
MF1295-01

CMOS 32-BIT SINGLE CHIP MICROCOMPUTER E0C33 Family

TS33 MIDDLEWARE MANUAL

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.

Windows95, Windows98 and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.
PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.
All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 2000 All rights reserved.

CONTENTS

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

i

PREFACE
This manual describes the configuration and functions of Text-to-Speech Conversion Middleware TS33 for the
E0C33 Family, and explains methods for using this middleware. It is targeted to developers of applications for the
E0C33 Family of microcomputers.

CONTENTS

1 Outline of the TS33 Middleware...1
1.1 Contents of the TS33 Package...1

1.2 Basic Configuration of Voice Input/Output System...2

1.3 TS33 Tool ...3

2 Installation ..4
2.1 Operating Environment..4

2.2 Method of Installation...5

3 Software Development Procedure...7
3.1 Generating TS ROM Data...8

3.1.1 Input and Processing of TS Voice Data..9
3.1.2 Generating a Dictionary File..9
3.1.3 Generating Installation Dictionary Data..10
3.1.4 Generating Text Data..13
3.1.5 Voice Evaluation and Adjustment ..13
3.1.6 Conversion of TS Data into an Assembly Source File...16

3.2 Generating Voice ROM Data Using VSX2 Tools..17
3.2.1 Preparing Voice Data..19
3.2.2 Preprocessing 16-bit PCM Data..19
3.2.3 Evaluating Compression and Talking Speed/Tone Pitch Conversion...........................20
3.2.4 Converting Voice Data into an Assembly Source File..22
3.2.5 Precautions Concerning Voice ROM Data Creation...23

3.3 Generating a User Program and Linking the TS33 Library...24

4 Tool Reference..25
4.1 Outline of TS33 Tools..25

4.2 TS ROM Data Generation and Evaluation Tools..28
4.2.1 jtxt2pts.exe..28
4.2.2 pts2ts.exe..29
4.2.3 ts2bin.exe..29
4.2.4 ts2pcm.exe..29
4.2.5 tstbl.exe..30
4.2.6 bin2s.exe ...31
4.2.7 bdmp.exe...32
4.2.8 Executing Tools from a Batch File...33
4.2.9 tb33.exe ...34

4.3 VSX2 Voice ROM Data Generation Tools...39
4.3.1 dct_cnv.exe...39
4.3.2 voxflt.exe..40
4.3.3 pcm_norm.exe...41
4.3.4 vsx2cmprs.exe...42
4.3.5 vsxcmprs.exe...43
4.3.6 ppccmprs.exe...44
4.3.7 bin2s.exe ...45
4.3.8 bdmp.exe...46

CONTENTS

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

ii

4.3.9 vsx2dec.exe ..47
4.3.10 vsxdec.exe ..48
4.3.11 Executing Tools from a Batch File..49
4.3.12 Executing Tools from a Make File ..50
4.3.13 vsx2param.exe...52

5 Library Reference . 56
5.1 Outline of TS33 Library ..56

5.2 Hardware Requirements ..58

5.3 Top-Level Functions..59
5.3.1 Compile Options...60
5.3.2 External Variables ..61
5.3.3 Data Structure ...62
5.3.4 Error Codes Returned by Top-Level Functions ...62
5.3.5 TS Data Processing Functions (ts2top.c) ..63
5.3.6 VSX2 Data Processing Functions (vsx2top.c) ..65
5.3.7 PCM Data Processing Functions (ppctop.c) ...68
5.3.8 Common Functions (voxcomn.c) ...70
5.3.9 Input/Output Data Convert Functions (slutil.c) ..71

5.4 TS33 Library Functions ..73
5.4.1 VSX2 Processing Functions ...75
5.4.2 PCM Processing Functions...78
5.4.3 Output (Speak) Functions ..80
5.4.4 Input (Listen) Functions ...84
5.4.5 High-Pass Filter Functions..88

5.5 Techniques for Speeding Up Operation...89

5.6 Library Performance and Memory Size ...90
5.6.1 CPU Occupancy of Library ...90
5.6.2 Memory Sizes Used..90

5.7 Program Examples ...91

5.8 Precautions ...97

Appendix Verifying Operation with DMT33 Boards. 98
A.1 System Configuration Using DMT33005 ...98

A.1.1 Hardware Configuration...98
A.1.2 Software .. 100

A.2 Sample Program Execution Procedure ... 101

A.3 Building Sample Programs ... 103

1 OUTLINE OF THE TS33 MIDDLEWARE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

1

1 Outline of the TS33 Middleware
As voice output middleware for the E0C33 Family, Text to Speech for the E0C33 Family (TS33) converts text data
into voice data using an E0C33 Family chip, then outputs voice by expanding word data compressed in VSX2 format.
Each function is provided as a library function that can be used after linking with the target program.
The product also includes PC tools for TS/VSX2 ROM data generation and evaluation.
Although the sound quality falls short of that of general recorded voice data, the voice data format offers the
advantage of requiring relatively little memory space. TS33 middleware is best suited to applications such as portable
devices with voice output functions and automatic vending machines.

Its main features are listed below.

• Support for 16-bit programmable timer built-in E0C33 models (including the E0C33208) operating at CPU clock
rates of 40 MHz or higher.
On-chip voice VSX2 compression requires an A/D converter.

• Support for E0C33 models (E0C33A104, E0C33208, etc.) operating at 20 MHz, if VSX format (8-kHz sampling)
data is used (installer option).

• Text conversion for each registered word

• Allows adjustment of voice pitch and length.

• VSX2 compression and expansion technologies
An exclusive Seiko Epson technology, VSX2 is ADPCM-based time-base and silent compression. With 11-kHz,
16-kHz, and 22-kHz sampling options, it provides a compact voice data form and supports reproduction at altered
talking speeds. It also allows the independent use of VSX2 compression and expansion technologies for voice
input and output.
Note) The VSX2 format data is incompatible with the VOX33 library VSX format (8-kHz sampling).

Precautions
• Be sure to fully evaluate the operation of your application system before shipping. Seiko Epson will not

assume any responsibility for problems arising from the use of this middleware in your commercial
products.

• The rights to sell this middleware are owned solely by Seiko Epson. The resale rights are not
transferable to any third party.

• All program files included in this package, except sample programs, are copyrighted by Seiko Epson.
These files may not be reproduced, distributed, modified, or reverse-engineered without the written
consent of Seiko Epson.

1.1 Contents of the TS33 Package
The contents of the TS33 package are listed below. After unpacking, check to see that all items are included with
your package.
(1) Tool disk (CD-ROM) 1 disk
(2) E0C33 Family TS33 Middleware Manual (this manual) 1 copy each in English and Japanese
(3) Warranty card 1 card each in English and Japanese

1 OUTLINE OF THE TS33 MIDDLEWARE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

2

1.2 Basic Configuration of Voice Input/Output System
The basic hardware configuration of a voice input/output system is shown in Figure 1.2.1. This system is based on the
E0C33 chip and incorporates external memory, amplifiers, a microphone, and a speaker. No microphones or A/D
converters are required if only the text-voice conversion output function is used, without the voice VSX2
compression input function.
Note that the TS33 library uses two channels of the 16-bit programmable timer on the E0C33 chip. For voice VSX2
compression input, it also uses an A/D converter channel on the E0C33 chip and an additional 16-bit programmable
timer channel. It also uses some of the internal RAM to accelerate operation.

E0C33xxx

E0C33000
Core CPU

16-bit programmable
timer

Internal RAM

External RAM External ROM

Bus interface

A/D converter

PWM using 16-bit
programmable timer

or D/A converter

Microphone
amplifier Microphone

Speaker
Power

amplifier

Figure 1.2.1 Hardware Configuration of Voice Input/Output System

The TS33 library consists of TS functions for text-voice conversion and output and VSX2 functions for voice VSX2
compression and expansion. Although the TS function uses the VSX2 function to output voice data, the VSX2
function may be used independently. By incorporating or linking the top-level functions supplied in the C source file
into or with the user program, voice processing can be accomplished easily without having to call up lower library
functions directly from the user program.

User target program
(user original specification)

TS top-level source
(corrected by user as necessary)

TS data/VSX2 data assembler source
TS dictionary data table

(created by TS tool)

VSX2 top-level source
(corrected by user as necessary)

VSX2 compressed voice data
assembler source

(created by VSX2 tool)

TS33 library functions
(used after linking)

Hardware
(16-bit programmable timer)

Figure 1.2.2 Software Configuration of Voice Input/Output System

For details on the library functions and top-level functions, refer to Section 5, "Library Reference".

1 OUTLINE OF THE TS33 MIDDLEWARE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

3

1.3 TS33 Tool
The TS33 tools can be run on a personal computer to generate TS ROM and VSX2 voice ROM data to be stored on
the E0C33 Family chip as well as to evaluate text-voice conversion output and VSX2 voice compression and voice
processing performance. All of these tools can be run under Windows 95, Windows NT 4.0, or higher versions.
Refer to Section 3, "Software Development Procedure" for information on generating ROM data. Refer to Section 4,
"Tool Reference" for details on TS33 tools.

2 INSTALLATION

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

4

2 Installation
This section explains the operating environment for the TS33 tools and how to install the TS33 middleware.

2.1 Operating Environment
Software development and ROM data generation/evaluation using TS33 require the following operating
environment.

Personal computer
An IBM PC/AT or compatible is required. A model with Pentium 90 MHz or faster CPU and 32MB or more of
RAM is recommended. Installation requires a CD-ROM drive.

Display
A display with a resolution of 800 x 600 pixels or more is required. For display, choose "small fonts" from the
control panel.

Sound card, sound editor
DAT and a digital sound card are recommended for the generation of VSX2 voice ROM data. When using an
analog sound card, choose one with the highest possible quality.
The compression and processing evaluation tools require a sound card that supports an 8- to 22-kHz sampling
16-bit monaural sound. Choose a sound editor that can handle the preceding PCM data and save to a file.

System software
TS33 tools run under Microsoft Windows 95, Windows NT 4.0, or higher versions (in English or Japanese).

Other requirements
"E0C33 Family C Compiler Package" is required for software development.

2 INSTALLATION

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

5

2.2 Method of Installation
The TS33 library and TS33 tools are supplied on CD-ROM. Open the self-extracting file on the CD-ROM named
"ts33vXX.exe" to install the TS33 library and TS33 tools in your computer. (The XX in this file name denotes a
version number. For Version 1.0, for example, the file is named "ts33v10.exe".)
Double-click on "ts33vXX.exe" to start installation. The dialog box shown below appears.

Enter the path and folder name under which you want to install the
files in the text box and click on the [Unzip] button. The specified
folder is created and all files are copied into it.
If the specified folder already exists in the specified path and
[Overwrite Files Without Prompting] is checked (turned on), the
files in the folder are overwritten without asking for your
confirmation.

The following shows the directories and file configuration after the program files have been copied:

 (root)\
readme.txt Supplementary explanation, etc. (in English)
readmeja.txt Supplementary explanation, etc. (in Japanese)

tstool\ TS33 tool directory
readme.txt TS33 tool supplementary explanation, etc. (in English)
readmeja.txt TS33 tool supplementary explanation, etc. (in Japanese)
param.txt vsx2param.exe supplementary explanation, etc. (in English)
paramja.txt vsx2param.exe supplementary explanation, etc. (in Japanese)

bin\ TS33 tools
tb33.exe Work bench for evaluation of TS-converted voice data
jtxt2pts.exe TXT-to-PTS file conversion program
pts2ts.exe PTS-to-TS file conversion program
ts2pcm.exe TS-to-PCM file conversion program
ts2bin.exe TS-to-binary file conversion program
tstbl.exe Installed dictionary data table-generation program
vsx2param.exe VSX2 compression/expansion evaluation program
vsx2cmprs.exe VSX2 compression program
vsx2dec.exe VSX2 decoding program
vsxcmprs.exe VSX compression program *1
vsxdec.exe VSX decoding program *1
ppccmprs.exe Packed PCM compression program
ppcdec.exe Packed PCM decoding program
bin2s.exe Binary-to-assembly source conversion program
bdmp.exe Binary file dumping program
dct_cnv.exe Sampling rate conversion program
pcm_norm.exe PCM normalization program
voxflt.exe High-pass filter program
ccap.exe Tool message filing tool

dict\ Dictionary directory *1
Dictionary voice 16-bit PCM file

data\ Evaluation dictionary data directory *1
This file is used to evaluate VSX2-compressed, expanded, and processed voice
data in the dict directory.

sample\ TS sample directory *2
Sample of text and batch files

smplvsx2\ VSX2 sample directory *2
Voice, batch file, and make file samples

src\ Source directory
Published tool source files

2 INSTALLATION

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

6

tslib\ TS33 library-related directory
readme.txt TS33 library supplementary explanation, etc. (in English)
readmeja.txt TS33 library supplementary explanation, etc. (in Japanese)

lib208\ TS33 library for E0C33208 directory
vox208.lib TS33 library for E0C33208
sl208.lib Voice input / output library for E0C33208
vsx2.o VSX2 object
fadpcm16.o, fadpcm24.o, fadpcm32.o, fadpcm40.o, vsxgcp.o

Objects retrieved from vox208.lib to accelerate operation

include\ TS33 library function header file directory
ts.h TS header file
vsx2.h VSX2 header file
voxcomn.h Library common header file
packpcm.h Packed PCM header file
speak.h Output function header file
listen.h Input function header file
lksym.h Linker symbol header file

src\ Library source directory
ts2top.c TS top-level function
vsx2top.c VSX2 top-level function
voxcomn.c Library common function
slutil.c SPEAK and LISTEN utility functions

smpl208\ DMT33005 sample program directory *2

hardsrc\ Hardware dependent source directory *2

*1 Th e d i c t a n d d a t a d i r e c t o r i e s a r e i n s t a l l e d wi t h 1 6 - k Hz s a mp l i n g d a t a a s s t a n d a r d
s p e c i f i c a t i o n . Yo u c a n a l s o i n s t a l l 8 - k Hz s a mp l i n g (t s OP1 v XX.e x e) a n d 2 2 - k Hz
s a mp l i n g (t s OP2 v XX.e x e) f i l e s . Ru n t h e " t s OP1 v XX.e x e " f i l e t o i n s t a l l t o o l s f o r
g e n e r a t i n g VSX f o r ma t d a t a . Ex c e p t f o r t h e En g l i s h s a mp l e s , t h e d i c t i o n a r y d a t a
i n s t a l l e d a s p a r t o f t h e s t a n d a r d s p e c i f i c a t i o n i s f o r J a p a n e s e v o i c e o u t p u t a n d
c a n b e u s e d o n l y f o r J a p a n e s e o u t p u t .

*2 Refer to "readme.txt" or "readmeja.txt" in the "tstool\" or "tslib\" directory for the
composition and the method for using sample programs.

Although the directory structure in your computer can be changed as desired, the explanations on the following
pages assume that each file has been copied from CD-ROM in the above directory structure.

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

7

3 Software Development Procedure
This section describes the procedure for developing software to process voice data on the E0C33 Family. The basic
development flow is shown below.

TS33 library

Create the main programCreate ROM data using
TS33 tools

Compile

Assemble

Link

Create a voice-processing
source program using

TS33 top-level functions

Executable object file

Figure 3.1 E0C33 Voice-Processing Software Development Procedure

1) Use TS33 tools to generate the assembly source file for the reproduction text data and voice dictionary data. To
write playback-only VSX2 voice data not derived from text-voice to ROM, use VSX2 tools to generate a voice
ROM data assembly source file.

2) Create a user program. For voice processing, use the top-level function provided in the TS library. The source of
the ROM data generated in step 1 can be included in the user program source.

3) Compile and assemble the source program.

4) Link the objects generated in step 3 with the TS33 library. This generates the object in executable form.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

8

3.1 Generating TS ROM Data
To perform TS data conversion output on the E0C33 chip, use the TS33 tools to generate text, dictionary data, and
other required data.
Figure 3.1.1 shows the procedure for generating ROM data and the configuration of TS33 tools.

Generating text file
and dictionary file

Generating TS data

Generating ROM data

file.txt Text file

PTS file

file.dic

Dictionary
file

Text→PTS
conversion

PTS→TS
conversion

TS→PCM
conversion

jtxt2pts.exe

Text input
with an editor

Adjustment
of voice pitch
and length

Normalization

VSX2
compression

VSX2
expansion

Voice pitch
adjustment

Normalization

VSX2
compression

Assembly
source
conversion

Editor

Editor

Evaluation
of voice

Evaluation
of TS voice

File conversion
and
voice adjustment

file.pcm
16-bit
PCM file

pts2ts.exe

ts2pcm.exe

file.bin
TS binary
file

Binary
conversion

Assembly
source
conversion

ts2bin.exe

file.s

TS
assembler data

Dictionary voice
assembler data

bin2s.exe

infie
Binary
file

outfile

HEX dump file

bdmp.exe

Assembly
source file

Copy into the user program source
or link with the user program after assembling

Conversion to
assembly source

Other utility

HEX dump

∗ 16-bit PCM file
 11/16/22 kHz sampling, 16-bit amplitude, monaural, little-endian format voice file
 8-kHz sampling file when VSX compression is used.

file.pts

PTS filefile.pts

TS filefile.ts

Voice input

Generating dictionary data

Voice discriminating
and processing

Voice

file.pcm
16-bit
PCM file

16-bit
PCM file

High-pass
filtervoxflt.exe

Sound editor

Generating dictionary
table and batch file

16-bit PCM file
processing

MIC

tstbl.exe

f_dict.bat

Batch file to generate
evaluation voice data

file_label.s

Unused dictionary
No. table

Copy into the user program source

file.h

Dictionary table
header file

file.pcm

Dictionary data file
for voice evaluation

file.pcm

pcm_norm.exe

vsx2cmprs.exe

vsx2dec.exe

dct_cnv.exe

f_data.bat

Batch file to generate
installation dictionary data

file.s

pcm_norm.exe

vsx2cmprs.exe

bin2s.exe

tb33.exe

Figure 3.1.1 Flow Chart for Generating TS ROM Data

Only the methods for using TS33 tools are outlined here. For details, refer to Section 4, "Tool Reference".
In the explanation that follows, assume that "tstool\sample\" is set as the current directory, and that PATH is set in
the "tstool\bin\" directory.
Example: DOS>CD e0c33\ts33\tstool\sample

DOS>PATH c:\e0c33\ts33\tstool\bin

Text-voice conversion output works from a dictionary file wherein the correspondence between each word and voice
data is mapped, as explained further below. For text for voice output, each word is converted into voice data with the
dictionary file.
As voice data occupies large memory space, it is compressed in VSX2 (or VSX) format and expanded for
reproduction in real-time.

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

9

3.1.1 Input and Processing of TS Voice Data
List all the words required for voice output. We recommend recording even phonemes and words not currently used
for the text being generated, but that may be used in the future in the same environment.

Input voice through a microphone to generate the source voice data (16-bit PCM file: 16-kHz sampling*, 16-bit
monaural voice file). Prepare data to ensure the best possible quality. Use digital sampling with DAT, if possible.
* VSX2 supports sampled at 11.025, 16, and 22.050 kHz. The optional VSX format supports only 8-kHz sampling.

Next, discriminate words from the sampled voice data and process the data through a filter. Use a commercial sound
editor for data discriminating. Some of the sound editors are also capable of performing filter processing, but may
degrade sound quality.

High-pass filtering
TS33 tools have a high-pass filter program "voxflt.exe" that allows you to specify the cut-off frequency. By
passing voice data through this filter, the clarity of speech can be improved. Normally, Seiko Epson
recommends filtering voice data with a 120-Hz cut-off frequency before using it in the next processing step.

DOS>voxflt -l 60 se.pcm seH.pcm

In this example, the 16-kHz sampling "se.pcm" is filtered with cut-off frequency of a 120Hz (-l 60) to generate
"seH.pcm".

3.1.2 Generating a Dictionary File
Using a general-purpose editor, generate a dictionary file to match each word to the corresponding voice data. The
dictionary file is in the following text format.
Example: english.dic

[user] Please add user dictuonary from the dictionary No.0xc8 to No.0xfe.

c8 ..\dict\the.pcm [the]

c9 ..\dict\fami.pcm [family]

ca ..\dict\txt2sp.pcm [texttospeach]

cb ..\dict\demo.pcm [demonstration]

cc ..\dict\three.pcm [three]

cd ..\dict\this.pcm [this]

ce ..\dict\is.pcm [is]

cf ..\dict\eoc.pcm [e0c]

The contents of each line are as follows.
<Dictionary No.> <PCM file name> <[Word]>

The <Dictionary No.> is one of 54 hexadecimal numbers from "c8" to "fe", which must be in ascending order,
though not necessarily continuous. You cannot use the values "00" to "c7", since they are reserved for output in
Japanese.
Specify the <PCM file name> including the path, absolute or relative. For "english.dic", specify the relative path
from the "tstool\samle\" directory. This assumes that a series of jobs are performed in the directory.
<[Word]> is the word to be converted into the PCM file specified on the line. Specify by sandwiching it between
brackets [].

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

10

3.1.3 Generating Installation Dictionary Data
From the dictionary file generated as a text file, use "tstbl.exe" to generate the data table to be included in the
program, then perform VSX2 compression of the registered PCM file to generate a batch file for inclusion in the
product.
Example: DOS>tstbl -c24 -t2 -s 20 english.dic vsxdataE

In this example, the following files are generated from the dictionary file "sample.dic".
The symbols -c24, -t2, and -s20 are parameters that determine the compression ratio of PCM files registered in the
dictionary file into VSX2/VSX format. The symbol -c24 specifies a compression corresponding to 24 kbps; -t2
compresses data 50% in the timebase direction; and -s20 specifies the threshold value for silence judgement. For
other settings, refer to "4.2.5 tstbl.exe".

<file>.h
This is a header file that defines the externally referenced dictionary files, 16-bit timer setting and dictionary
data table. Include this file in the user program.
Example: vsxdataE.h
#define VSX_CMP VSX_COMPRESS_24K Definition of the constant specifying the compression ratio

extern unsigned char ts00[]; Statement of the externally referenced dictionary file

extern unsigned char ts01[];

extern unsigned char ts02[];

extern unsigned char ts03[];

 :

extern unsigned char tscc[];

extern unsigned char tscd[];

extern unsigned char tsce[];

extern unsigned char tscf[];

const short tsFtbl[] = { 16-bit timer setting table

0x3133,

0x4,

0x119,

0x10d,

0x100,

0xe7,

0x0

};

const int tsPtbl[] = { Dictionary data table

0x3233,

0xd0,

(int)&ts00[0],

(int)&ts01[0],

(int)&ts02[0],

(int)&ts03[0],

 :

(int)&tscc[0],

(int)&tscd[0],

(int)&tsce[0],

(int)&tscf[0],

0x0

};

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

11

<file>_data.bat
A batch file that normalizes and compresses all PCM files registered in the dictionary file in VSX2/VSX format,
and then generates the assembly source file to install these files into the program.
Example: vsxdataE_data.bat
set tspath=..\bin\

%tspath%pcm_norm -r 65 ..\dict\the.pcm tmp.pcm

%tspath%vsx2cmprs -c24 -t2 -s 20 tmp.pcm tmp.vsx

%tspath%bin2s -l tsc8 tmp.vsx > vsxdataE.s

%tspath%pcm_norm -r 65 ..\dict\fami.pcm tmp.pcm

%tspath%vsx2cmprs -c24 -t2 -s 20 tmp.pcm tmp.vsx

%tspath%bin2s -l tsc9 tmp.vsx >> vsxdataE.s

 :

%tspath%pcm_norm -r 65 ..\dict\eoc.pcm tmp.pcm

%tspath%vsx2cmprs -c24 -t2 -s 20 tmp.pcm tmp.vsx

%tspath%bin2s -l tscf tmp.vsx >> vsxdataE.s

del tmp.vsx

del tmp.pcm

Modify the path (..\bin\) to the TS33 tool if necessary. For details on tools run by the batch file, refer to
Section 4, "Tool Reference".
This batch file generates the following assembly source file.
Example: vsxdataE.s

.global tsc8

.align 2

tsc8:

.byte 0x53 0x22 0x2e 0x9f 0xff 0xff 0xdb 0x5b

.byte 0xb5 0x92 0xc9 0x64 0x30 0x14 0xc8 0x24

 :

.byte 0x92 0x40 0x01 0x01 0x01 0x01 0x00

; total 799 bytes data

.global tsc9

.align 2

tsc9:

.byte 0x53 0x22 0x55 0x1f 0xff 0xfe 0xfb 0x6b

.byte 0x6d 0xb6 0xed 0x6d 0xb4 0x4b 0xa9 0x00

 :

.global tscf

.align 2

tscf:

.byte 0x53 0x22 0x49 0x8d 0x6b 0xea 0xb4 0x79

.byte 0x69 0x93 0x6c 0x40 0xde 0xc3 0x2e 0xb2

 :

.byte 0x01 0x00

; total 1746 bytes data

The label attached to each data is "ts" + dictionary No., the title used by the header file for the statement of
external reference. Copy this file in the user program, or link after assembling.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

12

<file>_label.s
This file describes only the labels of unused dictionary numbers in the dictionary file to generate a table that
includes unused dictionary numbers in the header file. This file is used to prevent linking errors. Copy this file
in the user program along with the above assembly source, or link after assembling.
Example: vsxdataE_label.s

.global ts00

ts00:

.global ts01

ts01:

.global ts02

:

.global tsc6

tsc6:

.global tsc7

tsc7:

<file>_dict.bat
A batch file for generating a voice file to evaluate text-voice conversion output on a PC.
Example: vsxdataE_dict.bat
set tspath=..\bin\

%tspath%pcm_norm -r 65 ..\dict\the.pcm ..\data\tmp.pcm

%tspath%vsx2cmprs -c24 -t2 -s 20 ..\data\tmp.pcm ..\data\tmp.vsx

%tspath%vsx2dec ..\data\tmp.vsx ..\data\tsc8_02_norm.pcm

%tspath%vsx2dec -s15 ..\data\tmp.vsx ..\data\tsc8_02_s15.pcm

%tspath%vsx2dec -s20 ..\data\tmp.vsx ..\data\tsc8_02_s20.pcm

%tspath%vsx2dec -f15 ..\data\tmp.vsx ..\data\tsc8_02_f15.pcm

%tspath%dct_cnv 100 111 ..\data\tsc8_02_norm.pcm ..\data\tsc8_00_norm.pcm

%tspath%dct_cnv 100 111 ..\data\tsc8_02_s15.pcm ..\data\tsc8_00_s15.pcm

%tspath%dct_cnv 100 111 ..\data\tsc8_02_s20.pcm ..\data\tsc8_00_s20.pcm

%tspath%dct_cnv 100 111 ..\data\tsc8_02_f15.pcm ..\data\tsc8_00_f15.pcm

%tspath%dct_cnv 100 105 ..\data\tsc8_02_norm.pcm ..\data\tsc8_01_norm.pcm

%tspath%dct_cnv 100 105 ..\data\tsc8_02_s15.pcm ..\data\tsc8_01_s15.pcm

%tspath%dct_cnv 100 105 ..\data\tsc8_02_s20.pcm ..\data\tsc8_01_s20.pcm

%tspath%dct_cnv 100 105 ..\data\tsc8_02_f15.pcm ..\data\tsc8_01_f15.pcm

:

%tspath%dct_cnv 100 91 ..\data\tscf_02_norm.pcm ..\data\tscf_03_norm.pcm

%tspath%dct_cnv 100 91 ..\data\tscf_02_s15.pcm ..\data\tscf_03_s15.pcm

%tspath%dct_cnv 100 91 ..\data\tscf_02_s20.pcm ..\data\tscf_03_s20.pcm

%tspath%dct_cnv 100 91 ..\data\tscf_02_f15.pcm ..\data\tscf_03_f15.pcm

del ..\data\tmp.vsx

del ..\data\tmp.pcm

Modify the path (..\bin\) to the TS33 tool if necessary. For details on the tools run by the batch file, refer to
Section 4, "Tool Reference".
This batch file performs VSX2/VSX-compression/expansion of all dictionary data (individual PCM data), and
generates a file of voices of different pitches and lengths. The file thus generated is needed to evaluate voice
converted from text on a PC with "ts2pcm.exe" and "tb33.exe".

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

13

3.1.4 Generating Text Data
To generate a text format file storing text to be converted into voice, input the registered words enclosed with
brackets [], as shown below.
Example: sampleE.txt

[this] [is] [the] [e0c] [three][three] [family] [texttospeach] [demonstration]

Spaces are converted into silent data.
Words to be described in the text file should be registered in the dictionary file.
If you describe a word that is not in the dictionary, a warning will be issued when the text file is converted into a PTS
file with "jtxt2pts.exe", and the word will be ignored.

3.1.5 Voice Evaluation and Adjustment
Use "tb33.exe" to convert the text data and to reproduce the generated voice file on a PC. This is the simplest
method of evaluation. "tb33.exe" is a Windows GUI application. Double-click its icon to launch it.

The following window is displayed.

 [Main] window

Follow the steps given below to reproduce the voice of the generated "sampleE.txt".

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

14

1) Click the [...] button to the right of the [Dictionary file]
text box. In the dialog box that appears, select the
dictionary file "english.dic".

2) Select the sample folder from the directory list box and
"sampleE.txt" from the file list box.

3) Click the [Play] button.

"tb33.exe" invokes and runs the following tools and reproduces the final PCM file.
1) jtxt2pts.exe Text file-to-PTS file conversion
2) pts2ts.exe PTS file-to-TS file conversion
3) ts2pcm.exe TS file-to-PCM file conversion

If you are using a dictionary to which data is added or newly-generated data, execute the batch file ("xxx_dict.bat"
generated by "tstbl.exe") shown in Section 3.1.3 to generate PCM data for evaluation before the operation described
above.

"jtxt2pts.exe" converts the text file into a PTS file. You can also run this tool from the DOS prompt.
Example: DOS>jtxt2pts 2 english.dic sampleE.txt sampleE.pts

In this example, "sampleE.txt" is converted into "sampleE.pts". As the other parameter, specify the dictionary
"english.dic" to be used. The parameter value "2" specifies a silent period of 32 msec to be inserted between letters or
words to delimit each letter during conversion into Japanese. If you run the tool from the DOS-prompt, you can also
specify "0" (no silent period), "1" (16 msec), or "3" (48 msec).

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

15

The following PTS files are generated through the operation described above.
Example: sampleE.pts

cd norm norm norm s2 //[this]
ff 10 //
ce norm norm norm s2 //[is]
ff 10 //
c8 norm norm norm s2 //[the]
ff 10 //
cf norm norm norm s2 //[e0c]
ff 10 //
cc norm norm norm s2 //[three]
cc norm norm norm s2 //[three]
ff 10 //
c9 norm norm norm s2 //[family]
ff 10 //
ca norm norm norm s2 //[texttospeach]
ff 10 //
cb norm norm norm s2 //[demonstration]

Each line of the PTS file contains the following.
<Dictionary No.> <Loudness> <Length of sound> <Pitch of sound> <Length of silent period> //<Original text>

<Dictionary No.>
Dictionary data No. corresponding to the <Original text> in the specified dictionary file ("english.dic" in this
example)

* ff is the reservation code denoting the silence inserted with the space key. The following numeric value
indicates the length of the silent period in 16 msec units, up to a maximum of 127 (2,032 msec). "ff 10"
(default) indicates a silent period of 160 msec.

<Loudness>
Reproduces sound at:
hl4 1.4 times the standard volume
norm The standard volume
l07 0.7 times the standard volume
l05 0.5 times the standard volume

<Length of sound>
Reproduces sound with length:
s20 2 times the standard length (twice slower)
s15 1.5 times standard length (1.5 times slower)
norm The standard length
f15 1/1.5 times standard length (1.5 times faster)

<Pitch of sound>
Reproduces sound at a pitch:
l2 10% lower than standard
l1 5% lower than standard
norm The standard pitch
h1 10% higher than standard

<Length of silent period>
Length of the silent period to delimit sound on the next line
Insert a silent period of:
s0 0 msec (no silent period)
s1 16 msec
s2 32 msec
s3 48 msec

//<Original text>
Words described in the text file before conversion

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

16

When a text file is converted with "jtxt2pts.exe", <Loudness>, <Pitch of sound> and <Length of sound> are set at
"norm", and <length of silent period> is set to the length specified by the parameter on the command line.
The PTS file thus generated is used to manually modify the preceding parameters.

Modify the parameters of each word in the PTS file when necessary, and reproduce the sound again to check the
results.
To modify the PTS file (text file), double-click the "sampleE.pts" in the file list box, or select the file and click the
[Edit] button. The Windows "Notepad" starts to open the file, enabling easier modification.
The default editor is set in the "Notepad". You can set a preferred application as the default editor in the [Option]
window. (Click the [Option] button to display the window.)
To reproduce a sound from a PTS file, select "sampleE.pts" from the file list box and click the [Play] button.

For processing with "tb33.exe" and details on other tools, refer to Section 4, "Tool Reference".

3.1.6 Conversion of TS Data into an Assembly Source File
Use the batch file "tstool\sample\ts.bat" to convert the PTS file thus generated into an assembly source file.
Example: DOS>ts sampleE

<ts.bat>
set tspath=..\bin\

..\bin\pts2ts %1.pts %1.ts

..\bin\ts2bin %1.ts %1.bin

..\bin\bin2s -l %1 %1.bin > %1.s

"ts.bat" converts the specified PTS file as required and generates the following assembly source file. For details on
tools run in the batch file, refer to Section 4, "Tool Reference".
Example: sampleE.s

.global sampleE

.align 2

sampleE:

.byte 0x33 0x30 0xcd 0x0a 0xff 0x10 0xce 0x0a

.byte 0xff 0x10 0xc8 0x0a 0xff 0x10 0xcf 0x0a

.byte 0xff 0x10 0xcc 0x0a 0xcc 0x0a 0xff 0x10

.byte 0xc9 0x0a 0xff 0x10 0xca 0x0a 0xff 0x10

.byte 0xcb 0x0a 0xff 0xff 0xff 0xff

; total 38 bytes data

The source file will be generated with an input file name as a global symbol. You can change the symbol name with
option "-l symbol" in "bin2s.exe". Use this symbol to access data from the user program.
Copy this file into the user program, together with the assembly source generated with "tstbl.exe" (refer to Section
3.1.3), or link after assembling.

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

17

3.2 Generating Voice ROM Data Using VSX2 Tools
VSX2 is Seiko Epson's exclusive voice data format based on the ADPCM format and features high compression
ratio using timebase compression and silent part compression. It supports sampling at 11.025, 16, and 22.050 kHz. In
contrast, the conventional VSX format supports 8-kHz sampling only.

Note: The VSX2 compression format is incompatible with the VSX format (also included in the VOX33
middleware), which is a TS33 tool option.

A method for generating VSX2 voice data to be reproduced on the E0C33 chip is given below. This procedure is not
required for voice data used for text-voice conversion output.
Figure 3.2.1 shows the procedure for generating voice ROM data and the configuration of VSX2 tools.

Only the methods for using VSX2 tools are outlined here. For details, refer to Section 4,"Tool Reference".
In the following explanation, "se.pcm" in the "tstool\smplvsx2\" directory is used as the source voice file. In the
explanation that follows assumes that "tstool\smplvsx2\" is set as the current directory, and that PATH is set in the
"tstool\bin\" directory.
Example: DOS>CD e0c33\ts33\tstool\smplvsx2

DOS>PATH c:\e0c33\ts33\tstool\bin

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

18

file.wav

DAT

Analog input also possible
(with the sound quality depending
on the environment)

Voice input

Generating source voice data

Generating voice ROM data

Voice
discriminating
and processing

WAV
file

Voice

file.pcm
16-bit

PCM file

file.pcm
16-bit
PCM file

dct_cnv.exe
Sampling rate
conversion

High-pass filtervoxflt.exe

Normalizationpcm_norm.exe

Sound editor

Evaluation of
voice compression

Evaluation of voice
compressio/processing

Processing of
16-bit PCM file

MIC

16-bit PCM file
after VSX2 compression

file.pcm

Evaluation of
VSX2 compression

vsx2param.exe

Windows GUI tool

file.vsx VSX2 file

VSX2
compression

vsx2cmprs.exe

file.s

VSX2 voice
assembler data

bin2s.exe

file.ppc PPC file

Packed PCM
conversion

ppccmprs.exe

file.s

PPC voice
assembler data

bin2s.exe

Decoding
VSX2 file

file.vsx
VSX2
file

file.pcm

16-bit PCM file

vsx2dec.exe

Decoding
PPC file

file.ppc
PPC
file

file.pcm

16-bit PCM file

ppcdec.exe

Hex dump

infie
Binary
file

outfile

Hex dump file

bdmp.exe

 Assembly source
conversion

Assembly
source file

Copied into user program source
or linked to user program after assembling

Voice compression
and conversion into
assembly source

Other utilities

Compression
file decoding

HEX dump

File types
16-bit PCM file (.pcm) 11/16/22 kHz, 16-bit amplitude, monaural, little endian format voice file

8-kHz sampling data when VSX compression is used
WAV file (.wav) 48 kHz, 16-bit amplitude, monaural voice file (file not compressed by Windows ADPCM)
VSX2 file (.vsx) VSX2-compressed voice file
PPC file (.ppc) Packed PCM file

Figure 3.2.1 Flow Chart for Generating Voice ROM Data

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

19

3.2.1 Preparing Voice Data
Using a microphone, generate the source voice data (16-bit PCM file: 16-kHz sampling*, 16-bit monaural voice file).
Prepare data with the highest sound quality possible. Digital sampling using a DAT is recommended.
* VSX2 also supports data sampled at 11.025 and 22.050 kHz.

Down-sampling a WAV file
When you have generated a 48-kHz-sampling WAV file, use "dct_cnv.exe" to down-sample it to the
preceding sampling rate and convert it into a 16-bit PCM file. Execute this tool from the DOS prompt.
Example: DOS>dct_cnv 140 80 sample.wav sample.pcm

In this example, "sample.wav" is down-sampled at 16 kHz (140 = 48 × 5 → 80 = 16 × 5) to generate
"sample.pcm".
Commercially available sound editors can also be used for this processing, but care must be taken not to degrade
sound quality.

3.2.2 Preprocessing 16-bit PCM Data
Next, discriminate the actually used part from the sampled voice data, and preprocess it by level adjustment and
filtering. Use a commercially available sound editor for discrimination processing and level adjustments.

High-pass filtering
TS33 tools have a high-pass filter program "voxflt.exe" that allows you to specify the cut-off frequency. By
passing voice data through this filter, the clarity of speech can be improved. Normally, Seiko Epson
recommends filtering voice data with a 120 Hz cut-off frequency before using it in the next processing step.
Example: DOS>voxflt -l 60 se.pcm seH.pcm

In this example, the 16-kHz sampling "se.pcm" is filtered with cut-off frequency of a 120 Hz (-l 60) to
generate "seH.pcm".

Normalizing
If the maximum amplitude of the source voice data exceeds 90% of the maximum value of 16-bit PCM data
when the source voice is compressed, sound quality after compression may be degraded. For this reason, adjust
the amplitude of the source voice to or below 90% of the maximum value. Use "pcm_norm.exe" for this
processing.
Example: DOS>pcm_norm seH.pcm seN.pcm

In this example, "seH.pcm" is adjusted so that the amplitude is 90% or below of the maximum value of 16-bit
PCM data and saved to "seN.pcm" after being adjusted.
The voice data must always undergo this processing before it can be compressed by VSX2 tools.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

20

3.2.3 Evaluating Compression and Talking Speed/Tone Pitch Conversion
Before generating voice ROM data, voice compression/expansion can be evaluated on a PC with the VSX2
compression evaluation tool "vsx2param.exe". For details on the tool, refer to Section 4.3.13, "vsx2param.exe".

(1) Starting vsx2param.exe

Double-click on the "vsx2param.exe" icon to start the tool. To quit the tool, click on the
[Close] button on the title bar.
When "vsx2param.exe" starts, the [VSX2Param] window appears.

[VSX2Param] window

(2) Selecting the sampling rate
In the [Sampling] combo box, select a sampling rate from the following four categories. This parameter
determines the sound quality. When loading a PCM data, use the sampling rate of the file.
8kHz (for PCM data reproduction)
11.025kHz (for VSX2 compression)
16kHz (for VSX2 compression)
22.05kHz (for VSX2 compression)

(3) Entering voice data

Loading a 16-bit PCM data (sampled at 11.025, 16, and 22.05 kHz)
Click the [Open] button to call up a file selection dialog box. Use this dialog box to choose the 16-bit PCM file
that was normalized in the preprocess.

Entering data from a microphone
To enter voice data from a microphone, set the recording time (seconds) in [Time] and the input level in [Gain],
and then click on the [Listen] button.

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

21

When you have finished entering voice data from a file or microphone, the input waveform is displayed in the
full-waveform display area in the upper part of the window.

Full-waveform display area (example for se.pcm)

The input voice can be reproduced by clicking on the [Speak] button.

(4) Choosing compression ratio
Using the [Compress] combo box, choose the desired compression ratio from the following four.
2bit/data (Compresses equivalent to 16 kbps.)
3bit/data (Compresses equivalent to 24 kbps; default)
4bit/data (Compresses equivalent to 32 kbps)
5bit/data (Compresses equivalent to 40 kbps)

Using the [Time Cmprs] combo box, choose a compression ratio in the timebase direction.
×1.0 (same effect as source voice; default)
×2.0 (same effect as recording at 2 times normal speed)
×3.0 (same effect as recording at 3 times normal speed)
×4.0 (same effect as recording at 4 times normal speed)

Using the [Speed] combo box, choose a playback speed for voice data.
×1.0 (same as source voice; default) *
×1.5 (speed converted to 1.5 times that of source voice) *
×2.0 (speed converted to 2 times that of source voice) *
×3.0 (speed converted to 3 times that of source voice)
×4.0 (speed converted to 4 times that of source voice)
×6.0 (speed converted to 6 times that of source voice)
×8.0 (speed converted to 8 times that of source voice)
×16.0 (speed converted to 16 times that of source voice)
×1/1.5 (speed converted to 1/1.5 times that of source voice) *
×1/2.0 (speed converted to 1/2 times that of source voice)

Note: Conversion on the E0C33 chip is subject to limitations on the parameters that can be selected.
(Seiko Epson recommends using only the parameters marked by ∗ .)

To compress the silent part further, use the [Silent thresh] edit box to set the threshold level at which you want
the data to be treated as silent. The greater the threshold, the higher the compression ratio, but the lower the
sound quality. Normally, set the threshold in the range of 0 to 50.

After selecting each parameter, click on the [SyntheSpk] button. The input voice data is compressed, and the
compressed voice data is reproduced by expansion according to the selected parameters.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

22

The lower waveform display area is used to display part of the voice waveform in the timebase direction as an
enlarged view. By choosing the [Synthe] and [Source] check boxes, you can display the source voice
waveform in black and the compressed voice waveform in blue. The partial-waveform you want to check can
be displayed by scrolling the screen using the upper scroll bar.

Partial-waveform display area (example for se.pcm)

(5) Saving compressed voice data
To use the result of compression as voice ROM data, save it to a PCM file using the [SavPCM] button.
When loading a 16-bit PCM file to evaluate compression, you do not need to save compression results here,
because a VSX2 file can be generated from source data using "vsx2cmprs.exe".

3.2.4 Converting Voice Data into an Assembly Source File
To enable the generated voice data to be included in or linked to the user program, generate an assembly source file
for the E0C33 assembler.

When writing to ROM in VSX2 format
Determine the quality and compression ratio of the voice data based on the evaluation results of the quality and
compression ratio with the "vsx2param.exe" and system memory capacity.

1. Using "vsx2cmprs.exe", compress the source voice data (normalized 16-bit PCM file) in VSX2 format to
generate a VSX2 file.

Example: DOS>vsx2cmprs -c24 -t2 -s 20 seN.pcm se.vsx

In this example, the voice data "seN.pcm" that has been normalized by "pcm_norm.exe" is compressed by a
factor of 1/2 in the timebase direction with a compression ratio of 24 kbps and a silent packet level of 50, thereby
creating "se.vsx". For the compression ratio option to be specified here, use the parameter determined during
evaluation by "vsx2param.exe".

2. Using "bin2s.exe", convert the VSX2 voice file (binary file) into an assembly source file.

Example: DOS>bin2s -l sevsx se.vsx > se.vsxs (The redirect function of DOS is used.)

In this example, the VSX2 file "se.vsx" is converted into the assembly source file "se.vsxs". This file "se.vsxs"
is generated using "sevsx" as a global symbol as shown below. (If the "-l symbol" option is omitted, the symbol
name becomes the same as the input file name "se".)

Contents of "se.vsxs"
.global sevsx

.align 2

sevsx:

.byte 0x53 0x22 0x01 0x01 0x1b 0xd6 0xdd 0x61

.byte 0x92 0x50 0x05 0x06 0x49 0x27 0x26 0x00

.byte 0x3d 0xb2 0x53 0x48 0x00 0xda 0x69 0x14

 :

; total 4733 bytes data

3 SOFTWARE DEVELOPMENT PROCEDURE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

23

When writing to ROM in packed PCM format
To write voice data to ROM after converting it into packed PCM format, follow the procedure described below
to generate the assembly source file. Use this method to write PCM data without VSX2 compression, or write
PCM data processed by "vsx2param.exe" to ROM.

1. Using "ppccmprs.exe," convert the source voice data (normalized 16-bit PCM file) into packed PCM
format to generate a PPC file.

Example: DOS>ppccmprs seN.pcm se.ppc

In this example, the voice data "seN.pcm" that has been normalized by "pcm_norm.exe" is converted to
generate "se.ppc".

2. Using "bin2s.exe," convert the PPC file (binary file) into an assembly source file.

Example: DOS>bin2s -l seppc se.ppc > se.ppcs (The redirect function of DOS is used.)

In this example, the PPC file "se.ppc" is converted into the assembly source file "se.ppcs."
"se.ppcs" is generated using "seppc" as a global symbol as shown below. (If the "-l symbol" option is
omitted, the symbol name becomes the same as the input file name "se".)

Contents of "se.ppcs"
.global seppc

.align 2

seppc:

.byte 0x50 0x80 0x66 0x00 0x00 0x00 0x00 0x00

.byte 0x00 0x01 0x00 0x00 0x00 0xff 0x00 0xff

.byte 0x00 0x00 0xff 0x00 0xff 0xff 0xff 0xff

 :

; total 32436 bytes data

3.2.5 Precautions Concerning Voice ROM Data Creation
• "vsx2param.exe" uses an algorithm that is similar to, but not identical to, the libraries implemented on the E0C33

chip. Use these tools for the preliminary evaluation of compression parameters, etc. Also, because sound quality
depends on analog components such as the speaker, microphone, and op-amp, the sound quality as evaluated on a
PC may differ from that actually obtained in the application system. The final sound quality, operation, etc. must
be evaluated using the actual application system that contains the E0C33 chip.

• Before "vsx2param.exe" can be used, a sound card (Sound Blaster 16-compatible) that supports 8- to 22-kHz
sampling 16-bit monaural voice input/output is required. The program may not work with a sound card that only
supports 8-bit data.

• VSX2 voice data and VSX voice data are not compatible with each other.

3 SOFTWARE DEVELOPMENT PROCEDURE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

24

3.3 Generating a User Program and Linking the TS33 Library
A range of operations from text-speech conversion, VSX2 voice compression and recording to voice expansion, and
playback on the E0C33 chip can be implemented by calling up TS33 library functions. In addition to low-level
library objects, this middleware package contains the source file of the functionally classified top-level functions
created in C language. By installing these functions into the user program, a voice-processing routine can be created
easily.
For details on library functions and examples of programs, refer to Section 5, "Library Reference".

The TS ROM data and VSX2 voice ROM data you have generated can be incorporated into the user program or
linked to the user program along with the TS33 library after assembling.
When creating and linking programs, note the following:

(1) The top-level functions (ts2top.c) for text-voice conversion calls the top-level functions (vsx2top.c, voxcomn.c
and slutil.c) of the VSX2 library. Even if you have not called up the VSX2 functions from the user program
directly, link the VSX2 top-level functions and the library.

(2) The TS33 library functions use the CPU’s R8 register. Therefore, when linking TS33 library functions,
including the top-level functions, you cannot use the -gp option (optimization using global pointer/R8) of the
instruction extender ext33.

(3) Make sure all of the BSS sections used by the TS33 library are mapped into the internal RAM. Also, be sure to
use the internal RAM for the stack.

(4) When mapping TS33 library program code into an external memory area, make sure this area is accessed in 2
wait cycles or less, if possible. Also, be sure to use a 16-bit-wide memory area for this external area.

(5) Several objects in the library need to be mapped into the internal RAM in order to increase the operation speed.
For details, refer to Section 5.5, "Techniques for Speeding Up Operation".

Procedures for executing a sample program using the DMT33005 and DMT33AMP boards are listed in the
Appendix for your reference.

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

25

4 Tool Reference
This section describes the function of each TS33 tool and how to use them.

4.1 Outline of TS33 Tools
TS33 tools are software tools that are run on a personal computer to generate TS ROM data and VSX2 voice ROM
data to be stored on the E0C33 Family chip, as well as to evaluate the voice. All of these tools can be run under
Windows 95, Windows NT 4.0, or higher versions. (For details on the operating environment, refer to Section 2.1,
"Operating Environment".)
The TS33 tools are located in the "\tstool\bin\" directory.
Figure 4.1.1 and Figure 4.1.2 show the respective procedures for generating TS ROM data and VSX2 voice ROM
data.

Generating text file
and dictionary file

Generating TS data

Generating ROM data

file.txt Text file

PTS file

file.dic

Dictionary
file

Text→PTS
conversion

PTS→TS
conversion

TS→PCM
conversion

jtxt2pts.exe

Text input
with an editor

Adjustment
of voice pitch
and length

Normalization

VSX2
compression

VSX2
expansion

Voice pitch
adjustment

Normalization

VSX2
compression

Assembly
source
conversion

Editor

Editor

Evaluation
of voice

Evaluation
of TS voice

File conversion
and
voice adjustment

file.pcm
16-bit
PCM file

pts2ts.exe

ts2pcm.exe

file.bin
TS binary
file

Binary
conversion

Assembly
source
conversion

ts2bin.exe

file.s

TS
assembler data

Dictionary voice
assembler data

bin2s.exe

infie
Binary
file

outfile

HEX dump file

bdmp.exe

Assembly
source file

Copy into the user program source
or link with the user program after assembling

Conversion to
assembly source

Other utility

HEX dump

∗ 16-bit PCM file
 11/16/22 kHz sampling, 16-bit amplitude, monaural, little-endian format voice file
 8-kHz sampling file when VSX compression is used.

file.pts

PTS filefile.pts

TS filefile.ts

Voice input

Generating dictionary data

Voice discriminating
and processing

Voice

file.pcm
16-bit
PCM file

16-bit
PCM file

High-pass
filtervoxflt.exe

Sound editor

Generating dictionary
table and batch file

16-bit PCM file
processing

MIC

tstbl.exe

f_dict.bat

Batch file to generate
evaluation voice data

file_label.s

Unused dictionary
No. table

Copy into the user program source

file.h

Dictionary table
header file

file.pcm

Dictionary data file
for voice evaluation

file.pcm

pcm_norm.exe

vsx2cmprs.exe

vsx2dec.exe

dct_cnv.exe

f_data.bat

Batch file to generate
installation dictionary data

file.s

pcm_norm.exe

vsx2cmprs.exe

bin2s.exe

tb33.exe

∗ In addition to the VSX2 tools (vsx2cmprs.exe and vsx2dec.exe) for VSX2 compression shown in the Figure, tools for
VSX (8K sampling) (vsxcmprs.exe and vsxdec.exe) are also prepared. Note that files compressed by VSX2 tools
and files compressed by VSX tools are incompatible.

Figure 4.1.1 Flow Chart for Generating TS ROM Data

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

26

file.wav

DAT

Analog input also possible
(with the sound quality depending
on the environment)

Voice input

Generating source voice data

Generating voice ROM data

Voice
discriminating
and processing

WAV
file

Voice

file.pcm
16-bit

PCM file

file.pcm
16-bit
PCM file

dct_cnv.exe
Sampling rate
conversion

High-pass filtervoxflt.exe

Normalizationpcm_norm.exe

Sound editor

Evaluation of
voice compression

Evaluation of voice
compressio/processing

Processing of
16-bit PCM file

MIC

16-bit PCM file
after VSX2 compression

file.pcm

Evaluation of
VSX2 compression

vsx2param.exe

Windows GUI tool

file.vsx VSX2 file

VSX2
compression

vsx2cmprs.exe

file.s

VSX2 voice
assembler data

bin2s.exe

file.ppc PPC file

Packed PCM
conversion

ppccmprs.exe

file.s

PPC voice
assembler data

bin2s.exe

Decoding
VSX2 file

file.vsx
VSX2
file

file.pcm

16-bit PCM file

vsx2dec.exe

Decoding
PPC file

file.ppc
PPC
file

file.pcm

16-bit PCM file

ppcdec.exe

Hex dump

infie
Binary
file

outfile

Hex dump file

bdmp.exe

 Assembly source
conversion

Assembly
source file

Copied into user program source
or linked to user program after assembling

Voice compression
and conversion into
assembly source

Other utilities

Compression
file decoding

HEX dump

File types
16-bit PCM file (.pcm) 11/16/22 kHz, 16-bit amplitude, monaural, little endian format voice file

8-kHz sampling data when VSX compression is used
WAV file (.wav) 48 kHz, 16-bit amplitude, monaural voice file (file not compressed by Windows ADPCM)
VSX2 file (.vsx) VSX2-compressed voice file
PPC file (.ppc) Packed PCM file

Figure 4.1.2 Flow Chart for Generating VSX2 Voice ROM Data

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

27

TS ROM data generation tools
The TS ROM data generation tools consist of a series of programs that convert text data and compress
dictionary data into VSX2 format to generate assembly source files. A Windows GUI tool, tb33.exe, is included
for evaluating the quality of converted voice on a PC. Table 4.1.1 below lists these tools.

Table 4.1.1 TS ROM Data Generation Tools
Tool Function

tb33.exe A GUI tool for launching the required tools, converting text files, and evaluating voice data
following conversion.

jtxt2pts.exe Converts text files into PTS files to adjust speech parameters.
pts2ts.exe Converts PTS files into TS files convertible into binary or PCM files.
ts2bin.exe Converts TS files into binary files.
ts2pcm.exe Converts TS files into PCM files for evaluating voice on a PC.
tstbl.exe Load the dictionary file generated by the user and generates a header file for the dictionary

table to be included into the user program, and a batch file for converting dictionary data into
compressed data for installation.

bin2s.exe Converts binary data files (TS binary file, VSX2 dictionary data) into assembly source files.
bdmp.exe A utility for dumping binary data.
dct_cnv.exe A down-sampler to convert WAV and PCM files into files at selected sampling rates. You may

use a commercial sound editor, but degraded sound quality may result.
voxflt.exe Applies a high-pass filter to 16-bit PCM data to improve sound clarity.
pcm_norm.exe Normalizes 16-bit PCM data to the specified amplitude and matches it to the input rule of the

voice compression tool.
vsx2cmprs.exe Compresses 16-bit PCM data (16, 11 and 22-kHz sampling) into VSX2 format.
vsxcmprs.exe Compresses 16-bit PCM data (8-kHz sampling) into VSX format.
ppccmprs.exe Compresses 16-bit PCM data into packed PCM format.
vsx2dec.exe Decodes the voice data that has been compressed by "vsx2cmprs.exe" to save it as PCM

data.
vsxdec.exe Decodes the voice data that has been compressed by "vsxcmprs.exe" to save it as PCM data.
ccap.exe Files messages issued by the tool used by tb33 during operation. For details on this tool, refer

to "E0C33 Family C Compiler Package Manual".

VSX2 voice ROM data generation tools
The VSX2 voice ROM data generation tools consist of a series of programs that compress voice files to
generate assembly source files for E0C33 chips. A Windows GUI tool, (vsx2param,exe), is included for
evaluating the quality of compressed voice on a PC. Table 4.1.2 below lists these tools. Most of these tools are
listed among the TS ROM data generation tools.

Table 4.1.2 VSX2 Voice ROM Data Generation Tools
Tool Function

dct_cnv.exe A down-sampler to convert WAV and PCM files into files at selected sampling rates. You may
use a commercial sound editor, but degraded sound quality may result.

voxflt.exe Applies a high-pass filter to 16-bit PCM data to improve sound clarity.
pcm_norm.exe Normalizes 16-bit PCM data to the 90% amplitude (default) and matches it to the input rule of

the voice compression tool.
vsx2cmprs.exe Compresses 16-bit PCM data (16, 11 and 22-kHz sampling) into VSX2 format.
ppccmprs.exe Compresses 16-bit PCM data into packed PCM format.
bin2s.exe Converts binary data files (VSX2 file, PPC file) into assembly source files.
bdmp.exe A utility for dumping binary data.
vsx2dec.exe Decodes the voice data that has been compressed by "vsx2cmprs.exe" to save it as PCM

data.
vsx2param.exe Adjust VSX2 parameters and evaluates compressed voice data in VSX2 format.

Note: The evaluation tool uses algorithms that are similar to, but not identical to, the libraries implemented
on the E0C33 chip. Use the tool for the preliminary evaluation of compression parameters, etc.
Also, because sound quality depends on analog components such as the speaker, microphone,
and op-amp, the sound quality as evaluated on a PC may differ from that actually obtained in the
application system. The final sound quality, operation, etc. must be evaluated using the actual
application system that contains the E0C33 chip.

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

28

4.2 TS ROM Data Generation and Evaluation Tools
This section describes the functions of the tools used to generate and evaluate TS ROM data, and how to use them.
For details on VSX2 tools, refer to Section 4.3, "VSX2 Voice ROM Data Generation and Evaluation Tools".
Start the tools, except the evaluation tool "tb33.exe", from the DOS prompt. When a tool is started without
specifying command line parameters, Usage is displayed.
In the explanation of command lines below, the items enclosed in brackets [] indicate options that can be omitted.
The parameters in italics represent the appropriate values or file names to be specified.

Note: The file names that can be specified for each tool are subject to the limitations described below.
• File name: Maximum of 32 characters
• Usable characters: a to z, A to Z, 0 to 9, _, .

4.2.1 jtxt2pts.exe
Function: Converts text files for voice conversion into PTS files to adjust speech parameters.

Usage: DOS>jtxt2pts [silent] dictfile.dic infile.txt outfile.pts↵

Arguments: silent Length of silent period inserted between phonemes/words (optional)
0: Not inserted
1: 16 msec
2: 32 msec (default)
3: 48 msec

dictfile.dic Dictionary file

infile.txt Input file name (text file)

outfile.pts Output file name (PTS file)

Example: DOS>jtxt2pts 2 sample.dic sample1.txt sample1.pts

In this example, "sample1.txt" is converted into "sample1.pts". A silent period of 32 msec is inserted
between words.

Reference: For details on the contents of each file, refer to the following sections.
Dictionary file: "3.1.2 Generating a Dictionary File"
Text file: "3.1.4 Generating Text Data"
PTS file: "3.1.5 Voice Evaluation and Adjustment"

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

29

4.2.2 pts2ts.exe
Function: Converts PTS files into TS files convertible into binary or PCM files. Use this tool after adjusting the

parameters of the PTS file generated by "jtx2pts.exe".

Usage: DOS>pts2ts infile.pts outfile.ts↵

Arguments: infile.pts Input file name (PTS file)

outfile.ts Output file name (TS file)

Example: DOS>pts2ts sample1.pts sample1.ts

4.2.3 ts2bin.exe
Function: Converts TS files into a binary file that can be converted into an assembly source by "bin2s.exe".

Usage: DOS>ts2bin input.ts output.bin↵

Arguments: input.ts Input file name (TS file)

output.bin Output file name (binary file)

Example: DOS>ts2bin input.ts output.bin

4.2.4 ts2pcm.exe
Function: Converts TS files into PCM files, which can be used to evaluate voice data on a PC. A file thus

generated is a 8- to 22-kHz sampling monaural PCM file in signed 16-bit little endian format.

Usage: DOS>ts2pcm [sampling] input.ts output.pcm↵

Arguments: sampling PCM file sampling rate (optional)
8000: 8 kHz sampling
16000: 16 kHz sampling (default)
22050: 22 kHz sampling

input.ts Input file name (TS file)

output.pcm Output file name (PCM file)

Example: DOS>ts2pcm 16000 input.ts output.pcm

Note: • PCM conversion with this tool requires evaluation dictionary (PCM files) containing the sound data
of adjusted pitches and lengths. You can execute the batch file "file_dict.bat" generated by
"tstbl.exe" to generate this dictionary. (Refer to Section 3.1.3, "Generating Installation Dictionary
Data".)

• Use the 8-kHz sampling rate only when you install dictionary data in VSX format (option of
"tstbl.exe"). Do not use 16 or 22 kHz for the VSX format. You cannot use the 8-kHz sampling data
for the VSX2 format.

• This tool normally works only with the standard directory configuration. Do not move this tool to
another directory or change the directory name.

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

30

4.2.5 tstbl.exe
Function: Generates the following files from the user-generated dictionary.

1) Header file (outfile.h) that defines the dictionary table to be included in the program
2) Batch file (outfile_data.bat) for VSX2 (VSX) compressing the PCM files registered in the

dictionary for generating dictionary data (assembly source) to be installed in the product
3) Assembly source file (outfile_label.s) describing the labels of unused dictionary numbers
4) Batch file (outfile_dict.bat) for generating the voice file used to evaluate text-voice conversion

results on a PC
For details on the contents of each file, refer to Section 3.1.3, "Generating Installation Dictionary Data".

Usage: DOS>tstbl [-cXX] [-tX] [-s level] [-u] [-v] infile.dic outfile↵

Arguments: -cXX Specify a VSX2/VSX compression ratio (optional)
-c16 Compresses voice to 16 kbps equivalent.
-c24 Compresses voice to 24 kbps equivalent. (default)
-c32 Compresses voice to 32 kbps equivalent.
-c40 Compresses voice to 40 kbps equivalent.

-tX Specify a VSX2/VSX compression ratio in the timebase direction (optional)
-t1 Not compressed. (default)
-t2 Compressed by a factor of 1/2.
-t3 Compressed by a factor of 1/3.
-t4 Compressed by a factor of 1/4.

-s level VSX2/VSX compression silent packet level (optional)
If the difference in voice level from the preceding data exceeds the value specified by
level, the data is handled as a silent packet.
The effective specification range of level is 0 to 5000.
Be sure to insert a space between -s and level.
If this option is omitted, the default value 0 is assumed.

-u Separation of user dictionary (optional)
Generates a batch file for generating the PC evaluation dictionary data in two parts,
"before [user]" (outfile_dict.bat), and "after [user]" (outfile_udict.bat).
If you omit this option, all data is output in "outfile_dic.bat".

-v Specify the VSX (8 kH sampling) format (optional)
Generates a batch file to compress dictionary data in VSX format. The batch file
normally specifies "vsc2cmprs.exe" for compression and "vsx2dec.exe" for expansion.
If you specify this option, these tool names will be changed to "vsxcmprs.exe" and
"vsxdec.exe," respectively.
If you omit this option, a batch file will be generated to compress data in VSX2
format.

infile.dic Input file name (dictionary file, text file generated by the user)

outfile Output file name (with extension not specified)

Example: DOS>tstbl -c24 -t2 -s 20 sample.dic vsxdata

Output files are generated to generate dictionary data compressed to 24 kbps equivalent, compressed
by a factor of 1/2 in the timebase direction, with silent packet level = 20.

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

31

4.2.6 bin2s.exe
Function: Converts the binary file (TS binary file, VSX2/VSX file or Packed PCM file) into a text file in E0C33

assembly source format.
Since results are output to the standard output device (stdout), use the redirect function of DOS to save
the converted data to a file.

Usage: DOS>bin2s [-l symbol] infile.bin > outfile.s↵

Arguments: infile.bin Input file name (binary file)

outfile.s Output file name (assembly source file)

-l symbol Define assembler symbol name (optional)
If this option is omitted, the input file name is used as the symbol name.

Example: 1) -If the -l option is omitted, the input file name is assumed to be the assembler symbol name.

DOS>bin2s sample1c.bin > sample1c.s

DOS>type sample1c.s

.global sample1c

.align 2

sample1c:

.byte 0x33 0x30 0x09 0x09 0x2d 0x0b 0x15 0x0b

.byte 0x10 0x0b 0x2b 0x0b 0xff 0x20 0x0d 0x0a

.byte 0x01 0x0b 0x09 0x2b 0xff 0x10 0x03 0xcb

.byte 0x44 0x09 0x0e 0x0a 0x2d 0x08 0xff 0x10

.byte 0x3b 0x0b 0x0c 0x09 0xff 0x20 0xff 0xff

.byte 0xff 0xff

; total 42 bytes data

DOS>

2) To use a symbol name that is different from the file name, use the -l option to specify the symbol
name.

DOS>bin2s -l Smp01 sample1c.bin > sample1c.s

DOS>type sample1c.s

.global Smp01

.align 2

Smp01:

.byte 0x33 0x30 0x09 0x09 0x2d 0x0b 0x15 0x0b

.byte 0x10 0x0b 0x2b 0x0b 0xff 0x20 0x0d 0x0a

 :

DOS>

Note: Symbol name specification is subject to the limitations below.
• Symbol length: Maximum of 32 characters
• Usable characters: a to z, A to Z, 0 to 9, _

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

32

4.2.7 bdmp.exe
Function: Dumps the input binary file in a specified format.

Since results are output to the standard output device (stdout), use the redirect function of DOS to save
the dumped data to a file.

Usage: DOS>bdmp option infile > outfile↵

Arguments: infile Input file name (binary file)

outfile Output file name (text file)

option Specify output format (optional)
Choose one of the following switches for this specification:
-b Output in byte format.
-l Output in little endian short format
-m Output in big endian short format

Example: DOS>bdmp -b sample1c.bin

00000000 33 30 09 09 2D 0B 15 0B 10 0B 2B 0B FF 20 0D 0A

00000010 01 0B 09 2B FF 10 03 CB 44 09 0E 0A 2D 08 FF 10

00000020 3B 0B 0C 09 FF 20 FF FF FF FF

DOS>bdmp -l sample1c.bin

00000000 3033 0909 0B2D 0B15 0B10 0B2B 20FF 0A0D

00000010 0B01 2B09 10FF CB03 0944 0A0E 082D 10FF

00000020 0B3B 090C 20FF FFFF FFFF

DOS>bdmp -m sample1c.bin

00000000 3330 0909 2D0B 150B 100B 2B0B FF20 0D0A

00000010 010B 092B FF10 03CB 4409 0E0A 2D08 FF10

00000020 3B0B 0C09 FF20 FFFF FFFF

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

33

4.2.8 Executing Tools from a Batch File
TS ROM generation tools are all 32-bit applications that can be executed from the DOS prompt. Therefore, a series
of processing steps can be executed after creating a batch file.
As an example, this section discusses the "ts.bat" batch file found in the "tstool\sample\" directory.

ts.bat

Generates a TS data assembly source from the PTS file modified by the user.
This batch file is generated to execute the TS ROM-generation tools in "tstool\bin\". The current directory should be
"tstool\sample\". Correct when necessary for execution.

Processing: 1) Converts the PTS file into a TS file.
2) Converts the TS file into a binary file.
3) Converts the TS binary file into an assembly source file.

Input file: file_name.pts PTS file

Output file: file_name.s Assembly source file

Contents of file: set tspath=..\bin\
%tspath%pts2ts %1.pts %1.ts

%tspath%ts2bin %1.ts %1.bin

%tspath%bin2s -l %1 %1.bin > %1.s

Example: >ts sample1c

Generates an assembly source file "sample1c.s" from the PTS file "sample1c.pts".
The TS data has the global label (sample1c), which is the same as the input file name.

.global sample1c

.align 2

sample1c:

.byte 0x33 0x30 0x09 0x09 0x2d 0x0b 0x15 0x0b

.byte 0x10 0x0b 0x2b 0x0b 0xff 0x20 0x0d 0x0a

.byte 0x01 0x0b 0x09 0x2b 0xff 0x10 0x03 0xcb

.byte 0x44 0x09 0x0e 0x0a 0x2d 0x08 0xff 0x10

.byte 0x3b 0x0b 0x0c 0x09 0xff 0x20 0xff 0xff

.byte 0xff 0xff

; total 42 bytes data

Reference: "4.2.2 pts2ts.exe", "4.2.3 ts2bin.exe", "4.2.6 bin2s.exe"

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

34

4.2.9 tb33.exe
"tb33.exe" is an application used to convert text files and PTS files into PCM files, using the command-line version
of the TS33 tool, and then to perform playback of the file for evaluation.

Note: Sound evaluation with this tool requires a Sound Blaster 16-compatible sound card that supports 8
to 22-kHz sampling, 16-bit monaural sound output, and an evaluation dictionary data file (PCM file)
containing sound data for processed pitches and lengths. You can generate this evaluation
dictionary data by running the "xxxx_dict.bat" batch file (or "xxxx_udict.bat" when the -u option of
"tstbl.exe" is specified) generated by "tstbl.exe". (refer to Section 3.1.3, "Generating Installation
Dictionary Data").

Starting and quitting

Double-click on the "tb33.exe" icon to start the tool.

To quit "tb33.exe," click on the [Close] button at the upper right corner of the [Ts bench 33] window.

Window
"tb33.exe" consists of the following four windows.

[Ts bench 33] window [Output] window

 [Option] window

[Play/Rec] window

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

35

[Ts bench 33] window

When "tb33.exe" starts up, the [Ts bench 33] window appears. All operations involving text-voice conversion
are performed in this window.

[Output] window

Displays the execute commands and results (output messages) of the tool invoked to convert data. Running the
tool opens this window automatically.
You must have previously set the destination for the output results to this window in the [Option] window.

[Option] window

Click on the [Option] button in the [Ts bench 33] window to display this window. Use it to select the editor
you want to use, as well as execution options.

[Play/Rec] window

This window is displayed when text conversion by the [Play] button in the [Ts bench 33] window finishes and
playback starts. This window is used to control playback and stop of converted voice data.

File selection
Select files to be converted or reproduced using the [Ts bench
33] window directory list and the file list box.
Use the radio button to select the file format to be displayed in
the file list box.

[Refresh] button

The contents of the file list box are not updated automatically if files are added or deleted with any tool other
than tb33. Click on the [Refresh] button to update the list.

[Delete] button

Deletes the selected files from the file list box.

[Edit] button

After selecting the text format file from the file list box, click on the [Edit] button to start the editor and open
the selected file. Windows Notepad is default editor. You can select another editor from the [Option] window.

[Sound edit] button

After selecting the PCM file in the file list box, click on the [Sound edit] button to start the sound editor and
open the selected file. This function is enabled only when a sound editor has been selected from the [Option]
window.

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

36

Selecting options
Click on the [Option] button to open the [Option] window.

[Editor path] text box

Specify the editor to be launched when you click on the [Edit] button. Enter the start up command including the
absolute path.

[Sound editor path] text box

Specify the sound editor to be launched when you click on the [Sound edit] button. Enter the start up command
including the absolute path.

[Exe in icon] check box

When this option is selected, the tool started from tb33 is executed in iconized form.

[Output to window] check box

When this option is selected, the tool start command and output messages are displayed in the [Output]
window. tb33 describes the start command and output messages for each tool in the file "tb33.err" using
"ccap.exe". (Refer to the "E0C33 Family C Compiler Package Manual".)
The [Output] window displays the contents of the "tb33.err" file.

[Output to Editor] check box

When this option is selected, the tool start command and output messages are displayed with the specified
editor. The editor opens "tb33.err" in the same way as does [Output to window].

[Small font] check box

Reduces the size of fonts in the [Output] window display.

[Default] button

Returns the option settings to their default values.
Editor program: notepad.exe
Sound editor program: None
Common options: [Output to window] is selected.

[Save] button

Saves settings, including the editor command, in tb33.sav. The saved parameters apply for the next use.

[OK] button

After selecting and setting options, click on this button to close the [Option] window.

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

37

Converting text files
tb33 converts voice conversion text files into PCM files with the following procedure.

1) Display the [Selection] dialog box with the [...] button on the side of the [Dictionary file] text box. Select
the dictionary file and click on the [OK] button.

The selected dictionary file name is displayed in the [Dictionary file] text box.

2) Select a sampling rate from the [Sound quality] combo box.

8000 8 kHz sampling (for reproducing only)
16000 16 kHz sampling (VSX2 format)
22050 22 kHz sampling (VSX2 format)

3) Select a text file to be converted from the file list box, then click on the [Play] button.

tb33 executes "jtxt2pts.exe", "pts2ts.exe" and "ts2pcm.exe" in succession, generating and reproducing a 16-bit
PCM file at the specified sampling rate.
"jtxt2pts.exe" will be executed with a 32-msec silent period inserted between words. The PTS file generated
has the same name as the text file, but with a an extension of ".pts". The TS file generated by "pts2ts.exe" also
has the same name, but with a ".ts" extension. The PCM file is "ts_tmp.pcm".

Correction and reconversion of PTS file
Following text file conversion, a PTS file is generated with "jtxt2pts.exe".
Follow the steps given below to correct the PTS file parameters and to perform playback of the corrected voice
data file.

1) Double-click on the PTS file in the file list box, or select the file and click on the [Edit] button.
The Notepad or editor selected from the [Option] window launches and opens the file. Correct and save
the parameters in the PTS file.

2) Select the corrected PTS file from the file list box and click on the [Play] button.

The specific action performed by the [Play] button depends on the extension of the selected file. If you select a
PTS file, the button runs "pts2ts.exe" and "ts2pcm.exe" to generate a 16-bit PCM file at the specified sampling
rate, and plays back the generated PCM file. The TS file generated has the same name as the PTS file, but
with an extension of ".ts". The PCM file is "ts_tmp.pcm".

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

38

Reproducing PCM files
Select a PCM file from the file list box and click on the [Play] button to play the sound file.

[Play/Rec] window and playback control

The [Play/Rec] window is displayed when the PCM file following text/PTS file conversion by the [Play]
button in the [Ts bench 33] is played back, or when a selected PCM file is played back.
The window closes automatically after completion of playback.
Press the [Pause] button to pause playback. The [Play/Rec] window remains open. Click on the [Play] button
to resume playback from the point at which you pressed [Pause]. Use the scroll bar to move the restart point to
any other point in the file.
Click on the [Stop] button during playback to stop playback. The [Play/Rec] window remains open. Click on
the [Play] button to resume playback from the beginning.
The [Close] button is enabled during playback or a pause. Click on this button to close the [Play/Rec] window.
The [Rec] button is disabled for tb33.

After evaluation
The TS file (.ts) is generated by the "pts2ts.exe" which is activated with the [Play] button in the [Ts bench 33]
window. tb33 does not perform TS file-binary conversion (ts2bin.exe) and binary file-assembly source
conversion (bin2s.exe). After tb33 runs, run each tool to generate the assembly source file.

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

39

4.3 VSX2 Voice ROM Data Generation Tools
This section describes the functions of the tools used to generate and evaluate VSX2 voice ROM data, and how to use
them. Some tools, including "bin2s.exe", are also described as TS ROM data generation tools. These tools are
identical to those used for TS ROM generation.
Start each tool, except the evaluation tool "tvsx2param.exe", from the DOS prompt. When a tool is started without
specifying command line parameters, Usage is displayed. In the explanation of command lines below, the items
enclosed in brackets [] can be omitted. The parameters in italics represent the appropriate values or file names to be
specified.

Note: The file names that can be specified for each tool are subject to the limitations described below.
• File name: Maximum of 32 characters
• Usable characters: a to z, A to Z, 0 to 9, _, .

4.3.1 dct_cnv.exe
Function: Converts the input voice file to a file with any desired sampling rate.

Usage: DOS>dct_cnv DctFrom DctTo infile.(wav|pcm) outfile.pcm↵

Arguments: DctFrom Number of input data to be converted

DctTo Number of corresponding output data

infile.wav Input file name (WAV file)

infile.pcm Input file name (PCM file)

outfile.pcm Output file name (16-bit PCM file)

Example: For DctFrom and DctTo, Seiko Epson recommends specifying a value that is an integral multiple of the
source sampling rate. For example, to down-sample a 48 kHz WAV file to 8 kHz, specify the
arguments as shown below.
DOS>dct_cnv 48 16 sample1.wav sample1.pcm (x1)
DOS>dct_cnv 96 32 sample1.wav sample1.pcm (x2)
DOS>dct_cnv 144 48 sample1.wav sample1.pcm (x3)
DOS>dct_cnv 140 80 sample1.wav sample1.pcm (x5)
DOS>dct_cnv 480 160 sample1.wav sample1.pcm (x10)

The greater the values specified for DctFrom and DctTo, the better the sound quality, but the lower the
processing speed. When small values are specified for DctFrom and DctTo, the processing speed
increases but the sound quality deteriorates. To avoid deterioration in sound quality, Seiko Epson
recommends using a value of ×5 or larger for this conversion.

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

40

4.3.2 voxflt.exe
Function: Filters a 16-bit PCM file using a high-pass filter. Such filtration produces the following effects:

• The sound pressure level is attenuated by 40 dB at half the specified cut-off frequency. Generally,
when the sound pressure level decreases by 6 dB, the sound volume is halved.

• The sound pressure drops slowly starting from peaks slightly above the cut-off frequency and begins
to drop rapidly near the cut-off frequency. (Attenuated by about 3 dB at the cut-off frequency)

Normally, Seiko Epson recommends specifying cut-off at about 120 Hz (default). However, because
the sound quality of some data is degraded by filtering, the sound quality must be checked on the
user’s system.

Usage: DOS>voxflt [-l CutOff] infile.pcm outfile.pcm↵

Arguments: infile.pcm Input file name (16-bit PCM file)

outfile.pcm Output file name (16-bit PCM file)

-l CutOff Cut-off frequency (optional)
The effective values (Hz) for CutOff are shown below. (for 8 kHz sampling PCM file)
60, 120, 180, 240, 250, 300, 360, 420, 480, 500, 540, 600, 720, 1000, 1440, 2000
When the option is omitted, the input data is filtered at the default cut-off frequency
(120 Hz).

Example: 8 kHz sampling PCM file
DOS>voxflt -l 180 samp1.pcm samp2.pcm ... Filtered at 180 Hz cut-off frequency
DOS>voxflt samp1.pcm samp2.pcm ... Filtered at 120 Hz cut-off frequency

Note: The cut-off frequency depends on the sampling frequency of the entered PCM file, as shown in the
following Table.

Table 4.3.1 Specified CutOff Value and Cut-off Frequency
Sampling frequency Cut-off frequency (Hz)

8 kHz CutOff × 1
11.025 kHz CutOff × 1.4
16 kHz CutOff × 2
22.05 kHz CutOff × 2.8

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

41

4.3.3 pcm_norm.exe
Function: Converts the voice data amplitude of the input 16-bit PCM file to a specified amplitude.

The values with 16 signed bits range from -32,768 (SHORT_MIN) to +32,767 (SHORT_MAX). In
this program, use a percentage of SHORT_MAX to specify the target amplitude to which you want the
maximum amplitude of the input voice data to be reduced as the amplitude of the input voice data is
converted.

Usage: DOS>pcm_norm [-r XXX] [-c] input.pcm output.pcm↵

Arguments: input.pcm Input file name (16-bit PCM file)

output.pcm Output file name (16-bit PCM file)

-r XXX Coefficient of normalization (optional)
Specify the amplitude of the 16-bit PCM voice data as a percentage of the maximum
amplitude. For XXX, enter a positive value between 0.0 and 100.0.
When this option is omitted, the maximum amplitude of the output voice is set to 90%.
Always insert a space between -r and XXX.

-c Read the file "amp.rto" (optional)
The file "amp.rto" is read from the current directory for use in amplitude adjustment.
This option is used for VOX compression and is not used for VSX2/VSX
compression.

Example: DOS>pcm_norm -r 65 input.pcm output.pcm ... Converted to 65%
DOS>pcm_norm input.pcm output.pcm ... Converted to 90% (default)

Note: If the maximum amplitude of the voice data used for input to the voice compression program exceeds
90% of the effective value of 16-bit PCM data, the quality of compressed voice data may deteriorate.

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

42

4.3.4 vsx2cmprs.exe
Function: Compresses the 16-bit PCM data with the compression ratio specified by an option and saves the

compressed data to a VSX2 file. The VSX2 file thus output can be loaded using the VSX2 evaluation
tool "vsx2param.exe".

Usage: DOS>vsx2cmprs [-cXX] [-tX] [-s level] infile.pcm outfile.vsx↵

Arguments: infile.pcm Input file name (11 kHz/16 kHz/22 kHz sampling 16-bit PCM file)

outfile.vsx Output file name (VSX2 file)

-cXX Specify a compression ratio (optional)
-c16 Compress voice to 16 kbps equivalent.
-c24 Compress voice to 24 kbps equivalent. (default)
-c32 Compress voice to 32 kbps equivalent.
-c40 Compress voice to 40 kbps equivalent.

-tX Specify a compression ratio in the timebase direction (optional)
-t1 Not compressed. (default)
-t2 Compressed by a factor of 1/2.
-t3 Compressed by a factor of 1/3.
-t4 Compressed by a factor of 1/4.

-s level Silent packet level (optional)
If the difference in voice level from the preceding data exceeds the value specified by
level, the data is handled as a silent packet. The effective specification range of level is
0 to 5,000. Be sure to insert a space between -s and level. If this option is omitted, the
default value 0 is assumed.

Example: DOS>vsx2cmprs -c16 -t2 -s 50 sample1.pcm sample2.vsx

... Compressed to 16 kbps equivalent, compressed by a factor of 1/2 in the
 timebase direction, with silent packet level = 50

DOS>vsx2cmprs sample1.pcm sample2.vsx

... Compressed to 24 kbps equivalent, not compressed in the timebase direction,
 with silent packet level = 0

Note: • If the maximum amplitude of the voice data input to this program exceeds 90% of the effective value
of 16-bit PCM data, the quality of compressed voice data may deteriorate. To avoid this problem,
use "pcm_norm.exe" to normalize the amplitude of the 16-bit PCM file.

• Files are output from this tool in VSX2 compression format, which is incompatible with the VSX
format output by "vsxcmprs.exe" (8 kHz sampling).

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

43

4.3.5 vsxcmprs.exe
Function: Compresses the 16-bit PCM data with the compression ratio specified by an option and saves the

compressed data to a VSX file.

Usage: DOS>vsxcmprs [-cXX] [-tX] [-s level] infile.pcm outfile.vsx↵

Arguments: infile.pcm Input file name (8 kHz sampling 16-bit PCM file)

outfile.vsx Output file name (VSX file)

-cXX Specify a compression ratio (optional)
-c16 Compress voice to 16 kbps equivalent.
-c24 Compress voice to 24 kbps equivalent. (default)
-c32 Compress voice to 32 kbps equivalent.
-c40 Compress voice to 40 kbps equivalent.

-tX Specify a compression ratio in the timebase direction (optional)
-t1 Not compressed. (default)
-t2 Compressed by a factor of 1/2.
-t3 Compressed by a factor of 1/3.
-t4 Compressed by a factor of 1/4.

-s level Silent packet level (optional)
If the difference in voice level from the preceding data exceeds the value specified by
level, the data is handled as a silent packet. The effective specification range of level is
0 to 5,000. Be sure to insert a space between -s and level. If this option is omitted, the
default value 0 is assumed.

Example: DOS>vsxcmprs -c16 -t2 -s 50 sample1.pcm sample2.vsx

... Compressed to 16 kbps equivalent, compressed by a factor of 1/2 in the
 timebase direction, with silent packet level = 50

DOS>vsxcmprs sample1.pcm sample2.vsx

... Compressed to 24 kbps equivalent, not compressed in the timebase direction,
 with silent packet level = 0

Note: • If the maximum amplitude of the voice data input to this program exceeds 90% of the effective value
of 16-bit PCM data, the quality of compressed voice data may deteriorate. To avoid this problem,
use "pcm_norm.exe" to normalize the amplitude of the 16-bit PCM file.

• Files are output from this tool in VSX compression format, which is incompatible with the VSX2
format output by "vsx2cmprs.exe" (11/16/22 kHz sampling).

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

44

4.3.6 ppccmprs.exe
Function: Converts the 16-bit PCM data into a packed PCM format file.

Usage: DOS>ppccmprs infile.pcm outfile.ppc↵

Arguments: infile.pcm Input file name (16-bit PCM file)

outfile.ppc Output file name (packed PCM file)

Example: DOS>ppccmprs sample1.pcm sample2.ppc

Note: If the maximum amplitude of the voice data input to this program exceeds 90% of the effective value of
16-bit PCM data, the quality of compressed voice data may deteriorate. To avoid this problem, use
"pcm_norm.exe" to normalize the amplitude of the 16-bit PCM file.

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

45

4.3.7 bin2s.exe
Function: Converts the binary file (VSX2 file, VSX file or PPC file) into a text file in E0C33 assembly source

format.
Since results are output to the standard output device (stdout), use the redirect function of DOS to save
the converted data to a file.

Usage: DOS>bin2s [-l symbol] infile.bin > outfile.s↵

Arguments: infile.bin Input file name (binary file)

outfile.s Output file name (assembly source file)

-l symbol Define assembler symbol name (optional)
If this option is omitted, the input file name is used as the symbol name.

Example: 1) -If the -l option is omitted, the input file name is assumed to be the assembler symbol name.

DOS>bin2s sample1.vsx > sample1.s

DOS>type sample1.s

.global sample1

.align 2

sample1:

.byte 0xab 0xcd 0xef 0x00 0x11 0x22 0x33 0x44

.byte 0x10 0x29 0x38 0x47 0xab 0x34 0x45 0x88

 :

DOS>

2) To use a symbol name that is different from the file name, use the -l option to specify the symbol
name.

DOS>bin2s -l Smp01 sample1.vsx > sample1.s

DOS>type sample1.s

.global Smp01

.align 2

Smp01:

.byte 0xab 0xcd 0xef 0x00 0x11 0x22 0x33 0x44

.byte 0x10 0x29 0x38 0x47 0xab 0x34 0x45 0x88

 :

DOS>

Note: Symbol name specification is subject to the limitations below.
• Symbol length: Maximum of 32 characters
• Usable characters: a to z, A to Z, 0 to 9, _

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

46

4.3.8 bdmp.exe
Function: Dumps the input binary file in a specified format.

Since results are output to the standard output device (stdout), use the redirect function of DOS to save
the dumped data to a file.

Usage: DOS>bdmp option infile > outfile↵

Arguments: infile Input file name (binary file)

outfile Output file name (text file)

option Specify output format (optional)
Choose one of the following switches for this specification:
-b Output in byte format.
-l Output in little endian short format
-m Output in big endian short format

Example: DOS>bdmp -b se.vsx

00000000 83 95 03 FE 78 42 4B 4B 4B 64 64 05 09 78 84 4C

00000010 EE 9B 00 00 00 00 FF 01 00 00 E7 03 91 1C 9C 34

00000020 A8 57 7D 67 67 DA E4 E3 5E 72 48 E2 62 A0 71 E0

 :

00000D90 21 94 15 81 1D 54 3D 3A 1B CD 03 FB 05 1E 16 6F

00000DA0 46 04 FE A6 03 2D 91 19 23 24 8E 0C CE 06 A6 06

00000DB0 CC 05 89 06 0A 00

DOS>bdmp -l se.vsx

00000000 9583 FE03 4278 4B4B 644B 0564 7809 4C84

00000010 9BEE 0000 0000 01FF 0000 03E7 1C91 349C

00000020 57A8 677D DA67 E3E4 725E E248 A062 E071

 :

00000D90 9421 8115 541D 3A3D CD1B FB03 1E05 6F16

00000DA0 0446 A6FE 2D03 1991 2423 0C8E 06CE 06A6

00000DB0 05CC 0689 000A

DOS>bdmp -m se.vsx

00000000 8395 03FE 7842 4B4B 4B64 6405 0978 844C

00000010 EE9B 0000 0000 FF01 0000 E703 911C 9C34

00000020 A857 7D67 67DA E4E3 5E72 48E2 62A0 71E0

 :

00000D90 2194 1581 1D54 3D3A 1BCD 03FB 051E 166F

00000DA0 4604 FEA6 032D 9119 2324 8E0C CE06 A606

00000DB0 CC05 8906 0A00

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

47

4.3.9 vsx2dec.exe
Function: Decodes the VSX2 file compressed by "vsx2cmprs.exe" and saves the decoded data to a PCM file.

Usage: DOS>vsx2dec [option] infile.vsx outfile.pcm↵

Arguments: infile.vsx Input file name (VSX2 file)

outfile.pcm Output file name (11/16/22 kHz sampling 16-bit PCM file)

option Specify playback speed (optional)
Choose one of the switches below for this specification. The saved data is reproduced at
the speed specified here.
-norm Normal speed (default)
-f15 1.5 times normal speed
-f20 2 times normal speed
-f30 3 times normal speed
-f40 4 times normal speed
-f60 6 times normal speed
-f80 8 times normal speed
-f120 12 times normal speed
-f160 16 times normal speed
-s15 1/1.5 times normal speed
-s20 1/2 times normal speed

Example: DOS>vsx2dec -f20 sample1.vsx sample1.pcm ... Saved with ×2 playback speed
DOS>vsx2dec sample1.vsx sample1.pcm ... Saved with normal playback speed

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

48

4.3.10 vsxdec.exe
Function: Decodes the VSX file compressed by "vsxcmprs.exe" and saves the decoded data to a PCM file.

Usage: DOS>vsxdec [option] infile.vsx outfile.pcm↵

Arguments: infile.vsx Input file name (VSX file)

outfile.pcm Output file name (8 kHz sampling 16-bit PCM file)

option Specify playback speed (optional)
Choose one of the switches below for this specification. The saved data is reproduced at
the speed specified here.
-norm Normal speed (default)
-f15 1.5 times normal speed
-f20 2 times normal speed
-f30 3 times normal speed
-f40 4 times normal speed
-f60 6 times normal speed
-f80 8 times normal speed
-f120 12 times normal speed
-f160 16 times normal speed
-s15 1/1.5 times normal speed
-s20 1/2 times normal speed

Example: DOS>vsxdec -f20 sample1.vsx sample1.pcm ... Saved with ×2 playback speed
DOS>vsxdec sample1.vsx sample1.pcm ... Saved with normal playback speed

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

49

4.3.11 Executing Tools from a Batch File
Voice ROM generation tools are all 32-bit applications that can be executed from the DOS prompt. Therefore, a
series of processing steps can be executed after creating a batch file.
The following shows a example of processing executed using the batch file provided in the "tstool\smplvsx2\"
directory.
Each batch file was created to execute VSX2 voice ROM generation tools in "tstool\bin\" from "tstool\smplvsx2\" as
the current directory. Correct any batch file as necessary before using.

pcm2vsx2s.bat

Converts PCM voice data into an assembly source after compressing it in VSX2 format.

Processing: 1) High-pass filtering (120 Hz cut-off for 16 kHz sampling)
2) Normalization (90% amplitude)
3) VSX2 compression (compressed to 24 kbps equivalent, timebase direction = 1/2, silent packet

level = 10)
4) Conversion into assembly source file

Input file: file_name.pcm 16-bit PCM file

Output file: file_name.vsxs24 Assembly source file

Contents of file: @echo off
if "%1"=="" goto ERR

echo voxflt %1

..\bin\voxflt -l 60 %1.pcm %1H.pcm

echo pcm_norm %1

..\bin\pcm_norm -r 90 %1H.pcm %1N.pcm

echo vsx2cmprs %1

..\bin\vsx2cmprs -c24 -t2 -s 10 %1N.pcm %1.vsx

echo bin2s %1

..\bin\bin2s -l %1v24t2 %1.vsx > %1.vsxs24

goto END

:ERR

echo Please input filename

:END

Example: >pcm2vsx2s se

Create an assembly source file "se.vsxs24" from the 16-bit PCM file "se.pcm". The VSX2
compression options used for "vsx2cmprs.exe" are "-c24" (compression to 24 kbps equivalent),
"-t2" (compression by a factor of 1/2 in the timebase direction), and "-s 10" (silent packet level =
10). To create the assembly source file under other conditions, change these options to those
desired. The output file "se.vsxs24" has a global label (sev24t2) derived from the input file name
by adding "v24t2".

.global sev24t2

.align 2

sev24t2:

.byte 0x53 0x22 0x01 0x01 0x01 0x01 0x22 0x90

.byte 0x89 0x24 0x92 0x41 0x25 0x90 0xc3 0x25

.byte 0x92 0x49 0x24 0x90 0x41 0xb2 0x53 0x65

 :

; total 9271 bytes data

Reference: "4.3.2 voxflt.exe", "4.3.3 pcm_norm.exe", "4.3.4 vsx2cmprs.exe", "4.3.7 bin2s.exe"

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

50

4.3.12 Executing Tools from a Make File
Use of a make file allows various types of voice data with different compression ratios, etc. to be managed
collectively. "vsx2data.mak" is provided in the "tstool\smplvsx2\" directory as a samole make file for VSX2
compression.
For details on the make file format and the functions of make, refer to the "E0C33 Family C Compiler Package
Manual".

vsx2data.mak

This make file executes the following processing using the sample PCM file "se.pcm" as the voice source data:
1) High-pass filtering (120 Hz cut-off for 16 kHz sampling)
2) Normalization (90% amplitude)
3) Creation of PPC file
4) Creation of a VSX2 file with each compression ratio
5) Conversion into assembly source file

Finally, the above processing produces the assembly source files shown below and a file "vsx2data.vs" in which
these assembly source files have been combined.
Packed PCM voice ROM data file: se.pp
VSX-compressed voice ROM data files: se.x16t2, se.x24t1, se.x24t2, se.x24t3, se.x24t4, se.x32t2, se.x40t2

The value ".x??" denotes the numeric values representing the compression
ratio options specified in "vsx2cmprs.exe". The value "t?" indicates that
data is compressed by a factor of 1/? in the timebase direction. All silent
packet levels are 10.

To generate voice ROM data files, start make by entering the following:

DOS>make -f vsx2data.mak

The make file "vsx2data.mak" is created to be run from "tstool\smplvsx2\" as the current directory. Therefore, you
need to specify the "make.exe" directory by the PATH command or copy "make.exe" into the "tstool\smplvsx2\"
directory before opening the make file.

The make file "vsx2data.mak" contains a command description that allows all generated files except the original
(se.pcm) to be deleted from the hard disk. To execute this function, start make by entering the following:

DOS>make -f vsx2data.mak clean

The contents of files are shown below.

macro definitions for tools & dir

TOOL_DIR = ..\bin
PCM_NORM = $(TOOL_DIR)\pcm_norm.exe
VOXFLT = $(TOOL_DIR)\voxflt.exe
VSXCMPRS = $(TOOL_DIR)\vsx2cmprs.exe
PPCCMPRS = $(TOOL_DIR)\ppccmprs.exe
BIN2S = $(TOOL_DIR)\bin2s.exe

suffix & rule definitions

.SUFFIXES : .pcm .pcmn .pcmh .x16t2 .x24t2 .x24t1 .x24t3 .x24t4 .x32t2 .x40t2 .ppc .pp

.pcm.x16t2 :
$(VOXFLT) -l 60 $*.pcm $*.pcmh
$(PCM_NORM) -r 90 $*.pcmh $*.pcmn
$(VSXCMPRS) -c16 -t2 -s 10 $*.pcmn $*.vsx
$(BIN2S) -l $*v16t2 $*.vsx > $*.x16t2

.pcm.x24t1 :
$(VOXFLT) -l 60 $*.pcm $*.pcmh
$(PCM_NORM) -r 90 $*.pcmh $*.pcmn
$(VSXCMPRS) -c24 -t1 -s 10 $*.pcmn $*.vsx
$(BIN2S) -l $*v24t1 $*.vsx > $*.x24t1

.pcm.x24t2 :
$(VOXFLT) -l 60 $*.pcm $*.pcmh
$(PCM_NORM) -r 90 $*.pcmh $*.pcmn

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

51

$(VSXCMPRS) -c24 -t2 -s 10 $*.pcmn $*.vsx
$(BIN2S) -l $*v24t2 $*.vsx > $*.x24t2

.pcm.x24t3 :
$(VOXFLT) -l 60 $*.pcm $*.pcmh
$(PCM_NORM) -r 90 $*.pcmh $*.pcmn
$(VSXCMPRS) -c24 -t3 -s 10 $*.pcmn $*.vsx
$(BIN2S) -l $*v24t3 $*.vsx > $*.x24t3

.pcm.x24t4 :
$(VOXFLT) -l 60 $*.pcm $*.pcmh
$(PCM_NORM) -r 90 $*.pcmh $*.pcmn
$(VSXCMPRS) -c24 -t4 -s 10 $*.pcmn $*.vsx
$(BIN2S) -l $*v24t4 $*.vsx > $*.x24t4

.pcm.x32t2 :
$(VOXFLT) -l 60 $*.pcm $*.pcmh
$(PCM_NORM) -r 90 $*.pcmh $*.pcmn
$(VSXCMPRS) -c32 -t2 -s 10 $*.pcmn $*.vsx
$(BIN2S) -l $*v32t2 $*.vsx > $*.x32t2

.pcm.x40t2 :
$(VOXFLT) -l 60 $*.pcm $*.pcmh
$(PCM_NORM) -r 90 $*.pcmh $*.pcmn
$(VSXCMPRS) -c40 -t2 -s 10 $*.pcmn $*.vsx
$(BIN2S) -l $*v40t2 $*.vsx > $*.x40t2

.pcm.pp :
$(VOXFLT) -l 60 $*.pcm $*.pcmh
$(PCM_NORM) $*.pcmh $*.pcmn
$(PPCCMPRS) $*.pcmn $*.ppc
$(BIN2S) -l $*p $*.ppc > $*.pp

dependency list

ALL_S = se.x16t2 se.x24t1 se.x24t2 se.x24t3 se.x24t4 se.x32t2 se.x40t2 se.pp

vsx2data.vs : $(ALL_S)
type se.pp > vsx2data.vs
type se.x16t2 >> vsx2data.vs
type se.x24t1 >> vsx2data.vs
type se.x24t2 >> vsx2data.vs
type se.x24t3 >> vsx2data.vs
type se.x24t4 >> vsx2data.vs
type se.x32t2 >> vsx2data.vs
type se.x40t2 >> vsx2data.vs

se.x16t2 : se.pcm
se.x24t1 : se.pcm
se.x24t2 : se.pcm
se.x24t3 : se.pcm
se.x24t4 : se.pcm
se.x32t2 : se.pcm
se.x40t2 : se.pcm
se.pp : se.pcm

clean files except source

clean:
del *.vs
del *.x16t2
del *.x24t1
del *.x24t2
del *.x24t3
del *.x24t4
del *.x32t2
del *.x40t2
del *.pcmn
del *.pcmh
del *.vsx
del *.pp
del *.ppc

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

52

4.3.13 vsx2param.exe
This tool is used to evaluate VSX2-compressed voice data after entering voice data from a 16-bit PCM file or a
microphone.
It can reproduce the original data and the compressed voice data, allowing you to change the compression ratio while
listening. The VSX2-compressed data can be loaded for expansion and playback.

Starting and quitting

Double-click on the "vsx2param.exe" icon to start the tool.

To quit "vsx2param.exe", click on the [Close] button at the upper right corner of the [VSX2Param]
window.

Windows and the function of each part

[VSX2Param] window

When "vsx2param.exe" starts up, the [VSX2Param] window appears. To perform any operation from this
window, click on the appropriate control button using the mouse.

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

53

Controls for waveform display

Upper
window

Full-waveform display area
Displays the full waveform of the source voice data loaded from a file or entered from a
microphone.

Lower
window

Partial-waveform display area
Displays a partial-waveform of the source voice data or compressed voice data . Use the [Wave]
check box to choose to display one or both of the source and compressed waveforms.
The source voice waveform is displayed in black and the compressed data is displayed in blue.
The waveforms displayed in this window can be scrolled using the scroll bar located above the
window.

[Redraw] button
Redraws the waveforms in both waveform display areas.

[Show] button
Redraws the waveform in the partial-waveform display area.

[Wave] check box
Used to choose the waveform to be displayed in the partial-waveform display area.
If you choose [Source], the source voice waveform is displayed in black.
If you choose [Synthe.], the compressed data waveform is displayed in blue.
You also can choose both [Synthe.] and [Source].
Note that the partial-waveform display area is not updated by this operation alone. After
selecting or deselecting [Synthe.] or [Source], click on the [Redraw] or [Show] button or scroll
the partial-waveform display area to redisplay the waveform.

Controls for source voice

[Sampling] combo box
Selects the voice sampling rate. This parameter determines sound quality.
When loading a PCM data, select the sampling rate of the file
8kHz (for PCM playback)
11.025kHz (for VSX2 compression)
16kHz (for VSX2 compression, default)
22.05kHz (for VSX2 compression)

[Open] button
Loads a 16-bit PCM file.
The waveform of the loaded voice data is displayed in the waveform display area.

[Speak] button
Outputs the source voice data to the speaker via a sound card.

[Listen] button
Enters voice data from a microphone.
The waveform of the entered voice data is displayed in the waveform display area.

[Time]
When entering voice data from a microphone, set the input time in units of seconds here.
The input time can be set in the range of 1 to 60 seconds. When this set time has elapsed after
the [Listen] button is clicked, the voice input stops. The voice input cannot be stopped before
the set time has elapsed.

[Gain]
When entering voice data from a microphone, set the input level here.

4 TOOL REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

54

[+] button, [-] button
Increments ([+] button) or decrements ([-] button) the amplitude of the input data waveform in
steps of 1/8. The waveforms displayed in the full-and partial-waveform display areas are
updated when you click on these buttons. The sound volume during playback also changes.

[Filter] check box
Turns on or off the filter function that cuts noise when entering voice from a microphone.
In the current version, however, it is set to on and you cannot choose to turn it off.

[OpenVSX] button
Loads a VSX2-compressed voice file. Always be sure to choose a VSX2 voice file that has been
generated by "vsx2cmprs.exe".
The waveform of the loaded voice data is displayed in the waveform display area.
When a VSX2 voice file is loaded, the expanded waveform is displayed in the waveform display
area, and the waveform to be displayed in the partial-waveform display area cannot be selected.
In the [Wave] check box, you only can choose [Synthe.].

Controls for compression

[SyntheSpk] button
Compresses the source voice data according to the parameters set and outputs the result from a
speaker.
Note that the compressed data waveform in the partial-waveform display area is not updated
by this operation alone. Click on the [Redraw] or [Show] button or scroll the partial-waveform
display area to redisplay the waveform.

[SavPCM] button
Saves the compressed data to a 16-bit PCM file.

[Compress] combo box
Used to choose an ADPCM-compatible compression ratio.
Here, one of the following compression ratios can be selected:
2bit/data (Compress voice to 16 kbps equivalent)
3bit/data (Compress voice to 24 kbps equivalent; default)
4bit/data (Compress voice to 32 kbps equivalent)
5bit/data (Compress voice to 40 kbps equivalent)

[Time Cmprs] combo box
Used to choose a compression ratio in the timebase direction.
Here, one of the following compression ratios can be selected:
×1.0 (same as the source voice; default)
×2.0 (same effect as recording at 2 times normal speed)
×3.0 (same effect as recording at 3 times normal speed)
×4.0 (same effect as recording at 4 times normal speed)

[Speed] combo box
Chooses the speed of speech.
Here, one of the following speeds can be selected:
×1.0 (same as the source voice; default)*
×1.5 (speed converted to 1.5 times that of source voice)*
×2.0 (speed converted to 2 times that of source voice)*
×3.0 (speed converted to 3 times that of source voice)
×4.0 (speed converted to 4 times that of source voice)
×6.0 (speed converted to 6 times that of source voice)
×8.0 (speed converted to 8 times that of source voice)
×16.0 (speed converted to 16 times that of source voice)
×1/1.5 (speed converted to 1/1.5 times that of source voice)*
×1/2.0 (speed converted to 1/2 times that of source voice)

Note:
Conversion on the E0C33
chip is subject to limitations
on the parameters that can
be selected. (Seiko Epson
recommends using only the
parameters marked by ∗ .)

4 TOOL REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

55

[Silent thresh] edit box
To further compress silent parts of voice data, set the threshold level at which it is judged that
there is no sound. The greater the value of this threshold, the higher the compression ratio, but
the lower the sound quality. Normally, set this threshold in the range of 0 to 50.

[bps] text box
Shows average voice data rates after compression/expansion.

[# of data] text box
Shows the number of data loaded from the source data in units of short size.

[# of silent] text box
Shows the number of data judged to be silent when any value other than 0 was set in [Silent
thresh].

Basic operation procedure

1. Choose a sampling rate from the [Sampling] combo box.

2. Using the [Open] button, enter the 16-bit PCM file (.pcm) to be compressed.
For microphone input, set the recording time (seconds) in [Time] and the input level in [Gain] and click on
the [Listen] button to enter voice data from a microphone.
The entered voice data can be reproduced using the [Speak] button.

3. Choose compression parameters and playback speed from the corresponding boxes: [Compress], [Time
Cmprs], [Silent thresh], and [Speed].

4. Use the [SyntheSpk] button to reproduce the compressed voice data.

5. The compressed voice data can be saved using the [SavPCM] button.

Precautions

• This evaluation tool uses algorithms that are similar to , but not identical to the libraries implemented on the
E0C33 chip. Use these tools for the preliminary evaluation of compression parameters, etc. Also, because
sound quality depends on analog components such as the speaker, microphone, and op-amp, the sound
quality as evaluated on a PC may differ from that actually obtained in the application system. The final sound
quality, operation, etc. must be evaluated using the actual application system that contains the E0C33 chip.

• The size of files that can be loaded by this evaluation tool varies with the operating environment. The upper
limit for PCM data is the size that takes approximately 7 to 8 minutes to load.

• Before this evaluation tool can be used, a sound card (SoundBlaster 16 or compatible) that supports 8 kHz
sampling and 16-bit monaural voice input/output is required. The evaluation tool may not work with a sound
card that only supports 8-bit data.

• The VSX2 format used to compress 11/16/22-kHz sampling 16-bit PCM files is not compatible with the
VSX format used to compress 8-kHz sampling 16-bit PCM files.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

56

5 Library Reference
This section describes the precautions to be observed when using TS33 library functions and explains each function
in detail.

5.1 Outline of TS33 Library

Functional outline
The TS33 library consists of a set of voice-processing functions in srf33 library format, and is used by linking
it to the target program. By calling up the necessary functions from the target program, the following functions
can be executed in real time:

• TS data playback function

• VSX2 data compression/recording and expansion/playback functions

∗ VSX2 conversion incorporates Seiko Epson's original sound-processing technology, which supports voice
data sampled at 11.025 kHz, 16 kHz, and 22.050 kHz. The VOX33 voice compression/expansion
middleware has a VSX conversion function for voice data sampled at 8 kHz. This format is incompatible
with VSX2.

This software package also contains the C source of the top-level functions and the assembly source which can
be used for initialization purposes. These sources can be used by copying them, in whole or part, into the target
program.
This set of functions helps you to easily implement voice-processing functions in your application system.

Program structure
The structure of an application program is shown in Figure 5.1.1.

User target program
(user original specification)

TS top-level source
(corrected by user as necessary)

TS data/VSX2 data assembler source
TS dictionary data table

(created by TS tool)

VSX2 top-level source
(corrected by user as necessary)

VSX2 compressed voice data
assembler source

(created by VSX2 tool)

TS33 library functions
(used after linking)

Hardware
(16-bit programmable timer)

Figure 5.1.1 Program Structure

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

57

TS33 library structure
The TS33 library and all related files are provided in the "tslib" folder (directory). The contents of the "tslib"
folder are listed below.

tslib\ TS33 library-related directory
readme.txt TS33 library supplementary explanation, etc. (in English)
readmeja.txt TS33 library supplementary explanation, etc. (in Japanese)

lib208\ TS33 library for E0C33208 directory
vox208.lib TS33 library for E0C33208
sl208.lib Voice input / output library for E0C33208
vsx2.o VSX2 object
fadpcm16.o, fadpcm24.o, fadpcm32.o, fadpcm40.o, vsxgcp.o

Objects retrieved from vox208.lib to accelerate operation

include\ TS33 library function header file directory
ts.h TS header file
vsx2.h VSX2 header file
voxcomn.h Library common header file
packpcm.h Packed PCM header file
speak.h Output function header file
listen.h Input function header file
lksym.h Linker symbol header file

src\ Library source directory
ts2top.c TS top-level function
vsx2top.c VSX2 top-level function
voxcomn.c Library common function
slutil.c SPEAK and LISTEN utility functions

smpl208\ DMT33005 sample program directory
Refer to "readme.txt" or "readmeja.txt" in the "tslib\" directory for the
composition and the method for using sample programs.

hardsrc\ Hardware dependent source directory

* The structures of top-level functions and library functions are described later.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

58

5.2 Hardware Requirements

Hardware resources used by the library
The TS33 library uses the internal hardware resources listed below. Therefore, these resources cannot be
utilized by the user target program.

Hardware resources used for voice reproduction (Speak)
• 16-bit programmable timer (timer 1) and all control registers associated with it (used for PWM output)
• P23 port and all control registers associated with it
• 16-bit programmable timer (timer 5) and all control registers associated with it
• 16-bit programmable timer (timer 5) compare B interrupt

Make sure the SpkIntr0() function is set in the compare B interrupt vector address for the 16-bit
programmable timer (timer 5). The interrupt level is set to 4 by the SpkOpen() function.
Example: .word SpkIntr0 ; Vector No. 50 (16-bit timer #5 compare B)

Hardware resources used for voice recording (Listen)
The following resources are required to enter voice data to the chip and perform compression in VSX2 format,
but are not required for text-voice conversion output alone.
• A/D converter (channel 0) and all control registers associated with it
• K60 port and all control registers associated with it
• 16-bit programmable timer (timer 0) and all control registers associated with it
• A/D conversion-completed interrupt

Make sure the LisIntr0() function is set in the A/D conversion-completed interrupt vector address. The
interrupt level is set to 4 by the LisOpen() function.
Example: .word LisIntr0 ; Vector No.64 (ADC)

Operating clock
The TS33 library assumes that the high-speed (OSC3) clock frequency used for the E0C33208 is 20 MHz
(typ.), and that PLL is in x2 mode (CPU operating clock frequency is 40 MHz).

Memory
The memory requirements for real-time voice processing are as follows:
• Make sure all of the BSS sections used by the TS33 library are mapped into the internal RAM.
• Be sure to use the internal RAM for the stack.
• When mapping TS33 library program code into an external memory area, make sure this area is accessed in 1

or no wait cycle, if possible. Also, be sure to use a memory area 16 bits wide for this external area.

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

59

5.3 Top-Level Functions
The top-level functions are C sources that are provided to realize each required capability easily. They are
implemented using TS33 library functions. Table 5.3.1 below lists the functions in each source.

Table 5.3.1 Top-Level Functions
Source file Function name Description

ts2top.c int tsInit() Initializes TS processing
(TS processing) unsigned char *tsSpeak() Starts TS data voice output
vsx2top.c int vsx2Speak() Expands, speed-converts, and reproduces VSX2 data
(VSX2 processing) int vsx2Listen() Compresses and records VSX2 data

void vsx2TopDecode() Call-back function for reproducing
void vsx2TopEncode() Call-back function for recording
void vsx2TopEncodeEnd() Call-back function for completion of recording

ppctop.c unsigned char *ppcSpeak() Reproduces PCM data
(PCM processing) unsigned char ppcListen() Records PCM data

void ppcTopDecode() Call-back function for reproducing
void ppcTopEncode() Call-back function for recording
void ppcTopEncodeEnd() Call-back function for completion of recording

voxcomn.c void voxCodecpy() Copies code section
(Common functions) void adpcmCodecpy() Copies VSX2 code section
slutil.c void setSpeakVolume() Sets output volume
(Input/output data void slPcm2Spk() Converts output data
conversion) void slLis2Pcm() Converts input data

These functions can be used by copying the sources of the necessary functions from the above files and pasting them
into the user program source. At this time, be sure to copy parts defined by external variables from the source files
along with said functions. You must copy all of "ts2top.c", since it describes functions other than the above that do not
need to be directly called from the user program.

When using the source files directly by linking them to the user program, obtain the header file stored in the
"include\" directory and include it in the user program.

Notes: • The TS33 library functions use the CPU’s R8 register. Therefore, when linking the TS33 library,
including the top-level functions to the user program, you cannot use the -gp option
(optimization using global pointer/R8) of the instruction extender ext33.

• Even when performing TS voice conversion output alone, you must use the "vsx2top.c" and
"slutil.c" playback (Speak) functions and the "voxcomn.c" functions. Copy or link these
functions.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

60

5.3.1 Compile Options
When compiling the top-level function source files, the following compile options can be specified. Define the
names of your desired options when compiling (using the -D option of gcc33).

HIGH_PASS_FILTER
Recording (Listen) functions allow the input voice data to be fed through a high-pass filter. The cut-off
frequency of the filter is set to 120 Hz for the 16 kHz sampling rate. To use this filter, define
HIGH_PASS_FILTER when compiling.
Normally, Seiko Epson recommends using the high-pass filter.

IRAM_CACHE
To run the program at high speed by mapping it into the internal RAM, define IRAM_CACHE when compiling.
In this case, you also need to define the necessary commands in the linker command file. For details, refer to
Section 5.5, "Techniques for Speeding Up Operation".

ADPCM
To use the VSX2 function, specify this option when compiling "voxcomn.c".

SAMPLING22K
Specify this option when using raw data in 22-kHz 16-bit little endian format as PCM data.

SAMPLING16K
Specify this option when using raw data in 16-kHz 16-bit little endian format as PCM data.

SAMPLING11K
Specify this option when using raw data in 11-kHz 16-bit little endian format as PCM data.

SAMPLING8K (for TS using optional VSX)
Specify this option when using raw data in 8-kHz 16-bit little endian format as PCM data.

CLOCK40
Specify this option for 10-bit PWM output on the E0C33208. This type of output requires that the PLL be
placed in x2 mode.

In all sample programs, the compile options are defined as shown below.

• HIGH_PASS_FILTER Defined
• IRAM_CACHE Defined
• ADPCM Defined
• SAMPLINGxx SAMPLING16 defined
• CLOCK40 Defined

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

61

5.3.2 External Variables
When using the top-level functions by copying each one into the user program individually, be sure to also copy the
external variable definitions given at the beginning of each source file. These external variables are also required
when calling up library functions directly without using the top-level functions.

Note: These external variables always need to be mapped into the internal RAM because they greatly
affect the processing speed.

The main external variables are outlined below.

short SplisBuf[SPLIS_BUF_SIZE];
This buffer stores the input/output data used by library functions. Although the buffer size varies with the
function used, do not change it to any value other than that defined in the source.

short SpkDecBuf[PACKET_SIZE];
This buffer stores the PCM data derived from decoding of compressed data. Do not change the buffer size to
any value other than that defined in the source.

Slparam SlParam;
This is the data conversion parameter used for input/output devices.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

62

5.3.3 Data Structure
 Given below is the structure of TS data and voice data.

TS data

FILE_ID Data n

2 bytes D15–8 D7–6 D5–4 D3–2 D1–0

FILE_ID: File ID (0x3333)
dict No.: Dictionary No. (0x00 to 0xfe: 0xff indicates silent data, and D7–0 contains the number of silent packets.)
volume: Volume (0 = x1, 1 = x0.7, 2 = x 0.5, 3 = x1.4)
speed: Talking speed (0 = x1, 1 = x1/1.5, 2 = x1/2, 3 = x1.5)
silent: Length of silent period (0 = 0 msec, 1 = 16 msec, 2 = 32 msec, 3 = 48 msec)
pitch: Pitch (0 = -10%, 1 = -5%, 2 = Standard pitch, 3 = +10%)

Header

dict No. volume speed silent pitch

Data 1(2 bytes)

• • • •

VSX2 data

FILE_ID VSX code

1 byte

FILE_ID: File ID (0x53 = 'S')
format: Compression ratio

VSX header (2 bytes)

format EOF = 0

1 byte 1 byte

Packed PCM data

FILE_ID PPC code

1 byte

FILE_ID: File ID (0x50 ='P')
size: Size of PPC code in bytes
offset: Offset from header to PPC code

Packed PCM header (9 bytes)

offset(bytes)

size offset

4 bytes 4 bytes size(bytes)

Note: For data exchanged with a PC, set offset to 0 so that the code follows immediately after the header.

5.3.4 Error Codes Returned by Top-Level Functions

Error codes returned by TS functions
You can determine whether processing by the tslnit() function in "ts2top.c" terminated normally from the
following message codes returned by the functions.

Error code TS_SUCCESS (1) Terminated normally
TS_ERROR (0) Parameter is abnormal
TS_VSX_ERROR (-1) Reading VSX failed
TS_MAX_ERROR (-2) Dictionary No. is too large

Error codes returned by voice-processing functions
You can determine whether VSX2 voice processing (including tsSpeak()) terminated normally from the error
codes stored in the following error variables defined in "voxcomn.h".

Error variable vsx2TopError For VSX2 processing function
ppcTopError For packed PCM processing function

Error code VOX_SUCCESS (1) Terminated normally
VOX_BUF_FULL (-1) Specified data storage buffer filled when recording

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

63

5.3.5 TS Data Processing Functions (ts2top.c)

tsInit()

Function: Initializes TS processing.

Format: int tsInit(short ftbl[], int ptbl[], int Cmpress, int Volume);

Arguments: short ftbl[] 16-bit timer setting table
int ptbl[] VSX2 data table
int Cmpress VSX2 compression ratio
int Volume Volume

Return values: Terminated normally........TS_SUCCESS (1)
Terminated abnormally ...TS_ERROR (0)

Description: Initializes the VSX2 compression ratio, the setting for the 16-bit timer for voice output, and other
settings for TS processing.

Specify the tsFtbl[] in the header file generated by "tstbl.exe" for ftbl[], and the tsPtbl[] in the
header file for ptbl[].

Specify the argument Compress with the constant VSX_CMP defined in the header file generated
by "tstbl.exe". For this argument, you can also use the following values defined in "vsx2.h". In this
case, set the compression ratio specified when VSX2 data was generated by "tstbl.exe".
/* compression rate */

#define VSX_COMPRESS_16K (1) Compressed to 16-kbps equivalent
#define VSX_COMPRESS_24K (2) Compressed to 24-kbps equivalent
#define VSX_COMPRESS_32K (4) Compressed to 32-kbps equivalent
#define VSX_COMPRESS_40K (8) Compressed to 40-kbps equivalent

The argument Volume is a relative value defined with reference to 0x100 (= 1 fold).
This specified value is multiplied by an internal voice data value to determine the playback sound
volume. When the value exceeds a tolerable level, it is rounded off. Since the value can be
specified in increments of 1, the setting can be finally adjusted.
volume = 0x100 1.0-fold sound volume
volume = 0x80 0.5-fold sound volume
volume = 0x200 2.0-fold sound volume

Example: int iErr;

iErr = tsInit((short *)tsFtbl, (int *)tsPtbl, VSX_CMP, 0x100);

Specifies the table in the header file generated by "tstbl.exe" and sets the volume as 1.0 fold.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

64

tsSpeak()

Function: Starts TS data voice output.

Format: int tsSpeak(unsigned char *tspts, int Speed);

Arguments: unsigned char *tspts Pointer to the beginning of the TS data table
int Speed Talking speed

Return values: Terminated normally...........Pointer to output data (SpkParams)
Terminated abnormally0

Description: Specifies the TS data and the talking speed and starts voice output.

For tspts, specify the global symbol in the assembly source file generated from the original text by
"jtxt2pts.exe", "pts2ts.exe", "ts2bin.exe", and "bin2s.exe".

The talking speed depends on the value specified for Speed. You can use the values defined in
"vsx.h". Under most circumstances, select from the following categories.
#define TS_SPEED_10 (0) Performs playback at standard speed.
#define TS_SPEED_15 (1) Performs playback at 1.5 times the standard speed.
#define TS_SPEED_20 (2) Performs playback at twice the standard speed.
#define TS_SPEED_30 (3) Performs playback at three times the standard speed.
#define TS_SPEED_40 (4) Performs playback at four times the standard speed.

Example: unsigned char *SpkParams;

SpkParams = tsSpeak(sample1c, TS_SPEED_10);

Plays back TS data with sample1c global symbol at standard speed.

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

65

5.3.6 VSX2 Data Processing Functions (vsx2top.c)

Note: Because VSX2 data processing uses much CPU power, the program must be run at high speed by
mapping part of it into the internal memory. The object required for internal memory mapping
varies with the compression ratio involved, but is normally one of fadpcm16.o, fadpcm24.o,
fadpcm32.o, or fadpcm40.o. When using the VSX2 compression/recording function, vsxgcp.o
must be mapped into the internal memory (it is not necessary when using the VSX2 expansion
function only). For details, refer to Section 5.5, "Techniques for Speeding Up Operation".

vsx2Speak()

Function: Expands, speed-converts, and reproduces VSX2 data.

Format: unsigned char *vsx2Speak(unsigned char *Src, int Speed);

Arguments: unsigned char *Src Playback VSX2 data pointer
int Speed Talking speed

Return values: Terminated normall.............SpkParams pointer
Terminated abnormally0

Description: After loading VSX2-format data from Src, this function expands and reproduces it. The talking
speed can be changed by specifying any value for Speed. The values defined in "vsx.h" can be used.
Normally, choose one of the following four:
/* play speed */

#define VSX_SPEED_SLOW15 (-1) Slowed down by a factor of 1.5
#define VSX_SPEED_NORMAL (0) Reproduced at the speed of the original data
#define VSX_SPEED_FAST15 (1) Speeded up by a factor of 1.5
#define VSX_SPEED_FAST20 (2) Speeded up by a factor of 2

Example: Reproducing the data input by vsx2Listen()
unsigned char *SpkParams, *LisParams, CmpData[16000*3];

LisParams = vsx2Listen(16000*3,16000*3,CmpData,

VSX_TIME_CMP_10|VSX_COMPRESS_24K,50);

:

SpkParams = vsx2Speak(CmpData, VSX_SPEED_FAST20);

The VSX2 data in CmpData is reproduced at 2 times the normal speed after expansion.

Reproducing the VSX data created by the user
Create the compressed voice assembly source data that is output by the TS33 tool "bin2s.exe". For
example, when you create the data labeled "sev24t1", specify the C source as shown below.
extern unsigned char sev24t1[];

:

unsigned char *SpkParams;

SpkParams = vsx2Speak(sev24t1, VSX_SPEED_NORMAL);

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

66

vsx2Listen()

Function: Compresses and records voice data in VSX2 format.

Format: unsigned char *vsx2Listen(int Samples, int MaxBytes,

unsigned char *Dst, unsigned char format, short silent_level);

Arguments: int Samples Maximum number of input samples
(sampling rate × seconds)

int MaxBytes Maximum number of written data (bytes)
unsigned char *Dst Pointer to the beginning of the data write buffer
unsigned char format Compression ratio
short silent_level Silent threshold

Return values: Terminated normally...............LisParams pointer
Terminated abnormally0

Description: This function compresses the input voice data in real time and writes the compressed voice data to
the specified data buffer (Dst).

To specify the fourth argument (format), use logical OR of the "compression rate" and "time
compression rate" defined in "vsx.h".
/* compression rate */ ADPCM-compatible compression ratio
#define VSX_COMPRESS_16K (1) Compressed to 16 kbps equivalent
#define VSX_COMPRESS_24K (2) Compressed to 24 kbps equivalent
#define VSX_COMPRESS_32K (4) Compressed to 32 kbps equivalent
#define VSX_COMPRESS_40K (8) Compressed to 40 kbps equivalent

/* time compression rate */ Compression ratio in timebase direction
#define VSX_TIME_CMP_10 (0x10) Not compressed
#define VSX_TIME_CMP_20 (0x20) Compressed as in ×2 recording
#define VSX_TIME_CMP_30 (0x30) Compressed as in ×3 recording
#define VSX_TIME_CMP_40 (0x40) Compressed as in ×4 recording

The greater the value of the fifth argument (silent_level), the higher the compression ratio, but the
sound quality deteriorates accordingly. Normally, specify this argument in the range of 0 to 50.

Example: unsigned char *LisParams, CmpData[16000*3];

LisParams = vsx2Listen(16000*3,16000*3,CmpData,

VSX_TIME_CMP_10|VSX_COMPRESS_24K,50);

Voice data is input for about 3 seconds while sampling at 16 kHz. The input voice data is
compressed to 24 kbps equivalent and then stored in the buffer CmpData.

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

67

vsx2TopDecode()

Function: Call-back function for reproducing

Format: void vsx2TopDecode(unsigned char *SpkParams, short *Buffer,

int Length);

Description: This function is called back from the library when free space is available in the playback data
queue. It decodes data and adds Buffer to the queue. Enter this function using the SpkOnDone()
function in TopSpeakStart(). (Refer to "vsx2top.c")

vsx2TopEncode()

Function: Call-back function for recording

Format: void vsx2TopEncode(unsigned char *SpkParams, short *Buffer,

int Length);

Description: This function is called back from the library when data is stored in the record data buffer. It
encodes the data stored in Buffer and adds Buffer to the queue. Enter this function using the
LisOnDone() function in TopLisStart(). (Refer to "vsx2top.c")

vsx2TopEncodeEnd()

Function: Call-back function for completion of recording

Format: void vsx2TopEncodeEnd(unsigned char *LisParams);

Description: This function is called back from the library when recording is completed. Enter this function
using the LisOnEmpty() function in TopLisStart(). (Refer to "vsx2top.c")

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

68

5.3.7 PCM Data Processing Functions (ppctop.c)

ppcSpeak()

Function: Reproduces PCM data.

Format: unsigned char* ppcSpeak(unsigned char *Data, int pitch_speed,

int real_time);

Arguments: unsigned char *Data Playback PCM data pointer
int pitch_speed Tone pitch and talking speed (Fixed at 0)
int real_time Real-time parameter (Fixed at 0)

Return values: Terminated normally...............SpkParams pointer
Terminated abnormally0

Description: After loading PCM-format data (10-bit amplitude, 8K sampling) from Data, this function
reproduces it.

Unlike ppsSpeak() in the VOX library, this library does not support VSC conversion (pitch/talking
speed conversion). Always set the second (pitch_speed) and third (real_time) arguments to 0.

Example: Reproducing the data input by pcmListen()
unsigned char *SpkParams, *LisParams, pcmData[16000*3];

unsigned char pcmData[16000*3+PACKPCM_HEADER_SIZE];

LisParams = ppcListen(16000*3, 16000*3, pcmData+PACKPCM_HEADER_SIZE,

pcmData);

:

SpkParams = ppcSpeak(pcmData, VSC_NORMAL);

The PCM data in ppcData is reproduced without changing the tone pitch and talking speed.

Reproducing the PCM data created by the user
Create the voice assembly source data using the TS33 (VSX33) tool "bin2s.exe". For example,
when you have created the data labeled "se", specify the C source as shown below.
extern unsigned char s[];

:

unsigned char *SpkParams;

SpkParams = ppcSpeak(se,VSC_LOW20);

The data "se" is reproduced.

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

69

ppcListen()

Function: Records PCM data.

Format: unsigned char *ppcListen(int Samples, int MaxBytes,

unsigned char *Dst, unsigned char *Header);

Arguments: int Samples Maximum number of input samples
(sampling rate × seconds)

int MaxBytes Maximum number of written data (bytes)
unsigned char *Dst Pointer to the beginning of the data write buffer
unsigned char *Header Buffer in which to write header information

(9 bytes or more)

Return values: Terminated normally...............LisParams pointer
Terminated abnormally0

Description: This function inputs 10-bit amplitude PCM data.

Example: unsigned char *LisParams, pcmData[16000*3+PACKPCM_HEADER_SIZE];

LisParams = ppcListen(16000*3, 16000*3, pcmData+PACKPCM_HEADER_SIZE,

pcmData);

Voice data is input for about 3 seconds.

ppcTopDecode()

Function: Call-back function for reproducing

Format: void ppcTopDecode(unsigned char *SpkParams, short *Buffer,

int Length);

Description: This function is called back from the library when free space is available in the playback data
queue. It decodes data and adds Buffer to the queue. Enter this function using the SpkOnDone()
function in TopSpeakStart(). (Refer to "ppctop.c".)

ppcTopEncode()

Function: Call-back function for recording

Format: void ppcTopEncode(unsigned char *SpkParams, short *Buffer,

int Length);

Description: This function is called back from the library when data is stored in the record data buffer. It
encodes the data stored in Buffer and adds Buffer to the queue. Enter this function using the
LisOnDone() function in TopLisStart(). (Refer to "ppctop.c".)

ppcTopEncodeEnd()

Function: Call-back function for completion of recording

Format: void ppcTopEncodeEnd(unsigned char *LisParams);

Description: This function is called back from the library when recording is completed. Enter this function
using the LisOnEmpty() function in TopLisStart(). (Refer to "ppctop.c".)

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

70

5.3.8 Common Functions (voxcomn.c)

Note: When handling data in VSX2 format, define "ADPCM" when compiling this source.

voxCodecpy()

Function: Copies code section.

Format: void voxCodecpy(int *dst, int *src, int *size);

Arguments: int *dst Destination address of transfer (internal RAM)
int *src Source address of transfer (external ROM)
int *size Size of transfer code (byte)

Return value: None

Description: This function transfers code from external ROM to internal RAM.

Example: voxCodecpy(&__START_CACHE1, &__START_cpclrdat_code,

&__SIZEOF_cpclrdat_code);

The code of "cpclrdat.o" is copied into the &_START_CACHE1 position of the internal RAM.
In this case, the following must be written in the linker command file:
-section CASHE1

-ucode CACHE1 {(pass)\cpclrdat.o}

adpcmCodecpy()

Function: Copies VSX2 code section.

Format: void adpcmCodecpy(unsigned char format);

Argument: unsigned char format Compression ratio

Return value: None

Description: This function transfers VSX2 code from external ROM to internal RAM
(&_START_ADPCODE). For the argument (format), use one of the values defined in "vsx2.h":
#define VSX_COMPRESS_16K (1) Copy object to be compressed at 16 kbps
#define VSX_COMPRESS_24K (2) Copy object to be compressed at 24 kbps
#define VSX_COMPRESS_32K (4) Copy object to be compressed at 32 kbps
#define VSX_COMPRESS_40K (8) Copy object to be compressed at 40 kbps

Example: adpcmCodecpy(VSX_COMPRESS_24k);

The code of "fadpcm24.o" is copied into the &_START_ADPCODE position of the internal
RAM. In this case, the following must be written in the linker command file:
-section ADPCODE

-ucode ADPCODE {(pass)\fadpcm16.o (pass)\fadpcm24.o (pass)\fadpcm32.o
(pass)\fadpcm40.o}

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

71

5.3.9 Input/Output Data Convert Functions (slutil.c)
The following shows the format of each type of data handled by input/output data functions.
VSX2 data: Signed 12-bit data
PCM data: Signed 10-bit data

setSpeakVolume()

Function: Sets output volume.

Format: void setSpeakVolume(unsigned short spkv);

Argument: unsigned short spkv Playback sound volume

Return value: None

Description: This function sets the playback sound volume. Always be sure to set this volume before calling up
the following playback output functions:
vsx2Speak(), ppcSpeak()

The argument is a relative value defined with reference to 0x100 (= 1 fold).
This specified value is multiplied by an internal voice data value to determine the playback sound
volume. When the value exceeds the tolerate level, it is rounded off.
Since the value can be specified in increments of 1, sophisticated settings are possible.

Example: setSpeakVolume(0x100); ... 1.0-fold sound volume
setSpeakVolume(0x80); ... 0.5-fold sound volume
setSpeakVolume(0x200); ... 2.0-fold sound volume

slPcm2Spk()

Function: Converts output data.

Format: void slPcm2Spk(short *Src, short *Dst, int Length, Slparam *slParam);

Arguments: short *Src Pointer to source data array
short *Dst Pointer to write array
int Length Number of data to be converted (short)
Slparam *slParam Conversion parameter

Return value: None

Description: This function converts the PCM data obtained by expansion of compressed data by offsetting,
shifting, or clipping it according to the parameters defined in slParam.
Use separate arrays for Src and Dst.

Example: To expand VSX2 (signed 12-bit) data and output the result to a device used for 8-bit signed data,
define slParam as follows:
slParam->offset = 0x40; Adds offset of 0x40
slParam->shift = 2|SPLIS_RSHIFT Shifts to the right by 2 bits
slParam->limit = 0xfe; Clips data with upper limit 0xfe and lower

limit 0x0

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

72

slLis2Pcm()

Function: Converts input data

Format: void slLis2Pcm(short *Src, short *Dst, int Length, Slparam *slParam);

Arguments: short *Src Pointer to source data array
short *Dst Pointer to write arra
int Length Number of data to be converted (short)
Slparam *slParam Conversion parameter

Return value: None

Description: This function converts the A/D-converted data by offsetting and shifting it according to the
parameters defined in slParam. Use separate arrays for Src and Dst.

Example: To convert A/D-converted (signed 10-bit) data into the signed 12-bit data used for VSX2
compression, define slParam as follows:
slParam->offset = -512; Adds offset of -512
slParam->shift = 2|SPLIS_LSHIFT Shifts to the left by 2 bits

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

73

5.4 TS33 Library Functions
The TS33 (VSX2) libraries "vsx2.lib" and "vox208.lib" contain the functions required for expansion, compression in
VSX2 format. "sl208.lib" contains the functions required for voice input/output. By linking them to the user
program, any desired voice function can be implemented. Note that in order for voice data to be compression-
recorded or expansion-reproduced in real time, some objects need to be mapped into the internal memory. For details,
refer to Section 5.5, "Techniques for Speeding Up Operation".
Table 5.4.1 below lists the library functions.

Table 5.4.1 Library Functions

vsx2.o
Type Function name Description

VSX2 vsx2ReadHeader() Read VSX2 header (parameter)
processing vsx2DecodeInit() Initialize for VSX2 expansion

vsx2GetDecodePacketSize() Get VSX2 expansion packet size
vsx2Decode() Expand 1 VSX2 packet
vsx2IsEOF() Check for VSX2 end data
vsx2WriteHeader() Write VSX2 header (parameter)
vsx2EncodeInit() Initialize for VSX2 compression
vsx2SetEncodeData() Enter VSX2 compression data
vsx2GetEncodePacket() Get VSX2-compressed packet
vsx2EncodeFlush() Finish VSX2 compression
vsx2WriteEOF() Write VSX2 end data

vox208.lib
Type Function name Description

PCM packpcmReadHeader() Read packed PCM header (parameter)
processing packpcmInit() Initialize packed PCM

packpcmDecode() Decode 1 packed PCM packet
packpcmEncode() Encode 1 packed PCM packet
packpcmWriteHeader() Write packed PCM header (parameter)

High-pass fltInit() Initialize cut-off frequency
filter fltFiltering() Filtering

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

74

sl208.lib
Type Function name Description

Voice output SpkSoftening() Soften start volume
SpkSampleRate() Change sampling rate
SPK_SAMPLING() Get 16-bit timer reload value (macro)
SpkInit() Initialize internal library variables
SpkOpen() Open output channel
SpkClose() Close output channel
SpkStart() Start voice output
SpkHalt() Halt voice output
SpkAppend() Append the voice to output data queue
SpkRoom() Get number of remaining entries in queue
SpkQueue() Get number of entries waiting for output
SpkIsRunning() Check output status
SpkOnDone() Enter reproduction call-back function
SpkOnEmpty() Enter reproduction-complete call-back function
SpkOnNotInTime() Enter non-realtime operating call-back function
SpkIntr0() Process voice output by interrupt

Voice input LIS_SAMPLING() Get 16-bit timer reload value (macro)
LisInit() Initialize internal library variables
LisOpen() Open input channel
LisClose() Close input channel
LisStart() Start voice input
LisHalt() Halt voice input
LisAppend() Append the voice to input data queue
LisRoom() Get number of entries in queue
LisQueue() Get number of entries waiting for input
LisIsRunning() Check input status
LisOnDone() Enter recording call-back function
LisOnEmpty() Enter recording-complete call-back function
LisOnNotInTime() Enter non-realtime operating call-back function
LisIntr0() Process voice input by interrupt

Note: The TS33 (VSX2) library functions use the CPU’s R8 register. Therefore, when linking the library,
including the top-level functions to the user program, you cannot use the -gp option (optimization
using global pointer/R8) of the instruction extender ext33. Also, make sure the BSS sections used
by library functions are mapped into the internal RAM.

The following explains the specification of each function. For details on how to use these functions, refer to the
top-level function sources.

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

75

5.4.1 VSX2 Processing Functions

vsx2ReadHeader()

Function: Reads VSX2 header (parameter)

Format: int vsx2ReadHeader(unsigned char *Src, vsxParams *Params);

Arguments: unsigned char *Src Byte array for data input
vsxParams *Params Pointer to the structure to which to assign vsxParams value

Return value: Number of bytes read from Src

Description: This function reads VSX2 parameters (vsxParams) from Src and writes them into a specified
structure. If Src does not have the vsxParams structure, the value 0 or a negative value is returned,
in which case the content of the structure is not changed.

vsx2DecodeInit()

Function: Initializes VSX2 expansion

Format: int vsx2DecodeInit(vsxParams *Params, int Speed);

Arguments: vsxParams *Params Pointer to vsxParams
int *Speed Playback speed

Return value: Terminated normally...............Other than 0
Terminated abnormall.............0

Description: This function initializes settings for VSX2 expansion processing with vsxParams and sets the
playback speed using the second argument (Speed).

Reference: Defined values of talking speed in vsx2.h (Recommended values in bold face)
/* play speed */

#define VSX_SPEED_SLOW20 (-2)

#define VSX_SPEED_SLOW15 (-1)

#define VSX_SPEED_NORMAL (0)

#define VSX_SPEED_FAST15 (1)

#define VSX_SPEED_FAST20 (2)

#define VSX_SPEED_FAST30 (3)

#define VSX_SPEED_FAST40 (4)

#define VSX_SPEED_FAST60 (5)

#define VSX_SPEED_FAST80 (6)

#define VSX_SPEED_FAST120 (7)

#define VSX_SPEED_FAST160 (8)

vsx2GetDecodePacketSize()

Function: Gets VSX2-expansion data packet size

Format: int vsx2GetDecodePacketSize(unsigned char *Src);

Argument: unsigned char *Src Byte array for data input

Return value: Number of data (bytes) in one packet

Description: This function returns the number of bytes that comprise one packet beginning with Src. When the
data is EOF, the value 1 is returned.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

76

vsx2Decode()

Function: Expands one packet of VSX2 data

Format: int vsx2Decode(unsigned char *Src, int *Cont, short *Dst, int DstSize);

Arguments: unsigned char *Src Byte array for data input
int *Cont Number of repetitions
short *Dst short-type data array at output destination
int DstSize Output buffer size

Return value: Number of data (bytes) written to Dst

Description: This function decodes one packet of data beginning with Src and writes the decoded data to Dst
by appropriately overlapping the basic waveform on it so that the preset playback speed is obtained.
If the data cannot be written to Dst in one operation, temporarily store data in the internal buffer,
set the number of repetitions in Cont, and call up the function repeatedly beginning with high-
order data, until the return value is 0.

Note: • DstSize must be 120 or more.
• When the packet is skipped vsx2Decode() returns 0.
• For repeated calls, set 0 in Cont when first calling up the function for high-order data.

vsx2IsEOF()

Function: Checks for VSX2 end data

Format: int vsx2IsEOF(unsigned char *Src);

Argument: unsigned char *Src Byte array for data input

Return values: When data is end data1
When data is not end data0

Description: This function determines whether Src is the end data of VSX2.

vsx2WriteHeader()

Function: Writes VSX2 header (parameter)

Format: int vsx2WriteHeader(vsxParams *Params, int MaxBytes,

unsigned char *Dst);

Arguments: vsxParams *Params Pointer to vsxParams
int MaxBytes Maximum number of output bytes
unsigned char *Dst unsigned char-type data array at output destination

Return value: Number of data bytes actually written to Dst

Description: This function writes vsxParams to Dst.
If the number of bytes to be written is greater than MaxBytes, no parameters are written to Dst. In
this case, the value 0 or a negative value is returned.

vsx2EncodeInit()

Function: Initializes VSX2 compression

Format: int vsx2EncodeInit(vsxParams *Params);

Argument: vsxParams *Params Pointer to vsxParams

Return values: Terminated normally...............Other than 0
Terminated abnormally0

Description: This function initializes settings for VSX2 compression processing using vsxParams.

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

77

vsx2SetEncodeData()

Function: Enters data for VSX2 compression

Format: int vsx2SetEncodeData(short *Src, int Length);

Arguments: short *Src short-type data array at input source
int Length Input data size

Return value: Number of samples actually entered

Description: This function enters the source voice data to be VSX2-compressed.

Note: The second argument (Length) and the return value are the number of voice samples, not the
number of bytes.

vsx2GetEncodePacket()

Function: Gets VSX2-compressed packet

Format: int vsx2GetEncodePacket(unsigned char *Dst, int MaxBytes);

Arguments: unsigned char *Dst unsigned char-type data array at output destination
int MaxBytes Maximum number of output bytes

Return value: Number of data bytes actually written to Dst

Description: This function writes one packet of VSX2-compressed data to Dst.
Before using this function, enter the data to be compressed using vsx2SetEncodeData().
Then call vsx2GetEncodePacket() repeatedly until the return value is 0. After this function returns
0, the next data to be compressed can be entered using vsx2SetEncodeData().

vsx2EncodeFlush()

Function: Carry out processes to complete VSX2 compression

Format: int vsx2EncodeFlush();

Argument: None

Return value: Terminated normally...............1

Description: After entering all data to be compressed using vsx2SetEncodeData(), call vsx2EncodeFlush() to
close the internal buffers. Then call vsx2GetEncodePacket() repeatedly until the return value is 0.
When vsx2GetEncodePacket() returns 0, compression is terminated.

vsx2WriteEOF()

Function: Writes VSX2 end data

Format: int vsx2WriteEOF(unsigned char *Dst);

Arguments: unsigned char *Dst unsigned char-type data array at output destination

Return values: Number of data bytes actually written to Dst

Description: This function writes the data that indicates the end of VSX2 data to Dst.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

78

5.4.2 PCM Processing Functions

packpcmReadHeader()

Function: Reads the packed PCM header (parameter)

Format: int packpcmReadHeader(unsigned char *Src, packpcmParams *Params);

Arguments: unsigned char *Src Byte array for data input
packpcmParams *Params Pointer to the structure to which to assign packpcmParams

value

Return values: Number of bytes read from Src

Description: This function reads packed PCM parameters (packpcmParams) from Src and writes them into a
specified structure.
If Src does not have the packpcmParams structure, the value -1 is returned, in which case the
content of the structure is not changed.

packpcmInit()

Function: Initializes packed PCM processing

Format: int packpcmInit(packpcmParams *Params, int PacketSize);

Arguments: packpcmParams *Params Pointer to packpcmParams
int PacketSize Packet size (normally 128)

Return values: Terminated normally...............1
Terminated abnormally-1

Description: This function initializes packed PCM processing using packpcmParams.

packpcmDecode()

Function: Decodes one packet of packed PCM data

Format: int packpcmDecode(unsigned char *Src, short *Dst);

Arguments: unsigned char *Src unsigned char-type data array at input source
short *Dst short-type data array at output destination

Return value: Number of data bytes read from Src

Description: This function reads one packet of packed PCM-format data from Src and converts it into short-
type data before writing it to Dst. In the output destination array Dst, memory space for more than
one packet of converted short-type data must be allocated. Also, before using this function, packed
PCM processing must be initialized by packpcmInit().

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

79

packpcmEncode()

Function: Converts one packet of data into packed PCM format

Format: int packpcmEncode(short *Src, int MaxBytes, unsigned char *Dst);

Arguments: short *Src short-type data array at input source
int MaxBytes Maximum number of output bytes
unsigned char *Dst unsigned char-type data array at output destination

Return values: Terminated normally...............Number of data bytes actually written to Dst
Terminated abnormally-1

Description: This function reads one packet of short-type data from Src and converts it into packed PCM format
before writing it to Dst. Before using this function, packed PCM processing must be initialized by
packpcmInit(). The number of input data is equivalent to one packet specified by packpcmParams.
If the number of bytes of converted data is greater than MaxBytes, no data is written to Dst. In this
case, the value -1 is returned.

packpcmWriteHeader()

Function: Writes the packed PCM header (parameter)

Format: int packpcmWriteHeader(adpcmParams *Params, int MaxBytes,

unsigned char *Dst);

Arguments: packpcmParams *Params Pointer to packpcmParams
int MaxBytes Maximum number of output bytes
unsigned char *Dst unsigned char-type data array at output destination

Return values: Terminated normally...............Number of data bytes actually written to Dst
Terminated abnormally -1

Description: This function writes packpcmParams to Dst. If the number of bytes to be written is greater than
MaxBytes, no parameters are written to Dst. In this case, the value -1 is returned.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

80

5.4.3 Output (Speak) Functions

SpkSoftening()

Function: Soften start volume for output

Format: void SpkSoftening(unsigned char SPK_SOFTENING);

Argument: unsigned char SPK_SOFTENING Output ON/OFF delay time

Return value: None

Description: This function is use to reduce the switching noise that is generated at the start and end of
reproduction output. Be sure to set this function before calling SpkStart().
For ×2 oversampled output, the output-ON delay time is obtained from the equation below:

1/16000 × SPK_SOFTENING × CENTER_DATA [msec]

CENTER_DATA is a median value of output data bits (0x80 for 8 bits, 0x200 for 10 bits).
Check switching noise in the actual application system before determining the delay time.

SPK_SAMPLING()

Function: Gets 16-bit timer reload value (macro)

Format: SPK_SAMPLING(CpuClock, SamplingRate)

Arguments: CpuClock CPU clock frequency
SamplingRate Sampling rate

Return value: 16-bit timer reload value

Description: This is the macro used to acquire the 16-bit timer reload value from the specified CPU clock
frequency and sampling rate.

SpkInit()

Function: Initializes internal library variables

Format: void SpkInit(void);

Argument: None

Return value: None

Description: This function clears the internal variables used by the library to 0.

SpkOpen()

Function: Opens the output channel

Format: unsigned char *SpkOpen(int Channel, int ReloadValue);

Arguments: int Channel Channel number
int ReloadValue 16-bit timer set value

Return values: Terminated normally...............SpkParams pointer corresponding to the opened channel
Terminated abnormally0

Description: This function opens the specified output channel with a specified sampling rate. The SpkParams
value returned by this function is used as an argument for other output (Spk) functions.
For ReloadValue, specify the value acquired by the SPK_SAMPLING macro.
In the following cases, the function fails to open and returns 0.
• When the specified channel is already open
• When an unavailable channel is specified
• When the reload value exceeds 16 bits

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

81

SpkClose()

Function: Closes the output channel

Format: int SpkClose(unsigned char *SpkParams);

Argument: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)

Return values: Terminated normally...............Other than 0
Terminated abnormally0

Description: This function closes the specified output channel. If the specified channel is not open, it returns 0.

SpkStart()

Function: Starts voice output

Format: int SpkStart(unsigned char *SpkParams);

Argument: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)

Return values: Terminated normally...............Other than 0
Terminated abnormally0

Description: This function starts the operation to output voice data in a specified channel. If the specified
channel is not open, it returns 0.

SpkHalt()

Function: Halts voice output

Format: int SpkHalt(unsigned char *SpkParams);

Argument: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)

Return values: Terminated normally...............Other than 0
Terminated abnormally0

Description: This function halts the operation to output voice data in a specified channel. If output in the
specified channel has not been started by SpkStart(), it returns 0.

SpkAppend()

Function: Appends data to output data queue

Format: int SpkAppend(unsigned char *SpkParams, void *Buffer, int Length);

Arguments: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)
void *Buffer Pointer to the data to be entered
int Length Data size

Return values: Terminated normally...............Other than 0
Terminated abnormally0

Description: This function appends the output data to the output queue of a channel specified by SpkParams. If
output in the specified channel has not been started by SpkStart() or there is no free entry in the
queue, no data is entered and 0 is returned.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

82

SpkRoom()

Function: Gets the number of remaining entries in the queue

Format: int SpkRoom(unsigned char *SpkParams);

Argument: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)

Return value: Number of available entries

Description: This function returns the number of available remaining entries in the output queue. When this
function is called up immediately after opening an output channel, it shows the maximum number
of available entries.
The value returned during voice output operation is as follows:
(Maximum number of entries) - (Number of entries) - (Number of entries that are not called back)

SpkQueue()

Function: Gets the number of entries waiting for output

Format: int SpkQueue(unsigned char *SpkParams);

Argument: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)

Return value: Number of entries waiting for output

Description: This function returns the number of entries waiting for output in the output queue. The value
returned during voice output operation is as follows:
(Number of queued entries) - (Number of entries that are not called back) - (Number of entries that
are called back)

SpkIsRunning()

Function: Checks output status

Format: int SpkIsRunning(unsigned char *SpkParams);

Argument: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)

Return values: When output operation is under way.....Other than 0
When output operation has halted0

Description: This function returns a value indicating whether output operation in the specified output channel
is under way.

SpkOnDone()

Function: Enters the reproduction call-back function

Format: int SpkOnDone(unsigned char *SpkParams, void *Callback);

Arguments: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)
void *Callback Pointer to the call-back function to be entered

Return value: Pointer to the original call-back function

Description: This function enters the function in a specified output channel that is called back when
reproducing voice data. The call-back function has the following format:
void Callback(unsigned char *SpkParams, void *Buffer, int Length)

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

83

SpkOnEmpty()

Function: Enters the reproduction-complete call-back function

Format: int SpkOnEmpty(unsigned char *SpkParams, void *Callback);

Arguments: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)
void *Callback Pointer to the call-back function to be entered

Return value: Pointer to the original call-back function

Description: This function enters the function in a specified output channel that is called back upon completion
of reproduction. The call-back function has the following format:
void Callback(unsigned char *SpkParams)

SpkOnNotInTime()

Function: Enters the non-realtime operating call-back function

Format: int SpkOnNotInTime(unsigned char *SpkParams, void *Callback);

Arguments: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)
void *Callback Pointer to the call-back function to be entered

Return value: Pointer to the original call-back function

Description: This function enters the function in a specified output channel that is called back if voice data
cannot be reproduced in real time. The call-back function has the following format:
void Callback(unsigned char *SpkParams, void *Buffer, int Length)

SpkIntr0()

Function: Processes voice output by interrupt

Format: void SpkIntr0(void);

Argument: None

Return value: None

Description: This function processes voice output by an interrupt.
Use this function only as an interrupt vector.

SpkSampleRate()

Function: Changes sampling rate

Format: void SpkSampleRate(unsigned char *SpkParams, void *Buffer,

int ReloadValue);

Arguments: unsigned char *SpkParams SpkParams pointer (return value of SpkOpen)
void *Buffer Pointer to the output data
int ReloadValue 16-bit timer set value

Return value: None

Description: This function changes the sampling rate of a channel specified by spkParams according to
ReloadValue, starting from the time at which the system outputs the data that begins with Buffer.
For ReloadValue, specify the value obtained by the SPK_SAMPLING macro.
Use this function if you want to change the sampling rate dynamically after calling SpkStart().
Buffer is the buffer specified by SpkAppend(). Use the buffer immediately before SpkAppend().
Normally, specify the sampling rate in SpkOpen().

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

84

5.4.4 Input (Listen) Functions

LIS_SAMPLING()

Function: Gets the 16-bit timer reload value (macro)

Format: LIS_SAMPLING(CpuClock, SamplingRate)

Arguments: CpuClock CPU clock frequency
SamplingRate Sampling rate

Return value: 16-bit timer reload value

Description: This is the macro used to acquire the 16-bit timer reload value from the specified CPU clock
frequency and sampling rate.

LisInit()

Function: Initializes internal library variables

Format: void LisInit(void);

Argument: None

Return value: None

Description: This function clears the internal variables used by the library to 0.

LisOpen()

Function: Opens input channel

Format: unsigned char *LisOpen(int Channel, int ReloadValue);

Arguments: int Channel Channel number
int ReloadValue 16-bit timer set value

Return values: Terminated normally...............LisParams pointer corresponding to the opened channel
Terminated abnormally...........0

Description: This function opens the specified input channel with a specified sampling rate. The LisParams
value returned by this function is used as an argument for other input (Lis) functions.
For ReloadValue, specify the value acquired by the LIS_SAMPLING macro.
In the following cases, the function fails to open and returns 0.
• When the specified channel is already open (For input, only channel 1 can be opened.)
• When an unavailable channel is specified
• When the reload value exceeds 16 bits

LisClose()

Function: Closes input channel

Format: int LisClose(unsigned char *LisParams);

Argument: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return values: Terminated normally...............Other than 0
Terminated abnormally...........0

Description: This function closes the specified input channel. If the specified channel is not open, it returns 0.

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

85

LisStart()

Function: Starts voice input

Format: int LisStart(unsigned char *LisParams);

Argument: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return values: Terminated normally...............Other than 0
Terminated abnormally0

Description: This function starts the operation to input voice data in a specified channel. If the specified
channel is not open, it returns 0.

LisHalt()

Function: Stops voice input

Format: int LisHalt(unsigned char *LisParams);

Argument: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return values: Terminated normally...............Other than 0
Terminated abnormally0

Description: This function stops the operation to input voice data in a specified channel. If input in the
specified channel has not been started by LisStart(), it returns 0.

LisAppend()

Function: Appends data to input data queue

Format: int LisAppend(unsigned char *LisParams, void *Buffer, int Length);

Arguments: unsigned char *LisParams LisParams pointer (return value of LisOpen)
void *Buffer Pointer to the data to be entered
int Length Data size

Return values: Terminated normally...............Other than 0
Terminated abnormally0

Description: This function appends the input buffer to the input queue of a channel specified by LisParams. If
input in the specified channel has not been started by LisStart() or there is no free entry in the
queue, 0 is returned.

LisRoom()

Function: Gets the number of remaining entries in the queue

Format: int LisRoom(unsigned char *LisParams);

Argument: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return value: Number of available entries

Description: This function returns the number of available remaining entries in the input queue.
When this function is called immediately after opening an input channel, it shows the maximum
number of available entries.
The value returned during voice input operation is as follows:
(Maximum number of entries) - (Number of queued entries) - (Number of entries that are not called
back)

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

86

LisQueue()

Function: Gets the number of entries waiting for input

Format: int LisQueue(unsigned char *LisParams);

Argument: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return value: Number of entries waiting for input

Description: This function returns the number of entries waiting for input in the input queue.
The value returned during voice input operation is as follows:
(Number of queued entries) - (Number of entries that are not called back) - (Number of entries that
are called back)

LisIsRunning()

Function: Checks input status

Format: int LisIsRunning(unsigned char *LisParams);

Argument: unsigned char *LisParams LisParams pointer (return value of LisOpen)

Return values: When input operation is under wayOther than 0
When input operation has halted0

Description: This function returns a value indicating whether input operation in the specified input channel is
under way.

LisOnDone()

Function: Enters the recording call-back function

Format: int LisOnDone(unsigned char *LisParams, void *Callback);

Arguments: unsigned char *LisParams LisParams pointer (return value of LisOpen)
void *Callback Pointer to the call-back function to be entered

Return value: Pointer to the original call-back function

Description: This function enters the function in a specified input channel that is called back when recording
voice data. The call-back function has the following format:
void Callback(unsigned char *LisParams, void *Buffer, int Length)

LisOnEmpty()

Function: Enters the recording-complete call-back function

Format: int LisOnEmpty(unsigned char *LisParams, void *Callback);

Arguments: unsigned char *LisParams LisParams pointer (return value of LisOpen)
void *Callback Pointer to the call-back function to be entered

Return value: Pointer to the original call-back function

Description: This function enters the function in a specified input channel that is called back upon completion
of recording. The call-back function has the following format:
void Callback(unsigned char *LisParams)

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

87

LisOnNotInTime()

Function: Enters the non-realtime operating call-back function

Format: int LisOnNotInTime(unsigned char *LisParams, void *Callback);

Arguments: unsigned char *LisParams LisParams pointer (return value of LisOpen)
void *Callback Pointer to the call-back function to be entered

Return value: Pointer to the original call-back function

Description: This function enters the function in a specified input channel that is called back if voice data
cannot be recorded in real time. The call-back function has the following format:
void Callback(unsigned char *LisParams, void *Buffer, int Length)

LisIntr0()

Function: Processes voice input by interrupt

Format: void LisIntr0(void);

Argument: None

Return value: None

Description: This function processes voice input by an interrupt. Use this function only as an interrupt vector.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

88

5.4.5 High-Pass Filter Functions

About the high-pass filter

• This filter attenuates the sound pressure level by 40 dB at half the specified cut-off frequency. Generally speaking,
when the sound pressure level decreases by 6 dB, the sound volume is halved.

• The characteristic of this filter is such that the sound pressure level attenuates gently, starting from a region
slightly above the cut-off frequency.

• Seiko Epson recommends always specifying a cut-off frequency of about 120 Hz or 180 Hz. However, because the
sound quality of some voice data deteriorates as a result of filtering, sound quality ultimately must be determined
on the user application system.

fltInit()

Function: Initializes cut-off frequency

Format: int fltInit(int CutOff);

Argument: int CutOff Cut-off frequency

Return values: Terminated normally...............1
Terminated abnormally-1

Description: This function initializes high-pass filtering.
The cut-off frequency (Hz) can be selected from the values listed below. Specifying any other
value results in an error.
60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 720, 1440, 250, 500, 1000, 2000
(You can specify these values directly only with 8-kHz sampling.)

 The value for specifying the cut-off frequency depends on the sampling frequency, as shown in the
following Table.

Table 5.4.2 Cut-off Specification Value and Frequency
Sampling frequency Cut-off frequency (Hz)

8 kHz CutOff × 1
11.025 kHz CutOff × 1.4
16 kHz CutOff × 2
22.05 kHz CutOff × 2.8

fltFiltering()

Function: Filtering

Format: int fltFiltering(short *Src, short *Dst, short PacketSize);

Arguments: short *Src Pointer to the source data array to be filtered
short *Dst Pointer to the array to which to write filtered data
short PacketSize Number of data to be processed

Choose a value in the range of 0 to 128.

Return values: Terminated normally...............Number of filtered data
Terminated abnormally-1

Description: This function filters the input voice data with the cut-off frequency specified by fltInit().
The same array may be specified for Src and Dst. In this case, data is overwritten.

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

89

5.5 Techniques for Speeding Up Operation
By executing several objects in "vox208.lib" after mapping them into the internal memory, it is possible to increase
the library processing speed to some extent. To map library objects into the internal memory, use the linker’s U
section function. The necessary processing is described below.

1. Retrieve the necessary objects from the library.
They can be restored into the object file using the -x option of librarian lib33.
Example: lib33 -x vox.lib fadpcm16.o

* The lib208 directory contains the sample objects listed below. Therefore, these objects can be used directly.
fadpcm16.o, fadpcm24.o, fadpcm32.o, fadpcm40.o, vsxgcp.o

2. Write the following in the linker command file.
-objsym ; Create object symbol
-section <name> ; Create section symbol
-ucode <name> { <object file> [<object file>....] } ; Map into U section
Example:
-objsym

-section ADPCODE

-section VSXGCP

-ucode ADPCODE {..\..\lib208\fadpcm16.o ..\..\lib208\fadpcm24.o

..\..\lib208\fadpcm32.o ..\..\lib208\fadpcm40.o }

-ucode VSXGCP {..\..\lib208\vsxgcp.o}

If you do not use VSX2 compression and recording functions (using only VSX2 expansion), you do not need to
map vsxgcp.o into internal memory.

Looking at the linked map file, you will find that the execution addresses of the specified modules have been
mapped into the internal memory.
Example: Map file
Address Vaddress Size File

006098f8 000010fc 00000620 ..\..\lib208\fadpcm16.o 0 REL

00609f18 000010fc 00000654 ..\..\lib208\fadpcm24.o 0 REL

0060a56c 000010fc 000006b8 ..\..\lib208\fadpcm32.o 0 REL

0060ac24 000010fc 0000078c ..\..\lib208\fadpcm40.o 0 REL

0060b3b0 00001888 00000148 ..\..\lib208\vsxgcp.o 0 REL

3. Since the routine to transfer the object code to the internal memory is prepared in the top-level functions, you do
not need to describe a transfer routine in the user program. However, since it is a compile option, define
"IRAM_CACHE" when compiling "vsx2top.c" and "ADPCM" when compiling "voxcomn.c" with the -D option.
Example: Transfer routine in vsx2Speak() and vsx2Listen().
#ifdef IRAM_CACHE

 adpcmCodecpy(params.format);

 voxCodecpy(&__START_VSXGCP, &__START_vsxgcp_code, &__SIZEOF_vsxgcp_code);

#endif

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

90

5.6 Library Performance and Memory Size

5.6.1 CPU Occupancy of Library
The CPU occupancy rates shown below have been calculated assuming the following conditions as the standard
environment:

Operating frequency: Internal 40 MHz, external 20 MHz
CODE section: External ROM (1 wait cycle)
BSS section and stack: Internal RAM (no wait cycle)
Internal RAM cache: Used to copy fadpcm16.o, fadpcm24.o, fadpcm32.o, fadpcm40.o and vsxgco.o to

internal RAM.
Input/output sampling rate:16 kHz
VSX2 parameters: Compression ratio = 24 kbps & ×2 equivalent compression

(VSX_TIME_CMP_20 | VSX_COMPRESS_24K), Silent threshold = 20

Table 5.6.1 CPU Occupancy Rates During Voice Expansion/Output (Values Expressed in %)
Function CPU occupation rates

VSX2 expansion 21%
SPEAK (voice output routine) 10%
VSX2 compression 50%
LISTEN (voice input routine) 10%

CPU occupancy rate during expansion with varying parameters
The CPU occupancy rate decreases by about 50% when the timebase compression value is increased by 1.
However, the CPU occupancy rate does not decrease further when the compression value is 3 or greater.

CPU occupancy rate during compression with varying parameters
The CPU occupancy rate decreases by about 50% when the timebase compression value is increased by 1.
However, the CPU occupancy rate does not decrease further when the compression value is 3 or greater.

Determination of whether real-time execution is possible
Check whether the splis queue is empty when the SpkOnDone() or LisOnDone() call-back function is called in
the actual system. If this queue is empty, processing is executed in real time.

5.6.2 Memory Sizes Used
Table 5.6.2 lists the memory sizes used by the VSX2 playback and recording functions. The values in this table were
measured using the sample programs in the "smpl208\vsx2\" directory. The internal RAM is used for the BSS
section, stack, and program cache.

Table 5.6.2 Memory Sizes Used
Memory Used size

CODE 17K bytes
BSS 3.6K bytes
Stack 0.3K bytes
Program cache 2.5K bytes
Internal RAM 6.4K bytes

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

91

5.7 Program Examples
The following explains how to create TS and VSX2 processing routines, using the sample programs located in the
"tslib\smpl208\" directory as examples.

Setting interrupt vectors
Set the address of the SpkIntr0() function as the interrupt vector for 16-bit timer 5, and the address of the
LisIntr0() function as the interrupt vector for the A/D converter. If the actual system requires only TS data voice
output, without voice input functions, you do not need to set the A/D converter interrupt vector.
The sample program sets a trap table with "common\table.s". If you use this file, set the start-address of the
processing routine that corresponds to the trap vector address required for the application.
Example: common\table.s

;;
;;; Interruput Vectores
;;

 .word Boot ; 0 Reset
 .word exception ; 1 reserved
 .word exception ; 2 reserved
 .word exception ; 3 reserved
 .word exception ; 4 Zero Div.
 .word exception ; 5 reserved
 .word exception ; 6 Address Error
 .word NMI ; 7 NMI
 :
 .word SpkIntr0 ; 50 16-bit Timer #5 compareB
 :
 .word LisIntr0 ; 64 ADC
 :
exception:

 jp 0

Boot routine
Initializes processing at startup. The sample boot routine is prepared as "common\boot.s", which sets up the stack,
enables interrupts, and sets bus conditions. Allocate the stack to internal RAM.
Example: common\boot.s

#define STACK_INIT 0x00002000
#define PSR_INIT 0x00000110 ; InitIntr. Level 1, Intr. enable

.global Boot
Boot:
 xld.w %r4,STACK_INIT
 ld.w %sp,%r4 ; set STACK
 xld.w %r4,PSR_INIT
 ld.w %psr,%r4 ; set PSR
;
 xcall InitBusCtrl
 xcall InitCPUClock

 ld.w %r4,0
 xld.w [NMI_CNT],%r4
 xcall main

Bus condition settings and other information are written in "common\demoasm.s". See this file for content
details.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

92

TS output routine
The following example uses the "demo.c" program found in "smpl208\demo2\", which outputs the following
sentence, "This is the E0C33 family text to speech demonstration," at normal and 1.5 times the normal talking
speeds.
To check voice output, download this program to DMT33005 + DMT33MON + DMT33AMP. For details on
checking voice output, refer to Appendix.
Example: demo2\demo.c
//***
// demo.c : text to speech demonstration main function
//**

#include "voxcomn.h" (*1)
#include "vsx2.h"
#include "ts.h"
#include "vsxdata.h" // vsx data table by using ts tools.

// ts data

extern unsigned char sampleE[]; (*2)

// this is speak batch function. Please copy this function to your code.

tsSpeakBatch(unsigned char *Data, int speed) (*3)
 {

unsigned char* SpkParams;

SpkParams = tsSpeak(Data, speed);
if(SpkParams==0)

return;
do
{ }
while(SpkIsRunning(SpkParams));

 }

// roop
void exit(void){

for (;;)
 {
 }
}

// this is main function for TS33 demonstration
void main(void)
 {

unsigned char* SpkParams;
int iErr;

// call initialize function

iErr = tsInit((short *)tsFtbl, (int *)tsPtbl, VSX_COMPRESS_24K, 0x100); (*4)

// use only a letter
if (iErr == TS_SUCCESS)
 {

tsSpeakBatch(sampleE, TS_SPEED_10); // x1 speed (*5)
Wait(10000); // wait 1sec
tsSpeakBatch(sampleE, TS_SPEED_15); // x1.5 speed

 }
exit();

 }

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

93

*1 Include "ts.h" and the other header files required in the user program.
The "voxcomn.h" and "vsx2.h" files are required, even if no VSX2 compression or expansion is
performed directly in the user program. Also include the dictionary header file ("vsxdata.h" in this
example) generated by "tstbl.exe".

*2 Use the global symbol name generated by "bin2s.exe" to define the TS data generated by the TS tool for
external reference. Describe all data to be used.

*3 The tsSpeakBatch() function is defined. This function calls the TS top-level function tsSpeak() using its
arguments (TS data and talking speed), monitors output status with the SpklsRunning() function during
voice output, and returns after completion of output.

 This function can be copied to the user program and used without modification for general use.

*4 In TS processing, the tsInit() function initializes settings. A compression ratio equivalent to 24 kbps and
the standard talking speed (0x100) are specified.

*5 The tsSpeakBatch() function in paragraph *3 performs TS data voice output. It outputs the above
sentence at normal and 1.5 times the normal talking speeds.
Wait() is a wait routine described in "smpl208\common\demoasm.s". For the argument, specify a wait
time in 0.1-msec increments.

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

94

VSX2 voice input/output routine
The "vsx2demo.c" sample program, located in the "sampl208\vsx2\" directory, is described below. The
program performs the following functions.
1) The sample voice data (16 kHz sampling PCM data), "tstool\smplvsx2\se.pcm", is reproduced once.
2) The sample voice data "se.pcm" is expansion-reproduced using VSX2-compressed data. This

reproduction is executed in the following manner:
1. The data compressed to 40 kbps and ×2 equivalent in the timebase direction is reproduced at normal speed.

2. The data compressed to 32 kbps and ×2 equivalent in the timebase direction is reproduced at normal speed.

3. The data compressed to 24 kbps and ×2 equivalent in the timebase direction is reproduced at normal speed.

4. The data compressed to 16 kbps and ×2 equivalent in the timebase direction is reproduced at normal speed.

5. The data compressed to 24 kbps and ×1 equivalent in the timebase direction is reproduced at normal speed.

6. The data compressed to 24 kbps and ×2 equivalent in the timebase direction is reproduced at normal speed.

7. The data compressed to 24 kbps and ×3 equivalent in the timebase direction is reproduced at normal speed.

8. The data compressed to 24 kbps and ×4 equivalent in the timebase direction is reproduced at normal speed.

9. The data compressed to 24 kbps and ×2 equivalent in the timebase direction is reproduced at twice normal speed.

3) After the above reproduction is completed, the DMT board stands by waiting for switch input, allowing
you to record or reproduce voice data using switches. For details on ways to do this, refer to Appendix.

Example: vsx2\vsx2demo.c
/*
 * vsx2demo.c : VSX2 demonstration main function
 *
 * 1. Play Original data (PCM data).
 * 2. Play Low compress VSX2 data to high compress VSX2 data.
 * 3. Play VSX2 data with speed change.
 * 4. Push REC switch (SW4) then record voice data about 3 second.
 * (SW1 and SW2 changes compression ratio)
 * 5. After recording, Push PLAY switch (SW3) then play recorded
 * data with change speed.
 *
 */

#include "voxcomn.h" (*1)
#include "vsx2.h"

extern unsigned char sep[]; (*2)
extern unsigned char sev24t1[];
extern unsigned char sev24t2[];
extern unsigned char sev24t3[];
extern unsigned char sev24t4[];
extern unsigned char sev16t2[];
extern unsigned char sev32t2[];
extern unsigned char sev40t2[];

const char vsx2_ratio[] = { (*3)
 VSX_TIME_CMP_20|VSX_COMPRESS_24K,
 VSX_TIME_CMP_10|VSX_COMPRESS_24K,
 VSX_TIME_CMP_30|VSX_COMPRESS_24K,
 VSX_TIME_CMP_40|VSX_COMPRESS_24K,
 VSX_TIME_CMP_20|VSX_COMPRESS_32K,
 VSX_TIME_CMP_10|VSX_COMPRESS_32K,
 VSX_TIME_CMP_30|VSX_COMPRESS_32K,
 VSX_TIME_CMP_40|VSX_COMPRESS_32K
};

#define DATA_SIZE (16000*3) (*4)
static unsigned char CmpData[DATA_SIZE];

vsx2SpeakBatch(unsigned char *Data, int speed) (*5)
{
 unsigned char* SpkParams;

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

95

 SpkParams = vsx2Speak(Data, speed);
 if(SpkParams==0) return;
 do { } while(SpkIsRunning(SpkParams));
}

Listen(int mode) (*6)
{
 unsigned char* LisParams;

 LedON();
 Wait(200);
 LisParams = vsx2Listen(DATA_SIZE,DATA_SIZE,CmpData,vsx2_ratio[mode],50);
 do { } while(LisIsRunning(LisParams));
 LedOFF();
}

void main(void)
{
 int mode;
 unsigned char* SpkParams;
 extern char NMI_CNT;

 CmpData = 0; / init recording data */

 setSpeakVolume(0x100); (*7)

 SpkParams = ppcSpeak(sep, 0, 0); (*8)
 do { } while(SpkIsRunning(SpkParams));

 vsx2SpeakBatch(sev40t2, VSX_SPEED_NORMAL); (*9)
 vsx2SpeakBatch(sev32t2, VSX_SPEED_NORMAL);
 vsx2SpeakBatch(sev24t2, VSX_SPEED_NORMAL);
 vsx2SpeakBatch(sev16t2, VSX_SPEED_NORMAL);
 Wait(10000);
 vsx2SpeakBatch(sev24t1, VSX_SPEED_NORMAL);
 vsx2SpeakBatch(sev24t2, VSX_SPEED_NORMAL);
 vsx2SpeakBatch(sev24t3, VSX_SPEED_NORMAL);
 vsx2SpeakBatch(sev24t4, VSX_SPEED_NORMAL);
 Wait(10000);
 vsx2SpeakBatch(sev24t2, VSX_SPEED_FAST20);

 /* record and play */
 for(;;) { (*10)
 /* mode is 4bit data [SW2 SW1 SW4 SW3] */
 mode = GetEvent();
 switch(mode & 3) {
 case 1:
 vsx2SpeakBatch(CmpData, VSX_SPEED_NORMAL);
 vsx2SpeakBatch(CmpData, VSX_SPEED_FAST20);
 break;
 case 2:
 /* mode change to compression ratio
 by SW1, SW2 status and NMI count */
 mode >>= 2;
 mode |= (NMI_CNT&1)<<2;
 Listen(mode); (*6')
 break;
 default:
 break;
 }
 }
}

5 LIBRARY REFERENCE

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

96

*1 Include "voxcomn.h" and "vsx2.h" in the user program. (In this example, "ts.h" is not included, since
the TS function is not used.)

*2 Use the global symbol name generated by "bin2s.exe" to define the compressed voice data generated
from "se.pcm" for external reference. Describe all data to be used.
The voice data used here is generated by the make file "tstool\smplvsx2\vsx2data.mak" (refer to Section
4.3.12).

*3 A table is defined for the compression parameters used as the arguments of vsx2Listen() for voice
recording and compression, in order to select compression parameters from the external switch setting
(variable). This table is not necessarily used for voice compression.

*4 A buffer is defined for voice compression. Its size is given by the used sampling rate multiplied by
recording time (seconds). In this example, a buffer is prepared for a sampling rate of 16 kHz and
recording time of three seconds.

*5 The vsx2SpeakBatch() function is defined. This function calls the VSX2 top-level function vsx2Speak()
using its arguments (voice data and talking speed), monitors output status with the SpklsRunning()
function during voice output, and returns after completion of output.

 This function can be copied to the user program and used without modification for general use.

*6 A recording routine called from *6' of main(). This routine inputs voice with the VSX2 top-level function
vsx2Listen() and compresses it in VSX2 format.

*7 Sets the play-back sound level (as normal (original) in this case).

*8 Plays back the original voice PCM data.

*9 Expands voice data compressed in VSX2 format with the vsx2SpeakBatch() defined at *5 and outputs
the aforementioned nine categories of voice data.
Wait() is a wait routine described in "smpl208\common\demoasm.s". For the argument, specify a wait
time in 0.1 msec increments.

*10 Records and plays back voice according to the settings of the DMT33005 switches.

5 LIBRARY REFERENCE

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

97

5.8 Precautions
(1) The TS33 library functions use the CPU’s R8 register. Therefore, when linking the TS33 library-including the

top-level functions to the user program, you cannot use the -gp option (optimization using global pointer/R8)
of the instruction extender ext33.

(2) Even when performing TS voice conversion output alone, you must use the "vsx2top.c" and "slutil.c" playback
(Speak) functions and the "voxcomn.c" functions. Copy or link these functions.

(3) The requirements for real-time voice processing are as follows:

• Make sure all of the BSS sections used by the TS33 library are mapped into the internal RAM.

• Be sure to use the internal RAM for the stack.

• When mapping TS33 library program code into an external memory area, make sure this area is accessed in
1 or no wait cycle, if possible. Also, be sure to use a memory area 16 bits wide for this external area.

(4) When handling data in VSX2 format, always be sure to map vsxgcp.o and fadpcm16.o, fadpcm24.o,
fadpcm32.o, or fadpcm40.o into the internal memory according to the compression ratio used.

(5) The number of samples that can actually be recorded differs by several packets from the maximum number of
input samples (sample) specified by each compression/recording top-level function (*Listen).

(6) When VSX2 data is reproduced, the number of data samples output differs by several packets from the source
voice data.

(7) Depending on the output amp circuit used, the SpkSoftening() function may cause quantization noise at the
start and end of playback output. In such a case, process the playback data to make the noise less conspicuous by
reducing the length of silent parts preceding and following the playback data.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

98

Appendix Verifying Operation with DMT33 Boards
This section describes how to verify the operation of voice processing by executing a sample program using E0C33
Family demonstration tools, the DMT33005, DMT33MON, and DMT33AMP.

A.1 System Configuration Using DMT33005

A.1.1 Hardware Configuration
Configure the system shown in Figure A.1.1 using the DMT33005, DMT33MON, and DMT33AMP. This system
allows you to compression-record voice data that has been input from a microphone using the DMT33AMP and
expansion-reproduce voice data that has been inserted into the program and input from a microphone.

COMx

EPSON

RS232C cable
(included with DMT33MON package)

DMT33MON DMT33005 DMT33AMP

JP11

Figure A.1.1 System Configured with DMT33005, DMT33MON, and DMT33AMP

DMT33005 board
The DMT33005 is a demonstration tool for the E0C33208, a 32-bit RISC-type microcomputer. Mounted on
this board are the 128KB ROM, 1MB RAM, and 1MB flash memory, an interface connector for the
DMT33MON board, and an interface connector for the DMT33AMP board and other voice input/output
circuits. The ROM on this board contains a debugging monitor.

ROM

FLASH

SW3
(PLAY/K64)

J2
 c

on
ne

ct
or

J4 connector

ICD33

DSW1

J3
 c

on
ne

ct
or

SW4
(REC/K65)

DMT33MON

DMT33005

DMT33xxx/
user circuit board

High

Low

High

1

12

1

12

High

E0C33208

+5V IN

+3V GND +5V

DC IN connector

GND
LED

AA battery 1.5V

AA battery 1.5V

AA battery 1.5V

SW1
(K66)

SW2
(K67)

Figure A.1.2 DMT33005 Board

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

99

DMT33MON board
RS232 connector

SW1
(RESET)

SW2
(NMI)

SW3
(DEBUG)

DMT33xxx/target board I/F connector

ONOFF

1 12

ONOFF

Figure A.1.3 DMT33MON Board

The DMT33MON interfaces with demonstration tools such as the
DMT33005 and the user target board for a debugging monitor. By
connecting the DMT33005 board to your personal computer via the
DMT33MON board, you can debug programs on-board using the
debugger (db33.exe) installed in your computer.

Note: For the DMT33005 board, always be sure to use the
DMT33MON, which is designed to operate with a 5-V
power supply. The DMT33MONLV board, which is
designed to operate at 3.3 V, cannot be used.

DMT33AMP board
The DMT33AMP is an optional board that adds voice input/output functions to the DMT33005, etc. It allows
voice input from a microphone and voice output from the amplifier mounted on the board. It also allows you to
test the configuration (and effect) of speaker/microphone low-pass and high-pass filters, which determine
sound quality.

Note: DMT33AMP is a board for 8-kHz sampling. For 16 or 22-kHz sampling voice input/output, use the
DMT33AMP2 board.

J1
 c

on
ne

ct
or

DMT33004
/33005

DMT33AMP

1

12

MIC IN

JP1

JP1
Jumper switch

Selects the voice source to be output.
DMT: DMT33004/33005 output (default)
MIC: Microphone input of this board

DMT
MIC

JP9

JP10

JP3

JP5

JP6 JP7 JP8

JP4 JP2

JP11GND5V

R16

MIC AMP GAIN

AC AMP GAIN

R33

R4
TR AMP VOL

R26

POWER AMP VOL

PC

TR SP (transistor amplifier output)

Connect to the PC
headphone output
terminal

SPOUT (power amplifier output)

JP2 Selects an input for the transistor amplifier circuit.
DA: DMT33004 D/A output (default)
TM: DMT33005 PWM output

DA
TM

JP3 Selects an input for the CR 2nd order filter circuit.
DA: DMT33004 D/A output (default)
TM: DMT33005 PWM output

DA
TM

JP4 Selects a filter in the OP AMP 4th order filter
circuit (for speaker and MIC).
SP: For speaker (default)
MIC: For microphone

SP
MIC

JP5 Selects an filter in the OP AMP 4th order filter
circuit (for speaker and MIC).
SP: For speaker (default)
MIC: For microphone

SP
MIC

JP6 Selects the A/D channel on the DMT33004/33005
used to convert the MIC input.
AD0: Channel 0 (default)
AD1: Channel 1

AD1
AD0

JP7 Selects a cutoff frequency in the CR 1sr order
high-pass filter circuit.
 Short 3300pF only: 300 Hz
 Short 1500pF only: 500 Hz
 Short both: 250 Hz (default)

3300pF
1500pF

JP8 Selects whether the OP AMP 4th order filter circuit for the MIC
circuit is used or not.
MIC: Not used (default)
MLP: Used

MIC
MLP

JP9 Selects a DMT33004/33005 output signal.
TM3/TM2: DMT33004 TM3 or DMT33005 TM2
DA1/TM1: DMT33004 DA1 or DMT33005 TM1
DA1/TM1: DMT33004 DA0 or DMT33005 TM0 (default)

TM3/TM2
DA1/TM1
DA0/TM0

JP10 Selects the circuit to be used for voice output.
TR: Transistor amplifier circuit
2LP: CR 2nd order filter circuit
4LP: OP AMP 4th order filter circuit (for speaker) (default)
MLP: OP AMP 4th order filter circuit (for speaker and MIC)

TR
2LP
4LP
MLP

JP11 Selects a power amplifier input.
PC: PC headphone output
2LP: CR 2nd order filter circuit
4LP: OP AMP 4th order filter circuit (for speaker) (default)
MLP: OP AMP 4th order filter circuit (for speaker and MIC)

R26
R4
R33
R16

Volume adjustment for the power amplifier
Volume adjustment for the transistor amplifier
Gain adjustment for the AC amplifier (x2 to x12)
Gain adjustment for the microphone input (microphone amplifier) (x90 to x2000)

Note: The DMT33AMP is set for connecting the DMT33004 by default. When using with
the DMT33005, select TM using JP2 and JP3, and DA1/TM1 using JP9.

PC
2LP
4LP
MLP

Control

No.
12
11
10
9
8
7
6
5
4
3
2
1

Pin name
GND

TM3/TM2
GND

DA1/TM1
GND

DA0/TM0
GND

AD1 (K61)
GND

AD0 (K60)
VCC (5V)
VCC (5V)

J5

GND
GND

GND
GND

J3

J2

J4

Up

Down

Up

Down

Down

Up

Up

Down

Figure A.1.4 DMT33AMP Board

In systems where the DMT33AMP is used along with the DMT33005 board, choose TM with the jumper
switches JP2 and JP3, and DA1/TM1 with JP9. Other jumper switch settings do not need to be changed; default
settings suffice.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

100

System connections

Note: Before setting up or dismantling the system, always be sure to turn off the power to all boards and
equipment to be connected or disconnected. For handling precautions for each board, refer to the
"E0C33 Family DMT/EPOD/MEM Board Manual".

1. Attach the DMT33MON and DMT33AMP to the DMT33005.
2. Connect the microphone and speaker (included with the DMT33AMP package) to the DMT33AMP.
3. Connect the DMT33MON and the personal computer using the RS232C cable (included with the

DMT33MON package).
4. Set the [DEBUG] switch (SW3) on the DMT33MON to the "ON" position.
5. Place the battery in the battery holder (included with the DMT33005) and connect it to the DMT33005.
6. Turn on the power to the personal computer.

A.1.2 Software
The personal computer serving as the host must have the development tool "E0C33 Family C Compiler Package"
installed in it.
Note that when using the debug monitor to download the program into the DMT33005, a debugger (db33) of Ver.
1.72 or later is required.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

101

A.2 Sample Program Execution Procedure

Preparatory operations before startup
Since sample program directories "tslib\smpl208\demo2\" and "tslib\smpl208\vsx2\" contain absolute object
files in executable format, there is no need to compile or link the sample program specifically. Also provided is
a batch file from which you can launch the debugger. The following explains how to start each sample program
after downloading them to the DMT33005.

(1) Connect the boards and PC and turn on the power to each equipment according to "System connections" in
Section A.1.1.

(2) Before a program can be downloaded to the DMT33005, the debug monitor must already be active.
Reconfirm that the DMT33MON DEBUG switch (SW3) is set to the ON position, then reset the system
using the RESET switch (SW1).

(3) When executing the TS sample program, make "tslib\smpl208\demo2\" the current directory, and run
"208demo.bat" from the DOS prompt.
C:\E0C33\TS33\TSLIB\SMPL208\DEMO2\>208demo

When executing the VSX2 sample program, make "tslib\smpl208\vsx2\" the current directory, and run
"vsx2demo.bat" from the DOS prompt.
C:\E0C33\TS33\TSLIB\SMPL208\VSX2\>vsx2demo

The batch file for each sample assumes that the debugger (db33) is installed in the "c:\cc33\" directory when it
starts the debugger in debug monitor mode (-mon).
Example: \demo1\208demo.bat

@echo off

start db33 -p 33208_v.par -b 115200 -c 208demo.cmd -mon

The debugger can also be launched from the work bench (wb33). Choose the debug monitor mode from wb33
and the command file (208demo.cmd, vsx2demo.cmd) to be executed at startup time.

(4) When the debugger starts, the sample program is loaded into the DMT33005’s RAM area (beginning with
address 0x600000) by the commands in the command file.

(5) Use db33’s g command ([Go] button) to run the sample program. To stop, use the debugger’s forced
break function ([Key Break] button).

The functions and usage of the demo2 and vsx2demo files are described below.

TS data processing sample program (demo2)
Run "208demo.bat" in the "tslib\smpl208\demo2\" directory and then execute the debugger g command. The
sentence, "This is the E0C33 family text to speech demonstration," is output at the normal and 1.5 times the
normal talking speeds.
The program enters a permanent loop following output of this voice data.
Use the [Key Break] button to halt the program. To restart, execute the rsth command before the g command.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

EPSON E0C33 FAMILY
TS33 MIDDLEWARE MANUAL

102

VSX2 voice input/output processing sample program (vsx2demo)
Run "vsx2demo.bat" in the "tslib\smpl208\vsx2\" directory. Execute the degugger g command to start the
following sequence.

1) The sample voice data (16 kHz sampling PCM data), "tstool\smplvsx2\se.pcm", is reproduced once.

2) The sample voice data "se.pcm" is expansion-reproduced using VSX2-compressed data. This reproduction
is executed in the following manner:
1. The data compressed to 40 kbps and ×2 equivalent in the timebase direction is reproduced at normal speed.

2. The data compressed to 32 kbps and ×2 equivalent in the timebase direction is reproduced at normal speed.

3. The data compressed to 24 kbps and ×2 equivalent in the timebase direction is reproduced at normal speed.

4. The data compressed to 16 kbps and ×2 equivalent in the timebase direction is reproduced at normal speed.

5. The data compressed to 24 kbps and ×1 equivalent in the timebase direction is reproduced at normal speed.

6. The data compressed to 24 kbps and ×2 equivalent in the timebase direction is reproduced at normal speed.

7. The data compressed to 24 kbps and ×3 equivalent in the timebase direction is reproduced at normal speed.

8. The data compressed to 24 kbps and ×4 equivalent in the timebase direction is reproduced at normal speed.

9. The data compressed to 24 kbps and ×2 equivalent in the timebase direction is reproduced at twice normal speed.

3) After the above reproduction is completed, the DMT33005 board stands by waiting for switch input,
allowing you to record or reproduce voice data using switches. The following shows how to use each
switch.

NMI(SW2) on DMT33MON, SW1 and SW2 on DMT33005
These switches set VSX2 compression parameters.
Each time you press the DMT33MON NMI switch, the compression ratio changes between 24 kbps and
32 kbps.
DMT33005 SW1 and SW2 determine the compression ratio in the timebase direction.

Table A.2.1 Settings of SW1 and SW2 (DMT33005)
SW2 SW1 Compression ratio in the timebase direction

Low Low Compressed to ×2 equivalent
Low High Not compressed
High Low Compressed to ×3 equivalent
High High Compressed to ×4 equivalent

REC(SW4) on DMT33005
When you press the REC switch, the LED on the DMT33005 lights for about 3 seconds. The voice input
from the microphone on the DMT33AMP is recorded in VSX2 format during this time.

PLAY(SW3) on DMT33005
When you press the PLAY switch, the recorded data is reproduced after expansion. This reproduction is
performed at the original speed and then at twice the original speed.

Use the [Key Break] button to halt the program. To restart, execute the rsth command before the g command.

APPENDIX VERIFYING OPERATION WITH DMT33 BOARDS

E0C33 FAMILY EPSON
TS33 MIDDLEWARE MANUAL

103

A.3 Building Sample Programs
Each sample directory contains a make file "xxxx.mak". When you’ve corrected the source, use "xxxx.mak" to
create an object file in executable format "xxxx.srf". The make for each sample program requires the source files in
the "common\" directory, as well as files in each sample directory. For the required files, refer to each linker
command file.

Procedure for executing make
1. Change "tslib\smpl208\demoX\" or "tslib\smpl208\vsx2\" to the current directory.
2. Enter the following command at the DOS prompt.

For TS (example of demol): C:\E0C33\TS33\TSLIB\SMPL208\DEMO1>make -f 208demo.mak

For VSX2: C:\E0C33\TS33\TSLIB\SMPL208\VSX2>make -f vsx2demo.mak

You can also run make from the work bench wb33. (See the "E0C33 Family C Compiler Package Manual".)

Note: The TS33 library functions use the CPU’s R8 register. Therefore, when linking the TS33 library to
the program, do not use the -gp option (optimization using global pointer/R8) of the instruction
extender ext33.

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -
1960 E. Grand Avenue
EI Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central
101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast
3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -
Riesstrasse 15
80992 Munich, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -
SALES OFFICE
Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)2171-5045-0 Fax: +49-(0)2171-5045-10

- UNITED KINGDOM -
UK BRANCH OFFICE
Unit 2.4, Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -
FRENCH BRANCH OFFICE
1 Avenue de l' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -
EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -
EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN -
EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE
13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -
EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -
SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong
Youngdeungpo-Ku, Seoul, 150-763, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

International Sales Operations

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings .

ELECTRONIC DEVICES MARKETING DIVISION

■ EPSON Electronic Devices Website

http://www.epson.co.jp/device/
Issue MARCH 2000, Printed in Japan M A

	 伀甀琀氀椀渀攀 漀昀 琀栀攀 吀匀㌀㌀ 䴀椀搀搀氀攀眀愀爀攀
	⸀ 䌀漀渀琀攀渀琀猀 漀昀 琀栀攀 吀匀㌀㌀ 倀愀挀欀愀最攀
	⸀㈀ 䈀愀猀椀挀 䌀漀渀昀椀最甀爀愀琀椀漀渀 漀昀 嘀漀椀挀攀 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 匀礀猀琀攀洀
	⸀㌀ 吀匀㌀㌀ 吀漀漀氀

	㈀ 䤀渀猀琀愀氀氀愀琀椀漀渀
	㈀⸀ 伀瀀攀爀愀琀椀渀最 䔀渀瘀椀爀漀渀洀攀渀琀
	㈀⸀㈀ 䴀攀琀栀漀搀 漀昀 䤀渀猀琀愀氀氀愀琀椀漀渀

	㌀ 匀漀昀琀眀愀爀攀 䐀攀瘀攀氀漀瀀洀攀渀琀 倀爀漀挀攀搀甀爀攀
	㌀⸀ 䜀攀渀攀爀愀琀椀渀最 吀匀 刀伀䴀 䐀愀琀愀
	㌀⸀⸀ 䤀渀瀀甀琀 愀渀搀 倀爀漀挀攀猀猀椀渀最 漀昀 吀匀 嘀漀椀挀攀 䐀愀琀愀
	㌀⸀⸀㈀ 䜀攀渀攀爀愀琀椀渀最 愀 䐀椀挀琀椀漀渀愀爀礀 䘀椀氀攀
	㌀⸀⸀㌀ 䜀攀渀攀爀愀琀椀渀最 䤀渀猀琀愀氀氀愀琀椀漀渀 䐀椀挀琀椀漀渀愀爀礀 䐀愀琀愀
	㌀⸀⸀㐀 䜀攀渀攀爀愀琀椀渀最 吀攀砀琀 䐀愀琀愀
	㌀⸀⸀㔀 嘀漀椀挀攀 䔀瘀愀氀甀愀琀椀漀渀 愀渀搀 䄀搀樀甀猀琀洀攀渀琀
	㌀⸀⸀㘀 䌀漀渀瘀攀爀猀椀漀渀 漀昀 吀匀 䐀愀琀愀 椀渀琀漀 愀渀 䄀猀猀攀洀戀氀礀 匀漀甀爀挀攀 䘀椀氀攀

	3.2 Generating Voice ROM Data Using VSX2 Tools
	㌀⸀㈀⸀ 倀爀攀瀀愀爀椀渀最 嘀漀椀挀攀 䐀愀琀愀
	㌀⸀㈀⸀㈀ 倀爀攀瀀爀漀挀攀猀猀椀渀最 㘀ⴀ戀椀琀 倀䌀䴀 䐀愀琀愀
	㌀⸀㈀⸀㌀ 䔀瘀愀氀甀愀琀椀渀最 䌀漀洀瀀爀攀猀猀椀漀渀 愀渀搀 吀愀氀欀椀渀最 匀瀀攀攀搀⼀吀漀渀攀 倀椀琀挀栀 䌀漀渀瘀攀爀猀椀漀渀
	㌀⸀㈀⸀㐀 䌀漀渀瘀攀爀琀椀渀最 嘀漀椀挀攀 䐀愀琀愀 椀渀琀漀 愀渀 䄀猀猀攀洀戀氀礀 匀漀甀爀挀攀 䘀椀氀攀
	㌀⸀㈀⸀㔀 倀爀攀挀愀甀琀椀漀渀猀 䌀漀渀挀攀爀渀椀渀最 嘀漀椀挀攀 刀伀䴀 䐀愀琀愀 䌀爀攀愀琀椀漀渀

	3.3 Generating a User Program and Linking the TS33 Library

	㐀 吀漀漀氀 刀攀昀攀爀攀渀挀攀
	㐀⸀ 伀甀琀氀椀渀攀 漀昀 吀匀㌀㌀ 吀漀漀氀猀
	㐀⸀㈀ 吀匀 刀伀䴀 䐀愀琀愀 䜀攀渀攀爀愀琀椀漀渀 愀渀搀 䔀瘀愀氀甀愀琀椀漀渀 吀漀漀氀猀
	㐀⸀㈀⸀ 樀琀砀琀㈀瀀琀猀⸀攀砀攀
	㐀⸀㈀⸀㈀ 瀀琀猀㈀琀猀⸀攀砀攀
	㐀⸀㈀⸀㌀ 琀猀㈀戀椀渀⸀攀砀攀
	㐀⸀㈀⸀㐀 琀猀㈀瀀挀洀⸀攀砀攀
	㐀⸀㈀⸀㔀 琀猀琀戀氀⸀攀砀攀
	㐀⸀㈀⸀㘀 戀椀渀㈀猀⸀攀砀攀
	㐀⸀㈀⸀㜀 戀搀洀瀀⸀攀砀攀
	㐀⸀㈀⸀㠀 䔀砀攀挀甀琀椀渀最 吀漀漀氀猀 昀爀漀洀 愀 䈀愀琀挀栀 䘀椀氀攀
	㐀⸀㈀⸀㤀 琀戀㌀㌀⸀攀砀攀

	㐀⸀㌀ 嘀匀堀㈀ 嘀漀椀挀攀 刀伀䴀 䐀愀琀愀 䜀攀渀攀爀愀琀椀漀渀 吀漀漀氀猀
	㐀⸀㌀⸀ 搀挀琀开挀渀瘀⸀攀砀攀
	㐀⸀㌀⸀㈀ 瘀漀砀昀氀琀⸀攀砀攀
	㐀⸀㌀⸀㌀ 瀀挀洀开渀漀爀洀⸀攀砀攀
	㐀⸀㌀⸀㐀 瘀猀砀㈀挀洀瀀爀猀⸀攀砀攀
	㐀⸀㌀⸀㔀 瘀猀砀挀洀瀀爀猀⸀攀砀攀
	㐀⸀㌀⸀㘀 瀀瀀挀挀洀瀀爀猀⸀攀砀攀
	㐀⸀㌀⸀㜀 戀椀渀㈀猀⸀攀砀攀
	㐀⸀㌀⸀㠀 戀搀洀瀀⸀攀砀攀
	㐀⸀㌀⸀㤀 瘀猀砀㈀搀攀挀⸀攀砀攀
	㐀⸀㌀⸀　 瘀猀砀搀攀挀⸀攀砀攀
	㐀⸀㌀⸀ 䔀砀攀挀甀琀椀渀最 吀漀漀氀猀 昀爀漀洀 愀 䈀愀琀挀栀 䘀椀氀攀
	㐀⸀㌀⸀㈀ 䔀砀攀挀甀琀椀渀最 吀漀漀氀猀 昀爀漀洀 愀 䴀愀欀攀 䘀椀氀攀
	㐀⸀㌀⸀㌀ 瘀猀砀㈀瀀愀爀愀洀⸀攀砀攀

	㔀 䰀椀戀爀愀爀礀 刀攀昀攀爀攀渀挀攀
	㔀⸀ 伀甀琀氀椀渀攀 漀昀 吀匀㌀㌀ 䰀椀戀爀愀爀礀
	㔀⸀㈀ 䠀愀爀搀眀愀爀攀 刀攀焀甀椀爀攀洀攀渀琀猀
	㔀⸀㌀ 吀漀瀀ⴀ䰀攀瘀攀氀 䘀甀渀挀琀椀漀渀猀
	㔀⸀㌀⸀ 䌀漀洀瀀椀氀攀 伀瀀琀椀漀渀猀
	㔀⸀㌀⸀㈀ 䔀砀琀攀爀渀愀氀 嘀愀爀椀愀戀氀攀猀
	㔀⸀㌀⸀㌀ 䐀愀琀愀 匀琀爀甀挀琀甀爀攀
	㔀⸀㌀⸀㐀 䔀爀爀漀爀 䌀漀搀攀猀 刀攀琀甀爀渀攀搀 戀礀 吀漀瀀ⴀ䰀攀瘀攀氀 䘀甀渀挀琀椀漀渀猀
	㔀⸀㌀⸀㔀 吀匀 䐀愀琀愀 倀爀漀挀攀猀猀椀渀最 䘀甀渀挀琀椀漀渀猀 ⠀琀猀㈀琀漀瀀⸀挀⤀
	琀猀䤀渀椀琀⠀ ⤀
	琀猀匀瀀攀愀欀⠀ ⤀

	㔀⸀㌀⸀㘀 嘀匀堀㈀ 䐀愀琀愀 倀爀漀挀攀猀猀椀渀最 䘀甀渀挀琀椀漀渀猀 ⠀瘀猀砀㈀琀漀瀀⸀挀⤀
	瘀猀砀㈀匀瀀攀愀欀⠀ ⤀
	瘀猀砀㈀䰀椀猀琀攀渀⠀ ⤀
	瘀猀砀㈀吀漀瀀䐀攀挀漀搀攀⠀ ⤀
	瘀猀砀㈀吀漀瀀䔀渀挀漀搀攀⠀ ⤀
	瘀猀砀㈀吀漀瀀䔀渀挀漀搀攀䔀渀搀⠀ ⤀

	㔀⸀㌀⸀㜀 倀䌀䴀 䐀愀琀愀 倀爀漀挀攀猀猀椀渀最 䘀甀渀挀琀椀漀渀猀 ⠀瀀瀀挀琀漀瀀⸀挀⤀
	瀀瀀挀匀瀀攀愀欀⠀ ⤀
	瀀瀀挀䰀椀猀琀攀渀⠀ ⤀
	瀀瀀挀吀漀瀀䐀攀挀漀搀攀⠀ ⤀
	瀀瀀挀吀漀瀀䔀渀挀漀搀攀⠀ ⤀
	瀀瀀挀吀漀瀀䔀渀挀漀搀攀䔀渀搀⠀ ⤀

	㔀⸀㌀⸀㠀 䌀漀洀洀漀渀 䘀甀渀挀琀椀漀渀猀 ⠀瘀漀砀挀漀洀渀⸀挀⤀
	瘀漀砀䌀漀搀攀挀瀀礀⠀ ⤀
	愀搀瀀挀洀䌀漀搀攀挀瀀礀⠀ ⤀

	㔀⸀㌀⸀㤀 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䐀愀琀愀 䌀漀渀瘀攀爀琀 䘀甀渀挀琀椀漀渀猀 ⠀猀氀甀琀椀氀⸀挀⤀
	猀攀琀匀瀀攀愀欀嘀漀氀甀洀攀⠀ ⤀
	猀氀倀挀洀㈀匀瀀欀⠀ ⤀
	猀氀䰀椀猀㈀倀挀洀⠀ ⤀

	㔀⸀㐀 吀匀㌀㌀ 䰀椀戀爀愀爀礀 䘀甀渀挀琀椀漀渀猀
	㔀⸀㐀⸀ 嘀匀堀㈀ 倀爀漀挀攀猀猀椀渀最 䘀甀渀挀琀椀漀渀猀
	瘀猀砀㈀刀攀愀搀䠀攀愀搀攀爀⠀ ⤀
	瘀猀砀㈀䐀攀挀漀搀攀䤀渀椀琀⠀ ⤀
	瘀猀砀㈀䜀攀琀䐀攀挀漀搀攀倀愀挀欀攀琀匀椀稀攀⠀ ⤀
	瘀猀砀㈀䐀攀挀漀搀攀⠀ ⤀
	瘀猀砀㈀䤀猀䔀伀䘀⠀ ⤀
	瘀猀砀㈀圀爀椀琀攀䠀攀愀搀攀爀⠀ ⤀
	瘀猀砀㈀䔀渀挀漀搀攀䤀渀椀琀⠀ ⤀
	瘀猀砀㈀匀攀琀䔀渀挀漀搀攀䐀愀琀愀⠀ ⤀
	瘀猀砀㈀䜀攀琀䔀渀挀漀搀攀倀愀挀欀攀琀⠀ ⤀
	瘀猀砀㈀䔀渀挀漀搀攀䘀氀甀猀栀⠀ ⤀
	瘀猀砀㈀圀爀椀琀攀䔀伀䘀⠀ ⤀

	㔀⸀㐀⸀㈀ 倀䌀䴀 倀爀漀挀攀猀猀椀渀最 䘀甀渀挀琀椀漀渀猀
	瀀愀挀欀瀀挀洀刀攀愀搀䠀攀愀搀攀爀⠀ ⤀
	瀀愀挀欀瀀挀洀䤀渀椀琀⠀ ⤀
	瀀愀挀欀瀀挀洀䐀攀挀漀搀攀⠀ ⤀
	瀀愀挀欀瀀挀洀䔀渀挀漀搀攀⠀ ⤀
	瀀愀挀欀瀀挀洀圀爀椀琀攀䠀攀愀搀攀爀⠀ ⤀

	㔀⸀㐀⸀㌀ 伀甀琀瀀甀琀 ⠀匀瀀攀愀欀⤀ 䘀甀渀挀琀椀漀渀猀
	匀瀀欀匀漀昀琀攀渀椀渀最⠀ ⤀
	匀倀䬀开匀䄀䴀倀䰀䤀一䜀⠀ ⤀
	匀瀀欀䤀渀椀琀⠀ ⤀
	匀瀀欀伀瀀攀渀⠀ ⤀
	匀瀀欀䌀氀漀猀攀⠀ ⤀
	匀瀀欀匀琀愀爀琀⠀ ⤀
	匀瀀欀䠀愀氀琀⠀ ⤀
	匀瀀欀䄀瀀瀀攀渀搀⠀ ⤀
	匀瀀欀刀漀漀洀⠀ ⤀
	匀瀀欀儀甀攀甀攀⠀ ⤀
	匀瀀欀䤀猀刀甀渀渀椀渀最⠀ ⤀
	匀瀀欀伀渀䐀漀渀攀⠀ ⤀
	匀瀀欀伀渀䔀洀瀀琀礀⠀ ⤀
	匀瀀欀伀渀一漀琀䤀渀吀椀洀攀⠀ ⤀
	匀瀀欀䤀渀琀爀　⠀ ⤀
	匀瀀欀匀愀洀瀀氀攀刀愀琀攀⠀ ⤀

	㔀⸀㐀⸀㐀 䤀渀瀀甀琀 ⠀䰀椀猀琀攀渀⤀ 䘀甀渀挀琀椀漀渀猀
	䰀䤀匀开匀䄀䴀倀䰀䤀一䜀⠀ ⤀
	䰀椀猀䤀渀椀琀⠀ ⤀
	䰀椀猀伀瀀攀渀⠀ ⤀
	䰀椀猀䌀氀漀猀攀⠀ ⤀
	䰀椀猀匀琀愀爀琀⠀ ⤀
	䰀椀猀䠀愀氀琀⠀ ⤀
	䰀椀猀䄀瀀瀀攀渀搀⠀ ⤀
	䰀椀猀刀漀漀洀⠀ ⤀
	䰀椀猀儀甀攀甀攀⠀ ⤀
	䰀椀猀䤀猀刀甀渀渀椀渀最⠀ ⤀
	䰀椀猀伀渀䐀漀渀攀⠀ ⤀
	䰀椀猀伀渀䔀洀瀀琀礀⠀ ⤀
	䰀椀猀伀渀一漀琀䤀渀吀椀洀攀⠀ ⤀
	䰀椀猀䤀渀琀爀　⠀ ⤀

	㔀⸀㐀⸀㔀 䠀椀最栀ⴀ倀愀猀猀 䘀椀氀琀攀爀 䘀甀渀挀琀椀漀渀猀
	昀氀琀䤀渀椀琀⠀ ⤀
	昀氀琀䘀椀氀琀攀爀椀渀最⠀ ⤀

	㔀⸀㔀 吀攀挀栀渀椀焀甀攀猀 昀漀爀 匀瀀攀攀搀椀渀最 唀瀀 伀瀀攀爀愀琀椀漀渀
	㔀⸀㘀 䰀椀戀爀愀爀礀 倀攀爀昀漀爀洀愀渀挀攀 愀渀搀 䴀攀洀漀爀礀 匀椀稀攀
	㔀⸀㘀⸀ 䌀倀唀 伀挀挀甀瀀愀渀挀礀 漀昀 䰀椀戀爀愀爀礀
	㔀⸀㘀⸀㈀ 䴀攀洀漀爀礀 匀椀稀攀猀 唀猀攀搀

	㔀⸀㜀 倀爀漀最爀愀洀 䔀砀愀洀瀀氀攀猀
	㔀⸀㠀 倀爀攀挀愀甀琀椀漀渀猀

	䄀瀀瀀攀渀搀椀砀 嘀攀爀椀昀礀椀渀最 伀瀀攀爀愀琀椀漀渀 眀椀琀栀 䐀䴀吀㌀㌀ 䈀漀愀爀搀猀
	A.1 System Configuration Using DMT33005
	䄀⸀⸀ 䠀愀爀搀眀愀爀攀 䌀漀渀昀椀最甀爀愀琀椀漀渀
	䄀⸀⸀㈀ 匀漀昀琀眀愀爀攀

	䄀⸀㈀ 匀愀洀瀀氀攀 倀爀漀最爀愀洀 䔀砀攀挀甀琀椀漀渀 倀爀漀挀攀搀甀爀攀
	䄀⸀㌀ 䈀甀椀氀搀椀渀最 匀愀洀瀀氀攀 倀爀漀最爀愀洀猀

