

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

E0C6001 Technical Hardware E0C6001 Technical Software

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. Please note that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it now reads "E0C".

PREFACE

This manual is individualy described about the hardware and the software of the E0C6001.

I. E0C6001 Technical Hardware

This part explains the function of the E0C6001, the circuit configurations, and details the controlling method.

II. E0C6001 Technical Software

This part explains the programming method of the E0C6001.

E0C6001 • Technical Hardware

CONTENTS

CHAPTER 1	INTRODUCTIO	DN I-1	l
	1.1 Configura	ation I-1	
	1.2 Features	I-2	2
	1.3 Block Dia	ıgram I-3	}
	1.4 Pin Layou	ut Diagram I-4	ŀ
	1.5 Pin Desc	ription I-5	5
CHAPTER 2		LY AND INITIAL RESET I-6	;
	2.1 Power Su	Ipply I-6	;
	 2.2 Initial Resolution 2.2 Initial Resolution Reset Simulation Simulation Simulat	SetI-8ation detection circuitI-9pin (RESET)I-9taneous high input to input ports (K00–K03)I-9al register following initializationI-10(TEST)I-10	;)) 0
CHAPTER 3	CPU, ROM, R	AM I-11	1
	3.1 CPU	I-11	1
	3.2 ROM	I-12	2
	3.3 RAM	I-12	2

CHAPTER 4	PERIPHERAL CIRCUITS AND OPERATION			
	4.1	Memory Map	I-13	
	4.2	Oscillation Circuit	I-18	
		Crystal oscillation circuit	I-18	
		CR oscillation circuit	I-19	
	4.3	Input Port (K00–K03)	I-20	
		Configuration of input port	I-20	
		Interrupt function	I-20	
		Mask option	I-22	
		Control of input port	I-23	
	4.4	Output Port (R00, R01)	I-25	
		Configuration of output port	I-25	
		Mask option	I-26	
		Control of output port	I-28	
	4.5	I/O Port (P00–P03)	I-31	
		Configuration of I/O port	I-31	
		I/O control register and I/O mode	I-32	
		Mask option	I-32	
		Control of I/O port	I-33	
	4.6	LCD Driver (COM0–COM3, SEG0–SEG19)	I-35	
		Configuration of LCD driver	I-35	
		Cadence adjustment of oscillation frequency	I-41	
		Mask option (segment allocation)	I-42	
		Control of LCD driver	I-44	
	4.7	Clock Timer	I-45	
		Configuration of clock timer	I-45	
		Interrupt function	I-46	
		Control of clock timer	I-47	
	4.8	Heavy Load Protection Function	I-49	
		Operation of heavy load protection function	I-49	
		Control of heavy load protection function	I-50	

	4.9	Interrupt and HALT Interrupt factors Specific masks and factor flags for interrupt	I-51 I-53 I-54
		Interrupt vectors	I-54
		Control of interrupt	I-55
CHAPTER 5	BAS	IC EXTERNAL WIRING DIAGRAM	. I-56
CHAPTER 6	ELEC	CTRICAL CHARACTERISTICS	I-58
	6.1	Absolute Maximum Rating	I-58
	6.2	Recommended Operating Conditions	I-59
	6.3	DC Characteristics	I-60
	6.4	Analog Circuit Characteristics and Power Current Consumption	I-62
	6.5	Oscillation Characteristics	I-66
CHAPTER 7	РАС	CKAGE	I-68
	7.1	Plastic Package	I-68
	7.2	Ceramic Package for Test Samples	I-69
CHAPTER 8	PAC	DLAYOUT	I-70
	8.1	Diagram of Pad Layout	I-70
	8.2	Pad Coordinates	I-71

CHAPTER 1 INTRODUCTION

Each member of the EOC6001 Series of single chip microcomputers feature a 4-bit EOC6200B core CPU, 1,024 words of ROM (12 bits per word), 80 words of RAM (4 bits per word), an LCD driver, 4 bits for input ports (K00–K03), 2 bits for output ports (R00, R01), one 4-bit I/O port (P00– P03) and one timer (clock timer).

Because of their low voltage operation and low power consumption, the E0C6001 Series are ideal for a wide range of applications.

1.1 Configuration

The E0C6001 Series are configured as follows, depending on the supply voltage.

Table 1.1.1 Configuration of the E0C6001 Series

1	Model	Supply Voltage	Supply Voltage Range	Oscillation Circuits
е	E0C6001	3.0 V	1.8–3.6 V	Crystal or CR
s	E0C60L01	1.5 V	1.2–2.0 V	Crystal or CR

1.2 Features

Built-in oscillation circuit	Crystal or CR oscillation circuit, 32.768 kHz (typ.)				
Instruction set	100 instructions				
ROM capacity	1,024 words \times 12 bits				
RAM capacity (data RAM)	80 words \times 4 bits				
Input port	4 bits (Supplementary	pull-down resistors may be used)			
Output port	2 bits (Piezo buzzer and programmable frequency output can be driven directry by mask option)				
Input/output port	4 bits				
LCD driver	20 segments $ imes$ 4, 3 or 2 common duty				
Timer	1 system: clock timer				
Interrupts:					
External interrupt Internal interrupt	Input port interrupt Timer interrupt	1 system 1 system			
Supply voltage	1.5 V (1.2-2.0 V) 3.0 V (1.8-3.6 V)	E0C60L01 E0C6001			
Current consumption (typ.)	1.0 μ A (Crystal oscillation CLK = 32.768 kHz, when halted) 2.5 μ A (Crystal oscillation CLK = 32.768 kHz, when executing)				
Supply form	QFP12-48pin (plastic)	or chip			

1.3 Block Diagram

Fig. 1.3.1 Block diagram

1.4 Pin Layout Diagram

QFP12-48pin

Pin No	Pin Name						
1	OSC2	13	R01	25	TEST	37	COM0
2	Vs1	14	R00	26	RESET	38	COM1
3	N.C.	15	SEG19	27	SEG9	39	COM2
4	P00	16	SEG18	28	SEG8	40	COM3
5	P01	17	SEG17	29	SEG7	41	VL3
6	P02	18	SEG16	30	SEG6	42	VL2
7	P03	19	SEG15	31	SEG5	43	VL1
8	K00	20	SEG14	32	SEG4	44	CA
9	K01	21	SEG13	33	SEG3	45	СВ
10	K02	22	SEG12	34	SEG2	46	Vss
11	K03	23	SEG11	35	SEG1	47	Vdd
12	N.C.	24	SEG10	36	SEG0	48	OSC1

Fig. 1.4.1

Pin assignment

N.C. = No Connection

1.5 Pin Description

Terminal Name	Pin No.	Input/Output	Function	
Vdd	47	(I)	Power source (+) terminal	
Vss	46	(I)	Power source (-) terminal	
Vs1	2	0	Oscillation and internal logic system regulated	
			voltage output terminal	
VL1	43	0	LCD system reducer output terminal (VL2 \times 1/2)	
			/ LCD system reducer output terminal (VL3 \times 1/3)	
VL2	42	0	LCD system booster output terminal (VL1 \times 2)	
			/ LCD system reducer output terminal (VL3 \times 2/3)	
VL3	41	0	LCD system booster output terminal (VL1 \times 3)	
			/ LCD system booster output terminal (VL2 \times 3/2)	
CA, CB	44, 45	_	Booster capacitor connecting terminal	
OSC1	48	Ι	Crystal or CR oscillation input terminal	
OSC2	1	0	Crystal or CR oscillation output terminal	
K00–K03	8-11	Ι	Input terminal	
P00-P03	4–7	I/O	I/O terminal	
R00, R01	14, 13	0	Output terminal	
SEG0-19	36–27	0	LCD segment output terminal	
	24–15		(convertible to DC output terminal by mask option)	
COM0-3	37–40	0	LCD common output terminal	
RESET	26	Ι	Initial setting input terminal	
TEST	25	Ι	Test input terminal	

Table 1.5.1 Pin description

CHAPTER 2 POWER SUPPLY AND INITIAL RESET

2.1 Power Supply

With a single external power supply (*1) supplied to VDD through Vss, the E0C6001 Series generate the necessary internal voltages with the regulated voltage circuit (<VS1> for oscillators and internal circuit) and the voltage booster/ reducer (<VL2, VL3 or VL1, VL3> for LCDs). When the E0C6001 LCD power is selected for 4.5 V LCD panel by mask option, the E0C6001 short-circuits between <VL2> and <VSS> in internally, and the voltage booster/ reducer generates <VL1> and <VL3>. When 3.0 V LCD panel is selected, the E0C6001 short-circuits between <VL3> and <VSS>, and the voltage reducer generates <VL1> and <VL2>. The E0C60L01 short-circuits between <VL1> and <VSS>, and the voltage booster generates <VL2> and <VL3>. The voltage <VS1> for the internal circuit that is generated by the regulated voltage circuit is -1.2 V (VDD standard). Figure 2.1.1 shows the power supply configuration of the E0C6001 Series in each condition.

*1 Supply voltage: E0C6001 3.0 V E0C60L01 1.5 V

- Note External loads cannot be driven by the output voltage of the regulated voltage circuit and the voltage booster/reducer.
 - See Chapter 6, "ELECTRICAL CHARACTERISTICS", for voltage values.

• E0C6001

Note: VL3 is shorted to VSS inside the IC.

• E0C60L01

Note: VL1 is shorted to VSS inside the IC.

2.2 Initial Reset

To initialize the E0C6001 Series circuits, an initial reset must be executed. There are three ways of doing this.

- (1) Initial reset by the oscillation detection circuit (Note)
- (2) External initial reset via the RESET pin
- (3) External initial reset by simultaneous high input to pins K00–K03 (depending on mask option)

Figure 2.2.1 shows the configuration of the initial reset circuit.

Note Be sure to use reset function (2) or (3) at power-on because the initial reset function by the oscillation detection circuit (1) may not operate normally depending on the power-on procedure.

Oscillation detection circuit	The oscillation detection circuit outputs the initial reset signal at power-on until the crystal oscillation circuit starts oscillating, or when the crystal oscillation circuit stops oscillating for some reason. However, use the following reset functions at power-on because the initial reset function by the oscillation detection circuit may not operate normally depending on the power-on procedure.
Reset pin (RESET)	An initial reset can be invoked externally by making the reset pin high. This high level must be maintained for at least 5 ms (when oscillating frequency, fosc = 32 kHz), because the initial reset circuit contains a noise rejection circuit. When the reset pin goes low the CPU begins to operate.
Simultaneous high input to input ports (K00–K03)	Another way of invoking an initial reset externally is to input a high signal simultaneously to the input ports (K00–K03) selected with the mask option. The specified input port pins must be kept high for at least 4 sec (when oscillating fre- quency fosc = 32 kHz), because of the noise rejection circuit. Table 2.2.1 shows the combinations of input ports (K00– K03) that can be selected with the mask option.

Table 2.2.1	Α	Not used
Input port combinations	В	K00*K01
	С	K00*K01*K02
	D	K00*K01*K02*K03

When, for instance, mask option D (K00*K01*K02*K03) is selected, an initial reset is executed when the signals input to the four ports K00–K03 are all high at the same time.

If you use this function, make sure that the specified ports do not go high at the same time during normal operation.

Internal register following initialization

An ini	itial rese	t initializes	the CPU	as show	n in the	table
below						

Table 2.2.2	CPU Core						
Initial values	Name	Signal	Number of Bits	Setting Value			
	Program counter step	PCS	8	00H			
	Program counter page	PCP	4	1H			
	New page pointer	NPP	4	1H			
	Stack pointer	SP	8	Undefined			
	Index register X	Х	8	Undefined			
	Index register Y	Y	8	Undefined			
	Register pointer	RP	4	Undefined			
	General register A	А	4	Undefined			
	General register B	В	4	Undefined			
	Interrupt flag	Ι	1	0			
	Decimal flag	D	1	0			
	Zero flag	Ζ	1	Undefined			
	Carry flag	С	1	Undefined			

Peripheral Circuits					
Name Number of Bits Setting Value					
RAM	80×4	Undefined			
Display memory	20×4	Undefined			
Other peripheral circuit	_	*1			

*1: See section 4.1, "Memory Map"

2.3 Test Pin (TEST)

This pin is used when IC is inspected for shipment. During normal operation connect it to Vss.

CHAPTER 3

CPU, ROM, RAM

3.1 CPU

The E0C6001 Series employs the E0C6200B core CPU, so that register configuration, instructions, and so forth are virtually identical to those in other processors in the family using the E0C6200B. Refer to the "E0C6200/6200A Core CPU Manual" for details of the E0C6200B.

Note the following points with regard to the E0C6001 Series:

- (1) The SLEEP operation is not provided, so the SLP instruction cannot be used.
- (2) Because the ROM capacity is 1,024 words, 12 bits per word, bank bits are unnecessary, and PCB and NBP are not used.
- (3) The RAM page is set to 0 only, so the page part (XP, YP) of the index register that specifies addresses is invalid.

PUSH	XP	PUSH	ΥP
POP	XP	POP	ΥP
LD	XP,r	LD	YP,r
LD	r,XP	LD	r,YP

3.2 ROM

The built-in ROM, a mask ROM for the program, has a capacity of $1,024 \times 12$ -bit steps. The program area is 4 pages (0–3), each consisting of 256 steps (00H–FFH). After an initial reset, the program start address is page 1, step 00H. The interrupt vector is allocated to page l, steps 01H–07H.

3.3 RAM

The RAM, a data memory for storing a variety of data, has a capacity of 80 words, 4-bit words. When programming, keep the following points in mind:

- (1) Part of the data memory is used as stack area when saving subroutine return addresses and registers, so be careful not to overlap the data area and stack area.
- (2) Subroutine calls and interrupts take up three words on the stack.
- (3) Data memory 000H–00FH is the memory area pointed by the register pointer (RP).

CHAPTER 4 PERIPHERAL CIRCUITS AND OPERATION

Peripheral circuits (timer, I/O, and so on) of the EOC6001 Series are memory mapped. Thus, all the peripheral circuits can be controlled by using memory operations to access the I/O memory. The following sections describe how the peripheral circuits operate.

4.1 Memory Map

The data memory of the E0C6001 Series has an address space of 113 words, of which 32 words are allocated to display memory and 13 words, to I/O memory. Figure 4.1.1 show the overall memory map for the E0C6001 Series, and Tables 4.1.1(a)-(d), the memory maps for the peripheral circuits (I/O space).

Note Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

Table 4.1.1(a)	I/O memory	map
----------------	------------	-----

Address		Reg	ister						Comment	
//uurc33	D3	D2	D1	D0	Name	SR *1	1	0	Comment	
	K03	K02	K01	K00	K03	- *2	High	Low		
0.5011		F	R		К02	- *2	High	Low		
0E0H					K01	- *2	High	Low	Input port (K00–K03)	
					К00	- *2	High	Low		
	TM3	TM2	TM1	TM0	TM3	-	High	Low	Timer data (clock timer 2 Hz)	
		I	R		TM2	-	High	Low	Timer data (clock timer 4 Hz)	
00411	-4H		TM1	-	High	Low	Timer data (clock timer 8 Hz)			
					TM0	-	High	Low	Timer data (clock timer 16 Hz)	
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register (K03)	
0E8H		R	W		EIK02	0	Enable	Mask	Interrupt mask register (K02)	
02011					EIK01	0	Enable	Mask	Interrupt mask register (K01)	
				EIK00	0	Enable	Mask	Interrupt mask register (K00)		
	0 EIT2 EIT8 EIT32		EIT32	0 *5						
	R R/W			EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)		
					EIT8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)	
					EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)	

- * 1 Initial value following initial reset
- * 2 Not set in the circuit
- * 3 Undefined
- * 4 Reset (0) immediately after being read
- * 5 Constantly 0 when being read
- * 6 Refer to main manual

Address	Register								Comment
//duic33	D3	D2	D1	D0	Name	SR *1	1	0	Coninicia
	0	0	0	IK0	0 *5				
			R		0 *5				
0EDH					0 *5				
					IK0 ^{*4}	0	Yes	No	Interrupt factor flag (K00-K03)
	0	IT2	IT8	IT32	0 *5				
	R				IT2 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
ULFII	1				IT8 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
					IT32 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	0	0	R01 BUZZER	R00 FOUT	0 *5				
	1	२	R	Ŵ	0 5 R01	0	Hiah	Low	R01 output port data
0F3H					BII77ED	0		OFF	Buzzer ON/OFF control register
					DOZZER	0	Lliah	Low	
					FOUT	0		LUW	
					FUUT	0	UN	UFF	Frequency output ON/OFF control register
	P03	P02	P01	P00	P03	- *2	High	Low	
0F6H		R	/W		P02	- *2	High	Low	I/O port (P00–P03)
					P01	- *2	High	Low	
					P00	- *2	High	Low	

Table 4.1.1(b) I/O memory map

- * 1 Initial value following initial reset
- * 2 Not set in the circuit
- * 3 Undefined
- * 4 Reset (0) immediately after being read
- * 5 Constantly 0 when being read
- * 6 Refer to main manual

Table 4.1.1(c)	I/O	memory	map
----------------	-----	--------	-----

Address	Register								Comment
///////////////////////////////////////	D3	D2	D1	D0	Name	SR *1	1	0	ooninient
	0	TMRST	0	0	0 *5				
	R	W		R	TMRST	Reset	Reset	-	Clock timer reset
01911					0 *5				
					0 *5				
	HLMOD	0	0	0	HLMOD	0	Heavy Ioad	Normal load	Heavy load protection mode register
	R/W		R		0 *5				
υΓΑΠ					0 *5				
					0 *5				
	CSDC	0	0	0	CSDC	0	Static	Dynamic	LCD drive switch
	R/W		R		0 *5				
01 BIT					0 *5				
					0 *5				
	0	0	0	IOC	0 *5				
		R		R/W	0 *5				
					0 *5				
					IOC	0	Output	Input	I/O port P00–P03 Input/Output

- * 1 Initial value following initial reset
- * 2 Not set in the circuit
- * 3 Undefined
- * 4 Reset (0) immediately after being read
- * 5 Constantly 0 when being read
- * 6 Refer to main manual

Address		Reg	ister						Comment
Audiess	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	XBZR	0	XFOUT1	XFOUT0	XBZR	0	2 kHz	4 kHz	Buzzer frequency control
	R/W	R	R	W	0 *5				
OFDIT					XFOUT1	0	High	Low	FOUT frequency control: XFOUT1(0), XFOUT0(0) -> F1
					XFOUT0	0	High	Low	XFOUT1(0), XFOUT0(1) -> F2 XFOUT1(1), XFOUT0(0) -> F3 XFOUT1(1), XFOUT0(1) -> F4

Table 4.1.1(d) I/O memory map

- * 1 Initial value following initial reset
- * 2 Not set in the circuit
- * 3 Undefined
- * 4 Reset (0) immediately after being read
- * 5 Constantly 0 when being read
- * 6 Refer to main manual

4.2 Oscillation Circuit

Crystal oscillation circuit

The E0C6001 Series have a built-in crystal oscillation circuit. This circuit generates the operating clock for the CPU and peripheral circuit on connection to an external crystal oscillator (typ. 32.768 kHz) and trimmer capacitor (5–25 pF).

Figure 4.2.1 is the block diagram of the crystal oscillation circuit.

Fig. 4.2.1 Crystal oscillation circuit

As Figure 4.2.1 indicates, the crystal oscillation circuit can be configured simply by connecting the crystal oscillator (X'tal) between the OSC1 and OSC2 pins and the trimmer capacitor (CG) between the OSC1 and VDD pins.

Note The OSC1 and OSC2 terminals on the board should be shielded with the VDD (+ side). CR oscillation circuitFor the E0C6001 Series, CR oscillation circuit (typ. 65 kHz)
may also be selected by a mask option. Figure 4.2.2 is the
block diagram of the CR oscillation circuit.

As Figure 4.2.2 indicates, the CR oscillation circuit can be configured simply by connecting the register (R) between pins OSC1 and OSC2 since capacity (C) is built-in. See Chapter 6, "ELECTRICAL CHARACTERISTICS" for R value.

4.3 Input Port (K00-K03)

Configuration of input port

The E0C6001 Series have a 4-bit general-purpose input port. Each of the input port pins (K00–K03) has an internal pull-down resistance. The pull-down resistance can be selected for each bit with the mask option. Figure 4.3.1 shows the configuration of input port.

Selecting "pull-down resistance enabled" with the mask option allows input from a push button, key matrix, and so forth. When "pull-down resistance disabled" is selected, the port can be used for slide switch input and interfacing with other LSIs.

Interrupt function All four input port bits (K00–K03) provide the interrupt function. The conditions for issuing an interrupt can be set by the software for the four bits. Also, whether to mask the interrupt function can be selected individually for all four bits by the software. Figure 4.3.2 shows the configuration of K00–K03.

The interrupt mask registers (EIK00–EIK03) enable the interrupt mask to be selected individually for K00–K03. An interrupt occurs when the input value which are not masked change and the interrupt factor flag (IK0) is set to 1.

Input interrupt programing related precautions

factor flag is set at ①.

Fig. 4.3.3 Input interrupt timing

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status (input terminal = high status), the factor flag for input interrupt may be set.

For example, a factor flag is set with the timing of ① shown in Figure 4.3.3. However, when clearing the content of the mask register with the input terminal kept in the high status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set. Consequently, when the input terminal is in the active status (high status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the rising edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (low status).

Mask optionThe contents that can be selected with the input port mask
option are as follows:

- (1) An internal pull-down resistance can be selected for each of the four bits of the input ports (K00–K03). Having selected "pull-down resistance disabled", take care that the input does not float. Select "pull-down resistance enabled" for input ports that are not being used.
- (2) The input interrupt circuit contains a noise rejection circuit to prevent interrupts form occurring through noise. The mask option enables selection of the noise rejection circuit for each separate pin series. When "use" is selected, a maximum delay of 0.5 ms (fosc = 32 kHz) occurs from the time an interrupt condition is established until the interrupt factor flag (IK) is set to 1.

Control of input port Table 4.3.1 list the input port control bits and their addresses.

Address		Reg	ister						Comment		
71001000	D3	D2	D1	D0	Name	SR	1	0	Continiona		
	K03	K02	K01	K00	К03	-	High	Low			
		F	2		K02	-	High	Low	Levent and (K00, K02)		
					K01	-	High	Low	input port (K00–K03)		
					K00	-	High	Low			
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register (K03)		
	R/W				EIK02	0	Enable	Mask	Interrupt mask register (K02)		
OLON					EIK01	0	Enable	Mask	Interrupt mask register (K01)		
					EIK00	0	Enable	Mask	Interrupt mask register (K00)		
	0	0	0	IK0	0						
		I	R		0						
					0						
					IK0	0	Yes	No	Interrupt factor flag (K00–K03)		

Table 4.3.1 Input port control bits

K00–K03 Input port data (0E0H)

The input data of the input port pins can be read with these registers.

When 1 is read:High levelWhen 0 is read:Low levelWriting:Invalid

The value read is 1 when the pin voltage of the four bits of the input port (K00–K03) goes high (VDD), and 0 when the voltage goes low (VSS). These bits are reading, so writing cannot be done.

EIK00–EIK03 Interrupt mask registers (0E8H) Masking the interrupt of the input port pins can be done with these registers.

When 1 is written:	Enable
When 0 is written:	Mask
Reading:	Valid

With these registers, masking of the input port bits can be done for each of the four bits. After an initial reset, these registers are all set to 0.

IK0 Interrupt factor flag (0EDH)

This flag indicates the occurrence of an input interrupt.

When 1 is read:	Interrupt has occurred
When 0 is read:	Interrupt has not occurred
Writing:	Invalid

The interrupt factor flag IKO is associated with KOO–KO3. From the status of this flag, the software can decide whether an input interrupt has occurred.

This flag is reset when the software has read it.

Reading of interrupt factor flag is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flag to be read is set to 1, an interrupt request will be generated by the interrupt factor flag set timing, or an interrupt request will not be generated. After an initial reset, this flag is set to 0.

4.4 Output Port (R00, R01)

Configuration of
output portThe E0C6001 Series have a 2-bit general output port (R00,
R01).
Output specification of the output port can be selected in a
bit unit with the mask option. Two kinds of output specifi-
cations are available: complementary output and Pch open
drain output. Also, the mask option enables the output
ports R00 and R01 to be used as special output ports.
Figure 4.4.1 shows the configuration of the output port.

Mask option

- The mask option enables the following output port selection.
 - (1) Output specification of output port

The output specifications for the output port (R00, R01) may be either complementary output or Pch open drain output for each of the two bits. However, even when Pch open drain output is selected, a voltage exceeding the source voltage must not be applied to the output port.

(2) Special output

In addition to the regular DC output, special output can be selected for output ports R00 and R01, as shown in Table 4.4.1. Figure 4.4.2 shows the structure of output ports R00 and R01.

Table 4.4.1	Pin Name	When Special Output is Selected
Special output	R00	FOUT or BUZZER
	R01	BUZZER

FOUT (R00) When output port R00 is set for FOUT output, this port will generate fosc (CPU operating clock frequency) or clock frequency divided into fosc. Clock frequency may be selected individually for F1–F4, from among 5 types by mask option; one among F1–F4 is selected by software and used. The types of frequency which may be selected are shown in Table 4.4.2.

Mask		Clock Frequency (Hz) fosc = 32.768 kHz							
Option	F1	F2	F3	F4					
Sets	(D1,D0)=(0,0)	(D1,D0)=(0,1)	(D1,D0)=(1,0)	(D1,D0)=(1,1)					
Set 1	256	512	1,024	2,048					
	(fosc/128)	(fosc/64)	(fosc/32)	(fosc/16)					
Set 2	512	1,024	2,048	4,096					
	(fosc/64)	(fosc/32)	(fosc/16)	(fosc/8)					
Set 3	1,024	2,048	4,096	8,192					
	(fosc/32)	(fosc/16)	(fosc/8)	(fosc/4)					
Set 4	2,048	4,096	8,192	16,384					
	(fosc/16)	(fosc/8)	(fosc/4)	(fosc/2)					
Set 5	4,096	8,192	16,384	32,768					
	(fosc/8)	(fosc/4)	(fosc/2)	(fosc/1)					

Table 4.4.2
FOUT clock frequency

(D1, D0) = (XFOUT1, XFOUT0)

Note A hazard may occur when the FOUT signal is turned on or off.

BUZZER, BUZZEROutput ports R01 and R00 may be set to BUZZER output
(R01, R00)Output ports R01 and R00 may be set to BUZZER output
(BUZZER output (BUZZER reverse output), respectively,
allowing for direct driving of the piezo-electric buzzer.BUZZER output (R00) may only be set if R01 is set to
BUZZER output. In such case, whether ON/OFF of the
BUZZER output is done through R00 register or is con-
trolled through R01 simultaneously with BUZZER output is
also selected by mask option.
The frequency of buzzer output may be selected by software
to be either 2 kHz or 4 kHz.

Control of outputTable 4.4.3 lists the output port control bits and their ad-
dresses.portdresses.

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	SR	1	0	Comment
	0	0	R01	R00	0				
	0	U	BUZZER	FOUT	°				
	D		R/W		0				
0531	ĸ				R01	0	High	Low	R01 output port data
					BUZZER	0	ON	OFF	Buzzer ON/OFF control register
					R00	0	High	Low	R00 output port data
					FOUT	0	ON	OFF	Frequency output ON/OFF control register
	XBZR	0	XFOUT1	XFOUT0	XBZR	0	2 kHz	4 kHz	Buzzer frequency control
0FDH	R/W	R	R/W		0				
					XFOUT1	0	High	Low	FOUT frequency control: XFOUT1(0), XFOUT0(0) -> F1
					XFOUT0	0	High	Low	XFOUT1(0), XFOUT0(1) -> F2 XFOUT1(1), XFOUT0(0) -> F3 XFOUT1(1), XFOUT0(1) -> F4

Table 4.4.3 Control bits of output port

R00, R01 Output port data (0F3H D0, 0F3H D1) Sets the output data for the output ports.

When 1 is written:High outputWhen 0 is written:Low outputReading:Valid

The output port pins output the data written to the corresponding registers (R00, R01) without changing it. When 1 is written to the register, the output port pin goes high (VDD), and when 0 is written, the output port pin goes low (VSS). After an initial reset, all the registers are set to 0. R00 (when FOUT is Special output port data (0F3H D0) selected) Controls the FOUT (clock) output.

When 1 is written:Clock outputWhen 0 is written:Low level (DC) outputReading:Valid

FOUT output can be controlled by writing data to R00. After an initial reset, this register is set to 0.

Figure 4.4.3 shows the output waveform for FOUT output.

XFOUT0, XFOUT1 FOUT frequency control (0FDH D0, 0FDH D1) Selects the output frequency when R00 port is set for FOUT output.

Table 4.4.4 FOUT frequency selection

XFOUT1	XFOUT0	Frequency Selection
0	0	F1
0	1	F2
1	0	F3
1	1	F4

After an initial reset, these registers are set to 0.
R00, R01 (when BUZZER Special output port data (0F3H D0, 0F3H D1) and BUZZER is Controls the buzzer output. selected)

When 1 is written:Buzzer outputWhen 0 is written:Low level (DC) outputReading:Valid

BUZZER and **BUZZER** output can be controlled by writing data to R00 and R01.

When $\overline{\text{BUZZER}}$ output by R01 register control is selected by mask option, BUZZER output and $\overline{\text{BUZZER}}$ output can be controlled simultaneously by writing data to R01 register. After an initial reset, these registers are set to 0.

Figure 4.4.4 shows the output waveform for buzzer output.

	R01 (R00) register	0	1	
	BUZZER output waveform			
Fig. 4.4.4 Buzzer output waveform	BUZZER output waveform			

XBZR Buzzer frequency control (0FDH D3) Selects the frequency of the buzzer signal.

When 1 is written:	2 kHz
When 0 is written:	4 kHz
Reading:	Valid

When R00 and R01 port is set to buzzer output, the frequency of the buzzer signal can be selected by this register. When 1 is written to this register, the frequency is set in 2 kHz, and in 4 kHz when 0 is written. After an initial reset, this register is set to 0.

4.5 I/O Port (P00-P03)

Configuration of I/O port

The E0C6001 Series have a 4-bit general-purpose I/O port. Figure 4.5.1 shows the configuration of the I/O port. The four bits of the I/O port P00–P03 can be set to either input mode or output mode. The mode can be set by writing data to the I/O control register (IOC).

I-31

I/O control register and I/O mode	 Input or output mode can be set for the four bits of I/O port P00-P03 by writing data into I/O control register IOC. To set the input mode, 0 is written to the I/O control register. When an I/O port is set to input mode, its impedance becomes high and it works as an input port. However, the input line is pulled down when input data is read. 					
	The output mode is set when 1 is written to the I/O control register (IOC). When an I/O port set to output mode works as an output port, it outputs a high signal (VDD) when the port output data is 1, and a low signal (VSS) when the port output data is 0. After an initial reset, the I/O control register is set to 0, and the I/O port enters the input mode.					
Mask option	The output specification during output mode (IOC = 1) of the I/O port can be set with the mask option for either comple- mentary output or Pch open drain output. This setting can be performed for each bit of the I/O port. However, when Pch open drain output has been selected, voltage in excess of the supply voltage must not be applied to the port.					

Control of I/O port

Table 4.5.1 lists the I/O port control bits and their addresses.

Address		Regi	ister						Comment			
Address	D3	D2	D1	D0	Name	SR	1	0	Comment			
	P03	P02	P01	P00	P03	-	High	Low				
оген		R/	W		P02	-	High	Low	1/O mort (B00, B02)			
01011					P01	-	High	Low	1/O port (P00–P03)			
			P00 - I		High	Low						
	0	0	0	IOC	0							
		R		R/W	0							
UPCIT					0							
					ЮС	0	Output	Input	I/O port P00–P03 Input/Output			

Table 4.5.1 I/O port control bits

P00–P03 I/O port data (0F6H)

I/O port data can be read and output data can be written through the port.

• When writing data

When 1 is written:High levelWhen 0 is written:Low level

When an I/O port is set to the output mode, the written data is output from the I/O port pin unchanged. When 1 is written as the port data, the port pin goes high (VDD), and when 0 is written, the level goes low (VSS). Port data can also be written in the input mode.

• When reading data

When 1 is read:	High level
When 0 is read:	Low level

The pin voltage level of the I/O port is read. When the I/ O port is in the input mode the voltage level being input to the port pin can be read; in the output mode the output voltage level can be read. When the pin voltage is high (VDD) the port data read is 1, and when the pin voltage is low (VSS) the data is 0. Also, the built-in pulldown resistance functions during reading, so the I/O port pin is pulled down.

- Note When the I/O port is set to the output mode and a low-impedance load is connected to the port pin, the data written to the register may differ from the data read.
 - When the I/O port is set to the input mode and a low-level voltage (Vss) is input by the built-in pull-down resistance, an erroneous input results if the time constant of the capacitive load of the input line and the built- in pull-down resistance load is greater than the read-out time. When the input data is being read, the time that the input line is pulled down is equivalent to 0.5 cycles of the CPU system clock. Hence, the electric potential of the pins must settle within 0.5 cycles. If this condition cannot be met, some measure must be devised, such as arranging a pull-down resistance externally, or performing multiple read-outs.
- IOC I/O control register (0FCH D0) The input or output I/O port mode can be set with this register.

When 1 is written:Output modeWhen 0 is written:Input modeReading:Valid

The input or output mode of the I/O port is set in units of four bits. For instance, IOC sets the mode for P00–P03. Writing 1 to the I/O control register makes the I/O port enter the output mode, and writing 0, the input mode. After an initial reset, the IOC register is set to 0, so the I/O port is in the input mode.

4.6 LCD Driver (COM0-COM3, SEG0-SEG19)

Configuration of LCD The E0C6001 Series have four common pins and 20 (SEG0-SEG19) segment pins, so that an LCD with a maximum of driver 80 (20×4) segments can be driven. The power for driving the LCD is generated by the CPU internal circuit, so there is no need to supply power externally. The driving method is 1/4 duty (or 1/3, 1/2 duty by mask option) dynamic drive, adopting the four types of potential (1/3 bias), VDD, VL1, VL2 and VL3. Moreover, the 1/2 bias dynamic drive that uses three types of potential, VDD, VL1 = VL2 and VL3, can be selected by setting the mask option (drive duty can also be selected from 1/4, 1/3 or 1/2). 1/2bias drive is effective when the LCD system regulated voltage circuit is not used. The VL1 terminal and the VL2 terminal should be connected outside of the IC. The frame frequency is 32 Hz for 1/4 duty and 1/2 duty, and 42.7 Hz for 1/3 duty (in the case of fosc = 32.768 kHz). Figure 4.6.1 shows the drive waveform for 1/4 duty (1/3 bias), Figure 4.6.2 shows the drive waveform for 1/3 duty (1/3 bias), Figure 4.6.3 shows the drive waveform for 1/2 duty (1/3 bias), Figure 4.6.4 shows the drive waveform for 1/4 duty (1/2 bias), Figure 4.6.5 shows the drive waveform for 1/3 duty (1/2 bias) and Figure 4.6.6 shows the drive waveform for 1/2 duty (1/2bias).

Note fosc indicates the oscillation frequency of the oscillation circuit.

Fig. 4.6.2 Drive waveform for 1/3 duty (1/3 bias)

Fig. 4.6.3 Drive waveform for 1/2 duty (1/3 bias)

Drive waveform for 1/4 duty (1/2 bias)

Cadence adjust-	In the E0C6001 Series, the LCD drive duty can be set to
ment of oscillation	1/1 duty by software. This function enables easy adjust-
frequency	ment (cadence adjustment) of the oscillation frequency of
irequency	the OSC circuit.

The procedure to set to 1/1 duty drive is as follows:

- ① Write 1 to the CSDC register at address 0FBH D3.
- ② Write the same value to all registers corresponding to COMs 0 through 3 of the display memory.

The frame frequency is 32 Hz (fosc1/1,024, when fosc1 = 32.768 kHz).

- Note Even when I/3 or 1/2 duty is selected by the mask option, the display data corresponding to all COM are valid during 1/1 duty driving. Hence, for 1/1 duty drive, set the same value for all display memory corresponding to COMs 0 through 3.
 - For cadence adjustment, set the display data corresponding to COMs 0 through 3, so that all the LCD segments go on.

Figure 4.6.7 shows the 1/1 duty drive waveform (1/3 bias). Figure 4.6.8 shows the 1/1 duty drive waveform (1/2 bias).

(1) Segment allocation

(segment allocation)

Mask option

As shown in Figure 4.1.1, the E0C6001 Series display data is decided by the display data written to the display memory (write-only) at address 090H–0AFH.

The address and bits of the display memory can be made to correspond to the segment pins (SEG0–SEG19) in any combination through mask option. This simplifies design by increasing the degree of freedom with which the liquid crystal panel can be designed.

Figure 4.6.9 shows an example of the relationship between the LCD segments (on the panel) and the display memory in the case of 1/3 duty.

Address		Da	ata	
Address	D3	D2	D1	D0
09AH	d	с	b	а
09BH	р	g	f	e
09CH	d'	c'	b'	a'
09DH	p'	g'	f'	e'

	Common 0	Common 1	Common 2
SEG10	9A, D0	9B, D1	9B, D0
	(a)	(f)	(e)
SEG11	9A, D1	9B, D2	9A, D3
	(b)	(g)	(d)
SEG12	9D, D1	9A, D2	9B, D3
	(f')	(c)	(p)

Display data memory allocation

Pin address allocation

Fig. 4.6.9 Segment allocation

(2) Drive duty

According to the mask option, either 1/4, 1/3 or 1/2 duty can be selected as the LCD drive duty. Table 4.6.1 shows the differences in the number of segments according to the selected duty.

Table 4.6.1	Duty	Pins Used	Maximum Number	Frame Frequency
ccording to	Duty	in Common	of Segments	(when fosc = 32 kHz)
lected duty	1/4	COM0-3	80 (20 × 4)	32 Hz
	1/3	COM0-2	60 (20 × 3)	42.7 Hz
	1/2	COM0-1	40~(20 imes 2)	32 Hz

Table 4.6.1 Differences according to selected duty

(3) Output specification

- ① The segment pins (SEG0-SEG19) are selected by mask option in pairs for either segment signal output or DC output (VDD and VSS binary output). When DC output is selected, the data corresponding to COM0 of each segment pin is output.
- ② When DC output is selected, either complementary output or Pch open drain output can be selected for each pin by mask option.
- Note The pin pairs are the combination of SEG (2*n) and SEG (2*n + 1) (where n is an integer from 0 to 12).

(4) Drive bias

For the drive bias of the E0C6001 or the E0C60L01, either 1/3 bias or 1/2 bias can be selected by the mask option.

Control of LCD driver

Table 4.6.2 shows the control bits of the LCD driver and their addresses. Figure 4.6.10 shows the display memory map.

Addross		Reg	ister						Commont
Audress	D3	D2	D1	D0	Name	SR	1	0	Comment
	CSDC	0	0	0	CSDC	0	Static	Dynamic	LCD drive switch
ОЕВН	R/W		R		0				
					0				
					0				

Table 4.6.2 Control bits of LCD driver

Fig. 4.6.10	Address	0	1	2	3	4	5	6	7	8	9	A	в	с	D	E	F
Display	090	Display memory (Write only)															
memory map	0A0						- 1	32 v	words	s´x`4	bits	,,					

CSDC LCD drive switch (0FBH D3)

The LCD drive format can be selected with this switch.

When 1 is written:	Static drive
When 0 is written:	Dynamic drive
Reading:	Valid

After an initial reset, dynamic drive (CSDC = 0) is selected.

Display memory (090H–0AFH)

The LCD segments are turned on or off according to this data.

When 1 is written:OnWhen 0 is written:OffReading:Invalid

By writing data into the display memory allocated to the LCD segment (on the panel), the segment can be turned on or off. After an initial reset, the contents of the display memory are undefined.

4.7 Clock Timer

Configuration of
clock timerThe E0C6001 Series have a built-in clock timer driven by
the source oscillator. The clock timer is configured as a
seven-bit binary counter that serves as a frequency divider
taking a 256 Hz source clock from the dividing circuit. The
four high-order bits (16 Hz-2 Hz) can be read by the soft-
ware.

Figure 4.7.1 is the block diagram of the clock timer.

Normally, this clock timer is used for all kinds of timing purpose, such as clocks.

Interrupt function

The clock timer can interrupt on the falling edge of the 32 Hz, 8 Hz, and 2 Hz signals. The software can mask any of these interrupt signals.

Figure 4.7.2 is the timing chart of the clock timer.

Address	Register bits	Frequency											(Clo	ck	tin	ner	tir	nin	g (cha	rt												
	D0	16 Hz]																								1
0E4H	D1	8 Hz																																1
	D2	4 Hz																																1
	D3	2 Hz																																1
Occui 32 Hz	rrence of interrupt	request	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
Occui 8 Hz i	rrence of interrupt r	equest				t				t				t				t				t				t				t				t
Occur 2 Hz i	rrence of interrupt r	equest																t																t

Fig. 4.7.2 Timing chart of the clock timer

As shown in Figure 4.7.2, an interrupt is generated on the falling edge of the 32 Hz, 8 Hz, and 2 Hz frequencies. When this happens, the corresponding interrupt event flag (IT32, IT8, IT2) is set to 1. Masking the separate interrupts can be done with the interrupt mask register (EIT32, EIT8, EIT2). However, regardless of the interrupt mask register setting, the interrupt event flags will be set to 1 on the falling edge of their corresponding signal (e.g. the falling edge of the 2 Hz signal sets the 2 Hz interrupt factor flag to 1).

Note Write to the interrupt mask register (EIT32, EIT8, EIT2) and read the interrupt factor flags (IT32, IT8, IT2) only in the DI status (interrupt flag = 0). Otherwise, it causes malfunction.

Control of clockTable 4.7.1 shows the clock timer control bits and their
addresses.

Address	Register							Comment	
71001033	D3	D2	D1	D0	Name	SR	1	0	Comment
	TM3	TM2	TM1	TMO	TM3	-	High	Low	Timer data (clock timer 2 Hz)
		F	2		TM2	-	High	Low	Timer data (clock timer 4 Hz)
0⊑4⊓					TM1	-	High	Low	Timer data (clock timer 8 Hz)
					TM0	-	High	Low	Timer data (clock timer 16 Hz)
	0	EIT2	EIT8	EIT32	0				
	R		R/W		EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
ULBIT					EIT8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
					EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	IT2	IT8	IT32	0				
		F	8		IT2	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
ULIT					IT8	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
					IT32	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	0	TMRST	0	0	0				
	R	w	F	२	TMRST	Reset	Reset	-	Clock timer reset
0590					0				
					0				

Table 4.7.1 Control bits of clock timer

TM0–TM3 Timer data (0E4H)

The l6 Hz to 2 Hz timer data of the clock timer can be read from this register. These four bits are read-only, and write operations are invalid.

After an initial reset, the timer data is initialized to 0H.

EIT32, EIT8, EIT2 Interrupt mask registers (0EBH D0–D2) These registers are used to mask the clock timer interrupt.

When 1 is written:	Enabled
When 0 is written:	Masked
Reading:	Valid

The interrupt mask register bits (EIT32, EIT8, EIT2) mask the corresponding interrupt frequencies (32 Hz, 8 Hz, 2 Hz). After an initial reset, these registers are all set to 0.

IT32, IT8, IT2 Interrupt factor flags (0EFH D0–D2)

These flags indicate the status of the clock timer interrupt.

When 1 is read:	Interrupt has occurred
When 0 is read:	Interrupt has not occurred
Writing:	Invalid

The interrupt factor flags (IT32, IT8, IT2) correspond to the clock timer interrupts (32 Hz, 8 Hz, 2 Hz). The software can determine from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to 1 on the falling edge of the signal. These flags can be reset when the register is read by the software. Reading of interrupt factor flags is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to 1, an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.

After an initial reset, these flags are set to 0.

TMRST Clock timer reset (0F9H D2) This bit resets the clock timer.

When 1 is written:Clock timer resetWhen 0 is written:No operationReading:Always 0

The clock timer is reset by writing 1 to TMRST. The clock timer starts immediately after this. No operation results when 0 is written to TMRST.

This bit is write-only, and so is always 0 when read.

4.8 Heavy Load Protection Function

Operation of heavy load protection function	The E0C6001 Series have a heavy load protection function for when the battery load becomes heavy and the supply voltage drops, such as when an external buzzer sounds or an external lamp lights. This function works in the heavy load protection mode.
	 The normal mode changes to the heavy load protection mode in the following case: When the software changes the mode to the heavy load protection mode (HLMOD = 1)
	In the heavy load protection mode, the internally regulated voltage is switched to the high-stability mode from the low current consumption mode. Consequently, more current is consumed in the heavy load protection mode than in the normal mode. Unless necessary, do not select the heavy load protection mode with the software.

Control of heavy load protection function

Table 4.8.1 shows the control bits and their addresses for the heavy load protection function.

Address		Reg	ister						Comment		
Address	D3	D2	D1	D0	Name	e SR 1 0		0	Comment		
	HLMOD	0	0	0	HLMOD	0	Heavy load	Normal	Heavy load protection mode register		
	R/W		R		0						
					0						
					0						

Table 4.8.1 Control bits for heavy load protection function

HLMOD Heavy load protection mode on/off (0FAH D3)

When 1 is written:Heavy load protection mode onWhen 0 is written:Heavy load protection mode offReading:Valid

When HLMOD is set to 1, the IC enters the heavy load protection mode.

In the heavy load protection mode, the consumed current becomes larger. Unless necessary, do not select the heavy load protection mode with the software.

4.9 Interrupt and HALT

The E0C6001 Series provide the following interrupt settings, each of which is maskable.

External interrupt: Input interrupt (one) Internal interrupt: Timer interrupt (one)

To enable interrupts, the interrupt flag must be set to 1 (EI) and the necessary related interrupt mask registers must be set to 1 (enable). When an interrupt occurs, the interrupt flag is automatically reset to 0 (DI) and interrupts after that are inhibited.

When a HALT instruction is input, the CPU operating clock stops and the CPU enters the halt state. The CPU is reactivated from the halt state when an interrupt request occurs. Figure 4.9.1 shows the configuration of the interrupt circuit.

Fig. 4.9.1 Configuration of interrupt circuit

Interrupt factors	Table 4.9.1 shows the factors that generate interrupt re- quests.									
	The interrupt factor flags are second corresponding interrupt factors	et to 1 depending on the s.								
	The CPU is interrupted when the following two conditions occur and an interrupt factor flag is set to 1.									
	 The corresponding mask register is 1 (enabled) The interrupt flag is 1 (EI)									
	The interrupt factor flag is a read-only register, but can be reset to 0 when the register data is read. After an initial reset, the interrupt factor flags are reset to 0.									
Note	Reading of interrupt factor flags is available at EI, but be careful in the following cases. If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to 1, an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated. Be very careful when interrupt factor flags are in the same address.									
Table 4.9.1	Interrupt Factor	Interrupt Factor Flag								
Interrupt factors	Colck timer 2 Hz falling edge	(0EFH D2)								

Table 4.9.1	Interrupt Factor	Interrupt Factor Flag					
rupt factors	Colck timer 2 Hz falling edge	IT2	(0EFH D2)				
	Colck timer 8 Hz falling edge	IT8	(0EFH D1)				
	Colck timer 32 Hz falling edge	IT32	(0EFH D0)				
	Input data (K00–K03) rising edge	IK0	(0EDH D0)				

Specific masks and factor flags for interrupt

The interrupt factor flags can be masked by the corresponding interrupt mask registers. The interrupt mask registers are read/write registers. They are enabled (interrupt enabled) when 1 is written to them, and masked (interrupt disabled) when 0 is written to them. After an initial reset, the interrupt mask register is set to 0. Table 4.9.2 shows the correspondence between interrupt mask registers and interrupt factor flags.

Table 4.9.2 Interrupt mask registers and interrupt factor flags

Interrupt N	/lask Register	Interrupt Factor Flag					
EIT2	(0EBH D2)	IT2	(0EFH D2)				
EIT8	(0EBH D1)	IT8	(0EFH D1)				
EIT32	(0EBH D0)	IT32	(0EFH D0)				
EIK03*	(0E8H D3)						
EIK02*	(0E8H D2)						
EIK01*	(0E8H D1)	IKU	(OEDH DO)				
EIK00*	(0E8H D0)						

* There is an interrupt mask register for each input port pin.

Interrupt vectors

When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being executed is suspended, interrupt processing is executed in the following order:

- The address data (value of the program counter) of the program step to be executed next is saved on the stack (RAM).
- ② The interrupt request causes the value of the interrupt vector (page 1, 01H–07H) to be loaded into the program counter.
- ③ The program at the specified address is executed (execution of interrupt processing routine).
- Note The processing in steps 1 and 2, above, takes 12 cycles of the CPU system clock.

Control of interrupt

Tables 4.9.3 shows the interrupt control bits and their addresses.

Addroop		Reg	ister						Commont
Address	D3	D2	D1	D0	Name	SR	1	0	Comment
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register (K03)
		R	W		EIK02	0	Enable	Mask	Interrupt mask register (K02)
OLON					EIK01	0	Enable	Mask	Interrupt mask register (K01)
					EIK00	0	Enable	Mask	Interrupt mask register (K00)
	0	EIT2	EIT8	EIT32	0				
ОЕВН	R		R/W		EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
OLDIT					EIT8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
					EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	0	0	IK0	0				
			ર		0				
OLDIT					0				
					IK0	0	Yes	No	Interrupt factor flag (K00-K03)
	0	IT2	IT8	IT32	0				
		I	2		IT2	0	Enable	Mask	Interrupt factor flag (clock timer 2 Hz)
					IT8	0	Enable	Mask	Interrupt factor flag (clock timer 8 Hz)
					IT32	0	Enable	Mask	Interrupt factor flag (clock timer 32 Hz)

Table 4.9.3 Interrupt control bits

EIT32, EIT8, EIT2 Interrupt mask registers (0EBH D0–D2)

IT32, IT8, IT2 Interrupt factor flags (0EFH D0–D2)

See 4.7, "Clock Timer".

EIK00-EIK03 Interrupt mask registers (0E8H)

IK0 Interrupt factor flag (0EDH D0)

See 4.3, "Input Port".

CHAPTER 5 BASIC EXTERNAL WIRING DIAGRAM

(1) Piezo Buzzer Single Terminal Driving

X'tal	Crystal oscillator	32.768 kHz CI(MAX) = 35 kΩ
CG	Trimmer capacitor	5–25 pF
C1–C5	Capacitor	0.1 μF
Ср	Capacitor	3.3 μF

X'tal	Crystal oscillator	32.768 kHz CI(MAX) = 35 kΩ
CG	Trimmer capacitor	5–25 pF
C1–C5	Capacitor	0.1 μF
Ср	Capacitor	3.3 µF

CHAPTER 6 ELECTRICAL CHARACTERISTICS

6.1 Absolute Maximum Rating

(VDD=0V)

Item	Symbol	Rated Value	Unit
Power voltage	Vss	-5.0 to 0.5	V
Input voltage (1)	VI	Vss-0.3 to 0.5	V
Input voltage (2)	VIOSC	Vss-0.3 to 0.5	V
Permissible total output current *1	∑Ivss	10	mA
Operating temperature	Topr	-20 to 70	°C
Storage temperature	Tstg	-65 to 150	°C
Soldering temperature / Time	Tsol	260°C, 10sec (lead section)	_
Allowable dissipation *2	PD	250	mW

*1 The permissible total output current is the sum total of the current (average current) that simultaneously flows from the output pins (or is draw in).

*2 In case of QFP12-48pin plastic package

6.2 Recommended Operating Conditions

E0C6001

					(14-20	
Item	Symbol	Condition	Min	Тур	Max	Unit
Power voltage	Vss	VDD=0V	-3.6	-3.0	-1.8	V
Oscillation frequency	fosc1	Crystal oscillation		32.768		kHz
	fosc2	CR oscillation, R=470k Ω	50	65	80	kHz
Booster capacitor	C1		0.1			μF
Capacitor between VDD and VL1	C2		0.1			μF
Capacitor between VDD and VL2	C3		0.1			μF
Capacitor between VDD and VL3	C4		0.1			μF
Capacitor between VDD and VS1	C5		0.1			μF

E0C60L01

					(Ta=-20	to 70°C)
Item	Symbol	Condition	Min	Тур	Max	Unit
Power voltage	Vss	VDD=0V	-2.0	-1.5	-1.2	V
Oscillation frequency	fosc1	Crystal oscillation		32.768		kHz
	fosc2	CR oscillation, R=470k Ω	50	65	80	kHz
Booster capacitor	C1		0.1			μF
Capacitor between VDD and VL1	C2		0.1			μF
Capacitor between VDD and VL2	C3		0.1			μF
Capacitor between VDD and VL3	C4		0.1			μF
Capacitor between VDD and VS1	C5		0.1			μF

$(Ta=-20 \text{ to } 70^{\circ}\text{C})$

6.3 DC Characteristics

E0C6001

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, fosc=32.768 kHz, Ta=25°C, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=C3=C4=C5=0.1 μ F

Item	Symbol	Condition	า	Min	Тур	Max	Unit
High level input voltage (1)	VIH1		K00-K03, P00-P03	0.2•Vss		0	V
High level input voltage (2)	VIH2		RESET	0.15•Vss		0	V
Low level input voltage (1)	VIL1		K00–K03, P00–P03	Vss		0.8•Vss	V
Low level input voltage (2)	VIL2		RESET	Vss		0.85•Vss	V
High level input current (1)	IIH1	VIH1=0V	K00–K03, P00–P03	0		0.5	μA
		Without pull down resistor					
High level input current (2)	IIH2	VIH2=0V	K00-K03	10		40	μA
		With pull down resistor					
High level input current (3)	IIH3	VIH3=0V	P00-P03, RESET	30		100	μA
		With pull down resistor					
Low level input current	IIL	VIL=VSS	K00–K03, P00–P03,	-0.5		0	μA
			RESET, TEST				
High level output current (1)	Іон1	VOH1=0.1•VSS	P00-P03			-1.0	mA
High level output current (2)	IOH2	Voh2=0.1•Vss	R00, R01			-1.0	mA
		(built-in protection resistance)					
Low level output current (1)	IOL1	VOL1=0.9•VSS	P00-P03	3.0			mA
Low level output current (2)	IOL2	VOL2=0.9•VSS	R00, R01	3.0			mA
		(built-in protection resistance)					
Common output current	Іонз	Voh3=-0.05V	COM0–COM3			-3	μA
	IOL3	VOL3=VL3+0.05V		3			μA
Segment output current	IOH4	Voh4=-0.05V	SEG0-SEG19			-3	μA
(during LCD output)	IOL4	V0L4=VL3+0.05V		3			μA
Segment output current	Іон5	Voh5=0.1•Vss	SEG0-SEG19			-300	μA
(during DC output)	IOL5	VOL5=0.9•VSS		300			μA

E0C60L01

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, fosc=32.768 kHz, Ta=25°C, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=C3=C4=C5=0.1 μF

Item	Symbol	Conditio	n	Min	Тур	Max	Unit
High level input voltage (1)	VIH1		K00-K03, P00-P03	0.2•Vss		0	V
High level input voltage (2)	VIH2		RESET	0.15•Vss		0	V
Low level input voltage (1)	VIL1		K00-K03, P00-P03	Vss		0.8•Vss	V
Low level input voltage (2)	VIL2		RESET	Vss		0.85•Vss	V
High level input current (1)	IIH1	VIH1=0V	K00-K03, P00-P03	0		0.5	μA
		Without pull down resistor					
High level input current (2)	IIH2	VIH2=0V	K00-K03	5.0		20	μA
		With pull down resistor					
High level input current (3)	IIH3	VIH3=0V	P00–P03, RESET	9.0		100	μA
		With pull down resistor					
Low level input current	IIL	VIL=VSS	K00-K03, P00-P03,	-0.5		0	μA
			RESET, TEST				
High level output current (1)	Іон1	Voh1=0.1•Vss	P00-P03			-200	μA
High level output current (2)	Іон2	Voh2=0.1•Vss	R00, R01			-200	μA
		(built-in protection resistance)					
Low level output current (1)	IOL1	VOL1=0.9•VSS	P00-P03	700			μA
Low level output current (2)	IOL2	VOL2=0.9•VSS	R00, R01	700			μA
		(built-in protection resistance)					
Common output current	Іонз	Voh3=-0.05V	COM0–COM3			-3	μA
	IOL3	VOL3=VL3+0.05V		3			μA
Segment output current	IOH4	Voh4=-0.05V	SEG0-SEG19			-3	μA
(during LCD output)	IOL4	V0L4=VL3+0.05V		3			μA
Segment output current	Іон5	Voh5=0.1•Vss	SEG0-SEG19			-100	μA
(during DC output)	IOL5	VOL5=0.9•VSS		130			μA

6.4 Analog Circuit Characteristics and Power Current Consumption

E0C6001 (Normal Operating Mode)

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, fosc=32.768 kHz (crystal oscillation), Ta=25°C, CG=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=C3=C4=C5=0.1 μ F

Item	Symbol	Conditior	า	Min	Тур	Max	Unit
Internal voltage	VL1	Connect $1M\Omega$ load resistor be	etween VDD and VL1	1/2•VL2		1/2•VL2	V
		(without panel load)		-0.1		×0.9	
	VL2	Connect $1M\Omega$ load resistor be	etween VDD and VL2		Vss		V
		(without panel load)					
	VL3	Connect $1M\Omega$ load resistor be	Connect $1M\Omega$ load resistor between VDD and VL3			3/2•VL2	V
		(without panel load)		-0.1		×0.9	
Power current	Іор	During HALT	XX7'(1 (11 1		1.0	2.5	μA
consumption		During execution	without patier load		2.5	5.0	μA

E0C6001 (Heavy Load Protection Mode)

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, fosc=32.768 kHz (crystal oscillation), Ta=25°C, CG=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=C3=C4=C5=0.1 μ F

Item	Symbol	Condition)	Min	Тур	Max	Unit
Internal voltage	VL1	Connect $1M\Omega$ load resistor be	tween VDD and VL1	1/2•Vl2		1/2•VL2	V
		(without panel load)		-0.1		$\times 0.85$	
	VL2	Connect $1M\Omega$ load resistor be	tween VDD and VL2		Vss		V
		(without panel load)					
	VL3	Connect $1M\Omega$ load resistor be	tween VDD and VL3	3/2•VL2		3/2•VL2	V
		(without panel load)		-0.1		$\times 0.85$	
Power current	Іор	During HALT	Without namel load		2.0	5.5	μΑ
consumption		During execution	without panel load		5.5	10.0	μA

E0C60L01 (Normal Operating Mode)

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, fosc=32.768 kHz (crystal oscillation), Ta=25°C, CG=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=C3=C4=C5=0.1 μ F

Item	Symbol	Conditior	۱	Min	Тур	Max	Unit
Internal voltage	VL1	Connect $1M\Omega$ load resistor be	etween VDD and VL1		Vss		V
		(without panel load)					
	VL2	Connect $1M\Omega$ load resistor be	etween VDD and VL2	2•VL1		2•VL1	V
		(without panel load)		-0.1		$\times 0.9$	
	VL3	Connect $1M\Omega$ load resistor be	Connect $1M\Omega$ load resistor between VDD and VL3			3•VL1	V
		(without panel load)		-0.1		$\times 0.9$	
Power current	Іор	During HALT	XX7.41 (11 1		1.0	2.5	μA
consumption		During execution	without panel load		2.5	5.0	μA

E0C60L01 (Heavy Load Protection Mode)

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, fosc=32.768 kHz (crystal oscillation), Ta=25°C, CG=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=C3=C4=C5=0.1 μ F

Item	Symbol	Condition	ו	Min	Тур	Max	Unit
Internal voltage	VL1	Connect $1M\Omega$ load resistor be	tween VDD and VL1		Vss		V
		(without panel load)					
	VL2	Connect $1M\Omega$ load resistor be	etween VDD and VL2	2•VL1		2•VL1	V
		(without panel load)		-0.1		$\times 0.85$	
	VL3	Connect $1M\Omega$ load resistor be	etween VDD and VL3	3•VL1		3•VL1	V
		(without panel load)	(without panel load)			$\times 0.85$	
Power current	Ιορ	During HALT	XX7.41 (11 1		2.0	5.5	μA
consumption		During execution	without panel load		5.5	10.0	μA

E0C6001 (CR, Normal Operating Mode)

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, fosc=65 kHz, Ta=25°C, CG=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=C3=C4=C5=0.1 μ F, Recommended external resistance for CR oscillation=470 k Ω

Item	Symbol	Conditior	1	Min	Тур	Max	Unit
Internal voltage	VL1	Connect $1M\Omega$ load resistor be	tween VDD and VL1	1/2•VL2		1/2•VL2	V
		(without panel load)		-0.1		×0.9	
	VL2	Connect $1M\Omega$ load resistor be	tween VDD and VL2		Vss		V
		(without panel load)					
	VL3	Connect $1M\Omega$ load resistor be	tween VDD and VL3	3/2•VL2		3/2•VL2	V
		(without panel load)		-0.1		×0.9	
Power current	Іор	During HALT	W/:4h and man al load		8.0	15.0	μΑ
consumption		During execution	without panel load		15.0	20.0	μΑ

E0C6001 (CR, Heavy Load Protection Mode)

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, fosc=65 kHz, Ta=25°C, CG=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=C3=C4=C5=0.1 μ F, Recommended external resistance for CR oscillation=470 k Ω

Item	Symbol	Conditior	١	Min	Тур	Max	Unit
Internal voltage	VL1	Connect $1M\Omega$ load resistor be	tween VDD and VL1	1/2•VL2		1/2•VL2	V
		(without panel load)		-0.1		× 0.85	
	VL2	Connect $1M\Omega$ load resistor be	tween VDD and VL2		Vss		V
		(without panel load)					
	VL3	Connect $1M\Omega$ load resistor be	tween VDD and VL3	3/2•VL1		3/2•VL1	V
		(without panel load)		-0.1		× 0.85	
Power current	Іор	During HALT	W/ide and manual local		16.0	30.0	μΑ
consumption		During execution	without patier load		30.0	40.0	μA

E0C60L01 (CR, Normal Operating Mode)

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, fosc=65 kHz, Ta=25°C, CG=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=C3=C4=C5=0.1 μ F, Recommended external resistance for CR oscillation=470 k Ω

Item	Symbol	Conditior	า	Min	Тур	Max	Unit
Internal voltage	VL1	Connect $1M\Omega$ load resistor be	tween VDD and VL1		Vss		V
		(without panel load)					
	VL2	Connect $1M\Omega$ load resistor be	tween VDD and VL2	2•VL1		2•VL1	V
		(without panel load)		-0.1		×0.9	
	VL3	Connect $1M\Omega$ load resistor be	tween VDD and VL3	3•VL1		3•VL1	V
		(without panel load)		-0.1		×0.9	
Power current	Ιορ	During HALT			8.0	15.0	μA
consumption		During execution	without panel load		15.0	20.0	μA

E0C60L01 (CR, Heavy Load Protection Mode)

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, fosc=65 kHz, Ta=25°C, CG=25 pF, VS1, VL1, VL2 and VL3 are internal voltages, and C1=C2=C3=C4=C5=0.1 μ F, Recommended external resistance for CR oscillation=470 k Ω

Item	Symbol	Condition		Min	Тур	Max	Unit
Internal voltage	VL1	Connect $1M\Omega$ load resistor between VDD and VL1			Vss		V
		(without panel load)					
VL2 C		Connect $1M\Omega$ load resistor between VDD and VL2		2•VL1		2•VL1	V
	(without panel load)		-0.1		$\times 0.85$		
	VL3	Connect $1M\Omega$ load resistor between VDD and VL3		3•VL1		3•VL1	V
	(without panel load)			-0.1		$\times 0.85$	
Power current	Ιορ	During HALT	Without panel load		16.0	30.0	μA
consumption		During execution			30.0	40.0	μA
6.5 Oscillation Characteristics

Oscillation characteristics will vary according to different conditions. Use the following characteristics are as reference values.

E0C6001

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, Crystal : C-002R (CI=35 kΩ), CG=25 pF, CD=built-in, Ta=25°C

Item	Symbol	Condition	Min	Тур	Max	Unit
Oscillation start	Vsta	tsta≤5sec	-1.8			V
voltage	(Vss)					
Oscillation stop	Vstp	tstp≤10sec	-1.8			V
voltage	(Vss)					
Built-in capacity (drain)	CD	Including the parasitic capacity inside the IC		20		pF
Frequency voltage deviation	f/V	Vss=-1.8 to -3.6V			5	ppm
Frequency IC deviation	f/IC		-10		10	ppm
Frequency adjustment range	f/CG	CG=5-25pF	40			ppm
Higher harmonic oscillation	Vhho	CG=5pF			-3.6	V
start voltage	(Vss)					
Allowable leak resistance	Rleak	Between OSC1 and VDD	200			MΩ

E0C60L01

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, Crystal : C-002R (CI=35 kΩ), CG=25 pF, CD=built-in, Ta=25°C

Item	Symbol	Condition	Min	Тур	Max	Unit
Oscillation start	Vsta	tsta≤5sec	-1.2			V
voltage	(Vss)					
Oscillation stop	Vstp	tstp≤10sec	-1.2			V
voltage	(Vss)					
Built-in capacity (drain)	CD	Including the parasitic capacity inside the IC		20		pF
Frequency voltage deviation	f/V	Vss=-1.2 to -2.0V			5	ppm
Frequency IC deviation	f/IC		-10		10	ppm
Frequency adjustment range	f/CG	CG=5-25pF	40			ppm
Higher harmonic oscillation	Vhho	CG=5pF			-2.0	V
start voltage	(Vss)					
Allowable leak resistance	Rleak	Between OSC1 and VDD	200			MΩ

E0C6001 (CR)

Unless otherwise specified

VDD=0 V, VSS=-3.0 V, RCR=470 kΩ, Ta=25°C

Item	Symbol	Condition	Min	Тур	Max	Unit
Oscillation frequency dispersion	fosc		-20	65kHz	20	%
Oscillation start voltage	Vsta		-1.8			V
Oscillation start time	tsta	Vss=-1.8 to -3.6V		3		ms
Oscillation stop voltage	Vstp		-1.8			V

E0C60L01 (CR)

Unless otherwise specified

VDD=0 V, VSS=-1.5 V, RCR=470 kΩ, Ta=25°C

Item	Symbol	Condition	Min	Тур	Max	Unit
Oscillation frequency dispersion	fosc		-20	65kHz	20	%
Oscillation start voltage	Vsta		-1.2			V
Oscillation start time	tsta	Vss=-1.2 to -2.0V		3		ms
Oscillation stop voltage	Vstp		-1.2			V

CHAPTER 7 PACKAGE

7.1 Plastic Package

Plastic QFP12-48pin

7.2 Ceramic Package for Test Samples

DIP-64pin

(Unit: mm)

Pin No.	Pin Name						
1	N.C.	17	VL1	33	P03	49	SEG15
2	SEG5	18	CA	34 K00		50	SEG14
3	SEG4	19	СВ	35	K01	51	SEG13
4	SEG3	20	Vss	36	K02	52	SEG12
5	SEG2	21	Vdd	37	K03	53	SEG11
6	SEG1	22	OSC1	38	N.C.	54	SEG10
7	SEG0	23	OSC2	39	N.C.	55	N.C.
8	N.C.	24	N.C.	40	N.C.	56	N.C.
9	N.C.	25	N.C.	41	N.C.	57	N.C.
10	N.C.	26	Vs1	42	N.C.	58	TEST
11	COM0	27	N.C.	43	R01	59	RESET
12	COM1	28	N.C.	44	R00	60	SEG9
13	COM2	29	N.C.	45	SEG19	61	SEG8
14	COM3	30	P00	46	SEG18	62	SEG7
15	VL3	31	P01	47	SEG17	63	SEG6
16	VL2	32	P02	48	SEG16	64	N.C.

N.C. = No Connection

CHAPTER 8 PAD LAYOUT

8.1 Diagram of Pad Layout

Chip size: 2,640 µm (X) x 2,180 µm (Y)

8.2 Pad Coordinates

Pad No	Pad Name	Х	Y	Pad No	Pad Name	Х	Y
1	R01	759	923	24	SEG0	-1,151	-644
2	R00	629	923	25	COM0	-1,126	-923
3	SEG19	401	923	26	COM1	-988	-923
4	SEG18	271	923	27	COM2	-858	-923
5	SEG17	141	923	28	COM3	-727	-923
6	SEG16	11	923	29	VL3	-597	-923
7	SEG15	-119	923	30	VL2	-466	-923
8	SEG14	-249	923	31	VL1	-336	-923
9	SEG13	-379	923	32	CA	-206	-923
10	SEG12	-509	923	33	CB	-76	-923
11	SEG11	-639	923	34	Vss	570	-923
12	SEG10	-769	923	35	Vdd	700	-923
13	TEST	-1,151	789	36	OSC1	835	-923
14	RESET	-1,151	657	37	OSC2	987	-923
15	SEG9	-1,151	526	38	VS1	1,140	-923
16	SEG8	-1,151	396	39	P00	1,151	-11
17	SEG7	-1,151	266	40	P01	1,151	119
18	SEG6	-1,151	136	41	P02	1,151	249
19	SEG5	-1,151	6	42	P03	1,151	379
20	SEG4	-1,151	-124	43	K00	1,151	518
21	SEG3	-1,151	-254	44	K01	1,151	648
22	SEG2	-1,151	-384	45	K02	1,151	778
23	SEG1	-1,151	-514	46	K03	1,151	908

(Unit: µm)

E0C6001 Technical Software

CONTENTS

CHAPTER 1	CONFIGURATION II									
	1.1	E0C6001 Block Diagram	II-1							
	1.2	ROM Map	II-2							
	1.3	Interrupt Vectors	II-3							
	1.4	Data Memory Map	II-4							
CHAPTER 2	INITIAL RESET									
	2.1	Internal Register Status on Initial Reset	II-9							
	2.2	Initialize Program Example	II-11							
CHAPTER 3	PERIPHERAL CIRCUITS II									
	3.1	Input Port Input port memory map Control of the input port Examples of input port control program	II-13 II-13 II-14 II-14							
	3.2	Output Port Output port memory map Control of the output port Examples of output port control program	II-16 II-16 II-16 II-17							
	3.3	Special Use Output Port Special use output port memory map Control of the special use output port Examples of special use output port control program	II-19 II-19 II-20 II-21							

	3.4	I/O Port I/O port memory map Control of the I/O port Examples of I/O port control program	II-23 II-23 II-24 II-25
	3.5	LCD Driver LCD driver memory map Control of the LCD driver Examples of LCD driver control program	II-28 II-28 II-29 II-31
	3.6	Timer Timer memory map Control of the timer Examples of timer control program	II-33 II-33 II-34 II-35
	3.7	Heavy Load Protection Function Heavy load protection function memory map Heavy load protection function Examples of heavy load protection function control program	II-37 II-37 II-37 II-38
	3.8	Interrupt and Halt Interrupt memory map Control of interrupts and halt Examples of interrupt and halt control program	II-39 II-39 II-40 II-48
CHAPTER 4	SUM	MARY OF PROGRAMMING POINTS	II-50
APPENDIX	A	Table of Instructions	II-54
	В	The E0C6001 I/O Memory Map	II-59
	С	Table of the ICE6200 Commands	II-60
	D	Cross-assembler Pseudo-instruction List	II-62

CHAPTER 1 CONFIGURATION

1.1 E0C6001 Block Diagram

Fig. 1.1.1 E0C6001 block diagram

1.2 ROM Map

The E0C6001 has a built-in mask ROM with a capacity of 1,024 steps \times 12 bits for program storage. The configuration of the ROM is shown in Figure 1.2.1.

Fig. 1.2.1 Configuration of built-in ROM

1.3 Interrupt Vectors

When an interrupt request is received by the CPU, the CPU initiates the following interrupt processing after completing the instruction being executed.

- (1) The address of the next instruction to be executed (the value of the program counter) is saved on the stack (RAM).
- (2) The interrupt vector address corresponding to the interrupt request is loaded into the program counter.
- (3) The branch instruction written in the vector is executed to branch to the software interrupt processing routine.
- Note Steps 1 and 2 require 12 cycles of the CPU system clock.

The interrupt vectors are shown in Table 1.3.1.

Table 1.3.1 Interrupt requests and vectors

Page	Step	Interrupt Vector						
00H 01H 04H	00H	Initial reset						
	01H	Clock timer interrupt						
	Input (K00–K03) interrupt							
	05H	Input interrupt and clock timer interrupt						

Addesses (start address of interrupt processing routines) to jump to are written into the addresses available for interrupt vector allocation.

1.4 Data Memory Map

The E0C6001 built-in RAM has 80 words of data memory, 32 words of display memory for the LCD, and I/O memory for controlling the peripheral circuit. When writing programs, note the following:

- (1) Since the stack area is in the data memory area, take care not to overwrite the stack with data. Subroutine calls or interrupts use 3 words on the stack.
- (2) Data memory addresses 000H–00FH are memory register areas that are addressed with register pointer RP.

Note Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

Addross	Address Register							Comment	
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	K03	K02	K01	K00	К03	- *2	High	Low	
05011			2		К02	- *2	High	Low	
UEUH					K01	- *2	High	Low	Input port (K00–K03)
					К00	- *2	High	Low	
	TM3	TM2	TM1	TM0	TM3	_	High	Low	Timer data (clock timer 2 Hz)
	R				TM2	-	High	Low	Timer data (clock timer 4 Hz)
0641					TM1	-	High	Low	Timer data (clock timer 8 Hz)
					TM0	-	High	Low	Timer data (clock timer 16 Hz)
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register (K03)
		R	W		EIK02	0	Enable	Mask	Interrupt mask register (K02)
0L0I1					EIK01	0	Enable	Mask	Interrupt mask register (K01)
					EIK00	0	Enable	Mask	Interrupt mask register (K00)
	0	EIT2	EIT8	EIT32	0 *5				
	R	R/W			EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
					EIT8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
					EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)

Table 1.4.1(a) I/O memory map 1

*1 Initial value following initial reset

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

Table 1.4.1(b) I/O memory map 2

Address		Reg	ister						Comment
//ddic55	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	0	0	0	IK0	0 *5				
			R		0 *5				
0EDH					0 *5				
					IK0 ^{*4}	0	Yes	No	Interrupt factor flag (K00–K03)
	0	IT2	IT8	IT32	0 *5				
			R		IT2 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
VEFR					IT8 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
					IT32 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	0	0	R01 BUZZER	R00 FOUT	0 *5				
			р	AA/	0 * 3				
0F3H		N	ĸ	vv	R01	0	High	Low	R01 output port data
					BUZZER	0	ON	OFF	Buzzer ON/OFF control register
					R00	0	High	Low	R00 output port data
					FOUT	0	ON	OFF	Frequency output ON/OFF control register
	P03	P02	P01	P00	P03	_ *2	High	Low	
OFEH		R	/W		P02	_ *2	High	Low	1/O port (P00, P03)
0-011					P01	- *2	High	Low	1/0 poir (F00–F03)
					P00	_ *2	High	Low	

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

Addross		Regi	ister						Comment	
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment	
	0	TMRST	0	0	0 *5					
ЛЕОН	R	w	R		TMRST	Reset	Reset	-	Clock timer reset	
01 911					0 *5					
					0 *5					
	HLMOD	0	0	0	HLMOD	0	Heavy Ioad	Normal load	Heavy load protection mode register	
	R/W		R		0 *5					
UFAIT					0 *5					
					0 *5					
	CSDC	0	0	0	CSDC	0	Static	Dynamic	LCD drive switch	
	R/W		R		0 *5					
огри					0 *5					
					0 *5					
	0	0	0	IOC	0 *5					
		R R/W			0 *5					
0FCH					0 *5					
					юс	0	Output	Input	I/O port P00-P03 Input/Output	

Table 1.4.1(c) I/O memory map 3

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

Table 1.4.1(d) I/O memory map 4

Address		Reg	ister						Commont
Audress	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	XBZR	0	XFOUT1 XFOUT0		XBZR	0	2 kHz	4 kHz	Buzzer frequency control
	R/W	R	R/W		0 *5				
OFDIT					XFOUT1	0	High	Low	FOUT frequency control: XFOUT1(0), XFOUT0(0) -> F1
					XFOUT0	0	High	Low	XFOUT1(0), XFOUT0(1) -> F2 XFOUT1(1), XFOUT0(0) -> F3 XFOUT1(1), XFOUT0(1) -> F4

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

CHAPTER 2 INITIAL RESET

2.1 Internal Register Status on Initial Reset

Following an initial reset, the internal registers and internal data memory area are initialized to the values shown in Tables 2.1.1 and 2.1.2.

Table 2.1.1
Initial values of internal
registers

Internal Register		Bit Length	Initial Value Following Reset
Program counter step	PCS	8	00H
Program counter page	PCP	4	1H
New page pointer	NPP	4	1H
Stack pointer	SP	8	Undefined
Index register	Х	8	Undefined
Index register	Y	8	Undefined
Register pointer	RP	4	Undefined
General register	А	4	Undefined
General register	В	4	Undefined
Interrupt flag	Ι	1	0
Decimal flag	D	1	0
Zero flag	Ζ	1	Undefined
Carry flag	С	1	Undefined

	Table 2.1.2
Initial values of	internal data
r	nemory area

Internal Data		Initial Value		
Memory Area	Bit Length	Following Reset	Address	
RAM data	4×80	Undefined	000H-05FH	
Display memory	4×20	Undefined	090H–0AFH	
Internal I/O register	See Tables	1.4.1(a)–1.4.1(d)	0E0H-0FDH	

After an initial reset, the program counter page (PCP) is initialized to 1H, and the program counter step (PCS), to 00H. This is why the program is executed from step 00H of the first page.

The initial values of some internal registers and internal data memory area locations are undefined after a reset. Set them as necessary to the proper initial values in the program.

The peripheral I/O functions (memory-mapped I/O) are assigned to internal data memory area addresses 0E0H to 0FDH. Each address represents a 4-bit internal I/O register, allowing access to the peripheral functions in 1-word (4-bit) read/write units.

2.2 Initialize Program Example

The following is a program that clears the RAM and LCD, resets the flags, registers and timer, and sets the stack pointer immediately after resetting the system.

Label	Mnemon	ic/operand	Comment			
	ORG	100H				
	JP	INIT	; Jump to "INIT"			
;						
	ORG	110H				
INIT	RST	F,0011B	; Interrupt mask, decimal			
			; adjustment off			
;						
	LD	Χ,Ο	;			
RAMCLR	LDPX	MX,0	;			
	CP	ХН,5Н	; Clear RAM (00H–4FH)			
	JP	NZ,RAMCLR	;			
	LD	Х,90Н	;			
LCDCLR	LDPX	MX,0	;			
	CP	хн,Овн	; Clear LCD (90H–AFH)			
	JP	NZ,LCDCLR	;			
;						
	LD	A,0	; 7			
	LD	в,4	; Set stack pointer to 40H			
	LD	SPL,A	;			
	LD	SPH,B	; _			
;						
	LD	Х,ОГ9Н	; Reset timer			
	OR	MX,0100B	; _ neset timer			
;						
	LD	X,OEBH	; Enable timer interrupt			
	OR	MX,0111B	;			
;						
	LD	Х,ОЕ8Н	; ☐ Enable input interrupt			
	OR	MX,1111B	;			
;						
	LD	Х,О	; 7			
	LD	Υ,Ο	;			
	LD	A,0	; Reset register flags			
	LD	в,0	;			
	RST	F,0	;			
	EI		; Enable interrupt			

The above program is a basic initialization program for the E0C6001. The setting data are all initialized as shown in Table 2.1.1 by executing this program. When using this program, add setting items necessary for each specific application. (Figure 2.2.1 is the flow chart for this program.)

CHAPTER 3 PERIPHERAL CIRCUITS

Details on how to control the E0C6001 peripheral circuit is given in this chapter.

3.1 Input Port

Input port memory map

Table 3.1.1 I/O memory map

Address	Register							Comment	
//uurc33	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	K03	K02	K01	К00	К03	- *2	High	Low	
05011			R		К02	- *2	High	Low	
UEUH					К01	- *2	High	Low	Input port (K00–K03)
					К00	- *2	High	Low	
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register (K03)
		R	/W		EIK02	0	Enable	Mask	Interrupt mask register (K02)
UEON					EIK01	0	Enable	Mask	Interrupt mask register (K01)
					EIK00	0	Enable	Mask	Interrupt mask register (K00)
	0	0	0	IK0	0 *5				
0EDH	R				0 *5				
					0 *5				
					IK0 *4	0	Yes	No	Interrupt factor flag (K00–K03)

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

Control of the input port	The E0C6001 has one 4-bit input port (K00–K03). Input port data can be read as a 4-bit unit (K00–K03).
	The state of the input ports can be obtained by reading the data (bits D3, D2, D1, D0) of address 0E0H. The input ports can be used to send an interrupt request to the CPU via the input interrupt condition flag. See Section 3.8 "Interrupt and Halt", for details.
Examples of input	• Loading K00-K03 into the A register

program	Label	Mnemoni	c/operand	Comment	
piogram		LD	Y,0E0H	; Setaddressofport	
		LD	A,MY	; A register \leftarrow K00–K03	

As shown in Figure 3.1.1, the two instruction steps above load the data of the input port into the A register.

Fig. 3.1.1A registerD3D2D1D0Loading the A registerK03K02K01K00

The data of the input port can be loaded into the B register or MX instead of the A register.

Label	Mnemo	nic/operand	Comment		
	DI		; Disable interrupt		
	LD Y,OEOH		; Set address of port		
INPUT1:	FAN	MY,0010B	;		
	JP	NZ,INPUT1	; Loop until K01 becomes "0"		
INPUT2:	FAN	MY,0010B	;		
	JP	Z,INPUT2	i Loop until K01 becomes "1"		

• Bit-unit checking of input ports

This program loopes until a rising edge is input to input port K01.

The input port can be addressed using the X register instead of the Y register.

Note When the input port is changed from high level to low level with a pull-down resistor, the signal falls following a certain delay caused by the time constants of the pull-down resistance and the input gate capacitance. It is therefore necessary to observe a proper wait time before the input port data is read.

3.2 Output Port

Output port

memory map

Table 3.2.1 I/O memory map

Address		Reg	ister		Comment				Comment
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	0	0	R01 BUZZER	R00 FOUT	0 *5				
05011	R		R/	W	R01	0	High	Low	R01 output port data
01511					BUZZER	0	ON	OFF	Buzzer ON/OFF control register
					R00	0	High	Low	R00 output port data
					FOUT	0	ON	OFF	Frequency output ON/OFF control register

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

Control of the output port

The E0C6001 Series have 2 bits for general output ports (R00, R01). R00 and R01 although can be use for special use output port as shown in later of this section. The output port is a read/write register, output pins provide the contents of the register. The states of the output ports (R00, R01) are decided by the data of address 0F3H. Output ports can also be read, and output control is possible using the operation instructions (AND, OR, etc.). The output ports are all initialized to low level (0) after an initial reset.

Examples of output	 Loading B register data into R00, R01 							
port control	Label	Mnemo	onic/operand	Comment				
program		LD	Y,0F3H	; Set address of port				
		LD	MY,B	; R00, R01 \leftarrow B register				

As shown in Figure 3.2.1, the two instruction steps above load the data of the B register into the output ports.

The output data can be taken from the A register, MX, or immediate data instead of the B register.

Label	Mnemo	nic/operand	Comment	
	LD	Y,0F3H	; Set address of port	
	OR	MY,0010B	; Set R01 to 1	
	AND	MY,1110B	; Set R00 to 0	

• Bit-unit operation of output ports

The three instruction steps above cause the output port to be set, as shown in Figure 3.2.2.

3.3 Special Use Output Port

Special use output port memory map

Table 3.3.1	I/O memory	map
-------------	------------	-----

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	0	0	R01	R00	0 *5				
	-		BUZZER	FOUT	0 *5				
0F3H	F	8	R/	W	R01	0	High	Low	R01 output port data
					BUZZER	0	ON	OFF	Buzzer ON/OFF control register
					R00	0	High	Low	R00 output port data
					FOUT	0	ON	OFF	Frequency output ON/OFF control register
	XBZR	0	XFOUT1	XFOUT0	XBZR	0	2 kHz	4 kHz	Buzzer frequency control
	R/W	R	R	W	0 *5				
					XFOUT1	0	High	Low	FOUT frequency control: XFOUT1(0), XFOUT0(0) -> F1
					XFOUT0	0	High	Low	XFOUT1(0), XFOUT0(1) -> F2 XFOUT1(1), XFOUT0(0) -> F3 XFOUT1(1), XFOUT0(1) -> F4

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

Control of the special use output port

Table 3.3.2 Special output In addition to the regular DC, special output can be selected for output ports R00 and R01, as shown in Table 3.3.2. Figure 3.3.1 shows the structure of output ports R00 and R01.

Pin Name	When Special Output is Selected
R00	FOUT or BUZZER
R01	BUZZER

Fig. 3.3.1 Structure of output ports R00, R01

Examples of special use output port control program

• Buzzer driver output (BUZZER)

When output port R01 is set for BUZZER and R00 is set for $\overline{\text{BUZZER}}$, it performs 2,048 Hz or 4,096 Hz selected by register XBZR (0FDH D3).

Label	Mnemo	nic/operand	Comment
	LD	Y,OFDH	; Set address of BUZZER
			; frequency control register
	LD	MY,1000B	; Select 2,048 Hz
	LD	Y,0F3H	; Set address of output port
	OR	MY,0010B	; Turn on BUZZER
	:	:	
	AND	MY,1101B	; Turn off BUZZER

• Internal divided frequency output (FOUT)

When output port R00 is set to FOUT output, fosc or clock frequency divided into fosc is generated. Clock frequency may be selected individually for F1–F4, from among 5 types by mask option; a clock frequency is then selected from 4 types (i.e., F1–F4) through XFOUT0 and XFOUT1 (0FDH D0 and D1) registers and is generated.

Table 3.3.3	Mask		Clock Freq	uency (Hz) for	sc = 32.768 kHz
Mask option and register	Option	F1	F2	F3	F4
selection	Sets	(D1,D0)=(0,0)	(D1,D0)=(0,1)	(D1,D0)=(1,0)	(D1,D0)=(1,1)
	Set 1	256 (fosc/128)	512 (fosc/64)	1,024 (fosc/32)	2,048 (fosc/16)
	Set 2	512 (fosc/64)	1,024 (fosc/32)	2,048 (fosc/16)	4,096 (fosc/8)
	Set 3	1,024 (fosc/32)	2,048 (fosc/16)	4,096 (fosc/8)	8,192 (fosc/4)
	Set 4	2,048 (fosc/16)	4,096 (fosc/8)	8,192 (fosc/4)	16,384 (fosc/2)
	Set 5	4,096 (fosc/8)	8,192 (fosc/4)	16,384 (fosc/2)	32,768 (fosc/1)

The clock frequency types are shown in Table 3.3.3.

For example mask option is set to Set 4:

Label	Mnemo	nic/operand	Comment
	LD	Y,OFDH	; Set address of FOUT
			; frequency control register
	LD	MY,0011B	; Select 16,384 Hz
	LD	Y,0F3H	; Set address of output port
	OR	MY,0001B	; Turn on FOUT
	:	:	
	AND	MY,1110B	; Turn off FOUT

3.4 I/O Port

I/O port memory

map

Table 3.4.1	I/O memory	map
-------------	------------	-----

Address		Reg	ister						Comment
71001000	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	P03	P02	P01	P00	P03	- *2	High	Low	
оген		R	W		P02	- *2	High	Low	V(0,
					P01	_ *2	High	Low	1/O port (P00–P03)
					P00	- *2	High	Low	
	0	0	0	IOC	0 *5				
		R		R/W	0 *5				
UFCH					0 *5				
					IOC	0	Output	Input	I/O port P00–P03 Input/Output

*1 Initial value following initial reset

*2 Not set in the circuit

*3 Undefined

*4 Reset (0) immediately after being read

*5 Always 0 when being read

*6 Refer to main manual

Control of
the I/O portThe E0C6001 contains a 4-bit general I/O port (4 bits × 1).
This port can be used as an input port or an output port,
according to I/O port control register IOC. When IOC is "0",
the port is set for input, when it is "1", the port is set for
output.

• How to set an input port

Set "0" in the I/O port control register (D0 of address 0FCH), and the I/O port is set as an input port. The state of the I/O port (P00–P03) is decided by the data of address 0F6H. (In the input mode, the port level is read directly.)

• How to set an output port

Set "1" in the I/O port control register, and the I/O port is set as an output port. The state of the I/O port is decided by the data of address 0F6H. This data is held by the register, and can be set regardless of the contents of the I/O control register. (The data can be set whether P00 to P03 ports are input ports or output ports.)

The I/O control registers are cleared to "0" (input/output ports are set as input ports), and the data registers are also cleared to "0" after an initial reset.

Examples of I/O port control program

Examples of I/O port • Loading P00-P03 input data into A register

Label	Mnemo	nic/operand	Comment
	LD	Y,OFCH	; Set address of I/O control port
	AND	MY,1110B	; Set port as input port
	LD	Ү,ОГбН	; Set address of port
	LD	A,MY	; A register \leftarrow P00–P03

As shown in Figure 3.4.1, the four instruction steps above load the data of the I/O ports into the A register.

Fig. 3.4.1 Loading into the A register

D3 D2 D1 D0 P03 P02 P01 P00					
P03 P02 P01 P00	A register	D3	D2	D1	D0
	A legister	P03	P02	P01	P00

Label	Mnem	onic/operand	Comment
	LD	Y,OFCH	; Set the address of input/output
			; port control register
	OR	MY,0001B	; Set as output port
	LD	Ү,ОГ6Н	; Set the address of port
	LD	A,MY	; A register \leftarrow P00–P03

• Loading P00-P03 output data into A register

As shown in Figure 3.4.2, the four instruction steps above load the data of the I/O ports into the A register.

Data can be loaded from the I/O port into the B register or MX instead of the A register.

Label	Mnemonic/operand		Comment
	LD	Y,OFCH	; Set the address of input/output
			; port control register
	OR	MY,0001B	; Set port as output port
	LD	Ү,ОГбН	; Set the address of port
	LD	MY,B	; P00–P03 \leftarrow B register

• Loading contents of B register into P00-P03

As shown in Figure 3.4.3, the four $\,$ instruction steps above load the data of the B register into the I/O ports.

The output data can be taken from the A register, MX, or immediate data instead of the B register.

Bit-unit operation for the I/O port is identical to that for the input ports (K00–K03) or output ports (R00, R01).
3.5 LCD Driver

LCD driver memory

map

Table 3.5.1 I/O memory map

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	CSDC	0	0	0	CSDC	0	Static	Dynamic	LCD drive switch
	R/W		R		0 *5				
					0 *5				
					0 *5				

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

Address	0	1	2	3	4	5	6	7	8	9	A	в	с	D	E	F
090						Disp	olay n	nemc	ory (w	rite c	only)					
0A0	32 words x 4 bits															

Fig. 3.5.1 Display memory map

Control of the LCD driver

e LCD The EOC6001 contains 128 bits of display memory in addresses 090H to 0AFH of the data memory. Each display memory can be assigned to any 80 bits of the 128 bits for the LCD driver (20 SEG × 4 COM), 60 bits of the 128 bits (20 SEG × 3 COM) or 40 bits of the 128 bits (20 SEG × 2 COM) by using a mask option. The remaining 48 bits, 68 bits or 88 bits of display memory are not connected to the LCD driver, and are not output even when data is written. An LCD segment is on with "1" set in the display memory, and off with "0" set in the display memory. Note that the display memory is a write-only.

• LCD drive control register (CSDC)

The LCD drive control register (CSDC: address 0FBH, D3) can set the 1/1 duty drive. Set "0" in CSDC for 1/4 duty, 1/3 duty or 1/1 duty drive. Set "1" in CSDC and the same value in the registers corresponding to COMs 0 through 3 for 1/1 duty drive.

Figure 3.5.2 shows the 1/1 duty drive waveform (1/3 bias) and Figure 3.5.3 shows an example of the 7-segment LCD assignment.

See page I-41 for the 1/1 duty drive waveform (1/2 bias).

Address	Register												
Address	D3	D2	D1	D0									
090H	d	с	b	а									
091H		g	f	e									

Fig. 3.5.3 7-segment LCD assignment

In the assignment shown in Figure 3.5.3, the 7-segment display pattern is controlled by writing data to display memory addresses 090H and 091H.

Examples of	• Displaying 7-segment
LCD driver control	The LCD display routine using the assignment of Figure
program	3.5.3 can be programmed as follows.

Label	Mnemonic	/operand	Comment
	ORG	000н	
	RETD	3FH	; 0 is displayed
	RETD	06H	; 1 is displayed
	RETD	5BH	; 2 is displayed
	RETD	4FH	; 3 is displayed
	RETD	66Н	; 4 is displayed
	RETD	6DH	; 5 is displayed
	RETD	7DH	; 6 is displayed
	RETD	27H	; 7 is displayed
	RETD	7FH	; 8 is displayed
	RETD	6FH	; 9 is displayed
SEVENS:	LD	в,0	; Set the address of jump
	LD	Х,090Н	; Set address of display memory
	JPBA		

When the above routine is called (by the CALL or CALZ instruction) with any number from "0" to "9" set in the A register for the assignment of Figure 3.5.4, seven segments are displayed according to the contents of the A register.

Fig. 3.5.4
Data set in A register and
displayed patterns

A resister	Display								
0		2	Ŋ	4	Ļ	6	6	8	8
1		3		5	S	7	7	9	9

The RETD instruction can be used to write data to the display memory only if it is addressed using the X register. (Addressing using the Y register is invalid.)

Note that the stack pointer must be set to a proper value before the CALL (CALZ) instruction is executed.

• Bit-unit operation of the display memory

Address

Fig. 3.5.5 Example of segment assignment

		D3	D2	D1	D0								
	090H					▲ : SEG-A							
						● : SEG-B							
Label	Mnemon	ic/operar	nd		Comn	nent							
	LD	X,SEC	BUF		i Set address display								
					; mem	ory buffer							
	LD	Y,090)H		; Set address display memory								
	LD	MX,3			; Set b	ouffer data							
	LD	MY,MX	Σ		; SEG	-A, B ON $(\bigcirc, \bigtriangleup)$							
	AND	MX,11	10B		; Char	nge buffer data							
	LD	MY,MY	Σ		-A OFF (\bullet, \triangle)								
	AND	MX,11	.01B		; Char	nge buffer data							
	LD	MY,MY	Ζ		; SEG	-B OFF (●, ▲)							

Data

For manipulation of the display memory in bit-units for the assignment of Figure 3.5.5, a buffer must be provided in RAM to hold data. Note that, since the display memory is write-only, data cannot be changed directly using an ALU instruction (for example, AND or OR).

After manipulating the data in the buffer, write it into the corresponding display memory using the transfer command.

3.6 Timer

Timer memory map

Addroop		Reg	ister						Commont
Address	D3	D2	D1	D0	Name	SR *1	1	0	Continent
	TM3	TM2	TM1	TM0	TM3	-	High	Low	Timer data (clock timer 2 Hz)
0E4H			R		TM2	-	High	Low	Timer data (clock timer 4 Hz)
02411					TM1	-	High	Low	Timer data (clock timer 8 Hz)
		-			TM0	_	High	Low	Timer data (clock timer 16 Hz)
	0	EIT2	EIT8	EIT32	0 *5				
	R		R/W		EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
OLDIT					EIT8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
					EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	IT2	IT8	IT32	0 *5				
		F	2		IT2 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
ULITI					IT8 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
					IT32 ^{*4}	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	0	TMRST	0	0	0 *5				
	R	w	F	2	TMRST	Reset	Reset	-	Clock timer reset
0-90					0 *5				
					0 *5				

Table 3.6.1 I/O memory map

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

Control of the timer The E0C6001 contains a timer with a basic oscillation of 32.768 kHz (typical). This timer is a 4-bit binary counter, and the counter data can be read as necessary. The counter data of the 16 Hz clock can be read by reading TM3 to TM0 (address 0E4H, D3 to D0). ("1" to "0" are set in TM3 to TM0, corresponding to the high-low levels of the 2 Hz, 4 Hz, 8 Hz, and 16 Hz 50 % duty waveform. See Figure 3.6.1.) The timer can also interrupt the CPU on the falling edges of the 32 Hz, 8 Hz, and 2 Hz signals. For details, see Section 3.8, "Interrupt and Halt".

Address	Register bit	Frequency											(Clo	ck	tim	ner	tin	nin	g c	ha	rt												
	D0	16 Hz																																L
0544	D1	8 Hz																																
02411	D2	4 Hz																																
	D3	2 Hz																																L
Occurre 32 Hz ir	ence of nterrupt re	equest	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
Occurre 8 Hz int	ence of errupt rec	quest				t				t				t				t				t				t				t				t
Occurre 2 Hz int	ence of errupt rec	quest																t																t

Fig. 3.6.1 Output waveform of timer and interrupt timing

The timer is reset by setting "1" in TMRST (address 0F9H, D2).

Note The 128 Hz to 2 Hz of the internal divider is initialized by resetting the timer.

Examples of timer control program

Label Mnemonic/operand Comment LD Y,0F9H ; Set address of the timer ; reset register ; Reset the timer OR MY,0100B ; Reset the timer

The two instruction steps above are used to reset (clear TM0-TM3 to 0) and restart the timer. The TMRST register is cleared to "0" by hardware 1 clock after it is set to "1".

• Loading the timer

• Initializing the timer

Label	Mnem	onic/operand	Comment
	LD	Y,0E4H	; Set address of
			; the timer data (TM0 to TM3)
	LD	A,MY	; Load the data of
			; TM0 to TM3 into A register

As shown in Table 3.6.2, the two instruction steps load the data of TMO to TM3 into the A register.

Table 3.6.2	A no sisten	D3	D2	D1	D0
Loading the timer data	A register	TM3 (2 Hz)	TM2 (4 Hz)	TM1 (8 Hz)	TM0 (16 Hz)

Label	Mnemo	onic/operand	Comment
	LD	X,TMSTAT	; Set address of the timer edge counter
	CP	MX,0	; Check whether the timer edge
			; counter is "0"
	JP	Z,RETURN	; Jump if "0" (Z-flag is "1")
	LD	Y,0E4H	; Set address of the timer
	LD	A,MY	; Read the data of TM0 to TM3
			; into A register
	LD	Y,TMDTBF	; Set address of the timer data buffer
	XOR	MY,A	; Did the count on the timer
			; change?
	FAN	MX,0100B	; Check bit D2 of the timer data buffer
	LD	MY,A	; Set the data of A register into
			; the timer data buffer
	JP	Z,RETURN	; Jump, if the Z-flag is "1"
	ADD	MX,OFH	; Decrement the timer edge counter
;			
RETURN:	RET		; Return

• Checking timer edge

This program takes a subroutine form. It is called at short intervals, and decrements the data at address TMSTAT every 125 ms until the data reaches "0". The timing chart is shown in Figure 3.6.2. The timer can be addressed using the X register instead of the Y register.

Note TMSTAT and TMDTBF may be any address in RAM and not involve a hardware function.

Fig. 3.6.2 Timing of the timer edge counter

Timer edge counter (TMSTAT) decrementing timing

3.7 Heavy Load Protection Function

Heavy load protection function memory map

Table 3.7.1 I/O memory map

Address	Register				Commont			Comment	
Address	D3	D2	D1	D0	Name	SR *1	1	0	Comment
	HLMOD	0	0	0	HLMOD	0	Heavy	Normal	Heavy load protection mode register
	R/W	R			0 *5		lodu	1020	
OFAH					0 *5				
					0 *5				

- *1 Initial value following initial reset
- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

Heavy load protection function The E0C6001 has the heavy load protection function for when the battery load becomes heavy and the source voltage changes, such as when an external buzzer sounds or an external lamp lights. The state where the heavy load protection function is in effect is called the heavy load protection mode. Compared with the normal operation mode, this mode can reduce the output voltage variation of the internal regulated voltage and spend more power consumption.

The normal mode changes to the heavy load protection mode in the following case:

• When the software changes the mode to the heavy load protection mode (HLMOD = "1")

•

Examples of heavy load protection function control program

Operation through the HLMOD register

This is a sample program when lamp is driven with the R00 terminal during performance of heavy load protection.

Label	Mnemo	nic/operand	Comment
	LD	X,0FAH	; Sets the address of HLMOD
	OR	MX,1000B	; Sets to the heavy protection mode
	LD	Y,0F3H	; Sets the address of R0n port
	OR	MY,0001B	; Turns lamp ON
	:		
	:		
	LD	Y,0F3H	; Sets the R0n port address
	AND	MY,1110B	; Turns the lamp OFF
	CALL	WT1S	; 1 second waiting time (software timer)
	AND	MX,0111B	; Cancels the heavy load protection mode

In the above program, the heavy load protection mode is canceled after 1 sec waiting time provided as the time for the battery voltage to stabilize after the lamp is turned off; however, since this time varies according to the nature of the battery, time setting must be done in accordance with the actual application.

3.8 Interrupt and Halt

Interrupt memory

map

Address		Reg	ister						Comment
71001000	D3	D2	D1	D0	Name	SR *1	1	0	Common
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	Interrupt mask register (K03)
		R	/W		EIK02	0	Enable	Mask	Interrupt mask register (K02)
UEOH					EIK01	0	Enable	Mask	Interrupt mask register (K01)
					EIK00	0	Enable	Mask	Interrupt mask register (K00)
	0	EIT2	EIT8	EIT32	0 *5				
	R		R/W		EIT2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
OLDIT					EIT8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
					EIT32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	0	0	IK0	0 *5				
	R				0 *5				
					0 *5				
					IK0 ^{*4}	0	Yes	No	Interrupt factor flag (K00-K03)
	0	IT2	IT8	IT32	0 *5				
		I	R		IT2 ^{*4}	0	Enable	Mask	Interrupt factor flag (clock timer 2 Hz)
					IT8 ^{*4}	0	Enable	Mask	Interrupt factor flag (clock timer 8 Hz)
					IT32 ^{*4}	0	Enable	Mask	Interrupt factor flag (clock timer 32 Hz)

*1 Initial value following initial reset

- *2 Not set in the circuit
- *3 Undefined
- *4 Reset (0) immediately after being read
- *5 Always 0 when being read
- *6 Refer to main manual

Control of interrupts and halt	The E0C6001 supports two types of a total of 7 interrupts. There are three timer interrupts (2 Hz, 8 Hz, 32 Hz) and four input interrupts (K00–K03).
	The 7 interrupts are individually enabled or masked (dis- abled) by interrupt mask registers. The EI and DI instruc- tions can be used to set or reset the interrupt flag (I), which enables or disables all the interrupts at the same time.
	When an interrupt is accepted, the interrupt flag (I) is reset, and cannot accepts any other interrupts (DI state).
	Restart from the halt state created by the HALT instruction, is done by interrupt.

• Interrupt factor flags

IK0 This flag is set when any of the K00 to K03 input interrupts occurs. The interrupt factor flag (IK0) is set to "1" when the contents of the input (K00–K03) become "1" and the data of the corresponding interrupt mask register (EIK00–EIK03) is "1".

The contents of the IKO flag can be loaded by software to determine whether the K00–K03 input interrupts have occured.

The flag is reset when loaded by software. (See Figure 3.8.1.)

Fig. 3.8.1 K00–K03 Input interrupt circuit

IT32 This flag is set to "1" when a falling edge is detected in the timer TM1 (32 Hz) signal.
The set of the IT32 flag is a full of the set of t

The contents of the IT32 flag can be loaded by software to determine whether a 32 Hz timer interrupt has occured.

The flag is reset, when it is loaded by software. (See Figure 3.8.2.)

IT8 This flag is set to "1" when a falling edge is detected in the timer TM1 (8 Hz) signal.

The contents of the IT8 flag can be loaded by software to determine whether an 8 Hz timer interrupt has occured.

The flag is reset, when it is loaded by software. (See Figure 3.8.2.)

IT2 This flag is set to "1" when a falling edge is detected in the timer TM1 (2 Hz) signal.The contents of the IT2 flag can be loaded by software to

determine whether a 2 Hz timer interrupt has occured.

The flag is reset, when it is loaded by software. (See Figure 3.8.2.)

Fig. 3.8.2 Timer interrupt circuit

• Interrupt mask registers

The interrupt mask registers are registers that individually specify whether to enable or mask the timer interrupt (2 Hz, 8 Hz, 32 Hz) or input interrupt (K00–K03).

The following are descriptions of the interrupt mask registers.

EIK00 to EIK03 This register enables or masks the K00–K03 input interrupt. The interrupt condition flag (IK0) is set to "1" when the contents of the input (K00–K03) become "1" and the data of the corresponding interrupt mask register (EIK00–EIK03) is "1". The CPU is interrupted if it is in the EI state (interrupt flag [I] = "1"). (See Figure 3.8.1.)

<Inputinterruptprogramingrelatedprecautions>

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status (input terminal = high status), the factor flag for input interrupt may be set.

For example, a factor flag is set with the timing of ① shown in Figure 3.8.3. However, when clearing the content of the mask register with the input terminal kept in the high status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set. Consequently, when the input terminal is in the active status (high status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the rising edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (low status).

- EIT32 This register enables or masks the 32 Hz timer interrupt. The CPU is interrupted if it is in the EI state when the interrupt mask register (EIT32) is set to "1" and the interrupt condition flag (IT32) is "1". (See Figure 3.8.2.)
 - EIT8 This register enables or masks the 8 Hz timer interrupt. The CPU is interrupted if it is in the EI state when the interrupt mask register (EIT8) is set to "1" and the interrupt condition flag (IT8) is "1". (See Figure 3.8.2.)
 - EIT2 This register enables or masks the 2 Hz timer interrupt. The CPU is interrupted if it is in the EI state when the interrupt mask register (EIT2) is set to "1" and the interrupt condition flag (IT2) is "1". (See Figure 3.8.2.)

• Interrupt vector address

The E0C6001 interrupt vector address is made up of the low-order 2 bits of the program counter (12 bits), each of which is assigned a specific function as shown in Figure 3.8.4.

PCP3	PCP2	PCP1	PCP0	PCS7	PCS6	PCS5	PCS4	PCS3	PCS2	PCS1	PCS0
0	0	0	1	0	0	0	0	0	×	0	×
Input (K00–K03) interrupt											
Clock timer interrupt —											

Note that all of the three timer interrupts have the same vector address, and software must be used to judge whether or not a given timer interrupt has occurred. For instance, when the 32 Hz timer interrupt and the 8 Hz timer interrupt are enabled at the same time, the accepted timer interrupt must be identified by software. (Similarly, the K00–K03 input interrupts must be identified by software.)

When an interrupt is generated, the hardware resets the interrupt flag (I) to enter the DI state. Execute the EI instruction as necessary to recover the EI state after interrupt processing.

Set the EI state at the start of the interrupt processing routine to allow nesting of the interrupts.

The interrupt factor flags must always be reset before setting the EI status in the corresponding interrupt processing routine. (The flag is reset when the interrupt condition flag is read by software.)

Fig. 3.8.4 Assignment of the interrupt vector address If the EI instruction is executed without resetting the interrupt factor flag after generating the timer interrupt, and if the corresponding interrupt mask register is still "1", the same interrupt is generated once more. (See Figure 3.8.5.)

<u>If the EI state is set without resetting the interrupt factor</u> <u>flag after generating the input interrupt (K00–K03), the same</u> <u>interrupt is generated once more. (See Figure 3.8.5.)</u>

The interrupt factor flag must always be read (reset) in the DI state (interrupt flag [I] = "0"). There may be an operation error if read in the EI state.

The timer interrupt factor flags (IT32, IT8, IT2) and the stopwatch interrupt factor flags (ISW1, ISW0) are set whether the corresponding interrupt mask register is set or not.

The input interrupt factor flag (IK0) is allowed to be set in the condition when the corresponding interrupt mask register (EIK00–EIK03) is set to "1" (interrupt is enabled). (See Figure 3.8.5.)

Table 3.8.2 shows the interrupt vector map.

Table 3.8.2 Interrupt vector map

Page	Step	Interrupt Vector			
1	00H	Initial reset			
	01H	Clock timer interrupt			
	04H	Input (K00–K03) interrupt			
	05H	Input interrupt and clock timer interrupt			

Addesses (start address of interrupt processing routines) to jump to are written into the addresses available for interrupt vector allocation.

Fig. 3.8.5 Internal interrupt circuit

Examples of interrupt • **Restart from halt state by interrupt**

and halt control

program

Mainroutine

Label	Mnemo	nic/operand	Comment
	LD	Х,ОЕ8Н	; Set address of K00 to K03
			interrupt mask register
	OR	MX,1111B	; Enable K00 to K03
			; input interrupt
;			
	LD	X,OEBH	; Set address of timer interrupt
			; mask register
	OR	MX,0111B	; Enable timer interrupt
			<i>i</i> (32 Hz, 8 Hz, 2 Hz)
MAIN:	ΕI		; Set interrupt flag (EI state is set)
	HALT		; Halt mode
	JP	MAIN	; Jump to MAIN

Interruptionvectorroutine

Label	Mnemoni	c/operand	Comment
	ORG	100H	
	JP	INIT	
	JP	INTR	; Timer interrupt is generated
	JP	INTR	
	JP	INTR	
	JP	INTR	; K00 to K03 interrupt is generated
	JP	INTR	; Timer interrupt, K00 to K03 interrupt
			; are generated
;			
INTR:	LD	X,OEFH	; Address of timer interrupt factor flag
	LD	Y,TMFSK	; Address of timer interrupt factor flag buffer
	LD	MY,MX	
	FAN	MY,0100B	; Check 2 Hz timer interrupt
	JP	Z,TI8RQ	; Jump if not 2 Hz timer interrupt
	CALL	TINT2	; Call 2 Hz timer interrupt service routine
TI8RQ:			
	LD	Y,TMFSK	; Address of timer factor flag buffer
	FAN	MY,0010B	; Check 8 Hz timer interrupt
	JP	Z,TI32RQ	; Jump if not 8 Hz timer interrupt
	CALL	TINT8	; Call 8 Hz timer interrupt service routine

TI32RQ:			
	LD	Y,TMFSK	; Address of timer factor flag buffer
	FAN	MY,0001B	; Check 8 Hz timer interrupt
	JP	Z,IKORQ	; Jump if not 32 Hz timer interrupt
	CALL	TINT32	; Call 32 Hz timer interrupt service routine
IK0RQ:			
	LD	X,0EDH	; Address of K00 to K03 input interrupt flag
	FAN	MX,0001B	; Check K00 to K03 input interrupt
	JP	Z,INTEND	; Jump if not K00 to K03 input interrupt
	CALL	IKOINT	; Call K00 to K03 input interrupt service
			; routine
INTEND			
	EI		
	RET		

The above program is normally used to restart the CPU when in the halt state by interrupt and to return it to the halt state again after the interrupt processing is completed. The processing proceeds by repeating the \rightarrow halt interrupt \rightarrow halt \rightarrow interrupt cycle.

The interrupt factor flag is reset when load by the software.

Thus, when using interrupts which interrupt factor flags are in the same address at the same time, flag check must be done after storing the data. For example, store the 1 word including the factor flag in the RAM. (If check is directly done by the FAN instruction, the factor flags of the same address are all reset.)

Reading of interrupt factor flags is available at EI, but be careful in the following cases.

If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.

CHAPTER 4 SUMMARY OF PROGRAMMING POINTS

- Core CPU After the system reset, only the program counter (PC), new page pointer (NPP) and interrupt flag (I) are initialized by the hardware. The other internal circuits whose settings are undefined must be initialized with the program.
- Power Supply External load driving through the output voltage of constant voltage circuit or voltage booster/reducer is not permitted.
- Data Memory

 Since some portions of the RAM are also used as stack area during sub-routine call or register saving, see to it that the data area and the stack area do not overlap.
 - The stack area consumes 3 words during a sub-routine call or interrupt.
 - Address 00H-0FH in the RAM is the memory register area addressed by the register pointer RP.
 - Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.
- Initial Reset

 Maintain the initial reset circuit at high level for at least 4 seconds (in case of oscillation frequency fosc = 32 kHz) because noise rejector is built-in.

 When utilizing the simultaneous high input reset function of the input ports (K00–K03), take care not to make the ports specified during normal operation to go high simultaneously.

- Input Port

 When modifying the input port from high level to low level with pull-down resistance, a delay will occur at the rise of the waveform due to time constant of the pull-down resistance and input gate capacities. Provide appropriate waiting time in the program when performing input port reading.
 - Input interrupt programing related precautions

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status (input terminal = high status), the factor flag for input interrupt may be set.

For example, a factor flag is set with the timing of ① shown in Figure 4.1. However, when clearing the content of the mask register with the input terminal kept in the high status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set. Consequently, when the input terminal is in the active status (high status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the rising edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (low status).

• Output Port The FOUT and BUZZER output signal may produce hazards when the output ports R00 and R01 are turned on or off.

•	I/O Port	-	When the I/O port is set to the output mode and a low- impedance load is connected to the port pin, the data written to the register may differ from the data read.
		_	When the I/O port is set to the input mode and a low- level voltage (VSS) is input by the built-in pull-down resistance, an erroneous input results if the time con- stant of the capacitive load of the input line and the built- in pull-down resistance load is greater than the read-out time. When the input data is being read, the time that the input line is pulled down is equivalent to 0.5 cycles of the CPU system clock. Hence, the electric potential of the pins must settle within 0.5 cycles. If this condition cannot be met, some measure must be devised, such as arranging a pull-down resis- tance externally, or performing multiple read-outs.
•	LCD Driver	-	Because the display memory is for writing only, re-writing the contents with computing instructions (e.g., AND, OR, etc.) which come with read-out operations is not possible. To perform bit operations, a buffer to hold the display data is required on the RAM.
		-	Even when 1/2 duty is selected, the display data corre- sponding to COM0, COM3 are valid for static drive. Hence, for static drive set the same value to all display memory corresponding COM0-COM3.
		_	Even when 1/3 duty is selected, the display data corre- sponding to COM3 is valid for static drive. Hence, for static drive set the same value to all display memory corresponding COM0-COM3.
		-	For cadence adjustment, set the display data including display data corresponding to COM3.
		-	fosc indicates the oscillation frequency of the oscillation circuit.
•	Heavy Load Protec- tion Function		In the heavy load protection function (heavy load protec- tion mode flag = "1"), the internal regulated voltage is more stabler but spend more power current consump- tion.

- Interrupt

 Re-start from the HALT state is performed by the interrupt. The return address after completion of the interrupt processing in this case will be the address following the HALT instruction.
 - When interrupt occurs, the interrupt flag will be reset by the hardware and it will become DI state. After completion of the interrupt processing, set to the EI state through the software as needed.
 Moreover, the nesting level may be set to be programmable by setting to the EI state at the beginning of the interrupt processing routine.
 - Be sure to reset the interrupt factor flag before setting to the EI state on the interrupt processing routine. The interrupt factor flag is reset by reading through the software. Not resetting the interrupt factor flag and interrupt mask register being "1", will cause the same interrupt to occur again.
 - The interrupt factor flag will be reset by reading through the software. Because of this, when multiple interrupt factor flags are to be assigned to the same address, perform the flag check after the contents of the address has been stored in the RAM. Direct checking with the FAN instruction will cause all the interrupt factor flag to be reset.
 - Reading of interrupt factor flags is available at EI, but be careful in the following cases.
 If the interrupt mask register value corresponding to the interrupt factor flags to be read is set to "1", an interrupt request will be generated by the interrupt factor flags set timing, or an interrupt request will not be generated.
- Vacant Register and Read/Write
 Writing data into the addresses where read/write bits and read only bits are mixed in 1 word (4 bits) does not affect the read only bits.

APPENDIX A Table of Instructions

	Mne-	.					Оре	ratio	n Co	ode					Flag		Oncerting	
Classification	monic	Operand	В	А	9	8	7	6	5	4	3	2	1	0	IDZC	CIOCK	Operation	
Branch	PSET	р	1	1	1	0	0	1	0	p4	p3	p2	p1	p0		5	NBP \leftarrow p4, NPP \leftarrow p3~p0	
instructions	JP	s	0	0	0	0	s7	s6	s5	s4	s3	s2	s1	s0		5	PCB ← NBP, PCP ← NPP, PCS ← $s7$ ~ $s0$	
		C, s	0	0	1	0	s7	s6	s5	s4	s3	s2	s1	s0		5	PCB ← NBP, PCP ← NPP, PCS ← s7~s0 if C=1	
		NC, s	0	0	1	1	s7	s6	s5	s4	s3	s2	s1	s0		5	PCB ← NBP, PCP ← NPP, PCS ← s7~s0 if C=0	
		Z, s	0	1	1	0	s7	s6	s5	s4	s3	s2	s1	s0		5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if Z=1	
		NZ, s	0	1	1	1	s7	s6	s5	s4	s3	s2	s1	s0		5	PCB ← NBP, PCP ← NPP, PCS ← s7~s0 if Z=0	
	JPBA		1	1	1	1	1	1	1	0	1	0	0	0		5	$\text{PCB} \leftarrow \text{NBP}, \text{PCP} \leftarrow \text{NPP}, \text{PCSH} \leftarrow \text{B}, \text{PCSL} \leftarrow \text{A}$	
	CALL	s	0	1	0	0	s7	s6	s5	s4	s3	s2	s1	s0		7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$	
																	SP \leftarrow SP-3, PCP \leftarrow NPP, PCS \leftarrow s7~s0	
	CALZ	s	0	1	0	1	s7	s6	s5	s4	s3	s2	s1	s0		7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$	
																	SP \leftarrow SP-3, PCP \leftarrow 0, PCS \leftarrow s7~s0	
	RET		1	1	1	1	1	1	0	1	1	1	1	1		7	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$	
																	SP←SP+3	
	RETS		1	1	1	1	1	1	0	1	1	1	1	0		12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$	
																	$SP \leftarrow SP+3, PC \leftarrow PC+1$	
	RETD	1	0	0	0	1	17	16	15	14	13	12	11	10		12	$\begin{array}{l} PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2) \\ SP \leftarrow SP+3, M(X) \leftarrow i3 {\sim} i0, M(X+1) \leftarrow 17 {\sim} l4, X \leftarrow X+2 \end{array}$	
System	NOP5		1	1	1	1	1	1	1	1	1	0	1	1		5	No operation (5 clock cycles)	
control	NOP7		1	1	1	1	1	1	1	1	1	1	1	1		7	No operation (7 clock cycles)	
instructions	HALT		1	1	1	1	1	1	1	1	1	0	0	0		5	Halt (stop clock)	
Index	INC	Х	1	1	1	0	1	1	1	0	0	0	0	0		5	X←X+1	
operation		Y	1	1	1	0	1	1	1	1	0	0	0	0		5	$Y \leftarrow Y+1$	
instructions	LD	X, x	1	0	1	1	x7	x6	x5 :	x4	x3	x2	x1	x0		5	$XH \leftarrow x7 \sim x4, XL \leftarrow x3 \sim x0$	
		Ү, у	1	0	0	0	y7	y6	y5 :	y4	y3	y2	y1	y0		5	YH←y7~y4, YL←y3~y0	
		XH, r	1	1	1	0	1	0	0	0	0	1	r1	r0		5	XH← r	
		XL, r	1	1	1	0	1	0	0	0	1	0	r1	r0		5	XL←r	
		YH, r	1	1	1	0	1	0	0	1	0	1	r1	r0		5	YH←r	
		YL, r	1	1	1	0	1	0	0	1	1	0	r1	r0		5	YL←r	
		r, XH	1	1	1	0	1	0	1	0	0	1	r1	r0		5	r←XH	
		r, XL	1	1	1	0	1	0	1	0	1	0	r1	r0		5	r←XL	
		r, YH	1	1	1	0	1	0	1	1	0	1	r1	r0		5	$r \leftarrow YH$ $r \leftarrow YL$	
		r, YL	1	1	1	0	1	0	1	1	1	0	r1	r0		5		
	ADC	XH, i	1	0	1	0	0	0	0	0	i3	i2	i1	i0	11	7	XH← XH+i3~i0+C	
		XL, i	1	0	1	0	0	0	0	1	i3	i2	i1	i0	\$\$	7	XL← XL+i3~i0+C	
		YH, i	1	0	1	0	0	0	1	0	i3	i2	i1	i0	\$\$	7	YH← YH+i3~i0+C	
		YL, i	1	0	1	0	0	0	1	1	i3	i2	i1	i0	\$	7	YL← YL+i3~i0+C	

Classification	Mne-	Operand					Оре	eratio	on C	ode						Flag		Clock	Operation	
Classification	monic	Operatio	В	Α	9	8	7	6	5	4	3	2	1	0	I	DΖ	С	CIUCK	Орегация	
Index	СР	XH, i	1	0	1	0	0	1	0	0	i3	i2	i1	i0		\$	¢	7	XH-i3~i0	
operation		XL, i	1	0	1	0	0	1	0	1	i3	i2	i1	i0		\$	\$	7	XL-i3~i0	
instructions		YH, i	1	0	1	0	0	1	1	0	i3	i2	i1	i0		\$	\$	7	YH-i3~i0	
		YL, i	1	0	1	0	0	1	1	1	i3	i2	i1	i0		Ĵ	€	7	YL-i3~i0	
Data	LD	r, i	1	1	1	0	0	0	r1	r0	i3	i2	i1	i0				5	r ←i3~i0	
transfer		r, q	1	1	1	0	1	1	0	0	r1	r0	q1	q0				5	r←q	
instructions		A, Mn	1	1	1	1	1	0	1	0	n3	n2	nl	n0				5	$A \leftarrow M(n3 \sim n0)$	
		B, Mn	1	1	1	1	1	0	1	1	n3	n2	nl	n0				5	$B \leftarrow M(n3 \sim n0)$	
		Mn, A	1	1	1	1	1	0	0	0	n3	n2	nl	n0				5	$M(n3 \sim n0) \leftarrow A$	
		Mn, B	1	1	1	1	1	0	0	1	n3	n2	nl	n0				5	$M(n3 \sim n0) \leftarrow B$	
	LDPX	MX, i	1	1	1	0	0	1	1	0	i3	i2	i1	i0				5	$M(X) \leftarrow i3 \sim i0, X \leftarrow X+1$	
		r, q	1	1	1	0	1	1	1	0	r1	r0	ql	q0				5	$r \leftarrow q, X \leftarrow X+1$	
	LDPY	MY, i	1	1	1	0	0	1	1	1	i3	i2	i1	i0				5	$M(Y) \leftarrow i3 \sim i0, Y \leftarrow Y+1$	
		r, q	1	1	1	0	1	1	1	1	r1	r0	ql	q0				5	$r \leftarrow q, Y \leftarrow Y+1$	
	LBPX	MX, 1	1	0	0	1	17	16	15	14	13	12	11	10				5	$M(X) \leftarrow 13 \sim 10, M(X+1) \leftarrow 17 \sim 14, X \leftarrow X+2$	
Flag	SET	F, i	1	1	1	1	0	1	0	0	i3	i2	i1	i0	Ŷ	$\uparrow \uparrow$	Ŷ	7	F←F∀i3~i0	
operation	RST	F, i	1	1	1	1	0	1	0	1	i3	i2	i1	i0	\downarrow	$\downarrow \downarrow$	\downarrow	7	F←F∧i3~i0	
instructions	SCF		1	1	1	1	0	1	0	0	0	0	0	1			î	7	C←1	
	RCF		1	1	1	1	0	1	0	1	1	1	1	0			\downarrow	7	C←0	
	SZF		1	1	1	1	0	1	0	0	0	0	1	0		Ŷ		7	Z←1	
	RZF		1	1	1	1	0	1	0	1	1	1	0	1		\downarrow		7	Z←0	
	SDF		1	1	1	1	0	1	0	0	0	1	0	0		Ŷ		7	D←1 (Decimal Adjuster ON)	
	RDF		1	1	1	1	0	1	0	1	1	0	1	1		\downarrow		7	D←0 (Decimal Adjuster OFF)	
	EI		1	1	1	1	0	1	0	0	1	0	0	0	Ŷ			7	$I \leftarrow 1$ (Enables Interrupt)	
	DI		1	1	1	1	0	1	0	1	0	1	1	1	\downarrow			7	$I \leftarrow 0$ (Disables Interrupt)	
Stack	INC	SP	1	1	1	1	1	1	0	1	1	0	1	1				5	SP← SP+1	
operation	DEC	SP	1	1	1	1	1	1	0	0	1	0	1	1				5	SP← SP-1	
instructions	PUSH	r	1	1	1	1	1	1	0	0	0	0	r1	r0				5	$SP \leftarrow SP-1, M(SP) \leftarrow r$	
		XH	1	1	1	1	1	1	0	0	0	1	0	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow XH$	
		XL	1	1	1	1	1	1	0	0	0	1	1	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow XL$	
		YH	1	1	1	1	1	1	0	0	1	0	0	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow YH$ $SP \leftarrow SP-1, M(SP) \leftarrow YL$ $SP \leftarrow SP-1, M(SP) \leftarrow F$ $r \leftarrow M(SP), SP \leftarrow SP+1$	
		YL	1	1	1	1	1	1	0	0	1	0	0	1				5		
		F	1	1	1	1	1	1	0	0	1	0	1	0				5		
	POP	r	1	1	1	1	1	1	0	1	0	0	r1	r0				5		
		XH	1	1	1	1	1	1	0	1	0	1	0	1				5	$XH \leftarrow M(SP), SP \leftarrow SP+1$	
		XL	1	1	1	1	1	1	0	1	0	1	1	0				5	$XL \leftarrow M(SP), SP \leftarrow SP+1$	

Ola selfe all an	Mne-	0					Оре	ratic	n C	ode					Flag	011	Operation	
Classification	monic	Operand	В	Α	9	8	7	6	5	4	3	2	1	0	IDZC	CIOCK		
Stack	POP	YH	1	1	1	1	1	1	0	1	1	0	0	0		5	$YH \leftarrow M(SP), SP \leftarrow SP+1$	
operation		YL	1	1	1	1	1	1	0	1	1	0	0	1		5	$YL \leftarrow M(SP), SP \leftarrow SP+1$	
instructions		F	1	1	1	1	1	1	0	1	1	0	1	0	1111	5	$F \leftarrow M(SP), SP \leftarrow SP+1$	
	LD	SPH, r	1	1	1	1	1	1	1	0	0	0	r1	r0		5	SPH← r	
		SPL, r	1	1	1	1	1	1	1	1	0	0	r1	r0		5	$SPL \leftarrow r$	
		r, SPH	1	1	1	1	1	1	1	0	0	1	r1	r0		5	r←SPH	
		r, SPL	1	1	1	1	1	1	1	1	0	1	r1	r0		5	r←SPL	
Arithmetic	ADD	r, i	1	1	0	0	0	0	r1	r0	i3	i2	i1	i0	★ ‡ ‡	7	r←r+i3~i0	
instructions		r, q	1	0	1	0	1	0	0	0	r1	r0	q1	q0	* ‡ ‡	7	r←r+q	
	ADC	r, i	1	1	0	0	0	1	r1	r0	i3	i2	i1	i0	* ‡ ‡	7	r←r+i3~i0+C	
		r, q	1	0	1	0	1	0	0	1	r1	r0	q1	q0	★ ↓ ↓	7	r←r+q+C	
	SUB	r, q	1	0	1	0	1	0	1	0	r1	r0	q1	q0	* ‡ ‡	7	r←r-q	
	SBC	r, i	1	1	0	1	0	1	r1	r0	i3	i2	i1	i0	★ ↓ ↓	7	r←r-i3~i0-C	
		r, q	1	0	1	0	1	0	1	1	r1	r0	q1	q0	★ ↓ ↓	7	r←r-q-C	
	AND	r, i	1	1	0	0	1	0	r1	r0	i3	i2	i1	i0	\$	7	r←r∧i3~i0	
		r, q	1	0	1	0	1	1	0	0	r1	r0	q1	q0	\$	7	r←r∧q	
	OR	r, i	1	1	0	0	1	1	r1	r0	i3	i2	i1	i0	\$	7	r←r√i3~i0	
		r, q	1	0	1	0	1	1	0	1	r1	r0	q1	q0	\$	7	r←r∨q	
	XOR	r, i	1	1	0	1	0	0	r1	r0	i3	i2	i1	i0	\$	7	r←r∀i3~i0	
		r, q	1	0	1	0	1	1	1	0	r1	r0	q1	q0	\$	7	r←r∀q	
	СР	r, i	1	1	0	1	1	1	r1	r0	i3	i2	i1	i0	\$\$	7	r-i3~i0	
		r, q	1	1	1	1	0	0	0	0	r1	r0	q1	q0	11	7	r-q	
	FAN	r, i	1	1	0	1	1	0	r1	r0	i3	i2	i1	i0	\$	7	r∧i3~i0	
		r, q	1	1	1	1	0	0	0	1	r1	r0	q1	q0	\$	7	r∧q	
	RLC	r	1	0	1	0	1	1	1	1	r1	r0	r1	r0	11	7	$d3 \leftarrow d2, d2 \leftarrow d1, d1 \leftarrow d0, d0 \leftarrow C, C \leftarrow d3$	
	RRC	r	1	1	1	0	1	0	0	0	1	1	r1	r0	11	5	$d3 \leftarrow C, d2 \leftarrow d3, d1 \leftarrow d2, d0 \leftarrow d1, C \leftarrow d0$	
	INC	Mn	1	1	1	1	0	1	1	0	n3	n2	n1	n0	11	7	$M(n3 \sim n0) \leftarrow M(n3 \sim n0) + 1$	
	DEC	Mn	1	1	1	1	0	1	1	1	n3	n2	n1	n0	11	7	$M(n3 \sim n0) \leftarrow M(n3 \sim n0) - 1$	
	ACPX	MX, r	1	1	1	1	0	0	1	0	1	0	r1	r0	★ ↓ ↓	7	$M(X) \leftarrow M(X) + r + C, X \leftarrow X + 1$	
	ACPY	MY, r	1	1	1	1	0	0	1	0	1	1	r1	r0	★ ↓ ↓	7	$M(Y) \leftarrow M(Y) + r + C, Y \leftarrow Y + 1$	
	SCPX	MX, r	1	1	1	1	0	0	1	1	1	0	r1	r0	* ‡ ‡	7	$M(X) \leftarrow M(X)$ -r-C, $X \leftarrow X+1$	
	SCPY	MY, r	1	1	1	1	0	0	1	1	1	1	r1	r0	★ ↓ ↓	7	$M(Y) \leftarrow M(Y)$ -r-C, $Y \leftarrow Y$ +1	
	NOT	r	1	1	0	1	0	0	r1	r0	1	1	1	1	\$	7	r←r	

Abbreviations used in the explanations have the following meanings.

Symbols associated with registers and memory	A B X Y XH YH YH YP XP SP SPL MX, M(X) MY, M(Y) Mn, M(n) M(SP)	A regi B regi XHL re regista XH reg XH reg YL reg YL reg YL reg YL reg Stack High-o Low-o Data n index Data n index Data n specif Data n specif	ster ster egister egister er IY) gister (gister (gister (gister (er IX) ister (er IX) point order fa nemo regist nemo regist nemo regist nemo regist	(low of (high of (high of (high of low or (high of high of high of er SP four b our bi our bi ry who er IX ry who er IY ry ado ith im ry who er SP	order order fo order fo order fo order fo order f order f order f its of s ose ad litess (media ose ad	eight bits of index eight bits of index four bits of XHL re our bits of XHL reg four bits of YHL reg four bits of YHL reg four bits of YHL reg four bits of index four bits of index four bits of index stack pointer SP daress is specified daress is specified D00H–00FH (addre te data n of 00H– daress is specified	egister) (iste					
	r, q	stack pointer SP r, q Two-bit register code										
		q is two-bit immediate data; according to the ntents of these bits, they indicate registers A, and MX and MY (data memory whose ad- esses are specified with index registers IX and										
				C	7							
		r1	rO	q1	q0	Registers specified						
		0	0	0	0	А						
		0	1	0	1	В						

MX

MY

Symbols associated with	NBP New bank pointer
program counter	NPP New page pointer
	PCB Program counter bank
	PCP Program counter page
	PCS Program counter step
	PCSH Four high order bits of PCS
	PCSL Four low order bits of PCS
Symbols associated with	F Flag register (I, D, Z, C)
flags	C Carry flag
	Z Zero flag
	D Decimal flag
	I Interrupt flag
	\downarrow Flag reset
	↑ Flag set
	\updownarrow Flag set or reset
A a a a i a t a d with	
	p Five-bit immediate data or label 00H-IFH
Immediate data	s Eight-bit immediate data or label 00H-0FFH
	1 Eight-bit immediate data UUH-OFFH
	i Four-bit immediate data 00H-0FH

Associated with	+ Add
arithmetic and other	Subtract
operations	∧Logical AND
	∨Logical OR
	∀ Exclusive-OR
	\star Add-subtract instruction for decimal operation
	when the D flag is set

APPENDIX B The E0C6001 I/O Memory Map

AD-		D/	ATA						
DRESS	D3	D2	D1	D0	NAME	SR	1	0	COMMENT
	K03	K02	K01	K00	K03	-	HIGH	LOW	INPORT DATA K03
	R	R	R	R	K02	-	HIGH	LOW	INPORT DATA K02
EU					K01	-	HIGH	LOW	INPORT DATA K01
					K00	-	HIGH	LOW	INPORT DATA K00
	TM3	TM2	TM1	TM0	TM3	-	HIGH	LOW	CLOCK TIMER DATA 2 Hz
	R	R	R	R	TM2	-	HIGH	LOW	CLOCK TIMER DATA 4 Hz
E4					TM1	-	HIGH	LOW	CLOCK TIMER DATA 8 Hz
					TM0	-	HIGH	LOW	CLOCK TIMER DATA 16 Hz
	EIK03	EIK02	EIK01	EIK00	EIK03	0	ENABLE	MASK	K03 INTERRUPT MASK REGISTER
	R/W	R/W	R/W	R/W	EIK02	0	ENABLE	MASK	K02 INTERRUPT MASK REGISTER
E8					EIK01	0	ENABLE	MASK	K01 INTERRUPT MASK REGISTER
					EIK00	0	FNABLE	MASK	K00 INTERRUPT MASK REGISTER
	0	EIT2	EIT8	EIT32	0	_	-	-	
	R	R/W	R/W	R/W	FIT2	0	FNABI F	MASK	TIMER INTERRUPT MASK REGISTER 2 Hz
EB					FIT8	0	ENABLE	MASK	TIMER INTERRUPT MASK REGISTER 8 Hz
					EIT32	0		MASK	TIMER INTERRUPT MASK REGISTER 32 Hz
	0	0	0	IKU	0	-			
	P	P	P	P	0	_	_		
ED	N	n.	n.	n	0	_	_	-	
						-		- NO	
	0	IT2	ITO	IT22	0	0	163	NU	RUG-RUS INTERROFT FACTOR FLAG
		D 112		D 1132		-	VEC	-	
EF	K	ĸ	ĸ	ĸ	112	0	VEQ	NO	
					118	0		NO	
	0	0	DOI	DOO	0	0	TES	INU	TIMER INTERRUPT FACTOR FLAG 32 HZ
	0	0		FOUT	0	-	-	-	
			BUZZER	FUUI	0	-	-	-	
F3	K	ĸ	R/W	R/W	RU1	0	HIGH	LOW	
					BUZZER	0		UFF	
					RUU	0	HIGH		
	Baa	Daa	Dat	Doo	FUUI	0	UN	UFF	FREQUENCY OUTPUT UN/OFF CONTROL REGISTER
	P03	P02	P01	P00	P03	-	HIGH	LOW	
F6	R/W	R/W	R/W	R/W	P02	-	HIGH	LOW	
					P01	-	HIGH	LOW	
		THEOT			P00	-	HIGH	LOW	
	0	IMRSI	0	0		-	-	-	
F9	<u> </u>	VV	ĸ	ĸ	IMRSI	RESET	RESET	-	
					0	-	-	-	
		-			0	-	-	-	
	HLMOD	0	0	0	HLMOD	0	HEAVY	NORMAL	HEAVY LOAD PROTECTION MODE
FA	R/W	R	R	R	0	-	-	-	
					0	-	-	-	
					0	-	-	-	
	CSDC	0	0	0	CSDC	0	STATIC	DYNAMIC	LCD DRIVER CONTROL REG.
FB	R/W	R	R	R	0	-	-	-	
					0	-	-	-	
					0	-	-	-	
	0	0	0	IOC	0	-	-	-	
FC	R	R	R	R/W	0	-	-	-	
					0	-	-	-	
L					IOC	0	OUT	IN	I/O IN-OUT CONTROL REG.
	XBZR	0	XFOUT1	XFOUT0	XBZR	0	2 kHz	4 kHz	BUZZER FREQUENCY CONTROL
	R/W	R	R/W	R/W	0	-	-	-	
					XFOUT1	0	HIGH	LOW	FOUT FREQUENCY CONTROL:
FD					XFOUT0	0	HIGH	LOW	XFOUT1(0), XFOUT0(0) -> F1
									XFOUT1(0), XFOUT0(1) -> F2
									XFOUT1(1), XFOUT0(0) -> F3
1									XFOUT1(1), XFOUT0(1) -> F4

APPENDIX C Table of the ICE6200 Commands

Item No.	Function	Command Format	Outline of Operation
1	Assemble	#A,a 🞝	Assemble command mnemonic code and store at address "a"
2	Disassemble	#L,a1,a2 🖵	Contents of addresses a1 to a2 are disassembled and displayed
3	Dump	#DP,a1,a2 🖵	Contents of program area a1 to a2 are displayed
		#DD,a1,a2 J	Content of data area a1 to a2 are displayed
4	Fill	#FP,a1,a2,d 🖵	Data d is set in addresses a1 to a2 (program area)
		#FD,a1,a2,d 🖵	Data d is set in addresses a1 to a2 (data area)
5	Set	#G,a 🖵	Program is executed from the "a" address
	Run Mode	#TIM J	Execution time and step counter selection
		#OTFJ	On-the-fly display selection
6	Trace	#T,a,n 🖵	Executes program while displaying results of step instruction
			from "a" address
		#U,a,n 🖵	Displays only the final step of #T,a,n
7	Break	#BA,a 🖵	Sets Break at program address "a"
		#BAR,a 🖵	Breakpoint is canceled
		#BDJ	Break condition is set for data RAM
		#BDR J	Breakpoint is canceled
		#BR J	Break condition is set for EVA62XXCPU internal registers
		#BRR J	Breakpoint is canceled
		#BM 🕽	Combined break conditions set for program data RAM address
			and registers
		#BMR J	Cancel combined break conditions for program data ROM
			address and registers
		#BRES J	All break conditions canceled
		#BC J	Break condition displayed
		#BE 🚽	Enter break enable mode
		#BSYN J	Enter break disable mode
		#BT 🞜	Set break stop/trace modes
		#BRKSEL,REM J	Set BA condition clear/remain modes
8	Move	#MP,a1,a2,a3 🖵	Contents of program area addresses a1 to a2 are moved to
			addresses a3 and after
		#MD,a1,a2,a3 🖵	Contents of data area addresses a1 to a2 are moved to addresses
			a3 and after
9	Data Set	#SP,a 🖵	Data from program area address "a" are written to memory
		#SD,aJ	Data from data area address "a" are written to memory
10	Change CPU	#DR J	Display EVA62XXCPU internal registers
	Internal	#SR J	Set EVA62XXCPU internal registers
	Registers	#I 🖵	Reset EVA62XXCPU
		#DXY J	Display X, Y, MX and MY
		#SXY J	Set data for X and Y display and MX, MY

Item No.	Function	Command Format	Outline of Operation
11	History	#H,p1,p2 🖵	Display history data for pointer 1 and pointer 2
		#HB J	Display upstream history data
		#HG J	Display 21 line history data
		#HP J	Display history pointer
		#HPS,a J	Set history pointer
		#HC,S/C/EJ	Sets up the history information acquisition before (S),
			before/after (C) and after (E)
		#HA,a1,a2 🖵	Sets up the history information acquisition from program area
			al to a2
		#HAR,a1,a2 🖵	Sets up the prohibition of the history information acquisition
			from program area a1 to a2
		#HAD J	Indicates history acquisition program area
		#HS,a 🚽	Retrieves and indicates the history information which executed
			a program address "a"
		#HSW,a 🖵	Retrieves and indicates the history information which wrote or
		#HSR,a 🖵	read the data area address "a"
12	File	#RF,file J	Move program file to memory
		#RFD,file 🖵	Move data file to memory
		#VF,file 🚽	Compare program file and contents of memory
		#VFD,file 🖵	Compare data file and contents of memory
		#WF,file 🖵	Save contents of memory to program file
		#WFD,file ┛	Save contents of memory to data file
		#CL,file 🚽	Load ICE6200 set condition from file
		#CS,file J	Save ICE6200 set condition to file
13	Coverage	#CVDJ	Indicates coverage information
		#CVR 🖵	Clears coverage information
14	ROM Access	#RP 🚽	Move contents of ROM to program memory
		#VP 🚽	Compare contents of ROM with contents of program memory
		#ROM J	Set ROM type
15	Terminate	#Q 🚽	Terminate ICE and return to operating system control
	ICE		
16	Command	#HELP J	Display ICE6200 instruction
	Display		
17	Self	#CHK 🖵	Report results of ICE6200 self diagnostic test
	Diagnosis		

I means press the RETURN key.

APPENDIX D Cross-assembler Pseudo-instruction List

Item No.	Pseudo-instruction	Meaning		Example of Us	se
1	EQU	To allocate data to label	ABC	EQU	9
	(Equation)		BCD	EQU	ABC+1
2	ORG	To define location counter		ORG	100н
	(Origin)			ORG	256
3	SET	To allocate data to label	ABC	SET	0001H
	(Set)	(data can be changed)	ABC	SET	0002н
4	DW	To define ROM data	ABC	DW	' AB '
	(Define Word)		BCD	DW	OFFBH
5	PAGE	To define boundary of page		PAGE	1H
	(Page)			PAGE	3
6	SECTION (Section)	To define boundary of section		SECTION	
7	END (End)	To terminate assembly		END	
8	MACRO (Macro)	To define macro			
			CHECK	MACRO	DATA
9	LOCAL	To make local specification of label	LOCAL	LOOP	
	(Local)	during macro definition	LOOP	CP	MX,DATA
10	ENDM (End Macro)	To end macro definition		JP ENDM	NZ,LOOP
				CHECK	1

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A. Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -Riesstrasse 15 80992 Muenchen, GERMANY Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

SALES OFFICE Altstadtstrasse 176

51379 Leverkusen, GERMANY Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE

2.4 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -

EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

 10F, No. 287, Nanking East Road, Sec. 3

 Taipei, TAIWAN, R.O.C.

 Phone: 02-2717-7360
 Fax: 02-2712-9164

 Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2 HsinChu 300, TAIWAN, R.O.C. Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD. No. 1 Temasek Avenue. #36-00

Millenia Tower, SINGAPORE 039192 Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-Dong Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of **"Saving" Technology**, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings**.

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic devices information on Epson WWW server