
MF1097-02

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER E0C33 Family

E0C33000 CORE CPU MANUAL

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

© SEIKO EPSON CORPORATION 2000 All rights reserved.

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER E0C33 Family

E0C33000 CORE CPU MANUAL
This manual explains the functions and instructions of the
E0C33000 32-bit RISC CPU which is used as the core of the
E0C33 Family 32-bit single chip microcomputers.
Refer to the "Technical Manual " of each E0C33 Family model
for details of the hardware including the on-chip peripheral
circuits.

Conventions
This manual describes data sizes and numbers as follows:

Data size
8 bits: Byte, B
16 bits: Half word, H
32 bits: Word, W

Numbers
Hexadecimal numbers: 0x0000000, 0xFF etc.
Binary numbers: 0b0000, 0b1111 etc.
Others are decimal numbers. However, "0b" may be
omitted if the number can be distinguished as a binary
number.

Instructions
Description of the instructions and examples uses small
letters (a to z). Capital letters can be used for actual
descriptions. See Section 4.1, "Symbol Meanings", for
symbols used as operands of the instructions and used
in the function descriptions.

E0C33000 CORE CPU MANUAL EPSON i

CONTENTS

CONTENTS

CHAPTER 1 OUTLINE __ 1
1.1 Features ... 1

1.2 Block Diagram .. 2

1.3 I/O Signal Specification .. 3

CHAPTER 2 ARCHITECTURE ___ 4
2.1 Register Set ... 4

2.1.1 General-purpose registers (R0 to R15) .. 4
2.1.2 Program counter (PC) ... 4
2.1.3 Processor status register (PSR) ... 5
2.1.4 Stack pointer .. 6
2.1.5 Arithmetic operation register (ALR, AHR) .. 7
2.1.6 Register notation and register number ... 8

2.2 Data Type .. 9

2.3 Address Space .. 12

2.4 Boot Address .. 13

2.5 Instruction Set .. 14
2.5.1 Type of instructions ... 14
2.5.2 Addressing mode ... 16
2.5.3 Immediate extension (EXT) instruction .. 18
2.5.4 Data transfer instructions ... 21
2.5.5 Logic operation instructions ... 21
2.5.6 Arithmetic operation instructions ... 21
2.5.7 Multiplication and division instructions ... 22
2.5.8 Multiplication and accumulation instruction 25
2.5.9 Shift and rotation instructions .. 26
2.5.10 Bit operation instructions ... 27
2.5.11 Push and pop instructions... 27
2.5.12 Branch instructions and delayed instructions................................. 28
2.5.13 System control instructions ... 31
2.5.14 Scan instructions ... 31
2.5.15 Swap and mirror instructions ... 32

CHAPTER 3 CPU OPERATION AND PROCESSING STATUS _______________________ 33
3.1 Processing Status of CPU .. 33

3.2 Program Execution Status ... 34
3.2.1 Fetching and executing program... 34
3.2.2 Number of instruction execution cycles .. 34

3.3 Trap (Interrupts and Exceptions) .. 35
3.3.1 Trap table .. 35
3.3.2 Trap processing ... 36
3.3.3 Reset .. 37
3.3.4 Zero division exception ... 38
3.3.5 Address error exception .. 38
3.3.6 NMI (Non-maskable interrupt) ... 38
3.3.7 Software exception .. 38
3.3.8 Maskable external interrupts .. 39

ii EPSON E0C33000 CORE CPU MANUAL

CONTENTS

3.4 Power Down Mode .. 40
3.4.1 HALT mode ... 40
3.4.2 SLEEP mode ... 40

3.5 Bus Release Status ... 41

3.6 Debugging Mode .. 42
3.6.1 Functions of debugging mode ... 42
3.6.2 Configuration of Area 2 .. 42
3.6.3 Transition from user mode to debugging mode 43
3.6.4 Registers for debugging .. 43
3.6.5 Traps in debugging mode .. 45
3.6.6 Simultaneous occurrence of debugging exceptions 45

CHAPTER 4 DETAILED EXPLANATION OF INSTRUCTIONS _______________________ 46
4.1 Symbol Meanings ... 46

4.1.1 Registers .. 46
4.1.2 Immediate.. 46
4.1.3 Memories .. 46
4.1.4 Bits and bit fields .. 47
4.1.5 Flags ... 47
4.1.6 Functions and others .. 47

4.2 Instruction Code Class .. 48

4.3 Reference for Individual Instruction ... 53

APPENDIX

E0C33000 Quick Reference ...Appendix-1
Memory Map and Trap Table ...Appendix-1
Registers..Appendix-1
Symbols ...Appendix-2
Data Transfer Instructions ..Appendix-3
Logic Operation Instructions ..Appendix-4
Arithmetic Operation Instructions ..Appendix-4
Shift and Rotation Instructions ...Appendix-5
Bit Operation Instructions ..Appendix-5
Immediate Extension Instruction ..Appendix-5
Push and Pop Instructions ..Appendix-5
Branch Instructions...Appendix-6
Multiplication and Accumulation InstructionAppendix-7
System Control Instructions ..Appendix-7
Other Instructions ...Appendix-7
Immediate Extension List (1) ..Appendix-8
Immediate Extension List (2) ..Appendix-9

Instruction Index ...Appendix-10

E0C33000 CORE CPU MANUAL EPSON 1

CHAPTER 1: OUTLINE

CHAPTER 1 OUTLINE
The E0C33000 is a Seiko Epson original 32-bit RISC-type core CPU for the E0C33 Family microproces-
sors. This CPU was developed for high-performance embedded applications such as peripheral equip-
ment for personal computers, portable equipment and other products which need high-speed data pro-
cessing with low power consumption.
The E0C33000 employs pipeline processing and load-store architecture that attains a MIPS value exceed-
ing the operating frequency. The instruction set is optimized for developing in C language, and it is
possible to generate compact object codes with the C compiler. Furthermore, the E0C33000 can imple-
ment a multiplier and has a multiplication and accumulation instruction (MAC) as an option, it makes it
possible to realize on-chip DSP functions.
The E0C33 Family microcomputers consist of the E0C33000 as the core and on-chip peripheral circuits
such as ROM, RAM and other high-performance circuits. The E0C33000 core CPU and E0C33 Family
microprocessors can realize most user demand functions in one chip.

1.1 Features

CPU type:
• Seiko Epson original 32-bit RISC CPU
• 32-bit internal data processing

Operating frequency:
• DC to 33 MHz (differs depending on the E0C33 Family model)

Instruction set:
• Code size: 16 bits per instruction (fixed)
• Number of instructions: 105 instructions are available.
• Principal instructions can be executed in one cycle.
• An immediate extending instruction is available for immediate extension of instruction codes up

to 32 bits.
Multiplication and accumulation instruction (option):

• 64-bit multiplication and accumulation operation (MAC instruction) is available. (16 bits × 16
bits + 64 bits)

Register set:
• Sixteen 32-bit general-purpose registers
• Three 32-bit special registers
• Two 32-bit arithmetic operation registers for multiplier (option)

Memory space and external bus:
• A linear space including code, data and I/O areas.
• A maximum 256MB (28 bits) memory space is accessible.
• Supports 8 and 16-bit external devices.
• Can output 19 area select signals that allow to not expand any glue logic circuit.
• DRAM and other types of memories can be driven directly (differs depending on the E0C33

Family model).
• Harvard architecture
• Little endian format

Interrupts:
• Supports Reset, NMI and 128 external interrupts.
• Four software exceptions and two execution error exceptions.
• The CPU can directly branch the program flow to the trap handler routine by reading the vector

from the trap table.
Reset:

• Cold reset (for resetting all conditions)
• Hot reset (reset except for bus and port status)

Power down mode:
• Halt mode (core CPU stops)
• Sleep mode (core CPU and high-speed oscillation circuit stop)

2 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 1: OUTLINE

1.2 Block Diagram

A(27:0)

D(15:0)

BCLK
#WAIT
#RD
#WRL, #WRH
#CE(18:4)
BTA3
#BUSREQ
#BUSACK
#NMI
#RESET

VDD

VSS

E0C33000 Core CPU
Interrupt

Controller

Bus Control Unit

#INTREQ
INTLEV(3:0)
INTVEC(7:0)

Clock
Generator

CLK

Fig. 1.2.1 E0C33000 block diagram

The diagram is an overview only for principal blocks and signals, it does not indicate the actual circuit
configuration.
The actual E0C33 Family processors consist of the above blocks as the main unit and on-chip peripheral
circuits.

E0C33000 CORE CPU MANUAL EPSON 3

CHAPTER 1: OUTLINE

1.3 I/O Signal Specification
Table 1.3.1 lists the principal input/output signals related to the operation of the E0C33000 core.

Table 1.3.1 E0C33000 I/O signals
Signal name I/O Description

VDD I Power supply + (supply voltage is different depending on the model)
VSS I Power supply - (GND)
CLK I Input clock (clock frequency is different depending on the model)
(Internal signal)
BCLK O Bus clock

A bus cycle clock is output.
D(15:0) I/O Data bus

D[15:0] is a 16-bit bidirectional data bus.
A(27:0) O Address bus

A[27:0] is a 28-bit address bus.
#WAIT I Wait cycle request signal

This signal is output from low-speed devices to the CPU. The CPU extends the current bus cycle while
this signal is active and waits until the device finishes the bus operation.

#RD O Read signal
This signal is output when the CPU reads data from the data bus. The selected device outputs data to
the data bus while this signal is active.

#WRL O Write signals
#WRH This signal is output when the CPU writes data to the device connected to the data bus. The selected

device inputs data from the data bus while this signal is active.
#WRL is the low-order byte write signal and #WRH is the high-order byte write signal.
The E0C33000 also supports bus strobe signals (#WR/#BSL/#BSH).

#CE(18:4) O Chip enable signals
These are chip select signals corresponding to each of the 19 memory areas and are assigned when the
CPU accesses the device of each area.

#RESET I Initial reset signal
The CPU is reset when this signal goes low level.
#RESET=0 & #NMI=1: Cold reset
#RESET=0 & #NMI=0: Hot reset

BTA3 I Boot address setting signal
Specifies a boot address.
BTA3=1: Booting from internal ROM (Area 3).
BTA3=0: Booting from external ROM (Area 10).

#NMI I NMI request signal
This is the non-maskable interrupt request signal. This signal puts the CPU in trap processing status.
The signal is also used for specifying the initial reset condition.

#INTREQ I Interrupt request signal
(Internal signal) This is the maskable interrupt request signal from external devices to the CPU.

Usually, the on-chip interrupt controller outputs this signal in the E0C33 Family microprocessors.
When this signal is assigned and interrupt conditions are met, the CPU goes into trap processing
status.

INTLEV(3:0) I Interrupt level
(Internal signal) The interrupt level of the peripheral circuit that has requested the interrupt is input. The contents of the

signals are set to the IL field in the processor status register (PSR) when the CPU accepts the interrupt.
After that, interrupts that have lower levels than the set level are disabled.

INTVEC(7:0) I Interrupt vector number
(Internal signal) The vector number of the peripheral circuit that has requested the interrupt is input. The CPU reads the

specified vector from the trap table to branch the program to the interrupt service routine when the
CPU accepts the interrupt.

#BUSREQ I Bus request signal
This is the bus request signal output from the external bus master devices.

#BUSACK O Bus acknowledge signal
Indicates that the CPU has accepted the bus request by the external bus master. The CPU changes the
bus status in high-impedance to release the bus to the external bus master while this signal is active.
The bus control returns to the CPU when the external bus master finishes the bus operation and
negates the #BUSREQ signal.

prefixed the signal names indicate that the signal is low active.

Refer to the "Technical Manual" of each E0C33 Family model for the actual input/output signals and
terminals.

4 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

CHAPTER 2 ARCHITECTURE

2.1 Register Set
The E0C33000 has sixteen 32-bit general-purpose registers and five 32-bit special registers.

R15
R14
R13
R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0

31 0
General-purpose register

PC

PSR

SP

ALR

AHR

Program counter

Processor status register

Stack pointer

Arithmetic operation low register (option)

Arithmetic operation high register (option)

31 0
Special register

Fig. 2.1.1 Register set

2.1.1 General-purpose registers (R0 to R15)
16 registers R0 to R15 are 32-bit general-purpose registers that can be used for any purpose, such as data
operations, data transfers and addressing memories. The register data is always handled as a 32-bit data
or an address. Data less than 32 bits is sign-expanded or zero-expanded when it is loaded to the register.
When using register data as an address, the high-order 4 bits are invalidated because the address bus is 28
bit size. However, effective address size differs depending on the memory configuration of each model.
The general-purpose registers must be initialized before using if necessary, because the register data is
undefined at initial reset.

2.1.2 Program counter (PC)

0 PC
0

Effective address
127

Invalid
2831

Fig. 2.1.2.1 PC

The program counter (hereinafter described as the PC) is a 32-bit counter that maintains the address of
the instruction being executed. In the E0C33000 instruction set, all instructions are 16-bit fixed size.
Therefore, the LSB (bit 0) of the PC is always fixed at 0. Furthermore, high-order 4 bits are invalidated
because the address bus is 28-bit size. However, effective address size differs depending on the memory
configuration of each model.
Programs cannot directly access the PC. Only the following cases change the PC.

(1) At initial reset
Initial reset loads the boot address to the PC and the program starts executing from the address. The
boot address is stored in either 0x0080000 in the internal ROM or 0x0C00000 in the external ROM
according to the BTA3 terminal setting.

(2) When an instruction is executed
The PC is incremented (+2) every time the CPU executes an instruction and always indicates the
address being executed.

(3) When program branches
When the program branches the process flow such as a jump, subroutine call/return or trap processing
for interrupts and exceptions, the CPU loads the destination address to the PC.
In subroutine calls and trap processing that need a return operation, the contents of the PC are saved
in the stack and it returns to the PC when the return instruction is executed.

E0C33000 CORE CPU MANUAL EPSON 5

CHAPTER 2: ARCHITECTURE

2.1.3 Processor status register (PSR)
The processor status register (hereinafter described as the PSR) is a 32-bit register that indicates the CPU
status and the content changes according to the instruction executed. It can be read and written using the
load instruction.
Since the PSR also affects program execution, when an interrupt or exception occurs, the contents of the
PSR are saved into the stack before branching to the handler routine. The saved contents return to the
PSR when the return (reti) instruction is executed.
At initial reset, each bit in the PSR is set to 0.
The following shows the function of each bit.

–
31

– · · ·
30

–
13

–
12

IL(3:0)
11 10 9 8

MO
7

DS
6

–
5

IE
4

C
3

V
2

Z
1

N
0

Fig. 2.1.3.1 Processor status register

"-" indicates unused bit. Writing operation is invalid and 0 is always read.

N (bit 0): Negative flag
Indicates a sign: positive or negative. When a logic operation, arithmetic operation or a shift instruc-
tion is executed, the MSB (bit 31) of the result (loaded in the destination register) is copied to the N
flag. When a step division is executed, the sign bit of the divisor is copied to the N flag and it affects
the division.

Z (bit 1): Zero flag
Indicates that the operation result is zero. The Z flag is set to 1 when the operation result (loaded in
the destination register) of a logic operation, arithmetic operation or a shift instruction is zero, and is
reset to 0 when the result is not zero.

V (bit 2): Overflow flag
Indicates that an overflow or underflow has occurred. The V flag is set to 1 when an overflow or
underflow occurs due to an execution of an addition or subtraction instruction that handles the values
as signed 32-bit integers. It is reset to 0 when the addition/subtraction result is within the signed 32-
bit data range. The following shows the conditions that set the V flag:
(1) The sign bit (MSB) of the result is 0 (positive) when a negative integer is added to a negative

integer.
(2) The sign bit (MSB) of the result is 1 (negative) when a positive integer is added to a positive

integer.
(3) The sign bit (MSB) of the result is 1 (negative) when a negative integer is subtracted from a

positive integer.
(4) The sign bit (MSB) of the result is 0 (positive) when a positive integer is subtracted from a

negative integer.

C (bit 3): Carry flag
Indicates a carry or a borrow. The C flag is set to 1 when the execution result of an addition or
subtraction instruction that handles the values as unsigned 32-bit integers exceeds the unsigned 32-bit
data range. It is reset to 0 when the addition/subtraction result is within the unsigned 32-bit data
range. The following shows the conditions that set the V flag:
(1) When an addition instruction is executed as the result will be bigger than the unsigned 32-bit

maximum value 0xFFFFFFFF.
(2) When a subtraction instruction is executed as the result will be smaller than the unsigned 32-bit

maximum value 0x00000000.

IE (bit 4): Interrupt enable bit
Enables or disables accepting maskable external interrupts. When the IE bit is set to 1, the CPU can
accept maskable external interrupts and when it is reset to 0 it cannot.
See Section 3.3.8, "Maskable external interrupts", for details of the IE bit.

6 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

DS (bit 6): Dividend sign flag
The step division copies the sign bit of the dividend to the DS flag. The DS flag affects the division.

MO (bit 7): MAC (Multiply and accumulate) overflow flag
Indicates that an overflow has occurred due to a multiply and accumulate operation. The MO flag is
set to 1 when the temporary result of the multiply and accumulate (mac) operation exceeds the
effective range of the signed 64-bit data. The operation continues at the last stage regardless of the
overflow, therefore the MO flag should be read after the operation has finished to decide whether the
result is valid or not. When the MO flag is set to 1, it is maintained until the MO flag is reset by
program or initial reset.

IL (bit 8 to bit 11): Interrupt level
Indicates the acceptable interrupt level of the CPU. Maskable external interrupt requests are accepted
only when the interrupt level is higher than the level set in the IL field. Furthermore, when an inter-
rupt is accepted, the IL field is set to the accepted interrupt level. After that, interrupts that have the
same or lower levels than the IL field are disabled until the program changes the IL field or the
interrupt handler routine is terminated with the "reti" instruction.

2.1.4 Stack pointer

00 SP
0

Effecive address
1227

Invalid
2831

Fig. 2.1.4.1 SP

The stack pointer (hereinafter described as the SP) is a 32-bit register that maintains the stack beginning
address.
The stack is an area allocable anywhere in the RAM and is extended toward to the low address from the
address initially set in the SP according to the data number saved (pushed). When writing (pushing) data
into the stack, the SP is decremented (-4; word units) before writing data to reserve the word area for the
data. When getting (popping) data from the stack, word data is retrieved from the address specified by the
SP, and then the SP is incremented (+4) to release the word area.

7 0

Stack

Before pushing

A. Push to the stack

(2) Register evacuation(1) SP decrement

SP →

← SP

High
Address

Address

Low

→
←

High

Low

→
←

7 0

Stack

SP=SP-4 →

SP=SP+4 →

H
MH
ML
L

7 0H
31 24

MH
23 16

ML
15 8

L
7 0 Stack

Register (PC, PSR, Rx)

H
MH
ML
L

7 0

Stack

Before popping

B. Pop from the stack

(2) SP increment(1) Return of the register

SP →

H
MH
ML
L

7 0

Stack

SP →

H
MH
ML
L

7 0H
31 24

MH
23 16

ML
15 8

L
7 0 Stack

Register (PC, PSR, Rx)

Fig. 2.1.4.2 SP and stack

E0C33000 CORE CPU MANUAL EPSON 7

CHAPTER 2: ARCHITECTURE

Data that is pushed into the stack is only 32-bit internal register data, therefore the low-order 2 bits of the
SP is fixed at 0 indicating a word boundary. Furthermore the high-order 4 bits are invalidated because the
address bus is 28-bit size. However, effective address size differs depending on the memory configuration
of each model.
Data push and pop from/to the stack is done in the following cases:

(1) When the call instruction is executed
"call" is the subroutine call instruction and uses 1 word from the stack area. The "call" instruction
pushes the contents of the PC (return address; the next address of "call") into the stack before branch-
ing. The pushed address is loaded to the PC by the "ret" (return) instruction at the end of the subrou-
tine and the program execution returns to the routine that called the subroutine.

(2) When an interrupt or exception occurs
When a trap such as an interrupt and software exception by the "int" instruction occurs, the CPU
pushes the contents of the PC and the PSR into the stack before branching to the handler routine. This
is because the trap processing changes these registers. The PC and PSR data is pushed into the stack
as shown in Figure 2.1.4.3.
The "reti" instruction that returns the PC and PSR data should be used for return from handler
routines.

Stack

Before occurrence of a trap

PC
PSR

Stack

Evacuation of PC and PSR
by trap processing

SP →
(xxxxxxxxH-8)

PC
PSR

Stack

Termination of the trap handler
routine by the "reti" instruction

• • • • •
Trap handler routine

High

Low

→
←

Address

SP →
(xxxxxxxxH)

SP →
(xxxxxxxxH) → PSR is returned

→ PC is returned

Fig. 2.1.4.3 Stack operation when an interrupt or exception occurs

(3) When the "pushn" or "popn" instruction is executed
The "pushn" instruction saves the contents of R0 to the specified general-purpose register. The "popn"
instruction returns the saved data to each register.

The stack area size is restricted according to the RAM size and the area used for storing general data. Pay
attention that both areas are not duplicated.
The SP is undefined at initial reset, therefore write an address (stack end address +4; low-order 2 bits are
0) at the head of the initial routine. The stack address can be written using the load instruction. When an
interrupt or an exception occurs before setting the stack, the PC and PSR are saved to an undefined
location. It cannot guarantee proper operation. Consequently, NMI that cannot be controlled by software
is masked by the hardware until the SP is initialized.

2.1.5 Arithmetic operation register (ALR, AHR)
The arithmetic operation low register (hereinafter described as the ALR) and arithmetic operation high
register (AHR) in the special registers are used for multiplication, division and multiplication and
accumulation operations. These are 32-bit data registers and data can be transferred from/to general-
purpose registers using the load instructions.
The multiplication instruction and the multiplication and accumulation instruction place the low-order 32
bits of the result to the ALR and the high-order 32 bits to the AHR.
The division instruction places the quotient to the ALR and the remainder to the AHR.
At initial reset, the ALR and AHR are undefined.
The ALR and the AHR can be used only in the models that have a built-in multiplier.

8 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.1.6 Register notation and register number
The following shows register notation and register numbers used in the E0C33000 instruction set.
Register specification uses a 4-bit field in the instruction code. The specified register number is set in the
field. In the mnemonics, "%" must be prefixed to register names.

(1) General-purpose registers
%rs rs is the metasymbol indicating a general-purpose register that contains source data for opera-

tion or transfer. Actually describe as %r0 to %r15.
%rd rd is the metasymbol indicating a general-purpose register used as destination (operated or data

loaded). Actually describe as %r0 to %r15.
%rb rb is the metasymbol indicating a general-purpose register that contains the base address of the

memory to be accessed. In this case, the register works as an index register.
Actually, enclose the register name to be specified with [] that indicate register indirect
addressing like [%r0] to [%r15]. The E0C33000 allows a register indirect addressing with post
increment function for sequential memory accessing. When using this function, postfix "+"
like [%r0]+ to [%r15]+. In this case, the base address in the specified register is incremented
according to the accessed data size after the memory has been accessed.
rb is also used in the "call" and "jp" instructions and indicates a register that contains a destina-
tion address for branching. In this case, [] are not necessary, just describe as %r0 to %r15.

The register number of the general-purpose registers is the same as the number in the register name. 0
to 15 (0b0000–0b1111) enters in the register bit field of the instruction code according to the register
to be specified.

(2) Special registers
%ss ss is the metasymbol indicating a special register that contains source data to be transferred to

a general-purpose register. This symbol is used only in the "ld.w %rd, %ss" instruction.
%sd sd is the metasymbol indicating a special register in which data is loaded from a general-

purpose register. This symbol is used only in the "ld.w %sd, %rs" instruction.

Table 2.1.6.1 shows the special register number and the actual notation.

Table 2.1.6.1 Special register number and notation
Special register name Register number Notation

Processor status register 0 %psr
Stack pointer 1 %sp
Arithmetic operation low register 2 %alr
Arithmetic operation high register 3 %ahr

0b00 enters in the high-order 2 bits of the register bit field and a register number 0–3 (0b00–0b11)
enters in the low-order 2 bits.

E0C33000 CORE CPU MANUAL EPSON 9

CHAPTER 2: ARCHITECTURE

2.2 Data Type
The E0C33000 can handle 8-bit, 16-bit and 32-bit data.
This manual describes each data size as follows:
8-bit data: Byte or B
16-bit data: Half word or H
32-bit data: Word or W

Note that some other manuals describe 16-bit data as Word and 32-bit data as Long word.

Data size can be selected only in data transfers (using a load instruction) between memory and a general-
purpose register and between general-purpose registers.
Processing in the CPU core is performed in 32 bits. Consequently, in 16-bit data transfer and 8-bit data
transfer to a general-purpose register, the transfer data is sign-extended or zero-extended into 32 bits
when it is loaded to the register. The extension type, sign or zero, is decided according to the load
instruction to be used.
In 16-bit data transfer or 8-bit data transfer from a general-purpose register, the low-order half word or
the low-order byte is transferred, respectively.

Memory is accessed in byte, half word or word units with the little endian method. The address to be
specified must be a half word boundary address (MSB is 0) for half word data accessing, and a word
boundary address (low-order 2 bits are 0) for word data accessing, otherwise an address error exception
will occur.

Figure 2.2.1 shows the types of data transfer.

Byte dataSource register
7 0

x
15 8

x
23 16

x
31 24

15 823 1631 24
000000000000000000000000 Byte dataDestination register

7 0

Zero extended

(1) Unsigned 8-bit data transfer (register → register)

Byte dataSource register
7 0

x
15 8

x
23 16

x s
31 24

15 823 1631 24
ssssssssssssssssssssssss Byte dataDestination register

7 0

Sign extended

(2) Signed 8-bit data transfer (register → register)

Byte dataSource register

(3) 8-bit data transfer (register → memory)

7 0
x

15 8
x

23 16
x

31 24

Byte data
7 0

Any address can be specified within the memory that can be written.

Memory

(4) Unsigned 8-bit data transfer (memory → register)

000000000000000000000000 Byte dataDestination register

Zero extended

7 015 823 1631 24

Any address can be specified within the memory that can be read. Byte data
7 0

Memory

10 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

s

(5) Signed 8-bit data transfer (memory → register)

ssssssssssssssssssssssss Byte dataDestination register

Sign extended

7 015 823 1631 24

Any address can be specified within the memory that can be read. Byte data
7 0

Memory

Half word dataSource register
015

x
1631

151631
00000000 00000000 Half word dataDestination register

0

Zero extended

(6) Unsigned 16-bit data transfer (register → register)

Source register s

Destination register

(7) Signed 16-bit data transfer (register → register)

Half word data
015

x
1631

151631
ssssssss ssssssss Half word data

0

Zero extended

Half word dataSource register

(8) 16-bit data transfer (register → memory)

7 015 8
x

1631

∗ A half word boundary address can be specified
within the memory that can be written.

Memory

 Data(15:8)
Data(7:0)

7 0

∗

High

Low

→
←

(9) Unsigned 16-bit data transfer (memory → register)

00000000 00000000 Half word dataDestination register

Zero extended

7 015 81631

Memory
∗ A half word boundary address can be specified

within the memory that can be read. Data(15:8)
Data(7:0)

7 0

∗

High

Low
→

←

(10) Signed 16-bit data transfer (memory → register)

ssssssss ssssssss Half word dataDestination register

Sign extended

7 015 81631

Memory∗ A half word boundary address can be specified
within the memory that can be read.

Data(7:0)
 Data(15:8)

7 0

∗
s

High

Low

→
←

Word dataSource register
031

31
Word dataDestination register

0

(11) 32-bit data transfer (register → register)

E0C33000 CORE CPU MANUAL EPSON 11

CHAPTER 2: ARCHITECTURE

Word dataSource register

(12) 32-bit data transfer (register → memory)

7 015 81631 2324

∗ A word boundary address can be specified within the memory that can be written.

Memory

Data(7:0)
Data(15:8)
Data(23:16)
Data(31:24)

7 0

∗

High

Low

→
←

(13) 32-bit data transfer (memory → register)

Word dataDestination register
7 015 81631 2324

Memory
∗ A word boundary address can be specified within the memory that can be read.

Data(7:0)
Data(15:8)
Data(23:16)
Data(31:24)

7 0

∗

High

Low

→
←

Fig. 2.2.1 Data transfer type

12 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.3 Address Space
The E0C33000 has a 28-bit (256MB) address space.
Memories are all allocated within the space. Furthermore the E0C33000 employs a memory mapped I/O
method, thus control registers of I/O modules are also allocated in this space and they can be accessed as
well as general memories.
Figure 2.3.1 shows the basic memory map.

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External memory

External I/O

External memory

External memory

Internal ROM

Reserved area for ICE

Internal peripheral circuit

Internal RAM

0xFFFFFFF
0xC000000
0xBFFFFFF
0x8000000
0x7FFFFFF
0x6000000
0x5FFFFFF
0x4000000
0x3FFFFFF
0x3000000
0x2FFFFFF
0x2000000
0x1FFFFFF
0x1800000
0x17FFFFF
0x1000000
0x0FFFFFF
0x0C00000
0x0BFFFFF
0x0800000
0x07FFFFF
0x0600000
0x05FFFFF
0x0400000
0x03FFFFF
0x0300000
0x02FFFFF
0x0200000
0x01FFFFF
0x0100000
0x00FFFFF
0x0080000
0x007FFFF
0x0060000
0x005FFFF
0x0040000
0x003FFFF
0x0000000

Area No.
Area 18

Area 17

Area 16

Area 15

Area 14

Area 13

Area 12

Area 11

Area 10

Area 9

Area 8

Area 7

Area 6

Area 5

Area 4

Area 3

Area 2

Area 1

Area 0

Area size
64MB

64MB

32MB

32MB

16MB

16MB

8MB

8MB

4MB

4MB

2MB

2MB

1MB

1MB

1MB

512KB

128KB

128KB

256KB

Address

Fig. 2.3.1 Memory map

As shown in the figure, the E0C33000 manages the address space by dividing it into 19 areas. The type
of modules that can be connected are predefined in each area. Area 0 is for the internal RAM in the
E0C33 Family, Area 1 is for internal peripheral circuits and Area 3 is for the internal ROM.
Area 10 can be used as an external ROM area including a boot address.
Area 2 is an internal area, but do not use it because Area 2 is reserved for ICE software (See Section 3.6,
"Debugging Mode").

Each area for external modules can specify the device type to be used, data size and number of wait
cycles. The specifiable items differ depending on the E0C33 Family model.

The E0C33000 has a built-in address decoder, it makes it possible to output 19 select signals correspond-
ing to the 19 areas. Thus the system that follows the basic memory map does not need any external glue
logic, and external devices can be directly connected.

The internal memory capacity, I/O memory size and address bus size differ depending on the E0C33
Family model. Therefore, the memory map shown in Figure 2.3.1 does not apply to all models. Refer to
the "Technical Manual" of each model for the actual memory map.

E0C33000 CORE CPU MANUAL EPSON 13

CHAPTER 2: ARCHITECTURE

2.4 Boot Address
In the E0C33000, the trap table location can be selected from either Area 3 (internal ROM) or Area 10
(external ROM) by the BTA3 terminal setting. The trap table begins from the head of the area and the
reset vector for booting is placed at the head of the table, so the boot address is placed at the beginning
address of the selected area.

Table 2.4.1 Boot address setting
Terminal level Area selected Boot address
BTA3=1 (High) Area 3 (internal ROM) 0x0080000
BTA3=0 (Low) Area 10 (external ROM) 0x0C00000

General models of the E0C33 Family have a built-in ROM and can boot from both areas.
Models that have no built-in ROM can only boot from the external ROM.
Refer to the "Technical Manual" of each model for boot address settings.

14 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.5 Instruction Set
The E0C33000 instruction set contains 61 basic instructions (105 instructions in all). The instruction
codes are all fixed at the 16-bit size. The CPU can execute the principal instructions in 1 cycle with
pipeline processing and load-store type architecture. The instruction set has an optimized code system
that can generate compact object codes even if developing in C language.
This section explains the function overview of the E0C33000 instruction set.
See Chapter 4, "Detailed Explanation of Instructions", for details of each instruction.

2.5.1 Type of instructions
Table 2.5.1.1 lists the instructions.

Table 2.5.1.1 Instruction list
Classification Mnemonic Function
Logic and %rd, %rs AND between general-purpose registers
operation %rd, sign6 AND between general-purpose register and immediate data (with sign extension)

or %rd, %rs OR between general-purpose registers
%rd, sign6 OR between general-purpose register and immediate data (with sign extension)

xor %rd, %rs XOR between general-purpose registers
%rd, sign6 XOR between general-purpose register and immediate data (with sign extension)

not %rd, %rs NOT for general-purpose registers
%rd, sign6 NOT for immediate data (with sign extension)

Arithmetic add %rd, %rs Addition between general-purpose registers
operation %rd, imm6 Addition of immediate data to general-purpose registers (with zero extension)

%sp, imm10 Addition of immediate data to SP (with zero extension)
adc %rd, %rs Addition with carry between general-purpose registers
sub %rd, %rs Subtraction between general-purpose registers

%rd, imm6 Subtraction of immediate data from general-purpose register (with zero extension)
%sp, imm10 Subtraction of immediate data from SP (with zero extension)

sbc %rd, %rs Subtraction with borrow between general-purpose registers
cmp %rd, %rs Comparison between general-purpose registers

%rd, sign6 Comparison between general-purpose register and immediate data (with sign extension)
mlt.h %rd, %rs Multiplication for signed integers (16 bits × 16 bits = 32 bits) <option>
mltu.h %rd, %rs Multiplication for unsigned integers (16 bits × 16 bits = 32 bits) <option>
mlt.w %rd, %rs Multiplication for signed integers (32 bits × 32 bits = 64 bits) <option>
mltu.w %rd, %rs Multiplication for unsigned integers (32 bits × 32 bits = 64 bits) <option>
div0s %rs Signed division 1st step <option>
div0u %rs Unsigned division 1st step <option>
div1 %rs Step division execution <option>
div2s %rs Data correction 1 for signed division result <option>
div3s Data correction 2 for signed division result <option>

Shift srl %rd, %rs Logical shift to right (shift count is specified with register)
& Rotate %rd, imm4 Logical shift to right (shift count is specified with immediate data)

sll %rd, %rs Logical shift to left (shift count is specified with register)
%rd, imm4 Logical shift to left (shift count is specified with immediate data)

sra %rd, %rs Arithmetic shift to right (shift count is specified with register)
%rd, imm4 Arithmetic shift to right (shift count is specified with immediate data)

sla %rd, %rs Arithmetic shift to left (shift count is specified with register)
%rd, imm4 Arithmetic shift to left (shift count is specified with immediate data)

rr %rd, %rs Rotation to right (shift count is specified with register)
%rd, imm4 Rotation to right (shift count is specified with immediate data)

rl %rd, %rs Rotation to left (shift count is specified with register)
%rd, imm4 Rotation to left (shift count is specified with immediate data)

Branch jrgt sign8 PC relative conditional jump; Branch condition: !Z & !(N ^ V)
jrgt.d (".d" allows delayed branch.)
jrge sign8 PC relative conditional jump; Branch condition: !(N ^ V)
jrge.d (".d" allows delayed branch.)
jrlt sign8 PC relative conditional jump; Branch condition: N ^ V
jrlt.d (".d" allows delayed branch.)
jrle sign8 PC relative conditional jump; Branch condition: Z | N ^ V
jrle.d (".d" allows delayed branch.)
jrugt sign8 PC relative conditional jump; Branch condition: !Z & !C
jrugt.d (".d" allows delayed branch.)
jruge sign8 PC relative conditional jump; Branch condition: !C
jruge.d (".d" allows delayed branch.)

E0C33000 CORE CPU MANUAL EPSON 15

CHAPTER 2: ARCHITECTURE

Classification Mnemonic Function
Branch jrult sign8 PC relative conditional jump; Branch condition: C

jrult.d (".d" allows delayed branch.)
jrule sign8 PC relative conditional jump; Branch condition: Z | C
jrule.d (".d" allows delayed branch.)
jreq sign8 PC relative conditional jump; Branch condition: Z
jreq.d (".d" allows delayed branch.)
jrne sign8 PC relative conditional jump; Branch condition: !Z
jrne.d (".d" allows delayed branch.)
jp sign8 PC relative jump (".d" allows delayed branch.)
jp.d %rb Absolute jump (".d" allows delayed branch.)
call sign8 PC relative call (".d" allows delayed branch.)
call.d %rb Absolute call (".d" allows delayed branch.)
ret Return from subroutine
ret.d (".d" allows delayed branch.)
reti Return from interrupt/exception handler routine
retd Return from debugging routine
int imm2 Software exception
brk Debugging exception

Data ld.b %rd, %rs General-purpose register (byte) → General-purpose register (with sign extension)
transfer %rd, [%rb] Memory (byte) → General-purpose register (with sign extension)

%rd, [%rb]+ "+" is specification for address post-increment function.
%rd,[%sp+imm6]Stack (byte) → General-purpose register (with sign extension)
[%rb], %rs General-purpose register (byte) → Memory
[%rb]+, %rs "+" is specification for address post-increment function.
[%sp+imm6],%rs General-purpose register (byte) → Stack

ld.ub %rd, %rs General-purpose register (byte) → General-purpose register (with zero extension)
%rd, [%rb] Memory (byte) → General-purpose register (with zero extension)
%rd, [%rb]+ "+" is specification for address post-increment function.
%rd,[%sp+imm6]Stack (byte) → General-purpose register (with zero extension)

ld.h %rd, %rs General-purpose register (half word) → General-purpose register (with sign extension)
%rd, [%rb] Memory (half word) → General-purpose register (with sign extension)
%rd, [%rb]+ "+" is specification for address post-increment function.
%rd,[%sp+imm6]Stack (half word) → General-purpose register (with sign extension)
[%rb], %rs General-purpose register (half word) → Memory
[%rb]+, %rs "+" is specification for address post-increment function.
[%sp+imm6],%rs General-purpose register (half word) → Stack

ld.uh %rd, %rs General-purpose register (half word) → General-purpose register (with zero extension)
%rd, [%rb] Memory (half word) → General-purpose register (with zero extension)
%rd, [%rb]+ "+" is specification for address post-increment function.
%rd,[%sp+imm6]Stack (half word) → General-purpose register (with zero extension)

ld.w %rd, %rs General-purpose register (word) → General-purpose register
%rd, %ss Special register (word) → General-purpose register
%sd, %rs General-purpose register (word) → Special register
%rd, sign6 Immediate data → General-purpose register (with sign extension)
%rd, [%rb] Memory (word) → General-purpose register
%rd, [%rb]+ "+" is specification for address post-increment function.
%rd,[%sp+imm6]Stack (word) → General-purpose register
[%rb], %rs General-purpose register (word) → Memory
[%rb]+, %rs "+" is specification for address post-increment function.
[%sp+imm6],%rs General-purpose register (word) → Stack

System nop No operation
control halt Sets CPU to HALT mode

slp Sets CPU to SLEEP mode
Immediate ext imm13 Extends the operand (immediate data) of the following instruction.
extension
Bit btst [%rb], imm3 Tests the specified bit in the memory data (byte)
operation bclr [%rb], imm3 Clears the specified bit in the memory data (byte)

bset [%rb], imm3 Sets the specified bit in the memory data (byte)
bnot [%rb], imm3 Reverses the specified bit in the memory data (byte)

Others scan0 %rd, %rs "0" bit search
scan1 %rd, %rs "1" bit search
swap %rd, %rs Swap of the byte data order in word data (upper byte ↔ lower byte)
mirror %rd, %rs Swap of the bit order in each byte of word data (upper bit ↔ lower bit)
mac %rs Multiplication and accumulation (16 bits × 16 bits + 64 bits → 64 bits) <option>
pushn %rs Pushes %rs–%r0 register data into stack.
popn %rd Pops %r0–%rd register data from stack.

16 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.5.2 Addressing mode
The E0C33000 instruction set has six addressing modes. The CPU accesses data according to the ad-
dressing mode specified by the operand in each instruction.

(1) Immediate addressing
This mode uses an immediate data in the instruction code such as immX (unsigned immediate data)
and signX (signed immediate data) as the source data. This mode can be used in the logic operation
(and, or, xor, not), arithmetic operation (add, sub, cmp), immediate data load ("ld.w %rd, sign6"),
shift & rotate (srl, sll, sra, sla, rr, rl), bit operation (btst, bclr, bset, bnot) and immediate extension
(ext) instructions.
The number in the immediate symbols indicates the usable immediate data size (e.g. imm4 = un-
signed 4-bit data, sign6 = signed 6-bit data).
Immediate data except for shift & rotate operations can be extended using the "ext" instruction (see
the next section).

(2) Register direct addressing
This mode uses the contents of the specified register as source data. When a register is specified as the
destination of the instruction, the operation result or transfer data is loaded to the register. The
instructions that have an operand below are executed in this mode.
%rs rs is the metasymbol indicating a general-purpose register that contains source data for opera-

tion or transfer. Actually describe as %r0 to %r15.
%rd rd is the metasymbol indicating a general-purpose register used as destination. Actually

describe as %r0 to %r15. It may be used as a source data.
%ss ss is the metasymbol indicating a special register that contains source data to be transferred to

a general-purpose register.
%sd sd is the metasymbol indicating a special register in which data is loaded from a general-

purpose register.
The special register names should actually be described as follows:
Processor status register %psr
Stack pointer %sp
Arithmetic operation low register %alr
Arithmetic operation high register %ahr

"%" must be prefixed to the register names in order to distinguish from symbol names.

(3) Register indirect addressing
This mode accesses a memory indirectly using the register that contains an address. It is applied to
only the load instructions that have [%rb] as an operand. The register name should be enclosed with
[] in actual specification as [%r0] to [%r15].
The CPU transfers data in data type according to the load instruction using the contents of the speci-
fied register as the base address of the memory to be accessed.
In half word data transfers and word data transfers, the base address to be set in the register must be
pointed at a half word boundary (LSB is 0) and a word boundary (low-order 2 bits are 0), respec-
tively. If not, an address error exception will occur.

(4) Register indirect addressing with post-increment
The general-purpose register specifies a memory to be accessed the same as register indirect addressing.
When the data transfer has finished, this mode increments the base address in the specified register
according to the transferred data size*. Thus continuous reading/writing from/to the memory can be
done by setting the beginning address only.
∗ Increment size

Byte transfer (ld.b, ld.ub): rb←rb+1
Half word transfer (ld.h, ld.uh): rb←rb+2
Word transfer (ld.w): rb←rb+4

This mode should be specified by enclosing the register name with [] and postfixing "+". Actually
describe as [%r0]+ to [%r15]+.

E0C33000 CORE CPU MANUAL EPSON 17

CHAPTER 2: ARCHITECTURE

(5) Register indirect addressing with displacement
This mode accesses the memory specified with a register as the base address and an immediate data
as the displacement (the displacement is added to the base address). This mode is applied only to the
load instructions that have [%sp+imm6] as an operand excluding the case of the "ext" instruction.
Example:
ld.b %r0,[%sp+0x10] ; Loads the byte data stored in the address that is specified by the

contents of the SP + 0x10 to the R0 register. The 6-bit immediate
data is directly added as a displacement in the byte data transfer.

ld.h %r0,[%sp+0x10] ; Loads the half word data stored from the address that is specified
by the contents of the SP + 0x20 to the R0 register. In half word
data transfer, the doubled 6-bit immediate data (LSB is always 0)
is added as a displacement to specify a half word boundary.

ld.w %r0,[%sp+0x10] ; Loads the word data stored from the address that is specified by
the contents of the SP + 0x40 to the R0 register. In word data
transfer, the quadrupled 6-bit immediate data (low-order 2 bits
are always 0) is added as a displacement to specify a word
boundary.

The "ext" instruction (explained in the next section) changes the following register indirect addressing
instruction ([%rb]) to this mode using the immediate data specified in the "ext" instruction as the
displacement.
Example:
ext imm13
ld.b %rd,[%rb] ; Functions as "ld.b %rd, [%rb+imm13]".

(6) Signed PC relative addressing
This mode is applied to the branch instructions (jr*, jp, call) that have a signed 8-bit immediate data
(sign8) as the operand. Those instructions branch the program flow to the address specified by the
current PC + sign8 × 2.
The displacement (sign8) can be extended using the "ext" instruction (see the next section).

18 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.5.3 Immediate extension (EXT) instruction
All the instruction codes are 16-bit size, so it limits the immediate size included in the code. The "ext"
instruction is mainly used to extend the immediate size.
The "ext" instruction should be described prior to the target instruction (to extend the immediate data).
The "ext" instruction can specify a 13-bit immediate data and up to two "ext" instructions can be used at
a time for more extension. The "ext" instruction is valid only if the instruction that follows the "ext"
instruction can be extended. It is invalid for all other instructions. If three or more "ext" instructions are
described consecutively, only the two instructions at the first and the last (prior to the target instruction)
are validated. The middle "ext" instructions are ignored.
The following shows the functions of the "ext" instruction.

Note: Examples of the "ext" instruction use imm13 for the immediate data of the first "ext"
instruction and imm13' for the second "ext" instruction.

(1) Immediate extension in immediate addressing instructions

 • Extension of imm6
Target instructions: "add %rd, imm6", "sub %rd, imm6"
The above instructions can use a 6-bit immediate data by itself.
The immediate data can be extended into 19-bit size or 32-bit size by describing the "ext" instruction
prior to these instructions.

When one "ext" instruction is used:
ext imm13
add %rd,imm6 ; Executed as "add %rd, imm19".
The "ext" instruction extends the imm6 (6 bits) into imm19 (19 bits). The imm13 in the "ext" instruc-
tion becomes the high-order 13 bits of the imm19. The imm19 is zero-extended into 32 bits and
operation to the rd register is done in 32-bit size.

When two "ext" instructions ar e used:
ext imm13
ext imm13'
sub %rd,imm6 ; Executed as "sub %rd, imm32".
The "ext" instructions extend the imm6 (6 bits) into imm32 (32 bits). The imm32 is configured in the
order of imm13, imm13' and imm6 from the high-order side.

 • Extension of sign6
Target instructions: "and %rd, sign6", "or %rd, sign6", "xor %rd, sign6", "not %rd, sign6",

"cmp %rd, sign6", "ld.w %rd, sign6"
The above instructions can use a signed 6-bit immediate data by itself.
The immediate data can be extended into signed 19 bits or signed 32 bits by describing the "ext"
instruction prior to these instructions.

When one "ext" instruction is used:
ext imm13
and %rd,sign6 ; Executed as "and %rd, sign19".
The "ext" instruction extends the sign6 (signed 6-bit data) into sign19 (signed 19-bit data). The
imm13 in the "ext" instruction becomes the high-order 13 bits of the sign19. The sign19 is sign-
extended into 32 bits using the MSB as the sign bit (0=+, 1=-) and operation to the rd register is done
in signed 32-bit size.

When two "ext" instructions ar e used:
ext imm13
ext imm13'
cmp %rd,sign6 ; Executed as "cmp %rd, sign32".
The "ext" instructions extend the imm6 (signed 6-bit data) into sign32 (signed 32-bit data). The
sign32 is configured in the order of imm13, imm13' and sign6 from the high-order side. The MSB of
the 1st sign13 becomes the sign bit of the sign32.

E0C33000 CORE CPU MANUAL EPSON 19

CHAPTER 2: ARCHITECTURE

(2) Displacement extension in register indirect addressing

 • Adding a displacement to [%rb]
Target instructions: ld.* %rd, [%rb]" (ld.*: ld.b, ld.ub, ld.h, ld.uh, ld.w), "ld.* [%rb], %rs" (ld.*:

ld.b, ld.h, ld.w), "btst [%rb], imm3", "bclr [%rb], imm3", "bset [%rb], imm3",
"bnot [%rb], imm3"

The above instructions access memories in register indirect addressing mode using the contents of the
rb register as the base address.
The addressing mode changes into register indirect addressing with displacement by describing the
"ext" instruction prior to these instructions.

When one "ext" instruction is used:
ext imm13
ld.b %rd,[%rb] ; Executed as "ld.b %rd, [%rb+imm13]".
The extended instruction accesses the memory specified by adding the 13-bit displacement (imm13)
to the base address stored in the rb register. The imm13 is zero-extended at the address operation.

When two "ext" instructions ar e used:
ext imm13
ext imm13'
btst [%rd],imm3 ; Executed as "btst [%rb+imm26], imm3".
The extended instruction accesses the memory specified by adding the 26-bit displacement (imm26)
to the base address stored in the rb register. The imm26 is configured in the order of imm13 and
imm13' from the high-order side. The imm26 is zero-extended at the address operation.

This extension is not applied to the instructions for register indirect addressing with post increment
([%rb]+).

 • Extending the displacement of [%sp+imm6]
Target instructions: "ld.* %rd, [%sp+imm6]" (ld.*: ld.b, ld.ub, ld.h, ld.uh, ld.w)

"ld.* [%sp+imm6], %rs" (ld.*: ld.b, ld.h, ld.w)
The above instructions access memories in register indirect addressing with displacement using the
contents of the rb register as the base address and the immediate data (imm6) in the code as the 6-bit,
7-bit or 8-bit displacement.

Byte data transfer (ld.b, ld.ub): 6-bit displacement = imm6 = {imm6}
Half word data transfer (ld.h, ld.uh): 7-bit displacement = imm6 × 2 = {imm6, 0}
Word data transfer (ld.w): 8-bit displacement = imm6 × 4 = {imm6, 00}

The displacement size can be extended into 19 bits or 32 bits by describing the "ext" instruction prior
to these instructions.

When one "ext" instruction is used:
ext imm13
ld.b %rd,[%sp+imm6]; Executed as "ld.b %rd, [%sp+imm19]".
The extended instruction accesses the memory specified by adding the 19-bit displacement (imm19)
to the stack beginning address stored in the SP. The imm13 in the "ext" instruction is placed at the
high-order 13 bits of the imm19 and the imm6 in the load instruction is used for the low-order 6 bits.
However in half word data transfer and word data transfer, the imm6 is used as below to prevent the
occurrence of an address error exception.

Byte data transfer (ld.b, ld.ub): imm19 = {imm13, imm6)
Half word data transfer (ld.h, ld.uh): imm19 = {imm13, imm6(5:1), 0}
Word data transfer (ld.w): imm19 = {1mm13, imm6(5:2), 00}

The imm19 is zero-extended at the address operation.

20 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

When two "ext" instructions ar e used:
ext imm13
ext imm13'
ld.w [%sp+imm6],%rs; Executed as "ld.w [%sp+imm32], %rs".
The extended instruction accesses the memory specified by adding the 32-bit displacement (imm32)
to the stack beginning address stored in the SP. The imm32 is configured in the order of imm13,
imm13' and imm6 from the high-order side. However in half word data transfer and word data
transfer, the imm6 is used as below to prevent the occurrence of an address error exception.

Byte data transfer (ld.b, ld.ub): imm32 = {imm13, imm13', imm6)
Half word data transfer (ld.h, ld.uh): imm32 = {imm13, imm13', imm6(5:1), 0}
Word data transfer (ld.w): imm32 = {1mm13, imm13', imm6(5:2), 00}

The imm32 is handled as an unsigned 32-bit data for the address operation. If the value after adding
the displacement exceeds the effective address range (28 bits max.), the exceeded part is invalidated.

(3) Extending the instructions between registers operation into 3 operands instruction
Target instructions: "add %rd, %rs", "sub %rd, %rs", "cmp %rd, %rs", "and %rd, %rs", "or %rd,

%rs", "xor %rd, %rs"
The above instructions operate with the contents of the rd and rs registers, and then stores the results
into the rd register.
When the "ext" instruction is described prior to the instructions, they operate with the rs register and
the immediate data in the "ext" instruction and then the results are stored into the rd register. The
contents of the rd register do not affect the operation.

When one "ext" instruction is used:
ext imm13
add %rd,%rs ; Executed as "rd ← rs + imm13".
The imm13 is zero-extended into 32 bits because the operation is performed in 32-bit size.

When two "ext" instructions ar e used:
ext imm13
ext imm13'
sub %rd,%rs ; Executed as "rd ← rs - imm26".
The imm26 is configured in order of imm13 and imm13' from the high-order side.
The imm26 is zero-extended into 32 bits because the operation is performed in 32-bit size.

(4) Displacement extension for the PC relative branch instructions
The PC relative branch instructions that have a sign8 (signed 8-bit immediate data) as the operand
branch the program flow to the address specified by the current PC address + doubled sign8 (9-bit
displacement). The "ext" instruction extends the displacement into 22 bits (when one "ext" is used) or
32 bits (when two "ext" are used). See Section 2.5.12, "Branch instructions and delayed instructions"
for more information.

E0C33000 CORE CPU MANUAL EPSON 21

CHAPTER 2: ARCHITECTURE

2.5.4 Data transfer instructions
The E0C33000 instruction set supports data transfers between registers and between a register and
memory. Transfer data size and data extension type can be specified by the instruction code. The classifi-
cations on the mnemonic notation are as follows:

ld.b Signed byte data transfer
ld.ub Unsigned byte data transfer
ld.h Signed half word data transfer
ld.uh Unsigned half word data transfer
ld.w Word data transfer

In a signed byte/half word transfer to a register, the source data is sign-extended into 32 bits. In an
unsigned byte/half word transfer, the source data is zero-extended into 32 bits.
In a data transfer that specifies a register as the source, the specified size of low-order bits in the register
is transferred.

2.5.5 Logic operation instructions
Four types of logic operation instructions are available in the E0C33000 instruction set.

and Logical product
or Logical sum
xor Exclusive OR
not Negation

All the logic operations use a general-purpose register (R0–R15) as the destination. Two types of sources
can be used: 32-bit data in a general-purpose register or signed immediate data (6, 19 or 32 bits).

2.5.6 Arithmetic operation instructions
The E0C33000 instruction set supports addition, subtraction, comparison, multiplication and division for
arithmetic operation (see the next section for the multiplication/division instructions).

add Addition
adc Addition with carry
sub Subtraction
sbc Subtraction with borrow
cmp Comparison

The arithmetic operations are performed between general-purpose registers (R0–R15) or between a
general-purpose register and an immediate data. Furthermore the "add" and "sub" instructions supports
an operation between the SP and an immediate data. The immediate data other than word size is zero-
extended at the operation excluding the "cmp" instruction.
The "cmp" instruction compares two operands and sets/resets the flags according to the comparison
results. Generally it is used to set a condition for the conditional jump instruction. When an immediate
data other than word size is specified for the source, it is sign-extended at comparison.

22 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.5.7 Multiplication and division instructions
Multiplication and division functions have been implemented in the E0C33000 instruction set. However,
they can be used only in the models which have a built-in multiplier by option. Refer to the "Technical
Manual" of each model for confirming whether the model has the multiplier or not.

(1) Multiplication instructions
The E0C33000 instruction set has contained four multiplication instructions.

mlt.h 16 bits × 16 bits → 32 bits (signed multiplication)
mltu.h 16 bits × 16 bits → 32 bits (unsigned multiplication)
mlt.w 32 bits × 32 bits → 64 bits (signed multiplication)
mltu.w 32 bits × 32 bits → 64 bits (unsigned multiplication)

These instructions use data in the specified general-purpose registers (R0–R15) for the multiplier and
the multiplicand. In 16-bit multiplication, the low-order 16 bits in the specified registers are used. The
signed multiplication instructions handle the MSBs of the multiplier and multiplicand as the sign bits.
16 bits × 16 bits of multiplication stores the result into the ALR. 32 bits × 32 bits of multiplication
stores the high-order 32 bits of the result into the AHR and the low-order 32 bits into the ALR.
The E0C33000 executes a 16 bits × 16 bits multiplication in one cycle and a 32 bits × 32 bits in five
cycles.

(2) Division instructions
The signed and unsigned step division functions have been implemented in the E0C33000.

Instructions used for signed step divisions: div0s, div1, div2s, div3s
Instructions used for unsigned step divisions: div0u, div1

The following shows the executing procedure and functions of the step division:

 1 Pre-process of the step division (div0s, div0u)
Prepare a dividend in the ALR and a divisor in an rs register (general-purpose register R0–R15)
before starting a step division, then execute the "div0s" (for signed division) or "div0u" (for unsigned
division) instruction.
These instructions operate as follows:

div0s (pre-process for signed step division)
• Extends the dividend in the ALR into 64 bits with a sign and sets it in {AHR, ALR}.

When the dividend is a positive number, the AHR is set to 0x00000000.
When the dividend is a negative number, the AHR is set to 0xFFFFFFFF.

• Sets the sign bit of the dividend (MSB of ALR) to the DS flag in the PSR.
When the dividend is a positive number, the DS flag is reset to 0.
When the dividend is a negative number, the DS flag is reset to 1.

• Sets the sign bit of the divisor (MSB of the rs register) to the N flag in the PSR.
When the divisor is a positive number, the N flag is reset to 0.
When the divisor is a negative number, the N flag is reset to 1.

div0u (pre-process for unsigned step division)
• Clears the AHR to 0x00000000.
• Resets the DS flag in the PSR to 0.
• Resets the N flag in the PSR to 0.

E0C33000 CORE CPU MANUAL EPSON 23

CHAPTER 2: ARCHITECTURE

 2 Executing the step division
Execute the "div1" instruction for the necessary steps. For example, in 32 bits ÷ 32 bits division, the
"div1" instruction should be executed 32 times.
The "div1" instruction is commonly used for signed and unsigned division.
One "div1" instruction step performs the following process:

1) Shifts the 64-bit data (dividend) in {AHR, ALR} 1 bit to the left (to upper side). (ALR(0) = 0)

2) Adds rs to the AHR or subtracts rs from the AHR and modifies the AHR and the ALR according to
the results.
The addition/subtraction uses the 33-bit data created by extending the contents of the AHR with
the DS flag as the sign bit and the 33-bit data created by extending the contents of the rs register
with the N flag as the sign bit.
The process varies according to the DS and N flags in the PSR as shown below. "tmp(32)" in the
explanation indicates the bit-33 value of the addition/subtraction results.

In the case of DS = 0 (dividend is positive) and N = 0 (divisor is positive):
2-1) Executes tmp = {0, AHR} - {0, rs}
2-2) If tmp(32) = 1, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.

If tmp(32) = 0, terminates without changing the AHR and ALR.

In the case of DS = 1 (dividend is negative) and N = 0 (divisor is positive):
2-1) Executes tmp = {1, AHR} + {0, rs}
2-2) If tmp(32) = 0, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.

If tmp(32) = 1, terminates without changing the AHR and ALR.

In the case of DS = 0 (dividend is positive) and N = 1 (divisor is negative):
2-1) Executes tmp = {0, AHR} + {1, rs}
2-2) If tmp(32) = 1, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.

If tmp(32) = 0, terminates without changing the AHR and ALR.

In the case of DS = 1 (dividend is negative) and N = 1 (divisor is negative):
2-1) Executes tmp = {1, AHR} - {1, rs}
2-2) If tmp(32) = 0, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.

If tmp(32) = 1, terminates without changing the AHR and ALR.

In unsigned division, the results are obtained from the following registers by executing the necessary
"div1" instruction steps.

The results of unsigned division: ALR = Quotient, AHR = Remainder

In signed division, the results should be corrected as shown below.

 3 Correcting the results of signed division
In signed division, execute the "div2s" and "div3s" instructions sequentially to correct the results after
the necessary steps of the "div1" instruction are executed.
Unsigned division does not need to execute the "div2s" and "div3s" instructions. If executed, they
function the same as the "nop" instruction and do not affect the operation results.

The following shows the functions of the "div2s" and "div3s" instructions:

div2s (correction stage 1 for the results of signed step division)
When the dividend is a negative number and zero results in a division step (execution of div1), the
remainder (AHR) after completing all the steps may be the same as the divisor and the quotient
(AHR) may be 1 short from the actual absolute value. The "div2s" instruction corrects such a result.

In the case of DS = 0 (dividend is positive):
This problem does not occur when the dividend is a positive number, so the "div2s" instruction
terminates without any execution (same as the "nop" instruction).

24 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

In the case of DS = 1 (dividend is negative):
1) If N = 0 (divisor is positive), executes tmp = AHR + rs

If N = 1 (divisor is negative), executes tmp = AHR - rs

2) According to the result of step 1).
If tmp is zero, executes AHR = tmp(31:0) and ALR = ALR + 1 and then terminates.
If tmp is not zero, terminates without changing the AHR and ALR.

div3s (correction stage 2 for the result of signed step division)
Step division always stores a positive number of quotient into the ALR. When the signs of the divi-
dend and divisor are different, the result must be a negative number. The "div3s" instruction corrects
the sign in such cases.

In the case of DS = N (dividend and divisor have the same sign):
This problem does not occur, so the "div3s" instruction terminates without any execution (same as
the "nop" instruction).

In the case of DS = !N (dividend and divisor have different signs):
Reverses the sign bit of the ALR (quotient).

In signed division, the results are obtained from the following registers after executing the "div2s" and
"div3s" instructions.

The results of unsigned division: ALR = Quotient, AHR = Remainder

Execution examples of division

(1) Signed division (32 bits ÷ 32 bits)
When the dividend has been set to the R0 register and the divisor to the R1 register:
ld.w %alr,%r0 ; Set the dividend to the ALR
div0s %r1 ; Initialization for signed division
div1 %r1 ; Step division
 : :
div1 %r1 ; Executing div1 32 times
div2s %r1 ; Correction 1
div3s ; Correction 2

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.
This example completes execution in 36 cycles.

In signed division, the remainder has the same sign as the dividend.
Examples: (-8) ÷ 5 = -1 remainder = -3

8 ÷ (-5) = -1 remainder = 3

(2) Unsigned division (32 bits ÷ 32 bits)
When the dividend has been set to the R0 register and the divisor to the R1 register:
ld.w %alr,%r0 ; Set the dividend to the ALR
div0u %r1 ; Initialization for signed division
div1 %r1 ; Step division
 : :
div1 %r1 ; Executing div1 32 times

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.
This example completes execution in 34 cycles.

E0C33000 CORE CPU MANUAL EPSON 25

CHAPTER 2: ARCHITECTURE

2.5.8 Multiplication and accumulation instruction
The E0C33000 supports a multiplication and accumulation function that executes "64 bits + 16 bits × 16
bits" the specified number of times. This function realizes on-chip digital signal processing without an
external DSP chip. However, this function is only available in the models which have a built-in multiplier
by option. Refer to the "Technical Manual" of each model for confirming whether the model has the
multiplier or not.
The multiplication and accumulation operation is executed by the "mac" instruction.
The "mac %rs" instruction repeats execution of the "{AHR, ALR} ← {AHR, ALR} + H[<rs+1>]+ ×
H[<rs+2>]+" operation for the count number specified by the rs register.

The repeat count should be set in the rs register before starting multiplication and accumulation opera-
tion. The rs register is used as a counter and is decremented by each operation. The "mac" instruction
terminates operation when the rs register becomes 0. Thus it is possible to repeat operation up to 232-1
(4,294,967,295) times. When the "mac" instruction is executed by setting the rs register to 0, the "mac"
instruction does not perform a multiplication and accumulation operation and does not change the AHR
and the ALR. The rs register is not decremented as it is 0.

<rs+1> and <rs+2> are the general-purpose registers which follow the rs register.
Example: When the R0 register is specified for rs: <rs+1>=R1 register, <rs+2>=R2 register

When the R15 register is specified for rs: <rs+1>=R0 register, <rs+2>=R1 register

H[<rs+1>]+ and H[<rs+2>]+ indicate the half word data stored from the base address specified by the
register.
The "mac" instruction multiplies these data as signed 16-bit data, and adds the results to the {AHR,
ALR} register pair. "+" indicates that the base address (contents of the <rs+1> and <rs+2> registers) is
incremented (+2) every time the operation step is finished.

Example: When the "mac %r0" is executed after setting R0=16, R1=0x100, R2=0x120, AHR=ALR=0:
1) {AHR, ALR} = 0 + H[0x100] × H[0x120]
2) {AHR, ALR} = {AHR, ALR} + H[0x102] × H[0x122]
3) {AHR, ALR} = {AHR, ALR} + H[0x104] × H[0x124]
: :
16) {AHR, ALR} = {AHR, ALR} + H[0x11E] × H[0x13E]

The operation result is obtained as a 64-bit data from the AHR for the high-order 32 bits and the ALR for
the low-order 32 bits.
The register values are changed as R0 = 0, R1 = 0x120 and R2 = 0x140.

Overflow during multiplication and accumulation operation
When the temporary result overflows the signed 64-bit range during multiplication and accumulation
operation, the MO flag in the PSR is set to 1. However, the operation continues until the repeat count
that is set in the rs register goes to 0. Since the MO flag stays 1 until it is reset by software, it is
possible to check whether the result is valid or not by reading the MO flag after completing execution
of the "mac" instruction.

Interrupts during multiplication and accumulation operation
Interrupts are accepted even if the "mac" instruction is executing halfway through the repeat count.
The trap processing saves the address of the "mac" instruction into the stack as the return address
before branching to the interrupt handler routine. Thus when the interrupt handler routine is finished
by the "reti" instruction, the suspended "mac" instruction resumes execution. The content of the rs
register at that point is used as the remaining repeat count, therefore if the interrupt handler routine
has modified the rs register the "mac" instruction cannot obtain the expected results. Similarly, when
the <rs+1> and/or <rs+2> registers have been modified in the interrupt handler routine, the resumed
"mac" instruction cannot be executed properly.

26 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.5.9 Shift and rotation instructions
The E0C33000 instruction set has shift and rotation instructions for register data.

srl Logical shift to right

→
31 0

0rd register

sll Logical shift to left

←
31 0

0rd register

sra Arithmetical shift to right

→
31 0

Sign bit (MSB)

rd register

sla Arithmetical shift to left

←
31 0

0rd register

rr Rotation to right

→
31 0

rd register

rl Rotation to left

←
31 0

rd register

These instructions shift the contents of the specified general-purpose registers as shown in each figure.
The shift count can be specified from 0 to 8 bits using a general-purpose register or an immediate data.

Instruction %rd, %rs Shifts/rotates the content of the rd register by the shift count specified
with the rs register.
Bits 0 to 3 of the rs register are effective for the shift count (0 to 8).

Instruction %rd, imm4 Shifts/rotates the content of the rd register by the shift count specified
with the unsigned 4-bit immediate data (imm4).

The rs register and imm4 specify the shift count as follows:
rs(3:0)/imm4 Shift count

1xxx 8 bits (x: 1 or 0)
0111 7 bits
0110 6 bits
0101 5 bits
0100 4 bits
0011 3 bits
0010 2 bits
0001 1 bit
0000 0 bit

E0C33000 CORE CPU MANUAL EPSON 27

CHAPTER 2: ARCHITECTURE

2.5.10 Bit operation instructions
The following four instructions are available for handling memory data in bit units. These instructions
allow direct modification of display memory bits and I/O control bits.

btst [%rb], imm3 Sets Z flag if the specified bit is 0.
bclr [%rb], imm3 Clears the specified bit to 0.
bset [%rb], imm3 Sets the specified bit to 1.
bnot [%rb], imm3 Reverses the specified bit (1 ↔ 0).

The bit operation is performed for the memory address specified by the rb (general-purpose) register. The
imm3 specifies the bit number (bit 0 to bit 7) of the byte data stored in the address.
These instructions (excluding "btest") change the specified bit only, however, the specified address is
rewritten since the memory access is performed in byte units. Therefore, pay attention to the operation of
the address that contains an I/O control bit affected by writing.

2.5.11 Push and pop instructions
The push and pop instructions are used to evacuate and return the contents of the general-purpose
registers from/to the stack.

Push instruction pushn %rs
Saves the contents of the rs to the R0 registers sequentially into the stack.

Pop instruction popn %rd
Loads the stack data to the R0 to the rd registers sequentially.

Example:

Stack

Before execution

SP →

Low

←

R5
R4
R3
R2
R1
R0

Stack

After execution

SP'=SP-24 →

pushn %r5

R5

Stack

To R0–R5
registers

Before execution

SP →

Low

←

R5
R4
R3
R2
R1
R0

R4
R3
R2
R1
R0

Stack

After execution

SP'=SP+24 →

popn %r5

Fig. 2.5.11.1 Evacuation and return of general-purpose registers

The "pushn" and "popn" instructions should be used as a pair that specify the same registers.
These instructions modify the SP according to the register count to be evacuated/returned.

Besides the push and pop instructions, some load instructions that execute in register indirect addressing
with displacement mode ([%sp+imm6]) are provided. They can load/store register data individually from/
to the stack using the SP as the base address. However in this case, the SP is not modified.

28 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.5.12 Branch instructions and delayed instructions

Classification of branch instructions

(1) PC relative jump instructions ("jr* sign8", "jp sign8")
The PC relative jump instruction adds the signed displacement in its operand to the current PC
address (address of the branch instruction) for branching the program flow to the address. It allows
relocatable programming.
Since all the instruction size is fixed at 16 bits, the sign8 specifies a half word address in 16-bit units.
Consequently, the displacement that is added to the PC becomes a signed 9-bit data (LSB is always 0)
by doubling the sign8, and it always specifies an even address. When the PC value exceeds the 28-bit
address space after adding the displacement, the exceeded part (high-order 4 bits) is invalidated.
The displacement can be extended using the "ext" instruction as shown below.

Independent use of the branch instruction:
jp sign8 ; Executed as "jp sign9". (sign9 = {sign8, 0})
When using a branch instruction independently, a signed 8-bit displacement (sign8) can be specified.
Since the sign8 is a relative value in 16-bit units, the specifiable branch range is [PC - 256 to PC +
254].

When one "ext" instruction is used:
ext imm13
jp sign8 ; Executed as "jp sign22". (sign22 = {imm13, sign8, 0})
The sign8 is extended into a sign22 using the imm13 of the "ext" instruction as the high-order 13 bits.
The specifiable branch range is [PC - 2,097,152 to PC + 2,097,150].

When two "ext" instructions ar e used:
ext imm13
ext imm13'
jp sign8 ; Executed as "jp sign32".
The imm13 of the first "ext" instruction is used as the high-order 10 bits of the sign32, therefore only
10 bits from Bit 12 to Bit3 are effective (the low-order 3 bits are ignored). The sign32 is configured as
follows:

sign32 = {imm13(12:3), imm13', sign8, 0}
The specifiable branch range is [PC - 2,147,483,648 to PC + 2,147,483,646].

The branch ranges above are just a logical value. Actually it is limited to the memory range of the
model to be used.

Branch conditions
The "jp" instruction is an unconditional branch instruction that always branches the program.
The instructions that begin with "jr" are conditional branch instructions. Each instruction has a branch
condition specified with a combination of the flags, and branches the program flow only when the
condition has been met. If not, it does not branch.
Usually the conditional branch instructions are used to judge the results of the "cmp" instruction that
compares two values. For this purpose, each instruction name contains the letters that indicate the
relation.
Table 2.5.12.1 lists the conditional branch instructions and their conditions.

E0C33000 CORE CPU MANUAL EPSON 29

CHAPTER 2: ARCHITECTURE

Table 2.5.12.1 Conditional branch instructions and conditions

Instruction Flag condition Result of "cmp A, B" Remarks

jrgt (Greater Than) !Z & !(N ^ V) A > B for signed data comparison
jrge (Greater or Equal) !(N ^ V) A ≥ B
jrlt (Less Than) N ^ V A < B
jrle (Less or Equal) Z | (N ^ V) A ≤ B
jrugt (Unsigned, Greater Than) !Z & !C A > B for unsigned data comparison
jruge (Unsigned, Greater or Equal) !C A ≥ B
jrult (Unsigned, Less Than) C A< B
jrule (Unsigned, Less or Equal) Z | C = 1 A ≤ B
jreq (Equal) Z A = B for signed and
jrne (Not equal) !Z A ≠ B unsigned comparison

The program branches if the logic equation of the flags are true (1). (!: NOT, |: OR, &: AND, ^: XOR)

(2) Absolute jump instruction ("jp %rb")
The absolute jump instruction "jp %rb" unconditionally branches the program flow to the absolute
address specified by the rb register.
The LSB of the rb register goes to 0 when the register data is loaded to the PC, and the high-order 4
bits that are out of the address range are also invalidated.

(3) PC relative call instruction ("call sign8")
The PC relative call instruction adds the signed displacement in its operand to the current PC address
(address of the branch instruction) to unconditionally branch to the subroutine that begins from the
address. It allows relocatable programming.
The address of the following instruction (or address of the second from the call instruction in delayed
branch) is saved into the stack as the return address before branching. Executing the "ret" instruction at
the end of the subroutine loads the saved address to the PC, and the program returns from the subroutine.

Since all the instruction size is fixed at 16 bits, the sign8 specifies a half word address in 16-bit units.
Consequently, the displacement that is added to the PC becomes a signed 9-bit data (LSB is always 0)
by doubling the sign8, and it always specifies an even address. When the PC value exceeds the 28-bit
address space after adding the displacement, the exceeded part (high-order 4 bits) is invalidated.
The displacement can be extended using the "ext" instruction the same as the PC relative jump
instruction. See "PC relative jump instructions" on the previous page for the displacement extension.

(4) Absolute call instruction ("call %rb")
The absolute call instruction "call %rb" unconditionally calls a subroutine that begins from the
absolute address specified by the rb register.
The LSB of the rb register goes to 0 when the register data is loaded to the PC, and the high-order 4
bits that are out of the address range are also invalidated.

(5) Software exception ("int imm2")
The software exception instruction "int imm2" issues a software exception to execute the specified
trap handler routine. Up to four handler routines can be created and the imm2 specifies the vector
number of the handler routine to be executed. When a software exception occurs, the CPU saves the
PSR and the address of the instruction that follows the "int" instruction into the stack and then reads
the specified vector from the trap table to execute the trap handler routine. Therefore, the "reti"
instruction that returns the saved PSR must be used for returning from the trap handler routine.
See Section 3.3, "Trap (Interrupts and Exceptions)", for details of the software exceptions.

(6) Return instructions ("ret", "reti")
The "ret" instruction is the return instruction that corresponds to the "call" instruction. It ends the
subroutine by loading the return address saved in the stack to the PC. The SP must contain the same
value (that points the return address) as the beginning of the subroutine when the "ret" instruction is
executed.

30 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

The "reti" instruction is the return instruction for exclusive use of trap handler routines. The trap
processing of the CPU saves a return address and the PSR into the stack, therefore the "reti" instruc-
tion must be used for returning the contents of the PSR. As well as the "ret" instruction, the SP must
contain the same value (that points the return address) as the beginning of the trap handler routine
when the "reti" instruction is executed.

(7) Debugging exceptions ("brk", "retd")
The "brk" and "retd" instructions are used for calling a debugging routine and return. Since these
instructions are provided for the ICE software, do not use them in the application program.
See Section 3.6, "Debugging Mode", for the functions of these instructions.

Delayed branch function
The E0C33000 executes an instruction and fetches an instruction simultaneously by pipe-line processing.
When executing a branch instruction, the following instruction has been fetched by the CPU. By execut-
ing the fetched instruction before branching, the execution cycles of the branch instruction can be
reduced for 1 cycle. This is the delayed branch function and the following instruction that is executed
before branching is called a delayed instruction.
The instructions below can use the delayed branch function. In the mnemonic notation, ".d" should be
postfixed to the branch instruction.

Delayed branch instructions
jrgt.d jrge.d jrlt.d jrle.d jrugt.d jruge.d jrult.d jrule.d jreq.d jrne.d call.d jp.d ret.d

Delayed instructions
The delayed instruction must meet all the following conditions:
• 1 cycle instruction
• Does not access memories
• Not extended with the "ext" instruction

The following instructions can be used as a delayed instruction:

ld.w %rd, %rs ld.w %rd, sign6
add %rd, %rs add %rd, imm6 add %sp, imm10 adc %rd, %rs
sub %rd, %rs sub %rd, imm6 sub %sp, imm10 sbc %rd, %rs
mlt.h %rd, %rs mltu.h %rd, %rs
cmp %rd, %rs cmp %rd, sign6
and %rd, %rs and %rd, sign6
or %rd, %rs or %rd, sign6
xor %rd, %rs xor %rd, sign6
not %rd, %rs not %rd, sign6
srl %rd, %rs srl %rd, imm4 sll %rd, %rs sll %rd, imm4
sra %rd, %rs sra %rd, imm4 sla %rd, %rs sla %rd, imm4
rr %rd, %rs rr %rd, imm4 rl %rd, %rs rl %rd, imm4
scan0 %rd, %rs scan1 %rd, %rs
swap %rd, %rs mirror %rd, %rs

Note: Do not use instructions that do not meet the conditions of a delayed instruction, if used
the operation cannot be guaranteed.

The delayed instruction is executed regardless of the delayed instruction type (conditional or uncondi-
tional branch) and whether the program flow is branched or not.

When a branch instruction without a delayed function (that has no ".d") is executed, the instruction at the
next address will not be executed if the program flow branches. If the branch instruction is a conditional
branch instruction and the program flow does not branch, the instruction at the next address is executed
following the branch instruction.

The "call.d" instruction saves the address of the instruction that follows the delayed instruction into the
stack as the return address. The delayed instruction is not executed when returning from the subroutine.

Traps such as interrupts and exceptions do not occur between a delayed branch instruction and the
delayed instruction because the hardware masks traps.

E0C33000 CORE CPU MANUAL EPSON 31

CHAPTER 2: ARCHITECTURE

2.5.13 System control instructions
The following three instructions are used for controlling the system and do not affect the registers and
memories:

nop No operation (increments PC only)
halt Sets the CPU to HALT mode.
slp Sets the CPU to SLEEP mode.

See Section 3.4, "Power Down Mode", for HALT and SLEEP modes.

2.5.14 Scan instructions
The scan instruction scans 0 or 1 bit within the high-order 8 bits of the specified general-purpose register
from the MSB, and returns the first found bit position.

scan0 %rd, %rs
Scans the high-order 8 bits of the rs register from the MSB. When a bit of 0 is found, the bit position
(offset from the MSB) is loaded to the rd register. Bit 31 to Bit 4 of the rd register are all set to 0. If
there is no 0, 0x00000008 is loaded to the rd register and the C flag is set to 1.
Example:

PSR
High-order 8 bits of rs Low-order 8 bits of rd

C V Z N

0xxx xxxx 0000 0000 0 0 1 0
10xx xxxx 0000 0001 0 0 0 0
110x xxxx 0000 0010 0 0 0 0
1110 xxxx 0000 0011 0 0 0 0
1111 0xxx 0000 0100 0 0 0 0
1111 10xx 0000 0101 0 0 0 0
1111 110x 0000 0110 0 0 0 0
1111 1110 0000 0111 0 0 0 0
1111 1111 0000 1000 1 0 0 0

scan1 %rd, %rs
Scans the high-order 8 bits of the rs register from the MSB. When a bit of 1 is found, the bit position
(offset from the MSB) is loaded to the rd register. Bit 31 to Bit 4 of the rd register are all set to 0. If
there is no 1, 0x00000008 is loaded to the rd register and the C flag is set to 1.
Example:

PSR
High-order 8 bits of rs Low-order 8 bits of rd

C V Z N
1xxx xxxx 0000 0000 0 0 1 0
01xx xxxx 0000 0001 0 0 0 0
001x xxxx 0000 0010 0 0 0 0
0001 xxxx 0000 0011 0 0 0 0
0000 1xxx 0000 0100 0 0 0 0
0000 01xx 0000 0101 0 0 0 0
0000 001x 0000 0110 0 0 0 0
0000 0001 0000 0111 0 0 0 0
0000 0000 0000 1000 1 0 0 0

32 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 2: ARCHITECTURE

2.5.15 Swap and mirror instructions
The swap and mirror instructions replace the bit order of a general-purpose register as shown below.

Swap instruction: swap %rd, %rs

1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0
31 24 23 16 15 8 7 0

rs register

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 00
31 24 23 16 15 8 7 0

rd register

Mirror instruction:mirror %rd, %rs

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
31 24 23 16 15 8 7 0

rs register

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 10
31 24 23 16 15 8 7 0

rd register

E0C33000 CORE CPU MANUAL EPSON 33

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

CHAPTER 3 CPU OPERATION AND PROCESSING STATUS
This chapter describes the outline of the CPU processing status and operations. Refer to the "Technical
Manual" of each E0C33 Family model for more information.

3.1 Processing Status of CPU
Figure 3.1.1 shows the status transition of the E0C33000.

Reset status
#RESET=L

Trap processing
status

Program execution
status

Debugging status

User mode

Power down
status

SLEEP

HALT

Bus release status

#RESET=H

End of trap
processing

Trap

#BUSREQ=H

#BUSREQ=L

slp executed
retd executed

brk executed

Debugging
exception

Interrupt factor occurred

halt executed

Debugging mode

Fig. 3.1.1 Status transition diagram

User mode
The E0C33000 executes the application program in the user mode.
At initial reset, the E0C33000 is set to this mode. In this mode, the E0C33000 is placed in one of the
following five processing statuses:

(1) Reset status
In the reset status, the CPU initializes the internal circuits and stops operation.

(2) Program execution status
In this status, the CPU executes the user program sequentially.

(3) Trap processing status
This is a transition period after an interrupt or exception occurs. The CPU branches the program to
the handler routine for the trap.

(4) Power down status
In this status, the CPU stops operation to reduce current consumption.

(5) Bus release status
In this status, the CPU releases the bus and waits until the external bus master finishes the bus
operation.

Debugging mode
The E0C33000 has the debugging support functions for efficient development. Those functions can be
used only in the debugging mode. The "brk" instruction and debugging exceptions switch the CPU
from the user mode to this mode. Usually, the CPU does not enter this mode.

34 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.2 Program Execution Status
Usually the CPU operates in this status, and executes the user program in the ROM/RAM sequentially.
The PC (program counter) maintains the address being executed and is incremented every time an
instruction is executed. When a branch instruction is executed, the branch destination address is loaded to
the PC and the program branches to the address.

The program execution status is suspended by the occurrence of a trap, execution of the "halt" or "slp"
instruction or a bus request from a peripheral circuit, then the CPU enters the processing status according
to the factor that has occurred.

3.2.1 Fetching and executing program
The E0C33000 performs three stages of pipe-line processing that executes an instruction and fetches an
instruction expected to execute simultaneously in order to increase the processing speed. Further the CPU
can access the internal ROM (program memory) and the internal RAM (data memory) at the same time
with the Harvard architecture.

Fetching
instruction

Decoding and
address calculation

Execution and
register write

Fetching
instruction

Decoding and
address calculation

Execution and
register write

Fetching
instruction

Decoding and
address calculation

Execution and
register write

Fig. 3.2.1.1 Fetch and execution of program

3.2.2 Number of instruction execution cycles
The E0C33000 can execute the principle instructions in 1 cycle. See the instruction list in the Appendix
for the number of execution cycles of each instruction. Note that this manual describes the execution
cycles only when the program in the internal ROM and data in the internal ROM are accessed. The
following supplements the execution cycles when external memory/devices are used for reference when
calculating execution times. However, the following indicates simplified calculation methods. Actual
execution cycles may vary due to the combination of instructions and memory map settings.

(1) When fetching instructions from an external memory area, the execution time will be prolonged for
[wait cycle count + 1] cycles. (The wait cycle count varies depending on the device of each area.)

(2) When reading/writing data from/to an area other than the internal RAM using a load instruction, the
execution time will be prolonged for [wait cycle count + 1] cycles.

(3) When accessing the internal RAM for both fetching instructions and writing/reading data, the execu-
tion time will be prolonged for 1 cycle per one data accessing.

(4) Fetching instructions and writing/reading data execute 1, 2 or 4 bus operations according to the
transfer data size and the connected device size. The execution time will be prolonged according to
the bus operation count. Further wait cycles will be added to each bus operation. For example, when
fetching an instruction from an 8-bit external ROM without a wait cycle, 2 bus operations will be
executed and the execution time will be prolonged for 3 cycles.

(5) Besides the above factors, the following factors among the external bus conditions that have been set
in the BCU (bus control unit) affect the execution cycle count:
• Output disable cycles set for the device on the external bus
• RAS cycles, pre-charge cycles and refresh cycles for the DRAM
• Wait cycles using the external #WAIT terminal

E0C33000 CORE CPU MANUAL EPSON 35

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

(6) The instructions below access data several times. Therefore the execution time will be prolonged for
[wait cycle count + 1] cycles per one data access.
• Bit operation instructions (btst) 1 (data access count)
• Bit operation instructions (bset, bclr, bnot) 2
• Push and pop instructions (pushn, popn) n
• Multiplication and accumulation instruction (mac) 2n
• Software exception (int) 3
• Return from trap handler routine (reti) 2
• Debugging exception (brk) 3
• Return from debugging routine (retd) 2

(7) Delay by interlock
When using the destination register (%rd) of the previous load instruction that transferred memory
data to the general-purpose register as the operation source of the next instruction (when the %rs or
%rd is the same as the previous %rd), the execution time will be prolonged for 1 cycle to eliminate
the interlock.

Refer to the "Technical Manual" of each E0C33 Family model for the BCU and external bus conditions
such as the wait cycle.

3.3 Trap (Interrupts and Exceptions)
The CPU goes to the trap processing status when a trap factor (interrupt or exception) occurs during
program execution. The trap processing status is a transition period until the CPU branches the program
flow to the user handler routine corresponding to the interrupt/exception factor that has occurred. The
CPU returns to the program execution status after branching.

3.3.1 Trap table
Table 3.3.1.1 lists the traps of the E0C33000.

Table 3.3.1.1 Trap list

Trap name Sync./Async. Classification
Vector

Priority
Interrupt level

address after trapping

Reset Async. Interrupt base+0 Highest Level 0

Reserved base+4~12 ↑ Unchanged

Zero division Sync. Exception base+16 Unchanged

Reserved base+20 Unchanged

Address error exception Sync. Exception base+24 Unchanged

Debugging exception (brk, others) Sync. Exception 0x0 or 0x60000 Unchanged

NMI Async. Interrupt base+28 Unchanged

Reserved base+32~44 Unchanged

Software exception 0 Sync. Exception base+48 Unchanged

: : : : :
Software exception 3 Sync. Exception base+60 Unchanged

Maskable external interrupt 0 Async. Interrupt base+64 Interrupt level (Level 0 to 15)

: : : : ↓ of the peripheral circuit that

Maskable external interrupt 215 Async. Interrupt base+924 Lowest requested the interrupt.

The E0C33000 has seven trap factors listed in the Trap name column (details are described later).

"Sync./Async." indicates either the trap factor will occur in synchronization with program execution or
asynchronously. This manual classifies the trap factors into two types: "Exception" that will occur in
synchronization with program execution and "Interrupt" that will occur asynchronously. However, this
manual uses "Trap Processing" for all trap processing of the CPU.

The vector address stores the vector (branch destination address) of the user handler routine that is
executed when each trap occurs. The vector addresses are arranged at a word boundary address because
they store an address. The memory area for vector storage is called a trap table. The "base" in the vector
address column indicates the trap table beginning address.

36 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

The E0C33000 allows the base (starting) address of the trap table to be set by the TTBR register.
TTBR0 =D(9:0)/0x48134: Trap table base address (9:0) ... fixed at 0
TTBR1 =D(F:A)/0x48134: Trap table base address (15:10)
TTBR2 =D(B:0)/0x48136: Trap table base address (27:16)
TTBR3 =D(F:C)/0x48136: Trap table base address (31:28) ... fixed at 0

After a cold start (see Section 3.3.3), the TTBR register is set to the boot address determined by the
BTA3 pin status.

Table 3.3.1.2 Trap table location

BTA3 terminal Trap table location

High Area 3 (Top of the internal ROM; base=0x0080000)
Low Area 10 (Top of the external ROM; base=0x0C00000)

Therefore, even when the trap table position is changed, it is necessary that at least the reset vector be
written to the above address for cold starting. A hot start does not change the TTBR setting.
TTBR0 and TTBR3 are read-only registers which are fixed at “0”. Therefore, the trap table starting
address always begins with a 1KB boundary address.
The TTBR registers are normally write-protected to prevent them from being inadvertently rewritten. To
remove this write protection function, another register, the TBRP register (D(7:0)/0x4812D), is provided.
A write to the TTBR register is enabled by writing "0x59" to the TBRP register and is disabled back
again by a write to the most significant byte of the TTBR register (0x48137). Consequently, a write to the
TTBR register needs to begin with the low-order half-word first. However, since an occurrence of NMI or
the like between writes of the low-order and high-order half-words would cause a malfunction, it is
recommended that the register be written in words.

The accessible memory space differs depending on the model. A word sized area is reserved for each
vector, however the lower effective bit size only is actually used for the vector. Furthermore the LSB of
the vector is handled as 0 because the vector is an address in the program memory.
The trap table size is decided by the number of the maskable interrupts of each model.

The priority indicates which trap is accepted first when two or more traps occur at the same time. Excep-
tions do not occur at the same time because they occur when an instruction is executed. The reset factor
is accepted taking priority over all other processing. The priority of maskable interrupts are also managed
by the interrupt levels (described later). Therefore the priority of the maskable interrupts shown in Table
3.3.1.1 assumes that all interrupts have same priority.

See Section 3.3.8, "Maskable external interrupts", for the interrupt level after trapping.

3.3.2 Trap processing
The CPU executes the trap processing shown below when a trap except for reset and debugging excep-
tions occurs. However the following processing does not apply to the reset processing. It is explained in
the next section. The debugging exception is explained in Section 3.6.

(1) Terminates or cancels the instruction being executed.
(2) Saves the contents of the PC and the PSR sequentially into the stack.
(3) Resets the IE (interrupt enable) bit in the PSR to disable maskable interrupts after this point.

Modifies the IL (interrupt level) field in the PSR to the occurred interrupt level if the trap is a
maskable interrupt.

(4) Reads the vector corresponding to the trap factor from the trap table and loads it to the PC. It
branches the processing to the user handler routine.

The above sequence is the trap processing of the CPU.

When the "reti" instruction is executed at the end of the user handler routine, the contents of the PSR and
the PC that have been saved into the stack return to each register and the processing that is suspended by
the trap resumes execution.
The "ret" instruction cannot be used for return from trap handler routines because the instruction does not
return the PSR.

E0C33000 CORE CPU MANUAL EPSON 37

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

The CPU masks traps in the following cases, and traps except for reset are not accepted until the masking
factors are canceled:

(1) When the "ext" instruction is executed:
When the "ext" instruction is executed, traps are masked until finishing execution of the following
target instruction. However address error exception is excluded.

(2) When a delayed branch instruction is executed:
When a delayed branch instruction (.d) is executed, traps are masked until starting execution of the
following delayed instruction.

(3) NMI before setting SP
When the CPU is reset, the NMI is masked until data is written to the SP (stack address is set) in
order to prevent program runaways.
Exceptions are not masked because they can be predicted. Maskable interrupts are also not masked
because they have been masked by the IE bit in the PSR after reset.

3.3.3 Reset
The CPU is reset when a low pulse is input to the #RESET terminal. The initial reset clears all the bits in
the PSR and makes other registers undefined.
The CPU starts operating at the rising edge of the #RESET pulse and executes the reset processing. The
reset processing reads the reset vector from the top of the trap table and sets it to the PC. It starts execut-
ing the user initial routine.
The reset processing has priority over all other processing.

The E0C33000 supports two reset methods: Hot start and Cold start. The #NMI terminal is used with the
#RESET terminal to set this condition.

Cold start (#RESET = L, #NMI = H)
The E0C33 Family MPU cold-starts when it is reset by setting the #RESET terminal to low and the
#NMI terminal to high. Since cold start initializes all the on-chip peripheral circuits as well as the
CPU, it is useful as a power-on reset.

#NMI

#RESET

Cold start is generated
(#RESET=L & #NMI=H)

#NMI must be set to H as longer than
the reset pulse width.

Fig. 3.3.3.1 Cold start timing

Hot start (#RESET = L, #NMI = L)
The E0C33 Family MPU hot-starts when it is reset by setting the #RESET and #NMI terminals to
low. Hot start initializes the CPU but does not initialize some peripheral circuits such as the external
bus control unit and the input/output ports. It is useful as a reset that maintains the external memory
and external input/output statuses.

#NMI

#RESET

Hot start is generated
(#RESET=L & #NMI=L)

#NMI must be set to L as longer than
the reset pulse width.

Fig. 3.3.3.2 Hot start timing

Refer to the "Technical Manual" of each E0C33 Family model for the reset timing and the initialization
for the peripheral circuits.

38 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.3.4 Zero division exception
A zero division exception will occur if the divisor is 0 when the division instruction is executed.
This exception may occur with the "div0s" or "div0u" instruction for preprocessing of division. If the
divisor is 0, the CPU executes the trap processing after finishing execution of the instruction. The trap
processing saves the next instruction address (usually "div1") into the stack as the return address.
However, the exception may occur at the next instruction due to the pipe line processing.

3.3.5 Address error exception
The load instructions for accessing a memory or I/O area have a predefined transfer data size. The
address to be specified must be a boundary address according to the data size.

Instruction Transfer data size Address
ld.b/ld.ub Byte (8 bits) Byte boundary (any address can be specified within the usable area)
ld.h/ld.uh Half word (16 bits) Half word boundary (LSB of the address must always be 0)
ld.w Word (32 bits) Word boundary (low-order 2 bits must always be 0)

If the specified address of a load instruction does not meet the condition, the CPU regards it as an address
error and executes the trap processing. In this case, the CPU does not execute the load instruction and
saves the load instruction address into the stack as the return address.
Normally, traps are masked when the "ext" instruction is executed until the next instruction is executed.
However only the address error exception is not masked. Therefore if an address error exception occurs
in a load instruction that follows the "ext" instruction (the load instruction has to be executed in register
indirect addressing with displacement), the CPU enters in the trap processing before executing the load
instruction. Be aware that it may be a problem if return from the trap handler routine is done by simply
executing the "reti" instruction. In this case, the load instruction is executed independently in register
indirect addressing mode without displacement.

The address error exception may also occur by the multiplication and accumulation (mac) instruction
because it handles half word data. The trap processing saves the "mac" instruction address into the stack
as the return address, so the "mac" instruction will resume the remaining multiplication and accumulation
after returning from the trap handler routine.

The load instructions that use the SP for specifying the base address do not issue an address error excep-
tion because the address is adjusted at the boundary according to the transfer data size.

In the branch instructions ("call %rb", "jp %rb"), this exception does not occur because the LSB of the
PC is always fixed at 0. It is the same for trap processing vectors.

3.3.6 NMI (Non-maskable interrupt)
When the #NMI signal (low) is assigned to the CPU, an NMI occurs at the falling edge.
When an NMI occurs, the CPU executes the trap processing after finishing the instruction being ex-
ecuted. The trap processing saves the next instruction address into the stack as the return address.
The NMI cannot be masked. However, when the CPU is reset (both cold start and hot start), the #NMI
input is masked by the hardware until the SP is set by the "ld.w %sp, %rs" instruction in order to prevent
program runaways due to undefined SP.

3.3.7 Software exception
A software exception occurs when the "int imm2" instruction is executed. The trap processing saves the
address of the instruction that follows the "int" instruction into the stack as the return address. The imm2
in the "int" instruction specifies a vector address among four software exceptions. The CPU reads the
vector from the address calculated by adding 4 × imm2 to base + 48 (vector address for software excep-
tion 0) for branching to the handler routine.

E0C33000 CORE CPU MANUAL EPSON 39

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.3.8 Maskable external interrupts
The E0C33000 can accept up to 128 maskable external interrupts (except for the NMI).
Maskable interrupts are accepted to the CPU only when the IE (interrupt enable) bit in the PSR has been
set. Further, the IL (interrupt level) field in the PSR also affects the acceptance. The IL field contains an
interrupt level number (0 to 15) that indicates the acceptable interrupt level. The CPU can only accept
interrupts that have an interrupt level higher than the IL value.
The IE bit and the IL field can be set by software. Furthermore, when a trap occurs, the IE bit is reset to 0
(interrupt is disabled) after saving the PSR into the stack. Therefore maskable interrupts are disabled
until the IE bit is set in the handler routine or the handler routine is terminated by the "reti" instruction
that returns the PSR.
The IL field is also set to the interrupt level that has occurred. To enable multiple interrupt processing, set
the IE flag in the interrupt handler routine. It allows acceptance of interrupts that have higher levels than
the currently processed interrupt.
Resetting the CPU initializes the PSR to 0, therefore maskable interrupts are disabled and the interrupt
level is set to 0 (levels 1 to 15 are enabled).

All the E0C33 Family models have an on-chip interrupt controller, and the controller manages the
interrupt request to the CPU.
The following shows the interrupt request procedure of the on-chip interrupt controller and the trap
processing of the CPU:

(1) The on-chip interrupt controller requests an interrupt by setting the #INTREQ terminal to low. At the
same time, it delivers the interrupt level to the INTLEV(3:0) terminals and the vector number to the
INTVEC(7:0) terminals.

(2) When the CPU accepts the interrupt request, it saves the PC and the PSR into the stack, then resets
the IE bit in the PSR and sets the IL field to the level according to the INTLEV signal.

(3) The CPU reads the vector from the vector address specified by the INTVEC signal and sets it to the
PC for branching to the interrupt handler routine.

Refer to the "Technical Manual" of each model for use of the interrupt controller.

40 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.4 Power Down Mode
The CPU can stop operating in order to reduce current consumption when program execution is not
necessary, in particular standby status awaiting a key entry. For this purpose, the E0C33000 has two
power down modes: HALT mode and SLEEP mode.
The internal registers maintain the contents in the power down mode.

3.4.1 HALT mode
When the CPU executes the "halt" instruction, it suspends the program execution and goes into the HALT
mode.
In the HALT mode, the CPU stops operating. The on-chip peripheral circuits keep operating since the
clocks are supplied.
The HALT mode is canceled by initial reset or an interrupt including NMI. The CPU transits to program
execution status through trap processing for the trap factor. When an interrupt cancels the HALT mode,
the trap processing saves the address of the instruction that follows the "halt" instruction into the stack.
Therefore, when the interrupt handler routine finishes by the "reti" instruction, the program flow returns
to the instruction that follows the "halt" instruction.

3.4.2 SLEEP mode
When the CPU executes the "slp" instruction, it suspends the program execution and goes into the
SLEEP mode.
In the SLEEP mode, the CPU and the on-chip peripheral circuits stop operating. Thus the SLEEP mode
can greatly reduce current consumption in comparison to the HALT mode.
The SLEEP mode is canceled by initial reset or an interrupt including NMI. The CPU transits to program
execution status through trap processing for the trap factor. When an interrupt cancels the SLEEP mode,
the trap processing saves the address of the instruction that follows the "slp" instruction into the stack.
Therefore, when the interrupt handler routine finishes by the "reti" instruction, the program flow returns
to the instruction that follows the "slp" instruction.
Since the SLEEP mode stops the on-chip oscillation circuit, the peripheral circuits that use the oscillation
clock also stop. Therefore the SLEEP mode is canceled by a key-entry interrupt.
When the SLEEP mode is canceled, the on-chip oscillation circuit starts oscillating. The CPU waits until
the oscillation stabilizes then starts operating.

Refer to the "Technical Manual" of each model for peripheral circuit status in the HALT mode and
SLEEP mode and the cancellation method.

E0C33000 CORE CPU MANUAL EPSON 41

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.5 Bus Release Status
The external bus in which external peripheral devices are connected is normally controlled by the CPU.
It can be released for external devices in order to support the DMA (direct memory access) functions and
multiprocessor systems.
The #BUSREQ and #BUSACK terminals are used for bus arbitration.
The bus release sequence is as follows:

(1) The external device which requests the bus authority sets the #BUSREQ terminal to low.
(2) The CPU always monitors the #BUSREQ status. When the terminal goes to low level, the CPU

finishes the bus cycle being executed and waits 1 cycle, then switches the address bus (A27–A0), data
bus (D15–D0) and bus control signals (#RD, #WRL, #WRH) into high-impedance status.
1 cycle later the CPU sets the #BUSACK terminal to low level indicating that the bus is released to
the external device.

(3) After Step (2), the external device becomes the external bus master and executes its bus cycles. The
external bus master must fix the #BUSREQ terminal at low level while executing the bus cycles.

(4) The external bus master returns the bus to high-impedance and the #BUSREQ terminal to high level
after completing the necessary bus cycles.

(5) When the #BUSREQ terminal goes to high level, the CPU sets the #BUSACK terminal to high level
1 cycle later and resumes the suspended processing.

In the some models, the CPU has to take back the bus authority in the bus release status (for example,
models using DRAM need refresh cycles). In this case, the CPU requests returning bus authority using a
peripheral circuit such as an output port. The external bus master device has to handle the signal. Refer to
the "Technical Manual" of each E0C33 Family model for details.

42 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.6 Debugging Mode
The E0C33000 has a special operating mode called a debugging mode.
This mode has been implemented to support debugging during development and is not used in the
application program on the products. This section describes the outline as a CPU function.

3.6.1 Functions of debugging mode
The E0C33000 has incorporated the following debugging functions:

• Single step
A debugging exception can be generated before executing each instruction of the user target program.

• Instruction break
Up to three instruction break points can be set. A debugging exception can be generated before
executing the instructions at the set addresses.

• Data break
A data break address and a read/write condition can be set. The specified data access can generate a
debugging exception. When the specified address is accessed in the specified read/write condition, a
debugging exception occurs after 1 or several instructions is executed from the data access.

• Software break
By executing the "brk" instruction, a debugging exception can be generated. The debugging exception
saves the address following the "brk" instruction into the stack for the debugging mode.

When a debugging exception occurs, the CPU executes a trap processing that differs from the user mode
and enters the debugging mode.
In the debugging mode, the user target program can be suspended at any address and executed in single
stepping by executing debugging routines which are created by the user or provided by Seiko Epson.

3.6.2 Configuration of Area 2
The E0C33000 has reserved Area 2 (0x0060000 to 0x007FFFF, 128KB) in the address space for ICE (in-
circuit emulator) use. In this area, the debug-control registers are allocated.
Addresses 0x0060010 to 0x0077FFF are reserved for the ICE control software and the area from address
0x0078000 is reserved for the debug-control registers and exclusive use of the CPU.
Note that writing data to the registers in Area 2 is not allowed in the user mode. It should be done in the
debugging mode after a debugging exception occurs. The debugging mode has no such restriction, so all
the areas can be accessed.

0x0060010
0x006000C
0x0060008
0x0060004
0x0060000

0x0000010 /
0x000000C /
0x0000008 /
0x0000004 /
0x0000000 /

0x0078018

0x0078014
0x0078012
0x0078010

0x007800C

0x0078008

0x0078004
0x0078002
0x0078000

Area for CPU
32KB

Area for ICE control software
96KB

Stack for R0 register
Stack for PC

reserved
Debugging exception processing vector

0x007FFFF

0x0078000
0x0077FFF

0x0060000

Area 2

Internal RAM area

for user (Note) for ICE

Registers for debugging

Vector and stack for debugging

0x0000000

IBAR2
Instruction break address register #2

DSR Debugging status register 2
DCR Debugging control register 2

DBAR
Data break address register

IBAR1
Instruction break address register #1

IBAR0
Instruction break address register #0

DSR Debugging status register 1
DCR Debugging control register 2

Fig. 3.6.2.1 Configuration of Area 2

Note: When the user sets the debugging mode, the debugging exception processing vector will
be read from address 0x0000000. The PC and R0 register values are saved to address
0x0000008 and 0x000000C, respectively.
The MON33 (debug monitor) was created for this condition.

E0C33000 CORE CPU MANUAL EPSON 43

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

3.6.3 Transition from user mode to debugging mode
When a debugging exception occurs (e.g. the "brk" instruction is executed), the CPU executes the
debugging exception processing to switch from the user mode to the debugging mode. The differences
between debugging exception processing and normal exception processing are shown as follows:
 • It does not use the normal trap table; a vector for entering in the debugging mode is read from

address 0x0000000 in Area 0 or address 0x0060000 for ICE use.
 • The R0 register and PC values are saved (PSR is not saved) and the stack area for the normal mode is

not used. The R0 register is saved to address 0x0000000C or address 0x006000C for ICE use and the
PC value is saved to address 0x0000008 or address 0x0060008 for ICE use.

To switch from the debugging mode to the user mode, execute the "retd" instruction. The "retd" instruc-
tion restores the saved R0 and PC values before returning to the user mode.

3.6.4 Registers for debugging
The registers that control the debugging function are arranged in Area 2, and can be written only in the
debugging mode. The following shows the contents and functions of each register:

DCR (Debugging Control Register): 0x0078000/Byte size, 0x0078010/Byte size

MWRBE
6

–
7

MRDBE
5

DBE
4

IBE(1:0)
3 2

SE
1

DM R/W (DM: R only)

R/W

0
0x0078000

0x0078010 – – (Note)(Note) (Note) (Note) (Note) IBE(2)

Note: Be sure to set bits 5 to 1 in address 0x0078010 to the values as follows. Other settings
will cause the debugging mode to not function normally.
Bits 5 and 4: Fixed at 0. Bits 3–1: Fixed at 1.

The DCR enables/disables the debugging functions. At initial reset, all the bits in the DCR are reset to 0.

0x0078000

Name Bit No.
Bit status

Function1 0
DM 0 Debugging User Debugging Mode: Indicates that the CPU is in the debugging mode.

mode mode When a debugging exception occurs, the DM is set (1) and the CPU enters the
debugging mode. When the "retd" instruction is executed in the debugging
routine, the DM is reset (0) and the CPU returns to the user mode. The DM is a
read only bit, so it cannot be modified by software.

SE 1 Enabled Disabled Single Step Enable: Enables and disables the single step function.
When the SE is set (1), the single step function is enabled and a debugging
exception will occur before executing each instruction of the user program in the
user mode. The debugging mode does not perform single step operations.
When the SE is reset (0), the single step function is disabled.

IBE(1:0) 2, 3 Enabled Disabled Instruction Break Enable: Enables and disables the instruction break function.
IBE(0) (bit 2) and IBE(1) (bit 3) correspond to the instruction break points #0
and #1, respectively. When the IBE(0) (IBE(1)) bit is set (1), the break address
that has been set in the IBAR0 (IBAR1) register becomes effective. When the
instruction of the address is fetched during program execution in the user mode,
a debugging exception occurs before executing the instruction. In the debugging
mode, the instruction break does not occur.
When the IBE bit is reset (0), the instruction break point is invalidated.

DBE 4 Enabled Disabled Data Break Enable: Enables and disables the data break function.
When the DBE is set (1), the data break address that has been set in the DBAR
register becomes effective. When the address is accessed during program
execution in the user mode, a debugging exception occurs after accessing data.
In the debugging mode, the data break does not occur. A data access condition
(read, write, read/write) for generating a break can be specified using the
MRDBE and MWRBE bits.
When the DBE is reset (0), the data break function is disabled.
When both the MRDBE (read) and MWRBE (write) are reset, a data break does
not occur even if the DBE has been set.

44 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

Name Bit No.
Bit status

Function1 0
MRDBE 5 Enabled Disabled Memory Read Break Enable: Enables and disables the memory read data break

function.
When the DBE and the MRDBE are set (1), a data break will occur after the
CPU reads data in the specified address.
When the MRDBE is reset (0), the memory read data break function is disabled.

MWRBE 6 Enabled Disabled Memory Write Break Enable: Enables and disables the memory write data break
function.
When the DBE and the MWRBE are set (1), a data break will occur after the
CPU writes data to the specified address.
When the MWRBE is reset (0), the memory write data break function is
disabled.

0x0078010

Name Bit No.
Bit status

Function1 0
IBE(2) 0 Enabled Disabled Instruction Break Enable: Enables and disables the instruction break function.

IBE(2) corresponds to the instruction break point #2. When the IBE(2) bit is set
(1), the break address that has been set in the IBAR2 register becomes effective.
When the instruction of the address is fetched during program execution in the
user mode, a debugging exception occurs before executing the instruction. In the
debugging mode, the instruction break does not occur.
When the IBE(2) bit is reset (0), the instruction break point is invalidated.

Name Bit No.
Bit status

Function1 0
DR 0 Occurred Non Debug Request: Indicates that the external debugging request was assigned. The

DR is set (1) at the falling edge of the external debugging request signal #DBGREQ.
This function is only for the ICE, general chips do not have the #DBGREQ terminal.

SS 1 Occurred Non Single Step: Indicates that a single step break occurred. The SS is set (1) when a
debugging exception occurs by the single step factor.

IB0 2 Occurred Non Instruction Break 0: Indicates that the instruction break #0 occurred. The IB0 is
set (1) when a debugging exception occurs by the instruction break #0 factor.

IB1 3 Occurred Non Instruction Break 1: Indicates that the instruction break #1 occurred. The IB1 is
set (1) when a debugging exception occurs by the instruction break #1 factor.

DB 4 Occurred Non Data Break: Indicates that the data break occurred. The DB is set (1) when a
debugging exception occurs by the data break factor.

MRDB 5 Occurred Non Memory Read Break: Indicates that the memory read data break occurred. The
MRDB is set (1) when a debugging exception occurs by the data break with a
memory read.

MWRB 6 Occurred Non Memory Write Break: Indicates that the memory write data break occurred. The
MWRB is set (1) when a debugging exception occurs by the data break with a
memory write.

BKF 7 Occurred Non Break Flag: Indicates that the "brk" instruction was executed. The BKF is set
when a debugging exception occurs by executing the "brk" instruction.

0x0078012

Name Bit No.
Bit status

Function1 0
IB2 0 Occurred Non Instruction Break 2: Indicates that the instruction break #2 occurred. The IB2 is

set (1) when a debugging exception occurs by the instruction break #2 factor.

DSR (Debugging Status Register): 0x0078002/ Byte size, 0x0078012/ Byte size

MWRB
6

BKF
7

MRDB
5

DB
4

IB1
3

IB0
2

SS
1

DR
0

R/W

–– – – – – – IB2 R/W

0x0078002

0x0078012

The DSR is the status register that indicates the debugging exception that has occurred. When a debug-
ging exception occurs, the same vector is used to execute the debugging exception processing. Therefore,
the debugging exception service routine must identify the occurred debugging exception type by reading
the DSR.

0x0078002

E0C33000 CORE CPU MANUAL EPSON 45

CHAPTER 3: CPU OPERATION AND PROCESSING STATUS

IBAR0 (Instruction Break Address Register #0): 0x0078006 (bits 27–16), 0x0078004 (bits 15–0)
IBAR1 (Instruction Break Address Register #1): 0x007800A (bits 27–16), 0x0078008 (bits 15–0)
IBAR2 (Instruction Break Address Register #2): 0x0078016 (bits 27–16), 0x0078014 (bits 15–0)

27
Invalid

31
0x0078007 0x0078006 0x0078005 0x0078004

IBAR0
1

0
0

27
Invalid

31
0x007800B 0x007800A 0x0078009 0x0078008

IBAR1
1

0
0

R/W

R/W

27
Invalid

31
0x0078017 0x0078016 0x0078015 0x0078014

IBAR2
1

0
0

R/W

Three instruction break addresses #0–#2 can be set to these registers. The LSB is always handled as 0,
and only bits from bit 27 to bit 1 are effective.
When IBE(0)/IBE(1)/IBE(2) in the DCR has been set (1), the content of IBAR0/IBAR1/IBAR2 is
compared with the PC during program execution in the user mode. A debugging exception will occur if
they are matched. These registers enable read/write operation.

DBAR (Data Break Address Register): 0x007800E (bits 27–16), 0x007800C (bits 15–0)

27
Invalid

31
0x007800F 0x007800E 0x007800D 0x007800C

DBAR
0

R/W

A data break address can be set in this register.
When the DBE in the DCR has been set (1), the content of the DBAR is compared with the accessed
memory address during program execution in the user mode. A debugging exception will occur if they
are matched and the specified read/write condition is met. This register enables read/write operation.
The data break does not occur if all the bits in the DBAR are not completely matched to the base address
of the accessed memory. Therefore, when generating a data break by reading/writing word data, the
address to be specified must point a word boundary address (low-order 2 bits are 0). Similarly, a half
word boundary address (LSB is 0) should be set in this register for generating by half word access.

3.6.5 Traps in debugging mode
In the debugging mode, the exceptions except for reset, address error, zero division, software exception
("int" instruction) and interrupts (including NMI) are masked and do not occur. The normal exception
processing is executed when an address error, zero division or a software exception occurs.
Furthermore, when the CPU returns to the user mode from the debugging mode by the "retd" instruction,
exceptions other than reset and address error and interrupts are masked until the instruction at the return
address is executed. Exceptions and interrupts after the instruction is executed are not masked.

3.6.6 Simultaneous occurrence of debugging exceptions
When two or more debugging exception factors occur at the same time, one debugging exception is only
generated but the status bits in the DSR corresponding to all the occurred factors are set.

46 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

CHAPTER 4 DETAILED EXPLANATION OF INSTRUCTIONS
This chapter explains each instruction in the E0C33000 instruction set in alphabetical order.

4.1 Symbol Meanings

4.1.1 Registers
The following symbols indicate a register or the content:
%rd, rd: Indicates a general-purpose register (R0–R15) used as the destination or the content of the register.
%rs, rs: Indicates a general-purpose register (R0–R15) used as the source or the content of the register.
%rb, rb: Indicates a general-purpose register (R0–R15) that has stored a base address accessed in

the register indirect addressing mode or the content of the register.
%sd, sd: Indicates a special register (PSR, SP, ALR, AHR) used as the destination or the content of

the register.
%ss, ss: Indicates a special register (PSR, SP, ALR, AHR) used as the source or the content of the register.
%sp, sp: Indicates the stack pointer (SP) or the content of the SP.

In the mnemonic notation, a "%" must be prefixed to the register name in order to distinguish from symbols.
General-purpose registers: %r0, %r1, %r2 · · · %r15, or %R0, %R1, %R2 · · · %R15
Special registers: PSR.... %psr, or %PSR

SP %sp, or %SP
ALR ... %alr, or %ALR
AHR .. %ahr, or %AHR

The register field (rd, rs, sd, ss) in the instruction code contains the specified register number.
General-purpose registers (rd, rs): R0 = 0b0000, R1 = 0b0001 · · · R15 = 0b1111
Special registers (sd, ss): PSR = 0b0000, SP = 0b0001, ALR = 0b0010, AHR = 0b0011

4.1.2 Immediate
The following symbols indicate an immediate data:
immX: Indicates an unsigned X-bit immediate data. X is a number that indicates the bit size.
signX: Indicates a signed X-bit immediate data. X is a number that indicates the bit size. The MSB

of the immediate data is handled as the sign bit.

4.1.3 Memories
The following symbols indicate a memory specification or the contents of the memory:
[%rb]: Specifies the register indirect addressing mode. The content of the general-purpose register

(rb) is used as the base address to be accessed.
[%rb]+: Specifies the register indirect addressing with post-increment mode. The content of the

general-purpose register (rb) is used as the base address to be accessed. The content of the
rb register is incremented according the data size after accessing the memory.

[%sp+immX]: Specifies the register indirect addressing with displacement mode and used for specifying
an address in the stack. The base address to be accessed is specified by adding the immedi-
ate data (immX) to the content of the SP.

B[rb]: Indicates the memory address specified by the general-purpose register (rb) or the byte data
stored in the address.

B[rb+immX]: Indicates the memory address specified by adding the immediate data (immX) to the
content of the general-purpose register (rb) or the byte data stored in the address.

B[sp+immX]: Indicates the memory address specified by adding the immediate data (immX) to the
content of the SP or the byte data stored in the address.

H[rb]: Indicates the half word (16-bit) area in which the base address is specified by the content of
the general-purpose register (rb) or the half word data stored in the area. Data in the base
address is handled as the low-order byte.

E0C33000 CORE CPU MANUAL EPSON 47

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

H[rb+immX]: Indicates the half word (16-bit) area in which the base address is specified by adding the
immediate data (immX) to the content of the general-purpose register (rb) or the half word
data stored in the area. Data in the base address is handled as the low-order byte.

H[sp+immX]: Indicates the half word (16-bit) area in which the base address is specified by adding the
immediate data (immX) to the content of the SP or the half word data stored in the area.
Data in the base address is handled as the low-order byte.

W[rb]: Indicates the word (32-bit) area in which the base address is specified by the content of the
general-purpose register (rb) or the word data stored in the area. Data in the base address is
handled as the least significant byte.

W[rb+immX]: Indicates the word (32-bit) area in which the base address is specified by adding the
immediate data (immX) to the content of the general-purpose register (rb) or the word data
stored in the area. Data in the base address is handled as the least significant byte.

W[sp]: Indicates the word (32-bit) area in which the base address is specified by the content of the
SP or the word data stored in the area. Data in the base address is handled as the least
significant byte.

W[sp+immX]: Indicates the word (32-bit) area in which the base address is specified by adding the
immediate data (immX) to the content of the SP or the word data stored in the area. Data in
the base address is handled as the least significant byte.

4.1.4 Bits and bit fields
The symbols below indicate a bit number or a bit field of registers and memory data. They are used with
a register or memory symbol.
(X): Indicates Bit X in data. LSB is indicated as (0).
(X:Y): Indicates a bit field from Bit X to Bit Y.
{X, Y . . .}: Indicates a bit (data) configuration. The left item is the high-order bit (data). It is also used

to describe the 64-bit register pair {AHR, ALR}.

4.1.5 Flags
The following symbols indicate the flags in the PSR or set/reset status:
IL[3:0]: Interrupt level field
MO: MAC overflow flag
DS: Dividend sign flag
IE: Interrupt enable
C: Carry flag
V: Overflow flag
Z: Zero flag
N: Negative flag
–: Indicates that the instruction does not affect the flag.
↔: Indicates that the instruction sets (1) or resets (0) the flag.
0: Indicates that the instruction resets (0) the flag.

4.1.6 Functions and others
The following symbols are used for function explanation:
←: Indicates that the right item is loaded or set to the left item.
+: Addition
-: Subtraction
&: AND
|: OR
^: XOR
!: NOT
×: Multiplication
÷: Division
The following symbol is used for indicating two or more codes or mnemonics with one word:
∗: A number either 1 or 0, or any letter from a to z.

48 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

4.2 Instruction Code Class
In the E0C33000 instruction set, all the instructions are 16-bit fixed size.
The bit configuration of the instruction code is classified into 8 types (Class 0 to Class 7) according to the
function and addressing mode. The high-order 3 bits indicate a Class.

Instructions for multiplication and division can be executed only in the models that have an optional
multiplier. The following instructions function the same as the "nop" instruction in the models that have
no multiplier and the AHR and the ALR cannot be used:

mlt.h multu.h mlt.w multu.w
div0s div0u div1 div2s div3s
mac
ld.w %rd, %ahr ld.w %rd, %alr
ld.w %ahr, %rs ld.w %alr, %rs

Class 0
This class contains one-operand instructions and branch instructions.
15 13 12 9 8 7 6 5 4 3 0
0 0 0 op1 d op2 0 0 imm2/rd/rs

op1 op2 Mnemonic Function

0000 00 nop No operation
0000 01 slp SLEEP mode
0000 10 halt HALT mode
0000 11 reserved
0001 00 pushn %rs Push for general-purpose registers
0001 01 popn %rd Pop for general-purpose registers
0001 1∗ reserved
0010 00 brk Debugging exception
0010 01 retd Return from debugging routine
0010 10 int imm2 Software exception
0010 11 reti Return from trap handler routine
0011 00 call %rb Subroutine call
0011 01 ret Return from subroutine
0011 10 jp %rb Unconditional jump
0011 11 reserved

15 13 12 9 8 7 0
0 0 0 op1 d sign8

op1 Mnemonic Function

0100 jrgt sign8 PC relative conditional jump Condition = !Z & !(N ^ V)
0101 jrge sign8 PC relative conditional jump Condition = !(N ^ V)
0110 jrlt sign8 PC relative conditional jump Condition = N ^ V
0111 jrle sign8 PC relative conditional jump Condition = Z | (N ^ V)
1000 jrugt sign8 PC relative conditional jump Condition = !Z & !C
1001 jruge sign8 PC relative conditional jump Condition = !C
1010 jrult sign8 PC relative conditional jump Condition = C
1011 jrule sign8 PC relative conditional jump Condition = Z | C
1100 jreq sign8 PC relative conditional jump Condition = Z
1101 jrne sign8 PC relative conditional jump Condition = !Z
1110 call sign8 PC relative subroutine call
1111 jp sign8 PC relative unconditional jump

E0C33000 CORE CPU MANUAL EPSON 49

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Class 1
This class contains data transfer instructions between a general-purpose register and memory, and
logic/arithmetic operation instructions between general-purpose registers.
15 13 12 10 9 8 7 4 3 0
0 0 1 op1 op2 rb rs/rd

op1 op2 Mnemonic Function

000 00 ld.b %rd,[%rb] Byte data transfer from memory to general-purpose register
(with sign extension)

001 00 ld.ub %rd,[%rb] Byte data transfer from memory to general-purpose register
(with zero extension)

010 00 ld.h %rd,[%rb] Half word data transfer from memory to general-purpose register
(with sign extension)

011 00 ld.uh %rd,[%rb] Half word data transfer from memory to general-purpose register
(with zero extension)

100 00 ld.w %rd,[%rb] Word data transfer from memory to general-purpose register
101 00 ld.b [%rb],%rs Byte data transfer from general-purpose register to memory
110 00 ld.h [%rb],%rs Half word data transfer from general-purpose register to memory
111 00 ld.w [%rb],%rs Word data transfer from general-purpose register to memory
000 01 ld.b %rd,[%rb]+ Byte data transfer from memory to general-purpose register

(with sign extension)
001 01 ld.ub %rd,[%rb]+ Byte data transfer from memory to general-purpose register

(with zero extension)
010 01 ld.h %rd,[%rb]+ Half word data transfer from memory to general-purpose register

(with sign extension)
011 01 ld.uh %rd,[%rb]+ Half word data transfer from memory to general-purpose register

(with zero extension)
100 01 ld.w %rd,[%rb]+ Word data transfer from memory to general-purpose register
101 01 ld.b [%rb]+,%rs Byte data transfer from general-purpose register to memory
110 01 ld.h [%rb]+,%rs Half word data transfer from general-purpose register to memory
111 01 ld.w [%rb]+,%rs Word data transfer from general-purpose register to memory

15 13 12 10 9 8 7 4 3 0
0 0 1 op1 op2 rs rd

op1 op2 Mnemonic Function

000 10 add %rd,%rs Addition between general-purpose registers
001 10 sub %rd,%rs Subtraction between general-purpose registers
010 10 cmp %rd,%rs Comparison between general-purpose registers
011 10 ld.w %rd,%rs Data transfer between general-purpose registers
100 10 and %rd,%rs Logical product between general-purpose registers
101 10 or %rd,%rs Logical sum between general-purpose registers
110 10 xor %rd,%rs Exclusive OR between general-purpose registers
111 10 not %rd,%rs Negation of general-purpose registers
∗∗∗ 11 reserved

50 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Class 2
This class contains data transfer instructions in the register indirect addressing with displacement
mode using the SP.
15 13 12 10 9 4 3 0
0 1 0 op1 imm6 rs/rd

op1 Mnemonic Function

000 ld.b %rd,[%sp+imm6] Byte data transfer from stack to general-purpose register
(with sign extension)

001 ld.ub %rd,[%sp+imm6] Byte data transfer from stack to general-purpose register
(with zero extension)

010 ld.h %rd,[%sp+imm6] Half word data transfer from stack to general-purpose register
(with sign extension)

011 ld.uh %rd,[%sp+imm6] Half word data transfer from stack to general-purpose register
(with zero extension)

100 ld.w %rd,[%sp+imm6] Word data transfer from stack to general-purpose register
101 ld.b [%sp+imm6],%rs Byte data transfer from general-purpose register to stack
110 ld.h [%sp+imm6],%rs Half word data transfer from general-purpose register to stack
111 ld.w [%sp+imm6],%rs Word data transfer from general-purpose register to stack

Class 3
This class contains data transfer and logic/arithmetic operation instructions using a 6-bit immediate data.
15 13 12 10 9 4 3 0
0 1 1 op1 imm6/sign6 rd

op1 Mnemonic Function

000 add %rd,imm6 Addition of immediate data to general-purpose register
001 sub %rd,imm6 Subtraction of immediate data from general-purpose register
010 cmp %rd,sign6 Comparison between general-purpose register and immediate data
011 ld.w %rd,sign6 Immediate data transfer to general-purpose register
100 and %rd,sign6 Logical product between general-purpose register and immediate data
101 or %rd,sign6 Logical sum between general-purpose register and immediate data
110 xor %rd,sign6 Exclusive OR between general-purpose register and immediate data
111 not %rd,sign6 Negation of immediate data

Class 4
This class contains arithmetic instructions for the SP, shift/rotation instructions and division instructions.
15 13 12 10 9 0
1 0 0 op1 imm10

op1 Mnemonic Function

000 add %sp,imm10 Addition of immediate data to the SP
001 sub %sp,imm10 Subtraction of immediate data from the SP

E0C33000 CORE CPU MANUAL EPSON 51

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

15 13 12 10 9 8 7 4 3 0
1 0 0 op1 op2 imm4/rs rd

op1 op2 Mnemonic Function

010 00 srl %rd,imm4 Logical shift to right (8-bit shift count with imm4)
011 00 sll %rd,imm4 Logical shift to left (8-bit shift count with imm4)
100 00 sra %rd,imm4 Arithmetical shift to right (8-bit shift count with imm4)
101 00 sla %rd,imm4 Arithmetical shift to left (8-bit shift count with imm4)
110 00 rr %rd,imm4 Rotation to right (8-bit shift count with imm4)
111 00 rl %rd,imm4 Rotation to left (8-bit shift count with imm4)
010 01 srl %rd,%rs Logical shift to right (8-bit shift count with rs)
011 01 sll %rd,%rs Logical shift to left (8-bit shift count with rs)
100 01 sra %rd,%rs Arithmetical shift to right (8-bit shift count with rs)
101 01 sla %rd,%rs Arithmetical shift to left (8-bit shift count with rs)
110 01 rr %rd,%rs Rotation to right (8-bit shift count with rs)
111 01 rl %rd,%rs Rotation to left (8-bit shift count with rs)

15 13 12 10 9 8 7 4 3 0
1 0 0 op1 op2 rs rd

op1 op2 Mnemonic Function

010 10 scan0 %rd,%rs Bit search for "0"
011 10 scan1 %rd,%rs Bit search for "1"
100 10 swap %rd,%rs Swap in byte units
101 10 mirror %rd,%rs Change of bit order in byte units
11∗ 10 reserved
010 11 div0s %rs Signed division 1st step
011 11 div0u %rs Unsigned division 1st step
100 11 div1 %rs Step division
101 11 div2s %rs Data correction 1 for signed division
110 11 div3s Data correction 2 for signed division
111 11 reserved

Class 5
This class contains data transfer instructions between a general-purpose register and a special register
or between general-purpose registers, bit operation instructions, multiplication instructions and a
multiplication and accumulation instruction.
15 13 12 10 9 8 7 4 3 0
1 0 1 op1 op2 rs/ss sd/rd

op1 op2 Mnemonic Function

000 00 ld.w %sd,%rs Word data transfer from general-purpose register to special register
001 00 ld.w %rd,%ss Word data transfer from special register to general-purpose register

15 13 12 10 9 8 7 4 3 0
1 0 1 op1 op2 rb 0,imm3

op1 op2 Mnemonic Function

010 00 btst [%rb],imm3 Bit test for memory data
011 00 bclr [%rb],imm3 Bit clear for memory data
100 00 bset [%rb],imm3 Bit set for memory data
101 00 bnot [%rb],imm3 Bit reversion for memory data

52 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

15 13 12 10 9 8 7 4 3 0
1 0 1 op1 op2 rs rd

op1 op2 Mnemonic Function

110 00 adc %rd,%rs Addition with carry between general-purpose registers
111 00 sbc %rd,%rs Subtraction with borrow between general-purpose registers
000 01 ld.b %rd,%rs Byte data transfer between general-purpose registers

(with sign extension)
001 01 ld.ub %rd,%rs Byte data transfer between general-purpose registers

(with zero extension)
010 01 ld.h %rd,%rs Half word data transfer between general-purpose registers

(with sign extension)
011 01 ld.uh %rd,%rs Half word data transfer between general-purpose registers

(with zero extension)
1∗∗ 01 reserved
000 10 mlt.h %rd,%rs Signed 16-bit multiplication
001 10 mltu.h %rd,%rs Unsigned 16-bit multiplication
010 10 mlt.w %rd,%rs Signed 32-bit multiplication
011 10 mltu.w %rd,%rs Unsigned 32-bit multiplication
100 10 mac %rs Multiplication and accumulation operation
101 10 reserved
11∗ 10 reserved
∗∗∗ 11 reserved

Class 6
This class contains an immediate extension instruction only.
15 13 12 0
1 1 0 imm13

Mnemonic Function

ext imm13 Immediate extension

Class 7
This class is reserved for expansion in future.
15 13 12 0
1 1 1 –

E0C33000 CORE CPU MANUAL EPSON 53

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

4.3 Reference for Individual Instruction
This section explains all the instructions in alphabetical order.

The explanations contain the following items.

Function:
Indicates the functions of the instruction.
"Standard" shows the function when the instruction is executed without extension.
"Extension 1" shows the function when the operand or immediate data is extended by one "ext"
instruction described prior to the instruction.
"Extension 2" shows the function when the operand or immediate data is extended by two "ext"
instructions described prior to the instruction.
If the "Extension" function is described as "Invalid", the instruction cannot be extended. And the
previous "ext" instruction is invalidated.

Code:
Indicates the instruction code.

Flags:
Indicates the flag statuses after executing the instruction.

Mode:
Indicates the addressing mode. "Src" shows the addressing mode for the source and "Dst" shows it for
the destination.

Clock:
Indicates the number of execution cycles for the instruction. The described cycle count is only when
executing the instruction in the internal ROM and accessing data in the internal RAM.
See Section 3.2.2, "Number of instruction execution cycles", for the number of execution cycles when
external memory is used or under other conditions and delay by interlock.

Description:
Explains the functions.

Example:
Shows an example of how to describe in assembler level.

Note:
Shows notes on using.

54 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

adc %rd, %rs

Function: Addition with carry
Standard: rd ← rd + rs + C
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs rd

1 0 1 1 1 0 0 0 rs rd 0xB800–0xB8FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – ↔ ↔ ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Adds the contents of the rs register and C (carry) flag to the rd register.

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Examples: adc %r0,%r1 ; r0 = r0 + r1 + C

Addition of 64-bit data
data 1 = {r2, r1}, data2 = {r4, r3}, result = {r2, r1}
add %r1,%r3 ; Addition of the low-order word

adc %r2,%r4 ; Addition of the high-order word

E0C33000 CORE CPU MANUAL EPSON 55

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

add %rd, %rs

Function: Addition
Standard: rd ← rd + rs
Extension 1: rd ← rs + imm13
Extension 2: rd ← rs + imm26

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 1 0 rs rd

0 0 1 0 0 0 1 0 rs rd 0x2200–0x22FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – ↔ ↔ ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
add %rd, %rs ; rd ← rd + rs
Adds the contents of the rs register to the rd register.

(2) Extension 1
ext imm13
add %rd, %rs ; rd ← rs + imm13
Adds the 13-bit immediate data (imm13) to the contents of the rs register, and then stores the
results to the rd register. It does not change the contents of the rs register.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
add %rd, %rs ; rd ← rs + imm26
Adds the 26-bit immediate data (imm26) to the contents of the rs register, and then stores the
results to the rd register. The imm26 is zero-extended into 32 bits prior to the operation. It does
not change the contents of the rs register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: add %r0,%r0 ; r0 = r0 + r0

ext 0x1

ext 0x1fff

add %r1,%r2 ; r1 = r2 + 0x3fff

56 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

add %rd, imm6

Function: Addition
Standard: rd ← rd + imm6
Extension 1: rd ← rd + imm19
Extension 2: rd ← rd + imm32

Code: 15 13 12 10 9 4 3 0
class 3 op1 imm6 rd

0 1 1 0 0 0 imm6 rd 0x6000–0x63FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – ↔ ↔ ↔ ↔

Mode: Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
add %rd, imm6 ; rd ← rd + imm6
Adds the 6-bit immediate data (imm6) to the rd register. The imm6 is zero-extended into 32 bits
prior to the operation.

(2) Extension 1
ext imm13 ; = imm19(18:6)
add %rd, imm6 ; rd ← rd + imm19, imm6 = imm19(5:0)
Adds the 19-bit immediate data (imm19) extended with the "ext" instruction to the rd register.
The imm19 is zero-extended into 32 bits prior to the operation.

(3) Extension 2
ext imm13 ; = imm32(31:19)
ext imm13' ; = imm32(18:6)
add %rd, imm6 ; rd ← rd + imm32, imm6 = imm32(5:0)
Adds the 32-bit immediate data (imm32) extended with the "ext" instructions to the rd register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: add %r0,0x3f ; r0 = r0 + 0x3f

ext 0x1fff

ext 0x1fff

add %r1,0x3f ; r1 = r1 + 0xffffffff

E0C33000 CORE CPU MANUAL EPSON 57

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

add %sp, imm10

Function: Addition
Standard: sp ← sp + imm10 × 4
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 0
class 4 op1 imm10

1 0 0 0 0 0 imm10 0x8000–0x83FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Immediate data (unsigned)
Dst: Register direct (SP)

Clock: 1 cycle

Description: (1) Standard
Quadruples the 10-bit immediate data (imm10) and adds it to the stack pointer SP. The imm10 is
zero-extended into 32 bits prior to the operation.

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: add %sp,0x100 ; sp = sp + 0x400

58 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

and %rd, %rs

Function: Logical product
Standard: rd ← rd & rs
Extension 1: rd ← rs & imm13
Extension 2: rd ← rs & imm26

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 1 0 rs rd

0 0 1 1 0 0 1 0 rs rd 0x3200–0x32FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
and %rd, %rs ; rd ← rd & rs
ANDs the contents of the rs and rd registers, and stores the results to the rd register.

(2) Extension 1
ext imm13
and %rd, %rs ; rd ← rs & imm13
ANDs the contents of the rs register and the 13-bit immediate data (imm13), and stores the
results to the rd register. The imm13 is zero-extended into 32 bits prior to the operation. It does
not change the contents of the rs register.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
and %rd, %rs ; rd ← rs & imm26
ANDs the contents of the rs register and the 26-bit immediate data (imm26), and stores the
results to the rd register. The imm26 is zero-extended into 32 bits prior to the operation. It does
not change the contents of the rs register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: and %r0,%r0 ; r0 = r0 & r0

ext 0x1

ext 0x1fff

and %r1,%r2 ; r1 = r2 & 0x00003fff

E0C33000 CORE CPU MANUAL EPSON 59

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

and %rd, sign6

Function: Logical product
Standard: rd ← rd & sign6
Extension 1: rd ← rd & sign19
Extension 2: rd ← rd & sign32

Code: 15 13 12 10 9 4 3 0
class 3 op1 sign6 rd

0 1 1 1 0 0 sign6 rd 0x7000–0x73FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Immediate data (signed)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
and %rd, sign6 ; rd ← rd & sign6
ANDs the contents of the rd register and the 6-bit immediate data (sign6), and stores the results
to the rd register. The sign6 is sign-extended into 32 bits prior to the operation.

(2) Extension 1
ext imm13 ; = sign19(18:6)
and %rd, sign6 ; rd ← rd & sign19, sign6 = sign19(5:0)
ANDs the contents of the rd register and the 19-bit immediate data (sign19) extended with the
"ext" instruction, and stores the results to the rd register. The sign19 is sign-extended into 32 bits
prior to the operation.

(3) Extension 2
ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
and %rd, sign6 ; rd ← rd & sign32, sign6 = sign32(5:0)
ANDs the contents of the rd register and the 32-bit immediate data (sign32) extended with the
"ext" instructions, and stores the results to the rd register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: and %r0,0x3e ; r0 = r0 & 0xfffffffe

ext 0x7ff

and %r1,0x3f ; r1 = r1 & 0x0001ffff

60 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

bclr [%rb], imm3

Function: Bit clear
Standard: B[rb](imm3) ← 0
Extension 1: B[rb + imm13](imm3) ← 0
Extension 2: B[rb + imm26](imm3) ← 0

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rb 0 imm3

1 0 1 0 1 1 0 0 rb 0 imm3 0xAC00–0xACF7
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Immediate data (unsigned)
Dst: Register indirect (%rb = %r0–%r15)

Clock: 3 cycles

Description: (1) Standard
bclr [%rb], imm3 ; B[rb](imm3) ← 0
Clears a data bit of the byte data in the address specified with the rb register. The 3-bit immedi-
ate data (imm3) specifies the bit number to be cleared (7–0).

(2) Extension 1
ext imm13
bclr [%rb], imm3 ; B[rb + imm13](imm3) ← 0
The "ext" instruction changes the addressing mode to register indirect addressing with displace-
ment. The extended instruction clears the data bit specified with the imm3 in the address
specified by adding the 13-bit immediate data (imm13) to the contents of the rb register. It does
not change the contents of the rb register.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
bclr [%rb], imm3 ; B[rb + imm26](imm3) ← 0
The "ext" instructions change the addressing mode to register indirect addressing with displace-
ment. The extended instruction clears the data bit specified with the imm3 in the address
specified by adding the 26-bit immediate data (imm26) to the contents of the rb register. It does
not change the contents of the rb register.

Examples: ld.w %r0,[%sp+0x10] ; Sets the memory address to be accessed

; to the R0 register.

bclr [%r0],0x0 ; Clears Bit 0 of data in the specified

; address.

ext 0x1

bclr [%r0],0x7 ; Clears Bit 7 of data in the following

; address.

E0C33000 CORE CPU MANUAL EPSON 61

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

bnot [%rb], imm3

Function: Bit negation
Standard: B[rb](imm3) ← !B[rb](imm3)
Extension 1: B[rb + imm13](imm3) ← !B[rb + imm13](imm3)
Extension 2: B[rb + imm26](imm3) ← !B[rb + imm26](imm3)

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rb 0 imm3

1 0 1 1 0 1 0 0 rb 0 imm3 0xB400–0xB4F7
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Immediate data (unsigned)
Dst: Register indirect (%rb = %r0–%r15)

Clock: 3 cycles

Description: (1) Standard
bnot [%rb], imm3 ; B[rb](imm3) ← !B[rb](imm3)
Reverses a data bit of the byte data in the address specified with the rb register. The 3-bit
immediate data (imm3) specifies the bit number to be reversed (7–0).

(2) Extension 1
ext imm13
bnot [%rb], imm3 ; B[rb + imm13](imm3) ← !B[rb + imm13](imm3)
The "ext" instruction changes the addressing mode to register indirect addressing with displace-
ment. The extended instruction reverses the data bit specified with the imm3 in the address
specified by adding the 13-bit immediate data (imm13) to the contents of the rb register. It does
not change the contents of the rb register.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
bnot [%rb], imm3 ; B[rb + imm26](imm3) ← !B[rb + imm26](imm3)
The "ext" instructions change the addressing mode to register indirect addressing with displace-
ment. The extended instruction reverses the data bit specified with the imm3 in the address
specified by adding the 26-bit immediate data (imm26) to the contents of the rb register. It does
not change the contents of the rb register.

Examples: ld.w %r0,[%sp+0x10] ; Sets the memory address to be accessed

; to the R0 register.

bnot [%r0],0x0 ; Reverses Bit 0 of data in the specified

; address.

ext 0x1

bnot [%r0],0x7 ; Reverses Bit 7 of data in the following

; address.

62 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

brk

Function: Debugging exception
Standard: W[0x8(or 0x60008)] ← pc + 2, W[0xC(or 0x6000C)] ← r0, pc ← W[0x0(or 0x60000)]
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 5 4 3 0
class 0 op1 0 op2 0 0 –

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0x0400
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – 0 | – – – –

Clock: 10 cycles

Description: Calls a debugging handler routine.
The "brk" instruction stores the address that follows this instruction and the contents of the R0
register into the stack for debugging, then reads the vector for the debugging handler routine from
the debugging vector address (0x0000000 or 0x0060000) and sets it to the PC. Thus the program
branches to the debugging handler routine. Furthermore the CPU enters the debugging mode.
The "retd" instruction must be used for return from the debugging handler routine.
This instruction is provided for ICE control software. Do not use it in general programs.

Example: brk ; Executes the debugging handler routine.

E0C33000 CORE CPU MANUAL EPSON 63

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

bset [%rb], imm3

Function: Bit set
Standard: B[rb](imm3) ← 1
Extension 1: B[rb + imm13](imm3) ← 1
Extension 2: B[rb + imm26](imm3) ← 1

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rb 0 imm3

1 0 1 1 0 0 0 0 rb 0 imm3 0xB000–0xB0F7
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Immediate data (unsigned)
Dst: Register indirect (%rb = %r0–%r15)

Clock: 3 cycles

Description: (1) Standard
bset [%rb], imm3 ; B[rb](imm3) ← 1
Sets a data bit of the byte data in the address specified with the rb register. The 3-bit immediate
data (imm3) specifies the bit number to be set (7–0).

(2) Extension 1
ext imm13
bset [%rb], imm3 ; B[rb + imm13](imm3) ← 1
The "ext" instruction changes the addressing mode to register indirect addressing with displace-
ment. The extended instruction sets the data bit specified with the imm3 in the address specified
by adding the 13-bit immediate data (imm13) to the contents of the rb register. It does not
change the contents of the rb register.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
bset [%rb], imm3 ; B[rb + imm26](imm3) ← 1
The "ext" instructions change the addressing mode to register indirect addressing with displace-
ment. The extended instruction sets the data bit specified with the imm3 in the address specified
by adding the 26-bit immediate data (imm26) to the contents of the rb register. It does not
change the contents of the rb register.

Examples: ld.w %r0,[%sp+0x10] ; Sets the memory address to be accessed

; to the R0 register.

bset [%r0],0x0 ; Sets Bit 0 of data in the specified

; address.

ext 0x1

bset [%r0],0x7 ; Sets Bit 7 of data in the following

; address.

64 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

btst [%rb], imm3

Function: Bit test
Standard: Z flag ← 1 if B[rb](imm3) = 0 else Z flag ← 0
Extension 1: Z flag ← 1 if B[rb + imm13](imm3) = 0 else Z flag ← 0
Extension 2: Z flag ← 1 if B[rb + imm26](imm3) = 0 else Z flag ← 0

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rb 0 imm3

1 0 1 0 1 0 0 0 rb 0 imm3 0xA800–0xA8F7
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ –

Mode: Src: Immediate data (unsigned)
Dst: Register indirect (%rb = %r0–%r15)

Clock: 3 cycles

Description: (1) Standard
btst [%rb], imm3 ; Z flag ← 1 if B[rb](imm3) = 0 else Z flag ← 0
Tests a data bit of the byte data in the address specified with the rb register and sets the Z (zero)
flag if the bit is 0. The 3-bit immediate data (imm3) specifies the bit number to be tested (7–0).

(2) Extension 1
ext imm13
btst [%rb], imm3 ; Z flag ← 1 if B[rb + imm13](imm3) = 0 else Z flag ← 0
The "ext" instruction changes the addressing mode to register indirect addressing with displace-
ment. The extended instruction tests the data bit specified with the imm3 in the address specified
by adding the 13-bit immediate data (imm13) to the contents of the rb register. It does not
change the contents of the rb register.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
btst [%rb], imm3 ; Z flag ← 1 if B[rb + imm26](imm3) = 0 else Z flag ← 0
The "ext" instructions change the addressing mode to register indirect addressing with displace-
ment. The extended instruction tests the data bit specified with the imm3 in the address specified
by adding the 26-bit immediate data (imm26) to the contents of the rb register. It does not
change the contents of the rb register.

Example: ld.w %r0,[%sp+0x10] ; Sets the memory address to be accessed

; to the R0 register.

btst [%r0],0x7 ; Tests Bit 7 of data in the specified

; address.

jreq POSITIVE ; Jumps if the bit is 0.

E0C33000 CORE CPU MANUAL EPSON 65

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

call %rb / call.d %rb

Function: Subroutine call
Standard: sp ← sp - 4, W[sp] ← pc + 2, pc ← rb
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 5 4 3 0
class 0 op1 d op2 0 0 rb

0 0 0 0 0 1 1 d 0 0 0 0 rb 0x0600–0x060F, 0x070F–0x070F
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Register direct (%rb = %r0–%r15)

Clock: call: 3 cycles
call.d: 2 cycles

Description: (1) Standard
call %rb
Stores the address of the following instruction into the stack, then sets the contents of the rb
register to the PC for calling the subroutine that starts from the address set to the PC. The LSB of
the rb register is invalid and is always handled as 0. When the "ret" instruction is executed in the
subroutine, the program flow returns to the instruction following the "call" instruction.

(2) Delayed branch (d bit = 1)
call.d %rb
When "call.d" is specified, the d bit in the instruction code is set and the following instruction
becomes a delayed instruction.
The delayed instruction is executed before branching to the subroutine. Therefore the address
(PC+4) of the instruction that follows the delayed instruction is stored into the stack as the return
address.
When the "call.d" instruction is executed, interrupts and exceptions cannot occur because traps
are masked between the "call.d" and delayed instructions.

Example: call %r0 ; Calls the subroutine that starts from the

; address stored in the R0 register.

Note: When using the "call.d" instruction (delayed branch), the next instruction must be an instruction
available for a delayed instruction. Be aware that the operation is undefined if another instruction is
executed. See the instruction list in the Appendix for available instructions.

66 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

call sign8 / call.d sign8

Function: Subroutine call
Standard: sp ← sp - 4, W[sp] ← pc + 2, pc ← pc + sign8 × 2
Extension 1: sp ← sp - 4, W[sp] ← pc + 2, pc ← pc + sign22
Extension 2: sp ← sp - 4, W[sp] ← pc + 2, pc ← pc + sign32

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 1 1 1 0 d sign8 0x1C00–0x1DFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: call: 3 cycles
call.d: 2 cycles

Description: (1) Standard
call sign8 ; = "call sign9", sign8 = sign9(8:1), sign9(0) = 0
Stores the address of the following instruction into the stack, then doubles the signed 8-bit
immediate data (sign8) and adds it to the PC for calling the subroutine that starts from the
address. The sign8 specifies a half word address in 16-bit units. When the "ret" instruction is
executed in the subroutine, the program flow returns to the instruction following the "call"
instruction.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
call sign8 ; = "call sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement into 22 bits using its 13-bit immediate data
(imm13). The 22-bit displacement is sign-extended and added to the PC.
The sign22 allows branches within the range of PC-0x200000 to PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign(21:9)
call sign8 ; = "call sign32", sign9 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement into 32 bits using their 13-bit immediate data
(imm13 and imm13'). The displacement covers the entire address space.

(4) Delayed branch (d bit = 1)
call.d sign8
When "call.d" is specified, the d bit in the instruction code is set and the following instruction
becomes a delayed instruction.
The delayed instruction is executed before branching to the subroutine. Therefore the address
(PC+4) of the instruction that follows the delayed instruction is stored into the stack as the return
address.
When the "call.d" instruction is executed, interrupts and exceptions cannot occur because traps
are masked between the "call.d" and delayed instructions.

Example: ext 0x1fff

call 0x0 ; Calls the subroutine that starts from the

; address specified by PC-0x200.

Note: When using the "call.d" instruction (delayed branch), the next instruction must be an instruction
available for a delayed instruction. Be aware that the operation is undefined if another instruction is
executed. See the instruction list in the Appendix for available instructions.

E0C33000 CORE CPU MANUAL EPSON 67

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

cmp %rd, %rs

Function: Comparison
Standard: rd - rs
Extension 1: rs - imm13
Extension 2: rs - imm26

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 1 0 rs rd

0 0 1 0 1 0 1 0 rs rd 0x2A00–0x2AFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – ↔ ↔ ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
cmp %rd, %rs ; rd - rs
Subtracts the contents of the rs register from the contents of the rd register, and sets or resets the
flags (C, V, Z and N) according to the results. It does not change the contents of the rd register.

(2) Extension 1
ext imm13
cmp %rd, %rs ; rs - imm13
Subtracts the 13-bit immediate data (imm13) from the contents of the rs register, and sets or
resets the flags (C, V, Z and N) according to the results. It does not change the contents of the rd
and rs registers.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
cmp %rd, %rs ; rs - imm26
Subtracts the 26-bit immediate data (imm26) from the contents of the rs register, and sets or
resets the flags (C, V, Z and N) according to the results. It does not change the contents of the rd
and rs registers.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: cmp %r0,%r1 ; Changes the flags according to the results of

; r0 - r1.

ext 0x1

ext 0x1fff

cmp %r1,%r2 ; Changes the flags according to the results of

; r2 - 0x3ff.

68 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

cmp %rd, sign6

Function: Comparison
Standard: rd - sign6
Extension 1: rd - sign19
Extension 2: rd - sign32

Code: 15 13 12 10 9 4 3 0
class 3 op1 sign6 rd

0 1 1 0 1 0 sign6 rd 0x6800–0x6BFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – ↔ ↔ ↔ ↔

Mode: Src: Immediate data (signed)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
cmp %rd, sign6 ; rd - sign6
Subtracts the signed 6-bit immediate data (sign6) from the contents of the rd register, and sets or
resets the flags (C, V, Z and N) according to the results. The sign6 is sign-extended into 32 bits
prior to the operation. It does not change the contents of the rd register.

(2) Extension 1
ext imm13 ; = sign19(18:6)
cmp %rd, sign6 ; rd - sign19, sign6 = sign19(5:0)
Subtracts the signed 19-bit immediate data (sign19) from the contents of the rd register, and sets
or resets the flags (C, V, Z and N) according to the results. The sign19 is sign-extended into 32
bits prior to the operation. It does not change the contents of the rd register.

(3) Extension 2
ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
cmp %rd, sign6 ; rd - sign32, imm6 = sign32(5:0)
Subtracts the signed 32-bit immediate data (sign32) extended with the "ext" instruction from the
contents of the rd register, and sets or resets the flags (C, V, Z and N) according to the results. It
does not change the contents of the rd register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: cmp %r0,0x3f ; Changes the flags according to the results of

; r0 - 0x3f.

ext 0x1fff

ext 0x1fff

cmp %r1,0x3f ; Changes the flags according to the results of

; r1 - 0xffffffff.

E0C33000 CORE CPU MANUAL EPSON 69

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

div0s %rs (option)

Function: Signed division 1st step
Standard: Initialization for division
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 0 1 0 1 1 rs 0 0 0 0 0x8B00–0x8BF0
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – ↔ – – – – ↔

Mode: Register direct (%rs = %r0–%r15)

Clock: 1 cycle

Description: When performing a signed division, first execute the "div0s" instruction after setting the dividend to
the ALR and the divisor to the rs register. The "div0s" instruction initializes the register and flags as
follows:
1) Extends the dividend in the ALR into 64 bits with a sign and sets it in {AHR, ALR}.
2) Sets the sign bit of the dividend (MSB of ALR) to the DS flag in the PSR.
3) Sets the sign bit of the divisor (MSB of the rs register) to the N flag in the PSR.

Therefore, it is necessary that the dividend and divisor in the ALR and the rs register have been sign-
extended into 32 bits.
The "div1" instruction should be executed after executing the "div0s" instruction. Then correct the
results using the "div2s" and "div3s" instructions in signed division.

Example: Signed division (32 bits ÷ 32 bits)
When the dividend has been set to the R0 register and the divisor to the R1 register:

ld.w %alr,%r0 ; Set the dividend to the ALR.

div0s %r1 ; Initialization for signed division.

div1 %r1 ; Executing div1 32 times.

 : :

div1 %r1

div2s %r1 ; Correction 1

div3s ; Correction 2

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

Note: A zero-division exception occurs if the "div0s" instruction is executed by setting the rs register to 0.
Up to 32-bit data can be used for both dividends and divisors.
This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

70 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

div0u %rs (option)

Function: Unsigned division 1st step
Standard: Initialization for division
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 0 1 1 1 1 rs 0 0 0 0 0x8F00–0x8FF0
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – 0 – – – – 0

Mode: Register direct (%rs = %r0–%r15)

Clock: 1 cycle

Description: When performing an unsigned division, first execute the "div0u" instruction after setting the
dividend to the ALR and the divisor to the rs register. The "div0u" instruction initializes the register
and flags as follows:
1) Clears the AHR to 0.
2) Resets the DS flag in the PSR to 0.
3) Resets the N flag in the PSR to 0.

The "div1" instruction should be executed after executing the "div0u" instruction. In unsigned
division, it is not necessary to correct the division results of the "div1" instruction.

Example: Unsigned division (32 bits ÷ 32 bits)
When the dividend has been set to the R0 register and the divisor to the R1 register:

ld.w %alr,%r0 ; Sets the dividend to the ALR.

div0u %r1 ; Initialization for unsigned division.

div1 %r1 ; Executing div1 32 times.

 : :

div1 %r1

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

Note: A zero-division exception occurs if the "div0u" instruction is executed by setting the rs register to 0.
Up to 32-bit data can be used for both dividends and divisors.
This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

E0C33000 CORE CPU MANUAL EPSON 71

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

div1 %rs (option)

Function: Division
Standard: Step division
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 1 0 0 1 1 rs 0 0 0 0 0x9300–0x93F0
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Register direct (%rs = %r0–%r15)

Clock: 1 cycle

Description: The "div1" instruction executes a step division and is used for both signed division and unsigned
division. This instruction must be executed a number of times according to the data size of the
dividend after finishing the initialization by the "div0s" (for signed division) or "div0u" (for un-
signed division) instruction. For example, execute 32 "div1" instructions for 32 bits ÷ 32 bits, and 16
for 16 bits ÷ 16 bits.
One "div1" instruction step performs the following process:

1) Shifts the 64-bit data (dividend) in {AHR, ALR} 1 bit to the left (to upper side). (ALR(0) = 0)

2) Adds rs to the AHR or subtracts rs from the AHR and modifies the AHR and the ALR according
to the results.
The addition/subtraction uses the 33-bit data created by extending the contents of the AHR with
the DS flag as the sign bit and the 33-bit data created by extending the contents of the rs register
with the N flag as the sign bit.
The process varies according to the DS and N flags in the PSR as shown below. "tmp(32)" in the
explanation indicates the bit-33 value of the addition/subtraction results.

In the case of DS = 0 (dividend is positive) and N = 0 (divisor is positive):
2-1) Executes tmp = {0, AHR} - {0, rs}
2-2) If tmp(32) = 0, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.

If tmp(32) = 1, terminates without changing the AHR and ALR.

In the case of DS = 1 (dividend is negative) and N = 0 (divisor is positive):
2-1) Executes tmp = {1, AHR} + {0, rs}
2-2) If tmp(32) = 1, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.

If tmp(32) = 0, terminates without changing the AHR and ALR.

In the case of DS = 0 (dividend is positive) and N = 1 (divisor is negative):
2-1) Executes tmp = {0, AHR} + {1, rs}
2-2) If tmp(32) = 0, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.

If tmp(32) = 1, terminates without changing the AHR and ALR.

In the case of DS = 1 (dividend is negative) and N = 1 (divisor is negative):
2-1) Executes tmp = {1, AHR} - {1, rs}
2-2) If tmp(32) = 1, executes AHR = tmp(31:0) and ALR(0) = 1 and then terminates.

If tmp(32) = 0, terminates without changing the AHR and ALR.

In unsigned division, the results are obtained from the following registers by executing the
necessary "div1" instruction steps.

The results of unsigned division: ALR = Quotient, AHR = Remainder

In signed division, it is necessary to correct the results using the "div2s" and "div3s" instructions.

72 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

Examples: Unsigned division (32 bits ÷ 32 bits)
When the dividend has been set to the R0 register and the divisor to the R1 register:

ld.w %alr,%r0 ; Sets the dividend to the ALR.

div0u %r1 ; Initialization for unsigned division.

div1 %r1 ; Executing div1 32 times.

 : :

div1 %r1

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

Signed division (32 bits ÷ 32 bits)
When the dividend has been set to the R0 register and the divisor to the R1 register:

ld.w %alr,%r0 ; Set the dividend to the ALR.

div0s %r1 ; Initialization for signed division.

div1 %r1 ; Executing div1 32 times.

 : :

div1 %r1

div2s %r1 ; Correction 1

div3s ; Correction 2

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

Note: This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

E0C33000 CORE CPU MANUAL EPSON 73

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

div2s %rs (option)

Function: Correction step 1 for signed division results
Standard: Correction process for the execution results of signed division
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 1 0 1 1 1 rs 0 0 0 0 0x9700–0x97F0
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Register direct (%rs = %r0–%r15)

Clock: 1 cycle

Description: The "div2s" instruction corrects the results of signed division. It is not necessary to execute the
"div2s" instruction in unsigned division.

When the dividend is a negative number and zero results in a division step (execution of div1), the
remainder (AHR) after completing all the steps may be the same as the divisor and the quotient
(AHR) may be 1 short from the actual absolute value. The "div2s" instruction corrects such results.
The "div2s" instruction operates as follows:

In the case of DS = 0 (dividend is positive):
This problem does not occur when the dividend is a positive number, so the "div2s" instruction
terminates without any execution (same as the "nop" instruction).

In the case of DS = 1 (dividend is negative):
1) If N = 0 (divisor is positive), executes tmp = AHR + rs

If N = 1 (divisor is negative), executes tmp = AHR - rs
2) According to the results of step 1).

If tmp is zero, executes AHR = tmp(31:0) and ALR = ALR + 1 and then terminates.
If tmp is not zero, terminates without changing the AHR and ALR.

Example: Signed division (32 bits ÷ 32 bits)
When the dividend has been set to the R0 register and the divisor to the R1 register:

ld.w %alr,%r0 ; Set the dividend to the ALR.

div0s %r1 ; Initialization for signed division.

div1 %r1 ; Executing div1 32 times.

 : :

div1 %r1

div2s %r1 ; Correction 1

div3s ; Correction 2

Executing the above instructions stores the quotient into the ALR and the remainder into the AHR.

Note: This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

74 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

div3s (option)

Function: Correction step 2 for signed division results
Standard: Correction process for the execution results of signed division
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 1 1 0 1 1 rs 0 0 0 0 0x9B00–0x9BF0
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Clock: 1 cycle

Description: The "div3s" instruction corrects the results of signed division. It is not necessary to execute the
"div3s" instruction in unsigned division.

Step division always stores a positive number of quotient into the ALR. When the signs of the
dividend and divisor are different, the results must be a negative number. The "div3s" instruction
corrects the sign in such cases.
The "div2s" instruction operates as follows:

In the case of DS = N (dividend and divisor have the same sign):
This problem does not occur, so the "div3s" instruction terminates without any execution (same
as the "nop" instruction).

In the case of DS = !N (dividend and divisor have different sign):
Reverses the sign bit of the ALR (quotient).

In signed division, the results are obtained from the following registers after executing the "div2s"
and "div3s" instructions.

The results of unsigned division: ALR = Quotient, AHR = Remainder

Example: Signed division (32 bits ÷ 32 bits)
When the dividend has been set to the R0 register and the divisor to the R1 register:

ld.w %alr,%r0 ; Set the dividend to the ALR.

div0s %r1 ; Initialization for signed division.

div1 %r1 ; Executing div1 32 times.

 : :

div1 %r1

div2s %r1 ; Correction 1

div3s ; Correction 2

Executing the above instructions store the quotient into the ALR and the remainder into the AHR.

Note: This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

E0C33000 CORE CPU MANUAL EPSON 75

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ext imm13

Function: Immediate extension
Standard: Extends the immediate data/operand of the following instruction.
Extension 1: Up to two "ext" instructions can be used sequentially.
Extension 2:Invalid

Code: 15 13 12 0
class 6 imm13

1 1 0 imm13 0xC000–0xDFFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Immediate data (unsigned)

Clock: 1 cycle

Description: Extends the immediate data or operand of the following instruction.
When extending an immediate data, the immediate data in the "ext" instruction will be placed on the
high-order side and the immediate data in the target instruction to be extended is placed on the low-
order side.

Up to two "ext" instructions can be used sequentially. In this case, the immediate data in the first
"ext" instruction is placed on the most upper part. If three or more "ext" instructions are described
sequentially, only two instructions, the first and the last (prior to the target instruction) are effective
and the middles are invalidated.
See descriptions of each instruction for the extension contents and the usage.
Traps except for reset and address error are masked by the hardware while executing the "ext"
instruction and the following target instruction, and they do not occur.

Example: ext 0x1000 ; Valid

ext 0x1 ; Invalid

ext 0x1fff ; Valid

add %r1,0x3f ; r1 = r1 + 0x8007ffff

Note: When a load instruction that transfers data between memory and a register follows the "ext" instruc-
tion, an address error exception may occur before executing the load instruction (if the address that
is specified with the immediate data in the "ext" instruction as the displacement is not a boundary
address according to the transfer data size). When an address error occurs, the trap processing saves
the address of the load instruction into the stack as the return address. If the trap handler routine is
returned by simply executing the "reti" instruction, the previous "ext" instruction is invalidated.
Therefore, it is necessary to modify the return address in that case.

76 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

halt

Function: HALT
Standard: Sets the CPU to HALT mode.
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 5 4 3 0
class 0 op1 0 op2 0 0 –

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0x0080
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Clock: 1 cycle

Description: Sets the CPU to HALT mode.
In HALT mode, the CPU stops operating, so current consumption can be reduced.
On-chip peripheral circuits operate in HALT mode.
HALT mode is canceled by an interrupt. When HALT mode is canceled, the program flow returns to
the next instruction of the "halt" instruction after executing the interrupt handler routine.

Example: halt ; Sets the CPU in HALT mode.

E0C33000 CORE CPU MANUAL EPSON 77

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

int imm2

Function: Software exception
Standard: sp ← sp - 4, W[sp] ← pc + 2, sp ← sp - 4, W[sp] ← psr, pc ← Software exception vector
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 5 4 3 0
class 0 op1 0 op2 0 0 imm2

0 0 0 0 0 1 0 0 1 0 0 0 0 0 imm2 0x0480–0x0483
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – 1 – – – –

Mode: Immediate data (unsigned)

Clock: 10 cycles

Description: Generates a software exception.
The "int" instruction saves the address of the next instruction and the contents of the PSR into the
stack, then reads the software exception vector from the trap table and sets it to the PC. By this
processing, the program flow branches to the specified software exception handler routine.
The E0C33000 supports four types of software exceptions and the software exception number (0 to
3) is specified by the 2-bit immediate data (imm2).

imm2 Vector address
Software exception 0 0 Base + 48
Software exception 1 1 Base + 52
Software exception 2 2 Base + 56
Software exception 3 3 Base + 60

The Base is the trap table beginning address. It is address 0x0080000 for the system that boots from
the internal ROM (BTA3 terminal is high) or address 0x0C00000 for the system that boots from the
external ROM (BTA3 terminal is low).
The "reti" instruction should be used for return from the handler routine.

Example: int 2 ; Executes the software exception 2 handler routine.

78 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jp %rb / jp.d %rb

Function: Unconditional jump
Standard: pc ← rb
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 5 4 3 0
class 0 op1 d op2 0 0 rb

0 0 0 0 0 1 1 d 1 0 0 0 rb 0x0680–0x068F, 0x0780–0x078F
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Register direct (%rb = %r0–%r15)

Clock: jp: 2 cycles
jp.d: 1 cycle

Description: (1) Standard
jp %rb
Loads the contents of the rb register to the PC for branching the program flow to the address.
The LSB of the rb register is ignored and is always handled as 0.

(2) Delayed branch (d bit = 1)
jp.d %rb
The "jp.d" instruction sets the d bit in the instruction code, so the following instruction becomes
a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jp.d" instruction and the next delayed instruction are masked,
thus interrupts and exceptions cannot occur.

Example: jp %r0 ; Jumps to the address specified by the R0 register.

Note: When using the "jp.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

E0C33000 CORE CPU MANUAL EPSON 79

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jp sign8 / jp.d sign8

Function: Unconditional PC relative jump
Standard: pc ← pc + sign8 × 2
Extension 1: pc ← pc + sign22
Extension 2: pc ← pc + sign32

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 1 1 1 1 d sign8 0x1E00–0x1FFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jp: 2 cycles
jp.d: 1 cycle

Description: (1) Standard
jp sign8 ; = "jp sign9", sign8 = sign9(8:1), sign9(0)=0
Doubles the signed 8-bit immediate data (sign8) and adds it to the PC. The program flow
branches to the address. The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jp sign8 ; = "jp sign22", sign8 = sign22(8:1), sign22(0)=0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jp sign8 ; = "jp sign32", sign8 = sign32(8:1), sign32(0)=0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jp.d sign8
The "jp.d" instruction sets the d bit in the instruction code, so the following instruction becomes
a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jp.d" instruction and the next delayed instruction are masked,
thus interrupts and exceptions cannot occur.

Example: ext 0x8

ext 0x0

jp 0x80 ; Jumps to the address specified by PC+0x400100.

Note: When using the "jp.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

80 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jreq sign8 / jreq.d sign8

Function: Conditional PC relative jump
Standard: pc ← pc + sign8 × 2 if Z is true
Extension 1: pc ← pc + sign22 if Z is true
Extension 2: pc ← pc + sign32 if Z is true

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 1 1 0 0 d sign8 0x1800–0x19FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jreq: 1 cycle (when not branched), 2 cycles (when branched)
jreq.d: 1 cycle

Description: (1) Standard
jreq sign8 ; = "jreq sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met, this instruction doubles the signed 8-bit immediate data
(sign8) and adds it to the PC for branching the program flow to the address. It does not branch if
the condition has not been met.
• Z flag = 1 (e.g. "A = B" has resulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jreq sign8 ; = "jreq sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jreq sign8 ; = "jreq sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jreq.d sign8
The "jreq.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jreq.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp %r0,%r1

jreq 0x2 ; Skips the next instruction if r1 = r0.

Note: When using the "jreq.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

E0C33000 CORE CPU MANUAL EPSON 81

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrge sign8 / jrge.d sign8

Function: Conditional PC relative jump (for judgment of signed operation results)
Standard: pc ← pc + sign8 × 2 if !(N^V) is true
Extension 1: pc ← pc + sign22 if !(N^V) is true
Extension 2: pc ← pc + sign32 if !(N^V) is true

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 0 1 0 1 d sign8 0x0A00–0x0BFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jrge: 1 cycle (when not branched), 2 cycles (when branched)
jrge.d: 1 cycle

Description: (1) Standard
jrge sign8 ; = "jrge sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by a signed operation, this instruction doubles the signed 8-
bit immediate data (sign8) and adds it to the PC for branching the program flow to the address. It
does not branch if the condition has not been met.
• N flag = V flag (e.g. "A ≥ B" has resulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrge sign8 ; = "jrge sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrge sign8 ; = "jrge sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrge.d sign8
The "jrge.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrge.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp %r0,%r1 ; r0 and r1 contain signed data.

jrge 0x2 ; Skips the next instruction if r0 ≥ r1.

Note: When using the "jrge.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

82 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrgt sign8 / jrgt.d sign8

Function: Conditional PC relative jump (for judgment of signed operation results)
Standard: pc ← pc + sign8 × 2 if !Z&!(N^V) is true
Extension 1: pc ← pc + sign22 if !Z&!(N^V) is true
Extension 2: pc ← pc + sign32 if !Z&!(N^V) is true

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 0 1 0 0 d sign8 0x0800–0x09FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jrgt: 1 cycle (when not branched), 2 cycles (when branched)
jrgt.d: 1 cycle

Description: (1) Standard
jrgt sign8 ; = "jrgt sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by a signed operation, this instruction doubles the signed 8-
bit immediate data (sign8) and adds it to the PC for branching the program flow to the address. It
does not branch if the condition has not been met.
• Z flag = 0 and N flag = V flag (e.g. "A > B" has resulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrgt sign8 ; = "jrgt sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrgt sign8 ; = "jrgt sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrgt.d sign8
The "jrgt.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrgt.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp %r0,%r1 ; r0 and r1 contain signed data.

jrgt 0x2 ; Skips the next instruction if r0 > r1.

Note: When using the "jrgt.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

E0C33000 CORE CPU MANUAL EPSON 83

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrle sign8 / jrle.d sign8

Function: Conditional PC relative jump (for judgment of signed operation results)
Standard: pc ← pc + sign8 × 2 if Z | (N^V) is true
Extension 1: pc ← pc + sign22 if Z | (N^V) is true
Extension 2: pc ← pc + sign32 if Z | (N^V) is true

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 0 1 1 1 d sign8 0x0E00–0x0FFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jrle: 1 cycle (when not branched), 2 cycles (when branched)
jrle.d: 1 cycle

Description: (1) Standard
jrle sign8 ; = "jrle sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by a signed operation, this instruction doubles the signed 8-
bit immediate data (sign8) and adds it to the PC for branching the program flow to the address. It
does not branch if the condition has not been met.
• Z flag = 1 or N flag ≠ V flag (e.g. "A ≤ B" has resulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrle sign8 ; = "jrle sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrle sign8 ; = "jrle sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrle.d sign8
The "jrle.d" instruction sets the d bit in the instruction code, so the following instruction be-
comes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrle.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp %r0,%r1 ; r0 and r1 contain signed data.

jrle 0x2 ; Skips the next instruction if r0 ≤ r1.

Note: When using the "jrle.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

84 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrlt sign8 / jrlt.d sign8

Function: Conditional PC relative jump (for judgment of signed operation results)
Standard: pc ← pc + sign8 × 2 if N^V is true
Extension 1: pc ← pc + sign22 if N^V is true
Extension 2: pc ← pc + sign32 if N^V is true

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 0 1 1 0 d sign8 0x0C00–0x0DFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jrlt: 1 cycle (when not branched), 2 cycles (when branched)
jrlt.d: 1 cycle

Description: (1) Standard
jrlt sign8 ; = "jrlt sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by a signed operation, this instruction doubles the signed 8-
bit immediate data (sign8) and adds it to the PC for branching the program flow to the address. It
does not branch if the condition has not been met.
• N flag ≠ V flag (e.g. "A < B" has resulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrlt sign8 ; = "jrlt sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrlt sign8 ; = "jrlt sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrlt.d sign8
The "jrlt.d" instruction sets the d bit in the instruction code, so the following instruction becomes
a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrlt.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp %r0,%r1 ; r0 and r1 contain signed data.

jrlt 0x2 ; Skips the next instruction if r0 < r1.

Note: When using the "jrlt.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

E0C33000 CORE CPU MANUAL EPSON 85

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrne sign8 / jrne.d sign8

Function: Conditional PC relative jump
Standard: pc ← pc + sign8 × 2 if !Z is true
Extension 1: pc ← pc + sign22 if !Z is true
Extension 2: pc ← pc + sign32 if !Z is true

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 1 1 0 1 d sign8 0x1A00–0x1BFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jrne: 1 cycle (when not branched), 2 cycles (when branched)
jrne.d: 1 cycle

Description: (1) Standard
jrne sign8 ; = "jrne sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met, this instruction doubles the signed 8-bit immediate data
(sign8) and adds it to the PC for branching the program flow to the address. It does not branch if
the condition has not been met.
• Z flag = 0 (e.g. "A ≠ B" has resulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrne sign8 ; = "jrne sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrne sign8 ; = "jrne sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrne.d sign8
The "jrne.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrne.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp %r0,%r1

jrne 0x2 ; Skips the next instruction if r1 ≠ r0.

Note: When using the "jrne.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

86 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jruge sign8 / jruge.d sign8

Function: Conditional PC relative jump (for judgment of unsigned operation results)
Standard: pc ← pc + sign8 × 2 if !C is true
Extension 1: pc ← pc + sign22 if !C is true
Extension 2: pc ← pc + sign32 if !C is true

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 1 0 0 1 d sign8 0x1200–0x13FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jruge: 1 cycle (when not branched), 2 cycles (when branched)
jruge.d: 1 cycle

Description: (1) Standard
jruge sign8 ; = "jruge sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by an unsigned operation, this instruction doubles the signed
8-bit immediate data (sign8) and adds it to the PC for branching the program flow to the address.
It does not branch if the condition has not been met.
• C flag = 0 (e.g. "A ≥ B" has resulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jruge sign8 ; = "jruge sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jruge sign8 ; = "jruge sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jruge.d sign8
The "jruge.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jruge.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp %r0,%r1 ; r0 and r1 contain unsigned data.

jruge 0x2 ; Skips the next instruction if r0 ≥ r1.

Note: When using the "jruge.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

E0C33000 CORE CPU MANUAL EPSON 87

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrugt sign8 / jrugt.d sign8

Function: Conditional PC relative jump (for judgment of unsigned operation results)
Standard: pc ← pc + sign8 × 2 if !Z&!C is true
Extension 1: pc ← pc + sign22 if !Z&!C is true
Extension 2: pc ← pc + sign32 if !Z&!C is true

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 1 0 0 0 d sign8 0x1000–0x11FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jrugt: 1 cycle (when not branched), 2 cycles (when branched)
jrugt.d: 1 cycle

Description: (1) Standard
jrugt sign8 ; = "jrugt sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by an unsigned operation, this instruction doubles the signed
8-bit immediate data (sign8) and adds it to the PC for branching the program flow to the address.
It does not branch if the condition has not been met.
• Z flag = 0 and C flag = 0 (e.g. "A > B" has resulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrugt sign8 ; = "jrugt sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrugt sign8 ; = "jrugt sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrugt.d sign8
The "jrugt.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrugt.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp %r0,%r1 ; r0 and r1 contain unsigned data.

jrugt 0x2 ; Skips the next instruction if r0 > r1.

Note: When using the "jrugt.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

88 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrule sign8 / jrule.d sign8

Function: Conditional PC relative jump (for judgment of unsigned operation results)
Standard: pc ← pc + sign8 × 2 if Z | C is true
Extension 1: pc ← pc + sign22 if Z | C is true
Extension 2: pc ← pc + sign32 if Z | C is true

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 1 0 1 1 d sign8 0x1600–0x17FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jrule: 1 cycle (when not branched), 2 cycles (when branched)
jrule.d: 1 cycle

Description: (1) Standard
jrule sign8 ; = "jrule sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by an unsigned operation, this instruction doubles the signed
8-bit immediate data (sign8) and adds it to the PC for branching the program flow to the address.
It does not branch if the condition has not been met.
• Z flag = 1 or C flag = 1 (e.g. "A ≤ B" has resulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrule sign8 ; = "jrule sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrule sign8 ; = "jrule sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrule.d sign8
The "jrule.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrule.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp %r0,%r1 ; r0 and r1 contain unsigned data.

jrule 0x2 ; Skips the next instruction if r0 ≤ r1.

Note: When using the "jrule.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

E0C33000 CORE CPU MANUAL EPSON 89

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

jrult sign8 / jrult.d sign8

Function: Conditional PC relative jump (for judgment of unsigned operation results)
Standard: pc ← pc + sign8 × 2 if C is true
Extension 1: pc ← pc + sign22 if C is true
Extension 2: pc ← pc + sign32 if C is true

Code: 15 13 12 9 8 7 0
class 0 op1 d sign8

0 0 0 1 0 1 0 d sign8 0x1400–0x15FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Signed PC relative

Clock: jrult: 1 cycle (when not branched), 2 cycles (when branched)
jrult.d: 1 cycle

Description: (1) Standard
jrult sign8 ; = "jrult sign9", sign8 = sign9(8:1), sign9(0) = 0
If the condition below has been met by an unsigned operation, this instruction doubles the signed
8-bit immediate data (sign8) and adds it to the PC for branching the program flow to the address.
It does not branch if the condition has not been met.
• C flag = 1 (e.g. "A < B" has resulted by "cmp A, B")
The sign8 specifies a half word address in 16-bit units.
The sign8 (×2) allows branches within the range of PC-0x100 to PC+0xFE.

(2) Extension 1
ext imm13 ; = sign22(21:9)
jrult sign8 ; = "jrult sign22", sign8 = sign22(8:1), sign22(0) = 0
The "ext" instruction extends the displacement to be added to the PC into signed 22 bits using its
13-bit immediate data (imm13). The sign22 allows branches within the range of PC-0x200000 to
PC+0x1FFFFE.

(3) Extension 2
ext imm13 ; imm13(12:3)= sign32(31:22)
ext imm13' ; = sign32(21:9)
jrult sign8 ; = "jrult sign32", sign8 = sign32(8:1), sign32(0) = 0
The "ext" instructions extend the displacement to be added to the PC into signed 32 bits using
their 13-bit immediate data (imm13 and imm13'). The displacement covers the entire address
space. Note that the low-order 3 bits of the first imm13 are ignored.

(4) Delayed branch (d bit = 1)
jrult.d sign8
The "jrult.d" instruction sets the d bit in the instruction code, so the following instruction
becomes a delayed instruction. The delayed instruction is executed before branching.
Traps that may occur between the "jrult.d" instruction and the next delayed instruction are
masked, thus interrupts and exceptions cannot occur.

Example: cmp %r0,%r1 ; r0 and r1 contain unsigned data.

jrult 0x2 ; Skips the next instruction if r0 < r1.

Note: When using the "jrult.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

90 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.b %rd, %rs

Function: Signed byte data transfer
Standard: rd(7:0) ← rs(7:0), rd(31:8) ← rs(7)
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs rd

1 0 1 0 0 0 0 1 rs rd 0xA100–0xA1FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: Extends the low-order 8 bits (byte data) of the rs register into signed 32 bits (sign extended) and
loads it to the rd register.

Example: ld.b %r0,%r1 ; r0 ←low-order 8 bits of the r1 register

; with sign extension

E0C33000 CORE CPU MANUAL EPSON 91

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.b %rd, [%rb]

Function: Signed byte data transfer
Standard: rd(7:0) ← B[rb], rd(31:8) ← B[rb](7)
Extension 1: rd(7:0) ← B[rb + imm13], rd(31:8) ← B[rb + imm13](7)
Extension 2: rd(7:0) ← B[rb + imm26], rd(31:8) ← B[rb + imm26](7)

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rd

0 0 1 0 0 0 0 0 rb rd 0x2000–0x20FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect (%rb = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1–2 cycles
(Note) This instruction is normally executed in 1 cycle. However, it takes one more cycle if the rd

register which is used in this instruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

Description: (1) Standard
ld.b %rd, [%rb] ; Memory address = rb
Extends the byte data in the specified memory into signed 32 bits (sign extended) and loads it to
the rd register. The accessed memory address is specified by the rb register.

(2) Extension 1
ext imm13
ld.b %rd, [%rb] ; Memory address = rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the byte data in the address that is specified by adding the 13-bit immediate data (imm13) to the
contents of the rb register is loaded to the rd register. The rb register is not modified.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
ld.b %rd, [%rb] ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the byte data in the address that is specified by adding the 26-bit immediate data (imm26) to the
contents of the rb register is loaded to the rd register. The rb register is not modified.

Example: ext 0x10

ld.b %r0,[%r1] ; r0 ←B[r1+0x10] with sign extension

92 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.b %rd, [%rb]+

Function: Signed byte data transfer
Standard: rd(7:0) ← B[rb], rd(31:8) ← B[rb](7), rb ← rb + 1
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rd

0 0 1 0 0 0 0 1 rb rd 0x2100–0x21FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect with post increment (%rb = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 2 cycles

Description: Extends the byte data in the specified memory into signed 32 bits (sign extended) and loads it to the
rd register. The accessed memory address is specified by the rb register. The address stored in the rb
register is incremented (+1) after the data transfer.

Example: ld.b %r0,[%r1]+ ; r0 ←B[r1] with sign extension, r1 ←r1+1

Note: If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

E0C33000 CORE CPU MANUAL EPSON 93

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.b %rd, [%sp + imm6]

Function: Signed byte data transfer
Standard: rd(7:0) ← B[sp + imm6], rd(31:8) ← B[sp + imm6](7)
Extension 1: rd(7:0) ← B[sp + imm19], rd(31:8) ← B[sp + imm19](7)
Extension 2: rd(7:0) ← B[sp + imm32], rd(31:8) ← B[sp + imm32](7)

Code: 15 13 12 10 9 4 3 0
class 2 op1 imm6 rd

0 1 0 0 0 0 imm6 rd 0x4000–0x43FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect with displacement
Dst: Register direct (%rd = %r0–%r15)

Clock: 1–2 cycles
(Note) This instruction is normally executed in 1 cycle. However, it takes one more cycle if the rd

register which is used in this instruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

Description: (1) Standard
ld.b %rd, [%sp + imm6] ; Memory address = sp + imm6
Extends the byte data in the specified memory into signed 32 bits (sign extended) and loads it to
the rd register. The accessed memory address is specified by adding the 6-bit immediate data
(imm6) as the displacement to the contents of the current SP.

(2) Extension 1
ext imm13 ; = imm19(18:6)
ld.b %rd, [%sp + imm6] ; Memory address = sp + imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the byte data in the address that
is specified by adding the 19-bit immediate data (imm19) to the contents of the SP is loaded to
the rd register.

(3) Extension 2
ext imm13 ; = imm32(31:19)
ext imm13' ; = imm32(18:6)
ld.b %rd, [%sp + imm6] ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the byte data in the address that
is specified by adding the 32-bit immediate data (imm32) to the contents of the SP is loaded to
the rd register.

Example: ext 0x1

ld.b %r0,[%sp+0x1] ; r0 ←B[sp+0x41] with sign extension

94 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.b [%rb], %rs

Function: Byte data transfer
Standard: B[rb] ← rs(7:0)
Extension 1: B[rb + imm13] ← rs(7:0)
Extension 2: B[rb + imm26] ← rs(7:0)

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rs

0 0 1 1 0 1 0 0 rb rs 0x3400–0x34FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register indirect (%rb = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
ld.b [%rb], %rs ; Memory address = rb
Transfers the low-order 8 bits of the rs register to the specified memory. The accessed memory
address is specified by the rb register.

(2) Extension 1
ext imm13
ld.b [%rb], %rs ; Memory address = rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the low-order 8 bits of the rs register are transferred to the address specified by adding the 13-bit
immediate data (imm13) to the contents of the rb register. The rb register is not modified.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
ld.b [%rb], %rs ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the low-order 8 bits of the rs register are transferred to the address specified by adding the 26-bit
immediate data (imm26) to the contents of the rb register. The rb register is not modified.

Example: ext 0x10

ld.b [%r1],%r0 ; B[r1+0x10] ←low-order 8 bits of r0

E0C33000 CORE CPU MANUAL EPSON 95

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.b [%rb]+, %rs

Function: Byte data transfer
Standard: B[rb] ← rs(7:0), rb ← rb + 1
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rs

0 0 1 1 0 1 0 1 rb rs 0x3500–0x35FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register indirect with post increment (%rb = %r0–%r15)

Clock: 1 cycle

Description: Transfers the low-order 8 bits of the rs register to the specified memory. The accessed memory
address is specified by the rb register. The address stored in the rb register is incremented (+1) after
the data transfer.

Example: ld.b [%r1]+,%r0 ; B[r1] ←low-order 8 bits of r0, r1 ←r1+1

96 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.b [%sp + imm6], %rs

Function: Byte data transfer
Standard: B[sp + imm6] ← rs(7:0)
Extension 1: B[sp + imm19] ← rs(7:0)
Extension 2: B[sp + imm32] ← rs(7:0)

Code: 15 13 12 10 9 4 3 0
class 2 op1 imm6 rs

0 1 0 1 0 1 imm6 rs 0x5400–0x57FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rd = %r0–%r15)
Dst: Register indirect with displacement

Clock: 1 cycle

Description: (1) Standard
ld.b [%sp + imm6], %rs ; Memory address = sp + imm6
Transfers the low-order 8 bits of the rs register to the specified memory. The accessed memory
address is specified by the rb register. The accessed memory address is specified by adding the 6-
bit immediate data (imm6) as the displacement to the contents of the current SP.

(2) Extension 1
ext imm13 ; = imm19(18:6)
ld.b [%sp + imm6], %rs ; Memory address = sp + imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the low-order 8 bits of the rs
register are transferred to the address specified by adding the 19-bit immediate data (imm19) to
the contents of the SP.

(3) Extension 2
ext imm13 ; = imm32(31:19)
ext imm13' ; = imm32(18:6)
ld.b [%sp + imm6], %rs ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the low-order 8 bits of the rs
register are transferred to the address specified by adding the 32-bit immediate data (imm32) to
the contents of the SP.

Example: ext 0x1

ld.b [%sp+0x1],%r0 ; B[sp+0x41] ←low-order 8 bits of r0

E0C33000 CORE CPU MANUAL EPSON 97

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.h %rd, %rs

Function: Signed half word data transfer
Standard: rd(15:0) ← rs(15:0), rd(31:16) ← rs(15)
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs rd

1 0 1 0 1 0 0 1 rs rd 0xA900–0xA9FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: Extends the low-order 16 bits (half word data) of the rs register into signed 32 bits (sign extended)
and loads it to the rd register.

Example: ld.h %r0,%r1 ; r0 ←low-order 16 bits of the r1 register

; with sign extension

98 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.h %rd, [%rb]

Function: Signed half word data transfer
Standard: rd(15:0) ← H[rb], rd(31:16) ← H[rb](15)
Extension 1: rd(15:0) ← H[rb + imm13], rd(31:16) ← H[rb + imm13](15)
Extension 2: rd(15:0) ← H[rb + imm26], rd(31:16) ← H[rb + imm26](15)

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rd

0 0 1 0 1 0 0 0 rb rd 0x2800–0x28FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect (%rb = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1–2 cycles
(Note) This instruction is normally executed in 1 cycle. However, it takes one more cycle if the rd

register which is used in this instruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

Description: (1) Standard
ld.h %rd, [%rb] ; Memory address = rb
Extends the half word data in the specified memory into signed 32 bits (sign extended) and loads
it to the rd register. The accessed memory address is specified by the rb register.

(2) Extension 1
ext imm13
ld.h %rd, [%rb] ; Memory address = rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the half word data in the address that is specified by adding the 13-bit immediate data (imm13)
to the contents of the rb register is loaded to the rd register. The rb register is not modified.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
ld.h %rd, [%rb] ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the half word data in the address that is specified by adding the 26-bit immediate data (imm26)
to the contents of the rb register is loaded to the rd register. The rb register is not modified.

Example: ext 0x10

ld.h %r0,[%r1] ; r0 ←H[r1+0x10] with sign extension

Note: The rb register and the displacement must specify a half word boundary address (LSB = 0). Specify-
ing an odd address causes an address error exception.
The data transfer is performed using data in the specified address as the low-order 8 bits and data in
the next address as the high-order 8 bits.

E0C33000 CORE CPU MANUAL EPSON 99

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.h %rd, [%rb]+

Function: Signed half word data transfer
Standard: rd(15:0) ← H[rb], rd(31:16) ← H[rb](15), rb ← rb + 2
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rd

0 0 1 0 1 0 0 1 rb rd 0x2900–0x29FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect with post increment (%rb = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 2 cycles

Description: Extends the half word data in the specified memory into signed 32 bits (sign extended) and loads it
to the rd register. The accessed memory address is specified by the rb register. The address stored in
the rb register is incremented (+2) after the data transfer.

Example: ld.h %r0,[%r1]+ ; r0 ←H[r1] with sign extension, r1 ←r1+2

Notes: • The rb register must specify a half word boundary address (LSB = 0). Specifying an odd address
causes an address error exception.
The data transfer is performed using data in the specified address as the low-order 8 bits and data
in the next address as the high-order 8 bits.

• If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

100 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.h %rd, [%sp + imm6]

Function: Signed half word data transfer
Standard: rd(15:0) ← H[sp + imm6 × 2], rd(31:16) ← H[sp + imm6 × 2](15)
Extension 1: rd(15:0) ← H[sp + imm19], rd(31:16) ← H[sp + imm19](15)
Extension 2: rd(15:0) ← H[sp + imm32], rd(31:16) ← H[sp + imm32](15)

Code: 15 13 12 10 9 4 3 0
class 2 op1 imm6 rd

0 1 0 0 1 0 imm6 rd 0x4800–0x4BFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect with displacement
Dst: Register direct (%rd = %r0–%r15)

Clock: 1–2 cycles
(Note) This instruction is normally executed in 1 cycle. However, it takes one more cycle if the rd

register which is used in this instruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

Description: (1) Standard
ld.h %rd, [%sp + imm6] ; Memory address = sp + imm6 × 2
Extends the half word data in the specified memory into signed 32 bits (sign extended) and loads
it to the rd register. The accessed memory address is specified by adding the doubled 6-bit
immediate data (imm6) as the displacement to the contents of the current SP. The imm6 specifies
a half word address in 16-bit units. The LSB of the displacement is always fixed at 0.

(2) Extension 1
ext imm13 ; = imm19(18:6)
ld.h %rd, [%sp + imm6] ; Memory address = sp + imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the half word data in the
address that is specified by adding the 19-bit immediate data (imm19) to the contents of the SP is
loaded to the rd register.
Specify a half word boundary address (LSB = 0) for the imm6.

(3) Extension 2
ext imm13 ; = imm32(31:19)
ext imm13' ; = imm32(18:6)
ld.h %rd, [%sp + imm6] ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the half word data in the
address that is specified by adding the 32-bit immediate data (imm32) to the contents of the SP is
loaded to the rd register.
Specify a half word boundary address (LSB = 0) for the imm6.

Example: ext 0x1

ext 0x0

ld.h %r1,[%sp+0x2] ; r1 ←H[SP+0x80002] with sign extension

Note: When extending the displacement, the LSB of the imm6 will always be fixed at 0 to point to a half
word boundary address. Thus an address error exception will not occur.
The data transfer is performed using data in the specified address as the low-order 8 bits and data in
the next address as the high-order 8 bits.

E0C33000 CORE CPU MANUAL EPSON 101

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.h [%rb], %rs

Function: Half word data transfer
Standard: H[rb] ← rs(15:0)
Extension 1: H[rb + imm13] ← rs(15:0)
Extension 2: H[rb + imm26] ← rs(15:0)

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rs

0 0 1 1 1 0 0 0 rb rs 0x3800–0x38FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register indirect (%rb = %r0–%r15)

Clock: 1 cycle

(1) Standard
ld.h [%rb], %rs ; Memory address = rb
Transfers the low-order 16 bits of the rs register to the specified memory. The accessed memory
address is specified by the rb register.

(2) Extension 1
ext imm13
ld.h [%rb], %rs ; Memory address = rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the low-order 16 bits of the rs register are transferred to the address specified by adding the 13-
bit immediate data (imm13) to the contents of the rb register. The rb register is not modified.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
ld.h [%rb], %rs ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the low-order 16 bits of the rs register are transferred to the address specified by adding the 26-
bit immediate data (imm26) to the contents of the rb register. The rb register is not modified.

Description:

Example: ext 0x10

ld.h [%r1],%r0 ; H[r1+0x10] ←low-order 16 bits of r0

Note: The rb register and the displacement must specify a half word boundary address (LSB = 0). Specify-
ing an odd address causes an address error exception.
The data transfer is performed using data in the specified address as the low-order 8 bits and data in
the next address as the high-order 8 bits.

102 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.h [%rb]+, %rs

Function: Half word data transfer
Standard: H[rb] ← rs(15:0), rb ← rb + 2
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rs

0 0 1 1 1 0 0 1 rb rs 0x3900–0x39FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register indirect with post increment (%rb = %r0–%r15)

Clock: 1 cycle

Description: Transfers the low-order 16 bits of the rs register to the specified memory. The accessed memory
address is specified by the rb register. The address stored in the rb register is incremented (+2) after
the data transfer.

Example: ld.h [%r1]+,%r0 ; H[r1] ←low-order 16 bits of r0, r1 ←r1+2

Note: The rb register must specify a half word boundary address (LSB = 0). Specifying an odd address
causes an address error exception.
The data transfer is performed using data in the specified address as the low-order 8 bits and data in
the next address as the high-order 8 bits.

E0C33000 CORE CPU MANUAL EPSON 103

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.h [%sp + imm6], %rs

Function: Half word data transfer
Standard: H[sp + imm6 × 2] ← rs(15:0)
Extension 1: H[sp + imm19] ← rs(15:0)
Extension 2: H[sp + imm32] ← rs(15:0)

Code: 15 13 12 10 9 4 3 0
class 2 op1 imm6 rs

0 1 0 1 1 0 imm6 rs 0x5800–0x5BFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register indirect with displacement

Clock: 1 cycle

Description: (1) Standard
ld.h [%sp + imm6], %rs ; Memory address = sp + imm6 × 2
Transfers the low-order 16 bits of the rs register to the specified memory. The accessed memory
address is specified by adding the doubled 6-bit immediate data (imm6) as the displacement to
the contents of the current SP. The imm6 specifies a half word address in 16-bit units. The LSB
of the displacement is always fixed at 0.

(2) Extension 1
ext imm13 ; = imm19(18:6)
ld.h [%sp + imm6], %rs ; Memory address = sp + imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the low-order 16 bits of the rs
register are transferred to the address that is specified by adding the 19-bit immediate data
(imm19) to the contents of the SP.
Specify a half word boundary address (LSB = 0) for the imm6.

(3) Extension 2
ext imm13 ; = imm32(31:19)
ext imm13' ; = imm32(18:6)
ld.h [%sp + imm6], %rs ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the low-order 16 bits of the rs
register are transferred to the address that is specified by adding the 32-bit immediate data
(imm32) to the contents of the SP.
Specify a half word boundary address (LSB = 0) for the imm6.

Example: ext 0x1

ext 0x0

ld.h [%sp+0x2],%r1 ; H[SP+0x80002] ←low-order 16 bits of r1

Note: When extending the displacement, the LSB of the imm6 will always be fixed at 0 to point to a half
word boundary address. Thus an address error exception will not occur.
The data transfer is performed using data in the specified address as the low-order 8 bits and data in
the next address as the high-order 8 bits.

104 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.ub %rd, %rs

Function: Unsigned byte data transfer
Standard: rd(7:0) ← rs(7:0), rd(31:8) ← 0
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs rd

1 0 1 0 0 1 0 1 rs rd 0xA500–0xA5FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: Extends the low-order 8 bits (byte data) of the rs register into unsigned 32 bits (zero extended) and
loads it to the rd register.

Example: ld.ub %r0,%r1 ; r0 ←low-order 8 bits of the r1 register

; with zero extension

E0C33000 CORE CPU MANUAL EPSON 105

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.ub %rd, [%rb]

Function: Unsigned byte data transfer
Standard: rd(7:0) ← B[rb], rd(31:8) ← 0
Extension 1: rd(7:0) ← B[rb + imm13], rd(31:8) ← 0
Extension 2: rd(7:0) ← B[rb + imm26], rd(31:8) ← 0

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rd

0 0 1 0 0 1 0 0 rb rd 0x2400–0x24FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect (%rb = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1–2 cycles
(Note) This instruction is normally executed in 1 cycle. However, it takes one more cycle if the rd

register which is used in this instruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

Description: (1) Standard
ld.ub %rd, [%rb] ; Memory address = rb
Extends the byte data in the specified memory into unsigned 32 bits (zero extended) and loads it
to the rd register. The accessed memory address is specified by the rb register.

(2) Extension 1
ext imm13
ld.ub %rd, [%rb] ; Memory address = rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the byte data in the address that is specified by adding the 13-bit immediate data (imm13) to the
contents of the rb register is loaded to the rd register. The rb register is not modified.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
ld.ub %rd, [%rb] ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the byte data in the address that is specified by adding the 26-bit immediate data (imm26) to the
contents of the rb register is loaded to the rd register. The rb register is not modified.

Example: ext 0x10

ld.ub %r0,[%r1] ; r0 ←B[r1+0x10] with zero extension

106 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.ub %rd, [%rb]+

Function: Unsigned byte data transfer
Standard: rd(7:0) ← B[rb], rd(31:8) ← 0, rb ← rb + 1
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rd

0 0 1 0 0 1 0 1 rb rd 0x2500–0x25FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect with post increment (%rb = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 2 cycles

Description: Extends the byte data in the specified memory into unsigned 32 bits (zero extended) and loads it to
the rd register. The accessed memory address is specified by the rb register. The address stored in the
rb register is incremented (+1) after the data transfer.

Example: ld.ub %r0,[%r1]+ ; r0 ←B[r1] with zero extension, r1 ←r1+1

Note: If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

E0C33000 CORE CPU MANUAL EPSON 107

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.ub %rd, [%sp + imm6]

Function: Unsigned byte data transfer
Standard: rd(7:0) ← B[sp + imm6], rd(31:8) ← 0
Extension 1: rd(7:0) ← B[sp + imm19], rd(31:8) ← 0
Extension 2: rd(7:0) ← B[sp + imm32], rd(31:8) ← 0

Code: 15 13 12 10 9 4 3 0
class 2 op1 imm6 rd

0 1 0 0 0 1 imm6 rd 0x4400–0x47FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect with displacement
Dst: Register direct (%rd = %r0–%r15)

Clock: 1–2 cycles
(Note) This instruction is normally executed in 1 cycle. However, it takes one more cycle if the rd

register which is used in this instruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

Description: (1) Standard
ld.ub %rd, [%sp + imm6] ; Memory address = sp + imm6
Extends the byte data in the specified memory into unsigned 32 bits (zero extended) and loads it
to the rd register. The accessed memory address is specified by adding the 6-bit immediate data
(imm6) as the displacement to the contents of the current SP.

(2) Extension 1
ext imm13 ; = imm19(18:6)
ld.ub %rd, [%sp + imm6] ; Memory address = sp + imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the byte data in the address that
is specified by adding the 19-bit immediate data (imm19) to the contents of the SP is loaded to
the rd register.

(3) Extension 2
ext imm13 ; = imm32(31:19)
ext imm13' ; = imm32(18:6)
ld.ub %rd, [%sp + imm6] ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the byte data in the address that
is specified by adding the 32-bit immediate data (imm32) to the contents of the SP is loaded to
the rd register.

Example: ext 0x1

ld.ub %r0,[%sp+0x1] ; r0 ←B[sp+0x41] with zero extension

108 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.uh %rd, %rs

Function: Unsigned half word data transfer
Standard: rd(15:0) ← rs(15:0), rd(31:16) ← 0
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs rd

1 0 1 0 1 1 0 1 rs rd 0xAD00–0xADFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: Extends the low-order 16 bits (half word data) of the rs register into unsigned 32 bits (zero extended)
and loads it to the rd register.

Example: ld.uh %r0,%r1 ; r0 ←low-order 16 bits of the r1 register

; with zero extension

E0C33000 CORE CPU MANUAL EPSON 109

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.uh %rd, [%rb]

Function: Unsigned half word data transfer
Standard: rd(15:0) ← H[rb], rd(31:16) ← 0
Extension 1: rd(15:0) ← H[rb + imm13], rd(31:16) ← 0
Extension 2: rd(15:0) ← H[rb + imm26], rd(31:16) ← 0

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rd

0 0 1 0 1 1 0 0 rb rd 0x2C00–0x2CFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect (%rb = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1–2 cycles
(Note) This instruction is normally executed in 1 cycle. However, it takes one more cycle if the rd

register which is used in this instruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

Description: (1) Standard
ld.uh %rd, [%rb] ; Memory address = rb
Extends the half word data in the specified memory into unsigned 32 bits (zero extended) and
loads it to the rd register. The accessed memory address is specified by the rb register.

(2) Extension 1
ext imm13
ld.uh %rd, [%rb] ; Memory address = rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the half word data in the address that is specified by adding the 13-bit immediate data (imm13)
to the contents of the rb register is loaded to the rd register. The rb register is not modified.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
ld.uh %rd, [%rb] ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the half word data in the address that is specified by adding the 26-bit immediate data (imm26)
to the contents of the rb register is loaded to the rd register. The rb register is not modified.

Example: ext 0x10

ld.uh %r0,[%r1] ; r0 ←H[r1+0x10] with zero extension

Note: The rb register and the displacement must specify a half word boundary address (LSB = 0). Specify-
ing an odd address causes an address error exception.
The data transfer is performed using data in the specified address as the low-order 8 bits and data in
the next address as the high-order 8 bits.

110 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.uh %rd, [%rb]+

Function: Unsigned half word data transfer
Standard: rd(15:0) ← H[rb], rd(31:16) ← 0, rb ← rb + 2
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rd

0 0 1 0 1 1 0 1 rb rd 0x2D00–0x2DFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect with post increment (%rb = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 2 cycles

Description: Extends the half word data in the specified memory into unsigned 32 bits (zero extended) and loads
it to the rd register. The accessed memory address is specified by the rb register. The address stored
in the rb register is incremented (+2) after the data transfer.

Example: ld.uh %r0,[%r1]+ ; r0 ←H[r1] with zero extension, r1 ←r1+2

Notes: • The rb register must specify a half word boundary address (LSB = 0). Specifying an odd address
causes an address error exception.
The data transfer is performed using data in the specified address as the low-order 8 bits and data
in the next address as the high-order 8 bits.

• If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

E0C33000 CORE CPU MANUAL EPSON 111

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.uh %rd, [%sp + imm6]

Function: Unsigned half word data transfer
Standard: rd(15:0) ← H[sp + imm6 × 2], rd(31:16) ← 0
Extension 1: rd(15:0) ← H[sp + imm19], rd(31:16) ← 0
Extension 2: rd(15:0) ← H[sp + imm32], rd(31:16) ← 0

Code: 15 13 12 10 9 4 3 0
class 2 op1 imm6 rd

0 1 0 0 1 1 imm6 rd 0x4C00–0x4FFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect with displacement
Dst: Register direct (%rd = %r0–%r15)

Clock: 1–2 cycles
(Note) This instruction is normally executed in 1 cycle. However, it takes one more cycle if the rd

register which is used in this instruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

Description: (1) Standard
ld.uh %rd, [%sp + imm6] ; Memory address = sp + imm6 × 2
Extends the half word data in the specified memory into unsigned 32 bits (zero extended) and
loads it to the rd register. The accessed memory address is specified by adding the doubled 6-bit
immediate data (imm6) as the displacement to the contents of the current SP. The imm6 specifies
a half word address in 16-bit units. The LSB of the displacement is always fixed at 0.

(2) Extension 1
ext imm13 ; = imm19(18:6)
ld.uh %rd, [%sp + imm6] ; Memory address = sp + imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the half word data in the
address that is specified by adding the 19-bit immediate data (imm19) to the contents of the SP is
loaded to the rd register.
Specify a half word boundary address (LSB = 0) for the imm6.

(3) Extension 2
ext imm13 ; = imm32(31:19)
ext imm13' ; = imm32(18:6)
ld.uh %rd, [%sp + imm6] ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the half word data in the
address that is specified by adding the 32-bit immediate data (imm32) to the contents of the SP is
loaded to the rd register.
Specify a half word boundary address (LSB = 0) for the imm6.

Example: ext 0x1

ext 0x0

ld.uh %r1,[%sp+0x2] ; r1 ←H[SP+0x80002] with zero extension

Note: When extending the displacement, the LSB of the imm6 will always be fixed at 0 to point to a half
word boundary address. Thus an address error exception will not occur.
The data transfer is performed using data in the specified address as the low-order 8 bits and data in
the next address as the high-order 8 bits.

112 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w %rd, %rs

Function: Word data transfer
Standard: rd ← rs
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 1 0 rs rd

0 0 1 0 1 1 1 0 rs rd 0x2E00–0x2EFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: Transfers the contents of the rs register (word data) to the rd register.

Example: ld.w %r0,%r1 ; r0 ←r1

Note: The ALR and the AHR can be used only in the models that have an optional multiplier. When using
the ALR or the AHR for the source register in other models, this instruction functions the same as
the "nop" instruction.

E0C33000 CORE CPU MANUAL EPSON 113

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w %rd, %ss

Function: Word data transfer
Standard: rd ← ss
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 ss rd

1 0 1 0 0 1 0 0 ss rd 0xA400–0xA43F
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%ss = %sp, %psr, %alr, %ahr)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: Transfers the contents of the special register (SP, PSR, ALR, AHR) to the rd register.

Example: ld.w %r0,%psr ; r0 ←psr

Note: The ALR and the AHR can be used only in the models that have an optional multiplier. When using
the ALR or the AHR for the source register in other models, this instruction functions the same as
the "nop" instruction.

114 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w %rd, [%rb]

Function: Word data transfer
Standard: rd ← W[rb]
Extension 1: rd ← W[rb + imm13]
Extension 2: rd ← W[rb + imm26]

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rd

0 0 1 1 0 0 0 0 rb rd 0x3000–0x30FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect (%rb = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1–2 cycles
(Note) This instruction is normally executed in 1 cycle. However, it takes one more cycle if the rd

register which is used in this instruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

Description: (1) Standard
ld.w %rd, [%rb] ; Memory address = rb
Transfers the word data stored in the specified memory to the rd register. The accessed memory
address is specified by the rb register.

(2) Extension 1
ext imm13
ld.w %rd, [%rb] ; Memory address = rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the word data in the address that is specified by adding the 13-bit immediate data (imm13) to the
contents of the rb register is loaded to the rd register. The rb register is not modified.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
ld.w %rd, [%rb] ; Memory address = rb + imm26
The "ext" instructions change the addressing mode to register indirect with displacement. Thus
the word data in the address that is specified by adding the 26-bit immediate data (imm26) to the
contents of the rb register is loaded to the rd register. The rb register is not modified.

Example: ext 0x10

ld.w %r0,[%r1] ; r0 ←W[r1+0x10]

Note: The rb register and the displacement must specify a word boundary address (low-order 2 bits = 0).
Specifying other addresses causes an address error exception.
The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.

E0C33000 CORE CPU MANUAL EPSON 115

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w %rd, [%rb]+

Function: Word data transfer
Standard: rd ← W[rb], rb ← rb + 4
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rd

0 0 1 1 0 0 0 1 rb rd 0x3100–0x31FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect with post increment (%rb = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 2 cycles

Description: Transfers the word data stored in the specified memory to the rd register. The accessed memory
address is specified by the rb register. The address stored in the rb register is incremented (+4) after
the data transfer.

Example: ld.w %r0,[%r1]+ ; r0 ←W[r1], r1 ←r1+4

Notes: • The rb register must specify a word boundary address (low-order 2 bits = 0). Specifying other
addresses causes an address error exception.
The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.

• If the same register is specified for rd and rb, the incremented address after transferring data is
loaded to the rd register.

116 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w %rd, [%sp + imm6]

Function: Word data transfer
Standard: rd ← W[sp + imm6 × 4]
Extension 1: rd ← W[sp + imm19]
Extension 2: rd ← W[sp + imm32]

Code: 15 13 12 10 9 4 3 0
class 2 op1 imm6 rd

0 1 0 1 0 0 imm6 rd 0x5000–0x53FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register indirect with displacement
Dst: Register direct (%rd = %r0–%r15)

Clock: 1–2 cycles
(Note) This instruction is normally executed in 1 cycle. However, it takes one more cycle if the rd

register which is used in this instruction is also used in the operand of the following instruc-
tion as %rd, %rs or %rb.

Description: (1) Standard
ld.w %rd, [%sp + imm6] ; Memory address = sp + imm6 × 4
Transfers the word data stored in the specified memory to the rd register. The accessed memory
address is specified by adding the quadrupled 6-bit immediate data (imm6) as the displacement
to the contents of the current SP. The imm6 specifies a word address in 32-bit units. The low-
order 2 bits of the displacement is always fixed at 0.

(2) Extension 1
ext imm13 ; = imm19(18:6)
ld.w %rd, [%sp + imm6] ; Memory address = sp + imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the word data in the address
that is specified by adding the 19-bit immediate data (imm19) to the contents of the SP is loaded
to the rd register.
Specify a word boundary address (low-order 2 bits = 0) for the imm6.

(3) Extension 2
ext imm13 ; = imm32(31:19)
ext imm13' ; = imm32(18:6)
ld.w %rd, [%sp + imm6] ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the word data in the address
that is specified by adding the 32-bit immediate data (imm32) to the contents of the SP is loaded
to the rd register.
Specify a word boundary address (low-order 2 bits = 0) for the imm6.

Example: ext 0x1

ext 0x0

ld.w %r1,[%sp+0x4] ; r1 ←W[SP+0x80004]

Note: When extending the displacement, the low-order 2 bits of the imm6 will always be fixed at 0 to point
to a word boundary address. Thus an address error exception will not occur.
The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.

E0C33000 CORE CPU MANUAL EPSON 117

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w %rd, sign6

Function: Word data transfer
Standard: rd(5:0) ← sign6(5:0), rd(31:6) ← sign6(5)
Extension 1: rd(18:0) ← sign19(18:0), rd(31:19) ← sign19(18)
Extension 2: rd ← sign32

Code: 15 13 12 10 9 4 3 0
class 3 op1 sign6 rd

0 1 1 0 1 1 sign6 rd 0x6C00–0x6FFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Immediate data (Signed)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
ld.w %rd, sign6 ; rd ← sign extension ← sign6
Extends the 6-bit immediate data (sign6) into signed 32 bits (sign extended) and loads it to the rd
register.

(2) Extension 1
ext imm13 ; = sign19(18:6)
ld.w %rd, sign6 ; rd ← sign extension ← sign19, sign6 = sign19(5:0)
Extends the 19-bit immediate data (sign19) extended by the "ext" instruction into signed 32 bits
(sign extended) and loads it to the rd register.

(3) Extension 2
ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
ld.w %rd, sign6 ; rd ← sign32, sign6 = sign32(5:0)
Loads the 32-bit immediate data (sign32) extended by the "ext" instruction to the rd register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Example: ld.w %r0,0x3f ; r0 ←0xffffffff

118 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w %sd, %rs

Function: Word data transfer
Standard: sd ← rs
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs sd

1 0 1 0 0 0 0 0 rs sd 0xA000–0xA0F3
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – – (All the bits change if %sd=%psr)

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%sd = %sp, %psr, %alr, %ahr)

Clock: 1 cycle

Description: Transfers the contents of the rs register (word data) to the special register (SP, PSR, ALR, AHR).

Example: ld.w %sp,%r0 ; sp ←r0

Note: The ALR and the AHR can be used only in the models that have an optional multiplier. When using
the ALR or the AHR for the destination register in other models, this instruction functions the same
as the "nop" instruction.

E0C33000 CORE CPU MANUAL EPSON 119

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w [%rb], %rs

Function: Word data transfer
Standard: W[rb] ← rs
Extension 1: W[rb + imm13] ← rs
Extension 2: W[rb + imm26] ← rs

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rs

0 0 1 1 1 1 0 0 rb rs 0x3C00–0x3CFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register indirect (%rb = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
ld.w [%rb], %rs ; Memory address = rb
Transfers the contents of the rs register (word data) to the specified memory. The accessed
memory address is specified by the rb register.

(2) Extension 1
ext imm13
ld.w [%rb], %rs ; Memory address = rb + imm13
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the contents of the rs register (word data) are transferred to the address specified by adding the
13-bit immediate data (imm13) to the contents of the rb register. The rb register is not modified.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
ld.w [%rb], %rs ; Memory address = rb + imm26
The "ext" instruction changes the addressing mode to register indirect with displacement. Thus
the contents of the rs register (word data) are transferred to the address specified by adding the
26-bit immediate data (imm26) to the contents of the rb register. The rb register is not modified.

Example: ext 0x10

ld.w [%r1],%r0 ; W[r1+0x10] ←r0

Note: The rb register and the displacement must specify a word boundary address (low-order 2 bits = 0).
Specifying other addresses causes an address error exception.
The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.

120 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w [%rb]+, %rs

Function: Word data transfer
Standard: W[rb] ← rs, rb ← rb + 4
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 op2 rb rs

0 0 1 1 1 1 0 1 rb rs 0x3D00–0x3DFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register indirect with post increment (%rb = %r0–%r15)

Clock: 1 cycle

Description: Transfers the contents of the rs register (word data) to the specified memory. The accessed memory
address is specified by the rb register. The address stored in the rb register is incremented (+4) after
the data transfer.

Example: ld.w [%r1]+,%r0 ; W[r1] ←r0, r1 ←r1+4

Note: The rb register must specify a word boundary address (low-order 2 bits = 0). Specifying other
addresses causes an address error exception.
The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.

E0C33000 CORE CPU MANUAL EPSON 121

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ld.w [%sp + imm6], %rs

Function: Word data transfer
Standard: W[sp + imm6 × 4] ← rs
Extension 1: W[sp + imm19] ← rs
Extension 2: W[sp + imm32] ← rs

Code: 15 13 12 10 9 4 3 0
class 2 op1 imm6 rs

0 1 0 1 1 1 imm6 rs 0x5C00–0x5FFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register indirect with displacement

Clock: 1 cycle

Description: (1) Standard
ld.w [%sp + imm6], %rs ; Memory address = sp + imm6 × 4
Transfers the contents of the rs register (word data) to the specified memory. The accessed
memory address is specified by adding the quadrupled 6-bit immediate data (imm6) as the
displacement to the contents of the current SP. The imm6 specifies a word address in 32-bit
units. The low-order 2 bits of the displacement is always fixed at 0.

(2) Extension 1
ext imm13 ; = imm19(18:6)
ld.w [%sp + imm6], %rs ; Memory address = sp + imm19, imm6 = imm19(5:0)
The "ext" instruction extends the displacement into 19 bits. Thus the contents of the rs register
(word data) are transferred to the address that is specified by adding the 19-bit immediate data
(imm19) to the contents of the SP.
Specify a word boundary address (low-order 2 bits = 0) for the imm6.

(3) Extension 2
ext imm13 ; = imm32(31:19)
ext imm13' ; = imm32(18:6)
ld.w [%sp + imm6], %rs ; Memory address = sp + imm32, imm6 = imm32(5:0)
The "ext" instructions extend the displacement into 32 bits. Thus the contents of the rs register
(word data) are transferred to the address that is specified by adding the 32-bit immediate data
(imm32) to the contents of the SP.
Specify a word boundary address (low-order 2 bits = 0) for the imm6.

Example: ext 0x1

ext 0x0

ld.w [%sp+0x4],%r1 ; H[SP+0x80004] ←r1

Note: When extending the displacement, the low-order 2 bits of the imm6 will always be fixed at 0 to point
to a word boundary address. Thus an address error exception will not occur.
The data transfer is performed for 1 word (4 addresses) using data in the specified address as the
low-order 8 bits.

122 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mac %rs (option)

Function: Multiplication and accumulation
Standard: Repeats "{ahr, alr}←{ahr, alr} + H[<rs+1>] × H[<rs+2>], <rs+1>←<rs+1> + 2,

<rs+2>←<rs+2> + 2" × rs times
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs –

1 0 1 1 0 0 1 0 rs 0 0 0 0 0xB200–0xB2F0
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– ↔ – – – – – –

Mode: Register direct (%rs = %r0–%r15)

Clock: 2×N+4 cycles (N: A repeat count that is set to the rs register)

Description: The "mac %rs" instruction repeats execution of the "{AHR, ALR} ← {AHR, ALR} + H[<rs+1>]+ ×
H[<rs+2>]+" operation (64 bits + 16 bits × 16 bits) for the count number specified by the rs register.
The rs register is used as a counter and is decremented by each operation. The "mac" instruction
terminates operation when the rs register becomes 0. Thus it is possible to repeat operation up to
232-1 (4,294,967,295) times. When the "mac" instruction is executed by setting the rs register to 0,
the "mac" instruction does not perform multiplication and accumulation and does not change the
AHR and the ALR. The rs register is not decremented as it is 0.

<rs+1> and <rs+2> are the general-purpose registers which follow the rs register.
Example: When the R0 register is specified for rs: <rs+1>=R1 register, <rs+2>=R2 register

When the R15 register is specified for rs: <rs+1>=R0 register, <rs+2>=R1 register

The "mac" instruction uses the data stored in the addresses that are specified by these registers as the
base address as signed 16-bit data for multiplication. The base addresses are incremented (+2) in
each operation step.
The operation result is obtained as a 64-bit data from the AHR for the high-order 32 bits and the
ALR for the low-order 32 bits.

When the temporary result overflows the signed 64-bit range during multiplication and accumula-
tion, the MO flag in the PSR is set to 1. However, the operation continues until the repeat count that
is set in the rs register goes to 0. Since the MO flag stays 1 until it is reset by software, it is possible
to check whether the results are valid or not by reading the MO flag after completing execution of
the "mac" instruction.

Interrupts are accepted even if the "mac" instruction is executing halfway through the repeat count.
The trap processing saves the address of the "mac" instruction into the stack as the return address
before branching to the interrupt handler routine. Thus when the interrupt handler routine is finished
by the "reti" instruction, the suspended "mac" instruction resumes execution. The contents of the rs
register at that point are used as the remaining repeat count, therefore if the interrupt handler routine
has modified the rs register the "mac" instruction cannot obtain the expected results. Similarly, when
the <rs+1> and/or <re+2> registers have been modified in the interrupt handler routine, the resumed
"mac" instruction cannot be executed properly.

Example: mac %r1 ; Repeats "{ahr, alr} ←{ahr,alr}+H[r2]+ ×
; H[r3]+" r1 times

Note: The <rs+1> and <rs+2> registers must specify half word boundary addresses (LSB = 0). Specifying
an odd address causes an address error exception.
This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

E0C33000 CORE CPU MANUAL EPSON 123

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mirror %rd, %rs

Function: Mirror
Standard: rd(31:24)← rs(24:31), rd(23:16)← rs(16:23), rd(15:8)← rs(8:15), rd(7:0)← rs(0:7)
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 1 0 1 1 0 rs rd 0x9600–0x96FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Swaps the bit order of the rs register high and low in byte data units and loads the results to the
rd register.

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
31 24 23 16 15 8 7 0

rs register

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 10
31 24 23 16 15 8 7 0

rd register

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: When r1 contains 0x88442211:
mirror %r0,%r1 ; r0 ←0x11224488

Mirror operation for 32-bit data (when r1 contains 0x44332211)
swap %r1,%r1 ; r1 ←0x11223344

mirror %r1,%r1 ; r1 ←0x8844CC22

124 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mlt.h %rd, %rs (option)

Function: Signed 16-bit multiplication
Standard: alr ← rd(15:0) × rs(15:0)
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs rd

1 0 1 0 0 0 1 0 rs rd 0xA200–0xA2FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Multiplies the low-order 16 bits of the rd register and the low-order 16 bits of the rs register with
the signs and loads the results to the ALR.

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: mlt.h %r0,%r1 ; alr = r0(15:0) × r1(15:0)

; signed multiplication

Note: This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

E0C33000 CORE CPU MANUAL EPSON 125

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mltu.h %rd, %rs (option)

Function: Unsigned 16-bit multiplication
Standard: alr ← rd(15:0) × rs(15:0)
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs rd

1 0 1 0 0 1 1 0 rs rd 0xA600–0xA6FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Multiplies the low-order 16 bits of the rd register and the low-order 16 bits of the rs register
without signs and loads the results to the ALR.

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: mltu.h %r0,%r1 ; alr = r0(15:0) × r1(15:0)

; unsigned multiplication

Note: This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

126 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mlt.w %rd, %rs (option)

Function: Signed 32-bit multiplication
Standard: {ahr, alr} ← rd × rs
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs rd

1 0 1 0 1 0 1 0 rs rd 0xAA00–0xAAFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 5 cycles

Description: Multiplies the 32-bit data in the rd register and the 32-bit data in the rs register with the signs and
loads the 64-bit result to the AHR (high-order 32 bits) and the ALR (low-order 32 bits).

Example: mlt.w %r0,%r1 ; {ahr, alr} = r0 × r1 signed multiplication

Note: This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

E0C33000 CORE CPU MANUAL EPSON 127

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

mltu.w %rd, %rs (option)

Function: Unsigned 32-bit multiplication
Standard: {ahr, alr} ← rd × rs
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs rd

1 0 1 0 1 1 1 0 rs rd 0xAE00–0xAEFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 5 cycles

Description: Multiplies the 32-bit data in the rd register and the 32-bit data in the rs register without signs and
loads the 64-bit result to the AHR (high-order 32 bits) and the ALR (low-order 32 bits).

Example: mltu.w %r0,%r1 ; {ahr, alr} = r0 × r1 unsigned multiplication

Note: This instruction can be executed only in the models that have an optional multiplier. In other models,
this instruction functions the same as the "nop" instruction.

128 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

nop

Function: No operation
Standard: No operation
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 4 3 0
class 0 op1 0 op2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x0000
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Clock: 1 cycle

Description: The "nop" instruction just takes 1 cycle and no operation results. The PC is incremented (+2).

Example: nop

nop ; Waits 2 cycles

E0C33000 CORE CPU MANUAL EPSON 129

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

not %rd, %rs

Function: Logical negation
Standard: rd ← ! rs
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 1 0 rs rd

0 0 1 1 1 1 1 0 rs rd 0x3E00–0x3EFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Reverses all the bits of the rs register and loads them to the rd register.

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: When the r1 register contains 0x5555555:
not %r0,%r1 ; r0 = 0xAAAAAAAA

130 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

not %rd, sign6

Function: Logical negation
Standard: rd ← ! sign6
Extension 1: rd ← ! sign19
Extension 2: rd ← ! sign32

Code: 15 13 12 10 9 4 3 0
class 3 op1 sign6 rd

0 1 1 1 1 1 sign6 rd 0x7C00–0x7FFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Immediate data (signed)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
not %rd, sign6 ; rd ← ! sign6
Extends the signed 6-bit immediate data (sign6) into signed 32-bits (sign extended) and reverses
all the bits, then loads the results to the rd register.

(2) Extension 1
ext imm13 ; = sign19(18:6)
not %rd, sign6 ; rd ← ! sign19, sign6 = sign19(5:0)
Extends the signed 19-bit immediate data (sign19) into signed 32-bits (sign extended) and
reverses all the bits, then loads the results to the rd register.

(3) Extension 2
ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
not %rd, sign6 ; rd ← ! sign32, sign6 = sign32(5:0)
Reverses all the bits of the signed 32-bit immediate data (sign32) extended by the "ext" instruc-
tions, then loads the results to the rd register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: not %r0,0x1f ; r0 = 0xffffffe0

ext 0x7ff

not %r1,0x3f ; r1 = 0xfffe0000

E0C33000 CORE CPU MANUAL EPSON 131

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

or %rd, %rs

Function: Logical sum
Standard: rd ← rd | rs
Extension 1: rd ← rs | imm13
Extension 2: rd ← rs | imm26

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 1 0 rs rd

0 0 1 1 0 1 1 0 rs rd 0x3600–0x36FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
or %rd, %rs ; rd ← rd | rs
ORs the contents of the rs register and rd register and loads the results to the rd register.

(2) Extension 1
ext imm13
or %rd, %rs ; rd ← rs | imm13
ORs the contents of the rs register and the 13-bit immediate data (imm13) with zero extension
and loads the results to the rd register. It does not change the contents of the rs register.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
or %rd, %rs ; rd ← rs | imm26
ORs the contents of the rs register and the 26-bit immediate data (imm26) with zero extension
and loads the results to the rd register. It does not change the contents of the rs register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: or %r0,%r0 ; r0 = r0 | r0

ext 0x1

ext 0x1fff

or %r1,%r2 ; r1 = r2 | 0x00003fff

132 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

or %rd, sign6

Function: Logical sum
Standard: rd ← rd | sign6
Extension 1: rd ← rd | sign19
Extension 2: rd ← rd | sign32

Code: 15 13 12 10 9 4 3 0
class 3 op1 sign6 rd

0 1 1 1 0 1 sign6 rd 0x7400–0x77FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Immediate data (signed)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
or %rd, sign6 ; rd ← rd | sign6
ORs the contents of the rd register and the 6-bit immediate data (sign6) with sign extension and
loads the results to the rd register.

(2) Extension 1
ext imm13 ; = sign19(18:6)
or %rd, sign6 ; rd ← rd | sign19, sign6 = sign19(5:0)
ORs the contents of the rd register and the 19-bit immediate data (sign19) with sign extension
and loads the results to the rd register.

(3) Extension 2
ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
or %rd, sign6 ; rd ← rd | sign32, sign6 = sign32(5:0)
ORs the contents of the rd register and the signed 32-bit immediate data (sign32) extended by the
"ext" instructions and loads the results to the rd register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: or %r0,0x3e ; r0 = r0 | 0xfffffffe

ext 0x7ff

or %r1,0x3f ; r1 = r1 | 0x0001ffff

E0C33000 CORE CPU MANUAL EPSON 133

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

popn %rd

Function: Pop
Standard: rN ← W[sp], sp ← sp + 4, repeats rN = r0 to rd
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 4 3 0
class 0 op1 0 op2 0 0 rd

0 0 0 0 0 0 1 0 0 1 0 0 rd 0x0240–0x024F
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Register direct (%rd = %r0–%r15)

Clock: N cycles (N = number of registers to be returned)

Description: Returns data of the general-purpose registers that have been evacuated in the stack by the "pushn"
instruction to each register.
The "popn" instruction first returns the word data in the address indicated by the SP to the r0
register, then increments the SP by 1 word (4 bytes). It repeats a similar operation up to the rd
register sequentially. The rd register must be the same register specified by the corresponding
"pushn" instruction.

[sp+4N-1]
[sp+4N-2]
[sp+4N-3]
[sp+4N-4]

SP before executing "popn"

rd register
MSB LSB

MSB LSB

Stack
SP after executing "popn"

[sp+3]
[sp+2]
[sp+1]

[sp]

[sp+4N]

r0 register

Example: popn %r3 ; Returns the stacked data to r0, r1, r2 and r3.

134 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

pushn %rs

Function: Push
Standard: sp ← sp - 4, W[sp] ← rN, repeats rN = rs to r0
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 4 3 0
class 0 op1 0 op2 0 0 rs

0 0 0 0 0 0 1 0 0 0 0 0 rs 0x0200–0x020F
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Register direct (%rd = %r0–%r15)

Clock: N cycles (N = number of registers to be evacuated)

Description: Saves data of the general-purpose registers into the stack.
The "pushn" instruction first decrements the current SP value by 1 word (4 bytes), then saves the
contents of the rs register to the address. It repeats a similar operation up to the r0 register sequen-
tially.

[sp-1]
[sp-2]
[sp-3]
[sp-4]

SP after executing "pushn"

rs register
MSB LSB

MSB LSB

Stack
SP before executing "pushn"

[sp-4N+3]
[sp-4N+2]
[sp-4N+1]

[sp-4N]

[sp]

r0 register

Example: pushn %r3 ; Saves r3, r2, r1 and r0

E0C33000 CORE CPU MANUAL EPSON 135

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

ret / ret.d

Function: Return from subroutine
Standard: pc ← W[sp], sp ← sp + 4
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 4 3 0
class 0 op1 d op2 0 0 –

0 0 0 0 0 1 1 d 0 1 0 0 0 0 0 0 0x0640, 0x0740
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Clock: ret: 4 cycles
ret.d:3 cycles

Description: (1) Standard
ret
Returns the PC value (return address) that was saved into the stack when the "call" instruction
was executed for returning the program flow from the subroutine to the routine that called the
subroutine. The SP is incremented by 1 word.
If the SP has been modified in the subroutine, it is necessary to return the SP value before
executing the "ret" instruction.

(2) Delayed branch (d bit = 1)
ret.d
The "ret.d" instruction sets the d bit in the instruction code, so the following instruction becomes
a delayed instruction. The delayed instruction is executed before return from the subroutine.
Traps that may occur between the "ret.d" instruction and the next delayed instruction are masked,
thus interrupts and exceptions cannot occur.

Example: ret.d

add %r0,%r1 ; Executed before return from the subroutine.

Note: When using the "ret.d" instruction (for delayed branch), the following instruction must be an
instruction that can be used as a delayed instruction. Be aware that the operation will be undefined if
other instructions are executed. See the instruction list in the Appendix for the instructions that can
be used as delayed instructions.

136 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

retd

Function: Return from debugging routine
Standard: r0 ← W[0xC (or 0x6000C)], pc ← W[0x8 (or 0x60008)]
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 4 3 0
class 0 op1 0 op2 0 0 –

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0x0440
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Clock: 5 cycles

Description: Returns the R0 and PC values that were saved into the stack for debugging when the "brk" instruc-
tion was executed for returning the program flow from the debugging routine (debugging mode).
This instruction is provided for ICE control software. Do not use it in general programs.

Example: retd ; Returns from debugging mode.

E0C33000 CORE CPU MANUAL EPSON 137

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

reti

Function: Return from trap handler routine
Standard: psr ← W[sp], sp ← sp + 4, pc ← W[sp], sp ← sp + 4
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 4 3 0
class 0 op1 0 op2 0 0 –

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0x04C0
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

Clock: 5 cycles

Description: Returns the PSR and PC values that were saved into the stack when the exception or interrupt
occurred for returning the program flow from the trap handler routine. The SP is incremented by 2
words.

Example: reti ; Returns from the trap handler routine.

138 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

rl %rd, %rs

Function: Rotation to left
Standard: Rotates the contents of the rd register to the left by the shift count (0–8) specified with

the rs register; LSB ← MSB
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 1 1 1 0 1 rs rd 0x9D00–0x9DFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Rotates the bits of the rd register as in the figure below. The shift count can be specified from 0
to 8 using the low-order 4 bits of the rs register.

←
31 0

rd register

rs(3:0) 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x55555555 and r0 register = 1:
rl %r1,%r0 ; r1 = 0xAAAAAAAA

E0C33000 CORE CPU MANUAL EPSON 139

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

rl %rd, imm4

Function: Rotation to left
Standard: Rotates the contents of the rd register to the left by the shift count (0–8) specified with

the imm4; LSB ← MSB
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 imm4 rd

1 0 0 1 1 1 0 0 imm4 rd 0x9C00–0x9CFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Rotates the bits of the rd register as in the figure below. The shift count can be specified from 0
to 8 using the 4-bit immediate data (imm4).

←
31 0

rd register

imm4 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x01010101:
rl %r1,0x4 ; r1 = 0x10101010

140 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

rr %rd, %rs

Function: Rotation to right
Standard: Rotates the contents of the rd register to the right by the shift count (0–8) specified

with the rs register; MSB ← LSB
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 1 1 0 0 1 rs rd 0x9900–0x99FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Rotates the bits of the rd register as in the figure below. The shift count can be specified from 0
to 8 using the low-order 4 bits of the rs register.

→
31 0

rd register

rs(3:0) 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x55555555 and r0 register = 1:
rr %r1,%r0 ; r1 = 0xAAAAAAAA

E0C33000 CORE CPU MANUAL EPSON 141

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

rr %rd, imm4

Function: Rotation to right
Standard: Rotates the contents of the rd register to the right by the shift count (0–8) specified

with the imm4; MSB ← LSB
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 imm4 rd

1 0 0 1 1 0 0 0 imm4 rd 0x9800–0x98FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Rotates the bits of the rd register as in the figure below. The shift count can be specified from 0
to 8 using the 4-bit immediate data (imm4).

→
31 0

rd register

imm4 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x01010101:
rr %r1,0x4 ; r1 = 0x10101010

142 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sbc %rd, %rs

Function: Subtraction with borrow
Standard: rd ← rd - rs - C
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 5 op1 op2 rs rd

1 0 1 1 1 1 0 0 rs rd 0xBC00–0xBCFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – ↔ ↔ ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Subtracts the contents of the rs register and C (carry) flag from the rd register.

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: sbc %r0,%r1 ; r0 = r0 - r1 - C

Subtraction of 64-bit data
data 1 = {r2, r1}, data2 = {r4, r3}, result = {r2, r1}
sub %r1,%r3 ; Subtraction of the low-order word

sbc %r2,%r4 ; Subtraction of the high-order word

 {r2,r1} ← {r2,r1} - {r4,r3}

E0C33000 CORE CPU MANUAL EPSON 143

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

scan0 %rd, %rs

Function: 0 bit scan
Standard: rd ← 0 bit offset in rs(31:24)
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 0 1 0 1 0 rs rd 0x8A00–0x8AFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – ↔ 0 ↔ 0

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Scans the most significant byte (bits 31 to 24) of the rs register. When a 0 bit is found, it loads
the location (offset from MSB) to the rd register. If the MSB is 0, 0 is loaded to the rd register
and the Z flag is set. If there is no 0 bit in the most significant byte of the rs register, 0x00000008
is loaded in the rd register and the C flag is set.
Bits 31 to 4 of the rd register become 0.

Example:

High-order 8 bits of rs Low-order 8 bits of rd C V Z N

0xxx xxxx 0000 0000 0 0 1 0
10xx xxxx 0000 0001 0 0 0 0
110x xxxx 0000 0010 0 0 0 0
1110 xxxx 0000 0011 0 0 0 0
1111 0xxx 0000 0100 0 0 0 0
1111 10xx 0000 0101 0 0 0 0
1111 110x 0000 0110 0 0 0 0
1111 1110 0000 0111 0 0 0 0
1111 1111 0000 1000 1 0 0 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Bit scan for 32-bit data
r0 = temporary register, r1 = bit-scan source data, r2 = result
scan0 %r0,%r1 ; 1st bit-scan

sll %r1,%r0

ld.w %r2,%r0

scan0 %r0,%r1 ; 2nd bit-scan

sll %r1,%r0

add %r2,%r0

scan0 %r0,%r1 ; 3rd bit-scan

sll %r1,%r0

add %r2,%r0

scan0 %r0,%r1 ; 4th bit-scan

sll %r1,%r0

add %r2,%r0

144 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

scan1 %rd, %rs

Function: 1 bit scan
Standard: rd ← 1 bit offset in rs(31:24)
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 0 1 1 1 0 rs rd 0x8E00–0x8EFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – ↔ 0 ↔ 0

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Scans the most significant byte (bits 31 to 24) of the rs register. When a 1 bit is found, it loads
the location (offset from MSB) to the rd register. If the MSB is 1, 0 is loaded to the rd register
and the Z flag is set. If there is no 1 bit in the most significant byte of the rs register, 0x00000008
is loaded in the rd register and the C flag is set.
Bits 31 to 4 of the rd register become 0.

High-order 8 bits of rs Low-order 8 bits of rd C V Z N

1xxx xxxx 0000 0000 0 0 1 0
01xx xxxx 0000 0001 0 0 0 0
001x xxxx 0000 0010 0 0 0 0
0001 xxxx 0000 0011 0 0 0 0
0000 1xxx 0000 0100 0 0 0 0
0000 01xx 0000 0101 0 0 0 0
0000 001x 0000 0110 0 0 0 0
0000 0001 0000 0111 0 0 0 0
0000 0000 0000 1000 1 0 0 0

Example:

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Bit scan for 32-bit data
r0 = temporary register, r1 = bit-scan source data, r2 = result
scan1 %r0,%r1 ; 1st bit-scan

sll %r1,%r0

ld.w %r2,%r0

scan1 %r0,%r1 ; 2nd bit-scan

sll %r1,%r0

add %r2,%r0

scan1 %r0,%r1 ; 3rd bit-scan

sll %r1,%r0

add %r2,%r0

scan0 %r0,%r1 ; 4th bit-scan

sll %r1,%r0

add %r2,%r0

E0C33000 CORE CPU MANUAL EPSON 145

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sla %rd, %rs

Function: Arithmetical shift to left
Standard: Shifts the contents of the rd register to the left by the shift count (0–8) specified with

the rs register; LSB ← 0
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 1 0 1 0 1 rs rd 0x9500–0x95FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. 0 enters to the LSB.

←
31 0

0rd register

rs(3:0) 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x55555555 and r0 register = 1:
sla %r1,%r0 ; r1 = 0xAAAAAAAA

146 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sla %rd, imm4

Function: Arithmetical shift to left
Standard: Shifts the contents of the rd register to the left by the shift count (0–8) specified with

the imm4; LSB ← 0
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 imm4 rd

1 0 0 1 0 1 0 0 imm4 rd 0x9400–0x94FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the 4-bit immediate data (imm4). 0 enters to the LSB.

←
31 0

0rd register

imm4 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x01010101:
sla %r1,0x4 ; r1 = 0x10101010

E0C33000 CORE CPU MANUAL EPSON 147

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sll %rd, %rs

Function: Logical shift to left
Standard: Shifts the contents of the rd register to the left by the shift count (0–8) specified with

the rs register; LSB ← 0
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 0 1 1 0 1 rs rd 0x8D00–0x8DFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. 0 enters to the LSB.

←
31 0

0rd register

rs(3:0) 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x55555555 and r0 register = 1:
sll %r1,%r0 ; r1 = 0xAAAAAAAA

148 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sll %rd, imm4

Function: Logical shift to left
Standard: Shifts the contents of the rd register to the left by the shift count (0–8) specified with

the imm4; LSB ← 0
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 imm4 rd

1 0 0 0 1 1 0 0 imm4 rd 0x8C00–0x8CFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. 0 enters to the LSB.

←
31 0

0rd register

imm4 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x01010101:
sll %r1,0x4 ; r1 = 0x10101010

E0C33000 CORE CPU MANUAL EPSON 149

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

slp

Function: SLEEP
Standard: Sets the CPU to SLEEP mode
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 9 8 7 6 5 4 3 0
class 0 op1 0 op2 0 0 –

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0x0040
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Clock: 1 cycle

Description: Sets the CPU to SLEEP mode.
In SLEEP mode, the CPU and the on-chip peripheral circuits stop operating, so current consumption
can greatly be reduced.
SLEEP mode is canceled by an interrupt. When SLEEP mode is canceled, the program flow returns
to the next instruction of the "slp" instruction after executing the interrupt handler routine.

Example: slp ; Sets the CPU to SLEEP mode.

150 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sra %rd, %rs

Function: Arithmetical shift to right
Standard: Shifts the contents of the rd register to the right by the shift count (0–8) specified with

the rs register; MSB ← MSB
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 1 0 0 0 1 rs rd 0x9100–0x91FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. The sign bit is copied to the MSB.

→
31 0

Sign bit (MSB)

rd register

rs(3:0) 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x55555555 and r0 register = 1:
sra %r1,%r0 ; r1 = 0x2AAAAAAA

E0C33000 CORE CPU MANUAL EPSON 151

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sra %rd, imm4

Function: Arithmetical shift to right
Standard: Shifts the contents of the rd register to the right by the shift count (0–8) specified with

the imm4; MSB ← MSB
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 imm4 rd

1 0 0 1 0 0 0 0 imm4 rd 0x9000–0x90FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. The sign bit is copied to the MSB.

→
31 0

Sign bit (MSB)

rd register

imm4 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x81010101:
sra %r1,0x4 ; r1 = 0xF8101010

152 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

srl %rd, %rs

Function: Logical shift to right
Standard: Shifts the contents of the rd register to the right by the shift count (0–8) specified with

the rs register; MSB ← 0
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 0 1 0 0 1 rs rd 0x8900–0x89FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. 0 enters to the MSB.

→
31 0

0rd register

rs(3:0) 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x55555555 and r0 register = 1:
srl %r1,%r0 ; r1 = 0x2AAAAAAA

E0C33000 CORE CPU MANUAL EPSON 153

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

srl %rd, imm4

Function: Logical shift to right
Standard: Shifts the contents of the rd register to the right by the shift count (0–8) specified with

the imm4; MSB ← 0
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 imm4 rd

1 0 0 0 1 0 0 0 imm4 rd 0x8800–0x88FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Shifts the bits of the rd register as in the figure below. The shift count can be specified from 0 to
8 using the low-order 4 bits of the rs register. 0 enters to the MSB.

→
31 0

0rd register

imm4 1xxx 0111 0110 0101 0100 0011 0010 0001 0000
Shift count 8 7 6 5 4 3 2 1 0

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: In the case of r1 register = 0x01010101:
srl %r1,0x4 ; r1 = 0x00101010

154 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sub %rd, %rs

Function: Subtraction
Standard: rd ← rd - rs
Extension 1: rd ← rs - imm13
Extension 2: rd ← rs - imm26

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 1 0 rs rd

0 0 1 0 0 1 1 0 rs rd 0x2600–0x26FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – ↔ ↔ ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
sub %rd, %rs ; rd ← rd - rs
Subtracts the contents of the rs register from the rd register.

(2) Extension 1
ext imm13
sub %rd, %rs ; rd ← rs - imm13
Subtracts the 13-bit immediate data (imm13) from the contents of the rs register, and then stores
the results to the rd register. It does not change the contents of the rs register.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
sub %rd, %rs ; rd ← rs - imm26
Subtracts the 26-bit immediate data (imm26) from the contents of the rs register, and then stores
the results to the rd register. It does not change the contents of the rs register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: sub %r0,%r0 ; r0 = r0 - r0

ext 0x1

ext 0x1fff

sub %r1,%r2 ; r1 = r2 - 0x3fff

E0C33000 CORE CPU MANUAL EPSON 155

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sub %rd, imm6

Function: Subtraction
Standard: rd ← rd - imm6
Extension 1: rd ← rd - imm19
Extension 2: rd ← rd - imm32

Code: 15 13 12 10 9 4 3 0
class 3 op1 imm6 rd

0 1 1 0 0 1 imm6 rd 0x6400–0x67FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – ↔ ↔ ↔ ↔

Mode: Src: Immediate data (unsigned)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
sub %rd, imm6 ; rd ← rd - imm6
Subtracts the 6-bit immediate data (imm6) from the rd register.

(2) Extension 1
ext imm13 ; = imm19(18:6)
sub %rd, imm6 ; rd ← rd - imm19, imm6 = imm19(5:0)
Subtracts the 19-bit immediate data (imm19) extended with the "ext" instruction from the rd
register.

(3) Extension 2
ext imm13 ; = imm32(31:19)
ext imm13' ; = imm32(18:6)
sub %rd, imm6 ; rd ← rd - imm32, imm6 = imm32(5:0)
Subtracts the 32-bit immediate data (imm32) extended with the "ext" instructions from the rd
register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: sub %r0,0x3f ; r0 = r0 - 0x3f

ext 0x1fff

ext 0x1fff

sub %r1,0x3f ; r1 = r1 - 0xffffffff

156 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

sub %sp, imm10

Function: Subtraction
Standard: sp ← sp - imm10 × 4
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 0
class 4 op1 imm10

1 0 0 0 0 1 imm10 0x8400–0x87FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Immediate data (unsigned)
Dst: Register direct (SP)

Clock: 1 cycle

Description: (1) Standard
Quadruples the 10-bit immediate data (imm10) and subtracts it from the stack pointer SP.

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: sub %sp,0x1 ; sp = sp - 0x4

E0C33000 CORE CPU MANUAL EPSON 157

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

swap %rd, %rs

Function: Swap
Standard: rd(31:24)← rs(7:0), rd(23:16)← rs(15:8), rd(15:8)← rs(23:16), rd(7:0)← rs(31:24)
Extension 1:Invalid
Extension 2:Invalid

Code: 15 13 12 10 9 8 7 4 3 0
class 4 op1 op2 rs rd

1 0 0 1 0 0 1 0 rs rd 0x9200–0x92FF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – – –

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
Swaps the byte order of the rs register high and low and loads the results to the rd register.

1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0
31 24 23 16 15 8 7 0

rs register

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 00
31 24 23 16 15 8 7 0

rd register

(2) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set.

Example: When r1contains 0x87654321:
swap %r0,%r1 ; r0 ← 0x21436587

158 EPSON E0C33000 CORE CPU MANUAL

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

xor %rd, %rs

Function: Exclusive OR
Standard: rd ← rd ^ rs
Extension 1: rd ← rs ^ imm13
Extension 2: rd ← rs ^ imm26

Code: 15 13 12 10 9 8 7 4 3 0
class 1 op1 1 0 rs rd

0 0 1 1 1 0 1 0 rs rd 0x3A00–0x3AFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Register direct (%rs = %r0–%r15)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
xor %rd, %rs ; rd ← rd ^ rs
Exclusive ORs the contents of the rs register and rd register and loads the results to the rd
register.

(2) Extension 1
ext imm13
xor %rd, %rs ; rd ← rs ^ imm13
Exclusive ORs the contents of the rs register and the 13-bit immediate data (imm13) with zero
extension and loads the results to the rd register. It does not change the contents of the rs register.

(3) Extension 2
ext imm13 ; = imm26(25:13)
ext imm13' ; = imm26(12:0)
xor %rd, %rs ; rd ← rs ^ imm26
Exclusive ORs the contents of the rs register and the 26-bit immediate data (imm26) with zero
extension and loads the results to the rd register. It does not change the contents of the rs register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: xor %r0,%r0 ; r0 = r0 ^ r0

ext 0x1

ext 0x1fff

xor %r1,%r2 ; r1 = r2 ^ 0x00003fff

E0C33000 CORE CPU MANUAL EPSON 159

CHAPTER 4: DETAILED EXPLANATION OF INSTRUCTIONS

xor %rd, sign6

Function: Exclusive OR
Standard: rd ← rd ^ sign6
Extension 1: rd ← rd ^ sign19
Extension 2: rd ← rd ^ sign32

Code: 15 13 12 10 9 4 3 0
class 3 op1 sign6 rd

0 1 1 1 1 0 sign6 rd 0x7800–0x7BFF
15 12 11 8 7 4 3 0

Flags: IL(3:0) MO DS IE C V Z N
– – – – – – ↔ ↔

Mode: Src: Immediate data (signed)
Dst: Register direct (%rd = %r0–%r15)

Clock: 1 cycle

Description: (1) Standard
xor %rd, sign6 ; rd ← rd ^ sign6
Exclusive ORs the contents of the rd register and the 6-bit immediate data (sign6) with sign
extension and loads the results to the rd register.

(2) Extension 1
ext imm13 ; = sign19(18:6)
xor %rd, sign6 ; rd ← rd ^ sign19, sign6 = sign19(5:0)
Exclusive ORs the contents of the rd register and the 19-bit immediate data (sign19) with sign
extension and loads the results to the rd register.

(3) Extension 2
ext imm13 ; = sign32(31:19)
ext imm13' ; = sign32(18:6)
xor %rd, sign6 ; rd ← rd ^ sign32, sign6 = sign32(5:0)
Exclusive ORs the contents of the rd register and the signed 32-bit immediate data (sign32)
extended by the "ext" instructions and loads the results to the rd register.

(4) Delayed instruction
This instruction is executed as a delayed instruction if it is described as following a branch
instruction in which the d bit is set. In this case, this instruction cannot be extended with the
"ext" instruction.

Examples: xor %r0,0x3e ; r0 = r0 ^ 0xfffffffe

ext 0x7ff

xor %r1,0x3f ; r1 = r1 ^ 0x0001ffff

Appendix

E0C33000 Quick Reference ...Appendix-1

Memory Map and Trap TableAppendix-1

Registers ...Appendix-1

Symbols ...Appendix-2

Data Transfer InstructionsAppendix-3

Logic Operation InstructionsAppendix-4

Arithmetic Operation InstructionsAppendix-4

Shift and Rotation InstructionsAppendix-5

Bit Operation InstructionsAppendix-5

Immediate Extension InstructionAppendix-5

Push and Pop InstructionsAppendix-5

Branch Instructions ..Appendix-6

Multiplication and Accumulation InstructionAppendix-7

System Control InstructionsAppendix-7

Other Instructions ..Appendix-7

Immediate Extension List (1)Appendix-8

Immediate Extension List (2)Appendix-9

Instruction Index ..Appendix-10

E
0C

33000 C
O

R
E

 C
P

U
 M

A
N

U
A

L
E

P
S

O
N

A
P

P
E

N
D

IX
-1

A
P

P
E

N
D

IX
: E

0C
33000 Q

U
IC

K
 R

E
F

E
R

E
N

C
E

Memory Map and Trap Table E0C33000 Core CPU

Area 18 External memory
Area 17 External memory
Area 16 External memory
Area 15 External memory
Area 14 External memory
Area 13 External memory
Area 12 External memory
Area 11 External memory
Area 10 External memory
Area 9 External memory
Area 8 External memory
Area 7 External memory
Area 6 External I/O
Area 5 External memory
Area 4 External memory
Area 3 On-chip ROM
Area 2 Reserved
Area 1 Internal I/O
Area 0 On-chip RAM

Memory Map Trap Table

base: Trap table start address
= 0x0080000 (when booting by on-chip ROM)
= 0x0C00000 (when booting by external ROM)

Registers E0C33000 Core CPU

R15
R14
R13

:
R4
R3
R2
R1
R0

31 0

General-purpose registers (16)

PC

PSR

SP

ALR

AHR

Program counter

Processor status register

Stack pointer

Arithmetic operation low register

Arithmetic operation high register

31 0

Special registers (5) PSR
31–12

Reserved IL
11–8

MO
7

DS
6

–
5

IE
4

C
3

V
2

Z
1

N
0

IL:
MO:
DS:
IE:
Z:
N:
C:
V:

(AHR, ALR: Option for Multiplication & Accumulation, Multiplication, and Division)

Interrupt level
MAC overflow flag
Dividend sign flag
Interrupt enable
Zero flag
Negative flag
Carry flag
Overflow flag

(0–15: Enabled interrupt level)
(1: MAC overflow, 0: Not overflown)
(1: Negative, 0: Positive)
(1: Enabled, 0: Disabled)
(1: Zero, 0: Non zero)
(1: Negative, 0: Positive)
(1: Carry/borrow, 0: No carry)
(1: Overflow, 0: Not overflown)

0xFFFFFFF

0x1000000
0x0C00000

0x0100000
0x0080000
0x0060000
0x0040000
0x0000000

Area size
64MB
64MB
32MB
32MB
16MB
16MB
8MB
8MB
4MB
4MB
2MB
2MB
1MB
1MB
1MB
512KB
128KB
128KB
256KB

Reset
Reserved

Zero division
Reserved

Address error
NMI

Reserved
Software exception 0

:
Software exception 3

External maskable interrupt 0
:

External maskable interrupt 215

Vector address
base + 0
base + 4–12
base + 16
base + 20
base + 24
base + 28
base + 32–44
base + 48
 :
base + 60
base + 64
 :
base + 924

CMOS 32-bit Single Chip Microcomputer

E0C33000
Quick Reference

A
P

P
E

N
D

IX
-2

E
P

S
O

N
E

0C
33000 C

O
R

E
 C

P
U

 M
A

N
U

A
L

A
P

P
E

N
D

IX
: E

0C
33000 Q

U
IC

K
 R

E
F

E
R

E
N

C
E

Symbols E0C33000 Instruction Set
Registers/Register Data
%rd, rd: A general-purpose register (R0–R15) used as the destination register or the contents of the register.
%rs, rs: A general-purpose register (R0–R15) used as the source register or the contents of the register.
%rb, rb: A general-purpose register (R0–R15) that has stored a base address accessed in the register indirect addressing mode or the contents of the register.
%sd, sd: A special register (PSR, SP, ALR, AHR) used as the destination register or the contents of the register.
%ss, ss: A special register (PSR, SP, ALR, AHR) used as the source register or the contents of the register.
%sp, sp: Stack pointer or the contents of the stack pointer.
∗ Register bit field in the code is replaced with a number according to the specified register (R0–R15=0–15, PSR=0, SP=1, ALR=2, AHR=3).

Memory/Addresses/Memory Data
[%rb]: Specification for register indirect addressing.
[%rb]+: Specification for register indirect addressing with post-increment.
[%sp+immX]: Specification for register indirect addressing with a displacement.
B[rb]: The address specified with the rb register, or the byte data stored in the address.
H[rb]: The half-word space in which the base address is specified with the rb register, or the half-word data stored in the space.
W[rb]: The word space in which the base address is specified with the rb register, or the word data stored in the space.
W[sp]: The word space in which the base address is specified with the SP, or the word data stored in the space.
B[sp+imm6]: The address specified with the SP and the displacement imm6, or the byte data stored in the address.
H[sp+imm7]: The half-word space in which the base address is specified with the SP and the displacement imm6 x 2, or the half-word data stored in the space.
W[sp+imm8]: The word space in which the base address is specified with SP and the displacement imm6 x 4, or the word data stored in the space.

Immediate
immX: A X-bit unsigned immediate data.
signX: A X-bit signed immediate data.

Bit Field
(X): Bit X of data.
(X:Y): A bit field from bit X to bit Y.
{X, Y···}: Indicates a bit (data) configuration.

Flags
MO: MAC overflow flag
DS: Dividend sign flag
Z: Zero flag
N: Negative flag
C: Carry flag
V: Overflow flag
–: Not changed
↔: Set (1) or reset (0)
0: Reset (0)

Functions
←: Indicates that the right item is loaded or set to the left item.
+: Addition
-: Subtraction
&: AND
|: OR
^: XOR
!: NOT
×: Multiplication

Cycle Indicates the number of execution cycles when the instruction has been stored in the internal ROM
and the internal RAM is accessed.

EXT
–: Indicates that the ext instruction cannot be used for the instruction.

D
●: Indicates that the instruction can be used as a delayed instruction.
–: Indicates that the instruction cannot be used as a delayed instruction.

E
0C

33000 C
O

R
E

 C
P

U
 M

A
N

U
A

L
E

P
S

O
N

A
P

P
E

N
D

IX
-3

A
P

P
E

N
D

IX
: E

0C
33000 Q

U
IC

K
 R

E
F

E
R

E
N

C
E

Data Transfer E0C33000 Instruction Set

Opcode
ld.b

ld.ub

ld.h

ld.uh

ld.w

Operand
%rd, %rs
%rd, [%rb]
%rd, [%rb]+
%rd, [%sp+imm6]
[%rb], %rs
[%rb]+, %rs
[%sp+imm6], %rs
%rd, %rs
%rd, [%rb]
%rd, [%rb]+
%rd, [%sp+imm6]
%rd, %rs
%rd, [%rb]
%rd, [%rb]+
%rd, [%sp+imm6]
[%rb], %rs
[%rb]+, %rs
[%sp+imm6], %rs
%rd, %rs
%rd, [%rb]
%rd, [%rb]+
%rd, [%sp+imm6]
%rd, %rs
%sd, %rs
%rd, %ss
%rd, sign6
%rd, [%rb]
%rd, [%rb]+
%rd, [%sp+imm6]
[%rb], %rs
[%rb]+, %rs
[%sp+imm6], %rs

Function

rd(7:0)←rs(7:0), rd(31:8)←rs(7)
rd(7:0)←B[rb], rd(31:8)←B[rb](7)
rd(7:0)←B[rb], rd(31:8)←B[rb](7), rb←rb+1
rd(7:0)←B[sp+imm6], rd(31:8)←B[sp+imm6](7)
B[rb]←rs(7:0)
B[rb]←rs(7:0), rb←rb+1
B[sp+imm6]←rs(7:0)
rd(7:0)←rs(7:0), rd(31:8)←0
rd(7:0)←B[rb], rd(31:8)←0
rd(7:0)←B[rb], rd(31:8)←0, rb←rb+1
rd(7:0)←B[sp+imm6], rd(31:8)←0
rd(15:0)←rs(15:0), rd(31:16)←rs(15)
rd(15:0)←H[rb], rd(31:16)←H[rb](15)
rd(15:0)←H[rb], rd(31:16)←H[rb](15), rb←rb+2
rd(15:0)←H[sp+imm7], rd(31:16)←H[sp+imm7](15); imm7={imm6,0}
H[rb]←rs(15:0)
H[rb]←rs(15:0), rb←rb+2
H[sp+imm7]←rs(15:0); imm7={imm6,0}
rd(15:0)←rs(15:0), rd(31:16)←0
rd(15:0)←H[rb], rd(31:16)←0
rd(15:0)←H[rb], rd(31:16)←0, rb←rb+2
rd(15:0)←H[sp+imm7], rd(31:16)←0; imm7={imm6,0}
rd←rs
sd←rs
rd←ss
rd(5:0)←sign6(5:0), rd(31:6)←sign6(5)
rd←W[rb]
rd←W[rb], rb←rb+4
rd←W[sp+imm8]; imm8={imm6,00}
W[rb]←rs
W[rb]←rs, rb←rb+4
W[sp+imm8]←rs; imm8={imm6,00}

Cycle

1
1–2 ∗4

2
1–2 ∗4

1
1
1
1

1–2 ∗4

2
1–2 ∗4

1
1–2 ∗4

2
1–2 ∗4

1
1
1
1

1–2 ∗4

2
1–2 ∗4

1
1
1
1

1–2 ∗4

2
1–2 ∗4

1
1
1

EXT

–
∗1
–
∗2
∗1
–
∗2
–
∗1
–
∗2
–
∗1
–
∗2
∗1
–
∗2
–
∗1
–
∗2
–
–
–
∗3
∗1
–
∗2
∗1
–
∗2

D

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
●

–
–
●

–
–
–
–
–
–

1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0

0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
1

1
1
1
0
1
1
0
1
1
1
0
1
1
1
0
1
1
0
1
1
1
0
1
1
1
1
1
1
0
1
1
0

0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
0
0
1
1
1

0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
0
0
0
1
1
1

MO
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

DS
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

Z
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

N
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

C
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

V
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

0
0
0

0
0

0
0
0

0
0
0

0
0

0
0
0

1
0
0

0
0

0
0

1
0
1

0
1

1
0
1

1
0
1

0
1

1
0
1

0
0
0

0
1

0
1

Code
MSB LSB

Mnemonic Flags

Remarks
∗1) With one EXT: base address = rb+imm13, With two EXT: base address = rb+imm26
∗2) With one EXT: base address = sp+imm19, With two EXT: base address = sp+imm32

(imm19 = {imm13, imm6}, imm32 = {imm13, imm13, imm6} regardless of the transfer data size)
∗3) With one EXT: data = sign19, With two EXT: data = sign32
∗4) "ld.∗ %rd,[%rb]" and "ld.∗ %rd,[%sp+imm6]" instructions are normally executed in 1 cycle. However, they take 2 cycles if the following instruction uses the rd register as the

source register, destination register or base address register.

rs rd
rb rd
rb rd

rb rs
rb rs

imm6 rd

imm6 rs
rs rd
rb rd
rb rd

imm6 rd
rs rd

rs rd
rs sd
ss rd

rb rd
rb rd

rb rs
rb rs

rb rd
rb rd

rb rs
rb rs

imm6 rd

imm6 rs

imm6 rd

imm6 rs

rs rd
rb rd
rb rd

imm6 rd

sign6 rd

A
P

P
E

N
D

IX
-4

E
P

S
O

N
E

0C
33000 C

O
R

E
 C

P
U

 M
A

N
U

A
L

A
P

P
E

N
D

IX
: E

0C
33000 Q

U
IC

K
 R

E
F

E
R

E
N

C
E

Logic Operation E0C33000 Instruction Set

Opcode
and

or

xor

not

Operand
%rd, %rs
%rd, sign6
%rd, %rs
%rd, sign6
%rd, %rs
%rd, sign6
%rd, %rs
%rd, sign6

Function

rd←rd & rs
rd←rd & sign6(with sign extension)
rd←rd | rs
rd←rd | sign6(with sign extension)
rd←rd ^ rs
rd←rd ^ sign6(with sign extension)
rd←!rs
rd←!sign6(with sign extension)

Cycle

1
1
1
1
1
1
1
1

EXT

∗1
∗2
∗1
∗2
∗1
∗2
–
∗2

0
0
0
0
0
0
0
0

0
1
0
1
0
1
0
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

MO
–
–
–
–
–
–
–
–

DS
–
–
–
–
–
–
–
–

Z
↔
↔
↔
↔
↔
↔
↔
↔

N
↔
↔
↔
↔
↔
↔
↔
↔

C
–
–
–
–
–
–
–
–

V
–
–
–
–
–
–
–
–

1

1

1

1

0

0

0

0

Code
MSB LSB

Mnemonic Flags

Arithmetic Operation E0C33000 Instruction Set

Opcode
add

adc
sub

sbc
cmp

mlt.h
mltu.h
mlt.w
mltu.w
div0s
div0u
div1
div2s
div3s

Operand
%rd, %rs
%rd, imm6
%sp, imm10
%rd, %rs
%rd, %rs
%rd, imm6
%sp, imm10
%rd, %rs
%rd, %rs
%rd, sign6
%rd, %rs
%rd, %rs
%rd, %rs
%rd, %rs
%rs
%rs
%rs
%rs

Function

rd←rd + rs
rd←rd + imm6(with zero extension)
sp←sp + imm12(with zero extension); imm12={imm10,00}
rd←rd + rs + C
rd←rd - rs
rd←rd - imm6(with zero extension)
sp←sp - imm12(with zero extension); imm12={imm10,00}
rd←rd - rs - C
rd - rs
rd - sign6(with sign extension)
alr←rd(15:0) × rs(15:0); calculated with sign (∗6)
alr←rd(15:0) × rs(15:0); calculated without sign (∗6)
{ahr, alr}←rd × rs; calculated with sign (∗6)
{ahr, alr}←rd × rs; calculated without sign (∗6)
Setup for signed division (∗6); alr = dividend, rs = divisor
Setup for unsigned division (∗6); alr = dividend, rs = divisor
Step division for one bit (∗4, ∗6); alr←quotient, ahr←remainder (unsigned)
Correction step 1 for signed division (∗5, ∗6)
Correction step 2 for signed division (∗5, ∗6); alr←quotient, ahr←remainder

Cycle

1
1
1
1
1
1
1
1
1
1
1
1
5
5
1
1
1
1
1

EXT

∗1
∗2
–
–
∗1
∗2
–
–
∗1
∗3
–
–
–
–
–
–
–
–
–

D

●

●

●

●

●

●

●

●

D

●

●

●

●

●

●

●

●

●

●

●

●

–
–
–
–
–
–
–

0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1

0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0

1
1
0
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
0

0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1

0
0
0
1
0
0
0
1
1
1
0
0
1
1
1
1
0
0
1

0
0
0
0
1
1
1
1
0
0
0
1
0
1
0
1
0
1
0

MO
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

DS
–
–
–
–
–
–
–
–
–
–
–
–
–
–
↔
0
–
–
–

Z
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
–
–
–
–
–

N
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
↔
0
–
–
–

C
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
–
–
–
–
–

V
↔
↔
–
↔
↔
↔
–
↔
↔
↔
–
–
–
–
–
–
–
–
–

1

0
1

0
1

1
1
1
1
1
1
1
1
1

0

0
0

0
0

0
0
0
0
1
1
1
1
1 0 0 0 0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

Code
MSB LSB

Mnemonic Flags

Remarks
∗1) With one EXT: rd←rs <op> imm13, With two EXT: rd←rs <op> imm26
∗2) With one EXT: data = imm19, With two EXT: data = imm32 ∗3) With one EXT: data = sign19, With two EXT: data = sign32
∗4) The div1 instruction must be executed 32 times when performing 32-bit data ÷ 32-bit data. In unsigned division, the division result is loaded to the alr and ahr registers.
∗5) It is not necessary to execute the div2s and div3s instructions for unsigned division. ∗6) These instructions can be executed only in the models that have an optional multiplier.

Remarks
∗1) With one EXT: rd←rs <op> imm13, With two EXT: rd←rs <op> imm26 ∗2) With one EXT: data = sign19, With two EXT: data = sign32

rs rd
sign6 rd

rs rd
sign6 rd

rs rd
sign6 rd

rs rd
sign6 rd

rs rd
imm6 rd

rs rd
rs rd

imm6

imm10

imm10
rd

rs rd

rs rd
rs rd
rs rd
rs
rs
rs
rs
rs

rd

sign6 rd

rs rd

E
0C

33000 C
O

R
E

 C
P

U
 M

A
N

U
A

L
E

P
S

O
N

A
P

P
E

N
D

IX
-5

A
P

P
E

N
D

IX
: E

0C
33000 Q

U
IC

K
 R

E
F

E
R

E
N

C
E

Shift & Rotation E0C33000 Instruction Set

Opcode
srl

sll

sra

sla

rr

rl

Operand
%rd, imm4
%rd, %rs
%rd, imm4
%rd, %rs
%rd, imm4
%rd, %rs
%rd, imm4
%rd, %rs
%rd, imm4
%rd, %rs
%rd, imm4
%rd, %rs

Function

Logical shift to right imm4 bits; imm4=0–8, zero enters to MSB
Logical shift to right rs bits; rs=0–8, zero enters to MSB
Logical shift to left imm4 bits; imm4=0–8, zero enters to LSB
Logical shift to left rs bits; rs=0–8, zero enters to LSB
Arithmetical shift to right imm4 bits; imm4=0–8, sign copied to MSB
Arithmetical shift to right rs bits; rs=0–8, sign copied to MSB
Arithmetical shift to left imm4 bits; imm4=0–8, zero enters to LSB
Arithmetical shift to left rs bits; rs=0–8, zero enters to LSB
Rotation to right imm4 bits; imm4=0–8, LSB goes to MSB
Rotation to right rs bits; rs=0–8, LSB goes to MSB
Rotation to left imm4 bits; imm4=0–8, MSB goes to LSB
Rotation to left rs bits; rs=0–8, MSB goes to LSB

Cycle

1
1
1
1
1
1
1
1
1
1
1
1

EXT

–
–
–
–
–
–
–
–
–
–
–
–

1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1
1
1
1
1

1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1

MO
–
–
–
–
–
–
–
–
–
–
–
–

DS
–
–
–
–
–
–
–
–
–
–
–
–

Z
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

N
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

C
–
–
–
–
–
–
–
–
–
–
–
–

V
–
–
–
–
–
–
–
–
–
–
–
–

0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
1
0
1
0
1
0
1
0
1

Code
MSB LSB

Mnemonic Flags

Bit Operation E0C33000 Instruction Set

Opcode
btst
bclr
bset
bnot

Operand
[%rb], imm3
[%rb], imm3
[%rb], imm3
[%rb], imm3

Function

Z flag←1 if B[rb](imm3)=0
B[rb](imm3)←0
B[rb](imm3)←1
B[rb](imm3)←!B[rb](imm3)

Cycle

3
3
3
3

EXT

∗1
∗1
∗1
∗1

1
1
1
1

0
0
0
0

1
1
1
1

0
0
1
1

1
1
0
0

0
1
0
1

MO
–
–
–
–

DS
–
–
–
–

Z
↔
–
–
–

N
–
–
–
–

C
–
–
–
–

V
–
–
–
–

0
0
0
0

0
0
0
0

0
0
0
0

Code
MSB LSB

Mnemonic Flags

Immediate Extension E0C33000 Instruction Set

Opcode
ext

Operand
imm13

Function

Extends the immediate or operand of the following instruction.

Cycle

1

EXT

∗11 1 0
MO
–

DS
–

Z
–

N
–

C
–

V
–

Code
MSB LSB

Mnemonic Flags

Push & Pop E0C33000 Instruction Set

Opcode
pushn
popn

Operand
%rs
%rd

Function

Repeats "sp←sp-4, W[sp]←rn"; rn=rs to r0
Repeats "rn←W[sp], sp←sp+4"; rn=r0 to rd

Cycle

1xn
1xn

EXT

–
–

D

●

●

●

●

●

●

●

●

●

●

●

●

D

–
–
–
–

D

–

D

–
–

0
0

0
0

0
0

0
0

0
0

0
0

MO
–
–

DS
–
–

Z
–
–

N
–
–

C
–
–

V
–
–

1
1

0
0

0
0

0
1

0
0

0
0

Code
MSB LSB

Mnemonic Flags

Remarks
∗1) With one EXT: address = rb+imm13, With two EXT: address = rb+imm26

Remarks
∗1) One or two ext instruction can be placed prior to the instructions that can be extended.

imm4 rd
rs rd

imm4 rd
rs rd

imm4 rd
rs rd

imm4 rd
rs rd

imm4 rd
rs rd

imm4 rd
rs rd

rb imm3
rb imm3
rb imm3
rb imm3

imm13

rs
rd

A
P

P
E

N
D

IX
-6

E
P

S
O

N
E

0C
33000 C

O
R

E
 C

P
U

 M
A

N
U

A
L

A
P

P
E

N
D

IX
: E

0C
33000 Q

U
IC

K
 R

E
F

E
R

E
N

C
E

Branch E0C33000 Instruction Set

Opcode
jrgt
jrgt.d
jrge
irge.d
jrlt
jrlt.d
jrle
jrle.d
jrugt
jrugt.d
jruge
jruge.d
jrult
jrult.d
jrule
jrule.d
jreq
jreq.d
jrne
jrne.d
call
call.d
jp
jp.d
ret
ret.d
reti
retd
int
brk

Operand
sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8
%rb
sign8
%rb

imm2

Function

pc←pc+sign9 if !Z&!(N^V) is true; sign9={sign8,0} (∗2)

pc←pc+sign9 if !(N^V) is true; sign9={sign8,0} (∗2)

pc←pc+sign9 if N^V is true; sign9={sign8,0} (∗2)

pc←pc+sign9 if Z | (N^V) is true; sign9={sign8,0} (∗2)

pc←pc+sign9 if !Z&!C is true; sign9={sign8,0} (∗2)

pc←pc+sign9 if !C is true; sign9={sign8,0} (∗2)

pc←pc+sign9 if C is true; sign9={sign8,0} (∗2)

pc←pc+sign9 if Z | C is true; sign9={sign8,0} (∗2)

pc←pc+sign9 if Z is true; sign9={sign8,0} (∗2)

pc←pc+sign9 if !Z is true; sign9={sign8,0} (∗2)

sp←sp-4, W[sp]←pc+2, pc←pc+sign9; sign9={sign8,0} (∗2)
sp←sp-4, W[sp]←pc+2, pc←rb (∗2)
pc←pc+sign9; sign9={sign8,0} (∗2)
pc←rb (∗2)
pc←W[sp], sp←sp+4 (∗2)

psr←W[sp], sp←sp+4, pc←W[sp], sp←sp+4
Returns from debugging routine (for ICE software)
sp←sp-4, W[sp]←pc+2, sp←sp-4, W[sp]←psr, pc←software exception vector
Interrupt for debugging (for ICE software)

Cycle

1–2∗3,
1(.d)

1–2∗3,
1(.d)

1–2∗3,
1(.d)

1–2∗3,
1(.d)

1–2∗3,
1(.d)

1–2∗3,
1(.d)

1–2∗3,
1(.d)

1–2∗3,
1(.d)

1–2∗3,
1(.d)

1–2∗3,
1(.d)
3,2(.d)
3,2(.d)
2,1(.d)
2,1(.d)

4,
3(.d)

5
5
10
10

EXT

∗1

∗1

∗1

∗1

∗1

∗1

∗1

∗1

∗1

∗1

∗1
–
∗1
–

–

–
–
–
–

D

–

–

–

–

–

–

–

–

–

–

–
–
–
–

–

–
–
–
–

0

0

0

0

0

0

0

0

0

0

0
0
0
0

0

0
0
0
0

0

0

0

0

0

0

0

0

0

0

0
0
0
0

0

0
0
0
0

0

0

0

0

0

0

0

0

0

0

0
0
0
0

0

0
0
0
0

0

0

0

0

1

1

1

1

1

1

1
0
1
0

0

0
0
0
0

1

1

1

1

0

0

0

0

1

1

1
0
1
0

0

0
0
0
0

0

0

1

1

0

0

1

1

0

0

1
1
1
1

1

1
1
1
1

MO

–

–

–

–

–

–

–

–

–

–

–
–
–
–

–

↔
–
–
–

DS

–

–

–

–

–

–

–

–

–

–

–
–
–
–

–

↔
–
–
–

Z

–

–

–

–

–

–

–

–

–

–

–
–
–
–

–

↔
–
–
–

N

–

–

–

–

–

–

–

–

–

–

–
–
–
–

–

↔
–
–
–

C

–

–

–

–

–

–

–

–

–

–

–
–
–
–

–

↔
–
–
–

V

–

–

–

–

–

–

–

–

–

–

–
–
–
–

–

↔
–
–
–

0

1

0

1

0

1

0

1

0

1

0
1
1
1

1

0
0
0
0

d

d

d

d

d

d

d

d

d

d

d
d
d
d

d

0
0
0
0

0

1

0

1
0
1
0

0

0

1

1
1
0
0

0

0

0

0
0
0
0

0

0

0

0
0
0
0

0

0
0
0
0

0

0
0
0
0

0

0
0

0

0

0
0

0

Code
MSB LSB

Mnemonic Flags

Remarks
∗1) With one EXT: displacement = sign22 (= {imm13, sign8, 0}), With two EXT: displacement = sign32 (= {1st imm13(12:3), 2nd imm13, sign8, 0})
∗2) These instructions become a delayed branch instruction when the d bit in the code is set to 1 by suffixing ".d" to the opcode (jrgt.d, call.d, etc.).

A delayed branch instruction executes the following delayed instruction before branching. The delayed call instruction saves the pc+4 address into the stack.
∗3) The conditional branch instructions without a delayed instruction (without ".d") are executed in 1 cycle when the program flow does not branch and 2 cycles when the program

flow branches.

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

sign8

rb

imm2

rb

E
0C

33000 C
O

R
E

 C
P

U
 M

A
N

U
A

L
E

P
S

O
N

A
P

P
E

N
D

IX
-7

A
P

P
E

N
D

IX
: E

0C
33000 Q

U
IC

K
 R

E
F

E
R

E
N

C
E

Others E0C33000 Instruction Set

Opcode
scan0
scan1
swap
mirror

Operand
%rd, %rs
%rd, %rs
%rd, %rs
%rd, %rs

Function

Scan 0 bit for 1 byte from MSB in rs, rd←offset from MSB of found bit
Scan 1 bit for 1 byte from MSB in rs, rd←offset from MSB of found bit
rd(31:24)←rs(7:0), rd(23:16)←rs(15:8), rd(15:8)←rs(23:16), rd(7:0)←rs(31:24)
rd(31:24)←rs(24:31), rd(23:16)←rs(16:23), rd(15:8)←rs(8:15), rd(7:0)←rs(0:7)

Cycle

1
1
1
1

EXT

–
–
–
–

D

●

●

●

●

1
1
1
1

0
0
0
0

0
0
0
0

0
0
1
1

1
1
0
0

0
1
0
1

MO
–
–
–
–

DS
–
–
–
–

Z
↔
↔
–
–

N
0
0
–
–

C
↔
↔
–
–

V
0
0
–
–

1
1
1
1

0
0
0
0

Code
MSB LSB

Mnemonic Flags

rs rd
rs rd
rs rd
rs rd

Operand
%rs

Multiplication & Accumulation E0C33000 Instruction Set

Opcode
mac

Function

Repeats "{ahr, alr}←{ahr, alr} + H[<rs+1>]+ × H[<rs+2>]+" rs times

Cycle

2xn+4

EXT

–1 0 1 1 0 0
MO
↔

DS
–

Z
–

N
–

C
–

V
–1 0 0 0 0 0

Code
MSB LSB

Mnemonic Flags

Operand

System Control E0C33000 Instruction Set

Opcode
nop
halt
slp

Function

No operation; pc←pc+2
Sets Halt mode
Sets Sleep mode

Cycle

1
1
1

EXT

–
–
–

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

MO
–
–
–

DS
–
–
–

Z
–
–
–

N
–
–
–

C
–
–
–

V
–
–
–

0
0
0

0
0
0

0
1
0

0
0
1

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

Code
MSB LSB

Mnemonic Flags

Remarks
<rs+1>, <rs+2>: contents of the registers that follow rs. (eg. rs=r0: <rs+1>=r1, <rs+2>=r2; rs=r15: <rs+1>=r0, <rs+2>=r1); They are incremented (+2) after each operation.
The mac instruction can be executed only in the models that have an optional multiplier.

D

–

D

–
–
–

rs

A
P

P
E

N
D

IX
-8

E
P

S
O

N
E

0C
33000 C

O
R

E
 C

P
U

 M
A

N
U

A
L

A
P

P
E

N
D

IX
: E

0C
33000 Q

U
IC

K
 R

E
F

E
R

E
N

C
E

Immediate Extension 1 E0C33000 Instruction Set

Classification

Register indirect
data transfer
(using rb register)

Register indirect
data transfer
with displacement
(using SP)

Immediate load
Arithmetic and
logic operation
between registers

Arithmetic and
logic operation
with immediate

Bit operation

Extension with one ext instruction
Usage: ext imm13

Target instruction

Extension with two ext instructions
Usage: ext imm13

ext imm13'
Target instruction

Opcode

ld.b
ld.ub
ld.h
ld.uh
ld.w
ld.b
ld.h
ld.w
ld.b
ld.ub
ld.h
ld.uh
ld.w
ld.b
ld.h
ld.w
ld.w
add
sub
and
or
xor
cmp
add
sub
and
or
xor
not
cmp
btst
bset
bclr
bnot

Operand

%rd, [%rb]

[%rb], %rs

%rd, [%sp+imm6]

[%sp+imm6], %rs

%rd, sign6
%rd, %rs

%rd, imm6

%rd, sign6

[%rb], imm3

%rd, [%rb+imm13]

[%rb+imm13], %rs

%rd, [%sp+imm19]

[%sp+imm19], %rs

%rd, sign19
%rd, %rs, imm13

%rd, imm19

%rd, sign19

[%rb+imm13], imm3

Target instruction

imm19={imm13,imm6}

imm19={imm13,imm6}

sign19={1mm13, sign6}
rd ← rs <op> imm13

imm19={imm13,imm6}

sign19={imm13,sign6}

imm26={imm13,imm13'}

imm26={imm13,imm13'}

imm32={imm13,imm13',imm6}

imm32={imm13,imm13',imm6}

sign32={imm13,imm13',sign6}
rd ← rs <op> imm26
imm26={imm13,imm13'}

imm32={imm13,imm13'imm6}

sign32={imm13,imm13',sign6}

imm26={imm13,imm13'}

ld.b
ld.ub
ld.h
ld.uh
ld.w
ld.b
ld.h
ld.w
ld.b
ld.ub
ld.h
ld.uh
ld.w
ld.b
ld.h
ld.w
ld.w
add
sub
and
or
xor
cmp
add
sub
and
or
xor
not
cmp
btst
bset
bclr
bnot

%rd, [%rb+imm26]

[%rb+imm26], %rs

%rd, [%sp+imm32]

[%sp+imm32], %rs

%rd, sign32
%rd, %rs, imm26

%rd, imm32

%rd, sign32

[%rb+imm26], imm3

ld.b
ld.ub
ld.h
ld.uh
ld.w
ld.b
ld.h
ld.w
ld.b
ld.ub
ld.h
ld.uh
ld.w
ld.b
ld.h
ld.w
ld.w
add
sub
and
or
xor
cmp
add
sub
and
or
xor
not
cmp
btst
bset
bclr
bnot

E
0C

33000 C
O

R
E

 C
P

U
 M

A
N

U
A

L
E

P
S

O
N

A
P

P
E

N
D

IX
-9

A
P

P
E

N
D

IX
: E

0C
33000 Q

U
IC

K
 R

E
F

E
R

E
N

C
E

Immediate Extension 2 E0C33000 Instruction Set

Classification

PC relative
branch

Extension with one ext instruction
Usage: ext imm13

Target instruction

Extension with two ext instructions
Usage: ext imm13

ext imm13'
Target instruction

Opcode

jrgt
jrgt.d
jrge
irge.d
jrlt
jrlt.d
jrle
jrle.d
jrugt
jrugt.d
jruge
jruge.d
jrult
jrult.d
jrule
jrule.d
jreq
jreq.d
jrne
jrne.d
call
call.d
jp
jp.d

Operand

sign8 sign22

Target instruction

sign22={imm13,sign8,0} sign32={imm13(12:3),imm13',sign8,0}jrgt
jrgt.d
jrge
irge.d
jrlt
jrlt.d
jrle
jrle.d
jrugt
jrugt.d
jruge
jruge.d
jrult
jrult.d
jrule
jrule.d
jreq
jreq.d
jrne
jrne.d
call
call.d
jp
jp.d

sign32jrgt
jrgt.d
jrge
irge.d
jrlt
jrlt.d
jrle
jrle.d
jrugt
jrugt.d
jruge
jruge.d
jrult
jrult.d
jrule
jrule.d
jreq
jreq.d
jrne
jrne.d
call
call.d
jp
jp.d

APPENDIX-10 EPSON E0C33000 CORE CPU MANUAL

APPENDIX: INSTRUCTION INDEX

INSTRUCTION INDEX
[L]

ld.b %rd, %rs 90

ld.b %rd, [%rb] 91

ld.b %rd, [%rb]+ 92

ld.b %rd, [%sp + imm6] 93

ld.b [%rb], %rs 94

ld.b [%rb]+, %rs 95

ld.b [%sp + imm6], %rs 96

ld.h %rd, %rs 97

ld.h %rd, [%rb] 98

ld.h %rd, [%rb]+ 99

ld.h %rd, [%sp + imm6] 100

ld.h [%rb], %rs 101

ld.h [%rb]+, %rs 102

ld.h [%sp + imm6], %rs 103

ld.ub %rd, %rs 104

ld.ub %rd, [%rb] 105

ld.ub %rd, [%rb]+ 106

ld.ub %rd, [%sp + imm6] 107

ld.uh %rd, %rs 108

ld.uh %rd, [%rb] 109

ld.uh %rd, [%rb]+ 110

ld.uh %rd, [%sp + imm6] 111

ld.w %rd, %rs 112

ld.w %rd, %ss.................................. 113

ld.w %rd, [%rb] 114

ld.w %rd, [%rb]+ 115

ld.w %rd, [%sp + imm6] 116

ld.w %rd, sign6 117

ld.w %sd, %rs 118

ld.w [%rb], %rs 119

ld.w [%rb]+, %rs 120

ld.w [%sp + imm6], %rs 121
[M]

mac %rs ... 122

mirror %rd, %rs 123

mlt.h %rd, %rs 124

mltu.h %rd, %rs 125

mlt.w %rd, %rs 126

mltu.w %rd, %rs 127

[A]

adc %rd, %rs 54

add %rd, %rs 55

add %rd, imm6 56

add %sp, imm10 57

and %rd, %rs 58

and %rd, sign6 59
[B]

bclr [%rb], imm3 60

bnot [%rb], imm3 61

brk ... 62

bset [%rb], imm3 63

btst [%rb], imm3 64
[C]

call %rb / call.d %rb 65

call sign8 / call.d sign8 66

cmp %rd, %rs 67

cmp %rd, sign6 68
[D]

div0s %rs .. 69

div0u %rs ... 70

div1 %rs ... 71

div2s %rs .. 73

div3s .. 74
[E]

ext imm13 ... 75
[H]

halt .. 76
[I]

int imm2.. 77
[J]

jp %rb / jp.d %rb 78

jp sign8 / jp.d sign8 79

jreq sign8 / jreq.d sign8 80

jrge sign8 / jrge.d sign8 81

jrgt sign8 / jrgt.d sign8.................... 82

jrle sign8 / jrle.d sign8 83

jrlt sign8 / jrlt.d sign8 84

jrne sign8 / jrne.d sign8 85

jruge sign8 / jruge.d sign8 86

jrugt sign8 / jrugt.d sign8 87

jrule sign8 / jrule.d sign8 88

jrult sign8 / jrult.d sign8 89

E0C33000 CORE CPU MANUAL EPSON APPENDIX-11

APPENDIX: INSTRUCTION INDEX

[N]

nop .. 128

not %rd, %rs 129

not %rd, sign6 130
[O]

or %rd, %rs 131

or %rd, sign6................................... 132
[P]

popn %rd ... 133

pushn %rs .. 134
[R]

ret / ret.d ... 135

retd ... 136

reti .. 137

rl %rd, %rs 138

rl %rd, imm4 139

rr %rd, %rs 140

rr %rd, imm4 141
[S]

sbc %rd, %rs 142

scan0 %rd, %rs 143

scan1 %rd, %rs 144

sla %rd, %rs 145

sla %rd, imm4 146

sll %rd, %rs 147

sll %rd, imm4 148

slp ... 149

sra %rd, %rs 150

sra %rd, imm4 151

srl %rd, %rs 152

srl %rd, imm4 153

sub %rd, %rs 154

sub %rd, imm6 155

sub %sp, imm10 156

swap %rd, %rs 157
[X]

xor %rd, %rs 158

xor %rd, sign6 159

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
Unit 2.4, Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings .

ELECTRONIC DEVICES MARKETING DIVISION

■ EPSON Electronic Devices Website

http://www.epson.co.jp/device/
First issue MAY 1998, Printed FEBRUARY 2000 in Japan M A

	㄀ 伀甀琀氀椀渀攀 
	1.1 Features
	1.2 Block Diagram
	1.3 I/O Signal Specification

	㈀ 䄀爀挀栀椀琀攀挀琀甀爀攀 
	2.1 Register Set
	2.1.1 General-purpose registers (R0 to R15)
	2.1.2 Program counter (PC)
	2.1.3 Processor status register (PSR)
	2.1.4 Stack pointer
	2.1.5 Arithmetic operation register (ALR, AHR)
	2.1.6 Register notation and register number

	2.2 Data Type
	2.3 Address Space
	2.4 Boot Address
	2.5 Instruction Set
	2.5.1 Type of instructions
	2.5.2 Addressing mode
	2.5.3 Immediate extension (EXT) instruction
	2.5.4 Data transfer instructions
	2.5.5 Logic operation instructions
	2.5.6 Arithmetic operation instructions
	2.5.7 Multiplication and division instructions
	2.5.8 Multiplication and accumulation instruction
	2.5.9 Shift and rotation instructions
	2.5.10 Bit operation instructions
	2.5.11 Push and pop instructions
	2.5.12 Branch instructions and delayed instructions
	2.5.13 System control instructions
	2.5.14 Scan instructions
	2.5.15 Swap and mirror instructions

	㌀ 䌀倀唀 伀瀀攀爀愀琀椀漀渀 愀渀搀 倀爀漀挀攀猀猀椀渀最 匀琀愀琀甀猀 
	3.1 Processing Status of CPU
	3.2 Program Execution Status
	3.2.1 Fetching and executing program
	3.2.2 Number of instruction execution cycles

	3.3 Trap (Interrupts and Exceptions)
	3.3.1 Trap table
	3.3.2 Trap processing
	3.3.3 Reset
	3.3.4 Zero division exception
	3.3.5 Address error exception
	3.3.6 NMI (Non-maskable interrupt)
	3.3.7 Software exception
	3.3.8 Maskable external interrupts

	3.4 Power Down Mode
	3.4.1 HALT mode
	3.4.2 SLEEP mode

	3.5 Bus Release Status
	3.6 Debugging Mode
	3.6.1 Functions of debugging mode
	3.6.2 Configuration of Area 2
	3.6.3 Transition from user mode to debugging mode
	3.6.4 Registers for debugging
	3.6.5 Traps in debugging mode
	3.6.6 Simultaneous occurrence of debugging exceptions

	㐀 䐀攀琀愀椀氀攀搀 䔀砀瀀氀愀渀愀琀椀漀渀 漀昀 䤀渀猀琀爀甀挀琀椀漀渀猀 
	4.1 Symbol Meanings
	4.1.1 Registers
	4.1.2 Immediate
	4.1.3 Memories
	4.1.4 Bits and bit fields
	4.1.5 Flags
	4.1.6 Functions and others

	4.2 Instruction Code Class
	4.3 Reference for Individual Instruction
	嬀䄀崀
	adc %rd, %rs
	add %rd, %rs
	add %rd, imm6
	add %sp, imm10
	and %rd, %rs
	and %rd, sign6

	嬀䈀崀
	bclr [%rb], imm3
	bnot [%rb], imm3
	brk
	bset [%rb], imm3
	btst [%rb], imm3

	嬀䌀崀
	call %rb / call.d %rb
	call sign8 / call.d sign8
	cmp %rd, %rs
	cmp %rd, sign6

	嬀䐀崀
	div0s %rs
	div0u %rs
	div1 %rs
	div2s %rs
	div3s

	嬀䔀崀
	ext imm13

	嬀䠀崀
	halt

	嬀䤀崀
	int imm2

	嬀䨀崀
	jp %rb / jp.d %rb
	jp sign8 / jp.d sign8
	jreq sign8 / jreq.d sign8
	jrge sign8 / jrge.d sign8
	jrgt sign8 / jrgt.d sign8
	jrle sign8 / jrle.d sign8
	jrlt sign8 / jrlt.d sign8
	jrne sign8 / jrne.d sign8
	jruge sign8 / jruge.d sign8
	jrugt sign8 / jrugt.d sign8
	jrule sign8 / jrule.d sign8
	jrult sign8 / jrult.d sign8

	嬀䰀崀
	ld.b %rd, %rs
	ld.b %rd, [%rb]
	ld.b %rd, [%rb]+
	ld.b %rd, [%sp + imm6]
	ld.b [%rb], %rs
	ld.b [%rb]+, %rs
	ld.b [%sp + imm6], %rs
	ld.h %rd, %rs
	ld.h %rd, [%rb]
	ld.h %rd, [%rb]+
	ld.h %rd, [%sp + imm6]
	ld.h [%rb], %rs
	ld.h [%rb]+, %rs
	ld.h [%sp + imm6], %rs
	ld.ub %rd, %rs
	ld.ub %rd, [%rb]
	ld.ub %rd, [%rb]+
	ld.ub %rd, [%sp + imm6]
	ld.uh %rd, %rs
	ld.uh %rd, [%rb]
	ld.uh %rd, [%rb]+
	ld.uh %rd, [%sp + imm6]
	ld.w %rd, %rs
	ld.w %rd, %ss
	ld.w %rd, [%rb]
	ld.w %rd, [%rb]+
	ld.w %rd, [%sp + imm6]
	ld.w %rd, sign6
	ld.w %sd, %rs
	ld.w [%rb], %rs
	ld.w [%rb]+, %rs
	ld.w [%sp + imm6], %rs

	嬀䴀崀
	mac %rs
	mirror %rd, %rs
	mlt.h %rd, %rs
	mltu.h %rd, %rs
	洀氀琀⸀眀 ─爀搀Ⰰ ─爀猀
	洀氀琀甀⸀眀 ─爀搀Ⰰ ─爀猀

	嬀一崀
	nop
	not %rd, %rs
	not %rd, sign6

	嬀伀崀
	or %rd, %rs
	or %rd, sign6

	嬀倀崀
	popn %rd
	pushn %rs

	嬀刀崀
	ret / ret.d
	retd
	reti
	rl %rd, %rs
	rl %rd, imm4
	rr %rd, %rs
	rr %rd, imm4

	嬀匀崀
	sbc %rd, %rs
	scan0 %rd, %rs
	scan1 %rd, %rs
	sla %rd, %rs
	sla %rd, imm4
	sll %rd, %rs
	sll %rd, imm4
	slp
	sra %rd, %rs
	sra %rd, imm4
	srl %rd, %rs
	srl %rd, imm4
	sub %rd, %rs
	sub %rd, imm6
	sub %sp, imm10
	swap %rd, %rs

	嬀堀崀
	xor %rd, %rs
	xor %rd, sign6

	䄀瀀瀀攀渀搀椀砀
	䔀　䌀㌀㌀　　　 儀甀椀挀欀 刀攀昀攀爀攀渀挀攀
	䔀　䌀㌀㌀　　　 䌀漀爀攀 䌀倀唀
	䴀攀洀漀爀礀 䴀愀瀀 愀渀搀 吀爀愀瀀 吀愀戀氀攀
	刀攀最椀猀琀攀爀猀

	䔀　䌀㌀㌀　　　 䤀渀猀琀爀甀挀琀椀漀渀 匀攀琀
	匀礀洀戀漀氀猀
	䐀愀琀愀 吀爀愀渀猀昀攀爀
	䰀漀最椀挀 伀瀀攀爀愀琀椀漀渀
	䄀爀椀琀栀洀攀琀椀挀 伀瀀攀爀愀琀椀漀渀
	匀栀椀昀琀 ☀ 刀漀琀愀琀椀漀渀
	䈀椀琀 伀瀀攀爀愀琀椀漀渀
	䤀洀洀攀搀椀愀琀攀 䔀砀琀攀渀猀椀漀渀
	倀甀猀栀 ☀ 倀漀瀀
	䈀爀愀渀挀栀
	䴀甀氀琀椀瀀氀椀挀愀琀椀漀渀 ☀ 䄀挀挀甀洀甀氀愀琀椀漀渀
	匀礀猀琀攀洀 䌀漀渀琀爀漀氀
	伀琀栀攀爀猀
	䤀洀洀攀搀椀愀琀攀 䔀砀琀攀渀猀椀漀渀

	䤀一匀吀刀唀䌀吀䤀伀一 䤀一䐀䔀堀

