

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER E0C6262 DEVELOPMENT TOOL MANUAL

SEIKO EPSON CORPORATION

© 1991 by SEIKO EPSON CORPORATION. All rights reserved Published in English February, 1991 Printed in Japan

Seiko Epson Corporation products are sold by description only. Seiko Epson reserves the right to make changes in design, specifications and other information at any time without prior notice. Accordingly, the reader is cautioned to verify that the data and other information in this publication are current before placing orders. Application information is intended solely for general guidance; use of the information for the user's specific application is at the user's risk. Reference to products of other manufacturers is solely for convenience of comparison and does not imply total equivalency of design, performance or otherwise.

This document contains technology relating to strategic products controlled under the Foreign Exchange and Foreign Trade Control Law of Japan. This document or a portion thereof should not be exported without obtaining an export license from the Ministry of International Trade and Industry in accordance with the above law.

Trademarks

IBM, PC/AT, PC/XT, PC-DOS	International Business Machines Corporation
MS-DOS, EDLIN	Microsoft Corporation
NEC, PC-9801 Series	Nippon Electric Co., Ltd.

PREFACE

This manual is individually described about the development tools such as the following for developing the 4-bit Single Chip Microcomputer E0C6262.

I. E0C6262 Development Tool User's Manual

This manual mainly explains the outline of the development support tool for the E0C6262 and starting procedures through the DEV6262 menu.

II. E0C6262 Cross Assembler Manual *

This manual mainly explains how to operate the ASM6262 Cross Assembler for the EOC6262, and how to generate source files.

III. E0C6262 Function Option Generator Manual

This manual mainly explains how to operate the FOG6262 Function Option Generator for setting the hardware options of the E0C6262 and details the specifications of their options.

IV. EVA6262 Manual

This manual explains the function of the EVA6262 Evaluation Board, a debugging tool for the E0C6262, and the operation of the EVA6262.

V. E0C6262 ICE Operation Manual *

This manual explains the function of the ICE6200 In-circuit Emulator, a debugging tool for the E0C6262, and the operation of the ICS6262, its ICE control software.

VI. E0C6262 Mask Data Checker Manual

This manual explains how to operate the MDC6262 Mask Data Checker for the E0C6262.

USER'S

MDC6262

* In the "E0C6262 Cross Assembler Manual" and the "E0C6262 ICE Operation Manual", Chapter 2 and subsequent chapters provide information common to all E0C62 Family models, the model name being denoted "XX". Read these manuals, replacing "XX" with "62".

$62\underline{XX} \rightarrow$	62 <u>62</u>
$C2\underline{XX} \rightarrow$	C2 <u>62</u>

For details on the E0C6262, refer to the "E0C6262 Thechnical Manual". For such items as development procedure, refer to the "E0C62 Family Technical Guide".

CHAPTER 1	OUTLINE OF THE E0C6262 DEVELOPMENT SUPPORT TOOL I-1		
	1.1	Developmental Environment I-1	
	1.2	Development Tool Management System (DMS6200) I-2	
	1.3	Cross Assembler (ASM6262) I-3	
	1.4	Function Option Generator (FOG6262) I-4	
	1.5	In-Circuit Emulator (ICE6200) & ICE Control Software (ICS6262) I-5	
	1.6	Mask Data Checker (MDC6262) I-6	
	1.7	Evaluation Board (EVA6262) I-7	
CHAPTER 2	CRE	ATION OF DISK FOR DEV6262 EXECUTION I-8	
CHAPTER 3	DEV	6262 STARTING PROCEDURES IN MENU FORM I-9	
APPENDIX		of Software Development Tool Starting nmand Formats and Input/Output Files I-14	

II. E0C6262 Cross Assembler Manual

CHAPTER 1	E0C6262 RESTRICTIONS		
	1.1	ROM Area II-1	
	1.2	RAM Area II-2	
	1.3	Undefined Code II-2	
CHAPTER 2	INTR	ODUCTUON II-3	
	2.1	Outline of ASM62XX II-3	
	2.2	ASM62XX Input/Output Files II-5	
CHAPTER 3	ASN	162XX OPERATION PROCEDURE II-6	
	3.1	Starting ASM62XX II-6	
	3.2	Selecting Auto-Page-Set Function II-10	
	3.3	Generating a Cross-Reference Table II-11	
CHAPTER 4	SOU	IRCE FILE FORMAT II-12	
	4.1	Source File Name II-12	
	4.2	StatementsII-13Label fieldII-14Mnemonic fieldII-14Operand fieldII-14Comment fieldII-15	
	4.3	Index II-15 Label II-15 Symbol II-16	

	4.4	Constant and Operational Expression II-17
		Numeric constant II-17
		Character constant II-18
		Operator II-18
		Location counter II-21
	4.5	Pseudo-Instructions II-22
		Data definition pseudo-instructions II-22
		Memory setting pseudo-instructions II-24
		Assembler control pseudo-instructions II-29
	4.6	Macro-Functions II-30
		Macro-instructions II-30
		Macro-definitions II-32
		Macro-calls II-34
CHAPTER 5	ERRC	DR MESSAGES II-37
APPENDIX	ASM	62XX EXECUTION EXAMPLE II-39

III. E0C6262 Function Option Generator Manual

CHAPTER 1	GEN	IERAL	III-1
	1.1	Outline of Function Option Generator	III-1
	1.2	Execution Flow and I/O Files	III-2
CHAPTER 2	OPT	ION LIST GENERATION	III-4
	2.1	Option List Recording Procedure	III-4
	2.2	Option List	III-4
	2.3	Option SpecificationsDevice type (OSC3 oscillator)VDE power supplyMultiple key entry resetInput interrupt noise rejectorInput ports pull up resistorOutput ports output specification (R00-R03)R10 specificationR11 specificationR12 specificationR13 specificationI/O ports specification (P0, P1, P2)I/O ports pull up resistor (P0, P1, P2)P30-P33 specificationP30-P33 pull up resistorWatchdog timerSerial interface data permutation	III-8 III-9 III-10 III-11 III-12 III-13 III-13 III-14 III-16 III-17 III-18 III-19 III-20 III-22 III-24
CHAPTER 3			III of
		RATION PROCEDURE	
	3.1	Creating Work Disk	III-25
	3.2	Starting FOG6262	III-26

	3.3	Setting New Function Options	III-28
	3.4	Modifying Function Option Settings	III-30
	3.5	 Selecting Function Options Selecting device type (OSC3 oscillator) Selecting VDE power supply Selecting multiple key entry reset Selecting input interrupt noise rejector Selecting input ports pull up resistor Selecting output ports output specification (R00-R03) Selecting R10 specification Selecting R11 specification Selecting R12 specification Selecting I/O ports specification (P0, P1, P2) Selecting I/O ports pull up resistor (P0, P1, P2) Selecting P30-P33 specification Selecting P30-P33 pull up resistor Selecting watchdog timer Selecting serial interface data permutation 	III-34 III-35 III-35 III-36 III-36 III-37 III-37 III-37 III-38 III-38 III-39 III-40 III-41 III-41 III-42
	3.6	HEX File Generation and EPROM Selection	III-43
	3.7	End Procedure	III-45
CHAPTER 4	SAM	PLE FILES	III-46

IV. EVA6262 Manual

INTRODUCTION IV-		
1.1	EVA6262 Outline	IV-1
1.2	EVA6262 Components	IV-2
PREC	CAUTIONS	IV-4
2.1	Precautions for Operation	IV-4
2.2	Differences from Actual IC	IV-4
NAM	IES AND FUNCTIONS OF PARTS	IV-6
3.1	Basic Functions	IV-6
3.2	Operating Panel (Top view)	IV-8
3.3	Under Top Cover (Top view after removal Top-cover)	IV-12
3.4	Front Panel	IV-14
3.5	Rear Panel	IV-15
САВ		IV-16
4.1	Connection to ICE6200	IV-16
4.2	Power Cable Connection	IV-17
4.3	Connection to Target System	IV-18
	 1.1 1.2 PREC 2.1 2.2 NAN 3.1 3.2 3.3 3.4 3.5 CAB 4.1 4.2 	1.1 EVA6262 Outline 1.2 EVA6262 Components PRECAUTIONS

CHAPTER 5	OPERATION METHOD OF EVA6262 IV-20		
	5.1PreparationIV-20Creation of target systemIV-20Creation and installation of ROMsIV-20		
	5.2 Independent Use of EVA6214 IV-22 Power on/off IV-22 Debugging IV-23		
	5.3 Operation When ICE6200 is Connected IV-25 Power on/off IV-25 Debugging IV-26		
CHAPTER 6	OPERATING TEST IV-27		

CHAPTER 7	PRODUCT SPECIFICATIONS	IV-31

V. E0C6262 ICE Operation Manual

CHAPTER 1	E0C	6262 RESTRICTIONS V-1
	1.1	ROM Area V-1
	1.2	RAM Area V-1
	1.3	Undefined Code V-1
CHAPTER 2	ICE	6200 SPECIFICATIONS V-2
	2.1	Features V-2
		Description V-3
		Software configuration V-3
		Function table V-4
		Function-differentiated command list V-5
		Alphabetical listing of commands V-7
	2.2	Connecting and Starting the System V-9
		HOST settings V-10
		Starting the ICS62XX V-12
	2.3	ICE6200 Operation and Functions V-13
		Operating features V-13
		Break mode and break function V-15
		SYNC pin and HALT pin output V-17
		Display during run mode and during break V-18
		Break assigning commands V-20
		Target interrupt and break V-21
		History function
		Break delay function V-24
		Coverage function V-24
		Measurement during command execution V-25
		Self-diagnostic function V-26
		Starting the printer V-27
		Limitations during emulation V-28

CHAPTER 3	CO	MMAND DETAILS	V-30
	3.1	Display Command Group	V-31
		- L Command	V-32
		- DP Command	V-34
		- DD Command	V-36
		- DR Command	V-38
		- H Command	V-39
		- HB and HG Commands	V-42
		- HS, HSR, and HSW Commands	V-44
		- HP and HPS Commands	V-45
		- CHK Command	V-46
		- DXY Command	V-47
		- CVD and CVR Commands	V-48
	3.2	Set Command Group	V-49
		- A Command	V-50
		- FP Command	V-52
		- FD Command	V-53
		- MP Command	V-54
		- MD Command	V-55
		- SP Command	V-56
		- SD Command	V-57
		- SR Command	V-58
		- SXY Command	V-59
		- HC Command	V-60
		- HA, HAD, and HAR Commands	V-61
	3.3	Break and Go Command Group	V-63
		- BA and BAR Commands	V-64
		- BD and BDR Commands	V-65
		- BR and BRR Commands	V-66
		- BM and BMR Commands	V-68
		- BC Command	V-70
		- BRES Command	V-71

	- G Command V-72	2
	- T Command V-7	5
	- U Command V-7	7
	- BE and BSYN Commands V-7	8
	- BT Command V-7	9
	- BRKSEL Command V-8	0
	3.4 File Command Group V-8	1
	- RF and RFD Commands V-8	2
	- VF and VFD Commands V-8	3
	- WF and WFD Commands V-8-	4
	- CL and CS Commands V-8	5
	3.5 ROM Command Group V-8	7
	- RP Command V-8	8
	- VP Command V-8	9
	- ROM Command V-9	0
	3.6 Control Command Group V-9	1
	- I Command V-9	2
	- TIM Command V-93	3
	- OTF Command V-9-	4
	- Q Command V-9	5
	3.7 HELP Command V-9	7
CHAPTER 4	ERROR MESSAGE SUMMARY V-10)2
APPENDIX	A. FD FILE CONFIGURATION V-10)3
	B. HEX FILE FORMAT V-10)4

VI. E0C6262 Mask Data Checker Manual

CHAPTER 1	INTRODUCTION v			
	1.1 Out	ine of the Mask Data Checker	VI-1	
	1.2 Exe	cution Flow and Input/Output Files	VI-2	
CHAPTER 2	MASK DATA CHECKER OPERATION			
	2.1 Crea	ating a Work Disk	VI-3	
	2.2 Cop	ying the Data File	VI-3	
	S P	cution of MDC6262 tarting MDC6262 acking of data Inpacking of data	VI-4 VI-5	
CHAPTER 3	ERROR M	IESSAGES	VI-7	
	P F	a Error rogram data error unction option data error egment option data error	VI-7 VI-7	
	3.2 File	Error	VI-8	
	3.3 Syst	tem Error	VI-8	
CHAPTER 4	PACK FIL	E CONFIGURATION	VI-9	

I. E0C6262 Development Tool User's Manual

CONTENTS

CHAPTER 1	OUTLINE OF THE E0C6262 DEVELOPMENT SUPPORT TOOL I-1		
	1.1	Developmental Environment I-1	
	1.2	Development Tool Management System (DMS6200) I-2	
	1.3	Cross Assembler (ASM6262) I-3	
	1.4	Function Option Generator (FOG6262) I-4	
	1.5	In-Circuit Emulator (ICE6200) & ICE Control Software (ICS6262) I-5	
	1.6	Mask Data Checker (MDC6262) I-6	
	1.7	Evaluation Board (EVA6262) I-7	
CHAPTER 2	CRE	ATION OF DISK FOR DEV6262 EXECUTION I-8	
CHAPTER 3	DEV	6262 STARTING PROCEDURES IN MENU FORM I-9	
APPENDIX	List of Software Development Tool Starting Command Formats and Input/Output Files I-14		

CHAPTER 1 OUTLINE OF THE E0C6262 DEVELOPMENT SUPPORT TOOL

1.1 Developmental Environment

The software product of the E0C6262 development support tool (DEV6262) operates on the following host systems:

- IBM PC-XT/AT (at least PC-DOS Ver. 2.0)
- NEC PC-9801V Series (at least MS-DOS Ver. 3.1)

In order for the MDC6262 to handle numerous files, set the number of files described in the CONFIG.SYS to 10 or more (e.g., FILES = 20).

Since the ICE6200 is connected to the host computer with a RS-232C serial interface, adapter board for asynchronous communication will be required on IBM PC-XT. Moreover, install RS-232C driver with the CONFIG.SYS.

When developing the EOC6262, the above-mentioned host computer, editor, P-ROM writer, printer, etc. must be prepared by the user in addition to the development tool which is normally supported by Seiko Epson.

System Configuration

1.2 Development Tool Management System (DMS6200)

- Outline: This is a software which selects the DEV6262 software development support tool in menu form and starts it.
- Features: Simple and easy software development tool starting procedure in menu form
 - By copying the external commands such as those of the editor to the execution disk, starting procedure in menu form can be possible

1.3 Cross Assembler (ASM6262)

- Outline: The Cross Assembler ASM6262 will assemble the program source files which have been input by the user's editor and will generate an object file in Intel-Hex format and assembly list file.
- Features: The macro definition function makes program modularization possible
 - The automatic page setting function makes programming unconscious of ROM page structure possible
 - Converts the source program to object codes in Intel-Hex format
 - Attaches label table and cross-reference table to the assemble list file
 - Checks program capacity (ROM capacity) overflows
 - Checks undefined codes for errors

1.4 Function Option Generator (FOG6262)

Outline: In the E0C6262, I/O port specifications may be selected with the hardware option and the mask pattern according to the setting is generated on the general-purpose computer.

> The Function Option Generator FOG6262 is a software that performs this hardware option selection on the personal computer and creates data files for mask pattern generation.

- Features: Interactively selects mask option settings
 - Creates data in Intel-Hex form for the hardware option ROM to be mounted on the EVA6262

Function Option Generator FOG6262 Execution Flow

USER'S

1.5 In-Circuit Emulator (ICE6200) & ICE Control Software (ICS6262)

- Outline: The In-circuit Emulator ICE6200 connects the target board produced by the user via the EVA6262 and performs real time target system evaluation and debugging by passing through the RS-232C from the host computer and controlling it. The operation on the host computer side and ICE6200 control is done through the ICE Control Software ICS6262.
- Features: Establishes high-level debugging environment by utilizing the user's personal computer as host computer
 - Has a set of numerous and highly functional emulation commands which provide sophisticated break function, on-the-fly data display, history display, etc.
 - Power supply exclusively for ICE6200 is built-in (can supply power to EVA6262)
 - Analysis of hardware is possible

1.6 Mask Data Checker (MDC6262)

- Outline: This is a software for checking the format of the debugged mask creation data (program data and option data) and creating the file for submission.
- Features: Checks the mask creation data for submission (program data/option data)
 - Performs packing and unpacking of program data and option data

Mask Data Checker MDC6262 Execution Flow

1.7 Evaluation Board (EVA6262)

- Outline: The Evaluation Board EVA6262 will implement almost the same functions as the actual CPU by creating ROM from the object files and function option data file generated through ASM6262 and FOG6262 and mounting it.
- Features: May operate as a stand-alone board by installing a program ROM
 - Makes option data setting possible by installing an option ROM
 - Has a simple and easy debugging function for PC Break, Step operation and monitor display by LED
 - May be connected to ICE6200 through a special cable

CHAPTER 2 CREATION OF DISK FOR DEV6262 EXECUTION

The DEV6262 software product is of two types: the PC-DOS version and the MS-DOS version, supplied in 5-inch 2D and 5-inch 2HD floppy disks, respectively. Note, however, that the DOS is not implemented. Copy the floppy disk and create a disk for execution. Keep the original floppy disk in a safe place as your master copy. When copying to a hard disk, create a sub-directory first and then make the copy to that sub-directory.

• Disk Contents: < PC-DOS Version>

ASM6262.EXE Cross Assembler execution file DMS6200.EXE Development tool Management System execution file FOG6262.EXE Function Option Generator execution file ICS6262B.BAT ICE Control Software batch file ICS6262P.PAR ICE Control Software parameter file ICS6262W.EXE ICE Control Software execution file MDC6262.EXE Mask Data Checker execution file

<MS-DOS Version>

ASM6262.EXE Cross Assembler execution file DMS6200.EXE Development tool Management System execution file FOG6262.EXE Function Option Generator execution file ICS6262.BAT ICE Control Software batch file ICS6262J.EXE ICE Control Software execution file ICS6262P.PAR ICE Control Software parameter file MDC6262.EXE Mask Data Checker execution file

CHAPTER 3 DEV6262 STARTING PROCEDURES IN MENU FORM

DMS6200 (Development tool Management System) can start the DEV6262 development support tools in menu form. Since the development support tools each require input files (e.g., source file), first create the input files according to the support tool manuals and then perform the following operations:

(1) The following is entered on the execution disk:

DMS6200↓

The title is then displayed. To return to DOS at this point, press C (CTRL + C).

*** E0C62	200 Development	tool N	Manageme	ent Syst	em	Ver 1	.0 ***
EEEEEEEEE	PPPPPPPP	SSSS	SSSS	0000	0000	NNN	NNN
EEEEEEEEE	PPPPPPPPP	SSS	SSSS	000	000	NNNN	NNN
EEE	PPP PPP	SSS	SSS	000	000	NNNN	N NNN
EEE	PPP PPP	SSS		000	000	NNNN	NN NNN
EEEEEEEEE	PPPPPPPPP	SSSS	SSS	000	000	NNN I	NNN NNN
EEEEEEEEE	PPPPPPPP	c c	SSSS	000	000	NNN	NNNNN
EEE	PPP		SSS	000	000	NNN	NNNNN
EEE	PPP	SSS	SSS	000	000	NNN	NNNN
EEEEEEEEE	PPP	SSSS	SSS	000	000	NNN	NNN
EEEEEEEEE	PPP	SSS	SSSS	0000	0000	NNN	NN
(C) Copyright 1990 SEIKO EPSON CORP. STRIKE ANY KEY.							

(2) Press any key and the following menu screen will be displayed. A list of all executable files having "EXE",

"COM" and "BAT" extensions will appear on this menu screen; if any execution file other than DEV6262 were copied to the disk for execution, it will differ from the displays shown below.

To return to DOS at this point, press the <ESC> key.

<MS-DOS Version>

DMS6200 Version 1.0 Copyright(C) SEIKO EPSON CORP. 1990. 1) ASM6262 .EXE 2) FOG6262 .EXE 3) ICS6262 .BAT 4) ICS6262J.EXE 5) MDC6262 .EXE Input Number ? []

<PC-DOS Version>

DMS6200 Version 1.0 Copyright(C) SEIKO EPSON CORP. 1990. 1) ASM6262 .EXE 2) FOG6262 .EXE 3) ICS6262B.BAT 4) ICS6262W.EXE 5) MDC6262 .EXE Input Number ? [] (3) Input the number of the development support tool you wish to start and then press the RETURN key.

<Conditions for Starting>

- ICS6262W.EXE, ICS6262J.EXE

To start ICS6262W.EXE or ICS6262J.EXE, there is need to set the RS-232C beforehand. Set the RS-232C by using the RS-232C driver installed through the CONFIG.SYS and any of the following commands: MS-DOS: SPEED command PC-DOS: MODE command At least 140K bytes are required for the RAM.

ICS6262.BAT, ICS6262B.BAT
Since batch processing is programmed in the
ICS6262.BAT and ICS6262B.BAT such that it will
start with SPEED command or MODE command,
ICS6262.BAT must be started after "PATH" of the disk
containing SPEED command or MODE command and
sub-directory has been specified.
Likewise, the ICS6262W.EXE requires the installation
of RS-232C driver through the CONFIG.SYS.
At least 140K bytes are required for the RAM.

- MDC6262.EXE

Because the MDC6262.EXE handles numerous files, set the number of files in the CONFIG.SYS to at least 10 files.

(4) Next, the screen for entering the source file will be displayed. Pressing the <ESC> key here will return the previous screen.

The following sample screen is the screen which will be displayed when ASM6262 is selected.

```
DMS6200 Version 1.0 Copyright(C) SEIKO EPSON CORP. 1990.

1) C2620A0 .DAT

2) C2620A0 .PRN

3) C2620A0F.DOC

4) C2620A0F.HEX

5) C2620A0H.HEX

6) C2620A0L.HEX

7) C62620A0.PA0

Input Number ? [1 ]

Edit > [ASM6262 C2620A0 ]
```

When the source file is selected by number, the edit line enclosed in [] will appear; enter the option parameter if necessary. The <BS> key is valid on the edit line. Press the ENTER key when input is completed.

- ASM6262 will start.

When starting, press the RETURN key twice particularly for the following support tools which do not require source files.

Refer to the support manuals regarding operations after starting.

FOG6262 ICS6262 ICS6262W ICS6262J MDC6262 (5) When execution of the development support tool is completed, the following message will appear:

Input Any Key ...

Press any key and the first menu screen will be returned.

APPENDIX

List of Software Development Tool Starting Command Formats and Input/Output Files

CROSS ASSEMBLER ASM6262					
Command	ASM6262_[drive-name:] source-file-name [.shp]_[-N] 🖵				
Option	.shp option: Specifies the file I/O drives.				
		s Specifies the drive from which the source file is to be input. (A–P, @)			
		h Specifies the drive to which the object file is to be output. (A–P, @, Z)			
	p Specifies the drive to which the assembly listing file is to be output.				
	(A–P, @, Z)				
	@: Current drive, Z: File is not generated				
	-N option:	The code (FFH) in the undefined area of program memory is not created.			
Input file	C262XXX.DAT	(Source file)			
Output files	C262XXXL.HEX	(Object file, low-order)			
	C262XXXH.HEX	(Object file, high-order)			
	C262XXX.PRN	(Assembly listing file)			

FUNCTION OPTION GENERATOR FOG6262		
Command	FOG6262 🖵	
Input files	C262XXXF.DOC (Function option document file, when modifying)	
Output files	C262XXXF.DOC (Function option document file)	
	C262XXXF.HEX (Function option HEX file)	

ICE CONTROL SOFTWARE ICS6262			
Command	ICS6262 1		
Input files	C262XXXL.HEX (Object file, low-order)		
_	C262XXXH.HEX (Object file, high-order)		
	C262XXXD.HEX (Data RAM file)		
	C262XXXC.HEX (Control file)		
Output files	C262XXXL.HEX (Object file, low-order)		
	C262XXXH.HEX (Object file, high-order)		
	C262XXXD.HEX (Data RAM file)		
	C262XXXC.HEX (Control file)		

MASK DATA CHECKER MDC6262				
Command	MDC6262			
Input files	C262XXXL.HEX	(Object file, low-order) —]	
	C262XXXH.HEX	(Object file, high-order)	When packing	
	C262XXXF.DOC	(Function option document file)		
	C6262XXX.PAn	(Packed file)	When unpacking	
Output files	C6262XXX.PAn	(Packed file)	When packing	
	C262XXXL.PAn	(Object file, low-order)		
	C262XXXH.PAn	(Object file, high-order)	When unpacking	
	C262XXXF.PAn	(Function option document file)		

_ indicates a blank.

indicates the RETURN key.

A parameter enclosed by [] can be omitted.

II. E0C6262 Cross Assembler Manual

Chapter 2 and subsequent chapters provide information common to all E0C62 Family models, the model name being denoted "XX". Read this manual, replacing "XX" with "62".

 $62\underline{X}\underline{X} \ \rightarrow \ 62\underline{62}$

 $C2\underline{XX} \ \rightarrow \ C2\underline{62}$

CONTENTS

CHAPTER 1	E0C6262 RESTRICTIONS II-1			
	1.1	ROM Area II-1		
	1.2	RAM Area II-2		
	1.3	Undefined Code II-2		
CHAPTER 2	INTRODUCTUON II-3			
	2.1	Outline of ASM62XX II-3		
	2.2	ASM62XX Input/Output Files II-5		
CHAPTER 3	ASM62XX OPERATION PROCEDURE II-6			
	3.1	Starting ASM62XX II-6		
	3.2	Selecting Auto-Page-Set Function II-10		
	3.3	Generating a Cross-Reference Table II-11		
CHAPTER 4	SOURCE FILE FORMAT II-12			
	4.1	Source File Name II-12		
	4.2	StatementsII-13Label fieldII-14Mnemonic fieldII-14Operand fieldII-14Comment fieldII-15		
	4.3	Index II-15 Label II-15 Symbol II-16		

	4.4	Constant and Operational Expression II-17
		Numeric constant II-17
		Character constant II-18
		Operator II-18
		Location counter II-21
	4.5	Pseudo-Instructions II-22
		Data definition pseudo-instructions II-22
		Memory setting pseudo-instructions II-24
		Assembler control pseudo-instructions II-29
	4.6	Macro-Functions II-30
		Macro-instructions II-30
		Macro-definitions II-32
		Macro-calls II-34
CHAPTER 5	ERRC	OR MESSAGES II-37
APPENDIX	ASM	162XX EXECUTION EXAMPLE II-39
E0C6262 RESTRICTIONS CHAPTER 1

Note the following when generating a program by the E0C6262:

1.1 ROM Area

The capacity of the E0C6262 ROM is 2,048 steps (0000H to 07FFH, 12 bits/step). The memory configuration is as follows.

Bank: Only bank 0 Page: 8 pages (00H to 07H), each 256 steps

Therefore, the specification range of the memory setting pseudo-instructions and PSET instruction is restricted as follows:

		Significant specification range
ORG	pseudo-instruction:	0000H to 07FFH
PAGE	pseudo-instruction:	00H to 07H
BANK	pseudo-instruction:	Only 0H

PSET instruction: 00H to 07H

1.2 RAM Area

The capacity of the E0C6262 RAM is 161 words (000H to 07FH, 0D0H to 0DAH, 0E0H to 0EAH and 0F0H to 0FAH, 4 bits/word).

Memory access is invalid when the unused area of the index register is specified.

Example:	LD	х,080н	80H is loaded into the IX register, but an unused area has been specified so that the memory accessible with the IX register (MX) is invalid.
	LD	Y,0EBH	EBH is loaded into the IY register, but an unused area has been specified so that the memory accessible with the IY register (MY) is invalid.

1.3 Undefined Code

The following instructions have not been defined in the E0C6262 instruction sets.

SLP			
PUSH	XP	PUSH	ΥP
POP	XP	POP	ΥP
LD	XP,r	LD	YP,r
LD	r,XP	LD	r,YP

CHAPTER 2 INTRODUCTION

2.1 Outline of ASM62XX

The ASM62XX cross assembler (the ASM62XX in this manual) is an assembler program for generating the machine code used by the E0C62XX and E0C62*XX 4-bit, single-chip microcomputers. It can be used under MS-DOS or PC-DOS. Two types of ASM62XX system disk are supplied: a 5.25", high-density, double-sided, one for the NEC PC-9801V Series, and a 5.25", double-sided, one for the IBM PC/XT and PC/AT. The basic system configurations are as follows:

- PC-9801V Series

Computer:	NEC PC-9801V Series
Disk drive:	5.25", high-density, double-sided,
	floppy disk drive $ imes$ 1 or more
Operating system:	MS-DOS 3.1 or later
Printer:	For printing source listings,
	assembly listings, and error
	messages

- IBM PC/XT or PC/AT

Computer:	IBM PC/XT or PC/AT
Disk drive:	5.25", double-sided,
	floppy disk drive \times 1 or more
Operating system:	PC-DOS (MS-DOS) 2.1 or later
Printer:	For printing source listings,
	assembly listings, and error
	messages

The program name of the assembler is ASM62XX.EXE.

Figure 2.1.1 shows the ASM62XX execution flow.

2.2 ASM62XX Input/Output Files

ASM62XX reads a source file, assembles it, and outputs object files and an assembly listing file.

- Source file (C2XXYYY.DAT)

This is a source program file produced using an editor such as EDLIN. The file name format is C2XXYYY, and the file name must not exceed seven characters in length. Character string YYY should be determined by referencing the device name specified by Seiko Epson. The file extension must be added ".DAT".

- Object file (C2XXYYYH.HEX, C2XXYYYL.HEX)

This is an assembled program file in Intel hex format. Because the machine code of the E0C62XX and E0C62*XX is 12-bit, the high-order bytes (bits 9 to 12 suffixed by high-order bits 0000B) are output to file C2XXYYYH.HEX, and the low-order bytes (bits 8 to 1) are output to file C2XXYYYL.HEX.

- Assembly listing file (C2XXYYY.PRN)

This is a program listing file generated by adding an operation codes and error messages (if any errors have occurred) to respective source program statements. A cross-reference table is generated at the end of the file, depending on the label table and options. The file name is C2XXYYY.PRN.

See the Appendix for the contents of each file.

CHAPTER 3 ASM62XX OPERATION PROCEDURE

This section explains how to operate ASM62XX.

3.1 Starting ASM62XX

When starting ASM62XX, enter the following at DOS command level (when a prompt such as A> is being displayed):

ASM62XX _ [drive-name:] source-file-name [.shp] _ [-N] -

_ indicates a blank.

A parameter enclosed by [] can be omitted.

□ indicates the return (enter) key.

- Drive name If the source file is not on the same disk as ASM62XX.EXE, specify a disk drive mounted the floppy disk storing the source file before input the source file name. If the source file is on the same disk as ASM62XX.EXE, it does not need to specify the disk drive.
- Source file name This is the name of the source file to be entered for ASM62XX. The sourcefile name must not exceed seven characters in length. File extension .DAT must not be entered.

- .shp Characters s, h, and p are options for specifying the file I/O drives, and can be omitted.
 - s: Specifies the drive from which the source file is to be input. A charac-ter from A to P can be specified. If @ is specified, the source file in the current drive (directory) is input. Even if a drive name is prefixed to the source file name, this option is effective.
 - h: Specifies the drive to which the object file (HEX) is to be output. A character from A to P can be specified. If @ is specified, the object file is output to the current drive (directory). If Z is specified, only assembly is executed; the object file is not generated.
 - p: Specifies the drive to which the assembly listing file is to be output. A character from A to P can be specified. If @ is specified, the object file is output to the current drive (directory). If X is specified, a listing containing error messages is output to the console. If Z is specified, the assembly listing file is not generated.

Characters s, h, p must all be specified; only one or two of them is not sufficient.

- -N option The code (FFH) in the undefined area of program memory is not created.
 - Note The program data to be provided does not use the "-N" option. The FFH data should be inserted into the undefined program area.

Example 1: Basic assembly example

A>ASM62XX C2XXYYY

The source file "C2XXYYY.DAT" is input from drive A, and the object files "C2XXYYH.HEX" and "C2XXYYYL.HEX" and the assembly listing file "C2XXYYY.PRN" are output to drive A.

A>ASM62XX B:C2XXYYY

The source file "C2XXYYY.DAT" is input from drive B, and the object files "C2XXYYYH.HEX" and "C2XXYYYL.HEX" and the assembly listing file "C2XXYYY.PRN" are output to drive B.

A>ASM62XX C2XXYYY.BBZ 🖵

The source file "C2XXYYY.DAT" is input from drive B, and the object files "C2XXYYYH.HEX" and "C2XXYYYL.HEX" are output to drive B. The assembly listing file is not generated.

Example 2: -N option use

A>ASM62XX C2XXYYY -NJ

No undefined program area is generated in the created object files (C2XXYYYH.HEX, C2XXYYYL.HEX).

A>ASM62XX C2XXYYY

In this case, FFH data is inserted into the undefined program area of the object files.

When ASM62XX is started, the following start-up message is displayed.

Example: When assembling C2XX0A0.DAT

A>ASM62XX C2 **		DSS ASSEMBLER	VERS	SION 2.00) * * *	
EEEEEEEEE	PPPPPPPP	SSSSSSS	0000	00000	NNN	NNN
EEEEEEEEE	PPPPPPPPPP	SSS SSS	5 000	000	NNNN	NNN
EEE	PPP PPP	SSS SS	5 000	000	NNNNN	NNN
EEE	PPP PPP	SSS	000	000	NNNNNN	NNN
EEEEEEEEE	PPPPPPPPPP	SSSSSS	000	000	NNN NNN	I NNN
EEEEEEEEE	PPPPPPPP	SSSS	000	000	NNN NN	INNNN
EEE	PPP	SSS	000	000	NNN N	INNNN
EEE	PPP	SSS SS	5 000	000	NNN	NNNN
EEEEEEEEE	PPP	SSSS SSS	000	000	NNN	NNN
EEEEEEEEE	PPP	SSSSSSS	0000	00000	NNN	NN
	(C) COPYRIGHT 1990 SEIKO EPSON CORP. SOURCE FILE NAME IS " C2XXYYY.DAT "					
TH	IS SOFTWARE N	AKES NEXT FI	LES.			
	C2XXYYYH.HEX C2XXYYYL.HEX C2XXYYY .PRN	K LOW B	BYTE OBJEC (TE OBJEC) BLY LIST F	C FILE.		

3.2 Selecting Auto-Page-Set Function

After the start-up message, the following message is displayed, prompting the user to select the auto-page-set function.

DO YOU NEED AUTO PAGE SET?(Y/N)

Press the "Y" key if selecting the auto-page-set function, or the "N" key if not selecting it. At this stage, the user can also return to the DOS command level by entering "CTRL" + "C" key.

- Auto-page-set function

When the program branches to another page through a branch instruction such as JP, the branch-destination page must be set using the PSET instruction before executing the branch instruction.

The auto-page-set function automatically inserts this PSET instruction. It checks whether the branch instruc-

tion page is the same as the branch-destination one. If the page is different,the function inserts the "PSET" instruction. If the page is the same, the function performs no operation.

Therefore, do not select the auto-page-set function if "PSET" instructions have been correctly included in the source file.

Note When auto page set is selected, there are restricted items related to source programming. See "Label" in Section 4.3.

3.3 Generating a Cross-Reference Table After the auto-page-set function has been selected, the following message is output, prompting the user to select

cross-reference table generation.

DO YOU NEED CROSS REFERENCE TABLE?(Y/N)

Press the "Y" key if generating the cross-reference table, or the "N" key if not generating it. At this stage, the user can also return to DOS command level by entering "CTRL" + "C" key.

Note If the assembly listing file output destination (p option) is specified as Z (listing not generated) at the start of ASM62XX, the above message is not output and the cross-reference table is not generated.

- Cross-reference table

The cross-reference table lists the symbols and their locations in the source file, and is output at the end of the assembly listing file in the following format:

CROSS	REFERENCE	TABLE	PAGE X-	1
LABEL1	4#	29	36	
LABEL2	15#	40		
:	:	:		
Symbol	Nun	nber of the p	brogram state	ment

(# indicates the number of the statement at which the symbol was defined)

This table should be referenced during debugging. An error such as duplicate definition of a symbol can be easily detected.

CHAPTER 4 SOURCE FILE FORMAT

The source file contains the source program consisting of E0C62XX/62*XX instructions (mnemonics) and pseudoinstructions, and is produced using an editor such as EDLIN.

Refer to the "E0C6200 Core CPU Manual" and the "E0C62XX Technical Software Manual" for instruction sets.

4.1 Source File Name

A desired file name not exceeding seven characters in length can be assigned to each source file. The format must be as follows:

C2XXYYY.DAT

"YYY" of the "C2XXYYY.DAT" is an alphanumeric character string of up to three characters, and should be determined by referencing the device name specified by Seiko Epson. The file extension must be ".DAT".

4.2 Statements

Each source program statement must be written using the following format.

Basic format:

<Index>[:] <Instruction> <Expression> <; comment>

Example:	ON	EQU ORG	1 100H	
	START:	JP	INIT	;To init.
	Label	Mnemonic	Operand	Comment
	field	field	field	field

A statement consists of four fields: label, mnemonic, operand, and comment. Up to 132 characters can be used for one statement. Fields must be delimited by one or more blanks or tabs.

The label and comment fields are optional. Blank lines consisting only of a carriage return (CR) code are also allowed.

Although each statement and field (excluding the label field) can begin at any desired column. the program becomes easier to understand if the heads of corresponding fields are aligned.

Label field	The label field can contain a label for referencing the mem- ory address, a symbol that defines a constant, or a macro name. This field can be omitted if the statement name is not required. The label field must begin at column 1 and satisfy the following conditions.		
	- The length must not exceed 14 characters.		
	 The same name as a mnemonic or register name must not be used. 		
	 The following alphanumeric characters can be used, but the first character must not be a digit: 		
	A to Z, a to z, 0 to 9, _, ?		
	- The uppercase and lowercase forms of a letter are not equivalent.		
	- ??nnnn (n is a digit) cannot be used as a name.		
	A colon ":" can be used as a delimiter between a label field and the mnemonic field. If a colon is used, neither blanks nor tabs need to be written subsequently. Statements consisting of only a label field are also allowed.		
Mnemonic field	The mnemonic field is used for an instruction mnemonic or a pseudo-instruction.		
Operand field	The operand field is used for the operands of the instruction. The form of each operand and the number of operands depend on the kind of instruction. The form of expressions specifying values must be one of the following:		
	 A numeric constant, a character constant, or a symbol that defines a constant 		
	 A label indicating a memory address 		
	 An operational expression for obtaining the specified value 		
	If the operand consists of two or more expressions, the		
	expressions must be separated by commas ",".		

Comment field The comment field is used for comment data such as program headers and descriptions of processing. The contents of this field do not affect assembly or the object files generated by assembly.

The part of the statement from a semicolon ";" to the CR code at the end of the statement is considered to be the comment field. Statements consisting of only a comment field are also allowed. When a comment spans multiple lines, a semicolon must be written at the beginning of each line.

4.3 Index

ASM62XX allows values to be referenced by their indexes. Refer to "Label field" in Section 4.2, for the restrictions on index descriptions.

Label

A label is an index for referencing a location in the program, and can be used as an operand that specifies a memory address as immediate data in an instruction. For example, a label can be used as the operand of an instruction such as JP by writing the label in the branch-destination statement. The name written in the label field of an EQU or SET instruction is considered to be a symbol, not a label.

Example:

A label can be assigned to any statement, but the label

assigned to the following pseudo-instructions is ignored:

ORG, BANK, PAGE, SECTION, END, LABEL, ENDM

Note When selecting the auto-page-set function (see Section 3.2), a statement consisting of only a label must be written immediately before the JP or CALL instructions.

Example:

PGSET:

JP LABEL

Symbol

A symbol is an index that indicates a numeric or character constant, and must be defined before its value is referenced (usually at the beginning of the program). The defined symbol can be used as the operand that specifies immediate data in an instruction.

Example:

ON	EQU	1 (See	Section 4.5 for EQU.)
OFF	EQU	0	
	:		
	LD	A,ON	; = LD A,1
	:		
	LD	A,OFF	; = LD A,0
	:		

4.4 Constant and Operational Expression

This section explains the immediate data description formats.

Numeric constant A numeric constant is processed as a 13-bit value by ASM62XX. If a numeric constant greater than 13 bits is written, bit 13 and subsequent high-order bits are ignored. Note that the number of actual significant bits depends on the operand of each instruction. If the value of a constant is greater than the value that can be accommodated by the actual number of significant digits, an error occurs.

Example:

 $\begin{array}{rcl} \text{ABC} & \text{EQU} & \text{OFFFFH} & \rightarrow & \text{ABC} \text{ is defined as 1FFFH.} \\ & \text{LD} & \text{A}, 65535 & \rightarrow & \text{An error occurs because it} \\ & & \text{exceeds the significant digit} \\ & & \text{count (4 bits).} \end{array}$

The default radix is decimal. The radix description formats are as follows:

Binary numeral:	A numeral suffixed with B, such as 1010B (=10) or 01100100B (=100).
Octal numeral:	A numeral suffixed with O or Q, such as 012O (=10) or 144Q (=100).
Decimal numeral:	A numeral alone or a numeral suffixed with D, such as 10 or 100D (=100).
Hexadecimal numeral	: A numeral suffixed with H, such as 0AH (=10) or 64H (=100). If the value begins with a latter from A
	If the value begins with a letter from A
	to F, it must be prefixed with 0 to
	distinguish it from a name.

Character constant A character constant is one or two ASCII characters enclosed by apostrophes (' '). A single ASCII character is processed as eight-bit data. If two or more ASCII characters are written, only the last two characters are significant as 13-bit data.

Examples:

'A' (=41H), 'BC' (=0243H), 'PQ' (=1051H) 'DEFGH' \rightarrow 'GH' (=0748H; DEF is ignored.)

The apostrophe itself cannot be processed as a character constant, so it must be written as a numeric constant, such as 27H or 39.

Operator

When specifying a value for an item such as an operand, an operational expression can be written instead of a constant, and its result can be used as the value.

Labels and symbols as well as constants can be used as terms in expressions. These values are processed as 13-bit data (bit 14 and subsequent high-order bits are ignored); the operation result also consists of 13 bits. If the result exceeds the number of significant digits of the instruction operand, an error occurs.

There are three types of operator—arithmetic, logical, and relational—as listed below (a and b represent terms, and _ represents one or more blanks).

- Arithmetic operators

There are 11 arithmetic operators including the ones for addition, subtraction, multiplication, division, bit shifting, and bit separation.

+a:	Monadic positive
	(indicates the subsequent value is positive)
-a:	Monadic negative
	(indicates the subsequent value is negative)

a+b:	Addition (unsigned)
a-b:	Subtraction (unsigned)
a*b:	Multiplication (unsigned)
a/b:	Division (unsigned)
a_MOD_b:	Remainder of a/b
a_SHL_b:	Shifts a b bits to the left. \leftarrow [b7<<<< <bl]<math>\leftarrow0 Example: 0000011B SHL 2 \rightarrow 00001100B</bl]<math>
a_SHR_b:	Shifts a b bits to the right. $0 \rightarrow [b7 >>>>b0] \rightarrow$ Example: 11000011B SHR 2 \rightarrow 00110000B
HIGH_a:	Separates the high-order eight bits from a (13 bits). Example: HIGH 1234H \rightarrow 12H
LOW_a:	Separates the low-order eight bits from a (13 bits). Example: LOW 1234H \rightarrow 34H

- Logical operators

There are four logical operators as listed below. The logical operator returns the result of logical operation on the specified terms.

a_AND_b:	Logical product Example: 00001111B AND 00000011B → 00000011B
a_OR_b:	Logical sum Example:
	00001111B OR 11110000B \rightarrow 11111111B
a_XOR_b:	Exclusive logical sum Example:
	00001111B XOR 00000011B \rightarrow 00001100B
NOT_a:	Logical negation Example: NOT 00001111B \rightarrow 11110000B

- Relational operators

A logical operator compares two terms; if the relationship between the terms is as the operator specifies, 1FFFH (true) is returned; if not, 0 (false) is returned.

a_EQ_b:	True when a is equal to b
a_NE_b:	True when a is not equal to b
a_LT_b:	True when a is less than b
a_LE_b:	True when a is less than or equal to b
a_GT_b:	True when a is greater than b
a_GE_b:	True when a is greater than or equal to b

Be sure to insert one or more blanks for symbol "_" between terms. All operators must be entered in uppercase letters.

An expression can contain one or more operators and pairs of parentheses. In this case, operators are basically evaluated from left to right. However, an operation stipulated by an operator with higher priority or by parentheses is executed earlier. Every left parenthesis must have a corresponding right parenthesis.

The following table shows the priority of operators.

Operator	Priority
(Low
OR, XOR	:
AND	
EQ, NE, LT, LE, GT, GE	
+ (addition), - (subtraction)	
*, /, MOD, SHL, SHR	
(
HIGH, LOW, NOT	1 :
- (monadic negative), + (monadic positive)	High

Examples: Operational expressions (ABC = 1, BCD = 3)LDA, BCD*(ABC+1); A-register <- 6</td>LDA, ABC LT BCD; A-register <- 0FH (1111B)</td>ORB, ABC SHL BCD; Set bit 3 in B-register; (=OR B, 1000B); (=OR B, 1000B)ANDB, ABC SHL BCD XOR 0FH ; Reset bit 3 in B-register; (=AND B, 0111B)

Location counter The start address of each instruction code is set in the location counter when a statement is assembled. A label or \$ can be used when referencing the location counter value in a program.

- Location counter

The location counter consists of 13 bits: one bit for the bank field, four bits for the page counter field, and eight bits for the step counter field.

	Page counter					St	ер с	ount	er				
Bit	12	11	10	9	8	7	6	5	4	3	2	1	0
Contents	Bank	Pa	Page address			Step address							
	BNK	РСР						PC	CS				

Example:

Location counter (BNK) (PCP) (PCS) 0 1 02 JP \$+3

The location counter indicates the start address of the JP instruction, and the PCS value (02) is assigned to \$. Consequently, the statement is assembled as "JP 5", and the program sequence jumps to the location three steps before (PCS=05) when it is executed.

4.5	Pseudo-InstructionsThere are four types of pseudo-instruction: data definition, memory setting, assembler control, and macro.These pseudo-instructions as well as operational expres- sions can be used to govern assembly, and are not executed in the developed program.In the subsequent explanations, the items enclosed by < > in the pseudo-instruction format must be written in the state- ment (do not write the < > characters themselves).						
	represents one or more blanks or tabs. One or more symbols and constants or an operational expression can be used in <expression>. See Section 4.6 for macro functions.</expression>						
Data definition pseudo-instructions	There are three data definition pseudo-instructions: EQU, SET, and DW. The EQU and SET pseudo-instructions each define a symbol, and the DW pseudo-instruction presets data in program memory.						
EQU	<symbol></symbol>	EQU_ <exp< th=""><th>ression</th><th>> To define a symbol</th></exp<>	ression	> To define a symbol			
(Equate)	the label field in the operation If a value gree bit 14 and so This definition enced in the made to refe The same sy	d) as havi nd field). eater thar ubsequen on must h program, rence a sy mbol can if an atte	ng the va 13 bits i t high-ord be made b A U-erro ymbol tha not be de mpt is ma	efines <symbol> (written in lue of <expression> (written s specified in <expression>, der bits are ignored. before the symbol is refer- or occurs if an attempt is at has not been defined. fined more than once. A P- ade to define a symbol that</expression></expression></symbol>			
	-	been uem	ileu.				
	Examples: ZERO	EQU	30H				
	ONE	EQU	ZERO+1				
	ONE FOUR	EQU EQU	31H TWO*2	 ← P-error because ONE has been defined more than twice ← U-error because TWO has not 			
				been defined			

SET <Symbol>_SET_<Expression> To define a symbol

Like EQU, the SET pseudo-instruction defines the value of <symbol> as being <expression>. The SET pseudo-instruction allows a symbol to be redefined.

```
Examples:

BIT SET 1

:

BIT SET 2 ← Redefinition possible

:

BIT SET BIT SHL 1 ← Previously-defined items can be

referenced.
```

DW	<label>_DW_<expression></expression></label>	To preset data
----	--	----------------

(Define Word)

The DW pseudo-instruction assigns the value of <expression> (the low-order 12 bits when the value is greater than 12 bits) to the current memory location, indicated by the location counter.

Examples:

Locat	ion c	ounter							
(BNK)	(PCP)	(PCS)							
0	2	0A	TABLE	DW	141H	;	=	RETD	'A'
0	2	0B		DW	142H	;	=	RETD	'B'
0	2	0C		DW	143H	;	=	RETD	'C'
				:					

<label> can be omitted.

Memory setting pseudo-instructions

The program memory mounted at the E0C62XX/62*XX is divided into 256-step pages. Memory management (including the setting of the program location and page boundaries) during program generation must be controlled by the source program.

The memory setting pseudo-instructions are used to specify memory management. The assembler sets the location counter according to these pseudo-instructions.

If a memory area that has already been used is specified or a statement that exceeds the page is used without specifying

that the statement is to exceed the page, the assembler displays an exclamation mark "!", indicating a warning, and ignores all subsequent statements until the next correct statement. This should be taken into account. When using the auto-page-set function, the space for insertion of the "PSET" pseudo-instruction must be allocated in

each page.

ORG

ORG_<Expression> To set the location counter

(Origin)

⁷ The ORG pseudo-instruction sets the location counter to the value of <expression>.

If the ORG pseudo-instruction is not written at the beginning of the program, the location counter is set to 0 (BNK=0, PCP=0, PCS=0) and assembly is started.

The ORG pseudo-instruction can be used at multiple loca-

tions in the program. However, it cannot be used to set the location to a value before the current location. If this is attempted, an exclamation mark "!", indicating a warning, is displayed, and all subsequent statements until the next correct statement are ignored.

A label can be written before the ORG statement, but it cannot be referenced because it is not cataloged in the label table. In this case, write the label in the statement following the ORG pseudo-instruction. Example:

ORG 0100H ; BNK=0, PCP=1, PCS=00H START :

An R-error occurs if a value is specified exceeding the ROM capacity.

Note The upper limit of program memory depends on the model. (See Chapter 1, "E0C62XX RESTRICTIONS".)

BANK BANK_<expression> To set the bank (BNK)

The BANK pseudo-instruction sets the value of <expression> in the bank (BNK) field, and sets the page counter (PCP) and step counter (PCS) to 00H.

The BANK pseudo-instruction can be written at multiple locations in the program. However, it cannot be used to specify the current bank (excluding the specification in page 00, step 00) or a previous bank. If it is used to specify the current bank or a previous bank, an exclamation mark "!", indicating a warning, is displayed, and all subsequent statements until the next correct statement are ignored. A label can be written before the BANK statement, but it cannot be referenced because it is not cataloged in the label table. In this case, write the label in the statement after the BANK pseudo-instruction.

PAGE _____ PAGE_<expression> To set the page counter (PCP)

The PAGE pseudo-instruction sets the value of <expression> in the page counter (PCP) and sets the step counter (PCS) to 00H.

The PAGE pseudo-instruction can be written at multiple locations in the program. However, it cannot be used to specify the current page (excluding the specification in step 00) or a previous page. If it is used to specify the current page or a previous page, an exclamation mark "!", indicating a warning, is displayed, and all subsequent statements until the next correct statement are ignored.

A label can be written before the PAGE statement, but it cannot be referenced because it is not cataloged in the label table. In this case, write the label in the statement after the PAGE pseudo-instruction. Example:

Locat	ion	counter				
(BNK)	(PCP)(PCS)				
:	:	:		:	:	
0	0	1AH		LD	Х,О	
0	0	1BH		LD	Υ,Ο	
:	:	:		:	:	
0	0	FOH		JP	xxx	
				PAGE	2	
0	2	00H	SUB1:	LD	A,MX	
0	2	01H		LD	B,MY	
:	:	:		:	:	
				PAGE	1	Ineffective because
!			SUB2:	LD	A,MX	a previous page was
!				LD	B,MY	specified
				:	:	specificu
				PAGE	3	
0	3	00H	SUB3:	LD	A,0	Effective
0	3	01H		LD	в,1	
:	:	:		:	:	

An R-error occurs if a value is specified that exceeds the last page.

Note The last page depends on the model. (See Chapter 1, "E0C62XX RESTRICTIONS".) The SECTION pseudo-instruction sets the first address of the subsequent section in the location counter. Sections are 16-step areas starting from the beginning of the program memory.

A SECTION pseudo-instruction written in the last section of the page not only clears the step counter but also updates the page counter, so a new page need not be specified.

A label can be written before the SECTION pseudo-instruction, but it cannot be referenced because it is not cataloged in the label table. In this case, write the label in the statement following the SECTION pseudo-instruction.

SECTION

SECTION

Example:

Location counter

(BNK)(PCP)(PCS)

:	:	:	:	:
0	1	09н	JPBA	
0	1	0AH	LD	Х,О
0	1	0BH	LD	Υ,Ο
0	1	0CH	LD	MX,4

				SECTION	
0	1	10H	TABLE	LD	A,1
0	1	11H		ADD	A,1
:	:	:		:	:
0	1	FAH		RET	
				SECTION	
0	2	00H	LOOP	SCF	
0	2	01H		ADD	A,MY
:	:	:		:	:

Assembler control pseudo-instructions

END END

To terminate assembly

The END statement terminates assembly. All statements following the END statement are ignored. Be sure to write this statement at the end of the program. If it is missing, assembly may not terminate.

A label can be written before the END statement, but it cannot be referenced because it is not cataloged in the label table.

4.6 Macro-Functions

When using the same statement block at multiple locations in a program, the statement block can be called using a name defined beforehand. A statement block that has been so defined is called a macro.

Unlike a subroutine, the statement block is expanded at all locations where it is called, so the programmer should consider the statement block size and frequency of use and determine whether a macro or a subroutine is more appropriate.

Macro-instructions

ASM62XX provides the macro-instructions listed below so that branching between pages is possible without specifying the destination page using the PSET instruction.

Macro-		Mnemonic after expansion		Code											
instruction				11	10	9	8	7	6	5	4	3	2	1	0
JPM	ps	PSET	р	1	1	1	0	0	1	0	p4	p3	p2	p1	p0
		JP	S	0	0	0	0	s7	s6	s5	s4	s3	s2	s1	s0
JPM	C,ps	PSET	р	1	1	1	0	0	1	0	p4	р3	p2	p1	p0
		JP	C,s	0	0	1	0	s7	s6	s5	s4	s3	s2	s1	s0
JPM	NC,ps	PSWT	р	1	1	1	0	0	1	0	p4	p3	p2	p1	p0
		JP	NC,s	0	0	1	1	s7	s6	s5	s4	s3	s2	s1	s0
JPM	Z,ps	PSET	р	1	1	1	0	0	1	0	p4	p3	p2	p1	p0
		JP	Z,s	0	1	1	0	s7	s6	s5	s4	s3	s2	s1	s0
JPM	NZ,ps	PSET	р	1	1	1	0	0	1	0	p4	p3	p2	p1	p0
		JP	NZ,s	0	1	1	1	s7	s6	s5	s4	s3	s2	s1	s0
CALLM	ps	PSET	р	1	1	1	0	0	1	0	p4	p3	p2	p1	p0
		CALL	S	0	1	0	0	s7	s6	s5	s4	s3	s2	s1	s0

Character string ps represents 13-bit immediate data that indicates the branch-destination address. A label can be used for it.

Example:

Source file

	:	
	JPM	LABEL2
	:	
	PAGE	2
LABEL2	LD	A,0
	:	

Assembly list file after expansion

	:	
	JPM	LABEL2
+	PSET	LABEL2
+	JP	LABEL2
	:	
	PAGE	2
LABEL2	LD	A,0
	:	

Macro-definitions

The macro-definition should be done by using the MACRO and the ENDM instructions (pseudo-instruction).

The statement block enclosed by a MACRO pseudo-instruction and an ENDM pseudo-instruction is defined as a macro. Any name can be assigned to the macro as long as it conforms to the rules regarding the characters, length, and label field.

A macro can have an argument passed to it when it is called. In this case, any symbol can be used as a dummy argument in the macro definition where the actual argument is to be substituted and the same symbol must be written after the MACRO pseudo-instruction. Multiple dummy arguments must be separated by commas (,).

Be sure to write the ENDM statement at the end of a macrodefinition.

Example: This macro loads data from the memory location specified by ADDR into the A or B register specified by REG. Sample call: LDM A, 10H

LDM	MACRO	REG,ADDR
	LD	X,ADDR
	LD	REG,MX
	ENDM	

These dummy arguments are replaced by actual arguments when the macro is expanded.

LOCAL If a macro having a label is expanded at multiple locations, the label duplicates, causing an error. The LOCAL pseudo-instruction prevents this error occurring.

```
LOCAL_<label-name>[,<label-name>...]
```

The label specified by the LOCAL pseudo-instruction is replaced by "??nnnn" when the macro is expanded. Field nnnn is a four-digit decimal field, to which values 0001 to 9999 are assigned sequentially.

The LOCAL pseudo-instruction must be written at the beginning of the macro. The LOCAL pseudo-instruction is ignored if another instruction precedes it.

Example:

WAIT	MACRO	CNT	
	LOCAL	LOOP	
	LD	A, CNT	
LOOP	SBC	A, 1 \leftarrow Replaces LOOP with ??nnnr	ı
	JP	NZ, LOOP at expansion.	
	ENDM		

Macro-calls

The defined macro-name can be called from any location in the program by using the following format:

[<label>]_<macro-name>_[<actual-argument>, ...]

The MACRO can be called by using the macro-name. When arguments are required, write actual arguments corresponding to the dummy arguments used in the macrodefinition. Multiple actual arguments must be separated by commas (,).

Actual and dummy arguments correspond sequentially from left to right. If the number of actual arguments is greater than the number of dummy arguments, the excess actual arguments are ignored. If the number of actual arguments is less than the number of dummy arguments, the excess dummy arguments are replaced by nulls (00H). Any label can be written before the macro-name.

Example: Source file		
	ORG	0200н
CAFSEI CAFRSI CTBS CTBE CBFSEI	EQU EQU EQU EQU EQU EQU EQU EQU	02H 0101B 0000B 10H 08H
COUNT	LOCAL SET	LOOP1
LOOP1	ACPX CP JP ENDM	MX,A XL,CTE NZ,LOOP1
COUNTA	COUNT RET	CAFSET , CAFRST , CTAS , CTAE
COUNTE	B COUNT RET	CBFSET , CBFRST , CTBS , CTBE
	END	

The assembly listing file after assembly is shown on the next page.

Assembly listing file

LISTING	OF AS	SM62	XX	C2XX0A	41.1	PRN	PA	AGE 1	
LINE BANK PCP PCS			OBJ SOU			RCE STATEMENT			
1							ORG	0200H	
2									
3				0000=		CTAS	EQU	00H	
4				0002=		CTAE	EQU	02H	
5				0005=		CAFSET	EQU	01018	
6				0000=		CAFRST	EQU	0000B	
7				0010=		CTBS	EQU	10H	
8				0008=		CTBE	EQU	08H	
9				0001=		CBFSET	EQU	0001B	
10				0004=		CBFRST	EQU	0100B	
11				0001		0011001	120	01002	
12						COUNT	MACRO	FSET, FRST, CTS, CTE	
13						000111	LOCAL	LOOP1	
14							SET	F,FSET	
15							RST	F,FRST	
16							LD	A, 0	
10							LD	X,CTS	
18						LOOP1	ACPX	MX,A	
19						TOOLT	CP	XL,CTE	
20							JP	NZ,LOOP1	
20							ENDM	N2,100F1	
22							LINDM		
23						COUNTA	COUNT	CAFSET, CAFRST, CTAS, CTAE	
24	0	2	00	F45	+	COUNTA	SET	F, CAFSET	
25	0	2	01	F50	+		RST	F,CAFRST	
26	0	2	02	E00	+		LD	A, 0	
20	0	2	03	B00	+		LD	X,CTAS	
28	0	2	04	F28		??0001	ACPX	MX,A	
29	0	2	05	A52	+		CP	XL,CTAE	
30	0	2	06	704	+		JP	NZ,??0001	
31	0	2	07	FDF			RET	N2,	
32	0	2	07	PDP			ICE I		
33						COUNTB	COUNT	CBFSET, CBFRST, CTBS, CTBE	
34	0	2	08	F41	+	COONID	SET	F, CBFSET	
35	0	2	09	F54	+		RST	F,CBFRST	
36	0	2	09 0A	E00	+		LD	A, 0	
37	0	2	0B	B10	+		LD	X,CTBS	
38	0	2	0C	F28		??0002		MX,A	
39	0	2	0D	F28 A58	+		CP	XL, CTBE	
40	0	2	0D 0E	70C	+		JP	NZ,??0002	
40 41	0	2	OF	FDF	т		RET	1427::0002	
41	U	2	01	L'DL			1/12/1		
43							END		
сr									
CHAPTER 5 ERROR MESSAGES

If an error occurs during assembly, ASM62XX outputs the appropriate error symbol or error message listed below to the console and assembly listing file.

Only a single error symbol is output at the beginning (column 1) of the statement that caused the error. (If two or more errors occurred, only the error with highest priority is output.)

The following error symbols are listed in order of priority, starting with the one with the highest priority.

- S (Syntax Error)

An unrecoverable syntax error was encountered.

- U (Undefined Error)

The label or symbol of the operand has not been defined.

- M (Missing Label)

The label field has been omitted.

O (Operand Error)

A syntax error was encountered in the operand, or the operand could not be evaluated.

P (Phase Error)

The same label or symbol was defined more than once.

- R (Range Error)

- The location counter value exceeded the upper limit of the program memory, or a location exceeding the upper limit was specified.
- A value greater than that which the number of significant digits of the operand will accommodate was specified.

- ! (Warning)
 - Memory areas overlapped because of a "PAGE" or "ORG" pseudo-instruction or both.
 - A statement exceeded a page boundary although its location was not specified.

- FILE NAME ERROR

The source file name was longer than 8 characters.

– FILE NOT PRESENT

The specified source file was not found.

– DIRECTORY FULL

No space was left in the directory of the specified disk.

- FATAL DISK WRITE ERROR

The file could not be written to the disk.

- LABEL TABLE OVERFLOW

The number of defined labels and symbols exceeded the label table capacity (2000).

– CROSS REFERENCE TABLE OVERFLOW

The label/symbol reference count exceeded the crossreference table capacity (only when the cross-reference table is generated).

APPENDIX ASM62XX EXECUTION EXAMPLE

1) Source file (C2XX0A0.DAT)

A>TYPE C2XX0A0.DAT						
; ;******<< SAMPLE PROGRAM :E0C62XX >>******						
	*<< SAMP	LE PROGRAM	:EUC62XX	>>*****		
;	DOIL	0.0011				
	EQU					
	EQU	10				
;	I D					
	LD	Α,Ο				
LD						
LD	-					
LDPX	A,MX					
;	0001					
ORG	UEUH					
;	100					
	ADD	B,TEN				
LD						
AND	-					
FAN	MY,A					
RCF	MW D					
SCPX						
	C,NEXT					
;						
;		ERROR 0CH-2		>>		
FDDOD		4				
	~ -					
ERROR		A,3				
		MX,A				
		Z				
		UNDEF				
		11100000B				
	NOP5					
	SECTION					
		ABC+0FH				
	NOP7 NOP7					
	NOP / END					
	END					

2) Running the assembler (display on the console)

A>ASM62XX C2XX0A0 *** E0C62XX CROSS ASSEMBLER. --- VERSION 2.00 *** EEEEEEEEE PPPPPPP SSSSSSS 00000000 NNN NNN EEEEEEEEE PPPPPPPP SSS SSSS 000 000 NNNN NNN EEE PPP PPP SSS SSS 000 000 NNNNN NNN 000 NNNNNN NNN EEE PPP PPP SSS 000 SSSSSS EEEEEEEEE PPPPPPPP 000 000 NNN NNN NNN EEEEEEEEE PPPPPPP SSSS 000 000 NNN NNNNN PPP SSS 000 000 NNN NNNNN EEE SSS 000 EEE PPP SSS 000 NNN NNNN SSSS SSS 000 EEEEEEEEE PPP 000 NNN NNN EEEEEEEEE PPP SSSSSSS 00000000 NNN NN

(C) COPYRIGHT 1989 SEIKO EPSON CORP.

SOURCE FILE NAME IS " C2XXYYY.DAT "

THIS SOFTWARE MAKES NEXT FILES.

C2XXYYYH.HEX	 HIGH BYTE OBJECT FILE.
C2XXYYYL.HEX	 LOW BYTE OBJECT FILE.
C2XXYYY .PRN	 ASSEMBLY LIST FILE.

DO	YOU	NEED	AUTO	PAGE	SET?(Y/	/N) N		
DO	YOU	NEED	CROS	S REE	FERENCE 1	TABLE?(Y/N)	Y	
М	23				000A=		EQU	0CH-2
Ρ	24				0004=	ERROR	EQU	4
Ρ	25	0	0	E7	E03	ERROR	LD	A,3
S	26	0	0	E8	FFF		SBD	MX,A
0	27	0	0	E9	FFF		INC	Z
U	28	0	0	EA	000		JP	UNDEF
!	30						NOP5	
R	34	0	1	00			NOP7	

8 ERROR OR WARNING(S) DETECTED Used : 6/2000 symbols

A>

3) Assembly listing file (C2XX0A0.PRN)

		C2XX0			~~~~~		_	1		
		G OF A				AO.PRN		AGE 1		
L		BANK	PCP	PCS	OBJ		RCE STAT	EMEN.I.		
	1 2					;		LE PROGRAM	· EOGCOXX	+ + + + + + +
	∠ 3					;	SAMP.	LE PROGRAM	·EUCOZAA	yy
	4				00F0=	, ABC	EQU	ОГОН		
	т 5				0010= 000A=	TEN	EQU	10		
	6				000A-	;	шQU	10		
	7	0	0	00	E00	, START	LD	A,0		
	8	0	0	01	B08	DIIIII	LD	X,8		
	9	0	0	02	803		LD	Y,3		
	10	0	0	03	EE2		LDPX	A,MX		
	11					;		,		
	12						ORG	OEOH		
	13					;				
	14	0	0	ΕO	ClA	NEXT	ADD	B,TEN		
	15	0	0	E1	ЕАб		LD	MX,XH		
	16	0	0	E2	C85		AND	A,101B		
	17	0	0	E3	F1C		FAN	MY,A		
	18	0	0	E4	F5E		RCF			
	19	0	0	E5	F39		SCPX	MX,B		
	20	0	0	ЕG	2E0		JP	C,NEXT		
	21					;				
	22					;	-<<	ERROR		>>
М	23				000A=		EQU	0CH-2		
Ρ	24				0004=	ERROR	EQU	4		
Ρ	25	0	0	E7	E03	ERROR	LD	A,3		
S	26	0	0	E8	FFF		SBD	MX,A		
0	27	0	0	E9	FFF		INC	Z		
U	28	0	0	EA	000		JP	UNDEF		
	29						ORG	11100000B		
!	30						NOP5			
	31						SECTION			
	32						ORG	ABC+0FH		
-	33	0			FFF		NOP7			
R	34	0	1	00			NOP7			
0 1	35						END			
		G OR W		.NG(S) DETECTH PAGE I					
		םמאד נ =0					NEXT	0-0-E0	CUL	T 0-0-00
			00A		U UNDEF		111221	0010	DIAN	.1 00000
		REFER				E X- 1				
ABC		4#	LINCL	32						
ERF		24#		25#						
NEX		14#		20						
STA		7#								
TEN		5#		14						
UNE		28								
		-				APPENDI	X- ASM62			II-41

4) Object files (C2XX0A0H.HEX, C2XX0A0L.HEX)

A>TYPE C2XX0A0L.HEX

:1000E0001AA6851C5E39E003FFFF00FFFFFFFFFF3C :0000001FF

(When ROM capacity is in 1,024 steps)

A>TYPE C2XX0A0H.HEX :1000E0000C0E0C0F0F0F020E0F0F00FFFFFFFFF94

:0000001FF

(When ROM capacity is in 1,024 steps)

Note The size of the object file differs depending on the device and the ROM capacity. See Chapter 1, "E0C62XX RESTRICTIONS".

III. Function Option Generator Manual

CONTENTS

CHAPTER 1	OLIN	IERAL II	1-1
	1.1	Outline of Function Option Generator II	II-1
	1.2	Execution Flow and I/O Files II	II-2
CHAPTER 2	OPT	ION LIST GENERATION II	[I -4
	2.1	Option List Recording Procedure II	I-4
	2.2	Option List II	[I-4
	2.3	Option SpecificationsIIDevice type (OSC3 oscillator)IIVDE power supplyIIMultiple key entry resetIIIInput interrupt noise rejectorIIIInput ports pull up resistorIIIOutput ports output specification (R00-R03)IIIR10 specificationIIIR11 specificationIIIR12 specificationIIIR13 specificationIIII/O ports specification (P0, P1, P2)IIII/O ports pull up resistor (P0, P1, P2)IIIP30-P33 specificationIIIP30-P33 pull up resistorIIIWatchdog timerIIISerial interface data permutationIII	II-8 II-9 I-10 I-11 I-12 I-13 I-13 I-14 I-16 I-17 I-18 I-19 I-20 I-22 I-22
CHAPTER 3		CTION OPTION GENERATOR	
	OPE	RATION PROCEDURE III	[-25
	3.1	Creating Work Disk III	[-25
	3.2	Starting FOG6262 III	[-26

	3.3	Setting New Function Options	III-28
	3.4	Modifying Function Option Settings	III-30
	3.5	Selecting Function Options	III-34 III-35 III-35 III-36 III-36 III-37 III-37 III-38 III-38 III-39 III-40 III-41 III-41 III-42 III-42
	3.6	HEX File Generation and EPROM Selection	III-43
	3.7	End Procedure	III-45
CHAPTER 4	SAM	PLE FILES	III-46

CHAPTER 1 GENERAL

1.1 Outline of Function Option Generator

With the 4-bit single-chip E0C6262 microcomputers, the customer may select 16 hardware options. By modifying the mask patterns of the E0C6262 according to the selected options, the system can be customized to meet the specifications of the target system.

The FOG6262 Function Option Generator (hereinafter called FOG6262) is a software tool for generating data files used to generate mask patterns. It enables the customer to interactively select and specify pertinent items for each hardware option. From the data file created with FOG6262, the EOC6262 mask pattern is automatically generated by a general purpose computer.

The HEX file for the evaluation board (EVA6262) hardware option ROM is simultaneously generated with the data file. By writing the contents of the HEX file into the EPROM and mounting it on the EVA6262, option functions can be executed on the EVA6262.

Two FOG6262 program disks are supplied by SEIKO EPSON: one for NEC PC-9801V series (5.25" 2HD) and one for IBM PC/XT and PC/AT (5.25" 2D). The basic configurations are as follows.

PC-9801V series	Host computer:	PC-9801V series
	Disk drive:	FD (5.25" 2HD) $ imes$ 1 or more
	Operating system:	MS-DOS Ver. 3.1 or later
	ROM writer:	Required when using EVA6262
IBM PC/XT and PC/AT	Host computer: Disk drive: Operating system: ROM writer:	IBM PC/XT and PC/AT FD (5.25" 2D) \times 1 or more PC-DOS Ver. 2.1 or later Required when using EVA6262

The program name of FOG6262 is as follows: FOG6262.EXE

1.2 Execution Flow and I/O Files

Figure 1.2.1 shows the FOG6262 execution flow.

(1) Option list generation

Select the hardware options that meet the specifications of the target system and record them in the option list (paper for recording items in preparation for input operation; explained later).

(2) FOG6262 execution

Start FOG6262 and select the required function options. Function options can be interactively selected, so an input file need not be generated. Already selected options can be modified.

FOG6262 outputs the following data files:

- Function option document file (C262XXXF.DOC) This is a data file used to generate the mask patterns for such items as I/O ports. This file must be sent with the completed program file.
- Function option HEX file (C262XXXF.HEX) This is a function option file (Intel hexa format) used for EVA6262. One EVA6262 function option ROM is generated by writing this file with the ROM writer.

Remarks:

- File name "XXX" is specified for each customer by Seiko Epson.
- Combine the document files with the program files (C262XXXH.HEX and C262XXXL.HEX) using the mask data checker (MDC6262): copy the combined file into another diskette and submit to Seiko Epson.
- Set all unused ROM areas to FFH when writing the HEX file into the EPROM. (Refer to "EVA6262 Manual" for the ROM installation location.)

CHAPTER 2 OPTION LIST GENERATION

2.1 Option List Recording Procedure

Multiple specifications are available in each option item as indicated in the Option List in Section 2.2. Using "2.3 Option Specifications" as reference, select the specifications that meet the target system and check the appropriate box. Be sure to record the specifications for unused ports too, according to the instructions provided.

2.2 Option List

The E0C6262 option list is as follows:

	• E0C6262 • E0C62L62		
	OSC3 Oscillator (See Note 1)		
	Ceramic Oscillator		
	• CR Oscillator		
	• Not Use		
2.	VDE POWER SUPPLY		
	• Not Use		
	• Use	🗆 K1, R1, P2, P3	
		□ All Pads	
3	MULTIPLE KEY ENTRY RESET		
0.	• Not Use		
	• Use		
		□ K00, K01, K02	
		□ K00, K01, K02, K03	3
4.	INPUT INTERRUPT NOISE REJEC	CTOR	
	• K00-K03		\Box Not Use
	• K10-K13	□ Use	□ Not Use
5.	INPUT PORT PULL UP RESISTOR	R	
	• K00-K03	\Box With Resistor	\Box Gate Direct
	• K10-K13	\Box With Resistor	□ Gate Direct
6.	OUTPUT PORTS OUTPUT SPECI	FICATION (R00-R03)	
	• R00-R03	□ Complementary	\Box Nch Open Drain
7.	R10 SPECIFICATION		
	• Output Type	DC Output	□ SRDY Output
	Output Specification		🗆 Nch Open Drain

1. DEVICE TYPE

8. R11 SPECIFICATION

• Output Type 🗆 DC Output	
□ FOUT 32768 [I	Hz]
□ FOUT 16384 [I	Hz]
□ FOUT 8192 [F	Hz]
□ FOUT 4096 [I	Hz]
□ FOUT 2048 [I	Hz]
□ FOUT 1024 [I	Hz]
□ FOUT 512 [I	Hz]
□ FOUT 256 [H	
• Output Specification 🗆 Complementar	y 🛛 Nch Open Drain
9. R12 SPECIFICATION	
• Output Type 🗆 DC Output	🗆 Buzzer Output
• Output Specification \dots Complementar	y 🛛 Nch Open Drain
10. R13 SPECIFICATION	
• Output Type 🗆 DC Output	
Buzzer Invertee	d Output (See Note 2)
• Output Specification 🗆 Complementar	y 🛛 Nch Open Drain
11. I/O PORTS OUTPUT SPECIFICATION	
• P00–P03 🗆 Complementar	y 🛛 🗆 Nch Open Drain
• P10–P13 🗆 Complementar	y 🛛 🗆 Nch Open Drain
• P20–P23 🗆 Complementar	y 🛛 Nch Open Drain
12. I/O PORTS PULL UP RESISTOR	
• P00–P03 🗆 With Resistor	□ Gate Direct
• P10–P13 🗆 With Resistor	□ Gate Direct
• P20–P23 🗆 With Resistor	□ Gate Direct
• P00–P03 Pull Up Resistance \Box 150 k Ω	\Box 50 k Ω (See Note 1)
• P10–P13 Pull Up Resistance \Box 150 k Ω	\Box 50 k Ω (See Note 1)
• P20–P23 Pull Up Resistance \Box 150 k Ω	$\Box~50~k\Omega$ (See Note 1)
13. P30–P33 SPECIFICATION (See Note 3)	
• Output Type 🗆 I/O Port	□ SI/O Port
• Output Specification Complementar	y 🛛 🗆 Nch Open Drain
III-6 E0C6262 FUNCTION OPTION GENERATOR	

- 14. P30–P33 PULL UP RESISTOR (See Note 3)
 - P30–P33 🗆 With Resistor
 - P30-P33 Pull Up Resistance .. \Box 150 k Ω

□ Gate Direct

 \Box 50 k Ω (See Note 1)

15. WATCHDOG TIMER

- Use 🗆
- Not Use \Box

16. SERIAL INTERFACE DATA PERMUTATION (See Note 4)

- LSB First
- MSB First

- Note 1: This option is valid only if "E0C6262" were selected for device type in Item 1.
- Note 2: "Buzzer Inverted Output" (R13) may only be selected if "Buzzer Output" has been selected as the output type for R12 in Item 9.
- Note 3: If "Use" were selected for the VDE power supply in Item 2, P30–P32 will be the terminals for which option may be selected.
- Note 4: These options may be selected even if P30–P33 are not set to "SI/O Port" in Item 13; however, if P30–P33 are not set to "SI/O Port", the capability of the built-in serial interface circuit cannot be used.

2.3 Option Specification

Select the oscillator which uses OSC3 and OSC4 terminals. In case of twin clock type E0C62A62, select "Ceramic Oscillator" or "CR Oscillator".

In case of single clock type E0C6262, select "Not Use".

In case OSC3 oscillator is to be utilized (EOC62A62): To minimize the number of external parts, CR oscillator is suitable; to obtain stable oscillation frequency, ceramic oscillator is suitable.

When "CR Oscillator" is selected, only resistor will be required as external parts because capacity is built in. On the other hand, when "Ceramic Oscillator" is selected, external parts necessary are ceramic oscillator, gate capacity and drain capacity.

When "Ceramic Oscillator" is selected, the frequency will be fixed at 1 MHz whereas selecting "CR Oscillator" will allow modification of the frequency to a certain extent, depending on the external resistance.

VDE power supply

• Use 🗆 K1, R1, P2, P3

All Pads

Select the power supply for the I/O driver of the input ports (K0 and K1), output ports (R0 and R1), and I/O ports (P0, P1, P2 and P3).

If "Not Use" were selected, the I/O driver of all ports will assume the power supply VDD (+) of IC to be the power supply on the positive side.

If VDE power supply is to be used, the P33 I/O port will serve as the power terminal VDE (+). Since the VDD/VDE power supply switching is done in units of (K0, R0, P0, P1) and (K1, R1, P2, P3), if "Use" were selected, the power supply of the ports will be as follows:

• Use 🗆 K1, R1, P2, P3

K0, R0, P0, P1: VDD K1, R1, P2, P3: VDE (See note below)

• Use
□ All pads

K0, R0, P0, P1: VDE K1, R1, P2, P3: VDE (See note below)

Since the electric potential of VDE (+) may be independently set from the power supply VDD (+) of the IC (with the VSS (-) being common), for example, if VDD = 1.5 V and VDE = 5.0 V settings were made, while the E0C62L62 main unit is being operated at low voltage, it can be interfaced with other ICs which are being operated at 5.0 V.

Note K0, R0, etc., refer to K00–K03, R00–R03, etc., respectively. If VDE power supply were set to "Not Use", P3 may be used as a 4terminal I/O port with P30–P33; if set to "Use", P3 may be used as a 3-terminal I/O port with P30–P32.

Multiple key entry reset

Not Use
Use
K00, K01
K00, K01, K02
K00, K01, K02, K03

The reset function is set when K00 through K03 are entered. When "Not Use" is selected, the reset function is not activated even if K00 through K03 are entered. When "Use K00, K01" is selected, the system is reset immediately the K00 and K01 inputs go low at the same time. Similarly, the system is reset as soon as the K00 through K02 inputs or the K00 through K03 inputs go low.

However, the system is reset when a low signal is input for more than a rule time (2 to 4 sec).

The system reset circuit is shown in Figure 2.3.1.

Input interrupt noise rejector

• K00–K03	Use
• K10_K13	

```
Not Use
```

Not Use

Select whether noise rejector will be supplemented to the input interrupt circuit of K00–K03 and K10–K13. When "Use" is selected, the entry signal will pass the noise rejector, and occurrence of interrupt errors due to noise or chattering can be avoided. Note, however, that because the noise rejector performs entry signal sampling at 4 kHz, "Not Use" should be selected when high speed response is required.

Input ports pull up resistor

• K00–K03	With Resistor	Gate Direct
• K10–K13	□ With Resistor	□ Gate Direct

Select whether or not pull up resistors will be used for every 4 bits of the input ports (K00–K03 and K10–K13). When "Gate Direct" is selected, see to it that entry floating state does not occur. Select "With Resistor" for unused ports.

The configuration of the pull up resistor circuit is shown in Figure 2.3.2.

Fig. 2.3.2 Configuration of pull up resistor circuit

Output ports output specification (R00-

R03)

• R00–R03 Complementary Nch Open Drain

Select the output specification for the output ports (R00–R03).

Either "Complementary" output or "Nch Open Drain" output may be selected.

When output port is to be used on key matrix configuration, select "Nch Open Drain" output.

If the output ports will not be used, select "Complementary" output.

The configuration of the output port is shown in Figure 2.3.3.

R10 specification

Output Type DC Output D SRDY Output

• Output Specification ...

Complementary
Nch Open Drain

Select the output specification for the R10 terminal. Either "Complementary" output or "Nch Open Drain" output may be selected.

When "DC Output" is selected, R10 becomes a regular output port.

When "SRDY Output" is selected, ready signal of the serial interface (SRDY) is generated from R10 terminal.

The circuit configuration is the same as that of output ports (R00–R03 shown in Figure 2.3.3).

Refer to Figure 2.3.8 for $\overline{\text{SRDY}}$ output waveform.

R11 specification

• Output Type DC Output
FOUT 32768 [Hz]
FOUT 16384 [Hz]
FOUT 8192 [Hz]
FOUT 4096 [Hz]
FOUT 2048 [Hz]
FOUT 1024 [Hz]
□ FOUT 512 [Hz]
FOUT 256 [Hz]
Output Specification Complementary Nch Open Drain

Select the output specification for R11 terminal.

Either "Complementary" output or "Nch Open Drain" output may be selected.

When "DC Output" is selected, R11 becomes a regular output port.

When "FOUT" output is selected, clock with frequency selected from R11 terminal is generated by writing "1" to the R11 register.

When "DC Output" is selected
 When R11 register (D5 address, D1 bit) is set to "1", the
 R11 terminal output goes high (VDD), and goes low (VSS)
 when set to "0".

Output waveform is shown in Figure 2.3.4.

- When "FOUT" output is selected

When FOUT bit (R11 register) is set to "1", 50% duty and VDD-VSS amplitude square wave is generated at the specified frequency. When set to "0", R11 terminal goes low (VSS).

A FOUT frequency may be selected from among 8 types, ranging from 256 Hz to 32,768 Hz.

FOUT output is normally utilized to provide clock to other

devices but since hazard occurs at the square wave breaks, great caution must be observed when using it. Output waveform is shown in Figure 2.3.5.

R12 specification

• Output Type DC Output D Buzzer Output

• Output Specification ...

Complementary
Nch Open Drain

Select the output specification for the R12 terminal. Either "Complementary" output or "Nch Open Drain" output may be selected.

When "DC Output" is selected, R12 becomes a regular output port.

When "Buzzer Output" is selected, by writing "1" to the R12 register, buzzer drive (oscillation output) signal is output from the R12 terminal.

* When "DC Output" is selected, R13 terminal output type (see "R13 specification") selection is limited to "DC Output" only.

The circuit configuration is the same as that of output ports (R00–R03 shown in Figure 2.3.3).

Refer to Figure 2.3.6 for buzzer output waveform.

R13 specification

Select the output specification for the R13 terminal. Either "Complementary" output or "Nch Open Drain" output may be selected.

When "DC Output" is selected, R13 becomes a regular output port.

When "Buzzer Inverted Output" is selected, inverted waveform of R12 buzzer output is generated from the R13 terminal. Buzzer output and buzzer inverted output can be controlled simultaneously by the R12 register, and the data of R13 register will not affect buzzer output and buzzer inverted output.

* "Buzzer Inverted Output" may not be selected when the R12 terminal output type (see "R12 specification") is not set to "Buzzer Output". Moreover, when the output type of R12 terminal is reselected to "DC Output" by the B command after selecting "Buzzer Inverted Output" at this point, the output type of R13 terminal is reset to "DC Output".

Buzzer output waveform is shown in Figure 2.3.6.

I/O ports specification (P0, P1, P2)

Select the output specification to be used during I/O ports (P0, P1, P2) output mode selection.

Either "Complementary" output or "Nch Open Drain" output may be selected.

The circuit configuration of the output driver is the same as that of output ports (R00–R03 shown in Figure 2.3.3).

Select "Complementary" output for unused ports.

The circuit configuration I/O port is shown in Figure 2.3.7.

* P0, P1 and P2, refer to P00–P03, P10–P13 and P20–P23, respectively.

I/O ports pull up resistor (P0, P1, P2)

• P00–P03 🗆 With Resistor	□ Gate Direct
• P10–P13 D With Resistor	□ Gate Direct
• P20–P23 D With Resistor	□ Gate Direct

Select whether or not pull up resistors will be used for every 4 bits of the I/O ports (P00–P03, P10–P13 and P20–P23). These pull up resistors will function when the I/O ports are set to the input mode (after resetting or through software). When "Gate Direct" is selected, see to it that entry floating state does not occur. Select "With Resistor" for unused I/O ports.

If "E0C6262" (3.0 V type) were selected in "Device type", selecting "With Resistor" in the above option will allow the selection of the following options:

• P00–P03 Pull Up Resistance $\ \Box$ 150 k Ω	\Box 50 k Ω
• P10–P13 Pull Up Resistance $\ \Box$ 150 k Ω	\Box 50 k Ω
• P20–P23 Pull Up Resistance $\ \square$ 150 k Ω	\Box 50 k Ω

(The resistance values indicated above are approximates and do not represent absolute accuracy.)

When the input port status is to be changed from low level (VSS), to high level (VDD) using a pull up resistor, a delay in the rise of waveform will occur due to the time constant of the pull up resistor and input load capacity.

In case high speed operation with "E0C62A62" (3.0 V type)

is required, low resistance (50 $k\Omega)$ may be used to reduce this delay time.

Refer to Figure 2.3.7 for the configuration of the pull up resistor circuit.

* P0, P1 and P2, refer to P00–P03, P10–P13 and P20–P23, respectively.

P30-P33 specifica- tion	Output Type I/O Port I SI/O Port Output Specification Complementary Nch Open Drain
	Select the output specification for the P30–P33 terminals.
	 When "I/O Port" is selected When "I/O Port" is selected as the output type, the output specification during the output mode setting P30–P33 must be selected. Either "Complementary" output or "Nch Open Drain" output may be selected in 4 bits units (P30–P33). Select "Complementary" output if these terminals will not be used. The circuit configuration is the same as that of I/O ports (P00–P03, P10–P13 and P20–P23 shown in Figure 2.3.7).
	 When "SI/O Port" is selected When "SI/O Port" is selected as the output type, the capability of the built-in serial interface circuit may be used. In this case, the specifications of the P30-P33 terminals will be as follows:
	P30 = SIN: Serial data input terminal (input only)P31 = SOUT: Serial data output terminal (output only)P32 = SCLK: Serial data transfer clock I/O terminal (input/out-
	put) P33 = Exclusive output terminal
	When "SI/O Port" is selected, the output specification for
	P31 (SOUT), P32 (SCLK, during transfer clock output) and P33 (exclusive output terminal) must be selected. Either "Complementary" output or "Nch Open Drain" output may be selected in 3 bits units (SOUT, SCLK and P33).
	The output waveform is shown in Figure 2.3.8.

Note When "SI/O Port" is selected, the value of the P30–P32 data registers will have no effect on the SIN, SOUT and SCEK terminals. Moreover, P33 will become a general purpose output terminal and hence input will not be possible. If "Use" were selected in "VDE power supply", P33 cannot be used as a regular terminal regardless of the output type ("I/O Port" or "SI/O Port") selection.

P30-P33 pull up resistor

Select whether or not pull up resistors will be used with all 4 bits of P30–P33.

- In case of "I/O Port" selection as the output type of P30–P33

These pull up resistors will function when P30–P33 are set to the input mode (after resetting or through software). When "Gate Direct" is selected, see to it that entry floating state does not occur. Select "With Resistor" for unused I/O ports.

If "E0C6262" (3.0 V type) were selected in "Device type", selecting "With Resistor" in the above option will allow the selection of the following options:

• P30–P33 Pull Up Resistance \Box 150 k Ω $\quad \Box$ 50 k Ω

(The resistance values indicated above are approximates and do not represent absolute accuracy.)

Note If P30–P33 are to be used as I/O ports, all specification and option selections will be the same as those for P00–P03, P10–P13 and P20–P23.

- FOG6262
- In case of "SI/O Port" selection as the output type of P30–P33 When "With Resistor" is selected, pull up resistor will be added to SIN (P30) and SCLK (P32) terminals. The pull up resistor for SIN will always function, but the pull up resistor for SCLK will only function during serial data transfer clock input.

If "E0C6262" (3.0 V type) were selected in "Device type", selecting "With Resistor" in the above option will allow the selection of the following options:

• P30–P33 Pull Up Resistance \Box 150 k Ω \Box 50 k Ω

(The resistance values indicated above are approximates and do not represent absolute accuracy.)

Note If "Use" were selected in "VDE power supply", P33 cannot be used as a regular terminal regardless of the output type ("I/O Port" or "SI/O Port") selection.

CHAPTER 2: OPTION LIST GENERATION III-23

Note If P30–P33 are not set to "SI/O Port" ("P30–P33 specification"), the capability of the built-in serial interface circuit cannot be used.
CHAPTER 3 FUNCTION OPTION GENERATOR OPERATION PROCEDURE

3.1 Creating Work Disk

To prevent inadvertent destruction of the contents of the FOG6262 program disk, create a work disk by copying the program disk, place a write protection tab on the program disk, and keep the program disk as a master disk in a safe place. Use the work disk for actual operation. The work disk creation procedure is as follows.

* In examples I means press the RETURN key.

- (1) Activate MS-DOS (Ver. 3.1 or later) or PC-DOS (Ver. 2.1 or later) and format a new floppy disk.
 - Example: Insert the DOS system disk into drive A and a new floppy disk (to be used as the work disk) into drive B, then format the disk in drive B.

A>FORMAT B:/S \square \leftarrow The DOS is also copied.

- (2) Copy the FOG6262 program.
 - Example: Insert the FOG6262 program disk into drive A and th formatted work disk into drive B, then copy the disk in drive A to the one in drive B.

A>COPY *.* B:J

After copying, check that the "FOG6262.EXE" file has been copied onto the work disk. Copy the editor also when performing all operations with this disk.

Now, the work disk is ready for use. The two required files are generated on this disk.

3.2 Starting FOG6262

To start FOG6262, insert the work disk into the current drive at the DOS command level (state in which a prompt such as A> is displayed), then enter the program name as shown below.

A>FOG6262 🖵

When FOG6262 is started, the following message is displayed.

*** E	0C6262 1	FUNCTI	ON OPTI	ON GEN	ERATOR.	Ver	3.00	* * *
EEEEEEEEE	PPPPPPI	PP	SSSS	SSSS	0000	0000	NNN	NNN
EEEEEEEEE	PPPPPP	PPPP	SSS	SSSS	000	000	NNNN	NNN
EEE	PPP	PPP	SSS	SSS	000	000	NNNNN	NNN
EEE	PPP	PPP	SSS		000	000	NNNNN	J NNN
EEEEEEEEE	PPPPPP	PPPP	SSSS	SSS	000	000	NNN NN	IN NNN
EEEEEEEEE	PPPPPP	PP	S	SSSS	000	000	NNN 1	INNNNN
EEE	PPP			SSS	000	000	NNN	NNNNN
EEE	PPP		SSS	SSS	000	000	NNN	NNNN
EEEEEEEEE	PPP		SSSS	SSS	000	000	NNN	NNN
EEEEEEEEE	PPP		SSSS	SSSS	0000	0000	NNN	NN
(C) COPYRIGHT 1990 SEIKO EPSON CORP. THIS SOFTWARE MAKES NEXT FILES. C262XXXF.HEX FUNCTION OPTION HEX FILE.								
C262XXXF.DOC FUNCTION OPTION DOCUMENT FILE. STRIKE ANY KEY.								

For "STRIKE ANY KEY," press any key to advance the program execution. To suspend execution, press the "CTRL" and "C" keys together: the sequence returns to the DOS command level. (It is possible by pressing STOP key depending on the PC used.) Following the start message, the date currently set in the personal computer is displayed, prompting entry of a new date.

```
*** E0C6262 USER'S OPTION SETTING. --- Ver 3.00 ***
CURRENT DATE IS 90/10/03
PLEASE INPUT NEW DATE : 90/10/10.
```

When modifying the date, enter the 2-digit year, month, and day of the month by delimiting them with a slash ("/").

When not modifying the date, press the RETURN key "" to continue.

When the date is set, the following operation selection menu is displayed on the screen.

```
*** OPERATION SELECT MENU ***

1. INPUT NEW FILE

2. EDIT FILE

3. RETURN TO DOS

PLEASE SELECT NO.?
```

Enter a number from 1 to 3 to select a subsequent operation. The items indicate the following.

- 1. INPUT NEW FILE: Used to set new function options.
- 2. EDIT FILE: Used to read the already-generated function option document file and set or modify the option contents. In this case, the work disk must contain the function option document file (C262XXXF.DOC) generated by "1. INPUT NEW FILE".
- 3. RETURN TO DOS: Used to terminate FOG6262 and return to the DOS command level.

3.3 Setting New Function Options

This section explains how to set new function options.

```
*** OPERATION SELECT MENU ***
       1. INPUT NEW FILE
       2. EDIT FILE
       3. RETURN TO DOS
PLEASE SELECT NO. ? 1
                                                        .. (1)
PLEASE INPUT FILE NAME ? C2620A0
                                                        .. (2)
PLEASE INPUT USER'S NAME ? SEIKO EPSON CORP.
                                                        .. (3)
PLEASE INPUT ANY COMMENT
 ( ONE LINE IS 50 CHR ) ? TOKYO DESIGN CENTER
                                                        .. (4)
                        ? 390-4 HINO HINO-SHI TOKYO 191 JAPAN
                        ? TEL 0425-83-7313
                        ? FAX 0425-83-7413
                        ? 🖵
```

(1) PLEASE SELECT NO.?

Select "1. INPUT NEW FILE" on the operation selection menu.

(2) PLEASE INPUT FILE NAME?

Enter the file name. Do not enter the extended part of the file name. In case a function option document file (C262XXX.DOC) with the same name as the file name specified in the current drive exists, the user is asked whether overwrition is desired. Enter "Y" or "N" accordingly.

Example: PLEASE INPUT FILE NAME ? C2620A0 EXISTS OVERWRITE (Y/N) ? NJ

(3) PLEASE INPUT USER'S NAME?

Enter the customer's company name.

(4) PLEASE INPUT ANY COMMENT

- Company, department, division, and section names
- Company address, phone number, and FAX number
- Other information, including technical information

Next, start function option setting. For new settings, select function options from No. 1 to No. 16 sequentially and interactively.

Moreover, when you wish to modify previously set function options in the middle of a selection process, enter "B^I" to return 1 step back to the previous function option setting operation.

Example: *** OPTION NO.4 ***
.....
PLEASE SELECT NO.(1) ? B.

(See 3.5 for the option selection procedure.)

3.4 Modifying Function Option Settings

This section explains how to modify the function option settings.

```
*** OPERATION SELECT MENU ***
       1. INPUT NEW FILE
       2. EDIT FILE
       3. RETURN TO DOS
PLEASE SELECT NO. ? 21
                                           .. (1)
*** SOURCE FILE(S) ***
C2620A0 C2620B0 C2620C0
                                           .. (2)
PLEASE INPUT FILE NAME ? C2620A0
                                           .. (3)
PLEASE INPUT USER'S NAME ? 🚽
                                           .. (4)
PLEASE INPUT ANY COMMENT
 ( ONE LINE IS 50 CHR ) ? 🚽
                                           .. (5)
PLEASE INPUT EDIT NO. ? 4 -
                                           .. (6)
```

(1) PLEASE SELECT NO.?

Select "2. EDIT FILE" on the operation selection menu.

(2) *** SOURCE FILE(S) ***

Will display the function option document files on the current drive.

If no modifiable source exists, the following message is

displayed and the program is terminated.

FUNCTION OPTION DOCUMENT FILE IS NOT FOUND.

(3) PLEASE INPUT FILE NAME?

Enter a file name. Do not enter the extended part of the file name. If the function option document file (C262XXXF.DOC) is not in the current drive, an error message like the one below is output, prompting entry of other file name.

Example:

```
PLEASE INPUT FILE NAME ? C2620N0 

FUNCTION OPTION DOCUMENT FILE IS NOT FOUND.
```

(4) PLEASE INPUT USER'S NAME?

When modifying the customer's company name, enter a new name. The previously entered name may be used by pressing the RETURN key "...".

(5) PLEASE INPUT ANY COMMENT

When modifying a comment, enter all the comment lines anew, beginning with the first line; comment data cannot be partially modified. Previously entered comment data can be used by pressing the RETURN key "...". The input condition are the same as for new settings. (6) PLEASE INPUT EDIT NO.?

Enter the number (1 to 16) of the function option to be modified, then start setting the option contents (See Section 3.5).

When selection of one option is complete, the system prompts entry of another function option number. Repeat selection until all options to be modified are selected.

If the "□" key is pressed without entering a number, the option of the subsequent number can be selected.

Furthermore, if "T I" is entered while the edit No. is ready for input, it will be possible to return to No.1 function option setting operation.

Enter "E^{II}" to end option setting. Then, move to the confirmation procedure for HEX file generation (See Section 3.6).

Example:

- When modifying the settings of the function option of No. 9

PLEASE INPUT EDIT NO.? 9

- To return to No. 1 function option setting

PLEASE INPUT EDIT NO.? T-

- When ending setting

PLEASE INPUT EDIT NO.? E-

3.5 Selecting Function Options

Selection procedure for function options are described below.

- * Option selection is done interactively. For new settings, set Options 1–16 sequentially; to modify settings, the specified option number may be set directly.
- * The selections for each option correspond one to one to the option list. While referring to the contents recorded in the option list, enter the selection number.
- * In the message that prompts entry, the value in parentheses () indicates the default value in case of new settings, or the previously set value in case of setting modification. This value is set when only the RETURN key "[]" is pressed.
- * In examples, 🖵 means press the RETURN key.

Selecting	*** OPTION NO.1 ***		
device type (OSC3 oscil-	DEVICE TYPE		
lator)	DEVICE TYPE	1. E0C6262 (Type 3.0 V) 2. E0C62L62 (Type 1.5 V)	
	PLEASE SELECT NO.(1) ? 1. *		
	OSC3 OSCILLATOR	1. Ceramic 2. CR 3. Not Use	
	PLEASE SELECT NO.(1) ? 1.		
	DEVICE TYPE OSC3 OSCILLATOR	1. E0C6262 (Type 3.0 V) 1. Ceramic	SELECTED SELECTED

* If "2" were selected, there is no option selection for "OSC3 OSCILLATOR".

Selecting VDE power supply	*** OPTION NO.2 ***	
	EXTRA POWER SUPPLY VDE	
	EX. POWER VDE	1. Not Use 2. Use K1,R1,P2,P3 3. Use All PAD
	PLEASE SELECT NO.(1) ? 1.	
	EX. POWER VDE	1. Not Use SELECTED

Selecting multiple	*** OPTION NO.3 ***
key entry reset	MULTIPLE KEY ENTRY RESET
	COMBINATION 1. Not Use
	2. Use K00,K01
	3. Use K00,K01,K02
	4. Use K00,K01,K02,K03
	PLEASE SELECT NO.(1) ? 11
	COMBINATION 1. Not Use SELECTED

Selecting input interrupt noise	*** OPTION NO.4 ***		F0G6262
rejector	INPUT INTERRUPT NOISE R	EJECTOR	066
	K00-K03	1. Use 2. Not Use	L
	PLEASE SELECT NO.(1) ? 1		
	K10-K13	1. Use 2. Not Use	
	PLEASE SELECT NO.(1) ? 1		
	K00-K03 K10-K13		ELECTED ELECTED

25

Selecting input ports pull up resistor	*** OPTION NO.5 ***	STOR
	K00-K03	1. With Resistor 2. Gate Direct
	PLEASE SELECT NO.(1) ? 12	
	K10-K13	1. With Resistor 2. Gate Direct
	PLEASE SELECT NO.(1) ? 12	
	K00-K03 K10-K13	1. With Resistor SELECTED 1. With Resistor SELECTED

Selecting output	*** OPTION NO.6 ***	
ports output specifi- cation (R00–R03)	OUTPUT PORTS OUTPUT SP	PECIFICATION (R00-R03)
	R00-R03	 Complementary Nch-OpenDrain
	PLEASE SELECT NO.(1)? 1.	
	R00-R03	1. Complementary SELECTED

Selecting R10 specification	*** OPTION NO.7 *** R10 SPECIFICATION		
	OUTPUT TYPE	1. D.C. 2. /SRDY Output	
	PLEASE SELECT NO.(1) ? 1.		
	OUTPUT SPECIFICATION	1. Complementary 2. Nch-OpenDrain	
	PLEASE SELECT NO.(1) ? 1.		
	OUTPUT TYPE OUTPUT SPECIFICATION	1. D.C. 1. Complementary	SELECTED SELECTED

Selecting R11	*** OPTION NO.8 ***	
specification	R11 SPECIFICATION	
	OUTPUT TYPE	1. D.C.
		2. Fout 32768 [Hz]
		3. Fout 16384 [Hz]
		4. Fout 8192 [Hz]
		5. Fout 4096 [Hz]
		6. Fout 2048 [Hz]
		7. Fout 1024 [Hz]
		8. Fout 512 [Hz]
		9. Fout 256 [Hz]
	PLEASE SELECT NO.(1) ? 1.	
	OUTPUT SPECIFICATION	1. Complementary
		2. Nch-OpenDrain
	PLEASE SELECT NO.(1) ? 1.	
	OUTPUT TYPE	1. D.C. SELECTED
	OUTPUT SPECIFICATION	1. Complementary SELECTED

Selecting R12	*** OPTION NO.9 ***		
specification	R12 SPECIFICATION		
	OUTPUT TYPE	1. D.C. 2. Buzzer Output	
	PLEASE SELECT NO.(1) ? 1.		
	OUTPUT SPECIFICATION	1. Complementary 2. Nch-OpenDrain	
	PLEASE SELECT NO.(1) ? 1.		
	OUTPUT TYPE OUTPUT SPECIFICATION	1. D.C. 1. Complementary	SELECTED SELECTED

Selecting R13	*** OPTION NO.10 ***		
specification	R13 SPECIFICATION		
	OUTPUT SPECIFICATION	1. Complementary 2. Nch-OpenDrain	
	PLEASE SELECT NO.(1) ? 1.		
	OUTPUT SPECIFICATION	1. Complementary	SELECTED

* If "Buzzer Output" were selected as the output type for R12 terminal, the output type for R13 terminal may be selected. Moreover, if "D.C." were selected as the output type for R12 terminal, the output type for R13 terminal will be fixed at DC output and hence there is no option selection for output type.

```
*** OPTION NO.10 ***
--- R13 SPECIFICATION ---
       OUTPUT TYPE
                                1. D.C.
                                2. /Buzzer Output
PLEASE SELECT NO.(1) ? 1
        OUTPUT SPECIFICATION
                                1. Complementary
                                2. Nch-OpenDrain
PLEASE SELECT NO.(1) ? 11
       OUTPUT TYPE
                                1. D.C.
                                                   SELECTED
                                1. Complementary
        OUTPUT SPECIFICATION
                                                   SELECTED
```

```
Selecting I/O ports
                        *** OPTION NO.11 ***
specification
                        --- I/O PORTS OUTPUT SPECIFICATION ---
(P0, P1, P2)
                                P00-P03
                                                        1. Complementary
                                                        2. Nch-OpenDrain
                        PLEASE SELECT NO.(1) ? 1.
                                P10-P13
                                                        1. Complementary
                                                        2. Nch-OpenDrain
                        PLEASE SELECT NO.(1) ? 1.
                                P20-P23
                                                        1. Complementary
                                                        2. Nch-OpenDrain
                        PLEASE SELECT NO.(1) ? 1
                                P00-P03
                                                        1. Complementary
                                                                           SELECTED
                                P10-P13
                                                        1. Complementary
                                                                           SELECTED
                                P20-P23
                                                        1. Complementary
                                                                           SELECTED
```

FOG6262

Selecting I/O ports	*** OPTION NO.12 ***	
pull up resistor (PO,	I/O PORTS PULL UP RESISTOR	
P1, P2)	P00-P03 1. With Resistor 2. Gate Direct	
	PLEASE SELECT NO.(1) ? 1.	
	P00-P03 RESISTANCE 1. 150K OHM 2. 50K OHM	
	PLEASE SELECT NO.(1) ? 14 *	
	P10-P13 1. With Resistor 2. Gate Direct	
	PLEASE SELECT NO.(1) ? 1	
	P10-P13 RESISTANCE 1. 150K OHM 2. 50K OHM	
	PLEASE SELECT NO.(1) ? 14 *	
	P20-P23 1. With Resistor 2. Gate Direct	
	PLEASE SELECT NO.(1) ? 1	
	P20-P23 RESISTANCE 1. 150K OHM 2. 50K OHM	
	PLEASE SELECT NO.(1) ? 1. *	
	P00-P031. With ResistorSELFP00-P03 RESISTANCE1. 150K OHMSELFP10-P131. With ResistorSELFP10-P13 RESISTANCE1. 150K OHMSELFP20-P231. With ResistorSELFP20-P23 RESISTANCE1. 150K OHMSELFP20-P23 RESISTANCE1. 150K OHMSELF	ECTED * ECTED ECTED *

* These options may be selected if "1" (E0C6262) were selected for device type.

Selecting P30-	*** OPTION NO.13 ***	
P33 specification	P30-33 SPECIFICATION *1	
	INPUT/OUTPUT TYPE	1. I/O PORT 2. Serial I/O PORT
	PLEASE SELECT NO.(1) ? 1	
	OUTPUT SPECIFICATION	 Complementary Nch-OpenDrain
	PLEASE SELECT NO.(1) ? 1	
	INPUT/OUTPUT TYPE OUTPUT SPECIFICATION	

Selecting P30- P33 pull up resis- tor	*** OPTION NO.14 ***						
	P30-P33		With Rea Gate Dia				
	PLEASE SELECT NO.(1) ? 1						
	P30-P33 RESISTANCE		150к онт 50к онт				
	PLEASE SELECT NO.(1) ? 12 *2						
	P30-P33 P30-P33 RESISTANCE		With Res 150K OH		SELECTED SELECTED *2	2	

- *1 If either "2" or "3" (Use) were selected for VDE power supply, the terminals which may be set are P30–P32.
- *2 This option may be selected if "1" (E0C6262) were selected for device type.

Selecting watch-	*** OPTION NO.15 ***	
dog timer	WATCHDOG TIMER	
	WATCHDOG TIMER	1. Use 2. Not Use
	PLEASE SELECT NO.(1) ? 1	
	WATCHDOG TIMER	1. Use SELECTED

Selecting serial interface data permutation

*** OPTION NO.16 ***		
SERIAL INTERFACE		
SERIAL INTERFACE	1. LSB First 2. MSB First	
PLEASE SELECT NO.(1) ? 1.		
SERIAL INTERFACE	1. LSB First	SELECTED

3.6 HEX File Generation and EPROM Selection

When setting function options setting is completed, the following message is output to ask the operator whether to generate the HEX file.

```
END OF OPTION SETTING.

DO YOU MAKE HEX FILE (Y/N) ? Y . .... (1)

*** OPTION EPROM SELECT MENU ***

1. 27C64

2. 27C128

3. 27C256

4. 27C512

PLEASE SELECT NO. ? 3 . .... (2)

2. 27C256 SELECTED
```

(1) DO YOU MAKE HEX FILE (Y/N)?

When debugging the program with EVA6262, HEX file C262XXXF.HEX is needed, so enter "Y". If "N" is entered, no HEX file is generated and only document file C262XXXF.DOC is generated.

(2) PLEASE SELECT NO. ?

For the option ROM selection menu displayed when "Y" is entered in Step (1), select the EPROM to be used for setting EVA6262 options. This menu is not displayed when "N" is entered in Step (1).

One EPROM is required for setting function options (27C256 is selected in the above example).

When the above operation is completed, FOG6262 generates files. If no error is committed while setting segment options, the following message is output and the sequence returns to the operation selection menu.

MAKING FILE(S) IS COMPLETED.

Note The EPROM to be mounted on the EVA6262 must satisfy the following conditions: EPROM for setting function options: $T_{ACC} \le 250$ ns (T_{ACC}: Access time)

3.7 End Procedure

This section explains how to end FOG6262 execution.

```
*** OPERATION SELECT MENU ***

1. INPUT NEW FILE

2. EDIT FILE

3. RETURN TO DOS

PLEASE SELECT NO.? 3

A>
```

When a series of operations are complete, the sequence returns to the operation selection menu. Execution of FOG6262 can be ended by selecting "3. RETURN TO DOS" on this menu. If "1. INPUT NEW FILE" or "2. EDIT FILE" is selected, setting function options can be performed again.

FOG6262 can be forcibly terminated by pressing the "CTRL" and "C" keys together during program execution. (It is possible by pressing STOP key depending on the PC used.)

CHAPTER 4 SAMPLE FILES

• Function Option Document File

```
* E0C6262 FUNCTION OPTION DOCUMENT V 3.00
*
* FILE NAME C2620A0F.DOC
* USER'S NAME
* INPUT DATE 90/11/16
* OPTION NO.1
* < DEVICE TYPE >
   DEVICE TYPE E0C6262 (TYPE 3.0 V) ----- SELECTED
*
   OSC3 OSCILLATOR CERAMIC ----- SELECTED
OPT0101 01
OPT0102 01
OPT0103 01
* OPTION NO.2
* < EXTRA POWER SUPPLY VDE >
* EX. POWER VDE NOT USE ----- SELECTED
OPT0201 01
OPT0202 01
*
* OPTION NO.3
* < MULTIPLE KEY ENTRY RESET >
* COMBINATION NOT USE ----- SELECTED
OPT0301 01
*
* OPTION NO.4
* < INPUT INTERRUPT NOISE REJECTOR >
*
   K00-K03
                  USE ----- SELECTED
*
                  USE ----- SELECTED
    K10-K13
OPT0401 01
OPT0402 01
* OPTION NO.5
* < INPUT PORTS PULL UP RESISTOR >
*
   K00-K03
                  WITH RESISTOR ----- SELECTED
*
   K10-K13
                  WITH RESISTOR ----- SELECTED
OPT0501 01
OPT0502 01
* OPTION NO.6
```

```
* < OUTPUT PORTS OUTPUT SPECIFICATION (R00-R03) >
* R00-R03 COMPLEMENTARY ----- SELECTED
OPT0601 01
* OPTION NO.7
* < R10 SPECIFICATION >
    OUTPUT TYPE
                          D.C. ----- SELECTED
*
    OUTPUT SPECIFICATION
                         COMPLEMENTARY ----- SELECTED
OPT0701 01
OPT0702 01
* OPTION NO.8
* < R11 SPECIFICATION >
*
    OUTPUT TYPE
                          D.C. -----
                                              SELECTED
* OUTPUT SPECIFICATION COMPLEMENTARY ----- SELECTED
OPT0801 01
OPT0802 01
* OPTION NO.9
* < R12 SPECIFICATION >
   OUTPUT TYPE
*
                          D.C. ----- SELECTED
    OUTPUT SPECIFICATION
                         COMPLEMENTARY -----
                                                SELECTED
OPT0901 01
OPT0902 01
* OPTION NO.10
* < R13 SPECIFICATION >
* OUTPUT SPECIFICATION COMPLEMENTARY ----- SELECTED
OPT1001 01
OPT1002 01
* OPTION NO.11
* < I/O PORTS OUTPUT SPECIFICATION >
    P00-P03
                           COMPLEMENTARY ----- SELECTED
*
    P10-P13
                           COMPLEMENTARY ----- SELECTED
*
   P20-P23
                           COMPLEMENTARY ----- SELECTED
OPT1101 01
OPT1102 01
OPT1103 01
* OPTION NO.12
* < I/O PORTS PULL UP RESISTOR >
*
    P00-P03
                          WITH RESISTOR ----- SELECTED
*
    P00-P03 RESISTANCE
                         150K OHM ----- SELECTED
*
    P10-P13
                          WITH RESISTOR ----- SELECTED
   P10-P13 RESISTANCE
                         150K OHM ----- SELECTED
```

```
*
   P20-P23
                          WITH RESISTOR ----- SELECTED
   P20-P23 RESISTANCE 150K OHM ----- SELECTED
*
OPT1202 01
OPT1204 01
OPT1206 01
*
* OPTION NO.13
* < P30-33 SPECIFICATION >
*
    INPUT/OUTPUT TYPE
                         I/O PORT ----- SELECTED
   OUTPUT SPECIFICATION COMPLEMENTARY ----- SELECTED
*
OPT1304 01
OPT1305 01
*
* OPTION NO.14
* < P30-33 PULL UP RESISTOR >
                  WITH RESISTOR ----- SELECTED
*
  P30-P33
   P30-P33 RESISTANCE 150K OHM ----- SELECTED
OPT1406 01
*
* OPTION NO.15
* < WATCHDOG TIMER >
   WATCHDOG TIMER
*
                          USE ----- SELECTED
OPT1501 01
*
* OPTION NO.16
* < SERIAL INTERFACE >
  SERIAL INTERFACE
*
                         LSB FIRST ----- SELECTED
OPT1601 01
* SEIKO EPSON'S AREA
OPT2001 01
OPT2002 01
OPT2101 01
OPT2102 01
\\END
```

Note End mark "\\END" may be used instead of "¥¥END" depending on the PC used. (The code of \ and ¥ is 5CH.)

• Function Option HEX File

IV. EVA6262 Manual

CONTENTS

CHAPTER 1	INTR	ODUCTION IV-1
	1.1	EVA6262 Outline IV-1
	1.2	EVA6262 Components IV-2
CHAPTER 2	PREC	CAUTIONS IV-4
	2.1	Precautions for Operation IV-4
	2.2	Differences from Actual IC IV-5
CHAPTER 3	NAN	NES AND FUNCTIONS OF PARTS IV-6
	3.1	Basic Functions IV-6
	3.2	Operating Panel (Top view) IV-8
	3.3	Under Top Cover (Top view after removal Top-cover) IV-12
	3.4	Front Panel IV-14
	3.5	Rear Panel IV-15
CHAPTER 4	CAB	IE CONNECTION IV-16
	4.1	Connection to ICE6200 IV-16
	4.2	Power Cable Connection IV-17
	4.3	Connection to Target System IV-18

CHAPTER 5	OPERATION METHOD OF EVA6262 IV-2		
	5.1	PreparationIV-20Creation of target systemIV-20Creation and installation of ROMsIV-20	
	5.2	Independent Use of EVA6262IV-22Power on/offIV-22DebuggingIV-23	
	5.3	Operation When ICE6200 is Connected IV-25 Power on/off IV-25 Debugging IV-26	
CHAPTER 6	OPE	RATING TEST IV-27	

CHAPTER 7	PRODUCT SPECIFICATIONS	IV-31
-----------	------------------------	-------

CHAPTER 1 INTRODUCTION

1.1 EVA6262 Outline

The EVA6262 is a debugging tool for the EOC6262, with various functions such as single step and program break. Almost the same functions that the EOC6262 CPU has can be implemented by writing application program and option data created by the option generator into EPROM, and installing it in the EVA6262.

Debugging and CPU monitoring can be done using the EVA6262 operation switches and LED indicators; therefore, debugging is possible with the EVA6262 alone.

In addition, the EVA6262 can interface with the ICE6200 incircuit emulator, and so perform a higher level of debugging.

EVA6262

1.2 EVA6262 Components

When unpacking the EVA6262, check that the following goods are present:

(1)	EVA6262 main unit	1
(2)	I/O connection cable and connector	
	(50-pin flat type)	1 set
(3)	Power cable (3-pin)	1 set
(4)	Diagnostic ROMs (two)	1 set
(5)	Fuse (3A)	1
(6)	EVA6262 Manual (this manual)	1
(7)	Warranty registration card	1
(8)	Warranty certificate	1
(9)	Notes for using	1

CHAPTER 2 PRECAUTIONS

Take the following precautions when using the EVA6262:

2.1 Precautions for Operation

- Turn the power of all equipment off before connecting or disconnecting cables.
- To turn the POWER switch of the EVA6262 off, then on again, wait for at least 10 seconds after turning off before turning on.
- When ROMs are inserted into the L and H ROM sockets, lock the lever securely by positioning it horizontally. After the ROMs have been removed from the sockets, lock the lever at the same position above. If the lever is left upright, poor contact may result.
- Confirm that the following ROMs have been installed correctly, then operate the EVA6262.

(Top panel)	Program ROM	2	L.HEX
			H.HEX
(Under top cover)	Function Option ROM	1	F.HEX

- If the EVA6262 does not operate normally, perform the operating test (Chapter 6).

2.2 Differences from Actual IC

There are some differences in functions between the EVA6262 and the actual IC.

I/O differences

 The response time has been changed by the differences in logic level (5 V for the EVA6262), output drive capability, and pull-up resistance. When creating key scan routines, especially, pay attention to the response time.

Power-on sequence differences

 The EVA6262 performs configuration and determines the internal state when the power is switched on. Then, it works as the IC does. Therefore, the I/O state of the EVA6262 is unstable until configuration has completed. This affects the power-on reset time.

Function differences

- The SVD function is implemented by varying the apparent power supply voltage with the VBLD control.
- The OSC1 crystal oscillation frequency is fixed at 32.768 kHz.

For OSC3, ceramic oscillation (fixed at 1 MHz) or CR oscillation (1 MHz, slightry variable by changing the resistance) can be selected. Either OSC1 or OSC3 can be selected as the system clock.

- An external voltage is not applied to the VDE pin (P33) as the VDE power. (When pin P33 is set to VDE, its impedance becomes high.)
- The oscillation start and stop times are different from those of the IC. Because the logic level of EVA6262 is higher than it of actual IC.

CHAPTER 3 NAMES AND FUNCTIONS OF PARTS

This section describes the names and functions of the parts of the EVA6262.

3.1 Basic Functions

The EVA6262 has the following basic functions:

- Program execution (Run function)

Install the EPROM containing the application program and execute the program.

- Single-step program operation (Single-step function)

Programs may be run instruction by instruction to check the internal state of the CPU as it changes with each instruction.

- Program execution suspension at a given address (Break function)

A breakpoint may be set at an address at which it is desired to suspend program execution. After execution has stopped at the breakpoint, it can be restarted with the program run function.

- Displaying program addresses and instruction codes during a break

Program addresses and instruction codes may be displayed on the LED indicators.

- Displaying the contents of RAM, registers, and flags during a break

The contents of RAM, the A, B, X, and Y registers, the stack pointers, and the flags may be displayed on the LED indicators during a break.

- Interface with ICE6200

The EVA6262 can interface with the ICE6200 so that a higher level debugging environment may be established.

- Setting hardware options by installing option ROM

Hardware options can be specified by writing option data created by the function option generator into EPROM, and installing the EPROM.

3.2 Operating Panel (Top view)

Switches and keys • EN/DIS switch

This switch enables or disables the setting of breakpoints. When the switch is in the EN (Enable) position, the setting of breakpoints is enabled. When it is in the DIS (Disable) position, the setting of breakpoints is disabled. Normally, set the switch to the DIS position.

• BREAK POINT switches (BB, BP, BS)

These switches set a breakpoint address at which program execution stops. BB, BP, and BS are switches that set the bank, page, and step, respectively, of the breakpoint address. When a switch is in the upper position, it represents "1"; when it is in the lower position, it represents "0".
The breakpoint address set with the BREAK POINT switches is valid when the EN/DIS switch is in the EN position. When the set address matches the current address of the program being executed, the program breaks, i.e., it stops immediately before executing the instruction at the current address. This function does not work when the EN/DIS switch is in the DIS position.

• RAM ADDRESS switches (SA)

These switches are used to set RAM addresses and to check the contents of RAM after a program break. When a switch is in the upper position, it represents "1"; when it is in the lower position, it represents "0". The contents of the address set with these switches are displayed on the RAM display LEDs.

• RUN key

This key restarts the program after a break. When it is pressed, the program continues, starting with the instruction at the break address.

• STEP key

When this key is pressed, the program breaks immediately. If the key is pressed during a break, the instruction step at the break address is executed, and the program breaks again. Thus, the program can be executed step by step.

LEDs The internal state of the CPU is indicated by the LEDs. An LED lit indicates "1"; an LED not lit indicates "0".

• RAM (3210)

The contents of the RAM address, which are fixed by the RAM ADDRESS switch, are displayed.

• IR (BA9876543210)

The instruction at the current address is displayed. If the program has stopped at a breakpoint, the instruction is displayed before execution.

• **PCB**

The bank address is displayed. The contents of the bank address, which are fixed by the BB switches, are displayed if the program has stopped at a breakpoint.

• PCP (3210)

The page address is displayed. The contents of the page address, which are fixed by the BP switches, are displayed if the program has stopped at a breakpoint.

• PCS (76543210)

The step address is displayed. The contents of the step address, which are fixed by the BS switches, are displayed if the program has stopped at a breakpoint.

• SP (76543210)

The value of the stack pointer is displayed.

• X (BA9876543210)

The contents of the X index register are displayed.

• Y (BA9876543210)

The contents of the Y index register are displayed.

• **F/IF**

The state of the interrupt flag is displayed.

• F/DF

The state of the decimal flag is displayed.

• F/ZF

The state of the zero flag is displayed.

• F/CF

The state of the carry flag is displayed.

• A (3210)

The contents of the A register are displayed.

• B (3210)

The contents of the B register are displayed.

ROM sockets • L (low) and H (high)

These are IC sockets for target program ROMs. Insert the ROM (L.HEX) containing the 8 low-order bits (I7 to I0) of the machine code into the L socket, and the ROM (H.HEX) containing the 4 high-order bits (IB to I8) into the H socket.

Insert the diagnostic ROM into a socket when an operation test is performed.

Connectors • F1 and F5

Connectors for the ICE6200 interface cable.

3.3 Under Top Cover

(Top view after removal Top-cover)

• **RESET** switch

This switch resets the CPU and starts the target program from bank 0, page 01H, step 00H.

• VBLD

This is the control for varying the power supply voltage in simulation to check SVD operation.

(Refer to section "2.2 Differences from Actual IC".)

• HVLD, BLD, OSCC, VDE

These are LEDs to indicate the values ("1" or "0") of the HLMOD, SVDC, and OSCC registers, or select extra power VDE, respectively.

- HVLD: On while the HLMOD register (address FAH, D3) contains "1"; off while the register contains "0".
- BLD: On while the SVDC register (address FAH, D1) contains "1"; off while the register contains "0".

OSCC: On while the OSCC register (address E9H, D1) contains "1"; off while the register contains "0".VDE: On while the extra power supply from P33; off

while no select extra power from P33.

<u>Take care of these registers or option switch for the power</u> save.

• VDD, VD2

These are LEDs to indicate the VD1 is generated by VDD or VD2.

VDD: On while the VD1 is generated by VDD.VD2: On while the VD1 is generated by VD2.

• DONE

This LED lights when the EVA6262 has completed configuration at power-on and is ready for debugging. <u>If this</u> <u>LED is not lit several seconds after power-on, switch the</u> <u>power off and then on again.</u>

• F.HEX (ROM sockets)

This is the IC socket into which the ROM is inserted. This ROM includes the function options generated by option generator.

• CPA pin

The values of the HLMOD, SVDC, and OSCC registers and the DONE, VDE, VDD, and VD2 signals can be checked by an oscilloscope or other instrument. The correspondence between the pins, registers, and the signals is shown below.

Pin 1: No connection	Pin 5: OSCC
Pin 2: VDE	Pin 6: VDD
Pin 3: VD2	Pin 7: DONE
Pin 4: HLMOD	Pin 8: SVDC

3.4 Front Panel

There is a connector on the front panel for connecting the EVA6262 to the target system.

• I/O #0

Connector for the I/O cable. The I/O cable is used to connect the EVA6262 to the target system.

3.5 Rear Panel

The external power input section is on the rear panel.

Fig. 3.5.1

Rear panel

• POWER switch (on/off)

This is a switch to turn on or off the external power supply to EVA6262. (Please turn off the POWER switch when ICE6200 is connected.)

• FUSE

This is 3A of the 3A-tubular fuse for external power supply, and is blown off by current of 3A or more.

• DC IN 5 V

This is a connector with external power supply source. The external power supply should be in direct current of 5V for 3A or more.

Note Be sure to disconnect external power source before connection with ICE6200, because power is supplied from ICE6200 when you connect EVA6262 to ICE6200.

CHAPTER 4 CABLE CONNECTION

This section describes how to connect the power cable to the EVA6262, and the EVA6262 to the ICE6200 and the target system.

Note Turn the power of all equipment off before connecting or disconnecting cables.

4.1 Connection to ICE6200

The EVA6262 is connected to the ICE6200 by connecting the two interface cables (F1 and F5). Use EVA6262 connectors F1 and F5 with the projections facing outwards. Use ICE6200 connectors F1 and F5 with the projections facing inwards (cable side).

Figures 4.1.1 and 4.1.2 show the external view and connection diagram of the ICE6200 interface cable.

Note The EVA6262 has an external power input connector for +5 V (VDD) and GND (Vss). Leave these connectors unconnected when the EVA6262 is connected to the ICE6200.

4.2 Power Cable Connection

When using the EVA6262 on its own, it must be supplied with power (5V DC, 3A or more) from an external source through the power cable.

When the EVA6262 is connected to the ICE6200, power is supplied by the ICE6200; therefore, the power cable is not necessary. Disconnect the power cable if it is already connected.

Figure 4.2.1 shows the connection of the power cable pins.

4.3 Connection to Target System

The I/O #0 connector is used to connect the EVA6262 to the target system.

Take the following precautions when connecting the EVA6262 to the target system:

- Power is supplied to the EVA6262, unlike the chips. (See the "E0C6262 Technical Manual".)
- Do not use any pins that cannot be connected.

Table 4.3.1 lists the pins of the I/O #0 connector.

Table 4.3.1	Pin No.	Signal Name	Pin No.	Signal Name
I/O #0 connector pins	1	VDD (+5 V)	2	VDD (+5 V)
	3	VDD (+5 V)	4	VDD (+5 V)
	5	Cannot be connected	6	Cannot be connected
	7	P00	8	P01
	9	P02	10	P03
	11	P10	12	P11
	13	P12	14	P13
	15	P20	16	P21
	17	P22	18	P23
	19	P30	20	P31
	21	P32	22	P33
	23	Cannot be connected	24	Cannot be connected
	25	R00	26	R01
	27	R02	28	R03
	29	K00	30	K01
	31	K02	32	K03
	33	K10	34	K11
	35	K12	36	K13
	37	R10	38	R11
	39	R12	40	R13
	41	Cannot be connected	42	Cannot be connected
	43	TEST	44	RESET
	45	Cannot be connected	46	Cannot be connected
	47	Vss (GND)	48	Vss (GND)
	49	Vss (GND)	50	Vss (GND)

Note Do not use the pins that cannot be connected.

CHAPTER 5 OPERATION METHOD OF EVA6262

5.1 Preparation This section describes the common preparation work necessary when the EVA6262 is used by itself and when it is connected to the ICE6200. Connection method, refer to Chapter 4 "CABLE CONNECTION". Check the EVA6262 operation by mounting the supplied diagnostic ROMs as instructed in Chapter 6. It is recommended that this test be performed periodically. Before doing the following, be sure to turn the POWER switch of the EVA6262 off. Mount the keys, and switches on the board to build a target Creation of target system. Use the I/O connector supplied with the EVA6262 system to connect the EVA6262 to the target system. (For the pin layout of connector, see Table 4.3.1 in Chapter 4.) Note that there is some difference in specifications between the EVA6262 and the actual CPU. Refer to the "2.2 Differences from Actual IC" when building a target system. Create the program ROMs and option ROM, and insert them Creation and instalinto the sockets of the EVA6262. When the EVA6262 is lation of ROMs delivered, the option ROM for a diagnostic program is already installed. Replace it with the created ROM. Program ROMs (two)

IV-20 EVA6262 MANUAL

- Program ROMs (two)

The program ROMs contain the application program machine code. Write the HEX files output by the ASM6262 cross-assembler into EPROMs to create program ROMs. Since two HEX files containing the highorder section (C262YYYH.HEX) and the low- order section (C262YYYL.HEX) of the machine code are output, two ROMs are created. Insert H.HEX into socket H and L.HEX into socket L on the top panel. These ROMs are not necessary when connecting the EVA6262 to the ICE6200.

- Function Option ROM (one)

The function option ROM is used to specify function options, such as I/O ports. Create the function option ROM from the function option HEX file (C262YYYF.HEX) output by the function option generator, and insert it into the ROM socket (F.HEX) in the top cover.

- EPROM specifications

Use EPROMs with the following specifications:

Program ROM: 27C64 to 27C512(250 ns or less access time) Option ROM: 27C64 to 27C512(250 ns or less access time)

	5.2	Independent Use of EVA6262 This section describes operation when using the EVA6262 by itself. The EVA6262 may be used independently by connecting a power supply to it. Use a 5V DC regulator (more than 3A) as an external power supply. Connect it with the correct polar- ity (+ and -). (Refer to the "4.2 Power Cable Connection".)
Power on/off		Before turning the POWER switch of the EVA6262 on, con- firm the following:
		 The power cable is connected correctly. The target system is connected correctly. The three ROMs have been installed correctly.
		After confirming the above items, turn the POWER switch of the EVA6262 on using the following procedure:
		 Turn the regulator on. If the regulator is of the variable- voltage type, set the output voltage to 5 V. Turn the POWER switch of the EVA6262 on.
	Note	To turn the POWER switch of the EVA6262 off, then on, turn it off, wait for 10 seconds or more, and then turn it on.
		After the POWER switch of the EVA6262 has been turned on, the DONE LED (green) on the top cover lights after several seconds to indicate that debugging may proceed. If the DONE LED is still off 10 seconds or more after the POWER switch has been turned on, do the following:
		 Turn the POWER switch of the EVA6262 off. Confirm that the ROMs have been installed properly, and the cables connected properly.
		3) Check the fuse.4) Turn the POWER switch of the EVA6262 on.
		If the DONE LED still does not light, do a self-diagnosis. For the self-diagnosis method, refer to the Chapter 6.

Debugging

When the EVA6262 is used alone, it provides the following debugging functions. The method of operation is given below.

- Program free run

When the RESET switch (on the top cover) is pressed, the EVA6262 enters the program run state, and executes the application program from bank 0, page 1, step 0. Before pressing the RESET switch after the power to the EVA6262 has been switched on, make sure that the DONE LED is lit.

- Program break

The program may be stopped at the address set by the BREAK POINT switches. This function is valid when the EN/DIS switch is in the EN position. The program stops at the program address where the breakpoint is set. It stops before the instruction at the breakpoint is executed. The program may be stopped by pressing the STEP key.

When the program is stopped, the LED indicators for the internal state of the CPU show the current state. So debug by checking this state against the program. To restart the program after a break, set the next breakpoint, and press the RUN key.

The single-step operation (described below) can be performed by pressing the STEP key instead of the RUN key.

- Single step

By pressing the STEP key after a program break, the one instruction at the current address can be executed, and the program stopped at the next address (program break). Using this function, the program run state can be confirmed.

- Other functions

The operation of the SVD can be confirmed with the VBLD control.

The HLMOD, SVDC, and OSCC register values, and status of the VDE extra power supply selection, and VD1 is generated by VDD or VD2 can be confirmed with the LEDs displays and CPA pins.

	5.3	Operation When ICE6200 is Connected This section explains the operation and use of the EVA6262 when it is connected to the ICE6200. Set up the EVA6262 as follows when it is connected to the ICE6200:
		1) Do not connect the power supply.
		2) Keep on turning the POWER switch off.3) Set all the switches on the operation panel to their lower positions.
Power on/off		Power to the EVA6262 is supplied by the ICE6200, and the power is switched on and off by pressing the POWER switch of the ICE6200. Keep the POWER switch of the EVA6262 off.
	Note	To turn the POWER switch of the ICE6200 off, then on, turn it off,
		wait for 10 seconds or more, and then turn it on.
		After the POWER switch of the ICE6200 has been turned on, the DONE LED (green) on the top cover of the EVA6262 lights after several seconds to indicate that debugging may proceed. If the DONE LED is still off 10 seconds or more after the POWER switch has been turned on, do the following:
		 Turn the POWER switch of the ICE6200 off. Confirm that the circuit breaker of the ICE6200 is on. Confirm that the ROMs have been installed properly and the cables connected properly. Turn the POWER switch of the ICE6200 on. If the DONE LED still does not light, do a self-diagnosis. For the self-diagnosis method, refer to the Chapter 6.

DebuggingDebugging is done with the host computer, and the
EVA6262 is controlled by the ICE6200. For the method of
operation, refer to the "E0C6262 ICE Operation Manual".
The EVA6262 can control the following three functions:

- 1) Pseudo power supply voltage change with the VBLD control
- 2) RESET switch

The other switches and LEDs are invalid. Do not operate the switches of the EVA6262 side. The switches do not function when the target program ROM is installed.

CHAPTER 6 OPERATING TEST

Self-diagnosis of the EVA6262 can be performed with the following operating tests. To perform these tests, the option ROM and two program ROMs (supplied) are required. If these ROMs have not been installed, insert them into the sockets. To use the EVA6262 independently, connect the external power supply (5V DC, 3A).

This test checks the start and single-step operations and the program break function of the EVA6262 in three stages (1 to 3). If the EVA6262 does not operate normally, check whether the ROMs have been installed correctly and whether the external power is being input correctly. Then perform the test again from stage 1. If the test repeatedly fails after being retried several times, the EVA6262 is faulty.

<Stage 1> In stage 1, check whether the DONE LED lights correctly.

- (1) Open the top cover.
- (2) Confirm that the POWER switch is off.
- (3) Insert the diagnostic ROMs (H.HEX and L.HEX) into sockets H and L (the sockets into which program ROMs are normally inserted) on the panel. Confirm that the option ROM has been installed properly.
- (4) Set the EN/DIS switch to the DIS position.
- (5) Turn the POWER switch on. If the POWER switch has just been turned off, wait for at least 10 seconds before turning it on.
- (6) Check whether the DONE LED (green) under the top cover lights correctly. After confirming that the DONE LED lights correctly, go to stage 2.

- (7) If the LED does not light within 10 seconds of the power being switched on, turn the POWER switch off, and check the fuse and external power connector. Wait for at least 10 seconds, then perform the test again.
- <Stage 2> In stage 2, single step operations are checked.
 - (1) Hold down the RESET switch under the top cover. Confirm that the instruction address LEDs (only PCP 0) light.

- (2) When the RESET switch is released, the LED blinks.
- (3) When the STEP switch is pressed once lightly, the LED stops blinking.
- (4) When the STEP switch is pressed again, the CPU performs a single-step operation. At the same time, the LED stops blinking. Press the STEP switch several times to confirm that single-step operations are performed properly, then go to stage 3.
- (5) When the RUN switch is pressed, the test returns to step 2 in stage 2.

(1) Set the BREAK POINT switches as follows:

(2) Set the EN/DIS switch to the EN position.

	IR
Instruction	BA9876543210
(LED [green])	
	PCB PCP PCS
Instruction address	321076543210
(LED [red])	00000000000000
	BP BS
	EN BB 321076543210
BREAK POINT switches	n underer a

(3) When the value indicated by PCP and PCS matches the setting of the BREAK POINT switches, the CPU stops, and the LEDs light as follows:

(4) When the RUN switch is pressed again, the test returns to step 3.

(5) Turn the POWER switch off.

Operating test is now complete. If the test ends normally, the basic functions of the EVA6262 are normal.

CHAPTER7 PRODUCT SPECIFICATIONS

The components specifications of the EVA6262 are listed below.

1. EVA6262

Dimensions:	(width)	(depth)	(height	:)
	325 mm ×	382 mm	×105 mm	(Including rubber feet)
Weight:	About 6 kg		(main un	it only)
Color:	Cygnus whit	e		
Power supply:	5V DC, 3A or When connec ICE6200.			ernal power supply) ower is supplied by the
Board:	Main board > Sub board ×			

2. ICE6200 interface cable (supplied with ICE6200)

EVA6262 connector:	3433-6002LCSC or equi	valent
Cable connector:	3425-6500SC	
Cable:	50-pin flat cable $\times 2$	(Two cables are the same)
Interface:	CMOS interface	(5V)
Length:	About 50 cm	(Two cables are the same)

3. I/O cable (supplied with EVA6262)

EVA6262 connector:	3433-5002LCSC	or equival	ent
--------------------	---------------	------------	-----

Cable connector: 3425-6500SC

- Cable: 50-pin flat cable \times 1
- Interface: CMOS interface (5V)
 - Length: About 50 cm

4. Power cable (supplied with EVA6262)

EVA6262 connector:	MOLEX 5276-03A or equivalent
Cable connector:	MOLEX 5196-03
Other side connector:	(According to power supply specifications)
Cable length:	About 80 cm
Capacity:	5V DC, 3A or more

5. Accessories

Fuse Type/rating:	MGC-ULCSA 250V 3A \times 1	
50-pin connector:	For connecting to target system	m
	3433-6002LCSC \times 1	(For I/O cable connection)

6. EPROM

For programs: Intel i27C64-i27C512 or equivalent (Access time 250 ns or less)

For options: Intel i27C64-i27C512 or equivalent

(Access time 250 ns or less)

V. E0C6262 ICE Operation Manual

Chapter 2 and subsequent chapters provide information common to all E0C62 Family models, the model name being denoted "XX". Read this manual, replacing "XX" with "62".

 $62\underline{XX} \ \rightarrow \ 62\underline{62}$

CONTENTS

CHAPTER 1	E0C	6262 RESTRICTIONS V-	1
	1.1	ROM Area V-	1
	1.2	RAM Area V-	1
	1.3	Undefined Code V-	1
CHAPTER 2	ICE	6200 SPECIFICATIONS V-2	2
	2.1	Features V-2	2
		Description V-3	3
		Software configuration V-3	
		Function table V-4	4
		Function-differentiated command list V-3	5
		Alphabetical listing of commands V-	7
	2.2	Connecting and Starting the System V-	9
		HOST settings V-1	10
		Starting the ICS62XX V-1	12
	2.3	ICE6200 Operation and Functions V-1	13
		Operating features V-1	13
		Break mode and break function V-1	15
		SYNC pin and HALT pin output V-1	17
		Display during run mode and during break V-1	
		Break assigning commands V-2	20
		Target interrupt and break V-2	21
		History function V-2	22
		Break delay function V-2	24
		Coverage function V-2	24
		Measurement during command execution V-2	
		Self-diagnostic function V-2	26
		Starting the printer V-2	27
		Limitations during emulation V-2	

CHAPTER 3	CO	MMAND DETAILS	V-30
	3.1	Display Command Group	V-31
		- L Command	V-32
		- DP Command	V-34
		- DD Command	V-36
		- DR Command	V-38
		- H Command	V-39
		- HB and HG Commands	V-42
		- HS, HSR, and HSW Commands	V-44
		- HP and HPS Commands	V-45
		- CHK Command	V-46
		- DXY Command	V-47
		- CVD and CVR Commands	V-48
	3.2	Set Command Group	V-49
		- A Command	V-50
		- FP Command	V-52
		- FD Command	V-53
		- MP Command	V-54
		- MD Command	V-55
		- SP Command	V-56
		- SD Command	V-57
		- SR Command	V-58
		- SXY Command	V-59
		- HC Command	V-60
		- HA, HAD, and HAR Commands	V-61
	3.3	Break and Go Command Group	V-63
		- BA and BAR Commands	V-64
		- BD and BDR Commands	V-65
		- BR and BRR Commands	V-66
		- BM and BMR Commands	V-68
		- BC Command	V-70
		- BRES Command	V-71
		- G Command	V-72
		- T Command	V-75

	- U Command V-7	7
	- BE and BSYN Commands V-78	8
	- BT Command V-7	9
	- BRKSEL Command V-8	0
	3.4 File Command Group V-8	1
	- RF and RFD Commands V-82	2
	- VF and VFD Commands V-8	3
	- WF and WFD Commands V-84	4
	- CL and CS Commands V-8	5
	3.5 ROM Command Group V-8	7
	- RP Command V-8	8
	- VP Command V-8	9
	- ROM Command V-90	0
	3.6 Control Command Group V-9	1
	- I Command V-92	2
	- TIM Command V-93	3
	- OTF Command V-94	4
	- Q Command V-9	5
	3.7 HELP Command V-9	7
CHAPTER 4	ERROR MESSAGE SUMMARY V-10)2
APPENDIX	A. FD FILE CONFIGURATION V-10)3
	B. HEX FILE FORMAT V-10)4

CHAPTER 1

E0C6262 RESTRICTIONS

1.1 ROM Area

The ROM area is limited to a maximum address of 07FFH. Assigning data above the 07FFH address causes an error.

1.2 RAM Area

The RAM area is limited to a maximum address of 0FFH. Assigning data above the 0FFH address causes an error. However, as the following addresses are in the unused area, designation of this area with the ICE commands produces an error.

080H to 0CFH 0DBH to 0DFH 0EBH to 0EFH 0FBH to 0FFH

0D0H–0DAH, 0E0H–0EAH and 0F0H–0FAH becomes I/O memory.

(See "E0C6262 Technical Manual" for details.)

1.3 Undefined Code

The instructions below are not specified for E0C6262 and so cannot be used.

SLP			
PUSH	XP	PUSH	ΥP
POP	XP	POP	ΥP
LD	XP,r	LD	YP,r
LD	r,XP	LD	r,YP

CHAPTER 2 ICE6200 SPECIFICATIONS

2.1 Features

The ICE6200 is a microcomputer software development support tool that increases the efficiency of software development for the EOC62 Family of 4-bit single chip microcomputers.

The ICE6200 and the E0C62 Family evaluation board EVA62XX, when used in combination, provide an exceptionally powerful hardware and software development support environment.

The following flow chart shows the creation sequence of the single chip microcomputer system from development through mass production.

Use of the ICE6200 and EVA62XX can greatly shorten the development process time required for debugging and system evaluation procedures.

Refer to "E0C62 Family Technical Guide" to get more detailed information about "Sample order" to "Mass production" above mentioned flow chart.

Description	A description of the ICE6200 follows.
	(1) The ICE6200 operates by connecting to a general purpose personal computer (NEC PC-9801V Series, IBM PC/XT, PC/AT). The debugging environment is constructed by the user's personal computer acting as the host system.
	(2) High-performance emulation commands are provided. A variety of commands are supplied, such as a register value implemented break function, on-the-fly data dis- play, history display, and other high-level functions.
	(3) The ICE6200 is equipped with a special power supply. This power source supplies VDD to the evaluation board, making additional power supply from the user side un- necessary.
	(4) The ICE6200 can also be used to analyze hardware. Hardware debugging is supported through the SYNC and HALT terminals.

Function table

Table 2.1.1 shows the functions supported by the ICE6200.

Table 2.1.1 ICE6200 functions

ltem number	Item	Brief description of function	Comments
1	Real-time break	The target program is interrupted under optional conditions	
		(1) Break by program counter (PC)	
		 (2) RAM address, data, R/W break (2) Break by register value 	
		(3) Break by register value(4) Break via a combination of items (1)–(3) (AND, OR)	
		 (4) Break via a combination of rems (1)–(3) (AND, OK) (5) Forced break by RESET or BREAK switch settings 	
		(6) Forced break by NESET of BREAK switch settings(6) Forced break by host system Escape key input	
2	History	EVA62XXCPU data collection during emulation	
	mstory	(1) Collection of PC, instruction code, RAM R/W, or CPU	
		register values	
		(2) Approx. 2048 instruction bus data collections	
		(3) Collects information up to the hit of break condition, or before	
		or after the hit	
		(4) Collects history information within the specified program area	
		(5) Searches for history information	
3	Real-time	Target program is run in real time at frequencies up to 4MHz	
	execution		
4	Real-time	Emulation run in real time (up to approx. 425ms) or	
	measurement	step number count	
5	Target memory	(1) ICE packaged target program memory is referenced, modified,	
	referenced or	or dumped	
	modified	(2) Target program memory-mapped I/O is referenced or modified	
		(3) Internal CPU registers are referenced or modified	
6	Trace	Target program is executed step by step and register contents are	
		displayed	
7	Assemble/	Mnemonic input is converted to machine language and stored in	
	Disassemble	program memory; contents of memory are disassembled	
8	FD loaded,	(1) Data from FD is loaded to the program or verified	
	saved or verified	(2) Program data is saved to FD(3) ICE interim results are loaded or saved to FD	
	venneu	(4) Data from FD memory is loaded, saved or verified	
9	ROM read or	Program is loaded to program memory from the ICE ROM socket	
	verify	and verified	
10	Execution	During G command execution, the program counter and	
10	supervision	halt state are displayed	
11	Coverage	Acquire coverage information	
12	Other	(1) Printer start and stop	
		(2) ICE command display	
		(3) Evaluation board CPU reset	
		(4) Evaluation board CPU status on LED display	
		(5) Execution with SYNC pulse output at breakpoint, but without	
		break	
		(6) 2764 to 27512 EPROM (target) support	
		(7) ICE6200 hardware check	

Function-differentiated command list

Tables 2.1.2.a-b show the function-differentiated command list for the ICE6200.

ltem number	Function	Command configuration	Description of operation	Reference page
1	Assemble	#A,a ↓	Assemble command mnemonic code and store at address "a"	V-50
2	Disassemble	#L,a1,a2 📕	Contents of addresses a1 to a2 are disassembled and displayed	V-32
3	Dump	#DP,a1,a2	Contents of program area a1 to a2 are displayed	V-34
	-	#DD,a1,a2	Content of data area a1 to a2 are displayed	V-36
4	Fill	#FP,a1,a2,d	Data d is set in addresses a1 to a2 (program area)	V-52
		#FD,a1,a2,d	Data d is set in addresses a1 to a2 (data area)	V-53
5	Set	#G,a ₄	Program is executed from the "a" address	V-72
	Run Mode	#TIM 🛃	Execution time and step counter selection	V-93
		#OTF 🛃	On-the-fly display selection	V-94
6	Trace	#T,a,n 📕	Executes program while displaying results of step	V-75
			instruction from "a" address	
		#U,a,n 📕	Displays only the final step of #T,a,n	V-77
7	Break	#BA,a◀	Sets Break at program address "a"	V-64
		#BAR,a ◀	Breakpoint is canceled	
		#BD 4	Break condition is set for data RAM	V-65
		#BDR ┛	Breakpoint is canceled	
		#BR 4	Break condition is set for EVA62XXCPU internal	V-66
			registers	
		#BRR ┛	Breakpoint is canceled	
		#BM •	Combined break conditions set for program	V-68
			data RAM address and registers	
		#BMR ┛	Cancel combined break conditions for program	
			data ROM address and registers	
		#BRES	All break conditions canceled	V-71
		#BC 4	Break condition displayed	V-70
		#BE 4	Enter break enable mode	V-78
		#BSYN	Enter break disable mode	V-78
		#BT 4	Set break stop/trace modes	V-79
		#BRKSEL,REM	Set BA condition clear/remain modes	V-80
8	Move	#MP,a1,a2,a3	Contents of program area addresses a1 to a2	V-54
			are moved to addresses a3 and after	
		#MD,a1,a2,a3	Contents of data area addresses a1 to a2 are	V-55
			moved to addresses a3 and after	
9	Data set	#SP,a ◀	Data from program area address "a" are written	V-56
-			to memory	
		#SD,a◀	Data from data area address "a" are written to	V-57
			memory	

Table 2.1.2.a Function-differentiated command list
Table 2.1.2.a Function-unerentiated command list

CHAPTER 2: ICE6200 SPECIFICATIONS

ltem number	Function	Command configuration	Description of operation	Reference page
10	Change CPU	#DR 📕	Display EVA62XXCPU internal registers	V-38
	Internal	#SR 📕	Set EVA62XXCPU internal registers	V-58
	Registers	#I 🛃	Reset EVA62XXCPU	V-92
		#DXY 🚽	Display X, Y, MX and MY	V-47
		#SXY 🛃	Set data for X and Y display and MX, MY	V-59
11	History	#H,p1,p2 📕	Display history data for pointer 1 and pointer 2	V-39
		#HB ┛	Display upstream history data	V-42
		#HG 🔳	Display 21 line history data	V-42
		#HP 🔳	Display history pointer	V-45
		#HPS,a 📕	Set history pointer	V-45
		#HC,S/C/E ◀	Sets up the history information acquisition	V-60
			before (S), before/after (C) and after (E)	
		#HA,a1,a2 📕	Sets up the history information acquisition	V-61
			from program area a1 to a2	
		#HAR,a1,a2 📕	Sets up the prohibition of the history information	V-61
			acquisition from program area a1 to a2	
		#HAD 📕	Indicates history acquisition program area	V-61
		#HS,a ◀	Retrieves and indicates the history information	V-44
			which executed a program address "a"	
		#HSW,a ◀	Retrieves and indicates the history information	V-44
		#HSR,a 📕	which wrote or read the data area address "a"	
12	File	#RF,file 📕	Move program file to memory	V-82
		#RFD,file 📕	Move data file to memory	V-82
		#VF,file ◀	Compare program file and contents of memory	V-83
		#VFD,file 📕	Compare data file and contents of memory	V-83
		#WF,file 📕	Save contents of memory to program file	V-84
		#WFD,file 📕	Save contents of memory to data file	V-84
		#CL,file 📕	Load ICE6200 set condition from file	V-85
		#CS,file 🔳	Save ICE6200 set condition to file	V-85
13	Coverage	#CVD 🖌	Indicates coverage information	V-48
		#CVR 🖌	Clears coverage information	V-48
14	ROM Access	#RP 📕	Move contents of ROM to program memory	V-88
		#VP 📕	Compare contents of ROM with contents of	V-89
			program memory	
		#ROM 📕	Set ROM type	V-90
15	Terminate ICE	#Q 📕	Terminate ICE and return to operating system control	V-95
16	Command Display	#HELP ┛	Display ICE6200 instruction	V-98
17	Self Diagnosis	#СНК 🕘	Report results of ICE6200 self diagnostic test	V-46

Table 2.1.2.b Function-differentiated command list

Alphabetical listingTables 2.1.3.a-b show an alphabetical listing of ICE6200of commandscommands.

ltem number	Command configuration	Description of operation	Reference page
1	#A,a◀	Assemble mnemonic instruction and store in address "a"	V-50
2	#BA,a◀	Set break at program address "a"	V-64
3	#BAR,a◀	Cancel breakpoint	V-64
4	#BC ◀	Display break condition	V-70
5	#BD ◀	Set break condition for RAM data	V-65
6	#BDR ┛	Cancels the data RAM break condition	V-65
7	#BE ◀	Break enable mode	V-78
8	#BM ◀	Assign multiple break condition for program address, RAM data and registers	V-68
9	#BMR 🖌	Cancels the multiple break condition	V-68
10	#BR ◀	Break condition set for EVA62XXCPU registers	V-66
11	#BRR ┛	Cancels the register break condition	V-66
12	#BRES 📕	All break conditions canceled	V-71
13	#BRKSEL,REM	Sets BA clear/remain modes	V-80
14	#BSYN ◀	Break disable mode	V-78
15	#BT ┛	Sets break stop/trace mode	V-79
16	#CHK	Reports results of ICE6200 self diagnostic tests	V-46
17	#CL,file ◀	Loads ICE6200 set condition from file	V-85
18	#CS,file ◀	Saves ICE6200 set condition to file	V-85
19	#CVD 🖌	Indicates coverage information	V-48
20	#CVR 📕	Clears coverage information	V-48
21	#DD,a1,a2 📕	Displays contents of addresses a1 to a2 in the data area	V-36
22	#DP,a1,a2 📕	Displays contents of addresses a1 to a2 in the program area	V-34
23	#DR 📕	Displays EVA62XXCPU internal registers	V-38
24	#DXY	Displays X, Y and MX, MY	V-47
25	#FD,a1,a2,d 📕	Sets d to addresses a1 to a2 in the data area	V-53
26	#FP,a1,a2,d 📕	Sets d to addresses a1 to a2 in the program area	V-52
27	#G,a◀	Executes the program from the "a" address	V-72
28	#H,p1,p2 📕	Displays history data for pointers 1 and 2	V-39
29	#HA,a1,a2	Sets up the history information acquisition from program area a1 to a2	V-61
30	#HAD	Indicates the history acquisition program area	V-61
31	#HAR,a1,a2	Sets up the prohibition of the history information acquisition	V-61
	· · · ·	from program area a1 to a2	
32	#HB 🛃	Displays upstream history data	V-42
33	#HC,S/C/E	Sets up the history information acquisition before	V-60
		(S), before/after (C) and after (E) the break hit	
34	#HELP 📕	Display ICE6200 instructions	V-98
35	#HG	Display history data in 21 lines	V-42

Table 2.1.3.a Alphabetical listing of commands
ltem number	Command configuration	Description of operation	Reference page
36	#HP 🔳	Display history pointer	V-45
37	#HPS,a 📕	Set history pointer	V-45
38	#HS,a ◀	Retrieves and indicates the history information which executed	V-44
39	#HSR,a 📕	the program address "a" Retrieves and indicates the history information which read the	V-44
57	#115K,a 🗲	data area address "a"	v -4-4
40	#HSW,a ◀	Retrieves and indicates the history information which wrote the data area address "a"	V-44
41	#I ┛	Reset EVA62XXCPU	V-92
42	#L,a1,a2 📕	Display disassembled contents of addresses a1 to a2	V-32
43	#MD,a1,a2,a3 📕	Move contents of data area addresses a1 to a2 to address a3 and after	V-55
44	#MP,a1,a2,a3	Move contents of program area addresses a1 to a2 to address a3 and after	V-54
45	#OTF ┛	Select on-the-fly display	V-94
46	#Q ┛	Terminate ICE and return to operating system control	V-95
47	#RF,file ◀	Move program file to memory	V-82
48	#RFD,file ◀	Move data file to memory	V-82
49	#ROM 🔳	Select ROM type	V-90
50	#RP 📕	Move ROM contents to program memory	V-88
51	#SD,a 📕	Write data from address "a" of the data area	V-57
52	#SP,a 📕	Write data from address "a" of the program area	V-56
53	#SR ┛	Set EVA62XXCPU internal registers	V-58
54	#SXY ◀	Display X, Y and set data to MX, MY	V-59
55	#T,a,n ◀	Execute while displaying n step instruction results from address "a"	V-75
56	#TIM 🛃	Select execution time and step counter	V-93
57	#U,a,n 🛃	Display only final step of #T,a,n	V-77
58	#VF,file	Compare program file and memory contents	V-83
59	#VFD,file	Compare data file and memory contents	V-83
60	#VP	Compare contents of ROM and contents of program memory	V-89
61	#WF,file	Save content of memory to the program file	V-84
62	#WFD,file ┛	Save content of memory to the data file	V-84

Table 2.1.3.b Alphabetical listing of commands

2.2 Connecting and Starting the System

The ICE6200 connects to common personal computers and the EOC62 Family evaluation board EVA62XX for operation, as shown in Figure 2.2.1. The connection sequence described below should be followed.

(1) Verify Power OFF status

Make sure the power sources for the personal computer and ICE6200 are switched OFF. (The E0C62 Family evaluation board EVA62XX is powered by the ICE6200 power supply and thus has no power source.)

(2) Cable Connections

Connect cables in the manner prescribed in the "ICE6200 Hardware Manual".

(3) Power ON

Switch ON the power supplies for the personal computer and the ICE6200 in any order.

HOST settingsThe ICE6200 is connected to a general purpose personal
computer for operation.
The ICS62XX system program has an approximately 140KB
capacity, and the personal computer must be set to proper
operating parameters for the ICS62XX to operate. An ex-
ample follows.

Program capacity The ICS62XX system program requires a host system with a RAM capacity of about 140KB.

RS232C Settings ICE Operation Using a PC9801V System with MS-DOS v.3.10

Execute SPEED command soon after starting MS-DOS.

Setting:

A>SPEED R0 9600 B8 PN S1 NONE↓

Verify settings:

A>SPEED↓

SPEED Version ?.?

Escape the command with:

RS232C-0 9600 BITS-8 PARITY-NONE STOP-1 NONE↓ (end)

ICE Operation Using a PC/XT, PC/AT System with PC-DOS v.2.10

Execute MODE command soon after starting PC-DOS.

Setting:

```
A>MODE COM1:4800,n,8,1,P,J
COM1:4800,n,8,1,P .... Settings can be confirmed.
A>
```

Set the ICE6200 baud rate to 4800.

Starting the ICS62XX

Start the Operating System	First, call up the operating system (abbreviated OS below) for your general purpose personal computer. The ICS62XX can operate in the following OS environments.
	(1) MS-DOS version 3.10 or higher (2) PC-DOS version 2.10 or higher
	Refer to your OS manual for procedures on loading the
	system. After loading the system, set the HOST setting as described in "HOST setting" (page V-10).
Starting the ICS62XX	(1) Insert the ICS62XX system software (supplied on 5.25" floppy disk) to the assigned floppy disk drive in your personal computer.
	(2) Input the following information through the keyboard.
	B>ICS62XX,J The Epson logo is displayed for about one second * ICE POWER ON RESET * * DIAGNOSTIC TEST OK * # Cursor position
	When the ICS62XX system program is loaded in the com- puter as described above, control of the computer is given to
	the ICS62XX system program. ICS62XX commands are awaited when the program is properly loaded and the # mark is displayed.
Quitting ICS62XX Control	The ICS62XX program is terminated by entering the Q command; control is then returned to the computer's operating system.
	#Q-J

B>

2.3 ICE6200 Operation and Functions

ICE6200 operations, details on functions and emulation limitations are discussed in this section.

Figure 2.3.1 shows a block diagram of ICE6200 functions. The ICE6200 has a built-in control processor which processes ICE commands.

Emulation consists of executing and terminating functions of the EVA62XXCPU and is controlled via the emulation control portion. The EVA62XXCPU is halted unless the run (G command) or single step (T command) operations are invoked. In this condition the emulation lamp on the ICE6200 display is OFF and the HALT lamp is ON to indicate the set-up mode. Thus, the A command, etc., are executed during the set-up mode.

The emulation program memory is set-up by instructions which activate the EVA62XXCPU.

In the set-up mode, such operations as loading from the ROM sockets by the ICE control processor and program setting by the host processor are executed.

Similarly, the EVA62XXCPU data RAM is allocated to the emulation data memory.

The history control portion records the execution bus cycles of the EVA62XXCPU and consists of a 8192 word \times 88 bit memory. The large memory capacity allows EVA62XXCPU register values to be recorded in real time. The history is written in target run mode, and is analyzed by the ICE6200 control processor in the set-up mode.

The break control portion has the functions which check the EVA62XXCPU bus condition whether it is at a break point or not, and will stop the execution at the break point. Breaking at CPU register values is also possible in real time. The ICE6200 control processor monitors the EVA62XXCPU on the target monitor during target run mode. Results are displayed as on-the-fly information.

Break mode and break function

Breaks are supported in many modes.

(1)Break enable mode:

Makes the break function valid. Actions during break are decided according to the mode setting of break-trace/ stop.

(2) Break disable mode:

Makes the break function invalid. ICE6200 SYNC pin pulse output mode which does not terminate the G command when in break condition. This function can be used as an oscilloscope synchronous signal to measure the target circuit timing using the pulse as a reference.

(3) Break trace mode:

Temporarily stops the target run during break condition, and quickly restarts the program after displaying the CPU register and execution time. Effective for viewing the program operation timing, but not in true real time.

(4) Break stop mode:

A mode to break programs when they are consistent with break conditions.

Different types of breaks are described below.

(1) Reset switch:

Need not be in break mode to break. Used to reset the ICE6200; does not display the target register during break.

(2) Break switch:

Need not be in break mode to break. EVA62XXCPU register is properly displayed during break.

(3) ESC key:

Break induced by ESC key input from the host. Need not be in break mode to break. EVA62XXCPU register is properly displayed during break.

(4) Break set command:

Break induced when CPU conditions and conditions set by BA, BD, BR or BM commands agree. Causes a break in break enable mode and break stop mode, but does not cause break in break disable mode. Cannot be set in break trace mode after completion of the instruction.

Table 2.3.1	Item	Break mode	Break method	Description
Break modes and break types	1	Break enable	Reset switch	Normal use mode.
		& break stop	Break switch	Start up mode at power on.
		-	ESC key	EVA62XXCPU runs in
			Break instruction	real time by entering GO
				command after setting this
				mode.
	2	Break enable	Reset switch	Activates the break trace
		& break trace	Break switch	function. This mode is set
			ESC key	by the BE command or BT
				command. Register data is
				displayed when the
				EVA62XXCPU agrees
				with the conditions set by
				the break set instruction.
				EVA62XXCPU does not
				run in real time when GO
				command is entered after
				setting this mode.
	3	Break disable	Reset switch	The SYNC output function
		& break stop	Break switch	is executed. A pulse is
			ESC key	output to the SYNC pin
				via the BSYN command
				when the CPU agrees with
				the condition set by the
				break set instruction.
				EVA62XXCPU runs in real
				time by entering GO com-
				mand after setting this mode.
	4	Break disable		Automatically sets to
		& break trace		break disable and break trace.
				Break enable mode is
				automatically set when
				break trace is set.

Table 2.3.1	shows	the	break	modes	and	break	types.
-------------	-------	-----	-------	-------	-----	-------	--------

SYNC pin and HALT pin output

(1) SYNC Pin Output

When the instruction cycle conforms to a break condition, a low level pulse is output by the first half of the subsequent instruction fetch cycle.

(2) HALT Pin Output

A low level pulse is output when the evaluation board CPU is stopped (e.g., when the HALT or SLEEP instructions are executed).

Display during run mode and during break

During run mode, the ICE6200 control processor monitors the state of the EVA62XXCPU. Monitored data EVA62XXCPU's executed program are displayed at intervals of about 500 ms when the on-the-fly display mode is set (by the OTF command).

```
#G_JUnderlined portion is displayed in succession.*PC=0120Underlined portion is displayed in succession.*PC=HALTEnter HALT mode, line feed, and HALT is displayed.*PC=0200HALT is canceled, operation is restarted, and PC is redisplayed.
```

```
Note HALT indicates execution of the HALT or SLEEP instruction.
When the printer is online and started, the PC values are printed in
succession. PC is not displayed during on-the-fly inhibit mode.
During a break, the cause of the break, post break PC (the next
executed program address), the contents of the CPU registers, and
execution time are displayed.
```

```
#G↓
```

*PC=xxxx	
*EMULATION END STATUS=BREAK HIT	(1)
*PC=0201 A=0 B=0 X=070 Y=071 F=IDZC SP=10	(2)
*RUN TIME=425.097mS	(3)

(1) There are three statuses possible after completing the emulation: BREAK HIT, ESC KEY, OR BREAK SW. When a number of conditions prevail, only the highest priority position is displayed in the following priority ranking: BREAK SW > ESC KEY > BREAK HIT. A break may also be initiated by the reset switch; a reset switch break causes

ICE6200 RESET SW TARGET
to be displayed and instructions are awaited. The register

display and execution time display are not active in this mode.

- (2) The displayed PC shows the next executed value. Register values following "A" indicate the values during a break. In the above example, the values (indicated 2) results from completing to execute the instruction of address 0200.
- (3) Execution time mode and step number mode can be set during run time (using the #TIM command).Millisecond is abbreviated to "mS". In step number mode, decimal values describe the run time, as in :

"*RUN TIME=501 STEPS".

When the execution time or step counters overflow, the message

" *RUN TIME=TIMEOVER "

is displayed. For more details, see page <u>V-25</u>, "Measurement during command execution".

Design and the state	The ICE (200 has a consistent of here here the setting from etimes
Break assigning	The ICE6200 has a variety of break setting functions.
commands	(1)Set break by PC:
	Set by the BA command. The instruction is executed when the EVA62XXCPU PC and the set values agree, thus induc- ing a break. When the PSET command is entered at the set address, the PSET and subsequent instruction are ex- ecuted, then processing is halted. (When multiple PSET commands are specified, the instructions are executed until a command other than PSET is encountered.) Breaks can be set for multiple PC's (to the maximum capacity of program memory).
	(2)Set break by RAM data:
	Set by the BD command. A break is induced by the RAM data address, data, or R/W AND condition. Also, masks can be set for address, data and R/W respectively. When a break is induced by writing F data at address 10, the settings are: address=10, data=F, R/W=W. Any data can be used with the following settings: address=10, data=mask, R/W=W. A break will occur after execution of the memory access instruction which equals the set conditions. The break point can be set to one point through these settings.
	(3)Set break by register value:
	Set by BR command. When the register values of the EVA62XXCPU coincide with the set break values, a break is initiated following execution of the instruction. A break is induced by and AND condition set in the A, B, FI, FD, FZ, FC, X, or Y registers. Also, a mask can be set in any of the registers. When a break is induced with register A=5, X=70, and Y=0A, the other registers may be masked.
	Example: LD A, 5
	LD X 70

LD X,70 LD Y,0A A break is induced when the above instruction is executed.

These settings will allow the operation to run in real time. The break point can be set at only one point. Items (1), (2) and (3) above can be set independently. When BA, BD and BR are set concurrently, a break will occur when any of the conditions coincide.

(4) Set compound break:

	Set by BM command. A compound break occurs when breaks (1), (2) and (3) include AND statements. Breaks can have the following elements masked: (coincide with PC), (coincide with RAM data address, data, R/W), (regis- ter value). The break point can be set at only one point. At the current setting, setting (1) through (3) are auto- matically canceled. If settings (1) through (3) follow the current setting, the BM condition is canceled.
Note	Since the RAM data condition is a break element, the break will not be initiated without instructions which access the RAM data.
Target interrupt and break	When a target interrupt occurs the moment of a break it is given priority over the break. The break is then induced after the interrupt process is stacked. Next, the interrupt routine is executed from the top when the run mode com- mences.
	The PC displayed during a break is the top interrupt address.
	When a break is set by the BR command with FI=1, the break and interrupt are generated simultaneously, but due to the interrupt process, the register values after the break are:
	*PC=0000 A= F=.DZC X=000 Y=010 FI reset

so as to reset the FI flag status.

History function The EVA62XXCPU information (PC, instruction code, RAM data address and data content, and CPU internal registers) while running an emulation are fetched to the history memory region with each CPU bus cycle. The history memory has a capacity of 8291 cycles, and can store 2730 (5 clock instructions only) to 1365 (12 clock instructions only) new instructions executed by the evaluation board.

Figure 2.3.4 shows a diagram of the history function. When the history memory is filled, old data is overwritten by new data.

The history pointer (HP) normally displays the oldest instruction at position 0, but during a break it displays the newest instruction. The maximum value of the HP is about 2730 when 5 clock instructions are executed.

- (a) History pointer displayed
- (b) Executed instruction address displayed
- (c) Instruction code displayed
- (d) Mnemonic instruction displayed
- (e) Register value displayed when instruction completed
- (f) When each flag is set, 1 is reset to 0 and displayed
- (g) When a data memory R/W operation occurs during execution of an instruction, the data sequence write 8 to OF address write 0 to 0E address write 2 to 0D address is sequentially displayed (1).
- (h) During the interrupt process, INT1 (stack) and INT2 (vector) are displayed. The INT1 memory operation indicates the stack cycle.
- Note * During interrupt processing, two HP are renewed. Otherwise, HP is renewed by the instruction unit.

Break delay function	Users can refer to the programs until break by the history function mentioned in the previous section. In the ICE6200 this function has been expanded so that the history infor- mation before hitting the break condition or before and after hitting break condition can be acquired and referred. To realize this function, this system is designed not to termi- nate the program right after the hit of break condition, but to terminate the program after acquiring specified history data. This specification is executed by the #HC command.
Note	When specifying the break delay by using the break enable & break stop mode (see page V-15, "Break mode and break function"), be sure that break is not made at the specified break condition.
Coverage function	ICE6200 can acquire and indicate the address information of the program which was accessed during the execution of the program. One can confirm which parts have completed troubleshooting and debugging by referring to coverage information which is a result of executing programs for a long period of time. This coverage function is specified by #CVD, and #CVR commands.

Measurement during command execution

The ICS62XX possesses a counting function which counts the time or the number of steps from starting the target program to the occurrence of a break.

The counting range is described below.

(1) Time counting mode

 $6.5\mu s$ to $6.5 \times 65535\mu s$ (=425.977ms)

Measurement error : $\pm 6.5 \mu s$ (The display is in millisecond units: ms)

(2) Step counting mode

Step 1 to step 65535

Measurement error : 0 steps (error of 1 step may be presumed during interrupt process)

When the measurement range is exceeded, the following message is displayed:

*RUN TIME=TIMEOVER.

The ICE6200 performs a self-check at power ON. When a check instruction (#CHK) is input from the host system, the self-test results are sent to the host.				
 #CHK,J #System awaits instruction unless an error occurs. A check instruction is automatically input when the ICS62XX system program is loaded. 				
* DIAGNOSTIC TEST OK *	(Check instruction is automatically input; if no anomaly occurs, the following message appears)			
#				
	check instruction (#CHK,J) if the self-test results are sent #CHK,J #System awaits instruction A check instruction is autor ICS62XX system program is B>ICS62XX,J * ICE POWER ON RESET * * DIAGNOSTIC TEST OK *			

When the above display appears, it indicates that the ICE6200 and host are connected properly and the ICE6200 is operating correctly.

If the ICE6200 is power supply is OFF or the the cable to the host is not connected at the prompt, the following message appears:

```
B>ICS62XX.J
*COMMUNICATION ERROR OR ICE NOT READY*
```

Then, when the ICE6200 power supply is switched ON, a self-test is automatically performed and the following message is displayed:

```
* ICE POWER ON RESET *
* DIAGNOSTIC TEST OK *
#
```

When an error message is displayed after entering the check instruction, it is likely to be due to hardware failure. Contact customer support.

Starting the printerThe printer is controlled by the operating system. The
printer can be started and stopped by entering "CTRL"+"P"
key even while the ICS62XX system is running.

#BA,100⊷	
#"CTRL"+"P" T↓	 The monitor display following the
PC=300 IR=FFF	 "CTRL"+"P" key input is printed. SP=010
:	
:	
:	
#"CTRL"+"P"	 Stops the printer

Limitations during emulation

When running emulations with the ICE6200 and evaluation board connected, the EVA62XXCPU is normally stopped, as described in page V-13, "Operating features" (set up mode).

In the set up mode, the EVA62XXCPU and peripherals are stopped, and inappropriate operations cannot be initiated. Until the set up mode is canceled and the target program is executed, the EVA62XXCPU executes instructions provided by the command program of the ICE6200. The command program continues to operate when the emulation is completed and returns to the set up mode.

You should be aware that when the command program takes over, the timers and counters are enabled and started from initial settings. Also, the watchdog timer is cleared immediately prior to the ICE6200 switching to emulation mode while under command program control. Accordingly, the following points should be noted when using the ICE6200.

(1)When execution of the trace instruction (T,U) is prolonged

Evaluation board timer values can be renewed while the command program is operative.

(2) When the run is halted and restarted

The watchdog timer is cleared by the ICE6200 before and after the emulation, thus the watchdog timer is not continuous. The target program operates in real time when the run time is sufficiently long.

The command program runs approximately 30 steps before and after an emulation. When operating at 32kHz clock speed, these steps require 6ms + 6ms = 12ms. While at a clock speed of 455kHz, the command program steps before and after emulation require $400\mu s + 400\mu s = 800\mu s$.

When the dump data command (#DD) is invoked, the I/O area interrupt condition flag is read but not cleared.

CHAPTER 3 COMMAND DETAILS

Detailed particulars on ICE6200 commands and explanations of functions are described in this section. Commands are divided into six categories.

- **DISPLAY:** This command group displays the contents of program memory and data memory, and history information.
 - **SET:** This group of commands modifies the contents of memory (program and data memories).
- BREAK and GO: Sets break conditions and starts emulations.
 - FILE: Controls transfer of files from the host to the ICE6200.
 - **ROM:** Controls the transfer of program memory and ROM (high and low) used by the evaluation board CPU.
 - **CONTROL:** Sets the ICE6200 operation mode (including initialization of the target system).

An E0C6231/62L31 program is used in the examples, but output error messages may differ with the type of device used.

The methods for entering instructions described in section 3.1 are as follows:

- A # mark is displayed when the program awaits instructions.
- Upper and lower case letters may be used to enter instructions.
- Individual instructions delineated by <> marks in the text should be separated by a comma when entering instructions.
- Interactive instructions imbeded in commands are displayed by key input. The interactive portions of instructions in the following examples are underlined in the text.
- The toggle instruction is set to reverse upon each command input.
- Notes indicates points for caution when using the described commands.

3.1 Display Command Group

L	DISASSEMBLE LIST V-32
DP	DUMP PROGRAM V-34
DD	DUMP DATA RAM V-36
DR	DISPLAY CPU REGISTER V-38
Н	HISTORY DATA DISPLAY V-39
HB	HISTORY DATA DISPLAY BACKWARD V-42
HG	HISTORY DATA DISPLAY FORWARD V-42
HS	HISTORY SEARCH PC V-44
HSR	HISTORY SEARCH MEMORY READ V-44
HSW	HISTORY SEARCH MEMORY WRITE V-44
НР	HISTORY POINTER DISPLAY V-45
HPS	HISTORY POINTER SET V-45
СНК	CHECK ICE6200 HARDWARE V-46
DXY	DISPLAY X, Y REGISTER and MX, MY COUNT . V-47
CVD	DISPLAY COVERAGE V-48
CVR	RESET COVERAGE V-48

L	DISASSEMBLE LIST
Format	#L, <address 1="">,<address 2="">↓↓ #L,<address 1="">↓↓ #L↓↓</address></address></address>
Function	 #L_*J The program area (emulation program memory) is displayed disassembled from <address 1=""> to <address 2="">.</address></address> (1) When <address 2=""> defaults, a single screen (22 lines) is displayed disassembled.</address> (2) When <address 1=""> and <address 2=""> default, a single screen is displayed disassembled from the previous address plus one (one more than the previous address). With only L_*J input after power on, the data from address 0 onward is displayed.</address></address> (3) When more than a single screen is displayed disassembled, a single line space appears between each 22 lines with about a one second pause. (4) The instruction can be interrupted by hitting the "ESC" key. Program area (for EOC6231/62L31) Address 1 100 Address 2 2FF
	3FF

```
Format
            #L,<address 1>,<address 2>,↓
            #L,<address 1>↓
            #⊾⊸
Examples
                                     .... Contents of addresses 100 to 1FF of the program
            #L,100,1FF↓
                                           are displayed disassembled
             0100 FDF RET
             0101 2FF JP C.FF
                : : :
             01FF FFF NOP7
            #L,200↓
                                     ..... Contents from address 200 onward (22 lines)
             0200 E00 LD A,0
                                           are displayed
             0201 E6F LDPX MX,F
                :
                    :
                         :
             0215 FFF NOP7
            #⊥₊⅃
                                     .... One more than the previous address at which the
                                           program stopped are displayed
             0216 FDF RET
             0217 E05 LD A.5
                : : :
             022B FFB NOP5
            #L,100,FFF↓
             0100 FDF RET
                  : :
                :
             0201 E6F LDPX MX,F
                                     .... Interrupt via "ESC" key input
            #L,100,50↓
                                     \ldots Address 1 > address 2 error
             * COMMAND ERROR *
            #L,100,100↓
                                     .... Contents of address 100 are disassembled,
             0100 FDF RET
                                           and executed normally
            #L,3FC↓
             03FC E00 LD A,0
                :
             03FF 20F JP C,F
                                     .... Last program area (3FF address in the case of
                                           E0C6231/62L31) is passed, and instruction
                                           terminates
            #
```

DUMP PROGRAM

DP

#DP, <address 1="">,<address 2="">↓↓ #DP,<address 1="">↓↓ #DP↓↓</address></address></address>										
The program area (emulation program memory) from <address 1=""> to <address 2=""> is dis- played in hexadecimal format.</address></address>										
 (1) When <address 2=""> defaults, the contents of <address 1=""> are displayed in a single screen</address></address> (21 lines, 21×8=168 addresses). 										
 (2) When <addresses 1=""> and <2> default, a single screen is displayed from the previous address plus one (one more than the previous address).</addresses> When DP₄ → alone is entered after power on, the data from address 0 are displayed. 										
(3) When more than one screen of data is displayed, a one line space appears between every 21 lines with about a one second pause.										
(4) Hexadecimal and ASCII codes can be displayed together, but the ASCII data operands are converted by the RETD and LBPX instructions before display.										
Example: Data content 142 ASCII display B (Instruction: RETD 42)										
(5) When the last program area passes, the operation terminates.										
(6) Commands can be interrupted by input from the "ESC" key.										
Program area (for E0C6231/62L31) Address 1 100 Address 2 2FF 3FF										

DP

Format	#DP, <address 1="">,<address 2="">↓↓ #DP,<address 1="">↓↓ #DP↓↓</address></address></address>											
Examples	les #DP, 104, 121↓ Specified area is displayed											
	ADDR	0	1	2	3	4	5	6	7	ASCII		
	0100					FFF	FFB	930	142	0B		
	0108	FFF	FFF	FFF	FFF	FFB	931	142	944	1BD		
	:	:	:	:	:	:	:	:	:			
	0118	FFF	FFF	FFF	FFF	FFB	FFB	FFB	FFB			
	0120	131	145							1E		
	#D₽┙	tDPJ21 lines are displayed										
	ADDR	0	1	2	3	4	5	6	7	ASCII		
	0120			131	132	145	FFF	FFB	FFB	12E		
	:	:	:	:	:	:	:	:	:			
	:	:	:	:	:	:	:	:	:			
	:	:	:	:	:	:	:	:	:			
	21 line display											
	#DP,0,	FFF₊J										
	ADDR	0	1	2	3	4	5	6	7	ASCII		
	0000	FFF	FFF	FFF	FFF	FFF	FFF	FFF	FFF	• • • • • • •		
	:	:	:	:	:	:	:	:	:			
	:	:	:	:	:	:	:	:	:			
	:	:	:	:	:	:	:	:	:			
						Comma	ind inter	rrupt via	a "ESC	" key input		
	#DP,100,50,J Address 1 > address 2 error * COMMAND ERROR * Error due to exceeding maximum value of progra * COMMAND ERROR * Error due to exceeding maximum value of progra area (3FF address in the case of E0C6231/62L31)											

עט	DUMP DATA RAM									
Format	#DD, <address 1="">,<address 2="">↓↓ #DD,<address 1="">↓↓ #DD↓↓</address></address></address>									
Function	Data in the RAM area from <address 1=""> to <address 2=""> are displayed in hexadecimal format.</address></address>									
	(1) When <address 2=""> defaults, the contents of <address 1=""> are displayed in a single screen</address></address>(21 lines or the last RAM address).									
	(2) When <addresses 1=""> and <2> default, a single screen is displayed from the previous address plus one (one more than the previous address). When DD alone is entered after power on, the data from address 0 are displayed.</addresses>									
	(3) The contents from the WRITE ONLY I/O area cannot be read.									
	(4) The I/O address with mixed R/W data is read and displayed with a ! mark.									
	(5) Commands can be interrupted by input from the "ESC" key.									
	00 Data RAM Address 1 10 Data from this area is displayed LCD RAM Data from this area is displayed									
	Address 2 6F									
	I/O area									
	(for E0C6231/62L31)									
Examples	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
	#DD, 100, FFF.J Error results when RAM address exceeds 7E* COMMAND ERROR *(in the case of E0C6231/62L31)									
V-36	E0C6262 ICE OPERATION									

חח

```
Format
            #DD,<address 1>,<address 2>,↓
            #DD,<address 1>⊸
            #DD,J
Examples
            #DD,0↓
             ADDR 0 1 2 3 4 5 6 7 8 9 A B C D E F
             0000 F F F F F O 0 0 0 0 0 1 1 1 2 3
               :
                                                      :
               :
             0070 5 A 3 F 0 5 6 F 4 4 4 0 5 A A
                                    .... 21 lines or last RAM address is displayed
            #DD+
                                    .... Display again from address 0 since last address exceeded
                                                (same as above)
            #DD,50,40↓
                                    \ldots Address 1 > address 2 error
             * COMMAND ERROR *
            #DD,0,7E↓
             ADDR 0 1 2 3 4 5 6 7 8 9 A B C D E F
             0000 F F F F F O O O O O O O 1 1 1 2 3
               :
                                    .... Instruction terminated by "ESC" key input
            #DD,E40,F1F↓
            ADDR 0 1 2 3 4 5 6 7 8 9 A B C D E F
            0E40 F 0 1 5 7 4 A 0 0 0 E F 3 2 0 1
                                                       .... When the unused area is one
            OE80 0 0 3 2 7 6 C 1 1 2 0 0 6 5 4 9
                                                            entire line, the display skips
            0E90 1 5 7 6 C F 3 2 0 1 0 1 E A C 0
                                                            that line (for E0C6246)
            0EA0 0 0 0 1 4 0 5 0 0 0 3 0 0 1 5 2
            OEBC 4 3 2 7 6 B A 0 1 5 D 3 2 7 4 3
            0EC0 5 5 4 1 0 2 3 6 0 0 0 1 5 6 7 F
            0F00 ! ! ! ! ! ! / / / / / / / ..... When addresses in the displayed
            OF10 F 0 1 0 F F / / / / / / / / /
                                                            lines are unused they are displayed
                                                            as slashes (for E0C6246)
            #
Note
            The read operation is invalid when the I/O address is set to write only.
```

DR	DISPLAY CPU REGISTER									
Format	#DR↓J									
Function	Displays the value of the current register of the EVA62XXCPU.									
	(1) PC: Displays the address which starts the next emulation.									
	(2) A, B, X, Y, F, SP: Displays the current value (break or after break value).									
	(3) IR, Mnemonic: Displays the mnemonic code for the PC program area command code.									
Example	#DR.J * PC=0100 IR=FFF NOP7 A=0 B=0 X=06F Y=03A F=IDZC SP=10 # Displays characters when F is set, or . mark when F is reset									

Format	#H, <pointer 1="">,<pointer 2="">↓</pointer></pointer>										
	#H, <pointer 1="">↓</pointer>										
Function	Displays history data.										
	(1) Displays history data from <pre>cpointer 1> to <pointer 2="">.</pointer></pre>										
	(2) When <pre>cointer 2> defaults, displays history data of <pre>cointer 1> in 21 lines.</pre></pre>										
	(3) Numerals displayed in <pre>pointers 1> and <2> are decimal, from 0 to 9999.</pre>										
	 (4) The following contents are displayed for each instruction: LOC: History pointer (decimal) PC: Program counter (hexadecimal) When a break, "[PC]" is displayed. IR: Command code (hexadecimal) OP: Command mnemonic OPR: Command operand A,B,X,Y: Contents of A, B (Xp, Xh, Xl), (Yp, Yh, Yl) registers IDZC: Binary display of flag bit (1 when set, 0 when clear) Other: During execution of an instruction, the memory R/W cycle and data are displayed. Also, data interrupts INT1 (stack data) and INT2 are displayed (5) History memory has a capacity of 8192 bus cycles. One the other hand, the E0C6200 has 5, 7 and 12 clock instructions. The 5 clock instructions require three bus cycles, 7 clock instructions require four bus cycles, and 12 clock instructions require six bus cycles. Thus, the final value of the history pointer is changed according to the executed instruction. The maximum final value of the execution time for only a 5 clock instruction is about 1300. When a break occurs before the history memory reaches the end, the last value of the history pointer is reduced. (6) The history memory receives new data until a break occurs. Old data is erased when 										
	number of executed GO commands exceeds 2700.										
	(7) The top of the history pointer is 0. When the last value of <address 2=""> is set, the values are displayed to the last value.</address>										
	 (8) When there are no history data (Before GO command, after GO command execution, during T command execution, or during HAR command execution), the following message is displayed: * NO HISTORY DATA * 										
	(9) The HB command can be used to view history data immediately prior to a break.										

V-39

HISTORY DATA DISPLAY

Η

Format	#H, <pointer 1="">,<pointer 2="">↓ #H,<pointer 1="">↓</pointer></pointer></pointer>										
Examples	#H,200,205,J Set rarge displayed LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER 0200 0128 FDO POP A F 0 020 021 0011 R01F=0 0201 0129 F70 DEC M0 0 0 020 021 0100 0202 012A 722 JP NZ,222 0 0 020 021 0010 0203 012B F71 DEC M1 0 0 020 021 0000 0204 012C 721 JP NZ,21 0 0 020 021 0000 0205 0121 F80 LD M0,A 0 0 020 021 0000 W001=1										
	#300-J 21 lines displayed LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER 0300 000F C1F ADD B,OF F 4 02D 031 0001 0301 0010 70E JP NZ,OE F 3 02D 031 0001 0302 000E EE8 LDPX MX,A F 3 02D 031 0001 W02D=F : : : : : : : : 0319 0124 E10 LD B,00 F 0 030 031 0001 0320 0125 BD0 LD X,D0 F 0 030 031 0001										
	<pre>#H,0,100.J LDC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER 0000 0000 E1C LD A,B 5 4 000 024 0000 0001 0001 E16 LD B,06 4 4 000 024 0000 0002 0002 822 LD Y,22 4 6 000 022 0000 0003 0003 EF0 INC Y 4 6 000 022 0000 0004 0004 EF3 LDPY A,MY 4 6 000 023 0000 R023=0 0005 0005 90A LBPX MX,0A 0 6 001 024 0000 W000=A W001=0 0006 0006 C05 ADD A,05 0 6 002 024 0000 0007 0007 D52 SBC B,02 5 6 002 024 0000 0008* 0008 17F RETD 7F 5 4 003 024 0000 R01A=C R01B=9 R01C=1 W002=F W003=7</pre>										
	* Instruction terminates after exceeding last history memory										

```
Format
           #H,<pointer 1>,<pointer 2>↓
           #H,<pointer 1>↓
Examples
           #H,310,3000↓
             LDC
                  PC IR OP
                                           X Y IDZC MEMORY OPERATION
                               OPR. A B
                                                                         OTHER
            0310 0010 70E JP
                               NZ,0E F 0 020 021 0011
            0311 0011 8F1 LD
                               Y,21 F 0 020 021 0011
            0312 0012 E38 LD
                               MY,08 F 0 020 021 0011 W021=8
                  : : :
                                     : : :
              •
                                              :
                                                   :
            2430 0172 E32 LD
                               MY,02 7 6 024 026 0000 W026=2
            2431 0173 F48 EI
                                     7 6 024 026 0000
            2432 0174 FF8 HALT
                                     7 6 024 026 1000
            2433
                                                      W01F=1 W01E=7 W01D=5 INT1
            2434
                                                                           INT2
            2435* 0108 0E6 JP E6
                                     7 6 024 026 0000
                                        ..... INT1 or INT2 displayed when interrupt only occurs
           #H,0,500
                    PC IR OP
                                           Х
                                               Y IDZC MEMORY OPERATION
                                                                         OTHER
             LOC
                               OPR. A B
            0000 0010 70E JP
                               NZ,0E F B 015 021 0001
            0001 000E EE8 LDPX MX,A F B 015 021 0001 W015=F
            0002 000F C1F ADD B.0F F B 016 021 0001
            0003 0010 70E JP
                               NZ,0E F A 016 021 0001
            0004 000E EE8 LDPX MX,A F A 016 021 0001 W016=F
            0005 000F C1F ADD B,0F F A 017 021 0001
            0006 0010 70E JP
                               NZ,0E F 9 017 021 0001
            0007 000E EE8 LDPX MX,A F 9 017 021 0001 W017=F
            0008 000F C1F ADD
                               B, OF F 9 018 021 0001
            0009 0010 70E JP
                               NZ,0E F 8 018 021 0001
            0010 000E EE8 LDPX MX,A F 8 018 021 0001 W018=F
                                        ..... Instruction terminated by "ESC" key input
           #
```

The history data register value is changed by the line following the instruction execution (limited to "LD X,x" and "LD Y,y").

CS6262

HB, HG HISTORY DATA DISPLAY BACKWARD/FORWARD

1 instructions dis	yed from the current history p								
 Indicates the history information before and after the history pointer. (1) HB: 21 instructions displayed from the current history pointer. The current pointer decrements 21 after display. (Validated in vicinity of last displayed history value.) (2) HG: 21 instructions displayed from the current history pointer. The current pointer increments 21 after display. (Validated from old displayed history value by a screen.) (3) The current history pointer indicates the last pointer after GO command completion. Displayed by HB 21 lines Current history pointer = last history pointer - 42 (Second HB execution) Current history pointer = last history pointer - 21 (First HB execution) Current history pointer = last history pointer - 21 (First HB execution) Current history pointer = last history pointer (immediately after GO command) 									
LT FION END STATC E6 A=7 B=6 X= IME=TIMEOVER PC IR OP 0423 83A LD 0424 CF1 OR 0425 FDF RET : : : 0174 FF8 HALT	4 Y=026 F= SP=4D R. A B X Y IDZC MI 3A 7 6 056 03A 0010 7 6 056 03A 0000 R 7 6 056 03A 0000 R : : : : : 7 6 024 026 1000 When an HB comm	EMORY OPERATION OTHER 03A=0 W03A=1 01D=6 R01E=6 R01F=1 01F=1 W01E=7 W01D=5 INT1 INT2 nand is executed after a break hit, 21 from the break address onward							
	Ayed by HB 21 line Ayed by HB 21	lecrements 21 after display. (Validated in vicinity of the current history product of the current history princements 21 after display. (Validated from old displayed by HB 21 linesayed by HB21 lines \leftarrow Current history point (Second HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (First HB execution)ayed by HB21 lines \leftarrow Current history point (HB execution)ayed by HB $=$ Current history point (First HB execution)ayed by HB $=$ Current history po							

Format	#нв,⊣											
	#HG,											
Examples	#HPS,2	لـ00										
	#HG₊J				21	his	tory p	ointer	instruct	ions displa	ayed from 200	
	LOC	PC I	R OP	OPR.		В	X			-	OPERATION	OTHER
	0200	0128 FI	0 POP	A	F	0	020	021	0011	R01F=0		
	0201	0129 F7	0 DEC	M0	0	0	020	021	0010	R000=1	W = 0 = 0	
	0202	012A 72	2 JP	NZ,22	0	0	020	021	0010			
	0203	012B F7	-	M1	0	0	020		0000	R001=2	W001=1	
	:	: :					:		:			
	0218	000F C1							0001			
	0219	0010 70		NZ,OE								
	0220	000E EE	8 LDPX	MX,A	F	D	013	011	0001	W013=F		
	#HPS,2	400										
					21	1. :			•		1 f 200	
	#HB↓					nis B	tory po X			-	ayed from 200 OPERATION	OTITED
	LDC 0180	PC I 000F C1	R OP	OPR. B,0F		_		_	0001	MEMORI	OPERALION	OTHER
	0180	0010 70		B,OF NZ,OE								
	0181	0010 70 000E EE								MU3D-E		
	0182	000E EE 000F C1							0001	W03B-I		
	:	: :		D,01			:		:			
	0198	0012 E3	8 LD	MY.08					0011	W021=8		
	0199	0013 FI		,							R01D=2 R01E	=1
	0200	0128 FI	O POP	А	F	0	020	021	0011	R01F=0		
	#HG₊J											
	LDC	PC I	R OP	OPR.	А	R	х	v	TDZC	MEMORY	OPERATION	OTHER
	2418	0166 B3	-	ОРК. Ү,ЗА						MEMORI	OF EIGHTION	OTHER
	2419									R03A=1	W03A=0	
	2420	0168 BF		X,2E								
	2421	0169 E2	0 LD	MX,00	7	6	02E	03A	0010	W02E=0		
	2422	016A BF		x,20					0010			
	2423	016B 98	0 LBPX	MX,B0	7	6	021	03A	0010	W020=0	W021=8	
	2424	016C 9C	1 LBPX	MX,C1	7	6	023	03A	0010	W022=1	W023=C	
					•••		. Instr	uctior	termin	ated by "E	SC" key input	
	#											
HS, HSR, HSW HISTORY SEARCH PC/MEMORY READ/MEMORY WRITE

```
Format
            #HS,<address>↓
            #HSR, <address>↓
            #HSW, <address>↓
Function
            Retrieves and indicates history information under the following conditions.
           (1) HS:
                    Indicates the history information of the PC address specified by <address>.
           (2) HSR: Indicates the history information which read the memory specified by <address>.
           (3) HSW: Indicates the history information which wrote the memory specified by <address>.
Examples
            \#HS,0700\downarrow ..... Retrieves and indicates the history information of PC = 700
                      PC IR OP
                                   OPR. A B
                                                      Y IDZC MEMORY OPERATION
              LOC
                                                 Х
                                                                                   OTHER
            1980 0700 FC1 PUSH B
                                          0 0 OFE OFF 1111 WOF0=0
             2038 0700 FC1 PUSH B
                                        5 1 OFE OFO 1001 WOFE=1
               :
               :
            #HSR, 30, .... Retrieves and indicates the history information which read address 30
              LOC
                      PC IR OP
                                   OPR. A B
                                                 х
                                                      Y IDZC MEMORY OPERATION
                                                                                   OTHER
             0820 0640 EC2 LD
                                   A,MX 0 0 030 OFF 1111 R030=0
             0950 084F EC6 LD B,MY 0 F 030 0FF 1111 R030=F
               :
               :
            #HSW, 30, .... Retrieves and indicates the history information which wrote address 30
                                                      Y IDZC MEMORY OPERATION
             LOC
                      PC IR OP
                                   OPR. A B
                                                 Х
                                                                                   OTHER
             0838 0650 E60 LDPX MX,0 0 0 030 0FF 1111 W030=0
             0950 084F E71 LDPY MY,1 0 0 0FF 030 1111 W030=1
               :
               :
```

#HP↓] #HPS, <history pointer="">↓]</history>
(1) HP: Displays current history pointer value.
(2) HPS: Sets the displayed history pointer value in the current history pointer. When a value is input which exceeds the last history pointer, the last pointer value is set to the current history pointer.
(3) The history pointer is displayed in four lines of decimal code, and set.
#HP+
* LOC=2058 Pointer (last value) displayed at break
#HPS,1000↓ Pointer set to 1000
#HP↓
* LOC=1000 Pointer value = 1000
#HPS,9999↓
* LOC=2058 Return to last pointer value
Last pointer value is validated when last value is
#HP↓ exceeded * LOC=2058
- LOC-2056

CHK CHECK ICE6200 HARDWARE

Format	#CHK√]
Function	Displays the results of the ICE6200 initial test. (ICE6200 executes the initial test at power on.)
	The test consists of the following:
	(1) Sum check test of ICE6200 firmware
	(2) ICE6200 RAM R/W test
Examples	#CHK * ROM CHECK ERROR 5F=>FF * * RAM CHECK ERROR 001111 55=>FF * error is detected
	#CHK⊷J
	# A waits command under normal conditions
Note	When an error message is displayed, avoid further use of the device since it is likely due to hardware failure.

Format	#DXY₄J
Function	Displays current X register (Xp, Xh, Xl) and Y register (Yp, Yh, Yl), as well as MX and MY (contents of memory specified by codes X and Y).
Examples	<pre>#DXY_J X=070 MX = 5 Y=07C MY = F #DXY_J X=200 MX=-:OV Indicates the RAM area has been exceeded; Y=050 MY=- read operation not viable</pre>

DXY

CVD, CVR DISPLAY/RESET COVERAGE

Format	#CVD, <address 1="">,<address 2="">↓↓ #CVD↓↓ #CVR↓↓</address></address>
Function	Indicates and clears coverage information.
	 (1) CVD: Indicates the coverage information ranging from <address1> to <address2>. Indicates all coverage information when address are omitted.</address2></address1>
	(2) CVR: Clears coverage information.
Examples	#CVD,100,110,↓ Indicates the coverage information ranging *CV 0100 from address 100 to 110 *CV 01090110 #
	<pre>#CVD.J Indicates the whole coverage information *CV 0100 *CV 010902FF *CV 040004FF #</pre>
	#CVR↓ Clear coverage information #

3.2 Set Command Group

Α	ASSEMBLE PROGRAM	V-50
FP	FILL PROGRAM	V-52
FD	FILL DATA RAM	V-53
MP	MOVE PROGRAM	V-54
MD	MOVE DATA RAM	V-55
SP	SET PROGRAM	V-56
SD	SET DATA RAM	V-57
SR	SET REGISTER	V-58
SXY	SET MX, MY DATA	V-59
нс	SET HISTORY CONDITION	V-60
НА	SET HISTORY RANGE	V-61
HAD	DISPLAY HISTORY RANGE	
HAR	RESET HISTORY RANGE	V-61

Α	ASSEMBLE F	PROGRAM
Format	#A, <address>↓</address>	(With guidance)
Function	The mnemonic comma (1) Supports the mnem (2) Operand expression p: 00 to 03 v s: 00 to FF v i: 00 to FF v i: 00 to FF v r,q: A, B, MX In general, hexadec Three digit data car 0FF input: V 00FF input: C An error is generate	and is assembled and stored at the address indicated by <address>. onics and operands in the instruction list used in the E0C62 Family. as follow the configurations below: alues alues alues alues or MY imal expressions do not have "H" appended at the end. a be input starting from the 0 column. alidates FF</address>
	 fixed length of from one to four digits comprised either of 0 or 1, with "B" input last. When less than three digits are input, the expression is handled as a binary expression or an error. (3) Either upper or lower case letters may be used for input. (4) Mnemonic and operand codes should be separated by one or more character spaces or by a tab code. (5) An error is generated when an unsupported instruction is entered. (6) A or B input gains register priority. Input 0A or 0B when entering immediate value settings. LD A, B Contents of B register are input to A register. LD B, 0A Immediate value A is loaded to B register. 	

#A, <address>↓</address>	(With guidance)
#A,100+J 0100 <u>LD A,0F</u> +J 0101 / - J	 Instruction entered by key input Address displayed; mnemonic input awaited (mnemonic instruction, operand input) / input cancels instruction
#A,200,-J 0200 <u>PUSH XP,-J</u> * ERROR *	Error generated by unapproved mnemonic input (for E0C62XX/62*XX); same address is redisplayed with mnemonic request
0200 <u>NOP5</u> 0201 <u>JJJ 0FF</u> * ERROR * 0201 <u>LD A,FF</u> * ERROR * 0201 <u>LD A,0F</u> 0202 <u>/</u>	Error generated when valid operand range is exceeded
#A,202나 0202 <u>~</u> 년 0201 <i>/</i> 년	Return to previous address (current address less one) via ^ key input
#	
"ESC" key nonfunctional;	cancel operation by entering /↓.
	<pre>#A,100.J 0100 LD A,0F.J 0101 /.J #A,200.J 0200 PUSH XP.J * ERROR * 0201 JJJ OFF.J * ERROR * 0201 LD A,FF.J * ERROR * 0201 LD A,0F.J 0202 /.J #A,202.J 0202 ^.J 0201 /.J</pre>

FD

MP **MOVE PROGRAM** Format #MP,<address 1>,<address 2>,<address 3>, Function Contents of program area addresses 1 to 2 are transferred to addresses 3 and above. Program area (for E0C6231/62L31) Address 1 ... 000 Α Address 2 ... 0FF Address 3 ... 100 А 1FF 3FF Examples Contents of program area addresses 000 to 0FF are #MP,0,FF,100↓ transferred to addresses 100 to 1FF #MP,100,2FF,300↓ When the transfer area surpasses address 3FF, an error * COMMAND ERROR * message is displayed and the instruction will not execute

 \ldots Address 1 > address 2 error

.... Contents of address 200 are copied to address 300, then

the instruction is executed normally

#MP,200,100,300↓ * COMMAND ERROR *

#MP,200,200,300↓

#

MD

SP SET PROGRAM

Format	#SP, <address>⊸</address>	(With guidance)
Function	Contents of the specified p	rogram area address are displayed or modified.
Examples	#SP,100↓	
	0100 FFF: <u>니</u>	Contents of address 100 are read, and cannot be modified by a \dashv alone
	0101 FFF∶ <u>FFB↓</u> 0102 FFF∶ <u>FF9↓</u>	New data is written
	* CODE ERROR *	Error message is displayed when undefined code is detected; contents are written unchanged to the same address
	0102 FFF∶ <u>F05↓</u> 0103 FFF∶ <u>A6B↓</u>	
	0104 FFF: <u>~</u> 0103 A6B: <u>^</u> 0102 F05: <u>F06</u>	Operation returns to previous address (one less than current address) via input by entering ^↓
	0103 A6B:년 0104 FFF: <u>ABx</u> 년	
	0104 FFF: <u>ABC</u> ↓	Error is generated by data setting error; message displayed
		\ldots . / \downarrow input terminates instruction
	#SP,400↓ * COMMAND ERROR *	Since it exceeds the program area (3FF for E0C6231/ 62L31), an error is indicated
	#SP,3FE↓ 3FE FFF: <u>011↓</u> 3FF FFF: <u>FFB↓</u> #	Instruction is completed after last address in input

Format	#SD, <address>↓</address>	(With guidance)
Function	Contents of the data RAM	are addresses are displayed or modified.
	(1) Data cannot be written	to the read only area.
	(2) Data in the write only a	rea cannot be read.
Examples	<pre>#SD, 20↓ 20 5: A↓ 21 5: ^↓ 20 A: B↓ 21 5: F↓ 22 5: /↓ #SD, FFF↓ * COMMAND ERROR * #SD, 70↓ 70 4: -↓ 71 F: -↓ 72 5: -↓ 73 6: -↓ 74 6: 5↓ 75 8: 4↓ 76 5: A↓ 76 5: A↓ 77 8: 9↓ 78 8: 5↓ 79 A: -↓ 7A B: -↓</pre>	 Contents of address 20 are modified and stored to A Return to previous address (one less than the current address) by entering ^ Instruction terminated by / When specification exceeds the maximum value of the RAM area (7F for E0C6231/62L31), an error is indicated Hyphen only displayed due to read only address; data input not accepted
	: : : 7E F: <u>-</u> ↓	Command terminates after last address entered
	#SD,E50↓ * UNUSED AREA *	When an unused area has been specified, "UNUSED AREA" is displayed (for E0C6246)
	#SD,ECE↓ ECE 0: <u>F↓</u> ECF 4: <u>F↓</u> * UNUSED AREA *	When an unused area is entered into during data setting, "UNUSED AREA" is displayed (for E0C6246)
	#	

SR SET REGISTER Format #SR√ (With guidance) #SR,<register name>,<data>↓ Function EVA62XXCPU registers are displayed and modified. (1) Specified data is set in specified registers. (2) Register names can be specified as: PC, A, B, X, Y, FI, FD, FZ, FC, and SP. Examples #SR↓ PC=0100:0105↓ Input data and \dashv to registers you wish to modify enter A= 5:1 \downarrow only to skip to the next register A:5↓ B= X= 02F:20↓ Y= 010:1A↓ FI= 0:1, 1:1 FD= FZ =لے:0 FC= 1:0₊ SP= 4F:<u>^↓</u> Entering the $\land \downarrow$ returns operation to previous register (one less than the current register) FC= 0:1, SP= 4F:⊥ #SR,X,AA↓ X register only is changed to AA #SR↓ PC= 105:↓ Current value is saved with \dashv key input لہ:5 A= لہ:5 B= X= 2A:⊥ 2A:↓ Y= : : SP= 4F: <u>↓</u>

Note

Instruction will not complete with $/ \leftarrow$ input; use \leftarrow up to the last register.

Format	#sxy,	(With guidance)
Function		(Xp, Xh, Xl), Y register (Yp, Yh, Yl), and MX and MY are displayed. Contents of MX and MY can also be
Examples	#SXY니 X=040 MX=5:년 Y=030 MY=A:년	Display only; \leftarrow alone continues operation
	#SXY↓ X=040 MX=5: <u>0↓</u> Y=030 MY=A: <u>F↓</u>	Sets new data to MX, MY
	#SXY↓J X=070 MX=3:- Y=FFF MY=-:OV	Data to read only area not accepted Input not accepted if RAM area is exceeded
	#SXYJ X=E52 MX * UNUSED AREA * Y=1A7 MY=1: <u>3</u> J	for E52 (for E0C6246)
	#	

HC	SET HISTORY CONDITION	
Format	#HC,S/C/E↓	
Function	Sets up the area for histor "[]" is added to the break	ry extraction by means of the break point.
Examples	#HC,S↓ #HC,C↓ #HC,E↓	 Extracts the history from the break point Extracts the history before and after the break point Extracts the history up to the break point (default value)

Format #HA, <address 1>, <address 2>/ALL #HAD, _ #HAR,<address 1>,<address 2>/ALL↓ Function Sets up, indicates and clears PC address within the history extraction area. (1) HA: Extract the range specified by <address>. When specifying ALL, all addresses will be specified. (2) HAD: Indicates the address of history extraction area. (3) HAR: Do not extract the range specified by <address>. When specifying ALL, history isn't extracted. Examples #HAR,ALL↓ Clears the entire history extraction area #HA,300,400↓ Specifies history extraction area #HA,100,200↓ #HA,500,500↓ #HAD↓ Indicates history extraction area *HA 0100..0200 *HA 0300..0400 *HA 0500 #

3.3 Break and Go Command Group

BA	SET BREAK ADDRESS CONDITION V-64
BAR	RESET BREAK ADDRESS CONDITION V-64
BD	SET BREAK DATA CONDITION V-65
BDR	RESET BREAK DATA CONDITION V-65
BR	SET BREAK REGISTER CONDITION V-66
BRR	RESET BREAK REGISTER CONDITION V-66
BM	SET BREAK MULTIPLE CONDITION V-68
BMR	RESET BREAK MULTIPLE CONDITION V-68
BC	BREAK CONDITION DISPLAY V-70
BRES	RESET ALL BREAK CONDITION V-71
G	GO TARGET PROGRAM V-72
Т	SINGLE STEP TRACE V-75
U	SINGLE STEP TRACE
	& LAST INFORMATION DISPLAY V-77
BE	BREAK ENABLE MODE SET V-78
BSYN	BREAK DISABLE & SYNC MODE SET V-78
BT	BREAK TRACE MODE SET V-79
BRKSEL	BREAK ADDRESS MODE SELECT V-80

BA, BAR *set/reset break address condition*

Format	#BA, <address 1="">,<address 2="">,<address 3="">,<address 4="">↓↓ #BAR,<address 1="">,<address 2="">,<address 3="">,<address 4="">↓↓</address></address></address></address></address></address></address></address>					
Function	Sets break condition for the PC.					
	 (1) BA: The value indicated at the specified address is set to the break condition. Multiple addresses are set by using commas to divide them. Consecutive addresses are set by separating entries with two period marks (.). Entering <address 3=""><address 4=""> sets a break condition such that <address 3=""> ≤ PC ≤ <address 4="">.</address></address></address></address> 					
	(2) BAR: Can be cleared separately from break condition set by BA.					
	(3) Addresses which can be entered by a single BA or BAR instruction can be set multiple times in a single line (80 columns).					
	(4) When the BA command is executed several times, previous settings are valid.					
	(5) When the BM command is executed, all BA conditions are canceled.					
	(6) When entering the GO command at a break, the BA condition may enter the clear mod or a condition retaining mode. (Refer to the BRKSEL command.)					
Examples	#BA, 100, 200, 101, 1FF↓ Break condition set at addresses 100, 200, 101 and 1FF					
	#BA, 3003FF↓ Break conditions set at addresses 300 to 3FF					
	#BAR, 100, 2003FF↓ Break conditions canceled at address 100 and addresses 200 to 3FF (although break conditions were not set at addresses 201 to 2FF, no error occurs even with BAR setting)					
	#BC-J BA condition is displayed by BC command BA 02FF BA condition is displayed by BC command BD NONE BR NONE # #					

Format	#BD↓ (With guidance) #BDR↓
Function	Break condition set for data RAM read/write area.
	(1) BD: Break condition set for RAM data address, data, and R/W. Address can be set at one point, data set from addresses 0 to F or masked, and the R/W area set to read, write, or masked. A break is generated when the three conditions specified by address, data, and R/W coincide.
	(2) BDR: Cancels the condition set by BD command.
	(3) A break condition set by the BD command is functional at one point only, but can be mixed with BA and BR commands.
	(4) A BD condition can be canceled by executing the BM command.
Examples	$\#BD \downarrow$ $ADDR: 074 \downarrow$ $ADDR: 5 \downarrow$ $DATA -: 5 \downarrow$ $absent.$ At address 74, the number 5 is entered as data $R/W -: * \downarrow$ and the R/W is masked (*)In the above example, a break is set for when the number 5 is written to or read from the data RAMaddress 074.
	#BD↓ ADDR 074: ↓ When no setting modification is made, hitting the ↓ key continues the operation to the next setting DATA 5: 1*1*B↓ Data is masked R/W *: W↓ Sets the R/W function to write At the current settings, a break is generated when 1 is written to 2 ³ bit and 2 ¹ bit at data RAM address 74.
	#BDR-J All BD conditions are cleared #BDr-J Entering -J after canceling BD setting confirms # cancellation

BR, BRR *set/reset break register condition*

Format	#BR↓ (With guidance) #BRR↓				
Function	A break condition is set in the EVA62XXCPU registers A, B, FLAG, X (Xp, Xh, Xl,) or (Yp, Yh, Yl).				
	 (1) BR: A break condition is set in the target registers A, B, FLAG, X (Xp, Xh, Xl,) or Y (Yp, Yh, Yl). The break condition in each register can be masked (a masked register can generate a break in another register, whatever the specified value). Break is induced when the values of each register correspond to the set values in the internal CPU registers. 				
	(2) BRR: Cancels a break condition set by BR command.				
	(3) A break set by the BR command is operative at one point. BA and BD settings can be mixed.				
	(4) A BR condition can be canceled by executing the BM command.				
Examples	$\#BR, J$ A $-: C_{-}J$ B $-: *_{-}J$ B $-: *_{-}J$ FI $-: 1_{-}J$ FD $-: *_{-}J$ FD $-: *_{-}J$ C $-: *_{-}J$ This induces a break unrelated to the FD valueFC $-: *_{-}J$ X $: 040 J$ Y $: 041 J$ the operation to the previous setting (one less than theY $: 030 J$ Current setting)A break condition set as described above, where A=C, FI=1, FZ=0, X=41, and Y=30.				
	$\#BR \downarrow$ AC: \downarrow B*: \downarrow FI1: $\star \downarrow$ FD*: \downarrow FZ0: $\star \downarrow$ FC*: \downarrow X041: $042 \downarrow$				

Two break conditions where A=C and X=42 are described above. E0C6262 ICE OPERATION

Y 030:<u>*</u>⊥

V-66

Format	#BR⊷ #BRR⊶	(With guidance)
Examples	#BR니 A 0:닌 B 0:5년 FI *:/싄 #	 A BR condition is cleared by the BRR command Entering J after canceling BR setting confirms cancellation herein A=0, B=0, X=40, and Y=30. Entering / when no further setting changes are desired completes the instruction here A=0, B=5, X=40, and Y=30.
Notes	setting a BR conditio	XX/62*XX) has a different RAM area, and XY settings in a BR

SET/RESET BREAK REGISTER CONDITION BR, BRR

BM, BMR *set/reset break multiple condition*

Format	#BM√ (With guidance) #BMR√				
Function	 Sets the compound break function for multiple breaks when all conditions for the EVA62XXCPU PC, data RAM access, and register values coincide. (1) Although the BA, BD and BR instructions can be set independently, the BM command generates a break when all conditions for the PC, data RAM access, and register values coincide. In other words, it can be thought of as the AND setting for the BA, BD and BR commands. 				
	 (2) Previously set BA, BD and BR conditions are canceled by the BM instruction. Also, the BM setting is canceled when the BA, BD and/or BR instructions are set after the BM instruction is set. (3) The BMR command cancels the BM instruction. (4) A break is set at only one point by the BM command. Each register setting can be masked. 				
Example	$\#BM,J$ PC $: \underline{100,J}$ ADDR $: \underline{70,J}$ Canceled.DATA $-:\underline{A,J}$ Break condition is set where PC=100, RAM access=70, R/W $-:\underline{*,J}$ A $-:\underline{*,J}$ B $-:\underline{*,J}$ During execution of the instructions at address 100, aB $-:\underline{*,J}$ FI $-:\underline{*,J}$ RAM at address 70 is accessed, read/write data A, FD andFD $-:\underline{1,J}$ FC $-:\underline{1,J}$ FC $-:\underline{1,J}$ X $:\underline{*,J}$ X $:\underline{3E,J}$ X $:\underline{3E,J}$				

SET/RESET BREAK MULTIPLE CONDITION BM, BMR

Format	#BM,⊣ #BMR,√		(With guidance)
Examples	ADDR DATA R/W A B FI FD FZ FC X Y As shown X=70, Y= #BM,J PC ADDR #BMR,J #BM,J	*: <u>-</u>] 1: <u>-</u>] 7E: <u>-</u>] n above, a break is gen =7E, FD=1 and FC=1 *: <u>100-</u>] 71: <u>/-</u>]	 Enables return to previous operation when ^ key is entered Previous setting retained when ↓ alone is entered
Notes	(2) ThisThe aThere if the(3) Each	instruction runs a b above described lim efore, a break will 1 e PC and register va	/62*XX) has a different RAM area, and XY settings in a BM

Chapter 3: Command details (break and GO command group) \$V-69\$

BC BREAK CONDITION DISPLAY

```
Format
            #BC√
Function
            Displays the current break condition.
Examples
            #BC₊
                                      .... Break condition is verified after power on. All break
                                            conditions are canceled.
              * BA NONE
              * BD NONE
              * BR NONE
              * BM NONE
              * BREAK ENABLE MODE ..... Enters break enable mode
              * BREAK STOP MODE ..... Enters break stop mode
              * TIME COUNT MODE ..... Enters real-time mode
            #BA,100,101↓
            #BC↓
                                      .... Reads after address break condition set Break condition
                                            confirmed
              * BA 0100..0101
              * BD NONE
              * BR NONE
              * BM NONE
              * BREAK ENABLE MODE
              * BREAK STOP MODE
              * TIME COUNT MODE
            #BRES
            #BA,100,102↓
            #BC↓
              * BA 0100
                                      .... Displays multiple executions of BA condition when
                                            addresses are not consecutive
              * BA 0102
               :
               :
            #
```

Format	#BRES.↓
Function	All break conditions (BA, BD, BR, or BM settings) are canceled.
Example	#BRES_J #BC_J * BA NONE * BD NONE * BR NONE * BREAK ENABLE MODE * BREAK STOP MODE * TIME COUNT MODE #
Note	Although the break condition is canceled, the break mode (enable/disable, trace, stop, time/stop) is still operative.

BRES

GO TARGET PROGRAM

Format	#G↓ #G, <address>↓ #G,R↓ </address>				
Function	This instruction runs the target program. When a break condition is detected, program execution is halted and the break status is displayed to complete the instruction.				
	1. Se	tting	the starting addres	SS	
	(1)	Wh	en an address is enter	ed, the run starts from th	at address.
	(2)		h an R setting the EV ress 0100.	A62XXCPU is reset, and	d the run starts from the reset
	 (3) When the address and R setting are defaulted, the run starts from the current address (PC which displays the status during the previous break). When G, is entered after power on, the run starts from address 0100, but the EVA62XXCPU is not reset. 2. Break Mode and Break Condition 				
	Item Break mode(note) Break condition Comments				
	1BE mode and* Reset switchMode at power on.		Mode at power on.		
			Break stop mode	* Break switch	
				* Break set commands	
				(BA, BD, BR, BM)	
				* ESC input	
		2	BE mode and	* Reset switch	When the break condition
			Break trace mode	* Break switch	and EVA62XXCPU executed
				* ESC input	cycle coincide, the break
					status alone is displayed and the GO command is restarted.
		3	BSYN mode and	* Reset switch	When the break condition and
		5	Break stop mode	* Break switch	EVA62XXCPU executed
		cycle coincide, a pulse is			
	output to the SYNC pin.				
	(Note) Refer to "Break mode and break function" in section 2.3 for more information of				-

(Note) Refer to "Break mode and break function" in section 2.3 for more information on the break mode.

V-72

Format #G↓ #G,<address>↓ #G,R↓

Function

3. Display During Execution of GO Instruction

Item	Display mode (note)	Display method		
1	On-the-fly display mode	#G←1		
		*PC=xxxx Sampling of the PC is displayed		
		about every 500ms.		
		HALT message is displayed		
		during halt.		
2	On-the-fly inhibit mode	#G, Execution status is not displayed.		

(Note) Refer to "Display during run mode and during break" in section 2.3 for information on the display modes.

4. Break Display

__> The break status is displayed.

- (A)BREAK HIT, ESC KEY, BREAK SW displays appear in parts. When the reset switch is depressed, the message, *ICE6200 RESET SW TARGET*, is displayed without displaying the break status, and the next instruction is awaited.
- (B)Register contents are displayed in part when PC (next executed address) is stopped.
- (C) The execution time or executed number of steps set by TIM command are displayed in part. (Refer to page V-93 for details of the TIM command.)

G

GO TARGET PROGRAM

```
Format
             #G, ∟
             #G,<address>↓
             #G,R,⊒
Examples
                                       .... On-the-fly set command
             #OTF
              * ON THE FLY ON *
                                                                              These settings
             #BE↓
                                       .... Break enable set command
                                                                              are set at power
              * BREAK ENABLE MODE *
                                                                              on: default is
                                                                              command input
             #BT⊷
                                       .... Break stop mode set command
              * BREAK STOP MODE *
             #G,R↓
                                       .... Target and evaluation board is reset; run starts from reset
                                             address (0100)
              *PC=xxxx
                                       .... PC display is cyclic
              *EMULATION END STATUS = BREAK HIT
                                                                 .... (A)
              *PC=01FF A=5 B=0 X=70 Y=05 F=..ZC SP=20 .... (B)
              *RUN TIME=100mS
                                                                 .... (C)
                             (A) Break displayed through break condition (BA condition set at 01FE)
                             (B) F is expresses reset bit and (.) bit as English letter
                             (C) Run time is 100ms
```

```
G
```

```
Format
             #T,<address>,<step number>,↓
             #T,<address>↓
             #T,,<step number>↓
             #т....]
Function
             Executes trace, and single step actions of programs.
             (1) The specified portion of the target program executes with a frequency indicated by the
                number of steps from the specified address (65535 possible in decimal code). The PC,
                instruction word and register contents are displayed with each execution.
             (2) When the step number is defaulted, only one step is executed.
             (3) When the address is defaulted, the specified number of steps is executed from the
                current PC (PC at which the previous T command completed).
             (4) When both address and step number are defaulted, only one step is executed from the
                current PC. When this setting occurs after power on, one step is executed from
                PC=0100.
             (5) When the step number is one (#T, <address> or #T), the instruction does not terminate
                after one step, but a further step is executed by the "SP" key input, at which time the
                instruction can be terminated by the "ESC" key input.
             (6) In (1) above, the instruction is terminated by "ESC" key input.
Example
             #T,100,3↓
              *PC=0100 IR=FFF NOP7
                                              A=0 B=0 X=00F Y=00F F=IDZC SP=10
              *PC=0101 IR=E05 LD
                                         A,5 A=5 B=0 X=00F Y=00F F=IDZC SP=10
              *PC=0102 IR=B05 ADC XH,5 A=5 B=0 X=051 Y=00F F=IDZC SP=10
             Executed PC
                              Command code
                                                            Correctors displayed when the flag is set
                                                            and/or reset (After executing three steps,
             is displayed
                              and mnemonic
                                                            the current PC is 0103)
                              are displayed
             #
```

SINGLE STEP TRACE

т

```
Format
             #T,<address>,<step number>↓
             #T, <address>↓
             #T,,<step number>↓
             #T___
Examples
             #T↓
                           Program executes sequentially in steps from current PC (=103) via "SP" key.
                                           A=5 B=0 X=04F Y=03F F=IDZC SP=013 ....
                                                                                              "SP"
              *PC=0103 TR=FDF RET
              *PC=01AA IR=AD1 OR A,B A=5 B=0 X=04F Y=03F F=ID.C SP=013 ..... "ESC"
                                  Instruction is terminated by "ESC" key.
             #T≁
              *PC=01AB IR=XXX PSET 2 A=X B=X X=XXX Y=XXX F=XXXX SP=013
              *PC=01AC IR=xxx JP
                                         10 A=x B=x X=xxx Y=xxx F=xxxx SP=013 ..... "ESC"
             #
                           Because the PSET command is used in relation to the subsequent instruction,
                           two command executions can be set by invoking the T command once.
             #T₊J
               *PC=01AD IR=xxx HALT
                                          Cursor
                When the HALT command is executed by the T command, the command mnemonics are dis-
                played until the target interrupt as described above, but the register value is not displayed. When
                an interrupt is properly input, the register is displayed and the next "SP" is awaited. The SP input
                restarts the program after the interrupt routine.
                When the target interrupt never occurs, the instruction can be forced to terminate by using the
                "ESC" key. At that point, the HALT and T commands terminate, but the HALT command
                executes from the next address when the T command is operative.
Notes
             (1) The T command does not operate in real time. Therefore, the target timer is
                renewed.(For details refer to "Limitations during emulation" in section 2.3.)
             (2) When the H command is input after executing this command, the message, *NO HIS-
                TORY DATA*, is displayed. Therefore, the G command must be used to analyze history
                data.
```

Format	#U, <address>,<step number="">↓ #U,,<step number="">↓</step></step></address>
Function	Executes trace and single step actions of programs and indicates final results alone.
	(1) The target program is executed from the address specified in <address> for the frequency specified in <step number=""> (65535 possible in decimal code), but the results are not displayed until after the final instruction is completed.</step></address>
	(2) When the address is defaulted, execution starts from the current PC for the specified number of steps.
Examples	#U,100,5↓ *PC=01AA IR=ADI OR A,B A=5 B=0 X=04F T=03F F=ID.C SP=13
	#U,,1↓ *PC=01AB IR=FFF NOP7 A=5 B=0 X=04F Y=03F F=ID.C SP=13
	#
Notes	 The U command does not run in real time, so the target timer is renewed. (For details refer to "Limitations during emulation" in section 2.3.) When the H command is input after executing this command, the message, *NO HIS-TORY DATA*, is displayed. Therefore, the G command must be used to analyze history data.

U

BE, **BSYN** BREAK ENABLE MODE SET/BREAK DISABLE & SYNC MODE SET

Format	#BE↓ #BSYN↓
Function	Sets the break enable mode and break disable mode.
	(1) BE: Sets the break enable mode. A break is generated when the BA, BD, BR or BM conditions coincide with the EVA62XXCPU state.
	(2) BSYN: Sets the break disable (synchronous) mode. When the BA, BD, BR or BM conditions coincide with the EVA62XXCPU state, a pulse is output to the ICE6200 SYNC pin and a break is not generated.
	(3) At power on, the break enable mode is operative.
Examples	#BE≁J
	* BREAK ENABLE MODE
	#BSYN↓
	* BREAK DISABLE MODE * BREAK STOP MODE
Note	Refer to "Break mode and break function" in section 2.3 for details of break enable/disable functions.

Format	#BT√]	(Toggle)
Function	Selects the break stop mode or the break trace mode. Setting is mand input. At power on, the break stop mode is operative.	s reversed with each com-
Examples	<pre>#BT.J * BREAK TRACE MODE Since the stop mode is operative * BREAK ENABLE MODE mode is set by command input #BT.J * BREAK STOP MODE The setting is reversed by com #</pre>	
Note	Refer to "Break mode and break function" in section 2.3 for de modes.	tails of break stop and trace

BT
BRKSEL BREAK ADDRESS MODE SELECT

```
Format #BRKSEL, REM
```

#brksel,clr↓

Function After setting the break address condition (BA), the program runs until stopped by a break hit; the settings then remain or clear the previously set BA condition. The clear mode (CLR mode) is operative at power on. The BA condition remain mode (REM mode) is used when multiple break conditions are set and the program runs to consecutive break points. The BA condition clear mode is used to debug when the break point is changed with each break.

```
Examples
            #BA,0100↓
            #BRKSEL, REM↓
                                                      ..... Remain mode is set
            #BC↓
             BA 0100
                :
            #G₊J
             *PC=100
             *EMULATION END STATUS = BREAK HIT ..... Break is generated when break
             *RUN TIME=10mS
                                                             condition hits
                                                      .... New break condition is set
            #BA,200↓
            #BC↓
             BA 0100
                                                      .... Pre-break condition remains
             BA 0200
                :
                                                      .... Clear mode is set
            #BRKSEL,CLR↓
            #G↓
             *PC=101
             *EMULATION END STATUS = BREAK HIT ..... Break condition hits
             *RUN TIME=30mS
                                                      ..... New break condition is set
            #BA,300↓
            #BC↓
                                                      .... Pre-break condition is canceled
             BA 0300
                 :
            #BA,350,3A0↓
            #BC↓
             BA 0300
                                                      .... After break condition remains
             BA 0350
             BA 03A0
            #
V-80
            E0C6262 ICE OPERATION
```

3.4 File Command Group

RF	READ PROGRAM FILE	. V-82
RFD	READ DATA FILE	. V-82
VF	VERIFY PROGRAM FILE	. V-83
VFD	VERIFY DATA FILE	. V-83
WF	WRITE PROGRAM FILE	. V-84
WFD	WRITE DATA FILE	. V-84
CL	CONDITION LOAD	. V-85
CS	CONDITION SAVE	. V-85

RF, RFD *read program/data file*

Format	#RF, <file name="">↓ #RFD,<file name="">↓</file></file>
Function	Loads files onto the emulation memories.
	(1) RF: The hex file specified in <file name=""> is loaded in the emulation program mem- ory.</file>
	(2) RFD: The hex file (data RAM) specified in <file name=""> is loaded in the data memory.</file>
Examples	#RF, C6200A0,J C6200A0H.HEX file and C6200A0L.HEX file are loaded in the program memory #RFD, WORK,J WORKD. HEX file is loaded in the data memory
Notes	 When the memory area is overreached (address 3FF in program memory; address 7E in data memory for E0C6231/62L31) or an FD file format error is detected, an error message, *FILE DATA FORMAT ERROR*, is displayed and the instruction terminates. The contents of the emulation program memory and data memory are not secured. I/O memory, segment memory and unused area are not loaded into data memory. The files are in hexadecimal format. (For details, refer to appendix B.) The file format is created by the E0C62XX/62*XX cross assembler. (For details, refer to the "E0C62XX/62*XX Cross Assembler Manual".) "ESC" key is invalid during instruction execution. When an input error (FD error, not drive error) is detected on the PC side, control is returned to the operating system, and therefore, the ICS62XX is terminated. When an undefined instruction is detected, an error message is displayed and the ICS62XX program terminates. (For details, refer to Chapter 4.)
V-82	E0C6262 ICE OPERATION

VF. VFD

Format #VF,<file name>↓ #VFD,<file name>↓ Function Compares the contents of the emulation memories with those of files. (1) VF: The contents of the emulation program memory and the hex file specified in <file name> are collated. (2) VFD: The contents of the emulation data memory (data RAM) and the hex file specified in <file name> are collated. Examples C6200A0H.HEX and C6200A0L.HEX files and the #VF,C6200A0↓ program memory are collated ADDR FD:ICE The contents of the FD address and the memory are 0100 FFF:FFC 0300 FFC:FFB displayed only when the collated data do not agree. #VFD,DATA↓ FD:ICE ADDR 001 1:3 * ESC * Display can be interrupted by "ESC" key input Notes (1) Notes (1), (3), (4) and (6) in page V-82 are applicable to these instructions. (2) "ESC" key is valid during error message display; "ESC" key input terminates the instruction. (3) I/O memory, segment memory and unused area in data memory cannot be compared.

CS6262

WF, WFD *write program/data file*

Format	#WF, <file name="">↓↓ #WFD,<file name="">↓↓</file></file>
Function	Saves the contents of the emulation memories to files.
	(1) WF: The contents of the emulation program memory are saved to the file specified in <file name="">.</file>
	(2) WFD: The contents of the emulation data memory (data RAM) are saved to the file specified in <file name="">.</file>
Examples	#WF, C6200A0↓ Program memory is saved to C6200A0H.HEX and C6200A0L.HEX files.
	#WFD, WORK↓ Data memory is saved to WORKD.HEX file.
	#WF, ABCDEFGH, * COMMAND ERROR * An error occurs if the file name exceeds seven characters.
Notes	(1) Notes (3), (4), (5) and (6) of page V-82 are applicable to these commands.(2) I/O memory, segment memory and unused area in data memory cannot be saved.

CL, CS

Format	#CL, <file name="">↓ #CS,<file name="">↓</file></file>	
Function	Loads the contents of the emulation memories of ICE6200 and the contents of each setting from files or save them to files.	
	(1) CL: The program and data from the file specified in <file name=""> are loaded into the program and data memories respectively. Each type of command set condition is loaded, also.</file>	
	 (2) CS: The contents of the current ICE6200 emulation program memory and data memory as well as each command set condition (break state, etc.) are saved to the file specified in <file name="">.</file> The loaded and saved contents are as follows: Target program (emulation program) Target data (emulation data) Current register values of the EVA62XXCPU (A, B, X, Y, F, SP, PC) Current break data (conditions set by BA, BD, BR and/or BM commands) 	
	 Break mode data (execution time/steps, break stop/break trace, break enable/break SYNC, with/without on-the-fly). These instructions are valid when power is switched off and reapplied. 	
Examples	#CS, TEST Current ICE6200 set conditions are saved to the TESTC.HEX file; contents of emulation program memory are saved to the TESTH.HEX file, while contents of data memory are saved to the TESTD.HEX file Power OFF contents of data memory are saved to the TESTD.HEX file Power ON file	
	#CL, TEST, Contents saved in CS are loaded; ICE6200 returns to the status prior to power OFF	
Notes	 (1) Notes (1), (2), (3), (4), (5), and (6) of page V-82 are applicable to these commands. (2) A file name of up to seven characters may be specified as <file name=""> for #CS,<file< li=""> </file<></file>	

name>.

3.5 ROM Command Group

RP	LOAD ROM PROGRAM	V-88
VP	VERIFY ROM PROGRAM	V-89
ROM	ROM TYPE SELECT	V-90

RP LOAD ROM PROGRAM

Format	#R₽, _
Function	The program is loaded to the ICE6200 emulation memory from the ROM at the ICE ROM socket (high and low). The FF ROM data is unassembled.
Examples	#RP.J Error is generated because high and low ROM are unassembled #RP.J Error generated because high side ROM is unassembled #RP.J Contents of ROM are properly loaded #
Notes	 Refer to the ROM commands for information on the valid loading region. When undefined code is detected, the ICS62XX program is terminated and control returns to the operating system.
V-88	

Format	#V₽₊Ĵ	
Function		ROM socket (high and low) and the ICE emulation memory not agree, the data contents are displayed.
Examples	#V₽⊷]	
	# : :	When the results of the comparison are acceptable, the program execution is at waiting until ordering the next instruction
	#VP↓ ADDR ROM:ICE 0100 FFF:FFC . 0300 0FF:0FC : : : 03FF 000:001	All non-agreeing data (ROM address, ROM contents, emulation memory contents) are displayed
	#VP↓ * NO ROM H * .	Error because high side ROM is unassembled
	#VP↓ ADDR ROM:ICE 0100 FFF:FFC 0300 0FF:0FC : : : :	
	* ESC * . #	Processing is interrupted by "ESC" key input, and the program execution is at waiting until entering the next command

ROM which is assembled to the high and low IC sockets should be the same types.

ROM ROM TYPE SELECT

V-90 E0C6262 ICE OPERATION

Note

3.6 Control Command Group

I	INITIALIZE TARGET CPU	V-92
TIM	TIME OR STEP MODE SELECTION	V-93
OTF	ON THE FLY MODE SET	V-94
Q	QUIT	V-95

	INITIALIZE TARGET CPU
Format	#I.⊣
Function	Resets the EVA62XXCPU. Resets the EVA62XXCPU, but the ICE6200 set conditions (break, etc.) are affected.
Example	+I+1
	# The execution is at waiting until entering the next command
V-92	E0C6262 ICE OPERATION

Format	#TIM⊣	(Toggle)
Function	When the GO command is entered, the or step count mode is operative. The ex The setting is reversed at each comman	ecution time count mode is the o	
Examples	mod mod #TIM	e the mode after power supply is the e, entering a command toggles the se e ng is reversed with each command i	etting to step
Note	Refer to "Measurement during comman time count and step count modes.	d execution" in section 2.3 for m	nore details on the

OTF	ON THE FLY MO	ODE SET
Format	#otf⊶	(Toggle)
Function		run the on-the-fly display during GO execution. is the default at power on. Use the display off mode when the host
Examples	#OTF.J * ON THE FLY OFF #OTF.J * ON THE FLY ON #G.J * PC=XXXX : : : : #OTF.J * ON THE FLY OFF #G.J	command input toggles to the display off mode
Note	For more details about the break" in section 2.3.	e on-the-fly function, refer to "Display during run mode and during

ICS6262

Format	#Q,_]	
Function	Terminates the ICS62XX pr	rogram and returns control to the operating system.
Example	#Q.J B> B>ICS62XX.J Epson logo is displayed for a * ICE POWER ON RESET * DIAGNOSTIC TEST OF #	· *

3.7 HELP Command

HELP

Format	#HELP↓ #HELP,n↓ (n=1 to	8)	(With guidance)
Function	Displays the ICS62X	X commands.	
	(1) All commands are	displayed on a single scr	een when no option (,n) is set.
		ed commands when an op ommands of the same gro	
	n value	Command group	
	1	DISPLAY COMMAN	ID
	2	SET COMMAND	
	3	BREAK and GO COM	IMAND
	4	FILE COMMAND	
	5	ROM COMMAND	
	6	CONTROL COMMA	ND
	7	ALL COMMAND DI	SPLAY
	8	BASIC COMMAND	DISPLAY
Examples	#HELP↓		
	Refer to HELP mess	iges on next page	
	KEY IN 1.8 ENTE	R OR ENTER ONLY : <u>1</u>	<u>_</u>]
	Displays DISPLA (Refer to ne		
	#HELP,F↓ * COMMAND ERROR	-	rated if a value other than 1 to 8 is entered

#

Format	#HELP√					(With guidance)						
	#HELP,n , ⊥ (n=1 to 8)											
Examples	<pre>#HELP.J 1.DISPLAY COMMAND #HSR 2.SET COMMAND 3.BREAK and GO COMMA 4.FILE COMMAND 5.ROM COMMAND 6.CONTROL COMMAND 7.ALL COMMAND DISPLA 8.BASIC COMMAND DISPLA 8.BASIC COMMAND DISPLA () #HELP,1.J 1.DISPLAY COMMAND (1)#L,addr1,addr2 (2)#DP,addr1,addr2 (3)#DD,addr1,addr2 (4)#DR (5)#H,addr1,addr2 (6)#HB or #HG (7)#HS,addr (8)#HSW,addr (9)#HSR,addr (10)#HP (11)#CHK (12)#DXY (13)#CVD,addr1,addr2 (14)#HAD</pre>	AY PLAY r ENTER (program program data are registen history history memory r memory r current ice init X,Y reg:	code area ea HEX data data serch write read h histo tial s ister e area	#FP #HAR #BD #G #VF #VP #TIM :.J :.J :.J :.J :.J :.J :.J	#FD #HPS #BR #T #WF #OTF #OTF #OTF blay. b	#Q nic di ay. ACK or lay. erch ar r disp inform data	#MD #BAR #BSYI #VFD isplay c GO 1 and dis play. mation displ	<pre>v #BE #WFD //. vEXT. isplay splay n display.</pre>	#BT #CL 7.	#SR	#HSW #SXY #BRES SEL	

HELP

```
Format
            #HELP, ⊣
                                                                    (With guidance)
            #HELP, n (n=1 \text{ to } 8)
Examples
            #HELP,2↓
             2.SET COMMAND
             (1)#A,addr
                                        assemble program.
             (2) #FP, addr1, addr2, data fill program addr1 to addr2 by data.
             (3) #FD, addr1, addr2, data fill data addr1 to addr2 by data.
             (4) #MP, addr1, addr2, addr3 move program from addr1..addr2 to addr3.
             (5)#MD,addr1,addr2,addr3 move data from addr1..addr2 to addr3.
             (6) #SP, addr
                                       program area patch.
             (7) #SD, addr
                                        data area patch.
             (8)#SR or #SR,reg,data
                                        register patch.
                                        MX,MY patch.
             (9)#SXY
            (10) #HC, S/C/E
                                       history Start/Center/End set.
                                      set PC addr1..addr2 save to history memory.
            (11)#HA,addr1,addr2
                 (#HA,ALL)
                                        (all data save.)
                                      inhibit PC addr1..addr2 save to history memory.
            (12)#HAR,addr1,addr2
                 (#HAR,ALL)
                                        (all reset.)
            (13)#HPS,addr
                                        set history pointer.
            (14)#CVR
                                        reset coverage information.
            #
            #HELP,3↓
             3. BREAK and GO COMMAND
             (1) #BA, addr, ... set break address.
                                set break data condition.
             (2)#BD
                                set break register condition.
             (3)#BR
             (4)#BM
                                set break address, data, register multiple condition.
             (5)#BAR
                                reset break address.
                               reset break data condition.
             (6)#BDR
             (8)#BMR reset break address,data,register multiple condition.
(9)#BRES reset all break condition.
10)#BC break condition.
            (10)#BC
            (11) #G or #G,addr GO current address or GO from set addr.
            (12)#G,R
                              GO after reset cpu.
            (13)#T,addr,step single step run and display break information.
            (14) #U, addr, step single step run in ICE. and display last break information.
            (15)#BSYN
                               set break disable mode.
                                set break enable mode.
            (16)#BE
                                set and reset break trace made. (alternate)
            (17) #BT
            (18) #BRKSEL, CLR/REM set break address clear mode or remain mode.
            #
```

```
Format
            #HELP,J
                                                                   (With guidance)
            #HELP, n \downarrow (n=1 \text{ to } 8)
Examples
            #HELP,4
             4.FILE COMMAND
                          program load.
             (1)#RF,file
             (2) #VF,file
                            program verify.
             (3)#WF,file
                          program save.
             (4) #RFD, file RAM data load.
             (5)#VFD,file
                            RAM data verity.
             (6) #WFD, file RAM data save.
             (7) #CL, file program, RAM data, break condition load.
             (8) #CS, file program, RAM data, break condition save.
            #
            #HELP,5,
             5.ROM COMMAND
             (1)#RP
                         program load from ROM.
             (2)#VP
                         program verify ice:ROM.
             (3)#ROM
                         ROM type select. (64,128,256,512)
            #
            #HELP,6↓
             6.CONTROL COMMAND
             (1)#I
                         reset target CPU.
             (2)#TIM
                         set step count mode or time count mode. (alternate)
                         set on-the-fly display mode or inhibit mode. (alternate)
             (3)#OTF
             (4)#0
                          program exit.
            #
            #HELP,8↓
             8.BASIC COMMAND
             (1)#L,addr1,addr2
                                 program code and mnemonic display.
             (2) #DD, addr1, addr2 data area HEX display.
                                 register data display.
             (3)#DR
             (4)#BC
                                 break condition display.
             (5) #H, addr1, addr2 history data display.
             (6)#A,addr
                                assemble program.
             (7)#SP,addr
                                program area patch.
             (8) #SD, addr
                                 data area patch.
                                 register patch.
             (9)#SR
            (10)#BA,abbr,...
                                 set break address.
                                 set break data condition.
            (11)#BD
            (12)#BR
                                 set break register condition.
                                 set break address, data, register multiple condition.
            (13)#BM
                                 reset all break condition.
            (14) #BRES
            (15)#G or #G,addr
                                 GO current address or GO from set address.
            (16)#T,addr,step
                                 single step run and display break information.
            (17)#CL,file
                                 program, RAM data, break condition load.
            (18) #CS, file
                                 program, RAM data, break condition save.
            (19)#I
                                 reset target CPU.
            (20)#Q
                                 program exit.
            #
```

CHAPTER 4 ERROR MESSAGE SUMMARY

Error message	* COMMUNICATION ERROR OR ICE NOT READY *
Meaning	ICE6200 is disconnected or power is OFF.
Recovery procedure	Switch OFF the host power supply, connect cable, and reapply
	power. Or switch ON power to ICE6200.
Error message	* TARGET DOWN(1) *
Meaning	Evaluation board is disconnected. (Check at power ON)
Recovery procedure	Switch OFF power to ICE, and connect the evaluation board.
	Then, apply power to ICE6200.
Error message	* TARGET DOWN(2) *
Meaning	Evaluation board disconnected. (Check at command execution)
Recovery procedure	Switch OFF power to ICE, and connect the evaluation board.
	Then, apply power to ICE6200.
Error message	* UNDEFINED PROGRAM CODE EXIST *
Meaning	Undefined code is detected in the program loaded from ROM or
	FD. (ICE program terminates)
Recovery procedure	Convert ROM and FD data with the E0C62XX cross assembler,
	then restart the ICE6200.
Error message	* COMMAND ERROR *
Meaning	A miss occurs by command input.
Recovery procedure	Reenter the proper command.
Error	No response after power on.
Meaning	
wearing	The ICE-to-HOST cable is disconnected on the host side.

APPENDIX A. FD FILE CONFIGURATION

The ICE6200 uses the types of FD files listed below. All are in hexadecimal file format. For more details on hex file format, refer to appendix B.

APPENDIX B. HEX FILE FORMAT

Description of HEX file format

Example:

a) Data volume (1 byte): Indicates the quantity of data contained in the data area Maximum capacity is 10H (sixteen entries).				
b) Address (2 bytes) :	Indicates the top line of data at each address.			
c) Type (1 byte) :	Indicates the type of hexadecimal format, currently only 00.			
d) Data (16 bytes max.)	:Data is shown in hexadecimal format.			
e) Sum check (1 byte) :	Two complements resulting from adding all bytes from "data volume bytes" to "final data byte" are expressed as hexadecimal values.			
f) End mark :	Required to mark the end of the hex file.			

VI. E0C6262 Mask Data Checker Manual

CONTENTS

CHAPTER 1	INTF	RODUCTION	VI-1
	1.1	Outline of the Mask Data Checker	VI-1
	1.2	Execution Flow and Input/Output Files	VI-2
CHAPTER 2	MA	SK DATA CHECKER OPERATION	VI-3
	2.1	Creating a Work Disk	VI-3
	2.2	Copying the Data File	VI-3
	2.3	Execution of MDC6262 Starting MDC6262 Packing of data Unpacking of data	VI-4 VI-5
CHAPTER 3	ERR	OR MESSAGES	VI-7
	3.1	Data Error Program data error Function option data error	VI-7
	3.2	File Error	VI-8
	3.3	System Error	VI-8
CHAPTER 4	РАС	CK FILE CONFIGURATION	VI-9

CHAPTER 1 INTRODUCTION

1.1 Outline of the Mask Data Checker

The Mask Data Checker MDC6262 is a software tool which checks the program data (C262XXXH.HEX and C262XXXL.HEX) and option data (C262XXXF.DOC) created by the user and creates the data file (C6262XXX.PAn) for generating mask patterns.

The user must send the file generated through this software tool to Seiko Epson.

Moreover, MDC6262 has the capability to restore the generated data file (C6262XXX.PAn) to the original file format (C262XXXH.HEX, C262XXXL.HEX, and C262XXXF.DOC).

Two MDC6262 system disks are supplied by Seiko Epson: one for NEC PC-9801 series (5.25" 2HD) and one for IBM PC/XT and PC/AT (5.25" 2D).

The basic configurations are as follows.

-	NEC	PC-	9801	series
---	-----	-----	------	--------

Host computer:	PC-9801 series
Disk drive:	FD (5.25" 2HD) ¥ 1 or more
OS:	MS-DOS Ver. 3.1 or later

- IBM PC/XT or PC/AT
Host computer: IBM PC/XT or PC/AT
Disk drive: FD (5.25" 2D) ¥ 1 or more
OS: PC-DOS Ver. 2.1 or later

The Mask Checker program name is as follows:

MDC6262.EXE

Note In OS environment setup file CONFIG.SYS, the number of files that can be opened at the same time must be set at least 10.

Example: FILES = 20

1.2 Execution Flow and Input/Output Files

The execution flow for MDC6262 is shown in Figure 1.2.1.

(1) Preparation of program data files

(C262XXXH.HEX and C262XXXL.HEX)

Prepare the program data files generated from the Cross Assembler (ASM6262).

- (2) Preparation of option data files (C262XXXF.DOC)
 Prepare the option data file (function option) generated from the Function Option Generator (FOG6262).
- (3) Packing of Data

Using the Mask Data Checker (MDC6262), compile the program data and option data in one mask data file (C6262XXX.PAn). This file must be sent to Seiko Epson.

(4) Unpacking of Data

The mask data file (C6262XXX.PAn) may be restored to the original program data and option data files using the Mask Data Checker (MDC6262).

CHAPTER 2 MASK DATA CHECKER OPERATION

2.1 Creating a Work Disk

In order to prevent accidents due to misoperations such as program erasures, place a write protection tab on the Mask Data Checker and keep it as master disk; actual operation should be conducted on other disks.

Create a work disk and copy "MDC6262.EXE" on it.

2.2 Copying the Data File

When submitting data to Seiko Epson, copy on the work disk the data generated from Cross Assembler (ASM6262) and Function Option Generator (FOG6262).

Be sure to assign the following file names (the XXX portion of the file name should be as designated by Seiko Epson):

-	Program data	(HIGH side)	:	C262XXXH.HEX
		(LOW side)	:	C262XXXL.HEX
_	Option data	(function option)	:	C262XXXF.DOC

2.3 Execution of MDC6262

Starting MDC6262To start MDC6262, insert the work disk into the current
drive at the DOS command level (state in which a prompt
such as A> is displayed) and then enter the program name
as follows:

* means press the RETURN key.

When MDC6262 is started, the following message is displayed:

	* * *	E0C62	62 PACK	/ UNPAG	CK PROGR	AM Ver 1	1.00 ***	
EEEEEEEEE	PPPPPP	PP	SSS	SSSS	0000	0000	NNN	NNN
EEEEEEEEE	PPPPPP	PPPP	SSS	SSSS	000	000	NNNN	NNN
EEE	PPP	PPP	SSS	SSS	000	000	NNNNN	NNN
EEE	PPP	PPP	SSS		000	000	NNNNN	J NNN
EEEEEEEEE	PPPPPP	PPPP	SSS	SSS	000	000	NNN NI	JN NNN
EEEEEEEEE	PPPPPP	PP	5	SSSS	000	000	NNN 1	JNNNNN
EEE	PPP			SSS	000	000	NNN	NNNNN
EEE	PPP		SSS	SSS	000	000	NNN	NNNN
EEEEEEEEE	PPP		SSSS	SSS	000	000	NNN	NNN
EEEEEEEEE	PPP		SSS	SSSS	0000	0000	NNN	NN
(C) COPYRIGHT 1990 SEIKO EPSON CORPORATION								
	OPERATION MENU							
1								
1. PACK								
	2. UNPACK							
		P	LEASE SI	ELECT NO	D.? 1			

Here, the user is prompted to select operation options. When creating mask data for submission to Seiko Epson, select "1"; when the mask data is to be split and restored to the original format (C262XXXH.HEX, C262XXXL.HEX, and C262XXXF.DOC), select "2".

Packing of data

When generating data for submission to Seiko Epson, selecting "1" in the above section, "Starting MDC6262" will prompt for the name of the file to be generated as follows:

```
C262XXXH.HEX -----+

C262XXXL.HEX ------ C6262XXX.PAn (PACK FILE)

C262XXXF.DOC -----+

PLEASE INPUT PACK FILE NAME (C6262XXX.PAn) ? <u>C62620A0.PA0</u>
```

The XXX portion is as specified for the user by Seiko Epson. Moreover, after submitting the data to Seiko Epson and there is a need to re-submit the data for reasons such as faulty programs, etc., increase the numeric value of "n" by one when the input is made. (Example: When re-submiting data after "C62620A0.PA0" has been submitted, the pack file name should be entered as "C62620A0.PA1".

When data is packed, there is need to create ROM data file and option data file in the work disk beforehand.

When the file name has been input, mask data is generated and the corresponding file names are displayed.

```
C2620A0H.HEX -----+
|
C2620A0L.HEX ------ C62620A0.PA0
|
C2620A0F.DOC -----+
```

With this, the mask file (C6262XXX.PAn) is generated. Submit this file to Seiko Epson.

Note Don't use the data generated with the -N option of the Cross Assembler (ASM6262) as program data. If the program data generated with the -N option of the Cross Assembler is packed, undefined program area is filled with FFH code. In this case, following message is displayed.

WARNING: FILLED <file name> FILE WITH FFH.

Unpacking of data In the process of restoring the packed data to the original file, when "2" is selected in the step described in "Starting MDC6262", the user is prompted for the input file name as follows:

```
PLEASE INPUT PACKED FILE NAME (C6262XXX.PAn) ? C62620A0.PA0
```

When the file name has been entered, the unpacking process is executed and the corresponding file names are displayed.

```
+----- C2620A0H.PA0
|
C62620A0.PA0 ----- C2620A0L.PA0
|
+----- C2620A0F.PA0
```

With this, the mask data file (C6262XXX.PAn) is restored to the original file format, making it possible to make comparison with the original data.

The restored data file names will be as follows:

-	Program data	(HIGH side)	:	C262XXXH.PAn
		(LOW side)	:	C262XXXL.PAn
-	Option data	(function option)	:	C262XXXF.PAn

CHAPTER 3 ERROR MESSAGES

3.1 Data Error

The program data file and option data file are checked during packing; the packed data file is checked during unpacking.

If there are format problems, the following error messages are displayed.

Program data error

Error Message	Explanation
1. HEX DATA ERROR : NOT COLON.	There is no colon.
2. HEX DATA ERROR : DATA LENGTH. (NOT 00-20h)	The data length of 1 line is not in the 00–20H range.
3. HEX DATA ERROR : ADDRESS.	The address is beyond the valid range of the program ROM.
4. HEX DATA ERROR : RECORD TYPE. (NOT 00)	The record type of 1 line is not 00.
5. HEX DATA ERROR : DATA. (NOT 00-FFh)	The data is not in the range between 00H and 0FFH.
6. HEX DATA ERROR : TOO MANY DATA IN ONE LINE.	There are too many data in 1 line.
7. HEX DATA ERROR : CHECK SUM.	The checksum is not correct.
8. HEX DATA ERROR : END MARK.	The end mark is not : 00000001FF.
9. HEX DATA ERROR : DUPLICATE.	There is duplicate definition of data in the same address.

Function option data

error

Error Message	Explanation
1. OPTION DATA ERROR : START MARK.	The start mark is not "¥OPTION". *
	(during unpacking)
2. OPTION DATA ERROR : OPTION NUMBER.	The option number is not correct.
3. OPTION DATA ERROR : SELECT NUMBER.	The option selection number
	is not correct.
4. OPTION DATA ERROR : END MARK.	The end mark is not "¥¥END"
	(packing) or "¥END" (unpacking). *

* ¥ sometimes appears as \, depending on the personal computer being used.

3.2 File Error

Error Message	Explanation
1. <file_name> FILE IS NOT FOUND.</file_name>	The file is not found or the file number
	set in CONFIG.SYS is less than 10.
2. PACK FILE (File_name) ERROR.	The packed input format for the file
	name is wrong.
3. PACKED FILE NAME (File_name) ERROR.	The unpacked input format for the
	file name is wrong.

3.3 System Error

Error Message	Explanation
1. DIRECTORY FULL.	The directory is full.
2. DISK WRITE ERROR.	Writing on the disk is failed.

CHAPTER 4 PACK FILE CONFIGURATION

The pack file is configured according to the following format:

Program Data Header Model Name Program Data High Side (Intel Hexa Format)	* * SMC6262 MASK DATA VER 1.00 * - ¥ROM - SMC6262XXX :10000000 :1000100000 : : : ::::::::::
Program Data Low Side (Intel Hexa Format)	:100000000 :100010000 ::::::::::
End Mark Function Option Header	- ¥END - ¥OPTION * SMC6262 FUNCTION OPTION DOCUMENT Ver 3.00
Function Option Data	<pre>* FILE NAME C262XXXF.DOC * USER'S NAME SEIKO EPSON CORP. * INPUT DATE 90/12/20 * COMMENT TOKYO DESIGN CENTER * 390-4 HINO HINO-SHI TOKYO 191 JAPAN * TEL 0425-83-7313 * FAX 0425-83-7413 * *</pre>
End Mark	* OPTION NO.1 * <

* \mathbf{Y} sometimes appears as \mathbf{V} , depending on the personal computer being used.

• Program data

The program data is expressed as follows, using Intel hexa format:

(1)Data line

(2) End mark

: 0000001FF