button on the tool bar.

() | [Reset cold] button

H Contents of reset
When the CPU is reset, the internal circuits areinitialized as follows:

(1) Internal registersof the CPU

RO-R15: Oxaazaaaaa.

PC: Boot address (address pointed by the content of 0x80000 or 0xcO0000)
SP: 0xOaaaaa228

PSR: 0x00000000

AHR, ALR: Oxaassasaa
(2) Theexecution counter isreset to 0.

(3) The[Source] and [Register] windows areredisplayed.
Because the PC is set to the boot address, the [Source] window is redisplayed beginning with that address.
The [Register] window is redisplayed with the internal registersinitialized as described above.

The memory contents and the debugging status such as break and trace conditions are not modified.
Refer to the "Technical manua" of each model for the bus and 1/0O initial statuses when using in a mode other than
simulator mode.

H Note
The function of the rstc command changes according to the debugger mode.

ICE mode
The process above is executed and the EOC33 chip is also reset. The target board is not reset.

ICD mode

The process above is executed and the EOC33 chip is also reset. The target board is not reset.

Furthermore, when the target system is in a free-run state, the rstc command suspends the program execution
forcibly before resetting. The target system connected to the ICD33 enters a free-run state when the target board is
reset. The rstc command can be used to suspend the program execution in this case.

Debug monitor mode
The rstc command functions the same as the rsth command. It does not reset the EOC33 chip and does not initiaize
the TTBR register.

Simulator mode
The boot address is determined by the MCU/MPU specification in the parameter file.

EOC33 FAMILY EPSON 327
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

rsth (hot reset CPU) [ICD/ICE/SIM/MON]

M Function
This command hot-resets the CPU.

B Format
rsth (direct input mode)

* The same function as this command input can be obtained by selecting the [Reset hot] command on the
[Run] menu or the [Reset hot] button on the tool bar.

Lok} | [Reset hot] button

M Contents of reset

The registers and execution counter are initialized and the windows are redisplayed in the same way as for the rstc
command.

The PC vaue (boot address) is specified by the TTBR register.

The memory contents and the debugging status such as break and trace conditions are not modified.

When using in ICE mode, the bus and 1/0O statuses are maintained.

328 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.6 Interrupt Command

int (interrupt) [SIM]

W Function

This command simulates the generation of interrupts.

When you specify an interrupt type with this command, your specified interrupt is generated the next time the
db33 starts executing the program.

B Formats

(1) int (direct input mode)

(2 int <type> <level> (direct input mode)
<type>: Interrupt type (decimal)
<level>: Interrupt level (decimal)
Conditions: 0<type<215,0<level <15

B Input examples

Format 1) >intd
When the parameters are omitted, the db33 will issuer aNMI.

Format2) >int 3 6
In Format 2, anumber and level of a maskable interrupt can be set.

H Notes
e Theint command can only be used in simulator mode.

e Theinterrupt type must be specified within the range of 0 to 215. An error results if thislimit is exceeded.
Error: Interrupt type (0-215).

e Theinterrupt level must be specified within the range of 0 to 15. An error resultsif thislimit is exceeded.
Error: Interrupt level (0-15).

o TTBRis€ffective evenin simulator mode.

EOC33 FAMILY EPSON 329
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.7 Commands to Set Breaks

bp (break point set) [ICD/ICE/SIM/MON]

W Function

This command sets and clears software PC breakpoints and displays the breakpoints set. When the PC matches the
set address as the program is executed, the program breaks before executing the instruction at that address. Up to
16 addresses can be set as the breakpoints. Each breakpoint can be enabled and disabled as necessary.

B Formats
(1) bp (guidance mode)
(20 bp <No.> <status> [<address>] (direct input mode)

<No.>: Breakpoint No. (decimal)

<status>: Statusto be set (1=set, 2=enable, 3=disable, 4=clear)

<address>: Break address (hexadecimal, symbol or line number; can be set when <status>=1)
Conditions: 0 < No. < 15, 0x0 < address < Oxfffffff (16-bit boundary address)

B Input examples

(1) Displaying the breakpointsthat have been set

@

~

Format 1 displays the contents of current settings.

>bp

1 :00080014/E main 9 kkkokokkk
2 :00080028/E sub 10 skskoknnk /
3 :0008002C/D 11 Dkkskokknnk /
4 xkkokokkkk/ 12 kkksdolokkk/
5 kbl / 13 Jkkkkokoorok/
6 kkkkkokkk/ 14 skokskokorskok /
T xkskkokorkk/ 15 sskokskokoksdok /
8 wkkkkokkk/ 16 sekokskokokskok /
Number ? a4 ...Terminated by [Enter] key.
>

The contents of 16 breakpoints set are displayed.

"rxkkxkxk ! jndicates the breakpoints that have not been set yet.

The mark "/D" added at a bresk address denotes Disabled; the mark "/E" denotes Enabled.
A break occurs at the address marked by "/E".

The breakpoints whose addresses are set and which are enabled (/E) are prefixed by "!" when displayed in the
[Source] window. However, if in the source display mode a breskpoint is set somewhere other than the
beginning address of the source, it is marked with "?" instead of "!".

Setting new break addresses
Format 1) First display the current settings as (1) above, then enter setting items as follows:

Number ? 4. ...Input a breakpoint No. to be set.
1.set 2.enable 3.disable 4.clear ...? 14 ...Choose "1. set".
Break address ? :80030. ...Input the bresk addressin hexadecimal.
>
Break addresses can be specified using line numbers or symbols.
Number ? :5.4
1.set 2.enable 3.disable 4.clear ...? 14
Break address ? :main.c#24. ...Bresk addressisinput with line number.
>

To quit in the middle of guidance, input only the [Enter] key and nothing el se.

Format 2) Input acommand as follows:
>bp 4 1 800304 ...Breakpoint No. 4 is set at address 0x80030.
>bp 5 1 main. c#241 ...Breskpoint No. 5 is set at line number 24 of main.c.

An aready set breakpoint number can be specified. In this case, the breakpoint is changed to a newly input
address. All set breakpoints are enabled (/E).

330

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

A break address that is set for some other breakpoint number cannot be specified. If duplicate break
addresses are specified, an error results.

When the above example is executed, the breakpoint list is modified as shown below:

>bp

1 :00080014/E main 9 xkkkkkkok/
2 :00080028/E sub 10 skkkkkknk/
3 :0008002C/D 11 Dkkkrrrkk/
4 :00080030/E 12 kkkkknnk/
5 :00080032/E main. cit24 13 kkkkokorkk/
6 kkkekookkk / 14 skkdokokkk /
T ekbkloklok/ 15 Dsokokkekokkk /
8 kkklokolok/ 16 kkkkokoook/
Number ? :

(3) Re-enabling a disabled breakpoint
No break occurs at breakpoints whose addresses are marked with /D (No. 3 in the above example). To
re-enable such a disabled break, execute one of the commands shown below:

Format 1) After displaying the current settings, input the following command:

Number ? :3 ...Input a breakpoint No. to be re-enabled.
1.set 2.enable 3.disable 4.clear ...? 2 ...Choose "2. enable".
>

An error resultsif you specify abreakpoint number that has no address set.
To quit in the middle of guidance, input only the [Enter] key and nothing else.

Format 2) Input the following command:

>bp 3 24 ...Enables breakpoint No. 3.
>bp
1 :00080014/E main 9 xkkkkkokk/
2 :00080028/E sub 10 skkkokkknk/
3 :0008002C/E 11 Dkkoknnk /
4 :00080030/E 12 kkkkknnk/
5 :00080032/E main. cit24 13 Jkkkekokoorok/
6 kkkekokokkk / 14 skkdokokkk /
T ekbblokok/ 15 kkkkokoorok/
8 lkpkrokk/ 16 sttt/
Number ? : ...Breakpoint No. 3 is marked with /E, indicating that it has been enabled.

(4) Disabling a valid breakpoint
A break occurs at breakpoints whose addresses are marked with /E. To disable one of these breakpoints while
leaving its set address intact, execute acommand as shown below:

Format 1) After displaying the current settings, input the following command:

Number ? :2 ...Input the breakpoint number to be disabled.
1.set 2.enable 3.disable 4.clear ...? 3 ...Choose "3. disable".
>

An error resultsif you specify abreakpoint number that has no address set.
To quit in the middle of guidance, input only the [Enter] key and nothing else.

Format 2) Input the following command:

>bp 2 34 ...Disables breakpoint No. 2.
>bp
1 :00080014/E main 9 Iarlolololok /
2 :00080028/D sub 10 Dkkokkkkk/
3 :0008002C/E 11 Dkklkknk/
4 :00080030/E 12 Dkkkkkkk/
5 :00080032/E main. ctt24 13 Dkkokkkork/
6 kkkkkokkk/ 14 skkxkkorkk/
T xkskkokokkk/ 15 kkkkokorkk/
8 wkkkkokkk/ 16 :skkkkokorkk/
Number ? : ...Breakpoint No. 2 is marked with /D, indicating that it has been disabled.
EO0C33 FAMILY EPSON 331

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(5) Clearing a breakpoint

Format 1) After displaying the current settings, input the following command:

Number ? :4

1.set 2.enable 3.disable 4.clear ...

...Input a breakpoint number to be cleared.
74 ...Choose "4. clear”.

An error results if you specify a breakpoint number that has no address set.
To quit in the middle of guidance, input only the [Enter] key and nothing else.

Format 2) Input the following command:

>bp 4 44

>bp

1 :00080014/E main

2 :00080028/D sub
:0008002C/E
skekckofokokokk /

skokkkokkk /

skokskefokokokk /
8 kkkedokokkk/

Number ? :

~N o Ol bW

...Clears breakpoint No. 4.

:00080032/E main. c#24

9
10
1
12
13
14
15
16

Dksfokoksokskok /
sksfokokstokskok /
skskskefokokkok /
sskeksfokokokok [
ssfokoksoksdok /
sxsfokoksokskok /
skskskefokokkok /
sskekefokokokok /

...Breakpoint No. 4 has had its setting cleared.

B Setting breakpoints from menu
Choose the [Soft PC...] command from the [Break] menu. The following dialog box will appear.

Soft PC Break

Break at:

|BUU28

Breakpaint list:

Clear |

Enable |
Dizable |

Cloze |

Registering break addresses

Enter an address in the [Bresk at] text box using a
hexadecimal number, symbol or source line number, then
press [Enter] or click the [Set] button. The entered address is
registered to the bresk point list in ascending order from
No.1.

Clearing the break point
Select the address to be cleared from the [Break list] box, then
click the [clear] button.

Enabling/disabling the break point

To disable a break point, select the address from the list, then
click the [Disable] button. The "/E" symbol changes to “/D"
indicating that the break point is disabled. The [Enable]
button switches the disabled break point (/D) to be enabled.
(/E).

332

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

H Notes

Valid breakpoint No. are 1 to 16. Specifying anumber greater than 16 resultsin an error.
Error: Invalid value.

Addresses can only be input if you choose "1. set". An error results if you input an address in the direct input
mode (Format 2) and the selected item isnot " 1. set".
Error: Invaid value.

Since PC addresses constitute break conditions, breakpoints must always be set at 16-bit boundary addresses. If
an odd address is specified, the LSB of the specified address isforcibly set to 0.

If a source line that does not have real code is specified by aline number or in a window, a warning is issued.
In this case, the breakpoint is set at the address of the code that exists immediately after the specified line.
Warning: Invalid line, move to next valid line.

The addresses must be specified within the range of the memory area available for each microcomputer model.
An error resultsiif thislimit is exceeded. In Format 1, guidance is displayed prompting you to input an address
again. In Format 2, the command input is canceled.

Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.

Error: No map area. ...If an unused addressis specified.

An error resultsif you set an address that has already been set.
Error: Already exist input address.

An error results if you attempt to enable/disable or cancel a break address that has not been set. In Format 1,
guidance is displayed prompting you to input an address again.
Error: Invalid break number.

In Format 2, the error message is not displayed but the command input is canceled.

Software PC breaks are implemented by embedding the BRK instruction. Therefore, software PC breaks cannot
be used for the ROM on the target board where instructions cannot be embedded. In this case, use a hardware
PC break.

When setting a software PC break point to extended instructions with ext or delayed branch instructions, only
thefirst address can be specified.

ext XXxx ... Can be set. jred xxxx ... Can be set.
ext XXxx ... Cannot be set. Deayed instruction ... Cannot be set.
Extended instruction ... Cannot be set.
EO0C33 FAMILY EPSON 333

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

bs (break software) [ICD/ICE/SIM/MON]

B Function
This command sets a software PC break address at a breakpoint number that has not yet been set.

B Formats
(1) bs (guidance mode)
(2) bs <address> (direct input mode)

<address>: Break address (hexadecimal, symbol or line number)
Condition: 0x0 < address < Oxfffffff (16-bit boundary address)

B I nput examples
Format 1) >bs.

Break address ? :80016. ...Specify an address in hexadecimal form.
>bs
Break address ? :main.c#24. ...Specify an address by aline number.
>

Format 2) >bs 80016 ...Specify an address in hexadecimal form.
>bs main. c#24.4 ...Specify an address by aline number.
>

The specified addresses are assigned to breakpoints that has not yet been set sequentially beginning with the
smallest breakpoint number. The breakpoints set in this way are enabled (marked /E).

B Setting by using thetool bar button
Software PC breakpoints can be set by using the [Soft PC break] button of the [Source] window in the same way
as with the bs command explained above.

@ | [Soft PC break] button

Click on an address line that you want set (by moving the cursor) in the [Source] window, then press the [Soft PC
break] button. The selected line will be prefixed by "!" or "?" indicating that a breakpoint (enabled) is set there.

Ml Notes
e The above operation resultsin an error if 16 breakpoints have already been set.
Error: Cannot set address any more.

e Since PC addresses constitute break conditions, breakpoints must always be set at 16-bit boundary addresses. If
an odd addressiis specified, the LSB of the specified addressis forcibly handled as 0.

o |f asource line that does not have real code is specified by aline number or in awindow, a warning is issued
(when the [Soft PC break] button is used, warning message is not displayed). In this case, the breakpoint is set
at the address of the code that exists immediately after the specified line.

Warning: Invalid line, move to next valid line.

e The addresses must be specified within the range of the memory area available for each microcomputer model.
An error resultsif thislimit is exceeded. In Format 1, guidance is displayed prompting you to input an address
again. In Format 2, the command input is canceled.

Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.
Error: No map area. ...If an unused addressis specified.

e Anerror resultsif you set an address that has aready been set.
Error: Already exist input address.

o Software PC breaks are implemented by embedding the BRK instruction. Therefore, software PC breaks cannot
be used for the ROM on the target board where instructions cannot be embedded. In this case, use a hardware
PC break.

e When setting a software PC break point to extended instructions with ext or delayed branch instructions, only
the first address can be specified.

ext XXxX ... Can be set. jred xxxx ... Can be set.
ext XXxX ... Cannot be set. Deayed instruction ... Cannot be set.
Extended instruction ... Cannot be set.
334 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

bc (break clear) [ICD/ICE /SIM/MON]

B Function
This command cancels the software PC breakpoints set by using the bp command, bs command, the [Soft PC...]
command on the [Break] menu, or the [Soft PC break] button.

B Format
bc <address> (direct input mode)
<address>: Break address (hexadecimal, symbol or line number)
Condition: Only the addresses set as breakpoints can be specified for <address>.

B I nput examples

>bc 80016.1 ...Specify an address in hexadecimal form.
>bc main. ctt24. ...Specify an address by aline number.
>

M Clearing by using thetool bar button
Software PC breakpoints can be cleared by using the [Soft PC break] button of the [Source] window in the same
way as explained above.

{11:9 | [Soft PC break] button

Click on an address line that has had a breakpoint set (one that is prefixed by "!" or "?") in the [Source] window,
then press the [Soft PC break] button. The selected break address will be cleared.

H Notes
¢ Breakpoints can be cleared by using the bp command or the [Soft PC] command on the [Break] menu. (Refer to
the bp command.)

e |f an odd addressis specified, its LSB is forcibly handled as 0.

¢ If asource line that does not have real codeis specified by aline number or in the [Source] window, a warning
is issued (when the [Soft PC break] button is used, warning message is not displayed). In this case, the
breakpoint that existsimmediately after the specified lineis cleared.
Warning: Invalid line, move to next valid line.

e Anerror resultsif you specify abreak address that has not been set.
Error: Invalid break number.

EOC33 FAMILY EPSON 335
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

bh (break hardware) [ICD/ICE/SIM/MON]

B Function
This command sets hardware PC breakpoint 1 and displays the breakpoint set.

B Formats
(1) bh ...Display (direct input mode)
(20 bh <address> ...Setting (direct input mode)

<address>: Break address (hexadecimal, symbol or line number)
Condition: 0x0 < address < Oxfffffff (16-bit boundary address)

B I nput examples
Format 1) >bh.J

Address xkkkkkokk ...lf no breakpoint is set

>bhd

Address :80032 main. c#24.1 ...If abreakpoint is set by aline number
Format 2) >bh 800161 ...Specify an address in hexadecimal form.

>bh main. c#24.4 ...Specify an address by aline number.

This breakpoint can only be set a one address location. The last address specified isvalid.

If the [Source] window is open, the address which has had a hardware PC breakpoint set is marked with "1"
immediately after it. If in the source display mode a breakpoint is set somewhere other than the beginning
address of the source, the address is marked with "?" instead of "!".

B Setting from the menu

(B | his diaog box appears on the screen when you select the [Hard PC...]
Bég;:ft command from the [Break] menu. This diadlog box is used for both
E—r Clear hardware PC breaks 1 and 2 set by the bh and bh2 commands.
m To set ahardware PC breakpoint, enter the desired address in the text box
L Cose | using a hexadecimal number, symbol or source line number, then press

[Enter] or click the [Set] button.

B Setting by using thetool bar button
A hardware PC breakpoint can be set using the [Hard PC break] button of the [Source] window in the same way as
with the bh command explained above.

ml [Hard PC break] button

Click on an address line that you want set (by moving the cursor) in the [Source] window, then press the [Hard PC
break] button. The selected lineis set as a hardware PC break point.

H Notes
e The addresses must be specified within the range of the memory area available for each microcomputer model.
An error resultsiif thislimit is exceeded. In Format 1, guidance is displayed prompting you to input an address
again. In Format 2, the command input is canceled.
Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.
Error: No map area. ...If an unused addressis specified.

¢ When setting a hardware PC break point to extended instructions with ext or delayed branch instructions, only
the first address can be specified.

ext Xxxx ... Canbe set. jred xxxx ... Canbe set.
ext xXxxx ... Cannot be set. Delayed instruction ... Cannot be set.
Extended ingtruction ... Cannot be set.

e The hardware PC break function is disabled when the area trace function is set in ICD mode. However, the set
addressis maintained and it will be enabled when the areatrace function is cancelled.

336 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

bhc (break hardware clear) [ICD/ICE /SIM/MON]

B Function
This command cancels the hardware PC breakpoint 1 set using the bh command or the [Hard PC...] command on
the [Break] menu.

B Format
bhc (direct input mode)

B Input example
>bhcd ...Cancels the hardware PC breakpoint 1 set.
>

M Clearing from the menu
When you choose the [Hard PC...] command from the [Break] menu, a dialog box appears (see the bh command).
To clear the set hardware PC breakpoint 1, select break address 01 and then click the [Clear] button.

M Clearing by using thetool bar button
Hardware PC breakpoints can be cleared using the [Hard PC break] button of the [Source] window in the same
way as explained above.

*ﬂfl [Hard PC break] button

Click on an address line that has had a breakpoint set (indicated by "!" or "?'after the address) in the [Source]
window, then press the [Hard PC break] button. The selected break address will be cleared.

EOC33 FAMILY EPSON 337
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

bh2 (break hardware 2) [ICD/ (ICE) / SIM / MON]

B Function
This command sets hardware PC breakpoint 2 and displays the breakpoint set.

B Formats
(1) bh2 ...Display (direct input mode)
(20 bh2 <address> ...Setting (direct input mode)

<address>: Break address (hexadecimal, symbol or line number)
Condition: 0x0 < address < Oxfffffff (16-bit boundary address)

B I nput examples
Format 1) >bh2.

Address xkkkkkokk ...lf no breakpoint is set

>bh2.

Address :80032 main. c#24.1 ...If abreakpoint is set by aline number
Format 2) >bh2 80016. ...Specify an address in hexadecimal form.

>bh2 main. c#24.4 ...Specify an address by aline number.

This breakpoint can only be set a one address location. The last address specified isvalid.

If the [Source] window is open, the address which has had a hardware PC breakpoint set is marked with "1"
immediately after it. If in the source display mode a breakpoint is set somewhere other than the beginning
address of the source, the address is marked with "?" instead of "!".

B Setting from the menu

(B | s diaog box appears on the screen when you select the [Hard PC...]
Bég;:ft command from the [Break] menu. This diadlog box is used for both
E—r Clear hardware PC breaks 1 and 2 set by the bh and bh2 commands.
m To set ahardware PC breakpoint, enter the desired address in the text box
L Cose | using a hexadecimal number, symbol or source line number, then press

[Enter] or click the [Set] button.

B Setting by using thetool bar button
A hardware PC breakpoint can be set using the [Hard PC break] button of the [Source] window in the same way as
with the bh2 command explained above.

ml [Hard PC break] button

Click on an address line that you want set (by moving the cursor) in the [Source] window, then press the [Hard PC
break] button. The selected lineis set as a hardware PC break point.

H Notes
e The addresses must be specified within the range of the memory area available for each microcomputer model.
An error resultsiif thislimit is exceeded. In Format 1, guidance is displayed prompting you to input an address
again. In Format 2, the command input is canceled.
Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.
Error: No map area. ...If an unused address is specified.

¢ When setting a hardware PC break point to extended instructions with ext or delayed branch instructions, only
the first address can be specified.

ext Xxxx ... Canbe set. jred xxxx ... Canbe set.
ext xXxxx ... Cannot be set. Delayed instruction ... Cannot be set.
Extended ingtruction ... Cannot be set.

e The hardware PC break function is disabled when the area trace function is set in ICD mode. However, the set
addressis maintained and it will be enabled when the areatrace function is cancelled.

e When using this command in |CE mode, the ICE firmware must be Ver. 2.0 or higher.

338 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

bhc2 (break hardware 2 clear) [ICD/ (ICE) / SIM / MON]

B Function
This command cancels the hardware PC breakpoint 2 set using the bh2 command or the [Hard PC...] command on
the [Break] menu.

B Format
bhc2 (direct input mode)

B Input example
>bhc2. ...Cancels the hardware PC breakpoint 2 set.
>

B Clearing from the menu
When you choose the [Hard PC...] command from the [Break] menu, a dialog box appears (see the bh2 command).
To clear the set hardware PC breakpoint 2, select break address 02 and then click the [Clear] button.

M Clearing by using thetool bar button
Hardware PC breakpoints can be cleared using the [Hard PC break] button of the [Source] window in the same
way as explained above.

*ﬂfl [Hard PC break] button

Click on an address line that has had a breakpoint set (indicated by "!" or "?'after the address) in the [Source]
window, then press the [Hard PC break] button. The selected break address will be cleared.

M Notes
When using this command in |CE mode, the I CE firmware must be Ver. 2.0 or higher.

EOC33 FAMILY EPSON 339
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

bd (data break) [ICD/ICE /SIM/ MON]

B Function

This command sets and clears data break conditions and displays the conditions set.
This command allows you to specify the following break conditions:

1. Memory address to be accessed (one location)

2. Memory read/write (three conditions: read, write, or read or write)

The program breaks after completing amemory access that satisfies the above conditions.

W Formats
(1) bd (guidance mode)
(2 bd <mode> <address> {r|w]|*} (direct input mode)

<mode>: Set/clear specification (1=set, 2=clear)
<address>: address (hexadecima or symbol)
r,w, *: Access condition (enter either one)
r: Read
w: Write
*: Read or write
Condition: 0x0 < address < Oxfffffff

B Input examples

(1) Displaying data break conditions
Format 1 displays the contents of current settings.

>bd

Address skkkkckork

R/W/* i

1.set 2.clear ...?7 4 ...Terminated by [Enter] key.
>

Shown above is an example in which data break conditions have not been set yet.

(2) Setting data break conditions
Format 1) After displaying the current settings as described in (1), input the following command:
1.set 2.clear ...? 14 ...Choose"1. s&t".
Address 11004 ...Input an address in hexadecimal form.
R/W R,W, %) ik ...Input access conditions (* for R/W).
>
Addresses can be specified using a symbol.
1.set 2.clear ...? 14
Address | ...Input an address using a symbol.
R/W R W, %) twd
>
To quit in the middle of guidance, input only the [Enter] key and nothing else.
Format 2) Input the following command:
>bd 1 100 *J ...Set address to 0x100 and access condition to R/W.
>bd 10 wd ...Set address to variable i and access condition to W.
If conditions have aready been set, the previous conditions are changed to the newly input conditions.
340 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(3) Clearing data break conditions
Format 1) After displaying the current settings, input the command shown below:

>bd

Address : 00000000 i

R/W/* W

1.set 2.clear ...? 2 ...Choose "2. clear".
>

To quit in the middle of guidance, input only the [Enter] key and nothing el se.

Format 2) Input the following command:
>bd 24

B Setting from the menu
This dialog box appears on the screen when you sdlect the
[Data...] command from the [Break] menu.
Break at Enter an address in the [Address] text box using a hexadecimal
|uonuona number or asymbol.

Break Condition Use one of the radio buttons to choose an access condition.

" 1ead address To clear, click on the [Clear] button.

7 yrite address

& i address

()8 I Cancel | Clear

H Notes
e The addresses must be specified within the range of the memory area available for each microcomputer model.
An error resultsiif thislimit is exceeded. In Format 1, guidance is displayed prompting you to input an address
again. In Format 2, the command input is canceled.
Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.
Error: No map area. ...If an unused address is specified.

e The program stops one to severa instructions after the break condition is satisfied.

EOC33 FAMILY EPSON 341
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

bsq (break sequential) [ICE]

W Function

This command sets, clears, and displays a sequentia break.

Up to three combinations of an address, data pattern, data mask and bus operation type can be set. A break occurs
when the CPU executes a bus operation that satisfies the set conditionsin the order these conditions are set.

B Formats
(1) bsq
(2) bsq <mode> <hit> [<condition1> [<condition2> [<condition3>]]]
<mode>: Set/clear specification (1=set, 2=clear)
<hit>: Sequence specification (1=Hit 1 only, 2=Hits 1 and 2, 3: Hits 1 to 3)
<condition>: Break condition (<address> <data> <mask> <bus type>)
<address>: Address (hexadecimal, symbol or line number)
<date>: Data pattern (16-bit hexadecimal number to be compared.)
<mask>: Data mask (16-bit hexadecimal number for masking the data hits.)
Bitsset at "0" specify the data bit to be compared, and bits set at "1" specify the
data bits to be masked.
Bus operation type (decima number from 0 to 8)
0: All All bus operation

(guidance mode)
(direct input mode)

<bus type>:

1: Inst
2:VecR
3: DatR
4. Daw
5: StkR
6: StkwW
7: DmaR
8: Dmaw

Instruction fetch
Vector fetch
Dataresd
Datawrite
Stack resd
Stack write
DMA read
DMA write

Condition: 0x0 < address < Oxfffffff

H | nput examples

(1) Displaying sequential break conditions
Format 1 displays the contents of current settings.

>bsqgd

Hit1

Address - 00G80000
Data pattern : 6C00
Data mask 0000
Type . Inst
Hit2

Address 00680002
Data pattern : 6C11
Data mask 0000
Type © Inst
Hit3

Address D okkkedokokskok
Data pattern : k%
Data mask D okokokok
Type L okkokk
1.set 2.clear ...?7 4 ...Terminated by [Enter] key.
>

Shown above is an example where conditions 1 and 2 are set. The asterisks "****" in condition 3 indicate
that no condition has been set. The data mask "0000" indicates that the specified data pattern bits will all be
compared. In this example, a break occurs when the CPU fetches instruction code 0x6c00 from address
0xc80000 and then instruction code 0x6c11 from address 0xc80002. When the CPU accesses the addressesin
the retrograde order or only condition 2 is met, no break occurs.

342 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(2) Setting sequential break conditions
Format 1) After displaying the current settings as described in (1), input acommand as shown below:

1.set 2.clear ...? 14 ..Choose"1. set".

Number of sequential address (1-3) ? :3. ...Choose a sequence. (3=Hits 1 to 3)

Address 00680000 :Address set in condition 1

Data pattern 6C00 d ...Press [Enter] alone to skip guidance. (not changed)
Data mask 0000 id

Bus type 0: All 1:Inst 2:VecR 3:DatR 4:DatW 5:StkR 6:StkW 7:DmaR 8:DmaW...? Inst :d
Address 00680002 : .4 ...Address set in condition 2

Data pattern 6C11 |

Data mask 0000 il

Bus type 0: All 1:Inst 2:VecR 3:DatR 4:DatW 5:StkR 6:StkW 7:DmaR 8:DmaW...? Inst
Address sackoiolork 000000, ...Input an address for condition 3.

Data pattern sk 100124 ...Input a data pattern for condition 3.

Data mask Fookk | ..["] key returns to the previous guidance.

Data pattern 0012 11200, ...Input a data pattern for condition 3 again.
Data mask Hokk 100ffa ...Input a data mask for condition 3.

Bus type 0: All 1:Inst 2:VecR 3:DatR 4:DatW 5:StkR 6:StkW 7:DmaR 8:DmaW...? Inst :44
> ...Choose a bus operation type for condition 3.

In this example, conditions 1 and 2 are l&ft as previous settings, and condition 3 isnewly set.

Condition 3 specifies that program execution breaks when byte data 0x12 is written to address 0xd000000.
Since the data pattern must be specified in 16 bits, a data mask is required for setting a byte access condition.
In a byte access, the high-order 8 bhits of the data bus are used when an even address is accessed and the
low-order 8 bits of the data bus are used for an odd address. Therefore, to set a condition as a byte access
with a write data Ox12 for example, specify 0x1200 for the data pattern and mask the low-order 8-bits using
the data mask 0x00ff. For an odd address, specify 0x0012 for the data pattern and 0xff0O for the data mask.

A symbol or source line number can be used to specify an address.
Address FRkkkkkk 1 L ...Sample entry of a symbol
Address Fkkkkkkk Tmain. ci24 J ...Sample entry of aline number

To quit in the middle of guidance, press the [q] key and then the [Enter] key. When the command is
suspended, already specified contents are validated.

When setting two or three conditions, input the conditions in order of the sequence number. The conditions
cannot be input from condition 2 or 3. A sequential break can occur when all the set conditions are met in the
set sequence.

Format 2) Input acommand as follows:
>bsg 1 1 ¢80000 6¢00 0000 1.1
... Thisisthe same specification as condition 1described in (1). The parameters must be separated with a
space. Conditions 2 and 3 are cleared if they have been set.

Even when setting multiple conditions, input al conditionsin oneline.
>bsg 1 2 ¢80000 6c00 0000 1 ¢80002 6¢11 0000 1.4
Condition 1 Condition 2

(3) Clearing sequential break conditions
Format 1) After displaying the current settings, input acommand as shown below:

>bsg.

(current settings)
1.set 2.clear ...? 24 ...Choose "2. clear".
>

All conditions set will be cleared.

Format 2) Input acommand as follows:
>bsq 2.4

EOC33 FAMILY EPSON 343
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

H Notes

The bsgq command can only be used in ICE mode.

A sequential break occurs only when al the set conditions are met in the set sequence. The break does not
occur if only part of condition is met.

The break conditions must continuously be specified from condition 1. The bsq command does not alow
settings such as conditions 1 and 3, or conditions 2 and 3. However, it is unnecessary to set three conditions.

The addresses must be specified within the range of the memory area available for each microcomputer model.
An error will result if thislimit is exceeded.

Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.

Error: No map area. ...If an unused address is specified.

If the number of parameters entered in direct input mode is incorrect, an error will result.
Error: Number of parameter.

If the entered number isillegal or it cannot be recognized as a symbol, an error will result.
Error: Invaid value.

The sequential break does not occur in the internal RAM area, since the bus operation cannot be detected from
outside the chip.

344

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

ba

CHAPTER 16: DEBUGGER

(break area) [ICD+MEM33]

B Function
This command sets, clears, and displays an area break.
Break area, inside area, outside area, and the type of bus operation can be set.

B Formats
(1) ba (guidance mode)
(2) ba<number><mode> <side> <top address> <bottom address> <operation>(direct input mode)

<number>: Specify area break number (1 or 2)

<mode>: Set or clear (1=set, 2=clear)

<side>: Specify side of area (1=inside, 2=outside)

<top address>: Start address of area (hexadecimal, symbol or source line number)
<bottom address>: End address of area (hexadecimal, symbol or source line number)
<operation >: Specify bus operation (1=read,2=write,3=read/write)

B | nput examples

@

@

©)

Displaying area break conditions

>ba

Area breakl:

Side ©inside
Top address 00100200
Bottom address : 001002FF
Operation r/w
Area break?2:

Side L seekokokkkk
Top address L skekokokkkk
Bottom address : skkkokskkk
Operation L skkskokokkkk
Area break number (1-2) ? : ...Terminated by [Enter] key.

The above is an example where area break 1 isset. The asterisks "********" in area break 2 indicates that no
condition has been set.

Setting area break conditions
Format 1) After displaying the current settings as described in (1), input acommand as shown below:

Area break number (1-2) ? :2. ...Specify "areabreak 2".
1.set 2.clear L2l ..Choose"1. set".
1.inside 2.outside ...? :2l ...Choose "2. outside".
Top address ? 12100004 ...Start address of the area
Bottom address ? 21 Fd ...End address of the area
1.read 2.write 3.r/w ...? :1d ..Choose"1. read".

>

In this example, areabresk 2 is set.
A break occurs when address Ox21ffff is read from address 0x210000.

To quit in the middle of the operation, press the [Enter] key. When the command is suspended, the area break
condition cannot be saved.

Format 2) Input acommand as follows:
>ba 2 1 2 210000 21ffff 14
... Thisisthe same as condition 1 described in (1). The parameters must be separated with
aspace.

Clearing area break conditions

Format 1) After displaying the current settings, input a command as shown below:

EOC33 FAMILY EPSON 345
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

>bad
(current settings)
Area break number (1-2) ? :1. ..Specify areabreak 2.
1.set 2.clear ...? 24 ..Choose"2. clear".
>

Areabreak 2 will be cleared.

Format 2) Input acommand as follows:
>ba22

H Notes

The bacommand can only be used in the ICD+MEM 33 mode.

For extended break using MEM 33201, the target does not stop immediately after a break because the break
makes use of the |ICD33 external break.

An error occurs if the top address and the bottom address are not the same. (The top address and the bottom
address must be the same for asingle CE).

An error occurs if the internal memory area is specified (MEM33 is not supported at area0, areal and
area2(0-0x7FFFF).

Start address and end address must be an area which can be accessed by the CEFUNC specified in the
parameter file. The following message is displayed when an error occurs:
Invalid address or invalid CEFUNC of parameter file.

If the specification of the parameter file and the configuration of BCU is different, a break will not occur
correctly.
Be sure that configuration of the BCU becomes default after a cold reset.

Use this command so that the address and the target memory do not conflict.

346

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

bb (break bus)

CHAPTER 16: DEBUGGER

[ICD+MEM33]

B Function
This command sets, clears, and displays a bus break.

Bus width, break mode, break counter, address, address mask, CE mask, data, data mask, and the type of bus

operation can be set.

B Formats
bb

B I nput examples

(1) Displaying busbreak conditions
>bb
Bus width © 16
Bus break mode : or
Break counter : 0
Number of bus break : 1

Addresst 00100000
Address maskl FFFFFF

CE mask1 1 no

Datat 0002

Data maskl1 . FFFF
Operationt Cwrite

1.set 2.clear ...7 set q
>

(guidance mode)

The above is an example where 16 bit width, or mode, one bus break and zero break count are set. A bresk
occurs when 0x2 is written to the address 0x100000.

(2) Setting busbreak conditions

Format 1) After displaying the current settings as described in (1), input a command as shown below:

1.set 2.clear ...? set 4
Bus width 1.16bit 2.32bit ? 16bit

Bus break mode 1.or 2.sequential ? or
Bus break counter (0-65535) 0 : .

Number of bus break (1-6) 1 :2.1
Address maskl FFFFFF :J

CE maskl 1.yes 2.no ? no o
Datal 0012 :d
Data maski1 FFFF :J

Operationl 1.read 2.write 3.r/w ? read

Address2
Address mask2

00000000 :200000.)
FFFFFF © .

CE mask2 1.yes 2.no ? no o

Data2
Data mask2

0000 :13.
FFFF :

Operation2 1.read 2.write 3.r/w ? read : 1l

..Choose "1. set".

...Skip only by using the [Enter] key(No
change).

... Skip only by using the [Enter] key(No

change).

...Skip only by using the [Enter] key(No
change).

...Enter asequential number.

...Skip only by using the [Enter] key(No
change).

...Skip only by using the [Enter] key(No
change).

...Skip only by using the [Enter] key(No
change).

...Skip only by using the [Enter] key(No
change).

...Skip only by using the [Enter] key(No
change).

...Enter the address of condition 2.

...Skip only by using the [Enter] key(No
change).

...Skip only by using the [Enter] key(No
change).

...Enter the data of condition 2.

...Skip only by using the [Enter] key(No
change).

...Skip only by using the [Enter] key(No

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

347

CHAPTER 16: DEBUGGER

change).
>
In this example, condition 2 is added without changing condition 1.
A break occurs when address 0x12 or address 0x13 is read from address 0x200000, even though a break is
set to occur only when address 0x12 is read from address 0x200000.

(3) Clearing busbreak conditions

Format 1) After displaying the current settings, input acommand as shown below:
>bad
(current settings)
1.set 2.clear ...7? 124 ..Choose"2.clear".
>

Bus break will be cleared.

(4) Explanation for each item

Buswidth 1.16bit 2.32bit ? 16bit ;... This setsthe buswidth of data. 6 in 16 bit width and 3 in 32 bit
width be set.

Bus break mode 1.or 2.sequential ? or: ...This sets the bus break mode. In the or mode, a break occurs
when at least amatch is found.
In the sequential mode, a break occurs when the number is
accessed in accordance with the order from the smallest number
referring to a break condition. If the break conditions are not
matched sequentially or only one condition is matched, a break
does not occur.

Bus break counter(0-65535) O ... A break occurs when the number of times the break conditionsis
reached.|f the counter is O, abreak occurs when amatch is found.
If the counter is 1, abreak occursif it is acounter of the last break.

Number of busbreak(1-6) 1 :2..Enter the number conditions to meet.

Addressl 00200000 : ...Enter address.

Addressmaskl FFFFFF : ...Enter address mask. O indicates a mask.

CEmaskllyes 2.no ?no:..CE signa can be masked. Choose"1.yes" to mask.

Datal 0012 : ...Enter data.

Data mask1 FFFF : ...Enter data mask. O indicates a mask.

Operationl 1.read 2.write 3.r/w ?read : ...Enter bus operation.

H Notes

The bb command can only be used in the ICD+MEM 33 mode.

For extended break using MEM 33201, the target does not stop immediately after a break because ICD33 uses
its external break.

Start address and end address must be an area which can be accessed by the CEFUNC specified in the
parameter file. The following message is displayed when an error occurs:
Invalid address or invalid CEFUNC of parameter file.

If the specification of the parameter file and the configuration of BCU are different, a break will not occur
correctly.
Be sure that the configuration of BCU becomes default after a cold reset.

Use this command so that the address and the target memory do not conflict.

348 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

e An error will occur if the internal memory area is specified (MEM33 is not supported at area0, areal and
area2(0-0x7FFFF).).

e At least one memory access is needed to be placed in between memory accesses corresponding to the break
conditions in the 32-bit sequentia mode. If successive accesses are made, the second condition is not matched.

EOC33 FAMILY EPSON 349
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

bl (break list)

[ICD/ICE/SIM/MON]

M Function

This command lists dl break conditions.

M Format

bl

(direct input mode)

H Display
This command displays al contents that are displayed individually by each break setting command.

Thefollowing list is an examplein ICE mode.

H Note

The display contents are changed depending on the debugger mode.

>bld
Soft PC break:

skokskcfokokokk /
skokskcfokokokk /
skokskckokokokk /
skokskckokokokk /
skokskRokokkk /
skokkRokokkk /
srokkfokokkk /

O~dOoOOTTHAWN —

Hard PC breakl:

:00F00000/E ga_cmain. cttl

9
10
1
12
13
14
15
16

Address : 00F00000 ga_cmain. c#100

Hard PC break2:

: 00000000

: 00C00000

L kkkkkkkk

Address :© sekkkskskokk
Data break:
Address : 00000200
R/W/* : R
Sequential break:
Hit1

Address

Data pattern : 0000
Data mask - 0000
Type : Inst
Hit2

Address

Data pattern : 2323
Data mask 0000
Type : VecR
Hit3

Address

Data pattern : k%
Data mask T okkkok
Type D okkkok

sksksketokokkok /
sksksketokokkok /
skskskotokokkok /
sksksketokokkok /
skskskefokokkok /
sksfokokstoksdok /
sksfokokskokskok /
sksfokokstoksdok /

350

EPSON

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

bac (break all clear) [ICD/ICE /SIM/MON]

B Function
This command clears al break conditions set by commands (software PC breakpoint, hardware PC break point,

data bresk and sequential break).

B Format
bac (direct input mode)

EOC33 FAMILY EPSON 351

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.8 Commands to Display Program

u

(unassemble) [ICD/ICE/SIM/MON]

M Function
This command displays a program in disassembly format.

B Formats
1) u (direct input mode)
(20 u <address> (direct input mode)

<address>: Display start address (hexadecimal, symbol or line number)
Condition: 0x0 < address < Oxfffffff

H Display

(1) When [Source] window is open

@

Code Unassenble -
00050014 0200 pushn rl
00080016 6CAB Id.w r11, 050
‘[IIJIJSEI[IIE 3C8B Id.w £ral,irit

¥
000%001C 2E0C Id.w r12, %l

O008001E 1C05 cal | 0x5

00050020 16010 add 20,01

00080022 1EFD jp Oxfd

00030024 0240 popn ErD

100080026 0R40 ret

00080028 701C and Briz,0x1

00080024 1804 jreq x4

0005002C 3084 Id.w 8r10, [¥r8]

0008002E 6014 add 210,021

00050080 3C8A Id.w [8r8].2r10

000$0032 0640 ret

00080034 FFFF b

00080036 FFFF b

00080038 FFFF e

00080034 FFFF b

Q00$003C FFFF s -

K] W

Address: Memory address
Code: Object code
Unassemble: Disassembled contents of program

The address line of the current PC is underlined.

In Format 1, display in the [Source] window is changed to the disassemble display mode. At the same time,
code is displayed beginning with the current PC address.

The [Unassemble] button performs the same function as you input the command in Format 1. However, the
display location is not changed.

El [Unassemble] button

In Format 2, display in the [Source] window is changed to the disassemble display mode. At the same time,
codeis displayed beginning with <address>.

When [Source] window is closed
The 16 lines (default) of disassembled result are displayed in the [Command] window. The db33 then waits
for a command input.
In Format 1, this display begins with the current PC (displayed in the [Register] window); in Format 2, the
display begins with <address>.

>u 800144 ...Address can be specified using a symbol or line number.

00080014 0200 pushn %r0
00080016 6COB Id.w %r11,0x0

00080030 3C8A Id. w [%r8], %r10
00080032 0640 ret
>

The number of display lines in the [Command] window can be changed using the md command.

352

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(3) Logging
To save the command execution resultsto alog file, close the [Source] window and display the resultsin the
[Command] window. If the [Source] window is open, the display contents will not be saved in the file
because the [Command] window does not display the results.

(4) Successivedisplay
If you execute the u command after entering it from the keyboard, code can be displayed successively by
entering the [Enter] key only until some other command is executed.
When you hit the [Enter] key, the [Source] window is scrolled one full screen.
When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the
previously displayed address.

H Notes
* Specify the display start address within the range of 0 to Oxfffffff. An error resultsif thislimit is exceeded.
Error: Address range (0-OxFFFFFFF).

e "nomap" isdisplayed for address locations outside the mapped memory area.

EOC33 FAMILY EPSON 353
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

sc (source code) [ICD/ICE/SIM/MON]

B Function
This command displays the source file contents of the program along with addresses and line numbers.

B Formats
(1) sc (direct input mode)
(2) sc <address> (direct input mode)

<address>: Display start address (hexadecimal, symbol or line number)
Condition: 0x0 < address < Oxffff

H Display

(1) When [Source] window is open

Address Line SourceCode -
00080014 00007 {
uong

int J;
nonog
ooogonte 0onin =0
! ! 11 for (i=0 3 @ j++)

00080015 00013 sub(j);
015 t

i
101
10017 sub(k)

oonts int ki

00030024

oonts
oongonze oo0zo if (k& 0x1)
0 {

0008002C 00022 [+4;
00023 i
00080032 00024 }

K| 2]

Address: Memory address
Line Line numbersin sourcefile
SourceCode: Source code

The address line of the current PC is underlined.

In Format 1, display in the [Source] window is changed to the source display mode. At the same time, code is
displayed beginning with the current PC address.

The [Source] button performs the same function as you input the command in Format 1. However, the
display location is not changed.

| [Source] button

In Format 2, display in the [Source] window is changed to the source display mode. At the same time, code is
displayed beginning with <address>.

354 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(2) When [Source] window is closed

®

The 16 lines (default) of source code are displayed in the [Command] window. The db33 then waits for a
command input.

In Format 1, this display begins with the current PC (displayed in the [Register] window); in Format 2, the
display begins with <address>.

>sc main. c#1d ...Address can be specified using a hexadecimal number or symbol.
00001 /* tst_main.c 1997.2.13 %/
00002 /% C main program */
00003
00004 int i;
00005
00006 main ()

00080014 00007 {
00008 int j;
00009

00080016 00010 i =0;

0008001A 00011 for (j=0 ; ; j++)
00012

0008001C 00013 sub (j) ;
00014 }

00080024 00015 }
00016

>

The number of display linesin the [Command] window can be changed using the md command.

Logging

To save the command execution resultsto alog file, close the [Source] window and display the resultsin the
[Command] window. If the [Source] window is open, the display contents will not be saved in the file
because the [Command] window does not display the results.

(4) Successivedisplay

If you execute the sc command after entering it from the keyboard, code can be displayed successively by
entering the [Enter] key only until some other command is executed.
When you hit the [Enter] key, the [Source] window is scrolled one full screen.
When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the
previously displayed address.

H Notes

¢ Source code and line numbers can only be displayed if the srf33 object file that contains the source information

has been read.

In the source display mode, only one source file can be displayed at a time. Even when addresses are
contiguous, you cannot display multiple source files in succession.

Specify the display start address within the range of 0 to Oxfffffff. An error resultsif thislimit is exceeded.

Error: Address range (0-OxFFFFFFF).

If you specify an unmapped memory address or an address that does not have source information, the display
mode is changed to "Mixed". In this case, the source display part is blank.

EOC33 FAMILY EPSON 355
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

m (mix) [ICD/ICE/SIM/MON]

B Function
This command displays the disassembled result of a program and the contents of the program source file.

B Formats
@D m (direct input mode)
(20 m <address> (direct input mode)

<address>: Display start address (hexadecimal, symbol or line number)
Condition: 0x0 < address < Oxfffffff

H Display

(1) When [Source] window is open

W Source [_[o]x]
bddress Code Unassemble Lire SourceCode -
00080014 0200 pushn &rl) oonoy 1
oonog int 3
ooons
00080018 BCOB Id.w Eri1,0x0 ooo10 i=0;
00080018 3CEB Id.w [2r8].8r11
0080014 BEO0 14 0. 00 00011 for €i=0 2 3 {++)
ooniz
Qo0gon1c 2E0C Id.w Hr12,3r0 ooni3 subij);
QO0BO01E 1605 call 05
00080020 16010 add 20,01 oontt for (j=0 ; ; J++)
aongonz2z 1EFD jp Oxfd
oontd 1
Q0080024 0240 popn 20 00018 1
100080028 DB40 ret
0001e
00017 sub(k)
oonis int ki
oonig 1
Qongon2e 701C and Eri2,0x1 oonzo if (k& 0x1)
Q0080024 1804 jreq 04
oonz21 { -
K| 1
Address: Memory address
Code: Object code
Unassemble: Disassembled contents
Line Line numbersin sourcefile

SourceCode: Source code
* The address line of the current PC is underlined.

In Format 1, display in the [Source] window is changed to the mixed display mode. At the same time, codeis
displayed beginning with the current PC address.

The [Mix] button performs the same function as you input the command in Format 1. However, the display
location is not changed.

| [Mix] button
In Format 2, display in the [Source] window is changed to the mixed display mode. At the same time, the
disassembl ed contents and the source is displayed beginning with <address>.

In the mixed display mode, multiple source files can be displayed in succession. A source file name is
displayed at a position where files change.

356 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(2) When [Source] window is closed

@3

4

N

=

The 16 lines (default) of mixed display are produced in the [Command] window. The db33 then waits for a
command input.

In Format 1, this display begins with the current PC (displayed in the [Register] window); in Format 2, the
display begins with <address>.

>m main ...Address can be specified using a hexadecima number or line number.
00080014 0200 pushn %r0
00008 int j;
00009
00080016 6COB Id.w %r11, 0x0 00010 i =0;
00080018 3GC8B Id.w [%r8], %r11
0008001A 6C00 Id.w %r0, 0x0 00011 for (j=0 ; ; j++)
00012 {
0008001C 2EOC Id.w %r12, %r0 00013 sub (j) ;
0008001E 1C05 cal | 0x5
00080020 6010 add %r0, Ox1 00011 for (j=0 ; ; j++)
00080022 1EFD jp Oxfd
00014 }
00080024 0240 popn %r0 00015 }
00080026 0640 ret
00016

00017 sub (k)
>

The number of display linesin the [Command] window can be changed using the md command.

Logging
To save the command execution resultsto alog file, close the [Source] window and display the resultsin the
[Command] window. If the [Source] window is open, the display contents will not be saved in the file

because the [Command] window does not display the results.

Successive display

If you execute the m command after entering it from the keyboard, code can be displayed successively by
entering the [Enter] key only until some other command is executed.

When you hit the [Enter] key, the [Source] window is scrolled one full screen.

When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the
previously displayed address.

M Notes
Source code and line numbers can only be displayed if the srf33 object file that contains the source information

has been read.

Specify the display start address within the range of 0 to Oxfffffff. An error resultsif thislimit is exceeded.

Error: Address range (0-OxFFFFFFF).
"no map" is displayed for address locations outside the mapped memory area.

If, athough source line information is included, the source file cannot be read, a "no source" message is
displayed.

EOC33 FAMILY EPSON 357
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

ss (search strings) [ICD/ICE/SIM/MON]

B Function

This command searches the source file for a specified character string and starts displaying the source contents
from the position where the character string is found. This command is valid only when the [Source] window is
open in the source display mode.

B Format
ss <string> (direct input mode)
<string>: Search character string

B I nput example

>ss maind
>

The source contents are displayed in the [Source] window beginning with a position where the first instance
of main is found in the current source (one that contains the code corresponding to the current PC
address). Then when you press the [Enter] key, the next instance of main is searched.

If the specified character string is not found, the following message is displayed:

Error: Not found input string.

H Notes
e Anerror resultsif the ss command is executed when the [Source] window is closed.
Error: Source window not opened.

o Also, if the [Source] window is not in the source display mode when the command is executed, an error results.
Error: Current mode is not source mode.

358 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.9 Commands to Display Symbol Information

sy (symbol list)

[ICD/ICE / SIM / MON]

B Function

This command displays symbol information, source file, functions, or tag list in the [Command] window. Symbols
can be conditionally searched after specifying a search range or a search character string.

B Format
sy [<option>]

(direct input mode)

<option>: Specification of display item and search condition
When omitted: List of al symbols

#: Filelist

I: Function list

@: Tag list

@<string>: Tag list beginning with character string <string>
[<file>])/[<function>>]/: List of symbolsin a specified file or function

[<file>]/[<function>]/<string>: List of symbols in a specified file or function beginning with

<file>:
<function>:
<string>:
Condition:

character string <string>

Source file name

Function name

Search character string

1 < number of charactersin string < 255

Symbols searched by [<file>]/[function]/

/i

11

Al

file//
[function/
Jfunction/
file/function/

Global symbols

Auto/static symbolsin current function

Static symbolsin current source file

Static symbolsin specified source file

Symbolsin specified function

Auto/static symbolsin specified function of current source file
Symbols in specified function of specified sourcefile

* The current source files and current functions refer to those that contain the code corresponding to the current

PC.

EOC33 FAMILY

EPSON 359

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

H Display

A list is displayed in the [Command] window in alphabetical order. By default, up to 16 lines are displayed at a
time (can be changed by the md command). If there are more than 16 lines of display items, the window is placed
in a command input state after displaying 16 lines. Therefore, input only the [Enter] key and nothing else to
display the remaining other lines.

(1) Symbol list

Symbol information is displayed in the following format:
<symbol>, <address>, <scope>, <class>, <type>

<symbol>: Indicates a symbol name.
<address>: Indicates the address of a symbol. The display content varies with the symbol's storage class.

Storage class Display content
null, extern, static, label 8-digit hexadecimal address
auto, argument SP + offset (0xXX)
register, reg parameter Register number (RO to R15)
bit field Bit field size

<scope>: Indi cates a file name/function name.

Extern symbols are left blank. For static symbols, only a file name is displayed. For the
variables defined within a block, the start and the end addresses of the block are
displayed. (<start addr> ... <end addr>)

<class>: Indicates a storage class.
null, auto, extern, static, register, label, argument, reg parameter
<type>: Indicates the type of symbol.

null, void, char, short, int, long, float, double, struct tag, union tag, enum tag, unsigned char,
unsigned short, unsigned int, unsigned long

If the symbol is a pointer, array, or function, these types of symbols are followed by "*", "[1"
(including declaration content), or "()".

Displaying all symbols
To display all symbols, input acommand as follows:

>sy.d ...Execute without an option.
BOOT, 00080004, boot.s/, static, null
LOOP, 00C00000, , label, null

READ_BUF, 00800048, , extern, unsigned char [65]
READ_EOF, 00800089, sys.c/, static, unsigned char

_init_sys, 00000004, , extern, void ()

_iob, 0080008C, , extern, struct _ T2 [4]

>d ...Display the next list when [Enter] alone is input.
dfIn, RO, ansilib.c/main, register, double

dfOut, R10, ansilib.c/main, register, double

iSize, R12, sys.c/write, register, int
>

Listing names after specifying search range

A file name and function name ([<file>]/[function]/) can be specified using an option.
>sy //d ...Specify a list of global symbols.
READ_BUF, 00800048, , extern, unsigned char [65]
READ_FLASH, 00C0005C, , extern, null
WRITE_BUF, 00800004, , extern, unsigned char [65]

read, 00000014, ex"cern, int O
seed, 008000D0, , extern, unsigned int
>

360

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Listing symbolsafter specifying the sear ch range and sear ch character string
The symbolsin a search range that begin with a specified character string are searched and displayed.

>sy sys.c//Rd ...Specify a list of static symbols in sys.c that begin with R.
READ_EOF, 00800089, sys.c/, static, unsigned char
>
(2) Sourcefilelist
A filelist isdisplayed in the following format:
<file>(<line>), <start addr> . . <end addr> [, <start addr> . . <end addr>]
<file>: Indicates a source file name.
<line>: Indicates the number of linesin the sourcefile.
If no source fileisread into the debugger, "not read" is displayed.
<start addr>: Indicates the start address of the area where code islocated in hexadecimal form.
<end addr>: Indicates the end address of the areawhere code is located in hexadecimal form.
If the code is located in multiple areas, multiple instances of <start addr> and <end addr> are
displayed.
If the code existsin an includefile, <end addr> is followed by "<include file name>".
To display alist of sourcefiles, input the following command:
>sy #
boot. s (29 lines) 80004..80023
sys. ¢ (180 lines) C00000.. COOOAF
lib.c(83 lines) COO0BO..C00133
ansilib. c(not read) €00342..C00509
.. \src\strlen. s(not read) C02B94..C02B9F
.. \src\memcpy. s (not read) CO02BAO..CO2BAF
>
(3) Function list
A function list isdisplayed in the following format:
<file>
<function>() <start addr>. . <end addr>
<file>: Indicates a source file name.
File names are displayed one at a time for each source file. Even a file that does not have
functions (assembly source) is displayed.
<function>: Indicates afunction name.
Functions are displayed for each sourcefile.
<start addr>: Indicates the start address of the area where the function islocated in hexadecimal form.
<end addr>: Indicates the end address of the area where the function islocated in hexadecimal form.
To display alist of functions, input the following command:
>sy /d
boot. s
sys.c
_exit() €00000..€C00003
_init_sys() €00004..C00013
read () €00014..C00071
b write() C00072..COO0AF
ib.c
_init_lib() CO00BO..C00133
ansilib.c
main() C00342..C00509
EO0C33 FAMILY EPSON 361

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(4) Taglist
A tag list is displayed in the following format:
<file>
offset <type> <tag> {
<offset> <m type> <member>

} (total <size>)

<file>: Indicates a source file name.
File names are indicated one at a time for each source file. Files where no tag is declared are
not displayed.

<type>: Indicates atype of tag.

<tag>: Indicates a name of tag.

<offset>: Indicates a member offset in hexadecimal form.

<mtype>: Indicates amember type.
<member>: |ndicates amember name.
<size>: Indicates asize (bytes) in decimal form.

Displaying all tags
To display all tags, input the following command:

>sy @4

lib.c

offset struct tm {
00000000 int tm_sec
00000004 int tm_min
00000020 int tm_isdst

} (total 36 byte)
offset struct __T2 {
00000000 short _flg
00000002 unsigned char _buf
00000004 int _fd

> ...Display the next list when [Enter] alone is input.

} (total 8 byte)
offset union _T1 {
00000000 struct __TO st
00000000 double _D

} (total 8 byte)
>

Listing tags after specifying the search character string
The tags that begin with the specified character string are searched and displayed.

>sy @td ...Specify a list of tags that begin with t.
lib.c

offset struct tm {

00000000 int tm_sec

00000004 int tm_min

00000008 int tm_hour
0000000C int tm_mday
00000010 int tm_mon
00000014 int tm_year
00000018 int tm_wday
0000001C int tm_yday
00000020 int tm_isdst

} (total 36 byte)
ansilib.c
offset struct tm {
00000000 int tm_sec
00000004 int tm_min
>
362 EPSON E0C33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

Bit fields are displayed as follows.

"offset" indicates each bit offset value from the beginning address.

offset struct bitSt {
00000000 unsigned int
00000001 unsigned int
0000000C unsigned int
0000000F unsigned int
00000020 unsigned int
} (total 8 byte)

b1
b11
b3
b17
b21

"enum" typeisdisplayed as follows.

"value" indicates the value of each member.

value enum iEnum {

00000000 enum member
00000001 enum member
00000002 enum member
0000000A } enum member

H Notes

iE1
iE2
iE3
iE10

o1
1
© 3
S 17
D21

CHAPTER 16: DEBUGGER

e Symbol information can only be displayed if the srf33 format object file that contains debugging information is

read into the debugger.

e Search character strings <string> that are upper case are distinguished from these that are lower case. Up to 255

characters can be specified.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

363

CHAPTER 16: DEBUGGER

sa (symbol add) [ICD/ICE/SIM/MON]

B Function

This command registers specified symbols (variables) in a symbol watch table. Up to 99 symbols can be
registered. The contents of registered symbols can be monitored in the [Symbol] window. A display format can be
specified along with the symbols to be registered.

B Formats
1) sa Display (direct input mode)
(2) sa <symbol> [-<switch>] Register (direct input mode)

<symbol>: Symbol name

-<switch>: Specification of display format
-b<size> Binary
-d<size> Signed decimal
-u<size> Unsigned decimal
-h<size> Hexadecimal

-C 8-bit integer
-f 32-bit red number
-df 64-bit read number

<size> specifies the number of bits; specify 8, 16, 32, or 64 (e.g., -b8, -h32). If this specification
is omitted, symbols are displayed in a size that suits the symbol type.
Y ou cannot specify 64 bits for -d and -u.
Default: Applied when -<switch> is omitted
e Symbol with an unknown type: Displayed in 32-bit hex.
e int, short, long: Displayed in both decimal and hex.
o char: ASCII code displayed in decimal and hex.

B Input examples

(1) Display
If you input only sa and nothing else (Format 1), the contents of the registered symbols are displayed.

When [Symbol] window is open
The contents displayed in the [Symbol] window are updated.

tUDIVE(00080014)= 0x2ECH2EDY, , extern, noll

1
2:DIY8 (00080036)= 0x2ECH2ED4, , extern, null
3:UDIVIG(0008005C)= 0x2ECE2EDY, . extern, null
4:DIY16(00080030)= 0x2ECH2EDE, , extern, null
5:50AND_32 (0008012C)= 0x12108ACK, , extern, null
B1SCANI_32(00080150)= 0x12108ECA, . extern, null
Timirror32 (000800C8)= 0x074096C4, , extern, null
8:bRemainder(000007FE)= * 7 OxFF -1, sample.c/main, auto, char
9:ubRemainder(000007F4)= * 7 0x1 1, sample.c/main, auto, unsizned char
10z uwRema inder (000007FE)= 0x0001 1, sample.c/main, auto, unsizned short
11:wRemainder(000007F8)= 0x0001 1, sample.ci/main, auto, short

364 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

When [Symbol] window is closed
The contents are displayed in the [Command] window. By default, 16 lines are displayed at a time. To
display the next lines, press the [Enter] key. The number of lines displayed at a time can be changed by the

md command.

>sad
:UDIV8 (00080014) = 0x2EC52ED4, , extern, null
2:DI1V8(00080036)= 0x2EC52ED4, , extern, null
3:UDIV16 (0008005C) = 0x2EC52ED4, , extern, null
4:DIV16 (00080090) = Ox2EC52ED4, , extern, null
5:SCANO_32 (0008012C)= 0x12108ACA, , extern, null
6:SCAN1_32(00080150)= 0x12108ECA, , extern, null
1:
8:
9:
0:
1:

—_

mirror32(000800C8) = 0x074096C4, , extern, null

bRemainder (000007F5)= " ' OxFF -1, sample.c/main, auto, char
ubRemainder (000007F4)= " " Ox1 1, sample.c/main, auto, unsigned char
uwRemainder (000007F6)= 0x0001 1, sample.c/main, auto, unsigned short
wRemainder (000007F8)= 0x0001 1, sample.c/main, auto, short

Vo= =

Display contents
The contents of each symbol are displayed in the following formats:
<No.> <symbol>(<address>) = <value>, <scope>, <class>, <type>

<No.>: Indicates a registered number in the watch symbol table.

<symbol>: Indicates a symbol hame.

<address>: Indicates a symbol's address in 8-digit hexadecimal form. Register variables are indicated by RO
to R15.

<value>: Indicates a stored value according the -<switch> specification made when registered. A
hexadecimal number is prefixed by "0x" and a binary number is prefixed by "Ob". A negative
number is prefixed by "-", but nothing is added in the case of positive numbers. If the stored
valueisout of scope, "out of scope” is displayed.

<scope>: Indicates afile name/function name.
Extern symbols are left blank. For static symbols, only afunction name is displayed.

<class>: Indicates a storage class.
null, auto, extern, static, register, label, argument, reg parameter

<type>: Indicates a type of symbol.
null, void, char, short, int, long, float, double, struct tag, union tag, enum tag, unsigned char,
unsigned short, unsigned int, unsigned long
If the symbol is a pointer, array or function, these types of symbols are followed by "*", "[]"
(including declaration content) or "()".

(2) Registering symbols

The following shows an example in which symbols are registered by specifying -<switch>.
>sa chChar -b8.4 ...Register chChar as 8-bit binary representation.
>sa stA. ulCount -u324 ..Register tA member "ulCount" asa 32-bit unsigned decimal representation.
>sa iLoop —hd ...Regigter asize conforming to iLoop type as a hexadecimal representation.
>sa dDecimal -df. ...Register dDecimal as a double-type representation.
>sa *plCount -u32. ...Register pointer "plCount" as a 32-bit signed decimal representation.
When the command is executed, information on the registered symbols is displayed in the [Symbol]
window. If the [Symbol] window is closed, the information is displayed in the [Command] window. The
registered symbols are assigned a registration number (1 to 99).

EOC33 FAMILY EPSON 365

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

= Symbols can aso be registered by using the [Add] command on the [Symbol] menu or the [Symbol add]

button.

o | [Symbol add] button

Place the [Source] window in the mixed or source display mode, then place the cursor in or immediately
before or after the symbol name that you want registered. Then click on the [Symbol add] button or choose
the [Add] command from the [Symbol] menu to register the symbol in the watch symbol table. Information
on this symbol isdisplayed in the [Symbol] or the [Command] window.

These menu commands and buttons can be selected only when the [Source] window is active. No display
format can be set. Information is displayed in the default format that conformsto the selected symbol type.

M Notes

Symbols can only be registered and displayed if the srf33 format object file that contains debugging
information is read into the debugger.

Structure or union members cannot be registered collectively. Be sure to register each member separately. For
this reason, even when you are using the [Add] command on the [Symbol] menu or the [Symbol add] button to
register, you cannot select symbols by placing the cursor in front of "->" or ".".

An error results if the specified symbol cannot be found.
Error: Symbol not found. ...Symbol cannot be found.

If the specified symbol is out of the scope or it points to a no-map area, the symbol information is displayed as
below.

<symbol> = out of the scope,Symbol is out of the scope.

<symbol> = symbol pointsto no map area, No-map areais pointed.

The maximum number of symbols that can be registered is 99. If thislimit is exceeded, an error results.
Error: Cannot add symbol any more.

366

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

sd (symbol delete) [ICD/ICE /SIM/MON]

B Function
This command deletes a symbol displayed in the [Symbol] window (registered in the watch symbol table) from the
window (table).

B Format
sd <number> (direct input mode)
<number>: Registration number of the symbol (decimal)
Condition: 1 < number < number of registered symbols (max. 99)

B I nput example

>sd 24 ...Delete symbol No. 2.
>

When asymbol is deleted, the symbol numbersfollowing it are each decreased by one.

* Symbols can also be deleted using the [Delete] command on the [Symbol] menu or the [Symbol delete]
button.

é‘l [Symbol delete] button

Place the cursor at the symbol information line in the [Symbol] window that you want deleted, then click on
the [Symbol delete] button or choose the [Delete] command from the [Symbol] menu. The symbol will be
deleted.

These menu commands and buttons can be selected only when the [Symbol] window is active.
B Note

An error results if anumber greater than 99 or an unregistered number is specified.
Error: No symbol at the number.

EOC33 FAMILY EPSON 367
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

sw (symbol watch) [ICD/ICE/SIM/MON]

B Function
This command displays the current value of a specified symbol in the [Command] window. Each symbol
individualy or arange of symbols collectively can be specified. Y ou also can specify adisplay format.

B Formats

(1) sw <symbol> [-<switch>] (direct input mode)
(2) sw @<symbol> [-<switch>] (direct input mode)
(3) sw <scope> (direct input mode)

<symbol>: Symbol name

-<switch>: Specification of display format
-b<size> Binary
-d<size> Signed decimal
-u<size> Unsigned decimal
-h<size> Hexadecimal

-C 8-bit integer
-f 32-bit red number
-df 64-bit read number

<size> specifies the number of bits; specify 8, 16, 32, or 64 (e.g., -b8, -h32). If this specification
is omitted, symbols are displayed in a size that suits the symbol type.
Y ou cannot specify 64 bits for -d and -u.
Default: Applied when -<switch> is omitted
¢ Symbol with an unknown type: Displayed in 32-bit hex.

e int, short, long: Displayed in both decimal and hex.

o char: ASCII code displayed in decimal and hex.
<scope>: Specification of arange of symbolsto be listed ([<file>]/[function]/)

1 Global symbols

11 Auto/static symbolsin the current function

Vi Static symbols in the current source file

filel/ Static symbols in the specified source file

[function/ Symbolsin the specified function
Jfunction/ Auto/static symbolsin the specified function of the current source file
file/function/ Symbolsin the specified function of the specified source file

H Display

(1) Displaying each symbol individually

In Format 1, symbol information is displayed by specifying one symbol at atime.

>sw READ_BUF[0].1 ...Specify the default display format.

READ_BUF [0] (00800048)= " ' OxAA 170, , extern, unsigned char [65]

>

>sw WRITE_BUF -u8. ...Specify the display in 8-bit unsigned decimal form.
WRITE_BUF (00800004)= 170, , extern, unsigned char [65]

>

For details on the display contents, refer to the explanation of the sacommand.

368

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

= Symbol display in Format 1 can aso be performed using the [Watch] command on the [Symbol] menu or the
[Symbol watch] button.

ik | [Symbol watch] button

Place the [Source] window in the mixed or source display mode, and place the cursor in or immediately
before or after the symbol name that you want displayed. Then click on the [Symbol watch] button or choose
the [Watch] command from the [Symbol] menu to display the symbol in the [Command] window.

These menu commands and buttons can be selected only when the [Source] window is active. No display
format can be set. Information is displayed in the default format that conforms to the selected symbol type.

(2) Displaying structure/union membersand array elements
In Format 2, members of a structure/union or elements of an array can be specified to display the contents.
For details on the display contents, refer to the explanation of the sa command.
By default, 16 lines of symbol information are displayed. To display the following information, press the
[Enter] key. The number of lines displayed at atime can be changed by the md command.
Displaying array elements
Example: char buf[2][2][2]
>sw @bufd
buf [0] [0] [0] (000006B0)= "# 0x23 35, qa_cmain.c/main, auto, char [2][2][2]
buf[0][0] [1] (000006B1)= " " OxF9 -7, ga_cmain.c/main, auto, char [2][2][2]
buf[11[1][1] (000006B7)= " ' OxEO —32,. ga_cmain.c/main, auto, char [2][2][2]
>
>sw @buf[0][1]1[0]
buf [0][1][0] (000006B2)= " ' O0x8F -113, ga_cmain.c/main, auto, char [2][2][2]
buf [0] [1][1] (000006B3)= " ' 0x1C 28, ga_cmain.c/main, auto, char [2][2][2]
buf[11[1][1] (000006B7)= " ' OxEO —32,. ga_cmain.c/main, auto, char [2][2][2]
>
Displaying members of a structure
Example: struct STRUCT_UNION{
int iAddr
char cFlag;
char *pcFlag;
char cAry[3][3]
union ExchangeType stSize;
I
>sw @stStructTestl. cAryd
stStructTest1. cAry[0] [0] (00000414)= " ' 0x10 16, ga_cmain.c/main, struct, char [3][3]
stStructTest1. cAry[0][1] (00000415)= " ' 0x04 4, ga_cmain.c/main, struct, char [3][3]
stStructTest1. cAry[2] [2] (0000041C) = o 0x0C 12, ga_cmain.c/main, struct, char [3][3]
>
>sw @stStructTestl. stSized
stStructTest1. stSize (00000420)= OxF4D18517, ga_cmain.c/main, struct, union ExchangeType
stStructTest1. stSize. ucChar (00000420)= " ' 0x17 23, qa_cmain.c/main, union unsigned char [4]
stStructTest1. stSize. usShort (00000420)= 0x8517 34071, ga_cmain.c/main, union unsigned short [2]
stStructTest1. stSize. ulLong (00000420)= 0xF4D18517 4107371799, ga_cmain.c/main, union unsigned int [1]
>
For structures, the sw command displays all members a 1-level lower than the specified member. Two or
more lower-level members are not displayed.
EOC33 FAMILY EPSON 369

C COMPILER PACKAGE MANUAL (ver.3)

CH

APTER 16: DEBUGGER

(3) Listing the specified range of symbols

In Format 2, you can specify the range of files and functions, and display a list of symbols included in the

specified range.
>sw //d ...Specify a list of global symbols.
READ_BUF (00800048)= " ' OxAA 170, , extern, unsigned char [65]
READ_FLASH (00C0005C) = 0x680A24FA, , extern, null
WRITE_BUF (00800004)= " ' OxAA 170, , extern, unsigned char [65]

read (00C00014)= 0xC0106C0C —1072665588, ., extern, int ()
seed (008000D0) = OxAAAAAAAA 2863311530, , extern, unsigned int
>

For details about display contents, refer to the explanation of the sa command.
By default, 16 lines of symbols are displayed. To display the next symbols, press the [Enter] key. The
number of lines displayed a atime can be changed by the md command.

H Notes

Symbol information can only be displayed if the srf33 format object file that contains debugging information is
read into the debugger.

An error results if the specified symbol cannot be found.
Error: Symbol not found. ...Symbol cannot be found.

If the specified symbol is out of the scope or it points to a no-map area, the symbol information is displayed as
below.

<symbol> = out of the scope,Symbol is out of the scope.

<symbol> = symbol pointsto no map ares, No-map areais pointed.

"->" and "." are not distinguished.

Pointers (*) can be specified up to three nest levels and array elements can be specified up to the fourth
dimension.

Structures, unions and bit fields can be specified up to 10 levels. However, it is limited to 9 levels for the "sw
@" command that adds a member.

Array elements (number in []) can only be specified in adecimal number.

Symbol length including a scopeis limited to a maximum of 127 characters.

370

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.10 Commands to Load Files

If (load file) [ICD/ICE/SIM/MON]

M Function
This command loads the object file in srf33 format into the debugger.

B Formats
@ If (guidance mode)
(2) If <file name> (direct input mode)

<file name>: File name to be loaded

B I nput examples

Format1) >I1fJ
File name ? :test.srf.d ...Input afile name including the extension.

Format2) >If test.srfd
>

The [Load File..] command on the [File] menu or the [Load file] button on the tool bar can aso be used to
load afile. Use the dialog box that appears on the screen to select afile.

Iir"'l [Load file] button

Open After selecting a directory and file, click on the [Open]
Lockin |3t button (or double-click the file name).
est.sif
S The directory selected here becomes the current
directory.
File name: |\ Open I
Files of type: [SROFF i (1) [~ | Cancel
H Notes

o Only the srf33 object file in the executable format (generated by the linker) can be loaded by the If command.
Error: Cannot load data, please check SRF33 file.

o If you want to use source display and symbols when debugging a program, the object file must be in the srf33
format that contains debug information loaded into the debugger. A warning results if the loaded file does not
contain debug information. The actual datais useful, however.

Warning: No debug information, <file name>.

e The object file in the srf33 format contains the source file information, including the directory structure.
Therefore, the source file cannot be loaded unless it resides in a specified directory within the object file as
viewed from the current directory.

When loading a file using a menu command or tool bar button, the directory you select in the diaog box
becomes the current directory.

When using the If command, the current directory is not modified.

Seiko Epson recommends that you basically perform a series of operations from the C Compiler
gee33/Preprocessor pp33 to the Debugger db33 in the same directory (after making it the current directory).

e Upto 32767 linesin one source file can be loaded.

o |f the [Source] window is open when loading a file, its contents are updated. The program contents are
displayed in the currently set display mode beginning with the current PC. The PC is not modified by loading a
file.

EOC33 FAMILY EPSON 371
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

e When afile is read in, the current debugging information and the symbol registration information in the
[Symbol] window are invalidated. However, break information is left intact, so clear all break information
using the bac command before loading afile. Furthermore, if the [Memory] window is open, all of its contents
will be cleared. In this case, redisplay the [Memory] window by executing a dump (db, dh or dw) command or
clicking on the vertical scroll bar.

e |If an eror occurs when loading a file, portions of the file that have already been read will remain in the
emulation memory. However, in this case, you cannot use the source display or symbols to debug the program.
Nor can you see to what extent the file has been loaded. Furthermore, the db33 forcibly switches the [Source]
window in disassemble display mode.

372 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Ih (load hex) [ICD/ICE /SIM/MON]

B Function
This command loads the Motorola S3 format file output from the hex33 into the debugger.

B Formats
@ Ih (guidance mode)
(2 Ih <file name> <offset> (direct input mode)

<filename>: File name to be loaded (path can aso be specified)
<offset>: Offset address

B I nput examples
Format 1) >lhJ

File name ? :test.sa. ...Input afile name including the extension.
offset 80000 ...Specify the offset address.
>

Specify offset = 0 for the Motorola S3 format that has absol ute addresses attached when generated.

Format2) >lh test. sa 80000
>

M Notes
e With the Motorola S3 format program file loaded, you cannot use the source display or symbols to debug a
program.

o |f the [Source] window is open when loading a file, its contents will be updated. The program contents are
displayed in disassemble mode beginning with the current PC. The PC is not modified by loading afile.

¢ If an error occurs when loading a file, portions of the file that have already been read are left as they were
|oaded.

e Anerror resultsif you specify an offset address that will cause the file to be loaded into an unmapped memory
area
Error: No map area.

EOC33 FAMILY EPSON 373
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Id (load file) [ICD/ICE/SIM/MON]

B Function
This command loads the debugging information included in the specified srf33 object file into the debugger.

B Formats
@ Id (guidance mode)
(2) Id <file name> (direct input mode)

<file name>: File name to be loaded (path can also be specified)

B | nput examples

Format 1) >ld
File name ? :test.sad ...Input afile name including the extension.

Format2) >ld test. sa.
>

M Notes

e Theld command does not change data except for the debugging information. This command should be used
only when the program has been loaded, such as debugging for the program written to the ROM.

e Only the srf33 object file in the executable format (generated by the linker) can be loaded by the Id command.
Error: Cannot load data, please check SRF33 file.

e A warning resultsif the loaded file does not contain debug information.
Warning: No debug information, <file name>.

e The object file in the srf33 format contains the source file information, including the directory structure.
Therefore, the source file cannot be loaded unless it resides in a specified directory within the object file as
viewed from the current directory.

Seiko Epson recommends that you basically perform a series of operations from the C Compiler
gee33/Preprocessor pp33 to the Debugger db33 in the same directory (after making it the current directory).

374 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.11 Commands to Operate Flash Memory

fls (flash memory set) [ICD / (ICE) / MON]

M Function
This command initializes the flash memory information used to write data to the flash memory on the target
system.

B Format
fls (guidance mode)

B | nput example

>flsd
Flash start address @ skkokokkkrx ...Undefined address
Flash end address L oxkkskokokkk

Erase routine address : skkkkkkkk
Write routine address : sxxxkkkk

1.set 2.clear ...? clear :1d ...Choose "1. sat".

Flash start address 2 sekkkkkkx : 200000 ...Flash start address

Flash end address ? kbbb 1 2T ...Flash end address

Erase routine address ? skkkkkrx : FLASH_ERASE. ...Erase-routine start address
Write routine address ? ss#sf#k%* . FLASH_LOADA ...Write-routine start address
>

* Press the [q] key to cancel the command.

H Notes
e The fls command can be used only for the flash memory on the target system and does not affect the ICE33
flash memory. Furthermore, simulator mode does not support this command.

e To erase and write data of the flash memory on the target system, a data write/erase routine must be loaded to
the specified address before using this command. Refer to the "readme.txt” of the flash support utility fIs33 for
the flash write/erase routine.

("f1s33" and "readme.txt" can beinstalled using "cc33\utility\fls33\fIs33vXX.exe".)

e When using this command in | CE mode, the ICE firmware must be Ver. 2.0 or higher.

EOC33 FAMILY EPSON 375
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

fle (flash memory erase) [ICD / (ICE) / MON]

B Function
This command erases the contents of the flash memory on the target system.

B Format
fle (guidance mode)

B Input example

>fled

Control Register : 00200000 ...Flash start address set by fls

Start block LRk ...Undefined address

End block T sk
Control Register ? 00200000 : 200000 ...Flash start address
Start block ? wprkktokk 1 0. ...Specify the range to be erased.
End block ? wprkktokk 1 0 Start = End = O: erase al
Finish with 0x00000000 ...Thereturn value from the erase routine is displayed.
>

* Press the [q] key to cancel the command.
H Notes

e Thefle command can be used only for the flash memory on the target system and cannot be used for the ICE33
flash memory. Furthermore, simulator mode does not support this command.

e To erase the flash memory on the target system, a data write/erase routine must be loaded to the target memory
and the fls command must be executed before using this command. If the erase routine has not been loaded, an
error will result when the fle command is executed.

Error: Erase routineis not set.

e Thiscommand must be executed before writing data to the flash memory on the target system.

e When using this command in | CE mode, the ICE firmware must be Ver. 2.0 or higher.

376 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Ifl (load from flash memory) [ICE]

M Function

This command loads the memory contents from the flash memory of the ICE33 into the target memory.
It therefore allows you to debug the program beginning from the contents previously saved to the flash memory up
to latest one.

B Format
Ifl (guidance mode)

B |nput example

>Ifla

Are you sure to load 1.yes 2.no ...? 14 ...Confirmation of whether or not to load
Loading from flash memory done

>

Choose 2 if you want to stop loading memory contents.

M Notes
e Thelfl command is designed specifically for the ICE33 flash memory and does not support the flash memory
on the target system. Therefore, this command can be used only in ICE mode.

o |If theflash memory is protected against read/write or has been erased, an error will result and memory contents
will not be loaded into the target memory.
Error: Flash ROM is protected. ...If the flash memory is protected.

e Evenif the flash memory and target memory are mapped differently, memory contents are loaded and the map
is rewritten.

e |If an error occurs when loading data, portions of the data that have aready been read into the target memory
are left asthey were loaded.

EOC33 FAMILY EPSON 377
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

sfl (save to flash memory) [ICE]

M Function

This command writes the contents of the target memory in the ICE33 into the ICE33 flash memory.

Writing to the flash memory alows the ICE33 to be operated in free-run mode. Furthermore, the next debug
session can be continued immediately from the current contentsin the flash memory.

The flash memory can be write-protected.

B Format
sfl (guidance mode)

B I nput example

According to the guidance, protect the flash memory and confirm whether you want contents to be written to the
flash memory.

>sfla

Protect flash memory 1.yes 2.no ...?7 24 ...write-protect specification

Are you sure to save 1.yes 2.no ...? 14 ...Confirmation of whether or not to write
Saving to flash memory done

Choose 2 when prompted for confirmation if you want to stop writing memory contents.

H Notes
e Thesfl command is designed specifically for the ICE33 flash memory and does not support the flash memory
on the target system. Therefore, this command can be used only in ICE mode.

e If the flash memory is write-protected, an error results and memory contents are not written to the flash
memory.
Error: Flash ROM is protected.

The write-protect can be removed by erasing the flash memory with the efl command.

378 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

efl (erase flash memory) [ICE]

B Function
This command erases the contents of the ICE33 flash memory (including map information) and removes its protect
function.

B Format
efl (direct input mode)

B Input example

>efld
Are you sure to erase 1.yes 2.no ...? 14 ...Confirmation of erasing
Erasing flash memory done
>
B Note

The efl command is designed specifically for the ICE33 flash memory and does not support the flash memory on
the target system. Therefore, this command can be used only in | CE mode.

EOC33 FAMILY EPSON 379
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

maf (map flash memory) [ICE]
B Function
This command displays the ICE33 flash memory map, chip name, version of the parameter file used and other
information.
B Format

maf (direct input mode)

H Display examples

(1) When the flash memory isnot write-protected:

>maf.

Chip name

Parameter file version

Internal ROM area

Size of FO area

Emulation memory area
00C00000 — OOCFFFFF
00800000 - 008FFFFF

Map break information
00000000 - 000007FF
00040000 - 000402FF
00048000 - 000482FF
00C00000 — OOCFFFFF
00800000 — 008F7FFF
00000000 - 000007FF
00800000 — 008FFFFF

>

33104

2 01

: 80000 - 8OFFF
1000

ROM
RAM

RAM

10

10

ROM emulation
RAM emulation
stack area
stack area

...Emulation memory settings

...Stack area settings

(2) When the flash memory iswrite-protected:

>maf.

Flash memory is protected.

Chip name

Parameter file version

Internal ROM area

Size of FO area

Emulation memory area
00C00000 - OOCFFFFF
00800000 — 008FFFFF

Map break information
00000000 - 000007FF
00040000 — 000402FF
00048000 — 000482FF
00C00000 - OOCFFFFF
00800000 - 008F7FFF
00000000 - 000007FF
00800000 - 008FFFFF

>

...Protection status
: 33104
201
80000 - 80FFF
: 1000

ROM
RAM

RAM

10

10

ROM emulation
RAM emulation
Stack area
Stack area

(3) When theflash memory isinitialized:

>maf

Flash memory is not mapped.

>

H Note

The maf command is designed specifically for the ICE33 flash memory and does not support the flash memory on
the target system. Therefore, this command can be used only in ICE mode.

380 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.12 Trace Commands

tm (trace mode) [ICD / ICE / SIM]
W Function
(1) ICE mode
In ICE mode, this command displays and sets a trace mode and trace trigger conditions.
Trace mode
The following two trace modes can be set:
1) Normal trace mode
The data written to the trace memory is dways the latest trace information.
2) Single-delay trigger trace mode
The following three types of trace sampling areas can be specified with respect to the trace trigger point
(establishment of trace trigger condition):
1. start ...Traceinformation is collected beginning with the trace trigger point.
2. middle ...Traceinformation before and after the trace trigger point is collected.
3.end ...Traceinformation is collected until the trace trigger point is reached.
Tracetrigger conditions
The following three types of trace trigger conditions can be set:
1) Address
One memory address can be specified. The trace trigger is generated on condition that the CPU accesses
this address.
2) Data pattern
Specify the data pattern that the CPU reads or writes to the above address. You can specify a 16-bit
pattern, setting each bit as desired. Selected bits or all bits can be masked out for exclusion from trace
trigger conditions.
3) Bus operation type
Specify a bus operation type in which operation the CPU accesses the above address. One of the
following bus operation types can be selected:
0. All ...All bus operations
1. Inst ...Instruction fetch
2.VecR ..Vector fetch
3.DaR ..Dataread
4. DaW ...Datawrite
5. StkR ...Read from stack
6. StkW ...Writeto stack
7.DmaR ..Read by DMA
8.Dmaw ...Writeby DMA
When one of these conditions is satisfied, a point in time (trace trigger point) at which single-delay trigger
trace or pulse output from the ICE33's TRGOUT pin is controlled.
(2) 1CD mode
In 1CD mode, this command displays and sets a trace mode and trace trigger addresses.
Trace mode
The following two trace modes can be set:
1) All trace mode
Trace is initiated by a start of program execution. The trace information is written to the trace memory
regardless of the address executed.
2) Areatrace mode
Trace information is taken into the trace memory only when the program within the range from trigger
address 1 to trigger address 2 is executed.
EO0C33 FAMILY EPSON 381

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Trace condition in all trace mode
In al trace mode, a trace memory write condition can be specified.

1) Overwrite enabled
The trace operation does not stop even if the trace memory (131072 cycles) is full and new data is
overwritten to the oldest data. Consequently, the data written to the trace memory is always the latest trace
information.

2) Overwrite disabled
Trace information is written to the trace memory until the memory becomes full, and then the trace
operation stops.

Trace conditionsin areatrace mode
In area trace mode, the following two conditions can be set:

1) Break at trigger address 2
The program execution can be suspended or continued at trace trigger address 2 after tracing the specified
area.

2) Time measurement mode
A measurement range of the program execution time can be selected from the following two types:
All measurement mode: The execution time is measured from start to break of the program execution.
Areameasurement mode: Only the time while the program is executed within the range between trigger
addresses 1 and 2 is measured.

In addition to the conditions above, the clock counter (Clk in the trace information) display mode can be set
either to count accumulating from start of tracing or to count in instruction units.

Example:

Counter display mode = "accumulate’

Cycle Address Code Unassemble Clk
000009 0610FFE 0000 nop 000000
000008 0611000 CO00 ext 0x0 000008
000007 0611002 DOOA ext 0x100a 000016

000006 0611004 6DFO Id. w %r0, Ox1f 000024

Counter display mode = "each instruction"

Cycle Address Code Unassemble Clk

000009 0610FFE 0000 nop 000008
000008 0611000 CO00 ext 0x0 000008
000007 0611002 DOOA ext 0x100a 000008

000006 0611004 6DFO Id. w %r0, Ox1f 000008

(3) Simulator mode

In the simulator mode, only the following operation can be selected:

1) Trace function ON/OFF
When the trace function is turned ON, trace information is collected according to program execution.

2) Display of register value
Y ou can choose to collect register contents, in addition to basic trace information.

3) Output destination of trace information
An output destination for the collected trace information can be selected from a window or file. If you
choose awindow, the trace information is displayed in the [Trace] window or (if the [Trace] window is
closed) in the [Command] window. When selecting afile, specify the desired file name too.

382 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

B Format
tm (guidance mode)

B Input examplesfor ICE mode

(1) Displaying current setup contents
When the tm command is executed, the current setup contents are displayed first.

>tmd

Trace mode normal ... or "single delay"

Address 00000000

Data pattern : 0000

Data mask o fFFf

Type . Inst

Display option: normal

1.normal 2.single delay ...? normal :.J ...Press [Enter] if you do not change any settings.
(2) Changing settings

According to the guidance that appears after the current setup contents are displayed, input or choose the
desired new setup contents.

1.normal 2.single delay ...? normal :2. ...Choose "2.single delay".

Trigger address 00000000 :00C00100. ..Input a trigger address.

Data pattern 0000 :. ...Press [Enter] to skip the setting (not changed).
Data mask ffff o

Bus type O:All 1:Inst 2:VecR 3:DatR 4:DatW 5:StkR 6:StkW 7:DmaR 8:DmaW ...? Inst :dJ
1.start 2.middle 3.end ...? start :14 ...Choose atrigger position.

Display option 1.normal 2.source ...? normal :2.4 ..Chooseadisplay option.

>

In this example, single delay trigger mode is selected so that the trace starts when the CPU fetches the
instruction at address 0xc00100.

The guidance for selecting atrigger position appears only when single delay trigger mode is selected. It is not
displayed when normal mode is selected.

The specified data pattern is 0x0000 but it does not affect the trigger condition since dl the data bits are
masked by the data mask Oxffff. In this example, the trace trigger condition is satisfied when the CPU fetches
an instruction from address 0xc00100 regardless of the fetched instruction code. When including a data
read/write in the trigger condition, data must be specified in 16 bits. Therefore, a data mask is required for
setting a byte access condition. For example, to set a condition as a byte access with data 0x12, specify
0x1200 for the data pattern and mask the low-order 8-bits using the data mask 0x00ff. For an odd address,
specify 0x0012 for the data pattern and 0xff0OO for the data mask.

The display option allows selection of the [Trace] window display format. When "1. Normal" is selected, the
[Trace] window displays only the information traced in the ICE33. When "2. Source" is selected, the source
codes are displayed as well as the trace information.

A symbol or source line number can be used to specify an address.
Trigger address 00000000 :i.J ...Sample entry of a symbol
Trigger Address 00000000 :main. c#24. ...Sample entry of aline number

To quit in the middle of guidance, press the [g] key and then the [Enter] key. When the command is

suspended, already specified contents are validated.
To return to the immediately preceding guidance, press the [*] key and then the [Enter] key.

M Notefor |CE mode
The trigger address must be specified within the range of the memory area available for each microcomputer
model. An error results if this limit is exceeded. In this case, the system brings up a guidance for entering

addresses again.
Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.
Error: No map area. ...If an unused address is specified.
EO0C33 FAMILY EPSON 383

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

nput examples for ICD mode

(1) Displaying current setup contents

@

When the tm command is executed, the current setup contents are displayed first.

>tmd
Trace mode . area ..or"al”
Over write ’no ...or "yes"
Measure mode coall ...or "area’
Trigger addressl : 0000100
Trigger address2 0000000
Address2 break i on ...or "off"
Counter display mode : accumulate ...or "each instruction”
Trace mode 1.all 2.area ...? area :qJ ...Press [q] if you do not change any settings.
>
) Changing settings

According to the guidance that appears after the current setup contents are displayed, input or choose the
desired new setup contents.

Setting all trace mode

Trace mode 1.all 2.area ...? area :1.d ...Choose"1.dl".

Over write 1.yes 2.no ...? no :1d ...Choose overwrite condition.
Counter display mode 1.accumulate 2.each instruction ...? accumulate :2.

> ...Choose counter display mode.

In this example, all trace mode is selected, overwrite to the trace memory is enabled and the counter display
mode is set to instruction units.

Setting area trace mode

Trace mode 1.all 2.area ...? all :24 ...Choose"2.ared".

Measure mode 1.all 2.area ...? all :24 ...Choose time measurement condition.
Trigger address1 ? 0000100 :600000. ...Enter trigger address 1.

Trigger address2 ? 0000000 :600100. ...Enter trigger address 2.

Address2 break 1.on 2.off ...? on 14 ...Enable/disable address 2 break function.

Counter display mode 1.accumulate 2. each instruction ...? accumulate :1.
...Choose counter display mode.
Warning: Hard PC break is not stopped at present mode.
>

In this example, the trace mode and the time measurement mode are set to "ared’. The trace range is set to
0x600000-0x60010 and break at 0x600100 is enabled. The clock count in the trace information will be
displayed with the accumulated value.

To quit in the middle of guidance, press the [q] key and then the [Enter] key. When the command is
suspended, already specified contents are validated.

To return to the immediately preceding guidance, press the [] key and then the [Enter] key.

To skip aguidance, press the [Enter] key.

H Notefor ICE mode

The trigger address must be specified within the range of the memory area available for each microcomputer

model. An error results if this limit is exceeded. In this case, the system brings up a guidance for entering

addresses again.
Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.
Error: No map area. ...If an unused address is specified.

The hardware PC break function is disabled when the area trace function is set. However, the set hardware PC
break address is maintained and it will be enabled when the area trace function is cancelled.

384

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

B I nput examplesfor simulator mode

(1) Turningthetrace mode on

>tm

Trace 1.on 2.off ...? 14
Display option 1.normal 2.register 3.source 4.register, source ...?7 14

Display mode 1.window 2. file ...

>
>tm

Trace 1.on 2.off ...? 14
Display option 1.normal 2.register 3.source 4.register, source ...?7 4

Display mode 1.window 2. file ...
test. trcd

File name ? :

RO R1 R2 R3 R4 R5 R6 R7
R8 R9 R10 R11 R12 R13 R14 R15

SP AHR ALR

>

? 24

CHAPTER 16: DEBUGGER

...Turn the trace mode on.

714 ...Set a window for the output destination.

...Turn the trace mode on.

...Set a file for the output destination.
...Specify an output file name.
...Choose to display registers.

When the program is executed after the above is set up, trace information is displayed or output for every
instruction executed. Command execution is terminated only when you input the [Enter] key in the middle of
guidance. Refer to "Displaying trace information in the ssmulator mode" for the display option.

(2) Turningthetrace mode off

>tmd

Trace 1.on 2.off ...? 24

>

...Turn the trace mode off.

H Displaying traceinformation in the smulator mode

If, when turning the trace mode on, awindow is set for the output destination, the trace information is displayed in
the [Trace] window irrespective of whether the program is run continuously or stepwise. If the [Trace] window is
closed, the information is displayed in the [Command] window.

If afileis selected, the information is output to afile, and is not displayed in any window.

The [Trace] window shows the trace information from the latest one to that of maximum 255 instructions before.
The following shows display examples according to the display option selected by the tm command.

When " 1. normal" isselected:

Wl Sim Trace

Humber Address

00000065 00080044
00000066 00080026
80080080867 B0B30028
00000068 00080022
00000069 00080024
8008006870 B0B8082E
a0000071 00080030
00000072 000800832
0008000873 8083080834
00000074 00080036
a0000075 00080038
8080086876 B0880083A
80080086877 8088883C
00000078 0008003E
00000079 00080040
0008006880 80680842
00000081 00080044
00000082 00080026

]

Code
06408
6018
1EFD
2EBC
1G85
781C
180a
ceas
[H: L]
6C 09
3094
681A
[H: L]
[H:L]
GG 09
3con
8648
6018

Unassenble

ret

add %re,0x1

ip oxfd

1d.w %r12,%r8
call Bx5

and %r12,8x1
jreq Bxa

ext (3]

ext ax8

1d.w %r9,0x0
1d.w Br10,[%r9]
add %r18,8x1
ext ax8

ext ax8

1d.u %r9,0:0
1d.w [%r9],%r18
ret

add %re,0x1

M=
Address Type Data -
a00007FY4 Y 00080026

40088888 wyW B0AOAB63
apeee7FY Y B0680026

o

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

EPSON 385

CHAPTER 16: DEBUGGER

When " 3. source" is selected:

[
Ml Sim Tiace [_ O[]
Number Address Code Unassemble Address Type Data File Line SourceCode -
00000059 00080026 6010 add %r0,0x1 - - -= - - (main.c) eoai1 fFor (j=8 ; ; j++)
1EFD jp oxfd
80000061 DBABAA22 2EOC 1d.w %-12,%r8 (main.c) 08813 sub(j);
6pAABAG2 ABOBAB24 1CA5 call 8x5
00000063 BOOBOO2E 761C and %r12, 0x1 (main.c) eo620 if (k & 0x1) _I
00000064 00080030 180A jreq oxa
00000065 BBOBABAY 864D ret (main.c) apezy H
80BA00G6 DBABEA26 GE18 add %8, 8x1 (main.c) 8ee11 For (j=8 ; ; j++)
666000067 00080028 1EFD jp Bxfd
00000068 DDO8O022 2EOC 1d.u %r12,%r0 (main.c) 00013 sub(j);
9 4 1085 call 8x5
60A00B878 BBOEAG2E 781C and 212,821 (main.c) apeze if (k & @21)
66600071 006080036 180A jreq Bxa
00000072 ODOEOO32 CODO ext oxe (main.c) ope22 i+e;
60A00873 BBOEAA34 COBA ext ax8
600008874 ABOEAG36 6CA9 1d.w %r9,0x8
60000075 00080038 309A 1d.w Sr16,[%r9]
00000076 DOOBOO2A 601A add %r18, 8x1
60A008877 BBOEAA3C COBA ext axa
ki A7
When " 4. register, source" is selected:
W Sim Trace M= B3
Nunber Address Code Unassemble Address Type Data File Line SourceCode -
0BABB7F4 ARARARAA AARAAAAR IL:8 MO:8 DS:8 IE:8 C:B U:8 Z2:08 H:8
00806132 BABBBAB2E 781C and 12,881 —mmmmmem o e {main.c) ape2e if (k & Bx1)
000067F4 ARARAAAA AARAAAAR IL:0 MO:0 DS:9 IE:@ C:B U:0 2:1 H:0
00800133 00308838 180A jreq L T ittt
006067F4 AAAAAAAA AAAAAAARA IL:0 MO:0 DS:0 IE:@ C:0 U:0 2:1 H:0
00806134 BOABABLY 8648 ret 8B0887F4 rY BOBERB2G {main.c) ape24 H
000067F8 AAAAAAAA AAAAAAARA IL:0 MO:0 DS:0 IE:@ C:0 U:0 2:1 H:0
00080135 00880026 6610 add %r8,8%1 0 e e (main.c) gee11 For (j=0 ; ; j++)
000067F8 AAAAAAAA AAAAAAARA IL:0 MO:0 DS:0 IE:@ C:0 U:0 2:0 H:0 =
LI Hls

When "2. register” is selected from the display option, the display format is the same as "4" but the source part is
not displayed.

Traceinformation is displayed in the [Command] window by using the same format as shown above.

The following lists the trace information that is displayed on the screen in simulator mode:

<1st line of each trace information>
Number: Executed instruction number (decimal).
Thisisthe executed instruction number after the CPU is reset or traceis turned on.
Address: Executed instruction address (hexadecimal).
Code: Instruction code (hexadecimal).
Unassemble: Disassembled content.
Address: Accessed memory address (hexadecimad).
Type: Bus operation type.
rB: Byte dataread, rH: Half word dataread, rw: Word data read
wB: Byte datawrite, wH: Half word data write, wW: Word datawrite

Data: Read/write data (hexadecimal).
File: Source file name (displayed only when source display is selected by the tm command).
Line: Source line number (displayed only when source display is selected by the tm command).

SourceCode: Source code (displayed only when source display is selected by the tm command).

<Lines 2—4 of each trace information>
These lines are displayed when register option is selected with the tm command.
The register values appear in the order shown below.

RO R1 R2 R3 R4 R5 R6 R7
R8 R9 R10 R11 R12 R13 R14 R15
SP AHR ALR PSR (displayed in flag units)
386 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

td (trace dump) [ICD / ICE]

B Function
This command displays the trace information that is sampled into the trace memory in the ICE33/ICD33.

B Format
td [<No.>] (direct input mode)
<No.>: Trace cycle No. (decimal)

When omitted, trace data is displayed beginning with the latest data.
Condition: ICEmode 0 (latest data) < No. < 32767 (oldest data)
ICD mode O (latest data) < No. < 131071 (oldest data)

H Display
(1) When the[Trace] window isopen
>tdd
>

When the td command is executed after breaking the program, the [Trace] window redisplays the latest data.
The most recently traced data is shown on the bottom line of the window. All trace data can be displayed by
scrolling the window.

When a trace cycle No. is specified, the data of a specified cycle is displayed on the bottom line of the
window. In this case too, dl trace data can be displayed by scrolling the window.

Display examplein ICE mode
When "normal” is selected from the display option of the tm command:

e |
Cycle Address Code Unassemble Address Data Clk Type TRC =
88152 808848A G6EG8 1d.w %r8,0x26 - --— 1 Inst H SRAM
00151 068040C 6D29 1d.w %re,0x12 - 1 Inst H SRAH
00150 OOSO4OE 3889 1d.h [%r8],%r9 - 1 Inst H SRAM
88149 8088418 6CH8 1d.w %r8,0x0 - 1 Inst H SRAM
BB148 —————-= —mmm —mmm—e e 0648126 @612 2 DatW H 1/0 _I
00147 06080412 COOO ext 6x0 Inst H SRAH
88146 8088414 CAB1 ext 8x1 Inst H SRANW
88145 8088416 1CF5 call BxF5 Inst H SRANW
80144 0630418 1EFL4 jp BxFl Inst H SRAH
00143 0080800 6D6O 1d.w %re,0x10 Inst H SRANW
88142 8088882 ARAA 1d.w %psr,%r8 Inst H SRANW
00141 B6O80B04 BOOO nop Inst H SRAH
90140 0630806 0486 int 6x0 Inst H SRAH
88139 80838888 BAAA nop - Inst H SRANW
08138 -- 0680030 B42A 5 UecR W SRAM
00137 --—--——- - 2 60068 1 UecR W SRAM
88136 808842A BAAA nop -- 3 Inst H SRAM
88135 B888842C B4CH reti 1 Inst H SRAM -
KI| A7
When "source" is selected from the display option of the tm command:
Cycle Address Code Unassemble Address Data Clk Type TRC File Line SourceCode -
00061 004812C 5900 2 DatW W 1/0
aee68 ———---- —-—— —————————— BB4812E 00888 2 DatW W 1/0
88059 0O88B8G4 CB24 ext 8x24 - 1 Inst H SRAW (area.s) 28868 x1d.h [TTBR],%r8
800538 0880866 C134 ext 8x134 Inst H SRAH
000857 00808468 3888 1d.h [%¥8],%r0 Inst H SRAH
60056 0O8086A B486 int 0x0 Inst H SRAH (area.s) 00661 int @
0ous5 Datw H 1/0
88854 Inst H SRAH {area.s) 88862 nop
a8a53 UecR W SRAM
ape52 -——---- —-—— —————————— UecR W SRaM
600851 BCA042A 0OBO nop Inst H SRAH {areatC _s5) 00297 nop
60056 BCOO42C B4CH reti Inst H SRAH (areaC.s) 00298 reti J
00049 OCOO42E 0000 nop Inst H SRAN (areaC.s) 00300 nop
88848 BO8E86C B8BBA nop Inst H SRAH {area.s) 88862 nop
88047 BOBE8GE 6C8O 1d.w %r8,8x8 Inst H SRAH (area.s) 88863 x1d.w %8, (AREA_8&B:
80046 0B8BB70 CB24 ext 8x24 Inst H SRAH (area.s) 08864 x1d.b [TTBR+2],%r8
00045 0080872 C136 ext 82136 Inst H SRAH
6004y DOBOS7Y4 3480 1d.b [%r8],%r0 Inst H SRAH -
I AW
EOC33 FAMILY EPSON 387

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

The following lists the contents of trace information displayed in |CE mode:
Cycle: Trace cycle (decimal). The last information taken into the trace memory becomes 00000.
Address: CPU-instruction-fetch address (hexadecimal).
B " isdisplayed for a non instruction-fetch access.
Code: Instruction code fetched by the CPU (hexadecimd).
"----" is displayed for a non instruction-fetch access.
Unassemble: Disassembled content of the fetched instruction.
Mo " is displayed for a non instruction-fetch access.
Address: Address accessed by the CPU (hexadecimal).
R " isdisplayed for an instruction-fetch access.

Data: Read/write data (hexadecimal).
"----" is displayed for an instruction-fetch access.
Clk: Number of clocks used in the bus operation (1 to 7).
"V" is displayed when 8 or more clocks are used.
Type: Bus operation type:

Inst: Instruction fetch, VecR: Vector read, DatR: Dataread, DatW: Data write
StkR: Stack read, StkW: Stack write, DmaR: DMA read, DmaW: DMA write
Access size:
B: Byte access, H: Half word access, W: Word access
Memory type:
SRAM, DRAM, BROM (burst ROM), IRAM (internal RAM), I/O (internal 1/0)
DBUG (for ICE development), ERR (others)

TRC: Input to TRCIN pin (denoted by L when low-level signa isinput).
T: Tracetrigger point (placed at the beginning of theline).
Displayed only for the bus cycle that meets trace trigger conditions.
File: Source file name (displayed only when source display is selected by the tm command).
Line: Source line number (displayed only when source display is selected by the tm command).

SourceCode: Source code (displayed only when source display is selected by the tm command).

388

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Display examplein ICD mode

Cycle Address Code Unassemble Clk Hethod File Line SourceCode -

000617 86062088 DFF8 ext Bx1FF8 062842 DPC

8806816 B662D3A DFF9 ext ax1FF9 ap2858 DPC

8086815 8662D3C 1C44 call Bxhy ap2875 DPC

8886814 8662814 6CBC 1d.w %r12,8x0 882912 DPC (sys.c) apes1 iBytes = B; /= no read now */

8806813 B682816 COBC ext Bxc 882928 DPC (sys.c) 06086 for (;;)

600612 8602018 C401 ext Bx481 002944 DPC

600611 866201A 6CBF 1d.w %15, 0x8 002968 DPC

600610 B860201C 6C14 1d.w By, 0x1 002976 DPC

000009 B66201E 688E cmp %r14,0%0 062992 DPC (sys.c) 06891 if (iReadBytes == @) J# if require

600608 0662020 1806 jreq Bx6 063008 DPC

000007 8602022 C308 ext 0x368 0630824 DPC (sys.c) 668946 if (READ_EOF == 1)

800006 8602024 COBY ext 8x89 ap3848 DPC

8000AA5 B6A2026 2485 1d.ub %5, [%r8] ap3883 DPC

680884 B6A2828 6815 cmp %r5,8x1 ap3889 DPC

680083 B66262A 1A83 jrne 8x3 883118 DPC

600002 0602030 24FB 1d.ub 211, [%r15] 083174 DPC (sys.c) 08161 iSize = READ_BUF[0];

600001 8602032 6808 cmp %r11,0x0 883175 DPC (sys.c) 06162 if (isize > 8)

000000 0602034 OE14 jrle Bx14 003196 DPC =)
KIS A

The following lists the contents of trace information displayed in ICD mode:

Cycle: Trace cycle (decimal)
Thelast information taken into the trace memory becomes 000000.
Address: CPU-instruction-execution address (hexadecimal)

Code: Instruction code executed by the CPU (hexadecimal)
Unassemble: Disassembled content of the instruction code
CIk: Number of clocks used for executing the instruction

By default, the cumulative clock count from start of tracing is displayed. It can be changed so
that the number of clocks for each executed instruction is displayed.
Method: Trace analytical method (to get the executed PC address)
SPC: Anayzed with the start PC address
TRG: Anayzed with the trigger address
DPC: Analyzed with the DPCO signa
RET: Analyzed with the call/ret statement
MAP: Anayzed with the map information
RTI: Andyzed with thereti statement

Cannot be analyzed
File: Source file name (which includes the executed instruction)
Line: Source line number

SourceCode: Source code

In ICD mode, the trace information can aso be displayed while the program is being executed. By clicking
the [Display trace] button, the ICD33 suspends tracing and displays the sampled trace memory data to the
[Trace] window. The trace operation can be resumed by clicking the [Resume trace] button.

@l [Display trace] button Q,:Pl [Resume trace] button

(2) When the[Trace] window is closed
16 lines (default) of trace data are displayed in the [Command] window. The number of display lines can be
changed using the md command.
The latest data is shown on the bottom line of the window if trace cycle No. is omitted. When a trace cycle
No. is specified, data of the specified cycle is shown on the bottom line.

(3) Logging
To save the command execution results to a log file, close the [Trace] window and display the results in the
[Command] window. If the [Trace] window is open, the display contents will not be saved in the file because
the [Command] window does not display the results.

EOC33 FAMILY EPSON 389

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(4) Successivedisplay
Once you execute the td command, data can be displayed successively with the [Enter] key only until some
other command is executed.
When you hit the [Enter] key, the [Trace] window is scrolled forward one full screen.
When displaying data in the [Command] window, data is displayed for the 16 lines (default) following the
previously displayed address.

The direction of display is such that each time you input the [Enter] key, data on older execution cyclesis
displayed (FORWARD). This direction can be reversed (BACKWARD) by entering the [B] key. To return
the display direction to FORWARD, input the [F] key. If the [Trace] window is open, the direction in which
the window is scrolled is also changed.

>td 1004 ...Started display in FORWARD.
(Dataon cycle Nos. 115 to 100 is displayed.)
>bd ...Changed to BACKWARD.

(Dataon cycle Nos. 99 to 84 isdisplayed.)
>d ...Continued display in BACKWARD.
(Dataon cycle Nos. 84 to 69 isdisplayed.)
>fd ...Changed back to FORWARD.
(Dataon cycle Nos. 99 to 84 isdisplayed.)

>

H Notesfor ICE mode

Specify the trace cycle No. within the range of 0 to 32767. An error results if this limit is exceeded.
Error: Trace range (0-32767).

For reasons of the ICE33 operation timing, the trace data at the boundary of operations, such as in the fetch
cycle at which trace starts or the execution cycle at which trace ends, will not always be stored in memory.

After a single-step execution or a break occurs, information of the pre-fetched instructions that have not been
executed are displayed. When the target program execution is suspended by a software PC break, the fetch
cycle information of the brk instruction that was inserted for the software PC break is also displayed.

When the program starts a successive execution from an address set as a software PC break point, the ICE33
executes single-stepping before starting the successive execution. Therefore, redundant trace information
pre-fetched by the single-stepping may be displayed.

For source-level step execution, the ICE33 repeats single-stepping internally. Therefore, a lot of pre-fetch
information of all the steps will be displayed.

Trace datafor read/write of the internal RAM cannot be referred since the bus access is undetectable.

During data transfer by the high-speed DMA, data cannot be traced properly.

M Notesfor ICD mode

Specify the trace cycle No. within the range of 0 to 131071. An error resultsif this limit is exceeded.
Error: Trace range (0-131071).

In ICD mode, the debugger analyzes trace data based on the 4-bit information delivered from the CPU using
the disassembled program information. Therefore there are some restrictions. Refer to "ICD trace operation and
precautions' in Section 16.8.7 for details.

390 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

ts (trace search) [ICD / ICE]

M Function
This command searches trace information from the trace memory under a specified condition.
In ICE mode, the search condition can be selected from two available conditions:

1. Address

The cyclein which a specified address was accessed is searched. This condition can be specified to search the
entire memory area.

2. Busoperation type

The cyclein which a specified bus operation was performed is searched. A bus operation type can be selected
from the following:

0. All ...All bus operations 5. StkR ...Stack read cycle
1 Inst ...Instruction fetch cycle 6. Stkw ...Stack write cycle
2.VecR ...Vector fetch cycle 7.DmaR ..DMA read cycle
3. DaR ...Dataread cycle 8.DmawW ..DMA writecycle

4.DaW ..Datawritecycle

In 1CD mode, a program execution address can be specified as the search condition.

Itisaso possible to display the information before and after the searched line in the range of 0 to 256 lines each.

M Format

ts (guidance mode)

B Input example

ICE mode

>tsd

Search address (* is all area) ? : 200. ...Specify an address (input * for the entire area).
Bus type O0:All 1:Inst 2:VecR 3:DatR 4:DatW 5:StkR 6:StkW 7:DmaR 8:DmaW ...? 2
Number of pre lines (0-256) ? : 2.4 Ll

Number of post lines (0-256) ? : 34 LE2

Find 0 trace data. (0 lines) ...Displays the number of lines searched.

>

1CD mode

>tsd

Search address ? : 8110384 ...Specify an address

Number of pre lines (0-256) ? : 14 L

Number of post lines (0-256) ? : 2.4 LH2

Find 2001 trace data. (8003 lines) ...Displays the number of lines searched.
>

*1 Number of lines to display the data preceding the searched line
x2 Number of lines to display the data following the searched line

H Displaying sear ch results
The search result (occurrences found) is displayed in the [Command] window.
The trace information is displayed in order of the trace cycle number.

(1) When the[Trace] window isopen

@

-

The searched trace information is displayed in the [Trace] window.

The [Trace] window is switched to the search mode so that the searched data can be displayed successively
by scrolling the window in the vertical direction. This display mode remains effective until you input the td
command.

When the[Trace] window is closed

The 16 lines (default) of searched data are displayed in the [Command] window. The number of display lines
can be changed using the md command. The display mode here is the same as with the td command. Also, if
the search result includes more than 16 occurrences, datais displayed in the same way as for the td command.

EOC33 FAMILY EPSON 391
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

H Notes

The ts command can only be used in ICE and |CD modes.

The address must be specified within the range of the memory area available for each microcomputer model.
An error results if this limit is exceeded. In this case, the system brings up a guidance for entering addresses

again.

Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.
Error: No map area. ...If an unused address is specified.
392 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

tf (trace file) [ICD / ICE]

B Function
This command saves a specified range of data in the trace memory or from the search results of the ts command (if
immediately after execution of the ts command) to afile.

B Format
tf (guidance mode)

B Input example

ICE mode

>tfd

Start cycle number (max 32767) ? : 2000 ...Save start cycle number isinput.

End cycle number (min 0) ? : 04 ...Save end cycle number isinput.

File name ? : d:\trace. txtd ...File nameisinput.

Processing 2000-1001 cycle. ...Displays the progressin 1000 cycle units.

Processing 1000-1 cycle.
Processing 0-0 cycle.

>
1CD mode
>tfd
Start cycle number (max 131071) ? : 10004 ...Save start cycle number isinput.
End cycle number (min 0 ?: 04 ...Save end cycle number isinput.
File name ? : d:\trace. txtd ...File nameisinput.
Reading trace data.
Making file.
>
H Notes

e Thetf command can only be used in ICE and ICD modes.
e When an existing fileis specified, thefile is overwritten with new data.

e The search results of the ts command are saved in the same order of the numbers displayed beginning with the
smallest number.

EOC33 FAMILY EPSON 393
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.13 Simulated I/O

stdin (standard input) [ICD/ICE/SIM/MON]

W Function

This command sets up the environment necessary to input data from the [Simulated 1/0O] window or afile, and pass
it on to the program. Use this command to set up the following conditions:

o Break address (a position a which the db33 takes in data)

o [nput buffer address (a 65-byte buffer)

e Input device ([Simulated I/O] window or afile)

For preparation on the program side, refer to Section 16.8.8, "Simulated 1/O".

B Format
stdin (guidance mode)

B Input examples

(1) Setting
>stdind
Break address @ skkkxkk ...Current setup contents (***** denotes that there are no settings.)
Buffer address : sekfioktrk
1.set 2.clear ...? 14 ...Choose "1. set".
Break address ? :READ_FLASH. ...Set a break address.
Buffer address ? :READ_BUFJ ...Set an input buffer address.
Input mode 1.window 2.file ...? 14 ...Specify the source from which data is input.
>

If the program is run continuously after setting up the above, the db33 stops executing at the position of a
label READ_FLASH in the program, and brings up the [Simulated 1/0] window. When you input datain the
window and press the [Enter] key, the db33 takes in the input data into the input buffer (READ_BUF), then
restarts executing the program.

If you chose "2. file" in the input mode, input afile name too.
Input mode 1.window 2.file ...? 24

File name ? :input. txtd ...Specify a file name from which you want to input data.
>

If you chose afile for the input source, the db33 takes in one line of data from a specified file at the break
position without bringing up the [Simulated 1/0] window.

To terminate command execution, input only the [Enter] key in the middle of guidance.

(2) Clearing
>stdind
Break address : 0008017C READ_FLASH ...Current setup contents
Buffer address : 00000048 READ_BUF
1.set 2.clear ...?7 24 ...Choose "2. clear".
>

The datainput function is deactivated.

H Notes

e The break address you set in the stdin command cannot overlap any software PC breakpoint. In such a case,
clear the software PC breakpoint before you execute the stdin command. Overlapping with a hardware PC
breakpoint is accepted.

e The break and buffer addresses must be specified within the range of the memory area available for each
microcomputer model. An error results if thislimit is exceeded. In this case, the system brings up a guidance
for entering addresses again.

Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.
Error: No map area. ...If an unused address is specified.

e When using the simulated 1/O function in ICE mode, the display response timeis improved by setting the baud
rate to 115200bps and the on-the-fly interval to O (md command).

394 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

stdout (standard output) [ICD/ICE /SIM/MON]

B Function

This command sets up the environment necessary to output data from a specified output buffer to the [Simulated
1/0] window or afile. Use this command to set up the following conditions:

e Break address (a position at which the db33 outputs data)

o QOutput buffer address (a 65-byte buffer)

o QOutput device ([Simulated 1/0O] window or afile or both)

For preparation on the program side, refer to Section 16.8.8, "Simulated 1/0."

B Format
stdout (guidance mode)

B | nput examples

(1) Setting
>stdout
Break address @ sxskkokokk ...Current setup contents (***** denotes that there are no settings.)
Buffer address : stk
1.set 2.clear ...? 14 ...Choose "1. set".
Break address ? :WRITE_FLASH. ...Set a break address.
Buffer address ? :WRITE_BUF. ...Set an output buffer address.
Output mode 1.window 2.file 3.window & file ...? 34 ...Specify the destination.
File name ? :output.txtd ...Specify a file name to which data is output.
>

If the program is run continuously after the aboveis set up, the db33 stops executing at the position of alabel
WRITE_FLASH in the program and brings up the [Simulated /O] window. Next, the db33 outputs data
from a specified buffer (WRITE_BUF) to the [Simulated 1/0] window and a specified file. If you only
specified afile for the output destination, the [Simulated I/O] window is not opened.

To terminate command execution, input only the [Enter] key in the middle of guidance.

(2) Clearing
>stdout
Break address : 000801DO WRITE_FLASH ...Current setup contents
Buffer address : 00000004 WRITE_BUF
1.set 2.clear ...? 24 ...Choose "2. clear”.
>

The data output function is deactivated.

H Notes

e The break address you set in the stdout command cannot overlap any software PC breakpoint. In such a case,
clear the software PC breakpoint before you execute the stdout command. Overlapping with a hardware PC
breakpoint is accepted.

e The break and buffer addresses must be specified within the range of the memory area available for each
microcomputer model. An error results if this limit is exceeded. In this case, the system brings up a guidance
for entering addresses again.

Error: Address range (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.
Error: No map area. ...If an unused address is specified.

e When using the simulated 1/0 function in |CE mode, the display response time is improved by setting the baud
rate to 115200bps and the on-the-fly interval to 0 (md command).

EOC33 FAMILY EPSON 395
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.9.14 Other Commands
com (execute command file) [ICD/ICE/SIM/MON]

M Function
This command reads a command file and successively executes the debug commands written in that file.

M Formats
(1) com (guidance mode)
(2) com <file name> (direct input mode)

<file name>: Command file name

B I nput examples

File name = startup.cmd

; Load file ...A description from ";" to the end of the line is regarded as a comment.
If test.srf

; Cold reset

rstc

; Display mode

m BOOT

>com.d

File name ? :startup.cmdd ...Command file name isinput.
>If test.srf

>rste

>m BOOT

>

The commands written in thefile are displayed in the [Command] window as they are executed.

H Notes

Another command file can be read in from within a command file. However, the nesting of command files is
limited to a maximum of five levels. An error will result if a com (or cmw) command at the sixth level is
encountered, and the subsequent execution will be halted.

Error: Cannot open file, <file name>.

By specifying the -c option with the db33 startup command, you can execute one command file simultaneous
with the startup of the debugger.
Example: db33 -c startup.cmd -p 88104_1.par

Once the commands described in the specified command file are executed by entering the com command, the
commands can be executed repeatedly by pressing the [Enter] key until another command is executed similarly
to theg, sand n commands.

For example, if the command file "test.cmd" contains the following two commands, they can be repeatedly
executed after once the com command is executed.

s
db 800100 ... Contents of test.cmd

>com test. cmdJ ... Executes "s" and "db 800100".

>d ... Repesats execution of the above commands.
>d ... Repeats execution of the above commands.

This makes it possible to repeat multiple commands using the [Enter] key only.

The [Key break] button can be used to suspend the command execution by a command file. When a command
that takes a long execution time (fill command for large area, etc.) is executed, keep the mouse button pressed
until the operation is accepted.

396

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

cmw (execute command file with wait) [ICD/ICE /SIM/MON]

B Function

This command reads a command file and executes the debug commands written in that file at predetermined time
intervals.

The execution interval of each command can be set in arange of 1 to 256 seconds (in 1-second increments) using
the md command. In theinitial debugger settings, the execution interval is 1 second.

B Formats
(1) cmw (guidance mode)
(2) cmw <file name> (direct input mode)

<file name>: Command file name

B | nput example

>emw.|
File name ? :infodisp. cmdJ ...Command file nameisinput.
: ...Commands are executed.
M Notes

¢ Another command file can be read in from within a command file. However, the nesting of command files is
limited to a maximum of five levels. An error will result if a cmw (or com) command at the sixth level is
encountered, and the subsequent execution will be halted.
Error: Cannot open file, <file name>.

¢ If the cmw command is written in the command file that you want to be read by the com command, al other
commands following that command in the file (even when a com command is included) will be executed at
predetermined time intervals.

e Thecmw alows repeat execution by the [Enter] key similar to the com command.

e The[Key break] button can be used to suspend the command execution by a command file. When a command
that takes a long execution time (fill command for large area, etc.) is executed, keep the mouse button pressed
until the operation is accepted.

EOC33 FAMILY EPSON 397
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

log (logging) [ICD/ICE/SIM/MON]

M Function

This command saves the input commands and the execution results of the commands that are displayed in the
[Command] window to afile.

B Formats
(1) log (guidance mode)
(2) log <file name> (direct input mode)

<file name>: Log file name

B Saved contents

The contents displayed in the [Command] window are written as displayed directly to thelog file.

The commands executed from a tool bar or menu and the execution results displayed in other windows are not
displayed in the [Command] window, so they are not output to afile either. To save alog, close al windows other
than the [Command] window before you execute the log command.

B | nput examples

>logd
File name ? :logl. log ..Log file nameisinput.
log on ...Starts outputting a log.
>
Log output remains effective until the log command is executed next.
>logd
log off ...Finishes outputting a log.
H Notes

e When an existing fileis specified, thefile is overwritten with new data.

¢ When outputting alog, close al windows other than the [Command] window and increase the number of lines
for the execution results to be displayed in the [Command] window (16 lines by default) by using the md
command. Thiswill help you reduce the labor and time required for key operation.

398 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

od (option data dump) [ICE]

B Function
This command displays option data in the [Command] window in a hexadecima dump format after reading it from
the ICE33.

B Format
od (guidance mode)

B Input example
Input the start and end addresses of the display range sequentially in the order given by the guidance.
>odd
Start address ? :0J
End address ? :fud
01234567 89 ABCDTETF
0000: 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00
>

e The start and end addresses can be omitted by entering the [Enter] key only.

If the start address is omitted, datais displayed beginning with address 0.
If the end address is omitted, the end address of the option areais assumed.

e The maximum number of lines that can be displayed at onceis 16 (default). Even if you specify the end address
in an attempt to display more than 16 lines, the db33 will only display data for 16 lines and then stand by
waiting for a command input. The following addresses are displayed by entering the [Enter] key. The number
of display lines can be changed using the md command.

e Datain unused areasis marked by an "*" asit isdisplayed in the window.
H Notes

e The od command cannot be executed in the modes other than |CE mode.
Error: Command is not supported a present mode.

¢ Both the start and end addresses must be specified within the setup range of the option. An error results if this
limit is exceeded.
Error: Addressrange (0-Ox3FFF). ...Specified address is outside the range.

e Anerror resultsif the start addressis larger than the end address.
Error: addressl > address2

e Thedefault value of option dataisO.

EOC33 FAMILY EPSON 399
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

ct (change type) [ICD/ICE/SIM/MON]

M Function

This command converts the input numeric vaues and character strings to other display formats before displaying
them on the screen.

B Formats
(1) ct (guidance mode)
(2) ct <value> (direct input mode)

(3) ct <option><value> (direct input mode)
<value>: Numeric value to be converted (decimal, hexadecimd, real number)
<option>: : ..Convertsbinary
...Converts hexadecimal to double type
...Converts hexadecimal to character string
...Converts character string to hexadecimal

B Input examples

(1) Guidanceinput

>ctd

Value ? 1123454 ...Input the numeric value to be converted.
bin :00000000000000000011000000111001

hex 00003039

>

(2) Converting a binary number
Add acolon (:) a the beginning of a binary humber when you input it. The input binary number is converted

to adecimal, hexadecimal and single-precision real number representation.
>ct 101000001

dec 165

hex 00000041

float : 9.108440018e-044 .."float" is displayed down to 9 decimal places.
>

(3) Converting a decimal number
Add aminus sign (-) to a negative number when you input it. Do not add a"+" for any positive number. The

input decimal number is converted to a binary and hexadecimal number.
>ct 1234564

bin :00000000000000011110001001000000
hex : 0001E240

>ct 14

bin SRR R RN R AR RRAARRRAARRRARENE
hex . FFFFFFFF

>

(4) Converting a hexadecimal number

Conversion to binary, decimal or single-precision real number representation
Normal hexadecimal representation is converted to a binary, decimal and single-precision rea number

representation.
>ct Ox41abcdd
bin : 00000000010000011010101111001101
dec 1 4303821
float : 6.030937758e-039
>
400 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Conversion to character string

To convert a hexadecimal number to a character string, add an apostrophe (') at the beginning of the number
and separate each byte with a space, tab or comma when you input it. Up to 16 bytes can be converted.

The ASCII code that can be displayed (0x20 to Ox7F) is converted to characters, while all other codes are

turned to spaces. The "0x" is not required for the hexadecimal numbersinput.
>ct 41 42 43 44 45 464
string : “ABCDEF”
>

Conversion to a double-precision real number representation
To convert a hexadecimal number to a double-precision real number, input 8 bytes of a hexadecima number
after adding a period (.) at the beginning of the number. Insert a space, tab or comma between the four

high-order and four low-order bytes. The "0x" is not required for the hexadecima numbers input.
>ct (3FFFFFFf fIFFffffa

double : 1.9999995231628416e+000 ..."double" is displayed down to 16 decimal places.
>
(5) Converting a character string
Add a double quotation (") at the beginning of a character string when you input it. Up to 16 characters can
be input. The input character string is converted to a hexadecimal number.
>ct “abedd
hex 1 61 62 63 64
>
(6) Converting areal number
A rea number is converted to a binary and hexadecimal number of a single-precision and double-precision
real number size.
>ct 1. 754
bin(F) : 00111111111000000000000000000000
bin(®) : 0011111111111100
hex (F) : 3FE00000
hex (D) : 3FFC000000000000
>
H Notes

e The input binary, decimal, and hexadecimal numbers are handled as a 32-bit numeric value. If a number
exceeding 32 bitsis input, the conversion result is displayed as "------

e For decimal and real numbers, specification of a negative number (marked with "-") is accepted.

e Converted decimal numbers are signed 32-bit data.

EOC33 FAMILY EPSON 401
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

ext

(extended instruction) [ICD/ICE/SIM/MON]

B Function
This command ca culates the immediate data extended by the ext instruction and returns the result in the extended
instruction format of the instruction extender.

B Format
(1) ext (guidance mode)
(2) ext <address> (direct input mode)

<address>: Target instruction address (hexadecimal, symbol or source line number)
Condition: 0x0 < address < Oxfffffff

B Input examples

Guidance mode
>extd
Address ? :801004 ...Input atarget instruction address.

Direct input mode
>ext 80100

(1) Branch instruction
When the ext instruction has not been used:
address code instruction
00000 0000 nop
00002 1EOF jp Oxf
>ext ¢00002
XJip Oxle (0x00G00020)
>
For branch instructions, the immediate datais extended with O at the LSB. (') indicates the branch destination
address.
When the ext instruction has been used:
address code instruction
00000 0000 nop
00002 CO10 ext 0x10
00004 CO00 ext 0x0
00006 1EOF jp Oxf
>ext ¢00006
Xjp 0x800000 (0x00140006)
>
(2) Other instructions
address code instruction
00000 0000 nop
00002 C100 ext 0x100
00004 3021 Id.w %r1, [%r2]
>ext ¢00004
xld. w %r1. [%r2+0x100]
>
402 EPSON E0C33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

H Notes

An error resultsif an address of the instruction that cannot be extended by the ext instruction is specified.
Error: Target instruction cannot be extended.

Up to two ext instructions immediately preceding the specified address are effective for the calculation.

The address must be specified within the range of the memory area available for each microcomputer model.
An error resultsif this limit is exceeded.

Error: Addressrange (0-OxFFFFFFF). ...If an address exceeding Oxfffffff is specified.

Error: No map area. ...If an unused address is specified.

Specify a half word boundary address (even address) for the address. If odd address is specified, awarning is
generated and the LSB of the specified address s rewritten to 0.
Warning: Round down to multiple of 2.

EOC33 FAMILY EPSON 403
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

ma (map information) [ICD/ICE/SIM/MON]

B Function
This command displays the map information that is set by a parameter file.

M Format

ma (direct input mode)

H Display
After the command is input, the db33 displays the chip name, version of the parameter file, and map information
in each area.

Example: map information when the area from 0x600000 to Ox6fffff is set to big endian.

>ma

Chip name 1 33208
Parameter file version : 01

Internal ROM area : 80000 - 8OFFF
Size of FO area : 0000

Emulation memory area (not used in simulator mode)
00C00000 — OOCFFFFF RAM
Memory map informatiopn
00000000 — 000007FF RAM
00040000 - 0004FFFF 10
00200000 - 002FFFFF RAM
00600000 - O006FFFFF RAM ,Big endian
00C00000 - OOCFFFFF ROM emulation
00600000 - O06FFFFF Stack area

404 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

md (mode)

CHAPTER 16: DEBUGGER

[ICD/ICE/SIM/MON]

M Function

This command sets the debugger modes described below.

1. Step display for single-step execution results and [Memory] window

When the step display mode is set to on, the execution results of al stepswill be displayed during single-step (s,
n command) operation. When the step display mode is set to off, the execution result of only the last step will
be displayed. The register vaues are updated when their contents are displayed in the [Register] window; they
are displayed in the [Command] window if the [Register] window is closed. If the [Source] window is open, the
displayed lines are underlined as they are executed according to the setting of this mode.

The [Memory] window while the step display mode is on updates its display contents every step during
single-step operation or updates after a break has occurred during successive execution. When the step display
mode is off, the [Memory] window is not updated automatically. To update the window, it is necessary to
execute amemory dump command or to scroll the window.

2. Mode of execution counter
This can be selected from the integration mode or the reset mode. In reset mode, the counter value is reset to 0
each time you enter a program execution command (including execution by the [Enter] key).
The vaue of the execution counter is also reset when you switch the integration mode to the reset mode.

3. 1CD execution counter function (only for ICD mode)
The measurement unit of the ICD33 execution counter can be selected from three types: cycle units, second
units and pisec units.

4. Number of linesfor displaying command execution results
When displaying the execution results of the commands listed below in the [Command] window, you can
choose the number of lines that you want displayed at atime from 1 to 1,000 lines.
Applicable commands: db, dh, dw, sc, m, u, sy, sw, sa, sd, od, td, ts

5. cmw command wait time
A cmw command wait time can be set in the range of 1 to 256 seconds (in 1-second increments).

6. TAB stop
The TAB stops used in the source display can be set every 2, 4, or 8 characters.

7. Displaying on-the-fly information (only for ICE and ICD modes)
Y ou can choose the display interval of the on-the-fly information from 0 to 10 (times) per second. When 0 is
chosen, the on-the-fly information will not be displayed.

Default values of debugger modes

Mode ICE mode ICE mode SIM mode MON mode
Step display On On On On
Execution counter mode Integrating Integrating Integrating Integrating
ICD execution counter - Number of cycles - -
Number of display lines 16 lines 16 lines 16 lines 16 lines
cmw wait time 1 second 1 second 1 second 1 second
TAB stop 8 8 8 8
On-the-fly function 5 times per second | 5 times per second OFF (fixed) OFF (fixed)

EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

EPSON

405

CHAPTER 16: DEBUGGER

B Format
md (guidance mode)

B Input example
The db33 displays the contents of current settings to provide guidance that you can follow as you perform the
operations below.

>mdd

Step and memory window each display mode : on
Counter mode hold

Counter function . cycle

Number of display line: 16 line

Cmw wait time : 1s

Tab stop : 8

On the fly interval : b times/sec

Step and memory window each display mode 1.on 2.off ...? on 14
Counter mode 1. reset 2.hold ... 7 hold 124

Counter function 1.cycle 2. time[us] 3.time[s] ? cycle 124
Number of display line 1 — 1000 |ine .7 16 line :164
Cmw wait time 1-256s L7 1s 4
Tab Stop 2, 4, 8 size L7 8 184
On the fly interval 0 - 10 times/sec .7 5 times/sec :2.
>

The above example applies to the ICD mode. In other modes, the set value and guidance for "Counter function™ is
not displayed. In simulator and debug monitor mode, the set value and guidance for "On the fly interva" is not
displayed.

If you enter the [Enter] key only in the middle of a guidance, the previously set datawill not be modified.

To quit in the middle, press the [q] key and then the [Enter] key. The contents you have input up until that time
will be modified.

The ["] key allows you to return to the immediately preceding guidance.

H Note
The actual interval of the on-the-fly display is obtained from the expression below.
(1 [sec] / Count set) + (Overhead of the PC, RS232C interface and ICE33 [sec]) = display interval [sec]

The overhead varies depending on the performance of the PC and baud rate of the RS232C interface. Be aware
that thereisa0.05 sec to 0.1 sec overhead in this system.

The debugger checks a break generation and simulated 1/0 status in the on-the-fly interval. To improve these
responses, set the on-the-fly interval to 10 or O (OFF).

406 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

q_(quit) [ICD / ICE / SIM / MON]

W Function
This command quits the debugger.
If the COM port, parallel port, log file, or command file are open, they will close when you execute this command.

B Format
q (direct input mode)

The db33 can aso be terminated by selecting the [Exit] command from the [File] menu.

EOC33 FAMILY EPSON 407
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

? (help) [ICD/ICE/SIM/MON]

B Function
This command displays the input format of each command.

B Formats

@ 2 (direct input mode)

2 ?<n> (direct input mode)

(3) ? <command> (direct input mode)
<n>: Command group humber (decimal)

<command>: Command name
Condition: 0<n<8

H Display
When you input the command in Format 1 or 2, the db33 displays alist of commands classified by function.
Use the command in Format 3 if you want to display the input format of each individual command.

Format 1)
>4
group 1: memory fb, th, fw / db, dh, dw, df / eb, eh, ew / mv,mvh,mvw / w / rm
group 2: execution & registerg s, n, rstc, rsth / int / rd, rs
group 3: break bp, bs, be, bh, bhe, bd, bsa, bl, bac, bh2, bhe2, ba, bb
group 4: source & symbol u,sc,m / ss / sy, sa, sw, sd
group 5: file & flash memory If,lh / lo/ Id/ fls, fle / Ifl,sfl, efl, maf(only for ICE flash
memory)
group 6: trace & simulated 1/0 tm, td, ts, tf / stdin, stdout
group 7: others com, cmw, log / od, ct, ext / ma,md, g, ?
group 8: input number method number, data, address, | inenum, symbol
Please type “? 1” to show group 1 or type “? fb” to get usage of command “fb”.
>
Format 2)
> 14

group 1: memory

fb (fill byte), fh (fill half), fw (fill word),

db (dump byte), dh (dump half), dw (dump word),

eb (enter byte), eh (enter half), ew (enter word),

mv (move),mvh (move half), mvw (move word), df (dump file),
w (watch data),

rm (read memory)

Please type “? fb” to get usage of command “fb”.

>
Format 3)
>? fbd
fb (fill byte): fill memory with byte data
usage: >fb addr1 addr2 data ... fill data from addr1 to addr2
>fb ... fill memory with guidance
Start address ? :addr1 ... input start address
End address ? :addr2 ... input end address
Data pattern ? :data ... input data pattern
(data:0x0-0xFF)
>
408 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

ice (ice) [ICE]

M Function

This command sends specified data directly to the ICE33. After transmitting data, the db33 displays returned data
from the ICE33 in hexadecimal form.

B Format
ice (guidance mode)

B | nput examples

>iced

1.0K 2. CAN 3.Message ...?7 14
Control code = 70

>

>iced
1.0K 2. CAN 3.Message ...?7 2.4
Control code = 40

Error code = 08
Error address= 00000000
>

>iced

1.0K 2.CAN 3.Message ...?7 3.

Message ID ? 74

Send data ——-[CR] : Quit guidance ———q[CR]
Data0001 ? :00.

Send data ——-[CR] : Quit guidance ——-q[CR]
Data0002 ? :c0.

Send data ——-[CR] : Quit guidance ——-q[CR]
Data0003 ? :00.

Send data —-[CR] : Quit guidance ——q[CR]
Data0004 ? :30.

Send data —-[CR] : Quit guidance ——q[CR]
Data0005 ? :00.

Send data ———[CR] : Quit guidance ———q[CR]
Data0006 ? :21.

Send data ——-[CR] : Quit guidance ———q[CR]
Data0007 ? :d

Data size = 0022

ID =07

Data =90 1C 00 CO FF D7 E5 1C FD 1E AA AA AA AA AA AA
AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
AA

BCC =D3

>

To quit in the middle, press the [q] key and then the [Enter] key. The [*] key alows you to return to the
immediately preceding guidance.

The transfer data should be input as a hexadecimal number within the range from 0x00 to Oxff or a decimal
number within the range from +0 to +255. Up to 8192 bytes of message are alowed for transmission.

When only the [Enter] key is pressed or data for Data8192 is input, the db33 transmits the input data with the
sizeand BCC.

H Notes
e Theice command is used in-house for the development of the ICE33 by Selko Epson, and is not provided for
use by general users.

e Thiscommand does not support aparallel datatransfer.

¢ Thiscommand cannot be suspended by the [Key break] button. The time out period is set to 150 seconds.

EOC33 FAMILY EPSON 409
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.10 Parameter File

Before the db33 can be started up, you must have a parameter file that contains a description of memory map and
PRC board (a peripheral circuit board provided for each model to be installed in the ICE33) information. The db33
and the ICE33 use the contents written in this parameter file to configure a memory map, and they handle errors
such as address specifications outside the effective memory area or map bresks.

The basic parameter file can be created using the [Par gen] button of the wb33. This is a text format file, so you
can customize it before use by adding a specification for an externad memory area, etc. to suit your application

needs.

The parameter file name created by the wb33 comesin the following format:

<chip name>_<parameter file version>.par
Example: 33104_01.par

The following shows a sample parameter file.

Sample parameter file

CHIP 33104 ; chip name (33XXX) o

|ROM 1000 ; internal ROM is 80000 to 80FFF ...

FOPT 0000 ; f option size)]

PRC VER 00 ff ; allow any PRC board)]

PRC STATUS sekkrststokratototorstotoror ; allow any PRC board status ... (5)

MPU ; 0xC00000 external boot address ... (6)

VER 1 ; this file version .

; Emulation memory allocation (max 8 areas, 1MB/area, 1MB boundary) ... (8)

EMRAM 400000 4fffff ; emulation RAM 1MB

EMROM ¢800000 cfffff ; emulation ROM 1MB

» Map allocation (max 31 areas, 256bytes boundary))]

RAM 0 TFF ; internal RAM area 2KB

10 40000 4ffff » internal |0 area 64KB

RAM 200000 2fffff ; external FLASH 1MB (on target board)

ERAM 400000 407fff ; emulation RAM area 32KB (in emulation memory)
EROM 480000 4bffff ; emulation ROM area 256KB (in emulation memory)
EIO 4c0000 4cffff ; emulation 10 area 64KB (in emulation memory)
RAM 600000 6fffff ; external SRAM 1MB (on target board)

EROM c00000 cfffff ; emulation ROM area 1MB (in emulation memory)

; Stack area except internal RAM

STACK 0
STACK 600000

3ff
6Fffff

; MEM33 configuration

area (max 8 areas, 256bytes boundary) G0))

, internal stack area 1KB
, external stack area 1MB

..3an

; IMEM33_CE 9 ; MEM33 address (CE number)

; IMEM33_CEFUNGC 00 ; GEFUNC value

; IMEM33_DELAY 2 ; MEM33 delay

; IMEM33_CE10EX ¢00000 ; Areal0 external memory start address

; IMEM33_P30 ; P30 is CE

; IMEM33_P34 ; P34 is CE

; IMEM33_CE7_DRAM ; Area7(13) is DRAM

410 EPSON E0C33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

; IMEM33_CE8_DRAM

; IMEM33_WRH_MASK

; IMEM33_MAP_D I SABLE
; IMEM33_CE_D I SABLE

; IMEM33_NOCE_D | SABLE

END

; Area8(14) is DRAM

; WRH mask

; Mem33 map break disable

; Mem33 ce break disable

; Mem33 no ce break disable

... (12)

* A description from";" to the end of theline is regarded as a comment.

x":1" js not regarded as a comment.

CHAPTER 16: DEBUGGER

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

411

CHAPTER 16: DEBUGGER

Explanation of contents

@

@

©)

4

=

®

(6)

@)

Chip name
Write achip name.
CHIP <chip name>

Internal ROM size
Write the internal ROM size.
IROM <size>

Only a hexadecimal number can be used to write the size. (The"0x" is unnecessary.)
The specified sized area that begins from address 0x80000 is mapped as the internal ROM area. If O is
specified, size= 0 (internad ROM is not used).

Option size
Write the size (up to 16KB) of the function options set for each model.
FOPT <size>

Only a hexadecimal number can be used to write the size. (The"0x" is unnecessary.)

PRC board version
Write aversion range of the PRC board matched to the model being developed.
PRC VER <version (1)> <version (2)>

Write a small version number for version (1) and a larger one for version (2) using an 8-bit hexadecimal
number. If the model corresponds to only one version of PRC board, write the same value for both.

When the db33 is started up in the ICE mode, it checks the PRC board version, and if the mounted PRC
board does not fall within the range of version (1) to version (2), it issues awarning. For PRC board versions
matched to each model, refer to the manual of the PRC board. When version (1) is set to 00 and version (2) is
set to ff, any version of the PRC board is permitted to use for debugging.

PRC status
Specify the PRC board's status bits to be checked at startup in the ICE mode.
PRC STATUS <bit 15><bit 14>...<bit 0>

Specify 1, O, or * for 16 status bits. If you specify 1 or 0 and the PRC board's corresponding status bit is
found to be different from that found in a startup check, the db33 issues a warning. If you specify an asterisk
(*) for abit, the bit is masked and is not checked. For details on how to set the status bits, refer to the manual
of the PRC board. When all the bits are specified with *, the PRC board is permitted to use for debugging
regardless of the status bits.

MCU/MPU mode

Specify whether you want the CPU to be started up in the MCU mode (booted from 0x80000 of internal
ROM) or in the MPU mode (booted from 0xcO0000 of external ROM).

o To specify the MCU mode: MCU

o To specify the MPU mode: MPU

This specification is valid in the smulator mode.
Parameter fileversion

Write the version of the parameter file.
VER <version>

Use a hexadecimal number O to ff for this specification. Thisis provided for version management by the user.

412

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(8) Emulation memory allocation
The ICE33 allows you to use up to eight areas of emulation memory, each area with a size of 1M
bytes. External memory areas can be allocated to this emulation memory when debugging them. When using
emulation memory, specify whether you want each areato be used as RAM or as ROM.
e To use an areaas RAM

EMRAM <start address> <end address> (Multiple entries accepted; or can be omitted)
e To use an areaas ROM
EMROM <start address> <end address> (Multiple entries accepted; or can be omitted)

Specify each area in 1IM-byte units, ranging from start address X00000 to end address Xfffff (X = 1 to
ff). Areas specified for EMROM are read-only, and no data can be written to the area by a program. Areas
specified for EMRAM can be accessed for read and write by a program.

This specification is valid in the ICE mode.
If you do not use emulation memory (i.e., internal memory-only system or evaluated using memory mounted
on atarget board), omit this specification.

(9) Setting the memory map
Specify the memory areato be used. Theinformation set hereis used for amap break.

Mapping of the emulation memory (for ICE33)
Set the areas used in the emulation memory (1M bytes each) that have been declared in (8) using the formats
shown below:
e To set an area used as RAM

ERAM <start address> <end address> (Multiple entries accepted; or can be omitted)
o To set an area used as ROM

EROM <start address> <end address> (Multiple entries accepted; or can be omitted)
eTosetan /O area

EIO <start address> <end address> (Multiple entries accepted; or can be omitted)

The areas specified for ERAM can be accessed for read and write, and areinitialized with Oxaa.

The areas specified for EROM are write-only, and are initialized with Oxff. When a write to this area is
attempted, a break occurs.

The areas specified for EIO can be accessed for read and write, and are initialized with 0x00.

The address ranges are limited to the emulation memory areas set in (8). Specify a start address that resides
on a 256-byte boundary. Specify an end address so that the area size is an integer multiple of 256 bytes.

No error is assumed even when you specify a memory map that does not match the memory attribute (ROM
or RAM) specified in (8).

Mapping of other types of memory

Set al/O map of the internd RAM, internal 1/0, and the memory or 1/0 mounted on the target board using
the formats shown below:

o To set RAM area (read/writable area)

RAM <start address> <end address> (Multiple entries accepted; or can be omitted)
o To set ROM area (write-only areq)

ROM <start address> <end address> (Multiple entries accepted; or can be omitted)
o To set 1/O area (read/writable area)

IO <start address> <end address> (Multiple entries accepted; or can be omitted)

The internal ROM does not need to be mapped for ROM here because it is mapped by IROM setting.
Specify a start address that resides on a 256-byte boundary. Specify an end address so that the area size is an
integer multiple of 256 bytes.

EOC33 FAMILY EPSON 413
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

(10)

(11)

If the addresses set here overlap the areas used in emulation memory specified by EMRAM and/or EMROM,
the RAM, ROM, or 10 settings made here have priority. Namely, if an access to the overlapping areais made,
it is the target board that is accessed and the emulation memory is not used. Thus the 1M-byte emulation
memory can be further divided into areas that use the emulation memory and other areas that do not use the
emulation memory.

Up to 31 maps can be set, for al RAM, ROM, 10, ERAM, EROM, and EIO included.

Specification of big-endian areas

By default, the mapped areas are set as little-endian areas. To change the area format to big-endian, describe
letter "B" after the <end address> (select [Big] when creating in the wb33). However, the EOC33 chip to be
developed must be amodel that supports big-endian format. Furthermore, the internal memory (ROM, RAM
and 1/0) cannot be set to big-endian.

In addition to specify this parameter file at invocation of the db33, the endian control register in the EOC33
chip must be set correctly (refer to the "Technical Manua").

In simulator mode, the endian format is determined by the parameter file only.

This setting affects memory operation and file loading in half word or word units.

Setting stack area
Specify an area you want to be used as the stack.
STACK <start address> <end address> (Multiple entries accepted; or can be omitted)

Up to 8 stack areas can be set.
Specify a start address that resides on a 256-byte boundary. Specify an end address so that the area sizeis an
integer multiple of 256 bytes.

This setting is vaid in ICE mode, so that when a stack operation is performed on a non-specified area, a
break occurs. However, a stack operation performed on the interna RAM that starts from address O is
excluded from break generation and, hence, does not cause a break. Therefore, STACK settings for areas in
theinternal RAM can be omitted.

This setting does not affect the SP operation by a program.

Debug using MEM 33201
The following needs to be set. MEM 33201 is used matching with ICD33.

1.Specify the mem33 boar d address
Example 1: ;!MEM33_CE 4 ; Specify mem33 board to CE4.

Make sure that you set it.
Specify MEM33_CE in 4-10. (00 is set in the
debugger for CEFUNC same as mem33).

2.Specify the CEFUNC
Example 1: ;!MEM33_CEFUNC 00 ;00 isset for CEFUNC in the user application.

A warning is displayed when an invalid map is
accessed by the CEFUNC value.
Specify 00,01,10,11 MEM33_MAP_CEFUNC.
Make sure that you set it.

3.Specify area 10

Example 1: ;lMEM33_CE10EX c08000 ;Specify start address of the external access for area

10.
Default address is c00000.
In this example, from c00000 through cO7fff are

internal ROM/
4.Specify DRAM area
Example 1: ;! MEM33_CE7_DRAM ;Specify when area 7 or area 13 are DRAM.
Example 2: ;! MEM33_CE8 DRAM ;Specify when area 8 or area 14 are DRAM.

Default setting is SRAM.

414

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

5.Specification when P30 and P34 are used as CE
Example 1: ;! MEM33_ P30
Example 2: ;! MEM33_P34

6.Specify delay for memory access
Example 1: ;'MEM33_CE10EX 0

7.Specify WRH signal
Example 1: ;'MEM33_ WRH_MASK

8.Makemap break disable
Example 1: ;! MEM33_MAP_DISABLE

9.Make CE break disable
Example 1: ;! MEM33_CE _DISABLE

10.Make no ce break disable
Example 1: ;! MEM33_NOCE _DISABLE

(12) End mark

CHAPTER 16: DEBUGGER

;P30 isused as CE.
;P34 isused as CE.
By Default, P30 and P34 are not used as CE.

;Specify O for delay.
Specify avalue from 0 through 3.
Default is 2. Usually do not specify except 2.

;lgnore WRH signal.

By default, break by WRH is available.

Using BSH or BSL by x16 SRAM make the WRH
signal available.

;Make map break disable.
By default, map break isavailable.

;Make CE bresk disable.
By default, CE bresk isavailable.

;Make no ce bresk disable.

By default, no ce bresk isavailable.

This sets ability for no ce bresk of CE bresk and
MAP break.

no ce break occurs when it is accessed by RD,WR
even though CE is not low.

Always be sure to write END at the end of a parameter file.

Precautions on creating a parameter file

o Write each setup item in order of humbers (1) to (11).

e [tems (1) to (6) and (11) cannot be omitted.

o Writeitem names (e.g., CHIP, IROM) with uppercase |etters.

e Write each item from the beginning of the line and insert at least one space or tab between
parameters. Parameters required for each item cannot be omitted.

e Make sure each memory map is set in units of 256 bytes, and that emulation memory is set in units of 1M
bytes. A warning is generated if nonconforming boundary addresses are specified.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

415

CHAPTER 16: DEBUGGER

Parameter file created by wb33

When using a parameter file created by using the [Par gen] button of the wb33, pay attention especialy to the
following when you customize it:

Option size (FOPT)
The option sizeis set to 0. If you are developing a model which has function options, be sure to set the size.

PRC board version (PRC VER)
The PRC version is set to "00 ff* so that any desired PRC board can be used. If you are using multiple PRC
boards, correct this setting to limit the versions.

Internal 1/0 area (RAM, 10)
Theinternal 1/0 areaset by 10 is 64K bytes from 0x40000 to Ox4ffff. Correct this setting to suit the 1/0 area
of the model.

Emulation memory allocation, and external memory and I/O mapping
If you chose an external memory area in the [Parameter file generator] window, these items are set as
follows:

When the [Emu] button is selected:
[RAM] button: The emulation memory is configured using EMRAM, and ERAM s set so that the
entire emulation memory areais used as RAM.
[ROM] button: The emulation memory is configured using EMROM, and EROM s set so that the
entire emulation memory areais used as ROM.
[1O] button: The emulation memory is configured using EMRAM, and EIO is set so that the entire
emulation memory areaiis used as |/O.

When the [Emu] button is not selected:
[RAM] button: RAM isset so that the entire area is accessed as atarget RAM.
[ROM] button: ROM is set so that the entire area is accessed as a target ROM.
[10] button: |0 isset so that the entire areais accessed as atarget 1/0 (same as RAM).

Correct or add memory maps as required for the system you are developing.

Stack area (STACK)
Only when you choose the [RAM] button to specify the externa memory, a stack area of 512K bytes
beginning with a specified start addressis set. Correct this setting whenever necessary.

Configure MEM 33201
When Generate MEM 33 information check box is selected, information on MEM 33 is produced.

416

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

16.11 Status/Error/Warning Messages

This section describes the messages that are displayed in the [Command] window by the debugger.

16.11.1 Status Messages

When the target program breaks, the db33 displays one of the following messages to indicate the cause of the

break immediately before it stands by for a command input.

Table 16.11.1.1 Status messages

Message

Content

Break by software PC break.

Break caused by software PC breakpoint

Break by hardware PC break.

Break caused by hardware PC breakpoint

Break by hardware PC break 2.

Break caused by hardware PC breakpoint

Break by temporary break.

Break caused by temporary breakpoint

Break by data break.

Break caused by data break condition

Break by read memory.

Data break caused by reading memory

Break by write memory

Data break caused by writing to memory

Break by sequential break.

Break caused by sequential break condition

Break by key break, xxxx.

Break at address xxxx caused by [Key break] button

Break by accessing no map area

Break caused by accessing no map area

Break by writing ROM area

Break caused by writing to ROM area

Break by out of SP area

Break caused by accessing outside stack area

Break by external break

Break caused by signal input to ICE33/ICD33 BRKIN pin

Break by illegal instruction

Break caused by executing illegal instruction in simulator mode

Break by MEM33 bus break.

Break caused by MEM33 bus break condition

Break by MEM33 ce break.

Break caused by MEM33 ce break condition

Break by MEM33 area break.

Break caused by MEM33 area break condition

Break by MEM33 map break.

Break caused by MEM33 map break

16.11.2 Error Messages

Tabl

e 16.11.2.1 Error messages

(alphabetical order)

Error message

Content

addressl > address2

The beginning address is larger than end address.

Address is in no map area.

The specified address (symbol) is out of the mapped area.

Address is not 2 byte boundary.

The program code address is not a 2-byte boundary address.

Address range (0-OxFFFFFFF).

The address is out of the range.

Already exist input address.

The address has been set to a break point.

Aymbol not in scope.

The symbol cannot be found in the scope.

Break number (1-16).

The software PC break point number is out of the range.

Cannot add symbol any more.

99 symbols have been registered.

Cannot allocate memory.

Memory cannot be allocated.

Cannot close file.

The file cannot be closed.

Cannot get file status.

The file information is incorrect.

Cannot get input, please check the system.

An error has occurred during input process.

Cannot get memory.

Memory allocation has failed.

Cannot load data, file open failure.

The srf33 file load has failed; the file cannot be opened.

Cannot load data, file read failure.

The srf33 file load has failed; the file cannot be read.

Cannot load data, memory allocation failure.

The srf33 file load has failed; memory cannot be allocated.

Cannot load data, please check SRF33 file.

The srf33 file load has failed; some file other than srf33 executable
format is specified.

Cannot load debug information,
debug information is wrong.

The debug information load has failed; the debug information is
illegal. (Program/ data is loaded successfully.)

Cannot load debug information, file open failure.

IThe debug information load has failed; the source file cannot be
opened. (Program/ data is loaded successfully.)

Cannot load debug information, file read failure.

The debug information load has failed; the source file cannot be
read. (Program/ data is loaded successfully.)

Cannot load debug information,
allocation failure.

The debug information load has failed; memory cannot be
allocated. (Program/ data is loaded successfully.)

Cannot load debug information,
please check SRF33 file.

The debug information load has failed; the srf33 format is
illegal. (Program/ data is load successfully.)

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

417

CHAPTER 16: DEBUGGER

Error message

Content

Cannot load debug information, too many lines|

The debug information load has failed; too many source lines
are included. (Program/ data is loaded successfully.)

Cannot open com port.

The COM port or baud rate cannot be set.

Cannot open file any more.

The number of files exceeds the limit.

Cannot open file.

The file cannot be opened.

Cannot open parallel port.

The parallel port cannot be opened.

Cannot open parameter file.

The parameter file cannot be opened.

Cannot open stdio file.

The stdio file cannot be opened.

Cannot read chip name.

Chip name information (.par file) cannot be read.

Cannot read emulation memory map.

Emulation memory map information (.par file) cannot be read.

Cannot read FO area size.

FOPT size information (.par file) cannot be read.

Cannot read IROM size.

Internal ROM size information (.par file) cannot be read.

Cannot read MCU/MPU information.

MCU/MPU mode information (.par file) cannot be read.

Cannot read parameter file version.

Parameter file version information (.par file) cannot be read.

Cannot read PRC board status.

PRC board status information (.par file) cannot be read.

Cannot read PRC board version.

PRC board version information (.par file) cannot be read.

Cannot read stdin file.

The stdin file cannot be read.

Cannot set address any more.

16 software PC break points have been set.

Cannot set hardware PC break.

The hardware PC break point cannot be set.

Cannot set software PC break.

The software PC break point cannot be set.

Cannot set temporary break.

Temporary break point cannot be set.

Cannot write flash memory.

Data cannot be written to the flash memory.

Cannot write log file.

Log data cannot be written to the file.

Cannot write stdout file.

The output data cannot be written to the stdout file.

Cannot write trace file.

Trace data cannot be written to the file.

Chip name should be 5 characters.

The chip name length is not 5 characters.

Chip name should be start with "33".

The chip name must begin with 33.

Command is not supported at present mode.

A command not supported for the current mode (ICE or simulator) is
executed.

Communication data size error.

The communication data size is incorrect.

Communication error.

Overrun, framing, or BCC error has occurred during transmission
from/to the ICE33.

CPU down.

The PRC board operates erratically.

CPU is not running.

The ICE33 CPU has stopped operating.

CPU is running.

The ICE33 CPU is executing.

Current mode is not source mode.

String search ia only available in the source display mode.

Data alignment error.

Alignment in the srf file is incorrect.

Data incomplete.

The file structure is illegal.

Data range (0-OxFF).

The input data is out of the range.

Data range (0-OxFFFF).

The input data is out of the range.

Data range (0-OXFFFFFFFF).

The input data is out of the range.

Debug data failure.

The debugging data is illegal.

Diagnostic test failure.

The ICE33 self-diagnosis resulted in error.

Duplicate input address.

Same break address is set twice.

Duplicate input break number.

Same break point number is set twice.

Empty file.

The file does not contain data.

Erase routine is not set.

A flash memory erase routine has not been defined.

File end during guidance input.

The command file has ended in the middle of the parameters of the
guidance format.

File not found.

The file cannot be found.

Flash memory error.

Error in writing or erasing flash memory.

Flash memory is not mapped.

The ICE flash memory is not mapped.

Flash ROM is protected.

Flash memory is protected against access.

Fo address range (0-Ox3FFF).

The option dump address is out of the range.

Format error.

The format is illegal.

Function not found.

The function cannot be found.

ICE is busy.

The ICE33 is busy processing a job.

ICE is free run mode.

The ICE33 is operating in free-run mode.

ICE is maintenance mode.

The ICE33 is placed in maintenance mode.

ICE is not mapped.

The ICE built-in memory is not mapped.

ICE system error.

ICE system error has occurred.

Interrupt level (0-15).

The interrupt level is out of the range.

418

EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 16: DEBUGGER

Error message

Content

Interrupt type (0-215).

The interrupt type is out of range.

Invalid break address.

The break address has not been set.

Invalid break number.

The break point number has not been set.

Invalid command or parameter.

The specified command or parameter is invalid.

Invalid emulation memory map.

The emulation memory map information (.par file) is invalid.

Invalid file name.

The file name is invalid.

Invalid group number.

The command group number is invalid.

Invalid map command or invalid sequence.

The map file contains an illegal character or incorrect sequence.

Invalid memory map.

The memory map information (.par file) is invalid.

Invalid parameter.

The parameter is incorrect.

Invalid stack map.

The stack map information (.par file) is invalid.

Invalid value.

The input value is illegal.

IROM size is too long.

The IROM size is too large.

No "END" in parameter file.

There is no end mark (END) in the parameter file.

No map area.

The input address is out of the mapped area.

No symbol at the number.

Symbol is not registered in the specified number.

Not ASCII character.

The string contains some other ASCII character.

Not defined ID.

ICE33's response ID is invalid.

Not found input strings.

The string cannot be found.

Number of emulation memory is wrong.

The number of emulation memory block in the parameter file is invalid.

Number of parameter.

The number of parameters in the command is invalid.

On tracing.

The ICE33 is tracing execution data.

Over max include file number.

The number of include files exceeds the limit.

Parallel interface time out.

The file cannot be loaded through the parallel interface within the
predefined time.

Parallel port is busy.

The parallel port is in busy status.

Pointer pointed no map area.

The pointer variable has pointed out of the mapped area.

Post line range (0-256).

The number of post-display line in the trace search is out of the range.

Pre line range (0-256).

The number of pre-display line in the trace search is out of the range.

Register variable cannot be changed to address.

Addresses cannot be specified with a register variables.

Reset timeout.

The ICE33 CPU cannot be reset.

Sequential break format error.

The sequential break condition is invalid.

Shared RAM is busy.

An ICE33 internal error has occurred.

Source window not opened.

The [Source] window is closed.

Start block > End block.

The end block number is greater than the start block number.

Start cycle number > End cycle number.

The end cycle number is greater than the start cycle number.

Stdout data size.

The output data size in the output buffer is illegal.

Step range (1-65535).

The step count is out of the range.

Symbol is too long.

The symbol name is too long.

Symbol not found.

The symbol cannot be found.

Target down.

The PRC board does not operate correctly or remains reset.

Target instruction cannot be extended.

The instruction cannot be extended by ext.

Time out.

Communication time-out. *1

Too many include.

Number of included files exceeds the limit.

Too many source file.

The source file is too large.

Trace range (0-32767).

The trace cycle number is invalid.

Verify error.

Verify error when writing to flash memory.

Wrong data.

Data in the file is incorrect.

Wrong header.

The file header is incorrect.

Address mask range (0-OxFFFFFF).

The address mask is out of the range.

Data mask range (0-OxFFFF).

The data mask is out of the range.

Data mask range (0-OxFFFFFFFF).

The data mask is out of the range.

Invalid value of MEM33_CE(4-10).

The CE is out of the range.

Invalid value of MEM33_CE10EX
(CO0000-FFFFFF).

The area 10 external memory start address is out of the range.

Invalid value of MEM33_CEFUNC(00,01,10,11)

The CEFUNC is out of the range.

Invalid value of MEM33_DELAY/(0-3).

The DELAY is out of the range.

No "MEM33_CEFUNC" in parameter file.

No MEM33_CEFUNC is found.

Invalid address or invalid CEFUNC of
parameter file.

The address is invalid or CEFUNC of parameter is out of range.

Top address and bottom address should be same CE.

[Top address and Bottom address are not same.

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

419

CHAPTER 16: DEBUGGER

Content
MEM33 dosn't supportd area0O,areal and area2.

Error message
MEM33 is not supported at area0,areal and
area2(0-0x7FFFF).
Top address > Bottom address.
Invalid value(0-65535).
Invalid address or invalid CEFUNC of
parameter file.

The top address is larger than the bottom address.
The value is out of the range.
The address is invalid or CEFUNC of parameter is out of range.

x1: A time-out error occurs in the following processing if no response is returned from the ICE33 within a
predetermined time:

e Initia connection 2.5 seconds

o Escape Break 1 second

e Mapinitiaization 150 seconds

o f or mv execution 150 seconds

o [fl or sfl execution 150 seconds

® g, S, or nexecution Notime-out is set.
o Others 6 seconds

16.11.3 Warning Messages

Table 16.11.3.1 Warning messages

(alphabetical order)

Warning message

Content

Debugger mode does not match with a target.

The debugger mode speified by the option (-icd, -ice, -mon) does not
match with the connected target system.

Emulation memory address is not
1M byte boundary.

The emulation memory map address in the parameter file
is not a 1IMB boundary address.

FO size (0-0x4000), map as 0x4000.

The FO size is incorrect, so it is mapped as 0x4000.

FO size should be an even number,
map as OXXXXXXXXX.

The FO size must be an even number, so it is mapped as
OXXXXXXXXX.

Invalid line, move to next valid line.

The source line has no address. The next effective address is used.

IROM size (0-0x80000), map as 0x80000.

The IROM size is incorrect, so it is mapped as 0x80000.

Line number of source file is invalid.

The line number is not included in the source file.

Memory map is not 256 byte boundary.

The memory map (.par file) must be specified in 256-byte units.

No debug information.

The srf33 file does not have the debug information.

No source, display on mix mode.

There is no source information. The program is displayed in mix mode.

Number of source line exceeded 65535.

The line number is out of the range.

PRC status does not match.

The PRC board status is different from the parameter file.

PRC version does not match.

The PRC board version is different from the parameter file.

Round down to multiple of 16.

The input address is adjusted to a 16-byte boundary.

Round down to multiple of 2.

The input address is adjusted to a 2-byte boundary.

Round down to multiple of 4.

The input address is adjusted to a 4-byte boundary.

Stack map is not 256 byte boundary.

The stack map (.par file) must be specified in 256-byte units.

MEM33 break information was over written
by user program.

Break information may be destroyed by overwriting MEM33 by user
program.

MEM33 not found.

MEM33 is not found in the address specified parameter file.

Cannot set CE break(XXX-XXX).

Cannot set CE break to MEM33.

Duplicate memory map attribute
(CE break as RAM XXX-XXX)

There are ROM,RAM, 10 in the same area.

Cannot set map break(XXX-XXX).

Cannot set CE break to MEM33.

Memory map is not 32k byte boundary
(XXX-XXX).

Memory map is not 32k byte boundary.

Duplicate MEM33 address(CE) with
memory map(XXX-XXX).

MEMB33 address is duplicatd with memory map.

Areal0 external memory start address
is not 32k byte boundary(XXX).

Areal0 external memory start address is not 32k byte boundary.

420

EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 17: OTHER TOOLS

Chapter 17 Other Tools

This chapter explains the other tools that are included in the EOC33 Family C Compiler package.

17.1 Make

The EOC33 Family C Compiler Package contains a make tool (hereafter referred to as the "make") that efficiently
processes compilation to linkage.

Based on the dependence relationship between the sources written in a make file and the files output by each tool,
the make uses the necessary tools to update the files to the latest version. For example, if only one source file is
corrected, the make executes compilation or operation from preprocess to assemble only for that file. Other
modules only have object files read in during linkage, and are not processed sufficiently to include assembly.

The make in this package only supports the dependency lists, suffix definitions, and macro definitions necessary to

perform the above processing.

It provides the subset functions of make in UNIX.

17.1.1 Starting Method

Startup format

make ~ [<option>] * [<target name>]

~ denotes a space.

[] indicates the possibility to omit.

Example: c:\cc33\make -f test.mak opt

Operations on work bench
Select options and a make file (.mak), then click the [MAKE] button.

Options

The make comes provided with the following three types of startup options:

-f <file name>
Function:
Specification on wh33:
Explanation:

Default:

-h

Function:
Specification on wh33:
Explanation:

-n

Function:
Specification on wh33:
Explanation:

Specifiesamakefile.

Always specify (choose afile name from the list box).

The make reads in a make file specified by <file name> (extension included), and
processes its contents.

Unless the -f option is specified, afile named "makefile" isinput as the makefile.

Outputs usage.

Check [usage].

Only a message about how to use the standard output device (stdout) is output
before terminating.

Displays commands.

Check [no exe cmd].

Only the command to be processed by make is output to the standard output device
(stdout) and no operation actually is performed on it. This is effective for verifying
the dependence relationship of files.

EOC33 FAMILY

EPSON 421

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 17: OTHER TOOLS

Target name
Specify the target name for the command to be executed. If this specification is omitted, the first target that
appears in the make file is executed.

A make file created by the Make file editor of the wb33 has commands and target names (opt, clean) to
implement two functions recorded in it, in addition to the dependency lists used to update files.

opt: Target name to execute commands for 2-pass make

clean: Target name for commandsto erase al but sourcefile

To execute these targets from the wh33, perform the following operation after selecting the make file:

To executes opt, select [2 pass] on the [Other option] window and then click [MAKE].

To executes clean, click [MAKE clean].

17.1.2 Messages

The make delivers its messages through the Standard Output (stdout).

If the wb33 is started up by using the wb33's [MAKE] button, the message is output to "wb33.err". When
execution is completed, a message is displayed in the output window (default).

Execution message
During execution, the make outputs the command under execution; when completed, it outputs an end
message.
Example:
C:\CC33\pp33 -g samplel.s
Pre Processor Gompleted
C:\CC33\ext33 —gp 0x0 samplel.ps
Extend Completed
C:\CC33\as33 —-g samplel.ms
Assembly Completed
C:\CC33\1k33 -g -s -m -¢ sample.cm
Link Completed
Make Completed

* When executed in the wb33, the make uses ccap to save messages to a file, "wh33.err", while at the same
time counting the error/warnings encountered in each tool and the compiler messages. The count vaues are
displayed after the make's end message.

Make Completed
0 error(s), 0 warning(s), 0 compiler message(s)

Usage output
If no file name was specified or an option was not specified correctly, the make ends after delivering the
following message concerning the usage:

Make for 33/63 Ver x.x
Copyright (C) SEIKO EPSON CORP. 199x
Usage:

make [options] [target]
Options:

—-f <file name> : makefile name

-h : output usage

-n : no command execution
Example:

make —f test. mak

make —f test.mak CLEAN

When error/warning occurs
If an error or awarning is produced, an error/warning message will appear before the end message shows up.
Example: Warning : sample.srf is up-to-date
Make Completed

For details on errors and warnings, refer to Section 17.1.6 "Error/Warning Messages'.

422 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

17.1.3 Make File

CHAPTER 17: OTHER TOOLS

The make fileis atext file that contains a description of the dependence relationship of the files and the commands
to be executed. A basic make file can be created using the Make file editor on the wb33, so use it after entering

additions or corrections as necessary.
Shown below is an example of amakefile.

make file example (without suffix definition)

make file made by wb33 ...Comment

macro definitions for tools & dir

TOOL_DIR = C:\CC33 ...Macro definition

GCC33 = § (TOOL_DIR) \gcc33

PP33 = $(TOOL_DIR) \pp33
EXT33 = §(TOOL_DIR) \ext33
AS33 = $(TOOL_DIR) \as33
LK33 = $(TOOL_DIR)\ k33
MAKE = $ (TOOL_DIR) \make
SRC_DIR =

macro definitions for tool flags

GCC33_FLAG = -B$ (TOOL_DIR)\ -S -g -0
PP33_FLAG = -g

EXT33_FLAG = —gp 0x0

AS33_FLAG = -

LK33_FLAG = -g -s -m —¢
EXT33_CMX_FLAG = -lk test -c

dependency |ist

test. srf : test.cm boot.o main.o ...Dependency list

$(LK33) §(LK33_FLAG) test.cm ...Command line

boot.ms : $(SRC_DIR)boot. s
$ (PP33) $ (PP33_FLAG) $(SRC_DIR)boot. s
§ (EXT33) $ (EXT33_FLAG) boot. ps

boot. o : boot.ms
$ (AS33) $ (AS33_FLAG) boot.ms

main.ms : $(SRC_DIR)main.c
$(GCC33) $(GCC33_FLAG) $(SRC_DIR)main.c
§ (EXT33) $(EXT33_FLAG) main. ps

main.o : main.ms

$ (AS33) §(AS33_FLAG) main.ms
optimaization by 2 pass make

opt:
$ (MAKE) —f test. mak
$ (TOOL_DIR) \cwait 2
$ (EXT33) §$ (EXT33_CMX_FLAG) test.cmx
$ (MAKE) —f test.mak

clean delete files except source

clean:
del *. srf
del *.0
del *.ms
del *.ps
EOC33 FAMILY EPSON 423

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 17: OTHER TOOLS

Dependency list
The make is executed according to a dependency list that is written in the following formats:

Format 1: <target file name>:<dependent file name 1>["<dependent file name2>...]
[TAB <command 1>
TAB <command 2>

Format 2: <target name>
TAB <command 1>
[TAB <command 2>

~ denotes a space.
[] indicates that entriesin brackets can be omitted.
The command lines must begin with a TAB (space is not alowed).

Format 1
In Format 1, the dependent files necessary to obtain atarget file is specified, and in cases when no target file
has been created or the dependent file has not been updated, the command that followsis executed.

Example: test.srf : test.cm boot.o main.o
$(LK33) $(LK33_FLAG) test.cm

In this example, the target file "test.srf" depends on "test.cm”, "boot.o", and "main.o".

If the target file "test.srf" is nonexistent or there is any dependent file that is newer than the target file, the
command "$(LK33)$(LK33_FLAG)test.cm” (link by 1k33) is executed. The $(<name>) written here is
replaced with a macro defined by <name>.

If the dependent fileis some other target
If the dependent file is specified as the target of some other dependency list, the other dependency list is
evaluated first. For example, since the dependent file "boot.0" is associated with the next two dependency
lists, the make is performed first in those lists.
boot.ms : $(SRC_DIR)boot.s
$(PP33) $(PP33_FLAG) $(SRC_DIR)boot.s
$(EXT33) $(EXT33_FLAG) boot.ps
. If the ext33's output file "boot.ms" is nonexistent or the source file "boot.s" is
newer than "boot.ms", the pp33 and ext33 are executed.
boot.o : boot.ms
$(AS33) $(AS33_FLAG) boot.ms
. If the as33's output file "boot.0" is nonexistent or "boot.ms" is newer than
"boot.0", the as33 is executed.

If the dependent fileis nonexistent
If the described dependent file cannot be found and there is no dependent file specified for other targets, an
error is assumed.

If the command lineis nonexistent
Nothing is executed. However, if atarget file and a suffix list (described later) that has the extension of the
first dependent file are written, the command associated with it is executed.

424 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 17: OTHER TOOLS

Format 2
If no dependent file is written, <target name> is used only as a label. By specifying a <target name> with the
make's startup command, it is possible to execute the written command.

Example: Commands executed by make -f text.mak clean
clean:
del *. srf
del *.0
del *.ms
del *.ps

If no <target name> is specified in the startup command, the first dependency list written in thefileis used to
execute the make.

Command line
The cc33 tool names and DOS prompt commands can be written in a command line. However, the colon (:)
to indicate a drive cannot be written directly in the command line. When specifying a path in the command
line, prepare amacro definition of the path before using it.
The following two symbols can be inserted at the beginning of acommand line:
@ Turns off the echo display of the command linein which this symbol isinserted.
Example: @copy test.s test.sbk
Normally, the command line executed is output to stdout. Command lines that begin with @ are not
output.
- Evenif the command has resulted in an error (terminated for some reason other than exit(0)), the error is
ignored and the command that follows is executed.
Example: -make -f test mak -n
Normally, the make is terminated with acommand in error.

A predefined macro can be referenced in the command line. Furthermore, the following two macro symbols
can be used.
$* Thisisreplaced with the target file name (not including the extension) currently being processed.
Example: test.dis: test.srf
$(TOOL_DIR)\dis33 $*.dis
$@ Thisisreplaced with the target file name (including the extension) currently being processed.
Example: 33xxxxx.sa: test.sa_80000_80fff
copy test.sa_80000_80fff $@

These macro symbols cannot be used anywhere other than in acommand line.

Macro definition
You can define a macro in a make file and reference a defined macro from a command line. The following
shows the formats in which amacro can be defined and referenced.

Definition: <macro name> = <macro body>
Reference: $(<macro name>)

Examples:
TOOL_DIR = C:\CC33 ...Macro definition
GCC33 = $(TOOL_DIR)\gce33 ...Macro definition and
GCC33_FLAG =-B$(TOOL_DIR)\-S-g-O macro reference in macro definition
$(GCC33) $(GCC33_FLAG) $(SRC_DIR)main.c ...Macro reference in acommand line
boot.ms : $(SRC_DIR)boot.s ...Macro reference of adependence file name

The colon (:) used to specify a drive can only be used in macro definition, except when you use it
immediately after a target name or in a comment. Therefore, when specifying a path in a command line or
dependent file, use amacro that is defined in advance, as shown by the above examples.

Macros cannot be referenced in the following places:

o Lines preceding macro definition

o Target file names

o Lines where a suffix is defined or thefirst line of a suffix list

EOC33 FAMILY EPSON 425
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 17: OTHER TOOLS

* Precautionsabout writing " \" at theend of a macro

I1f \<CR> iswritten at the end of aline, it is assumed that this line continues to the next line. Therefore, when
defining a path that ends with \ as amacro, write the following:
Example: When defining "c:\e0c33\"
SRC_DIR = c¢:\e0c33\ ..Writetwo \.
...Insert one blank line (CR only).
<next statement>

Comments

A statement from # to the end of theline is regarded as a comment. Characters other than the ASCI| code can
be written in a comment.
Example: # make file made by wb33

However, any comment cannot be written in a command line because it will be assumed to be part of the
execution command.

Suffix definition and suffix list

If you write a suffix definition and a suffix list, you can omit commands in a dependency list. When creating
a make file in the wb33, check the [suffix type] option. If this option is specified, a suffix definition and a
suffix list are included in the make file thus created.

Dependency list with no suffix defined
dependency |ist

test. srf : test.cm boot.o main. o
$(LK33) $(LK33_FLAG) test.cm

boot.ms : $(SRC_DIR)boot. s
$ (PP33) $ (PP33_FLAG) $(SRC_DIR)boot. s
§ (EXT33) $ (EXT33_FLAG) boot. ps

boot. o : boot. ms
$ (AS33) $(AS33_FLAG) boot.ms

main.ms : $(SRC_DIR)main.c
$(GCC33) $ (GCC33_FLAG) $(SRC_DIR)main. ¢
$ (EXT33) $ (EXT33_FLAG) main. ps

main.o : main.ms
$ (AS33) §$(AS33_FLAG) main.ms

Example with suffix defined
suffix & rule definitions

SUFFIXES : .c .s .ps .ms .0 .srf ...Suffix definition
.c.ms : ...Suffix list
$(GCC33) $(GCC33_FLAG) (SRC_DIR)*. ¢
$ (EXT33) $ (EXT33_FLAG) $*.ps
.s.ms
$ (PP33) §(PP33_FLAG) (SRC_DIR)*.s
$ (EXT33) $ (EXT33_FLAG) $*.ps
.ms.o :

$(AS33) $(AS33_FLAG) $*.ms
dependency |ist

test. srf : test.cm boot.o main.o
$(LK33) $(LK33_FLAG) test.cm

boot.ms : $(SRC_DIR) boot. s ...Dependency list
boot. o : boot.ms

main.ms : $(SRC_DIR)main.c
main.o : main.ms

426

EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 17: OTHER TOOLS

Suffix definition
Before a suffix list can be used, you must first define the file extensions used in the suffix list. The following
shows the format of a suffix definition:

Format: .SUFFIXES : .xxx .yyy .zzz ...
Example: .SUFFIXES: .c.s.ps.ms.o.gf

Suffix list
The following shows the format of a suffix list:

Format: <.extension of dependent file 1><.extension of target file>:

TAB <command 1>
[TAB <command 2>
:]
Example: main.o : main.ms ...Dependency list
.ms.o: ...Suffix list
$(AS33) $H(AS33_FLAG) $*.ms ...$* isamacro symbol that is replaced

with atarget name (main).

The suffix list in this example corresponds to a dependency list that has a target file whose extension is".0"
and dependent file 1 (first dependent file written) whose extension is ".ms". Thus, when commands in this
dependency list are omitted, commands in the suffix list are executed.

Since one suffix list corresponds to multiple dependency lists that have the same combination of extensions,
it helps you simplify adescription of dependency lists when there is alarge number of files.

Restriction on characters
The table below lists the characters that can be used in each item of a make file. Do not use any other

characters.
Table 17.1.3.1 Usable characters in make files
Item Usable characters

Dependency list | Target name atoz AtoZ 0Oto9 _ - .

Dependent file name [atoz AtoZ 0to9 _ - . [/ \ $0)
Macro Macro name atoz AtoZ 0Oto9 _ -

Macro body atoz AtoZ 0to9 _ - . / \ : $()
Suffix atoz AtoZ Oto9 _ - .
Command line cc33 tools and DOS prompt commands (note)

$ @ $()

Comment Any character that can be displayed

(note) The colon (:) to indicate a drive cannot be used in a command line. Use a path
specification defined as a macro in advance.

o Write a file name (including path), a macro name, and a command line of not more than 100 characters
respectively.
o Create amacro body of not more than 1,000 characters.

EOC33 FAMILY EPSON 427
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 17: OTHER TOOLS

17.1.4 2-pass make

The make file created by the wb33 contains a description of the 2-pass make commands necessary to optimize
code generation after reading in the symbol and map files linked by the ext33. These commands are included in a
make file so that they can be executed when you execute the make after specifying target name "opt" (choosing [2
pass] in the wb33).

The following lists the commands included in a make file:

optimization by 2 pass make

opt:
$ (MAKE) —f test.mak (1)
$ (TOOL_DIR) \cwait 2 @)
$ (EXT33) $ (EXT33_CMX_FLAG) test.cmx ..(3)
$ (MAKE) —f test.mak ..(4)

(1) Thefilesare processed through to linking.

(2) A tool called "cwait" is used to provide a 2-second wait time. This wait time is provided to ensure that make
in the second pass will be executed without failure.

(3) Theext33 isexecuted by entering link map and symbol files and by specifying the optimize option (-Ik).

(4) Themakeisexecuted again to create an absol ute object file.

For optimization using the link map and symbol files, refer to Section 10.7.3, "Optimization by Symbol
Information”.

17.1.5 clean

The make file created by the wbh33 contains a description of the commands to delete intermediate and object files
other than the source. These commands are included in a make file so that they can be executed when you execute
the make after specifying the target name"clean" (click [MAKE clean] after selecting a make file in the wb33).
The following lists the commands included in amake file:

clean delete files except source

clean:
del *. srf
del *.0
del *.ms
del *.ps
del *. map
del *. sym

All filesin the current directory that have extensions".srf", ".0", ".ms", ".ps", ".map", and ".sym" are deleted.

428 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 17: OTHER TOOLS

17.1.6 Error/Warning Messages

Error and warning messages are displayed/output through the Standard Output (stdout).

If the make is started up using the wb33's [MAKE] button, the message is output to "wb33.err". When execution is
completed, a message is displayed in the output window (default).

If an error/warning occurs in the make itself, the make immediately stops processing after displaying a message. If
an error occurs in the tool executed by a command that begins with "-" within the make file, the make continues
processing. For error messages generated by tools, refer to the chapters where each tool is described.

The table below lists the error and warning messages generated by the make.

Table 17.1.6.1 Error/warning messages

Error/warning message

Content

Error: Cannot open XXXXXXXX

make file cannot be opened.

Error: Cannot open tmp file

Temporary file cannot be opened.

Error: Invalid syntax near line #

Syntactically erroneous. Use line number indicated by # to
locate an error. Lines ending with \<CR> are assumed to
continue to the next line and not included in line counts.

Error: Invalid suffix . XXX

Suffix is not defined yet.

Error: Invalid macro name XXXX

Macro name is not defined yet.

Error: Abnormal termination in XXXX
Error: Not enough memory

Error: Too long string

Error: No target found

Error: Don't know how to make XXXX
Error: Command exit with X

Warning: XXXX is up-to-date

Error occurred during the processing of module XXXX.
Memory is insufficient.

One character string exceeds 1,000 characters.

Target cannot be found.

Target file is nonexistent.

Command is terminated abnormally. (X = exit code)

Last target has already been updated. Terminated without
executing a command.

17.1.7 Precautions

The make included in the EOC33 Family C Compiler Package does not support any other functions (e.g., default
settings of macro and suffix or macro symbols such as $< and $?). Only the functions described here are
supported. Therefore, be careful if you are regularly using the make in UNIX.

If EXIT code = 0 is returned when executing a command line, the make suspends execution of the commands that
follow. However, when a EXE file is executed under Windows95, the EXIT code aways returns to 0 regardless of
whether any error appears.

Although the make performs special processing on the cc33 tool to determine the status of the EXIT code, it
cannot make such a determination in other EXE files, and therefore continues processing. Thus, you should be
careful when using the make in Windows95. This problem does not occur in Windows NT 4.0.

The Make file editor of the wb33 can add/delete files to/from a make file. Since this function uses comments and
character patterns in the make file, pay attention when editing the make file using an editor. If the necessary
comments and character patterns are deleted, the Make file editor will not be able to edit the make file. Refer to
"Precautions on editing the make file" in Section 5.2.6 for more information.

EOC33 FAMILY EPSON 429
C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 17: OTHER TOOLS

17.2 cwait

17.2.1 Functions
The cwait is used to create a wait time of several seconds. Therefore, this tool is used in the make file created by
the wb33 to provide a time allowance when executing a 2-pass make.

17.2.2 Method for Using cwait

Startup format
cwait [<number of seconds>]

~ denotes a space.
[] indicates the possibility to omit.

<number of seconds>: Specify a wait time in seconds. This duration can be specified in the range of 0 to
TBD seconds.
Example: c:\cc33\cwait 2 ... Create a 2-second wait time.

Usage output
No message is displayed when executing cwait. However, the following message is displayed if it is started
up without specifying atimein seconds.

Cwait ver x.x
Copyright (C) SEIKO EPSON CORP. 199x
Usage:
cwait <wait_second>
Example:
cwait 2

430 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

17.3 ccap

CHAPTER 17: OTHER TOOLS

17.3.1 Functions

Thistool produces afile from the messages output to the console (standard output or standard error) by other tools

or commands.

When executing atool using the wb33's execution button, the tool's messages are output to afile called "wb33.err"
by the ccap, and when execution of the tool is completed, the contents output to wh33.err are displayed in the
output window (or editor).

17.3.2 Method for Using ccap

Startup format

ccap " [<option>] ~ <output file name> " "<execution command>"

~ denotes a space.
[] indicates the possibility to omit.

<output file name>:

Specify afile name to which you want the messages to be output.

<execution command>: Input the startup command of the tool to be executed.

Options

The ccap comes provided with the following four types of startup options:

-a
Function:
Explanation:

Default:

-0
Function:
Explanation:

Default:

-C
Function:
Explanation:

Default:

-e
Function:
Explanation:

Default:

Addsto an existing file.

If this option is specified, the output contents are added at the end of an existing file. If
no file exist, the ccap creates a new file.

Unless this option is specified, the contents are overwritten to a specified file (if the file
exists) or (if the file does not exist) the ccap creates anew file.

Outputsonly afile.

The messages of the execution command are output to only afile, and not output to the
console.

Unless this option is specified, the messages are output to both console and file.

Disables outputting execution command line.

If this option is specified, the execution command line is output to neither the console
nor afile.

Unless this option is specified, the execution command line is output along with
messages.

Error count

If this option is specified, the ccap outputs a count of the error messages output by the
execution command. The messages counted are those which begin with the following
character strings:

Error Count of the error messages
Warning Count of the warning messages
.C. Count of the gcc33 messages
.h: Count of the gcc33 messages

Error messages are not counted.

When entering an option, you need to place one or more spaces before and after the option.
Example: c\cc33\ccap -a -0 -e wb33.er "gce33-S test.c'

EOC33 FAMILY

EPSON 431

C COMPILER PACKAGE MANUAL (ver.3)

CHAPTER 17: OTHER TOOLS

Usage output
If no file name or execution command was specified or an option was not specified correctly, the ccap ends
after delivering the following message concerning the usage:

ccap
Console Capture Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x
Usage:

ccap [options] <output-file> “command |ine”
Options:

-a : append mode

-0 : disable console output

—-¢ . disable command echo

-e : display error count
Example:

ccap —a -0 —c console.cap “gcc sample.c”

Error messages
The following shows the error messages generated by the ccap:

Error: Cannot execute ...The specified "execution command" cannot be executed.
Error: Cannot open output file ...The output file cannot be opened.
432 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

APPENDIX: SRF33 FILE STRUCTURE

Appendix srf33 File Structure
A-1 srf33 Object File Structure

The structure of the srf33 format files created by the Assembler as33 and Linker 1k33 is explained below. (srf33 is
an abbreviation for "Seiko Epson Relocatable File Format" for the EOC33.)

Note: The structure of the srf33 file for the loader created with the -Ild command of the 1k33 is different
from that of the standard srf33 file shown in this section. Refer to the readme.txt (English) or
readmeja.txt (Japanese) located in the "utility¥d33¥ directory of the srf33 file for the loader.

srf33 control header
Relocation information 1 srf33 control header
Section information 1] K . .
Extern information 1 Section information 1

Actual data 1

Section information n

Relocation information 2 Relocation information 1
Section information 2] K
Extern information 2

Actual data 2

Relocation information n

Extern information 1

Relocation information n

Section information n] - Extern information n
Extern information n

Actual data 1

Actual data n

Actual data n

File-name information 1

Debugging control
information 1

Debugging control
information 1

Statement information 1

Debugging control

Symbol information 1 : !
information m

File-name information 1

File-name information 2
Debugging control
information 2

Statement information 1

Statement information 2

Symbol information 1

Symbol information 2

File-name information m

_ File-name information m
D?bugglng control Statement information m
information m Statement information m

Symbol information m

Symbol information m

Composition of srf33 Layout in file
Fig. A.1 Structure of srf33 object file

srf33 control header
The srf33 file aways has one srf33 header a its top. The sf33 control header carries chains (in-file
positional information) toward Section Information 1 and Debugging Control Information 1.

EOC33 FAMILY EPSON 433
C COMPILER PACKAGE MANUAL (ver.3)

APPENDIX: SRF33 FILE STRUCTURE

Section information

An object file created by the assembler has three pieces of section information (one each for CODE, DATA
and BSS) in the case of relocatable modules, or has one to three section information (one or zero each for
CODE, DATA and BSS) in the case of absolute modules. In the modules after the linking process,
continuous relocatable sections are grouped together, but other sections (individually defined section and
absolute sections) exist independently of each other. The section information after the linking process is
grouped together in the CODE Section, DATA Section, and BSS Section in the order of the addressesin each
sections. The section information in the CODE section, DATA section, and the BSS section, which do not
have actual data, isalso delivered.

Each piece of section information contains the attribute of that section (CODE, DATA, or BSS), mapping
addresses, chains to relocation information/extern information/actual information, actual data size, and so on.
It also has a chain to the following section information.

Relocation information
Necessary information for relocation of the linker. It is contained in the object file created by the assembler.
The relocation information is not delivered in the object file after the linking process.
The relocation information contains relocation types for instruction codes in the section, positions in the
section, index to the extern information to be referred to, and so on.

Extern information
Symbol information necessary for linking. It is contained in the object file created by the assembler. The
extern information is not delivered in the object file after the linking process.
The extern information contains the names and types of symbols used in the section, the positions in the
section, and so on.

Actual data
Actual data of each section (although the BSS section does not hold any data). In the case of the CODE
section, two bytes are used for one code (instruction). In the DATA section, each piece of data takes up one,
two or four bytes.

Debugging control information

The debugging control information is created in a quantity equal to the number of linked object modules, and
contains the file name information of each module, statement information, symbol information size, and
chains. It also carries a chain that goes to the following debugging control information. The debugging
control information is arranged in order of the linked modules.

The debugging control information, as well as the file name information, the statement information, and the
symbol information, are delivered when the processing is executed from the C Compiler gcc33/ Preprocessor
pp33 through Linker 1k33, with the -g option specified. The source display and the use of symbols take place
according to this debugging control information. Even when there is no part following the debugging control
information (or if such part is available but it cannot be read successfully) the debugging can be executed by
disassembling display, aslong as the portion up to the actual data can be read correctly.

File-name information
File-name information created by the .file pseudo-instruction. It contains information on the file names of
each module, included-file names, and their respective directory structures. It is primarily referred to by the
debugger when it displays source codes.

Statement information
Consists of line-number information and file-switching information created by the .loc and .endfile
pseudo-instructions. It is mainly referred to by the debugger to establish correspondence between actual data
and source codes.

Symbol information
Contains information on al the symbols defined in the module. It is referred to in the symbol display or in
the address specification using symbols.

434 EPSON EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

<Reference: Contents of Information>
* Chain:

APPENDIX: SRF33 FILE STRUCTURE

If that number is 0 (zero), there is no continuing information.

Index:

(1) srf33 Control Header

Number to identify a section or symbol. First ID No. is O (zero).

Denotes the connection to the continuing information by the number of bytes from the top of the file.

Information Byte Contents
c_fatt File control flag 2 |The following OR values:
0x0001: Relocatable file
0x0002: Absolute file
0x0004: Execution format (Linker output file)
0x0008: Debugging information included
0x0010: Library file
c_pentry Entry address 2 |0x0000: Boot address
c_ver srf33 version information 2 |0x3300 (Version: 33, Revision: 00)
c_scnptr Section-information chain 4 |0x00000000: There is no section information.
Other than 0: Chain
c_debptr Debugging-control information chain 4 |0x00000000: There is no debugging information.
Other than 0: Chain
(2) Section Information (Maximum 65535)
Information Byte Contents
S_nxptr Chain to the following section 4 |0x00000000: Terminal end of section information
Other than 0: Chain
s_scntyp Section type 2 |0x0001: CODE section
0x0002: DATA section
0x0003: BSS section
0x0004: Dummy section
s_Inktyp Linking method 2 |0x0000 (unused)
S_scnatt Section attribute 2 |[0x0001: Absolute, 0x0002: Relocatable
s_off Section start address 4 | 0x00000000-0xOfffffff
s_reptr Relocation information chain 4 |0x00000000: There is no relocation information.
Other than 0: Chain
s_rcsiz Relocation information byte size 4 |0x00000000: When the relocation information chain is 0.
Other than 0: Byte size
s_exptr Extern information chain 4 |0x00000000: There is no extern information.
Other than 0: Chain
s_exsiz Extern information byte size 4 |0x00000000: When the extern information chain is 0.
Other than O: Byte size
s_excnt Number of pieces of extern information | 4 [0x00000000: When the extern information chain is 0.
Other than 0: Number of pieces of information
s_rdptr Chain to actual data 4 |0x00000000:There is no actual data (always 0 in BSS).
Other than 0: Chain
s_dsiz Actual data byte size 4 |0x00000000: When the chain to actual data is 0 in CODE/
DATA section, or when there is no BSS area in BSS section.
Other than O: Byte size of actual data in CODE/DATA
section. Byte size of BSS area in BSS section.
s_scnndx Section ID 2 | 0x0000-0xffff

(3) Relocation Information

Information Byte Contents
r_rctyp Relocation type 2 |0x0001: 8-bit relative symbol, SYMBOL<0x200
0x0002: 32-bit relative symbol (31:22), SYMBOL@rh
0x0003: 32-bit relative symbol (21:9), SYMBOL@rm
0x0004: 32-bit relative symbol (8:1), SYMBOL@rl
0x0005: 26-bit relative symbol (25:13), SYMBOL+sign32@ah
0x0006: 26-bit relative symbol (12:0), SYMBOL+sign32@al
0x0007: 32-bit absolute symbol (31:19), SYMBOL+imm32@h
0x0008: 32-bit absolute symbol (18:6), SYMBOL+imm32@m
0x0009: 32-bit absolute symbol (5:0), SYMBOL+imm32@I
0x000a: 32-bit absolute symbol (31:0), SYMBOL
r_scnoff Offset in the section 4 |0x00000000-Word size of the section to which this information belongs
r_exndx Index of the extern information to be 4 | 0x00000000-Number of pieces of extern information in the section to be
referred referred
r_scnndx Section ID to which the extern 2 |0x0000-Number of sections in the same file
information to be referred belongs
r_symoff Offset from the symbol 4 | 0x00000000 (offset 0)—0xffffffff

EOC33 FAMILY
C COMPILER PACKAGE MANUAL (ver.3)

EPSON

435

APPENDIX: SRF33 FILE STRUCTURE

(4) Extern Information

Information Byte Contents
e_scnoff Offset in the section 4 |0x00000000-Word size of the section to which this information belongs
e_size Symbol size 4 | 0x00000000-0xffffffff (corresponds to .comm, .lcomm)
e_scnndx Section ID to which the extern 4 |0x00000000 (used only inside the linker)
information to be referred belongs Reserved area
e_extyp Extern type 2 |0x0001: Global symbol
0x0002: Local symbol
0x0003: Extern symbol
e_namsiz Length of symbol name 1 [0x00-0x20
e_exnam Symbol name # | Symbol name, *: Max. 32 bytes

(5) Actual Data
CODE section:
DATA section:

of upper to lower)

One code is output in 2 bytes. (in order of upper to lower)
One piece of datais output in 1 byte (byte), 2 bytes (half word) or 4 bytes (word). (in order

BSSsection: Does not hold any actual data.
(6) Debugging Control Information
Information Byte Contents
d_nxptr Debugging-control-information chain 4 |0x00000000: Terminal end of debugging control information
Other than 0: Chain
d_flptr File-name-information chain 4 |0x00000000: There is no file-name information.
Other than 0: Chain
d_flsiz File-name-information byte size 4 |0x00000000: When the file-name information chain is 0.
Other than 0: Byte size
d_flent Number of pieces of file-name 4 |0x00000000: When the file-name information chain is 0.
information Other than 0: Number of pieces of information
d_stptr Statement-information chain 4 |0x00000000: There is no statement information.
Other than 0: Chain
d_stsiz Statement-information byte size 4 |0x00000000: When the statement-information chain is 0.
Other than 0: Byte size
d_syptr Symbol-information chain 4 |0x00000000: There is no symbol-information.
Other than 0: Chain
d_sysiz Symbol-information byte size 4 |0x00000000: When the symbol-information chain is 0.
(symbol info.+special statement info.) Other than 0: Byte size
d_sycnt Number of pieces of symbol information| 4 [0x00000000: When the symbol-information chain is 0.
(symbol info.+special statement info.) Other than 0: Number of pieces of information
(7) FileName Information
Information Byte Contents
f_ftyp Type 2 |0x0000 (unused)
f_dirsiz Length of directory name 1 |0x00-0xff
f_fnamsiz Length of source file name 1 |0x00-Oxff
f_fnam Source file information # | Path and file name, *: Max. 510 bytes

(8) Statement Information

<General Statement Information> * Line information of source (Statement information when top is other than Oxff)

Information Byte Contents
t_line Number of lines in the source file 4 |0x00000000-Last line of source file
t_stat Statement 2 |0x0000 (unused)
t_scnoff Offset in the reference section 4 |0x00000000—Actual size of reference section
t_scnndx Reference section ID 2 |0x0000—Number of sections in the srf33 file to be debugged

<Special Statement Information> * Switching information of source file (Top at Oxff)

Information Byte Contents

t_type Type of statement information 2 |Oxffff: Start of source-file-name reference range
Ocfffe: End of source-file-name reference range

t_findx Index to file-name information 4 |0x00000000-Number of pieces of file-name information within the same
debugging-control information

t_fnoff Offset in last CODE section of source 4 |0x00000000-Actual size of reference section

file
t_scnndx Reference section ID 2 |0x0000—Number of sections in the srf33 file to be debugged
436 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

(9) Symbol Information
<General Symbol Information>

APPENDIX: SRF33 FILE STRUCTURE

Information Byte Contents
y_symndx Symbol ID 4 |0x00000000-Number of pieces of symbol information within the same
debugging-control information
Oxffffffff: Invalid symbol information
y_value Symbol value 4 | 0x00000000-0xffffffff
_typ Symbol type 2 |y_typ[0](3:0) y_typ[1] & y_typ[0](7:4)
0: no type 0: no derived type
1: void 1: pointer
2: char 2: function
3: short int 3: array
4:int (combination of above values)
5: long int
6: float
7: double
8: structure
9: union
10: enum
11: member of enum
12: unsigned char
13: unsigned short
14: unsigned int
15: unsigned long
y_scnndx Reference section ID 2 |0x0000—Number of sections in the srf33 file to be debugged
y_sclass Storage class 1 |0:null 16: member of enumeration
1: automatic variable 17: register parameter
2: external symbol 18: bit field
3: static 19: auto argument
4: register variable 20: dummy entry (end of block)
5: external definition 100: beginning of block ".begin”
6: label 101: beginning of function ".ent"
7: undefined label 102: end of structure
8: member of structure 103: file name
9: function argument 104: line # reformatted as symbol
10: structure tag table entry
11: member of union 105: duplicate tag
12: union tag 106: ext symbol in dmert public lib
13: type definition 110: end of block ".bend"
14: undefined static 111: end of function ".end"
15: enumeration tag
y_auxcnt Number of AUX entry 1 |0x00-0xff
y_namsiz Length of symbol name 1 [0x00-0x20
y_symnam _|Symbol name # | Symbol name, *: Max. 32 bytes
<AUX Entry>
Information Byte Contents
x_tagndx Index to tag name of structure, unionor [4 |0x00000000—0xffffffff
enumeration
X_size Size of structure, union or array 4 | 0x00000000—0xffffffff
x_dimen Dimensions of array 4+4 | 0x00000000-0xffffffff+Oxffffffff
EOC33 FAMILY EPSON 437

C COMPILER PACKAGE MANUAL (ver.3)

APPENDIX: SRF33 FILE STRUCTURE

A-2 Library File Structure

The structure of the library files created by the Librarian 1ib33 is explained below.

Library header

Library symbol table 1

Library symbol table n

A

Object module information 1

A A 4

Object file 1

L

Object module information n

Object file n

Composition of library file
Fig. A.2 Structure of library file

<Reference: Contents of Information>

(1) Library Header

Library header
The library file always has one library header at its top.
The library header contains the library file name, file size
and the pointer (in-file positiona information) toward the
first object module.

Object module information

Object module information is created for each object
module. It contains the object file name, file size and the
pointer toward the corresponding library symbol table.

Library symbol table

Thisis the global symbol information table corresponding
to each object module. The library symbol table is not
created for the object module that has no global symbol. It
contains the symbol table size and information of each
global symbol (symbol name and pointer toward the
corresponding object module information).

Information Byte Contents
|_att File control flag 2 |0x0010
|_size Size of entire library 4 |Library file size
|_ver srf33 version information 2 |0x3300 (Version: 33, Revision: 00)
|_objptr Pointer to first object module 4 |Offset of the object module information from the beginning of the file
|_namsiz Length of library file name 1 |0x00-0xff
f_fnam Library file name + | Path and file name, *: Max. 510 bytes

(2) Object Module I nformation

Information Byte Contents
o_att File control flag 4 | Oxffffffff
0_size Object file size 4 |Objectfile size
o_Isymptr Pointer to library symbol table 4 | Offset of the corresponding library symbol table from the beginning of the
file.
|_namsiz Length of object file name 1 |0x00-0xff
f_fnam Object file name + | Path and file name, *: Max. 510 bytes

(3) Library Symbol Table

[Byte]

[Information

Contents |

[a]

[Ist_size [Table size

Total size of library symbol table \

Individual global symbol information follows the table size information.

Information Byte Contents
Is_objptr Pointer to object module information 4 |Offset of the object module information from the beginning of the file
Is_namsiz Length of global symbol 1 |0x00-0x20
Is_glnam Global symbol name + |Symbol name, *: Max. 32 bytes
438 EPSON EOC33 FAMILY

C COMPILER PACKAGE MANUAL (ver.3)

EPSON

International Sales Operations

AMERICA ASIA
EPSON ELECTRONICS AMERICA, INC. - CHINA -
- HEADQUARTERS - EPSON (CHINA) CO., LTD.

1960 E. Grand Avenue
El Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway

San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290

Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120

Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170

Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15

80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110
- GERMANY -

SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road

Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de I' Atlantique, LP 915 Les Conquerants

Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG

Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3

Taipei, TAIWAN

Phone: 02-2717-7360
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN
Phone: 03-573-9900

Fax: 02-2712-9164

Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00

Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA

Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department

IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

ENERGY
SAVING

EPSON

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices
assists in creating the products of our customers’ dreams.
Epson IS energy savings

EPSON

SEIKO EPSON CORPORATION

B EPSON Electronic Devices website

http://www.epson.co.jp/device | First issue JUNE 1998 @, Printed JUNE 2000 in Japan @ B

	䤀渀琀爀漀搀甀挀琀椀漀渀
	䠀漀眀 琀漀 爀攀愀搀 琀栀攀 洀愀渀甀愀氀
	䴀愀渀甀愀氀 一漀琀愀琀椀漀渀猀

	㄀ 䜀攀渀攀爀愀氀
	㄀⸀㄀ 䘀攀愀琀甀爀攀猀
	㄀⸀㈀ 吀漀漀氀 䌀漀洀瀀漀猀椀琀椀漀渀
	㄀⸀㈀⸀㄀ 䌀漀洀瀀漀猀椀琀椀漀渀 漀昀 倀愀挀欀愀最攀
	㄀⸀㈀⸀㈀ 伀甀琀氀椀渀攀 漀昀 匀漀昀琀眀愀爀攀 吀漀漀氀猀

	㈀ 䤀渀猀琀愀氀氀愀琀椀漀渀
	㈀⸀㄀ 圀漀爀欀椀渀最 䔀渀瘀椀爀漀渀洀攀渀琀
	㈀⸀㈀ 䤀渀猀琀愀氀氀愀琀椀漀渀 䴀攀琀栀漀搀

	㌀ 匀漀昀琀眀愀爀攀 䐀攀瘀攀氀漀瀀洀攀渀琀 倀爀漀挀攀搀甀爀攀猀
	㌀⸀㄀ 匀漀昀琀眀愀爀攀 䐀攀瘀攀氀漀瀀洀攀渀琀 䘀氀漀眀
	㌀⸀㈀ 吀甀琀漀爀椀愀氀 ⠀䘀氀漀眀 漀昀 伀瀀攀爀愀琀椀漀渀猀 眀椀琀栀 圀漀爀欀 䈀攀渀挀栀⤀
	㌀⸀㈀⸀㄀ 匀琀愀爀琀甀瀀 漀昀 圀漀爀欀 䈀攀渀挀栀 眀戀㌀㌀
	㌀⸀㈀⸀㈀ 匀攀氀攀挀琀椀渀最 䐀椀爀攀挀琀漀爀礀 愀渀搀 䐀椀猀瀀氀愀礀椀渀最 䘀椀氀攀 䌀漀渀琀攀渀琀猀
	㌀⸀㈀⸀㌀ 䌀爀攀愀琀椀渀最 䴀愀欀攀 䘀椀氀攀
	㌀⸀㈀⸀㐀 䄀甀琀漀ⴀ攀砀攀挀甀琀椀漀渀 昀爀漀洀 䌀漀洀瀀椀氀椀渀最 琀漀 䰀椀渀欀椀渀最
	㌀⸀㈀⸀㔀 吀漀 䔀砀攀挀甀琀攀 吀漀漀氀猀 䤀渀搀椀瘀椀搀甀愀氀氀礀
	㌀⸀㈀⸀㘀 䌀爀攀愀琀椀渀最 倀愀爀愀洀攀琀攀爀 䘀椀氀攀 昀漀爀 䐀攀戀甀最最攀爀
	㌀⸀㈀⸀㜀 䐀攀戀甀最最椀渀最
	㌀⸀㈀⸀㠀 䌀爀攀愀琀椀渀最 䐀椀猀愀猀猀攀洀戀氀礀 䘀椀氀攀
	㌀⸀㈀⸀㤀 䌀爀攀愀琀椀渀最 刀伀䴀 䐀愀琀愀
	㌀⸀㈀⸀㄀　 伀瀀琀椀洀椀稀愀琀椀漀渀
	㌀⸀㈀⸀㄀㄀ 䔀瀀椀氀漀最甀攀

	㌀⸀㌀ 䐀攀戀甀最最椀渀最 䔀渀瘀椀爀漀渀洀攀渀琀
	㌀⸀㌀⸀㄀ 䤀渀ⴀ䌀椀爀挀甀椀琀 䔀洀甀氀愀琀漀爀 䤀䌀䔀㌀㌀
	㌀⸀㌀⸀㈀ 䐀攀戀甀最 䴀漀渀椀琀漀爀 䴀伀一㌀㌀
	㌀⸀㌀⸀㌀ 䤀渀ⴀ䌀椀爀挀甀椀琀 䐀攀戀甀最最攀爀 䤀䌀䐀㌀㌀
	3.3.4 Memory Board MEM33201

	㌀⸀㐀 刀攀氀愀琀椀漀渀猀栀椀瀀 戀攀琀眀攀攀渀 倀爀漀最爀愀洀 匀琀爀甀挀琀甀爀攀 愀渀搀 䴀攀洀漀爀礀

	㐀 匀漀甀爀挀攀 䘀椀氀攀猀
	㐀⸀㄀ 䘀椀氀攀 䘀漀爀洀愀琀 愀渀搀 䘀椀氀攀 一愀洀攀
	㐀⸀㈀ 䜀爀愀洀洀愀爀 漀昀 䌀 匀漀甀爀挀攀
	㐀⸀㈀⸀㄀ 䐀愀琀愀 吀礀瀀攀
	㐀⸀㈀⸀㈀ 䰀椀戀爀愀爀礀 䘀甀渀挀琀椀漀渀猀 愀渀搀 䠀攀愀搀攀爀 䘀椀氀攀猀
	㐀⸀㈀⸀㌀ 䤀渀ⴀ氀椀渀攀 䄀猀猀攀洀戀氀攀

	㐀⸀㌀ 䜀爀愀洀洀愀爀 漀昀 䄀猀猀攀洀戀氀礀 匀漀甀爀挀攀
	㐀⸀㌀⸀㄀ 匀琀愀琀攀洀攀渀琀猀
	㐀⸀㌀⸀㈀ 一漀琀愀琀椀漀渀猀 漀昀 伀瀀攀爀愀渀搀猀
	㐀⸀㌀⸀㌀ 䔀砀琀攀渀搀攀搀 䤀渀猀琀爀甀挀琀椀漀渀猀
	㐀⸀㌀⸀㐀 䄀搀搀椀琀椀漀渀愀氀 倀爀攀瀀爀漀挀攀猀猀漀爀 䘀甀渀挀琀椀漀渀猀

	㐀⸀㐀 倀爀攀挀愀甀琀椀漀渀猀 昀漀爀 䌀爀攀愀琀椀漀渀 漀昀 匀漀甀爀挀攀猀

	㔀 圀漀爀欀 䈀攀渀挀栀
	㔀⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㔀⸀㈀ 伀瀀攀爀愀琀椀漀渀猀
	㔀⸀㈀⸀㄀ 匀琀愀爀琀椀渀最 唀瀀 愀渀搀 吀攀爀洀椀渀愀琀椀渀最 眀戀㌀㌀
	㔀⸀㈀⸀㈀ 圀椀渀搀漀眀
	㔀⸀㈀⸀㌀ 匀攀氀攀挀琀椀渀最 䘀椀氀攀 愀渀搀 䐀椀猀瀀氀愀礀椀渀最 匀漀甀爀挀攀
	㔀⸀㈀⸀㐀 䔀砀攀挀甀琀椀渀最 䤀渀搀椀瘀椀搀甀愀氀 吀漀漀氀猀
	㔀⸀㈀⸀㔀 匀攀氀攀挀琀椀渀最 䔀砀攀挀甀琀椀漀渀 䌀漀渀搀椀琀椀漀渀猀
	㔀⸀㈀⸀㘀 䴀愀欀攀
	㔀⸀㈀⸀㜀 倀愀爀愀洀攀琀攀爀 䘀椀氀攀 䜀攀渀攀爀愀琀漀爀
	㔀⸀㈀⸀㠀 匀瀀攀挀椀昀礀椀渀最 愀 䜀攀渀攀爀愀氀ⴀ瀀甀爀瀀漀猀攀 䔀搀椀琀漀爀
	㔀⸀㈀⸀㤀 䔀渀琀攀爀椀渀最 䌀漀洀洀愀渀搀 䰀椀渀攀猀
	㔀⸀㈀⸀㄀　 匀愀瘀椀渀最 愀渀搀 刀攀猀琀漀爀椀渀最 伀瀀琀椀漀渀猀

	㔀⸀㌀ 䔀爀爀漀爀 䴀攀猀猀愀最攀猀
	㔀⸀㐀 倀爀攀挀愀甀琀椀漀渀猀

	㘀 䌀 䌀漀洀瀀椀氀攀爀
	㘀⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㘀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㘀⸀㈀⸀㄀ 䤀渀瀀甀琀 䘀椀氀攀
	㘀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㘀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㘀⸀㌀⸀㄀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㘀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㘀⸀㐀 䴀攀猀猀愀最攀猀
	㘀⸀㔀 䌀漀洀瀀椀氀攀爀 伀甀琀瀀甀琀
	㘀⸀㔀⸀㄀ 伀甀琀瀀甀琀 䌀漀渀琀攀渀琀猀
	㘀⸀㔀⸀㈀ 䐀愀琀愀 刀攀瀀爀攀猀攀渀琀愀琀椀漀渀
	㘀⸀㔀⸀㌀ 䴀攀琀栀漀搀 漀昀 唀猀椀渀最 刀攀最椀猀琀攀爀猀
	㘀⸀㔀⸀㐀 䘀甀渀挀琀椀漀渀 䌀愀氀氀
	㘀⸀㔀⸀㔀 匀琀愀挀欀 䘀爀愀洀攀

	㘀⸀㘀 䐀攀戀甀最最椀渀最 䤀渀昀漀爀洀愀琀椀漀渀
	㘀⸀㘀⸀㄀ 匀漀甀爀挀攀 䤀渀昀漀爀洀愀琀椀漀渀
	㘀⸀㘀⸀㈀ 匀礀洀戀漀氀 䤀渀昀漀爀洀愀琀椀漀渀

	㘀⸀㜀 䘀甀渀挀琀椀漀渀猀 漀昀 最挀挀㌀㌀ 愀渀搀 唀猀愀最攀 倀爀攀挀愀甀琀椀漀渀猀

	㜀 䔀洀甀氀愀琀椀漀渀 䰀椀戀爀愀爀礀
	㜀⸀㄀ 伀瘀攀爀瘀椀攀眀
	㜀⸀㈀ 䘀氀漀愀琀椀渀最ⴀ瀀漀椀渀琀 䌀愀氀挀甀氀愀琀椀漀渀 䰀椀戀爀愀爀礀 ⠀昀瀀⸀氀椀戀⤀
	㜀⸀㈀⸀㄀ 䘀甀渀挀琀椀漀渀 䰀椀猀琀
	㜀⸀㈀⸀㈀ 䘀氀漀愀琀椀渀最ⴀ瀀漀椀渀琀 䘀漀爀洀愀琀

	㜀⸀㌀ 䤀渀琀攀最爀愀氀 刀攀洀愀椀渀搀攀爀 䌀愀氀挀甀氀愀琀椀漀渀 䰀椀戀爀愀爀礀 ⠀椀搀椀瘀⸀氀椀戀⤀
	㜀⸀㐀 䘀氀漀愀琀椀渀最ⴀ瀀漀椀渀琀 䌀愀氀挀甀氀愀琀椀漀渀 䰀椀戀爀愀爀礀 ⠀昀瀀瀀⸀氀椀戀⤀

	㠀 䄀一匀䤀 䰀椀戀爀愀爀礀
	㠀⸀㄀ 伀瘀攀爀瘀椀攀眀
	㠀⸀㈀ 䄀一匀䤀 䰀椀戀爀愀爀礀 䘀甀渀挀琀椀漀渀 䰀椀猀琀
	㠀⸀㈀⸀㄀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀甀渀挀琀椀漀渀猀 ⠀椀漀⸀氀椀戀⤀
	㠀⸀㈀⸀㈀ 唀琀椀氀椀琀礀 䘀甀渀挀琀椀漀渀猀 ⠀氀椀戀⸀氀椀戀⤀
	㠀⸀㈀⸀㌀ 䐀愀琀攀 愀渀搀 吀椀洀攀 䘀甀渀挀琀椀漀渀猀 ⠀氀椀戀⸀氀椀戀⤀
	㠀⸀㈀⸀㐀 䴀愀琀栀攀洀愀琀椀挀愀氀 䘀甀渀挀琀椀漀渀猀 ⠀洀愀琀栀⸀氀椀戀⤀
	㠀⸀㈀⸀㔀 䌀栀愀爀愀挀琀攀爀 䘀甀渀挀琀椀漀渀猀 ⠀猀琀爀椀渀最⸀氀椀戀⤀
	㠀⸀㈀⸀㘀 䌀栀愀爀愀挀琀攀爀 吀礀瀀攀 䐀攀琀攀爀洀椀渀愀琀椀漀渀⼀䌀漀渀瘀攀爀猀椀漀渀 䘀甀渀挀琀椀漀渀猀 ⠀挀琀礀瀀攀⸀氀椀戀⤀
	㠀⸀㈀⸀㜀 嘀愀爀椀愀戀氀攀 䄀爀最甀洀攀渀琀 䴀愀挀爀漀猀 ⠀猀琀搀愀爀最⸀栀⤀

	㠀⸀㌀ 䐀攀挀氀愀爀椀渀最 愀渀搀 䤀渀椀琀椀愀氀椀稀椀渀最 䜀氀漀戀愀氀 嘀愀爀椀愀戀氀攀猀
	㠀⸀㐀 䰀漀眀攀爀ⴀ氀攀瘀攀氀 䘀甀渀挀琀椀漀渀猀
	㠀⸀㐀⸀㄀ ∀爀攀愀搀∀ 䘀甀渀挀琀椀漀渀
	㠀⸀㐀⸀㈀ ∀眀爀椀琀攀∀ 䘀甀渀挀琀椀漀渀
	㠀⸀㐀⸀㌀ ∀开攀砀椀琀∀ 䘀甀渀挀琀椀漀渀

	㤀 倀爀攀瀀爀漀挀攀猀猀漀爀
	㤀⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㤀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㤀⸀㈀⸀㄀ 䤀渀瀀甀琀 䘀椀氀攀
	㤀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㤀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㤀⸀㌀⸀㄀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㤀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㤀⸀㐀 䴀攀猀猀愀最攀猀
	㤀⸀㔀 倀爀攀瀀爀漀挀攀猀猀漀爀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	㤀⸀㔀⸀㄀ 䤀渀挀氀甀搀攀 䤀渀猀琀爀甀挀琀椀漀渀 ⠀⌀椀渀挀氀甀搀攀⤀
	㤀⸀㔀⸀㈀ 䐀攀昀椀渀攀 䤀渀猀琀爀甀挀琀椀漀渀 ⠀⌀搀攀昀椀渀攀⤀
	㤀⸀㔀⸀㌀ 䴀愀挀爀漀 䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⌀洀愀挀爀漀 ⸀⸀⸀ ⌀攀渀搀洀⤀
	㤀⸀㔀⸀㐀 䌀漀渀搀椀琀椀漀渀愀氀 䄀猀猀攀洀戀氀礀 䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⌀椀昀搀攀昀 ⸀⸀⸀ ⌀攀氀猀攀 ⸀⸀⸀ ⌀攀渀搀椀昀Ⰰ ⌀椀昀渀搀攀昀⸀⸀⸀ ⌀攀氀猀攀 ⸀⸀⸀ ⌀攀渀搀椀昀⤀

	㤀⸀㘀 伀瀀攀爀愀琀漀爀猀
	㤀⸀㜀 䐀攀戀甀最最椀渀最 䤀渀昀漀爀洀愀琀椀漀渀
	㤀⸀㠀 䌀漀洀洀攀渀琀 䄀搀搀椀渀最 䘀甀渀挀琀椀漀渀
	㤀⸀㤀 伀琀栀攀爀 䘀甀渀挀琀椀漀渀猀
	㤀⸀㤀⸀㄀ 䄀匀䌀䤀䤀 琀漀 䠀䔀堀 䌀漀渀瘀攀爀猀椀漀渀
	㤀⸀㤀⸀㈀ 䌀漀洀洀攀渀琀 䰀椀渀攀

	㤀⸀㄀　 倀爀漀挀攀猀猀 䘀氀漀眀
	㤀⸀㄀㄀ 匀愀洀瀀氀攀 䔀砀攀挀甀琀椀漀渀猀
	㤀⸀㄀㈀ 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㤀⸀㄀㈀⸀㄀ 䔀爀爀漀爀猀
	㤀⸀㄀㈀⸀㈀ 圀愀爀渀椀渀最

	㤀⸀㄀㌀ 倀爀攀挀愀甀琀椀漀渀猀

	㄀　 䤀渀猀琀爀甀挀琀椀漀渀 䔀砀琀攀渀搀攀爀
	㄀　⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㄀　⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㄀　⸀㈀⸀㄀ 䤀渀瀀甀琀 䘀椀氀攀猀
	㄀　⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㄀　⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㄀　⸀㌀⸀㄀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㄀　⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㄀　⸀㐀 䌀漀洀洀愀渀搀 䘀椀氀攀
	㄀　⸀㔀 䴀攀猀猀愀最攀猀
	㄀　⸀㘀 䔀砀琀攀渀搀攀搀 䤀渀猀琀爀甀挀琀椀漀渀猀
	㄀　⸀㘀⸀㄀ 䄀爀椀琀栀洀攀琀椀挀 伀瀀攀爀愀琀椀漀渀 䤀渀猀琀爀甀挀琀椀漀渀猀
	㄀　⸀㘀⸀㈀ 䌀漀洀瀀愀爀椀猀漀渀 䤀渀猀琀爀甀挀琀椀漀渀猀
	㄀　⸀㘀⸀㌀ 䰀漀最椀挀 伀瀀攀爀愀琀椀漀渀 䤀渀猀琀爀甀挀琀椀漀渀猀
	㄀　⸀㘀⸀㐀 匀栀椀昀琀 ☀ 刀漀琀愀琀攀 䤀渀猀琀爀甀挀琀椀漀渀猀
	㄀　⸀㘀⸀㔀 䐀愀琀愀 吀爀愀渀猀昀攀爀 䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀戀攀琀眀攀攀渀 匀琀愀挀欀 愀渀搀 刀攀最椀猀琀攀爀⤀
	㄀　⸀㘀⸀㘀 䐀愀琀愀 吀爀愀渀猀昀攀爀 䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀戀攀琀眀攀攀渀 䴀攀洀漀爀礀 愀渀搀 刀攀最椀猀琀攀爀⤀
	㄀　⸀㘀⸀㜀 䤀洀洀攀搀椀愀琀攀 䐀愀琀愀 䰀漀愀搀 䤀渀猀琀爀甀挀琀椀漀渀猀
	㄀　⸀㘀⸀㠀 䈀椀琀 伀瀀攀爀愀琀椀漀渀 䤀渀猀琀爀甀挀琀椀漀渀猀
	㄀　⸀㘀⸀㤀 䈀爀愀渀挀栀 䤀渀猀琀爀甀挀琀椀漀渀猀

	㄀　⸀㜀 伀瀀琀椀洀椀稀攀 䘀甀渀挀琀椀漀渀
	㄀　⸀㜀⸀㄀ 伀瀀琀椀洀椀稀椀渀最 刀攀氀愀琀椀瘀攀 䈀爀愀渀挀栀 䤀渀猀琀爀甀挀琀椀漀渀
	㄀　⸀㜀⸀㈀ 伀瀀琀椀洀椀稀愀琀椀漀渀 戀礀 琀栀攀 䜀氀漀戀愀氀 倀漀椀渀琀攀爀
	㄀　⸀㜀⸀㌀ 伀瀀琀椀洀椀稀愀琀椀漀渀 戀礀 匀礀洀戀漀氀 䤀渀昀漀爀洀愀琀椀漀渀

	㄀　⸀㠀 伀琀栀攀爀 䘀甀渀挀琀椀漀渀猀
	㄀　⸀㠀⸀㄀ 䌀漀洀洀攀渀琀 䄀搀搀椀渀最 䘀甀渀挀琀椀漀渀
	㄀　⸀㠀⸀㈀ 䌀氀愀猀猀椀昀椀挀愀琀椀漀渀 漀昀 䰀漀挀愀氀 匀礀洀戀漀氀猀
	㄀　⸀㠀⸀㌀ 匀礀渀琀愀挀琀椀挀 䌀栀攀挀欀

	㄀　⸀㤀 匀愀洀瀀氀攀 䔀砀攀挀甀琀椀漀渀
	㄀　⸀㄀　 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㄀　⸀㄀　⸀㄀ 䔀爀爀漀爀猀
	㄀　⸀㄀　⸀㈀ 圀愀爀渀椀渀最

	㄀　⸀㄀㄀ 倀爀攀挀愀甀琀椀漀渀猀

	㄀㄀ 䄀猀猀攀洀戀氀攀爀
	㄀㄀⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㄀㄀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㄀㄀⸀㈀⸀㄀ 䤀渀瀀甀琀 䘀椀氀攀
	㄀㄀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㄀㄀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㄀㄀⸀㌀⸀㄀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㄀㄀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㄀㄀⸀㐀 䴀攀猀猀愀最攀猀
	㄀㄀⸀㔀 刀攀氀漀挀愀琀愀戀氀攀 䄀猀猀攀洀戀氀椀渀最 愀渀搀 䄀戀猀漀氀甀琀攀 䄀猀猀攀洀戀氀椀渀最
	㄀㄀⸀㔀⸀㄀ 刀攀氀漀挀愀琀愀戀氀攀 䄀猀猀攀洀戀氀椀渀最
	㄀㄀⸀㔀⸀㈀ 䄀戀猀漀氀甀琀攀 䄀猀猀攀洀戀氀椀渀最

	㄀㄀⸀㘀 匀挀漀瀀攀
	㄀㄀⸀㜀 䐀攀昀椀渀椀琀椀漀渀 漀昀 匀攀挀琀椀漀渀猀
	㄀㄀⸀㠀 䄀猀猀攀洀戀氀攀爀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	㄀㄀⸀㠀⸀㄀ 䄀戀猀漀氀甀琀攀 䄀猀猀攀洀戀氀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀愀戀猀⤀
	㄀㄀⸀㠀⸀㈀ 匀攀挀琀椀漀渀 䐀攀昀椀渀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⸀挀漀搀攀Ⰰ ⸀搀愀琀愀⤀
	㄀㄀⸀㠀⸀㌀ 䄀爀攀愀 匀攀挀甀爀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⸀挀漀洀洀Ⰰ ⸀氀挀漀洀洀⤀
	㄀㄀⸀㠀⸀㐀 䰀漀挀愀琀椀漀渀 䌀漀甀渀琀攀爀 䌀漀渀琀爀漀氀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀漀爀最⤀
	㄀㄀⸀㠀⸀㔀 匀礀洀戀漀氀 䐀攀昀椀渀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀猀攀琀⤀
	㄀㄀⸀㠀⸀㘀 䐀愀琀愀 䐀攀昀椀渀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀眀漀爀搀Ⰰ ⸀栀愀氀昀Ⰰ ⸀戀礀琀攀Ⰰ ⸀愀猀挀椀椀Ⰰ ⸀猀瀀愀挀攀⤀
	㄀㄀⸀㠀⸀㜀 䄀氀椀最渀洀攀渀琀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀愀氀椀最渀⤀
	㄀㄀⸀㠀⸀㠀 䜀氀漀戀愀氀 䐀攀挀氀愀爀椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀 ⠀⸀最氀漀戀愀氀⤀
	㄀㄀⸀㠀⸀㤀 䰀椀猀琀 䌀漀渀琀爀漀氀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⸀氀椀猀琀Ⰰ ⸀渀漀氀椀猀琀⤀
	㄀㄀⸀㠀⸀㄀　 䐀攀戀甀最最椀渀最 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀 ⠀⸀昀椀氀攀Ⰰ ⸀攀渀搀昀椀氀攀Ⰰ ⸀氀漀挀Ⰰ ⸀搀攀昀⤀

	㄀㄀⸀㤀 䄀猀猀攀洀戀氀礀 䰀椀猀琀 䘀椀氀攀
	㄀㄀⸀㄀　 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㄀㄀⸀㄀　⸀㄀ 䔀爀爀漀爀猀
	㄀㄀⸀㄀　⸀㈀ 圀愀爀渀椀渀最

	㄀㄀⸀㄀㄀ 倀爀攀挀愀甀琀椀漀渀猀

	㄀㈀ 䰀椀渀欀攀爀
	㄀㈀⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㄀㈀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㄀㈀⸀㈀⸀㄀ 䤀渀瀀甀琀 䘀椀氀攀猀
	㄀㈀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㄀㈀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㄀㈀⸀㌀⸀㄀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㄀㈀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㄀㈀⸀㐀 䴀攀猀猀愀最攀猀
	㄀㈀⸀㔀 䰀椀渀欀攀爀 䌀漀洀洀愀渀搀猀
	㄀㈀⸀㔀⸀㄀ 䰀椀渀欀攀爀 䌀漀洀洀愀渀搀 䘀椀氀攀
	㄀㈀⸀㔀⸀㈀ 䰀椀渀欀攀爀 䌀漀洀洀愀渀搀 䰀椀猀琀

	㄀㈀⸀㘀 䰀漀挀愀琀椀渀最 匀攀挀琀椀漀渀猀
	㄀㈀⸀㜀 嘀椀爀琀甀愀氀 愀渀搀 匀栀愀爀攀搀 ⠀唀⤀ 匀攀挀琀椀漀渀猀
	㄀㈀⸀㠀 匀攀挀琀椀漀渀 匀礀洀戀漀氀猀
	㄀㈀⸀㤀 䰀椀渀欀椀渀最 䰀椀戀爀愀爀椀攀猀
	㄀㈀⸀㄀　 刀攀猀漀氀瘀椀渀最 匀礀洀戀漀氀猀
	㄀㈀⸀㄀㄀ 䰀椀渀欀 䴀愀瀀 䘀椀氀攀
	㄀㈀⸀㄀㈀ 匀礀洀戀漀氀 䘀椀氀攀
	㄀㈀⸀㄀㌀ 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㄀㈀⸀㄀㌀⸀㄀ 䔀爀爀漀爀猀
	㄀㈀⸀㄀㌀⸀㈀ 圀愀爀渀椀渀最

	㄀㈀⸀㄀㐀 倀爀攀挀愀甀琀椀漀渀猀

	㄀㌀ 䐀椀猀愀猀猀攀洀戀氀攀爀
	㄀㌀⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㄀㌀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㄀㌀⸀㈀⸀㄀ 䤀渀瀀甀琀 䘀椀氀攀猀
	㄀㌀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㄀㌀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㄀㌀⸀㌀⸀㄀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㄀㌀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㄀㌀⸀㐀 䴀攀猀猀愀最攀猀
	㄀㌀⸀㔀 䐀椀猀愀猀猀攀洀戀氀椀渀最 伀甀琀瀀甀琀
	㄀㌀⸀㔀⸀㄀ 䴀椀砀 伀甀琀瀀甀琀
	㄀㌀⸀㔀⸀㈀ 䌀漀搀攀 伀甀琀瀀甀琀
	㄀㌀⸀㔀⸀㌀ 䐀愀琀愀 伀甀琀瀀甀琀

	㄀㌀⸀㘀 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㄀㌀⸀㘀⸀㄀ 䔀爀爀漀爀猀
	㄀㌀⸀㘀⸀㈀ 圀愀爀渀椀渀最

	㄀㌀⸀㜀 倀爀攀挀愀甀琀椀漀渀猀

	㄀㐀 䈀椀渀愀爀礀⼀䠀䔀堀 䌀漀渀瘀攀爀琀攀爀
	㄀㐀⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㄀㐀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㄀㐀⸀㈀⸀㄀ 䤀渀瀀甀琀 䘀椀氀攀
	㄀㐀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㄀㐀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㄀㐀⸀㌀⸀㄀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㄀㐀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㄀㐀⸀㐀 䴀攀猀猀愀最攀猀
	㄀㐀⸀㔀 䌀漀渀琀攀渀琀猀 漀昀 䠀䔀堀 䘀椀氀攀
	㄀㐀⸀㔀⸀㄀ 䴀漀琀漀爀漀氀愀 匀㌀ 䘀漀爀洀愀琀
	㄀㐀⸀㔀⸀㈀ 䄀戀猀漀氀甀琀攀 䄀搀搀爀攀猀猀 伀甀琀瀀甀琀
	㄀㐀⸀㔀⸀㌀ 伀昀昀猀攀琀 䄀搀搀爀攀猀猀 伀甀琀瀀甀琀

	㄀㐀⸀㘀 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㄀㐀⸀㘀⸀㄀ 䔀爀爀漀爀猀
	㄀㐀⸀㘀⸀㈀ 圀愀爀渀椀渀最

	㄀㐀⸀㜀 倀爀攀挀愀甀琀椀漀渀猀

	㄀㔀 䰀椀戀爀愀爀椀愀渀
	㄀㔀⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㄀㔀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㄀㔀⸀㈀⸀㄀ 䤀渀瀀甀琀 䘀椀氀攀猀
	㄀㔀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	㄀㔀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㄀㔀⸀㌀⸀㄀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㄀㔀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀

	㄀㔀⸀㐀 䴀攀猀猀愀最攀猀
	㄀㔀⸀㔀 䰀椀戀爀愀爀礀 䔀搀椀琀椀渀最 䘀甀渀挀琀椀漀渀猀
	㄀㔀⸀㔀⸀㄀ 䌀爀攀愀琀椀渀最 愀 一攀眀 䰀椀戀爀愀爀礀
	㄀㔀⸀㔀⸀㈀ 䄀搀搀椀渀最 䴀漀搀甀氀攀猀 琀漀 愀 䰀椀戀爀愀爀礀
	㄀㔀⸀㔀⸀㌀ 䰀椀猀琀椀渀最 刀攀最椀猀琀攀爀攀搀 䴀漀搀甀氀攀猀
	㄀㔀⸀㔀⸀㐀 䐀攀氀攀琀椀渀最 䴀漀搀甀氀攀猀 昀爀漀洀 愀 䰀椀戀爀愀爀礀
	㄀㔀⸀㔀⸀㔀 刀攀猀琀漀爀椀渀最 伀戀樀攀挀琀 䘀椀氀攀猀

	㄀㔀⸀㘀 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㄀㔀⸀㘀⸀㄀ 䔀爀爀漀爀猀
	㄀㔀⸀㘀⸀㈀ 圀愀爀渀椀渀最猀

	㄀㔀⸀㜀 倀爀攀挀愀甀琀椀漀渀猀

	㄀㘀 䐀攀戀甀最最攀爀
	㄀㘀⸀㄀ 䘀攀愀琀甀爀攀猀
	㄀㘀⸀㈀ 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀
	㄀㘀⸀㈀⸀㄀ 䤀渀瀀甀琀 䘀椀氀攀猀
	㄀㘀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀

	㄀㘀⸀㌀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㄀㘀⸀㌀⸀㄀ 匀琀愀爀琀甀瀀 䘀漀爀洀愀琀
	㄀㘀⸀㌀⸀㈀ 匀琀愀爀琀甀瀀 伀瀀琀椀漀渀猀
	㄀㘀⸀㌀⸀㌀ 匀琀愀爀琀甀瀀 䴀攀猀猀愀最攀猀
	㄀㘀⸀㌀⸀㐀 䴀攀琀栀漀搀 漀昀 吀攀爀洀椀渀愀琀椀漀渀

	㄀㘀⸀㐀 圀椀渀搀漀眀猀
	㄀㘀⸀㐀⸀㄀ 䈀愀猀椀挀 匀琀爀甀挀琀甀爀攀 漀昀 圀椀渀搀漀眀
	㄀㘀⸀㐀⸀㈀ 嬀䌀漀洀洀愀渀搀崀 圀椀渀搀漀眀
	㄀㘀⸀㐀⸀㌀ 嬀匀漀甀爀挀攀崀 圀椀渀搀漀眀
	㄀㘀⸀㐀⸀㐀 嬀䴀攀洀漀爀礀崀 圀椀渀搀漀眀
	㄀㘀⸀㐀⸀㔀 嬀刀攀最椀猀琀攀爀崀 圀椀渀搀漀眀
	㄀㘀⸀㐀⸀㘀 嬀吀爀愀挀攀崀 圀椀渀搀漀眀
	㄀㘀⸀㐀⸀㜀 嬀匀礀洀戀漀氀崀 圀椀渀搀漀眀
	㄀㘀⸀㐀⸀㠀 嬀匀椀洀甀氀愀琀攀搀 䤀⼀伀崀 圀椀渀搀漀眀

	㄀㘀⸀㔀 吀漀漀氀 䈀愀爀
	㄀㘀⸀㔀⸀㄀ 吀漀漀氀 䈀愀爀 匀琀爀甀挀琀甀爀攀
	㄀㘀⸀㔀⸀㈀ 嬀䬀攀礀 戀爀攀愀欀崀 䈀甀琀琀漀渀
	㄀㘀⸀㔀⸀㌀ 嬀䰀漀愀搀 昀椀氀攀崀 䈀甀琀琀漀渀
	㄀㘀⸀㔀⸀㐀 嬀匀漀甀爀挀攀崀Ⰰ 嬀䴀椀砀崀 愀渀搀 嬀唀渀愀猀猀攀洀戀氀攀崀 䈀甀琀琀漀渀猀
	㄀㘀⸀㔀⸀㔀 嬀䜀漀崀Ⰰ 嬀䜀漀 琀漀崀Ⰰ 嬀匀琀攀瀀崀Ⰰ 嬀一攀砀琀崀Ⰰ 嬀刀攀猀攀琀 挀漀氀搀崀 愀渀搀 嬀刀攀猀攀琀 栀漀琀崀 䈀甀琀琀漀渀猀
	㄀㘀⸀㔀⸀㘀 嬀匀漀昀琀 倀䌀 戀爀攀愀欀崀 愀渀搀 嬀䠀愀爀搀 倀䌀 戀爀攀愀欀崀 䈀甀琀琀漀渀猀
	㄀㘀⸀㔀⸀㜀 嬀匀礀洀戀漀氀 眀愀琀挀栀崀Ⰰ 嬀匀礀洀戀漀氀 愀搀搀崀 愀渀搀 嬀匀礀洀戀漀氀 搀攀氀攀琀攀崀 䈀甀琀琀漀渀猀
	㄀㘀⸀㔀⸀㠀 嬀䐀椀猀瀀氀愀礀 琀爀愀挀攀崀 愀渀搀 嬀刀攀猀甀洀攀 琀爀愀挀攀崀 䈀甀琀琀漀渀猀
	㄀㘀⸀㔀⸀㤀 嬀匀攀氀攀挀琀 猀漀甀爀挀攀崀 䌀漀洀戀漀 䈀漀砀

	㄀㘀⸀㘀 䴀攀渀甀
	㄀㘀⸀㘀⸀㄀ 䴀攀渀甀 匀琀爀甀挀琀甀爀攀
	㄀㘀⸀㘀⸀㈀ 嬀䘀椀氀攀崀 䴀攀渀甀
	㄀㘀⸀㘀⸀㌀ 嬀䔀搀椀琀崀 䴀攀渀甀
	㄀㘀⸀㘀⸀㐀 嬀刀甀渀崀 䴀攀渀甀
	㄀㘀⸀㘀⸀㔀 嬀䈀爀攀愀欀崀 䴀攀渀甀
	㄀㘀⸀㘀⸀㘀 嬀匀礀洀戀漀氀崀 䴀攀渀甀
	㄀㘀⸀㘀⸀㜀 嬀圀椀渀搀漀眀崀 䴀攀渀甀
	㄀㘀⸀㘀⸀㠀 嬀䠀攀氀瀀崀 䴀攀渀甀

	㄀㘀⸀㜀 䴀攀琀栀漀搀 昀漀爀 䔀砀攀挀甀琀椀渀最 䌀漀洀洀愀渀搀猀
	㄀㘀⸀㜀⸀㄀ 䔀渀琀攀爀椀渀最 䌀漀洀洀愀渀搀猀 昀爀漀洀 䬀攀礀戀漀愀爀搀
	㄀㘀⸀㜀⸀㈀ 倀愀爀愀洀攀琀攀爀 䤀渀瀀甀琀 䘀漀爀洀愀琀猀
	㄀㘀⸀㜀⸀㌀ 䔀砀攀挀甀琀椀渀最 昀爀漀洀 䴀攀渀甀 漀爀 吀漀漀氀 䈀愀爀
	㄀㘀⸀㜀⸀㐀 䔀砀攀挀甀琀椀渀最 昀爀漀洀 䌀漀洀洀愀渀搀 䘀椀氀攀
	㄀㘀⸀㜀⸀㔀 䰀漀最 䘀椀氀攀

	㄀㘀⸀㠀 䐀攀戀甀最 䘀甀渀挀琀椀漀渀猀
	㄀㘀⸀㠀⸀㄀ 䐀攀戀甀最最攀爀 䴀漀搀攀
	㄀㘀⸀㠀⸀㈀ 䰀漀愀搀椀渀最 䘀椀氀攀猀
	㄀㘀⸀㠀⸀㌀ 匀漀甀爀挀攀 䐀椀猀瀀氀愀礀 愀渀搀 匀礀洀戀漀氀椀挀 䐀攀戀甀最最椀渀最 䘀甀渀挀琀椀漀渀
	㄀㘀⸀㠀⸀㐀 䐀椀猀瀀氀愀礀椀渀最 愀渀搀 䴀漀搀椀昀礀椀渀最 䴀攀洀漀爀礀 䐀愀琀愀 愀渀搀 刀攀最椀猀琀攀爀
	㄀㘀⸀㠀⸀㔀 䔀砀攀挀甀琀椀渀最 倀爀漀最爀愀洀
	㄀㘀⸀㠀⸀㘀 䈀爀攀愀欀 䘀甀渀挀琀椀漀渀猀
	㄀㘀⸀㠀⸀㜀 吀爀愀挀攀 䘀甀渀挀琀椀漀渀猀
	㄀㘀⸀㠀⸀㠀 匀椀洀甀氀愀琀攀搀 䤀⼀伀
	㄀㘀⸀㠀⸀㤀 伀瀀攀爀愀琀椀漀渀 漀昀 䘀氀愀猀栀 䴀攀洀漀爀礀
	㄀㘀⸀㠀⸀㄀　 伀琀栀攀爀 䘀甀渀挀琀椀漀渀猀
	㄀㘀⸀㠀⸀㄀㄀ 䈀椀最ⴀ䔀渀搀椀愀渀 匀甀瀀瀀漀爀琀

	㄀㘀⸀㤀 䌀漀洀洀愀渀搀 刀攀昀攀爀攀渀挀攀
	㄀㘀⸀㤀⸀㄀ 䌀漀洀洀愀渀搀 䰀椀猀琀
	㄀㘀⸀㤀⸀㈀ 䌀漀洀洀愀渀搀猀 琀漀 伀瀀攀爀愀琀攀 䴀攀洀漀爀礀
	昀戀 ⠀昀椀氀氀 戀礀琀攀⤀
	昀栀 ⠀昀椀氀氀 栀愀氀昀⤀
	昀眀 ⠀昀椀氀氀 眀漀爀搀⤀
	搀戀 ⠀搀甀洀瀀 戀礀琀攀⤀
	搀栀 ⠀搀甀洀瀀 栀愀氀昀⤀
	搀眀 ⠀搀甀洀瀀 眀漀爀搀⤀
	搀昀 ⠀搀甀洀瀀 昀椀氀攀⤀
	攀戀 ⠀攀渀琀攀爀 戀礀琀攀⤀
	攀栀 ⠀攀渀琀攀爀 栀愀氀昀⤀
	攀眀 ⠀攀渀琀攀爀 眀漀爀搀⤀
	洀瘀 ⠀洀漀瘀攀⤀
	洀瘀栀 ⠀洀漀瘀攀 栀愀氀昀⤀
	洀瘀眀 ⠀洀漀瘀攀 眀漀爀搀⤀
	眀 ⠀眀愀琀挀栀⤀
	爀洀 ⠀爀攀愀搀 洀攀洀漀爀礀⤀

	㄀㘀⸀㤀⸀㌀ 䌀漀洀洀愀渀搀猀 琀漀 伀瀀攀爀愀琀攀 漀渀 刀攀最椀猀琀攀爀
	爀搀 ⠀爀攀最椀猀琀攀爀 搀椀猀瀀氀愀礀⤀
	爀猀 ⠀爀攀最椀猀琀攀爀 猀攀琀⤀

	㄀㘀⸀㤀⸀㐀 䌀漀洀洀愀渀搀猀 琀漀 䔀砀攀挀甀琀攀 倀爀漀最爀愀洀
	最 ⠀最漀⤀
	猀 ⠀猀琀攀瀀⤀
	渀 ⠀渀攀砀琀⤀

	㄀㘀⸀㤀⸀㔀 䌀漀洀洀愀渀搀猀 琀漀 刀攀猀攀琀 䌀倀唀
	爀猀琀挀 ⠀挀漀氀搀 爀攀猀攀琀 䌀倀唀⤀
	爀猀琀栀 ⠀栀漀琀 爀攀猀攀琀 䌀倀唀⤀

	㄀㘀⸀㤀⸀㘀 䤀渀琀攀爀爀甀瀀琀 䌀漀洀洀愀渀搀
	椀渀琀 ⠀椀渀琀攀爀爀甀瀀琀⤀

	㄀㘀⸀㤀⸀㜀 䌀漀洀洀愀渀搀猀 琀漀 匀攀琀 䈀爀攀愀欀猀
	戀瀀 ⠀戀爀攀愀欀 瀀漀椀渀琀 猀攀琀⤀
	戀猀 ⠀戀爀攀愀欀 猀漀昀琀眀愀爀攀⤀
	戀挀 ⠀戀爀攀愀欀 挀氀攀愀爀⤀
	戀栀 ⠀戀爀攀愀欀 栀愀爀搀眀愀爀攀⤀
	戀栀挀 ⠀戀爀攀愀欀 栀愀爀搀眀愀爀攀 挀氀攀愀爀⤀
	戀栀㈀ ⠀戀爀攀愀欀 栀愀爀搀眀愀爀攀 ㈀⤀
	戀栀挀㈀ ⠀戀爀攀愀欀 栀愀爀搀眀愀爀攀 ㈀ 挀氀攀愀爀⤀
	戀搀 ⠀搀愀琀愀 戀爀攀愀欀⤀
	戀猀焀 ⠀戀爀攀愀欀 猀攀焀甀攀渀琀椀愀氀⤀
	ba (break area)
	bb (break bus)
	戀氀 ⠀戀爀攀愀欀 氀椀猀琀⤀
	戀愀挀 ⠀戀爀攀愀欀 愀氀氀 挀氀攀愀爀⤀

	㄀㘀⸀㤀⸀㠀 䌀漀洀洀愀渀搀猀 琀漀 䐀椀猀瀀氀愀礀 倀爀漀最爀愀洀
	甀 ⠀甀渀愀猀猀攀洀戀氀攀⤀
	猀挀 ⠀猀漀甀爀挀攀 挀漀搀攀⤀
	洀 ⠀洀椀砀⤀
	猀猀 ⠀猀攀愀爀挀栀 猀琀爀椀渀最猀⤀

	㄀㘀⸀㤀⸀㤀 䌀漀洀洀愀渀搀猀 琀漀 䐀椀猀瀀氀愀礀 匀礀洀戀漀氀 䤀渀昀漀爀洀愀琀椀漀渀
	猀礀 ⠀猀礀洀戀漀氀 氀椀猀琀⤀
	猀愀 ⠀猀礀洀戀漀氀 愀搀搀⤀
	猀搀 ⠀猀礀洀戀漀氀 搀攀氀攀琀攀⤀
	猀眀 ⠀猀礀洀戀漀氀 眀愀琀挀栀⤀

	㄀㘀⸀㤀⸀㄀　 䌀漀洀洀愀渀搀猀 琀漀 䰀漀愀搀 䘀椀氀攀猀
	氀昀 ⠀氀漀愀搀 昀椀氀攀⤀
	氀栀 ⠀氀漀愀搀 栀攀砀⤀
	氀搀 ⠀氀漀愀搀 昀椀氀攀⤀

	㄀㘀⸀㤀⸀㄀㄀ 䌀漀洀洀愀渀搀猀 琀漀 伀瀀攀爀愀琀攀 䘀氀愀猀栀 䴀攀洀漀爀礀
	昀氀猀 ⠀昀氀愀猀栀 洀攀洀漀爀礀 猀攀琀⤀
	昀氀攀 ⠀昀氀愀猀栀 洀攀洀漀爀礀 攀爀愀猀攀⤀
	氀昀氀 ⠀氀漀愀搀 昀爀漀洀 昀氀愀猀栀 洀攀洀漀爀礀⤀
	猀昀氀 ⠀猀愀瘀攀 琀漀 昀氀愀猀栀 洀攀洀漀爀礀⤀
	攀昀氀 ⠀攀爀愀猀攀 昀氀愀猀栀 洀攀洀漀爀礀⤀
	洀愀昀 ⠀洀愀瀀 昀氀愀猀栀 洀攀洀漀爀礀⤀

	㄀㘀⸀㤀⸀㄀㈀ 吀爀愀挀攀 䌀漀洀洀愀渀搀猀
	琀洀 ⠀琀爀愀挀攀 洀漀搀攀⤀
	琀搀 ⠀琀爀愀挀攀 搀甀洀瀀⤀
	琀猀 ⠀琀爀愀挀攀 猀攀愀爀挀栀⤀
	琀昀 ⠀琀爀愀挀攀 昀椀氀攀⤀

	㄀㘀⸀㤀⸀㄀㌀ 匀椀洀甀氀愀琀攀搀 䤀⼀伀
	猀琀搀椀渀 ⠀猀琀愀渀搀愀爀搀 椀渀瀀甀琀⤀
	猀琀搀漀甀琀 ⠀猀琀愀渀搀愀爀搀 漀甀琀瀀甀琀⤀

	㄀㘀⸀㤀⸀㄀㐀 伀琀栀攀爀 䌀漀洀洀愀渀搀猀
	挀漀洀 ⠀攀砀攀挀甀琀攀 挀漀洀洀愀渀搀 昀椀氀攀⤀
	挀洀眀 ⠀攀砀攀挀甀琀攀 挀漀洀洀愀渀搀 昀椀氀攀 眀椀琀栀 眀愀椀琀⤀
	氀漀最 ⠀氀漀最最椀渀最⤀
	漀搀 ⠀漀瀀琀椀漀渀 搀愀琀愀 搀甀洀瀀⤀
	挀琀 ⠀挀栀愀渀最攀 琀礀瀀攀⤀
	攀砀琀 ⠀攀砀琀攀渀搀攀搀 椀渀猀琀爀甀挀琀椀漀渀⤀
	洀愀 ⠀洀愀瀀 椀渀昀漀爀洀愀琀椀漀渀⤀
	洀搀 ⠀洀漀搀攀⤀
	q (quit)
	? (help)
	椀挀攀 ⠀椀挀攀⤀

	㄀㘀⸀㄀　 倀愀爀愀洀攀琀攀爀 䘀椀氀攀
	㄀㘀⸀㄀㄀ 匀琀愀琀甀猀⼀䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㄀㘀⸀㄀㄀⸀㄀ 匀琀愀琀甀猀 䴀攀猀猀愀最攀猀
	㄀㘀⸀㄀㄀⸀㈀ 䔀爀爀漀爀 䴀攀猀猀愀最攀猀
	㄀㘀⸀㄀㄀⸀㌀ 圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀

	㄀㜀 伀琀栀攀爀 吀漀漀氀猀
	㄀㜀⸀㄀ 䴀愀欀攀
	㄀㜀⸀㄀⸀㄀ 匀琀愀爀琀椀渀最 䴀攀琀栀漀搀
	㄀㜀⸀㄀⸀㈀ 䴀攀猀猀愀最攀猀
	㄀㜀⸀㄀⸀㌀ 䴀愀欀攀 䘀椀氀攀
	㄀㜀⸀㄀⸀㐀 ㈀ⴀ瀀愀猀猀 洀愀欀攀
	㄀㜀⸀㄀⸀㔀 挀氀攀愀渀
	㄀㜀⸀㄀⸀㘀 䔀爀爀漀爀⼀圀愀爀渀椀渀最 䴀攀猀猀愀最攀猀
	㄀㜀⸀㄀⸀㜀 倀爀攀挀愀甀琀椀漀渀猀

	㄀㜀⸀㈀ 挀眀愀椀琀
	㄀㜀⸀㈀⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㄀㜀⸀㈀⸀㈀ 䴀攀琀栀漀搀 昀漀爀 唀猀椀渀最 挀眀愀椀琀

	㄀㜀⸀㌀ 挀挀愀瀀
	㄀㜀⸀㌀⸀㄀ 䘀甀渀挀琀椀漀渀猀
	㄀㜀⸀㌀⸀㈀ 䴀攀琀栀漀搀 昀漀爀 唀猀椀渀最 挀挀愀瀀

	䄀瀀瀀攀渀搀椀砀 猀爀昀㌀㌀ 䘀椀氀攀 匀琀爀甀挀琀甀爀攀
	䄀ⴀ㄀ 猀爀昀㌀㌀ 伀戀樀攀挀琀 䘀椀氀攀 匀琀爀甀挀琀甀爀攀
	䄀ⴀ㈀ 䰀椀戀爀愀爀礀 䘀椀氀攀 匀琀爀甀挀琀甀爀攀

