
MF1169-02

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER E0C33 Family

ROS33 REALTIME OS MANUAL
(ver. 2.1)

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency. Please note
that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it
now reads "E0C".

Windows95 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
NEC PC-9800 Series and NEC are registered trademarks of NEC Corporation.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

SEIKO EPSON CORPORATION 2000 All rights reserved.C

Table of Contents

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

i

Preface
Written for those who develop applications using the E0C33 Family of microcomputers, this manual describes the
functions provided by the Realtime OS ROS33 for the E0C33 Family, and also gives precautions on
programming for this OS.

ROS33 is a realtime OS designed to the µITRON 3.0 specifications. For information and literature relating to
µITRON, see the ITRON Home Page on the Internet.
English) http://tron.um.u-tokyo.ac.jp/TRON/ITRON/home-e.html
Japanese) http://tron.um.u-tokyo.ac.jp/TRON/ITRON/home-j.html
 (Note: This address is effective as of July 1998.)
An English version of the µITRON 3.0 specifications is provided on the ROS33 disk.

Table of Contents

1 ROS33 Package ... 1
1.1 Features ...1

1.2 ROS33 Package Components ...2

1.3 Installing ROS33 ..2

2 PROGRAMMING .. 4
2.1 Outline of µITRON and ROS33 ..4

2.2 List of System Calls..7

2.3 Creating an Application Program ...9

2.4 Customizing ROS33...19

3 SYSTEM CALL REFERENCE .. 22
3.1 List of System Calls..22

3.2 List of Data Types ..24

3.3 List of Error Codes ...24

3.4 Details of System Calls ..25
3.4.1 System Calls of Task Management Functions...25
3.4.2 System Calls of Task-Dependent Synchronization Functions28
3.4.3 System Calls of Synchronization and Communication Functions............................30
3.4.4 System call for Extension Synchronization and Communication35
3.4.5 System Calls of System Management Functions...37
3.4.6 System Calls of Time Management Functions...38
3.4.7 System Calls of Interrupt Management Functions ...39
3.4.8 Implementation-Dependent System Calls..40
3.4.9 System Calls for Only Interrupt Handler...42

1 ROS33 PACKAGE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

1

1 ROS33 Package
ROS33 is a realtime OS for the E0C33 Family of single-chip microcomputers based on µITRON 3.0. Using
ROS33 in your design enables you to quickly and efficiently develop embedded applications for printers, PDAs,
and various types of control equipment.

1.1 Features
The main features of ROS33 are listed below.

• Based on µITRON 3.0. System calls up to Level S (standard) are supported.
Number of tasks: 1 to 255
Priority levels: 1 to 9
Number of event flags: 1 to 255
Number of semaphores: 1 to 255
Number of mailboxes: 1 to 255
Number of message buffers: 1 to 255
Scheduling method: Priority basis
Semaphore: Count type
Event flag: Byte type (8 bits)
Mailboxes: Passed via pointers

• Compact and high-speed kernel optimized for use in the E0C33 Family
Kernel size∗1:
 1.7K bytes......Level R supported, no error check
 2.4K bytes......Level R supported, standard
 2.7K bytes......Level R supported, debug kernel
 2.6K bytes......Level S supported, no error check
 3.6K bytes......Level S supported, standard
 3.8K bytes......Level S supported, debug kernel
Dispatch time∗2:
 7.8 µs 33 MHz, when using only the internal ROM and internal RAM
 14.3 µs 33 MHz, when using external ROM (2 wait states) and internal RAM
 12.9 µs 20 MHz, when using only the internal ROM and internal RAM
 23.6 µs 20 MHz, when using external ROM (2 wait states) and internal RAM
Maximum interrupt disable time∗2:
 4.3 µs 33 MHz, when using only the internal ROM and internal RAM
 9.0 µs 33 MHz, when using external ROM (2 wait states) and internal RAM
 7.2 µs 20 MHz, when using only the internal ROM and internal RAM
 14.8 µs 20 MHz, when using external ROM (2 wait states) and internal RAM
∗1 Number of tasks = 8, number of priority levels = 8, number of event flags = 8, number of semaphore = 8

and number of mailboxes = 8
∗2 These values were evaluated using the ICE33 when tasks of the same priority were switched over by a

rot_rdq system call.
These are standard values for a guide and will vary according to the user's system environment and the make
condition. The net value should be evaluated on the actual system.

• Programs can be developed in C and assembly language.

• Provided for each function as a modularized library
When linking, only necessary modules are selected. This enables you to minimize the size of the compiled
application.

• Comes with source code for each functional module
The number of resources can be customized to suit your system specification.

• Multiple tasks can share a common stack area (when not processed in parallel)
You can minimize the amount of RAM used in your system by your application.

 Note

• Make sure that accurate verification is necessary before product shipping. Seiko Epson does not assume
any liability of ant kind arising out of any inaccuracies contained in this middleware.

• Dealership of this middleware belongs to Seiko Epson. Resale pretension can not be given.
• No part of this files in this package except sample programs may be duplicated, distributed, reproduced, or

reverse engineered in any form or by ant means without the written permission of Seiko Epson.

1 ROS33 PACKAGE

2 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

1.2 ROS33 Package Components
The ROS33 package contains the following items. When opening your ROS33 package, check to see that all of
these items are included.
(1) Tool disk (CD-ROM) 1
(2) E0C33 Family ROS33 Realtime OS Manual (this manual) 1 each in Japanese and English
(3) Warranty card 1 each in Japanese and English

1.3 Installing ROS33
ROS33 needs to be linked with the user program as it is implemented. Therefore, make sure all tools of the
"E0C33 Family C Compiler Package" have been installed in your computer and are ready to run before installing
ROS33 files in your computer. The basic system configuration is described below.

• Personal computer: IBM PC/AT or compatible

(Pentium 90 MHz or better; we recommend that you have more than 32 MB of memory)
• OS: Windows 95, Windows 98, Windows NT 4.0, or later (Japanese or English version)

All the ROS33 files are supplied on one CD-ROM. Execute the self-extract file "ros33vXX.exe" on the CD-ROM
to install the files. ("XX" in the file name represents the version number, for example, "ros33v10.exe" is the file of
ROS33 ver. 1.0.)
When "ros33vXX.exe" is started up by double-clicking the file icon, the following dialog box appears.

Enter a path/folder name in the text box and then click
[Unzip]. The specified folder will be created and all the files
will be copied in the folder.
When the specified folder already exists on the specified
path, the folder will be overwritten without prompting if
[Overwrite Files Without Prompting] is checked.

The directory and file configurations after copying the floppy disk contents are shown below.

 (root)¥ (Default: C:¥E0C33¥ROS33¥)
 itron302.txt µITON 3.0 specification
 (English version, edited by TRON Association)
 readmeja.txt Supplementary explanation (in Japanese)
 readme.txt Supplementary explanation (in English)

 lib¥ ROS33 library
 ros33.lib ROS33 library
 ros33g.lib ROS33 library with debug information

 include¥ Include files
 itron.h ITRON common header file
 ros33.h ROS33 definition file

 src¥ Source files
 debug.c C source file for debug functions
 flag.c C source file for event flag functions
 intmng.c C source file for interrupt management functions
 mailbox.c C source file for mailbox functions
 ros33.c ROS33 main C source file
 ros33asm.s Assembly source file for dispatch and ret_int functions
 semapho.c C source file for semaphore functions
 timemng.c C source file for time management functions
 tskmng.c C source file for task management functions
 tsksync.c C source file for task-dependent synchronization functions

1 ROS33 PACKAGE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

3

 internal.h ROS33 data type definition file
 msgbuf.c C source file for message buffer function

 build¥ ROS33 build files
 ros33.mak make file for ROS33.lib generation

 demo¥
 Demonstration program and related files

 sample¥
 Sample programs and related files

Copyright: The software in the "src¥" and "include¥" directories is owned by Seiko Epson Corporation. Do not

use it for any purpose except for development with the E0C33 Family microcomputers.

2 PROGRAMMING

4 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

2 Programming
This chapter gives an outline of ROS33, and then shows how to create an application program and how to
customize ROS33.

2.1 Outline of µITRON and ROS33
µITRON is a realtime, multitask OS which has been developed primarily by the ITRON Technical Committee of
the TRON Association as part of the TRON Project. The purpose of developing this OS was to improve realtime
processing capabilities and program productivity in embedded systems incorporating single-chip microcomputers.

ROS33 is a µITRON 3.0 (current version) specification compliant kernel for the E0C33 Family of microcomputers.
ROS33 supports Level R (required) and Level S (standard).

∗ Regarding Levels R and S

µITRON is classified into several levels by system call functionality. Level R (required) is the essential
function for µITRON 3.0 (current version) specification kernels, and includes the basic system calls
necessary for realtime, multitask OSs. Level S (standard) includes standard system calls for realtime,
multitask OSs. In addition to these, two other levels are available: Level E (extended), which includes
additional and extended functions, and Level C (CPU dependent), which depends on the CPU and system
implementation.

Figure 2.1.1 shows a conceptual diagram of a system configuration.

Task
management

functions

Task-dependent
synchronization

functions

Synchronization
and

communication
functions

System
management

functions

Time
management

functions

Interrupt
management

functions

Task 1 Task 2 Task 3 Task 4 ••• Task n

ROS33 kernel

E0C33 Family microcomputer
(Hardware)

Application program

Figure 2.1.1 Conceptual diagram of a system configuration

Functional classification
The functions of the ROS33 kernel are classified into the following six categories:

1. Task management functions
These functions manipulate task states by, for example, starting and terminating a task.

2. Task-dependent synchronization functions

These functions establish task to task-dependent synchronization by setting or waking up a task to and
from a wait state or setting or resuming a task to and from a suspend (forcible wait) state.

3. Synchronization and communication functions

These functions provide synchronization and communication independently of tasks, issuing and checking
events through a semaphore, event flag, and mailbox. A message buffer which is an extended
synchronization and communication function.

4. System management functions

These functions reference the system environment.

5. Time management functions
These functions set and reference time, and place a task in a wait state for a given time.

2 PROGRAMMING

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

5

6. Interrupt management functions
These functions enable and disable interrupts.

 In addition to the above, µITRON 3.0 has several other defined functions—including connection, extended

synchronization and communication, memory pool management, and network support functions. However,
these functions are only partially supported by ROS33.

Tasks
 In ITRON, each unit of parallel processing performed by a program is called a "task". When multiple tasks

are started (activated and ready for execution), these tasks are placed in a ready queue (execution wait queue)
from which the task with the highest priority is executed. Individual tasks are identified by a numeric value
called the "task ID". As task ID values in ROS33 range from 1 to 255, up to 255 tasks can be executed (by
default, 8 tasks). Priority is represented by numeric values 1 to 9 (by default, 1 to 8)—the smaller the value,
the higher the priority. Tasks with the same priority are executed in the order they have been placed in the
ready queue. This order can be changed by a system call, however.

 Tasks in executable state are changed over by a system call that causes a transition of task status or by an
interrupt. This changeover is called "dispatching". The task under execution can place itself in a wait or halt
state, allowing for the task with the next highest priority to be dispatched and placed in executable state. If a
task with a higher priority than that of the currently executed task becomes executable, that task is dispatched.
The task being executed is returned to an executable state. This is called "preempting".
Figure 2.1.2 shows the transition of task statuses in ROS33.

READY state

WAIT state

RUN state

Wait condition

Forcibly
terminate
Exit (ext_tsk)

Wait condition
is satisfied

WAIT-SUSPEND
state

Resume (rsm_tsk)Suspend (sus_tsk)

Suspend (sus_tsk)

dispatch
preempt

Resume (rsm_tsk)

Forcibly terminate
(ter_tsk)

Forcibly
terminate
(ter_tsk)

SUSPEND
state

Start (sta_tsk)
Forcibly terminate (ter_tsk)

DORMANT
state

Cancel wait
Forcibly
terminate
(ter_tsk)

() indicates a system call.

Figure 2.1.2 Transition of task statuses

 RUN (execution) state
 This state means that the task is currently being executed. This state remains intact until the task is placed in

WAIT or DORMANT state or interrupted by an interrupt.

 READY (executable) state
 This state means that the task has been placed in the ready queue after being started up, or freed from a wait

or forcible wait state. The task is currently suspended because some other task with higher priority (or a task
with the same priority but placed ahead in the queue) is being executed.

2 PROGRAMMING

6 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

 WAIT state
 This state means that the task is waiting for an event (message receipt, semaphore acquisition, or event flag

setting) or is left suspended due to a system call issued by the task itself. This state remains intact until an
event is issued, the task is caused to resume (freed from a wait state) by some other task being executed or by
an interrupt handler, or the task is forcibly terminated. In this wait state, semaphore and other resources
remain occupied. The resumed task is placed in the ready queue at the end of a queue of tasks with the same
priority. After being dispatched, the task has its program counters and registers restored to their previous
states at the time of the interruption, and the task begins executing from where it left off.

 SUSPEND (forcible wait) state
 This state means that task execution has been suspended by a system call from some other task. This state

remains intact until the task is restarted by some other task being executed or forcibly terminated. In this wait
state, semaphores and other resources remain occupied.

 The forcibly suspended task is not erased from the ready queue.

 WAIT-SUSPEND (double wait) state
 This state is a case where the above WAIT state and SUSPEND state overlap each other. If one of the two

wait states is cleared, the task enters the other wait state.

 DORMANT state
 This state means that the task has not been started yet or has been terminated.
 Unlike the wait state, the task relinquishes all resources and accepts no system calls except for startup. When

the task restarts executing after startup, its context is initialized.

Task-independent portion
 Although the system in almost all cases is placed in a task execution state, it sometimes goes to a non-task

execution state, such as for execution of the OS itself. The interrupt handler and timer handler, in particular,
are closely tied to the hardware, so they are called "task-independent portions". Task-independent portions
are created in the user program along with the tasks.

 Task-independent portions (interrupt handler) are executed preferentially over all tasks. When the interrupt
handler starts, the tasks currently being executed are suspended, and execution resumes after the interrupt
handler is terminated. Also, when the interrupt handler is running, dispatches or any other task transitions are
not performed. For example, even if a task is waked up within the interrupt handler and the task has a high
enough priority to be dispatched, no dispatching occurs until the interrupt handler is terminated.

 Furthermore, a limited number of system calls can be used in task-independent portions.

Interrupt
 Interrupts are processed as a task-independent portion, not a task. It is not necessary to define interrupt

handlers as tasks.

2 PROGRAMMING

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

7

2.2 List of System Calls
Table 2.2.1, Table 2.2.2, and Table 2.2.3 list the system calls supported by ROS33. For details about each system
call, refer to Chapter 3, "System Call Reference".

Table 2.2.1 List of system calls
Classification System call Function

Task management dis_dsp() Disable Dispatch
 ena_dsp() Enable Dispatch
 sta_tsk() Start Task
 ext_tsk() Exit Issuing Task
 ter_tsk() Terminate Other Task
 chg_pri() Change Task Priority
 rot_rdq() Rotate Tasks on the Ready Queue
 rel_wai() Release Wait of Other Task
 get_tid() Get Task Identifier
Task-dependent slp_tsk() Sleep Task
synchronization wup_tsk() Wake Up Other Task
 sus_tsk() Suspend Other Task
 rsm_tsk() Resume Suspended Task
 can_wup() Cancel Wake Up Request
Synchronization and wai_sem() Wait on Semaphore
communication preq_sem() Pall and Request Semaphore
 sig_sem() Signal Semaphore
 rcv_msg() Receive Message from Mailbox
 prcv_msg() Poll and Receive Message from Mailbox
 snd_msg() Send Messages to Mailbox
 wai_flg() Wait on Event Flag
 pol_flg() Wait for Event Flag (Polling)
 set_flg() Set Event Flag
 clr_flg() Clear Event Flag
System management get_ver() Get Version Information
Time management set_tim() Set System Clock
 get_tim() Get System Clock
 dly_tsk() Delay Task
Interrupt loc_cpu() Lock CPU
management unl_cpu() Unlock CPU
 ret_int() Return from Interrupt Handler
Implementation- ent_int() Initialize Interrupt Handler Value
dependent functions vcre_tsk() Create Task
 vcre_mbf() Message Buffer Definition
 sys_clk() System Clock
 vchg_semcnt() Change Semaphore Count Value
 vchk_timer() Check Time Management

snd_mbf() Send Messages to Message Buffer
psnd_mbf() Send Messages to Message Buffer

(Polling)
tsnd_mbf() Send Messages to Message Buffer (with

time-out)
rcv_mbf() Receive Messages from Message Buffer
prcv_mbf() Receive Messages from Message Buffer

(Polling)

Extension
synchronization and
communication

trcv_mbf() Receive Messages from Message Buffer
(with time-out)

2 PROGRAMMING

8 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

Two kinds of system calls described below can be used with the task-independent portions (interrupt handler).

System calls for interrupt handler only

These system calls automatically save or restore the register needed internally. Function of a system call is
same as the system call without the prefix “i”.

Table 2.2.2 system call for interrupt handler only

System call Function
iwup_tsk() Wake Up Other Task (wup_tsk, used from the interrupt handler)
iset_flg() Set Event Flag (set_flg, used from the interrupt handler)
isig_sem() Signal Semaphore (sig_sem, used from the interrupt handler)
isnd_msg() Send Messages to Mailbox (snd_msg, used from the interrupt

handler)
ipsnd_mbf() Send Messages to Message Buffer (psnd_mbf, used from the

interrupt handler)

System calls being same as tasks

Use these system calls from an interrupt handler, but be sure to avoid %r15, %alr, and %ahr from %r0 with
user’s responsibility assigned before their use.

Table 2.2.3 System calls being same as tasks

System call Function
wup_tsk() Wake Up Other Task
set_flg() Set Event Flag
sig_sem() Signal Semaphore
snd_msg() Send Messages to Mailbox
psnd_mbf() Send Messages to Message Buffer (Polling)

2 PROGRAMMING

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

9

2.3 Creating an Application Program
This section describes the precautions to be observed when creating an ROS33 application program by using the
program "demo.c" in the "demo¥" directory and sample programs in the "sample¥" directory. For details on how
to handle software development tools and how to create C and assembly sources, refer to the "E0C33 Family C
Compiler Package Manual".
The following sample programs assume that "ros33.lib" to be linked is generated under the default condition
shown on Page 19.

Rules for main function
 Shown below is the main function in "demo.c".

 Example:

#include "ros33.h"

void main()
{
 sys_ini();

 vcre_tsk(1, task1, 1, (UW)&(stack1[0xa0]));
 vcre_tsk(2, task2, 2, (UW)&(stack2[0xa0]));
 vcre_tsk(3, task3, 2, (UW)&(stack3[0xa0]));
 vcre_tsk(4, task4, 3, (UW)&(stack4[0xa0]));
 vcre_tsk(5, task5, 5, (UW)&(stack3[0xa0]));
 vcre_tsk(8, idle_task, 8, (UW)&(idle_stack[0xa0]));

 sta_tsk(1, 0);
 sta_tsk(2, 0);
 sta_tsk(3, 0);
 sta_tsk(4, 0);
 sta_tsk(8, 0);

 sys_sta();
}

 In the main function, always be sure to call sys_ini() first and sys_sta() at the end of the function. The

function sys_ini() is used to initialize the parameters and resources used by ROS33. After this function,
write your user program. In the above example, six tasks are defined by vcre_tsk(), of which five tasks are
started by sta_tsk(). The last function sys_sta() causes the system to start executing in a multitask
environment.

 Furthermore, "ros33.h" must be included.

Task
 All tasks to be executed must be defined using vcre_tsk() in the main function. Operation cannot be

guaranteed for system calls that use a task ID which is not defined here.
 In the example of main() above, task1 is defined first.
 Example: vcre_tsk(1, task1, 1, (UW)&(stack1[0xa0]));

 This system call defines the task as task ID = 1 (first argument), task 1 = startup address (second argument),

priority = 1 (third argument), and the initial address of the stack used by this task = stak1[] (fourth
argument). Since this task has priority 1 (the highest priority), when this task is started it is dispatched before
any other tasks.

 When the tasks are initially defined, they are in DORMANT state. Use sta_tsk() to start a task.
 Example: sta_tsk(1, 0);

 The first argument in sta_tsk() is a task ID. The second argument is the task startup code (int) to specify the

parameter to be passed to the task. However, because ROS33 does not use this code, always specify 0 for the
task startup code.

2 PROGRAMMING

10 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

 To create each individual task, use the ordinary function format shown below. Note, however, that tasks do
not have a return value. Consider the task status transition in Figure 2.1.2 when you create tasks.
Example:
void task1(void)
{
 while(1) {
 rcv_msg(&ppk_msg, 1);
 puts(ppk_msg->msgcont);
 slp_tsk();
 }
}

This task uses rcv_msg() to receive a message from the mailbox
and output it. Then the task places itself in WAIT state using
slp_tsk(). This wait state remains effective until the task is waked
up by some other task.
If no message exists in the mailbox, task1 is set in a wait state by
rcv_msg(). When a message has been prepared, it is waked up
and performs the above processing.

Idle task
 An idle task needs to be provided in the user program for times when no tasks are in an executable state.
 This task must be enabled for interrupt acceptance and must be assigned the lowest priority. It also must

always be kept active in main(). An idle_task is defined in "demo.c".
 Example:

void idle_task()
{
 while(1){
 for(;;);
 }
}

 The operation of the OS cannot be guaranteed if the sequence returns from the idle task.

Stack
 For the stack, specify a different area for each task. However, for tasks that are not processed in parallel, the

same stack area can be shared in order to suppress the amount of RAM spent for tasks. When sharing the
stack in this way, make sure that all but one task sharing the stack are in DORMANT state.

 In addition to tasks, the system uses about 180 bytes per a task (varies depending on the environment) for the
stack for initialization and other purposes. Add this stack to the total amount of stack used by tasks as you
allocate the stack area in RAM.

 A sample program for sharing a stack is shown below.
 Example:

#include <stdio.h>
#include "ros33.h"

const char sTask[] = "task";

void main()
{
 sys_ini();

 vcre_tsk(1, task1, 1, (UW)&(stack_common[STACK_SIZE]));
 vcre_tsk(2, task2, 1, (UW)&(stack_common[STACK_SIZE]));
 vcre_tsk(3, task_main, 2, (UW)&(stack_main[STACK_SIZE]));
 vcre_tsk(8, idle_task, 8, (UW)&(stack_idle[STACK_SIZE]));

 /* start idle task */
 sta_tsk(8, 0);

 /* start main task */
 sta_tsk(3, 0);

 sys_sta();
}

void task_main(void)
{
 sta_tsk(1, 0);
 sta_tsk(2, 0);
 slp_tsk();
}

2 PROGRAMMING

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

11

void task1(void)
{
 char str[10];
 strcpy(str, sTask);
 strcat(str, "1");
 puts(str);
 ext_tsk();
}

void task2(void)
{
 char str[10];
 strcpy(str, sTask);
 strcat(str, "2");
 puts(str);
 slp_tsk();
}

1. The same stack area is defined for both task1 and task2 using the vcre_tsk() system call.

2. task_main() enters RUN state by sys_sta() in the main function.

3. task1 enters RUN state by sta_tsk(1,0) in the main function.

4. task1 enters DORMANT state by ext_tsk(), then task_main() enters RUN state.

5. task2 enters RUN state by sta_tsk(2,0) in task_main ().

6. task2 enters WAIT state by slp_tsk(), then task_main() enters RUN state.

 In this example, task1 and task2 use the same stack area. Since task1 and task 2 do not enter the same state

other than DORMANT state, stack sharing is possible.

 For reference, a sample source for stack sharing is provided in the "sample¥" directory.

Initializing the dispatcher
 The task dispatcher uses software exception 0.
 Register int_dispatch to the corresponding vector address.

Interrupt
 Create an interrupt handler for each factor of interrupts used in your application, and write its start address to

the corresponding interrupt vector address. When the interrupt factor is generated, the corresponding
interrupt handler is executed as a task-independent portion. The tasks that have until now been executed are
suspended from execution until the interrupt handler completes its processing. Also, the E0C33 chip's trap
processing is initiated and the interrupts whose priority levels are below that of the interrupt being serviced
are masked out during this time. To enable multiple interrupts, directly set the IE bit of the PSR. For details
about interrupts, refer to the Technical Manual supplied with each E0C33 Family microcomputer.

Interrupt handler

1. After an interrupt occurs, generate ent_int() before permitting a CPU interrupt (sets PSR IE bit at 1) or
generating a system call.
ent_int() is a system call which notifies the system of the interrupt process.

2. Clear the interrupt factor flag.

3. Execute the user’s interrupt processing or system call. If there is a register needed for user interrupt
process, save to the stack.

4. Restore contents of the registers which have been saved to the stack.

5. Issue ret_int() and end the interrupt handler. Do not end with the “reti” command.

2 PROGRAMMING

12 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

• The interrupt handler uses a stack of tasks which were being executed until now. If you want to designate a
stack exclusively for the interrupt handler, switch %sp immediately after starting the interrupt handler and
immediately before terminating it.

• Set the values of registers %r0 to %r15, %alr, %ahr, and %sp determined right before issuing ret_int to the
same values just after the interrupt occurs.

• It is not necessary to issue ent_int and ret_int system calls when multiple interrupts or NMI is not used,
and when OS system call is not issued from the interrupt handler.

Interrupt handler sample:
int_hdr:
 xcall ent_int ; Start interrupt handler

 pushn %r15 ; Save register
 ld.w %r1,%alr
 ld.w %r0,%ahr
 pushn %r1

 xld.w %r0,IFCT_TM160 ; Clear interrupt factor flag.
 ld.w %r1,1
 ld.w [%r0],%r1

 xcall usr_routine ; Execute user routine.

 ld.w %r12,0x1
 xcall wup_tsk ; Generate wup_tsk(1).

 popn %r1 ; Restore registers.
 ld.w %alr,%r1
 ld.w %ahr,%r0
 popn %r15

 xcall ret_int ; End interrupt handler.

System call issued from interrupt handler

There are two types of system calls generated from an interrupt handler: exclusive system calls and system
calls identical to tasks.

z System calls exclusively for interrupt handler
These system calls execute automatically to save and restore the minimum numbers of registers
required internally. This is faster than using system calls identical to tasks, and the stack size is most
optimal.

iwup_tsk Wakes up another task. (Use from interrupt handler. wup_tsk)
iset_flg Sets an event flag. (Use from interrupt handler. set_flg)
isig_sem Returns a semaphore resource. (Use from interrupt handler. sig_sem)
isnd_msg Sends a message to the mailbox. (Use from interrupt handler. snd_msg)
ipsnd_mbf Sends a message to the massage buffer. (Use from interrupt handler. psnd_mbf)

Exampleæ
interrupt:
 xcall ent_int ; Start interrupt handler.

 sub %sp, 2 ; Save %r10, %r12
 ld.w [%sp+0], %r10 ; %r10 = store iwup_tsk return value
 ld.w [%sp+1], %r12 ; %r12 = store iwup_tsk parameter

 ld.w %r12,0x1
 xcall iwup_tsk ; Generate wup_tsk(1)

 ld.w %r10,[%sp+0]
 ld.w %r12,[%sp+1]
 add %sp, 2 ; Return %r10, %r12.

 xcall ret_int ; End interrupt handler.

2 PROGRAMMING

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

13

z System calls identical to tasks
These system call do not execute to save and return the minimum numbers of registers internally. Before
using them, be sure to have the user save %r0 - %r15, %alr, and %ahr. Use these system calls when saving
all registers at the start of an interrupt. (Use the C language to write the interrupt handler.) In this case, when
you use a system call for exclusive interrupt handler, note that stack is used excessively.

wup_tsk Wake up another task.
set_flg Sets event flag.
sig_sem Signal semaphore.
snd_msg Sends a message to the mailbox
psnd_mbf Sends a message to the message buffer (polling)

Exampleæ
int_hdr:

 xcall ent_int ; Start interrupt handler

 pushn %r15 ; Save register.
 ld.w %r1,%alr
 ld.w %r0,%ahr
 pushn %r1 ;

 xcall usr_routine ; Execute user routine written in C language

 ld.w %r12,0x1
 xcall wup_tsk ; Generate wup_tsk(1).

 popn %r1 ; Restore registers.
 ld.w %alr, %r1
 ld.w %ahr, %r0
 popn %r15

 xcall ret_int ; End interrupt handler

Interrupt level in system call

An interrupt occurring while a system call is being executed is masked by IL of the CPU (interrupt level).
While the system call is being executed, the CPU interrupt level is set to default 4.
For interrupts with the following priority, executable system calls can be run from the interrupt
handler. For interrupts with priority exceeding this setting, the system calls cannot be executed.

With this default setting, a system call is possible from interrupt of level 0, 1, 2, 3, and 4; but not possible
from interrupt of level 5, 6, and 7. An interrupt where system call is not possible is not related to the OS and
enables interrupt processing with good response. This interrupt does not need to use ent_int and ret_int.
System call cannot be generated from this interrupt handler. Also, if the interrupt occurs multiple times
during interrupt handler processing and system call is generated, the operation is not guaranteed. To change
the interrupt mask level in a system call, have the user perform this statically during the ROS33
configuration. The setting can be made by changing the two locations in the source file, as follows:

z Changing the command (which operates the PSR register of the mDisableInt macro) at
 around line 100 in src¥internal.h

asm("
 ld.w %r9, %psr
 xand %r9, %r9, 0xff ; clear IL
 xoor %r9, %r9, 0x400 ; set IL <- Interrupt level 4
 ld.w %psr, %r9
");

Default is level 4. To switch to level 5, use the 3rd command line as follows:
xoor %r9, %r9, 0x500 ; set IL <- Interrupt level 5

2 PROGRAMMING

14 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

z Changing the command (which operates the PSR register of the macro) at around line 20 in
 src¥ros33asm.s.

#macro ENTER_CRITICAL_SECTION
 pushn %r0
 ld.w %r0, %psr
 xand %r0, %r0, 0xff ; clear IL
 xoor %r0, %r0, 0x410 ; set IL and IE, interrupt mask by IL
 ld.w %psr, %r0
 popn %r0
#endm

Default is level 4. To switch to level 5, , use the 3rd command line as follows:
xoor %r0, %r0, 0x510 ; set IL <- Interrupt level 5

Timer handler
 When using time management function system calls (set_tim, get_tim, dly_tsk), create a timer handler in the

user program that calls sys_clk() every 1 ms. Normally, use a 16-bit timer to generate an interrupt every 1
ms and then make it an interrupt handler.

Example:
"timer_hdr" symbol is registered for timer vector

.global timer_hdr
timer_hdr:

 xcall ent_int ; Start interrupt handler.

 pushn %r1 ; Save register.

 xld.w %r1,0x40 ; Clear timer factor flag.
 xld.w %r0,0x40284
 ld.w [%r0],%r1

 popn %r1 ; Restore registers.

 xcall sys_clk ; Generate sys_clk.

 xcall ret_int ; End interrupt handler.

For your reference, a sample source including 16-bit timer setting is provided in the “sample¥” directory.

2 PROGRAMMING

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

15

Usage example of a mailbox

 #include <stdio.h>

#include "ros33.h"

T_MSG msg;

void task1(void)
{
 T_MSG* pk_msg;

 while(1) {
 rcv_msg(&pk_msg, 1);
 puts(pk_msg->msgcont);
 slp_tsk();
 }
}

void task2(void)
{
 while(1) {
 strcpy(msg.msgcont, "HELLO");
 msg.pNxt = 0; /* message init */
 snd_msg(1, &msg);
 slp_tsk();
 }
}

 This sample program assumes that task1 and task2 are placed in the same ready queue with a priority level in

the order of task1 and task2, and there is no message in the mailbox (ID1).

1. task1 enters RUN state. The rcv_msg() in task1 requests to receive a message. task1 enters WAIT state
since the mailbox (ID1) has no message.

2. task2 enters RUN state. task1 initializes a message and sends it to the mailbox (ID1) using snd_msg().
This makes task1 enter READY state.

3. task1 enters RUN state by slp_tsk() in task2.

4. task1 outputs the received message.

 For reference, a sample source that uses a mailbox is provided in the "sample¥" directory.

 Message structure:
 The message structure T_MSG is defined in "itron.h" as follows:
 typedef struct t_msg {

 struct t_msg* pNxt; ... Message header

 VB msgcont[10]; ... Message body

 } T_MSG;

 A message consists of a header (first 4 bytes) and a message body.
 To expand a message body into 10 bytes or more, define as follows:
 Example:
 VB msg_buf[25];

 T_MSG* pk_msg;

 pk_msg = (T_MSG*)msg_buf;

 The message header (pNxt) must be initialized to 0 before using the massage.

2 PROGRAMMING

16 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

Usage example of a semaphore

void task1(void)
{
 while(1) {
 wai_sem(1);
 rot_rdq(1);
 sig_sem(1);
 puts("task1");
 slp_tsk();
 }
}

void task2(void)
{
 while(1) {
 wai_sem(1);
 puts("task2");
 sig_sem(1);
 slp_tsk();
 }
}

 This sample program assumes that task1 and task2 are placed in the same ready queue with a priority level in

the order of task1 and task2, and the resource of the semaphore (ID1) has not be returned.

1. task1 enters RUN state and gets the resource from the semaphore (ID1) using wai_sem().

2. task2 enters RUN state by rot_rdq() in task1.

3. task2 requests the resource from the semaphore (ID1). task2 enters WAIT state since it cannot get the
resource.

4. task1 enters RUN state and returns the resource to the semaphore (ID1) using sig_sem(). This makes
task2 enter READY state.

5. task2 enters RUN state by slp_tsk() in task1.

 For reference, a sample source that uses a semaphore is provided in the "sample¥" directory.

Usage example of an event flag

#include <stdio.h>
#include "ros33.h"

void task1(void)
{
 UINT p_flgptn;

 while(1) {
 wai_flg(&p_flgptn, 1, 0x11, TWF_ANDW);
 printf("Flag pattern 0x%x¥n", p_flgptn);
 slp_tsk();
 }
}

void task2(void)
{
 while(1) {
 set_flg(1, 0x11);
 slp_tsk();
 }
}

2 PROGRAMMING

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

17

 This sample program assumes that task1 and task2 are placed in the same ready queue with a priority level in
the order of task1 and task2, and the event flag (ID1) has be set to 0x00.

1. task1 enters RUN state. task1 enters WAIT state after executing wai_flag() that waits for the event flag
(ID1) to be set to the specified status.

2. task2 enters RUN state and sets the event flag (ID1) to 0x11 using set_flg(). Since this releases the flag
waiting condition for task1, task1 enters READY state.

3. task1 enters RUN state by slp_tsk() in task2.
task2 outputs the contents of the event flag that has been released from the waiting condition using
printf().

 For reference, a sample source that uses an event flag is provided in the "sample¥" directory.

Usage example of a message buffer

#include "ros33.h"

#define BUFSIZE 20
#define MAX_MSG_SIZE 15
char buf1[BUFSIZE];

void main()
{
 sys_ini();

 ///

 vcre_mbf(1, buf1, BUFSIZE, MAX_MSG_SIZE); /* create message buffer */

 ///

 sys_sta(); /* start main task */
}

void task1(void)
{
 char tbuf[MAX_MSG_SIZE];
 int tsize;

 while(1) {
 rcv_mbf(tbuf, &tsize, 1);
 slp_tsk();
 }
}

void task2(void)
{
 while(1) {
 snd_mbf(1, "TASK1 Message", 14);
 slp_tsk();
 }
}

 This sample program assumes that task1 and task2 are placed in the same ready queue with a priority level in

the order of task1 and task2, and the message buffer (ID1) has no message.

1. Define the message buffer(ID1). Use vcre_mbf() function between sys_ini() and sys_sta() in the main
function. The system call operation can not be guaranteed with the message buffer ID which is not
defined in this section.

2. task1 enters RUN state. task1 enters WAIT state after initializing a message and sending it in task1
rcv_mbf() because no message is found in the message buffer(ID1).

3. task2 enters RUN state. By snd_mbf(), a message is sent to the message buffer(ID1). This makes task1
enter READY state. The message is copied to tbuf.

 For reference, a sample source that uses a message buffer is provided in the "sample¥" directory.

2 PROGRAMMING

18 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

Building an application program
 The ROS33 modules are provided as the library file "ros33.lib" in the "lib¥" directory. Link this library with

the user modules. When linking, specify the said directory as a library path in the linker command file. Only
those modules required for the system calls used will be linked.

 Example: ;Library path
 -l C:¥CC33¥libCC33 standard library
 -l C:¥ROS33¥libROS33 standard library

 Note that "ros33.lib" is created as a standard kernel that includes an error check function but omits debug

functions. If you want to change this function or the maximum resource value, customize the library as
necessary. (Refer to Section 2.4, "Customizing ROS33".)

Precautions

• All tasks to be executed must be defined in the main function by using vcre_tsk(). Operation cannot be
guaranteed for system calls that use an undefined task ID.

• The idle task must be enabled for interrupt acceptance and must be assigned the lowest priority.
Furthermore, do not return from the idle task.

• To enable or disable interrupts in tasks, always be sure to use system calls loc_cpu() or unl_cpu().
Operation cannot be guaranteed if PSR is changed by operating on it directly.

• The stack for each task should be prepared with an enough size.

• To enable multiple interrupts in an interrupt handler, directly set the IE (interrupt enable) bit of the PSR.

• Most system calls are written in C. If you use the assembly language in the development, be sure to
consider the register layout . For details, refer to the C compiler package manual.

2 PROGRAMMING

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

19

2.4 Customizing ROS33
The library "ros33.lib" is created with the following features:

Resources (Valid setup range)
 Number of tasks 8 (1 to 255)

Priority levels 8 (1 to 9)
Number of event flags 8 (0 to 255)
Number of semaphores 8 (0 to 255)
Number of message buffers 8 (0 to 255)

 Number of mailboxes 8 (0 to 255)
 Semaphore count value 1 (1 to 255)
 Wakeup count value 1 (1 to 255)

 Initial value of PSR 0x00000010 ...Interrupt enabled
 Timer handler interrupt cycle 1 (multiples of 8)

Compile options
 NO_ERROR_CHECK option Unspecified
 DEBUG_KERNEL option Unspecified
 NO_RETURN_VALUE option Unspecified
 USE_GP option Unspecified

The ROS33 source files are provided in the "src¥" directory, so you can customize it following the procedure
described below.

Method for changing resources
 The maximum value of each resource and the initial value of PSR are defined in "include¥ros33.h". Change

the contents of these definitions as necessary, then recompile the file.

 Contents of definitions in "ros33.h"

// If you change resource number please edit following.

#define SMPH_NUM 8 // max semaphore, 0 to 255

#define FLG_NUM 8 // max flag, 0 to 255

#define MLBX_NUM 8 // max mailbox, 0 to 255

#define MSGBUF_NUM 8 // max message buffer, 0 to 255

#define TSK_NUM 8 // max task, 1 to 255

#define MAX_TSKPRI 8 // max task priority, 1 to 9

#define SMPH_CNT 1 // semaphore count, 1 to 255

#define WUP_CNT 1 // max wakeup count 1 to 255

#define INI_PSR 0x00000010 // initial flag (%PSR value)

 // default is interrupt enable

#define INT_TIME 1 // timer interrupt time (ms)

 Note on INT_TIME
 Set it up so that the timer handler calling sys_clk does not occur every 1m sec. Make sure that the number is

multiple of 8, for example 8 for 8m sec and 16for 16 sec.

Compile options and recompilation
Be sure to compile using the "-0" option which allows for optimum GCC33. For the complier, use
gcc33 Ver2.7.2.

 NO_ERROR_CHECK option

2 PROGRAMMING

20 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

 By compiling the file after specifying "-DNO_ERROR_CHECK" with a gcc33 startup command, you can
generate a very compact kernel with error check functions omitted. However, because occurrence of an error
causes the system to crash, this option can only be used when you are absolutely certain that no errors will
occur.

 DEBUG_KERNEL option
 By specifying "-DDEBUG_KERNEL" with a gcc33 startup command and "-d DEBUG_KERNEL" with a

pp33 startup command, you can generate a debug kernel. When a debug kernel is generated, the dispatcher (a
functional block to control dispatch in the OS) has an added function. This function calls two other functions,
which are described below:

 void ros_dbg_tskcng(ID tskid)
 This function is called when the task to be dispatched has been confirmed.

 void ros_dbg_stackerr()
 This function is called when an error occurs in the stack used by a task being executed.
 If the task stack area is used to exchange messages with the mailbox, the system accesses the stack for the

task being executed, which causes a stack error.

 Note that these functions are not included in ROS33. Therefore, they need to be created in the user program.

For your reference, examples of these functions are provided in "src¥debug.c".

 NO_RETURN_VALUE option
 By specifying "-DNO_RETURN_VALUE" with a gcc33 startup command, a compact kernel that has no

function to set return values can be generated. In this case, system calls do not set any return value, so
undefined values will be returned.

 USE_GP option
 If you want to optimize the code using a global pointer, change the address at which the global pointer

definition is defined in "ros33.h" to your desired address and specify "-DUSE_GP" with a gcc33 startup
command before compiling "tskmng.c."

 Global pointer definition in "ros33.h"
 // If you use global pointer please edit here

 #ifdef USE_GP

 #define GLOBAL_POINTER 0x00000000 // global pointer (%r8 value)

 #endif

 Note that a make file to generate "ros33.lib" has been created in the "build¥" directory. Recompile the file

after modifying necessary points.

 "ros33.mak"

macro definitions for tools & dir

TOOL_DIR = C:¥CC33
GCC33 = $(TOOL_DIR)¥gcc33
PP33 = $(TOOL_DIR)¥pp33
EXT33 = $(TOOL_DIR)¥ext33
AS33 = $(TOOL_DIR)¥as33
LK33 = $(TOOL_DIR)¥lk33
MAKE = $(TOOL_DIR)¥make
LIB33 = $(TOOL_DIR)¥lib33
DEBUG = -g
SRC_DIR = ..¥src¥¥

macro definitions for tool flags

#for release kernel (error check)
GCC33_FLAG = -B$(TOOL_DIR)¥ $(DEBUG) -S -I..¥include -O
PP33_FLAG = $(DEBUG)

#for debug kernel
#GCC33_FLAG = -B$(TOOL_DIR)¥ $(DEBUG) -S -I..¥include -O -DDEBUG_KERNEL
#PP33_FLAG = -d DEBUG_KERNEL $(DEBUG)

#for release kernel (NO error check)
#GCC33_FLAG = -B$(TOOL_DIR)¥ $(DEBUG) -S -I..¥include -O -DNO_ERROR_CHECK
#PP33_FLAG = $(DEBUG)

2 PROGRAMMING

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

21

EXT33_FLAG =
AS33_FLAG = $(DEBUG)

suffix & rule definitions

.SUFFIXES : .c .s .ps .ms .o .srf

.c.ms :
 $(GCC33) $(GCC33_FLAG) (SRC_DIR)*.c
 $(EXT33) $(EXT33_FLAG) $*.ps

.s.ms :
 $(PP33) $(PP33_FLAG) (SRC_DIR)*.s
 $(EXT33) $(EXT33_FLAG) $*.ps

.ms.o :
 $(AS33) $(AS33_FLAG) $*.ms

dependency list

ros33.lib : flag.o intmng.o mailbox.o ros33.o ros33asm.o semapho.o timemng.o ¥
 tskmng.o tsksync.o debug.o
 $(LIB33) -a ros33.lib flag.o intmng.o mailbox.o ros33.o ros33asm.o ¥
semapho.o timemng.o tskmng.o tsksync.o debug.o
 copy ros33.lib ..¥lib
 del ros33.lib

n
n
n

3 SYSTEM CALL REFERENCE

22 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

3 System Call Reference
This section explains the functions of each system call.

3.1 List of System Calls
Table 3.1.1, Table 3.1.2, and Table 3.1.3 list the system calls supported by ROS33.

Table 3.1.1 List of system calls
Classification System call Function

Task dis_dsp(void) Disable Dispatch
management ena_dsp(void) Enable Dispatch
 sta_tsk(ID tskid, INT stacd) Start Task
 ext_tsk(void) Exit Issuing Task
 ter_tsk(ID tskid) Terminate Other Task
 chg_pri(ID tskid, TPRI tskpri) Change Task Priority
 rot_rdq(TPRI tskpri) Rotate Tasks on the Ready Queue
 rel_wai(ID tskid) Release Wait of Other Task
 get_tid(ID *p_tskid) Get Task Identifier
Task-dependent slp_tsk(void) Sleep Task
synchronization wup_tsk(ID tskid) Wake Up Other Task
 sus_tsk(ID tskid) Suspend Other Task
 rsm_tsk(ID tskid) Resume Suspended Task
 can_wup(INT *p_wupcnt, ID tskid) Cancel Wake Up Request
Synchronization wai_sem(ID semid) Wait on Semaphore
and preq_sem(ID semid) Pall and Request Semaphore
communication sig_sem(ID semid) Signal Semaphore
 rcv_msg(T_MSG **ppk_msg, ID mbxid) Receive Message from Mailbox
 prcv_msg(T_MSG **ppk_msg, ID mbxid) Poll and Receive Message from

Mailbox
 snd_msg(ID mbxid, T_MSG *pk_msg) Send Messages to Mailbox
 wai_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT

wfmode)
Wait for Event Flag

 pol_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT
wfmode)

Wait for Event Flag (Polling)

 set_flg(ID flgid, UINT setptn) Set Event Flag
 clr_flg(ID flgid, UINT clrptn) Clear Event Flag
System
management

get_ver(T_VER *pk_ver) Get Version Information

Time set_tim(SYSTIME *pk_tim) Set System Clock
management get_tim(SYSTIME *pk_tim) Get System Clock
 dly_tsk(DLYTIME dlytim) Delay Task
Interrupt loc_cpu(void) Lock CPU
management unl_cpu(void) Unlock CPU
 ret_int(void) Return from Interrupt Handler
Implementation- ent_int(void) Initialize Interrupt Handler Value
dependent vcre_tsk(ID tskid, FP task, PRI itskpri, UW istkadr) Create Task
 vcre_mbf(ID mbfid, VP msgbuf, INT bufsz, INT maxmsz) Create Message Buffer
 sys_clk() System Clock
 vchg_semcnt(ID semid, UB semcnt) Change Semaphore count value
 vchk_timer() Check Time Management

snd_mbf(ID mbfid, VP msg, INT msgsz) Send Messages to Message Buffer
psnd_mbf(ID mbfid, VP msg, INT msgsz) Send Messages to Message Buffer

(Polling)
tsnd_mbf(ID mbfid, VP msg, INT msgsz, TMO tmout) Send Messages to Message Buffer

(with time-out)

rcv_mbf(VP msg, INT *p_msgsz, ID mbfid) Receive Messages from Message
Buffer

prcv_mbf(VP msg, INT *p_msgsz, ID mbfid) Receive Messages from Message
Buffer (Polling)

Extension
synchronization
and
communication

trcv_mbf(VP msg, INT *p_msgsz, ID mbfid, TMO tmout) Receive Messages from Message
Buffer (with time-out)

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

23

Two kinds of System call below can be used with the task-independent portions (interrupt handler).

System call for the interrupt handler only

These system call automatically avoid or restore the register needed for the inside. The function of the system
call equals to the system call without a prefix “i”.

Table 3.1.2 system call for interrupt handler only

System call Function
iwup_tsk() Wake Up Other Task (wup_tsk, used from the interrupt handler)
iset_flg() Set Event Flag (set_flg, used from the interrupt handler)
isig_sem() Signal Semaphore (sig_sem, used from the interrupt handler)
isnd_msg() Send Messages to Mailbox (snd_msg, used from the interrupt

handler)
ipsnd_mbf() Send Messages to Message Buffer (psnd_mbf, used from the

interrupt handler)

System call same as task

Use this system call from interrupt handler, but be sure to avoid %r15, %alr, and %ahr from %r0 with user’s
responsibility before use.

Table 3.1.3 system call same as task

System call Function
wup_tsk() Wake Up Other Task
set_flg() Set Event Flag
sig_sem() Signal Semaphore
snd_msg() Send Messages to Mailbox
psnd_mbf() Send Messages to Message Buffer (Polling)

3 SYSTEM CALL REFERENCE

24 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

3.2 List of Data Types
Table 3.2.1 lists the data types used for the arguments of each system call.

Table 3.2.1 List of data types
Type Definition Description

B typedef char B; Signed 8-bit integer
H typedef short H; Signed 16-bit integer
W typedef long W; Signed 32-bit integer
UB typedef unsigned char UB; Unsigned 8-bit integer
UH typedef unsigned short UH; Unsigned 16-bit integer
UW typedef unsigned long UW; Unsigned 32-bit integer
VW typedef long VW; Unpredictable data type (32-bit size)
VH typedef short VH; Unpredictable data type (16-bit size)
VB typedef char VB; Unpredictable data type (8-bit size)
*VP typedef void *VP; Pointer to an unpredictable data type
*FP typedef void (*FP)()

;
Program start address

INT typedef int INT; Signed 32-bit integer
UINT typedef unsigned int UINT; Unsigned 32-bit integer
BOOL typedef H BOOL; Boolean value: TRUE (1) or FALSE (0)
FN typedef short FN; Maximum 2 bytes of function code
ID typedef INT ID; Object ID number (signed 16-bit integer)
BOOL_ID typedef INT BOOL_ID

;
Boolean value or ID number (signed 16-bit integer)

HNO typedef INT HNO; Handler number (signed 16-bit integer)
ATR typedef UINT ATR; Object or handler attribute (unsigned 16-bit integer)
ER typedef INT ER; Error code (signed 16-bit integer)
PRI typedef INT PRI; Task priority (signed 16-bit integer)
TMO typedef INT TMO; Timeout value (signed 16-bit integer)
DLYTIME typedef TMO DLYTIME

;
Delay time (signed 16-bit integer)

These data types are defined in "include¥itron.h".

3.3 List of Error Codes
Table 3.3.1 lists the error codes returned by system calls.

Table 3.3.1 List of error codes
Error code Value Description

E_OK 0 Normal completion
E_SYS (-5) System error
E_NOMEM (-10) Insufficient memory
E_NOSPT (-17) Feature not supported
E_INOSPT (-18) Feature not supported by ITRON/FILE specification
E_RSFN (-20) Reserved function code number
E_RSATR (-24) Reserved attribute
E_PAR (-33) Parameter error
E_ID (-35) Invalid ID number
E_NOEXS (-52) Object does not exist
E_OBJ (-63) Invalid object state
E_MACV (-65) Memory access disabled or memory access violation
E_OACV (-66) Object access violation
E_CTX (-69) Context error
E_QOVR (-73) Queuing or nesting overflow
E_DLT (-81) Object being waited for was deleted
E_TMOUT (-85) Polling failure or timeout exceeded
E_RLWAI (-86) WAIT state was forcibly released

These error codes are defined in "include¥itron.h".

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

25

3.4 Details of System Calls

3.4.1 System Calls of Task Management Functions

Disable Dispatch dis_dsp

Format: ER dis_dsp(void);

Parameter: None

Return values: E_OK Terminated normally
 E_CTX Context error (issued after loc_cpu has been executed from a task-independent

portion)

Description: This system call disables task dispatches. From this time onward until ena_dsp is issued, a task

itself will never be preempted from RUN state to READY state, though there is a possibility of
other tasks with higher priority being placed in READY state. The task is also disabled from
entering WAIT or DORMANT state. External interrupts are not disabled, however.

Enable Dispatch ena_dsp

Format: ER ena_dsp(void);

Parameter: None

Return values: E_OK Terminated normally
 E_CTX Context error (issued after loc_cpu has been executed from a task-independent

portion)

Description: This system call reenables a dispatch that has been disabled by dis_dsp. If a task with higher

priority than the reenabled task itself exists in the ready queue, this task is dispatched at that point
in time and the reenabled task is preempted.

 If both interrupt and dispatch are disabled by loc_cpu, dispatch is not enabled by this system call
and error code E_CTX is returned.

 If this system call is issued when dispatch is already enabled, the system call is ignored and no
error is assumed.

Start Task sta_tsk

Format: ER sta_tsk(ID tskid, INT stacd);

Parameters: ID tskid Task ID number
 INT stacd Task start code (not used in the system call)

Return values: E_OK Terminated normally
 E_ID Illegal ID number (tskid is illegal or cannot be used)
 E_NOEXS Specified task does not exist.
 E_OBJ Specified task is not in DORMANT state.

Description: This system call starts the task indicated by tskid. The specified task is registered in the ready

queue, and its state is changed from DORMANT to READY. In the ready queue, it is positioned
at the end of the queue of tasks with the same priority.

 If the specified task has the highest priority among the executable (READY) tasks and there is no
other task with the same priority, the task is dispatched and placed in RUN state. In this case, the
task being executed when it issued sta_tsk is made the task to be executed next at this time.

 Task startup is effective for only those in DORMANT state. If you specify a task in any other
state, the task status is not changed and error code E_OBJ is returned.

 The second argument "stacd" is not used in ROS33, so specify 0 for it.

Note: Before you can start a task, you must first issue the vcre_tsk system call to define that task.

3 SYSTEM CALL REFERENCE

26 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

Exit Issuing Task ext_tsk

Format: void ext_tsk(void);

Parameter: None

Return value: None

Description: This system call terminates the task itself that issues this call. The terminated task is placed in an

DORMANT state. At the same time, the task with the highest priority in the ready queue is
dispatched and placed in RUN state. Use the sta_tsk system call to restart a task that has been
terminated by this system call.

Terminate Other Task ter_tsk

Format: ER ter_tsk(ID tskid);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
 E_ID Illegal ID number (tskid is illegal or cannot be used)
 E_NOEXS Specified task does not exist.
 E_OBJ Specified task is in DORMANT state or the issuing task itself is specified.

Description: This system call forcibly terminates the task specified by tskid. The terminated task is placed in

DORMANT state. If you specify the issuing task itself or a task in DORMANT state, error code
E_OBJ is returned. Use the sta_tsk system call to restart a task that has been terminated by this
system call.

Change Task Priority chg_pri

Format: ER chg_pri(ID tskid, TPRI tskpri);

Parameters: ID tskid Task ID number
 TPRI tskpri Task priority

Return values: E_OK Terminated normally
 E_ID Illegal ID number (tskid is illegal or cannot be used)
 E_NOEXS Specified task does not exist.
 E_PAR Parameter error (tskpri is illegal or has an unusable value)
 E_OBJ Specified task is in DORMANT state.

Description: This system call changes the current priority of the task specified by tskid to a value specified by

tskpri. The priority of any task in DORMANT (inactive) state cannot be changed. If an inactive
task is specified, error code E_OBJ is returned.

 The priority changed here remains effective until the task enters DORMANT state. When the task
is placed in DORMANT state, the task's initial priority value set by vcre_tsk is restored.

 If the priority of a task in the ready queue is changed, the task is moved to the last position in the
task queue with the same priority as its changed priority. This modification is also used to specify
the same priority for a task as its current priority, or change the priority of the issuing task itself.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

27

Rotate Tasks on the Ready Queue rot_rdq

Format: ER rot_rdq(TPRI tskpri);

Parameter: TPRI tskpri Task priority

Return values: E_OK Terminated normally
 E_PAR Parameter error (tskpri is illegal)

Description: This system call rotates a ready queue that has priorities specified by tskpri. The task at the top of

the queue with the specified priority is moved to the last position in the queue. In this system call,
you can use TPRI_RUN (priority of the task being executed) for tskpri, so that it is possible to
rotate the queue that includes the issuing task itself.

 If the task of a specified priority (valid value) does not exist in the ready queue, this system call is
ignored.

 This system call only affects the task queue with the specified priority, and no other task queue is
affected.

Release Wait of Other Task rel_wai

Format: ER rel_wai(ID tskid);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
 E_ID Illegal ID number (tskid is illegal or cannot be used)
 E_NOEXS Specified task does not exist.
 E_OBJ Specified task is not in a wait state (including the issuing task itself and those in

DORMANT state).

Description: If the task specified by tskid is in WAIT state, this system call forcibly frees it (not including

SUSPEND state). Error E_RLWAI is returned for the task freed from wait state by rel_wai. This
can be used for time-out processing of tasks in a wait state. If the specified task is in
WAIT-SUSPEND state, only the WAIT state is cleared and the task goes to SUSPEND state.

 If the specified task is neither in WAIT state nor in WAIT-SUSPEND state, error code E_OBJ is
returned to the task that had issued this system call.

Get Task Identifier get_tid

Format: ER get_tid(ID *p_tskid);

Parameter: ID *p_tskid Pointer to task ID number

Return values: E_OK Terminated normally
 FALSE=0 Executed from a task-independent portion

Description: This system call returns the ID number of the issuing task itself. When this system call is issued

from a task-independent portion, FALSE = 0 is returned as the task ID.

3 SYSTEM CALL REFERENCE

28 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

3.4.2 System Calls of Task-Dependent Synchronization Functions

Sleep Task slp_tsk

Format: ER slp_tsk(void);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
 E_RLWAI Wait state forcibly cleared (rel_wai accepted during wait state)
 E_CTX Context error (executed from a task-independent portion or when dispatch is

disabled)

Description: This system call moves the issuing task itself from RUN state to WAIT state. This wait state is

cleared by a wup_tsk system call from another task. The wait state also is forcibly cleared when
rel_wai is executed by some other task, in which case error code E_RLWAI is returned.

 If sus_tsk is executed by some other task, the task is placed in WAIT-SUSPEND state.

Wake Up Other Task wup_tsk

Format: ER wup_tsk(ID tskid);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
 E_ID Illegal ID number (tskid is illegal or cannot be used)
 E_NOEXS Specified task does not exist.
 E_OBJ Specified task is the issuing task itself or in DORMANT state.
 E_QOVR Wakeup requests exceed the allowable range.

Description: This system call causes a task which the slp_tsk system call has placed in a wakeup wait state to

enter READY state. The return position in the ready queue is the last position of the task queue
having the same priority.

 Tasks in WAIT-SUSPEND state go to SUSPEND state.
 If the specified task has not executed slp_tsk and is not in a wait state, this wakeup request is

queued. A queued wakeup request becomes effective when the specified task executes slp_tsk
thereafter. Consequently, the specified task is not placed in a wait state by this slp_tsk.

Note: By default, the number of times wakeup requests are queued (wupcnt) is 1. However, this setting

can be customized so that they will be queued up to 255 times. (Refer to Section 2.4,
"Customizing ROS33".)

Suspend Other Task sus_tsk

Format: ER sus_tsk(ID tskid);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
 E_ID Illegal ID number (tskid is illegal or cannot be used)
 E_NOEXS Specified task does not exist.
 E_OBJ Specified task is the issuing task itself or in DORMANT state.
 E_QOVR SUSPEND request is issued more than once.

Description: This system call causes the task specified by tskid to enter SUSPEND state. If you specify a task

that is already in WAIT state, the task enters WAIT-SUSPEND state.
 SUSPEND state is cleared by issuing the rsm_tsk system call.
 SUSPEND requests cannot be nested (cannot be preissued a number of times).

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

29

Resume Suspended Task rsm_tsk

Format: ER rsm_tsk(ID tskid);

Parameter: ID tskid Task ID number

Return values: E_OK Terminated normally
 E_ID Illegal ID number (tskid is illegal or cannot be used)
 E_NOEXS Specified task does not exist.
 E_OBJ Specified task is not in SUSPEND state.

Description: This system call frees the task specified by tskid from SUSPEND state and returns it to the state it

was in when sus_tsk was issued. If the task is WAIT-SUSPEND state, it enters WAIT state.
 If you specify a task that is neither in WAIT state nor in WAIT-SUSPEND state, error code

E_OBJ is returned.

Cancel Wake Up Request can_wup

Format: ER can_wup(INT *p_wupcnt, ID tskid);

Parameters: INT *p_wupcnt Pointer to number of times current wakeup request is issued
 ID tskid Task ID number

Return values: E_OK Terminated normally
 E_ID Illegal ID number (tskid is illegal or cannot be used)
 E_NOEXS Specified task does not exist.
 E_OBJ Specified task is in DORMANT state.

Description: This system call clears the wakeup request counter of the task specified by tskid and invalidates

the queued task wakeup request. The wakeup request count before being cleared is set in
*p_wupcnt. By specifying TSK_SELF (0) for tskid, you can clear the wakeup request for the
issuing task itself.

3 SYSTEM CALL REFERENCE

30 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

3.4.3 System Calls of Synchronization and Communication Functions

Wait on Semaphore wai_sem
Poll and Request Semaphore preq_sem

Format: ER wai_sem(ID semid);
 ER preq_sem(ID semid);

Parameter: ID semid Semaphore ID number

Return values: E_OK Terminated normally
 E_ID Illegal ID number (semid is illegal or cannot be used)
 E_NOEXS Specified semaphore does not exist.
 E_RLWAI Wait state is forcibly cleared (rel_wai accepted during wait state).
 E_TMOUT Failure during polling.
 E_CTX Context error (executed from a task-independent portion or when dispatch is

disabled)

Description: The wai_sem system call acquires one resource from the semaphore specified by semid.
 If a resource exists, that is, the semaphore counter = 1 or greater, the counter is decremented by 1

and the system call is terminated immediately. This means that a resource has been acquired, so
that the task continues executing. If no resource exists, i.e., the semaphore counter = 0, the task is
removed from the ready queue and placed in a semaphore queue. This task enters a wait state. If
the semaphore counter becomes 1 or greater and there is no other task at the top of the queue
waiting for the same semaphore, the semaphore counter is decremented and the task is freed from
the wait state. The task is placed back in the ready queue at the last position of the task queue
having the same priority. If the task has been in WAIT-SUSPEND state, it enters SUSPEND state.

 The preq_sem system call is a polling version of wai_sem and does not have a function to enter a
wait state. If a resource has been acquired, it functions the same way as wai_sem. If it cannot
acquire any resources, it returns error code E_TMOUT.

Note: Although, by default, up to eight semaphores can be used, it can be customized up to 255

semaphores (semaphore ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)
The initial value and maximum value of a semaphore are set to 1 by default. They can be
customized up to 255. However, these values must have the same value.

Signal Semaphore sig_sem

Format: ER sig_sem(ID semid);

Parameter: ID semid Semaphore ID number

Return values: E_OK Terminated normally
 E_ID Illegal ID number (semid is illegal or cannot be used)
 E_NOEXS Specified semaphore does not exist.
 E_QOVR Semaphore count exceeds the maximum value.

Description: This system call returns one resource to the semaphore specified by semid.
 If there are no tasks waiting for the semaphore, the number of resources (semaphore counter) is

incremented by 1. If there are tasks waiting for the semaphore, the number of resources is left
unchanged so as to ensure that the task at the top of the queue will be assigned a resource. The
task assigned a resource is removed from the semaphore queue, placed in READY state, and
returned to the ready queue. If the task has been in WAIT-SUSPEND state, it enters SUSPEND
state.

Note: Although, by default, up to eight semaphores can be used, it can be customized up to 255
semaphores (semaphore ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)
The initial value and maximum value of a semaphore are set to 1 by default. They can be
customized up to 255. However, these values must be a same value.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

31

Receive Message from Mailbox rcv_msg
Poll and Receive Message from Mailbox prcv_msg

Format: ER rcv_msg(T_MSG **ppk_msg, ID mbxid);

 ER prcv_msg(T_MSG **ppk_msg, ID mbxid);

Parameters: T_MSG **ppk_msg Pointer to pointer to message
 ID mbxid Mailbox ID number

Return values: E_OK Terminated normally
 E_ID Illegal ID number (mbxid is illegal or cannot be used)
 E_NOEXS Specified mailbox does not exist.
 E_RLWAI Wait state is forcibly cleared (rel_wai accepted during wait state).
 E_TMOUT Failure during polling.
 E_CTX Context error (executed from a task-independent portion or when

dispatch is disabled)

Description: This system call receives a message from the mailbox specified by mbxid.
 If the message box contains messages, the pointer value that indicates the position of the first

message is set in **ppk_msg and the system call is terminated immediately. This means that the
message has been received, so the task continues executing.

 If the message box does not contain a message, the task is removed from the ready queue and
placed in the message queue. The task then enters a wait state. If a message is sent along and there
is no other task at the top of the queue waiting for the same message, the pointer that indicates the
position of the message is set in **ppk_msg and the task is freed from the wait state. The task is
placed back in the ready queue at the last position of the task queue having the same priority. If
the task has been in WAIT-SUSPEND state, it enters SUSPEND state.

 The prcv_msg system call is a polling version of rcv_msg and does not have a function to enter a
wait state. If a message is successfully received, it functions the same way as rcv_msg. If it cannot
receive a message, it returns error code E_TMOUT.

Note: Although, by default, up to eight mailboxes can be used, it can be customized up to 255

mailboxes (mailbox ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)

Send Message to Mailbox snd_msg

Format: ER snd_msg(ID mbxid, T_MSG *pk_msg);

Parameters: ID mbxid Mailbox ID number
 T_MSG *pk_msg Pointer to message

Return values: E_OK Terminated normally
 E_ID Illegal ID number (mbxid is illegal or cannot be used)
 E_NOEXS Specified mailbox does not exist.
 E_PAR Parameter error (value that cannot be used by pk_msg)

Description: This system call sends a message to the mailbox specified by mbxid.
 If there are tasks waiting for the message, the message is sent to the task at the first position. This

task is removed from the message queue, becomes READY, and is placed back into the ready
queue. If the task has been in WAIT-SUSPEND state, it enters SUSPEND state.

 Note that it is the pointer *pk_msg that is registered in the queue, and not the body of the
message.

Note: The message must be initialized before it can be used. Initialize pk_msg->pNxt to 0 before you

start sending.
 Although, by default, up to eight mailboxes can be used, it can be customized up to 255

mailboxes (mailbox ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)

3 SYSTEM CALL REFERENCE

32 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

Message structure:
 The message structure T_MSG is defined in "itron.h" as follows:
 typedef struct t_msg {

 struct t_msg* pNxt; ... Message header

 VB msgcont[10]; ... Message body

 } T_MSG;

 A message consists of a header (first 4 bytes) and a message body.
 To expand a message body into 10 bytes or more, define as follows:
 Example:
 VB msg_buf[25];

 T_MSG* pk_msg;

 pk_msg = (T_MSG*)msg_buf;

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

33

Wait for Event Flag wai_flg
Wait for Event Flag (Polling) pol_flg

Format: ER wai_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);
 ER pol_flg(UINT *p_flgptn, ID flgid, UINT waiptn, UINT wfmode);

Parameters: UINT *p_flgptn Pointer to flag pattern
 ID flgid Event flag ID number
 UINT waiptn Flag wait bit pattern
 UINT wfmode Flag wait mode and whether or not cleared

Return values: E_OK Terminated normally
 E_ID Illegal ID number (flgid is illegal or cannot be used)
 E_NOEXS Specified flag does not exist.
 E_PAR Wait pattern (waiptn) is 0 or wfmode specification is illegal.
 E_OBJ Object status is invalid. (Multiple tasks waiting for event flag of

TA_WSGL attribute)
 E_RLWAI Wait state is forcibly cleared (rel_wai accepted during wait state).
 E_TMOUT Failure during polling.
 E_CTX Context error (executed from a task-independent portion or when dispatch

is disabled)

Description: This system call waits until the event flag specified by flgid is set to a specified state.
 Use waitptn and wfmode to set the conditions under which you want to exit a wait state. For

wfmode, one of the following four conditions can be set:

 1. TWF_ANDW AND condition
 Wait until all of the bits that have been set to 1 by waiptn are set.
 2. TWF_ANDW | TWF_CLR AND condition and event flag clear
 In addition to the TWF_ANDW condition, the event flag is

cleared (all bits to 0) when the condition is met.
 3. TWF_ORW OR condition
 Wait until one of the bits that have been set to 1 by waiptn is set.
 4. TWF_ORW | TWF_CLR OR condition and event flag clear
 In addition to the TWF_ORW condition, the event flag is cleared

(all bits to 0) when the condition is met.

 If the condition for exiting a wait state has already been met when this system call is issued, the

task continues executing without entering a wait state.
 If the condition for exiting a wait state has not been met, the task is removed from the ready queue

and placed in a wait queue. This task is kept waiting until the wait clearing condition is met.
When the wait clearing condition is met, the task waiting for the relevant event flag is freed from
wait state. The task is placed back in the ready queue at the last position of the task queue that has
the same priority. If the task has been in WAIT-SUSPEND state, it enters SUSPEND state.

 The event flag, that existed when the wait clearing condition was met, is returned to the pointer

*p_flgptn. Even if you specify TWF_CLR, the bit pattern that existed before being cleared when
the AND or OR condition was met is returned.

 The pol_flg system call is a polling version of wai_flg and does not have a function to enter a wait

state. If the wait clearing condition was met, it functions the same way as wai_flg. If the condition
was not met, it returns error code E_TMOUT.

Note: Although, by default, up to eight event flags can be used, it can be customized up to 255 event

flags (event flag ID = 1 to 255). (Refer to Section 2.4, "Customizing ROS33".)
 The event flags in ROS33 are one byte long (8 bits).

ROS33 does not allow multiple tasks to wait for the same event flag.

3 SYSTEM CALL REFERENCE

34 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

Set Event Flag set_flg

Format: ER set_flg(ID flgid, UINT setptn);

Parameters: ID flgid Event flag ID number
 UINT setptn Bit pattern to be set

Return values: E_OK Terminated normally
 E_ID Illegal ID number (flgid is illegal or cannot be used)
 E_NOEXS Specified flag does not exist.

Description: This system call sets the bits specified by setptn of the event flag. This event flag is specified by

flgid. This setting is made by a logical OR, so that the bits set to 1 by setptn are set and those set
to 0 do not change their state. If at this time there is a task waiting for the flag, the wait pattern
and wait condition are checked. The task is removed from the flag wait queue and returned to the
ready queue if the wait condition is met. If any task was previously in WAIT-SUSPEND state, it
enters SUSPEND state.

Note: The event flags in ROS33 are one byte long (8 bits).

ROS33 does not allow multiple tasks to wait for the same event flag.

Clear Event Flag clr_flg

Format: ER clr_flg(ID flgid, UINT clrptn);

Parameters: ID flgid Event flag ID number
 UINT clrptn Bit pattern to clear

Return values: E_OK Terminated normally
 E_ID Illegal ID number (flgid is illegal or cannot be used)
 E_NOEXS Specified flag does not exist.

Description: This system call clears the bits specified by clrptn of the event flag. This event flag is specified by

flgid. This clearing is made by a logical AND, so that the bits set to 0 by clrptn are cleared and
those set to 1 do not change state. The clr_flg system call does not dispatch the task even if the
wait condition is met.

Note: The event flags in ROS33 are one byte long (8 bits).

ROS33 does not allow multiple tasks to wait for the same event flag.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

35

3.4.4 System call for Extension Synchronization and Communication

Send Messages to Message Buffer snd_mbf
Send Messages to Message Buffer (Polling) psnd_mbf
Send Messages to Message Buffer (with timeout) tsnd_mbf

Format: ER snd_mbf(ID mbfid, VP msg, INT msgsz);
 ER psnd_mbf(ID mbfid, VP msg, INT msgsz);

 ER tsnd_mbf(ID mbfid, VP msg, INT msgsz, TMO tmout);

Parameters: ID mbfid Message buffer ID
 INT msgsz Size of sent message(byte)
 VP msg Start address of sent message
 TMO tmout Specification of time out

Return values: E_OK Terminated normally
 E_ID Invalid ID number (tskid is illegal or cannot be used)
 E_NOEXS Specified task does not exist.
 E_PAR Parameter (msgsz is less than 0, msgsz is larger than maxmsz specified with

cre_mbf(), tmout is less than -2.)
 E_RLWAI Wait state is forcibly cleared (rel_wai accepted during wait state).
 E_TMOUT Failure during polling or excess of timeout.
 E_CTX Context error (snd_mbf is executed from a task-independent portion or when

dispatch is disabled)

Description: This system call sends a message in the msg address to the message buffer specified by mbfid in

the specified size (byte) by msgsz . The msg is copied to the message buffer specified by mbfid.
 If the empty space is few and msg message cannot be copied to the message buffer, the task is

placed in the buffer queue.
 If enough space is generated for buffer, the task is freed from the wait state. If there is a message

larger than the empty buffer space and there is no other message smaller than the empty buffer
space at the top of the waiting queue, the messages behind it are freed from the wait state. If
multiple tasks waiting to send message are freed from the wait state at the same time, the task
order in the ready queue after exiting the wait state becomes the order of the message queue. If the
task has been in the WAIT-SUSPEND state, it enters the SUSPEND state.

 The psnd_mbf system call is a polling version of snd_mbf and does not have a function to enter a
wait state. If there is enough empty space, it functions in the same way as snd_mbf. If it does not
have enough empty space, it returns the error code E_TMOUT.

 The tsnd_mbf system call is a system call of snd_mbf with timeout function. Specify the timeout
interval in units of 1 ms.psnd_mbf and tsnd_mbf(tmout=TMO_POL) system calls can be executed
from a task-independent portion or when dispatch is not permitted.

3 SYSTEM CALL REFERENCE

36 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

Receive Messages from Message Buffer rcv_mbf
Receive Messages from Message Buffer (Polling) prcv_mbf
Receive Messages from Message Buffer (with timeout) trcv_mbf

Format: ER rcv_mbf (VP msg, INT *p_msgsz, ID mbfid);
 ER prcv_mbf(VP msg, INT *p_msgsz, ID mbfid);

 ER trcv_mbf(VP msg, INT *p_msgsz, ID mbfid, TMO tmout);

Parameter:VP msg Address to store the received message
 INT *p_msgsz Size of the received massage (byte)
 ID mbfid Message Buffer ID
 TMO tmout Specify Timeout

Returned values:
 E_OK Terminated normally
 E_ID Invalid ID number (tskid is illegal or cannot be used)
 E_NOEXS Specified task does not exist
 E_PAR Parameter (tmout is less than -2.)
 E_RLWAI Wait state is forcibly cleared (rel_wai accepted during wait state).
 E_TMOUT Failure during polling or excess of timeout.
 E_CTX Context error (snd_mbf is executed from a task-independent portion or when
 dispatch is disabled)

Description:

This system call receives a message from the message buffer specified by mbfid. The message is
copied to the address specified by msg. The received message size is housed in p_msgsz. If the
message buffer does not contain a message, the task is removed from the ready queue and placed
in the message queue. The task then enters a wait state. If a message is sent to the buffer and there
is no other task at the top of the queue waiting for the same message, the task is freed from the
wait state. The task is placed back in the ready queue at the last position of the task queue having
the same priority.
If the task has been in the WAIT-SUSPEND state, it enters the SUSPEND state.
The prcv_mbf system call is a polling version of rcv_mbf and does not have a function to enter a
wait state. If there is enough empty space, it functions in the same way as rcv_mbf. If it does not
have enough empty space, it returns the error code E_TMOUT.
The trcv_mbf system call is a system call of rcv_mbf with timeout function. Specify the timeout
interval in units of 1 ms.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

37

3.4.5 System Calls of System Management Functions

Get Version Information get_ver

Format: ER get_ver(T_VER *pk_ver);

Parameters: T_VER *pk_ver Beginning address of packet that returns version information

Return values: E_OK Terminated normally
 E_PAR Parameter error (Packet address for return parameter cannot be used)

Description: This system call returns the OS version of the ITRON specification currently being executed.
 The following shows the contents of pk_ver:
 maker = 0x0000; Manufacturer's code
 id = 0x0001; ROS33 type number
 spver = 0x5302; µITRON version number (ver 3.02)
 prver = 0x0000; ROS33 version number (will be changed by an update)
 prno[0] = 0x0000; Unused
 prno[1] = 0x0000; Unused
 prno[2] = 0x0000; Unused
 prno[3] = 0x0000; Unused
 cpu = 0x0000; CPU information
 var = 0x8000; Variation (level S)

3 SYSTEM CALL REFERENCE

38 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

3.4.6 System Calls of Time Management Functions
When using the system calls below, make sure a timer handler is provided in your user program. (Refer to Section
2.3, "Creating an Application Program".)

Set System Clock set_tim

Format: ER set_tim(SYSTIME *pk_tim);

Parameter: SYSTIME *pk_tim Packet address indicating the current time

Return values: E_OK Terminated normally
 E_PAR Parameter error (pk_tim or the set time is illegal)

Description: This system call sets the system clock to the value specified by system.
 The system clock is 48 bits long, and the reference time is 1 ms.

Get System Clock get_tim

Format: ER get_tim(SYSTIME *pk_tim);

Parameter: SYSTIME *pk_tim Packet address that returns the current time

Return values: E_OK Terminated normally
 E_PAR Parameter error (pk_tim is illegal)

Description: This system call returns the current system clock value to pk_tim.

Delay Task dly_tsk

Format: ER dly_tsk(DLYTIME dlytim);

Parameter: DLYTIME dlytim Delay time (in ms)

Return values: E_OK Terminated normally
 E_PAR Parameter error (dlytim < 0)
 E_CTX Context error (executed from a task-independent portion or when

dispatch is disabled)
 E_RLWAI Wait state is forcibly cleared (rel_wai accepted during wait state).

Description: This system call causes the issuing task itself to temporarily stop executing and enter a wait state.

Use dlytim to specify how long you want the task to stop executing. Specify this time in units of 1
ms. If the specified time elapses, the task is returned to the ready queue. If the task has been
placed in WAIT-SUSPEND state while waiting for the time to expire, it enters SUSPEND state.

 You can use rel_wai to forcibly clear the state while waiting for the time to expire.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

39

3.4.7 System Calls of Interrupt Management Functions

Return from Interrupt Handler ret_int

Format: void ret_int(void);

Parameter: None

Return value: None

Description: System call terminates the interrupt handler. If the dispatch condition is met by the system call

issued in the interrupt handler, the dispatch delays until the ret_int system call terminates the
interrupt handler. These dispatch requests are handled together when they return from the
interrupt handler by ret_int. Specify the values of register %r0, %r15, %alr %ahr, and %sp
determined just before you issue ret_int as the same values just after an interruption occurs.
When the interrupt handler starts, the OS does not intervene. Save or restore register in the
interrupt handler. (See 2.3 Creating an Application Program.)

Lock CPU loc_cpu

Format: ER loc_cpu(void);

Parameter: None

Return values: E_OK Terminated normally
 E_CTX Context error (issued from a task-independent portion)

Description: This system call disables external interrupts and task dispatches.
 Once this system call is made, the issuing task itself will never be changed from RUN state to

READY state, even if some other task with higher priority becomes READY. The task is also
disabled from entering WAIT or DORMANT state. If an external interrupt is requested during
this time, the corresponding interrupt handler is initiated only when the task is freed from this
disable state.

 To reenable interrupt and dispatch, use the unl_cpu system call. The dispatch disable state set by
loc_cpu cannot be freed by ena_dsp.

 If loc_cpu is issued when the task is disabled for dispatches by dis_dsp, the task is disabled for
interrupts as well. In this case, too, use unl_cpu to exit the disabled state.

Note: Changing the IE flag by directly accessing the CPU's PSR is prohibited.

Unlock CPU unl_cpu

Format: ER unl_cpu(void);

Parameter: None

Return values: E_OK Terminated normally
 E_CTX Context error (issued from a task-independent portion)

Description: This system call reenables external interrupts and task dispatches. This system call can be used to

clear the disabled state set by either loc_cpu or dis_dsp.

Note: Changing the IE flag by directly accessing the CPU's PSR is prohibited.

3 SYSTEM CALL REFERENCE

40 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

3.4.8 Implementation-Dependent System Calls

Initialize Interrupt Handler Value ent_int

Format: void ent_int(void);

Parameter: None

Return value: None

Description: This system call increments the variable g_ubIntNestCnt, which is used to examine interrupt

nesting, and set the system ready for interrupt. This system call automatically saves and returns
the necessary register required internally. Issue this system call when interrupt is not permitted.

 Issue ent_int() before enabling external interrupt(specifying PSR IE bit 1) or before issuing
system calls.

Create Task vcre_tsk

Format: ER vcre_tsk(ID tskid, FP task, PRI itskpri, UW istkadr);

Parameters: ID tskid Task ID number
 FP task Task startup address
 PRI itskpri Priority at task startup (1 to 8, the smaller the value, the higher the priority)
 UW istkadr Initial stack address

Return value: E_OK Terminated normally

Description: This system call defines a specific task ID specified in tskid and a task which has a default
 priority specified in itskpri. It is important for user to maintain a necessary size of stack used
 by each task. Specify a default address in istkadr.
 A defined task becomes the DORMANT state.
 Priority can be changed after starting a task. However, priority returns to the value which is
 set here when a task becomes the DORMANT state.

Note: This system call can be called only from the user’s main() function.
 Use of task ID created by except vcre_tsk() is not guaranteed.

System Clock sys_clk

Format: void sys_clk();

Parameters: None

Return value: None

Description: It is necessary to set a timer handler in the user program and call back sys_clk() per 1ms for using

the time management system.
 This system call automatically saves and returns register required internally.
 Specify 1ms for the reference time for SYSTIME and DLYTIME used in the time management

system. Call back cycle can be changed by "INT_TIME" definition of "ros33.h". Make sure that it
is a multiple of 8. The reference time for the system clock is still 1ms.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

41

Define Message Buffer vcre_mbf

Format: ER vcre_mbf(ID mbfid, VP msgbuf, INT bufsz, INT maxmsz);

Parameters: ID mbfid Message Buffer ID
 VP msgbuf Start address of ring buffer containing a message
 INT bufsz Size of ring buffer(byte)
 INT maxmsz Maximum size of message(byte)

Return value: E_OK Terminated normally
 E_NOEXS Specified mbfid is larger than maximum message buffer number
 (MSGBUF_NUM).
 E_PAR Parameter is invalid (bufsz is not larger than maxmsz+4)

Description: This system call defines a message buffer which has an ID number specified in mbfid.

Specifically, it sets a ring buffer which contains a message for a message buffer control block
specified in mbfid. It is necessary for bufsz to set more than maxmsz+4.

 The sent message is contained in this ring buffer. The size information is contained in the first 4
bytes, and subsequent bytes are used to store message sent by the user.

 bufsz=0 message buffer can be created. In this case, communication for sending and receiving are
completely synchronized in the message buffer.

 Ring buffer condition containing a message:

 size 4bytes message empty...

Note: This system call can be called only from user's main() function.
 Message buffer ID created not from vcre_mbf() cannot be used.

Change Semaphore Count Value vchg_semcnt

Format: void vchg_semcnt(ID semid, UB semcnt);

Parameters: semid Semaphore ID number
 semcnt Semaphore count value (1 - 255)

Return value: E_OK Terminated normally
 E_ID Invalid ID number(semid is invalid or can not be used)
 E_NOEXS Specified Semaphore is not found.

Description: This system call is executed between sys_ini() and sys_sta() in the main function.
 It is used to change the semaphore count value to a value other than the value defined in ros33.h

SMPH_CNT.
 Semaphore count value with no change by this function is still SMPH_CNT.

Time management function check vchk_timer

Format: int vchk_timer(void);

Parameters: None

Return value: 1 This means a task wait for time.
 0 This means no task wait for time.

Description: This system call checks if there is a wait for a time-out by the system clock or if there is a task

waiting by dly_tsk.

3 SYSTEM CALL REFERENCE

42 EPSON E0C33 FAMILY
 ROS33 REALTIME OS MANUAL (ver.2.1)

3.4.9 System Calls for Only Interrupt Handler

Interrupt handler for only wup_tsk iwup_tsk

Format: ER iwup_tsk(ID tskid);

Parameters: ID tskid Task ID Number

Return value: E_OK Terminated normally
 E_ID Invalid ID number (tskid is invalid or can not be used)
 E_NOEXS No specified task found
 E_OBJ Specified task is the issuing task or DORAMNT state
 E_QOVR Wake up requests exceed the allowable

Description: This system call is for interrupt handler only. Use this call after %r12 for the parameter

and %r10 which stores the returned value.
 This system call saves and returns other registers required for the execution.

Interrupt handler for only snd_msg isnd_msg

Format: ER isnd_msg(ID mbxid, T_MSG *pk_msg);

Parameters: ID mbxid Mailbox ID number
 T_MSG *pk_msg Pointer to the message

Return value: E_OK Terminated normally
 E_NOEXS No specified mailbox is found
 E_PAR Parameter (The value which can not use pk_msg

Description: This is snd_msg for interrupt handler only. Use this after %r12, %r13 for the parameter

and %r10 which stores the returned value.
 This system call saves and returns other registers required for the execution.

Interrupt handler for only set_flg iset_flg

Format: ER iset_flg(ID flgid, UINT setptn);

Parameters: ID flgid Event flag ID number
 UINT setptn Bit pattern which is set

Return value: E_OK Terminated normally
 E_ID Invalid ID number (flgid is invalid or can not be used)
 E_NOEXS No specified flag found

Description: This is set_flg for interrupt handler only. Use this after %r12, %r13 for the parameter

and %r10 which stores the returned value.
 This system call saves and returns other registers required for the execution.

3 SYSTEM CALL REFERENCE

E0C33 FAMILY EPSON
ROS33 REALTIME OS MANUAL (ver.2.1)

43

Interrupt handler for only sig_sem isig_sem

Format: ER isig_sem(ID semid);

Parameters: ID semid Semaphore ID number

Return value: E_OK Terminated normally
 E_ID Invalid ID number (semid is invalid or can not be used)
 E_NOEXS No specified semaphore found
 E_QOVR Count value of Semaphore exceed the maximum.

Description: This is sig_sem for interrupt handler only. Use this after %r12 for the parameter and %r10

which stores the returned.
 This system call saves and returns other registers required for the execution..

Interrupt handler for only psnd_mbf ipsnd_mbf

Format: ER ipsnd_mbf(ID mbfid, INT msgsz, VP msg);

Parameters: ID mbfid Message buffer number
 INT msgsiz Size of sent message(byte)
 VP msg Start address of sent message

Return value: E_OK Terminated normally
 E_ID Invalid ID number (mbfid is invalid or can not be used)
 E_NOEXS No specified message buffer found
 E_PAR Parameter error
 E_TMOUT Polling failed

Description: This is sig_sem for interrupt handler only. Use this after %r12,%r13, %r14 for the parameter

and %r10 which stores the returned value.
 This system call saves and returns other registers required for the execution .

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
Unit 2.4, Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology, Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings.

ELECTRONIC DEVICES MARKETING DIVISION

� EPSON Electronic Devices website

http://www.epson.co.jp/device/
First issue FEBRUARY 1999 M , Printed JUNE 2000 in Japan AW

	1 ROS33 Package
	1.1 Features
	1.2 ROS33 Package Components
	1.3 Installing ROS33

	2 Programming
	2.1 Outline of μITRON and ROS33
	Functional classification
	Tasks
	Task-independent portion
	Interrupt

	2.2 List of System Calls
	2.3 Creating an Application Program
	Rules for main function
	Task
	Idle task
	Stack
	Initializing the dispatcher
	Interrupt
	Timer handler
	Usage example of a mailbox
	Usage example of a semaphore
	Usage example of an event flag
	Usage example of a message buffer
	Building an application program
	Precautions

	2.4 Customizing ROS33
	Method for changing resources
	Compile options and recompilation

	3 System Call Reference
	3.1 List of System Calls
	3.2 List of Data Types
	3.3 List of Error Codes
	3.4 Details of System Calls
	3.4.1 System Calls of Task Management Functions
	Disable Dispatch dis_dsp
	Enable Dispatch ena_dsp
	Start Task sta_tsk
	Exit Issuing Task ext_tsk
	Terminate Other Task ter_tsk
	Change Task Priority chg_pri
	Rotate Tasks on the Ready Queue rot_rdq
	Release Wait of Other Task rel_wai
	Get Task Identifier get_tid

	3.4.2 System Calls of Task-Dependent Synchronization Functions
	Sleep Task slp_tsk
	Wake Up Other Task wup_tsk
	Suspend Other Task sus_tsk
	Resume Suspended Task rsm_tsk
	Cancel Wake Up Request can_wup

	3.4.3 System Calls of Synchronization and Communication Functions
	Wait on Semaphore wai_sem
	Poll and Request Semaphore preq_sem
	Signal Semaphore sig_sem
	Receive Message from Mailbox rcv_msg
	Poll and Receive Message from Mailbox prcv_msg
	Send Message to Mailbox snd_msg
	Wait for Event Flag wai_flg
	Wait for Event Flag (Polling) pol_flg
	Set Event Flag set_flg
	Clear Event Flag clr_flg

	3.4.4 System call for Extension Synchronization and Communication
	Send Messages to Message Buffer snd_mbf
	Send Messages to Message Buffer (Polling) psnd_mbf
	Send Messages to Message Buffer (with timeout) tsnd_mbf
	Receive Messages from Message Buffer rcv_mbf
	Receive Messages from Message Buffer (Polling) prcv_mbf
	Receive Messages from Message Buffer (with timeout) trcv_mbf

	3.4.5 System Calls of System Management Functions
	Get Version Information get_ver

	3.4.6 System Calls of Time Management Functions
	Set System Clock set_tim
	Get System Clock get_tim
	Delay Task dly_tsk

	3.4.7 System Calls of Interrupt Management Functions
	Return from Interrupt Handler ret_int
	Lock CPU loc_cpu
	Unlock CPU unl_cpu

	3.4.8 Implementation-Dependent System Calls
	Initialize Interrupt Handler Value ent_int
	Create Task vcre_tsk
	System Clock sys_clk
	Define Message Buffer vcre_mbf
	Change Semaphore Count Value vchg_semcnt
	Time management function check vchk_timer

	3.4.9 System Calls for Only Interrupt Handler
	Interrupt handler for only wup_tsk iwup_tsk
	Interrupt handler for only snd_msg isnd_msg
	Interrupt handler for only set_flg iset_flg
	Interrupt handler for only sig_sem isig_sem
	Interrupt handler for only psnd_mbf ipsnd_mbf

