
MF1347-01

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER E0C33 Family

SOUND33 MIDDLEWARE MANUAL

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

Windows95, Windows98 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 2000 All rights reserved.

CONTENTS

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

i

PREFACE
Written for developers of application systems using the E0C33 Family of microcomputers, this manual describes the
configuration, functions, and operation of the SOUND33 as sound output middleware for the E0C33 Family.

CONTENTS

1 Outline of the SOUND33 Middleware...1
1.1 Contents of the SOUND33 Package..1

1.2 Basic Configuration of the Sound Output System..2

1.3 SOUND33 Tools ..3

2 Installation ..4
2.1 Operating Environment ...4

2.2 Method of Installation...5

3 Software Development Procedure...7
3.1 Creating Sound ROM Data..8

3.1.1 Creating Sound Text Files...9
3.1.2 Evaluating Sound Data with sb33 ..11
3.1.3 SND Files...14
3.1.4 Specifying Tone Qualities Using a Sound List File...16
3.1.5 List of Standard Supported Musical Instruments ..18
3.1.6 Converting MIDI Files..20
3.1.7 Creating Tone Quality Data..21
3.1.8 Converting Sound Data to Assembly Source Files..25

3.2 Creating User Programs and Linking with SOUND33 Library...27

4 SOUND33 Tool Reference ...28
4.1 Outline of SOUND33 Tools..28

4.2 Description of Each SOUND33 Tool..30
4.2.1 txt2snd.exe..30
4.2.2 snd2bin.exe...30
4.2.3 midi2snd.exe...31
4.2.4 snd2pcm.exe ..32
4.2.5 bin2s.exe..33
4.2.6 bdmp.exe ...34
4.2.7 pcm2stb.exe..35
4.2.8 stb12.exe..36
4.2.9 stbadd12.exe..37
4.2.10 etb.exe..38
4.2.11 dct_cnv.exe...39
4.2.12 pcm_norm.exe...40

4.3 Sound Bench sb33 ...41
4.3.1 Starting and Exiting..41
4.3.2 Window Configuration ...41
4.3.3 Selecting Files..42
4.3.4 Selecting Options..43
4.3.5 Converting Files and Starting Play...44
4.3.6 [Play/Rec] Window and Reproduction Control...46
4.3.7 Operation after Evaluation Finishes ..47

CONTENTS

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

ii

5 SOUND33 Library Reference... 48
5.1 Outline of the SOUND33 Library...48

5.2 Hardware Requirements...50

5.3 Top-level Functions ...51
5.3.1 Compile Options..52
5.3.2 Changing the Maximum Number of Channels and Permitted Tempo............................53
5.3.3 Error Codes Returned by Functions..55
5.3.4 SOUND33 Data Structure...56
5.3.5 sndSpeak() ..58
5.3.6 TopSpeakStart() ..58
5.3.7 sndTopDecode()..58
5.3.8 sndSpeakStart()...58
5.3.9 sndSpeakStop() ...59
5.3.10 sndCodecpy()...59

5.4 SOUND33 Library Functions..60
5.4.1 Sound Data Processing Functions..61
5.4.2 Output Data Conversion Functions...63
5.4.3 Output (Speak) Functions...65
5.4.4 Interrupt Processing Functions..70

5.5 Techniques for Speeding Up Processing ..71

5.6 Memory Size and Number of Simultaneously Reproduced Sound Channels...............................72
5.6.1 Memory Size ..72
5.6.2 Number of Simultaneously Reproduced Sound Channels...73

5.7 Example Programs...74

Appendix Verifying Operation on DMT33 Boards... 78
A.1 System Configuration Using DMT33007...78

A.1.1 Hardware Configuration...78
A.1.2 Software ..78

A.2 Program Execution Procedure ..79

A.3 Building a Program..80
A.3.1 Explanation of Files...80
A.3.2 make...81

1 OUTLINE OF THE SOUND33 MIDDLEWARE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

1

1 Outline of the SOUND33 Middleware
SOUND33 is the music reproduction middleware for the E0C33 Family of microcomputers. It produces musical
reproduction output data from ROM using PWM (Pulse Width Modulation) implemented by 16-bit timers. The
output routine is supplied in the form of library functions, linked with the target program for use in applications. This
product also includes tools used to create sound ROM data and to evaluate sound on a personal computer. The main
features of this product are listed below:

• Seiko Epson's exclusive WAVE sound source
Able to reproduce the sounds of various musical instruments, using minimal data size.

• Supports 20 types of musical instruments as a standard feature, including eight types of percussion instruments.
(Also supports custom user-made sound sources.)

• Supports musical reproduction from 8 kHz monaural to 32 kHz stereo.

• Able to output a maximum of 47 discrete sounds simultaneously (8 kHz data when operating at 40 MHz).

• Supports 7-octave musical scales.
A total of 84 musical scales (including semitones) from standard C1 (33 Hz) to B7 (3,951 Hz)

• Accommodates a wide range of musical notes lengths, from whole notes to thirty-second notes.
Allows detailed settings for tempo, sound volume, and gate time.

• Sound ROM data may be created on a PC from standard MIDI files.

• Supports the E0C332xx, which is capable of 40 MHz operation.

CAUTION

• Be sure to fully evaluate the operation of your application system before shipping. Seiko Epson
assumes no responsibility for problems arising from use of this middleware in your commercial products.

• Rights to sell this middleware are owned solely by Seiko Epson. Resale rights are not transferred to any
third party.

• All program files included in this package, except sample programs, are copyrighted by Seiko Epson.
These files may not be reproduced, distributed, modified, or reverse-engineered without the written
consent of Seiko Epson.

1.1 Contents of the SOUND33 Package
The following lists the contents of the SOUND33 package. After unpacking, check to see that all items are included
with your package.

(1) Tool disk (CD-ROM) 1 disk
(2) E0C33 Family SOUND33 Middleware Manual (this manual) 1 copy each in English and Japanese
(3) Warranty card 1 card each in English and Japanese

1 OUTLINE OF THE SOUND33 MIDDLEWARE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

2

1.2 Basic Configuration of the Sound Output System
The SOUND33 library is a middleware positioned between the E0C33 hardware and the user program, providing
hardware control for sound output.

User target program
(user original specification)

SOUND33 library top-level source
(corrected by user as necessary)

Sound data, WAVE table, and
envelope table assembler source

(created by SOUND33 tool)

SOUND33 library functions
(used after linking)

Hardware
(16-bit programmable timer)

Figure 1.2.1 Software Configuration of the Sound Output System

For more information on the SOUND33 library, see Section 5, "SOUND33 Library Reference".

The SOUND33 library uses two to five channels of 16-bit programmable timers on the E0C33 chip to output sound
signals. This output drives a speaker or piezoelectric buzzer, as shown below.

E0C332xx

ROM PWM output by 16-bit timer
9 or 10-bit mono: Timer 1
15-bit mono: Timer 1, 2
15-bit stereo: Timer 1, 2, 3, 4

16-bit timer 5
timing generation

Low-pass
filter

Sound data
WAVE data
Envelope data

Speaker (8 to 24 Ω)
Power

amplifier

Figure 1.2.2 Hardware Configuration of the Sound Output System

For more information on designing external analog circuits such as the low-pass filter and power amplifier, or on
15-bit output using two channels of timers, refer to the "E0C33 Family Application Notes".

1 OUTLINE OF THE SOUND33 MIDDLEWARE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

3

1.3 SOUND33 Tools
SOUND33 tools are PC software for creating and evaluating the sound ROM data to be written to the E0C33
Family chip. All of these tools run under Windows 95/98, Windows NT 4.0, or later versions.

For more information on creating sound data, see Section 3, "Software Development Procedure". For more
information on SOUND33 tools, see Section 4, "SOUND33 Tool Reference".

2 INSTALLATION

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

4

2 Installation
This section describes the operating environment for SOUND33 tools and explains how to install the SOUND33
middleware.

2.1 Operating Environment
Sound ROM data creation and evaluation by SOUND33 requires the following operating environment:

Personal computer
An IBM PC/AT or compatible is required. A model with Pentium 90 MHz or faster CPU and 32 MB or more
of RAM is recommended. A CD-ROM is required for installation.

Display
A display with a resolution of 800 × 600 pixels or more is required. For display, choose "small fonts" from the
control panel.

System software
The SOUND33 tools run under Microsoft® Windows®95/98, Windows NT®4.0, or later versions (in Japanese
or English).

Other requirements
E0C33 Family C Compiler Package is required for software development.

2 INSTALLATION

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

5

2.2 Method of Installation
The SOUND33 library and SOUND33 tools are supplied on CD-ROM. Open the self-extracting file on the CD-
ROM named "SND33VXX.EXE" to install the SOUND33 library and SOUND33 tools in your computer. (The XX
in this file name denotes a version number. For Version 1.0, for example, the file is named "SND33V10.EXE".)
Double-click on "SND33VXX.EXE" to start installation. The dialog box shown below appears.

Enter the path and folder name under which you want to
install the files in the text box and click on the [Unzip]
button. The specified folder is created and all files are
copied into it.
If the specified folder already exists in the specified path
and [Overwrite files without prompting] is checked
(turned on), the files in the folder are overwritten without
asking for your confirmation.

The following shows the directories and file configuration after the program files have been copied:

 (root)\
readme.txt Supplementary explanation, etc. (in English)
readmeja.txt Supplementary explanation, etc. (in Japanese)

sndtool\ SOUND33 tool directory
readme.txt SOUND33 tool supplementary explanation, etc. (in English)
readmeja.txt SOUND33 tool supplementary explanation, etc. (in Japanese)

bin\ SOUND33 tools
sb33.exe Work bench for sound evaluation
txt2snd.exe Sound text → SND file conversion tool
snd2bin.exe SND file → binary file conversion tool
snd2pcm.exe SND file → PCM file conversion tool
bin2s.exe Binary→ assembly source conversion tool
bdmp.exe Binary file dump program
pcm2stb.exe WAVE table musical scale data creation tool
stb12.exe WAVE table creation tool
stbadd12.exe WAVE table waveform addition tool
etb.exe Envelope table creation tool
dct_cnv.exe Sampling conversion tool
pcm_norm.exe PCM file normalize tool
ccap.exe Tool message filing tool
midi2snd.exe MIDI file → SND file/sound binary file conversion tool

sample\ Sample directory
Sample sound data, batch files, etc.

smplstb\ Sample WAVE data directory
Sample sound source, batch files, etc.

mid\ Sample MIDI data directory
Sample MIDI files, etc.

stb\ WAVE table data
WAVE table data used in snd2pcm.exe and demonstration
Note) Do not change the location or name of this directory.

etb\ Envelope table data
Envelope table data used in snd2pcm.exe
Note) Do not change the location or name of this directory.

midi\ MIDI file musical reproduction program directory

2 INSTALLATION

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

6

utility\ Utility directory
The source code is open to users. Although the source code can be used without
restriction, they fall outside the scope of the product warranty.
dmp\ Dump tool
VBCtrl\ Patch program required to make the workbench compatible with

older versions of Windows 95 preceding OSR2
all_inst\ Batch file, etc. for creating assembler files for all types of musical

instrument

sndlib\ SOUND33 library-related
readme.txt SOUND33 library supplementary explanation, etc. (in English)
readmeja.txt SOUND33 library supplementary explanation, etc. (in Japanese)

lib\ SOUND33 library directory
snd.lib Sound engine library
sndcpy.o, sndcpy2.o, snd2.o

Objects for sound engines that require high-speed execution.
Copy to internal RAM for use.

spk208.lib, spkintr1.o, spkintr2.o, spkintr3.o, spkintr4.o
Speak library shared with VOX33

include\ SOUND33 library function include file directory
snd.h Library include file
sndcomm.h slutil.c include file
speak.h sl208.lib include file

src\ Source directory
sndtop.c Top-level library functions
slutil.c PWM output final data creation routine
sndbuf.c SPEAK/LISTEN buffer setup file
slutil2.c PWM output final data creation tool (stereo)

hardsrc\ Hardware-dependent source directory
Spk208.s Spk208.o source (for E0C33208)
Spk208PW.s Spk208PW.o source (for E0C33208)
slcomm.def
slintr.def
SpkIntr1.s 15-bit monaural interrupt functions
SpkIntr2.s 15-bit stereo interrupt functions
SpkIntr3.s 10-bit monaural interrupt functions
SpkIntr4.s 9-bit monaural interrupt functions

demoX\ Sample program directory

(For details on the configuration of sample programs, refer to "readme.txt "or
"readmeja.txt" in "sndlib".)

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

7

3 Software Development Procedure
This section describes the procedure for developing software to output sound on the E0C33 chip. The basic
development flow is shown below.

SOUND33 library

Create main programCreate sound ROM data
using SOUND33 tools

Compile

Assemble

Link

Create sound output
source program using

SOUND33 library functions

Executable object

Figure 3.1 Procedure for Developing E0C33 Sound Output Software

1) Create a text file containing a description of musical score data, then create an assembly source file for sound
ROM data using SOUND33 tools. In addition to text entry, you can create sound data from standard MIDI files by
converting them with the SOUND33 tools. Additionally, create assembly source files for the WAVE data and
envelope data for the sound sources used.

2) Create the user program. Sound output is produced by calling SOUND33 library functions. The source file for
sound ROM data created in 1) above may be included in the user program source.

3) Compile and assemble the source programs.

4) Link the objects generated in 3) above along with the SOUND33 library. This results in an executable object.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

8

3.1 Creating Sound ROM Data
Figure 3.1.1 gives a procedure for creating sound ROM data and the configuration of SOUND33 tools.

file.txt

Enter musical score
(using a general-purpose editor)

TXT→SND conversion

Sound
text file

Evaluating musical
reproduction on PC

Creating and evaluating sound data

Creating WAVE data Creating envelope data

Other utility

file.snd SND
file

file.pcm

setbl.c file.c

PCM
file

file.lst
Sound
list file

txt2snd.exe

file.pcm

Sample points
conversion

PCM
file

Extract instrument sound
sampling waveforms

Musical instrument
structure definition file

Musical reproduction/
channel structure

definition file

dct_cnv.exe

file.pcm

Normalize

PCM
file

pcm_norm.exe

file.pcm

Creating
score data

PCM
file

stb_file.bin
WAVE
table file

PCM
file

pcm2stb.exe

Creating
WAVE tablestb12.exe

stb_file.bin
WAVE
table file

Addition of
score datastbadd12.exe

Binary conversion

file.bin Binary file

snd2bin.exe

SND→PCM conversionsnd2pcm.exe

file.s
Sound data
assembly
source file

Assembly
source
conversion

bin2s.exe

file.mid

MIDI→SND/binary
conversion

Standard
MIDI file

Instrument
map file

file.snd file.bin Binary
file

file.bin Binary
file

SND
file or

midi2snd.exe

Copy into user program source
or link to user program after assembling

Copy into user program source
or link to user program after assembling

Copy into user program source
or link to user program after compiling and assembling

HEX dump

infie
Binary
file

outfile
HEX
dump file

bdmp.exe

sb33.exe

file_data.bat

etb_file.s

Envelope table
assembly
source file

WAVE table
assembly
source file

Assembly
source
conversion

bin2s.exe

etb_file.bin

stb_file.s

bin2s.exe

stb_file.bin

file.pcm_n

Binary
file

etb_file.bin
Binary
file

file_inst.bat

Creating
envelope table

etb.exe

snd_inst.map

Figure 3.1.1 Flowchart for Creating Sound ROM Data

This section provides only an overview of how to use SOUND33 tools. For more information, refer to Section 4,
"SOUND33 Tool Reference".
In the following explanation, we use sample files in the "sndtool\sample\" directory. The explanation assumes that
"sndtool\sample\" is the current directory and that PATH is set in the "sndtool\bin\" directory.
Example: DOS>CD e0c33\snd33\sndtool\sample

DOS>PATH c:\e0c33\snd33\sndtool\bin

Note: PCM files handled by SOUND33 tools are 8–32 kHz, 16-bit row data in little-endian format.

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

9

3.1.1 Creating Sound Text Files
Start by entering data for musical scores using an editor, then save as a text file (.txt). Create a separate text file as an
independent channel for each part of a simple tone using one sound source. Note that the number of channels on
which sound can be simultaneously produced on the actual IC is limited by the resources available. (Refer to Section
5.6, "Memory Size and Number of Simultaneously Reproduced Sound Channels".
The musical score and data shown below are for "spring.txt" in the "sndtool\sample\" directory ("Spring" of
Vivaldi's The Four Seasons).

"spring.txt"

C5

Allegro

E5 E5 E5 D5 C5G5 G5 F5 E5 E5 F5 G5 F5 E5 D5 B4 G4E5 E5 D5 C5G5 G5 F5

Enter data as shown below:

8 do5

8 mi5

8 mi5

8 mi5

16 re5

16 do5

4 so5 c

8 so5

 :

8 so4 ppp

8 -1

or

8 C5

8 E5

8 E5

8 E5

16 D5

16 C5

4 G5 c

8 G5

 :

8 G4 ppp

8 -1

Each line of data represents a single musical note or rest in the format shown below:

Specification of musical notes: <Length of sound> <Pitch> <Control>
Specification of rests: <Length of rest> -1

<Length of sound> and <Pitch> can be written in succession. Spaces and tabs between the two are ignored.

<Length of sound> and <Length of rest>
<Length of sound> and <Length of rest> can be specified in a range from whole notes (or whole rests) to
thirty-second notes (thirty-second rests), using the numeric values 1, 2, 4, 8, 16, and 32.

Table 3.1.1 Specification of Notes and Rests
Specified Value

Note

Rest

1 2 4 8 16 32

<Pitch>
Use sound names and octave numbers (1–7) to specify <Pitch>. Write the sound names and octave numbers in
succession without separating them with a space, etc.

Sound name: do, re, mi, fa, so, la, si (lowercase only) or C, D, E, F, G, A, B (uppercase only)
do#, re#, fa#, so#, la# or C#, D#, F#, G#, A# (semitone higher)

Acceptable specification range: do1/C1 (33 Hz) to si7/B7 (3,951 Hz)

Only simple tones can be specified. Write chords as separate files.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

10

<Control>
The "c" and "ppp" in the example input data above add modifications to the musical reproduction. You can use
the symbols listed below.
Example: 4 C3 c

8 C3

8 C3 ppp

8 C3 pp

8 C3 p

2 C3 b+2

2 C3 b-2

8 C3 f

8 C3 ff

8 C3 fff

Use lowercase letters to enter symbols. If multiple control symbols are occur in the same line, the first symbol
written is processed while all others are ignored.

c
The tone for which this symbol is written and the tone that follows are played in succession, assuming the keys
are held down. This helps specify a dot or tie.
Always enter a space between <Pitch> and c.
Example: Dotted quarter note

4 so5 c

8 so5

p, pp, ppp
Indicates various degrees of playing a sound softly. The "p" specifies playing somewhat softly, while the "ppp"
indicates playing most softly. In the absence of any specification, a value of 128 in the sound volume
specification range of 0 (silent) to 255 (loudest) is assumed. Each control is assigned the values p = 104, pp =
80, and ppp = 56 when a sound file is created. Loudness can be fine-adjusted later by correcting the sound file
with an editor.

f, ff, fff
Indicates various degrees of playing a sound loudly. The "f" specifies playing rather loudly, while the "fff"
indicates playing most loudly. In the absence of any specification, a value of 128 in the sound volume
specification range of 0 (silent) to 255 (loudest) is assumed. Each control is assigned the values f = 152, ff =
176, and fff = 200 when a sound file is created. Loudness can be fine-adjusted later by correcting the sound file
with an editor.

b+X, b-X
Specifies the direction and amount of pitch bending in the sustained portion of the note. b+ shifts the pitch
higher, while b- shifts the pitch lower. The X specifies the amount of this shift in semitone units, using a
numeric value. (X = 12 represents one octave.) This facility is effective only for the release time after the
envelope key (note) is off. Thus, it has no effect unless you specify gate-off parameters when converting files
with txt2snd.exe.

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

11

3.1.2 Evaluating Sound Data with sb33
Use of the sound bench "sb33" allows you to convert sound text or standard MIDI files into PCM files for playback
on a PC. The basics of using "sb33.exe" are described below:

(1) Starting sb33.exe

Double-click the "sb33.exe" icon. To exit, click the [Close] button on the title bar.
The [Sound bench 33] window appears when sb33 starts.

[Sound bench 33] window

(2) Converting and playing sound text files

[Play] button

1. Choose "sndtool\sample\" from the directory list box, then "spring.txt"
from the file list box. While holding down the [Ctrl] key, also select
"spring2.txt" and "spring3.txt" too. This allows you to evaluate the
musical reproduction of multiple channels at the same time.

 ∗ The selected text file may be displayed and/or corrected using the [Edit]
button after opening it with Notepad. However, if you select multiple
files, only the file at the top of the list is opened. You can switch to a
different editor using the [Option] button.

2. Set [Gateoff] to 50%. When playing music on a keyboard, for example,
release your finger from the key for the second half (50%) of each note.

 ∗ Besides [Gateoff], there are other selectable parameters: [Volume] to
control the sound volume, [Offset] to shift the musical interval in
semitone units, [Sound Quality] to determine sound quality (sampling
frequency), and [Stereo] to specify sound output in stereo. For more
information, refer to Section 4, "SOUND33 Tool Reference".

3. Click the [Play] button.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

12

The sb33 executes the following tools as it creates and begins playing a PCM file:
1) txt2snd.exe Converts sound text files into SND files.

Specifying [Gateoff] is optional for this tool.
2) snd2bin.exe Converts SND files into binary files.
3) sb33 internal processing Creates a sound list file.
4) snd2pcm.exe Creates PCM files for evaluation on a PC and the files to be installed on the

actual machine.
Specifying [Volume], [Offset], and [Sound Quality] are optional for this tool.

When sb33 begins playing, the [Play/Rec] window is displayed to allow you to control the manner in which
the music is played.

[Play] button: Use this button to restart after stopping playback with the [Stop] or [Pause] button.
[Rec] button: Disabled for sb33.
[Pause] button: Temporarily stops playback. Use the [Play] or [Pause] button to start from the point at which

you hit [Pause].
[Stop] button: Stops playback and returns to the beginning of the music.

(3) Fine control for each note
The txt2snd.exe executed first when you press the [Play] button converts a sound text file into an SND file.
Example SND file:

24 48 128 // 0 8 do5

24 52 128 // 24 8 mi5

24 52 128 // 48 8 mi5

24 52 128 // 72 8 mi5

: : : : : :

24 47 56 // 528 8 si4 ppp

24 43 56 // 552 8 so4 ppp

48 0 0 // 576 4 -1

Data for sound length, interval, and volume are added for each musical note in the sound text file. Correct this
data using an editor to change the file for more expressive playback. To correct, choose the file name (.snd)
from the file list box and click the [Edit] button. Notepad (or alternate editor) starts, automatically opening an
SND file. Make the necessary corrections and save the data.
For more information on the contents of the SND file, refer to Section 3.1.3, "SND Files".

Note: To play the SND file with the [Play] button of sb33 after correcting it, always be sure to select the
corrected SND file (.snd) before clicking the [Play] button. Selecting the sound text file (.txt) and
clicking the [Play] button executes txt2snd.exe, overwriting the SND file.

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

13

(4) Specifying a musical instrument and tempo
At step (2), we did not specify tempo or a musical instrument. Thus, the music is played at the default tempo
(100) on the default musical instrument (piano). Specifying these parameters requires a sound list file separate
from the sound text file, whose contents are much like the one shown below:
Example: spring.lst, a sound list file automatically created by sb33 (monaural)
;Tempo

100

;STB wave table directory

..\stb\

;ETB envelove table directory

..\etb\

;Sound file Instrument Volume Echo Etbadj Offset Position

spring.bin piano 55 6 3 0 -1

spring2.bin piano 55 6 3 0 -1

spring3.bin piano 55 6 3 0 -1

Choose the sound text file and click the [Play] button. sb33 creates a sound list file with default settings and
outputs a PCM file for evaluation. You can use this file as a template from which to create a formal file. To
correct it, choose the file name (.lst) from the file list box and click the [Edit] button. Notepad (or alternate
editor) starts, automatically opening a sound list file. Make the necessary corrections and save the data.
For more information on the contents of the sound list file, refer to Section 3.1.4, "Specifying Tone Qualities
Using a Sound List File".

Note: To play the sound list file with the [Play] button of sb33 after making corrections, always select the
corrected sound list file (.lst) before clicking the [Play] button. Selecting the sound text file (.txt) or
SND file (.snd) and clicking the [Play] button overwrites the corrected sound list file at the default
settings.

(5) Converting and playing a standard MIDI file
The SOUND33 tools include a utility (midi2snd.exe) for converting standard MIDI files in SMF0 or SMF1
format to SND and sound list files. This utility is also supported by sb33, allowing you to convert a MIDI file
into SND and sound list files and play the converted file by clicking on the [Play] button. However, due to
limitations involving such conversions, data in the converted file may not be played exactly as in the original.
Be especially careful when using MIDI data created with a MIDI sequencer. For more information on MIDI
file conversion results and the various precautions involved, refer to Section 3.1.6, "Converting MIDI Files".

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

14

3.1.3 SND Files
A sample sound text file and a sample SND file converted by txt2snd.exe are shown below:
Example: Converted with [Gateoff] = 50%

Sound text file
8 C3 ppp

8 C3 pp

8 C3 p

2 C3 b+2

2 C3 b-2

8 C3 f

8 C3 ff

8 C3 fff

2 -1

SND file
12 24 56 // 1692 8 C3 ppp

12 -1 80 // 1704

12 24 80 // 1716 8 C3 pp

12 -1 80 // 1728

12 24 104 // 1740 8 C3 p

12 -1 80 // 1752

48 24 128 // 1764 2 C3 b+2

9 -2 25 // 1812

39 -2 26

48 24 128 // 1860 2 C3 b-2

9 -2 23 // 1908

39 -2 22

12 24 152 // 1956 8 C3 f

12 -1 80 // 1968

12 24 176 // 1980 8 C3 ff

12 -1 80 // 1992

12 24 200 // 2004 8 C3 fff

12 -1 80 // 2016

48 0 0 // 2028 2 -1

48 -1 80 // 2076

The contents of each line of the SND file are described below:

<Length> <Interval> <Volume> //<Position from the beginning> <Content of sound text file>

<Length> Represents the length of sound relative to a quarter note = 48.
Whole note = 192, Half note = 96, Quarter note = 48, Eighth note = 24,
Sixteenth note = 12, Thirty-second note = 6

<Interval> Represents pitch relative to C1 (do1) = 1 and B6 (si6) = 83. Rests are 0.

<Volume> loudness in the range 0 (silent) to 255 (maximum). As standard (no loudness
symbol specified), sound volume is converted to 128; rests are converted to 0. If
any loudness symbol is specified, sound volume is converted as follows:
p=104, pp=80, ppp=56, f=152, ff=176, fff=200

//<Position from the beginning> Indicates the position of each musical note or rest by length (quarter note = 48)
from the beginning of the file. This numeric value helps ascertain whether
musical reproduction between multiple channels (files) is out of synch.

<Length> varies with the value specified for [Gateoff]. In the above example, since [Gateoff] = 50%, the eighth note
(length = 24) is halved to 12, with the remaining length of 12 assumed to be the sustained note (release time). For
some types of musical instruments, a sustained tone is output even after key-off.
12 24 56 // 1692 8 C3 ppp

12 -1 80 // 1704 ← Release time of the length specified by [Gateoff]

Any line of the sound text file in which the control "c" is written is handled along with the next line as a single note in
length. Thus, even when [Gateoff] is set, no release times are inserted. Lines accompanied by "c" do not appear in
<Content of sound text file> of the SND file.
In lines in which release times are added, <Interval> = -1 and <Volume> = 80.

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

15

In the lines of the sound text file in which "b+X" and "b-X" are specified, if [Gateoff] is specified, the following two
lines of key-off part are written:
48 24 128 // 1764 2 C3 b+2

9 -2 25 // 1812 ← Pitch increased by 1 (X/2; X = 2)
39 -2 26 ← Pitch increased by 2 (X)

The <Interval> part is changed to -2, and a description is entered for the <Volume> part in which the pitch changes
in two steps.
Specifying "b+1" and "b-1" adds one line of key-off part.
48 24 128 // 1764 2 C3 b+1

48 -2 25 // 1812

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

16

3.1.4 Specifying Tone Qualities Using a Sound List File
The sound list file is used to write tempos at which to play music, the directory that contains sound source data, and
information on each channel. This file is used for input to snd2pcm.exe, from which the tool produces batch files
necessary to create PCM files for evaluation on a PC as well as data to be installed on the actual system.
When you run sb33, it creates a sound list file with basic settings from the specified sound text file or MIDI file. Use
it after making the desired corrections.

Note: When you choose sound text files or a MIDI file and click the [Play] button in sb33, it automatically
creates sound list files that overwrite any existing files of the same name. The sound list file
created in this way by sb33 is named after the selected sound text file (or the file at the top of the
list when multiple files are selected) or MIDI file by adding the extension ".lst". If you created
another sound list file separately for evaluation by sb33, always select the sound list file before
clicking the [Play] button. In this case, SND files must have been created in advance for each
channel.

Shown below are the contents of a sound list file:
Example: spring.lst, an example sound list file automatically created by sb33 (stereo)
;Tempo

100

;STB wave table directory

..\stb\

;ETB envelove table directory

..\etb\

;Sound file Instrument Volume Echo Etbadj Offset Position

spring.bin piano 70 6 3 0 50

spring2.bin piano 70 6 3 0 50

spring3.bin piano 70 6 3 0 50

(1) Specifying a tempo
;Tempo ← Lines beginning with a semicolon (";") are comment lines.
100 ← Tempo

Specify a tempo at which to play music using integer values from 30 to 300. This value represents the number
of quarter notes to be played per minute. The following lists typical speed designations and the approximate set
values recommended for tempo.

 Speed designation Range of tempo Approximate set value

Lento, Largo, Grave 30 to 50 40
Adagio 40 to 60 50
Larghetto 50 to 60 55
Adagietto 60 to 70 65
Andante 65 to 75 70
Andantino 70 to 80 80
Moderato 80 to 90 90
Allegretto 90 to 100 100
Allegro, Conmoto 100 to 130 120
Vivo 110 to 140 130
Vivace 140 to 170 150
Presto 170 to 200 180
Prestissimo 200 or higher 200

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

17

(2) Specifying directories of tone quality data
;STB wave table directory

..\stb\ ← Directory for WAVE data
;ETB envelove table directory

..\etb\ ← Directory for envelope data

Specify the directories that contain the WAVE data and envelope data for the musical instrument used, using
either a relative or absolute path. The tone quality data that comes standard with the package are copied to
"e0c33\snd33\sndtool\stb\" and "e0c33\snd33\sndtool\etb\" on your hard disk.

(3) Channel information
;Sound file Instrument Volume Echo Etbadj Offset Position

spring.bin piano 70 6 3 0 50

spring2.bin piano 70 6 3 0 50

spring3.bin piano 70 6 3 0 50

Specify the following information for each channel.

Sound file This is the sound binary file created from SND files by conversion with snd2bin.exe.

Instrument Specify the name of the musical instrument. For the types of musical instruments supported by
the standard SOUND33 library, refer to Section 3.1.5, "List of Standard Supported Musical
Instruments".

Volume This value specifies the sound volume that applies only for the specific channel. Set a value in
the range 0 (silent) to 255 (maximum).
For sound list files automatically created by sb33, the values set from the [Volume] box of the
[Sound bench 33] window are entered directly here.

Echo Specify the amount of delay when you want to generate a reverberating tone. Sound generation is
delayed by 1/6 of the thirty-second note per increment of integer value 1 to produce an echo. The
value 6 in the above example specifies an amount of delay equal to the length of the thirty-second
note. Note that when producing reverberating tones, the tool plays the same content as the actual
sound after halving the volume.

Etbadj This is the coefficient of correction for the envelope (the curve representing changes in sound
volume from when sound starts sounding till when it goes out). Specify using integer values
from 0 to 4.
When you specify 0, both bass and treble are played with the same envelope. If you specify any
value equal to or greater than 1, sound is attenuated increasingly gradually for low-pitched tones
or increasingly rapidly for high-pitched tones, relative to C3/do3 (262 Hz). Attenuation is
greatest for the value 4, changing two-fold every octave. In the default sb33 settings, "piano" is
selected as the musical instrument, and Etbadj is set to 3. For information on setting appropriate
values, refer to Section 3.1.5, "List of Standard Supported Musical Instruments", which provides
the Etbadj values used to convert General MIDI tone qualities to those of the SOUND33 library.

Offset When shifting a musical interval over an entire channel in question, specify the amount of shift
in semitone units using integer values. The specification range is ±5 octaves (-60 to 60).
Specifying 0 plays tone data with the original data unchanged. If this specification falls outside
the range C1/do1 to B6/si6, tone data are played as C1/do1 or B6/si6.

Position Specify the position of the musical instrument for stereo playback, using integer values from 0 to
100. The values 0, 50, and 100 specify the leftmost, middle, and rightmost positions,
respectively. Specify -1 for monaural playback.

To play only a specific channel for sound evaluation by sb33, you can comment out lines you do not want to
play by placing a semicolon (;) at the beginning of the lines.
In the SOUND33 library, the base sound is set low. To emphasize it, raise the interval by one octave (+12), or
increase sound volume to around the level at which the waveform will not be clipped.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

18

3.1.5 List of Standard Supported Musical Instruments
The SOUND33 library comes with tone quality data for a total of 20 types of musical instruments, including 8 types
of percussion instruments.

General instruments: piano, harpc (harpsichord), celesta, organ, guitar, bguitar (bass),
eguitar (electric guitar), violin, trumpet, clarinet, piccolo, flute

Percussion instruments: bdrum (bass drum), stick (side stick), snare, tom, ccymbal (crash cymbal1),
highhat (hi-hat), bongo, triangle

The list below shows the relationship between the instrument names in General MIDI and those in SOUND33. The
values Echo and Etbadj are used when creating sound list files from standard MIDI files by converting them with
midi2snd.exe. Instruments marked "unknown" in SOUND33 are not supported.

Table 3.1.2 List of General Instruments
General MIDI

instrument name
Name for

SOUND33
Echo Etbadj General MIDI

instrument name
Name for

SOUND33
Echo Etbadj

1 Acoustic Grand Piano piano 12 2 41 Violin violin 6 0
2 Bright Acoustic Piano piano 6 2 42 Viola violin 6 0
3 Electric Grand Piano piano 12 2 43 Cello violin 6 0
4 Honkey-tonk Piano piano 6 2 44 Contrabass violin 6 0
5 Electric Piano1 piano 0 2 45 Tremolo Strings violin 6 0
6 Electric Piano2 piano 0 2 46 Pizzicato Strings violin 6 0
7 Harpsichord harpc 6 0 47 Orchestral Harp unknown 0 0
8 Clavi unknown 6 0 48 Timpani unknown 0 0
9 Celesta celesta 0 0 49 String Emsemble1 violin 6 0
10 Glockenspiel unknown 0 0 50 String Emsemble2 violin 6 0
11 Music Box celesta 0 0 51 Synth String1 violin 6 0
12 Vibraphone celesta 0 0 52 Synth String2 violin 6 0
13 Marinmba celesta 0 0 53 Choir Aahs unknown 0 0
14 Xylophone celesta 0 0 54 Voice Oohs unknown 0 0
15 Tubular Bells celesta 0 0 55 Synth Vox unknown 0 0
16 Dulcimer unknown 0 0 56 Orchestra Hit unknown 0 0
17 Drawbar Organ organ 6 0 57 Trumpet trumpet 6 0
18 Percussive Organ organ 6 0 58 Trombone trumpet 6 0
19 Rock Organ organ 6 0 59 Tuba trumpet 6 0
20 Church Organ organ 12 0 60 Muted Trumpet trumpet 6 0
21 Reed Organ organ 6 0 61 French Horn trumpet 6 0
22 Accordion organ 6 0 62 Brass Section trumpet 6 0
23 Harmonica unknown 0 0 63 Synth Brass1 trumpet 6 0
24 Tango Accordion organ 6 0 64 Synth Brass2 trumpet 6 0
25 Acoustic Guitar(nylon) guiter 0 1 65 Soprano Sax trumpet 6 0
26 Acoustic Guitar(steel) guiter 0 1 66 Alto Sax trumpet 6 0
27 Electric Guitar(jazz) eguiter 0 1 67 Tenor Sax trumpet 6 0
28 Electric Guitar(clean) eguiter 0 1 68 Baritone Sax trumpet 6 0
29 Electric Guitar(muted) eguiter 0 1 69 Oboe unknown 6 0
30 Overdriven Guitar eguiter 0 1 70 English Horn unknown 6 0
31 Distortion Guitar eguiter 0 1 71 Bossoon unknown 6 0
32 Guitar Harmonics eguiter 0 1 72 Clarinet clarinet 6 0
33 Acoustic Bass bguiter 0 1 73 Piccolo piccolo 0 0
34 Electric Bass(finger) bguiter 0 1 74 Flute flute 6 0
35 Electric Bass(pick) bguiter 0 1 75 Recorder flute 6 0
36 Fretless Bass bguiter 0 1 76 Pan Flute flute 6 0
37 Slap Bass1 bguiter 0 1 77 Blown Bottle flute 6 0
38 Slap Bass2 bguiter 0 1 78 Shakuhachi piccolo 12 0
39 Synth Bass1 bguiter 0 1 79 Whistle unknown 6 0
40 Synth Bass2 bguiter 0 1 80 Ocarina unknown 6 0

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

19

General MIDI
instrument name

Name for
SOUND33

Echo Etbadj General MIDI
instrument name

Name for
SOUND33

Echo Etbadj

81 Lead1(square) unknown 0 0 105 Sitar unknown 0 0
82 Lead2(sawtooth) unknown 0 0 106 Banjo unknown 0 0
83 Lead3(calliope) unknown 0 0 107 Shamisen unknown 0 0
84 Lead4(chiff) unknown 0 0 108 Koto unknown 0 0
85 Lead5(charang) unknown 0 0 109 Kalimba unknown 0 0
86 Lead6(voice) unknown 0 0 110 Bag Pipe unknown 0 0
87 Lead7(fifths) unknown 0 0 111 Fiddle unknown 0 0
88 Lead8(bass + lead) unknown 0 0 112 Shanai unknown 0 0
89 Pad1(new age) unknown 0 0 113 Tinkle Bell unknown 0 0
90 Pad2(warm) unknown 0 0 114 Agogo unknown 0 0
91 Pad3(polysynth) unknown 0 0 115 Steel Drums unknown 0 0
92 Pad4(choir) unknown 0 0 116 Woodblock unknown 0 0
93 Pad5(bowed) unknown 0 0 117 Taiko unknown 0 0
94 Pad6(metallic) unknown 0 0 118 Melodic Tom unknown 0 0
95 Pad7(halo) unknown 0 0 119 Synth Drum unknown 0 0
96 Pad8(sweep) unknown 0 0 120 Reverse Cymbal unknown 0 0
97 Fx1(rain) unknown 0 0 121 Guitar Fret Noise unknown 0 0
98 Fx2(soundtrack) unknown 0 0 122 Breath Noise unknown 0 0
99 Fx3(crystal) unknown 0 0 123 Seashore unknown 0 0
100 Fx4(atmosphere) unknown 0 0 124 Bird Tweet unknown 0 0
101 Fx5(brightness) unknown 0 0 125 Telephone Ring unknown 0 0
102 Fx6(goblins) unknown 0 0 126 Helicopter unknown 0 0
103 Fx7(echoes) unknown 0 0 127 Applause unknown 0 0
104 Fx8(sci-fi) unknown 0 0 128 Gunshot unknown 0 0

Table 3.1.3 List of Percussion Instruments
General MIDI

instrument name
Name for

SOUND33
General MIDI

instrument name
Name for

SOUND33

35 Acoustic Bass Drum64 start at 35 (B1) bdrum 59 Ride Cymbal2 ccymbal
36 Bass Drum1 bdrum 60 Hi Bongo bongo
37 2Side Stick stick 61 4Low Bongo bongo
38 Acoustic Snare snare 62 Mute Hi Conga bongo
39 2Hand Clap stick 63 4Open Hi Conga bongo
40 Electric Snare snare 64 Low Conga bongo
41 Low Floor Tom tom 65 High Timbale unknown
42 2Closed Hi-Hat highhat 66 4Low Timbale unknown
43 High Floor Tom tom 67 High Agogo unknown
44 2Pedal Hi-Hat highhat 68 4Low Agogo unknown
45 Low Tom tom 69 Cabasa unknown
46 2Open Hi-Hat highhat 70 4Maracas unknown
47 Low-Mid Tom tom 71 Short Whistle unknown
48 Hi-Mid Tom tom 72 Long Whistle unknown
49 3Crash Cymbal1 ccymbal 73 5Short Guiro unknown
50 High Tom tom 74 Long Guiro unknown
51 3Ride Cymbal1 ccymbal 75 5Clavas unknown
52 Chinese Cymbal ccymbal 76 Hi Wood Block unknown
53 Ride Bell triangle 77 Low Wood Block unknown
54 Tambourine stick 78 5Mute Cuica unknown
55 Splash Cymbal ccymbal 79 Open Cuica unknown
56 3Cowbell unknown 80 5Mute Triangle triangle
57 Crash Cymbal2 ccymbal 81 Open Triangle triangle
58 3Vibraslap unknown – –

Note: The tone quality data for percussion instruments are created at relatively short sound lengths, in
consideration of the data size on the actual system. When played as long notes, the sound may
break in the middle.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

20

3.1.6 Converting MIDI Files
The SOUND33 tools include a utility (midi2snd.exe) for converting standard MIDI files in SMF0 or SMF1 format
into SND and sound list files. This facility is also supported by sb33. Selecting a MIDI file and clicking the [Play]
button converts it into SND and sound list files, which is then played back.
This means that a general MIDI sequencer can be used to create the sound data for playback. However, because
conversion is subject to the limitations described below, the data in the converted file may not be played exactly as in
original.

Limitations

1. Only MIDI files in SMF0 or SMF1 format can be converted.

2. Channel information for musical instruments not supported by SOUND33 (those marked "unknown" in Tables
3.1.2 and 3.1.3) are written out as comments in the sound list file. To play the data, you must rewrite it for
another instrument. Data on a single track in the MIDI file may be converted into multiple channels. If the
conversion results in more channels than can be played simultaneously, make sure that the channels with the least
effect on musical reproduction are commented out in the sound list file.
Example: Sound list file converted from a MIDI file
;Tempo

98

;STB wave table directory

..\stb\

;ETB envelove table directory

..\etb\

;Sound file Instrument Volume Echo Etbadj Offset Position

tr1ch2_1.bin piano c0 0 2 0 50

tr1ch2_2.bin piano c0 0 2 0 50

tr1ch2_3.bin piano c0 0 2 0 50

tr1ch2_4.bin piano c0 0 2 0 50

;tr2ch3_1.bin unknown[Pad8(sweep)] c4 0 0 0 50

;tr2ch3_2.bin unknown[Pad8(sweep)] c4 0 0 0 50

;tr2ch3_3.bin unknown[Pad8(sweep)] c4 0 0 0 50

3. The SOUND33 library does not support changes in tempo in the middle of musical reproduction. If multiple
tempo change events are found in the MIDI data, a warning is generated during conversion, and the first settings
are used.

4. The SOUND33 library does not support changes in sound volume in the middle of musical reproduction. If
sound volume in the MIDI data to be converted into a single channel changes in the middle, a warning is
generated during conversion, and the last settings are used.

5. If any MIDI file whose timebase is not 48 (quarter note = 48) is converted, a warning is generated. A timebase
above 48 exceeds the resolution of SOUND33, resulting in errors. Although midi2snd.exe can make adjustments
to eliminate cumulative errors, sound may drift slightly, compared to musical reproduction by a MIDI sequencer.

When using a general MIDI sequencer, make sure the tempo and sound volume in the data you create are constant,
and that the timebase is 48.

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

21

3.1.7 Creating Tone Quality Data
SOUND33 supports 20 types of musical instruments (see Section 3.1.5). You can also add custom-created tone
quality data.

Composition of tone quality data
Tone quality data from the SOUND33 library consists of waveform data sampled from instrumental sounds
and envelope data representing curves of sound volume changes from the point at which the sound is sounded
to the point at which it fades completely. The waveform data for standard instruments supported are provided
in the "snd33\sndtool\stb\" directory, while envelope data is located in the "snd33\sndtool\etb\" directory.
For example, data for pianos consists of the following:
snd33\sndtool\stb\08\stb_piano.bin ← 8 kHz sampled piano waveform data
snd33\sndtool\stb\16\stb_piano.bin ← 16 kHz sampled piano waveform data
snd33\sndtool\stb\22\stb_piano.bin ← 22 kHz sampled piano waveform data
snd33\sndtool\stb\32\stb_piano.bin ← 32 kHz sampled piano waveform data
snd33\sndtool\etb\etb_piano.bin ← Piano envelope data

The file names are "stb_<instrument name>.bin" and "etb_<instrument name>.bin".

Creating WAVE data
Because the high-tone range has fewer harmonic components than the low-tone range, we recommend
preparing separate sound sources for the treble and bass parts for each musical instrument at almost the same
length.
Given below is the procedure for creating WAVE data. In the steps in which no specific tool names are given,
you can use any commercially-available sound editor.

1. Sample the instrument sound.
To smooth the curves of the extracted waveform data, sample the PCM data of the instrument sound before
extraction so that a single waveform of a low tone consists of 1,000 to 2,000 points. (Example: Load 44 kHz
data as 8 kHz data with a sound editor and upsample at 48 kHz.)

2. Extract one waveform of data. (Example: \smplstb\sample1.pcm)
A section of waveform from a rise from 0 toward the positive direction to the next rise above 0 is required.

3. Using dct_cnv.exe, adjust the extracted waveform until it consists of 1,000 to 2,000 points.
(Example: \smplstb\sample2.pcm)
When creating two sound sources, one for high-pitched tones and one for low-pitched tones, make sure the
length of the respective sound sources are nearly identical.

4. Using pcm_norm.exe, normalize the waveform data so that its maximum amplitude is 90%.
(Example: \smplstb\sample3.pcm)

5. Adjust the start and end positions of data as shown below: (Example: \smplstb\sample4.pcm)
• The data must comprise a waveform in which it always starts from 0, rising toward the positive

direction.
• The data immediately preceding the last point must be nearly 0 (i.e., the end of one cycle).

The last data consists of one cycle + one point of data.

6. When preparing another sound source on the high-tone side, repeat steps 1 to 5.
(Example: \smplstb\sample5.pcm)
To prepare separate sound sources, we recommend creating the low-tone sound sources for C1 to C4 or
C5 and high-tone sound sources for C5 or C6 to C7.

7. Execute \smplstb\stb.bat to generate sound sources.
Because stb.bat has been made for the sample data, change the parameters as required for your data
processing needs before executing it. This batch file executes the following tools as it creates 32 kHz, 22
kHz, 16 kHz, and 8 kHz sampled sound source data (stb_<instrument name>.bin).
1) pcm2stb.exe Creates one-octave waveform data referenced to C2.
2) stb12.exe Creates WAVE data.
3) stbadd12.exe Adds waveform data to WAVE data (treble part).

For more information on each tool, refer to Section 4, "SOUND33 Tool Reference".

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

22

The contents of stb.bat are shown below. When using stb.bat for data processing, change the parameters
displayed in bold. Depending on your current directory, you may also need to change PATH to the tool and stb
directory.

stb.bat

set binpath=..\bin\ ← Relative path to the tool
set stb22path=..\stb\22\ ← Relative path to the created data
set stb32path=..\stb\32\

set stb16path=..\stb\16\

set stb8path=..\stb\08\

set lowdata= sample4.pcm ← Low tonal data (sample4 sampling = 2,026 points)
set highdata= sample5.pcm ← High tonal data (sample4 sampling = 2,003 points)
set inst=flute ← Instrument name

Used for 32 kHz sampling
%binpath%pcm2stb 2003 984 %highdata%← High tonal side consists of two waveforms of data

 C1–C5 data, 984 = 32000/65*2
%binpath%pcm2stb 2026 492 %lowdata% ← Low tonal side consists of one waveform of data

 C6–C7 data, 492 = 32000/65
%binpath%stb12 %lowdata% org.bin

%binpath%stbadd12 org.bin 5 %highdata% %stb32path%stb_%inst%.bin

%binpath%pcm2stb 2003 678 %highdata% Used for 22 kHz sampling
%binpath%pcm2stb 2026 339 %lowdata%

%binpath%stb12 %lowdata% org.bin

%binpath%stbadd12 org.bin 5 %highdata% %stb22path%stb_%inst%.bin

%binpath%pcm2stb 2003 492 %highdata% Used for 16 kHz sampling
%binpath%pcm2stb 2026 246 %lowdata%

%binpath%stb12 %lowdata% org.bin

%binpath%stbadd12 org.bin 5 %highdata% %stb16path%stb_%inst%.bin

%binpath%pcm2stb 2003 246 %highdata% Used for 8 kHz sampling
%binpath%pcm2stb 2026 123 %lowdata%

%binpath%stb12 %lowdata% org.bin

%binpath%stbadd12 org.bin 5 %highdata% %stb8path%stb_%inst%.bin

del org.bin

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

23

Creating envelope data
When creating new WAVE data, you must create corresponding envelope data.

Amplitude

Time
(msec)

Key-on Key-off

Release time

0

Sustain level
min_val (%)

atack
cont

1/2down key_off_1/2down

Peak
0x80 (100%)

Figure 3.1.2 Envelope

From the point at which a sound begins sounding until it fades, an envelope represents a curve of changing
sound volume. This curve is a primary factor in identifying a musical instrument by ear.
Use etb.exe to create envelope data. The command line format of stb.exe is shown below:
>etb attack cont 1/2down min_val am_freq am_ratio peak key_off_1/2down outfile.bin

Shown below are the contents of each parameter:

attack Attack time (msec)
Specify the duration in which sound rises from key-on to peak (0x80).

cont Peak continuance time (msec)
Specify a duration for which time the peak continues.

1/2down Decay time adjustment (msec)
Specify a duration from the peak to the point at which the signal level attenuates to twice
the value of the sustain level (min_val).

min_val Sustain level (0–100%)
Specify a signal level that is retained until the key is turned off after attenuating from the
peak as a percent value relative to the peak (= 100%).

am_freq Vibrato rate (AM modulation period, msec)
When creating vibrato, specify the velocity at which the pitch is to waver as an AM
modulation period.

Amplitude

Time
(msec)

am_freq

am_ratio
(%)

Figure 3.1.3 Specifying Vibrato

am_ratio Vibrato depth (AM modulation amplitude ratio, 0–50%)
When creating vibrato, specify the wavering width of pitch as a percent value relative to
the envelope-processed final waveform.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

24

peak Peak adjustment (1.0–1.9)
To express a quickly-rising sharp tone like that of a trumpet, specify a multiple for the
peak value.

key_off_1/2down Release time adjustment (msec)
Specify a duration during which the signal level is attenuated to 1/2 of the sustain level
after key-off.

outfile.bin Output file name (envelope table binary file)
For the output file name, use "etb_<instrument name>.bin" to match it to the WAVE
data instrument name and output the file to the envelope data directory "\sndtool\etb\".

The envelope data is created as a table in which key-on and key-off periods, respectively, are divided into 256
steps, with the amplitude correction value for each step stored in the table as unsigned char types. The table data
is multiplied relative to x1.0-fold for the peak value 0x80 to obtain the playback volume (specified in SND
file). If the vibrato parameter is set to a value other than 0, AM modulation arithmetic is also performed when
calculating the envelope.

Registering to the instrument map file
A list of musical instruments shown in Tables 3.1.2 and 3.1.3 is provided as a text file "snd_inst.map" in the
"\sndtool\bin\" directory. Since this file is used in snd2pcm.exe, etc., register new tone quality data (if any) in
this list.

snd_inst.map

[Instrument Section 1] (General instruments)
piano 12 2 // 1 Acoustic Grand Piano
piano 6 2 // 2 Bright Acoustic Piano
piano 12 2 // 3 Electric Grand Piano
piano 6 2 // 4 Honkey-tonk Piano
piano 0 2 // 5 Electric Piano1
piano 0 2 // 6 Electric Piano2
harpc 6 0 // 7 Harpsichord
unknown 6 0 // 8 Clavi
celesta 0 0 // 9 Celesta
unknown 0 0 // 10 Glockenspiel
 : : : :
unknown 0 0 // 127 Applause
unknown 0 0 // 128 Gunshot
[Instrument Section 2] (Percussion instruments)
bdrum // 35 Acoustic Bass Drum64 start at 35 (B1)
bdrum // 36 Bass Drum1
stick // 37 2Side Stick
snare // 38 Acoustic Snare
 : :
unknown // 79 Open Cuica
triangle // 80 5Mute Triangle
triangle // 81 Open Triangle

Shown at the beginning of each line are the instrument names used in the SOUND33 library. The names
following // are General MIDI instrument names. For general instruments, Echo and Etbadj values are entered
between the two, which are used when creating sound list files from MIDI files.
When creating new tone quality data, rewrite the SOUND33 instrument name and the Echo and Etbadj values
corresponding to the General MIDI instrument closest to the tone quality created.
Example: When creating data equivalent to a grand piano in General MIDI using an instrument name "user"
[Instrument Section 1]

user 12 2 // 1 Acoustic Grand Piano ← Register etb_user.bin and stb_user.bin
piano 6 2 // 2 Bright Acoustic Piano

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

25

3.1.8 Converting Sound Data to Assembly Source Files
To include the created sound data and tone quality data in, or to link such data to your program, generate assembly
source files for use with the E0C33 Assembler. We will explain this process, starting with the conversion of sound
text files, discussing one tool at a time, instead of using sb33. You can skip processes executed by sb33 when using
data created by sb33 (i.e., steps 1 to 7 below can be performed by sb33).
Perform all of the following actions from the DOS prompt.

1. Create sound text files for all channels.

2. Using "txt2snd.exe", convert sound text files into SND files. Perform this process for all the sound text files you
have created.
Example: DOS>txt2snd 50 spring.txt spring.snd

In this example, "spring.txt" is converted into "spring.snd", assuming a gate-off period = 50%.

3. Correct the SND files as necessary.

4. Using "snd2bin.exe", convert SND files into sound binary files. Repeat for all created SND files.
Example: DOS>snd2bin spring.snd spring.bin

In this example, "spring.snd" is converted into "spring.bin".

5. Create a sound list file.

6. To use user-defined tone quality, create the tone quality data here. (Refer to Section 3.1.7, "Creating Tone
Quality Data".)

7. Execute "snd2pcm.exe".
Example: DOS>snd2pcm spring.lst 70 32 0 spring

In this example, "snd2pcm.exe" is executed after specifying "spring.lst" for the sound list file, 0x70 for the
sound volume, 32 kHz for the sampling frequency, and 0 for the tone offset.

8. Execute the batch file "xxxx_data.bat" generated by "snd2pcm.exe" to convert sound binary files into an
assembly source file.
Example: sndlib\demo2\spring_data.bat

set binpath=..\..\sndtool\bin\

set sndpath=..\..\sndtool\sample\

%binpath%bin2s -l spring %sndpath%spring.bin > snd_spring.s

%binpath%bin2s -l spring2 %sndpath%spring2.bin >> snd_spring.s

%binpath%bin2s -l spring3 %sndpath%spring3.bin >> snd_spring.s

In this example, "spring.bin", "spring2.bin", and "spring3.bin" are converted into "snd_spring.s". The data for
the respective files (channels) are generated using "spring", "spring2", and "spring3" as the global symbols, due
to the "bin2s.exe" -l option.
Example: sndlib\demo2\snd_spring.s

.global spring

.align 2

spring:

.byte 0x12 0x33 0x18 0x30 0x80 0x18 0x34 0x80

.byte 0x18 0x34 0x80 0x18 0x34 0x80 0x0c 0x32

 :

.byte 0x00 0x00 0x00

; total 83 bytes data

 :

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

26

9. Execute the batch file "xxxx_inst.bat" generated by "snd2pcm.exe" to convert tone quality data into assembly
source files.
Example: sndlib\demo2\spring_inst.bat

set binpath=..\..\sndtool\bin\

set stbpath=..\..\sndtool\stb\32\

set etbpath=..\..\sndtool\etb\

%binpath%bin2s -l stb_piano %stbpath%stb_piano.bin > stb_spring.s

%binpath%bin2s -l etb_piano %etbpath%etb_piano.bin > etb_spring.s

The WAVE data for piano is converted into "stb_spring.s", and the envelope data is converted into
"etb_spring.s". The respective data is generated using "stb_piano" and "etb_piano" as the global symbols due to
the "bin2s.exe" -l option.
Example: sndlib\demo2\stb_spring.s

.global stb_piano

.align 2

stb_piano:

.byte 0x11 0x33 0x00 0x53 0x50 0x01 0x00 0x00

.byte 0xec 0x01 0xff 0x00 0x3c 0x03 0x00 0x00

 :

.byte 0x3c 0xf3 0x4e 0xff

; total 13844 bytes data

Although only the data written in the sound list file for piano is converted in this example, you can add other
tone quality data by modifying the batch file. To do so, you also need to correct the "setbl.c" generated in
conjunction with the above batch file using "snd2pcm.exe".
Example: sndlib\demo2\setbl.c
#include "snd.h"

extern unsigned char stb_piano[]; 1. Pointer to the WAVE table
extern unsigned char etb_piano[]; 2. Pointer to the envelope table
const struct SETBL setbl_piano = { 3. Structure of the tone quality data

&stb_piano[0], Pointer to the WAVE table
&etb_piano[0], Pointer to the envelope table
3 Value of Etbadj

};

Wr i t e l i n e s 1 – 3 a s ma n y t i me s a s t h e n u mb e r o f t o n e q u a l i t i e s a d d e d . A b a t c h f i l e (a l l _ i n s t .b a t) f o r
c o n v e r t i n g a l l s t a n d a r d s u p p o r t e d i n s t r u me n t s i n t o a s s e mb l y s o u r c e f i l e s i s p r o v i d e d , a l o n g wi t h
s e t b l . c , i n " s n d t o o l \ u t i l i t y \ i n s t _ a l l \ " .

Since all these tools can be executed from the DOS prompt, they can also be run from a batch file. Refer to the batch
files in the "sndtool\sample\" directory.

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

27

3.2 Creating User Programs and Linking with SOUND33 Library
You can play sound on the E0C33 chip by calling SOUND33 library functions. For more information on the
SOUND33 library and example programs, refer to Section 5, "SOUND33 Library Reference".

You can include the sound data you created and the assembly source files of WAVE table data and envelope table
data, as well as the C source files created by "snd2pcm.exe", in the user program or link them along with the
SOUND33 library after compiling/assembling.

Th e p r o c e d u r e f o r e x e c u t i n g s a mp l e p r o g r a ms u s i n g t h e DMT b o a r d i s p r o v i d e d i n t h e Ap p e n d i x a s
r e f e r e n c e .

4 SOUND33 TOOL REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

28

4 SOUND33 Tool Reference
This section describes the functions of each SOUND33 tool and explains how to use them.

4.1 Outline of SOUND33 Tools
SOUND33 tools are PC software applications for creating and evaluating the sound ROM data to be written to
E0C33 Family chips. All the tools run under Windows 95/98, Windows NT 4.0, or later Windows versions. For more
information on the operating environment, see Section 2.1, "Operating Environment".
All SOUND33 tools and related files are found in the "sndtool" folder (directory).
The configuration of SOUND33 tools and the procedure for creating sound ROM data are shown in Figure 4.1.1.

file.txt

Enter musical score
(using a general-purpose editor)

TXT→SND conversion

Sound
text file

Evaluating musical
reproduction on PC

Creating and evaluating sound data

Creating WAVE data Creating envelope data

Other utility

file.snd SND
file

file.pcm

setbl.c file.c

PCM
file

file.lst
Sound
list file

txt2snd.exe

file.pcm

Sample points
conversion

PCM
file

Extract instrument sound
sampling waveforms

Musical instrument
structure definition file

Musical reproduction/
channel structure

definition file

dct_cnv.exe

file.pcm

Normalize

PCM
file

pcm_norm.exe

file.pcm

Creating
score data

PCM
file

stb_file.bin
WAVE
table file

PCM
file

pcm2stb.exe

Creating
WAVE tablestb12.exe

stb_file.bin
WAVE
table file

Addition of
score datastbadd12.exe

Binary conversion

file.bin Binary file

snd2bin.exe

SND→PCM conversionsnd2pcm.exe

file.s
Sound data
assembly
source file

Assembly
source
conversion

bin2s.exe

file.mid

MIDI→SND/binary
conversion

Standard
MIDI file

Instrument
map file

file.snd file.bin Binary
file

file.bin Binary
file

SND
file or

midi2snd.exe

Copy into user program source
or link to user program after assembling

Copy into user program source
or link to user program after assembling

Copy into user program source
or link to user program after compiling and assembling

HEX dump

infie
Binary
file

outfile
HEX
dump file

bdmp.exe

sb33.exe

file_data.bat

etb_file.s

Envelope table
assembly
source file

WAVE table
assembly
source file

Assembly
source
conversion

bin2s.exe

etb_file.bin

stb_file.s

bin2s.exe

stb_file.bin

file.pcm_n

Binary
file

etb_file.bin
Binary
file

file_inst.bat

Creating
envelope table

etb.exe

snd_inst.map

Figure 4.1.1 Flowchart for Creating Sound ROM Data

Note: The PCM files handled by SOUND33 tools are the 8–32 kHz, 16-bit row data in little-endian format.

4 SOUND33 TOOL REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

29

List of SOUND33 tools
The SOUND33 tools are a series of applications for generating PCM files or assembly source files for the
E0C33 from sound text or standard MIDI files. Each tool is a 32-bit application executable from the DOS
prompt. Each tool can also be run from batch or make files.
The sound bench "sb33" is a 32-bit Windows GUI application that allows you to convert sound text/MIDI files
into PCM files for playback, all from a single PC window. The SOUND33 tools are listed in Table 4.1.1
below.

Table 4.1.1 List of Sound ROM Data Creation Tools
Tool Function

sb33.exe A Windows GUI application for creating sound data, as well as for playing and evaluating sound
data on a PC.

txt2snd.exe Converts sound text files into SND files.
snd2bin.exe Converts SND files (text format) into binary files.
midi2snd.exe Converts standard MIDI files into SND and sound list files.
snd2pcm.exe Creates PCM files for evaluation on a PC or batch files for downloading to ROM from sound

list files.
bin2s.exe Converts binary data files into assembly source files.
bdmp.exe Produces hexadecimal dump output from binary data files.
pcm2stb.exe Creates one-octave sound source data from PCM files.
stb12.exe Creates WAVE table data from sound source data.
stbadd12.exe Adds sound source data to a WAVE table.
etb.exe Creates envelope data.
dct_cnv.exe A down-sampler for converting WAV or PCM files to any sampling rate. While you can

substitute any commercially-available sound editor, you must take care to avoid sound quality
degradation.

pcm_norm.exe Normalizes PCM data to a specified amplitude.
ccap.exe Prepares the messages output by a tool during its execution as files. For more information on

this tool, refer to the "E0C33 Family C Compiler Package Manual".

∗ The PCM files handled by SOUND33 tools are 8 kHz, 16 kHz, 22 kHz, or 32 kHz sampled, 16-bit row data
in little-endian format, unless otherwise specified.

4 SOUND33 TOOL REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

30

4.2 Description of Each SOUND33 Tool
This section describes the function of each SOUND33 tool and explains how to use them. For the "sb33.exe",
however, see Section 4.3.
Start each tool from the DOS prompt. When a tool is started without specifying command line parameters, Usage is
displayed. In the explanation of command lines, [] denotes options that may be omitted. The parameters written in
italic mean specifying an appropriate value or file name.

Note: The file names that can be specified in each tool are subject to the following limitations.
• File name: up to 32 characters
• Legal characters: a to z, A to Z, 0 to 9, _, .

4.2.1 txt2snd.exe

Function: Converts sound text files into SND files.

Format: DOS>txt2snd gateoff infile.txt outfile.snd↵

Parameters: gateoff Gate-off time (0–99)
Specify a duration during which the key is turned off as a percentage (%) relative to
the length of each note. For example, when you specify 40, sb33 assumes the key is
depressed for the first 60% of the note and released for the remaining 40% when
creating sound data to play. When you specify 0, the key is assumed to be held down,
and neither sustained tones nor sustained tone pitch bends are added.

infile.txt Input file name (sound text file)

outfile.snd Output file name (SND file)

Example: DOS>txt2snd 50 spring.txt spring.snd

Reference: For a description of the contents of the sound text files or for information on creating sound text files,
refer to Section 3.1.1, "Creating Sound Text Files". For a description of the contents of SND files,
refer to Section 3.1.3, "SND Files".

4.2.2 snd2bin.exe

Function: Converts SND files (text format) into binary files.

Format: DOS>snd2bin infile.snd outfile.bin↵

Parameters: infile.snd Input file name (SND file)

outfile.bin Output file name (sound binary file)

Example: DOS>snd2bin spring.snd spring.bin

Reference: This tool converts each line of an SND file into 3-byte binary data. Note that an ID (0x3312) is
located at the beginning of the sound binary file.

4 SOUND33 TOOL REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

31

4.2.3 midi2snd.exe

Function: Converts standard MIDI files in SMF0 or SMF1 format into SND files.

Format: DOS>midi2snd stereo bin_flag bend_num per_ch inst_map infile.mid stb_dir
etb_dir outfile↵

Parameters: stereo -s = stereo, -m = monaural
Specify whether you want to create the sound list file for stereo or monaural
reproduction.

bin_flag -b = binary file output, -s = SND file output
Specify whether you want the file to be output in binary or SND file formats. If you
choose SND file, a batch file for creating a binary file is also output.

bend_num Pitch bending (0–12)
Set a pitch bending value for pitch bending change events. For the value 0, pitch
bending has no effect. Specify a pitch bending value in the range 1 to 12 for up to
one octave in semitone increments.

per_ch Percussion channel number
Specify a MIDI channel number in which a percussion instrument is used. In General
MIDI, this would normally be channel 10.

inst_map Instrument map file name
Specify the map file name used to convert instrument names. The map file
"\sndtool\bin\snd_inst.map" contains a description of standard instruments
supported by SOUND33.

infile.mid Input file name (MIDI file in SMF0 or SMF1 format)

stb_dir Relative path to the WAVE data directory to be written in the sound list file

etb_dir Relative path to the envelope data directory to be written in the sound list file

outfile Output file name (sound list file)
Specify the name of the sound list file (.lst) and that of the batch file (.bat) created
when you specify -s for bin_flag. The names of SND files (.snd) or sound binary files
(.bin) output by conversion as musical data are assigned a track number and MIDI
channel number. (Example: tr1ch2_1.snd)

Example: DOS>midi2snd -s -b 0 10 inst.map test.mid ..\stb\ ..\etb\ test

Note: • Only MIDI files in SMF0 or SMF1 format can be converted.

• Channel information on musical instruments not supported by SOUND33 are written out to
comments in the sound list file. Rewrite the data for another instrument for playback.

• If multiple tempo change events are found in the MIDI data, a warning is generated during
conversion, and the first setting is used.
Warning: Different tempo setting.

• If the sound volume of MIDI data to be converted into a single channel changes in the middle of
the file, a warning is generated during conversion, and the last setting is used.
Warning: Different volume setting.

• If any MIDI file whose timebase is not 48 (length of the quarter note = 48) is converted, a warning
is generated. A timebase of over 48 will exceed the resolution of SOUND33, resulting in errors.
Although midi2snd.exe makes adjustments to eliminate cumulative errors, sound may drift
slightly when compared to musical reproduction by a MIDI sequencer.
Warning: Different time base setting XX.

4 SOUND33 TOOL REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

32

4.2.4 snd2pcm.exe

Function: Creates the following files based on information in the sound list file:
<file>.pcm PCM files used for evaluation on the PC
<file>_inst.bat Batch files for creating assembly source files of instrument (tone quality) data
<file>_data.bat Batch files for creating assembly source files of musical data
setbl.c Structure of instrument (tone quality) data
<file>.c Structure of musical data

Format: DOS>snd2pcm infile.lst volume sampling offset outfile↵

Parameters: infile.lst Input file name (sound list file)

volume Sound volume adjustment (0–4000, hex)
Adjust the sound volume of all channels relative to x1.0 for 0x100. The sound
volume changes in proportion to numeric values, e.g., x0.5 for 0x80 and x1.5 for
0x180.

sampling Sampling frequency (8, 16, 22, or 32)
Specify a sampling frequency for the PCM file to be output.
8 = 8 kHz, 16 = 16 kHz, 22 = 22kHz, 32 = 32 kHz

offset Amount of tone shift (-60 to 60, in semitone increments)

outfile Output file name
Do not specify an extension.

Example: DOS>snd2pcm spling.lst 100 32 0 spling

Note: • To run this tool, you must have the "\stb\xx\" (xx = 08, 16, 22, or 32) and "\etb\" directories at the
correct path (the path recorded in the sound list file).

• A warning results if the amplitude of data in the output file leads to an overflow. Since setting the
amplitude to eliminate overflow altogether reduces sound levels significantly, set the sound
volume slightly higher (more or less overflowing) than indicated in the warning message.
Warning: Over flow ! Please change volume about 0x4e below.

• An error is assumed if the upper limit of the SOUND33 output channels is exceeded. Modify the
sound list file to avoid exceeding the upper limit of these channels.
Error: Too many internal channel 90. Max channel is 80.

The number of channels over which sound can be simultaneously produced on the actual system is
limited by the resources available, as shown below:
8 kHz monaural Tempo 100: 68ch ∗ 1

8 kHz stereo Tempo 100: 58ch ∗ 1

16 kHz monaural Tempo 100: 60ch ∗ 1

16 kHz stereo Tempo 100: 45ch ∗ 1

22 kHz monaural Tempo 100: 58ch ∗ 1

22 kHz stereo Tempo 100: 28ch ∗ 1

32 kHz monaural Tempo 100: 55ch ∗ 1 ∗ 1: The internal RAM (8K) only is used in the BSS area.

32 kHz stereo Tempo 100: 40ch ∗ 2 ∗ 2: The Speak buffer is located in external RAM.

The faster the tempo, the smaller the amount of RAM consumed. Conversely, the amount of RAM
consumed increases as the tempo is reduced. When it is to be executed in internal RAM, make sure
the music data falls within these limits. Since the number of sounds that can be generated
simultaneously is also limited, we recommend evaluating the musical data by playing it on an
actual system, such as a DMT.

Reference: For the example batch files and C files output, refer to Section 3.1.8, "Converting Sound Data to
Assembly Source Files".

4 SOUND33 TOOL REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

33

4.2.5 bin2s.exe

Function: Converts binary files into text files in E0C33 assembly source format. Since the results are presented
to standard output (stdout), use the DOS redirect function to save them to a file. This tool is actually
executed from a batch file for creating assembly source files output by snd2pcm.exe.

Format: DOS>bin2s [-l symbol] infile.bin > outfile.s↵

Parameters: -l symbol Assembler symbol name definition (optional)
Omitting this option sets the input file name as the symbol name.

infile.bin Input file name (binary file)

outfile.s Output file name (assembly source file)

Example: 1) Omitting the -l option sets the input file name as the assembler symbol name.

DOS>bin2s spring.bin > spring.s

DOS>type spring.s

.global spring

.align 2

spring:
.byte 0x12 0x33 0x18 0x24 0x80 0x18 0x28 0x80
.byte 0x18 0x28 0x80 0x18 0x28 0x80 0x0c 0x26
.byte 0x80 0x0c 0x24 0x80 0x48 0x2b 0x80 0x0c

 :
.byte 0x00 0x00 0x00

; total 83 bytes data

DOS>

2) To use another symbol name that is not the file name, specify using the -l option.

DOS>bin2s -l snd01 spring.bin > snd01.s

DOS>type snd01.s

.global snd01

.align 2

snd01:
.byte 0x12 0x33 0x18 0x24 0x80 0x18 0x28 0x80
.byte 0x18 0x28 0x80 0x18 0x28 0x80 0x0c 0x26
.byte 0x80 0x0c 0x24 0x80 0x48 0x2b 0x80 0x0c

 :
.byte 0x00 0x00 0x00

; total 83 bytes data

DOS>

Note: Specification of symbol names is subject to the following limitations:
• Symbol length: 32 characters or less
• Valid characters: a to z, A to Z, 0 to 9, and _

4 SOUND33 TOOL REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

34

4.2.6 bdmp.exe

Function: Produces dump output in a specified format from the input binary file. Since the results are
presented to standard output (stdout), use the DOS redirect function to save to a file.

Format: DOS>bdmp option infile > outfile↵

Parameters: option Specification of output format (cannot be omitted)
Use the following switches to specify the output format:
-b Output in byte format
-l Output in little-endian short format
-m Output in big-endian short format

infile Input file name (binary file)

outfile Output file name (text file)

Example: DOS>bdmp -b spring.bin

00000000 12 33 0C 30 80 0C FF 50 0C 34 80 0C FF 50 0C 34

00000010 80 0C FF 50 0C 34 80 0C FF 50 06 32 80 06 FF 50

00000020 06 30 80 06 FF 50 24 37 80 24 FF 50 06 37 80 06

00000030 FF 50 06 35 80 06 FF 50 0C 34 80 0C FF 50 0C 34

00000040 80 0C FF 50 0C 34 80 0C FF 50 06 32 80 06 FF 50

00000050 06 30 80 06 FF 50 24 37 80 24 FF 50 06 37 80 06

00000060 FF 50 06 35 80 06 FF 50 0C 34 80 0C FF 50 06 35

00000070 80 06 FF 50 06 37 80 06 FF 50 0C 35 38 0C FF 50

00000080 0C 34 38 0C FF 50 0C 32 38 0C FF 50 0C 2F 38 0C

00000090 FF 50 0C 2B 38 0C FF 50 18 00 00 18 FF 50 00 00

000000A0 00

DOS>bdmp -l spring.bin

00000000 3312 300C 0C80 50FF 340C 0C80 50FF 340C

00000010 0C80 50FF 340C 0C80 50FF 3206 0680 50FF

00000020 3006 0680 50FF 3724 2480 50FF 3706 0680

00000030 50FF 3506 0680 50FF 340C 0C80 50FF 340C

00000040 0C80 50FF 340C 0C80 50FF 3206 0680 50FF

00000050 3006 0680 50FF 3724 2480 50FF 3706 0680

00000060 50FF 3506 0680 50FF 340C 0C80 50FF 3506

00000070 0680 50FF 3706 0680 50FF 350C 0C38 50FF

00000080 340C 0C38 50FF 320C 0C38 50FF 2F0C 0C38

00000090 50FF 2B0C 0C38 50FF 0018 1800 50FF 0000

000000A0

DOS>bdmp -m spring.bin

00000000 1233 0C30 800C FF50 0C34 800C FF50 0C34

00000010 800C FF50 0C34 800C FF50 0632 8006 FF50

00000020 0630 8006 FF50 2437 8024 FF50 0637 8006

00000030 FF50 0635 8006 FF50 0C34 800C FF50 0C34

00000040 800C FF50 0C34 800C FF50 0632 8006 FF50

00000050 0630 8006 FF50 2437 8024 FF50 0637 8006

00000060 FF50 0635 8006 FF50 0C34 800C FF50 0635

00000070 8006 FF50 0637 8006 FF50 0C35 380C FF50

00000080 0C34 380C FF50 0C32 380C FF50 0C2F 380C

00000090 FF50 0C2B 380C FF50 1800 0018 FF50 0000

000000A0

4 SOUND33 TOOL REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

35

4.2.7 pcm2stb.exe

Function: Creates 12 waveforms of data to be registered to the WAVE table from one waveform of PCM data
that contains sampled instrument sound. The sound source data created here is basically one-octave
PCM data relative to C2 (65 Hz), which is generated by linearly interpolating intermediate values
through floating-point calculation. The output files assume the names <input file name>.pcm_01
through <input file name>.pcm_12.

Format: DOS>pcm2stb in_num out_num infile.pcm↵

Parameters: in_num Number of sample points in the input PCM data

out_num Number of sample points for one waveform relative to C2 (65 Hz)
out_num = Sampling frequency (Hz) / 65 (Hz)
8 kHz = 123, 16 kHz = 246, 22 kHz = 339, 32 kHz = 492

infile.pcm Input file name (PCM file)

Example: DOS>pcm2stb 2026 492 sample.pcm

Note: • Since the high tonal range has fewer harmonic components than the low tonal range, we
recommend preparing separate sound sources for each musical instrument for treble and bass parts
at almost equal lengths. In this case, make sure the lengths of the high and low tones are
approximately the same. For out_num for the treble part, specify twice the value of the bass part.
Example:
pcm2stb 2003 984 highdata.pcm ← High tonal side consists of two waveforms

 of data (984 = 32000/65*2)
pcm2stb 2026 492 lowdata.pcm ← Low tonal side consists of one waveform

 of data (492 = 32000/65)

• Adjust the original waveform data as shown below before entering into this tool.
- Using dct_cnv.exe, adjust the extracted waveform until it consists of 1,000 to 2,000 points.
- Using pcm_norm.exe, normalize the waveform data so that its maximum amplitude is 90%.
- Extract waveform data so way that it always starts from 0, rising in the positive direction.
- Extract waveform data so that the data immediately preceding the last point is approximately 0.

4 SOUND33 TOOL REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

36

4.2.8 stb12.exe

Function: Creates WAVE table binary data with a specified instrument name from one-octave sound source
data or single PCM file generated by pcm2stb.exe. Use stbadd12.exe to add sound source data for
the treble part (for example) to a previously-created WAVE table.

Format: DOS>stb12 [-s] infile.pcm outfile.bin↵

Parameters: -s Registration of single PCM file (optional)
Specify this parameter when registering single PCM data to the WAVE table instead
of 12 pieces of scale data.

infile.pcm Input file name (PCM file)
This is the PCM file of 12 pieces of scale data (xxx.pcm_01 to xxx.pcm_12)
generated by pcm2stb or the PCM file of less than 3 seconds (for 22 kHz) (when the
-s option is specified).

outfile.bin Output file name (WAVE table binary file)

Example: DOS>stb12 sample.pcm stb_user.bin

Note: • The 12 pieces of one-octave data are registered as octave 1 (C1 and over) data. Unless any data is
added later with stbadd12.exe, the entire scale is generated on the basis of this data.

• When loading a single PCM file using the -s option, the data length is limited as follows:
8 kHz: Within 8 seconds
16 kHz: Within 4 seconds
22 kHz: Within 3 seconds
32 kHz: Within 2 seconds

• To create a complete WAVE table binary file with no data added, specify "stb_<instrument
name>.bin" for the output file name and generate it in the WAVE data directory that matches the
sampling frequency, "\sndtool\stb\xx\" (xx = 08, 16, 22, or 32). Register the instrument name along
with the Echo and Etbadj values in "\sndtool\bin\snd_inst.map".

4 SOUND33 TOOL REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

37

4.2.9 stbadd12.exe

Function: Additionally registers new 12 pieces of scale data generated by pcm2stb.exe to the WAVE table.
You can specify an octave number for the scale data to be registered, so that the registered data
covers the musical scale above it.

Format: DOS>stbadd12 infile.bin octave_num infile.pcm outfile.bin↵

Parameters: infile.bin Input file name (WAVE table binary file)

octave_num Octave number for the data to be additionally registered (2–6)

infile.pcm Input file name (PCM file)
12 pieces of scale data generated by pcm2stb.exe (xxx.pcm_01 to xxx.pcm_12)

outfile.bin Output file name (WAVE table binary file)

Example: DOS>stbadd12 temp.bin 4 high.pcm stb_user.bin

Pieces of data high.pcm_01 through high.pcm_12 are registered to the WAVE table temp.bin
as scale data starting from C4 to create stb_user.bin (instrument name = user).

Note: • This tool requires that the WAVE table binary file infile.bin be available.

• When executing stbadd12.exe several times on the same WAVE table, always be sure to register
data in order of musical scales, beginning with the lowest scale.

• To create a complete WAVE table binary file with no additional data, specify "stb_<instrument
name>.bin" for the output file name and generate it in the WAVE data directory corresponding to
the sampling frequency, "\sndtool\stb\xx\" (xx = 08, 16, 22, or 32). Register the instrument name
along with the Echo and Etbadj values in "\sndtool\bin\snd_inst.map".

4 SOUND33 TOOL REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

38

4.2.10 etb.exe

Function: Creates envelope data.

Format: DOS>etb attack cont 1/2down min_val am_freq am_ratio peak key_off_1/2down outfile.bin↵

Parameters: attack Attack time (msec)
Specify the duration in which sound rises from key-on to peak (0x80).

cont Peak continuance time (msec)
Specify a duration for which time the peak continues.

1/2down Decay time adjustment (msec)
Specify a duration from the peak to the point at which the signal level attenuates
to twice the value of the sustain level (min_val).

min_val Sustain level (0–100%)
Specify a signal level that is retained until the key is turned off after attenuating
from the peak as a percent value relative to the peak (= 100%).

am_freq Vibrato rate (AM amplitude period, msec)
When creating vibrato, specify the velocity at which the pitch is to waver as an
AM modulation period.

am_ratio Vibrato depth (AM modulation amplitude ratio, 0–50%)
When creating vibrato, specify the wavering width of pitch as a percent value
relative to the envelope-processed final waveform.

peak Peak adjustment (1.0–1.9)
To express a quickly-rising sharp tone like that of a trumpet, specify a multiple
for the peak value.

key_off_1/2down Release time adjustment (msec)
Specify a duration during which the signal level is attenuated to 1/2 of the
sustain level after key-off.

outfile.bin Output file name (envelope table binary file)

Amplitude

Time
(msec)

Key-on Key-off

Release time

0

Sustain level
min_val (%)

atack
cont

1/2down key_off_1/2down

Peak
0x80 (100%)

Amplitude

Time
(msec)

am_freq

am_ratio
(%)

Figure 4.2.1 Envelope and Vibrato

Example: DOS>etb 20 0 100 70 100 10 1 100 etb_user.bin

Note: For the output file name, use "etb_<instrument name>.bin" to match it to the WAVE data
instrument name, and output the file to the envelope data directory "\sndtool\etb\".

4 SOUND33 TOOL REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

39

4.2.11 dct_cnv.exe

Function: Converts the input sound file to any sampling rate specified by a parameter.

Format: DOS>dct_cnv DctFrom DctTo infile.(wav|pcm) outfile.pcm↵

Parameters: DctFrom Number of input data entries to convert

DctTo Number of corresponding output data entries

infile.wav Input file name (WAV file)

infile.pcm Input file name (PCM file)

outfile.pcm Output file name (PCM file)

Example: For both DctFrom and DctTo, we recommend specifying integer multiples of the original sampling
rate. For example, when down-sampling a 48-kHz WAV file to 16 kHz, specify the parameters as
shown below:
DOS>dct_cnv 48 16 sample1.wav sample1.pcm (x1)
DOS>dct_cnv 96 32 sample1.wav sample1.pcm (x2)
DOS>dct_cnv 144 48 sample1.wav sample1.pcm (x3)
DOS>dct_cnv 140 80 sample1.wav sample1.pcm (x5)
DOS>dct_cnv 480 160 sample1.wav sample1.pcm (x10)

The higher the values specified for DctTo and DctFrom, the better the sound quality, but with
penalties in processing speed. Processing speed is faster for smaller values, but with lower sound
quality. To avoid degrading sound quality, we recommend converting files with five times or more of
the original sampling rate.

4 SOUND33 TOOL REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

40

4.2.12 pcm_norm.exe

Function: Converts the amplitude of PCM file sound data to a specified magnitude. The numeric values
specifiable by signed 16 bits range from -32768 (SHORT_MIN) to +32767 (SHORT_MAX). In this
program, specify the maximum amplitude of input sound data as a percentage of SHORT_MAX
when converting the input sound amplitude.

Format: DOS>pcm_norm [-r XXX] [-c] input.pcm output.pcm↵

Parameters: input.pcm Input file name (PCM file)

output.pcm Output file name (PCM file)

-r XXX Coefficient of normalization (optional)
Specify the amplitude of 16-bit PCM sound data as a percentage of the maximum
amplitude. For XXX, specify a positive value in the range 0.0 to 100.0. Omitting this
option sets the maximum amplitude of output sound to 90%. Always enter a space
between -r and XXX.

-c Loading of "amp.rto" file (optional)
This option loads the "amp.rto" file from the current directory to adjust the sound
amplitude. This option is provided for VOX compression and is not used in
SOUND33.

Example: DOS>pcm_norm -r 65 input.pcm output.pcm ← Converted to 65%
DOS>pcm_norm input.pcm output.pcm ← Converted to 90% (default)

4 SOUND33 TOOL REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

41

4.3 Sound Bench sb33
Sound Bench sb33 is a Windows GUI tool used to convert sound text files or standard MIDI files into the required
file format for playback and evaluation on a PC.

4.3.1 Starting and Exiting

Double-click the "sb33.exe" icon to launch the application.
To exit sb33, click the [Close] button located at the upper right corner of the [Sound bench 33]
window.

4.3.2 Window Configuration
"sb33.exe" contains the following four windows:

 [Sound bench 33] window [Output] window

[Option] window

[Play/Rec] window

[Sound bench 33] window
This window appears when "sb33.exe" starts. All data conversion operations are performed from this window.

[Output] window
This window is used to display execution commands or execution results (output messages) for the tool
invoked to convert data. This window opens automatically when you execute a tool. However, you must select
this window from the [Option] window as the destination to which execution results are to be output.

[Option] window
Use this window to select an editor or execution options. The window is opened by clicking the [Option]
button on the [Sound bench 33] window.

[Play/Rec] window
From this window, you can play or stop playing the converted sound for reproduction control. This window is
displayed after PCM file conversion is complete and reproduction is started, when you press the [Play] button
in the [Sound bench 33] window.

4 SOUND33 TOOL REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

42

4.3.3 Selecting Files
Use the directory list and file list boxes on the [Sound bench
33] window to select files to convert or play. Select a file
format to be displayed in the file list box using the radio
buttons located below it.

Note: The sound text files and MIDI files to be
processed by sb33 must be located in the
subdirectory "\sndtool\xxxx\" of the sndtool
directory.

[Refresh] button
The contents displayed in the file list box are not automatically updated by the addition or deletion of files,
unless addition and deletion are performed with sb33. Click the [Refresh] button to update the list.

[Delete] button
Deletes the files selected in the file list box.

[Edit] button
Click the [Edit] button after selecting a text format file from the file list box. This selected file is opened in an
editor. This feature allows you to correct sound text, SND, or sound list files directly from sb33. The default
editor is the Windows Notepad. You can select another editor in the [Option] window.
Clicking the [Edit] button after selecting multiple files opens only the file at the top of the list.

[Sound edit] button
Click the [Sound edit] button after selecting a PCM file from the file list box to open the selected file in the
Sound editor. This feature works only after you set a Sound editor in the [Option] window.
Clicking the [Sound edit] button after selecting multiple files opens only the file at the top of the list.

4 SOUND33 TOOL REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

43

4.3.4 Selecting Options
Clicking on the [Option] button opens the [Option] window.

[Editor path] text box
In this text box, specify an editor to open by pressing the [Edit] button. Include the absolute path.

[Sound editor path] text box
In this text box, specify the sound editor to open by pressing the [Sound edit] button. Include the absolute path.

[Exe in icon] text box
Clicking this check box starts the tool in its icon state invoked from sb33.

[Output to window] check box
Clicking this check box displays the startup commands or output messages for tools in the [Output] window. In
sb33, the startup commands and output messages for each tool are written out to a file entitled "sb33.err" using
"ccap.exe" (see the "E0C33 Family C Compiler Package Manual"). The contents of "sb33.err" are displayed in
the [Output] window.

[Output to Editor] check box
Clicking this check box displays the startup commands or output messages for tools after a specified editor is
launched. As with [Output to window], the editor opens the file "sb33.err".

[Small font] check box
Clicking this check box changes the [Output] window display font to the small font.

[Default] button
Returns all options to their default settings.
Editor program: Notepad (notepad.exe)
Sound editor program: None
Common options: [Output to window] is selected

[Save] button
Saves a set of optional parameter settings, including specification of an editor, to a file (sb33.sav). The saved
contents are loaded and set up the next time sb33 starts.

[OK] button
After selecting and setting the various options, click this button to close the [Option] window.

4 SOUND33 TOOL REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

44

4.3.5 Converting Files and Starting Play

Note: The sound text and MIDI files processed by sb33 must be located in the subdirectory
"\sndtool\xxxx\" of the sndtool directory.

sb33 begins the necessary conversion and begins playback only when you click the [Play] button after selecting files.
The particular tools are activated for file conversion by sb33 depends on the specific file selected. Playback of the
generated PCM file is an sb33 function.

Converting and playing sound text files
To select and play sound text files, select files for all the channels you have created. To select multiple files,
hold down the [Ctrl] key while selecting.
When you click the [Play] button, sb33 executes the following tools:
1) txt2snd.exe Converts sound text files into SND files.

Executed as many times as the number of files selected.
2) snd2bin.exe Converts SND files into binary files.

Executed as many times as the number of files selected.
3) Internal processing of sb33 Creates sound list files (Note).
4) snd2pcm.exe Creates PCM files for evaluation on a PC and files to be installed on the actual

system.

At this point, sb33 plays the PCM file created in 4).

Note: Sound list files created by sb33
When sb33 creates a sound list file, it assigns it a name based on the name of the selected sound text file (the
file at the top of the list if you selected multiple files), adding the extension ".lst". Any existing file with the
same name is overwritten.
The sound list is created with the following default settings:
Tempo 100
WAVE data directory ..\stb\
Envelope data directory ..\etb\
Volume As set from [Sound bench 33] window
Echo 6
Etbadj 3
Offset As set from [Sound bench 33] window
Position 50 when [Stereo] is selected from [Sound bench 33] window

-1 when [Stereo] is not selected from [Sound bench 33] window
Example:
;Tempo

100

;STB wave table directory

..\stb\

;ETB envelove table directory

..\etb\

;Sound file Instrument Volume Echo Etbadj Offset Position

spring.bin piano 70 6 3 0 50

spring2.bin piano 70 6 3 0 50

spring3.bin piano 70 6 3 0 50

4 SOUND33 TOOL REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

45

Converting and playing standard MIDI files
Even when you select multiple standard MIDI files, only the selection at the top of the list is effective.
When you click the [Play] button, sb33 executes the following tools:
1) midi2snd.exe Converts a MIDI file into sound binary and sound list files.
2) snd2pcm.exe Creates a PCM file for evaluation on a PC and files to be installed on the actual system.

At this point, sb33 plays the PCM file created in 2).

Converting and playing SND files
When correcting parameters in a SND file, select the SND file from the file list box and click the [Play] button.
Selecting the original sound text file here may result in the corrected SND file being overwritten by txt2snd.exe
as it is executed by sb33.
To select and play SND files, select files for all the channels you have created. To select multiple files, hold
down the [Ctrl] key while selecting.
When you click the [Play] button, sb33 executes the following tools:
1) snd2bin.exe Converts SND files into binary files.

Executed as many times as the number of files selected.
2) Internal processing of sb33 Creates a sound list file.
3) snd2pcm.exe Creates a PCM file for evaluation on a PC and files to be installed on the

actual system.

At this point, sb33 plays the PCM file created in 3).

Playing from sound list files
After correcting parameters in a sound list file, select the sound list file from the file list box and click the
[Play] button. Note that selecting a file in any other format (except PCM files) may result in the corrected sound
list file being overwritten. Note also that all of the sound binary files listed in the sound list file must be
available before you can play the file.
When you click the [Play] button, sb33 executes the following tool:
1) snd2pcm.exe Creates a PCM file for evaluation on a PC and files to be installed on the actual system.

At this point, sb33 plays the PCM file created in 1).

Playing PCM files
To play a previously created PCM file, select the PCM file from the file list box and click the [Play] button.
Reproduction begins immediately, executed by sb33.

Conversion options
The [Sound bench 33] window allows selection of various file conversion options. Specify or select the
necessary options before clicking the [Play] button.

[Volume]
This is the startup option for snd2pcm.exe. Specify a value between 0 and 0x4000.
The sound volume set in a SND file is adjusted by multiplying it by (for example):
1.0 for 0x100, 0.5 for 0x80, or 1.5 for 0x180. The default value is 0x70 (multiplied by
0.44) if stereo is selected, or 0x55 (multiplied by 0.33) when monaural is selected.

Note: A warning results if the amplitude of data in the PCM file leads to an
overflow. Since setting the amplitude to eliminate overflow altogether
reduces sound levels significantly, set the sound volume slightly
higher (more or less overflowing) than indicated in the warning
message.

[Offset]
This is the startup option for snd2pcm.exe. Musical intervals are shifted in semitone
units. Specify a value in the range -60 to +60 (±5 octaves). Note that the playable
range of steps from C1/do1 to B6/si6 remains unchanged, even after the musical
interval is shifted. Notes exceeding this range as a result of a shift are adjusted to
C1/do1 or B6/si6.

4 SOUND33 TOOL REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

46

[Gateoff]
This is the startup option for txt2snd.exe. It specifies a time during which
the key is turned off as a percent value relative to the length of each note.
Specify a value in the range 0 to 99%. For example, if you specify 40%,
sb33 assumes that the key is depressed for the first 60% of the note and
released for the remaining 40% when creating the SND file.

[Bend]
This is the startup option for midi2snd.exe, specifying enabling or
disabling of pitch bending. Clicking the check box enables pitch
bending, so that the amount of pitch bending is set to 1 (equivalent to a
semitone). To specify any degree of pitch bending from 2 to 12, run
midi2snd.exe from the DOS prompt.

[Stereo]
Specifies whether the sound list file should be created for reproduction
in stereo or monaural. Clicking the check box selects stereo, so that the
sound list file is created by setting Position to 50 (center). To change the
position, correct the sound list file directly. Note that selecting stereo sets
[Volume] to 70. Leaving this option unchecked selects monaural
reproduction, in which case the sound list file is created by setting
Position to -1. [Volume] is set to 55.

[Sound Quality]
This is the startup option for snd2pcm.exe. It sets the sound quality
(sampling frequency).

4.3.6 [Play/Rec] Window and Reproduction Control

The [Play/Rec] window is displayed when you play back a selected PCM file following file conversion by clicking
the [Play] button on the [Sound bench 33] window. The window closes automatically when reproduction finishes.

Press the [Pause] button to interrupt playback. The [Play/Rec] window remains open. When you click the [Play]
button, reproduction resumes from the point at which it was interrupted. You can shift the resumption point with the
scroll bar.

Clicking the [Stop] button cancels playback and returns the resumption point to the beginning; the [Play/Rec]
window also remains open. Click the [Play] button to resume playback from the beginning of the file.

The [Close] button remains enabled during playback and when playback is interrupted. It closes the [Play/Rec]
window.

The [Rec] button has no effect in sb33.

4 SOUND33 TOOL REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

47

4.3.7 Operation after Evaluation Finishes
Batch files for creating assembly source files for music and instruments are generated by "snd2pcm.exe", which you
can execute by clicking the [Play] button. If there is no need to reexecute tools individually — to specify options
separately, for example — you can execute the generated batch files immediately to create assembly source files.

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

48

5 SOUND33 Library Reference
This section gives some precautions for using SOUND33 library functions and explains each function in detail.

5.1 Outline of the SOUND33 Library

Functional outline
The SOUND33 library consists of a set of functions for sound output in srf33 library format, and is used by
linking it to the target program. The programmed piece of music is played in real time by calling the necessary
functions from the target program.
This package contains the top-level functions created as C source files, all or part of which may be copied for
use within the target program.
These sets of functions allow easy implementation of sound output features in your system. Figure 5.1.1 shows
the structure of an application program for sound output.

User target program
(user original specification)

SOUND33 library top-level source
(corrected by user as necessary)

Sound data, WAVE table, and
envelope table assembler source

(created by SOUND33 tool)

SOUND33 library functions
(used after linking)

Hardware
(16-bit programmable timer)

Figure 5.1.1 Program Structure

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

49

Configuration of the SOUND33 library
All SOUND33 library and related files are located in the "sndlib" folder (directory). The folder contents are
given below:

sndlib\ SOUND33 library-related
readme.txt SOUND33 library supplementary explanation, etc. (in English)
readmeja.txt SOUND33 library supplementary explanation, etc. (in Japanese)

lib\ SOUND33 library directory
snd.lib Sound engine library
sndcpy.o, sndcpy2.o, snd2.o

Objects for sound engines that require high-speed execution.
Copy to internal RAM for use.

spk208.lib, spkintr1.o, spkintr2.o, spkintr3.o, spkintr4.o
Speak library shared with VOX33

include\ SOUND33 library function include file directory
snd.h Library include file
sndcomm.h slutil.c include file
speak.h sl208.lib include file

src\ Source directory
sndtop.c Top-level library functions
slutil.c PWM output final data creation routine
sndbuf.c SPEAK/LISTEN buffer setup file
slutil2.c PWM output final data creation tool (stereo)

hardsrc\ Hardware-dependent source directory
Spk208.s Spk208.o source (for E0C33208)
Spk208PW.s Spk208PW.o source (for E0C33208)
slcomm.def
slintr.def
SpkIntr1.s 15-bit monaural interrupt functions
SpkIntr2.s 15-bit stereo interrupt functions
SpkIntr3.s 10-bit monaural interrupt functions
SpkIntr4.s 9-bit monaural interrupt functions

demoX\ Sample program directory

(For details on the configuration of sample programs, refer to "readme.txt "or
"readmeja.txt" in "sndlib".)

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

50

5.2 Hardware Requirements

Hardware resources used by the library
The SOUND33 library uses the following internal hardware resources of the chip. These hardware resources
cannot be used in the user target program.

For 9-bit monaural output
• 16-bit timers 5 and 1 and all associated control registers
• 16-bit timer 1 output port
• 16-bit timer 5 compare B interrupt

Make sure the SpkIntr4() function address is stored at the vector address for the 16-bit timer 5 compare B
interrupt.
Example: .word SpkIntr4 ; Vector No. 50 (16-bit timer #5 compare B)

For 10-bit monaural output
• 16-bit timers 5 and 1 and all associated control registers
• 16-bit timer 1 output port
• 16-bit timer 5 compare B interrupt

Make sure the SpkIntr3() function address is stored at the vector address for the 16-bit timer 5 compare B
interrupt.
Example: .word SpkIntr3 ; Vector No. 50 (16-bit timer #5 compare B)

For 15-bit monaural output
• 16-bit timers 5, 1, and 2 and all associated control registers
• 16-bit timers 1 and 2 output ports
• 16-bit timer 5 compare B interrupt

Make sure the SpkIntr1() function address is stored at the vector address for the 16-bit timer 5 compare B
interrupt.
Example: .word SpkIntr1 ; Vector No. 50 (16-bit timer #5 compare B)

For 15-bit stereo output
• 16-bit timers 5, 1, 2, 3, and 4 and all associated control registers
• 16-bit timers 1, 2, 3, and 4 output ports
• 16-bit timer 5 compare B interrupt

Make sure the SpkIntr2() function address is stored at the vector address for the 16-bit timer 5 compare B
interrupt.
Example: .word SpkIntr2 ; Vector No. 50 (16-bit timer #5 compare B)

Note: To use other timer channels, you must correct the source files in the "\sndlib\hardsrc\" directory.
However, libraries recompiled after correcting these source files fall outside the scope of the
product warranty.

Operating clock
This library assumes that the E0C332xx high-speed (OSC3) clock frequency is 20 MHz (typ.) and that PLL is
in x2 mode (with the CPU operating at 40 MHz).

Memory
The SOUND33 library uses internal RAM to run fast routines, as well as for the stack and for the BSS section
used by the SOUND33 library. For more information on various memory requirements, refer to Section 5.6,
"Memory Size and Number of Simultaneously Reproduced Sound Channels".

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

51

5.3 Top-level Functions
The top-level functions are provided with the C source file (sndtop.c) to facilitate implementation of sound output
features, which are implemented using SOUND33 library functions. Table 5.3.1 lists the functions in sndtop.c.

Table 5.3.1 List of Top-level Functions
Function name Description

unsigned char *sndSpeak() Processing to begin playing sound data
static unsigned char *TopSpeakStart() Starts sound output
int sndTopDecode() Callback function during playback
int sndSpeakStart() Begins playback
int sndSpeakStop() Stops playback
void sndCodecpy() Code section copy function for fast operation

To use "sndtop.c", correct for the maximum number of channels defined as necessary and copy the entire file to the
user program source, or link the source file directly as is.
In addition to "sndtop.c", the "src\" directory contains "sndbuf.c", "slutil.c" (for monaural output), and "slutil2.c" (for
stereo output). These source files contain functions other than those listed above, which do not need to be called
directly from the user program. Always make sure to link them (for "slutil.c" and "slutil2.c," link one or the other).

To use the source file by linking it directly, make sure the header files in the "include\" directory are included in the
user program.

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

52

5.3.1 Compile Options
Compiling the source file of top-level functions allows specification of the following compile options. Define the
respective names during compilation as necessary (by using the -D option of gcc33).

CLOCK40
Specify this option when operating the E0C332xx at 40 MHz (PLL in x2 mode).

SPK_10
Specify this option when producing 10-bit monaural output. This option cannot be set simultaneously with
STEREO.

SPK_9
Specify this option when producing 9-bit monaural output. For 20 MHz operation, specify this option instead of
SPK_10. This option cannot be set simultaneously with STEREO.

STEREO
Specify this option when producing 15-bit stereo output. This option cannot be used simultaneously with
SPK_10, SPK_9, or MONO.

MONO
Specify this option when producing monaural output. Always specify this option when not using STEREO.

SAMPLING8K
Specify this option when 8-kHz sampled data is used.

SAMPLING16K
Specify this option when 16-kHz sampled data is used.

SAMPLING22K
Specify this option when 22-kHz sampled data is used.

SAMPLING32K
Specify this option when 32-kHz sampled data is used.

PWM_ADJUST
This option corrects the PWM output to improve output characteristics. (Setting the option degrades
performance, however.)

INIT
Define this option when playing music asynchronously between channels and prepare an interrupt service
routine (see demo3\int.s).

DEBUG
This option inserts code required to check whether output is produced in real time (whether processing is
executed in time). Because this check routine increases overhead, we recommend removing this option when
compiling the final code for the product.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

53

5.3.2 Changing the Maximum Number of Channels and Permitted Tempo
Change the maximum number of channels and the permitted tempo using "sndtop.c" and "snd.h", respectively.

Changing the maximum number of channels (sndlib\src\sndtop.c)
 :

#ifdef MSVC

#define MAX_CHANNELS 84 // max sound channels

#else

#define MAX_CHANNELS 30 // max sound channels ← Maximum number of channels
#endif in the actual system
 :

By default, the maximum number of channels is 30. To use more channels, you must change the default setting.
The number of channels in cases where tempo = 100 is shown below. To use a tempo below 100, you must
increase the buffer size of the internal RAM, which results in the maximum number of channels being reduced
accordingly.

8 kHz monaural Tempo 100 68ch
8 kHz stereo Tempo 100 58ch
16 kHz monaural Tempo 100 60ch
16 kHz stereo Tempo 100 45ch
22 kHz monaural Tempo 100 58ch
22 kHz stereo Tempo 100 28ch
32 kHz monaural Tempo 100 55ch
32 kHz stereo Tempo 100 40ch *
∗ When the Speak buffer is located in external RAM

Otherwise, only the internal RAM (8K) is used for the BSS area.

Changing the permitted tempo (sndlib\include\snd.h)
By default, the buffer size is defined to allow you to set tempos of 100 or greater. To select a tempo below 100,
modify the value defined for PACKET_SIZE in "snd.h".

/* sampling rate */

#ifdef SAMPLING8K (Settings for sampling rate = 8 kHz)
#define SND_SAMPLING 8000

#define PACKET_SIZE (100>>SPEAK_BUF_MUL)

// 1 packet is 100 data tempo is 100

#endif

#ifdef SAMPLING16K (Settings for sampling rate = 16 kHz)
#define SND_SAMPLING 16000

#define PACKET_SIZE (200>>SPEAK_BUF_MUL)

// 1 packet is 200 data tempo is 100

#endif

#ifdef SAMPLING22K (Settings for sampling rate = 22 kHz)
#define SND_SAMPLING 22050

#define PACKET_SIZE (276>>SPEAK_BUF_MUL)

// 1 packet is 276 data tempo is 100

#endif

#ifdef SAMPLING32K (Settings for sampling rate = 32 kHz)
#define SND_SAMPLING 32000

#define PACKET_SIZE (400>>SPEAK_BUF_MUL)

// 1 packet is 400 data tempo is 100

#endif

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

54

You can obtain the relationship of tempo to PACKET_SIZE by the following equation:

PACKET_SIZE = <sampling rate (Hz)> × 60 / <tempo> / 48

Example: When sampling rate = 8 kHz and tempo = 100
PACKET_SIZE = 8000 × 60 / 100 / 48 = 100

The maximum number of channels depends on the value for PACKET_SIZE set here. Since the channel data,
decode buffer, and Speak buffer in SOUND33 are located in internal RAM, the maximum number of channels
decreases as the buffer size increases.
Buffer sizes are listed below:
• Decode buffer: PACKET_SIZE in bytes (PACKET_SIZE × 2 for stereo)
• Speak buffe: PACKET_SIZE in bytes (PACKET_SIZE × 2 for stereo)
• Channel data: Approx. 100 bytes per channel

The following macros used to calculate the necessary buffer size for a specified tempo are defined in "snd.h":
TEMPO8_LEN(a) For 8 kHz sampling
TEMPO16_LEN(a) For 16 kHz sampling
TEMPO22_LEN(a) For 22 kHz sampling
TEMPO32_LEN(a) For 32 kHz sampling

For "a", specify tempo.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

55

5.3.3 Error Codes Returned by Functions
The error codes for SOUND33 library functions are defined in "snd.h" as constants, as shown below. For functions
that return error codes, use these constants to check whether function execution has finished without problems.

SND_OK 0 Terminated normally
SND_FINISH 1 Finished playing
SND_ERROR 2 Error occurred in SOUND33 library
SND_STB_ERROR 3 WAVE table data is invalid
SND_ETB_ERROR 4 Envelope table data is invalid
SND_DATA_ERROR 5 Sound data is invalid
SND_ADJ_ERROR 6 Specified value of Etbadj is invalid (Effective values = 0 to 4)
SND_TEMPO_ERROR 7 Specified value of Tempo is invalid (Effective values = 30 to 300)
SND_VOL_ERROR 8 Specified value of Volume is invalid (Effective values = 0 to 0x4000)
SND_OFFSET_ERROR 9 Specified value of Offset is invalid (Effective values = -60 to 60)

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

56

5.3.4 SOUND33 Data Structure
The musical pieces and instruments for playback and the playback tempos are specified using the structures
provided for each.

Play structure (struct SNDDATA1)
Example: Excerpt from sndlib\demo2\spring.c
const struct SNDDATA1 sd1_spring[] = {

100, // sTempo ← Tempo
0x90, // sVolume for all channels ← Volume
0, // This flag is 0

0, // tone offset for all channels ← Offset
3 // total channel numbers in SNDDATA2 ← Number of channels

};

This structure is written in "xxxx.c", which is output by "snd2pcm.exe", with one created for each piece of
music. The values of the structure members are applied to the entire piece of music.
Stored in the number of channels member is the value written in the sound list file loaded as input to
"snd2pcm.exe". Modify the value stored here to add channels for asynchronous playback.

Channel structure (struct SNDDATA2)
Example: Excerpt from sndlib\demo2\spring.c
const struct SNDDATA2 sd2_spring[] = {

{

0x11, ← ID = 0x11
0, ← Offset for this channel
0x90, ← Volume for this channel
&spring[0], ← Pointer to sound data
&setbl_piano, ← Pointer to instrument data
6, ← Echo delay time (in units of 1/6 of thirty-second note)
1, ← Asynchronous play flag (1: Synchronous play; 0: Asynchronous play)
-1 ← Stereo play position (0 ← 50 → 100, -1 for monaural play)

},

:

{

0x11, // ID = 0x11

0, // tone offset for this channel

0x90, // sVolume for this channel

&spring3[0], // sound data pointer

&setbl_piano, // instruments pointer

6, // echo delay for this channel

1, // play flag for this channel

-1 // position for this channel

}

};

This structure is written in "xxxx.c", which is output by "snd2pcm.exe", with one created for each piece of
music. Information on all channels written in the sound list file are set in this structure. The values of structure
members are applied only to the channel in question.
To add channels for asynchronous play, insert information on the additional channels at the end of the structure
as described above, setting the asynchronous play flag to 0.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

57

Instrument structure (struct SETBL)
Example: Excerpt from sndlib\demo2\setbl.c
const struct SETBL setbl_piano = {

&stb_piano[0], ← Pointer to WAVE table data
&etb_piano[0], ← Pointer to envelope table data
3 ← Etbadj (0–4)

};

This structure is written in "setbl.c", which is output by "snd2pcm.exe", with one created for each instrument.
If you added instrument data to link, you must also write additional information using this structure.

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

58

5.3.5 sndSpeak()

Function: Processing to begin playing sound data

Format: unsigned char *sndSpeak(struct SNDDATA1 *sd1, struct SNDDATA2 *sd2);

Parameters: struct SNDDATA1 *sd1 Play structure
struct SNDDATA2 *sd2 Channel structure

Return value: 0...........Terminated normally
Not 0...Error (see Section 5.3.3)

Description: Initializes sound processing and calls a playback routine.

5.3.6 TopSpeakStart()

Function: Starts sound output

Format: static unsigned char *TopSpeakStart();

Parameters: None

Return value: 0...........Terminated normally
Not 0...Error (see Section 5.3.3)

Description: Sets sndToDecode() in the callback function and calls the Speak function to output sound.

5.3.7 sndTopDecode()

Function: Callback function during playback

Format: int sndTopDecode(unsigned char *SpkParams, short *Buffer, int Length);

Parameters: unsigned char *SpkParams Pointer to Speak parameter
short *Buffer Pointer to decode buffer
int Length Decode data length

Return value: 0...........Error
Not 0...Actual decoded data length

Description: When the Speak data queue has free space available, this function is called back from the Speak
function. Based on information on each channel, it copies playback data to the buffer.

5.3.8 sndSpeakStart()

Function: Begins playback

Format: int sndSpeakStart(int iChannel, struct SNDDATA2 *sd2);

Parameters: int iChannel Channel number in the structure SNDDATA2
struct SNDDATA2 *sd2 Channel structure

Return value: 0...........Terminated normally

Description: Sets the play flag to 1 to begin playback. If the beginning channel is an echoed channel, it also
begins playing the next internal channel for delayed play.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

59

5.3.9 sndSpeakStop()

Function: Stops playback

Format: int sndSpeakStop(int iChannel, struct SNDDATA2 *sd2);

Parameters: int iChannel Channel number in the structure SNDDATA2
struct SNDDATA2 *sd2 Channel structure

Return value: 0...........Terminated normally

Description: Sets the play flag to 0 to stop playback. If the stop channel is an echoed channel, it also stops
playing the next internal channel for delayed play.

5.3.10 sndCodecpy()

Function: Code section copy function for fast operation

Format: void voxCodecpy(int *dst, int *src, int *size);

Parameters: int *dst Transfer destination address (internal RAM)
int *src Source address of transfer (external ROM)
int *size Transfer code size (bytes)

Return value: None

Description: Transfers code from the external ROM to the internal RAM. The following object codes must be
transferred to the internal RAM before they can be executed:
1. sndcpy.o (for monaural) or sndcpy2.o (for stereo)
2. snd2.o (for stereo)
3. spkintr1.o (for 15-bit monaural), spkintr2.o (for 15-bit stereo), spkintr3.o (for 10-bit monaural),

or spkintr4.o (for 9-bit monaural)
4. slutil.o (for monaural) or slutil2.o (for stereo)

Example: sndCodecpy(&__START_CACHE1, &__START_sndcpy2_code,

&__SIZEOF_sndcpy2_code);

Copies the code for "sndcpy2.o" to the position of &_START_CACHE1 in the internal RAM. In
this case, the following description is required in the linker command file.
-section CASHE1

-ucode CACHE1 {(pass)\sndcpy2.o}

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

60

5.4 SOUND33 Library Functions
The SOUND33 libraries "snd.lib", "sndcpy.o/sndcpy2.o", and "snd2.o" contain the functions needed to process
sound data, while the libraries "spk208.lib", "slutil.c/slutil2.c", and "spkintrX.o (X = 1–4)" contain the functions
required for PWM output. You can implement sound output features simply by linking these functions to the user
program. To decode and reproduce musical pieces in real time, note that parts of the objects must be mapped to the
internal memory. For more information, refer to Section 5.5, "Techniques for Speeding Up Processing".
Table 5.4.1 below lists the library functions.

Table 5.4.1 List of Library Functions
Classification Function name Description

Sound data sndInit() Initializes channel parameters
processing sndSetTempo() Sets tempo

sndGetData() Data copy 1 to buffer
sndCpyData() Data copy 2 to buffer (for monaural)
sndCpyData2() Data copy 2 to buffer (for stereo)
sndCpyDataN() Data copy 3 to buffer (for monaural)
sndCpyData2N() Data copy 3 to buffer (for stereo)
sndZeroFill() Initializes buffer (for monaural)
sndZeroFill2() Initializes buffer (for stereo)
sndChReset() Resets WAVE data output position

Output data setSpeakVolume() Sets volume
conversion slPcm2Spk() Converts output data (for monaural)

slPcm2SpkLR() Converts output data (for stereo)
Output SpkSoftening() Soft start volume
(Speak) SpkSampleRate() Changes sampling rate

SPK_SAMPLING() Gets 16-bit timer reload value (macro)
SpkInit() Initializes internal library variables
SpkOpen() Opens output channel
SpkClose() Closes output channel
SpkStart() Starts output
SpkHalt() Stops output
SpkAppend() Enqueues output data
SpkRoom() Gets number of remaining queue entries
SpkQueue() Gets number of entries waiting for output
SpkIsRunning() Checks output status
SpkOnDone() Enters callback function during playback
SpkOnEmpty() Enters callback function when playback finishes
SpkOnNotInTime() Enters callback function for playback not in time
slGetVersion() Gets version information

Interrupt SpkIntr1() Processes interrupt (for 15-bit monaural)
processing SpkIntr2() Processes interrupt (for 15-bit stereo)

SpkIntr3() Processes interrupt (for 10-bit monaural)
SpkIntr4() Processes interrupt (for 9-bit monaural)

The following pages give the specification of each function. For usage examples, refer to the sources of top-level
functions.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

61

5.4.1 Sound Data Processing Functions
The functions described below are defined in "snd.lib", "sndcpy.o/sndcpy2.o", and "snd2.o".

sndInit()

Function: Initializes channel parameters

Format: int sndInit(char *vpara, char *stable, char *etable, char *sdata,

int volume, int offset, int tempo, int etbadj);

Parameters: char *vpara Pointer to sound parameter
char *stable Pointer to WAVE table
char *etable Pointer to envelope table
char *sdata Pointer to sound data
int volume Initial volume
int offset Tone offset (-60 to +60)
int tempo Tempo (30 to 300)
int etbadj Correction value for high tonal envelope

Return value: 0...........Terminated normally
Not 0...Error (see Section 5.3.3)

Description: Initializes sound parameters on each channel.

sndSetTempo()

Function: Sets tempo

Format: int sndSetTempo(int iTempoLen, int i16);

Parameters: int iTempoLen Tempo (30 to 300)
int i16 Sampling frequency (0 = 8 kHz, 1 = 16 kHz, 2 = 22 kHz, 3 = 32 kHz)

Return value: 0...........Terminated normally
Not 0...Error (see Section 5.3.3)

Description: Calculates the unit length of PCM data corresponding to the specified tempo and sampling
frequency.

sndGetData()

Function: Data copy 1 to buffer

Format: int sndGetData(char *vpara, long *sBuf, char cPosition);

Parameters: char *vpara Pointer to sound parameter
long *sBuf Buffer pointer
char cPosition Stereo play position (1 to 100, -1 for monaural)

Return value: 0...........Error
Not 0...Decoded length

Description: Called from the sndTopDecode() function, this function copies data to the buffer according to the
values of sound parameters.

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

62

sndCpyData(), sndCpyData2()

Function: sndCpyData() Data copy 2 to buffer (for monaural)
sndCpyData2() Data copy 2 to buffer (for stereo)

Format: int sndCpyData(struct CpyPara *para, long *sBuf, short sLen);

int sndCpyData2(struct CpyPara *para, long *sBuf, short sLen);

Parameters: struct CpyPara *para Copy parameter pointer in sound parameter
long *sBuf Buffer pointer
short sLen Decode length

Return value: 0...........Error
Not 0...Decoded length

Description: Called from the sndGetData() function, this function passes copy parameter values and buffer
addresses to the function actually copying data to the buffer. When volume = 0, it returns without
performing an operation.

sndCpyDataN(), sndCpyData2N()

Function: sndCpyDataN() Data copy 3 to buffer (for monaural)
sndCpyData2N() Data copy 3 to buffer (for stereo)

Format: int sndCpyDataN(struct CpyPara *para, long *sBuf, short sLen);

int sndCpyData2N(struct CpyPara *para, long *sBuf, short sLen);

Parameters: struct CpyPara *para Copy parameter pointer in sound parameter
long *sBuf Buffer pointer
short sLen Decode length

Return value: 0...........Error
Not 0...Decoded length

Description: Called from the sndCpyData()/sndCpyData2() functions, this function copies data to the buffer
according to the value of the copy parameters.

sndZeroFill(), sndZeroFill2()

Function: sndZeroFill() Initializes buffer (for monaural)
sndZeroFill2() Initializes buffer (for stereo)

Format: void sndZeroFill(long *dst, int len);

void sndZeroFill2(long *dst, int len);

Parameters: long *dst Decode buffer pointer
int len Decode buffer size

Return value: None

Description: Initializes the buffer before decoding sound data.

sndChReset()

Function: Resets WAVE data output position

Format: void sndChReset(char *vpara, char *sdata);

Parameters: char *vpara Pointer to copy data structure
char *sdata Pointer to sound data structure

Return value: None

Description: Resets WAVE data output position during playback.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

63

5.4.2 Output Data Conversion Functions
The functions described below are defined in "slutil.c" for monaural and "slutil2.c" for stereo. These functions create
the data to be sent to the output device. At this time, they convert signed 32-bit PCM data into unsigned 16-bit PCM
data by clipping excursions. Specifying PWM_ADJUST as a compile option includes a routine for correcting PWM
output values in the program.

setSpeakVolume()

Function: Sets output volume

Format: void setSpeakVolume(unsigned short spkv);

Parameter: unsigned short spkv Specified value for volume

Return value: None

Description: Sets sound volume. The parameter is a relative value referenced to 0x100 (x1). The value specified
here is multiplied by the internal sound data value to determine the sound volume. Overflows are
rounded off. Very fine settings are possible, since the value can be specified in increments of 1.
setSpeakVolume(0x100); ← 1.0-fold sound volume
setSpeakVolume(0x80); ← 0.5-fold sound volume
setSpeakVolume(0x200); ← 2.0-fold sound volume

slPcm2Spk()

Function: Converts output data (for monaural)

Format: void slPcm2Spk(long *Src, short *Dst, int Length, Slparam *slParam);

Parameters: long *Src Pointer to source data array
short *Dst Pointer to array to which to write
int Length Number of data entries to convert (short)
Slparam *slParam Conversion parameter

Return value: None

Description: For PCM data, this function applies offset, volume, and clipping processing according to the
parameters defined by slParam and setSpeakVolume. Src and Dst must be located in separate arrays.
Be sure to set the offset and other parameters necessary to clip signed 32-bit PCM data to unsigned
16-bit PCM data, as shown below:
slParam->offset = 0x8000; ← Adds offset 0x8000
slParam->shift = 0
slParam->limit = 0xffff; ← Clips excursions above the upper-limit 0xffff and below the

lower-limit 0x0.

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

64

slPcm2SpkLR()

Function: Converts output data (for stereo)

Format: void slPcm2Spk(long *Src, short *Dst, int Length, Slparam *slParam);

Parameters: long *Src Pointer to source data array
short *Dst Pointer to array to which to write
int Length Number of data entries to convert (short)
Slparam *slParam Conversion parameter

Return value: None

Description: For PCM data, this function applies offset, volume, and clipping processing according to the
parameters defined by slParam and setSpeakVolume. Src and Dst must be located in separate arrays.
This function is dedicated for stereo output. For Src, data must be input alternately for right and left.
Be sure to set the offset and other parameters necessary to clip signed 32-bit PCM data to unsigned
16-bit PCM data, as shown below:
slParam->offset = 0x8000; ← Adds offset 0x8000
slParam->shift = 0
slParam->limit = 0xffff; ← Clips excursions above the upper-limit 0xffff and below the

lower-limit 0x0.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

65

5.4.3 Output (Speak) Functions
The functions described below are defined in "spk208.lib". These functions control the PWM output produced by
16-bit timers.

SpkSoftening()

Function: Output soft start volume

Format: void SpkSoftening(unsigned char SPK_SOFTENING);

Parameters: unsigned char SPK_SOFTENING Output ON/OFF delay time

Return value: None

Description: This function is used to reduce the switching noise that occurs at the start and end of reproduction
output. Always set this function before calling SpkStart(). The output ON delay time is determined
by the following equation:

1/(Sampling rate [Hz] × 2) × SPK_SOFTENING × CENTER_DATA [msec]

The value for CENTER_DATA is as follows:
0x200 for the 10-bit case; 0x100 for 15-bit and 9-bit cases
Normally, set SPK_SOFTENING for approximately 50 msec of delay time. Check for switching
noise on the actual system before determining the delay time.

SpkSampleRate()

Function: Changes sampling rate

Format: void SpkSampleRate(unsigned char *SpkParams, void *Buffer,

int ReloadValue);

Parameters: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)
void *Buffer Pointer to output data
int ReloadValue 16-bit timer set value

Return value: None

Description: Changes the sampling rate on the channel specified by spkParams according to ReloadValue from
the point at which sb33 outputs data beginning with Buffer. For ReloadValue, specify the value
obtained by SPK_SAMPLING macro.
Use this function when you want to dynamically change the sampling rate after calling SpkStart().
The parameter Buffer must be the buffer specified by SpkAppend(). Use this function immediately
before SpkAppend().
Normally, use SpkOpen() to specify the sampling rate.

SPK_SAMPLING()

Function: Gets 16-bit timer reload value (macro)

Format: SPK_SAMPLING(CpuClock, SamplingRate)

Parameters: CpuClock CPU clock frequency
SamplingRate Sampling rate

Return value: 16-bit timer reload value

Description: This macro is used to acquire the reload value for the 16-bit timer from the specified CPU clock
frequency and sampling rate.

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

66

SpkInit()

Function: Initializes internal library variables

Format: void SpkInit(void);

Parameters: None

Return value: None

Description: Clears the internal variables used by the library to 0.

SpkOpen()

Function: Opens output channel

Format: unsigned char *SpkOpen(int Mode, int ReloadValue);

Parameters: int Mode Output mode
int ReloadValue 16-bit timer setting

Return value: 0...........Error
Not 0...Pointer to SpkParams corresponding to the output channel opened

Description: Opens an output channel according to output mode at a specified sampling rate. SpkParams returned
by this function is used as a parameter for other output (Spk) functions. For Mode, specify one of the
constants listed below. Note that the vectors to be entered for the timer 5 compare B interrupt and
objects that include interrupt functions vary, depending on the output mode.
Constant Output mode Vector value/object

SPK_15_MONO 15-bit monaural (for 20-MHz or 40-MHz operation) SpkIntr1()/spkintr1.o
SPK_15_STEREO 15-bit stereo (for 20-MHz or 40-MHz operation) SpkIntr2()/spkintr2.o
SPK_10_MONO 10-bit monaural (for 40-MHz operation)* SpkIntr3()/spkintr3.o
SPK_9_MONO 9-bit monaural (for 20-MHz or 40-MHz operation) SpkIntr4()/spkintr4.o

∗ We do not recommend 10-bit monaural output for 20-MHz operation, due to the harsh sound quality
caused by PWM noise.

For ReloadValue, specify the value obtained by the SPK_SAMPLING macro.

In the following cases, the function fails to open and returns 0.
• When the specified channel is already open
• When an unimplemented channel is specified
• When the reload value exceeds the 16-bit range

Always call SpkSoftening() and SpkInit() before using this function.

SpkClose()

Function: Closes output channel

Format: int SpkClose(unsigned char *SpkParams);

Parameter: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)
Return value: 0...........Error

Not 0...Terminated normally

Description: Closes a specified output channel. If the specified channel is not open, the function returns 0.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

67

SpkStart()

Function: Starts sound output

Format: int SpkStart(unsigned char *SpkParams);

Parameter: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)

Return value: 0...........Error
Not 0...Terminated normally

Description: Starts sound output operation on the specified channel. If the specified channel is not open, the
function returns 0.

SpkHalt()

Function: Stops sound output

Format: int SpkHalt(unsigned char *SpkParams);

Parameter: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)

Return value: 0...........Error
Not 0...Terminated normally

Description: Stops sound output from the specified channel. If sound output on the specified channel has not
been initiated by SpkStart(), the function returns 0. This function can also be called from SpkClose().

SpkAppend()

Function: Queues output data

Format: int SpkAppend(unsigned char *SpkParams, void *Buffer, int Length);

Parameters: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)
void *Buffer Pointer to the data to be queued
int Length Data size

Return value: 0...........Error
Not 0...Terminated normally

Description: Queues the data in the output queue for output to the channel specified by SpkParams. If sound
output on the specified channel has not been initiated by SpkStart(), or if the queue has no blank
entry, no data is queued and the value 0 is returned.

SpkRoom()

Function: Gets number of remaining queue entries

Format: int SpkRoom(unsigned char *SpkParams);

Parameter: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)

Return value: Number of usable entries

Description: Returns the number of usable entries remaining in the output queue. If this function is called
immediately after opening an output channel, the maximum number of entries available for the
channel is acquired. The value returned during sound output operation is given by:
(maximum number of entries) - (number of queued entries) - (number of entries not called back)

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

68

SpkQueue()

Function: Gets number of entries waiting for output

Format: int SpkQueue(unsigned char *SpkParams);

Parameter: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)

Return value: Number of entries waiting for output

Description: Returns the number of entries in the output queue waiting for output. The value returned during
sound output operation is given by:
(number of queued entries) - (number of entries not called back) - (number of entries already called back)

In SOUND33, this function is used by specifying the DEBUG option when compiling top-level
sources. When the queue = 0, sb33 halts output.

SpkIsRunning()

Function: Checks output status

Format: int SpkIsRunning(unsigned char *SpkParams);

Parameter: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)

Return value: 0...........Output operation idle
Not 0...Output operation active

Description: Returns a value indicating whether the specified channel currently is in output operation.

SpkOnDone()

Function: Enters callback function during playback

Format: int SpkOnDone(unsigned char *SpkParams, void *Callback);

Parameters: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)
void *Callback Pointer to the callback function to be entered

Return value: Pointer to the callback function before being updated

Description: Enters the function for the specified channel which is to be called back during playback. The
callback function has the following format:
void Callback(unsigned char *SpkParams, void *Buffer, int Length)

SpkOnEmpty()

Function: Enters callback function when playback finishes

Format: int SpkOnEmpty(unsigned char *SpkParams, void *Callback);

Parameters: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)
void *Callback Pointer to the callback function to be entered

Return value: Pointer to the callback function before updating

Description: Enters the function for the specified channel to be called back when playback finishes. The callback
function has the following format:
void Callback(unsigned char *SpkParams)

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

69

SpkOnNotInTime()

Function: Enters callback function for playback not in time

Format: int SpkOnNotInTime(unsigned char *SpkParams, void *Callback);

Parameters: unsigned char *SpkParams Pointer to SpkParams (return value of SpkOpen)
void *Callback Pointer to the callback function to be entered

Return value: Pointer to the callback function before updating

Description: Enters the function for the specified channel to be called back when sb33 fails to play synchronously
in real time. The callback function has the following format:
void Callback(unsigned char *SpkParams, void *Buffer, int Length)

In SOUND33, this function is used by specifying the DEBUG option when compiling top-level
sources. If sb33 cannot process sound data in time, it halts output.

slGetVersion()

Function: Gets version information

Format: int slGetVersion(void);

Parameters: None

Return value: Version number

Description: Returns the version number of the output (Speak) library. For ver. 2.2, the value returned is 0x22.

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

70

5.4.4 Interrupt Processing Functions
Interrupt processing functions SpkIntrX() are used as vectors for 16-bit timer 5 compare B interrupts. Four of these
interrupt processing functions (X = 1 to 4) are available for separate use for each output mode. Object files including
these functions have also been created individually. Link the object "spkintrX.o" that suits the output mode.

SpkIntr1(), SpkIntr2(), SpkIntr3(), SpkIntr4()

Function: PWM output interrupt processing

Format: void SpkIntr0(void); For 15-bit monaural output (spkintr1.o)
void SpkIntr1(void); For 15-bit stereo output (spkintr2.o)
void SpkIntr2(void); For 10-bit monaural output (spkintr3.o)
void SpkIntr3(void); For 9-bit monaural output (spkintr4.o)

Parameters: None

Return value: None

Description: These functions perform PWM output processing in an interrupt. These functions can only be used as
the vector value for the 16-bit timer 5 compare B interrupt.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

71

5.5 Techniques for Speeding Up Processing
You can accelerate library processing speed to some extent by mapping several library objects to the internal memory
before executing. Use the linker's U section feature for object mapping to the internal memory. The required
processing is described below:

1. The objects required for high-speed operation are:
• sndcpy.o (for monaural) or sndcpy2.o (for stereo)
• snd2.o (for stereo)
• spkintr1.o (15-bit monaural), spkintr2.o (15-bit stereo), spkintr3.o (10-bit monaural),
 or spkintr4.o (9-bit monaural)
• slutil.o (for monaural) or slutil2.o (for stereo)

2. Write the following in the linker command file.
-objsym ; Creates object symbol
-section <name> ; Creates section symbol
-ucode <name> { <object file> [<object file>....] } ; Maps into U section
Example:
-objsym

-section CACHE1 = 0x30

-section CACHE2 = 0x160

-section CACHE3 = 0x1e0

-section CACHE4 = 0x26C

-ucode CACHE1 {..\lib\sndcpy2.o} ; set code sections to absolute address

-ucode CACHE2 {..\lib\spkintr2.o} ; set code sections to absolute address

-ucode CACHE3 {slutil2.o} ; set code sections to absolute address

-ucode CACHE4 {..\lib\snd2.o} ; set code sections to absolute address

Be sure to map objects that suit the output mode.

Examine the map file after linking. You will see that the execution addresses of specified modules are mapped in
the internal memory.
Example: Map file
Code Section mapping

Address Vaddress Size File ID Attr

 :

00600364 000001e0 0000008c slutil2.o 0 REL

 :

00624634 00000030 00000130 ..\lib\sndcpy2.o 0 REL

 :

00624838 00000160 00000080 ..\lib\spkintr2.o 0 REL

006248b8 0000026c 00000454 ..\lib\snd2.o 0 REL

 :

3. To transfer object code to the internal memory, use the sndCodecpy() function provided in the top-level source
(see Section 5.3.10).
Example:
sndCodecpy(&__START_CACHE1,&__START_sndcpy2_code,&__SIZEOF_sndcpy2_code);

sndCodecpy(&__START_CACHE2,&__START_spkintr2_code,&__SIZEOF_spkintr2_code);

sndCodecpy(&__START_CACHE3,&__START_slutil2_code,&__SIZEOF_slutil2_code);

sndCodecpy(&__START_CACHE4,&__START_snd2_code,&__SIZEOF_snd2_code);

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

72

5.6 Memory Size and Number of Simultaneously
Reproduced Sound Channels

5.6.1 Memory Size
An example of "sndlib\demo3\demo3.srf" is shown below:

demo3

Data of musical piece
Title of musical piece: Come Together 33
Instruments used: trumpet, bguiter, eguiter, organ, highhat, snare, bdrum, tom, ccymbal
Play time: 138.3 seconds
Tempo: 120
Sampling rate: 22 kHz
Output mode: 15-bit stereo

ROM Total approx. 150K bytes
SOUND33 library: 2,256 bytes
STB data: 123,068 bytes
ETB data: 4,644 bytes
Sound data: 18,308 bytes
Other: 5,024 bytes

RAM Total approx. 8.2K bytes
slutil2.o: 148 bytes
sndcpy2.o: 304 bytes
spkintr2.o: 128 bytes
snd2.o: 1,108 bytes
sndtop.o: 4,068 bytes (30 channels, tempo = 100, stereo)

→ Decode 1,108 + channel 88 × 30 = 2,640 + other 320
sndbuf.o: 2,208 bytes

The following is an approximate guide, provided for reference.

Necessary ROM capacity
SOUND33 library: Approx. 2.1K bytes
Instrument data: Total size of the binary data for used instruments in sndtool\stb\XX

(XX = sampling frequency) and the binary data for used instruments
in sndtool\etb.

Sound data: Total size of the binary files (*.bin) output by snd2bin and midi2snd.

Necessary internal RAM capacity

For sndcpy.o program execution: 212 bytes
For sndcpy2.o program execution: 304 bytes

For sndtop.c channels: Approx. 90 bytes per channel
90 bytes × number of channels is required. The number of channels by
default is 30. Thus, approximately 2.7K bytes of internal RAM is
used.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

73

Speak and decode buffers: One 32-bit buffer for decode operation and two 16-bit buffers for Speak
operation are required. The Speak and decode buffers are defined in
"sndbuf.c" and "sndtop.c", respectively. Set the buffer's data entries
according to the musical piece played at the slowest tempo. By default,
the buffers are allocated memory assuming that tempo = 100.
The following shows the total size of the buffers for monaural output
cases: (For stereo, the buffer size is twice as large.)

Sampling rate Tempo Buffer size (decode + Speak)

8 kHz 30 1,360+1,356= 2,712 bytes
100 404+ 400= 804 bytes
300 140+ 136= 276 bytes

16 kHz 30 2,676+2,672= 5,348 bytes
100 804+ 800= 1,604 bytes
300 276+ 272= 548 bytes

22 kHz 30 3,680+3,676= 7,356 bytes
100 1,108+1,104= 2,212 bytes
300 368+ 364= 732 bytes

32 kHz 30 5,332+5,328= 10,660 bytes
100 1,604+1,600= 3,204 bytes
300 532+ 528= 1,060 bytes

Speak interrupt routine: Approx. 160 bytes

Stack: Approx. 256 bytes

5.6.2 Number of Simultaneously Reproduced Sound Channels
Table 5.6.1 lists the number of channels that can be used simultaneously for 15-bit output. The measurement
conditions are shown below.

Instrument used: piano
Play: Played on 7 octaves from C1 at tempo 100

CPU operating clock: 40 MHz
Internal RAM cache: slutil.o, slutil2.o, sndcpy.o, and sndcpy2.o are copied to the cache before execution.
BSS area: All mapped to the internal RAM (no wait states)

Table 5.6.1 Number of Simultaneously Reproduced Sound Channels

Output mode Sampling rate

8 kHz 16 kHz 22 kHz 32 kHz

15-bit stereo 47 ch 30 ch 23 ch 18 ch (∗ 1)

15-bit monaural 68 ch (∗ 2) 46 ch 36 ch 25 ch

∗ 1) sndbuf.o is assigned to external RAM and snd2.o is used after being transferred to internal RAM.
∗ 2) Shows the maximum number of channels that can be used when internal RAM is 8K bytes.

To confirm that the sound on all channels is synchronous when played on the actual system, define the DEBUG
option when compiling "sndtop.c" and include the check function before execution. When sound cannot be
processed in time, sb33 halts playback.

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

74

5.7 Example Programs
Creating sound output routines is explained below, using the sample program in the "sndlib\demo3\" directory as an
example.

Setting interrupt vectors
In the demo3 sample program, the trap table is set in "demo3\atable.s". To use this file, set the start addresses
of processing routines corresponding to the trap vector addresses required for your application.
Example: demo3\atable.s
;;
;;; Interruput Vectores
;;

 .word Boot ; 0 Reset
 .word exception ; 1 reserved
 .word exception ; 2 reserved
 .word exception ; 3 reserved
 .word exception ; 4 Zero Div.
 .word exception ; 5 reserved
 .word exception ; 6 Address Error
 .word NMI ; 7 NMI
 .word exception ; 8 reserved

:
 .word exception ; 48 16-bit Timer #5-0 underflow
 .word exception ; 49 16-bit Timer #5-0 compare/match
 .word SpkIntr2 ; 50 16-bit Timer #5-1 underflow (*1)
 .word exception ; 51 16-bit Timer #5-1 compare/match

:
 .word exception ; 65 Clock
 .word exception ; 66 reserved
 .word exception ; 67 reserved
 .word INTPLAY ; 68 Ext.Int.#0 (*2)
 .word INTREC ; 69 Ext.Int.#1
 .word exception ; 70 Ext.Int.#2
 .word exception ; 71 Ext.Int.#3

exception:

 jp 0

*1 Set the address of SpkIntrX() function as the 16-bit timer 5 compare match B interrupt vector here. Select
the function to enter in the table, depending on the output mode used.

Output mode Vector value/object

15-bit monaural output (for 20-MHz or 40-MHz operation) SpkIntr1()/spkintr1.o
15-bit stereo output (for 20-MHz or 40-MHz operation) SpkIntr2()/spkintr2.o
10-bit monaural output (for 40-MHz operation) SpkIntr3()/spkintr3.o
9-bit monaural output (for 20-MHz or 40-MHz operation) SpkIntr4()/spkintr4.o

*2 This is the interrupt vector for the external switch input to control asynchronous play. To play sound data
asynchronously on the target system, create an interrupt handler routine and enter the vector for it in the
table according to the port used. For more information on the interrupt handler routine used in this sample,
refer to "demo3\int.s".

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

75

Boot routine
Enter initial settings at startup. A sample boot routine is prepared as "demo3\boot.s", which sets the stack,
enables interrupts, and sets bus conditions. Make sure the stack is allocated to the internal RAM.
Example: demo3\boot.s
#define STACK_INIT 0x00002000
#define PSR_INIT 0x00000110 ; InitIntr. Level 1, Intr. enable

.global Boot
Boot:
 xld.w %r4,STACK_INIT
 ld.w %sp,%r4 ; set STACK
 xld.w %r4,PSR_INIT
 ld.w %psr,%r4 ; set PSR
;
 xcall InitBusCtrl
 xcall InitCPUClock

 ld.w %r4,0
 xld.w [NMI_CNT],%r4

 xcall main

.global END
END:
 nop
 jp END

Bus condition settings and other such parameters are written in "demo3\demoasm.s". Examine the file for
content details.

Sound output routine
The example program shown below is "snddemo3.c" in the "demo3\" directory. When you start the program, it
outputs sound created from "sndtool\midi\c33.mid". Press the Play switch on the demonstration board
DMT33007 during playback; it will produce the sound of cymbals from the right speaker. Press the Rec
switch; it produces the sound of a snare drum from the left speaker. This program can be downloaded to the
demonstration boards DMT33007 + DMT33MON + DMT33AMP3 to verify sound output. Refer to the
Appendix for operations.
Example: demo3\snddemo3.c
/*
 * snddemo3.c : sound demonstration No.3 main function
 *
 */

#include "snd.h" (*1)
#include "sndcomn.h"

extern struct SNDDATA1 sd1_c33; (*2)
extern struct SNDDATA2 sd2_c33[];
extern int* iEvent; // evant flag 0x1: Play 0x2: rec (*3)

extern int __START_CACHE1; (*4)
extern int __START_sndcpy2_code;
extern int __SIZEOF_sndcpy2_code;
extern int __START_CACHE2;
extern int __START_spkintr2_code;
extern int __SIZEOF_spkintr2_code;
extern int __START_CACHE3;
extern int __START_slutil2_code;
extern int __SIZEOF_slutil2_code;
extern int __START_CACHE4;

5 SOUND33 LIBRARY REFERENCE

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

76

extern int __START_snd2_code;
extern int __SIZEOF_snd2_code;

sndSpeakBatch(struct SNDDATA1 *sd1, struct SNDDATA2 *sd2) (*5)
 {

unsigned char * SpkParams;
SpkParams = sndSpeak(sd1, sd2);
if(SpkParams==0)

return;
do { } while(SpkIsRunning(SpkParams));

 }

void main()
 {

sndIntInit(); /* Initialize K64 K65 interupt */ (*6)
(*7)

sndCodecpy(&__START_CACHE1,&__START_sndcpy2_code,&__SIZEOF_sndcpy2_code);
sndCodecpy(&__START_CACHE2,&__START_spkintr2_code,&__SIZEOF_spkintr2_code);
sndCodecpy(&__START_CACHE3,&__START_slutil2_code,&__SIZEOF_slutil2_code);
sndCodecpy(&__START_CACHE4,&__START_snd2_code,&__SIZEOF_snd2_code);
setSpeakVolume(0x100); (*8)
sndSpeakBatch(&sd1_c33, &sd2_c33[0]); (*9)
sndIntClose(); /* Close K64 K65 interupt */ (*10)

 }

/*
 * get sound event function
 *
 * Please change this function for your sound file.
 * If you use other interrupt please change "int.s" in the sample.
 */

void sndGetEvent(int iEventFlag){ (*11)
/* mode is 4bit data [SW2 SW1 SW4 SW3] */
switch(iEventFlag & 0xff) {

case 1: // PLAY[K64]
sndSpeakStart(18);
break;

case 2: // REC[K65]
sndSpeakStart(19);
break;

case 3: // REC/PALY
sndSpeakStart(18);
sndSpeakStart(19);
break;

default:
break;

}
iEvent=0;

}

*1 Includes "snd.h" and "sndcomn.h".

*2 Defines the play structure (SNDDATA1) and channel structure (SNDDATA2) defined in the C source
files created by "snd2pcm.exe" as externally referenced.

*3 Defines the flag indicating the asynchronous play switch status as externally referenced.

*4 Defines the transfer of objects to be executed in the internal RAM. For 32-kHz sampling play, always
transfer the objects written here to internal RAM.

5 SOUND33 LIBRARY REFERENCE

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

77

*5 This program uses SpeakBatch() that produces sound output by calling with the play and channel
structures for the musical piece as the parametersand returns after completion of output. The
sndSpeakBatch() function uses the passed parameters and calls the top-level function sndSpeak().
During sound output, the program monitors the output status with the SpkIsRunning() function.
Following completion of output, it returns to the main routine. This general purpose function can be used
without modification. You can use it by copying it as is into the user program.

*6 This routine initializes the interrupt for asynchronous play. For more information, see "demo3\int.s".

*7 Moves objects needed for high-speed operation to the internal RAM.

*8 Sets the sound volume to 0x100 (1.0-fold).

*9 Produces sound output using sndSpeakBatch() in *5.

*10 Disables the interrupt for asynchronous play. For more information, see "demo3\int.s".

*11 sndGetEvent() is an event function for asynchronous play, which is called from "sndTop.c". Even when
not performing asynchronous play, write it as a dummy function.
This example program outputs the sound of cymbals or a snare drum using the sndSpeakStart() function
according to the status of the flag (changed with a switch) which is set by the asynchronous play switch
input interrupt routine. The parameters to sndSpeakStart() are channel numbers in the channel structure
— 18 for the cymbals channel or 19 for the snare drum channel. (See "demo3\c33.c".)

APPENDIX VERIFYING OPERATION ON DMT33 BOARDS

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

78

Appendix Verifying Operation on DMT33 Boards
The following explains how to verify sound output operation, using the E0C33 Family demonstration tools
DMT33007, DMT33MON, and DMT33AMP3 to execute a sample program.

A.1 System Configuration Using DMT33007

A.1.1 Hardware Configuration
Configure the system shown in Figure A.1.1 using the DMT33007, DMT33MON, and DMT33AMP3. This system
allows sound output in stereo. Since no sound output circuits are specifically prepared for operational verification,
we use the DMT33AMP3, which is capable of stereo sound output. A user-created stereo output circuit can be used as
well. For examples of sound output circuits, refer to the "E0C33 Family Application Notes".

EPSON

DMT33MON DMT33007 DMT33AMP3

PLAY
switch

TM3
TM3TM4

TM4RESET
switch

DEBUG
switch

NMI
switch

REC
switch

COMx

RS232C cable
(included with DMT33MON package)

Figure A.1.1 System Configured with DMT33007, DMT33MON, and DMT33AMP3

For details of each DMT board, refer to the "E0C33 Family DMT/EPOD/MEM Board Manual".

System connections

Note: Before connecting or disconnecting to and from the system, always turn off power to all connected
boards and equipment. For more information on precautions to observe when using each board,
see the "E0C33 Family DMT/EPOD/MEM Board Manual".

1. Attach the DMT33MON and DMT33AMP3 to the DMT33007.
2. Connect the speaker to the DMT33AMP3.
3. Connect the DMT33MON and a PC (com1) with the RS232C cable (included with the DMT33MON

package).
4. Set the [DEBUG] switch (SW3) on the DMT33MON to the ON position.
5. Place a battery in the battery holder (included with the DMT33007) and connect it to the DMT33007.
6. Turn on power to the PC.

A.1.2 Software
The PC hosting SOUND33 must have the E0C33 Family C Compiler Package development tools installed.
Downloading a program into the DMT33007 with the debug monitor requires debugger (db33) Ver. 1.72 or later.

APPENDIX VERIFYING OPERATION ON DMT33 BOARDS

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

79

A.2 Program Execution Procedure
Each sample program directory (sndlib\demoX\) also contains absolute object files in executable format. There is no
need to compile or link a sample program before use.
The following explains how to verify the operation of a program after downloading into the DMT33007.
In the following explanation, we use the sample program "snddemo3.srf" in the "sndlib\demo3\" directory.

(1) Connect the boards and a PC as described in Section A.1.1, then switch on the power to each piece of equipment.

(2) Before a program can be downloaded, the debug monitor must be operating on the DMT33007. After
reconfirming that the [DEBUG] switch (SW3) of the DMT33007 is set to the ON position, reset the system
using the [RESET] switch (SW1).

(3) Start workbench wb33 and make "sndlib\demo3\" the current directory. For debugger options, choose the
following:
• Choose MON mode.
• Choose the port (com1) that connects to the DMT33MON and set the transfer rate to 115,200 bps.
• Check [db33*.cmd file] and choose the command file "snddemo3.cmd".
Choose "33208_v.par" as a parameter file and start the debugger.

The debugger can also be started from the DOS prompt without wb33, as follows:
(When "sndlib\demo3\" is the current directory)
>C:\cc33\db33 -mon -b 115200 -p 33208_v.par -c snddemo3.cmd

(4) When the debugger starts, the sample program (snddemo3.srf) is loaded into the RAM (0x600000 and above) of
the DMT33007 by the commands written in "snddemo3.cmd".

(5) When you execute the g command, the system starts outputting a sound.

When the program begins running, it outputs sound created from "sndtool\midi\c33.mid" (for approximately 2
minutes, 18 seconds). For a demonstration of asynchronous play, press the Play switch on the DMT33007 during
playback to produce the sound of cymbals from the right speaker. Press the Rec switch to produce the sound of
snare drums from the left speaker. Pressing the Play and the Rec switches simultaneously produces the sounds of
cymbals and snare drums from the respective right and left speakers at the same time.

When the program finishes sound (c33.mid) playback, it is halted by a hardware break. To resume playback,
execute the rsth command and the g command once again.

APPENDIX VERIFYING OPERATION ON DMT33 BOARDS

EPSON E0C33 FAMILY
SOUND33 MIDDLEWARE MANUAL

80

A.3 Building a Program
The sample programs may be modified before testing, as necessary. The following describes the procedure to build a
program and the files required.
In this explanation, as in Section A.2, we use a sample program (snddemo3) included in the "sndlib\demo3\"
directory.

A.3.1 Explanation of Files

Source files
The main program for the DMT33007 (E0C33208) is "snddemo3.c". This sample program was created
assuming it will be run on the E0C33208 operating at 40 MHz.
In addition, the following files are also used:
demo3\atable.s Trap vector table
demo3\boot.s Boot routine
demo3\demoasm.s Device initialize routine
demo3\int.s Asynchronous play interrupt handler routine
src\sndTop.c SOUND33 top-level source
src\slutil2.c Final PWM output data creating routine (stereo)
src\sndbuf.c Speak buffer setup file

demo3\c33.c Sound structure definition
demo3\stb_c33.s WAVE table data for main sound
demo3\etb_c33.s Envelope table data for main sound
demo3\stb_beat.s WAVE table data for asynchronous play sound
demo3\etb_beat.s Envelope table data for asynchronous play sound
demo3\setbl.c Instrument structure definition

For more information on creating sound output routines, refer to Section 5.7, "Example Programs". For more
information on creating sounds and tone quality data, refer to Section 3, "Software Development Procedure".

Linker command file
The contents of the linker command file (snddemo3.cm) used to link the sample program are shown below.
Since the sample program is run in the external RAM of the DMT33007, the start address of the CODE section
is set to 0x600000. Virtual sections are defined to enable the transfer of objects required for fast operation to
internal RAM before execution. See below for additional information, including information on the files
required for linking.

-objsym
-w
-d

;Map set
-code 0x00600000 ; set relative code section start address
-bss 0x006c0 ; set relative bss section start address

-section CACHE1 = 0x30
-section CACHE2 = 0x160
-section CACHE3 = 0x1e0
-section CACHE4 = 0x26C
-ucode CACHE1 {..\lib\sndcpy2.o} ; set code sections to absolute address
-ucode CACHE2 {..\lib\spkintr2.o} ; set code sections to absolute address
-ucode CACHE3 {slutil2.o} ; set code sections to absolute address
-ucode CACHE4 {..\lib\snd2.o} ; set code sections to absolute address
-bss 0x0680000 {sndbuf.o} ; set bss sections to absolute address

;Library path
-l C:\cc33\lib
-l ..\lib

APPENDIX VERIFYING OPERATION ON DMT33 BOARDS

E0C33 FAMILY EPSON
SOUND33 MIDDLEWARE MANUAL

81

;Executable file
-o snddemo3.srf

;Object files
atable.o
boot.o
int.o
demoasm.o
snddemo3.o
slutil2.o
sndtop.o
c33.o
snd_c33.o
setbl.o
stb_c33.o
etb_c33.o
sndbuf.o

;Sound library files
..\lib\sndcpy2.o
..\lib\sndcpy.o
..\lib\sl208.lib
..\lib\spkintr2.o
..\lib\snd2.o
..\lib\snd.lib
;spk.lib
;sl208.lib

;Library files
;io.lib
;lib.lib
math.lib
string.lib
ctype.lib
fp.lib
idiv.lib

A.3.2 make
To build the above sample program, use a make file "snddemo3.mak". If you corrected the source file, you need to
create the object file in executable format "snddemo3.srf" by using "snddemo3.mak".

Execution procedure for make
1. Set "sndlib\demo3\" to the current directory.
2. Enter the command shown below from the DOS prompt:

C:\E0C33\SND33\SNDLIB\DEMO3>C:\CC33\make -f snddemo3.mak

You also can execute make.exe from workbench wb33. (Refer to the "E0C33 Family C Compiler Package Manual".)

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
Unit 2.4, Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology, Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings.

ELECTRONIC DEVICES MARKETING DIVISION

■ EPSON Electronic Devices Website

http://www.epson.co.jp/device/
Issue JULY 2000, Printed in Japan M A

	1 Outline of the SOUND33 Middleware
	1.1 Contents of the SOUND33 Package
	1.2 Basic Configuration of the Sound Output System
	1.3 SOUND33 Tools

	2 Installation
	2.1 Operating Environment
	2.2 Method of Installation

	3 Software Development Procedure
	3.1 Creating Sound ROM Data
	3.1.1 Creating Sound Text Files
	3.1.2 Evaluating Sound Data with sb33
	3.1.3 SND Files
	3.1.4 Specifying Tone Qualities Using a Sound List File
	3.1.5 List of Standard Supported Musical Instruments
	3.1.6 Converting MIDI Files
	3.1.7 Creating Tone Quality Data
	3.1.8 Converting Sound Data to Assembly Source Files

	3.2 Creating User Programs and Linking with SOUND33 Library

	4 SOUND33 Tool Reference
	4.1 Outline of SOUND33 Tools
	4.2 Description of Each SOUND33 Tool
	4.2.1 txt2snd.exe
	4.2.2 snd2bin.exe
	4.2.3 midi2snd.exe
	4.2.4 snd2pcm.exe
	4.2.5 bin2s.exe
	4.2.6 bdmp.exe
	4.2.7 pcm2stb.exe
	4.2.8 stb12.exe
	4.2.9 stbadd12.exe
	4.2.10 etb.exe
	4.2.11 dct_cnv.exe
	4.2.12 pcm_norm.exe

	4.3 Sound Bench sb33
	4.3.1 Starting and Exiting
	4.3.2 Window Configuration
	4.3.3 Selecting Files
	4.3.4 Selecting Options
	4.3.5 Converting Files and Starting Play
	4.3.6 [Play/Rec] Window and Reproduction Control
	4.3.7 Operation after Evaluation Finishes

	5 SOUND33 Library Reference
	5.1 Outline of the SOUND33 Library
	5.2 Hardware Requirements
	5.3 Top-level Functions
	5.3.1 Compile Options
	5.3.2 Changing the Maximum Number of Channels and Permitted Tempo
	5.3.3 Error Codes Returned by Functions
	5.3.4 SOUND33 Data Structure
	5.3.5 sndSpeak()
	5.3.6 TopSpeakStart()
	5.3.7 sndTopDecode()
	5.3.8 sndSpeakStart()
	5.3.9 sndSpeakStop()
	5.3.10 sndCodecpy()

	5.4 SOUND33 Library Functions
	5.4.1 Sound Data Processing Functions
	sndInit()
	sndSetTempo()
	sndGetData()
	sndCpyData(), sndCpyData2()
	sndCpyDataN(), sndCpyData2N()
	sndZeroFill(), sndZeroFill2()
	sndChReset()

	5.4.2 Output Data Conversion Functions
	setSpeakVolume()
	slPcm2Spk()
	slPcm2SpkLR()

	5.4.3 Output (Speak) Functions
	SpkSoftening()
	SpkSampleRate()
	SPK_SAMPLING()
	SpkInit()
	SpkOpen()
	SpkClose()
	SpkStart()
	SpkHalt()
	SpkAppend()
	SpkRoom()
	SpkQueue()
	SpkIsRunning()
	SpkOnDone()
	SpkOnEmpty()
	SpkOnNotInTime()
	slGetVersion()

	5.4.4 Interrupt Processing Functions
	SpkIntr1(), SpkIntr2(), SpkIntr3(), SpkIntr4()

	5.5 Techniques for Speeding Up Processing
	5.6 Memory Size and Number of Simultaneously Reproduced Sound Channels
	5.6.1 Memory Size
	5.6.2 Number of Simultaneously Reproduced Sound Channels

	5.7 Example Programs

	Appendix Verifying Operation on DMT33 Boards
	A.1 System Configuration Using DMT33007
	A.1.1 Hardware Configuration
	A.1.2 Software

	A.2 Program Execution Procedure
	A.3 Building a Program
	A.3.1 Explanation of Files
	A.3.2 make

