MF1121-01 EPSON

CMOS 4-BIT SINGLE CHIP MicROocoMPUTER EOC62 Family

ASSEMBLER PACKAGE MANUAL

ENERGY

SAVING
EPSON

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license
from the Ministry of International Trade and Industry or other approval from another government agency. Please
note that "EOC" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that
it now reads "EOC".

MS-DOS, Windows and Windows NT are registered trademarks of Microsoft Corporation, U.S.A.

PC/AT and IBM are registered trademarks of International Business Machines Corporation, U.S.A.

Pentium is a registered trademark of Intel Corporation.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective owners.

© SEIKO EPSON CORPORATION 1998 Al rights reserved.

INTRODUCTION

Introduction

This document describes the development procedure from assembling source files to debugging. It also
explains how to use each development tool of the EOC62 Family Assembler Package common to all the
models of the EOC62 Family.

How To Read the Manual

This manual was edited particularly for those who are engaged in program development. Therefore, it
assumes that the reader already possesses the following fundamental knowledge:

* Basic knowledge about assembler language

¢ Basic knowledge about the general concept of program development by an assembler

¢ Basic operating methods for Windows®95 or Windows NT®4.0

Before installation

See Chapter 1. Chapter 1 describes the composition of this package, and provides a general outline of
each tool.

Installation
Install the tools following the installation procedure described in Chapter 2.

To understand the flow of program development
See the program development flow in Chapter 3.

For coding

See the necessary parts in Chapter 5. Chapter 5 describes the grammar for the assembler language as
well as the assembler functions. Also refer to the following manuals when coding:

EO0C62xx Technical Manual

Covers device specifications, and the operation and control method of the peripheral circuits.
E0C6200/6200A Core CPU Manual

Has the instructions and details the functions and operation of the Core CPU.

For debugging

Chapter 9 gives detailed explanation of the debugger. Sections 9.1 to 9.8 give an overview of the
functions of the debugger. See Section 9.9 for details of the debug commands. Also refer to the follow-
ing manuals to understand operations of the In-Circuit Emulator ICE62R (ICE6200) and the Evalua-
tion Board EVA62xx:

ICE62R Hardware Manual or ICE6200 Hardware Manual
Explains the functions and handling methods of the In-Circuit Emulator ICE62R /ICE6200.
EVA62xx Manual

Covers the functions and handling methods of the evaluation board designed to evaluate the
hardware specifications of each model.

For details of each tool
Chapters 4 to 9 explain the details of each tool. Refer to it if necessary.

Once familiar with this package

Refer to the listings of instructions and commands contained in Appendices.

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Manual Notations

This manual was prepared by following the notation rules detailed below:

(1) Sample screens
The sample screens provided in the manual are all examples of displays under Windows®95. These
displays may vary according to the system or fonts used.

(2) Names of each part
The names or designations of the windows, menus and menu commands, buttons, dialog boxes, and
keys are annotated in brackets []. Examples: [Command] window, [File | Exit] menu item ([Exit]
command in [File] menu), [Key Break] button, [q] key, etc.

(3) Names of instructions and commands

The CPU instructions and the debugger commands that can be written in either uppercase or lower-
case characters are annotated in lowercase characters in this manual, except for user-specified sym-
bols.

(4) Notation of numeric values
Numeric values are described as follows:

Decimal numbers: Not accompanied by any prefix or suffix (e. g., 123, 1000).
Hexadecimal numbers:Accompanied by the prefix "0x" (e. g., 0x0110, Ox{fff).
Binary numbers: Accompanied by the prefix "0b" (e. g., 0b0001, 0b10).

However, please note that some sample displays may indicate hexadecimal or binary numbers not
accompanied by any symbol. Moreover, a hexadecimal number may be expressed as xxxxh, or a
binary number as xxxxb, for reasons of convenience of explanation.

(5) Mouse operations
To click: The operation of pressing the left mouse button once, with the cursor (pointer)
placed in the intended location, is expressed as "to click". The clicking operation of
the right mouse button is expressed as "to right-click".
To double-click: Operations of pressing the left mouse button twice in a row, with the cursor (pointer)
placed in the intended location, are all expressed as "to double-click".

To drag: The operation of clicking on a file (icon) with the left mouse button and holding it
down while moving the icon to another location on the screen is expressed as "to
drag".

To select: The operation of selecting a menu command by clicking is expressed as "to select".

(6) Key operations
The operation of pressing a specific key is expressed as "to enter a key" or "to press a key".
A combination of keys using "+", such as [Ctrl]+[C] keys, denotes the operation of pressing the [C] key
while the [Ctr]] key is held down. Sample entries through the keyboard are not indicated in [].
Moreover, the operation of pressing the [Enter] key in sample entries is represented by "00".
In this manual, all the operations that can be executed with the mouse are described only as mouse
operations. For operating procedures executed through the keyboard, refer to the Windows manual or
help screens.

(7) General forms of commands, startup options, and messages
Items given in [] are those to be selected by the user, and they will work without any key entry
involved.
An annotation enclosed in < > indicates that a specific name should be placed here. For example, <file
name> needs to be replaced with an actual file name.
Items enclosed in { } and separated with | indicate that you should choose an item. For example, {A |
B} needs to have either A or B selected.

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

INTRODUCTION

Contents

L] 1

1.1 FBAIUIES .ottt ettt e e e et e e et e et e e e e e e aaees 1

1.2 TOOI COMPOSILION ...eviiiiiiiiiiie ettt st e e e s eeeeanes 2
1.2.1 Composition Of PACKageoocuviiiiiiiiie e 2
1.2.2 Outline of SOftWAre TOOISc.ccoiiiiiiiiiiiiiee e 2

NSy Y I 1 T 3

2.1 WOrKing ENVIFONMENTuuuiiiiii i e a e e e e 3

2.2 Installation Methodcceeeiiiiiiiii e 4

2.3 Directories and Files after Installation ..o 6

DFTWARE DEVELOPMENT PROCEDUREcutuiiiiiiieiiiineeeetineeeaineeeenneesennns 7

3.1 Software Development FIOW ... 7

3.2 Development Using WOrk BENChooiiiiiiiiiiiii e 8
3.2.1 Starting Up the WOrk BENChcoociiiiiiiiiii e 8
3.2.2 Creating @ NEW PIOJECEceiiiiiiiiiieeiiie et 9
3.2.3 Editing SOUICE FIlESeeiiiiiiiieiece et 9
3.2.4 Configuration of TOOI OPtIONSeeiiiiiiiiiie e 11
3.2.5 Building an Executable ODJECtcccoviiiiiiiiiiieee e 12
3.2.6 DEDUGGING -.eeeeiiiiieeiite e 13

R4 02T == N 14

4.1 FRAIUIES ..ottt e e et ea s 14

4.2 Starting Up and Terminating the Work Bench..........cccccooiiiiiiniiiee, 14

4.3 WOrk Bench WINAOWSccoiiiiiiiiiiiiiiice et 15
4.3.1 WINAOW CONfIQUIALIONccooiiiiiiiiiiiiiiiiee et 15
4.3.2 WINdOW ManipUIALIONooieiiiiiiiiiiiice et 16

4.4 Toolbar and BUIIONScvviiiiiiiiieee ittt e e 20
4.4.1 Standard TOOIDAccciiuiiiiiiei et 20
4.4.2 BUII TOOIDA ...t 21
4.4.3WINAOW TOOIDATcooiiiiiiiicee e 21
4.4.4 Toolbar ManipUIAtIoNcceeiiiieiiiii e 22
4.4.5 [Insert into project] Button on a [Edit] WINOWcccooveeeiiiiiniieennen, 22

A5 MEINUS ..ot 23
A.5.1 [FIIE] MEBNU .ottt ettt 23
A.5.2 [EAI] MENU ..ottt 24
A.5.3 [VIEW] IMENU ..ottt 24
A.5.4 [INSEI] MENU ...eoiiiiiiiitiee ettt 25
4.5.5 [BUI] MENU ...ttt e 25
4.5.6 [TOOIS] MENU ..ottt et 25
A.5.7 [WINAOW] MENU ...ttt 26
4.5.8 [HEIP] MENU .ottt 26

4.6 Project and WOIK SPACEcoooiiiiiiiiiiiiiiieee et 27
4.6.1 Creating @ NEW PrOJECLcocuviiiiiieiiii et 27
4.6.2 Inserting Sources into & Projectcccooiveeiiiiieiiii e 28
4.6.3 [ProjeCt] WINUOWccuvviiiiiieiiiie ettt 29
4.6.4 Opening and CloSing & ProjeCtcooiiiiiiiiiiiiie e 29
4.6.5 Files in the Work Space FOIdErcooeiiiiiiiiiiiec e 30

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 5

4.7

4.8

4.9

SOUCE EQITOF i 31
4.7.1 Creating a New Source or Header File ..., 31
4.7.2 Loading and Saving FilesSoiii i

4.7.3 EdIt FUNCHONooiiiiiiiiiis et

4.7.4 Tag JUMP FUNCHON ..ccooiiiiiiiie et

o T o 41011 o T PP PPP PP

BUII TASK ...
4.8.1 Preparing @ BUild Taskooouuiiiiiiiiiee e

4.8.2 Building an Executable Object
4.8.3 DEDUGGING ...ttt
4.8.4 Executing Other TOOIScoiiuiiiieiiiiiieee e e e

TOOI OPLION SELHNGS ...ttt
4.9.1 ASSEMDBIET OPLIONSveiiiiiiiiiiieee et
4.9.2 LINKET OPLIONS ...eeiiiiiiiiiee ettt et e e e e e e e e ennneeas
4.9.3 DEDUGPETr OPLIONS ...eeiiiiiiiiiee ettt e et e e e aebeeee e
4.9.4 HEX CoNVerter OPLIONScciiiiiiiiiieeeiiiieiee ettt e e

O] T T el O UL 1= I 1
4. 11 EITON IMESSAGES ..evvvrinieeiieiiiie e e e ettt e e e e eetaas s e e et eab e e e s e e aab s e e e aeabaaeeeeeeanranns
4,12 PrECAULIONS ...ttt ettt e e e e ettt e e e e e e e e e e e bbb b b e e eeaaaaeas

PASSEMBLER vttt ttnesteesee e sesense e ea s ense s e s e e ee s e s e e e ee s e e e et earenee et enrenenaeen e 47

51
5.2

5.3
5.4
5.5

5.6

5.7

U] [0 {01 1T 47

INPUL/OULPUL FIIES ... a7
B2 L INPUL FLE .. a7
5.2.2 OULPUL FIIES .. 48

Starting Methodoeeviiiii e 49
Y =21 7= To [PP 50

Grammar of ASSEMDIY SOUICEoovvviiiiiiiiccce e 51
5.5.1 Statements
5.5.2 Instructions (Mnemonics and Pseudo-inStructions)cc.cccevvveeinneenns 53
B.5.3 LADEIS ... a e aee
5.5.4 COMMENTS ..ottt r e et e e e e e e aeeeeas
5.5.5 Blank Lines
5.5.6 REGISIEr NAIMESoiiiiiiiiiiie et 56
5.5.7 NUMETCal NOTALIONSoeeiiiiiiiiii e 57
5.5.8 SYMDOIS ...eeiiiiieeiie e 58
5.5.9 OPEIALOIS ...ccoiiiiieii ettt ettt e e e s e e 58
5.5.10 Location Counter Symbol "$"cccoooiiiiirieee e 60

SECHON MANAGEMENTcoeiiiiiiiieiiiiiee ettt e e 61
5.6.1 Definition Of SECHONSooiiiiiiieiic e 61
5.6.2 Absolute and Relocatable SECONSccccovveeiiiiiiniieeee e 61
5.6.3 Sample Definition 0f SECHONScoeiiiiiiiiiiiie e 62

Assembler PSeudo-INStrUCHIONSeviiiiiiiiieiiiit e 63
5.7.1 Include Instruction (FNCIUAE)cooiiiiiiiiiiiii e 64
5.7.2 Define Instruction (#AefiN€) ..o 65
5.7.3 Macro Instructions (#macro ... #endm)cc.eeeeiiiiiiiieieiiiiee e 67
5.7.4 Conditional Assembly Instructions

(#ifdef ... #else ... #endif, #ifndef... #else ... #endif)cccvinnn.
5.7.5 Section Defining Pseudo-Instructions (.code, .DSS)ccccceviiiiiieiiinnnnn.
5.7.6 Location Defining Pseudo-Instruction (.org, .bank, .page, .align)
5.7.7 Symbol Defining Pseudo-Instruction (.set)c.......
5.7.8 Data Defining Pseudo-Instruction (.codeword)
5.7.9 Area Securing Pseudo-Instructions (.comm, .Icomm)ccccceeeiniinnenn.
5.7.10 Global Declaration Pseudo-Instruction (.global)ccccooviiiiiiininnn.

CHAPTER 6

CHAPTER 7

INTRODUCTION

5.7.11 List Control Pseudo-Instructions (.list, .NOlISt)ccoviiieiiiiniiiiieeeis 81
5.7.12 Source Debugging Information Pseudo-Instructions (.stabs, .stabn) 81
5.7.13 Comment Adding FUNCLIONccoiiiiiiiiiiiiiieee e 82
5.7.14 Priority of PSEUdO-INSIUCHONScccoiiiiiiiieiiiiiiie e 82
5.8 Summary of Compatibility with the Older TOOlcoeeviiiiiiiiiiiiiiieeeee, 83
5.9 Relocatable LiSt Fle ... 84
5.10 Sample EXECULIONSuiiiiiiiiiiiiiiiiieie ettt 85
5.11 Error/Warning MESSAQEScceeeeeeeieeeieeeeeeeeeeeeeee s n e e e e e e e e e e e 87
L0 0 R 4 (o] PP PP PPPTPTPTPTN 87
5.10.2 WAINING +eeiitieeiieee ettt et e et e e s 88
5.12 PrECAULIONSeiiiiiiieiiieiee ettt ettt e e e e e e e e e s bbb e e e e e e e e e e e e aaaanes 88
TN 2 S UPPRPUR 89
6.1 FUNCHONS ..ottt s 89
6.2 INPUYOULPUL FlESooovviiiiiiiii 89
B.2. 1 INPUL FIIES ...t 89
6.2.2 OULPUL FIES ..o 90
6.3 Starting Method.............ouuiiiiiiiii e 91
6.4 MBSSAGES .ovvuniiiiiiiiiii ettt e et 94
6.5 Linker Command Fle..........oooiiiiiiiiii e 95
6.6 LINKMAP FlEoeiiiiiiiei s 96
6.7 SYMDOI FlE .. e 97
6.8 ADSOIULE LiSt FlEuveeiiiiieeee e 98
6.9 Cross ReferenCe File ... 99
00 IO I I] o 100
6.11 Automatic Insertion/Removal/Correction of "pset” Instruction 102
6.12 Error/Warning MESSAQ0ESuucieieieieieei e e e eeeeee et a e e e 103
LN A R = 4 (o] £ PP P PP PPPPPPPPRP 103
B.12.2 WAINING +eeeetieeiiiie ettt e et e e e et e eenneees 103
B.13 PrECAULIONSeeeiiiiiieiiie ittt ettt et e e e e e e et e e e e e e e e e e s e e aannnees 104
HEX CONVERTER 1111 tttttie ettt e e et e et e e et s e e et e e et e e e et e e e et e e s eaaneeeann s 105
7.1 FUNCHONS ..ottt e e e e e e e e bbb eeeeaae s 105
7.2 INPUYOULPUL FIIES ... 105
T.2.L INPUL FLES .ot e e e 105
7.2.2 OULPUL FIES ..o 105
7.3 Starting Methoduuuuiiiiiiii s 106
A (=11 S7= To [T PSSP 107
7.5 OUPUL HEX FIlES oo 108
7.5.1 Hex File Configurationccccooueeeiiiieniiee e 108
7.5.2 INtel-HEX FOMMAL ...ooiiiiiiiiieee ettt e e 108
7.5.3 MOtOrola-S FOMMAL.........ueiiieeiiiiiie e nrreee e 109
7.5.4 CONVEISION RANGEvviieiiiiiiiee et 109
7.6 Error/Warning MESSAJEScccoiuuriieiiiiiiee e rtiiee ettt ee et e e e rbre e e e sbreeee e 110
0 = 1 (0] £ PP PPPTUTPTPTN 110
T.6. 2 WAIMING ..eeeeiiiieeii ettt ettt et et 110
A A d (=1%= LU 1o o PSSP 111

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Vi

CHAPTER 8 DISASSEMBLER ..vvvuiiiriiieittiieettiseettiseeesisesesaaesesseesesaeeessneeeanneeeennnnns 112
S 700 U o 1o o S 112
8.2 INPUYOULPUL FIES ..o 112

8.2.L INPUL FIES ..o 112
8.2.2 OULPUL FlES ..o 112
8.3 Starting Methodccooiiiiiiiii e 113
8.4 IMIESSAUTES ..uuiiiiiiiiiii ettt ettt 114
8.5 Disassembling OULPULccuuviiiiiiiiiie i 115
8.6 Error/Warning MESSAJESuuuiiiiiiiiieiiiiiiee ettt e sttt 118
BLB.L EITOIS ..ottt e e 118
8.6. 2 WAIMING ...eeeiiiiieeiiet ettt 118
CHAPTER O DEBUGGER ...tttuiiiitiie ittt e ettt e ettt e et e ettt e et e e e et e e e et e e e e e e e aa e e eaan s 119
0.1 FRALUIES ...eviiiiiiiieie e 119
9.2 INPUYOULPUL FIES ..o 119
9.2 1 INPUL FIES et 119
9.2.2 OULPUL FIES ..ttt 120

9.3 Starting MethOduuueieiiie e 121
9.3.1 Start-Up FOIMAL ...t e 121
9.3.2 StArt-UP OPLIONS ..ottt e 121
9.3.3 SEArt-UP MESSAGEScvvviieeiiiiiiiee et e e e e e 122
9.3.4 Hardware Check at Start-Upccoccvviirieeeriiieiiie e 122
9.3.5 Method of Terminationcoocveeiiiiiiie e 123

9.4 WINAOWS ...oeiiiiiiiiieee ettt e e st e s e e e e e 124
9.4.1 Basic Structure of WINAOWcoocuviiiiiiiiiiieeiec e 124
9.4.2 [ComMANA] WINAOWcovviieiiiieiiiie ettt 126
9.4.3 [SOUICE] WINUOW ...ttt 127
9.4.4 [DAt@] WINUOW ...ttt e e 129
9.4.5 [REQISEI] WINUOWoooiiiiiiiiieeitee ettt 129
9.4.6 [TraCe] WINUOWoeiiiuiieiiiiiieeiet ettt et 130

LS IR TN o To I = - S 131
9.5.1 TOOI BAF STTUCIUIEeeeeiiiie ettt 131
9.5.2 [Key Break] BULTONcocviiiiiiieiiiee ittt 131
9.5.3 [Load File] and [Load Option] BULLONSccccuviirieeeiiiiieeieesnireee e 131
9.5.4 [Source], [Mix], and [Unassemble] BUtONScccceoeiivieeeeiiiiiiiee e 131
9.5.5[Go], [Go to Cursor], [Go from Reset], [Step], [Next], and [Reset] Button31
9.5.6 [Break] BULIONooiiiiiiiiie ettt e 132
9.5.7 [HEIP] BULLON ...ttt 132

LS N T 1Y/ 1Y o1 R 133
9.6.1 MENU STITUCTUIEoeviiiiiiiiiieeiei et 133
9.6.2 [FIlE] IMEINU ... e et e e 133
9.6.3 [RUN] MEBNU .ottt ettt e e e e e e 133
9.6.4 [Break] MENUuuiiiiiiiiiiie et 134
9.6.5 [TraCe] MENUuuiiiiiiiiiiiiie ettt 134
9.6.6 [MIEW] IMBINU ..ottt e 134
9.6.7 [OPLON] MENU ...ttt 135
9.6.8 [WINAOWS] MENU ...ttt 135
9.6.9 [HEIP] MEINU ..ottt 135

9.7 Method for Executing COMMEANASoouuiiieiiiiieie e 136
9.7.1 Entering Commands from Keyboardccooiviiiieeiiniiiieeeeniiecee e 136
9.7.2 Executing from Menu Or TOOl Bar...........c..oviiiiiiiiiiiiiiiiiicee e 138
9.7.3 Executing from a Command Fileccccooiiiiiiiiniii e 139
.74 LOQ FlE et 140

INTRODUCTION

9.8 DebUQG FUNCLIONS ...cooiiiiiiieiiie e
9.8.1 Loading Program and Option Datacoccueeeieeiiiiieiieeiiiieeee e 141
9.8.2 Source Display and Symbolic Debugging Functioncccccooviiieeeenne 142
9.8.3 Displaying and Modifying Program, Data, and Registerccccco.. 144
9.8.4 EXECULING PrOGIAMeiiiiiiiiiiiee ettt ettt e e e e s 146
9.8.5 Break FUNCHIONSooiiiiiiiii s 148
9.8.6 TracCe FUNCHIONScociiiiiiii et 150
O.8.7 COVEIAGEueueiiiriiieeie ettt ettt e et e e e e e e e e e e e e e e n e s s renees 153

9.9 Command REFEIENCEuiiiiiiiiiiii e
9.9.1 CoMMANG LISTiiiiiiiiiiiie et 154
9.9.2 Reference for Each Commandccceeviiiiniiieiiiic e 155
9.9.3 Program Memory OPEIatioNc.uueeeieiiiiiieeeeaiiiiee ettt e e e e e e 156

as (assemble MNEMONIC)coiiuiiiiiieeiiie e 156
pe (program mMemoOry €NEEI) ...cc.ueeeieeiiiiiiee et 158
pf (program memory fill) ... 159
pm (Program MEMOIY MOVE)cceeriurrrreeaairereeeeaanrneeeesasireeeeaeans 160
9.9.4 Data Memory Operation
dd (data memory dUumMP)coooiiieieeiiieee e 161
de (data Memory ENLEr) ... 163
df (data memory fill) ..., 165
dm (data MemOrY MOVE)cceeiiiiiiiieeiiiiiiee e e 166
9.9.5 ReQISIEr OPEIALIONccieiiiiiiieie ettt e e e inees 167
rd (register display) 167
IS (FEQISLEN SEL) .oiiiiiiiiiii et 168
9.9.6 Program EXECULIONc..coiiiiiiiiiiiiiiiie et 169
[0 I (o o) PP P TP PPP TP 169
gr (go after reset CPU) ... 171
I (1 (=] o) PP UPPRPOPPPPPN 172
N (NEXE) 1ot 173
9.9.7 CPU RESEL ...ttt ettt ettt 174
ST (FESEL CPU) ..t 174
9.9.8 Brak ... 175
bp (break PoiNt SEt)coiiuiiiiiiii e 175
bpc (break point Clear)cccviiiiiiiiiiie e 177
bd (data break) ... 178
bdc (data break Clear) ... 180
br (register Break) ... 181
brc (register break Clear) ... 183
bm (multiple break) ... 184
bmc (multiple break clear) ... 186
bl (break point lISt)eeeiiiiiiie e 187
bac (break all Clear)c.eeeiiiiiiii e 188
be (break enable)cooiiiiiiiiii e 189
bsyn (break disable) ... 190
9.9.9 Program DISPIAYeeeeiiiiiiiiieiiiieee ettt
U (UNASSEMDIE) ...t
sc (source code)
[LT (01104 PP PPPOPPPUPPOE
9.9.10 Symbol INfOrMALIONociiiiiiiiie e
sy (symbol list)
9.9.11 LOAA FilE ..ttt s
If (10Ad fil€) .eeiiiiiiie

lo (load option)

9.9.12 ROM ACCESS ...ttt
rp (ROM program l0ad)...........cccoooiiiiiiiiniiiieie e

vp (ROM program verify)

FOM (ROM LYPE) .ottt

9.9.13 Trace

tC (trace CONAItION)uveiieiiiiiiiie e

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

viii

t8 (IrACE ArA)eeiieiiiiiiiiee ettt
tac (trace area ClEAr)oocuieiiiiiiiiiiee e
tp (trace pointer)........cccccovvcvveeeenn.
td (trace data display)
ts (trace search)ccccocuneeen.
tF (TracCe fil€) ..eeeeee e
O0.9.14 COVEIAGEuuueieirireiiiiiieit et e e e e e e e e e e e e e e s s e e e e et e et e e e e e e e e s e e s e sasannnenenes
(oY (o0} =] = To [PP PP P PP
CVC (COVErage Clear)c.uieiiiiiiiiiei et
9.9.15 CommaANd FlEcooiiiiiiiiecii e
com (execute command file)cccooiiiiiiiiiiiii
rec (record commands to a file)

9.9.16 100 ittt e e e e eeaeaaaa
100 (10Q) +eeeeeiiiieiee e
9.9.17 Map Informationcccceeeviiveeeeennnns
ma (map information)
9.9.18 MOAE SELNG ...eeveeeeeeiiiiieie ettt e e e e e e et eee e e
otf (on-the-fly display)ceeeeeeiiiiiii e
tim (time or SteP MOAE) ...ccooiiiiieiiiiiii e
9.9.19 Self DIAGNOSISueiiiiieeiiiee ettt

chk (self diagnostiC tESL)eeviiiiiiiiiiei e
9.9.20 Quit

CHAPTER 1: GENERAL

CHAPTER1 (ENERAL

1.1 Features

The E0C62 Family Assembler Package contains software development tools that are common to all the
models of the EOC62 Family. The package comes as an efficient working environment for development
tasks, ranging from source program assembly to debugging.

Its principal features are as follows:

Simple composition
A task from assembly to debugging can be made with minimal tools.

Integrated working environment
A Windows-based integrated environment allows the tool chain to be used on its Windows GUI
interface.

Modular programming
The relocatable assembler lets you develop a program which is made up of multiple sources. This
makes it possible to keep a common part independently and to use it as a part or a basis for the next
program.

Source debugging
A debugger can display an assembler source to show its execution status and allow debugging
operations on it. This makes debugging much easier to perform.

Common to all EOC62 chips
The tools (workbench, assembler, linker, hex converter, disassembler, and debugger) are common to
all EOC62 Family models except for several chip dependent masking tools ("Dev" tools). The chip
dependent information is read from the ICE parameter file for each chip.

Complete compatibility with old syntax sources
By supporting old syntax together with the new syntax, an existing ".dat" sources written for old 62
tools are available with these new tools.

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

1.2 Tool Composition

1.2.1 Composition of Package

The E0C62 Family Assembler Package contains the items listed below. When it is unpacked, make sure
that all items are supplied.

1) CD-ROM ...ttt One
2) WaArranty Cardocceveiiiieeeiiiiie e One each in English and Japanese

1.2.2 Outline of Software Tools

The following shows the outlines of the software tools included in the package:

Assembler (as62.exe)
Converts the mnemonic of the source files into object codes (machine language) of the EOC62. The
results are output in a relocatable object file. This assembler includes preprocessing functions such as
macro definition/ call, conditional assembly, and file-include functions.

Linker (Ik62.exe)
Links the relocatable objects created by the assembler by fixing the memory locations, and creates
executable absolute object codes. The linker also provides an auto PSET insertion/ correction function
allowing the programmer to create sources without having to know branch destination page numbers.

Hex converter (hx62.exe)
Converts an absolute object in IEEE-695 format output from the linker into ROM-image data in Intel-
HEX format or Motorola-S format. This conversion is needed when making the ROM or when creat-
ing mask data using the development tools provided with each model.

Disassembler (ds62.exe)
Disassembles an absolute object file in IEEE-695 format or a hex file in Intel-HEX format, and restores
it to a source format file. The restored source file can be processed in the assembler/linker/hex
converter to obtain the same object or hex file.

Debugger (db62.exe)
This software performs debugging by controlling the ICE62 hardware tool. Commands that are used
frequently, such as break and step, are registered on the tool bar, minimizing the necessary keyboard
operations. Moreover, sources, registers, and command execution results can be displayed in multiple
windows, with resultant increased efficiency in the debugging tasks. The debugger has both Windows
and DOS user interfaces available.

Work Bench (wb62.exe)
This software provides an integrated development environment with Windows GUI. Creating/
editing source files, selecting files and major start-up options, and the start-up of each tool can be
made with simple Windows operations.

CHAPTER 2: INSTALLATION

CHAPTER 2 INSTALLATION

This chapter describes the required working environments for the tools supplied in the E0C62
Family Assembler Package and their installation methods.

2.1 Working Environment

To use the EOC62 Family Assembler Package, the following conditions are necessary:

Personal computer
An IBM PC/ AT or a compatible machine which is equipped with a CPU equal to or better than a
Pentium 75 MHz, and 32MB or more of memory is recommended.
To use the optional In-Circuit Emulator ICE62, the personal computer also requires a serial port (with
a D-sub 9 pin).

Display
A display unit capable of displaying 800 x 600 dots or more is necessary.

Hard disk and CD-ROM drive
Since the installation is done from a CD-ROM to a hard disk, a CD-ROM drive and a hard disk drive
are required.

Mouse
A mouse is necessary to operate the tools.

System software
The E0C62 Family Assembler Package supports Microsoft® Windows®95 (English or Japanese) and
Windows NT®4.0 (English or Japanese).

Other development tools
To debug the target program, the optional In-Circuit Emulator ICE62 and an Evaluation Board
EVA62xx are needed as the hardware tools.
The evaluation board is prepared for each EOC62 model.

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

2.2 Installation Method

The supplied CD-ROM contains the installer (Setup.exe) that installs the tools.

To install the tools

[L@ o= fen
B B B B (=
s = =& =

28 H -

" i DT et P g L
reaf TR

BT e e
' iy ot gl e gy e
hlll!-rﬂh'l-l-llnrl':-l
rnu.l'.—ulallq.hll-u-:u pan

R T oo 4 oresaet By oo s el
g w

Ty s ot
" —l
] o= |

Eﬂmm“-hh

T il B e e M
H-‘r\—ihl_.ﬂ_ e L]

roure dEEE
i g Ul b S

(1) Start up Windows®95 or Windows NT®4.0.
When Windows has already activated, terminate all
the programs activated.

(2) Insert the CD-ROM into the CD-ROM drive, and
display its contents.

(3) Start up the Setup.exe by double-clicking the icon.

Welcome

(4) Click [Next>] to continue installation.

Choose Destination Location
A dialog box appears for specifying the installation
directory.

(5) Click [Next>] if the default directory "C:\E0C62\" is
not changed to another directory.

To install the tools to another directory

Open the [Choose Folder] dialog box by clicking
[Browse...] and then enter the path name or choose
directory. Close the dialog box by clicking [OK] and
then click [Next>].

Select Components
By default, the installer will install the development
tools common to all EOC62 models.

(6) Click the [Dev62 Files] check box and deselect
unnecessary models in the right list box.

The deselected development tools may be installed after
this installation has completed.

(7) Click [Next>].

CHAPTER 2: INSTALLATION

Y - Select Program Folder

E "';_"‘:_"Er-"—"-“ (8) Enter a program folder name and then click [Next>].
When using the default program folder name, just
e .
) click [Next>].
b g e
=1 The installation starts after this selection.
Copyeg aompar e
e sttt
LK

o o]

Setup Complete

Sl b e (9) Click [Finish] to terminate the installer.
Merags Domeid S e rois e Tl

I 0 o s e W i e

i P s ol S

Program Menu
Installer registers the WorkBench62 icon to the program
menu.

To discontinue installation

The dialog boxes that appear during installation have a [Cancel] button. To discontinue installation,
click [Cancel] when a dialog box appears.

To uninstall the tools
Use [Add/Remove Programs] in the control panel to uninstall the tools.

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

2.3 Directories and Files after Installation

The installer copies the following files in the specified directory (default is "C:\E0C62\"):

[Specified folder]
README.TXT

[bin]
WB62.EXE
AS62.EXE
LK62.EXE
HX62.EXE
DS62.EXE
DB62.EXE
EO0C62.CNT
EO0C62.HLP
IEEE695.DLL
HEXLIB.DLL
AS62.DLL
MSVCRT.DLL
OLEPRO32.DLL
SPAWNEX.EXE

[doc]
MANUAL.PDF
QUICK_REF.PDF
62XX.PDF

[dev62]
DEV62XX

... ReadMe document

... Work bench

... Assembler

... Linker

... Hex converter

... Disassembler

... Debugger

... Help index

... Help contents

... Object format library for debugger
... Hex file library for debugger

... Inline assembler for debugger

... Run time library for work bench
... OLE library for work bench

... Child task library for work bench

... EOC62 Family Assembler Package Manual in PDF format
... Quick Reference in PDF format
... E0OC62XX Development Tool Manual in PDF format

(for the model selected at installation)

... Selected E0C62 Development tool for each chip type

Note: Work bench assumes the above directory structure. Do not rename these folders or file names

and do not change the tree structure.

Online manual in PDF format

The online manuals are provided in PDF format, so Adobe Acrobat Reader Ver. 3.0 or later is needed
to read it. The English version and Japanese version of Acrobat Readers are included in the CD-ROM
(\ Acrobat). To install it, run its set up program (\ Acrobat\ ar32eXXX.exe for English, \ Acrobat

\ar32jXXX.exe for Japanese). Acrobat Reader can be installed any time before or after the installation

of the E0C62 tools.

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

CHAPTER3 S FTWARE DEVELOPMENT PROCEDURE

This chapter outlines a basic development procedure.

3.1 Software Development Flow

Figure 3.1.1 represents a flow of software development work.

Make
file

Work Bench
wh62

Assembly
source file(s)

] <

Development tools for each model

file.par

Function Option
Generator fog62XX

i
B

Function option Function option
HEX file document file

Segment option
source file

Segment Option
Generator sog62XX

Assembler
as62
Assembly [———h. ———*
list file(s) || ||
Linker [—— Preprocessed
command file source file(s)
Linker
k62
: : | Absolute

i
i
i
i
i
i
i
i
i
i
i
|

Segment option Segment option ‘
|
|
|
|
|
|
|
|
|
|
|
|

0

In-circuit Emulator ICE62

f———] Absolute [~————]Cross HEX file document file
Link map file | file. MAP object file file. XRF | reference
| file ———— Melody
| W data file
HEX converter
D hx62 Melody Assembler
mla62XX
Motorola-S Intel-HEX
format files format files e — S —
fileA.HEX fileA.DOC
- o Melody Melody
fileH.HEX HEX file document file
‘ Disassembler Mask Data Checker
ds62 N mdc62XX
—— Masl
"""""""""""" | file.PAN | gata file
Disassembled T
source file
[
Debugger
L
db62

Fig. 3.1.1 Software development flow

The work bench provides an integrated development environment from source editing to debugging.

Tools such as the assembler and linker can be invoked from the work bench. The tools can also be in-

voked individually from the DOS prompt.

Refer to the respective chapter for details of each tool.

The part indicated as "Development tools for each model" is not covered in this manual. For details, refer

to the tool manual associated with each specific model.

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

3.2 Development Using Work Bench

This section shows a basic development procedure using the work bench wb62.
Refer to Chapter 4, "Work Bench", for operation details.

3.2.1 Starting Up the Work Bench

@ Accessones 4
@ Adobe &crobat L

Programs 4

P

Documnents
Settings » @ Startlp 4 Quick Reference

HE MS-DOS Prompt 7| Read
@ WWindows Explorer ;

-

he
Eind \

B

Help

dowsob

Bun...

& M@rEL

Shut Down. .

(A

Start up the work bench by choosing "WorkBench62" from the program menu.

e B e e b Lok b
ul i Lo LT S

Y e | e U e e e |

|

o

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.2.2 Creating a New Project

The work bench manages necessary file and tool setting information as a project.
First a new project file should be created.

1. Select [New] from the [File] menu (or click the [New] button).
3 | [New] button

The [New] dialog box appears.
New []

i

EOC Agzzembly Source File

EOC Azzembly Header Fila Cancel |
Help |

2. Select [EOC Project File] and click [OK].
The [Project] dialog box appears.

Praject: ICE parameter fils: oK I
test ICSE21CP.PAR -
I I J Cancel |

Lacation:
CAEDCEZAtest J
« 2
3. Enter a project name, select an ICE parameter file and select a i WorkBench62 ¥ersion X.XxX
directory, then click [OK]. File Edt View Insett Build Tools He

OThe [ICE parameter file:] box lists the parameter files that exist][1= =) e el

in the "dev62" directory. 22 b ICSE2ICPPAR ¥
The work bench creates a folder (directory) with the specified [test files
project name as a work space, and puts the project file (.epj) into
the folder.
The specified project name will also be used for the absolute object \
and other files. Created project [Project] window

3.2.3 Editing Source Files

The work bench has an editor function. This makes it possible to edit source files without another editor.
To create a new source file:

1. Select [New] from the [File] menu (or click the [New] button).
[| [New] button

The [New] dialog box appears.

E3
iE[nbly]
EQC Azzembly Header File e
EOC Project File _I
Help |

2. Select [EOC Assembly Source File] and click [OK].

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

A new edit window appears. [Edit] window

3. Enter source codes in the [Edit] window.

1)z main.s

F|: tesk program (main eoatEme)

5

&

5| pwwdas JHITIAL 5F ADDRESS DEFIMITIOH s=eess

& mlefine OF_IMIT_ADDR =i B AP inik sddr = ExH@
¥

4 | gwsaas BDON, LOOP ssses

L gleBal THIT_RAH_BLHY i subroutise

i Jglebal THG_RiH_BLEA 7 subiFout fie

11

= Sy L 51]

15| BT

1k (] a, %P _IHIT_aboRy>& 3 &Rk SF

1% 14 spha

L] 1a a, EP_IHIT_ADDAESWF

17 1a apla

1% call THIT_RAH_BLHA : inikdalire BaH hlock 4
1% | LOOP ¢

R 1] call IHE_RAH_BLE1 i bneremenl BAM block 1
3 | ip Lonp ; in#inity Teap

g

71| zeemms RAN BlockH semam

] JEs

5] g

7 Jcemm WAH_DLKY, &

L

4. Save the source in a file by selecting [Save] from the [File] menu (or clicking the [Save] button).

- [Save] button

10

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

5. Click the [Insert into project] button on the [Edit] window.
| [Insert into project] button

The created source file is added in the project.

To add existing source files, use [Files into project...] in the [Insert] menu. It can also be done by dragging
source files from Windows Explorer to the project window.
Create necessary source files and add them into the project.

=[] test files

Man.2 - sample list in the [Project] window

b sub.z

The added source files are listed in the project window. Double-clicking a listed source file name opens
the edit window.

3.2.4 Configuration of Tool Options

The work bench supports all the start up options of each tool and they can be selected in a dialog box. A
make process for generating an executable object will be configured based on the settings.

In addition to option selection, command files for the linker and debugger can be configured here.

To set tool options:

1. Select [Setting...] from the [Build] menu.

A dialog box appears.
Settings
Agzembler | Linker | Debuggerl Hex Converter |
Source | Errar file | Debug info | Lizt file | Defines
[Default] Mo Yes Mo
[=zub.z Ho Mo Mo
[main.z Ho Mo Mo
1| | 2
0K I Cancel | Apply | Help |

2. Configure options if necessary.
Check box items can be selected by clicking. Items in the list can be toggled or entered by double-
clicking.
Settings

Azzembler | Linker | Debuggerl Hex Corvverter |

Source | Errar file | Debug info | Lizt file | Defines

[Default] Mo Yes Mo
ey
[main.z Ho Mo Mo

Refer to Chapter 4, "Work Bench", for details of the [Settings] dialog box.

11

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

3.2.5 Building an Executable Object

To make an executable object file:
1. Select [Build] from the [Build] menu (or click the [Build] button).
| [Build] button

This will invoke the assembler and linker to create an executable object file. If a HEX file format (Intel
HEX or Motorola S) is selected by the [Output format] box, the HEX converter will be invoked after
linking. By default, an absolute object file in IEEE-695 format will be created.

-]

E [Output format] box

kotarala 5

Messages delivered from each executed tool are displayed in the [Output] window. The work bench has a
tag-jump function that jumps to the source line in which an error has occurred by double-clicking a
source syntax error message that appears in the [Output] window. It opens the corresponding source
window if it is closed.

[Dwmblemtliz Vemm i mame __________ EEIE
b B Yo il el [ou (e o

Dicoiabign (& mier)afgle) 0

= |4 Hi s -
%E ot | B

Wl
f; texk preggraa {mads ractine
1
yunmnn [HITEAL 3 AOEALSS [ETIRATIEH seems
| EdeFine SF_EHIT_ABDE [1]] 15 ladt sslir = E=AB

] sves BIGT, LE0F rewes

- ~glabal [HIT R&H ELEA1 1 npbroutine

i glabal THE EAS BiES R T s T
Lol

3,50 1mT_sonks e

dpli.s
18 a, SF_LHIT ADAREF
i apl &

FTLANT {51 SEISE LR SME ME) jnked with the corresponding source line e
IR AP RES Tomalm, ¢ 147 Errars 2 ¢

[Ereafed preprocessrd soarce File HETHOHE

jzemhliy ¥ errar]s] B sarmlngish

r— \ [Tt [R
[Output] window

In the build task, a general make process is executed to update the least necessary files. To rebuild all the
files without the make function, select [Rebuild All] from the [Build] menu (or click the [Rebuild All]
button).

[Rebuild All] button

To invoke the assembler only to correct syntax errors, select [Assemble] in the [Built] menu (or click the
[Assemble] button).

ﬁl [Assemble] button
12

CHAPTER 3: SOFTWARE DEVELOPMENT PROCEDURES

3.2.6 Debugging
To debug the executable object:

1. Select [Debug] from the [Build] menu (or click the [Debug] button).

El [Debug] button

The debugger starts up with the specified ICE parameter file and then loads the executable object file.

Note: Make sure that the ICEG62 is ready to debug before invoking the debugger. Refer to the "ICE
Hardware Manual” for settings and startup method of the ICE62.

e Agn Imet [o= [oien e oo

m s A==
PL BRI]
" ¥
[N T T B iF
1% | i (]] 11 wph, 8 Le nphi, & % i
16| MEE EM 14 B La 4. SP_LHIT_mapREasr ¥
1| EE FE Id spla L wpl.a v H i
10 | eiF part i2E L] IELS “EF
% | i #5 Wi csll il call THIT Rl @ik ; Indtiskirs HEi IPE @R
2 LIMF | e f
| e whi purl @xi gl o GarerEnt Cads b
FE | H Bk call call IIII'_."I‘IP-_EI.I ; Lporement FSH il ow, i
#|mes @l fp deE ip v | AeFlindty Noap h
™ i b g Fext Case SFei
% ; et pregram {welrsutines § Ll SFH, A
Hh
& glapal WeH_BLEY
i
B []

Bebaggera? Uere.xx Capyrigak SECUED CFSEH COAF. 198

Bl Cing GOHT wlUn PEAD Dawd Fabe .. AR
wrarmber Thle: GBS Pdeei B 8T o losliTicp.par
Ehig Hame: EBECAHc

TERSEEEmTTEmTTTT B E SRS EREw

ran "Ly P AFEeaE bt o™ @
IF TLEEL aNET
paflilng Tile ... BEF

el L L L L L Bl ledaiulied L L L L LR & L)
S T I T T T T Y T T T T]
L T T O L e T T P]
L L L LE L il bt L L L
S T T T R e T T Ty
I T T PR e T RS T T L]
~EFFEES R R e s LR R R
e T T T e, e T T

el BB 0 B Bt bt ey YRR el

2

R

For the debugging functions and operations, refer to Chapter 9, "Debugger".

13

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

cHAPTER4 \WWork BENCH

This chapter describes the functions and operating method of the Work Bench wb62.

4.1 Features

The Work Bench wbé62 provides an integrated operating environment ranging from editing source files to
debugging. Its functions and features are summarized below:

e Source edit function that supports copy/ paste, find /replace, print, label jump and tag jump from error
messages.

¢ Allows simple management of all necessary files and information as a project.

¢ General make process to invoke necessary tools and to update the least necessary files.

e Supports all options of the assembler, linker, HEX converter, disassembler and debugger.

¢ Windows GUI interface for simple operation.

4.2 Starting Up and Terminating the Work Bench

To start up the work bench

Choose "WorkBench62" from the [Program] menu to start up
the work bench.

O If "WorkBench62" is not registered in the [Program]
menu, it means that the installation was not successful.
Therefore, reinstall the tools by referring to Chapter 2,
"Installation”.

When the work bench starts up, the window shown below
appears.

Pox i, s 11 LT R L T

To terminate the work bench
Select [Exit] from the [File] menu.

14

CHAPTER 4: WORK BENCH

4.3 Work Bench Windows

4.3.1 Window Configuration

Menu bar Toolbar [Edit] window

: sab.w /
1 p bead pragesn (subrastleey)
. qlokal FYH_BLEY
i arg el

sunnnn S bBlechk § indfialise wesmse

m lonal TRET_Eeem mat

11| THIT_MaH_BLKET:

1l 14 LR LN (R

18 4) ¥

i it [N] sHrl WAI_BLET aldeesd 14 ®
15 1ap= Lo] sirt fmEEE Lo BAE EET

i lapa i, il

P

W
eeparight {23 |SEIEE CrSEn conr. 1eae

reited sbsalufe abject FLIE “TEET.8REY

fLink & werorin) § varniegis]

Wil ha e, \ J
P— \ \ 175~ e Ta
[Project] window [Output] window Status bar

The work bench has three types of windows: [Edit] window, [Project] window and [Output] window.

[Edit] window
This window is used for editing a source file. A standard text file can also be displayed in this win-
dow. Two or more windows can be opened in the edit window area.
When an E0C62 assembly source file is opened, the source is displayed with in colors according to the
contents.
E0C62 instructions: Black
Preprocess (#) pseudo-instructions: Dark brown
Assemble (.) pseudo-instructions: ~ Blue
Labels: Light brown
Comments: Green

[Project] window
This window shows the currently opened work space folder and lists all the source files in the project,
with a structure similar to Windows Explorer.
Double-clicking a source file icon opens the source file in the [Edit] window.

15

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

[Output] window
This window displays the messages delivered from the executed tools in a build or assemble process.
Double-clicking a syntax error message with a source line number displayed in this window activates
or opens the [Edit] window of the corresponding source so that the source line in which the error has
occurred can be viewed.

Menu bar
Refer to Section 4.5.

Toolbar
Refer to Section 4.4.

Status bar

Shows help messages when the mouse cursor is placed on a menu item or a button.
It also indicates the cursor position in the [Edit] window, Key lock status (Num lock, Caps lock, Scroll
lock).

4.3.2 Window Manipulation

Resizing the windows T ——————————————_|
Each window area can be Eﬂ_u! LI L

resized by dragging the win-
dow boundary. The size
information is saved when the
work bench is terminated. So
the same window layout will | R Ao L
appearat the next time the work il i PR
bench starts up.

-, =1 EEEEE 1s mE R
-

L
e T T

e EEIEE ST A

AT § S

Floating and docking the

[Project] and [Output]

window
The [Project] window and the
[Output] window can be made
a floating window by double-

clicking the window boundary . e =

and the floating window can be R il Aoy el
moved and resized in the work n .oma et e
bench window. The floating] P amari i
window will be restored to a ..;"; = SR LE
docking window by double et ek 1 1 M
clicking the window's title bar s e R
or dragging the title bar il

towards an edge of the work T
bench window. e e

16

Closing the [Project] and [Output] window

CHAPTER 4: WORK BENCH

The [Project] window and the [Output] window can be closed by selecting [Project Window] and
[Output Window] from the [View] menu, respectively. To open them, select the menu items again.

Maximizing the [Edit] window area
Emie [H

LT [
; iRl pragras (maln roaline)

juamas JHITIRL SF GOBEESS BEF1HITIEH saaa
Be# e UF_IHIT_BEEE FHE] 1P iwin sy mEA
smvww BT, LEDF awrae
Jlededd THIT ERM FLE1 nubroat ire
1] 21lbu e _ i BLic D g

R ST
i) 1

s 1 & _THIT_BEERiE 1 g W
I 1a aph, &
18 w, SF_THIT_SpRid
18 Sl o &
cald THIT_Fdii_BLEi 7 dmimisldos Fd Eieck §

LEOF;
] call IHE ERH BLET | lErEeRE BN Lk 1
[[RE + Arddndiy dsop

5 jaasas BRM BlEck seeas
" Jbun
bl

i ESEEE]
corn FRN_ELED, &

Opening/Closing [Edit] windows

=

'H_ The [Edit] window area can be

maximized to the full screen size by
selecting [Full Screen] from the
[View] menu. All other windows
and toolbars are hidden behind the
[Edit] window area.

To return it to the normal display,
click the button that appears on the
screen. This button can be moved
anywhere in the screen by dragging
its title bar. Pressing the [ESC] key
also returns the window to the
normal display.

An [Edit] window opens when a source file (text file) is loaded using a menu, button or a file icon in
the [Project] window, or when a new source is created.
[Edit] windows close by clicking the [Close] box of each window or selecting [Close] from the [File]

menu.

When a project file is saved, the [Edit] window information (files opened, size and location) is also
saved. So the next time the project opens, editing can begin in the saved condition.

Arrangement of the [Edit] windows

The [Edit] windows being opened can be arranged similar to standard Windows applications.

1 Cascade windows

Select [Cascade] from the [Window] menu or click the [Cascade Windows] button.

El [Cascade Windows] button

. THE 3
: Erul program (mmin rosiine]

jessms [MITIRL 5F GDDEESE GEFTHETION sssss

jewsas O], LOE sssss

S ek

LAl

a,5P_[HIT_ADEA} &
Sl
4 EF_IHLT_fbDEEas§
=pll &

labsl THET _AAH_EEE1 i mEhrasubine
-fiabal [HL EAH OLEY i mEiraubine

Bl e SP_IHIT _ADER ol 3P init addr = BB

17

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

2 Tile windows

To tile windows vertically, select [Tile Vertically] from the [Window] menu or click the [Tile Vertically]

button.
El [Tile Vertically] button

2

et I |

i mafn, s
text progrem (nedn reakined

seesss [RIT|EL 4F ABREZE DEFIS]TIi sssss
4 ddefine SF_THIT_ABOE [LiT:]] H

:I rewaes BOOI, LGP sssss
iy Jplokal THIT_ R _Siad]
~plnial THE_AAH_E K1 1

i2 e axnan
13 BRI
ia 1d &,5F_IHIT_ABDEY W &
1% 1d wph i
14 La a, T QFIT_SODAEbF
17 1d =Pl 8
8 eull THIT_RéH 3LES =
19 LDEM:
4 call IHE_AfN_BLK1
§r Lear
21 jmesss BfH hioch seses
J 14
Wy awkn -
i 0

THET_RREE

LARREL.
1 i teat pragran |sahrowotises)

Silenal BaH_BLET

] L oEd 1

presss AN Block 1 Indtlalize sweee

Jylehal IHIT_FAH_ALEA
BLET:

1l

14

1l

lhpx

Lipe

FEL

FECEUN e
L »

w REH_BLEA"L
n=z 0
i 0

P | peemes BfRH Elock 1 Encremenl sesss

Jplehal SE_ARR_FLEY

FlTHE EAH B R

&, REH LK R

g d
& REH_@LET]

To tile windows horizontally, select [Tile Horizontally] from the [Window] menu or click the [Tile

Horizontally] button.
El [Tile Horizontally] button

e |

1 b maim.s

: texh progres (msin reutine)

jesass [WITI&L §F ABBHESS DEFIHITEOH ssess

i EdeFime KF_IHIT_ABGR L]] 5P imiE addr
1 peesws §OOI, LOGP sesss

) glokal [HET_Ree_§LEd | Febrautine
18 =nimkal THE_EAH_RLE1 i mmhrankine=

= BB

1T L
5 test progras (swErsabines)

] ~plokdl HES BLET

] nri crdn

T

1 cewsws BAH Dlachk 1 lslviadies esess

-global THIT_Aks_BLEA
18 [HIT BiH EE1-

18

CHAPTER 4: WORK BENCH

3 Maximizing an [Edit] window
Click the [Maximize] button on the window title bar. The window will be maximized to the [Edit]
window area size and other [Edit] windows will be hidden behind the active window.

Gueldel | #] ﬂ
| 7 mafin.&
Y test pregras (nadn reubing)
1
1
G| pweass [HOFIEL SF APORESYE DEFIMINIDN sssss
& dded ine SF_THIT_ABDE =R ZF 1nlk sddr = il
1| pumsss BOBF, LGP ses=s
oplowal THLT_Rel_SiE : subrowtiase
i JRLdal THE_ANH_BLEA 3 i ol ise
i
12 Sy el]
149 B
15 18 5P _IHIT_NBOR¥:E : en SF
i 1d wph 4
1 L a, SF_NHOT 80Dk
17 ia L4
ia call IHIT_Ral_@LEd 1 findblalize And bliock 4
19 | [@ar
2B call IHE AAH BLE1 : Ancremenl EEH black 1
L 113 LBarF 1 GnFEnSty Lisip
|| pessss @A biock sssss
L] T 1
3 o] LER 2
] cams Rl #LET, &

4 Minimizing an [Edit] window
Click the [Minimize] button on the window title bar. The window will be minimized as a window
icon. The minimized icons can be arranged at the bottom of the [Edit] window area by selecting
[Arrange Icons] from the [Window] menu.

5 Moving and resizing an [Edit] window
The [Edit] window allows changing of its location and its size in the same way as the standard
Windows applications if it is not maximized.

Switching active [Edit] window
Click the window to be activated if it can be viewed. Otherwise, select the window name (source file
name) from the currently-opened window list in the [Window] menu.

Scrolling display contents
A standard scroll bar appears if the display contents exceed the display size of a window. Use it to
scroll the display contents. The arrow keys can also be used.

Showing and hiding the status bar
The status bar can be shown or hidden by selecting [Status Bar] from the [View] menu.

19

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

4.4 Toolbar and Buttons

Tree types of toolbars have been implemented in the work bench: standard toolbar, build toolbar and
window tool bar.

Standard toolbar

NS
N = AR E I EENEE)

| [icsezicPrar =] [absouteObiect v k| %5 [B%E| | B=| B3| |
\

Build toolbar Window toolbar

4.4.1 Standard Toolbar
This toolbar has the following standard buttons:

=

o &

= =

iy

= = = |2

S

[New] button

Creates a new document. A dialog box will appear allowing selection from among three document
types: EOC62 assembly source, EOC62 assembly header and project.

[Open] button
Opens a document. A dialog box will appear allowing selection of the file to be opened.

[Save] button
Saves the document in the active [Edit] window to the file. The file will be overwritten.
This button becomes inactive if no [Edit] window is opened.

[Save All] button
Saves the documents of all [Edit] windows and the project information to the respective files.

[Cut] button
Cuts the selected text in the [Edit] window to the clipboard.

[Copy] button
Copies the selected text in the [Edit] window to the clipboard.

[Paste] button

Pastes the text copied on the clipboard to the current cursor position in the [Edit] window or
replaces the selected text with the copied text.

[Find] button
Finds the specified word in the active [Edit] window. A dialog box will appear allowing specifica-
tion of the word to be found and a search condition.

[Find Next] button
Finds next target word towards the end of the file.

[Find Previous] button
Finds next target word towards the beginning of the file.

[Print] button
Prints the document in the active [Edit] window. A standard print dialog will appear allowing a
specific print condition.

[Help] button
Displays the help window.

CHAPTER 4: WORK BENCH

4.4.2 Build Toolbar
This tool bar has the following buttons and list boxes used to build a project:

&

[Assemble] button
Assembles the assembly source in the active [Edit] window. This button becomes active only when
the active [Edit] window shows an assembly source file.

[Build] button

Builds the currently opened project using a general make process.

[Rebuild All] button

Builds the currently opened project. All the source files will be assembled regardless of whether
they are updated or not.

[Stop Build] button
Stops the build process being executed. This button becomes active only while a build process is
being executed.

ICSE245F PAR

ICSE21CF PAR j [ICE Parameter] pull-down list box

EEBAE i Selects the ICE parameter file for the model being developed. In this box, all the

ICE parameter files that exist in the "Dev62" directory are listed.

I.-'l'-.l:-snlute Object j [Output Format] pull-down list box
thbrolute Dbect Selects an executable object file format. Three types of formats are available:
bl Hes IEEE-695 absolute object format, Intel HEX format and Motorola S format. The

batarala S

build process will generate an executable object in the format selected here.

+ 4
HE¥

[HEX Convert] button

Invokes the HEX converter to convert an absolute object into an Intel HEX object or a Motorola S
object. A dialog box will appear allowing selection of an absolute object and options of the HEX
converter.

[Disassemble] button
Invokes the disassembler to disassemble an absolute object. A dialog box will appear allowing
selection of an absolute object and options of the disassembler.

[Debug] button
Invokes the debugger with the specified ICE parameter file.

4.4.3 Window Toolbar

This tool bar has the following buttons used in window manipulation:

B
E
|

[Cascade] button
Cascades the opened [Edit] windows.

[Tile Horizontally] button
Tiles the opened [Edit] window horizontally.

[Tile Vertically] button
Tiles the opened [Edit] window vertically.

21

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

4.4.4 Toolbar Manipulation

Hiding and showing toolbars
Each toolbar can be hidden if not needed. Select the toolbar name from the [View] menu. This opera-
tion toggles between hiding and showing the toolbar.

Changing the toolbar location
Toolbars can be moved to another location in the toolbar area by dragging them. If a toolbar is moved
out of the toolbar area, it will be changed to a window.

4.4.5 [Insert into project] Button on a [Edit] Window
[Insert into project] button

When a source file (.s, .ms or .dat) is opened, the [Insert into project] button appears on the [Edit] win-
dow. It can be used to insert the source file into the current opened project.
For other file types, the [Edit] window opens without the [Insert into project] button.

22

4.5 Menus

CHAPTER 4: WORK BENCH

File Edit “iew Inzert Build Tool: ‘wWindow Help

4.5.1 [File] Menu
File
Mew. .. Clrl+M

Open... Ctrl+0
Cloze

Open Workzpace. ..
Cloze ‘Workzpace

Save Clrl+5
Save bz,
Save all

Frirtt.... Chril+F
Print Prewisw
Page Setup...

1 zub.z
2 main.=

B test.ep

E xit

The file names listed in this menu
are recently used source and
project files. Selecting one opens
the file.

[New...] ([Ctrl]+[N])

Creates a new document. A dialog box will appear allowing selection
from among three document types: EOC62 assembly source, EOC62
assembly header and project.

[Open...] ([Ctrl]+][O])
Opens a document. A dialog box will appear allowing selection of the
file to be opened.

[Close]
Closes the active [Edit] window. This menu item appears when an
[Edit] window becomes active.

[Open Workspace...]

Opens a project. A dialog box will appear allowing selection of the
project to be opened.

[Close Workspace]
Closes the currently opened project. This menu item becomes inactive
if no project is opened.

[Save] ([Ctrl]+[S])

Saves the document in the active [Edit] window to the file. The file
will be overwritten. This menu item appears when an [Edit] window
becomes active.

[Save As...]

Saves the document in the active [Edit] window with another file
name. A dialog box will appear allowing specification of a save
location and a file name. This menu item appears when an [Edit]
window becomes active.

[Save All]

Saves the documents of all [Edit] windows and the project information
to the respective files.

[Print...] ([Ctrl]+[P])

Prints the document in the active [Edit] window. A standard [print]
dialog box will appear allowing a specific print condition. This menu
item appears when an [Edit] window becomes active.

[Print Preview]

Displays a print image of the document in the active [Edit] window.
This menu item appears when an [Edit] window becomes active.

[Page Setup...]
Displays a dialog box for selecting paper and printer.

23

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

4.5.2 [Edit] Menu

Undo Clrl+Z
Cut Chrl+
Copy Chrl+C
Pazte Chrl+t
Select Al Chrl+d,
Find... Chl+F
Replace Chl+H
GoTo Clrl+(z

4.5.3 [View] Menu

Standard B ar
Statuz Bar
Clukput Safindow
Project Window
Build Bar
Window Bar

L € £ £ & < |

Full Screen

24

[Undo] ([Ctrl]+[Z])

Undoes the previous executed operation in the [Edit] window.

[Cut] (JCtrI]+[X])
Cuts the selected text in the [Edit] window to the clipboard.

[Copy] ([Ctrl]+[C])
Copies the selected text in the [Edit] window to the clipboard.

[Paste] ([Ctrl]+[V])

Pastes the text copied on the clipboard to the current cursor position in the
[Edit] window or replaces the selected text with the copied text.

[Select All] ([Ctrl]+[A])

Selects all text in the active [Edit] window.

[Find...] ([Ctrl]+[F])

Finds the specified word in the active [Edit] window. A dialog box will
appear allowing specification of the word to be found and a search condition.

[Replace] ([Ctri]+[H])
Replaces the specified words in the active [Edit] window with one another. A
dialog box will appear allowing specification of the words.

[Go To] ([Ctrl]+[G])

Jumps to the specified line or label in the active [Edit] window. A dialog box
will appear allowing specification of a line number or a label name.

[Standard Bar]
Shows or hides the standard toolbar.

[Status Bar]
Shows or hides the status bar located at the bottom of the work bench
window.

[Output Window]

Opens or closes the [Output] window.

[Project Window]
Opens or closes the [Project] window.

[Build Bar]
Shows or hides the build toolbar.

[Window Bar]
Shows or hides the window toolbar.

[Full Screen]
Maximizes the [Edit] window area to the full screen size.

4.5.4 [Insert] Menu

File...
Filez into project...

4.5.5 [Build] Menu

Azzemble Ctil+F7
Build F7
Bebuild Al

Stop Build Ctrl+Ereal:
Debug F&
Settings... Alt+F7

ICE parameter fils...

Output Farmat...

4.5.6 [Tools] Menu
Toolz

Hex Caonverter....
Dizazzembler. ..

CHAPTER 4: WORK BENCH

[File...]

Inserts the specified file to the current cursor position in the [Edit]
window or replaces the selected text with the contents of the
specified file. A dialog box will appear allowing selection of the file
to be inserted.

[Files into project...]
Adds the specified source file in the currently opened project. A
dialog box will appear allowing selection of the file to be added.

[Assemble] ([Ctrl]+[F7])

Assembles the assembly source in the active [Edit] window. This
menu item becomes active only when the active [Edit] window
shows an assembly source file.

[Build] ([F7])

Builds the currently opened project using a general make process.

[Rebuild All]

Builds the currently opened project. All the source files will be
assembled regardless of whether they are updated or not.

[Stop Build] ([Ctrl]+[Break])
Stops the build process being executed. This button become active
only while a build process is being executed.

[Debug] ([F5])
Invokes the debugger with the specified ICE parameter file.

[Settings...] ([AI]+[F7])
Displays a dialog box for selecting tool options.

[ICE parameter file...]
Displays a dialog box for selecting an ICE parameter file.

[Output Format...]

Displays a dialog box for selecting an executable object file format.
Three types of formats are available: IEEE-695 absolute object
format, Intel HEX format and Motorola S format. The build process
will generate an executable object in the format selected here.

[HEX Converter...]

Invokes the HEX converter to convert an absolute object into an
Intel HEX object or Motorola S object. A dialog box will appear
allowing selection of an absolute object and options for the HEX
converter.

[Disassembiler...]

Invokes the disassembler to disassemble an absolute object. A
dialog box will appear allowing selection of an absolute object and
options for the disassembler.

25

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

4.5.7 [Window] Menu

window This menu appears when an [Edit] window is opened.
Ejﬁcad‘? [Cascade]
Tile Horizontally Cascades the opened [Edit] windows.
Tile Yertically
Arrange lcons [Tile Horizontally]
Cloge Al Tiles the opened [Edit] window horizontally.

v 1subs [Tile Vertically]
2 main.z Tiles the opened [Edit] window vertically.

The currently opened [Arrange Icons]

document file names are
listed in this menu.
Selecting one activates dow area.
the [Edit] window.

Arranges the minimized [Edit] window icons at the bottom of the [Edit] win-

[Close All]
Closes all the [Edit] windows opened.

4.5.8 [Help] Menu

Help [Help]
Help Displays the [Help] window.
hout WEEZ... [About WB6E2...]

Displays a dialog box showing the version of the work bench.

26

CHAPTER 4: WORK BENCH

4.6 Project and Work Space

The work bench manages a program development task using a work space folder and a project file that

contains file and other information necessary for invoking the development tools.

4.6.1 Creating a New Project

A new project file can be created by the following procedure:

1. Select [New] from the [File] menu or click the [New] button.

gl [New] button

The [New] dialog box appears.

New

i

EQC Aszembly Source File

EOC &zzembly Header File Cancel |
Help |

2. Select [EOC Project File] and click [OK].
The [Project] dialog box appears.

Praject: ICE parameter fils: oK I
[ICS621CP PAR -
I I J Cancel |

Location:

CHEOCEZ J
i =

3. Enter a project name, select an ICE parameter file and select a directory, then click [OK].
OThe [ICE parameter file:] box lists the parameter files that exist in the "dev62" directory.

The work bench creates a folder (directory) with the specified project name as a work space, and puts the
project file (.epj) into the folder.

If a folder which has the same name as that of a specified one already exists in the specified location, the
work bench uses the folder as the work space. Thus you can specify a folder in which sources are created.
The specified project name will also be used for the absolute object and other files.

27

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

4.6.2 Inserting Sources into a Project

The sources created must be inserted into the project.

To insert a source into a project, use one of the four methods shown below:

1.

When a source file is inserted into the project, the source file name appears in the [Project] window.

[Insert | Files into project...] menu item
A dialog box appears when this menu item is selected.

N - |
ki [2 o o8l =l

MR
paik

e | | |1|-.|
T [—" ey e ——T =l Casal |

Choose a source file from the list box and then click [Open].

. [File | Open...] menu item or [Open] button

El [Open] button

A dialog box appears when this menu item or button is selected.

fopen _______________WA]
L L = i el fe= i

L.
padks

e | | |1|-.I
T [—" ey E——T =l Casal |

™ Open e pead- oo

T

Choose a source file from the list box and select the [Into project] button, then click [Open].

. [Insertinto project] button on the [Edit] window

[Insert into project] button

When the source file has been opened, click the [Insert into project] button on the [Edit] window. Do
not forget to save the source to the file before inserting into the project.

. Dragging source files on the [Project] window
Drag source files from Windows Explorer to the [Project] window. These files will be added to the

current project.

Removing a source from the project

To remove a source file from the project, select the source in the [Project] window and then press the
[Delete] key. This removes only the source information, and does not delete the actual source file.

28

CHAPTER 4: WORK BENCH

4.6.3 [Project] Window

The [Project] window shows the work space folder and the source files included in the project that has
been opened.

=[] test files
mair. 3
L sub.s

When a source file icon is double-clicked, the source file will be opened or the corresponding [Edit]
window will be activated.

= When the folder icon or a source file icon is double-clicked with the right
ED test files mouse button, a shortcut menu including the available build menu items
appears.

Note: Note that the list in the [project] window is not the actual directory

Azzemble

e structure.

S tiee Sources of the project in other folders than the work space folder
T are also listed as they exist in the work space folder.

Eropaties,..

Shortcut menu in the [Project] window

4.6.4 Opening and Closing a Project
To open a project, select [Open WorkSpace...] from the [File] menu.
A dialog box appears allowing selection of a project file.

Open H

Laak jr: |-S test j gl l_ =

Hest ep]

File hame: I Open I
Filez of type: IEDC Project Files (*.epj) j Cancel |

The work bench allows only one project to be opened at a time. So if a project has been opened, it will be
closed when another project is opened. At this time, a dialog box appears to select whether the current
project file is to be saved or not if it has not already been saved after a modification.

The project file can also be opened by selecting [Open] from the [File] menu or clicking the [Open]
button. In this case, choose the file type as EOC Project Files (*.epj) in the file open dialog box.

To close the currently opened project file, select [Close WorkSpace] from the [File] menu. At this time, a
dialog box appears to select whether the current project file is to be saved or not if it has not already been
saved after a modification. If [Yes] (save) is selected in this dialog box, all the modification items includ-
ing sources, tool settings and window configuration will be saved.

29

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

4.6.5 Files in the Work Space Folder

The work bench generates the following files in the work space folder:

<file>.epj Projecfile
This file contains the project information.

<file>.cm Linker command file
This file is generated when a build task is started, and is used by the linker to generate an absolute
object file.

Example:
: WorkBench62 Generated
; Friday, May 01, 1998

"C:\EOC62\dev62\Dev621c\ics621cp.par" ;ICE parameter file
-0 "test.abs" ;output file : absolute object

; linked object file(s)
"sub.o"
"main.o"

The contents vary according to the source files included in the project and the linker option setting.

<file>.cmd Debugger startup command file
This file is generated when a build task is started, and is used by the debugger to execute the com-
mand in this file when it is started up.
Example:
If "test.abs"”

The work bench generates this file so that the executable file according to the format selection is
loaded when the debugger starts up.

<file>.mak "make"fileforbuildtask

This file is generated when a build task is started, and is used for the build process in the work bench.
Example:
WorkBench62 Generated
Friday, May 01, 1998

ASM = as62.exe
LINK = k62.exe
HEX = hx62.exe
ASM_FLG =-g
LINK_FLG =-g
HEX FLG=-e-b

ALL : test.abs

test.abs : test.cm sub.o main.o
$(LINK) $(LINK_FLG) test.cm

sub.o : C:\EOC62\test\sub.s
$(ASM) $(ASM_FLG) C:\EOC62\test\sub.s

main.o : C:\EOC62\test\main.s
$(ASM) $(ASM_FLG) C:\EOC62\test\main.s

This is a generic make file that contains macro setting and dependency list.

The following files are generated by the development tools during a build process:

<file>.o Relocatable object files (generated by the assembler)

<file>.abs Absolute object file (generated by the linker)

<file>h.hex, <file>l.hex Intel HEX files (generated by the Hex converter when this format is specified
in the work bench)

<file>.hsa, <file>.Isa Motorola S files (generated by the HEX converter when this format is speci-

fied in the work bench)

30

CHAPTER 4: WORK BENCH

4.7 Source Editor

The work bench has a source editor function. Sources can be created and modified in the [Edit] window.

4.7.1 Creating a New Source or Header File
To create a new source file:

1. Select [New] from the [File] menu or click the [New] button.
3 | [New] button

The [New] dialog box appears.

E3
EOC Assembly Headet Fle Cancel |

EOC Project File
Help |

2. Select [EOC Assembly Source File] and click [OK].
An [Edit] window appears.

B fie [Vem e fuki [em e fieb al® =
O||aigh | @ mli]e] 2]

==) e N L [T= o |
o i il [F Iﬁ

[Edit] window
Enter source codes here.

[T — [P K- [T™

Enter source codes in this window.

The [New] dialog box allows selection of the [EOC Header File]. Select it when creating a header file for
constant definitions.

31

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

4.7.2 Loading and Saving Files

To load a source file:

1. Select [Open...] from the [File] menu or click the [Open] button.
E-q'l [Open] button
The [Open] dialog box appears.

Open (2] %]
Lok in: I = test

main.s
sub.z

File hame: I QOpen I
Filez of type: IAssemny Source Files [*.5%ms;* dat] j Cancel |

[~ Open az read-only

[Into project

2. Choose a source file to be opened after selecting the file type (*.s, *.ms, *.dat) and click [OK].
An [Edit] window opens and shows the contents of the source file.

[Dwmbiemtliz Vemm i b EEIE
Eifle [0 e e fuld [es rdom feb -k

Clsieigl | el Alx] slt
o [| e | CTi e e e = |

3 i Ml Owalas | =] _EJ
i]: madm.s
I TREL peegedn (main rostieed
L |geesss (mATinl WP sREERS BEFAHITIAH ssess
o | Wil f ing TF_IHIF_fdpA A=pa i3 Anlt ST LLLL
jeaaas IR, LAF sssss
glabal Dsl1_EaE_&LEl 1 Sale il ins
L] —plakal THC NEE EET : el puline
14
i B LRl
13 | Ao
L} Le a,5P 1RST_BCOES & ; mrt 5F
if L =ph @
1§ L A BF_IHIT_FapREm|
1 Li Pl
i call IMIT R BLEd ; dedtaalire REH @lock 1
1 1L
] Eall ALY | IBCF#mEnT BN OIsE 1
1 aF Lapr ; leifimity Leop

(#EEEE BAH Blodl sesss
o
] EndiEB
[calli RAb_BiE1, &

[STTIp— (P A"F] [LT™

32

CHAPTER 4: WORK BENCH

To save the source:
1. Activate the [Edit] window of the source to be saved.

2. Select [Save as...] from the [File] menu.
The [Save As] dialog box appears.

Save As H
Save in; I 2 test j gl E
main.s
sub.s
File: name: nain.s Save I
Save as type: IAssembI_l,J Source Files [*.5% ms;* dat] j Cancel |

3. Enter the file name and then click [OK].

When overwriting the source on the existing file, select [Save] from the [File] menu or click the [Save]
button.

El [Save] button

To save all the source files opened and the project file, use the [File | Save All] menu item or the [Save
All] button.

El [Save All] button

4.7.3 Edit Function
The source editor has general text editing functions similar to standard Windows applications.
Editing text
Basic text editing function is the same as general Windows applications.
Cut, copy and paste are supported in the [Edit] menu and with the toolbar buttons. These commands

are available only in the [Edit] window.
Undo can be selected from the [Edit] menu.

The tab stops are set at every 8 characters.

Find, replace and go to
Any words can be searched in the active [Edit] window.

Find
To find a word, select [Find...] from the [Edit] menu or click the [Find] button.

ﬂl [Find] button

The [Find] dialog box appears.
Find (2] %]

Find what: |

[~ Match whole word only Direction Cancel |
[Match caze € Up @ Down

33

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

34

The controls in the dialog are as follows:

[Find what:] text box
Enter the word to be found in this text box. The specified word is maintained as the finding word
even if this dialog box is closed.

[Match whole word only] check box
If this option is selected, the work bench searches only the words that are completely matched
with the specified word. If not, only the part of word that matches the specified word will be
searched.

[Match case] check box
If this option is specified, a case-sensitive search is performed. If not, a case-insensitive search is
performed.

[Direction] option
If the [Up] radio button is selected, the specified word is searched toward to the beginning of the
file. If the [Down] radio button is selected, a search is performed toward to the end of the file.

[Find Next] button
Clicking this button starts searching the specified word. If the specified word is found, the [Edit]
window refreshes the display and highlights the word found.

[Cancel]button
Clicking this button closes the dialog box.

Once a word to be found is specified in the [Find] dialog box, the [Find Next] and [Find Previous]
buttons on the toolbar can be used for a forward or backward search.

ﬁl [Find Next] button ﬁl [Find Previous] button

Replace

To replace a word with another one, select [Replace] from the [Edit] menu.
The [Replace] dialog box appears.

Replace

Findwhat: | Eirid Rt

Replace with: | Heplase

Heplaze &l
™ Match whole ward ol

L

Cancel
[Match caze

The controls in the dialog are as follows:

[Find what:] text box
Enter the word to be found in this text box. If a word has been specified in the [Find] dialog box, it
appears in this box.

[Replace with:] text box
Enter the substitute word in this box.

[Match whole word only] check box
If this option is selected, the work bench searches only the words that are completely matched
with the specified word. If not, only the part of word that matches the specified word will be
searched.

[Match case] check box
If this option is specified, a case-sensitive search is performed. If not, a case-insensitive search is
performed.

CHAPTER 4: WORK BENCH

[Find Next] button
Clicking this button starts searching the specified word. If the specified word is found, the [Edit]
window refreshes the display and highlights the word found.

[Replace] button
By clicking this button after the specified word is found, it is replaced with the substitute word.
Then the work bench searches the next.

[Replace Alllbutton
Replaces all the specified found words with the substitute word. Note that undo function cannot
be performed for this operation except for the last replaced word.

[Cancel]button
Clicking this button closes the dialog box.

Goto

You can go to any source line or any label position quickly.
To do this, select [Go To] from the [Edit] menu.

The [Go To] dialog box appears.

Go to what: Enter Line Mumber Eola I

| Label I Close |

Going to a source line

1. Select "Line" in the [Go to what:] list box.
2. Type a line number in the [Enter Line Number] box and then click the [Go To] button.
Going to a label position

1. Select "Label" in the [Go to what:] list box.
The [Enter Line Number] box changes to the [Select Label] list box.

Go to what; Select Label Eola I

|Line I

2. Select a label from the [Select Label] box and then click the [Go To] button.

The [Select Label] list box has a pull-down menu that contains the list of labels defined in the current
source file.

The [Edit] windows for source files (*.s, *.ms, *.dat) have the [Go To Label] list box similar to the
[Select Label] list box in the [Go To] dialog box. You can also go to a label position using this box.

Inserting a file
To insert a file such as a header file and another source at the cursor position of the current source,
select [File...] from the [Insert] menu.
A dialog box will appears allowing selection of the file to be inserted.

35

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Shortcut menu

The [Edit] window supports a short cut menu that appears by clicking the right mouse button on the
[Edit] window. It can also be done by pressing the [Short cut menu] key while the [Edit] window is
active if the key is available on the keyboard. It contains the editing menu items descried above, so
you can select an edit command using this menu.

% main_s =1 3
Goto Labet: I j

1|: main.s 1=

2|; test program (main routine)

33

N

G| jxxxxx JTHITIAL SP ADDRESS DEFIMITION =xxxx

LR LTSNS P IHIT ADDS C t""“" ;SP init addr = 8x88

7 .

& | jxxxxx BOOT, LOOP = Eomy

9 .global INI Paste ; subroutine

1@ .global INC ; ; subroutine

1 Find... |

12 .0rg %1 Replace. ..

13 |BOOT: Gota...

14 1d a,s > ; set 3P

15 1d sph v Toolbar

16 1d a, 5P _INIT_ADDR&Bxf

17 1d spl,a LI

4.7.4 Tag Jump Function

When assembler syntax errors occur during assembling, their error messages are displayed in the [Out-
put] window. In this case, you can go to the source line in which an error has occurred by double-clicking
the error message in the [Output] window.

However, this function is available only when the error message contains a source line number.

I . (=11
e BB e e Bl Lok i oo

Doy Urni eIl
ﬂglgﬂlm__:“m siwee| ay=my

9
LT

esigm [3]

el
!l texk pregraa {mads rociine)
i
i
junmnn [HITEAL 5F FAOEALSS [ETIRATIEH weews
A | Edekine §F_EHIT_AbDa (£] 1OF ladit selde

-8

1 ;eares HAGT, LE0F rowesm
a .glakal [HIT RaH ELE1 1 npbroutine
i Lglabal [HE EAS BiES i suirpaking

Sl &
a, SF_LHIT ADAREF

i

1

1

i 4,8 IsIT_nobk:sa
1

; apl &

FrLANT (5) SEISE EFSH ERE R | inked with the corresponding source line e

LS. S0 1A Drrar: inkeoen sresonic 1

t'l.-l'ilF!'q,-In.iu-l:l EFiar] InEboen | anel &

[Ereafed preprocessrd soarce File HETHOHE

mssemnly § erearis] B sainlngisd

ForHalg st F1 GCaT [[W

36

CHAPTER 4: WORK BENCH

4.7.5 Printing

The document in the [Edit] window can be printed out.

The [Print...], [Print Preview] and [Page Setup...] commands are provided in the [File] menu. The [Print]
button can also be used. They have the same function as those of standard Windows application.

Select one after activating the [Edit] window of the document to be printed.

4.8 Build Task

By using the [Build] menu or [Build] toolbar, the assembler, linker, debugger, HEX converter and
disassembler can be executed from the work bench.

In the work bench, process to generate an executable object from the source files is called a build task.

For details of each development tool, refer to the respective chapter.

4.8.1 Preparing a Build Task

Before starting a build task, necessary source files should be prepared and tool options should be config-
ured.

1. Create a new project. (Refer to Section 4.6.1.)

2. Select an ICE parameter file. (Refer to Section 4.6.1.)

3. Create source files and add them into the project. (Refer to Sections 4.7 and 4.6.2.)

4. Select tool options (Refer to Section 4.9.)

4.8.2 Building an Executable Object

To generate an executable object:

1. Open the project file.

2. Select an output format (absolute, Intel HEX or Motorola S) using the [Output Format] list box.

Abzolute Objec j

The work bench generates a make file according to the source files in the project and the tool options set
by the user. This file is used to control invocation of tools.

First, the make process invokes the assembler for each source file to be assembled. If the latest relocatable
object file exists in the work space, the corresponding source file is not assembled to reduce process time.
Next, the linker is invoked to generate an absolute object file. The linker command file used in this phase
is automatically generated.

If absolute object has been selected as the output format, the build task is completed at this phase. If Intel
HEX or Motorola S has been selected, the HEX converter will be invoked to generate an object in the
specified format.

To rebuild all files including the latest relocatable object files, select [Rebuild All] from the [Build] menu
or click the [Rebuild All] button.

| [Rebuild All] button

The build task can be suspended by selecting [Stop Build] from the [Build] menu or clicking the [Stop
Build] button.

[Stop Build] button

37

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

To invoke only the assembler, select [Assemble] from the [Build] menu or click the [Assemble] button
after activating the [Edit] window of the source to be assembled.

@l [Assemble] button

4.8.3 Debugging
To debug the generated executable file, select [Debug] from the [Build] menu or click the [Debug] button.

El [Debug] button

The debugger starts up with the specified ICE parameter file and then loads the executable object by the
command file generated from the work bench.

This command file contains the command to load the specified type of an executable object to the
debugger. The contents of the command file can be edited in the [Settings] dialog box explained in
Section 4.9.

O When the building process is performed again after invoking the debugger, the debugger will reload
the object file if its window can be activated.

e Fgn Iwet [ie= [oien jirdes oo

[TN T OT t
G |BiE deB 1d eph,a T zph, 3 4 Atipey
T M e L0 s B ka 4, BF_[HIT_mapReasf .
1F|Er| FFe 1 spla L wpld L T
18 | wAF part il LR} EL H 13
1P| mll call i call THIT_RaH_@iEi i indtiakize AR IPE - @4
[LIaF| 4
| HHE e el @i [RF] Garer il Gade & e
N R ak call i call IFII'_:‘IIFH_EI.I- i Ascrement BAH T ibom, i
L T T T ir (1] | Inkhrdty Noap P
o P ezt Cade kel
] ; brwt pregram {web-putines il SFH, &
Fh
& glabal HEH_ELE1
inm
ey P PO0ETAT B BET
BRABEE @ R
PdiAmEd A BEEa
Fgapwea a LN]
B EEE @ LR |
Driuggera? Urre.xx Copyrigak SELED CPFSEH COAF. 198w : M : : : : : :
Bl rlag COH wlUn PEER Dawd Fabe .. ARG :: : : : : : : : :
arameber Thle: GBS PdesE Pl Ficloel T icp par PR I I R P
Chdp Hame: D004 M FrarrFy r § a0
Arinak o o A e PR R I] P |
AU ELERIRE cicassassassanaasaanareniaiss [T Froadad P
can "L PR AR Ee iy ek omd” @ '::.:r:l: :- .: : i :-
LF “UEsr, ams FRFsLyF g d A
pdlling File ... BEF ST LT I R | R
FgmaEea a LR
FamEasa a LR
[N I] BiEa
BAa@ABEd d BEa
FamEea a LR
R I L
| =

Ry

Refer to Chapter 9, "Debugger", for operating the debugger.

38

CHAPTER 4: WORK BENCH

4.8.4 Executing Other Tools

The HEX converter and disassembler can be invoked independently.

HEX converter
To invoke the HEX converter, select [HEX converter...] from the [Tools] menu or click the [HEX
convert] button.

g% [HEX convert] button

Then select an absolute object file to be converted in the [Hex data convert] dialog box.

Hex data convert HE

Lok jn: |E test j gl IE
Test.abs

File name: I Open I
Files of type: IAbsqute Obiject File [* abs) j Cancel |

ICE Parareter file: I ICSEZ1CP.FAR 7 I
Output Format I Intel Hex b I

™ Output erar lag file
I~ Do nat fill roam with 0:FF

This dialog box allows selection of the HEX converter options.

[ICE Parameterfile:] listbox
Select an ICE parameter file from the pull-down list.

[Output Format:] listbox
Select an output format from between Intel HEX and Motorola S.

[Output error log file] check box
Select this option to generate the error log file of the HEX converter.

[Do not fill room with OxFF] check box
Select this option when not filling the unused program area with 0xFF.

After selecting an absolute object and options, click the [Open] button. The HEX converter starts up
and converts the selected object into the specified format. The messages delivered from the HEX
converter are displayed in the [Output] window.

39

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Disassembler
To invoke the disassembler, select [Disassembler...] from the [Tools] menu or click the [Disassemble]
button.

B3 | [Disassemble] button

Then select the executable object file to be disassembled in the [Disassemble] dialog box.

Dizassemble EHE
Lok, jr: Ia test j il IE =
Test.abs
File name: || Open

Files of type: [Absolute Object File (% abs) =] Cancel |
ICE Parameter file: I ICSE21CP.PAR 'I

[~ Dutput erar log file
" COutput Option

= Default " Lowercase © Upper case

Start address: IDHDDDD

This dialog box allows selection of the disassembler options.

[ICE Parameterfile:]listbox
Select an ICE parameter file from the pull-down list.

[Output error log file] check box
Select this option to generate the error log file of the disassembler.

[Output Option]
Select a character case option using the radio buttons.
When [Default] is selected, the disassembled source will be made with all labels in upper-case
characters and instructions in lower-case characters.
When [Upper case] is selected, the source will be made with upper-case characters only.
When [Lower case] is selected, the source will be made with lower-case characters only.

[Startaddress] box
Specify the address used for the first .org instruction in the disassembled source.
If this option is not specified, the disassembled source will begin with address 0.

After selecting an executable object and options, click the [Open] button. The disassembler starts up
and converts the selected object into the source file. The messages delivered from the disassembler are
displayed in the [Output] window.

40

CHAPTER 4: WORK BENCH

4.9 Tool Option Settings

The development tools have startup options that can be specified when invoking them.
These settings can be made in the [Settings] dialog box that appears by selecting [Settings...] from the
[Build] menu.

Setlings
Aszembler I Lirker | Debuggerl Hex Corvverter |
Source | Error file | Debug info | Lizt file | Defines
[Default] Mo Yes Mo
[sub.z Mo Mo Mo
[main.z Ha Mo Mo
1] | i
Ok I Cancel | Lpply | Help |

Click the tool name tab to view option settings of each tool.

Clicking the [OK] button updates option setting information in the project and then closes the dialog box.
To continue to select other tool options, click the [Apply] button. This does not close the dialog box.
Clicking the [Cancel] button closes the dialog box.

4.9.1 Assembler Options

Settings
Agzembler | Linker | Debuggerl Hex Converter |
Source | Errar file | Debug info | Lizt file | Defines
[Default] Mo Yes Mo
[=zub.z Ho Mo Mo
[main.z Ho Mo Mo
1| | 2
0K I Cancel | Apply | Help |

In this dialog, the following four assembler options can be selected.

[Error file] ~ Output of an error file (No: Not output, Yes: Output)

[Debug info] Addition of debugging information to the relocatable object (No: Not added, Yes: Added)
[List file] Output of the relocatable list file (No: Not output, Yes: Output)

[Defines] Name definition for conditional assembly (Enter a define name.)

41

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

The
The

edit box shows the default setting ([Default]) and the list of source files in the project.
default setting applies to all the sources excluding ones that are specified independently.

To select options of a specific source, select the check box at the front of the source file name.

Check here- O sub.s No No No

Each of the [Error file], [Debug info] and [List file] options is set to either "No" or "Yes" and it toggles by
double-clicking. For example, to change the default [List file] option from "No" to "Yes", double click "No"
in the [Default] line. It changes to "Yes".

Source Erroffile Debug info Lisfile Defines

[Default] No Yes No — Double-click here. It will be changed to Yes.

To define a name for conditional assembly, double-clicking the [Defines] part.

Source Erroffile Debug info Lisfile Defines
[Default] No Yes No — Double-click here, then type a define name.
An text box appears. Type a name in the box. If two or more names are to be entered, separate each name

with a comma (,).

Refer to Chapter 5, "Assembler”, for details of the assembler options.

4.9.2 Linker Options

Settings
Azsembler Linker IDebuggerI Hex Converlerl
Source |ess [cope | New | Delete |
O [Default]
O subs Symbal | addr |
[main.z
™ Disable PSET full optimization ™ Output Map file
" Disable PSET removal optimization [~ Optimize relocatable section
[Output Error log file [Output Symbal file
v &dd source debug information [~ Output cross reference file
™ Output absolute fist file

0K I Cancel | Sl | Help |

In this dialog, section allocation, symbol definition and other linker options can be specified.
The work bench generates a linker command file including these specifications, and specifies it when

invoking the linker.

Specifying section allocation

42

This option is set by default as all the sections will be allocated from the memory start address. To
specify a section start address, double click the cell and then enter the address.

Source BSS CODE
ml [Default] — Double-click here to change default CODE section start address, then type an address.
Source BSS CODE

&) [Default] ox100 |

The edit box shows the default setting ([Default]) and the list of source files in the project.
The default setting applies to all the sections excluding those of the source specified.
To set a specific source independently, select the check box at the front of the source file name.

Check here- 0 IES (0)@240]0]

CHAPTER 4: WORK BENCH

Symbol definition

To define a symbol, click the [New] button and then enter the symbol name and address in the edit
box.

Symbol Addr
[] [] ~ Enter a symbol name and the address.

To modify a symbol name or address, double click the name or the address in the edit box and then
enter a new name or address.

Symbol Addr
TEST 0x0000 ~ Double-click to modify.

To delete a symbol, highlight the symbol line by clicking and then click the [Delete] button.
Other option selections

[Disable PSET full optimization] check box
Select this option if PSET insertions, deletions and corrections are not necessary.

[Disable PSET removal optimization] check box
Select this option if PSET deletions are not necessary.

[Output Error log file] check box
Select this option to generate the error log file of the linker.

[Add source debug information] check box
Select this option to add the debugging information. If this option is not specified, the sources
cannot be displayed in debugging.

[Outputabsolutelistfile] check box
Select this option to generate the absolute list file.

[Output Map file] check box
Select this option to generate the link map file.

[Optimize relocatable section] check box
Select this option to optimize the code by changing the order of sections.

[Output Symbol file] check box
Select this option to generate the symbol file.

[Output cross reference file] check box
Select this option to generate the cross reference file.

Refer to Chapter 6, "Linker", for details of the linker options.

43

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

4.9.3 Debugger Options

Settings
Assemblell Linker Debugger | Hex Convelterl
COM Part: bps
[#0
Initial Command:
If "test. abs™ ;I

¥
4 F

(u] % I Cancel Sppl | Help |
4.9.4 HEX Converter Options
Settings
Assembler] Lirk.er] Debugger Hex Converter]
-
Motorola S
-
Mot execute Hex-Converter.
0K | Cancel Help |

44

[COM Port:] listbox
Select a COM port of the personal
computer used to communicate with
the ICE. COM1 is set by default.

[bps:]listbox
Select a baud rate to communicate
with the ICE. 9600 bps is set by
default.

[Initial Command:] edit box
This box is used to edit the debugger
commands to be executed when the
debugger starts up. The work bench
generates a command file with the
commands entered in this box and
specifies it when invoking the
debugger. A load command is
initially set so that the debugger can
load the object at start up.

Refer to Chapter 9, "Debugger", for
details of the debugger options.

[Output Format:]listbox
An output format of the executable
object to be generated by the build
task can be selected.
When "Absolute Object" is selected,
the build task will be terminated
after linking has completed. The
HEX converter will not be invoked.
When "Intel Hex" or "Motorola S" is
selected, the HEX converter will be
invoked after linking has completed.
Other HEX converter options
become selectable when one of them
is selected.

[Do not fill room with OxFF] check box
Select this option when not filling
the unused program area with OxFF.

[Output error log file] check box
Select this option to generate the
error log file of the HEX converter.

Refer to Chapter 7, "HEX Converter", for
details of the HEX converter options.

CHAPTER 4: WORK BENCH

4.10 Short-Cut Key List

Key operation Function
Ctrl + N Creates a new document
Ctrl+ O Opens an existing document
Ctrl + F12 Opens an existing document
Ctrl+S Saves the document
Ctrl+ P Print the active document
Ctrl + Shift + F12 Print the active document
Ctrl+ Z Undoes the last action
Alt + BackSpace Undoes the last action
Ctrl + X Cuts the selection and puts it on the clipboard
Shift + Delete Cuts the selection and puts it on the clipboard
Ctrl+ C Copies the selection to the clipboard
Ctrl + Insert Copies the selection to the clipboard
Ctrl +V Inserts the clipboard contents at the insertion point
Shift + Insert Inserts the clipboard contents at the insertion point
Ctrl + A Selects the entire document
Ctrl + F Finds the specified text
F3 Finds next
Shift + F3 Finds previous
Ctrl+H Replaces the specified text with different text
Ctrl+ G Moves to the specified location
Ctrl + F7 Assembles the file
F7 Builds the project
Ctrl + Break Stops the build
F5 Debugs the project
Alt + F7 Edits the project build and debug settings
Ctrl + Tab Next MDI Window
Short-cut-key Opens the popup menu
Shift + F10 Opens the popup menu

4.11 Error Messages

The work bench error messages are given below.

Error message

Description

<filename> is changed by another editor. Reopen this file ?

The currently opened file is modified by another editor.

Cannot create file : <filename>

The file (linker command file, debugger command file,
etc.) cannot be created.

Cannot find file : <filename>

The source file cannot be found.

Cannot find ICE parameter file

The ICE parameter file cannot be found.

Cannot open file : <filename>

The source file cannot be opened.

You cannot close workspace while a build is in progress.
Select the Stop Build command before closing.

The project close command or work bench terminate
command is specified while the build task is being
processed.

Would you like to build it ?

The debugger invoke command is specified when the
build task has not already been completed.

45

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

4.12 Precautions
(1) The source file that can be displayed and edited in the work bench is limited to 16M byte size.

(2) The label search and coloring function of the work bench does not support labels that have not ended
with a colon.

(3) The work bench can create a make, linker command and debugger command files, note, however, that
these files or settings created with another editor cannot be input into the work bench.

46

CHAPTER 5: ASSEMBLER

CHAPTERS ASSEMBLER

This chapter will describe the functions of the Assembler as62 and grammar involved with the
creation of assembly source files.

5.1 Functions

The Assembler as62 is a tool that constitutes the core of this software package. It assembles (translates)
assembly source files and creates object files in the machine language.

The functions and features of the assembler are summarized below:

e Allows absolute and relocatable sections mixed in one source.

¢ Allows to develop programs in multiple sources by creating relocatable object files that can be com-
bined by the linker.

¢ Can add source debugging information for source debugging on the debugger.

The assembler provides the following additional functions as well as the basic assembly functions:
e Macro definition and macro invocation

e Definition of Define name

® Operators

¢ Insertion of other file

¢ Conditional assembly

e Conversion of old-format source files created for the asm62XX into the current format.

The assembler processes source files in two stages: preprocessing stage and assembling stage. The
preprocessing stage expands the additional function part described in the source file to mnemonics that
can be assembled, and delivers them to a temporary file (preprocessed file). The assembling stage as-
semble the preprocessed file to convert the source codes into the machine codes.

5.2 Input/Output Files

Assembly source file

I
Assembler
as62
— —
Relocatable Object file Preprocessed Error file
list file D source file
to Linker

Fig. 5.2.1 Flow chart
5.2.1 Input File

Assembly source file
File format: Text file
File name: <File name>.s, <File name>.dat

<File name>.ms (A preprocessed source file created by the assembler or disassembler.)

Description: File in which a source program is described. If the file extension is omitted, the
assembler finds a source file that has the specified file name and an extension ".s".

Note: The extension ".dat" is allowed for assembling source files created for an old assem-

bler asm62XX. Extension ".s" is recommended for creating new sources. Actually a
".s" source file and a ".dat" source file can have the same contents with the new and
old syntax mixed. However, if the first section does not have an absolute address
specification, the section is regarded as a relocatable section in a ".s" source, while in
a ".dat" source it is regarded as an absolute section and ".org 0" is placed at the

beginning of the source by preprocessing.

47

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.2.2 Output Files

Object file
File format:
File name:

Output destination:
Description:

Relocatable list file
File format:
File name:

Output destination:
Description:

Preprocessed file
File format:
File name:

Output destination:
Description:

Error file
File format:
File name:

Output destination:
Description:

48

Binary file in relocatable IEEE-695 format

<file name>.o0 (The <file name> is the same as that of the input file, unless otherwise
specified with -o option.)

Current directory

File in which machine language codes are stored in a relocatable form available for
the linker to link with other modules and to generate an executable absolute object.

Text file

<file name>.Ist (The <file name> is the same as that of the input file, unless other-
wise specified with -o option.)

Current directory

File in which offset locations, machine language codes and source codes are stored
in plain text.

Text file

<file name>.ms (The <file name> is the same as that of the input file, unless other-
wise specified with -o option.)

Current directory

File in which instructions for preprocessing (e.g. conditional assembly and macro
instructions) are expanded into an assembling format. Also the source codes de-
scribed in the old syntax are converted into the new syntax.

When developing a program using old-style sources, this temporary file can be used
as a base file to start creating sources in the new syntax.

Text file

<file name>.err (The <file name> is the same as that of the input file, unless other-
wise specified with -o option.)

Current directory

File delivered when the start-up option (-e) is specified. It records error messages
and other information which the assembler delivers via the Standard Output
(stdout).

CHAPTER 5: ASSEMBLER

5.3 Starting Method

General form of command line

as62 [options] A [<source file name>]

A denotes a space.

[] indicates the possibility to omit.

Source file name

In the command line, only one assembly source file can be specified at a time. Therefore, you will

have to process multiple files by executing the assembler the number of times equal to the number of
files to be processed.

Along file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options

The assembler comes provided with five types of start-up options:

-d <define name>

Function:
Explanation:

Function:
Explanation:

Default:

-0 <file name>

Function:
Explanation:

Default:
Function:
Explanation:

Default:

Function:
Explanation:

Default:

Definition of Define name

e Works in the same manner as you describe "#define <define name>" at top of
the source. It is an option to control the conditional assembly at the start-up.

* One or more spaces are necessary between -d and the <define name>.

e To define two or more Define names, repeat the specification of "-d <define
name>".

Addition of debugging information

e Creates an output file containing symbolic/source debugging information.

¢ Always specify this function when you perform symbolic/source debugging.
If this option is not specified, no debugging information will be added to the
relocatable object file.

Specification of output path/file name

e Specifies an output path/file name without extension or with an extension ".0".
If no extension is specified, ".0" will be supplemented at the end of the specified
output path/file name.

The input file name is used for the output files.

Output of relocatable list file
* Outputs a relocatable list file.
If this option is not specified, no relocatable list file will be output.

Output of error file

e Also delivers in a file (<File name>.err) the contents that are output by the
assembler via the Standard Output (stdout), such as error messages.

If this option is not specified, no error file will be output.

When entering an option in the command line, you need to place one or more spaces before and after

the option. The options can be specified in any order. It is also possible to enter options after the

source file name.

Example: c:\eOc62\bin\as62 -g -e -1 -d TEST1 -d TEST2 test.s

49

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.4 Messages

The assembler delivers all its messages through the Standard Output (stdout).

Start-up message

The assembler outputs only the following message when it starts up.

Assembler 62 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

End message
The assembler outputs the following messages to indicate which files have been created when it ends
normally.
Created preprocessed source file <FILENAME.MS>
Created relocatable object file <FILENAME.O>
Created relocatable list file <FILENAME.LST>
Created error log file <FILENAME.ERR>

Assembly 0 error(s) 0 warning(s)

Usage output

If no file name was specified or the option was not specified correctly, the assembler ends after
delivering the following message concerning the usage:

Usage: as62 [options] <file name>
Options: -d <symbol> Add preprocess definition

-e Output error log file ((ERR)

-g Add source debug information in object

-l Output relocatable list file (.LST)

-o <file name> Specify output file name (.O or no extension)
File name: Source file name (.DAT, .S, or .MS)

When error/warning occurs
If an error is produced, an error message will appear before the end message shows up.
Example:
TEST.S(5) Error: lllegal syntax
Assembly 1 erros(s) 0 warning(s)

In the case of an error, the assembler ends without creating an output file. If an error occurs at the
preprocessing stage in the assembler, the assembler stops processing and outputs preprocess-level
errors only.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

TEST.S(6) Warning: Expression out of range

Assembly 0 error(s) 1 warning(s)

In the case of a warning, the assembler ends after creating an output file.

The source file name that was specified in the command line will appear at the beginning of the error
and warning messages.
For details on errors and warnings, refer to Section 5.11, "Error/ Warning Messages".

50

CHAPTER 5: ASSEMBLER

5.5 Grammar of Assembly Source

Assembly source files should be created on a general-purpose editor or the source editor of the work
bench. Save sources as standard text files. For the file name, a long file name supported in Windows can

"non

be specified. Define the extension as ".s" when creating sources in the new syntax (for as62). When using
source files described in the old syntax (for asm62XX), the default extension ".dat" should be used.
Actually a ".s" source file and a ".dat" source file can have the same contents with the new and old syntax
mixed. However, if the first section does not have an absolute address specification, the section is re-

garded as a relocatable section in a ".s" source, while in a ".dat" source it is regarded as an absolute section
and ".org 0" is placed at the beginning of the source by preprocessing.

This section explains the rules and grammar involved with the creation of assembly source files.

5.5.1 Statements

Each individual instruction or definition of an assembly source is called a statement. The basic composi-
tion of a statement is as follows:

Syntax pattern

(1) Mnemonic Operand (;comment)
(2) Assembler pseudo-instruction Parameter (;comment)
(3) Label: (;comment)
(4) ;comment
Example: <Statement> <SyntaxPattern>
#include "define.h" 2)
.set 101, 0x200 2)
; TEXT SECTION (ROM, 12bit width) (4)
.org 0x100 (2)
START: (3)
ip INIT ; execute initial routine (1)
reti (1)
.org 0x110 2)
INIT: (3)
d a0 (1)

Id b,0 1)

The example given above is an ordinary source description method. For increased visibility, the elements
composing each statement are aligned with tabs and spaces.

51

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Restrictions

52

Only one statement can be described in one line. A description containing more than two instructions
in one line will result in an error. However, a comment or a label may be described in the same line
with an instruction.

Example:
;OK
BOOT: Id a,0x4
:Error
BOOT: Id a,0x4 Id b,0x0

One statement cannot be described in more than one line. A statement that cannot complete in one
line will result in an error.

Example:
.codeword 0x0,0x1,0x2,0x3 ... OK
.codeword 0xa,0xb,0xc,0xd ... OK

.codeword 0x0,0x1,0x2,0x3
Oxa,0xb,0xc,0xd ... Error

The maximum describable number of characters in one line is 259 (ASCII characters). If this number is
exceeded, an error will result.

The usable characters are limited to ASCII characters (alphanumeric symbols), except for use in
comments. Also, the usable symbols have certain limitations (details below).

The reserved words such as mnemonics and pseudo-instructions are all not case sensitive, while items
definable by the user such as labels and symbols are all case sensitive. Therefore, mnemonics and
pseudo-instructions can be written in uppercase (A-Z) characters, lowercase (a-z) characters, or both.
For example, "1d", "LD", and "Ld" are all accepted as "ld" instructions. For purposes of discrimination
from symbols, this manual uses lowercase characters for the reserved words.

CHAPTER 5: ASSEMBLER

5.5.2 Instructions (Mnemonics and Pseudo-instructions)

The assembler supports all the mnemonics of the EOC6200 instruction set and the assembler pseudo-
instructions. The following shows how to describe the instructions.

Mnemonics

An instruction is generally composed of [mnemonic] + [operand]. Some instructions do not contain an

operand.

General notation forms of instructions

Generalforms: <Mnemonic>
<Mnemonic> tab or space <Operand>
<Mnemonic> tab or space <Operand1>, <Operand2>

Examples: nop5
ip SUB1
Id a,0x4

There is no restriction as to where the description of a mnemonic should begin in a line. A tab or space

preceding a mnemonic is ignored.

An instruction containing an operand needs to be separated into the mnemonic and the operand with

one or more tabs or spaces . If an instruction requires multiple operands, the operands must be
separated from each other with one comma (,). Space between operands is ignored.

The elements of operands will be described further below.

Types of mnemonics
The following 46 types of mnemonics can be used in the EOC62 Family:

acpx acpy adc add and call calz cp dec di ei fan halt inc jpba jp Ibpx Id
Idpx Idpy nop5 nop7 not or pop pset push rcf rdf ret retd rets rlc rrc rst
rzf sbc scf scpx scpy sdf set slp sub szf xor

For details on instructions, refer to the "E0C6200/6200A Core CPU Manual".

Note
The assembler is commonly used for all the EOC62 Family models, so all the instructions can be

accepted. Be aware that no error will occur in the assembler even if instructions or operands unavail-

able for the model are described. They will be checked in the linker.

Assembler pseudo-instructions

The assembler pseudo-instructions are not converted to execution codes, but they are designed to

control the assembler or to set data.

For discrimination from other instructions, all the assembler pseudo-instructions begin with a sharp

(#) or a period (.).

General notation forms of pseudo-instructions

Generalforms: <Pseudo-instruction>
<Pseudo-instruction> tab or space <Parameter>

<Pseudo-instruction> tab or space <Parameterl> tab, space or comma <Parameter2> ...

Examples: #define SW1i 1
.org 0x100
.comm BUF 4

There is no restriction as to where the description of an instruction may begin in a line.

An instruction containing a parameter needs to be separated into the instruction and the parameter

with one or more tabs or spaces. If an instruction requires multiple parameters, they are separated

from each other with an appropriate delimiter.

53

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Types of pseudo-instructions

The following 23 types of pseudo-instructions are available:

#include #define #macro #endm #ifdef #ifndef #else #endif

.align .org .page .bank .code .bss .codeword .comm .Icomm

.global .set .list .nolist .stabs .stabn

The assembler supports the old-format pseudo-instructions for asm62XX as well as the above instruc-

tions.
For details of each pseudo-instruction and its functionality, refer to Section 5.7, "Assembler Pseudo-

Instructions".

Restriction
The mnemonics and pseudo-instructions are all not case sensitive. Therefore, they can be written in
uppercase (A-Z) characters, lowercase (a-z) characters, or both. For example, "1d", "LD", and "Ld" are
all accepted as "ld" instructions. However, the user defined symbols used in the operands or param-
eters are case sensitive. They must be the same with the defined characters.

5.5.3 Labels

Alabel is an identifier designed to refer to an arbitrary address in the program. It is possible to refer to a
branch destination of a program or a data memory address using a symbol defined as a label.

Definition of a label
Usable labels are defined as 13-bit values by any of the following methods:

1. <Symbol>:

Example: LABEL1:
... LABEL1 is a label that indicates the address of a described location.

Preceding spaces and tabs are ignored. It is a general practice to describe from the top of a line.

2. Definition usingthe .comm or .lcomm pseudo-instruction

Example: .comm BUF1 4
... BUF1 is a label that represents a RAM address.

The .comm and .Icomm pseudo instructions can define labels only in bss sections (data memory
such as RAM). Program memory addresses cannot be defined.

Reference with labels
A defined symbol denotes the address of a described location.
An actual address value should be determined in the linking process, except in the case of absolute

sections.
Examples: LABEL1:

jp LABEL1 ... jumps to the LABEL1 location.

.comm BUF 0x04

.code

Id a,BUF&0b11110000

Id xh,a

Id b,BUF&0b00001111

Id xlb ... The address defined in BUF is loaded to X register.

54

CHAPTER 5: ASSEMBLER

Scope
The scope is a reference range of a label. It is called local if the label is to be referenced within the
same file, and it is called global if the label is to be referenced from other files.
Any defined label's scope is local in default. To make a label's scope global, use the .global pseudo-
instruction both in the file in which the label is defined and in the file that references the label.
A double definition of local labels will be an error at the assembly stage, while a double definition of
global labels will be an error at the link stage.

Example:
File inwhich global label is defined (file1)
.global SYMBOL ... Global declaration of a label which is to be defined in this file.
SYMBOL:
LABEL: ... Local label

(Can be referenced to only in this file)

File inwhich a global label is referenced to (file2)

.global SYMBOL ... Global declaration of a label defined in other source file.
call SYMBOL ... Label externally referenced to.
LABEL: ... Local label

(Treated as a different label from LABEL of filel)

The assembler regards those labels as those of undefined addresses in the assembling, and includes
that information in the object file it delivers. Those addresses are finally determined by the processing
of the linker.

O When a label is defined by the .comm pseudo-instruction, that label will be a global label. Therefore,
in a defined file, no global declaration needs to be made using the .global pseudo-instruction. On the
contrary, in a file to be referenced, the global declaration is necessary prior to the reference.

Restrictions

¢ The maximum number of characters of a label is 259 (not including colon). If this number is exceeded,
an error will result.

¢ Only the following characters can be used:
A-Z az _ 097

¢ A label cannot begin with a numeral.

Examples: ;0K ;Error
FOOQO; 1lable:
__Abcd: 0_ABC:
L1: L1:
.comm BUF 4 Jcomm 1st BUF 2

¢ Since labels are case sensitive, uppercase and lowercase are discriminated. When referencing a
defined label, use the symbol exactly the same as the defined label.
Examples: _Abcd:

ip _ABCD ... Does not jump to _Abcd

55

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.5.4 Comments

Comments are used to describe a series of routines, or the meaning of each statement. Comments cannot
comprise part of coding.

Definition of comment
A character string beginning with a semicolon (;) and ending with a line feed code (LF) is interpreted
as a comment. Not only ASCII characters, but also other non-ASCII characters can be used to describe
a comment.
Examples: ;This line is a comment line.
LABEL: :This is the comment for LABEL.
Id a,b ;This is the comment for the instruction on the left.

Restrictions
¢ A comment is allowed up to 259 characters, including a semicolon (;), spaces before, after and inside
the comment, and a return/line feed code.

e When a comment extends to several lines, each line must begin with a semicolon.
Examples: ;These are

comment lines. ... The second line will not be regarded as a comment. An error will
result.
;These are
; comment lines. ... Both lines will be regarded as comments.

5.5.5 Blank Lines

This assembler also allows a blank line containing only a return/line feed code. It need not be made into a
comment line using a semicolon.

5.5.6 Register Names

The CPU register names may be written in either uppercase or lowercase letters.

Table 5.5.6.1 Notations of register names

Register/memory location/flag Notation
A A register aorA
B B register b orB
XP Four high-order bits of IX register Xp or XP
YP Four high-order bits of 1Y register yp or YP
X Eight low-order bits of IX register x or X
Y Eight low-order bits of IY register yorY
XH Four high-order bits of XHL register xh or XH
XL Four low-order bits of XHL register xl or XL
YH Four high-order bits of YHL register yh or YH
YL Four low-order bits of YHL register ylor YL
SP Stack pointer SP sp or SP
SPH Four high-order bits of stack pointer SP sph or SPH
SPL Four low-order bits of stack pointer SP spl or SPL
MX Data memory location whose address is specified by IX mx or MX
MY Data memory location whose address is specified by 1Y my or MY
MO-MF Data memory location in the register area (0x000—-0x00f) mO-mf or MO-MF
F Flag register (IDZC) forF
C Carry corC
NC No carry nc or NC
Z Zero zorZ
NZ Not zero nz or NZ

Note: These symbols are reserved words, therefore they cannot be used as user-defined symbol names.

56

CHAPTER 5: ASSEMBLER

5.5.7 Numerical Notations
This Assembler supports three kinds of numerical notations: decimal, hexadecimal, and binary.

Decimal notations of values

Notations represented with 0-9 only will be regarded as decimal numbers. To specify a negative
value, put a minus sign (-) before the value.
Examples: 1 255 -3

Characters other than 0-9 and the sign (-) cannot be used.

Hexadecimal notations of values

To specify a hexadecimal number, place "0x" before the value.
Examples: Oxla 0xff00

"0x" cannot be followed by characters other than 0-9, a—f, and A-F.

Binary notations of values

To specify a binary number, place "Ob" before the value.
Examples: 0b1001 0b1001100

"0b" cannot be followed by characters other than 0 or 1.

Specified ranges of values

The size (specified range) of immediate data varies with each instruction.
The specifiable ranges of different immediate data are given below.

Table 5.5.7.1 Types of immediate data and their specifiable ranges

Symbol * Type Decimal Hexadecimal Binary
p 5-bit immediate data/label 0-31 0x0—-0x1f 0b0-0b11111
s 8-bit immediate data/label 0-255 Ox0—-0xff 0b0-0b11111111
| 8-bit immediate data 0-255 0x0—0xff 0b0-0b11111111
i 4-bit immediate data 0-15 0x0—0xf 0b0-0b1111

0 These symbols are used in the instruction list of the "E0C6200/6200A Core CPU Manual"
or Quick Reference.

Compatibility with the older tools
The assembler allows the notation in the old syntax for the asm62XX.
Thus the following numerical notations can be used:
nnnnB: Binary numbers
nnnnO: Octal numbers
nnnnQ: Octal numbers
nnnnH: Hexadecimal numbers

"nnnnB" (binary numbers) and "nnnnH" (hexadecimal numbers) are converted into the new format
("0Obnnnn" and "Oxnnnn") in the preprocessing stage.

"nnnnO" and "nnnnQ" (octal numbers) are converted into hexadecimal numbers ("Oxnnnn") in the
preprocessing stage.

57

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.5.8 Symbols

The .set and #define pseudo-instructions allow definition of values as symbols.

Examples: .set ADDR1 0x0f0 ... ADDR1 is a symbol that represents absolute address 0x0f0.
#define CONST Oxf ... CONST is a symbol that represents data 0xOf.
Id a,CONST ... Will be expanded into "Id a, Oxf".

The defined symbols can be used for specifying the immediate data of instructions. They are expanded
into the defined value in the preprocess stage and the symbol information does not output to the object
file. Therefore, these symbols cannot be allowed as labels used for symbolic debugging.

Restrictions
¢ The maximum number of characters allowed for a symbol is 259. If this number is exceeded, an error
will result.

¢ The characters that can be used are limited to the following:
A-Z a—z _ 0-9 7
Note that a symbol cannot begin with a numeral. Uppercase and lowercase characters are discrimi-
nated.

5.5.9 Operators

An expression that consists of operators, numbers and / or defined symbols (including labels) can be used
for specifying a number or defining a Define name (only for number definition).

The preprocess in the assembler handles expressions in signed 16-bit data and expands them as hexadeci-
mal numbers.

Types of operators

Arithmetic operators Examples Old operators (for asm62XX)
+ Addition, Plus sign +0xff, 1+2 +

- Subtraction, Minus sign -1+2, Oxff-Ob111 -

* Multiplication Oxf*5 *

/ Division 0x123/0x56 /

% Residue 0x123%0x56 MOD

>> Shifting to right 1>>2 SHR

<< Shifting to left 0x113<<3 SHL

4l Acquires upper 8 bits 0x1234"H HIGH

(3 Acquires lower 8 bits 0x1234"L LOwW

() Parenthesis 1+(1+2*5) not available

The arithmetic operator returns the result of arithmetic operation on the specified terms.

Logical operators Examples Oldoperators
& Bit AND 0b1101&0b111 AND

| Bit OR 0b123|0xff OR

n Bit XOR 12735 XOR

~ Bit inversion ~0x1234 NOT

The logical operator returns the result of logic operation on the specified terms.

58

CHAPTER 5: ASSEMBLER

Relational operators Examples Oldoperators
== Equal SW==0 EQ

I= Not equal SW!=0 NE

< Less than ABC<5 LT

<= Less than or equal ABC<=5 LE

> Greater than ABC>5 GT

>= Greater than or equal ABC>=5 GE

& AND ABC&&Oxf not available
I OR ABC||0b1010 not available

The relational operator returns 1 if the expression is true, otherwise it returns 0.

Priority
The operators have the priority shown below. If there are two or more operators with the same
priority in an expression, the assembler calculates the expression from the left.

+ (plus sign), - (minus sign) ~ High priority
~h, A1, ~ 1

(

* %, <<, >>

+ (addition), - (subtraction)

=== <, <=, > >=

&

[, "

0 O NN T L=

—_
e

-
-2

!
Low priority

—_
—_
~

Examples
#define BLK_START 0x0
#define BLK_SIZE 16
#define BLK_END BLK_START+BLK_SIZE-1
#define INIT_DATA Oxaa

LOOP:
Id a,BLK_START"h>>4&0xf
Id xh,a
Id b,BLK_STARTN&Oxf
Id xl,b

Idpx mx,(((INIT_DATA&Ox80)!=0)*2+INIT_DATA)>>4&0xf
Idpx mx,(((INIT_DATA&0x80)!=0)*2+INIT_DATA)&Oxf
cp a,BLK_END>>4&0xf

JP NZ,LOOP

cp b,BLK_END&OXxf

JP NZ,LOOP

Compatibility with the older tools
The assembler supports the old-type operators for the asm62XX shown in "Types of operators".
They have the same priority as the corresponding new-type operators. Consequently, it is possible to
use sources created for the older tools.
The old-type operators are converted into the new format in the preprocessing stage.

59

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Precautions
e Minus numbers -1 to -32768 are handled as 0xffff to 0x8000.

¢ The assembler handles expressions as 16-bit data. Pay attention to the data size when using it as 4-bit
immediate data, especially when it has a minus value.

Example:
Id a,-2+1 ... NG. It will be expanded as "Id a,0xffff".
Id a,(-2+1)&0xf ... OK. It will be expanded as "Id a,0xf".

¢ Expressions are calculated with a sign (like a signed short in C language).
Pay attention to the calculation results of the >>, / and % operators using hexadecimal numbers.

Example:
#define NUM1 Oxfffe/2 ... -2/2 = -1 (Oxffff)
The / and % operators can only be used within the range of +32767 to -32768.
#define NUM2 Oxfffe>>1 . m2>>1 = -1 (Oxffff)

Mask as (0Oxfffe>>1)&0x7fff.

* Do not insert a space or a tab between an operator and a term.

5.5.10 Location Counter Symbol "$"

The address of each instruction code is set in the 13-bit location counter when a statement is assembled. It
can be referred using a symbol "$" as well as labels. "$" indicates the current location, thus it can be used
for relative branch operation. The operators can be used with this symbol similar to labels.

Example: jp $... Jumps to this address (means endless loop).
ip $+2 ... Jumps to two words after this address.
ip $-10 ... Jumps to 10 words before this address.
ip $+16+(16*(BLK>16)) ... Operators and defined symbols can be used.
Precaution

When the address referred to relatively with "$" is in another section, it should be noted if the in-
tended section resides at the addressed place, because if the section is relocatable, the absolute
address is not fixed until the linking is completed.

60

CHAPTER 5: ASSEMBLER

5.6 Section Management

5.6.1 Definition of Sections

The memory configuration of the EOC62 Family is divided into a ROM that contains programs written,
and data memories such as data RAM and I/ O memory.

A section refers to an area where codes are written (or to be mapped), and there are two types of sections
in correspondence with the memories:

1. CODE section Area located within program ROM.
2. BSS section Area for dynamic data storage (built-in RAM, display memory and I/O memory).

To allow to specify these sections in a source file, the assembler comes provided with pseudo-instruc-
tions.

CODE section
The .code pseudo-instruction defines a CODE section. Statements from this instruction to another
section defining instruction will be regarded as program codes, and will be so processed as to be
mapped in the program ROM. The source file will be regarded as a CODE section by default. There-
fore, the part that goes from top of the file, to another section will be processed as CODE section.
Because this section is of 12 bits/word, 4-bit data cannot be defined.

BSS section
The .bss pseudo-instruction defines a BSS section. Statements from this instruction to another section
defining instruction will be regarded as 4-bit data, and will be so processed as to be mapped in the
data memory (RAM). Therefore, nothing else can be described in this area other than the symbols for
referring to the address of the data memory, the area securing pseudo-instructions (.comm and
dcomm).
The .comm pseudo-instruction and the .Icomm pseudo-instruction are designed to define the symbol
and size of a data area. Although the BSS section basically consists in a RAM area, it can as well be
used as a data memory area, such as display memory and I/O memory. Since code definition in this
area is meaningless in embedded type microcomputers, such as those of the EOC62 Family, nothing
else can be described other than the two instructions and comments.

5.6.2 Absolute and Relocatable Sections

The assembler is a relocatable assembler that always generates an relocatable object and needs the linker
to make it into an executable absolute object. However, each section in one source can be absolute or
relocatable depending on how they are described. The section whose absolute address is specified with
either .org, .page or .bank pseudo-instruction in the source is an absolute section, while the section whose
absolute address is not specified is an relocatable section. Absolute addresses of relocatable sections will
be fixed by the linker. Both types of sections can be included in one source.

61

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.6.3 Sample Definition of Sections

CODEL1 (Relocatable program)

.bss
BSS1 (Relocatable RAM area definition)
.codé
CODE2 (Relocatable program)
.bss
.org 0x100 ... If this specification is omitted, a BSS section begins from the address following BSS1.
BSS2 (Absolute RAM area definition)
.codé
CODES3 (Relocatable program)
.codé

.org 0x0

CODE4 (Absolute program)

In the section definition shown above, absolute sections and relocatable sections are mixed in one source.
Absolute sections are sections whose absolute addresses are specified with the .org pseudo-instructions.
BSS2 and CODEA4 are absolute sections. Absolute sections will be located at the place specified.

Other sections are relocatable in the sense that the absolute location addresses are not fixed at the assem-
bly stage and will be fixed later at the linking stage.

Precautions
¢ When there appears in a section a statement which is designed for other section, a warning will be
issued and a new section will be started according to the statement.
Examples: .code

.comm BUF 16 ... Warning; A new bss section begins
.bss
ld ab ... Warning; A new code section begins

® One section cannot cross over a bank or page boundary.

62

CHAPTER 5: ASSEMBLER

5.7 Assembler Pseudo-Instructions

The assembler pseudo-instructions are not converted to execution codes, but they are designed to control

the assembler or to set data.
For discrimination from other instructions, all the assembler pseudo-instructions begin with a character

"#" or ".". The instructions that begin with "#" are preprocessed pseudo-instructions and they are ex-

panded into forms that can be assembled. The expanded results are delivered in the preprocessed file

(.ms). The original statements of the pseudo-instructions (#) are changed as comments by attaching a ;

before delivering to the file. The instruction that begins with "." are used for section and data definitions.

non

They are not converted at the preprocessing stage.

All the pseudo-instruction characters are not case sensitive.

The following pseudo-instructions are available in the assembler:

Pseudo-instruction

Function

"o

Old instruction

#include Includes another source. -

#define Defines a constant string. EQU
#macro—#endm Defines a macro. MACRO-ENDM
#ifdef—#else—#endif Defines an assemble condition. -
#ifndef—#else—#endif Defines an assemble condition. -

.align Sets alignment of a section. -

.org Sets an absolute address. ORG
.page Sets a page number. PAGE
.bank Sets a bank number. BANK
.code Declares a CODE section (mapping to the built-in ROM). SECTION
.bss Declares a BSS section (mapping to the built-in RAM). -
.codeword Defines data in the CODE section. DW
.comm Secures a global area in the BSS section. -

comm Secures a local area in the BSS section. -

.global Defines an external reference symbol. -

.set Defines an absolute address symbol. SET

ist Controls assembly list output. -

.nolist Controls assembly list output. -

.stabs Debugging information (source name). -

.stabn Debugging information (line number). -

The assembler supports the old-type pseudo-instructions shown above.

They are converted into the new format in the preprocessing stage. The LOCAL pseudo-instruction is

removed in the preprocessing stage. The END pseudo-instruction functions the same as the older tool.

63

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.7.1 Include Instruction (#include)

The include instruction inserts the contents of a file in any location of a source file. It is useful when the
same source is shared in common among several source files.

Instruction format

#include "<File name>"

¢ A drive name or path name can as well be specified as the file name.
¢ One or more spaces are necessary between the instruction and the "<File name>".
¢ Character case is ignored for both #include itself and "<File name>".

Sample descriptions:
#include "sample.def"
#include "c:\EOC62\header\common.h"

Expansion rule
The specified file is inserted in the location where #include was described.

Precautions
¢ Only files created in text file format can be inserted.

¢ The #include instruction can be used in the including files. However, nesting is limited up to 10 levels.
If this limit is surpassed, an error will result.

64

CHAPTER 5: ASSEMBLER

5.7.2 Define Instruction (#define)

Any substitute character string can be left defined as a Define name by the define instruction (#define),
and the details of that definition can be referred to from various parts of the program using the Define
name.

Instruction format

#define <Define name> [<Substitute character string>]

<Define name>:
e The first character is limited to a—z, A-Z, ? and _.
¢ The second and the subsequent characters can use a-z, A-Z, 0-9, ? and _.
e Uppercase and lowercase characters are discriminated. (#define itself is not case sensitive.)
¢ One or more spaces or tabs are necessary between the instruction and the Define name.

<Substitute character string>:

¢ The usable characters are limited to a—z, A-Z, 0-9, ?, and _. They must not contain any space or
comma (,).
Values, mnemonics, labels, register names, and expressions using operators can also be specified.

e Uppercase and lowercase characters are discriminated.

¢ One or more spaces or tabs are necessary between the Define name and the substitute character string.

e The substitute character string can be omitted. In that case, NULL is defined in lieu of the substitute
character string. It can be used for the conditional assembly instruction.

Sample definitions:

#define TYPE1

#define L1 LABEL_01
#define Xreg X

#define CONST (DATA1+DATA2)*2
#define BtoA a,b ... Error Comma (,) cannot be used.

Expansion rule
If a Define name defined appears in the source, the assembler substitutes a defined character string
for that Define name.

Sample expansion:

#define INT_F1 Oxf

#define INT_F1_RST INT_F1"0xf
#define MEMORY_X mx

ldpx MEMORY_X,INT_F1_RST ... Expanded to "ldpx mx, 0".

65

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Precautions

66

The assembler only permits backward reference of a Define name. Therefore the name definition must
precede the use of it.

Once a Define name is defined, it cannot be canceled. However, redefinition can be made using
another Define name.
Example:
#define MemX1 mx
#define MemX2 MemX1
ldpx MemX2,my ... Expanded to "ldpx mx, my".

When the same Define name is defined duplicatedly, an error will result.

No other characters than delimiters (space, tab, line feed, and comma) can be added before and after a
Define name in the source. However, an operator can be added to a Define name string without
delimiters.

Examples:
#define L LABEL
Id a,(L"h>>4)&0b00001111 ... Replaced with "Id a, LABEL[7:4]".
Id b,(L")&0b00001111 ... Replaced with "Id b, LABEL[3:0]".

The internal preprocess part of the assembler does not check the validity of a statement as the result of
the replacement of the character string.

CHAPTER 5: ASSEMBLER

5.7.3 Macro Instructions (#macro ... #endm)

Any statement string can be left defined as a macro using the macro instruction (#macro), and the content
of that definition can be invoked from different parts of the program with the macro name. Unlike a
subroutine, the part that is invoking a macro is replaced with the content of the definition.

Instruction format

#macro <Macro name> [<Dummy parameter>] [[<Dummy parameter>] ...
<Statement string>
#endm

<Macro name>:
¢ The first character is limited to a—z, A-Z, ? and _.
¢ The second and the subsequent characters can use a-z, A-Z, 0-9, ? and _.
¢ Uppercase and lowercase characters are discriminated. (#macro itself is not case sensitive.)
¢ One or more spaces or tabs are necessary between the instruction and the macro name.

<Dummy parameter>:
e Dummy parameter symbols for macro definition. They are described when a macro to be defined
needs parameters.
¢ One or more spaces or tabs are necessary between the macro name and the first parameter symbol.
When describing multiple parameters, a comma (,) is necessary between one parameter and another.
¢ The same symbols as for a macro name are available.
¢ The number of parameters are limited according to the free memory space.

<Statement string>:

e The following statements can be described:
- Basic instruction (mnemonic and operand)
- Conditional assembly instruction
- Internal branch label*
- Comments

e The following statements cannot be described:
- Assembler pseudo-instructions (excluding conditional assembly instruction)
- Other labels than internal branch labels
- Macro invocation

[Internal branch label
A macro is spread over to several locations in the source. Therefore, if you describe a label in a macro,
a double definition will result, with an error issued. So, use internal branch labels which are only
valid within a macro.
¢ The number of internal-branch labels are limited according to the free memory space.
¢ The same symbols as for a macro name are available.

Sample definition:
#define C_RESET 0b1101

#macro WAIT COUNT
Id a,COUNT
rst f,C_RESET

LOOP:
nop5
ip LOOP

#endm

67

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Expansion rules

When a defined macro name appears in the source, the assembler inserts a statement string defined in
that location.

If there are actual parameters described in that process, the dummy parameters will be replaced with
the actual parameters in the same order as the latter are arranged.

The internal branch labels are replaced, respectively, with __ L0001 ... from top of the source in the
same order as they appear.

Sample expansion:
When the macro WAIT shown above is defined:
Macro invocation

WAIT 15

After expansion
Id a,15 SWAIT 15
rst f,0b1101
__L00o01:
nop5
ip __L0ooo1

("__LO001" denotes the case where an internal branch label is expanded for the first time in the source.)

Precautions

68

The assembler only permits backward reference of a macro invocation. Therefore the macro definition
must precede the use of it.

Once a defined macro name is defined, it cannot be canceled. If the same macro name is defined
duplicatedly, a warning message will appear. Until it is redefined, it is expanded with the original
content, and once it is redefined, it is expanded with the new content. Definition should be done with
distinct names, although the program operation will not be affected.

No other characters than delimiters (space, tab, line feed, and commas) can be added before and after
a dummy parameter in a statement.

The same character string as that of the define instruction cannot be used as a macro name.
When the number of dummy parameters differs from that of actual parameters, an error will result.

The maximum number of parameters and internal branch labels are limited according to the free
memory space.

"

__Lnnnn" used for the internal branch labels should not be employed as other label or symbol.

CHAPTER 5: ASSEMBLER

5.7.4 Conditional Assembly Instructiongifdef ... #else ... #endif, #ifndef... #else ... #endif)

A conditional assembly instruction determines whether assembling should be performed within the
specified range, dependent on whether the specified name (Define name) is defined or not.

Instruction formats

Format 1) #ifdef <Name>
<Statement string 1>
[#else
<Statement string 2>]
#endif

If the name is defined, <Statement string 1> will be subjected to the assembling.
If the name is not defined, and #else ... <Statement string 2> is described, then <Statement string 2>
will be subjected to the assembling. #else ... <Statement string 2> can be omitted.

Format 2) #ifndef <Name>
<Statement string 1>
[#else
<Statement string 2>]
#endif

If the name is not defined, <Statement string 1> will be subjected to the assembling.
If the name is defined, and #else ... <Statement string 2> is described, <Statement string 2> will be
subjected to the assembling. #else ... <Statement string 2> can be omitted.

<Name>:
Conforms to the restrictions on Define name. (See #define.)

<Statement string>:
All statements, excluding conditional assembly instructions, can be described.

Sample description:
#ifdef TYPE1L

Id x,0x12
#else

Id X,0x13
#endif

#ifndef SMALL
#define SP1 0x31
#endif

Name definition
Name definition needs to have been completed by either of the following methods, prior to the
execution of a conditional assembly instruction:

(1) Definition using the start-up option (-d) of the assembler.
Example: as62 -d TYPE1 sample.s

(2) Definition in the source file using the #define instruction.
Example: #define TYPE1

The #define statement is valid even in a file to be included, provided that it goes before the
conditional assembly instruction that uses its Define name. A name defined after a conditional
assembly instruction will be regarded as undefined.

When a name is going to be used only in conditional assembly, no substitute character string
needs to be specified.

69

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Expansion rule
A statement string subjected to the assembling is expanded according to the expansion rule of the
other preprocessing pseudo-instructions. (If no preprocessing pseudo-instruction is contained, the
statement will be output in a file as is.)

Precaution

A name specified in the condition is evaluated with discrimination between uppercase and lowercase.
The condition is deemed to be satisfied only when there is the same Define name defined.

70

CHAPTER 5: ASSEMBLER

5.7.5 Section Defining Pseudo-Instructions (.code, .bss)

The section defining pseudo-instructions define one related group of codes or data and make it possible
to reallocate by the groups at the later linking stage. Even if these section defining pseudo-instructions
are not used, the section kind will be automatically judged by its contents and causes no error. If the new
codes or data without section definition are different from the previous code or data kind, they will be
taken as another new section.

.code pseudo-instruction

Instruction format

.code

Function

Declares the start of a CODE section. Statements following this instruction are assembled as those to
be mapped in the program ROM, until another section is declared.

The CODE section is set by default in the assembler. Therefore, the .code pseudo-instruction can be
omitted at top of a source file. Always describe it when you change a section to a CODE section.

Precautions

¢ A CODE section can be divided among multiple locations of a source file for purpose of definition
(describing the .code pseudo-instruction in the respective start positions).

e Sections are relocatable by default unless those locations are specified with the .org, .page or .bank
pseudo-instructions, or more loosely with the .align pseudo-instruction.

.bss pseudo-instruction

Instruction format

.bss

Function

Declares the start of a BSS section. Statements following this instruction are assembled as those to be
mapped in the RAM, until another section is declared.

Precautions

¢ In a BSS section, nothing else other than the .comm, .Icomm, and .org pseudo-instructions, symbols,
and comments can be described.

* A BSS section can be divided among multiple locations of a source file for purpose of definition
(describing the .bss pseudo-instruction in the respective start positions).

¢ A BSS section is relocatable by default unless its address is specified with the .org pseudo-instruction.
It is possible to specify absolute locations for CODE sections by page number with the .page pseudo-
instruction or by bank number with the .bank pseudo-instruction, or by 2" words alignment with the
.align pseudo-instruction, but only the .org and .align pseudo-instructions are applicable to BSS
sections to define completely absolute location.

71

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.7.6 Location Defining Pseudo-Instruction (.org, .bank, .page, .align)

The absolute addressing pseudo-instructions (.bank, .page, .align and .org) work to specify absolute
location of a section in different precision such as bank number level, page number level, 2" words
alignment level and complete absolute address level.

The .bank and .page pseudo-instructions are applicable to CODE section only, others are applicable to
any kinds of sections (CODE and BSS sections).

.org pseudo-instruction

Instruction format

.org <Address>

<Address>:

Absolute address specification

¢ Only decimal, binary and hexadecimal numbers can be described.

¢ The addresses that can be specified are from 0 to 8,192 (0x1ff).

¢ One or more spaces or tabs are necessary between the instruction and the address.

Sample description:
.code
.org 0x0100

Function

Specifies an absolute address location of a CODE or BSS section in an assembly source file. The section
with the .org pseudo-instruction is taken as an absolute section.

Precautions

72

If an overlap occurs as the result of specifying absolute locations with the .org pseudo-instruction, an
error will result.
Examples:

.bss

.org 0x00

.comm RAMO 4 ... RAM secured area (0x00—0x03)

.org 0x01

.comm RAM1 4 ... Error (because the area of 0x01-0x03 is overlapped)

When the .org pseudo-instruction appears in a section, a new absolute section starts at that point. The
section type does not change. The .org pseudo-instruction keeps its effect only in that section until the
next section definer (.code or .bss) or the next location definer (.org, .align, .page, or .bank) appears.
Example:

.code The latest relocatable section definition.

.org O>.<100 ... Starts new absolute CODE section from address 0x100.

.bss ... This section is relocatable not affected by the ".org" pseudo-instruction.
.code This section is also relocatable not affected by the ".org" pseudo-instruction.

CHAPTER 5: ASSEMBLER

e If the .org pseudo-instruction is defined immediately after a section definer (.code or .bss), the section
definer does not start a new section. But .org starts a new section with the attribute of the section
definer.

Example:
.code ... This does not start a new CODE section.

.org 0x100 ... This starts an absolute CODE section.

e If the .org pseudo-instruction is defined immediately before a section definer (.code or .bss), it does
not start a new section and makes no effect to the following sections.

Example:
.code ... The latest relocatable section definition.
.org 0x100 ... This does not start a new absolute section and makes no effect.
.bss ... The another kind (BSS) of section which is not affected by the
: previous ".org" pseudo-instruction in the CODE section.
.code ... This will be an relocatable CODE section not affected by the

previous ".org" pseudo-instruction.

73

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

.page pseudo-instruction

Instruction format

.page <Page number>

<Page number>:

Absolute page number specification

¢ Only decimal, binary and hexadecimal numbers can be described.

¢ The page numbers that can be specified are from 0 to 15 (0xf).

¢ One or more spaces or tabs are necessary between the instruction and the page number.

Sample description:
.code
.page Ox1

Function

Specifies an absolute page address of a CODE section in an assembly source file. The section with the
.page pseudo-instruction will be located at the top of the specified page.

Precautions

74

When the .page pseudo-instruction appears in a section, a new absolute section starts at that point.
The section type does not change. The .page pseudo-instruction keeps its effect only in that section
until the next section definer (.code or .bss) or the next location definer (.org, .align, .page, or .bank)
appears.

Example:
.code The latest relocatable section definition.
.page 5 ... Starts new absolute CODE section from page 5.
.bss ... This section is relocatable not affected by the ".page" pseudo-instruction.
.code This section is also relocatable not affected by the ".page" pseudo-instruction.

If the .page pseudo-instruction is defined immediately after a section definer (.code or .bss), the
section definer does not start a new section. But .page starts a new section with the attribute of the
section definer.

Example:
.code ... This does not start a new CODE section.

.page 5 ... This starts an absolute CODE section.

If the .page pseudo-instruction is defined immediately before a section definer (.code or .bss), it does
not start a new section and makes no effect to the following sections.

Example:
.code ... The latest relocatable section definition.
.page 5 ... This does not start a new absolute section and makes no effect.
.bss ... The another kind (BSS) of section which is not affected by the
: previous ".page” pseudo-instruction in the CODE section.
.code ... This will be an relocatable CODE section not affected by the

previous ".page” pseudo-instruction.

CHAPTER 5: ASSEMBLER

.bank pseudo-instruction

Instruction format
.bank <Bank number>

<Bank number>:
Absolute bank number specification
¢ Only decimal, binary and hexadecimal numbers can be described.
¢ The bank number that can be specified is 0 or 1.
¢ One or more spaces or tabs are necessary between the instruction and the bank number.

Sample description:
.code
.bank 1

Function

Specifies an absolute bank address of a CODE section in an assembly source file. The section with the
.bank pseudo-instruction will be located at the top of the specified bank.

Precautions
® .bank is applicable to a CODE section only.

¢ When the .bank pseudo-instruction appears in a section, a new absolute section starts at that point.
The section type is fixed at CODE section. The .bank pseudo-instruction keeps its effect only in that

section until the next section definer (.code or .bss) or the next location definer (.org, .align, .page, or
.bank) appears.

Example:
.code ' ... The latest relocatable section definition.
.bank 1' ... Starts new absolute CODE section from bank 1.
.bss ... This section is relocatable not affected by the ".bank" pseudo-instruction.
.code ' ... This section is also relocatable not affected by the ".bank" pseudo-instruction.

e If the .bank pseudo-instruction is defined immediately after a section definer (.code or .bss), the
section definer does not start a new section. The .bank pseudo-instruction starts a new CODE section.
Example:

.code ... This does not start a new CODE section.
.bank 1 ... This starts an absolute CODE section.

¢ If the .bank pseudo-instruction is defined immediately before a section definer (.code or .bss), it does
not start a new section and makes no effect to the following sections.

Example:
.code ... The latest relocatable section definition.
.bank 1 ... This does not start a new absolute section and makes no effect.
.bss ... The another kind (BSS) of section which is not affected by the
: previous ".bank" pseudo-instruction in the CODE section.
.code ... This will be an relocatable CODE section not affected by the

previous ".bank" pseudo-instruction.

75

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

.align pseudo-instruction

Instruction format
.align <Alignment number>

<Alignment number>:
Word alignment in 2n value
¢ Only decimal, binary and hexadecimal numbers can be described.
¢ The alignment that can be specified is a 2 value.
¢ One or more spaces or tabs are necessary between the instruction and the alignment number.

Sample description:
.code
.align - 32 ... Sets the location to the next 32-word boundary address.

Function

Specifies location alignment in words of a CODE or BSS section in an assembly source file. The section
with the .align pseudo-instruction can be taken as a loosely absolute section in the sense that its
location is partially defined.

Precautions
e .align is applicable to any kinds of sections such CODE and BSS.
¢ When the .align pseudo-instruction appears in a section, a new absolute section starts at that point.

The section type does not change. The .align pseudo-instruction keeps its effect only in that section
until the next section definer (.code or .bss) or the next location definer (.org, .align, .page, or .bank)

appears.
Example:
.code The latest relocatable section definition.
.align 3.2 ... Starts new loosely absolute CODE section from the next 32-word boundary address.
.bss ... This section is relocatable not affected by the ".align" pseudo-instruction.
.code This section is also relocatable not affected by the ".align" pseudo-instruction.

e If the .align pseudo-instruction is defined immediately after a section definer (.code or .bss), the
section definer does not start a new section. But .align starts a new section with the attribute of the
section definer.

Example:
.code ... This does not start a new CODE section.
.align 32 ... This starts a loosely absolute CODE section.

o If the .align pseudo-instruction is defined immediately before a section definer (.code or .bss), it does
not start a new section and makes no effect to the following sections.

Example:
.code ... The latest relocatable section definition.
.align 32 ... This does not start a new absolute section and makes no effect.
.bss ... The another kind (BSS) of section which is not affected by the
: previous ".align" pseudo-instruction in the CODE section.
.code ... This will be an relocatable CODE section not affected by the

previous ".align" pseudo-instruction.

76

CHAPTER 5: ASSEMBLER

5.7.7 Symbol Defining Pseudo-Instruction (.set)
Instruction format
.set <Symbol>[,] <Value>

<Symbol>:
Symbols for value reference
e The 1st character is limited to a—z, A-Z, ? and _.
¢ The 2nd and the subsequent character can use a—z, A-Z, 0-9, ? and _.
® Uppercase and lowercase are discriminated.

¢ One or more spaces, or tabs are necessary between the instruction and the symbol.
<Value>:
Value specification
¢ Only decimal, binary, and hexadecimal numbers can be described.
¢ The values that can grammatically be specified are from 0 to 65,535 (Oxffff).
¢ One or more spaces, tabs, or a comma (,) are necessary between the instruction and the value.
Sample description:
.set DATA1 0x20
.set DATAZ2 0xf2

Function

Defines a symbol for a constant value.

Precaution

When the defined symbol is used as an operand, the defined value is referred as is. Therefore, if the
value exceeds the valid range of the operand, an error will result.

Example:
.set DATAL 0xfO
Id x,DATAL ... OK
Id y,DATAL ... OK
Id a,DATA1L ... Error

77

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.7.8 Data Defining Pseudo-Instruction (.codeword)

.codeword pseudo-instruction

Instruction format
.codeword <Data>[,<Data> ...,<Data>]

<Data>:
12-bit data
¢ Only decimal, binary and hexadecimal numbers can be described.
e The data that can be specified are from 0 to 4096 (0xfff).
¢ One or more spaces or tabs are necessary between the instruction and the first data.
e A comma (,) is necessary between one data and another.

Sample description:
.code
.codeword Oxa,0xa40,0xff3

Function
Defines the 12-bit data to be written to the program ROM.

Precaution

The .codeword pseudo-instruction can be used only in a CODE section.

78

CHAPTER 5: ASSEMBLER

5.7.9 Area Securing Pseudo-Instructions (.comm, .lcomm)
Instruction format

.comm <Symbol>[,] <Size>
dcomm <Symbol>[,] <Size>

<Symbol>:
Symbols for data memory access (address reference)
e The 1st character is limited to a—z, A-Z, ? and _.
¢ The 2nd and the subsequent character can use a—z, A-Z, 0-9, ? and _.
® Uppercase and lowercase are discriminated.
® One or more spaces or tabs are necessary between instruction and symbol.

<Size>:
Number of words of the area to be secured (4 bits/word)
¢ Only decimal, binary and hexadecimal numbers can be described.
e The size that can grammatically be specified is from 0 to 65,535.
¢ One or more spaces, tabs or a comma (,) are necessary between symbol and size.

Sample description:

.comm RAMO 4
Jlcomm BUF,1

Function

Sets an area of the specified size in the BSS section (RAM and other data memory), and creates a

symbol indicating its top address with the specified name. By using this symbol, you can describe an
instruction to access the RAM.

Difference between .comm and .lcomm

The .comm pseudo-instruction and the .Icomm pseudo-instruction are exactly the same in function,
but they do differ from each other in the scope of the symbols they create. The symbols created by the
.comm pseudo-instruction become global symbols, which can be referred to externally from other
modules (however, the file to be referred to needs to be specified by the .global pseudo-instruction.)

The symbols created by the .Icomm pseudo-instruction are local symbols, which cannot be referred to
from other modules.

Precaution

The .comm and .Icomm pseudo-instructions can only be described in BSS sections.

79

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.7.10 Global Declaration Pseudo-Instruction (.global)

Instruction format

.global <Symbol>

<Symbol>:
Symbol to be defined in the current file, or symbol already defined in other module
¢ One or more spaces or tabs are necessary between the instruction and the symbol.

Sample description:
.global GENERAL_SUB1

Function
Makes global declaration of a symbol. The declaration made in a file with a symbol defined converts
that symbol to a global symbol which can be referred to from other modules. Prior to making refer-
ence, declaration has to be made by this instruction on the side of the file that is going to make the
reference.

80

CHAPTER 5: ASSEMBLER

5.7.11 List Control Pseudo-Instructions (.list, .nolist)

Instruction format

Jist
.nolist

Function

Controls output to the relocatable list file.

The .nolist pseudo-instruction stops output to the relocatable list file after it is issued.

The .list pseudo-instruction resumes from there the output which was stopped by the .nolist pseudo-
instruction.

Precaution

The assembler delivers relocatable list files only when it is started up with the -1 option specified.
Therefore, these instructions are invalid, if the -1 option was not specified.

5.7.12 Source Debugging Information Pseudo-Instructions (.stabs, .stabn)

Instruction formats

(1) .stabs "<File name>", FileName
(2) .stabn 0, FileEnd
(3) .stabn <Line number>, Linelnfo

Function
The assembler outputs object files in IEEE-695 format, including source debugging information
conforming to these instructions. This debugging information is necessary to perform debugging by
Debugger db62, with the assembly source displayed.

Format (1) delivers information on the start position of a file.
Format (2) delivers information on the end position of a file.
Format (3) delivers information on the line No. of an instruction in a source file.

Insertion of debugging information
When the -g option is specified as a start option, the preprocess stage of the assembler will insert
debugging pseudo-instructions in the preprocessed file. Therefore, you do not have to describe these
pseudo-instructions in creating source files.

81

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.7.13 Comment Adding Function

The preprocessing pseudo-instructions that begin with "#" are all expanded to codes that can be as-
sembled, and delivered in the preprocessed file. Even after that, those instructions are rewritten with
comments beginning with a semicolon (;), so that the original instructions can be identified. However,
note that the replacements of Define names will not subsist as comments.

The comment is added to the first line following the expansion. In case the original statement is accompa-
nied by a comment, that comment is also added.
A macro definition should have a semicolon (;) placed at top of the line.

Example:

» Before expansion
#macro LDM REG,ADDR

LD X,ADDR
LD REG,MX
#endm

LDM A1 ;load memory to A reg.

« After expansion (no debugging information)
#macro LDM REG,ADDR

; LD X,ADDR

; LD REG,MX

#Hendm
LD X1 LDM A, 1 ;load memory to A reg.
LD A MX

5.7.14 Priority of Pseudo-Instructions

Some remarks concerning the priority among the preprocessing pseudo-instructions will be given below:

1.

82

The conditional assembly instructions (#ifdef, #ifndef) have the first priority. Nesting cannot be made
of those instructions.

Define instruction (#define), include instruction (#include), or macro instruction (#macro) can be
described within a conditional assembly instruction.

Define instruction (#define), include instruction (#include), and macro instruction (#macro) cannot be
described within a macro definition.

Define name definitions are expanded with priority over macro definitions.

CHAPTER 5: ASSEMBLER

5.8 Summary of Compatibility with the Older Tool

The assembler provides the new features added to the old assembler asm62XX. However the compatibil-

ity with the old syntax is preserved by supporting old syntax as the synonym of the new syntax. As the
result, as62 can process the old syntax sources without any modification. To realize it, the assembler

accepts old syntax elements and interprets them to their equivalent counterparts in new syntax elements.
The converted results are delivers to the preprocessed file (.ms).
The priority of the operators follows the old tool's priory.

The old syntax elements are handled as follows:

Numeric notation

Old Meaning New

#H#HHB Binary number Ob####

#HHH#HO Octal number Ox#### (the base is converted)
#HHHHQ Octal number Ox#### (the base is converted)
H#HHHH Hexadecimal number Ox##H##

Arithmetic operators

Old Meaning New
+ Addition, positive +
- Subtraction, negative -
* Multiplication *
/ Division /
MOD Residue %
SHL Shift left <<
SHR Shift right >>
HIGH High-order 8 bits h
LOW Low-order 8 bits N
Logical operators
Old Meaning New
AND Logical and &
OR Logical or |
XOR Logical exclusive or N
NOT Logical negation ~
Relation operators
Old Meaning New
EQ Equal to ==
NE Not equal to 1=
LT Less than <
LE Less than or equal to <=
GT Greater than >
GE Greater than or equal >=
Pseudo-instructions
Old Meaning New
CALLM Optimized call call (instruction)
JPM Optimized jump jp (instruction)
EQU Fixed constant symbol #define
SET Redefinable constant symbol .set
Dw Data definition .codeword
ORG Address location definition .org
BANK Bank location definition .bank
PAGE Page location definition .page
SECTION Section alignment .align 16
END End definition (Ignore everything below END)
MACRO-ENDM Macro definition #macro—#endm
LOCAL Local symbol declaration none (will be removed)
$ Location counter $

83

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.9 Relocatable List File

The relocatable list file is an assembly source file that carries assembled results (offset addresses and
object codes) added to the first half of each line. It is delivered only when the start-up option (-1) is

specified.

Its file format is a text file, and the file name, <File name>.Ist. (The <File name> is the same as that of the

input source file.)

The format of each line of the assembly list file is as follows:

Line No.: Address Code

Example

Source statement

Assembler 62 ver x.xx Relocatable List File MAIN.LST Wed Apr 22 15:31:00 1998

N RONE

©

14: 0100 e08
15: 0101 feO
16: 0102 e00
17: 0103 ffo
18: 0104 400

20: 0105 400
21: 0106 000

25:
26: 0000 00

; main.s
; test program (main routine)

;eeeek INITIAL SP ADDRESS DEFINITION *rxxx

#define SP_INIT_ADDR 0x80

soxkkk BOOT, LOOP *vvs*

.global INIT_RAM_BLK1
.global INC_RAM_BLK1
.org 0x100
BOOT:
Id a,SP_INIT_ADDR>>4
Id sph,a
Id a, SP_INIT_ADDR&Oxf
Id spl,a
call INIT_RAM_BLK1
LOOP:
call INC_RAM_BLK1
ip LOOP

;***** RAM block *kkkk
.bss
.org 0x000
.comm RAM_BLK1,4

;'SP init addr = 0x80

; subroutine
; subroutine

; set SP

; initialize RAM block 1

; increment RAM block 1

; infinity loop

Content of line No.

The source line number from top of the file will be delivered.

Content of address

In the case of an absolute section, an absolute address will be delivered in hexadecimal number.

In the case of a relocatable section, a relative address will be delivered in hexadecimal number from

top of the file.

Content of code

CODE section: The instruction (machine language) codes are delivered in hexadecimal numbers. One

address corresponds with one instruction. The assembler sets the operand (immediate
data) of the code that refers to unresolved address to 0. The immediate data will be
decided by the linker.

BSS section:

Irrespective of the size of the secured area, 00 is always delivered here.

Only the address defined for a symbol (top address of the secured area) is delivered as
the address of the BSS section.

84

5.10 Sample Executions

CHAPTER 5: ASSEMBLER

Command line
C:\EOC62\bin\as62 -g -e -l main.s

Assembly source file

; main.s
; test program (main routine)

;eeexx INITIAL SP ADDRESS DEFINITION *rxx*

#define SP_INIT_ADDR 0x80
wkkkkk BOOT LOOP *kkkk
.global INIT_RAM_BLK1
.global INC_RAM_BLK1
.org 0x100
BOOT:
Id a,SP_INIT_ADDR>>4
Id sph,a
Id a, SP_INIT_ADDR&Oxf
Id spl,a
call INIT_RAM_BLK1
LOOP:
call INC_RAM_BLK1
ip LOOP
;***** RAM block kkkkk
.bss
.org 0x000

.comm RAM_BLK1, 4

Preprocessed file

.stabs "C:\EOC62\test\main.s", FileName
; main.s
; test program (main routine)

;eexxx INITIAL SP ADDRESS DEFINITION *rxx*
;#define SP_INIT_ADDR 0x80

;****'k BOOT‘ LOOP *kkkk
.global INIT_RAM_BLK1
.global INC_RAM_BLK1

.org 0x100
.stabn 13, Linelnfo
BOOT:
.stabn 14, Linelnfo

Id a,0x80>>4
.stabn 15, Linelnfo

Id sph,a
.stabn 16, Linelnfo

Id a, 0x80&0xf
.stabn 17, Linelnfo

Id spl,a
.stabn 18, Linelnfo

call INIT_RAM_BLK1
.stabn 19, Linelnfo
LOOP:
.stabn 20, Linelnfo

call INC_RAM_BLK1
.stabn 21, Linelnfo

ip LOOP
;***** RAM block kkkkk

.bss

.org 0x000

.comm RAM_BLK1, 4
.stabn 0, FileEnd

;SP init addr = 0x80

; subroutine

; subroutine

; set SP

; initialize RAM block 1

; increment RAM block 1
; infinity loop

;SP init addr = 0x80

; subroutine
; subroutine

; set SP

; initialize RAM block 1

; increment RAM block 1

; infinity loop

85

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Assembly list file

Assembler 62 ver x.xx Relocatable List File MAIN.LST Wed Apr 22 15:31:00 1998

[l =
RESewnoarane

B
hw

0100
0101
0102
0103
0104

N R PR R R
QOUXNOO

0105
0106

NN NN
RwNR

25:
26: 0000

Error file
Assembler 62 Ver x.xx Error log file MAIN.ERR Sun May 03 11:33:39 1998

Assembler 62 Ver x.xx

e08
fe0
e00
ffo
400

400
000

00

; main.s
; test program (main routine)

’

;eeeek INITIAL SP ADDRESS DEFINITION *rxxx
#define SP_INIT_ADDR 0x80 ;SP init addr = 0x80

soxkkk BOOT, LOOP *vvs*

.global INIT_RAM_BLK1 ; subroutine
.global INC_RAM_BLK1 ; subroutine
.org 0x100
BOOT:
Id a,SP_INIT_ADDR>>4 ;setSP
Id sph,a
Id a, SP_INIT_ADDR&Oxf
Id spl,a
call INIT_RAM_BLK1 ; initialize RAM block 1
LOOP:
call INC_RAM_BLK1 ; increment RAM block 1

ip LOOP ; infinity loop

;***** RAM block *kkkk
.bss
.org 0x000
.comm RAM_BLK1,4

Copyright (C) SEIKO EPSON CORP. 1998

Created preprocessed source file MAIN.MS
Created relocatable list file MAIN.LST
Created error log file MAIN.ERR

Created relocatable object file MAIN.O

Assembly 0 error(s) 0 warning(s)

86

5.11 Error/Warning Messages

CHAPTER 5: ASSEMBLER

5.11.1 Errors

When an error occurs, no object file will be generated.
The assembler error messages are delivered/displayed in the following format:

<Source file name> (<Line number>) Error : <Error message>

Example: TEST.S(431) Error: lllegal syntax

OSome error messages are displayed without a line number.

The assembler error messages are given below:

Error message

Description

Cannot open <file kind> file <FILE NAME>

The specified file cannot be opened.

Cannot read <file kind> file <FILE NAME>

The specified file cannot be read.

Cannot write <file kind> file <FILE NAME>

Data cannot be written to the file.

Directory path length limit
<directory path length limit> exceeded

The path name length has exceeded the limit.

Division by zero

The divisor in the expression is 0.

File name length limit <file name length limit>
exceeded

The file name length has exceeded the limit.

Illegal macro label <label>

The internal branch label in macro definition is abnormal.

Illegal macro parameter <parameter>

The macro parameters are illegal.

Illegal syntax

The statement has a syntax error.

Line length limit <line length limit> exceeded

The number of characters in one line has exceeded the limit.

Macro parameter range <macro parameter range>
exceeded

The number of macro parameters has exceeded the limit.

Memory mapping conflict

The address is duplicated.

Multiple statements on the same line

Two or more statements were described in one line.

Nesting level limit <nesting level limit> exceeded

Nesting of #include has exceeded the limit.

Number of macro labels limit
<number of macro label limit> exceeded

The number of internal branch labels has exceeded the limit.

Out of memory

Cannot secure memaory space.

Second definition of label <label>

The label is multiply defined.

Second definition of symbol <symbol>

The symbol is multiply defined.

Symbol name length limit <symbol name length limit>
exceeded

The symbol name length has exceeded the limit.

Token length limit <token length limit> exceeded

The token length has exceeded the limit.

Unexpected character <name>

An invalid character has been used.

Unknown label <label>

Reference was made to an undefined label.

Unknown mnemonic <name>

A non-existing instruction was described.

Unknown register <name>

A non-existing register name was described.

Unknown symbol mask <name>

The symbol mask has a description error.

Unsupported directive <directive>

A non-existing pseudo-instruction was described.

87

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

5.11.2 Warning

When a warning occurs, the assembler will keep on processing, and terminates the processing after
displaying a warning message, unless any other error is produced.
The warning message is delivered/displayed in the following formats:

<Source file name> (<Line number>) Warning : <Warning message>
Example: TEST.S(41) : Warning : Expression out of range

The warning messages are given below:

Warning message Description
Second definition of define symbol <symbol> The symbol is multiply defined by #define.
Section activation expected, use <.code/.bss> There is no section definition.
Expression out of range The result of the expression is out of the effective range.

5.12 Precautions

(1) Nesting of the #include pseudo instruction is limited to a maximum 10 levels. If this limit is sur-
passed, an error will result.

(2) A maximum of 64 internal branch labels can be specified per macro and maximum 9999 internal
branch labels can be expanded within one source file. If these limits are exceeded, an error will result.

(3) Other limitations such as the number of sections depend on the free memory space.

88

CHAPTER 6: LINKER

CHAPTER 6 LINKER

This chapter will describe the functions of the Linker 1k62.

6.1 Functions

The Linker 1k62 is a software that generates executable object files. It provides the following functions:

¢ Puts together multiple object modules to create one executable object file.

* Resolves external reference from one module to another.

® Relocates relative addresses to absolute addresses.

¢ Delivers debugging information, such as line numbers and symbol information, in the object file
created after linking.

e Capable of outputting a link map file, symbol file, absolute list file and a cross reference file.

¢ Automatic page correction function (insertion/removal/ correction of the pset instruction) for branch
instructions.

6.2 Input/Output Files

from Assembler

Linker Relocatable ICE
command file object file(s) parameter file

) (o) G

Linker
k62
(fiemap] [flesym | [fieabs | [fiewtt | [fieals | | fieer)
Link Symbol Absolute Cross Absolute Error file
map file file object file reference file list file

<L

to Debugger
Fig. 6.2.1 Flow chart

6.2.1 Input Files

Relocatable object file
File format: Binary file in IEEE-695 format
File name: <File name>.o (A path can also be specified.)
Description: Object file of individual modules created by the assembler.

Linker command file
File format: Text file
File name: <File name>.cm (A path can also be specified.)
Description: File to specify the linker options. This makes it possible to reduce typing in a command
line. This file is dispensable if all start-up options can be input in a command line.

ICE parameter file OThis file must always be specified.
File format: Text file
File name: <File name>.par (A path can also be specified.)

Description: File to specify the memory mapping and unsupported instruction information of each
E0C62 Family model. This file is supplied in the development tools for each model and
commonly used with the debugger, HEX converter and disassembler.

89

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

6.2.2 Output Files

An output file name can be specified in the command line or command file using the -o option. If no

output file name is specified, the same name as that of the relocatable object file to be linked first is used.

Absolute object file

File format:

File name:

Output destination:
Description:

Link map file

File format:

File name:

Output destination:
Description:

Symbol file

File format:

File name:

Output destination:
Description:

Cross reference file

File format:

File name:

Output destination:
Description:

Absolute list file

File format:

File name:

Output destination:
Description:

Error file

File format:

File name:

Output destination:
Description:

90

Binary file in IEEE-695 format

<File name>.abs

Current directory

Object file in executable format that can be input to the debugger. All the modules
comprising one program are linked together in the file, and the absolute addresses
that all the codes will map are determined. It also contains the necessary debugging
information in IEEE-695 format.

Text file

<File name>.map

Current directory

Mapping information file showing from which address of a section each input file
was mapped. This file is output when the -m start-up option is specified.

Text file

<File name>.sym

Current directory

Symbols defined in all the modules and their address information are delivered to
this file. This file is delivered when the -s start-up option is specified.

Text file

<File name>.xrf

Current directory

Labels defined in all the modules and their defined and referred addresses are
delivered in this file. This file is delivered when the -x start-up option is specified.

Text file

<File name>.als

Current directory

File delivered when the start-up option (-1) is specified. The file contents are similar
to the relocatable list file output by the assembler except that the location addresses
are absolute and takes the form of an integrated single file.

Text file

<File name>.err

Current directory

File delivered when the start-up option (-e) is specified. It records the information
which the linker outputs to the Standard Output (stdout), such as error messages.

CHAPTER 6: LINKER

6.3 Starting Method

General form of command line

Ik62 A [Options] A [<Relocatable object files>]

A denotes a space.

A [<Linker command file>] A <ICE parameter file>

[] indicates the possibility to omit.
The order of options and file names can be arbitrary.

File names

Files are identified with their extensions. Therefore, an appropriate extension should be included in
each file name. However, the extension ".0" of the relocatable object file can be omitted.
Relocatable object files: <File name.o>

Linker command file:

ICE parameter file:

<File name.cm>
<File name.par>

When using a linker command file, options, relocatable object file names, an ICE parameter file name

and an output file name can be described in the linker command file. If all the items to be specified

are entered in a command line, the linker command file is not necessary.

When linking multiple relocatable object files from a command line, one or more spaces should be

placed between the file names.

For the output file name, specify an absolute object file name (.abs). The file name will be used for

other output files. If no absolute object file name is specified, the same name as that of the relocatable
object file to be linked first is used as the output file name.

The ICE parameter file cannot be omitted.

Along file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options

The linker comes provided with the following options:

-d
Function:
Explanation:

Default:

-dr
Function:
Explanation:

Default:

Note:

Function:
Explanation:

Default:

Disable full PSET optimization

Disables automatic insertion/deletion/ correction of the pset instructions for
branch instructions (jumps and calls).

If this option is not specified, the automatic page correction function will be
enabled.

Disable PSET deletion function

Disables PSET deletion only among full PSET optimization (insertion/deletion/
correction). This will be needed when at least the existing PSET should not be
removed as in the case of a source contained jump table made up with page set
and jump instructions.

If this option is not specified, unnecessary pset instructions will be removed
when the automatic page correction function is specified.

Be sure to specify this option, if the objects need to keep compatibility with the
older tool (asm62XX) that does not remove the PSET instructions.

Output of error file

Also delivers in a file (.err) the contents to be output by the linker through the
Standard Output (stdout), such as error messages.

If this option is not specified, no error file will be output.

91

-9

Function:
Explanation:

Default:

Function:
Explanation:
Default:

-0 <file name>

Function:
Explanation:

Default:

-or

Function:
Explanation:

Default:

Function:
Explanation:
Default:

Function:
Explanation:
Default:

-X

Function:
Explanation:
Default:

-code <address>

Function:
Explanation:

Default:

Sample description:

92

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Addition of debugging information

* Creates an absolute object file containing debugging information.

¢ Always specify this function when you perform source display or use the
symbolic debugging facility of the debugger.

If this option is not specified, no debugging information will be added to the

absolute object file.

Output of absolute list file
Outputs an absolute list file.
If this option is not specified, no absolute list file will be output.

Specification of output path/file name

Specifies an output path/file name without extension or with an extension ".abs".
If no extension is specified, ".abs" will be supplemented at the end of the specified
output path/file name.

The 1st input file name is used for the output files.

Optimization of relocatable section location

¢ When this option is specified, the linker tries to allocate sections so as to make
the branch process made by jump or call instructions as close as possible.

¢ This may take a longer time than usual and the result cannot be guaranteed to
be optimal.

Relocatable sections will be located simply in the order of the input object.

Output of link map file
Outputs a link map file.
If this option is not specified, no link map file will be output.

Output of symbol file
Outputs a symbol file.
If this option is not specified, no symbol file will be output.

Output of cross reference file
Outputs a cross reference file.
If this option is not specified, no cross reference file will be output.

Set up of a relocatable CODE section start address

e Sets the absolute start address of a relocatable CODE section. Absolute sections
remain unaffected.

e CODE sections are mapped from this address, unless otherwise specified.

* One or more spaces or tabs are necessary between -code and <address>.

e The address should be described in hexadecimal format (Ox####).

If this option is not specified, the CODE section will begin from the program

ROM physical start address specified with the ICE parameter file.

-code 0x100

CHAPTER 6: LINKER

-bss <address>
Function: Set up of a relocatable BSS section start address
Explanation: ® Sets the absolute start address of a relocatable BSS section. Absolute sections
remain unaffected.
e BSS sections are mapped from this address, unless otherwise specified.
* One or more spaces or tabs are necessary between -bss and <address>.
¢ The address should be described in hexadecimal format (Ox####).
Default: If this option is not specified, the BSS section will begin from the RAM physical

start address specified with the ICE parameter file.

Sample description: -bss 0x000

-rcode <file name>=<address>
Function: Set up of the file-specific CODE section start address
Explanation: ® Sets the absolute address to map the CODE section of the specified module.
This command serves to specify a module having a code to be fixed at a specific
address, such as the interrupt vector. Absolute sections in the specified file
remain unaffected.
* One or more spaces or tabs are necessary between -rcode and <file name>.
e The address should be described in hexadecimal format (Ox####).
Default: If this option is not specified, the CODE section of each module is mapped
continuously from the address that was set by the -code option.
Sample description: -rcode testl.0 = 0x0110

-rbss <file name>=<address>
Function: Set up of the file-specific BSS section start address
Explanation: e Sets the absolute address to map the BSS section of the specified module. This
command serves to specify a module having a symbol to be fixed at a specific
address of the RAM. Absolute sections in the specified file remain unaffected.
® One or more spaces or tabs are necessary between -rbss and <file name>.
¢ The address should be described in hexadecimal format (Ox####).
Default: If this option is not specified, the BSS section of each module is mapped continu-
ously from the address that was set by the -bss command.
Sample description: -rbss testl.o = 0x100

-defsym <symbol name>=<address>
Function: Specification of a global symbol address
Explanation: e The absolute address of a global symbol is given for the referencing side.
¢ The symbols to be specified with this option should not be defined in the
source as an actual address label that can be referred to.
¢ One or more spaces or tabs are necessary between -defsym and <symbol
name>.
Sample description: -defsym BOOT = 0x100

When inputting an option in the command line, one or more spaces are necessary before and after the
option.
Examples: c:\e0c62\k62 -defsym INIT=0x200 test.cm ics62xxp.par

c:\e0c62\k62 -g -e -s -m testl.o test2.0 -0 test.abs ics62xxp.par

93

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

6.4 Messages

The linker delivers all its messages to the Standard Output (stdout).

Start-up message

En

The linker outputs only the following message when it starts up.

Linker 62 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

d message

The linker outputs the following messages to indicate which files has been created when it ends
normally.

Created absolute object file <FILENAME.ABS>
Created absolute list file <FILENAME.ALS>
Created map file <FILENAME.MAP>

Created symbol file <FILENAME.SYM>
Created cross reference file <FILENAME.XRF>
Created error log file <FILENAME.ERR>

Link 0 error(s) 0 warning(s)

Usage output

If no file name was specified or an option was not specified correctly, the linker ends after delivering
the following message concerning the usage:

Usage: k62 [options] <file names>

Options: -d Disable full PSET optimization
-dr Disable PSET removal optimization
-e Output error log file ((ERR)

-g Add source debug information

-l Output absolute list file (.ALS)

-m Output map file ((MAP)

-0 <file name> Output filename (.ABS or no extension)
-or Optimize relocatable section location

-S Output symbol file (.SYM)

-X Output cross reference file (. XRF)

-code <address> Specify CODE start address

-bss <address> Specify BSS start address

-rcode <file name>=<address> Specify CODE start address by file
-rbss <file name>=<address> Specify BSS start address by file
-defsym <symbol>=<address> Define symbol address
File names: Relocatable obeject file names (.O)
Command parameter file (.CM)
ICE parameter file (.PAR)

When error/warning occurs

94

If an error takes place, an error message will appear before the end message shows up.
Example:

Error: Cannot open file TEST.CM

Link 1 error(s) 0 warning(s)

In the case of an error, the linker ends without creating an output file.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

Warning: No symbols found

Link 0 error(s) 1 warning(s)

In the case of a warning, the linker ends after creating an output file, but the result cannot be guaran-
teed.

For details on errors and warnings, refer to Section 6.12, "Error/Warning Messages".

CHAPTER 6: LINKER

6.5 Linker Command File

To simplify the keystroke in the command line at the time of start up, execute the link processing through
the linker by inputting a linker command file (.cm) that holds the necessary specifications (options and
file names) described.

Sample linker command file

-e ; Generate error file

-g ; Add debug information

-code 0x0100 ; Fix CODE section start address
-rcode test2.0 = 0x0110 ; Fix CODE section start position of test2.0
-bss 0x00e0 ; Fix BSS section start address

-defsym BOOT = 0x110 ; Set global symbol

-0 test.abs ; Specify output file name
testl.o ; Specify input file 1
test2.0 ; Specify input file 2

Create the linker command file with the following rules:

File format

The linker command file is a general text format as shown above.
".cm" should be used for the file name extension.

Option description
All options should begin with a hyphen (-). Each individual option needs to be delineated with more
than one space, tab, or line feed. For better visibility, it is recommended to describe each option in a
separate line.

Notes: » A numeric value to specify an address should be described in the hexadecimal format (Ox####).
Decimal and binary notations will not be accepted.

« When an option that is only permitted in single setting is specified in a duplicated manner, the
last entered option will be effective.
Example: -code 0x0000
-code 0x0100 ... -code 0x0100 is effective.

Input file specification
Describe the relocatable object file names at the end of the link command file. The mapping by linking
takes place in described order, unless otherwise specified.
The extension (.0) of the relocatable object files can be omitted.

Comment

A comment can be described in the linker command file.
As in the source file, the character string from a semicolon (;) to the end of the line is regarded as a
comment.

Blank line

A blank line carrying only blank characters and a line feed will be ignored. It need not be converted to
a comment using a semicolon.

95

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

6.6 Link Map File

The link map file serves to refer to the mapping information for the modules of each section. It is output

if the -m option is specified.

The file format is a text file, and its file name is "<File name>.map". (<File name> is the same as that of

the output object file.)

Sample link map file

Linker 62 ver x.xx Link map file "TEST.MAP" Sun May 03 14:16:16 1998

CODE section map of "TEST.ABS"

Index Page Start End Size Pset Type File SecNbr
: 0x00 0x0000 Ox00ff 0x0100 --- --- ------------ ---

: 0x01 0x0100 0x0108 0x0009 +2 Abs MAIN.S 1
: 0x01 0x0109 Ox01ff OX00f7 --- === —-=ezmmememm -o-

: 0x02 0x0200 0x020f 0x0010 +0 Rel SUB.S 2
0x02 0x0210 Ox02ff Ox00fQ --- --- ---m-m-memem -o-
0x03 0x0300 Ox03ff 0x0100 --- --- ------------ ---
0x04 0x0400 OxO04ff 0x0100 --- --- ------------ ---

: Ox05 0x0500 OxO5ff 0x0100 --- --- -----=-=-mm- ---

: 0x06 0x0600 Ox06ff 0x0100 --- --- ------------ ---

: 0x07 0x0700 Ox07ff 0x0100 --- --- -----=-=--m- ---

10: 0x08 0x0800 0x08ff 0x0100 --- --- =-----m-mmmm —--

11: 0x09 0x0900 0x09ff 0x0100 --- --- ----------m- —--

12: Ox0a 0x0a00 OxOaff 0x0100 --- --- ----------m- —--

13: 0xOb 0x0b00 O0xO0bff 0x0100 --- --- =-----m-m-mm —--

14: 0xOc 0x0c00 0xOcff 0x0100 --- --- ------------ ---

15: 0x0d 0x0d00 0x0dff 0x0100 --- --- ------------ -

16: 0xOe 0x0e00 OxOeff Ox0100 --- --- ----=memmemm -m-

17: Ox0f OxOf00 OxOfff 0x0100 --- --- -----=-=---- ---

eeNogrONROQ

Total: 0x19 occupied, Oxfe7 blank

BSS section map of "TEST.ABS"

Index Start End Size Type File SecNbr
0: 0x000 0x003 0x004 Abs MAIN.S 3
1. 0x004 OXfff ----- —-m —ommmmmoe

Total: 0x4 occupied, Oxffc blank

Contents of link map file

Index Indicates the index number of the section.

Page Indicates the page number in which the section is allocated.

Start Indicates the start address of the section.

End Indicates the end address of the section.

Size Indicates the size of the section.

Pset Indicates the number of pset instructions that are inserted or removed.

Type Indicates the section type: Rel = relocatable section and Abs = absolute section.
File Indicates the file names of the linked module.

SecNbr Indicates the section number.

Total Indicates the total map size and the unused area size.

"---"in the Size, Pset, Type, File and SecNbr columns indicate that no section is allocated.

96

CHAPTER 6: LINKER

6.7 Symbol File

The symbol file serves to refer to the labels defined in all the modules and their address information. It is
delivered if the -s start-up option is specified.
The file format is a text file, and its file name is "<File name>.sym". (<File name> is the same as that of the

output object file.)

Sample symbol file
Linker 62 ver x.xx Symbol file "TEST.SYM" Sun May 03 14:16:16 1998

CODE section labels of "TEST.ABS"

Address Type File Symbol

0x0100 Local "MAIN.O" BOOT

0x0206 Global "SUB.O" INC_RAM_BLK1
0x0200 Global "SUB.O" INIT_RAM_BLK1
0x0106 Local "MAIN.O".... LOOP

BSS section labels of "TEST.ABS"
Address Type File Symbol
0x000 Global "MAIN.O" RAM_BLK1

Contents of symbol file

Symbol Indicates all the defined labels in in alphabetical order.
Address Indicates the absolute address defined for the label.

Type Indicates the scope of the label: Global or Local.

File Indicates the object file in which the labal has been defined.

97

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

6.8 Absolute List File

The absolute list file is an assembly source file that carries the absolute addresses and object codes added
to the first half of each line. It is delivered only when the -1 option is specified. Its file format is a text file,
and the file name is <file name>.als. (The <file name> is the same as that of the output object file.) While
a relocatable list file can be made for each assembly source file, the absolute list file is made as a single
file integrating all the linked objects and their according sources.

Sample absolute list file

Linker 62 ver x.xx Absolute list file "TEST.ALS" Sat May 30 07:53:14 1998

1: ; main.s

2: ; test program (main routine)

3: ;

4:

5: jeexxk INITIAL SP ADDRESS DEFINITION #xxxx

6: #define SP_INIT_ADDR 0x80 ;SP init addr = 0x80
7:

8: ;e MACRO DEFINITION

9: #macro CL_AB

10: Id a0

11: Id b,0

12: #endm

13:

14: FRexx BOOT, LOOP ***x

15: .global INIT_RAM_BLK1 ; subroutine
16: .global INC_RAM_BLK1 ; subroutine
17:

18: .org 0x100

19: BOOT:

20: 0100 e08 Id a,SP_INIT_ADDR>>4 ; set SP

21: 0101 feO Id sph,a

22: 0102 e00 Id a, SP_INIT_ADDR&Oxf

23: 0103 ffo Id spl,a

24: 0104 e4d2(+) pset 0x2

25: 0105 400 call INIT_RAM_BLK1 ; initialize RAM block 1
26: CL_AB

27: 0106 e00 + Id a,0 ; CL_AB
28: 0107 elO + Id b,0

29: LOOP:

30: 0108 e42 (+) pset 0x2

31: 0109 406 call INC_RAM_BLK1 ; increment RAM block 1

32: 010a 008 ip LOOP ; infinity loop

Contents of absolute list file

The format of each line of the absolute list file is as follows:
Line No. Absolute address Code Source statement

Line No. Indicates the line number from the top of the file.

Address Indicates the absolute address after the instruction is allocated.
Code Indicates the object code.

Source The contents of the assembly source file are delivered.

Results of automatic pset insertion/deletion/correction
As the result of automatic pset insertion/deletion/ correction, the pset instruction may be coded
without accordance to the source part. To show the result of such code optimizations clearly, the
following description will be made on an absolute list file.
When "pset" is inserted:
"(+)" is placed to the right of the code part. There is no original source for the code but the disas-
sembled "pset <bank/page number>" is delivered at the source part.
When "pset" is deleted:
"(-)" is placed to the left of the original source part. The original statement appears at the source
part in the list file but no code is delivered.
When the operand of "pset" is corrected:
"(*)" is placed to the left of the source statement.

Instructions preprocessed in the assembler

The instructions expanded in the assembler (macros, include sources, JPM instruction and CALLM
instruction) are listed with a "+".

98

CHAPTER 6: LINKER

6.9 Cross Reference File

The cross reference file enumerates all the address labels with their absolute addresses and all the ad-
dresses where the address labels are referred to. It is delivered only when the -x option is specified. Its file
format is a text file, and the file name is <file name>.xrf. (The <file name> is the same as that of the

output object file.)

Sample cross reference file
Linker 62 ver x.xx Cross reference file "TEST.XRF" Sun May 03 14:16:16 1998

Label "RAM_BLK1" at 0x000 "MAIN.O" BSS, Global
0x0200 "SUB.O" CODE
0x0202 "SUB.O" CODE
0x0206 "SUB.O" CODE
0x0208 "SUB.O" CODE

Label "BOOT" at 0x0100 "MAIN.O" CODE, Local

Label "LOOP" at 0x0106 "MAIN.O" CODE, Local
0x0108 "MAIN.O" CODE

Label "INIT_RAM_BLK1" at 0x0200 "SUB.O" CODE, Global
0x0105 "MAIN.O" CODE

Label "INC_RAM_BLK1" at 0x0206 "SUB.O" CODE, Global
0x0107 "MAIN.O" CODE

Contents of cross reference file
The format of each label information is as follows:
Label information

Address File name Type

Label information
Indicates the following information:
® Label name
e Defined address
¢ Object file in which the label is defined.
e Section type

® Scope
Address Indicates the address where the label is referred.
File Indicates the object file in which the label is referred.
Type Indicates the type of section that contains the address where the label is referred.

99

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

6.10 Linking

Linking rules

The linking process takes place in conformity with the following rules:

¢ Absolute sections are mapped ahead of relocatable sections, according to the absolute addresses
which were defined at the time of assembling. If an absolute section exceeds the available memory
area, an error will occur.

¢ The relocatable sections in the file of which the section start address was specified with an option
(-rcode, -rbss) are mapped from the specified address. Other relocatable sections are mapped from top
of the relocatable CODE/BSS section.

¢ Basically, the relocatable sections except those that are specified with the -rcode or -rbss option are
arranged successively in the order of processing. However, if a relocatable section cannot be mapped
subsequent to the previous mapped section, for instance, there is unused area indicated by the ICE
parameter file, an already mapped absolute section or if there is a page boundary, the linker searches
another area to map the section. If there is no available area, an error will occur. A section is not
divided into two or more blocks when it is mapped.
After that, another section may be mapped in the vacant area if it is possible to map there.
If the -or option is specified, the linker tries to arrange as much as possible, a relocatable section in the
same page as the section that has many branching relationships in order to decrease unnecessary pset
instructions.

Restrictions on linking

Note that all sections may not be mapped depending on each section size or address specifications
even if the relocatable object size is within the available memory size.

Example of Linking

A sample case where two relocatable object files, "testl.o" and "test2.0", are linked together under the
following condition is described further below.

Memory configuration of the model

ROM: 8K words (0x0000 to 0x1£ff; 16 pages x 2 banks)
RAM: 3,585 words (0x000 to Oxdff; 14 pages)

I/O memory: 512 words (0xe00 to Oxfff; 2 pages)

Relocatable object files

testl.o test2.0
CODE1 (relocatable) CODE3 (relocatable)
BSS1 (relocatable) BSS3 (absolute 0xf00-) | (.org is used.)

CODE2 (absolute 0x000-) | (.orgis used.) |[CODE4 (relocatable)
BSS2 (absolute 0xe00-) | (.orgis used.) |BSS4 (relocatable)

Fig. 6.10.1 Structure of sample relocatable files

Sample linker command file

-code 0x0100 ; Relocatable CODE section start address
-rcode test2.0 = 0x0110 ; CODE section start address of test2.0

-bss 0x0500 ; Relocatable BSS section start address
-rbss test2.0 = 0x600 ; BSS section start address of test2.0

-0 test.abs ; Output file name

testl.o ; Input file 1

test2.0 ; Input file 2

When linking is executed with the commands defined above, the linker maps the sections of each
module in the manner graphically presented in Figure 6.10.2.

100

CHAPTER 6: LINKER

testl.0 test.abs _
CODE1 (relocatable) 0x0000[" copE2
BSS1 (relocatable) 0x010f
CODE2 _(absolute_0x000-) 0x0110| " coDE3
BSS2 (absolute 0xe00-) CODE4
test2.0
CODES3 (relocatable) copi ROM area
BSS3 (absolute 0xf00-)
CODE4 (relocatable)
BSS4 (relocatable)
OxA1fff -
0x000 .
Ox4ff
Ox5ff
0x600
BSS4
RAM area
Oxdff
0xe00 BSSZ
Oxeff
Oxfff _|

Fig. 6.10.2 Example of linking

The absolute sections CODE2, BSS2 and BSS3 are mapped to the location specified in the source files.
The start addresses of the relocatable sections in "test2.0" is specified by the -rcode and -rbss options,
so CODES3 is mapped from address 0x110 and CODE 4 follows CODE3. BSS4 is mapped from address
0x600.

Since the start addresses of the relocatable CODE and BSS sections in "testl.o" have not been specified,
they are mapped from the relocatable section start addresses specified by the -code and -bss options.
First the linker will try to map CODEL1 from address 0x0100 to address 0x010f. If CODE2 is smaller
than 0x100 words and CODE 1 is smaller than 0x10 words, CODE1 can be mapped from address
0x0100. In this example, CODEI] is mapped behind CODE4 because CODEI is larger than 0x10 words.
When the -or option is specified, the linker will try to map CODEL in the same page as one of the
already mapped sections that has many branching relationships.

BSS1 is mapped from address 0x500, however it may be mapped behind BSS4 if BSS1 is larger than
0x100 words

A section cannot be overlapped to other sections, therefore an error will occur if there is no free area
larger than the section size. For example, an error will occur if CODE2 is larger than 0x110 words.

101

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

6.11 Automatic Insertion/Removal/Correction of "pset” Instruction

To branch the program sequence to another page, the pset instruction is required immediately before a
branch instruction (jp or call) is executed. Since the location of relocatable sections is not decided until the
linking process is completed, the linker has a function that automatically inserts, removes or corrects the

pset codes. This makes it possible to omit the pset instruction in the source. However, this function is
valid only for the branch instructions that use a label to specify the destination address.

This function can be disabled by specifying the -d option. The -dr option can also be specified to disable
only the pset deletion function (in the case of the -d option is not specified). To keep compatibility with
the older assembler asm62XX (when the sources for the asm62XX are used), the -dr option must be
specified.

For jp instruction
First the linker checks if the destination label and the jp instruction are within the same page.
If the label exists in the same page, the linker does not insert the pset code, or remove the existing one
for the jp instruction.
When the label exists in another bank/page, the linker inserts the adequate pset instruction code in
front of the jp instruction, or corrects the bank/page number in the pset code if the pset code has a
wrong operand.

Examples:
Original (source) After corrected (disassembled code)
Id ab Id ab
jp OTHER_PAGE pset XX ... Necessary "pset XX" instruction is inserted.
jp OTHER_PAGE
pset YY jp SAME_PAGE
ip SAME_PAGE ... "pset YY" is removed if unnecessary.

Even when "pset YY" is necessary, YY is checked
and corrected if wrong.

For call instruction
Subroutine calls between banks are not allowed because the return instructions cannot handle bank
numbers. Therefore if a wrong call is made between banks, an error will result. This occurs only when
the section that calls the subroutine and the section in which the subroutine exists are absolute
sections and are in different banks. Relocatable sections are located so that a cross bank call does not
occur. If the subroutine call is made within the same bank, the optimization process is the same as that
for the jp instruction.

Examples:
Original (source) After corrected (disassembled code)
Id ab Id ab
call SUBROUTINE pset XX
call SUBROUTINE
... Necessary "pset XX" instruction is inserted.
If both the subroutine and current section are absolute
and are in different banks, an error will result.
pset YY call SUBROUTINE
call SUBROUTINE ... "pset YY" is removed if unnecessary.

Even when "pset YY" is necessary, YY is checked and
corrected if wrong.

If both the subroutine and current section are absolute
and are in different banks, an error will result.

OIf the -dr option is specified, existing pset instructions will not be removed.

102

CHAPTER 6: LINKER

6.12 Error/Warning Messages

6.12.1 Errors

When an error occurs, the linker will immediately terminate the processing after displaying an error
message. No object file will be output. Other files will be delivered only in the part which was processed
prior to the occurrence of the error.

The error messages are given below.

Error message Description
Calling different bank at <address> The call instruction calls a subroutine in another bank.
Cannot create <file kind> file <FILE NAME> The file cannot be created.
Cannot open <file kind> file <FILE NAME> The file cannot be opened.
Cannot read <file kind> file <FILE NAME> The file cannot be read.
Cannot write <file kind> file <FILE NAME> Data cannot be written to the file.
lllegal file name <FILE NAME> The file name is incorrect.
lllegal file name <FILE NAME> specified with The file name specified with the option is incorrect.
option <option>
lllegal ICE parameter at line <line number> of The ICE parameter file contains an illegal parameter setting.
<FILE NAME>
lllegal object format <FILE NAME> The input file is not an object file in IEEE-695 format.
lllegal option <option> An illegal option is specified.

Memory mapping conflict at <Section type> section | The address range of the section is duplicated.
<address> - <address>

No address specified with option <option> Address is not specified with the option.

No code to locate There is no valid code for mapping.

No debug information in <FILE NAME> Debugging information is not included in the file.

No ICE parameter file specified ICE parameter file is not specified.

No name and address specified with option <option> | Name and address are not specified with the option.
No object file specified Object files to be linked are not specified.

Out of memory Cannot secure memory space.

Page overflow at <Section type> section The section is across the page boundary.

<address> - <address>
Processor characteristics of object file <FILE NAME> | The object file is not matched to the specification in the ICE

mismatch parameter file.

Second definition of Label <label> in <FILE NAME> | The label has already been defined.

Unavailable instruction code <instruction code> The object contains an instruction invalid for the model.
detected in <FILE NAME>

Unavailable memory mapped at <Section type> There is no valid memory space for allocating the section.
<address> - <address>

Unresolved external <label> in <FILE NAME> Reference was made to an undefined symbol.

6.12.2 Warning

Even when a warning appears, the linker continues with the processing. It completes the processing after
displaying a warning message, unless, in addition, an error takes place. The output files will all be
delivered, but the operation of the program cannot be guaranteed.

The warning messages and their contents are given below.

Warning message Description
Cannot open <file kind> file <FILE NAME> The file cannot be opened.
No symbols found Symbols cannot be found.

103

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

6.13 Precautions

(1) Upper limits, such as a maximum section count and the number of objects to be linked, depend on the
free memory space.

(2) The -dr option (disabling pset deletion) is provided to keep compatibility with the older assembler
asm62XX. It must be specified to create the same object as one that is created with the asm62XX.

(3) To load the absolute object file created by the linker to the debugger, the same ICE parameter file must
be specified when the debugger is invoked.

(4) The optimization for relocatable sections by the -or option depend on the free space in the page and
absolute section mapping condition. Therefore, the result cannot be guaranteed to be optimal.

104

CHAPTER 7: HEX CONVERTER

CcHAPTER / HEXx CONVERTER

This chapter will describe the functions of Hex Converter hx62.

7.1 Functions

Hex Converter hx62 converts an absolute object file in IEEE-695 format output from the linker into a hex

file in Intel-HEX format or Motorola-S format. This conversion is needed when debugging the program

with the ROM or when creating mask data using the mask data checker provided for each model.

When creating the ROM-image hex data, the hex converter fills the unused area of each model with Oxff.

7.2 Input/Output Files

7.2.1 Input Files

Absolute object file

File format:
File name:
Description:

ICE parameter file

File format:
File name:
Description:

from Linker

Absolute — — |CE
object file parameter file

Hex Converter

hx62
Intel-HEX| file I.hex L or ’ Motorola-S
format files [file h.hex file.lsa |format files -

Error file

ROM or Mask data creation

Fig. 7.2.1 Flow chart

Binary file in IEEE-695 format
<File name>.abs (A path can also be specified.)
Absolute object file created by the linker.

OThis file must always be specified.
Text file
<File name>.par (A path can also be specified.)
File to specify the memory mapping information of each EOC62 Family model. This
file is supplied in the development tools for each model and is commonly used with
the linker, debugger and disassembler.

7.2.2 Output Files

Hex file

File format:
File name:

Output destination:
Description:

Error file

File format:

File name:

Output destination:
Description:

Text file in Intel-HEX or Motorola-S format

Intel-HEX format <File name>h.hex and <File name>l.hex

Motorola-S format <File name>.hsa and <File name>.Isa

Current directory

Two hex files are generated: one ("h.hex" or ".hsa") contains the four high-order bits
of the object codes with 0b0000 extended and the other ("Lhex" or ".Isa") contains
the eight low-order bits. Intel-HEX format files are delivered by default. Motorola-S
format files can be specified using the -m option.

Text file

<File name>.err

Current directory

File that is delivered when the start-up option (-e) is specified. It records information
that the hex converter outputs to the Standard Output (stdout), such as error
messages.

105

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

7.3 Starting Method

General form of command line

hx62 A [Options] A <Absolute object file name> , <ICE parameter file name>

A denotes a space.

[] indicates the possibility to omit.
The order of options and file names can be arbitrary.

File names

Absolute object file: <File name>.abs

ICE parameter file:

<File name>.par

The extension of an absolute object file can be omitted. The ICE parameter file must be specified with

its extension.

A long file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options

The hex converter comes provided with the following four types of start-up options:

-b
Function:
Explanation:

Default:

Function:
Explanation:

Default:

Function:
Explanation:
Default:

-0 <file name>

Function:
Explanation:

Default:

Conversion of existing codes only

Converts and delivers only the object codes that exist in the specified absolute object

file. Data for unused addresses is not delivered.

If this option is not specified, the hex data for the entire available memory range

of the model is delivered to the output file. Unused addresses are filled with Ox{f.

Output of error files

Also delivers in a file the contents to be output by the hex converter through the
Standard Output (stdout), such as error messages.

If this option is not specified, no error file will be output.

Conversion into Motorola-S format

Generates the hex files (".hsa" and ".Isa") in Motorola-S format.

If this option is not specified, Intel-HEX format files ("h.hex" and "Lhex") are
generated.

Specification of output path/file name

Specifies an output path/file name without extension or with an extension
"Lhex", "h.hex", "Isa" or ".hsa". By specifying only one file name, two HEX files
will be generated.

If no extension is specified, an appropriate extension will be supplemented at the
end of the specified output path/file name. In this case, "Lhex" or "h.hex" is
added to the output file name. It may change a DOS file name (8 character max.)
to a long file name for Windows.

The input file name is used for the output files.

When entering an option in the command line, one or more spaces are necessary before and after the

option.

Example: c:\e0c62\bin\hx62 -e test.abs ics62xxp.par

106

CHAPTER 7: HEX CONVERTER

7.4 Messages

The hex converter delivers all its messages via the Standard Output (stdout).

Start-up message

The hex converter outputs only the following message when it starts up.
Hex converter 62 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

End message

The hex converter outputs the following messages to indicate which files have been created when it
ends normally.

Created hex file <FILE NAME>H.HEX
Created hex file <FILE NAME>L.HEX
Created error log file HX62.ERR

Hex conversion 0 error(s) 0 warning(s)

Usage output

If no file name was specified or an option was not specified correctly, the hex converter ends after
delivering the following message concerning the usage:

Usage: hx62 [options] <file names>

Options: -b Do not fill room with Oxff
-e Output error log file (HX62.ERR)
-m Use Motorola-S format

-O <file name> Output file name (L/H.HEX, .L/HSA or no extension)
File name: Absolute object file (.ABS)
ICE parameter file (.PAR)

When error/warning occurs

If an error occurs, an error message will appear before the end message shows up.
Example:

Error : No ICE parameter file specified
Hex conversion 1 error(s) 0 warning(s)

In the case of an error, the hex converter ends without creating an output file.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

Warning : Output file name conflict
Hex conversion 0 error(s) 1 warning(s)

In the case of a warning, the hex converter ends after creating the output files, but the result cannot be
guaranteed.

For details on errors and warnings, refer to Section 7.6 "Error/ Warning Messages".

107

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

7.5 Output Hex Files

7.5.1 Hex File Configuration

Since each E0C6200 instruction has a 12-bit code, the hex converter always generates two hex files for the
high-order data and the low-order data.

The low-order data hex file ("L.hex" or ".Isa") contains the low-order bytes (bits 7 to 0) of the object codes.
The high-order data hex file ("h.hex" or ".hsa") contains the high-order bytes (bits 11 to 8 suffixed by high-
order bits 0b0000).

When creating the ROMs to be installed to the ICE or EVA, write these files using a ROM writer.

By specifying the -m option, the hex converter can convert the absolute object file into Motorola-S format
files as well as Intel-HEX format. However, use Intel-HEX format when loading the hex files to the
debugger or creating the mask data by the mask data checker because the debugger and mask data
checker do not support Motorola-S format files.

7.5.2 Intel-HEX Format

The hex converter converts an absolute object file in the IEEE-695 format into the Intel-HEX format files
by default.

The high-order data file is generated with a name "<file name>h.hex", and the low-order data file is
generated with a name "<file name>Lhex".

The following shows a sample data in Intel-HEX format:

data volume type
address data sum
\

: rh

[| [|
: 10000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO0
: 10001000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO

: 1001000008E000F04200420606 FFFFFFFFFFFFFFSE

: 100FFO00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOL
: 00000001FF

data volume (1 byte): Indicates the data length of each record. The maximum length of a data record is
0x10, while the end record is fixed at 0x00.
address (2 bytes): Indicates the address where the head data in a record is placed.

type (1 byte): Indicates the type of hexadecimal format, currently only "00".
data (16 bytes max.): The object codes are placed here. This is not included in the end record.
sum (1 byte): This is a checksum (2's complement) from "Data volume" to the last data.

The end records are always "00000001FF".

108

CHAPTER 7: HEX CONVERTER

7.5.3 Motorola-S Format

The hex converter converts an absolute object file in the IEEE-695 format into the Motorola-S2 format files
when the -m option is specified.

The high-order data file is generated with an extension ".hsa", and the low-order data file is generated
with an extension ".Isa".

The following shows a sample data in Motorola-S2 format:

length
address data sum
\

‘ -

[il 1
S224000000FFFB
S224000020FFDB

S22400010008E000F04200420606 FFS9

S804000000FB

S2 (2 bytes): Indicates that the line is a data record.

S8 (2 bytes): Indicates that the line is an end record (end of data).

length (1 byte): Indicates the record length of "address + data + sum". The maximum length of a

data record is 0x24, while the end record is fixed at 0x04.
address (3 bytes): Indicates the address where the head data in a record is placed.
data (36 bytes max.): The object codes are placed here. This is not included in the end record.
sum (1 byte): This is a checksum (1's complement) from "length"” to the last data.

The end records are always "S804000000FB".

Note: When using hex files for creating the mask data, do not specify Motorola-S format because the the
mask data checker does not support this format.

7.5.4 Conversion Range

By default, the hex converter generates the hex files that include all the codes of the ROM area available
for each model. Data for unused addresses are delivered as Oxff. For example, if the model has a built-in
2KB ROM and the program uses the area from address 0x0 to address 0x6ff, the hex converter fills the
area from address 0x700 to address Ox7ff with Oxff. If there are unused addresses in the range from 0x0 to
0x6ff, those data are also delivered as Oxff.

When creating the mask data by the mask data checker provided for each model, the hex files must be
generated in this format.

When the -b option is specified, the hex converter does not deliver data in unused addresses of the
absolute object file. This allows minimization of the output hex files. Note, however that the hex files
generated in this format cannot be used for creating the mask data.

109

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

7.6 Error/Warning Messages

7.6.1 Errors

When an error occurs, the hex converter immediately terminates the processing after displaying an error

message. It will not output hex files.

The hex converter error messages are given below.

Error message

Description

Cannot create <file kind> file <FILE NAME>

The file cannot be created.

Cannot open <file kind> file <FILE NAME>

The file cannot be opened.

Cannot read <file kind> file <FILE NAME>

The file cannot be read.

Cannot write <file kind> file <FILE NAME>

Data cannot be written to the file.

lllegal file name <FILE NAME> specified with
option <option>

The specified hex file name is incorrect.

lllegal ICE parameter at line <line number> of
<FILE NAME>

The ICE parameter file contains an illegal parameter setting.

lllegal file name <FILE NAME>

The specified input file name is incorrect.

Illegal option <option>

An illegal option is specified.

lllegal absolute object format

The input file is not an object file in IEEE-695 format.

No ICE parameter file specified

ICE parameter file is not specified.

Out of memory

Cannot secure memory space.

7.6.2 Warning

Even if a warning is issued, the hex converter keeps on processing, and completes the processing after

displaying a warning message, unless, in addition, any error occurs.

Warning message

Description

Input file name extension . XXX conflict

Two or more file names with the same extension have been
specified. The last one is used.

110

CHAPTER 7: HEX CONVERTER

7.7 Precautions

(1) When creating the hex files for making the mask data file in the mask data checker, specify Intel-HEX
format and convert for the entire available memory range of the model (do not specify the -b and -m
options). Otherwise, an error will occur in the mask data checker. Refer to the "Development Tool

Manual" of each model for details of the mask data checker.

(2) The ICE and EVA support 4 types of ROMs: 2764, 27128, 27256 and 27512.
When making the program ROMs from the hex files generated by the hex data converter, write data

with an offset address as shown below.
Table 7.7.1 ROM offset address

ROM type Offset value
For ICE For EVA
2764 0 0
27128 0 0
27256 0 0x4000
27512 0x8000 0xC000

(3) If an 8-character output file name (DOS file name) without extension is specified for the Intel HEX
files, it will be changed to a long file name because "Lhex" or "h.hex" is added to the file name.

111

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

CHAPTER 8 DISASSEMBLER

This chapter will describe the functions of the Disassembler ds62.

8.1 Functions

The Disassembler ds62 inputs an object file in IEEE-695 or Intel-HEX format, and disassembles the codes
to mnemonics. The results are output as a source file. The restored source file can be processed in the

assembler/linker/hex converter to obtain the same object or hex file.

8.2 Input/Output Files

8.2.1 Input Files

Absolute object file

File format:
File name:
Description:

Hex file

File format:
File name:
Description:

ICE parameter file

File format:
File name:
Description:

from Linker ~ from Hex converter

<L
S—

Disassembler

file.err

Error file

ICE parameter file

Intel-HEX
files

IEEE-695 absolute
object file

file.par

file.ms
Preprocessed source file
Fig. 8.2.1 Flow chart

Binary file in IEEE-695 format
<File name>.abs (A path can also be specified.)
Absolute object file created by the linker.

Text file in Intel-HEX format

<File name>h.hex and <File name>l.hex

HEX file created by the HEX converter. Two hex files are needed: one ("h.hex")
contains the four high-order bits of the object codes with 0b0000 extended and the
other ("Lhex") contains the eight low-order bits.

OThis file must always be specified.
Text file
<File name>.par (A path can also be specified.)
File to specify the memory mapping information of each EOC62 Family model. This
file is supplied in the development tools for each model and is commonly used with
the linker, debugger and HEX converter.

8.2.2 Output Files

Source file

File format:

File name:

Output destination:
Description:

Error file

File format:

File name:

Output destination:
Description:

112

Text file

<File name>.ms

Current directory

Disassembled contents of the input file are delivered.

Text file

<File name>.err

Current directory

File that is delivered when the start-up option (-e) is specified. It records the infor-
mation that the disassembler outputs to the Standard Output (stdout), such as error
messages.

CHAPTER 8: DISASSEMBLER

8.3 Starting Method

General form of command line

ds62 A [Options] A <Absolute object or hex file name> 5 <ICE parameter file name>

A denotes a space.
[] indicates the possibility to omit.

File names
Absolute object file: <File name>.abs
Intel-HEX files: <File name=>h.hex, <File name>1.hex

ICE parameter file: <File name>.par

The input files must be specified with their extension.
The Intel-HEX files can be specified with either "h.hex" or "Lhex" as the extension. The other one
unless specified will be automatically loaded.

Along file name supported in Windows and a path name can be specified. When including spaces in
the file name, enclose the file name with double quotation marks (").

Options
The disassembler comes provided with the following five types of start-up options:
-cl
Function: Use of lower-case characters
Explanation: Creates all instructions and labels using lower-case characters.
Default: If neither this option nor the -cu option is specified, the source will be made with
all labels in upper-case characters and instructions in lower-case characters.
-cu
Function: Use of upper-case characters
Explanation: Creates all instructions and labels using lower-case characters.
Default: If neither this option nor the -cl option is specified, the source will be made with
all labels in upper-case characters and instructions in lower-case characters.
-e

Function: Output of error files
Explanation: Also delivers in a file the contents to be output by the disassembler through the
Standard Output (stdout), such as error messages.
Default: If this option is not specified, no error file will be output.

-0 <file name>
Function: Specification of output path/file name
Explanation: Specifies an output path/file name without extension or with an extension ".ms".
If no extension is specified, ".ms" will be supplemented at the end of the specified
output path/file name.
Default: The input file name is used for the output file.

-s <address>
Function: Specification of start address
Explanation: Specifies the start address of the object. This address is used to decide the address
parameter of the first ".org" instruction.
Default: If this option is not specified, the disassembled source will begin with address 0.

When entering an option in the command line, one or more spaces are necessary before and after the
option.
Example: c:\e0c62\ds62 -e -cl test.abs ics62xxp.par

113

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

8.4 Messages

The disassembler delivers all its messages via the Standard Output (stdout).

Start-up message

The hex converter outputs only the following message when it starts up.

Disassembler 62 Ver x.xx
Copyright (C) SEIKO EPSON CORP. 199x

End message

The hex converter outputs the following messages to indicate which files have been created when it
ends normally.

Created preprocessed source file <FILE NAME>.MS
Created error log file DS62.ERR
Disassembly 0 error(s) 0 warning(s)

Usage output

If no file name was specified or an option was not specified correctly, the hex converter ends after
delivering the following message concerning the usage:

Usage: ds62 [options] <file names>

Options: -cl Use lower case characters
-cu Use upper case characters
-e Output error log file (DS62.ERR)

-0 <file name> Output file name (.MS or no extension)
-s <address> Offset address (default 0x0)
File names: Absolute object file (.ABS or L/H.HEX)
ICE parameter file (.PAR)

When error/warning occurs

If an error occurs, an error message will appear before the end message shows up.
Example:

Error: Cannot open file TEST.ABS

Disassembly 1 error(s) 0 warning(s)

In the case of an error, the disassembler ends without creating an output file.

If a warning is issued, a warning message will appear before the end message shows up.
Example:

Warning: Output file name conflict

Disassembly O error(s) 1 warning(s)

In the case of a warning, the disassembler ends after creating an output file.

For details on errors and warnings, refer to Section 8.6 "Error/ Warning Messages".

114

8.5 Disassembling Output

CHAPTER 8: DISASSEMBLER

The data/code mnemonics are restored from the target code. As for the branch instructions, a label will

be automatically generated like "LXXXX:" where XXXX denotes a hexadecimal number string. ".org"
pseudo-instruction is used to specify the starting location of each code block.
The following shows examples of disassembled sources:

Sample outputs

Absolute list file "test.abs"
Linker 62 ver x.xx Absolute list file "TEST.ALS" Sun May 03 14:16:16 1998

P
EEcoxnourwne

B
Rowb

0100 €08
0101 fe0
0102 €00
0103 ffo
0104 e42 (+)
0105 400
LOOP:
0106 €42 (+)
0107 406
0108 006

WWWWWWRNNNNNNNNNNER R R R
gRrRONRPROOQOUONOOORWOWNMNRPOOXNOO

0200 €00
0201 e80
0202 b00
0203 900
0204 900
0205 fdf

BADNDNDEDDWWWW
QNhMROO®OND

0206 e00
0207 €80
0208 bo0O
0209 e00
020a f41
020b f28
020c f28
020d f28
020e a98
020f fdf

(SIS NS, IS, IS, IS, B N NN
ahONMNER OO

; main.s
; test program (main routine)

,

;eeerk INITIAL SP ADDRESS DEFINITION *rxxx

#define SP_INIT_ADDR 0x80

soxkkk BOOT, LOOP *vvs*

.global INIT_RAM_BLK1
.global INC_RAM_BLK1
.org 0x100
BOOT:
Id a,SP_INIT_ADDR>>4
Id sph,a
Id a, SP_INIT_ADDR&Oxf
Id spl,a
pset 0x2

call INIT_RAM_BLK1

pset 0x2
call INC_RAM_BLK1
ip LOOP
; sub.s

; test program (subroutines)
.global RAM_BLK1
.org 0x200

;% RAM block 1 initialize *****

.global INIT_RAM_BLK1
INIT_RAM_BLK1:

Id a,RAM_BLK1"h
Id Xp,a

Id X,RAM_BLK1"
Ibpx mx,0

lbpx mx,0

ret
¥xx RAM block 1 increment ****x

.global INC_RAM_BLK1
INC_RAM_BLK1:

Id a,RAM_BLK1"h
Id Xp,a

Id x,RAM_BLK1M
Id a,0
scf

acpx mx,a
acpx mx,a
acpx mx,a
adc mx,a
ret

;SP init addr = 0x80

; subroutine

; subroutine

; set SP

; initialize RAM block 1

; increment RAM block 1
; infinity loop

;set RAM_BLK1 address to x
;set 0x0000 to RAM_BLK1

;set RAM_BLK1 address to x

; increment 16bit value

115

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Output source file "test.ms" (default)
;Disassembler 62 Ver x.xx Assembly source file TEST.MS Mon May 04 11:49:34 1998

.org 0x100
Id a,0x8
Id sph,a
Id a,0x0
Id spl,a
pset Ox2
call LABEL1
LABEL3:
pset Ox2
call LABEL2
ip LABEL3
.org 0x200
LABEL1:
Id a,0x0
Id Xp,a
Id X,0x0
Ibpx mx,0x0
Ibpx mx,0x0
ret
LABEL2:
Id a,0x0
Id Xp,a
Id x,0x0
Id a,0x0
scf

acpx mx,a
acpx mx,a
acpx mx,a
adc mx,a
ret

Output source file "test.ms" (when -cl is specified)
;Disassembler 62 Ver x.xx Assembly source file TEST.MS Mon May 04 11:50:20 1998

.org 0x100
Id a,0x8
Id sph,a
Id a,0x0
Id spl,a
pset 0x2
call labell

label3:
pset 0x2
call label2
ip label3
.org 0x200

labell:
Id a,0x0
Id Xp,a
Id X,0x0
Ibpx mx,0x0
Ibpx mx,0x0
ret

label2:
Id a,0x0
Id Xp,a
Id x,0x0
Id a,0x0
scf

acpx mx,a
acpx mx,a
acpx mx,a
adc mx,a
ret

116

Output source file "test.ms" (when -cu is specified)
;Disassembler 62 Ver x.xx Assembly source file TEST.MS Mon May 04 11:51:08 1998

LABEL3:

LABEL2:

0X100
A,0X8
SPH,A
A,0X0
SPL,A
0X2
LABEL1

0Xx2
LABEL2
LABEL3
0X200

A,0X0
XP,A
X,0X0
MX,0X0
MX,0X0

A,0X0
XP,A

X,0X0
A,0X0

CHAPTER 8: DISASSEMBLER

117

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

8.6 Error/Warning Messages

8.6.1 Errors

When an error occurs, the disassembler immediately terminates the processing after displaying an error

message. It will not output a source file.

The disassembler error messages are given below.

Error message

Description

Cannot create <file kind> file <FILE NAME>

The file cannot be created.

Cannot open <file kind> file <FILE NAME>

The file cannot be opened.

Cannot read <file kind> file <FILE NAME>

The file cannot be read.

Cannot write <file kind> file <FILE NAME>

Data cannot be written to the file.

HEX data size does not match ICE parameter

The size of the input HEX file does not match the ICE
parameter.

lllegal file name <FILE NAME> specified with
option <option>

The specified output source file name is incorrect.

lllegal ICE parameter at line <line number> of
<FILE NAME>

The ICE parameter file contains an illegal parameter setting.

lllegal file name <FILE NAME>

The specified input file name is incorrect.

Illegal HEX data format

The input file is not an Intel-HEX format file.

lllegal offset address <offset address>

The specified address is invalid.

Illegal option <option>

An illegal option is specified.

No ICE parameter file specified

ICE parameter file is not specified.

Out of memory

Cannot secure memory space.

8.6.2 Warning

Even if a warning is issued, the disassembler keeps on processing, and completes the processing after

displaying a warning message, unless, in addition, any error is produced.

Warning message

Description

Input file name extension . XXX conflict

Two or more file names with the same extension have been
specified. The last one is used.

118

CHAPTER 9: DEBUGGER

CHAPTER9 DEBUGGER

This chapter describes how to use the Debugger db62.

9.1 Features

The Debugger db62 is used to debug a program after reading an object file in the IEEE-695 format that is
generated by the linker.
It has the following features and functions:

¢ Various data can be referenced at the same time using multiple windows.

¢ Frequently used commands can be executed from tool bars and menus using a mouse.

¢ Also available are source display and symbolic debug functions which correspond to assembly source
codes.

e Consecutive program execution and two types of single-stepping are possible.

e Four break functions are supported.

¢ A real-time display function shows register and memory contents on-the-fly.

¢ A time display function showing execution time by both duration and steps.

* An advanced trace function.

¢ An automatic command execution function using a command file.

9.2 Input/Output Files

from Linker
5 o IEbEE-t6f9|5 Source file(s)
arameter file o Jec ile e Command file
H : S —
ICE62R Deg;gger ‘ i I %

Program Option
flle rec f|Ie Iog f|Ie trc HEX files HEX files

Record file Log file Trace file
Fig. 9.2.1 Flow chart

9.2.1 Input Files

Parameter file
File format: Text file
File name: <file name>.par
Description: This file contains memory information on each microcomputer model and is indispensable
for starting the debugger. This file is included with the development tool package for each
microcomputer model.

The following files are read by the debugger according to command specification.

Object file
File format: Binary file in the IEEE-695 format
File name: <file name>.abs (An extension other than ".abs" can also be used.)
Description: This is an object file generated by the linker. This file is read into the debugger by the If
command. By reading a file in the IEEE-695 format that contains debug information, source
display and symbolic debugging can be performed.

119

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

Source file
File format:
File name:
Description:

Program file
File format:
File name:
Description:

Text file

<file name>.s

This is the source file of the above object file. It is read when the debugger performs source
display.

HEX file in Intel-HEX format

<file name=>h.hex, <file name>1.hex

This is a load image file of the program ROM, and is read into the debugger by the lo
command. The file "h.hex" corresponds to the 4 high-order bits of the program code and the
file "l.Lhex" corresponds to the 8 low-order bits of the program code. These files are gener-
ated for the purpose of creating mask data from an object file in the IEEE-695 format by a
HEX conversion utility. Unlike files in the IEEE-695 format, these files cannot be used for
source display or symbolic debugging, but can be used to check the operation of final
program data.

Option data file

File format:
File name:

Description:

Command file

File format:
File name:
Description:

HEX file in Intel-HEX format

<file name>f.hex, <file name>s.hex, <file name>a.hex (Varies with the type of microcom-
puter)

These data files are used to set up hardware options for each microcomputer model and is
read by the lo command. These files are generated by a development tool available for each
microcomputer model.

Text file

<file name>.cmmd (An extension other than ".cmd" can also be used.)

This file contains a description of debug commands to be executed successively. By writing
a series of frequently used commands in this file, the time and labor required for entering
commands from the keyboard can be saved. The command described in the file are read
and executed using the com command.

9.2.2 Output Files

Log file
File format:
File name:
Description:

Record file
File format:
File name:
Description:

Trace file
File format:
File name:
Description:

120

Text file

<file name>.log (An extension other than ".log" can also be used.)

This file contains the information of executed commands and execution results that are
output to a file. Output of this file can be controlled by the log command.

Text file

<file name>.rec (An extension other than ".rec" can also be used.)

This file contains the information of executed commands that are output to a file. Output of
this file can be controlled by the rec command.

Text file

<file name>.trc (An extension other than ".trc" can also be used.)

This file contains the specified range of trace information. Output of this file can be con-
trolled by the #f command.

CHAPTER 9: DEBUGGER

9.3 Starting Method

9.3.1 Start-up Format

General form of command line
db62 , <parameter file name> , [start-up option]

A denotes a space.
[] indicates the possibility to omit.

Note: The parameter file will be recognized by its extension ".par", so ".par" must be included in the
parameter file name to be specified.

9.3.2 Start-up Options
The debugger has three start up options available.

<command file name>
Function: Specifies a command file.

Explanation: For a series of commands to be executed immediately after the debugger starts

up, specify a command file that describes those commands.
-comX
Function: Specifies a communication port.

Explanation: This option specifies the communication port through which a personal com-
puter is communicated with by the ICE62. Specify a port number in the X part of
this option. The port that can be used for this purpose varies among different
personal computers.

Unless this option is specified, the com1 port is used to communicate with the
ICE62.
-b <baud rate>
Function: Specifies a communication transmission rate.

Explanation: This option specifies the baud rate on the personal computer. For <baud rate>,
select one from 1200, 4800, 9600, or 19200.

Unless specified otherwise, the baud rate is set to 19200 bps. This value is the
same as the initial setting of the ICE62.
The baud rate on the ICE62 is set using the DIP switch mounted on the ICE62.

When entering an option in a command line, make sure that there is at least one space before and after
the option.
Example: c:\e0c62\bin\db62 ics62xxp.par startup.cmd -com2 -b 19200

The default start-up options are set as: -com1 & -b 19200
If no parameter file name was specified or the option was not specified correctly, the debugger ends after
delivering the following message concerning the usage:

-Usage-
db62”<parameter file name>"[startup option]
Options:
command file: ... specifies a command file
-comX(X:1-4) ... com port, default com1
-b ... baud rate, 1200, 4800, 9600, 19200(default)

121

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.3.3 Start-up Messages

When Debugger dbé62 starts up, it outputs the following message in the [Command] window. (Refer to
the next section for details about windows.)

Debugger for EOC62 Ver x.x Copyright (C) SEIKO EPSON CORP. 199x
Connecting COMx with xxxxx baud rate...done
Parameter file: XXXXX.par

Chip name: EOC62XX

Initialize

>

9.3.4 Hardware Check at Start-up

If the debugger is invoked, it first performs the tests and initializing operations as follows:

(1) The debugger first checks to see that the ICE62 is connected to the system and that communication is
possible without any problems. The following message is displayed in the [Command] window.

During test
Connecting COMx with xxxxx baud rate...

When terminated normally
Connecting COMx with xxxxx baud rate...done

When an error is encountered
Connecting COMx with xxxxx baud rate...Error

The Error indicates that communication between the personal computer and ICE62 is not functioning
properly. In this case, verify the following;:

e A standard RS-232C cable is used

e The COM port is correct

¢ The baud rates on both sides are matched
e The ICE62's power is turned on

e The ICE62 remains reset

(2) When the connection test terminates normally, the debugger checks the contents of the parameter file
and initializes the ICE62.

When terminated normally
Parameter file: XXXXX.par
Chip name: EOC62XX

MaP. .o done
Initialize.......ccooeviviviieeeiinnn. done
>

When an error is encountered
Parameter file: XXXXX.par
Chip name: EOC62XX

Y= T P Error
Initialize.......coeeeiviiieeeinnnn. Error
>

If an error occurs in the above initialization process, temporarily quit the debugger. Check the cause
of the error and repair it before restarting the debugger.

122

CHAPTER 9: DEBUGGER

After initialization, the state of the screen including the position and size of the windows will return the
same as the last time the debugger was terminated. The contents displayed in each window if it is opened
are as follows:

Window Display contents

[Command] window Initialization information (and waits for command input)

[Data] window Data memory contents starting from data memory address 0
[Register] window Current register values

[Source] window Unassemble display starting from program memory address 0x0100
[Trace] window Blank

9.3.5 Method of Termination

To terminate the debugger, select [Exit] from the [File] menu.
You can also input the g command in the [Command] window to terminate the debugger.

>q

123

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.4 Windows

This section describes the types of windows used by the debugger.

9.4.1 Basic Structure of Window

The diagram below shows the window structure of the debugger.

[Source] window [Trace] window [Register] window

H

e EME 14 s IeA s ehRE e | 581 P

mm Ll] 1 ok d 1

o il Ld -, i SF_THIT AliDRERcF

HE FF 1d sl -|

B AT pEET NP

BIE aM call B HIT_FaH_ELE1 ; imlbialice AH GaiwEnl Gade ol
L | ibEm, e
;; ::: DEE"F !‘! Eext Cade el
13 | il BF. A

Feten
Lt
Far AET

P 20547 BOABCBETF
pic? PEET da¥ IR aE8d ABBEEBEA
WS4 CELL Wei FIF AR UETFe1 MESE-D BETE :::::: ::::::::

vd8 LE &, ol
T sE? eRB LB AF, & PAOERd ARBAREAR
tam Start o(RPE S48 Lb 2, b FAaERg AREAABEA
Eam Fmn ad (ST RRR LD 0. Bk FROEEA ADBADERA
jpenrpeal T TN

Segraeat M PSR AERY ME, ::l:;l II:II::1
F74 ALFE HE, @ ! Y :
Erag dnly A " FIrArF s rddrddnd
PEFPER PR PER AT
Urire iy FELipsd Fddredad
Braf & Mrite Area cBEEB, G881, B6c, @ich..GBct, Bacd, G81, G2, Gien, R AT YR Y
Wi, ok .ok, B, @, B, el 2R, B, PRl et i R L
BROA, BRIT, BA2, OREN, BAFE, , BREA ERFIFF AP EEPid
Frmned frra (M. BGEP, GBS, MR, BRI, ARl 0Bet. B BEF, A1 MEEE S Fr BB BB
FlE..EAF, @183, EI97..E9F, @ad..@sb, B, .HEF, @ PRA NS S AEGE NN
ERD, . IGRF, R, EWD..IWF, e, E0sF. GTD,.0EnF, B el it s
BHD, L BOHF, EINE. RV .EMF, B30 8ef. 0D, EmF, & SR e
BRED. BT, @43, BRO7..BWOF, Bhad_.@hal. BehD. WP, BEA RS SRR B
Brdib. . FeF, SFFl-.BFFd EE R ERE M EERERER]

J.Id FATPER PP P PRI

i | =1

b — 1

[Command] window [Data] window

Depending on the computer used, the windows may differ from the above display depending on the
screen resolution, the number of dots in system font, etc. Adjust the size of each window to suit needs.

124

CHAPTER 9: DEBUGGER

Features common to all windows

(1) Open/close and activating a window
All windows except [Command] can be closed or opened.
To open a window, select the window name from the [View] menu. When a command is executed, the
corresponding window opens if the command uses the window for displaying the executed results.
To close a window, click the [Close] box on the window. After initialization, the state of the screen
including the position and size of the windows will return to the same as the last time the debugger
was terminated.
The opened windows are listed in the [Window] menu. Selecting one from the list activates the
selected window. It can also be done by simply clicking on an inactive window. Furthermore, pressing
[Ctr]]+[Tab] switches the active window to the next open window.

(2) Resizing and moving a window
Each window can be resized as needed by dragging the boundary of the window with the mouse. The
[Minimize] and [Maximize] buttons work in the same way as in general Windows applications. Each
window can be moved to the desired display position by dragging the window's title bar with the
mouse. However, windows can only be resized and moved within the range of the application
window.

(3) Scrolling a window
All windows can be scrolled. (The [Register] window can be scrolled only when its size is reduced.)
Use one of the following three methods to scroll a window:

1. Click on an arrow button or enter an arrow key (cursor movement) to scroll a window one line at a
time.

2. Click on the scroll bar of a window to scroll it one page (current window size) at a time.

3. Drag the scroll bar handle of a window to move it to the desired area.

(4) Other
The opened windows can be cascaded or tiled using the [Window] menu.

Note for display
The windows may display incorrect contents caused by incompatibility between the OS and the video
card or driver. If there is any problem try the following methods to fix it.
e Update the driver to the latest version if an older version has been installed.
Please inquire about the version to the distributor.
o If the driver allows selection of extended function such as acceleration, turn the functions off.
e If the problem is not fixed using the above, try the standard driver supplied with Windows95 (NT).

125

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.4.2 [Command] Window

i Command =] =
>ma ‘.I
Map Information: |
Rom Size :1008

Rom Start Address 0088
Rom End Address I BFFF
Ram Size :1888
Ram Start Address :-8600
Ram End Address tBFFF

--1/70 Area List :0p808..88FF, A180..81FF, O280..082fF, 038B0..03FF, DUBD..
--Segment Area List :@050..887F, O450..047F
Read Only Area :@@91, @895, @6c?, ABca, \AO8F8.._.80Fc, 6191, @195, B@1c9,

G491, 8495, B4c?, Bhca, O4LFE..64fcC
Write Only Area H DL LR
Read & Write Area :-0888, 6681, 08c1, @6ck..06c6é, 66c8, 60d1, 868d2, O0ed,
82c1, B2ch..BZ2chd, 82cB, 62d1, 62d2, 062ed, 02f0..82f4,
G4cE, O4d1, 64d2, B4eB8, O4F0..04FY4
Unused Area :BB882..Q68f, 8093, 06097..089F, 0O0a1..088af, 60b3..A@6bF, A
a182. .@18F, 6193, 8197..819f, 81at1..81af, 61b3..81bF, @

-

The [Command] window is used to do the following:

(1) Entering debug commands
When the prompt ">" appears in the [Command] window, the system will accept a command entered
from the keyboard.
If some other window is selected, click on the [Command] window. A cursor will blink at the prompt,
indicating that readiness to input a command. (Refer to Section 9.7.1, "Entering Commands from
Keyboard".)

(2) Displaying debug commands selected from menus or tool bar
When a command is executed by selecting the menu item or tool bar button, the executed command
line is displayed in the [Command] window.

(3) Displaying command execution results
The [Command] window displays command execution results. However, some command execution
results are displayed in the [Source], [Data], [Register], or [Trace] windows. The contents of these
execution results are displayed when their corresponding windows are open. If the corresponding
window is closed, the execution result is displayed in the [Command] window.
When writing to a log file, the content of the write data is displayed in the window. (Refer to the
description for log command.)

Note: The [Command] window cannot be closed.

126

9.4.3 [Source] Window

CHAPTER 9: DEBUGGER

- M= 2
Swasch Labat | =] E

7 [~

& iwwwws BOOT, LOOP sssss

¥ +global THIT_RAW_BLE1 7 =ubroutine

10 .qlobal THE RAH_BLEK1 » subroutine

"

1 ~org dx1dd J

12 BOOT ;

a, 5P THIT ADDRS >

1% MM Fedl 1d wphi & 1d =ph,a

1€ | i 0 id a, Azl 1d @, SF_THIT_ADDRES=F

17| Mz FFA 14 Pl s 1d =pl.a

18|k ekE peet Ox i#]

1% | Mns kon call BxD rall THIT_RAH_BLEY i initialize RA)

k|
* F1|mMBE ekF preb IxE
EElmar W call A

L]

(=]

LDOF:
call THE_RiH_BLK1

oincrement AAH =
| ¥

The [Source] window displays the contents of (1) to (3) listed below. This window also allows breakpoints

to be set and words or labels to be found.

(1) Unassembled codes and source codes

You can choose one of the following three display modes:

1. Mix mode

[Mix] button

gram above.)

2. Source mode

(selected by the [Mix] button or entering the m command)
In this mode, the window displays the addresses, codes, unassembled contents,
and corresponding source line numbers and source statements. (See the dia-

(selected by the [Source] button or entering the sc command)

In this mode, the window displays the source line numbers and source state-

[Source] button ments.

[Unassemble] button

3. Unassemble mode
(selected by the [Unassemble] button or entering the # command)
In this mode, the window displays the addresses, codes, and unassembled
contents. This format is selected when the debugger starts up.

All program code in the 8K address space can be referenced by scrolling the window. When a break
occurs, the display content is updated so that the address line to be executed next is displayed, with

the entire line highlighted for identification.

Use the scroll bar or arrow keys to scroll the window. Or enter a command to display the program

code beginning with a specified position.

[JDisplay of source line numbers and source statements
The source line numbers and source statements can only be displayed when the IEEE-695 absolute
object file including debugging information for the source display is loaded. Furthermore, the source
statements that are actually displayed from this file are those which have had the -g option specified

by the assembler.

[JUpdating of display

When a program is loaded and executed (g, g7, s, n, or rst command), or the memory contents are
changed (as, pe, pf, or pm command), the display contents are updated. In this cace the [Source]

window updates its display contents so that the current PC address can always be displayed. The
display contents are also updated when the display mode is changed.

127

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

(2) Current PC

The address line indicated by the current PC (program counter) is highlighted. (Address 0x0100 in the

diagram)

(3) PC breakpoint

The address line where a breakpoint is set is indicated by a red 0 mark at the beginning of the line.
(Address 0x0106 in the diagram)

(4) Break setting at the cursor position
Place the cursor at an address line where a breakpoint is to be set (not available for a source-only line).

s

[Break] button

=

[Go to Cursor] button

Then click on the [Break] button. A PC breakpoint will be set at that address. If
the same is done at the address line where a PC breakpoint has been set, the
breakpoint will be cleared.

If the [Go to Cursor] button is clicked, the program will execute beginning
with the current PC position, and program execution breaks at the line where
the cursor is located.

(5) Finding labels and words
Any labels and words can be found using the [Search Label] pull-down list box or the [Find] button
on the [Source] window.

Search Label:

[

BOOT:

INC_Rak_BLE: [Search Label] pull-down list box

INIT_Riéh_BLET:

LOOP:

ﬂl [Find] button

128

CHAPTER 9: DEBUGGER

9.4.4 [Data] Window
(1) Displaying data memory contents

-
mooooe@Ta-TMw-TMwoooooo@o@aM

b - R T i R Y - -]
o@D DD D00 @@

-
OO EEEE TS T OO E S -

-
b I T T - - R i e s B Y - -]

oo oEeE~ThwoE~T N o oD@ @@ O
e I ED ED ED ED e e et tw Y M D D DS S D D SR

\EE@@BE\\.@\\\\E@@EBEEEW
- - I - R L N NN - - R
oo @totstm st o oo o@D
- e - - - - - -l - -]
oo E@tt s st o DD @@ @ O
OO EE s e e L I D DD DD @ m
. e DD @E~TsSS R RsshwDoooo@@@Mm

The [Data] window displays the memory dump

results in hexadecimal numbers.

The symbols that appear in the [Data] window

indicate the following status:

/: Unused address

-: Write-only I/O address

I: An address that contains a write-only bit or a
read-only bit

* Updating of display
The display contents of the [Data] window are
updated automatically when memory contents are
modified with a command (de, df, or dm command),
or by direct modification. After executing the pro-
gram (g, gr, s, n, or rst command), the display con-
tents are also updated. To refresh the [Data] window
manually, execute the dd command or click the
vertical scroll bar.

e OO EEE S e e A DD D@D @@ T

o

-

(2) Direct modification of data memory contents
The [Data] window allows direct modification of data memory contents. To modify data on the [Data]
window, place the cursor at the front of the data to be modified or double click the data, and then type
a hexadecimal character (0-9, a—f). Data in the address will be modified with the entered number and
the cursor will move to the next address. This allows successive modification of a series of addresses.

9.4.5 [Register] Window

PC ki)

A HL

B o f

Y :aa3

¥ tTFF

SP =7d

IDZC :@a818

Current Code:
LD A, B=8

Next Code
LD SPH, A

egs

fed

(1) Displaying register contents and fetched code

The [Register] window displays the contents of the program counter (PC), A
register, B register, X register, Y register, stack pointer (SP) and flags (I, D, Z,
and C). The currently fetched instruction (at the PC address) and the next
one are also displayed.

[JUpdating the display
The display is updated when registers are dumped (rd command), when
register data is modified (rs command), when the CPU is reset (rst com-
mand), or after program execution (g, g, s, or n command) is completed.
When the on-the-fly function is enabled, the PC address is updated in real
time at 0.5 second intervals while the program is being executed. Other
contents are left unchanged until the program is stopped by a break.

(2) Direct modification of register contents
The [Register] window allows direct modification of register contents. To modify data on the [Regis-
ter] window, select (highlight) the data to be modified and type a hexadecimal number (0-9, a—f), then
press [Enter]. The register data will be modified with the entered number.

129

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.4.6 [Trace] Window

trace fetch register trace data -
Loc CODE PC AB X ¥ IDZC HemOP Other0P
g eB8 LD A, Ox8 @168 8 £ 8683 7FFf 06818

ges1 fed LD SPH, A @181 8 £ 8683 7FFf 066818

gee2 eBd LD A, Ox8 @182 8 £ 883 7FFf 06818

8883 ff@ LD SPL, f 8183 8 £ 6683 7fFf 4618

a6e4y eh42 PSET Bx2 @184 8 £ 6683 FFFf A4e1e

8885 488 CALL Bx8 8185 8 f 683 7FFf 686818 WOFF=1 WOFE=8 WO7D=6

geas eB8 LD A, BxA@ 8268 8 £ 6683 7fFf 4618

aea7 e88 LD XP, A 8281 8 £ 6683 7ff 4618

aeag bea LD X, 6xA 8282 8 £ 668 7Ff 4818

aBa? 988 LBPX MX, Ox8 8282 8 f 681 7ff 0618 We88=0 uaa1=8

Ag18 988 LBPX MX, 8x8 8284 8 f 083 7ff 06018 We82=0 uAA3=8

a | v

The [Trace] window displays the trace result up to 8,192 cycles by reading it from the ICE62's trace
memory.

The following lists the trace contents:

¢ Traced cycle number

e Fetched code and disassembled contents

* Register contents (PC, A, B, X, Y, and flags)

e Memory access status (R/W, address, data)

This window also displays the trace data search results by the s command.
[JUpdating of display:
The contents of the [Trace] window are cleared when the target program is executed. During this
period, the [Trace] window does not accept scrolling and resizing operations.

To display the latest contents of this window, execute the #d command or temporarily close the [Trace]
window and then reopen it.

130

9.5

CHAPTER 9: DEBUGGER

Tool Bar

This section outlines the tool bar available with the debugger.

9.5.1 Tool Bar Structure

The tool bar has 14 buttons, each one assigned to a frequently used command.

O| == mla|=| »[[s|>]r|o| o]

The specified function is executed when you click on the corresponding button.

9.5.2 [Key Break] Button

X,

This button forcibly breaks execution of the target program. This function can be used to cause the
program to break when the program has fallen into an endless loop.

9.5.3 [Load File] and [Load Option] Buttons

[Load File] button
This button reads an object file in the IEEE-695 format into the debugger. It performs the same
function when the If command is executed.

[Load Option] button
This button reads a program or optional HEX file in Intel-HEX format into the debugger. It
performs the same function when the lo command is executed.

9.5.4 [Source], [Mix], and [Unassemble] Buttons

These buttons open the [Source] window or switch over the display modes.

[Source] button
This button switches the display of the [Source] window to the source mode. The [Source] window
opens if it is closed. This button performs the same function when the sc command is executed.

[Unassemble] button

This button switches the display of the [Source] window to the unassemble mode. The [Source]
window opens if it is closed. This button performs the same function when the # command is
executed.

[Mix] button

This button switches the display of the [Source] window to the mix mode (unassemble & source).
The [Source] window opens if it is closed. This button performs the same function when the m
command is executed.

9.5.5 [Go], [Go to Cursor], [Go from Reset], [Step], [Next], and [Reset] Buttons

[Go] button
This button executes the target program from the address indicated by the current PC. It performs the
same function when the g command is executed.

[Go to Cursor] button

This button executes the target program from the address indicated by the current PC to the cursor
position in the [Source] window (the address of that line). It performs the same function when the
g <address> command is executed.

Before this button can be selected, the [Source] window must be open and the address line where
the program is to break must be clicked. Selecting a break address by clicking on the address line
is valid for only the lines that have actual code, and is invalid for the source-only lines.

131

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

) [Go from Reset] button
——1 This button resets the CPU and then executes the target program from the program start address
(0x100). It performs the same function when the gr command is executed.

5 [Step] button
——1 This button executes one instruction step at the address indicated by the current PC. It performs
the same function when the s command is executed.

LR [Next] button
—— This button executes one instruction step at the address indicated by the current PC. If the instruc-
tion to be executed is call or calz, it is assumed that a program section until control returns to the
next address constitutes one step and all steps of their subroutines are executed. This button
performs the same function when the n command is executed.

il [Reset] button

This button resets the CPU. It performs the same function when the rst command is executed.

9.5.6 [Break] Button

ﬂl Use this button to set and clear a breakpoint at the address where the cursor is located in the
[Source] window. This function is valid only when the [Source] window is open. Note that select-
ing a break address by clicking on the address line is valid for only the lines that have actual code
and is invalid for the source-only lines.

9.5.7 [Help] Button
? | By clicking on this button, a help window appears on the screen, displaying the contents of help topics.

132

9.6 Menu

CHAPTER 9: DEBUGGER

This section outlines the menu bar available with the debugger.

9.6.1 Menu Structure

The menu bar has eight menus, each including frequently-used commands.

File Fun Break Trace iew Option “indow Help

9.6.2 [File] Menu

Load File...
Load Optian...

Exit

9.6.3 [Run] Menu

Go
3o to Curgor

G from Beset

Step
Ment

Cormmand File...

Feset CPL

[Load File...]
This menu item reads an object file in the IEEE-695 format into the debugger. It
performs the same function when the If command is executed.

[Load Option...]
This menu item reads a program or optional HEX file in Intel-HEX format into
the debugger. It performs the same function when the lo command is executed.

[Exit]
This menu item quits the debugger. It performs the same function when the g4
command is executed.

[Go]
This menu item executes the target program from the address indicated by the
current PC. It performs the same function when the ¢ command is executed.

[Go to Cursor]

This menu item executes the target program from the address indicated by the
current PC to the cursor position in the [Source] window (the address of that
line). It performs the same function when the g <address> command is executed.
Before this menu item can be selected, the [Source] window must be open and
the address line where the program is to break must be clicked. Selecting a break
address by clicking on the address line is valid for only the lines that have actual
code, and is invalid for the source-only lines.

[Go from Reset]

This menu item resets the CPU and then executes the target program from the
program start address (0x100). It performs the same function when the gr command
is executed.

[Step]
This menu item executes one instruction step at the address indicated by the
current PC. It performs the same function when the s command is executed.

[Next]

This menu item executes one instruction step at the address indicated by the
current PC. If the instruction to be executed is call or calz, it is assumed that a
program section until control returns to the next address constitutes one step and
all steps of their subroutines are executed. This menu item performs the same
function when the n command is executed.

[Command File...]
This menu item reads a command file and executes the debug commands written
in that file. It performs the same function when the com command is executed.

[Reset CPU]
This menu item resets the CPU. It performs the same function when the rst
command is executed.

133

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.6.4 [Break] Menu

Breakpoint Set...

Data Break...
Beqister Break...
Multiple Break...

Break All Clear

9.6.5 [Trace] Menu

Trace Area...
Trace Condition...
Trace Search...
Trace File...

9.6.6 [View] Menu

Command
Program r
Data Dump
Beaister
Trace

v Toolbar
v Statusz Bar

134

[Breakpoint Set...]
This menu item displays, sets or clears PC breakpoints using a dialog box. It
performs the same function as executing the bp command.

[Data Break...]
This menu item displays, sets or clears data break conditions using a dialog
box. It performs the same function as executing the bd command.

[Register Break...]
This menu item displays, sets or clears register break conditions using a dialog
box. It performs the same function as executing the br command.

[Multiple Break...]
This menu item displays, sets or clears multiple break conditions using a
dialog box. It performs the same function as executing the bm command.

[Break All Clear]
This menu item clears all break conditions. It performs the same function as
executing the bac command.

[Trace Area...]

This menu item sets or clears program address ranges for tracing executed
cycles using a dialog box. It performs the same function as executing the ta or
tac command.

[Trace Condition...]
This menu item sets a trace condition (Start, Middle, End) using a dialog box.
It performs the same function as executing the f¢ command.

[Trace Search...]

This menu item searches trace information from the trace memory under the
condition specified using a dialog box. It performs the same function as
executing the ts command.

[Trace File...]

This menu item saves the specified range of the trace information displayed in
the [Trace] window to a file. It performs the same function as executing the tf
command.

[Command]
This menu item activates the [Command] window.

[Program]

This menu item opens or activates the [Source] window and displays the
program from the current PC address in the display mode selected from the
sub menu items. These sub menu items perform the same functions as execut-
ing the u, sc, and m command, respectively.

Urassembi

Data Durmp Source Dizplay
Beaqizter Mix Mode

[Data Dump]
This menu item opens or activates the [Data] window and displays the data
memory contents from the memory start address.

Command

Program 3

Data Durmp
Beqizter
Trace

v Toolbar
v Statusz Bar

CHAPTER 9: DEBUGGER

[Register]
This menu item opens or activates the [Register] window and displays the
current values of the registers.

[Trace]
This menu item opens or activates the [Trace] window and displays the trace
data sampled in the ICE trace memory.

[Toolbar]
This menu item shows or hides the toolbar.

[Status Bar]
This menu item shows or hides the status bar.

9.6.7 [Option] Menu

Loqg...
Hecaord...

Mode Setting...

Fom Tepe...

Self Diagnoziz

[Log...]
This menu item starts or stops logging using a dialog box. It performs the same
function as executing the log command.

[Record...]
This menu item starts or stops recording of a command execution using a dialog
box. It performs the same function as executing the rec command.

[Mode Setting...]

This menu item sets the on-the-fly display, break and execution counter modes
using a dialog box. It performs the same functions as executing the otf, be/bsyn,
and tim command.

[Rom Type...]
This menu item specifies the program ROM type which is installed in the ICE
ROM socket. It performs the same function as executing the rom command.

[Self Diagnosis]
This menu item displays the results of the diagnostic test in the ICE62. It per-
forms the same function as executing the chk command.

9.6.8 [Windows] Menu

Wafindow

LCazcade
Tile

v 1 Command
2 Mix
2 Register
4 [rata
A Trace

9.6.9 [Help] Menu

Contents...
About DBEZ...

[Cascade]
This menu item cascades the opened windows.

[Tile]

This menu item tiles the opened windows.

This menu shows the currently opened window names. Selecting one activates
the window.

[Contents...]
This menu item displays the contents of help topics.

[About Db62...]
This menu item displays an About dialog box for the debugger .

135

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.7 Method for Executing Commands

All debug functions can be performed by executing debug commands. This section describes how to
execute these commands. Refer to the description of each command for command parameters and other
details.

To execute a debug command, activate the [Command] window and input the command from the
keyboard. The menu and tool bar can be used to execute frequently-used commands.

9.7.1 Entering Commands from Keyboard

Select the [Command] window (by clicking somewhere on the [Command] window). When the prompt
">" appears on the last line in this window and a cursor is blinking behind it, the system is ready to
accept a command from the keyboard.

Input a debug command at the prompt position. The commands are not case-sensitive; they can be input

in either uppercase or lowercase.
General command input format
>command [parameter [parameter ... parameter]] O

® A space is required between a command and parameter.
® Space is required between parameters.

Use the arrow keys, [Back Space] key, or [Delete] key to correct erroneous input.

When you press the [Enter] key after entering a command, the system executes that command. (If the
command entered is accompanied by guidance, the command is executed when the necessary data is
input according to the displayed guidance.)

Input example:
>g0 (Only a command is input.)
>com test.cmd O (A command and parameter are input.)

Command input accompanied by guidance
For commands that cannot be executed unless a parameter or the commands that modify the existing
data are specified, a guidance mode is entered when only a command is input. In this mode, the
system brings up a guidance field, so input a parameter there.

Input example:

>if 0O
File name ?: testabs [0 .. Input data according to the guidance (underlined part).
>

Commands requiring parameter input as a precondition

The If command shown in the above example reads an absolute object file into the debugger. Com-
mands like this that require an entered parameter as a precondition are not executed until the param-
eter is input and the [Enter] key pressed. If a command has multiple parameters to be input, the
system brings up the next guidance, so be sure to input all necessary parameters sequentially. If the
[Enter] key is pressed without entering a parameter in some guidance session of a command, the
system assumes the command is canceled and does not execute it.

136

CHAPTER 9: DEBUGGER

« Commands that replace existing data after confirmation
The commands that rewrite memory or register contents one by one provide the option of skipping
guidance (do not modify the contents), returning to the immediately preceding guidance, or terminat-
ing during the input session.

[Enter] key Skips input.
|G A Returns to the immediately preceding guidance.
[al key..cccenennnn Terminates the input session.

Input example:

>deO ... Command to modify data memory.

Data enter address ? : o0 ... Inputs the start address.

0000 A: 100 ... Modifies address 0x0000 to 1.

0001 A: 7O ... Returns to the immediately preceding address.
0000 1: 0O ... Inputs address 0x0000 back again.

0001 A: O

0002 A: O

0001 A: gO ... Terminates the input session.

>

Numeric data format of parameter
For numeric values to be accepted as a parameter, they must be input in hexadecimal numbers for
almost all commands. However, some parameters accept decimal or binary numbers.
The following characters are valid for specifying numeric data:
Hexadecimal:0-9, a—f, A-F, O
Decimal: 0-9
Binary: 0,1, 0
("D is used to mask bits when specifying a data pattern.)

Specification with a symbol
For address specifications, symbols defined in the source can also be used. However, it is necessary to
load an absolute object file that contains debug information.
Symbols should be used as follows:

Global symbol ~ @<symbol name> e.g. @QRAM_BLK1
Local symbol @<symbol name>@<source file name> e.g. @LOOP@main.s

Refer to the description of each command for parameter input examples.

Step execution using the [Enter] key

When the [Enter] key is pressed without entering any command, the debugger single steps the
instruction at the current PC address if a program has been loaded.

137

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.7.2 Executing from Menu or Tool Bar

The menu and tool bar are assigned frequently-used commands as described in Sections 9.5 and 9.6. A
command can be executed simply by selecting desired menu command or clicking on the tool bar button.
Table 9.7.2.1 lists the commands assigned to the menu and tool bar.

Table 9.7.2.1 Commands that can be specified from menu or tool bar

Command Function Menu Button
If Load IEEE-695 absolute object file [File | Load File...] g
lo Load Intel-HEX file [File | Load Option...] E
g Execute program successively [Run | Go] ﬂ
g <address> |Execute program to <address> successively [Run | Go to Cursor] ﬂ
ar Reset CPU and execute program successively [Run | Go from Reset] g
S Step into [Run | Step] H
n Step over [Run | Next] ﬂ
com Load and execute command file [Run | Command File...] -
rst Reset CPU [Run | Reset CPU] ﬂ
bp, bpc Set/clear PC breakpoint [Break | Breakpoint Set...] ﬁ
bd, bdc Set/clear data break [Break | Data Break...] -
br, brc Set/clear register break [Break | Register Break...] -
bm, bmc Set/clear multiple break [Break | Multiple Break...] -
bac Clear all break conditions [Break | Break All Clear] -
ta, tac Set/clear trace area [Trace | Trace Area...] -
tc Set trace condition [Trace | Trace Condition...] -
ts Search trace information [Trace | Trace Search...]
tf Save trace information to a file [Trace | Trace File...] -
u Unassemble display [View | Program | Unassemble] E
sc Source display [View | Program | Source Display]
m Mix display [View | Program | Mix Mode]
dd Dump data memory [View | Data Dump] -
rd Display register values [View | Register] -
td Display trace information [View | Trace]
log Turn log output on or off [Option | Log...] -
rec Record commands to a command file [Option | Record...] -
otf, be/bsyn, tim | Set modes [Option | Mode Setting...] -
rom Set ROM type [Option | Rom Type...] -

138

CHAPTER 9: DEBUGGER

9.7.3 Executing from a Command File

Another method for executing commands is to use a command file that contains descriptions of a series
of debug commands. By reading a command file into the debugger the commands written in it can be
executed.

Creating a command file
Create a command file as a text file using an editor.
Although there are no specific restrictions on the extension of a file name, Seiko Epson recommends
using ".cmd".

Command files can also be created using the rec command. The rec command creates a command file
and saves the executed commands to the file.

Example of a command file

The example below shows a command group necessary to read an object file and an option file.
Example: File name = startup.cmd

If test.abs
lo testf.hex
lo tests.hex

A command file to write the commands that come with a guidance mode can be executed. In this case,
be sure to break the line for each guidance input item as a command is written.

Reading in and executing a command file

There are two methods to read a command file into the debugger and to execute it, as described
below.

(1) Execution by the start-up option
By specifying a command file in the debugger start-up command, one command file can be executed
when the debugger starts up.
If the above example of a command file is specified, for example, the necessary files are read into the
debugger immediately after the debugger starts up, so everything is ready to debug the program.

Example: Startup command of the debugger
db62 startup.cmd ics62xxp.par
(2) Execution by a command
The debugger has the com commands available that can be used to execute a command file.
The com command reads in a specified file and executes the commands in that file sequentially in the

order they are written. An execution interval between the commands can be specified up to 30
seconds.

Example: com startup.cmd

The commands written in the command file are displayed in the [Command] window.

Restrictions

Another command file can be read from within a command file. However, nesting of these command
files is limited to a maximum of five levels. An error is assumed and the subsequent execution is
halted when the com command at the sixth level is encountered.

139

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.7.4 Log File

The executed commands and the execution results can be saved to a file in text format that is called a "log
file". This file allows verification of the debug procedures and contents.
The contents displayed in the [Command] window are saved to this file.

Command example

>log tst.log

After the debugger is set to the log mode by the log command (after it starts outputting to a log file),
the log command toggles (output turned on in log mode ~ output turned off in normal mode).
Therefore, you can output only the portions needed can be output to the log file.

Display of [Command] window in log mode
The contents displayed in the [Command] window during log mode differ from those appearing in
normal mode.

(1) When executing a command when each window is open
(When the window that displays the command execution result is opened)
Normal mode: The contents of the relevant display window are updated. The execution results are
not displayed in the [Command] window.
Log mode: The same contents as those displayed in the relevant window are also displayed in the
[Command] window. However, changes made to the relevant window by scrolling or
opening it are not reflected in the [Command] window.

(2) When executing a command while each window is closed
When the relevant display window is closed, the execution results are always displayed in the
[Command] window except for the program display commands (u, sc, m), regardless of whether
operation is in log mode or normal mode.

For the display format in the [Command] window, refer to each command description.

140

CHAPTER 9: DEBUGGER

9.8 Debug Functions

This section outlines the debug features of the debugger, classified by function.
Refer to Section 9.9, "Command Reference" for details about each debug command.

9.8.1 Loading Program and Option Data

Loading files
The debugger can read a file in IEEE-695 format or Intel-HEX format in the debugging process.
Table 9.8.1.1 lists the files that can be read by the debugger and the load commands.

Table 9.8.1.1 Files and load commands

File type Data type Ext. Generation tool Com. Menu Button
IEEE-695 | Program/data .abs |Linker If [File | Load File...] ﬁ
Intel-HEX | Program (4 high-order bits)| h.hex | HEX convertor lo [File | Load Option...] @

Program (8 low-order bits)| l.Lhex |HEX convertor

Function option f.hex |Function option generator
Segment option s.hex | Segment option generator
Melody data a.hex [Melody assembler

(Ext. = Extension, Com. = Command)
Loading ROM data

The debugger can load a program from the program ROMs installed in the ICE62.
The following three commands are provided for handling ROM data.

Table 9.8.1.2 ROM access commands

Function Command Menu
Load program from ROM rp -
Verify ROM data with emulation memory vp -
Set ROM type rom [Option | Rom Type...]

The ROM type of the ICE62 must be specified using the rom command before loading or verifying
ROM data.

Debugging a program with source display
To debug a program using the source display and symbols, the object file must be in IEEE-695 format
read into the debugger. If any other program file is read, only the unassemble display is produced.

141

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.8.2 Source Display and Symbolic Debugging Function

The debugger allows program debugging while displaying the assembly source statements. Address
specification using a symbol name is also possible.

Displaying program code

The [Source] window displays the program in the specified display mode. The display mode can be
selected from among the three modes: Unassemble mode, Source mode, Mix mode.

Table 9.8.2.1 Commands/tool bar buttons to switch display mode

Display mode | Command Menu Button
Unassemble u [View | Program | Unassemble] E]
Source sc [View | Program | Source Display]
Mix m [View | Program | Mix Mode]
(1) Unassemble mode
m Unssm HEE
Swasch Labat |]
EEEE CIPE WHATTEMELE =
MO FED LB SFH, & =
0iRE EO0 LB @, Oxd
MOE FF0 LB SFL, B
D10k Ekd FLET Ok
MUs LO0 CELL B0
® M ERF PUET osP
M7 ke CELL B
0i0E Oné P asé
MUF FFF HIET
ni0e FFF HIFT
MOE FFF HIFT
D10E FFF HOET
MOE FFF HIFT
MOE FFF HIET
MO FEF HIET [

In this mode, the debugger displays the program codes after unassembling into mnemonics.

(2) Source mode

W S e Tl pe

Swasch Labat | -]
1" =]
1¥] [T
13 | BT 5

[N T T
15 1d wph &
16 (1] a, SF_IHIT_RBDEEdxF
17 14 wpl .8
1% Calll IHIT_R&H_ELE1 v initialize RAW block 1
1% | LiDF ;

L Call IHE_RaH_BLE1 v increment RAH block 1
b3 | ip LD i dnFinity loop
s
FF | semmnn BRH hlock =ssss
h 7
5 (g hann
] .Dbmk RRH ELE1, &
) E

In this mode, the source that contains the code at the current PC address is displayed like an editor
screen. This mode is available only when an absolute object file that contains source debugging
information has been loaded.

142

CHAPTER 9: DEBUGGER

(3) Mix mode
- M= 2
Swasch Labat | =] E
7 [~
& iwwwws BOOT, LOOP sssss
¥ +global THIT_RAW_BLE1 7 =ubroutine
10 .qlobal THE RAH_BLEK1 » subroutine
"
1 ~org dx1dd J
12 BOOT ;
a, 5P THIT ADDRS >
1% MM Fedl 1d wphi & 1d =ph,a
1€ | i 0 id a, Azl 1d @, SF_THIT_ADDRES=F
17| Mz FFA 14 Pl s 1d =pl.a
18|k ekE peet Ox i#]
1% | Mns kon call BxD rall THIT_RAH_BLEY i initialize RA)
0 LDDP:
* | mMng Lt preb e =]
FElmar LHE call AGnk call THE_RAH_BLET o increment AAH r|
| | ¥

In this mode, both unassembled codes and sources are displayed like an absolute list. This mode is
available only when an absolute object file that contains source debugging information has been
loaded.

Refer to Section 9.4.3, "[Source] Window" for details about the display contents.

Symbol reference

@

&)

©)

When debugging a program after reading an object file in IEEE-695 format, the symbols defined in the
source file can be used to specify an address. This feature can be used when entering a command
having <address> in its parameter from the [Command] window or a dialog box.

Referencing global symbols
Follow the method below to specify a symbol that is declared to be a global symbol/label by the
.global or .comm pseudo-instruction.

@<symbol>

Example of specification:
>m @BOOT
>de @RAM_BLK1

Referencing local symbols

Follow the method below to specify a local symbol/label that is used in only the defined source file.
@<symbol>@<file name>

The file name here is the source file name (.s) in which the symbol is defined.

Example of specification:

>bp @SUBl1@test.s

Displaying symbol list
All symbols used in the program and the defined addresses can be displayed in the [Command]
window.

Table 9.8.2.2 Command to display symbol list
Function Command
Displaying symbol list sy

143

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.8.3 Displaying and Modifying Program, Data, and Register

The debugger has functions to operate on the program memory, data memory, and registers. Each
memory area is set to the debugger according to the map information that is given in a parameter file.

Operating on program memory area
The following operations can be performed on the program memory area:

Table 9.8.3.1 Commands to operate on program memory

Function Command
Entering/modifying program code pe
In-line assemble as
Rewriting specified area pf
Copying specified area pm

(1) Entering/modifying program code
The program code at a specified address is modified by entering hexadecimal data.

(2) In-line assemble
The program code at a specified address is modified by entering a mnemonic code.

(3) Rewriting specified area
An entire specified area is rewritten with specified code.
(4) Copying specified area

The content of a specified area is copied to another area.

Operating on data memory area

The following operations can be performed on the data memory areas (RAM, display memory, I/O

memory):
Table 9.8.3.2 Commands/menu item to operate on data memory
Function Command Menu
Dumping data memory dd [View | Data Dump]
Entering/modifying data de -
Rewriting specified area df -
Copying specified area dm -
(1) Dumping data memory

EFL The contents of the data memory are displayed
in hexadecimal dump format. If the [Data]
window is opened, the contents of the [Data]
window are updated; if not, the contents of the
data memory are displayed in the [Command]
window.

(2) Entering/modifying data
Data at a specified address is rewritten by

entering hexadecimal data. Data can be directly

-
b - T T I T i e B S - - - |

oo ESseTIENS TN oo oD@ @
R R . N N - |

modified on the [Data] window.

(3) Rewriting specified area
An entire specified area is rewritten with

-
OO OOEEOEEE TS TOOOO S S -

-
oo EETES T~ TM~ooo o @@ @ Wk
LN R Y- R
- E-E-E-E- R i har i L s

specified data.

(4) Copying specified area
The content of a specified area is copied to

\EBEEE@\\E\\\\BBEEE@BBW
- - - - R NN - - NN N
moooooostatttmthoooooooo D
e T R e i - - - -]
mooooo@sttmt st DD DD DD @ O
OO EEE S S s L o DD
R R Ra e e e S S N N N -~~~ - -]

|v e IO EE @t L L A oD D@D
\i

another area.

144

CHAPTER 9: DEBUGGER

Operating registers
The following operations can be performed on registers:

Table 9.8.3.3 Commands/menu items to operate registers

Function Command Menu
Displaying registers rd [View | Register]
Modifying register values rs -

illi Register [[ol=]| (1) Displaying registers

PC :@188 Register contents can be displayed in the [Register] or [Command]

f :e window.

B H Registers: PC, A, B, X, Y, SP and IDZC flags

ﬁ ?Ei While the program is being executed, the PC address is updated in real
SP :7d time every 0.5 seconds by the on-the-fly function.

IDZC :@@18

(2) Modifying register values

K t Code:ef8 . .
ur:;nn : : ¢ The contents of the above registers can be set to any desired value.
» B% The register values can be directly modified on the [Register] window.
Next Code :fed
LD SPH, A

145

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.8.4 Executing Program

The debugger can execute the target program successively or execute instructions one step at a time
(single-stepping).

Successive execution

(1) Types of successive execution
There are two types of successive execution available:
¢ Successive execution from the current PC
* Successive execution from the program start address (0x0100) after resetting the CPU

Table 9.8.4.1 Commands/menu items/tool bar buttons for successive execution
Function Command Menu Button

Successive execution from current PC g [Run | Go] —

[Run | Go to Cursor] =

Successive execution after resetting CPU ar [Run | Go from Reset] 7

(2) Stopping successive execution
Using the successive execution command (g <address>), can specify a temporary break address that is
only effective during program execution.
The temporary break address can also be specified from the [Source] window.
If the cursor is placed on an address line in the [Source] window and the [Go to Cursor] button
clicked, the program starts executing from the current PC address and breaks after executing the
instruction at the address the cursor is placed.

Except being stopped by this temporary break, the program continues execution until it is stopped by
one of the following causes:

® Break conditions set by a break set up command are met.

e The [Key Break] button is clicked or the [Esc] key is pressed.

e The [Break] or [Reset] switch on the ICE62 is pushed.

el [Key Break] button OWhen the program does not stop, use this button to forcibly stop it.

(3) On-the-fly function
The ICE62 and debugger provide the on-the-fly function to display the PC address every 0.5 seconds
during successive execution. The PC address is displayed in the relevant positions of the [Register]
window. If the [Register] window is closed, it is displayed in the [Command] window. The on-the-fly
function can be disabled and re-enabled using the o#f command.

(4) Measuring execution time/steps
The ICE62 contains a 16-bit execution counter allowing measurement of the program execution time
or the number of steps executed. When the program starts executing successively, the execution
counter starts counting after resetting the counter. When the program execution is suspended, the
counter stops counting and the counted value is displayed in the [Command] window.
The count mode can be selected using the tim command. In the initial debugger settings, the execu-
tion time count mode is selected.
The following lists the maximum values that can be measured by the execution counter and measure-
ment error:

Execution time count mode: 6.5 x 65535 psec = 425.9775 msec, error = 6.5 lsec
Step count mode: 65535 steps, error = *1 step

If the counter overflows during program execution, "Run time = Time over" will be displayed as the
results.

146

CHAPTER 9: DEBUGGER

Single-stepping

(1) Types of single-stepping
There are two types of single-stepping available:
¢ Stepping through all instructions (STEP)

All instructions are executed one step at a time according to the PC, regardless of the type of
instruction.

e Stepping through instructions except subroutines (NEXT)
The call and calz instructions are executed under the assumption that one step constitutes the
range of statements until control is returned to the next step by a return instruction. Other instruc-
tions are executed in the same way as in ordinary single-stepping.

In either case, the program starts executing from the current PC.

Table 9.8.4.2 Commands/menu items/tool bar buttons for single-stepping

Function Command Menu Button
Stepping through all instructions s [Run | Step] +,
Stepping through all instructions except subroutines n [Run | Next] P

When executing single-stepping by command input, the number of steps to be executed can be
specified, up to 65,535 steps. When using menu commands or tool bar buttons, the program is ex-
ecuted one step at a time. One step execution can also be performed by pressing the [Enter] key only.
In the following cases, single-stepping is terminated before a specified number of steps is executed:
¢ The [Key Break] button is clicked or the [Esc] key is pressed.

¢ The [Break] or [Reset] switch on the ICE62 is pushed.

Single-stepping is not suspended by breaks set by the user such as a PC break or data break.

el [Key Break] button OWhen the program does not stop, use this button to forcibly stop it.

(2) Display during single-stepping
In the initial debugger settings, the display is updated every step as follows:
When the [Source] window is open, the highlighted line designating the next address to be executed
moves every step as the program is stepped through. The display contents of the [Register] window
are also updated every step. If the [Register] window is closed, its contents are displayed in the
[Command] window. The display of the [Data] window is updated after the specified number of step
executions are completed.

Resetting the CPU
The CPU is reset when the gr command is executed, or by executing the rst command.
When the CPU is reset, the internal circuits are initialized as follows:

(1) Internal registers of the CPU
PC =0x0100
Other registers = not initialized

(2) The [Source] and [Register] windows are redisplayed.
Because the PC is set to 0x0100, the [Source] window is redisplayed beginning with that address.
The PC value in the [Register] window is redisplayed.

The data memory contents are not modified.

147

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.8.5 Break Functions

The target program is made to stop executing by one of the following causes:
® Break command conditions are satisfied.

e The [Key Break] button is clicked or the [Esc] key is pressed.

e The [Break] or [Reset] switch on the ICE62 is pushed.

Break by command
The debugger has four types of break functions that allow the break conditions to be set by a com-
mand. When the set conditions in one of these break functions are met, the program under execution
is made to break.

(1) Break by PC
This function causes the program to break when the PC matches the set address. The program is made
to break after executing the instruction at that address. When the pset instruction is entered at the set
address, the pset and subsequent instructions are executed before a break occurs. The PC breakpoints
can be set for multiple addresses.

Table 9.8.5.1 Commands/menu items/tool bar button to set breakpoints

Function Command Menu Button
Set breakpoints bp [Break | Breakpoint Set...] '{rﬂ
Clear breakpoints bpc [Break | Breakpoint Set...] '{fﬂ

The addresses that are set as PC breakpoints are marked with a O as they are displayed in the [Source]
window.

Using the [Break] button easily allows the setting and canceling of breakpoints.

Click on the address line in the [Source] window at where the program break is desired (after moving
the cursor to that position) and then click on the [Break] button. A 0 mark will be placed at the
beginning of the line indicating that a breakpoint has been set there, and the address is registered in
the breakpoint list. Clicking on the line that begins with a 0 and then the [Break] button cancels the
breakpoint you have set, in which case the address is deleted from the breakpoint list.

OThe temporary break addresses that can be specified by the successive execution commands (g) do not
affect the set addresses in the breakpoint list.

(2) Data break
This break function allows a break to be executed when a location in the specified data memory area
is accessed. In addition to specifying a memory area in which to watch accesses, specification as to
whether the break is to be caused by a read or write, as well as specification of the content of the data
read or written. The read /write condition can be masked, so that a break will be generated for
whichever operation, read or write, is attempted. Similarly, the data condition can also be masked in
bit units. A break occurs after completing the cycle in which an operation to satisfy the above speci-
fied condition is performed.

Table 9.8.5.2 Commands/menu item to set data break

Function Command Menu
Set data break condition bd [Break | Data Break...]
Clear data break condition bdc [Break | [Data Break...]

For example, if the program is executed after setting the data break condition as Address = 0x10, Data
pattern = O(mask) and R/W = W, the program breaks after writing any data to the data memory
address 0x10.

148

CHAPTER 9: DEBUGGER

(3) Register break
This break function causes a break when the A, B, X, Y, and flag (IDZC) registers reach a specified
value. Each register can be masked (so they are not included in break conditions). The flag register can
be masked in bit units. A break occurs when the above registers are modified to satisfy all set condi-
tions.
Table 9.8.5.3 Commands/menu item to set register break

Function Command Menu
Set register break conditions br [Break | Register Break...]
Clear register break conditions brc [Break | Register Break...]

For example, if the program is executed after setting 0 for the data of register A and 1 for the data of
flag C and masking all others, the program breaks when the A register is cleared to 0 and the C flag is
set to 1.

(4) Multiple break
The debugger supports a multiple break function that consists of a PC breakpoint, a data break
condition and a register break condition. Each break condition is the same as that of the independent
break function. A break occurs when all the set conditions are satisfied. The program will not break at
the position set by multiple break when executing the command g <address> or n.

Table 9.8.5.4 Commands/menu item to set multiple break

Function Command Menu
Set multiple break conditions bm [Break | Multiple Break...]
Clear multiple break conditions bmc [Break | Multiple Break...]

Forced break by the [Key Break] button or the [Esc] key

The [Key Break] button or the [Esc] key can be used to forcibly terminate the program under execu-
tion when the program has fallen into an endless loop or cannot exit a standby (HALT or SLEEP)
state.

el [Key Break] button

Forced break by the [Break] or [Reset] switch on the ICE62

The [Break] or [Reset] switch can also be used to forcibly terminate the program being executed.

Break enable/disable mode in the ICE62
The ICE62 has two break modes: break enable mode and break disable mode.

Break enable mode (default)
In this mode, any break factor can suspend the target program being executed.

Break disable mode

In this mode, only the forced break function ([Key Break] button, [Esc] key, [Break] switch and [Reset]
switch) can suspend the target program being executed. When a break condition that is set by a break
command is met during program execution, the ICE62 outputs a SYNC pulse from the SYNC pin but
does not suspend the program being executed. This function can be used as an oscilloscope synchro-

nous signal to measure the target circuit timing using the pulse as a reference.

Table 9.8.5.5 Commands to set ICE break mode

Function Command
Set break enable mode be
Set break disable mode bsyn

Note
The command breaks control of the trace operation according to the set trace condition. If "Start" or
"Middle" is selected as the trace condition, the target program temporarily breaks when the set break
condition is met but restarts for sampling trace information. The program execution is terminated
after the trace information is completely sampled.

149

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.8.6 Trace Functions

The debugger has a function to trace program execution.

Trace memory and trace information
The ICE62 contains a trace memory. When the program executes instructions in the trace range set by
a command, the trace information on each cycle is taken into this memory. The trace memory has the
capacity to store information for 8,192 cycles, making it possible to trace up to 2,730 instructions (for
five-clock instructions only). When the trace information exceeds this capacity, the data is overwritten,
the oldest data first. Consequently, the trace information stored in the trace memory is always within
8,192 cycles. The trace memory is cleared when a program is executed, starting to trace the new
execution data.

trace fetch register trace data -
Loc GCODE PC AB X ¥ IDZC HemOP OtherOP
fepa ed8 LD A, Bx8 g168a 8 £ 0683 7F+ 6810

f8aB1 fed LD SPH, A 8161 8 £ 083 7Fff ABE10

8ae2 eB8 LD A, Ox0 8182 8 £ 883 7Ff A810

8aB3 ff8 LD SPL, A 8183 @8 £ 863 7Ff A810

8aBy el2 PSET ax2 8184 8 £ 803 7Ff A810

A8 4688 CALL axa 8185 @8 £ 8683 7Ff 8810 WAFF=1 UWOA7E=8 WUB7D=4

0866 eBB LD A, Ox0 6260 O £ 003 7Ff 8610

6867 eg8 LD XP, A 62861 8 f 003 7Fff 8610

6868 bOO LD X, Ox0 6282 o8 f 008 7Ff 8610

6869 9680 LBPX MX, Ox0 0203 0 f 601 7ff 06010 UWOOB0=0 WOB1=8

6818 92680 LBPX MX, Ox0 02064 O f 083 7ff 06010 UWOD2=0 WOO3=08

4| | v

The following lists the trace information that is taken into the trace memory in every cycle. This list is
corresponded to display in the [Trace] window.

Loc: Trace cycle number (decimal)

The last information taken into the trace memory becomes 0000.
CODE: Fetched code (hexadecimal) and unassembled content (mnemonic)
PC: PC address (hexadecimal)

A, B, X,Y: Values of A, B, X, Y registers (hexadecimal)

IDZC: Values of I, D, Z and C flags (binary) after cycle execution

MemOP: Read/write operation (denoted by R or W at the beginning of data), accessed data
memory address (hexadecimal), and data (hexadecimal)

OtherOP: Interrupt process: INT1 (stack), INT2 (vector fetch)

Trace areas and conditions

Trace areas (address ranges) and a trace condition can be selected using the following commands.

Table 9.8.6.1 Trace area/condition set-up command

Function Command Menu
Set trace area ta [Trace | Trace Area...]
Set trace condition tc [Trace | Trace Condition...]

(1) Trace area
Multiple program address ranges can be specified as the trace areas. The debugger samples trace
information from the set areas only.

150

CHAPTER 9: DEBUGGER

(2) Trace condition
The trace starts when the target program starts executing and ends relative to an instruction that
generates a break set by a break command (bp, bd, br or bm). The trace range is decided according to
the trace condition that can be selected from the three positions shown below:

« Start
The trace is halted after sampling trace information for 8,192 cycles beginning from the first-hit break
point. In this case, the trace information at the break point is the oldest information stored in the trace
memory.
If the program stops before tracing all 8,192 cycles by another break factor, the trace is halted at that
point.

) Break point
Execution started l

v

8,192 cycles
Trace sampling range

Fig. 9.8.6.1 Trace range when "start" is selected

+ Middle
The trace is halted after sampling trace information for 4,096 cycles beginning from the first-hit break
point. In this case, the trace information of 4,096 cycles before and after the break point are sampled
into the trace memory.
If the program stops before tracing all 4,096 cycles by another break factor, the trace is halted at that
point.

) Break point
Execution started l

v

| (4096 cycles)| 4,006 cycles
‘ Trace sampling range

Fig. 9.8.6.2 Trace range when "middle" is selected

End (default)
The trace is halted after sampling trace information at the first-hit break point. In this case, the trace
information at the break point is the latest information stored in the trace memory.

) Break point
Execution started

v

8,192 cycles

Trace sampling range

Fig. 9.8.6.3 Trace range when "end" is selected

Displaying and searching trace information
The sampled trace information can be displayed in the [Trace] window by a command. If the [Trace]
window is closed, the information is displayed in the [Command] window. In the [Trace] window, the
entire trace memory data can be seen by scrolling the window. The trace information can be displayed
beginning from a specified cycle.
The display contents are as described above.

Table 9.8.6.2 Command/menu item to display trace information
Function Command Menu
Display trace information td [View | Trace]

151

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

It is possible to specify a search condition and display the trace information that matches a specified
condition.

The search condition can be selected from the following three:

1. Program's execution address

2. Address from which data is read

3. Address to which data is written

When the above condition and one address are specified, the system starts searching. When the trace
information that matches the specified condition is found, the system displays the found data in the
[Trace] window (or in the [Command] window if the [Trace] window is closed).

Table 9.8.6.3 Command/menu item to search trace information

Function Command Menu
Search trace information ts [Trace | Trace Search...]

Saving trace information

After the trace information is displayed in the [Trace] window using the td or ts commands, the trace
information within the specified range can be saved to a file.

Table 9.8.6.4 Command/menu item to save trace information
Function Command Menu
Save trace information tf [Trace | Trace File...]

152

CHAPTER 9: DEBUGGER

9.8.7 Coverage

The ICE62 retains coverage information (i.e., information on addresses at which a program is executed)
and it can be displayed in the [Command] window.
Because the executed address range is displayed as shown below, it is possible to know which areas have

not been executed.

Coverage Information:

0: 0100..0108
1: 0200..020f
Table 9.8.7.1 Coverage commands
Function Command
Display coverage information cv
Clear coverage information cve

153

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.9 Command Reference

9.9.1 Command List
Table 9.9.1.1 lists the debug commands available with the debugger.

Table 9.9.1.1 Command list

Classification Command Function Page
Program memory as (assemble) Assemble mnemonic 156
operation pe (program memory enter) Input program code 158

pf (program memory fill) Fill program area 159
pm (program memory move) Copy program memory 160
Data memory dd (data memory dump) Dump data memory 161
operation de (data memory enter) Input data 163
df (data memory fill) Fill data area 165
dm (data memory move) Copy data area 166
Register operation rd (register display) Display register values 167
s (register set) Modify register values 168
Program execution |g (go) Execute successively 169
gr (go after reset CPU) Reset CPU and execute successively 171
S (step) Step into 172
n (next) Step over 173
CPU reset rst (reset CPU) Reset CPU 174
Break bp (breakpoint set) Set breakpoint 175
bpc (breakpoint clear) Clear breakpoint 177
bd (data break) Set data break 178
bdc (data break clear) Clear data break 180
br (register break) Set register break 181
brc (register break clear) Clear register break 183
bm (multi break) Set multiple break 184
bmc (multi break clear) Clear multiple break 186
bl (breakpoint list) Display all break conditions 187
bac (break all clear) Clear all break conditions 188
be (break enable) Set break enable mode 189
bsyn (break disable) Set break disable (synchronous) mode 190
Program display u (unassemble) Unassemble display 191
sc (source code) Source display 192
m (mix) Mix display 193
Symbol information | sy (symbol list) List symbols 194
Load files If (load file) Load IEEE-695 format absolute object file 195
lo (load option) Load Intel-HEX format file 196
ROM access rp (ROM program load) Load program from ROM 197
vp (ROM program verify) Verify the contents of ROM with program memory 198
rom (ROM type) Set ROM type 199
Trace tc (trace condition) Set trace condition 200
ta (trace area) Set trace area 201
tac (trace area clear) Clear trace area 203
tp (trace pointer) Display current trace pointer 204
td (trace data display) Display trace information 205
ts (trace search) Search trace information 207
tf (trace file) Save trace information into a file 209
Coverage cv (coverage) Display coverage information 210
cve (coverage clear) Clear coverage information 211
Command file com (execute command file) Load & execute command file 212
rec (record commands) Record commands to a command file 213
Log log (log) Turn log output on or off 214
Map information ma (map information) Display map information 215
Mode setting otf (on-the-fly display) Turn on-the-fly display on or off 216
tim (time or step mode) Set time or step measurement mode 217
Self diagnosis chk (self diagnostic test) Report results of ICE62 self diagnostic test 218
Quit q (quit) Quit debugger 219

154

CHAPTER 9: DEBUGGER

9.9.2 Reference for Each Command
The following sections explain all the commands by functions.

The explanations contain the following items.

I Function

Indicates the functions of the command.

I Format

Indicates the keyboard input format and parameters required for execution.

I Example

Indicates a sample execution of the command.

I Note

Shows notes on using.

I GUI utility

Indicates a menu item or tool bar button if they are available for the command.

Notes: « In the command format description, the parameters enclosed by < > indicate they are necessary

parameters that must be input by the user; while the ones enclosed by [] indicate they are

optional parameters.

e The input commands are case-insensitive, you can use either upper case or lower case letters

or even mixed.

e An error results if the number of parameters is not correct when you input a command using

direct input mode.
Error : number of parameter.

155

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.9.3 Program Memory Operation

adS (assemble mnemonic)

I Function

This command assembles the input mnemonic and rewrites the corresponding code to the program
memory at the specified address.

I Format

(1) >as <address> <mnemonic> [0 (direct input mode)

(2) >asO] (guidance mode)
Start address ? : <address> [
Address Original code Original mnemonic : <mnemonic> O

>
<address>: Start address from which to write code; hexadecimal or symbol (IEEE-695 format only)
<mnemonic>: Input mnemonic; valid mnemonic of EOC62 (expression and symbols are supported)
Condition: O< addresx last program memory address
I Examples
Format (1)
>as 100 LD AOF O ...Assembles "LD A,OF" and rewrites the code at address 0x100.
Format (2)
>as [
Start address ? 100 ad ... Address is input.
0100 eOf LD A, Oxf : LD A,0xF O ... Mnemonic is input.
Source file name (enter to ignore) : O ... Ignoredd
0101 fe0 LD SPH, A : LD B,0xA O
Source file name (enter to ignore) : O
0102 e00 LD A, 0x0 :q 0 ... Command is terminated.
>

OSource file name should be entered when a symbol/label is used as the operand. Specify the source
file name in which the symbol was defined.

0100 eOf LD A, Oxf : JP LOOP O ... Symbol is used.
Source file name (enter to ignore) : main.s ad ... Source file name is input.

I Notes

¢ The start address you specified must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond code range.

¢ An error results if the input mnemonic is invalid for EOC62.
Error : illegal mnemonic.

e In guidance mode, the following keyboard inputs have special meaning:

"q" ... Command is terminated. (finish inputting and start execution)
A" ... Return to previous address.
"o ... Input is skipped. (keep current value)

If the maximum address of program memory is reached and gets a valid input other than "A0", the
command is terminated.

156

CHAPTER 9: DEBUGGER

e When the contents of the program memory are modified using the as command in direct mode, the
unassemble contents of the [Source] window are updated immediately. When it is done in guidance
mode, the unassemble contents of the [Source] window are updated immediately in unassemble
display mode, but will be updated when the "q" is input to terminate the command in mix display
mode.

¢ Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

I GUI utility

None

157

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

P€ (program memory enter)

I Function

This command rewrites the contents of the specified address in the program memory with the input
hexadecimal code.

I Format

(1) >pe <address> <codel> [<code2> [...<code8>]] O (direct input mode)

(2) >peld (guidance mode)

Program enter address ? <address> [
Address Original code : <code> [

<address>: Start address from which to write code; hexadecimal or symbol (IEEE-695 format only)

<code(1-8)>: Write code; hexadecimal (valid operation code of EOC62)
Condition: 0< addresx last program memory addresss thput code< Oxfff

I Examples

Format (1)

>pe 100 1a0 0O ... Rewrites the code at address 0x100 with 0x1a0.
Format (2)

>pe

Program enter address ? 100 O ... Address is input.

0100 fff :1a0 O ... Code is input.

0101 fff : O ... Address 0x101 is skipped.
0102 fff : q ad ... Command is terminated.

>

I Notes

The start address you specified must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not hexadecimal number or not a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond code range.

Code must be input using a hexadecimal number in the range of 12bits (0 to Oxfff).
An error results if the input one is not a hexadecimal number.
Error : invalid value.
An error results if the input code exceeds the limit or it is invalidated by the "DEL" command in the
PAR file.
Error : illegal code.

In guidance mode, the following keyboard inputs have special meaning:

"qO" ... Command is terminated. (finish inputting and start execution)
A ... Return to previous address.
"o ... Input is skipped. (keep current value)

If the maximum address of program memory is reached and gets a valid input other than "A0", the
command is terminated.

When the contents of the program memory are modified using the pe command in direct mode, the
unassemble contents of the [Source] window are updated immediately. When it is done in guidance
mode, the unassemble contents of the [Source] window are updated immediately in unassemble
display mode, but will be updated when the "q" is input to terminate the command in mix display
mode.

Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

IGUI utility

None

158

CHAPTER 9: DEBUGGER

pf (program memory fill)

I Function

This command rewrites the contents of the specified program memory area with the specified code.

I Format

(1) >pf <address1> <address2> <code> [J (direct input mode)
(2) >pfO (guidance mode)

Start address ? <address1> [

End address ? <address2> [

Fill code ? <code> O

>
<addressl>: Start address of specified range; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of specified range; hexadecimal or symbol (IEEE-695 format only)
<code>: Write code; hexadecimal (valid operation code of EOC62)
Condition: O< addressk addressZ last program memory addresss @odes< Oxfff

I Examples

Format (1)

>pf 200 2FF FFB O ... Fills the area from address 0x200 to address 0x2ff with 0xffb.
Format (2)

>pf O

Start address ? 200 ad ... Start address is input.

End address ? 2ff O ... End address is input.

Fill code ? fff ad ... Code is input.

>

OCommand execution can be canceled by entering only the [Enter] key and nothing else.

I Notes

The addresses specified here must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond code range.

An error results if the start address is larger than the end address.
Error : end address < start address.

When the contents of the program memory is modified using the pf command , the contents of the
[Source] window are updated automatically.

Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

B Gut utility

None

159

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

PmM (program memory move)

I Function

This command copies the content of a specified program memory area to another area.

I Format

(1) >pm <address1> <address2> <address3> [(direct input mode)

(2) >pm0O (guidance mode)

Start address ? <address1> [

End address ? <address2> O

Destination address ? <address3> [

>
<address1>: Start address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address3>: Address of destination area to be copied to; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addressk addressZ last program memory address

0 < addressX last program memory address

I Examples

Format (1)

>pm 200 2FF 280 O ... Copies the codes within the range from address 0x200 to address Ox2ff
to the area from address 0x280.

Format (2)

>pn]

Start address ? 200 ad ... Source area start address is input.

End address ? 2ff O ... Source area end address is input.

Destination address ? 280 O ... Destination area start address is input.

>

OCommand execution can be canceled by entering only the [Enter] key and nothing else.

I Notes

¢ The addresses you specified must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond code range.
If any portion of the destination area to be copied to is outside the program memory, no code is

copied to that area and results in an error, and no copy operation is done.
Error : no mapping area.

¢ An error results if the start address is larger than the end address.
Error : end address < start address.

e When the contents of the program memory is modified using the pm command , the contents of the
[Source] window are updated automatically.

¢ Although the contents of the unassemble display are modified by rewriting code, those of source
display remain unchanged.

IGUI utility

None

160

CHAPTER 9: DEBUGGER

9.9.4 Data Memory Operation

dd (data memory dump)

I Function

This command displays the content of the data memory in a 16 words/line hexadecimal dump format.

I Format

>dd [<address1> [<address2>]] O (direct input mode)
<address1>: Start address to display; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address to display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addressk address last data memory address

I Display

(1) When [data] window is opened

If both <address1> and <address2> are not defined,
ADDR 0123 4567 89ABCDEEF\ the [Data] window is redisplayed beginning with
Booo: 4 3 00000 DDBOOOOD address 0x000.
Gp1: P AP OO OB A DOBOBBOOOA
ge?8: A O B B A AR O BB BOAOA A If <addressl>is deﬁned,or even <address2> is
G30: A OB A OO0 AOOAOBO0A defined, the [Data] window is redisplayed in such a
Go4b: P O D OO OO A DOODODOOOO wav that <add 1> is displ d at th t
GO50: 0 O GO OB OO DOOODOODD y that <addressi>1s displayed at the uppermos
GO60: D O P OO OO A DOOOBOOG line.
ge79: D PP OO OO AE DOBOBOBSB O1 oy :
QO8B-1818 7 7 7 7 77 F 2SI d P F S Evenwhen.<address.1> s.pec1f1es somgwhere in 16
0098: 8 F F 7/ BF F / 7 7 7 7 7 7 77 addresses/line, data is displayed beginning with
eenB: B/ J S F 47 P77 the top of that line. For example, even though you
beBo: 8 FF /7 f /7 /77 F P8P8 75777 h ified add I dd
GOCO: 090 / /060090 / 10 0 0 /7 £ 7 7 7 may have specified address 0x118 for <address1>,
0oDO: 008 @ B @ B S S/ F PP data is displayed beginning with address 0x110.
BBEG:*®8 B F B F F F F F P F P PP FF B
OOFD-1610161018 /7 7/ 7/ 000080/ 77 However, if an address near the uppermost part of
0160: B 0 B G B 0B 0 BOOOOO0O0 O data memory (e.g. maximum address is 0xfff), such
6118: 6 0 6 000600 60000000 as 0xff5, is specified as <address1>, the last line
128: e B B OB OB O BOAOAOA A
G130: D 0D OO OO0 DOOOOOO O displayed in the window in this case is 0xff0, the
G149: OB OBOBE BBBBBBAG specified address is not at the top of the window.
[:1|53' fri47407 117771 {_J:ll/l Since the [Data] window can be scrolled to show

o

the entire data memory, defining <address2> does
not have any specific effect. Only defining <ad-
dress1> and both defining <address1> and <ad-
dress2> has same display result.

(2) When [data] window is closed
If both <address1> and <address2> are not defined, the debugger displays data for 256 words from

address 0x000 in the [Command] window.
>dd O

01234567 89ABCDEF
0000:0c100000 00000000
0010:00000000 O0O00OO0OO0OO
0020:00000000 00000000

00€0:10 0F0/ /11 11111111
00f0:1010101010 /// 00000 ///
>

"

"/" indicates an unused address. "!" indicates that the address contains write-only bits or read-only

bits.

161

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

If only <address1> is defined, the debugger displays data for 256 words from <address1>.
>dd 008 O
01234567 89ABCDEF
0000: 00000000O
0010:00000000 00000O0O0O0
0020:00000000 00000000

00€0:10 0F0/ /11 11111111
00f0:1010101010 /// 00000 ///
0100:000000 00

>

If both <address1> and <address2> are defined, the debugger displays data from <address1> to

<address2>.
>dd 008 017 [
01234567 89ABCDEF

0000: 0000000O0
0010: 00000000
>

(3) During log output
If a command execution is being output to a log file by the log command when you dump the data
memory, 256 words of data are displayed in the [Command] window even if the [Data] window is
opened and are also output to the log file.

I Notes

¢ Both the start and end addresses specified here must be within the range of the data memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond data range.

¢ An error results if the start address is larger than the end address.
Error : end address < start address.
¢ The contents of the write-only I/O area cannot be read, but will be marked as hyphens (-).
For the contents of address of mixed read-only and write-only bits in I/ O area, an exclamation mark
(1) will be marked in front of the data.
The contents of the unused area will be marked as slashes (/).

B Gut utility

[View | Data Dump] menu item
When this menu item is selected, the [Data] window opens or becomes active and displays the current
data memory contents.

162

CHAPTER 9: DEBUGGER

de (data memory enter)

I Function

This command rewrites the contents of the data memory with the input hexadecimal data. Data can
be written to continuous memory locations beginning with a specified address.

I Format

(1) >de <address> <datal> [<data2> [...<datal6>]] O (direct input mode)

(2) >deO (guidance mode)

Data enter address ? <address> [
Address Original data : <data>0

<address>: Start address from which to write data; hexadecimal or symbol (IEEE-695 format only)
<data(1-16)>: Write data; hexadecimal
Condition: O< addresx last data memory addresss @ata< Oxf

I Examples

Format (1)

>de 100 A O ... Rewrites data at address 0x100 with Oxa.
Format (2)

>de

Data enter address ? 100 ad ... Address is input.

100 O:a ad ... Data is input.

101 O: O ... Skipped.

102 0:q ad ... Command is terminated.

>

I Notes

The start address specified here must be within the range of the data memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond data range.

The contents of the read only area cannot be rewritten. A warning message will be displayed if you

specify such an address.
Warning : read only address, can't write.

In guidance mode, the contents of the write-only I/O area will be marked as hyphens (-).

For the contents of address of mixed read-only and write-only bits in I/ O area, an exclamation mark
(1) will be marked in front of the data.

The contents of the unused area will be marked as slashes (/). If you encounter any address marked
by "/", press [Enter] key to skip that address or terminate the command.

Data must be input using a hexadecimal number in the range of 4 bits (0 to 0xf). An error results if the

limit is exceeded.
Error : data range (0 - Oxf).

When the contents of the data memory is modified using the de command, the displayed contents of
the [Data] window are updated automatically.

163

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

¢ In guidance mode, the following keyboard inputs have special meaning:

"q" ... Command is terminated. (finish inputting and start execution)
A" ... Return to previous address.
"o ... Input is skipped. (keep current value)

If the maximum address of data memory is reached and gets a valid input other than "A00", the
command is terminated.

B Gut utility

[Data] window

The [Data] window allows direct modification of data. Click the [Data] window and select the dis-
played data to be modified then enter a hexadecimal number.

164

CHAPTER 9: DEBUGGER

df (data memory fill)

I Function

This command rewrites the contents of the specified data memory area with the specified data.

I Format

(1) >df <address1> <address2> <data> 0 (direct input mode)

(2) >df0 (guidance mode)
Start address ? <address1> 0
End address ? <address2> 0
Fill data ? <data> O
>

<address1>: Start address of specified range; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of specified range; hexadecimal or symbol (IEEE-695 format only)
<data>: Write data; hexadecimal

Condition: 0< addressk addressZ last data memory addresss @ata< Oxf

I Examples

Format (1)

>df 200 2FF0 O ... Fills the data memory area from address 0x200 to address Ox2ff with 0x0.
Format (2)

>df O

Start address ? 200 ad ... Start address is input.

End address ? 2ff O ... End address is input.

Fill data ? O 0 ... Data is input.

>

OCommand execution can be canceled by entering only the [Enter] key and nothing else.

I Notes

¢ Both the start and end addresses specified here must be within the range of the data memory area
available with each microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond data range.

e An error results if the start address is larger than the end address.
Error : end address < start address.

¢ Data must be input using a hexadecimal number in the range of 4 bits (0 to 0xf). An error results if the
limit is exceeded.
Error : data range (O - Oxf).

e Write operation is not performed to the read only address of the I/O area.

¢ When there is an unused area in the specified address range, no error occurs. The area other than the
unused area will be filled with the specified data.

¢ When the contents of the data memory is modified using the df command, the displayed contents of
the [Data] window are updated automatically.

I GUI utility

None

165

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

dm (data memory move)

I Function

This command copies the contents of the specified data memory area to another area.

I Format

(1) >dm <address1> <address2> <address3> [(direct input mode)

(2) >dmDO (guidance mode)

Start address ? <address1> [

End address ? <address2> O

Destination address ? <address3> [

>
<address1>: Start address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address of source area to be copied from; hexadecimal or symbol (IEEE-695 format only)
<address3>: Address of destination area to be copied to; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addressk addressZ last data memory addresss @ddressX last data memory address

I Examples

Format (1)

>dm 200 2FF 280 O ... Copies data within the range from address 0x200 to address Ox2ff
to the area from address 0x280.

Format (2)

>dm]

Start address ? 200 ad ... Source area start address is input.

End address ? 2ff O ... Source area end address is input.

Destination address 280 O ... Destination area start address is input.

>

OCommand execution can be canceled by entering only the [Enter] key and nothing else.

I Notes

¢ All the addresses specified here must be within the range of the data memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond data range.

e Write operation is not performed to the read-only address of the I/O area.

¢ Data in the write-only area cannot be read. If the source area contains write-only address, 0 is written
to the corresponding destination. If the destination area contains read-only address, the data of that
address can not be rewritten. If the source and destination areas contain I/ O address of mixed read-
only bits and write-only bits, either read or write operation can be executed for the corresponding
bits.

¢ An error results if there is an unused area in the specified source or destination area, and no copy
operation will be done.
Error : no mapping area.

¢ When the contents of the data memory is modified using the dm command, the displayed contents of
the [Data] window are updated automatically.

IGUI utility

None

166

CHAPTER 9: DEBUGGER

9.9.5 Register Operation

rd (register display)

I Function

This command displays the contents of the registers, current and next operation code and correspond-

ing mnemonic.

I Format

>rd [0 (direct input mode)

I Display

(1) Contents of display

ilii Register O] =] The following lists the contents displayed by this command.
PC :8108 PC: Program counter
] -8 A: A register
B if B: B register
8 : 063 X: X register
N STEE Y: Y register
A IDZC: Flags
IDZC -8@e18 .
Current Code:e08 SP: Stack pointer
LD A, 0x8 Current Code: Currently fetched program code at address indicated by PC
Hext Code -FeB and corresponding mnemonic
LD SPH, A Next Code: = Next code and corresponding mnemonic

(2) When [Register] window is opened
When the [Register] window is opened, all the above contents are displayed in the [Register] window
according to the program execution. When you use the rd command, the displayed contents of the
[Register] window is updated.

(3) When [Register] window is closed

Data is displayed in the [Command] window in the following manner:
>rd O

PC:0206 A:0 B:f SP:7d X:003 Y:0ff IDZC:0010

Current Code:e00 LD A, 0xO Next Code:e80 LD XP, A

>

(4) During log output
If a command execution result is being output to a log file by the log command, the register values are

displayed in the [Command] window even if the [Register] window is opened and are also output to
the log file.

B Gut utility

[View | Register] menu item
When this menu item is selected, the [Register] window opens or becomes active and displays the
current register contents.

167

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

IS (register set)

I Function

This command modifies the register values.

I Format

(1) >rs <register> <value> [<register> <value> [...<register> <value>]] O (direct input mode)

(2) >rsO (guidance mode)
PC = Old value : <value> [
A = Old value : <value>[
B = Old value : <value>[]
X = Old value : <value> 0]
Y = Old value : <value>[]
FI = Old value : <value>[
FD = Old value : <value>[
FZ = Old value : <value>[
FC = Old value : <value>[J
SP = Old value : <value>[J
>
<register>: Register name (A, B, X, Y, SP, PC, F)
<value>: Value to be set to the register; binary for F, hexadecimal for others

I Examples

Format (1)

>rs PC 0110 F 0000 O ... Sets PC to 0x0110 and resets all the flags.
Format (2)

>rs [

PC = 206 :100 0
A= 0 :0 O
B= f :0 O
X= 3 :000 0
Y= ff :100 O
FI= 0 : O
FD= 0 :1 O
Fz= 1 :0 O
FC= 0 : 0
SP= 7d :7f 0
>

After you execute the command, the [Register] window is updated to show the contents you have
input. If you input "q0" to stop entering in the middle, the contents input up to that time are updated.

I Notes

¢ An error results if you input a value exceeding the register's bit width.
Error : invalid value.

¢ An error results if you input a register name other than PC, A, B, X, Y, F or SP in direct input mode.
Error : register name (PC/A/B/X/YIFISP).

¢ In guidance mode, the following keyboard inputs have special meaning:

"q" ... Command is terminated. (finish inputting and start execution)
"AL" ... Return to previous register.
"o ... Input is skipped. (keep current value)

IGUI utility

[Register] window
The [Register] window allows direct modification of data. Click the [Register] window , select the
displayed data to be modified and enter a value then press [Enter].

168

CHAPTER 9: DEBUGGER

9.9.6 Program Execution
g (go)
I Function

This command executes the target program from the current PC position.

I Format

>g [<address>] O (direct input mode)

<address>: Temporary break addresses; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addresx last program memory address

I Operation

The target program is executed from the address indicated by the PC. Program execution is continued
until it is made to break for one of the following causes:

¢ The set break condition is met

¢ The [Key Break] button is clicked or the [Esc] key is pressed

e The break or reset switch on the ICE is pushed

If <address> is specified, the program execution will be suspended after executing the instruction at

the specified address.
>g la0 O ... Executes the program from the current PC address to address 0x1a0.

I Display
In the initial debugger settings, the on-the-fly function is turned on.
During program execution, the PC content in the [Register] window is updated in real time every 0.5
seconds by the on-the-fly function. If the [Register] window is closed, the PC content is displayed in
the [Command] window. The on-the-fly function can be turned off by the o#f command. In this case,
the [Register] window is updated after a break.

The execution time or execution steps (set by the #im command) are displayed in the [Command]
window after a break.

The [Source] window is updated after a break in such a way that the break address is displayed
within the window.

If the [Trace] window is opened, the display contents are cleared as the program is executed. It is
updated with the new trace information after a break.

If the [Data] window is opened, the display contents are updated after a break.

I Notes

e If a break condition is met, program execution is suspended and the PC will be set to the program
address next to the breakpoint.

¢ When a temporary break is specified (g <address>), the multi break function is invalidated due to the
hardware specification while the program is running. It takes effect again after the program is sus-
pended at the temporary break address.

¢ The address you specified must be within the range of the program memory area available with each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond code range.

169

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

B Gut utility

[Run | Go] menu item, [Go] button
When this menu item or button is selected, the g command without temporary break is executed.

— | [Go] button

[Run | Go to Cursor] menu item, [Go to Cursor] button

When this menu item or button is selected after placing the cursor to the temporary break address line
in the [Source] window, the g command with a temporary break is executed. The program execution
will be suspended after executing the address at the cursor position.

-

[Go to Cursor] button

170

CHAPTER 9: DEBUGGER

gr (go after reset CPU)

I Function

This command executes the target program from the boot address after resetting the CPU.

I Format

>grQ (direct input mode)

I Operation

This command resets the CPU before executing the program. This causes the PC to be set at address
0x100, from which the command starts executing the program.
Once the program starts executing, the command operates in the same way as the g command.

I GUI utility

[Run | Go from Reset] menu item, [Go from Reset] button
When this menu item or button is selected, the gr command is executed.

] | [Go from Reset] button

171

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

S (step)

I Function

This command single-steps the target program from the current PC position by executing one instruc-
tion at a time.

I Format

>s [<step>] O (direct input mode)

<step>: Number of steps to be executed; decimal (default is 1)
Condition: 0< step< 65,535

I Operation

If the <step> is omitted, only the program step at the address indicated by the PC is executed, other-

wise the specified number of program steps is executed from the address indicated by the PC.
>s[] ...Executes one step at the current PC address.
>s20 O ...Executes 20 steps from the current PC address.

The program execution is suspended by the following cause even before the specified number of steps
is completed.

¢ The [Key Break] button is clicked or the [Esc] key is pressed
¢ The break or reset switch on the ICE is pushed

After each step is completed, the register contents in the [Register] window are updated. If the
[Register] window is closed, the register contents are displayed in the [Command] window same as
executing the rd command.

I Notes

¢ The step count must be specified within the range of 0 to 65,535. An error results if the limit is ex-
ceeded.
Error : step range (0 - 65535).

e If the [Data] window is opened, its display contents are updated after the execution.

¢ During a single-step operation, the program will not break even if the break condition set by a
command is met.

¢ Unlike in successive executions (g or gr command), the [Register] window is updated every time a
step is executed.

¢ The s command (one step) is also executed by pressing [Enter] at the command prompt ">".

IGUI utility

[Run | Step] menu item, [Step] button
When this menu item or button is selected, the s command without step count is executed.

+, | [Step] button

172

CHAPTER 9: DEBUGGER
n (next)

I Function

This command single-steps the target program from the current PC position by executing one instruc-
tion at a time.

I Format

>n [<step>] O (direct input mode)

<step>: Number of steps to be executed; decimal (default is 1)
Condition: 0< step< 65,535

I Operation

This command basically operates in the same way as the s command.

However, the call and calz instructions, including all subroutines until control returns to the next
address, are executed as one step. After executing such step, the PC will be set to the second instruc-
tion address after the call or calz instruction. If the next instruction is also call or calz, the PC will be
set to the first instruction address in the subroutine called by the second call or calz instruction.

Example when 1 call instruction is executed by the n command without step count

PC when "n" is executed - call _testl
Id a0
PC after "n" is completed- Id b,0

PC when "n" is executed - call _testl
call _test2
Id a0
Id b,0
PC after "n" is completed- _test2:1d a,l

I Notes

e The step count must be specified within the range of 0 to 65,535. An error results if the limit is ex-
ceeded.
Error : step range (0 - 65535).

e If the [Data] window is opened, its display contents are updated after the execution.

o When the n command is executed, the multi break function is invalidated due to the hardware
specification while the program is running. It takes effect again after the next execution is completed.

¢ During a single-step operation, the program will not break even if the break condition set by a
command is met.

e Unlike in successive executions (g or gr command), the [Register] window is updated every time a
step is executed.

I Gut utiiity

[Run | Next] menu item, [Next] button
When this menu item or button is selected, the n command without step count is executed.

=P | [Next] button

173

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.9.7 CPU Reset

rst (reset CPU)

I Function

This command resets the CPU.

I Format

>rstd (direct input mode)

I Notes

¢ The registers and flags are set as follows:
0x0100

Undefined

Undefined

Undefined

Undefined

0

Undefined (E0C6200) or 0 (EOC6200A)
Undefined

Undefined

Undefined

LOND ™ <X >3

e If the [Source] window is opened, the window is redisplayed beginning with address 0x0100. If the
[Register] window is opened, the window is redisplayed with the above contents.

¢ The debug status, such as memory contents and break conditions, is not reset.

IGUI utility

[Run | Reset CPU] menu item, [Reset] button
When this menu item or button is selected, the rst command is executed.

il [Reset] button

174

CHAPTER 9: DEBUGGER

9.9.8 Break

bp (break point set)

I Function

This command sets or clears breakpoints using a program's execution address or address ranges.

I Format

(1) >bp <breakl> [<break2> [<break3> [<break4>]]] O (direct input mode)
(2) >bpO (guidance mode)
PC break set status
l.set 2.clear 3.clearall ..?<1|2|3> 0O
.......... (guidance depends on the above selection, see examples)
>
<breakl-4>: Break address or address area; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addresx last program memory address
I Examples
Format (1)
>bp 100 200..300 O ... Sets PC break points at address 0x100 and the area from 0x200 to 0x300.
* The direct input mode cannot clear the set break points.
Format (2)
>pbp O (Set)
PC break: None.
1.set 2.clear 3.clearall...?1 O .."1.set"is selected.
Set new PC break ?:100 O ... Address 0x100 is set as a breakpoint.
Set new PC break ?:200..300 O ... Area 0x200-0x300 is set as a break area.
Set new PC break ?: O ... Terminated by [Enter] key.
>pp O (Clear)
0: 0100
1: 0200..0300
1l.set 2.clear 3.clearall...?2 ad ... "2. clear" is selected.
Clear PC break : 150..250 ad ... Break area 0x150(0x200)—0x250 is cleared.
Clear PC break : O ... Terminated by [Enter] key.
>pp O (Clear all)
0:0100
1:0251..0300
1l.set 2.clear 3.clearall...?3 ad ... "3. clear all" is selected.
>pbp O
PC break: None.
1.set 2.clear 3.clearall...? ad ... Terminated by [Enter] key.
>

I Notes

¢ All PC breaks are cleared by executing the bm command.

¢ The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond code range.

¢ The consecutive address area is set by entering as "<start address>..<end address>". An error results if
the start address is larger than the end address.
Error : end address < start address.

¢ When clearing PC break points, the specified addresses or areas that have not been set as PC
breakpoints are ignored. The break points within the specified area are cleared.

175

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

e For direct input mode, an error results if you attempt to set breakpoints at more than 4 locations at a

time. But for guidance mode, there is no such limitation, so you can specify more than 4 PC breaks

before terminating the command by the [Enter] key.

* You can use this command for multiple times to set new breakpoints.

IGUI utility

[Break | Breakpoint Set...] menu item

When this menu item is selected, a dialog box appears for setting PC breakpoints.

Breakpoint Set

Set Clear
* ¢ ADDRO:
> ADDR 1 |020f

~
i+ ADDR 2:
I

. .

ADDR 3:

1"

[]

Cancel |

Eresaus |
|

[dExE

Clear All Breakpaint |

[Break] button

To set a breakpoint, select a [Set] button and

enter an address in the text box corresponding
to the selected button.
When setting more than four breakpoints, click

the [Next] button to continue settings.
The [Previous] and [Next] buttons are used to
view previous and subsequent four

breakpoints.

To clear a breakpoint, select the [Clear] button

of the address to be cleared.

The [Clear All Breakpoint] button clears all the
set breakpoints

When this button is clicked after placing the cursor to a line in the [Source] window, the address at the
cursor position is set as a PC breakpoint. If the address has been set as a PC breakpoint, this button

clears the PC breakpoint.

ﬂl [Break] button

The set breakpoints are marked with a 0 at the beginning of the address lines in the [Source] window.

L M= E
“Swasch Lakal | '| E
7 Bl
& rwwaws BOOT, LODOP sssss
k] «0lobal THIT_RAH_BLEY i subroutine
10 ~global THG_RAH_BLE1 » subroutine
1"
12 Lorg LESTL]
13 ROOT ;
a, 5P THIT RODRY:N
15| MM Fel 1d wph,a 1d =ph,a
16| F #0@ ld &, 6w Ld a, SP_IHIT_ADDRES=F
17 | Mz FFil 14 wpl & 1d =pl,a
i | 0 s bk poet dak (R |
1% | M5 Lnn call =0 call THIT_RAH_BLE1 i inikialize RAI
0 LDOF :
9!1 e e&F pret Bx? [*]
x| mag Wie call awné call THC_RAH_BLE1 -

»oincrement AAH =
| ¥

176

CHAPTER 9: DEBUGGER

pr (break point clear)

I Function

This command clears the specified breakpoints that have been set.

I Format

>hpc <breakl1> [<break2> [<break3> [<break4>]]] O (direct input mode)

<breakl-4>: Break address or address area; hexadecimal or symbol (IEEE-695 format only)

I Example

>pbp O

0: 0100 ... Break points that have been set

1: 0200..0300

1.set 2.clear 3.clearall...? ad
>ppc 100 150..250 O ... Clears PC break points at address 0x100 and the area from 0x150 (0x200)
>bp O to 0x250.

0:0251..0300
1.set 2.clear 3.clearall...? O
>

I Notes

¢ The format of parameters is same as the bp command. You can also use the guidance input mode of bp
command to do the same operation.

¢ You can use this command for multiple times to clear breakpoints.

e If the specified addresses or areas have not been set as PC breakpoints, no clear operation is done.

I GUI utility

[Break | Breakpoint Set ...] menu item
When this menu item is selected, a dialog box appears for clearing PC breakpoints. (See the bp
command.)

[Break] button

When this button is clicked after placing the cursor to a PC break address line in the [Source] window,
the breakpoint is cleared. If the address has not been set as a PC breakpoint, this button sets a new PC
breakpoint at the address.

ﬂl [Break] button

177

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

bd (data break)

I Function

This command sets or clears data break. This command allows you to specify the following break

conditions:

1. Memory address to be read or written (one location)

2. Data pattern to be read or written (bit mask possible)

3. Memory read/write (three conditions: read, write, or read or write)

The program breaks after completing a memory access that satisfies the above conditions.

I Format

(1) >bd <address> <data> <option> [(direct input mode)
(2) >bdO (guidance mode)
Data break set status
1.set 2.clear L2 <1|2>0 (Command is completed when "2" is selected.)
ADDR Old address : <address> [0
DATA Old data : <data>0
R/W Old option : <option> [
>

<address>: The specified address; hexadecimal or symbol (IEEE-695 format only)

<data>: Data pattern; hexadecimal or binary with 'B' suffiggn be input for the bits to be masked)
<option>: Memory read/write option; r, w, @r

Condition: 0< addresx last data memory addresss @ata< Oxf

I Examples

Format (1)
>pd 00205W O ... Sets a data break condition so that the program breaks when "5" is written
to address 0x20.
* The direct input mode cannot clear the set condition.
Format (2)
>pbd O
ADDR : 020 DATA:5 R/W:W ... Currently set condition.
1l.set 2.clear .71 ad ... "1. set" is selected.
ADDR 020:100 O ... Break address is set to 0x100.
DATA 5:1*1*B ad ... Data pattern is set to Ob1*1*.
R/W W * O ... R/W condition is set for read and write access.
>pbd O
ADDR : 100 DATA: 1*1*B R/W: *
1l.set 2.clear ..?2 ad ... "2. clear" is selected.
>pbd O
Data break: None
1.set 2.clear ..? O ...Terminated by [Enter] key.

"0 in the binary data pattern specifies that the bit will not be compared with the actual read /write
data.

178

CHAPTER 9: DEBUGGER

I Notes

e For the first time this command is executed, no item can be skipped because no default value is set.

¢ In guidance mode, the following keyboard inputs have special meaning:

"qO" ... Command is terminated. (finish inputting and start execution)
A" ... Return to previous address.
"o ... Input is skipped. (keep current value)

When the command is terminated in the middle of guidance by "q0", the contents that have been
input up to that time will be modified. However, these contents will not be modified if some cleared
settings are left intact.

¢ A data break condition can be cleared by executing the bm command.

e The addresses must be specified within the range of the data memory area available for each micro-
computer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond data range.

¢ The data value can be input as a binary number with or without mask bits or a hexadecimal number

in the range of 4 bits (0 to 0xf). An error results if the limit is exceeded.
Error : invalid data pattern.

To input a binary value, a suffix 'B' must be used. When specifying a binary number without mask
bits, all four bits should be input, otherwise, the value is treated as a hexadecimal number. For
example, to specify 0b10, "0010B" should be input. If only "10B" is input, it will be treated as 0x10b.
However, when specifying mask bits, only the required lower bits can be input. In this case the higher
bits will be treated as 0 by default. For example, "1*B" will be treated as "001*B".

nnon

® An error results if you input the R/W option other than "r", "w" or "0'.
Error : r/w option (r, w or *).

I GUI utility

[Break | Data Break ...] menu item
When this menu item is selected, a dialog box appears for setting a data break condition.

Data Break [x] To set a data break condition, enter an address

and a data pattern in the text box, and select R/W
condition from the radio buttons. Then click

ddress: [07008 Break Option:
" Read Address [OK]
Data 11 S A To clear the set data break condition, click [Clear].
Hex or Bin; & Ao Addiess
Mask Bit: *
DataBit: Tarl

1% I Cancel | Clear

179

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

bdc (data break clear)

I Function

This command clears the data break condition that has been set.

I Format

>bdc O (direct input mode)

B Gut utility

[Break | Data Break ...] menu item
When this menu item is selected, a dialog box appears for clearing the set data break condition. (See

the bd command.)

180

CHAPTER 9: DEBUGGER

br (register break)

I Function

This command sets or clears register break. This command allows you to specify data or a mask that
constitutes a break condition for each register. (A, B, E, X, and Y). The program will break when all
setting conditions are met.

I Format

(1) >br <register> <value> [<register> <value> [...<register> <value>]] O (direct input mode)
(2) >brd (guidance mode)
Register break set status
1. set 2. clear L.?2<112>0 (Command is completed when "2" is selected.)

A Old value: <value>1
B Old value : <value>[
FI Old value : <value>[
FD Old value : <value> [
FZ Old value : <value>[
FC Old value : <value>[
X Old value : <value> [
Y Oldvalue: <value> [
X Old value : <value> [
Y Oldvalue: <value> [
>

<register>: Register name; A, B, F, X or Y
<value>: Data pattern for the register; hexadecimal or binary with 'B' suffix (* can be used for the bits to

be masked)
I Examples
Format (1)
>prE***1B O ... Sets a register break condition so that the program breaks when the C flag is set.
Format (2)
>br O
Register break: None
1l.set 2.clear .71 ad ... "1. set" is selected.
A -:a O ... Data Oxa is set for A register condition.
B - F O .. " masks the register condition.
Fl -0 1 O
FD - 0
FZ -:0 0
FC - O
X -:20 0
Y -iN O .. "MI" returns guidance to previous setting.
X 020 : 60 O
Y -k 0
>br O
A:A B:* X:060 Y:* IDZC:1*0*B
l.set 2.clear ..?2 ad ... "2. clear" is selected.
>br O
Register break: None
1.set 2.clear ..? g ...Terminated by [Enter] key.

181

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

I Notes

e For the first time this command is executed, no item can be skipped because no default value is set.

¢ In guidance mode, the following keyboard inputs have special meaning:

"q" ... Command is terminated. (finish inputting and start execution)
A" ... Return to previous address.
"o ... Input is skipped. (keep current value)

When the command is terminated in the middle of guidance by "q0", the contents that have been
input up to that time will be modified. However, these contents will not be modified if some cleared
settings are left intact.

¢ A register break condition can be cleared by executing the bm command.

¢ An error results if you input the register name other than A, B, X, Y or F when using the direct input

mode.
Error : valid register name (A/B/X/Y/F).

* You can use the direct input mode to set register break condition at a time, or change one or several
items for register break setting.

¢ The register value can be input as a binary number with or without mask bits or a hexadecimal
number in the range of the bit width of each register (refer to the notes for bd command). An error

results if the limit is exceeded.
Error : invalid data pattern.

I GUI utility

[Break | Register Break ...] menu item
When this menu item is selected, a dialog box appears for setting register break conditions.

Register Break [<] To set a register condition, select the radio

button for the register and enter a value in
the [Enter Value:] box, then click [Modify].

Regizter
i 0 g All the register condition must be set. Enter
: an "' to exclude the register from the break
Cow s Cy condition.
C F[lZDC): 0001B When the [Apply] button is clicked, the
dialog box closes and the register break is

: . o . set with the specified conditions. However,
Mote: Set Hexadecimal value for the register; '™ means ignore

if there is a register of which the condition

Enter Walue: h b (4 d h)
as not been set (indicated with "---"), no
| Modiy | Feely I Lancel | Clear | register break condition is set.
To clear the register break conditions, click
[Clear].

182

CHAPTER 9: DEBUGGER

brc (register break clear)

I Function

This command clears the register break conditions that have been set.

I Format

>brc 0 (direct input mode)

B Gt utility

[Break | Register Break ...] menu item
When this menu item is selected, a dialog box appears for clearing the register break conditions. (See

the br command.)

183

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

bm (multiple break)

I Function

This command sets or clears multiple break conditions combined with a PC, data RAM access and

register breaks.

I Format

(1) >bm <item> <value> [<item> <value> [... <item> <value>]] O (direct input mode)

(2) >bmO

Multiple break set status

1. set 2. clear

PC Old value :
ADDR Old value :
DATA Old value:
R/W Old value :

A Old value :
B Old value :
FI Old value :

FD Old value :
Fz Old value :
FC Old value :
X Old value :
Y Old value :
X Old value :
Y Old value :
>

<value> [
<value> [
<value> [
<value> [
<value> [
<value> [
<value> [
<value> [
<value> [
<value> [
<value> [
<value> [
<value> [
<value> [

(guidance mode)

L.?2<1]2>0 (Command is completed when "2" is selected.)

<item>: PC/ADDR/DATA/OPT/A/B/FIXIY
(ADDR, DATA and OPT are for data RAM access, please refed mommand)

<value>: Value set for each item; hexadecimal or binary with 'B' suffix (* can be used for the bits to be
masked)

I Examples

Format (1)

>bm PC 150 ADDR 20 DATAOOPTW [
... Sets a PC and a data memory conditions. In this case, a break will occur when the program writes
0 to data memory address 0x20 and the program counter is set to 0x150.

Format (2)
>bm]

Combined break: None

1. set 2. clear
PC ----:100
ADDR ---:80
DATA -t A
R/W - F

Y 1120
>bm]

L2721

O
O

Ooooooooogodg

O

O ... "1. set" is selected.
... PC condition is input.
... Data memory address is input.
... Data pattern is input.
.. "*" masks the condition.

.. Register condition is input.

PC:0100 ADDR:080 DATA:A R/W:*
A* B:6 X:* Y:120 IDZC:**1*B

1.set 2.clear
>

184

L ?2

0 ... "2. clear" is selected.

CHAPTER 9: DEBUGGER

I Notes

For the first time this command is executed, no item can be skipped because no default value is set.

A multiple break will occur when all the conditions for the PC, data RAM access, and register values
coincide.

The previously set PC break, data break and register break conditions are cleared by the bm com-
mand. Also, the multiple break setting is cleared when the bp, bd and/or br conditions are set after
the bm condition is set.

An error results if you input the item name other than one listed below, when using the direct input

mode.
Error : identifier (PC/ADDR/DATA/OPT/A/BIFIXIY).

You can use the direct input mode to set multiple break condition at a time, or change one or several
items for multiple break setting.

In guidance mode, the following keyboard inputs have special meaning:

"q" ... Command is terminated. (finish inputting and start execution)
A" ... Return to previous address.
"o ... Input is skipped. (keep current value)

When the command is terminated in the middle of guidance by "q0", the contents that have been
input up to that time will be modified. However, these contents will not be modified if some cleared
settings are left intact.

I GUI utility

[Break | Multiple Break ...] menu item
When this menu item is selected, a dialog box appears for setting multi break conditions.

Multiple Break To set a multiple break, enter each condition in the
box and select a R/W condition from the radio
buttons, then click [OK]. All the conditions must be

PC - |I A |
ADDR - I— . : I— set. Enter an "[I' to exclude the condition. If there is a
condition that has not been set (indicated with "---"),
paTa: [+ A no multiple break condition is set.
R/ Dption (A I To clear the multiple break condition, click [Clear].
" Read I—

O Wite
 RAW

0K I Cancel | Clexar |

185

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

bmc (multiple break clear)

I Function

This command clears the multiple break condition that has been set.

I Format

>bmc O (direct input mode)

B Gut utility

[Break | Multi Break ...] menu item
When this menu item is selected, a dialog box appears for clearing multi break conditions. (See the bm

command.)

186

CHAPTER 9: DEBUGGER

bl (break point list)

I Function

This command lists the current setting of all break conditions.

I Format

>bl0 (direct input mode)

I Example
>bl O
Data Break Condition:
ADDR : 100 DATA: 1*1*B R/W: *
Register Break Condition:
A:A B:* X:060 Y:* IDZC:1*0*B
PC Break List:
0: 0100
1: 0200..0300

>

I GUI utility

None

187

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

bac (break all clear)

I Function

This command clears all break conditions set by the bp, bd, br and / or bm commands.

I Format

>bacl (direct input mode)

B Gut utility

[Break | Break All Clear] menu item
When this menu item is selected, the bac command is executed.

188

be (break enable)

CHAPTER 9: DEBUGGER

I Function

This command sets the break enable mode. A break is generated when the PC break, data break,

register break or multi break condition is met with the EVA62XX CPU state.

I Format

>bel (direct input mode)

I Example

>be

Set to break enable mode.

I GUI utility

[Option | Mode Setting ...] menu item
When this menu item is selected, a dialog box appears for setting break enable mode.

Mode Setting E

Break Mode

' Break Enable
" Break Disable

Time or Step Mode :
& Real Time Measurement

" Step Measurement

[ok]

Cancel

Select the [Break Enable] button.

189

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

bsyn (break disable)

I Function

This command sets the break disable (synchronous) mode. When the PC break, data break, register
break or multi break condition is met with the EVA62XX CPU state, a pulse is output to the ICE62
SYNC pin. However, a break is not generated.

I Format

>bsyn [(direct input mode)

I Example

>hsyn O
Set to break disable (synchronous) mode.

IGUI utility

[Option | Mode Setting ...] menu item
When this menu item is selected, a dialog box appears for setting break disable mode. Select the
[Break Disable] button in the dialog box. (See the be command.)

190

CHAPTER 9: DEBUGGER

9.9.9 Program Display

U (unassemble)

I Function

This command displays a program in the [Source] window after unassembling it. The display con-
tents are as follows:

® Program memory address

® Object code

¢ Unassembled contents of the program

I Format

>u [<address>] O (direct input mode)

<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addresx last program memory address

I Display
When the [Source] window is opened, the display is refreshed. When the [Source] window is closed,
the window automatically opens in the unassemble mode.
If <address> is not specified, the program is displayed from the current PC address by default;
if <address> is specified, it is displayed from the specified address.

[M=l K

S N |

| u-uiun RS CEHELE __|'“

MM FER LR FFH, A !
maE Ean b &, a=a
mMoE FFD LR TFL, A
s Bk FIET g
Mus kA0 CRELL BxD
& g EWF FIET o
moy ebg DRLL Oeh
nE s AF dxé
Moy FFF - HOPT
s FFF HOFT
MOE FFF HOFT
Hac FFF HOFT
Mo FFF HOFT
MEE FFF HOFT
MOF FFF HOFT =

B Gut utility

[View | Program | Unassemble] menu item, [Unassemble] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

=] | [Unassemble] button

191

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

SC (source code)

I Function

This command displays the contents of the program source file in the [Source] window. The display
contents are as follows:

¢ Line number in the source file
e Source code

I Format

>sc [<address>] O (direct input mode)
<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addres last program memory address

I Display

When the [Source] window is opened, the display is refreshed. When the [Source] window is closed,
the window automatically opens in the source mode.

If <address> is not specified, the program is displayed from the current PC address by default;

if <address> is specified, it is displayed from the specified address.

W S Dl i

Swwsch Labat | -]
1 =]
1 g R
13 | T ;

L i o THIT s s osk R
15 14 b8
16 (1] a, TF_IHIT ABDELAsF
1w 1d ol s
1% Ccall THIT_R&H_ELE1 v initialize RAH block 1
1% | LD ;

& Fi call IHE R&H_BLEA + increment RAH block 1
3| ip LDnF 7 inFinity loop
Frd
I | remmnn BREH bk ssses
i N 72
%5 g h 00N
Fo) Lbmf BEH_ELE1, &
) E

I Note

Source codes can be displayed only when an absolute object file that contains source debug informa-
tion has been loaded.

B Gut utility

[View | Program | Source Display] menu item, [Source] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

| [Source] button

192

CHAPTER 9: DEBUGGER

m (mix)

I Function

This command displays the unassembled result of the program and the contents of the program
source file in the [Source] window. The display contents are as follows:

¢ Line number

® Program memory address

® Object code

¢ Unassembled contents of the program

® Source code

I Format

>m [<address>] O (direct input mode)
<address>: Start address for display; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addresx last program memory address

I Display

When the [Source] window is opened, the display is refreshed. When the [Source] window is closed,
the window automatically opens in the mix mode.

If <address> is not specified, the program is displayed from the current PC address by default;

if <address> is specified, it is displayed from the specified address.

| M= =
Swmsch Labat | -]

7 Bl

& rwwwes BOOT, LDOP sesss

k] +Qlohal THIT_RAH_BLEY i subroutine

il ~global THC RAH_BLE1 » subroutine

11

12 Lorg dx18d J

13 RODT ;

a 5P THIT ADORY>&

1% | MM Fen 14 sphi & 1d =ph &

16 | @1k '] 1T | a, Uxd 1d a, EF_THIT_ADDREG®=F

iT|MeE FFO 1d wpl.a 1d spl a

16|k el pREt @ [E3]

1% | 5 Al csll Bx0 call THIT_RAH_BLE? i inikialize RAl

0 LDDF:
* M| MmN elF peek bue? =]

|y WiE call axé call THC_RAH_BLE1 v lncrement RAH =
4| | |

I Note

Source codes can be displayed only when an absolute object file that contains source debug informa-
tion has been loaded.

B Gut utility

[View | Program | Mix Mode] menu item, [Mix] button
When this menu item or button is selected, the [Source] window opens or activates and displays the
program from the current PC address.

[Mix] button

193

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.9.10 Symbol Information

SY (symbol list)

I Function

This command displays a list of symbols in the [Command] window.

I Format

(1) >sy [/a] O (direct input mode)
(2) >sy $<keyword> [/a]O (direct input mode)
(3) >sy #<keyword> [/a]O (direct input mode)

<keyword>: Search character string; ASCII character
Condition: 0< length of keywords 32

I Examples

Format (1)

>sy [

INC_RAM_BLK1 206
INIT_RAM_BLK1 200
RAM_BLK1 0
BOOT@C:\EOC62\TEST\MAIN.S 100
LOOP@C:\EOC62\TEST\MAIN.S 106
>

In format (1), all the defined symbols are displayed in alphabetical order. Global symbols are dis-
played first, then local symbols. Shown to right to each symbol is the address that is defined in it.

Format (2)

>sy $R O

INC_RAM_BLK1 206
INIT_RAM_BLK1 200
RAM_BLK1 0

>

In format (2), the debugger displays global symbols that contain the character string specified by
<keyword>.

Format (3)

>sy #B O

BOOT@C:\EOC62\TEST\MAIN.S 100

>

In format (3), the debugger displays local symbols that contain the character string specified by
<keyword>.

When local symbols are displayed, @ and the source file name in which the symbol is defined are
added.

I Notes

¢ The symbol list will be sorted by letter order if no option is added. If the option is added, the

symbol list will be sorted by address.
¢ The symbol list can only be displayed when the object file in IEEE-695 format has been read.
¢ The specification of keyword conforms to which defined for assembler tools.

B Gut utility

None

194

CHAPTER 9: DEBUGGER

9.9.11 Load File

If (load file)

I Function

This command loads an object file in IEEE-695 format into the debugger.

I Format

(1) >If <file name> O (direct input mode)
(2) >If0 (guidance mode)
File Name ? <file name> O
>

<file name>: File name to be loaded (path can also be specified)

I Examples

Format (1)

>|f test.abs a
Loading file ... OK!
>

Format (2)

>if 0O

File name ? test.abs
Loading file ... OK!

>

I Notes

e An error results if the loaded file is linked with a different ICE parameter file than the one the

debugger is using.
Error : different chip type, can't load this file.

¢ Only an IEEE-695 format object file (generated by the linker) can be loaded by the If command.

e If you want to use source display and symbols when debugging a program, the object file must be in
IEEE-695 format that contains debug information loaded into the computer.

e If the [Source] window is opened when loading a file, its contents are updated. The program contents
are displayed from the current PC address.

e If an error occurs when loading a file, portions of the file that have already been read will remain in
the emulation memory.

B Gut utility

[File | Load File ...] menu item, [Load File] button
When this menu item or button is selected, a dialog box appears allowing selection of an object file to
be loaded.

Load File
= | [Load File ...] button Lookin |3 test =] =1
Test.abs
File name: || Open I
Filez of bupe: ISource Files [* abz) j Cancel |

195

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

lo (load option)

I Function

This command loads an Intel HEX format program or option file listed below into the debugger.

File Name specification

Program file ~h.hex (4 high-order bits), ~L.hex (8 low-order bits)
Function option data file ~fhex

Segment option data file ~s.hex

Melody data file* ~a.hex

ONot used in some microcomputer models

I Format

(1) >lo <file name> O (direct input mode)
(2) >loO (guidance mode)
File Name .7 <file name> O
>

<file name>: File name to be loaded (path can also be specified)

I Examples

Format (1)

>|o testl.hex O ...Loads the program files testl.hex and testh.hex.
Loading file ... OK!
>

Format (2)

>lo O

File name ? tests.hex O ...Loads a segment option file.
Loading file ... OK!

>

I Notes

¢ The debugger determines the file type based on the specified file name. Therefore, the debugger

cannot load a file not following to the name specification listed above, and an error will result.
Error : invalid file name.

e If an error occurs when loading a file, portions of the file that have already been read are left as they
were loaded.

IGUI utility

[File | Load Option ...] menu item, [Load Option] button
When this menu item or button is selected, a dialog box appears allowing selection of a hex file to be
loaded.

@ | [Load Option] button Load Option =]
Laok in: Iatest j gI IE.T
Testh.hex
Testl hex

Filez of type: IHex Filez [* hex) j Cancel |

196

CHAPTER 9: DEBUGGER

9.9.12 ROM Access

P (ROM program load)

I Function

This command loads program to ICE62R's emulation memory from the ROM at the ICE ROM socket.

I Format

>rp0 (direct input mode)

I Notes

¢ An error results if high and/or low ROM chips are not installed, and so the program is not loaded to

the emulation memory.
Error : no low ROM.
Error : no high ROM.
Error : no high and low ROM.

e An error results when an undefined code is detected, and the execution is terminated.
Error : undefined code detected.

I GUI utility

None

197

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

VP (ROM program verify)

I Function

This command verifies the contents of the ICE emulation memory and the ROM at the ICE ROM
socket.

I Format

>vp O (direct input mode)

I Notes

¢ An error results if high and/or low ROM chips are not installed.
Error : no low ROM.
Error : no high ROM.
Error : no high and low ROM.

e If there is any non-agreeing data, it (ROM address, ROM contents, emulation memory contents) is

displayed in the [Command] window.
>vp O

Rom verifying ... NG!

Rom verify Errors:

FFF FFC, 0300 OFF OFC, ...

>

This command just verifies the contents of the ICE emulation memory and the ROM, so no error
results if an undefined code exists either in the emulation memory or the ROM. It is checked when
loading program from ROM by rp command.

¢ If many non-agreeing data are detected, the display can be interrupted by pressing the [Esc] key.

IGUI utility

None

198

CHAPTER 9: DEBUGGER

rom (ROM type)

I Function

This command specifies the type of the ROM chip which is installed to the ICE ROM socket.

I Format

(1) >rom <type> O (direct input mode)
(2) >rom 0O (guidance mode)
rom Current type setting : <type> [
>

<type>: Value indicating the ROM type; 64/128/256/512

I Examples

Format (1)
>rom 64 O ... 2764 type ROM is specified.
>

Format (2)

>romU

ROM 64:256 O ... 27256 type ROM is specified.
>

I Notes

e The initial value is set as 64.

¢ An error results if you input a value other than the valid ones listed above.
Error : ROM type (64/128/256/512).

I GUI utility

[Option | ROM Type ...] menu item
When this menu item is selected, a dialog box appears allowing selection of a ROM type.

Select a ROM type from the radio buttons.

Rom Type :
128
" 256
Lol

Cancel |

199

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.9.13 Trace

{C (trace condition)

I Function

This command sets up the trace condition by means of the break point.

One of the following three trace conditions can be specified with respect to the break point:
Start: Extract the trace information from the break point.

Middle: Extract the trace information before and after the break point.

End: Extract the trace information up to the break point.

I Format

(1) >tc <condition> 0O (direct input mode)

(2) >tcO (guidance mode)
Current type setting
Set condition 1. start 2. middle 3.end ?<112|3> O
>

<condition>: Position for trace extraction with respect to the break point; s/m/e

I Examples

Format (1)
>tcs 0O ... "Start" is specified.
>

Format (2)

>tc O

Trace condition:

End

1.start 2. middle 3.end ..?2 0
>

I Note

An error results if you input the condition other than listed above.
Error : trace condition (s/m/e).

IGUI utility

[Trace | Trace Condition ...] menu item
When this menu item is selected, a dialog box appears allowing selection of a trace condition.

Trace Condition Select a condition using the radio button.
£t o |
(1]4
" Middle

& EncE Cancel |

200

CHAPTER 9: DEBUGGER

ta (trace area)

I Function

This command sets or clears the trace area by the specified program address range.

I Format

(1) >ta [<staddrl> <endaddrl> [...... <staddr4> <endaddr4>]] 0O (direct input mode)

(2) >taallO (direct input mode)

(3) >taldl (guidance mode)
Current trace area
1.set 2.clear 3.clearall ..?<1|2|3> O
Start address ? <staddr> O
End address ? <endaddr> 0O

<staddrl-4>: Start address of each specified address range; hexadecimal or symbol (IEEE-695 format only)
<endaddrl-4>:End address of each specified address range; hexadecimal or symbol (IEEE-695 format only
Condition: 0O< staddr(1-4k endaddr(1-4¥ last program memory address

I Examples

Format (1)
>ta 400 600 [... Sets a trace area from address 0x400 to 0x600.
>

Format (2)
>taall O ... Sets as entire program memory to be traced.
>

Format (3)

>ta [

Trace area:

0000..0fff

1.set 2.clear 3.clearall ..?3 O ... Clears all areas.

>ta

No trace extract address is defined

1.set 2.clear 3.clearall ..?1 O

Start address ? 100 a ... Sets a trace area from address 0x100 to Ox17f.
End address ? 17f a

Start address ? 200 a ... Sets a trace area from address 0x200 to Ox2ff.
End address ? 2ff a

Start address ? O ... Terminated by [Enter] key.

>ta [

Trace area:

0100..017f

0200..02ff

1.set 2.clear 3.clearall ...?2 O

Start address ? 150 a ... Clears a trace area from address 0x150 to 0x24f.
End address ? 24f a

Start address ? O

>ta [

Trace area:

0100..014f

0250..02ff

1.set 2.clear 3.clearall ...?]

>

201

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

I Notes

¢ The addresses must be specified within the range of the program memory area available for each

microcomputer model.

An error results if the input one is not a hexadecimal number or a valid symbol.

Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond code range.

¢ An error results if the start address is larger than the end address.

Error : end address < start address.

¢ You can set all program area as trace area using format (2).

¢ If the end address of the last location is not specified, it is treated as the maximum program address.

e For direct input mode in format (1), an error results if you attempt to specify more than 4 address
ranges at a time. But for guidance mode, there is no such limitation, so you can specify more than 4
address ranges before terminating the command by the [Enter] key.

e If you set an address range to trace area, this address range will be added to current trace area. So if

you want to set trace area from nothing, you should at first clear current trace area.

* You can use this command for multiple times to set new address ranges to trace area, or clear address

ranges from trace area.

B Gut utility

[Trace | Trace Area ...] menu item

When this menu item is selected, a dialog box appears for setting trace areas.

Add/Clear Trace Area
Start Address 1: I End Address 1: I
Start Address 2: I End Address 2 I
Start Address 3 I End Address 3: I
Start Address 4 I End Address 4: I
Trace All | CAdd T Clear | Cancel |

202

Enter the start and end addresses and then click
[Add].

Up to four areas can be set at a time. To set more
than four areas, select this menu item every four
areas.

When the [Clear] button is clicked, the entered
address ranges are cleared.

The [Trace All] button set the entire program
memory to be traced.

CHAPTER 9: DEBUGGER

tac (trace areaclear)

I Function

This command clears program address ranges from the trace area.

I Format

>tac [<staddrl> <endaddrl> [... <staddr4> <endaddr4>]] O (direct input mode)

<staddrl-4>: Start address of each specified address range; hexadecimal or symbol (IEEE-695 format only)
<endaddrl-4>:End address of each specified address range; hexadecimal or symbol (IEEE-695 format only
Condition: O< staddr(1-4k endaddr(1-4% last program memory address

I Example

>ta 0

Trace area:

0000..0fff ... Current trace area
1.set 2.clear 3.clearall ...? a

>tac 400 600 0O ... Clears a trace area from 0x400 to 0x600.
>ta [

Trace area:

0000..03ff

0601..0fff

1.set 2.clear 3.clearall ...? a

>

I Notes

¢ The addresses must be specified within the range of the program memory area available for each
microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond code range.

¢ An error results if the start address is larger than the end address.
Error : end address < start address.

e If you input the tac command without any parameter, the entire trace area is clear by default.

¢ You can use this command for multiple times to clear address ranges from trace area.

I GUI utility

[Trace | Trace area ...] menu item
When this menu item is selected, a dialog box appears for clearing trace areas. (See the ta command.)

203

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

tp (trace pointer)

I Function

This command displays the current location of the trace pointer. The pointer points to the location in
the trace memory into which the last trace information has been stored.

I Format

>tpOd (direct input mode)

I Example

>tp O
LOC=2058 ... Current trace pointer value
>

IGUI utility

None

204

CHAPTER 9: DEBUGGER

td (trace data display)

I Function

This command displays the trace information that has been sampled into the ICE62's trace memory.

I Format

(1) >td [<num>] O (direct input mode)

(2) >tdO (guidance mode)
Start point ?: (ENTER from the latest) <num> [
(Trace data is displayed)
>

<num>: Start pointer of trace data; decimal (from 0 to 2,730)

I Display

The following lists the contents of trace information:

Loc: Trace cycle number (decimal)

The last information taken into the trace memory becomes 0000.
CODE: Fetched code (hexadecimal) and unassembled content (mnemonic)
PC: PC address (hexadecimal)

A, B,X,Y: Valuesof A, B, X, Y registers (hexadecimal)

IDZC: Values of I, D, Z and C flags (binary) after cycle execution

MemOP: Read/write operation (denoted by R or W at the beginning of data), accessed data
memory address (hexadecimal), and data (hexadecimal)

OtherOP: Interrupt process: INT1 (stack), INT2 (vector fetch)

(1) When [Trace] window is opened:
When the td command is input without <num>, the [Trace] window redisplays the latest data; when
the td command is input with <num>, the trace data starting from <num> is displayed in the [Trace]
window.
The display contents of the [Trace] window is updated after an execution of the target program.
All trace data can be displayed by scrolling the window.

il Trace [_ (O] x]
trace fetch register trace data -
Loc CODE PC ABE X ¥ IDZC MemOP Other0P
geee eB8 LD A, 6x8 @168 8 £ 0683 7Ff o018

ges1 fed LD SPH, A 81861 & £ 0683 7Ff o018

aea2 eB@8 LD A, Ox0 g1862 & f 06683 7FFf ao618

aee3 ff@8 LD SPL, A 8183 8 f 08683 7FFf ao1e

aaay el42 PSET Bx2 g184 8 £ 08683 7FFf ao1e

aeas 488 CALL Bx8 8185 8 f @683 7FFf 66818 UWOFF=1 WOFE=8 WO7D=6

aeas eB88 LD A, Ox0 g2ae 8 f 06683 7FF ao16

aea7 e88 LD XP, A g281 8 £ 6683 7FFf ao1e

aeas bea LD X, 6x@ g282 8 f 668 7Ff 6610

aea? 988 LBPX MX, 6x8 8283 8 f @61 7ff 8818 We86=8 uaai1=0

ae1e 988 LBPX HMX, 6x8 8284 8 f 883 7ff 8818 WeB2=-8 \UAA3=0

4| | v 4

205

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

(2) When [Trace] window is closed:
When the td command is input without <num>, the debugger displays 11 lines of the latest trace data
in the [Command] window. When the #d command is input with <num>, the debugger displays 11
lines of the trace data from <num> in the [Command] window.

>td O

Start point ?:(ENTER from the latest) |

trace fetch register trace data

Loc CODE PC AB X Y IDZC MemOP OtherOP

0000 e08 LD A, 0x8 0100 00 001 100 0100

0001 feO LD SPH,A 0101 80 001 100 0100

0002 e00LD A, 0x0O 0102 8 0 001 100 0100

0003 ffoO LD SPL,A 0103 00 001 100 0100

0004 e42 PSET 0x2 0104 00 001 100 0100

0005 400 CALL Ox0O 0105 00 001 100 0100 WO7F=1 WO7E=0 WO07D=6
0006 e00 LD A, 0x0O 0200 00 001 100 0100

0007 e80 LD XP,A 0201 00 001100 0100

0008 bOO LD X, 0x0 0202 00 000 100 0100

0009 900 LBPX MX, 0x0 0203 00 001 100 0100 W000=0 WO001=0
0010 900 LBPX MX, 0x0 0204 00 003 100 0100 W002=0 WO003=0

>td 10 O

trace fetch register trace data

Loc CODE PC AB X Y IDZC MemOP OtherOP
0010 900 LBPX MX, 0x0 0204 00 003 100 0100 W002=0 WO003=0
0011 fdf RET 0205 00 004 100 0100 RO7D=6 RO7E=0 RO7F=1

0012 e42 PSET Ox2 0106 00 004 100 0100

0013 406 CALL Ox6 0107 00 004 100 0100 WO7F=1 WO7E=0 WO07D=8
0014 e00LD A, 0x0O 0206 00 004 100 0100

0015 e80 LD XP,A 0207 00 004 100 0100

0016 bOO LD X, 0x0 0208 00 000 100 0100

0017 e00 LD A, 0x0O 0209 00 000 100 0100

0018 f41 SCF 020a 00 000 100 0101

0019 f28 ACPX MX, A 020b 00 000 100 0100 R000=0 WO000=1

0020 f28 ACPX MX, A 020c 00 001 100 0110 R0O01=0 W001=0

>

I Notes

¢ Trace memory has a capacity of 8,192 cycles. On the other hand, the E0C6200 has 5, 7 and 12 clock
instructions. The 5 clock instructions require 3 bus cycles, 7 clock instructions require 4 bus cycles, and
12 clock instructions require 6 bus cycles. Thus, the final value of the trace pointer is changed accord-
ing to the executed instruction. The maximum final value when only 5 clock instructions are executed
is about 2,730, while the execution for only 12 clock instructions is about 1,300. So the maximum
possible value of trace pointer is 2,730.
An error results if the <num> you specified exceeds the maximum possible value (2,730).

Error : trace pointer range (0 - 2730).

¢ The trace memory receives new data until a break occurs. When the trace memory is filled, old data is
overwritten by new data.

¢ If there is no trace information can be read out, the warning message will be displayed.
No trace data.

¢ An error results if the <num> value you input is bigger than the last location in the trace memory.
Error : address beyond data range.

IGUI utility

[View | Trace] menu item
When this menu item is selected, the [Trace] window opens and displays the latest trace data.

206

CHAPTER 9: DEBUGGER

{S (trace search)

I Function

This command searches trace information from the trace memory under a specified condition. The
search condition can be selected from three available conditions:

1. Search by executed address
In this mode, you can specify a program memory address. The debugger searches the cycle in
which the specified address is executed.

2. Search for a specified memory read cycle
In this mode, you can specify a data memory address. The debugger searches the cycle in which
data is read from the specified address.

3. Search for a specified memory write cycle
In this mode, you can specify a data memory address . The debugger searches the cycle in which
data is written to the specified address.

I Format

(1) >ts <option> <address> [(direct input mode)

(2) >tsO (guidance mode)
1. Pc address 2. Data read address 3. Data write address ...?<1|2|3> [
Search address ?: <address> 0O
(Search result is displayed)
>
<option>: Condition type (program address, data read address or data write address); pc/dr/dw
<address>: Search address; hexadecimal or symbol (IEEE-695 format only)

I Display

The search results are displayed in the [Trace] window if it is open; otherwise, the results are dis-
played in the [Command] window.

Format (1)
>tspc200 O
Trace searching ... Done!

0006 €00 LD A, 0x0 0200 00 001100 0100
>

Format (2)

>ts [

1.Pc address 2.Dataread address 3.Data write address ...? 1 a
Search address ?:200 0

Trace searching ... Done!

0006 e00 LD A,0x0O 0200 00 001100 0100

>

Loc CODE PC AB X Y IDZC MemOP OtherOP
0006 e00 LD A, 0x0 0200 00 001 100 0100

When command execution results are being output to a log file by the log command, the search
results are displayed in the [Command] window as well as output to the log file even when the
[Trace] window is opened.

207

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

I Note

The address specified for search must be within the range of the program/data memory area available
for each microcomputer model.
An error results if the input one is not a hexadecimal number or not a valid symbol.
Error : invalid value.
An error results if the limit is exceeded for program memory address.
Error : address beyond code range.
An error results if the limit is exceeded for data memory address.
Error : address beyond data range.

B Gut utility

[Trace | Trace Search ...] menu item
When this menu item is selected, a dialog appears for setting a search condition.

Select a option using the radio button and enter an address

in the text box, then click [OK].
Option

" Data Read Address
¢ Datawirite Address

Address: I

Hexadecimal or Spmbol

ak. I Cancel |

208

CHAPTER 9: DEBUGGER

tf (trace file)

I Function

This command saves the specified range of the trace information displayed in the [Trace] window by
the td command to a file.

I Format

(1) >tf [kRnum1> <num2>] <file name> O (direct input mode)

(2) >tfO (guidance mode)
Start pointer ? <numl1> [
End pointer ? <num2> 0O
File Name ? <file name> [
>
<numl>: Start pointer; decimal (min 0)
<numa2>: End pointer; decimal (max 2,730)
<file name>: Output file name (path can also be specified)

I Examples

Format (1)
>tf trace.trc O ... Saves all trace information extracted byttheommand.

Tracing into file ... OK!
>

Format (2)

>tf O

Start point ? 0 ad

End point ? O ... The oldest data is specified by the [Enter] key.
File name ? test.trc O

Tracing into file ... OK!

>

I Notes
¢ If an existing file is specified, the file is overwritten with the new data.

e The default value of <num1>is "0", the default value of <num2> is the last location.

I GUI utility

[Trace | Trace File ...] menu item
When this menu item is selected, a dialog box appears allowing specification of the parameters.

Enter a start pointer, end pointer and a file name, then
click [OK].
Start Point: || [Decimal, min 0) To save all the trace information, enter 0 to the [Start Point]
End Paint Ii [Decinal, max 9.995] box and leave the [End Point] box blank.
. The file name can be selected using a standard file selec-
File Hame: I Bmil tion dialog box that appears by clicking [Browse...].
QK I Cancel |

209

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.9.14 Coverage

CV (coverage)

I Function

This command displays coverage information (addresses where the program is executed).
The coverage information is displayed in the [Command] window.

I Format

>cv [<address1> [<address2>]] O (direct input mode)

<addressl1>: Start address; hexadecimal or symbol (IEEE-695 format only)
<address2>: End address; hexadecimal or symbol (IEEE-695 format only)
Condition: 0< addressk address last program memory address

I Example

>cv 100 1ff O ... Displays the executed addresses within the range from 0x100 to Ox1ff.
Coverage Information:

0: 0100..0108
>

I Notes

¢ The addresses specified here must be within the range of the program memory area available with
each microcomputer model.
An error results if the input one is not a hexadecimal number or a valid symbol.
Error : invalid value.
An error results if the limit is exceeded.
Error : address beyond code range.

¢ If the cv command is input without <address1> and <address2>, coverage information in all address
is displayed; if both <address1> and <address2> are specified, coverage information within the
specified address range is displayed; if just <address1> is specified, the end address is treated as the
maximum program address and coverage information within that range is displayed.

B Gut utility

None

210

CHAPTER 9: DEBUGGER

CVC (coverage clear)

I Function

This command clears the coverage information.

I Format

>cve [(direct input mode)

B Gt utility

None

211

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.9.15 Command File

COM (execute command file)

I Function

This command reads a command file and executes the debug commands written in that file. You can
execute the commands successively, or set an interval between each command execution.

I Format

(1) >com <file name> [<interval>] O (direct input mode)

(2) >comO (guidance mode)
File name ? <file name> O
Execute commands 1. successively 2. Withwait...? <1|2> O
Interval (O - 30 seconds) : <interval> [(appears only when "2. With wait" is selected)
>(Display execution progress)

<file name>: Command file name (path can also be specified)
<interval>: Interval (wait seconds) between each command; decimal (0-30)

I Examples

Format (1)
>com batchl.cmd 0O
> ... Commands in "batchl.com" are executed successively.

Format (2)

>comU

File name ? test.cmd O

Execute commands 1. successively 2. with wait ...? 2 ad

Wait time (O - 30 seconds) : 2 ad

..... ... 2 sec. of interval is inserted after each command execution.

I Notes

¢ Any contents other than commands cannot be written in the command file.

¢ An error results if the file you specified does not exist.
Error : can't open file.

¢ Another command file can be read from a command file. However, the nesting of command files is
limited to a maximum of 5 levels. An error results if a com command at the sixth level is encountered,
the commands in the file specified by that com command will not be executed, but the subsequent
execution of the commands in upper level files will be executed continuously.
Error : over max nesting level (5), can't open file.

¢ If you specify an interval more than 30 seconds, it is set to 30 by default.

¢ Use the hot key ([CTRL]+[ESC]) to stop executing a command file.

IGUI utility

[Run | Command File ...] menu item
When this menu item is selected, a dialog box appears allowing selection of a command file.

Com [<] Enter an interval and a file name, then click [OK].
The file name can be selected using a standard file
e e T In— selection dialog box that appears by clicking
[Browse...].

Command File Path IC:\EDCE2\test\test.cm S

Ok, | Cancel |

212

CHAPTER 9: DEBUGGER

rec (record commands to a file)

I Function

This command records all debug commands following this command to a specified command file.

I Format

(1) >rec <file name> O (direct input mode)

(2) >recO (guidance mode) ...See Examples for guidance.

<file name>: Command file name (path can also be specified)

I Examples

(1) First rec execution after debugger starts up

>rec U

File name ? sample.cmd O

1. append 2. clear and open ...? 2 ad ...Displayed If the file is already exists.
>

(2) "rec" command input in the second and following sessions

>rec U
Set to record off mode. ...Record function toggles when rec is input.

>rec O
Set to record on mode.

I Notes

¢ In record on mode, besides the commands directly input in the [Command] window, the commands
executed by selecting from a menu or with a tool bar button (except the [Help] menu commands) are
also displayed in the [Command] window, and output to the specified file.
If you modify the register value or data memory contents by direct editing in the [Register] or [Data]
window, or set breakpoints in the [Source] window by double-clicking the mouse, the corresponding
commands are also displayed in the [Command] window, and output to the specified file.

¢ At the first time, you should specify the file name to which all debug commands following the rec
command will be output.

¢ Once an output command file is open, the recording is suspended and resumed (toggled) every time
you input the rec command. This toggle operation remains effective until you terminate the debugger.
If you want to record following commands to another file, you can use format (1) to specify the file
name, then current output file is closed and all following commands will be recorded in the newly
specified file.

e If you want to execute some commands frequently, you can record them to a file at the first execution,
and then use the com command to execute that command file you made.

B Gut utility

[Option | Record ...] menu item
When this menu item is selected, a standard file selection
dialog box appears for specifying a command recording file.

Record

Current Command File:

. . . . CAEDCEZMtesth, le.cnd
If the recording function has been activated, a dialog box FEEETHE A
appears allowing selection of either record-off mode or Record State:
d-on mode. A ding il Iso be specified e

record-on mode. A new recording file can also be specifie & Record On
using the [New...] button.

" Record Off

Cancel |

213

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.9.16 log
log (log)
I Function

This command saves the input commands and the execution results to a file.

I Format

(1) >log <file name> 0O (direct input mode)

(2) >log O (guidance mode) ...See Examples for guidance.

<file name>: Log file name (path can also be specified)

I Examples

(1) First log execution after debugger starts up

>log O

File name ? debugl.log ad

1. append 2. clear and open ...? 2 g ...Displayed If the file is already exists.
>

(2) "log" command input in the second and following sessions
>log O
Set to log off mode. ...Logging function toggles when log is input.

>log O
Set to log on mode.

I Notes

¢ Inlog on mode, the contents displayed in the [Command] window are written as displayed directly to
the log file.
The commands executed by selecting from a menu or with a tool bar button are displayed in the
[Command] window. However, the [Help] menu and button commands are not displayed. If you
modify the register value or data memory contents by direct editing in the [Register] or [Data]
window, or set breakpoints in the [Source] window by double-clicking the mouse, the corresponding
commands and the execution results are also displayed in the [Command] window, and output to the
specified file.

The displayed contents of the [Data], [Trace] or [Register] window produced by command execution
are displayed in the [Command] window as well. The on-the-fly information is also displayed.
However, the updated contents of each window after some execution, as well as the contents of each
window scrolled by scroll bar or arrow keys, are not displayed.

o At the first time, you should specify the file name to which all following debug commands and
execution results will be output.

¢ Once a log file is open, log output is suspended and resumed (toggled) every time you input the log
command. This toggle operation remains effective until you terminate the debugger. If you want to
specify a new log file, you can use format (1) to specify the file name, then current log file is closed
and following commands and results will be output to the newly specified file.

I GUI utility s @&
[Option | Log ...] menu item jemeeemim i UL
When this menu item is selected, a standard file selection dialog box Log Sia =
appears for specifying a log file. el —I
If the logging function has been activated, a dialog box appears allowing =g f
selection of either log-off mode or log-on mode. A new log file can also
be specified using the [New...] button.

214

CHAPTER 9: DEBUGGER

9.9.17 Map Information

ma (map information)

I Function

This command displays the map information that is set by a parameter file.

I Format

>mad (direct input mode)

I Example

>mal

Map Information:

Rom Size :1000
Rom Start Address :0000
Rom End Address :Offf

Ram Size :1000

Ram Start Address :0000
Ram End Address :Offf
--1/O Area List :0080..00ff, 0180..01ff, 0280..02ff,
--Segment Area List :0050..007f, 0450..047f
Read Only Area :0091, 0095, 00c9, 0Oca, 00f8..00fc, 0191,
Write Only Area :0450..047f
Read & Write Area :0080, 0081, 00cl1, 00c4..00c6, 00c8, 00d1,

Unused Area :0082..008f, 0093, 0097..009f, 00al..00af,
>

B Gut utility

None

215

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.9.18 Mode Setting

otf (on-the-fly display)

I Function

This command selects whether or not to run the on-the-fly display during target program execution
by the g (go) or gr (go after reset) command.

I Format

>otf O (direct input mode)

I Example

>otf O

Set on-the-fly display off. ... This command toggles the on-the-fly display function.
>otf O

Set on-the-fly display on.

I Note

The on-the-fly display is turned on at power on by default.

B Gut utility

[Option | Mode Setting...] menu item

When this menu item is selected, a dialog box appears allowing selection of the on-the-fly display
option.

Mode Setting Use the [On-the fly Display] check box for this
selection.

Break Mode : Time or Step Mode :
%' Break Enable &' Real Time Measurement
" Break Disable " Step Measurement

Ok, I Cancel

216

CHAPTER 9: DEBUGGER

tim (time or step mode)

I Function

This command selects a measurement mode of the execution counter during target program execution

by the g (go) or gr (go after reset) command. Either execution time count mode or step count mode
can be selected.

I Format

>tim O (direct input mode)

I Example

>tim O

Set step count mode. ... This command toggles the measurement mode.
>tim O

Set real time count mode.

>

I Note

The execution time count mode is set at power on by default.

B Gut utility

[Option | Mode Setting...] menu item
When this menu item is selected, a dialog box appears allowing selection of a measurement mode.

Use the radio buttons for this selection.

Orhe-fy Display

Break Mode : Time or Step Mode :
¥ Break Enable & Real Time Measurement
" Break Disable " Step Measurement

0K I Cancel

217

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.9.19 Self Diagnosis

chk (self diagnostic test)

I Function

This command displays the results of the ICE62 initial test. The test consists of the following items:
(1) Sum check test of ICE62 firmware
(2) ICE62 RAM read / write test

I Format

>chk O (direct input mode)

I Display

e If a ROM check error is detected, the normal value and the error value will be displayed.
>chk O
ROM check error: 5F => FF. ... normal value: 5F; error value: FF
>

e If a RAM check error is detected, the memory address, the normal value and the error value will be
displayed.
>chk [
RAM check error: 110 5=>F. ... address: 110; normal value: 5; error value: F
>

B Gut utility

[Option | Self Diagnosis] menu item
When this menu item is selected, the chk command is executed.

218

CHAPTER 9: DEBUGGER

9.9.20 Quit
g (quit)
I Function

This command quits the debugger.

I Format

>q0 (direct input mode)

I GUI utility

[File | Exit] menu item
Selecting this menu item terminates the debugger.

219

EOC62 FAMILY ASSEMBLER PACKAGE MANUAL

9.10 Error/Warning Messages

1. ICE errors
Error message Content of message
Error : communication error There is a probrem in communication between Host and ICE.
Error : ID not match ICE protocol ID error
Error : ROM sum check error ROM sum error found during self diagnostic test.

Error :

RAM check error

RAM error found during self diagnostic test.

Error :

undefined code detected

Some undefined code is detected when loading file.

2. ICE status

Status message

Content of message

Status : break hit A breakpoint is met when executing a program.

Status : break switch pushed Break switch is pressed.

Status : halt The status of ICE is halt.

Status : key break Key break is pressed.

Status : reset switch target Reset switch is pressed.

Status : reset switch idle Reset switch is idle.

Status : target down There is a problem in communication between the ICE and EVA
board.

Status : time out The time waiting for a message from ICE is too long.

3. Command errors/warning

Error message

Content of message (Commands involved)

No coverage address

There is no coverage information. (cv)

No trace data

There is no trace data in trace memory. (td, ts)

Error :

address beyond code range

The specified program memory address is out of range.
(pe, pf, pm, sc, m, u, g, gr, bp, bm, ts, cv)

Error

: address beyond data range

The specified data memory address is out of range.
(de, df, dm, bd, bm, ts)

Error

: can't open file

The file cannot be opened. (If, l0)

Error :

data range (0 - 0xf)

The specified number is out of the data range. (de, df)

Error :

different chip type, can't load this file

A different ICE parameter is used in the file. (If)

Error :

end address < start address

The start address is larger than the end address.
(pf, pm, df, dm, bp, cv)

Error : error file type (extension should be CMD) | The extension of the command file should be CMD. (com)

Error : identifier (PC/ADDR/DATA/OPT/A/B/XIYIF) | An illegal parameter has been specified for an item of the bm
command. (bm)

Error : illegal code The input code is not available. (pe, pf)

Error : illegal mnemonic The input mnemonic is invalid for EOC62. (as)

Error : invalid command This is an invalid command. (All commands)

Error : invalid data pattern The input data pattern is invalid. (bd, br, bm)

Error : invalid value The input data, address or symbol is invalid. (All commands)

Error : no high and low ROM No ROM is installed in ICE. (rp)

Error : no high ROM No high-order ROM is installed in ICE. (rp)

Error : no low ROM No low-order ROM is installed in ICE. (rp)

Error : no mapping area A no-map area is specified. (pm, dm)

Error :

no such symbol

There is no such symbol. (All symbol support commands)

Error

: number of parameter

The parameter number is incorrect. (All commands)

Error :

over max nesting level (5), can't open file

Nestling of the com command exceeds the limit. (com)

Error :

r/w option (r, w or *)

An illegal R/W option is specified. (bd, bm)

Error :

ROM program verify error

ROM program checks out different codes. (vp)

Error :

ROM type (64/128/256/512)

An illegal value is specified for the ROM type parameter of the
rom command. (rom)

Error :

step range (0 - 65535)

The specified step count is out of range. (s, n)

Error

: symbol type error

The symbol type (CODE / BSS) is error.
(All symbol support commands)

Error :

this chip not support this function

The chip with the used parameter file cannot support this option
function. (lo)

Error :

undefined code detected

Undefined code is detected when loading file. (rp)

Error :

valid register name (PC/A/B/X/YIF)

An invalid register name is specified. (br)

Warning : read only address, can't write

This data address is read only, cannot be written to. (de)

220

EPSON

International Sales Operations

AMERICA

ASIA

S-MOS SYSTEMS, INC.

150 River Oaks Parkway

San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238
Telex: 176079 SMOS SNJUD

S-MOS SYSTEMS, INC.

EASTERN AREA SALES AND TECHNOLOGY CENTER
301 Edgewater Place, Suite 120

Wakefield, MA 01880, U.S.A.

Phone: +1-617-246-3600 Fax: +1-617-246-5443

S-MOS SYSTEMS, INC.

SOUTH EASTERN AREA SALES AND TECHNOLOGY CENTER

4300 Six Forks Road, Suite 430
Raleigh, NC 27609, U.S.A.
Phone: +1-919-781-7667 Fax: +1-919-781-6778

S-MOS SYSTEMS, INC.

CENTRAL AREA SALES AND TECHNOLOGY CENTER
1450 E.American Lane, Suite 1550

Schaumburg, IL 60173, U.S.A.

Phone: +1-847-517-7667 Fax: +1-847-517-7601

EUROPE

- HEADQUARTERS -

EPSON EUROPE ELECTRONICS GmbH
Riesstrasse 15
80992 Muenchen, GERMANY

Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

EPSON EUROPE ELECTRONICS GmbH

SALES OFFICE

Breidenbachstrasse 46

D-51373 Leverkusen, GERMANY

Phone: +49-(0)214-83070-0 Fax: +49-(0)214-83070-10

- UNITED KINGDOM -

EPSON EUROPE ELECTRONICS GmbH

UK BRANCH OFFICE

G6 Doncastle House, Doncastle Road

Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

EPSON EUROPE ELECTRONICS GmbH
FRENCH BRANCH OFFICE

1 Avenue de I' Atlantique, LP 915 Les Conquerants

Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

- HONG KONG, CHINA -

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG

Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- CHINA -

SHANGHAI EPSON ELECTRONICS CO., LTD.
4F, Bldg., 27, No. 69, Gui Jing Road

Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3

Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360
Telex: 24444 EPSONTB

Fax: 02-2712-9164

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.

Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00

Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION
KOREA OFFICE

10F, KLI 63 Bldg., 60 Yoido-Dong
Youngdeungpo-Ku, Seoul, 150-010, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -
SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department

IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department |
(Europe & U.S.A))

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Il (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

ENERGY
SAVING

EPSON

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices
assists in creating the products of our customers’ dreams.
Epson IS energy savings

EPSON

SEIKO EPSON CORPORATION

m Electronic devices information on the Epson WWW server

http:/fwww.epson.co.jp I Issue SEPTEMBER 1998, Printed in Japan ™ B

	䤀渀琀爀漀搀甀挀琀椀漀渀
	䠀漀眀 吀漀 刀攀愀搀 琀栀攀 䴀愀渀甀愀氀
	䴀愀渀甀愀氀 一漀琀愀琀椀漀渀猀

	㄀ 䜀攀渀攀爀愀氀 
	1.1 Features
	1.2 Tool Composition
	1.2.1 Composition of Package
	1.2.2 Outline of Software Tools

	㈀ 䤀渀猀琀愀氀氀愀琀椀漀渀 
	2.1 Working Environment
	2.2 Installation Method
	2.3 Directories and Files after Installation

	㌀ 匀漀昀琀眀愀爀攀 䐀攀瘀攀氀漀瀀洀攀渀琀 倀爀漀挀攀搀甀爀攀 
	3.1 Software Development Flow
	3.2 Development Using Work Bench
	3.2.1 Starting Up the Work Bench
	3.2.2 Creating a New Project
	3.2.3 Editing Source Files
	3.2.4 Configuration of Tool Options
	3.2.5 Building an Executable Object
	3.2.6 Debugging

	㐀 圀漀爀欀 䈀攀渀挀栀 
	4.1 Features
	4.2 Starting Up and Terminating the Work Bench
	4.3 Work Bench Windows
	4.3.1 Window Configuration
	4.3.2 Window Manipulation

	4.4 Toolbar and Buttons
	4.4.1 Standard Toolbar
	4.4.2 Build Toolbar
	4.4.3 Window Toolbar
	4.4.4 Toolbar Manipulation
	4.4.5 [Insert into project] Button on a [Edit] Window

	4.5 Menus
	4.5.1 [File] Menu
	4.5.2 [Edit] Menu
	4.5.3 [View] Menu
	4.5.4 [Insert] Menu
	4.5.5 [Build] Menu
	4.5.6 [Tools] Menu
	4.5.7 [Window] Menu
	4.5.8 [Help] Menu

	4.6 Project and Work Space
	4.6.1 Creating a New Project
	4.6.2 Inserting Sources into a Project
	4.6.3 [Project] Window
	4.6.4 Opening and Closing a Project
	4.6.5 Files in the Work Space Folder

	4.7 Source Editor
	4.7.1 Creating a New Source or Header File
	4.7.2 Loading and Saving Files
	4.7.3 Edit Function
	4.7.4 Tag Jump Function
	4.7.5 Printing

	4.8 Build Task
	4.8.1 Preparing a Build Task
	4.8.2 Building an Executable Object
	4.8.3 Debugging
	4.8.4 Executing Other Tools

	4.9 Tool Option Settings
	4.9.1 Assembler Options
	4.9.2 Linker Options
	4.9.3 Debugger Options
	4.9.4 HEX Converter Options

	4.10 Short-Cut Key List
	4.11 Error Messages
	4.12 Precautions

	㔀 䄀猀猀攀洀戀氀攀爀 
	5.1 Functions
	5.2 Input/Output Files
	5.2.1 Input File
	5.2.2 Output Files

	5.3 Starting Method
	5.4 Messages
	5.5 Grammar of Assembly Source
	5.5.1 Statements
	5.5.2 Instructions (Mnemonics and Pseudo-instructions)
	5.5.3 Labels
	5.5.4 Comments
	5.5.5 Blank Lines
	5.5.6 Register Names
	5.5.7 Numerical Notations
	5.5.8 Symbols
	5.5.9 Operators
	5.5.10 Location Counter Symbol "$"

	5.6 Section Management
	5.6.1 Definition of Sections
	5.6.2 Absolute and Relocatable Sections
	5.6.3 Sample Definition of Sections

	5.7 Assembler Pseudo-Instructions
	5.7.1 Include Instruction (#include)
	5.7.2 Define Instruction (#define)
	5.7.3 Macro Instructions (#macro ... #endm)
	5.7.4 Conditional Assembly Instructions
	5.7.5 Section Defining Pseudo-Instructions (.code, .bss)
	5.7.6 Location Defining Pseudo-Instruction (.org, .bank, .page, .align)
	5.7.8 Data Defining Pseudo-Instruction (.codeword)
	5.7.9 Area Securing Pseudo-Instructions (.comm, .lcomm)
	5.7.10 Global Declaration Pseudo-Instruction (.global)
	5.7.11 List Control Pseudo-Instructions (.list, .nolist)
	5.7.12 Source Debugging Information Pseudo-Instructions (.stabs, .stabn)
	5.7.13 Comment Adding Function
	5.7.14 Priority of Pseudo-Instructions

	5.8 Summary of Compatibility with the Older Tool
	5.9 Relocatable List File
	5.10 Sample Executions
	5.11 Error/Warning Messages
	5.11.1 Errors
	5.11.2 Warning

	5.12 Precautions

	㘀 䰀椀渀欀攀爀 
	6.1 Functions
	6.2 Input/Output Files
	6.2.1 Input Files
	6.2.2 Output Files

	6.3 Starting Method
	6.4 Messages
	6.5 Linker Command File
	6.6 Link Map File
	6.7 Symbol File
	6.8 Absolute List File
	6.9 Cross Reference File
	6.10 Linking
	6.11 Automatic Insertion/Removal/Correction of "pset" Instruction
	6.12 Error/Warning Messages
	6.12.1 Errors
	6.12.2 Warning

	6.13 Precautions

	㜀 䠀攀砀 䌀漀渀瘀攀爀琀攀爀  
	7.1 Functions
	7.2 Input/Output Files
	7.2.1 Input Files
	㜀⸀㈀⸀㈀ 伀甀琀瀀甀琀 䘀椀氀攀猀

	7.3 Starting Method
	7.4 Messages
	7.5 Output Hex Files
	7.5.1 Hex File Configuration
	7.5.2 Intel-HEX Format
	7.5.3 Motorola-S Format
	7.5.4 Conversion Range

	7.6 Error/Warning Messages
	7.6.1 Errors
	7.6.2 Warning

	7.7 Precautions

	㠀 䐀椀猀愀猀猀攀洀戀氀攀爀  
	8.1 Functions
	8.2 Input/Output Files
	8.2.1 Input Files
	8.2.2 Output Files

	8.3 Starting Method
	8.4 Messages
	8.5 Disassembling Output
	8.6 Error/Warning Messages
	8.6.1 Errors
	8.6.2 Warning

	㤀 䐀攀戀甀最最攀爀  
	9.1 Features
	9.2 Input/Output Files
	9.2.1 Input Files
	9.2.2 Output Files

	9.3 Starting Method
	9.3.1 Start-up Format
	9.3.2 Start-up Options
	9.3.3 Start-up Messages
	9.3.4 Hardware Check at Start-up
	9.3.5 Method of Termination

	9.4 Windows
	9.4.1 Basic Structure of Window
	9.4.2 [Command] Window
	9.4.3 [Source] Window
	9.4.4 [Data] Window
	9.4.5 [Register] Window
	9.4.6 [Trace] Window

	9.5 Tool Bar
	9.5.1 Tool Bar Structure
	9.5.2 [Key Break] Button
	9.5.3 [Load File] and [Load Option] Buttons
	9.5.4 [Source], [Mix], and [Unassemble] Buttons
	9.5.5 [Go], [Go to Cursor], [Go from Reset], [Step], [Next], and [Reset] Buttons
	9.5.6 [Break] Button
	9.5.7 [Help] Button

	9.6 Menu
	9.6.1 Menu Structure
	9.6.2 [File] Menu
	9.6.3 [Run] Menu
	9.6.4 [Break] Menu
	9.6.5 [Trace] Menu
	9.6.6 [View] Menu
	9.6.7 [Option] Menu
	9.6.8 [Windows] Menu
	9.6.9 [Help] Menu

	9.7 Method for Executing Commands
	9.7.1 Entering Commands from Keyboard
	9.7.2 Executing from Menu or Tool Bar
	9.7.3 Executing from a Command File
	9.7.4 Log File

	9.8 Debug Functions
	9.8.1 Loading Program and Option Data
	9.8.2 Source Display and Symbolic Debugging Function
	9.8.3 Displaying and Modifying Program, Data, and Register
	9.8.4 Executing Program
	9.8.5 Break Functions
	9.8.6 Trace Functions
	9.8.7 Coverage

	9.9 Command Reference
	9.9.1 Command List
	9.9.2 Reference for Each Command
	9.9.3 Program Memory Operation
	as (assemble mnemonic)
	pe (program memory enter)
	pf (program memory fill)
	pm (program memory move)

	9.9.4 Data Memory Operation
	dd (data memory dump)
	de (data memory enter)
	df (data memory fill)
	dm (data memory move)

	9.9.5 Register Operation
	rd (register display)
	rs (register set)

	9.9.6 Program Execution
	g (go)
	gr (go after reset CPU)
	s (step)
	n (next)

	9.9.7 CPU Reset
	rst (reset CPU)

	9.9.8 Break
	bp (break point set)
	bpc (break point clear)
	bd (data break)
	bdc (data break clear)
	br (register break)
	brc (register break clear)
	bm (multiple break)
	bmc (multiple break clear)
	bl (break point list)
	bac (break all clear)
	be (break enable)
	bsyn (break disable)

	9.9.9 Program Display
	u (unassemble)
	sc (source code)
	m (mix)

	9.9.10 Symbol Information
	sy (symbol list)

	9.9.11 Load File
	lf (load file)
	lo (load option)

	9.9.12 ROM Access
	rp (ROM program load)
	vp (ROM program verify)
	rom (ROM type)

	9.9.13 Trace
	tc (trace condition)
	ta (trace area)
	tac (trace area clear)
	tp (trace pointer)
	td (trace data display)
	ts (trace search)
	tf (trace file)

	9.9.14 Coverage
	cv (coverage)
	cvc (coverage clear)

	9.9.15 Command File
	com (execute command file)
	rec (record commands to a file)

	9.9.16 log
	log (log)

	9.9.17 Map Information
	ma (map information)

	9.9.18 Mode Setting
	otf (on-the-fly display)
	tim (time or step mode)

	9.9.19 Self Diagnosis
	chk (self diagnostic test)

	9.9.20 Quit
	q (quit)

	9.10 Error/Warning Messages

