
MF364-02

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

E0C6281 DEVELOPMENT TOOL MANUAL

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that
anything made in accordance with this material will be free from any patent or copyright infringement of a third
party. This material or portions thereof may contain technology or the subject relating to strategic products under
the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license
from the Ministry of International Trade and Industry or other approval from another government agency. Please
note that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that
it now reads "E0C".

© SEIKO EPSON CORPORATION 1998 All rights reserved.

I. E0C6281 CROSS ASSEMBLER MANUAL

PREFACE

This manual mainly explains how to operate the ASM6281 cross-assembler for the E0C6281 4-bit,

single-chip microcomputers, and how to generate source files.

For details on the E0C6281, refer to the "E0C6281 Technical Hardware Manual" and "E0C6281

Technical Software Manual". For such items as development procedure, refer to the "E0C62 Family

Technical Guide".

Chapter 2 and subsequent chapters provide information common to all E0C62 Family models,

the model name being denoted "XX". Read this manual, replacing "XX" with "81".

62XX → 6281

C2XX → C281

CONTENTS

1. E0C6281 RESTRICTIONS .. I-1

2. INTRODUCTUON ... I-2

2.1 Outline of ASM62XX ... I-2

2.2 ASM62XX Input/Output Files .. I-3

3. ASM62XX OPERATION PROCEDURE... I-4

3.1 Starting ASM62XX ... I-4

3.2 Selecting Auto-Page-Set Function .. I-7

3.3 Generating a Cross-Reference Table... I-8

4. SOURCE FILE FORMAT ... I-9

4.1 Source File Name .. I-9

4.2 Statements ...I-10
4.2.1 Label field ...I-11
4.2.2 Mnemonic field ...I-11
4.2.3 Operand field ...I-12
4.2.4 Comment field ...I-12

4.3 Index ..I-13
4.3.1 Label ..I-13
4.3.2 Symbol ..I-14

4.4 Constant and Operational Expression ...I-15
4.4.1 Numeric constant ...I-15
4.4.2 Character constant ...I-16
4.4.3 Operator ...I-16
4.4.4 Location counter ..I-19

4.5 Pseudo-Instructions ...I-20
4.5.1 Data definition pseudo-instructions ..I-20
4.5.2 Memory setting pseudo-instructions ...I-22
4.5.3 Assembler control pseudo-instructions ...I-26

4.6 Macro-Functions ...I-27
4.6.1 Macro-instructions ..I-27
4.6.2 Macro-definitions ..I-29
4.6.3 Macro-calls ..I-31

5. ERROR MESSAGES..I-33

APPENDIX ASM62XX EXECUTION EXAMPLE...I-35

I-1

E0C6281 Cross Assembler

1. E0C6281 RESTRICTIONS

Note the following when generating a program by the E0C6281:

1) ROM Area
The capacity of the E0C6281 ROM is 1K steps (0000H to 03FFH). The memory

configuration is as follows.

Bank: Only bank 0

Page:4 pages (0 to 3H), each 256 steps

Therefore, the specification range of the memory setting pseudo-instructions and PSET

instruction is restricted as follows:

Significant specification range

ORG pseudo-instruction: 0000H to 03FFH

PAGE pseudo-instruction: 00H to 03H

BANK pseudo-instruction: Only 0H

PSET instruction: 00H to 03H

2) RAM Area
The capacity of the E0C6281 RAM is 160 words (000H to 05FH, 090 to 0AFH, and 0E0H to

0FFH, 4 bits/word). Memory access is invalid when the unused area of the index register is

specified.

Example: LD X,78H 78H is loaded into the IX register, but an unused area has been

specified so that the memory accessible with the IX register (MX)

is invalid.

LD Y,C7H C7H is loaded into the IY register, but an unused area has been

specified so that the memory accessible with the IY register (MY)

is invalid.

3) Undefined codes
The following instructions have not been defined in the E0C6281 instruction sets.

SLP

PUSH XP PUSH YP

POP XP POP YP

LD XP,r LD YP,r

LD r,XP LD r,YP

I-2

E0C6281 Cross Assembler

2. INTRODUCTION

2.1 Outline of ASM62XX

The ASM62XX cross assembler (the ASM62XX in this manual) is an assembler program for

generating the machine code used by the E0C62XX and E0C62*XX 4-bit, single-chip

microcomputers. It can be used under MS-DOS or PC-DOS.

Two types of ASM62XX system disk are supplied: a 5.25", high-density, double-sided, one for

the NEC PC-9801V Series, and a 5.25", double-sided, one for the IBM PC/XT and PC/AT. The

basic system configurations are as follows:

– PC-9801V Series

Computer: NEC PC-9801V Series

Disk drive: 5.25", high-density, double-sided, floppy disk drive × 1 or more

Operating system: MS-DOS 3.1 or later

Printer: For printing source listings, assembly listings, and error messages

– IBM PC/XT or PC/AT

Computer: IBM PC/XT or PC/AT

Disk drive: 5.25", double-sided, floppy disk drive × 1 or more

Operating system: PC-DOS (MS-DOS) 2.1 or later

Printer: For printing source listings, assembly listings, and error messages

The program name of the assembler is ASM62XX.EXE.

Fig.1 shows the ASM62XX execution flow.

Fig.1 ASM62XX Execution Flow

A>EDLIN C2XXYYY.DAT
Create the source file

A>ASM62XX C2XXYYY
Execute the cross assembler

C2XXYYY
.DAT

C2XXYYY
.PRN

C2XXYYYL
.HEX

C2XXYYYH
.HEX

Error
message

Assembly
listing file

Source file

Object fileError
message

I-3

E0C6281 Cross Assembler

2.2 ASM62XX Input/Output Files

ASM62XX reads a source file, assembles it, and outputs object files and an assembly listing file.

– Source file (C2XXYYY.DAT)

This is a source program file produced using an editor such as EDLIN. The file name format is

C2XXYYY, and the file name must not exceed seven characters in length. Character string YYY

should be determined by referencing the device name specified by Seiko Epson. The file

extension must be added ".DAT".

– Object file (C2XXYYYH.HEX, C2XXYYYL.HEX)

This is an assembled program file in Intel hex format. Because the machine code of the

E0C62XX and E0C62*XX is 12-bit, the high-order bytes (bits 9 to 12 suffixed by high-order bits

0000B) are output to file C2XXYYYH.HEX, and the low-order bytes (bits 8 to 1) are output to

file C2XXYYYL.HEX.

– Assembly listing file (C2XXYYY.PRN)

This is a program listing file generated by adding an operation codes and error messages (if any

errors have occurred) to respective source program statements. A cross-reference table is

generated at the end of the file, depending on the label table and options. The file name is

C2XXYYY.PRN.

See the Appendix for the contents of each file.

I-4

E0C6281 Cross Assembler

3. ASM62XX OPERATION PROCEDURE

This section explains how to operate ASM62XX.

3.1 Starting ASM62XX

When starting ASM62XX, enter the following at DOS command level (when a prompt such as

 A> is being displayed):

ASM62XX_[drive-name:] source-file-name [.shp]_[-N] ↵

_ indicates a blank.

A parameter enclosed by [] can be omitted.

↵ indicates the return (enter) key.

Drive name: If the source file is not on the same disk as ASM62XX.EXE, specify a disk

drive mounted the floppy disk storing the source file before input the source

file name. If the source file is on the same disk as ASM62XX.EXE, it does

not need to specify the disk drive.

Source file name: This is the name of the source file to be entered for ASM62XX. The source

file name must not exceed seven characters in length. File extension .DAT

must not be entered.

.shp: Characters s, h, and p are options for specifying the file I/O drives, and can

be omitted.

s: Specifies the drive from which the source file is to be input. A charac-

ter from A to P can be specified. If @ is specified, the source file in the

current drive (directory) is input. Even if a drive name is prefixed to the

source file name, this option is effective.

h: Specifies the drive to which the object file (HEX) is to be output. A

character from A to P can be specified. If @ is specified, the object file

is output to the current drive (directory). If Z is specified, only assembly

is executed; the object file is not generated.

p: Specifies the drive to which the assembly listing file is to be output. A

character from A to P can be specified. If @ is specified, the object file

is output to the current drive (directory). If X is specified, a listing

containing error messages is output to the console. If Z is specified, the

assembly listing file is not generated.

Characters s, h, p must all be specified; only one or two of them is not sufficient.

I-5

E0C6281 Cross Assembler

-N option: The code (FFH) in the undefined area of program memory is not created.

Note: The program data to be provided does not use the "-N" option. The FFH

data should be inserted into the undefined program area.

Example 1: Basic assembly example

A>ASM62XX C2XXYYY↵

The source file "C2XXYYY.DAT" is input from drive A, and the object files

"C2XXYYYH.HEX" and "C2XXYYYL.HEX" and the assembly listing file

"C2XXYYY.PRN" are output to drive A.

A>ASM62XX B:C2XXYYY↵

The source file "C2XXYYY.DAT" is input from drive B, and the object files

"C2XXYYYH.HEX" and "C2XXYYYL.HEX" and the assembly listing file

"C2XXYYY.PRN" are output to drive B.

A>ASM62XX C2XXYYY.BBZ↵

The source file "C2XXYYY.DAT" is input from drive B, and the object files

"C2XXYYYH.HEX" and "C2XXYYYL.HEX" are output to drive B. The

assembly listing file is not generated.

Example 2: -N option use

A>ASM62XX C2XXYYY -N↵

No undefined program area is generated in the created object files

(C2XXYYYH.HEX, C2XXYYYL.HEX).

A>ASM62XX C2XXYYY↵

In this case, FFH data is inserted into the undefined program area of the object

files.

I-6

E0C6281 Cross Assembler

A>ASM62XX C2XX0A0
 *** E0C62XX CROSS ASSEMBLER. --- VERSION 2.00 ***

EEEEEEEEEE PPPPPPPP SSSSSSS OOOOOOOO NNN NNN
EEEEEEEEEE PPPPPPPPPP SSS SSSS OOO OOO NNNN NNN
EEE PPP PPP SSS SSS OOO OOO NNNNN NNN
EEE PPP PPP SSS OOO OOO NNNNNN NNN
EEEEEEEEEE PPPPPPPPPP SSSSSS OOO OOO NNN NNN NNN
EEEEEEEEEE PPPPPPPP SSSS OOO OOO NNN NNNNNN
EEE PPP SSS OOO OOO NNN NNNNN
EEE PPP SSS SSS OOO OOO NNN NNNN
EEEEEEEEEE PPP SSSS SSS OOO OOO NNN NNN
EEEEEEEEEE PPP SSSSSSS OOOOOOOO NNN NN

 (C) COPYRIGHT 1989 SEIKO EPSON CORP.

 SOURCE FILE NAME IS " C2XXYYY.DAT "

 THIS SOFTWARE MAKES NEXT FILES.

 C2XXYYYH.HEX ... HIGH BYTE OBJECT FILE.
 C2XXYYYL.HEX ... LOW BYTE OBJECT FILE.
 C2XXYYY .PRN ... ASSEMBLY LIST FILE.

When ASM62XX is started, the following start-up message is displayed.

Example: When assembling C2XX0A0.DAT

I-7

E0C6281 Cross Assembler

3.2 Selecting Auto-Page-Set Function

After the start-up message, the following message is displayed, prompting the user to select the

auto-page-set function.

DO YOU NEED AUTO PAGE SET?(Y/N)

Press the "Y" key if selecting the auto-page-set function, or the "N" key if not selecting it. At this

stage, the user can also return to the DOS command level by entering "CTRL" + "C" key.

– Auto-page-set function

When the program branches to another page through a branch instruction such as JP, the branch-

destination page must be set using the PSET instruction before executing the branch instruction.

The auto-page-set function automatically inserts this PSET instruction. It checks whether the

branch instruction page is the same as the branch-destination one. If the page is different,the

function inserts the "PSET" instruction. If the page is the same, the function performs no

operation.

Therefore, do not select the auto-page-set function if "PSET" instructions have been correctly

included in the source file.

Note: When auto page set is selected, there are restricted items related to source programming.

See "4.3.1 Label".

I-8

E0C6281 Cross Assembler

3.3 Generating a Cross-Reference Table

After the auto-page-set function has been selected, the following message is output, prompting

the user to select cross-reference table generation.

DO YOU NEED CROSS REFERENCE TABLE?(Y/N)

Press the "Y" key if generating the cross-reference table, or the "N" key if not generating it. At

this stage, the user can also return to DOS command level by entering "CTRL" + "C" key.

Note: If the assembly listing file output destination (p option) is specified as Z (listing not generated) at

the start of ASM62XX, the above message is not output and the cross-reference table is not

generated.

– Cross-reference table

The cross-reference table lists the symbols and their locations in the source file, and is output at

the end of the assembly listing file in the following format:

 CROSS REFERENCE TABLE PAGE X- 1

 LABEL1 4# 29 36

 LABEL2 15# 40

 : : :

Symbol Number of the program statement
(# indicates the number of the statement at which the symbol was defined)

This table should be referenced during debugging. An error such as duplicate definition of a

symbol can be easily detected.

I-9

E0C6281 Cross Assembler

4. SOURCE FILE FORMAT

The source file contains the source program consisting of E0C62XX/62*XX instructions

(mnemonics) and pseudo-instructions, and is produced using an editor such as EDLIN.

Refer to the "E0C6200 Reference Manual" and the "E0C62XX Technical Software Manual" for

instruction sets.

4.1 Source File Name

A desired file name not exceeding seven characters in length can be assigned to each source file.

The format must be as follows:

C2XXYYY.DAT

"YYY" of the "C2XXYYY.DAT" is an alphanumeric character string of up to three characters,

and should be determined by referencing the device name specified by Seiko Epson.

The file extension must be ".DAT".

I-10

E0C6281 Cross Assembler

4.2 Statements

Each source program statement must be written using the following format.

Basic format:

<Index>[:] <Instruction> <Expression> <; comment>

Example: ON EQU 1

 ORG 100H

START: JP INIT ;To init.

Label Mnemonic Operand Comment

field field field field

A statement consists of four fields: label, mnemonic, operand, and comment. Up to 132

characters can be used for one statement. Fields must be delimited by one or more blanks or tabs.

The label and comment fields are optional. Blank lines consisting only of a carriage return (CR)

code are also allowed.

Although each statement and field (excluding the label field) can begin at any desired column.

the program becomes easier to understand if the heads of corresponding fields are aligned.

I-11

E0C6281 Cross Assembler

4.2.1 Label field

The label field can contain a label for referencing the memory address, a symbol that defines a

constant, or a macro name. This field can be omitted if the statement name is not required. The

label field must begin at column 1 and satisfy the following conditions.

– The length must not exceed 14 characters.

– The same name as a mnemonic or register name must not be used.

– The following alphanumeric characters can be used, but the first character must not be a digit:

 A to Z, a to z, 0 to 9, _, ?

– The uppercase and lowercase forms of a letter are not equivalent.

– ??nnnn (n is a digit) cannot be used as a name.

A colon ":" can be used as a delimiter between a label field and the mnemonic field. If a colon is

used, neither blanks nor tabs need to be written subsequently.

Statements consisting of only a label field are also allowed.

4.2.2 Mnemonic field

The mnemonic field is used for an instruction mnemonic or a pseudo-instruction.

I-12

E0C6281 Cross Assembler

4.2.3 Operand field

The operand field is used for the operands of the instruction. The form of each operand and the

number of operands depend on the kind of instruction. The form of expressions specifying values

must be one of the following:

– A numeric constant, a character constant, or a symbol that defines a constant

– A label indicating a memory address

– An operational expression for obtaining the specified value

If the operand consists of two or more expressions, the expressions must be separated by commas

",".

4.2.4 Comment field

The comment field is used for comment data such as program headers and descriptions of

processing. The contents of this field do not affect assembly or the object files generated by

assembly.

The part of the statement from a semicolon ";" to the CR code at the end of the statement is

considered to be the comment field. Statements consisting of only a comment field are also

allowed. When a comment spans multiple lines, a semicolon must be written at the beginning of

each line.

I-13

E0C6281 Cross Assembler

4.3 Index

ASM62XX allows values to be referenced by their indexes.

Refer to Section 4.2.1, "Label field", for the restrictions on index descriptions.

4.3.1 Label

A label is an index for referencing a location in the program, and can be used as an operand that

specifies a memory address as immediate data in an instruction. For example, a label can be used

as the operand of an instruction such as JP by writing the label in the branch-destination

statement. The name written in the label field of an EQU or SET instruction is considered to be

a symbol, not a label.

Example:

:

JP NZ,LABEL1

:

:

LABEL1: LD A,0

A label can be assigned to any statement, but the label assigned to the following pseudo-

instructions is ignored:

ORG, BANK, PAGE, SECTION, END, LABEL, ENDM

Note: When selecting the auto-page-set function (see Section 3.2), a statement consisting of only a label

must be written immediately before the JP or CALL instructions.

Example:

PGSET:

JP LABEL

I-14

E0C6281 Cross Assembler

4.3.2 Symbol

A symbol is an index that indicates a numeric or character constant, and must be defined before

its value is referenced (usually at the beginning of the program). The defined symbol can be used

as the operand that specifies immediate data in an instruction.

Example:

ON EQU 1 (See Section 4.5.1 for EQU.)

OFF EQU 0

:

LD A,ON ; = LD A,1

:

LD A,OFF ; = LD A,0

:

I-15

E0C6281 Cross Assembler

4.4 Constant and Operational Expression

This section explains the immediate data description formats.

4.4.1 Numeric constant

A numeric constant is processed as a 13-bit value by ASM62XX. If a numeric constant greater

than 13 bits is written, bit 13 and subsequent high-order bits are ignored.

Note that the number of actual significant bits depends on the operand of each instruction. If the

value of a constant is greater than the value that can be accommodated by the actual number of

significant digits, an error occurs.

Example:

ABC EQU 0FFFFH → ABC is defined as 1FFFH.

LD A,65535 → An error occurs because it exceeds the

significant digit count (4 bits).

The default radix is decimal. The radix description formats are as follows:

Binary numeral: A numeral suffixed with B,

such as 1010B (=10) or 01100100B (=100).

Octal numeral: A numeral suffixed with O or Q,

such as 012O (=10) or 144Q (=100).

Decimal numeral: A numeral alone or a numeral suffixed with D,

such as 10 or 100D (=100).

Hexadecimal numeral: A numeral suffixed with H,

such as 0AH (=10) or 64H (=100).

If the value begins with a letter from A to F, it must be prefixed with

0 to distinguish it from a name.

I-16

E0C6281 Cross Assembler

4.4.2 Character constant

A character constant is one or two ASCII characters enclosed by apostrophes (' '). A single

ASCII character is processed as eight-bit data. If two or more ASCII characters are written, only

the last two characters are significant as 13-bit data.

Examples:

'A' (=41H), 'BC' (=0243H), 'PQ' (=1051H)

'DEFGH' → 'GH' (=0748H; DEF is ignored.)

The apostrophe itself cannot be processed as a character constant, so it must be written as a

numeric constant, such as 27H or 39.

4.4.3 Operator

When specifying a value for an item such as an operand, an operational expression can be written

instead of a constant, and its result can be used as the value.

Labels and symbols as well as constants can be used as terms in expressions. These values are

processed as 13-bit data (bit 14 and subsequent high-order bits are ignored); the operation result

also consists of 13 bits. If the result exceeds the number of significant digits of the instruction

operand, an error occurs.

There are three types of operator--arithmetic, logical, and relational--as listed below (a and b

represent terms, and _ represents one or more blanks).

I-17

E0C6281 Cross Assembler

– Arithmetic operators

There are 11 arithmetic operators including the ones for addition, subtraction, multiplication,

division, bit shifting, and bit separation.

+a: Monadic positive (indicates the subsequent value is positive)

-a: Monadic negative (indicates the subsequent value is negative)

a+b: Addition (unsigned)

a-b: Subtraction (unsigned)

a*b: Multiplication (unsigned)

a/b: Division (unsigned)

a_MOD_b: Remainder of a/b

a_SHL_b: Shifts a b bits to the left. ← b7<<<<<<b 1 ← 0

Example: 00000011B SHL 2 → 00001100B

a_SHR_b: Shifts a b bits to the right. 0 → b7>>>>>>b 0 →
Example: 11000011B SHR 2 → 00110000B

HIGH_a: Separates the high-order eight bits from a (13 bits).

Example: HIGH 1234H → 12H

LOW_a: Separates the low-order eight bits from a (13 bits).

Example: LOW 1234H → 34H

– Logical operators

There are four logical operators as listed below. The logical operator returns the result of logical

operation on the specified terms.

a_AND_b: Logical product

 Example: 00001111B AND 00000011B → 00000011B

a_OR_b: Logical sum

 Example: 00001111B OR 11110000B → 11111111B

a_XOR_b: Exclusive logical sum

 Example: 00001111B XOR 00000011B → 00001100B

NOT_a: Logical negation

 Example: NOT 00001111B → 11110000B

I-18

E0C6281 Cross Assembler

– Relational operators

A logical operator compares two terms; if the relationship between the terms is as the operator

specifies, 1FFFH (true) is returned; if not, 0 (false) is returned.

a_EQ_b: True when a is equal to b

a_NE_b: True when a is not equal to b

a_LT_b: True when a is less than b

a_LE_b: True when a is less than or equal to b

a_GT_b: True when a is greater than b

a_GE_b: True when a is greater than or equal to b

Be sure to insert one or more blanks for symbol "_" between terms. All operators must be entered

in uppercase letters.

An expression can contain one or more operators and pairs of parentheses. In this case, operators

are basically evaluated from left to right. However, an operation stipulated by an operator with

higher priority or by parentheses is executed earlier. Every left parenthesis must have a

corresponding right parenthesis.

The following table shows the priority of operators.

Operator Priority

(Low

OR, XOR :

AND

EQ, NE, LT, LE, GT, GE

+ (addition), - (subtraction)

*, /, MOD, SHL, SHR

(

HIGH, LOW, NOT :

- (monadic negative), + (monadic positive) High

I-19

E0C6281 Cross Assembler

Examples: Operational expressions (ABC = 1, BCD = 3)

LD A,BCD*(ABC+1) ;A <- 6

LD A,ABC LT BCD ;A <- 0FH (1111B)

OR B,ABC SHL BCD ;Set bit3 in B-register(=OR B,1000B)

AND B,ABC SHL BCD XOR 0FH ;Rese t b i t3 in B- reg is te r (=AND

B,0111B)

4.4.4 Location counter

The start address of each instruction code is set in the location counter when a statement is

assembled. A label or $ can be used when referencing the location counter value in a program.

– Location counter

The location counter consists of 13 bits: one bit for the bank field, four bits for the page counter

field, and eight bits for the step counter field.

 Bank Page counter Step counter

Bit 12 11 10 9 8 7 6 5 4 3 2 1 0

Contents Bank Page address Step address

 BNK PCP PCS

Example:

Location counter

(BNK) (PCP) (PCS)

 0 1 02 JP $+3

The location counter indicates the start address of the JP instruction, and the PCS value (02) is

assigned to $. Consequently, the statement is assembled as "JP 5", and the program sequence

jumps to the location three steps before (PCS=05) when it is executed.

I-20

E0C6281 Cross Assembler

4.5 Pseudo-Instructions

There are four types of pseudo-instruction: data definition, memory setting, assembler control,

and macro.

These pseudo-instructions as well as operational expressions can be used to govern assembly,

and are not executed in the developed program.

In the subsequent explanations, the items enclosed by < > in the pseudo-instruction format must

be written in the statement (do not write the < > characters themselves). Symbol _ represents one

or more blanks or tabs. One or more symbols and constants or an operational expression can be

used in <expression>. See Section 4.6 for macro functions.

4.5.1 Data definition pseudo-instructions

There are three data definition pseudo-instructions: EQU, SET, and DW. The EQU and SET

pseudo-instructions each define a symbol, and the DW pseudo-instruction presets data in

program memory.

– EQU (Equate) ... To define a symbol

<Symbol>_EQU_<Expression>

The EQU pseudo-instruction defines <symbol> (written in the label field) as having the value of

<expression> (written in the operand field).

If a value greater than 13 bits is specified in <expression>, bit 14 and subsequent high-order bits

are ignored.

This definition must be made before the symbol is referenced in the program. A U-error occurs if

an attempt is made to reference a symbol that has not been defined.

The same symbol cannot be defined more than once. A P-error occurs if an attempt is made to

define a symbol that has already been defined.

Examples:

ZERO EQU 30H

ONE EQU ZERO+1

ONE EQU 31H ← P-error because ONE has been

defined more than twice

FOUR EQU TWO*2 ← U-error because TWO has not

been defined

I-21

E0C6281 Cross Assembler

– SET...To define a symbol

<Symbol>_SET_<Expression>

Like EQU, the SET pseudo-instruction defines the value of <symbol> as being <expression>.

The SET pseudo-instruction allows a symbol to be redefined.

Examples:

BIT SET 1

 :

BIT SET 2 ← Redefinition possible

 :

BIT SET BIT SHL 1 ← Previously-defined items can

be referenced.

– DW (Define Word) ... To preset data

<Label>_DW_<Expression>

The DW pseudo-instruction assigns the value of <expression> (the low-order 12 bits when the

value is greater than 12 bits) to the current memory location, indicated by the location counter.

Examples:

Location counter

(BNK)(PCP)(PCS)

 0 2 0A TABLE DW 141H ; = RETD 'A'

 0 2 0B DW 142H ; = RETD 'B'

 0 2 0C DW 143H ; = RETD 'C'

 :

<label> can be omitted.

I-22

E0C6281 Cross Assembler

4.5.2 Memory setting pseudo-instructions

The program memory mounted at the E0C62XX/62*XX is divided into 256-step pages. Memory

management (including the setting of the program location and page boundaries) during program

generation must be controlled by the source program.

The memory setting pseudo-instructions are used to specify memory management. The

assembler sets the location counter according to these pseudo-instructions.

If a memory area that has already been used is specified or a statement that exceeds the page is

used without specifying that the statement is to exceed the page, the assembler displays an

exclamation mark "!", indicating a warning, and ignores all subsequent statements until the next

correct statement. This should be taken into account.

When using the auto-page-set function, the space for insertion of the "PSET" pseudo-instruction

must be allocated in each page.

– ORG (Origin) ... To set the location counter

ORG_<Expression>

The ORG pseudo-instruction sets the location counter to the value of <expression>.

If the ORG pseudo-instruction is not written at the beginning of the program, the location counter

is set to 0 (BNK=0, PCP=0, PCS=0) and assembly is started.

The ORG pseudo-instruction can be used at multiple locations in the program. However, it

cannot be used to set the location to a value before the current location. If this is attempted, an

exclamation mark "!", indicating a warning, is displayed, and all subsequent statements until the

next correct statement are ignored.

A label can be written before the ORG statement, but it cannot be referenced because it is not

cataloged in the label table. In this case, write the label in the statement following the ORG

pseudo-instruction.

Example:

 ORG 0100H ; BNK=0, PCP=1, PCS=00H

START :

An R-error occurs if a value is specified exceeding the ROM capacity.

Note: The upper limit of program memory depends on the model.

 (See "1. E0C62XX RESTRICTIONS".)

I-23

E0C6281 Cross Assembler

– BANK ... To set the bank (BNK)

BANK_<expression>

The BANK pseudo-instruction sets the value of <expression> in the bank (BNK) field, and sets

the page counter (PCP) and step counter (PCS) to 00H.

The BANK pseudo-instruction can be written at multiple locations in the program. However, it

cannot be used to specify the current bank (excluding the specification in page 00, step 00) or a

previous bank. If it is used to specify the current bank or a previous bank, an exclamation mark

"!", indicating a warning, is displayed, and all subsequent statements until the next correct

statement are ignored.

A label can be written before the BANK statement, but it cannot be referenced because it is not

cataloged in the label table. In this case, write the label in the statement after the BANK pseudo-

instruction.

– PAGE ... To set the page counter (PCP)

PAGE_<expression>

The PAGE pseudo-instruction sets the value of <expression> in the page counter (PCP) and sets

the step counter (PCS) to 00H.

The PAGE pseudo-instruction can be written at multiple locations in the program. However, it

cannot be used to specify the current page (excluding the specification in step 00) or a previous

page. If it is used to specify the current page or a previous page, an exclamation mark "!",

indicating a warning, is displayed, and all subsequent statements until the next correct statement

are ignored.

A label can be written before the PAGE statement, but it cannot be referenced because it is not

cataloged in the label table. In this case, write the label in the statement after the PAGE pseudo-

instruction.

I-24

E0C6281 Cross Assembler

Example:

Location counter

(BNK)(PCP)(PCS)

 : : : : :

 0 0 1AH LD X,0

 0 0 1BH LD Y,0

 : : : : :

 0 0 F0H JP xxx

PAGE 2

 0 2 00H SUB1: LD A,MX

 0 2 01H LD B,MY

 : : : : :

PAGE 1

 ! SUB2: LD A,MX Ineffective because

 ! LD B,MY a previous page was

 : : specified

PAGE 3

 0 3 00H SUB3: LD A,0 Effective

 0 3 01H LD B,1

 : : : : :

An R-error occurs if a value is specified that exceeds the last page.

Note: The last page depends on the model. (See "1. E0C62XX RESTRICTIONS".)

I-25

E0C6281 Cross Assembler

– SECTION ... To change the section

SECTION

The SECTION pseudo-instruction sets the first address of the subsequent section in the location

counter. Sections are 16-step areas starting from the beginning of the program memory.

 (BNK)(PCP)(PCS)

 0 1 00H

 Section 1 16 steps

 0 1 10H

 Section 2

 0 1 20H

 : : : : :

 0 1 F0H

 Section 16

 0 2 00H

 Section 17

 0 2 20H

 : : : : :

 0 3 F0H

 Section 48

A SECTION pseudo-instruction written in the last section of the page not only clears the step

counter but also updates the page counter, so a new page need not be specified.

A label can be written before the SECTION pseudo-instruction, but it cannot be referenced

because it is not cataloged in the label table. In this case, write the label in the statement

following the SECTION pseudo-instruction.

I-26

E0C6281 Cross Assembler

Example:

 Location counter

 (BNK)(PCP)(PCS)

 : : : : :

 0 1 09H JPBA

 0 1 0AH LD X,0

 0 1 0BH LD Y,0

 0 1 0CH LD MX,4

 SECTION

 0 1 10H TABLE LD A,1

 0 1 11H ADD A,1

 : : : : :

 0 1 FAH RET

 SECTION

 0 2 00H LOOP SCF

 0 2 01H ADD A,MY

 : : : : :

4.5.3 Assembler control pseudo-instructions

– END ... To terminate assembly

END

The END statement terminates assembly. All statements following the END statement are

ignored. Be sure to write this statement at the end of the program. If it is missing, assembly may

not terminate.

A label can be written before the END statement, but it cannot be referenced because it is not

cataloged in the label table.

I-27

E0C6281 Cross Assembler

4.6 Macro-Functions

When using the same statement block at multiple locations in a program, the statement block can

be called using a name defined beforehand. A statement block that has been so defined is called

a macro.

Unlike a subroutine, the statement block is expanded at all locations where it is called, so the

programmer should consider the statement block size and frequency of use and determine

whether a macro or a subroutine is more appropriate.

4.6.1 Macro-instructions

ASM62XX provides the macro-instructions listed below so that branching between pages is

possible without specifying the destination page using the PSET instruction.

 Macro- Mnemonic Code

 instruction after expansion 11 10 09 08 07 06 05 04 03 02 01 00

 JPM ps PSET p 1 1 1 0 0 1 0 p 4 p3 p2 p1 p0

 JP s 0 0 0 0 s 7 s6 s5 s4 s3 s2 s1 s0

 JPM C, ps PSET p 1 1 1 0 0 1 0 p 4 p3 p2 p1 p0

 JP C, s 0 0 1 0 s 7 s6 s5 s4 s3 s2 s1 s0

 JPM NC,ps PSET p 1 1 1 0 0 1 0 p 4 p3 p2 p1 p0

 JP NC,s 0 0 1 1 s 7 s6 s5 s4 s3 s2 s1 s0

 JPM Z, ps PSET p 1 1 1 0 0 1 0 p 4 p3 p2 p1 p0

 JP Z, s 0 1 1 0 s 7 s6 s5 s4 s3 s2 s1 s0

 JPM NZ,ps PSET p 1 1 1 0 0 1 0 p 4 p3 p2 p1 p0

 JP NZ,s 0 1 1 1 s 7 s6 s5 s4 s3 s2 s1 s0

 CALLM ps PSET p 1 1 1 0 0 1 0 p 4 p3 p2 p1 p0

 CALL s 0 1 0 0 s 7 s6 s5 s4 s3 s2 s1 s0

Character string ps represents 13-bit immediate data that indicates the branch-destination

address. A label can be used for it.

I-28

E0C6281 Cross Assembler

Example:

 Source file

 :

 JPM LABEL2

 :

 PAGE 2

 LABEL2 LD A,0

 :

 Assembly list file after expansion

 :

 JPM LABEL2

 + PSET LABEL2

 + JP LABEL2

 :

 PAGE 2

 LABEL2 LD A,0

 :

I-29

E0C6281 Cross Assembler

4.6.2 Macro-definitions

The macro-definition should be done by using the MACRO and the ENDM instructions (pseudo-

instruction).

– MACRO, ENDM

<macro name>_MACRO_[<dummy argument>, ...]

 Statement

 :

 ENDM

The statement block enclosed by a MACRO pseudo-instruction and an ENDM pseudo-

instruction is defined as a macro. Any name can be assigned to the macro as long as it conforms

to the rules regarding the characters, length, and label field.

A macro can have an argument passed to it when it is called. In this case, any symbol can be used

as a dummy argument in the macro definition where the actual argument is to be substituted and

the same symbol must be written after the MACRO pseudo-instruction. Multiple dummy

arguments must be separated by commas (,).

Be sure to write the ENDM statement at the end of a macro-definition.

Example: This macro loads data from the memory location specified by ADDR into the A or

B register specified by REG. Sample call: LDM A,10H

 LDM MACRO REG,ADDR

 LD X,ADDR

 LD REG,MX

 ENDM

These dummy arguments are replaced by actual arguments when the macro is expanded.

I-30

E0C6281 Cross Assembler

– LOCAL

If a macro having a label is expanded at multiple locations, the label duplicates, causing an error.

The LOCAL pseudo-instruction prevents this error occurring.

LOCAL_<label-name>[,<label-name>...]

The label specified by the LOCAL pseudo-instruction is replaced by "??nnnn" when the macro is

expanded. Field nnnn is a four-digit decimal field, to which values 0001 to 9999 are assigned

sequentially.

The LOCAL pseudo-instruction must be written at the beginning of the macro. The LOCAL

pseudo-instruction is ignored if another instruction precedes it.

Example:

 WAIT MACRO CNT

 LOCAL LOOP

 LD A,CNT

 LOOP SBC A,1 ← Replaces LOOP with ??nnnn

 JP NZ,LOOP at expansion.

 ENDM

I-31

E0C6281 Cross Assembler

4.6.3 Macro-calls

The defined macro-name can be called from any location in the program by using the following

format:

[<label>]_<macro-name>_[<actual-argument>, ...]

The MACRO can be called by using the macro-name.

When arguments are required, write actual arguments corresponding to the dummy arguments

used in the macro-definition. Multiple actual arguments must be separated by commas (,).

Actual and dummy arguments correspond sequentially from left to right. If the number of actual

arguments is greater than the number of dummy arguments, the excess actual arguments are

ignored. If the number of actual arguments is less than the number of dummy arguments, the

excess dummy arguments are replaced by nulls (00H).

Any label can be written before the macro-name.

Example:

 Source file
 ORG 0200H

 CTAS EQU 00H
 CTAE EQU 02H
 CAFSET EQU 0101B
 CAFRST EQU 0000B
 CTBS EQU 10H
 CTBE EQU 08H
 CBFSET EQU 0001B
 CBFRST EQU 0100B

 COUNT MACRO FSET,FRST,CTS,CTE
 LOCAL LOOP1
 SET F,FSET
 RST F,FRST
 LD A,0
 LD X,CTS
 LOOP1 ACPX MX,A
 CP XL,CTE
 JP NZ,LOOP1
 ENDM

 COUNTA COUNT CAFSET,CAFRST,CTAS,CTAE
 RET

 COUNTB COUNT CBFSET,CBFRST,CTBS,CTBE
 RET

 END

The assembly listing file after assembly is shown on the next page.

I-32

E0C6281 Cross Assembler

Assembly listing file

LISTING OF ASM62XX C2XX0A1.PRN PAGE 1

 LINE BANK PCP PCS OBJ SOURCE STATEMENT

 1 ORG 0200H

 2

 3 0000= CTAS EQU 00H

 4 0002= CTAE EQU 02H

 5 0005= CAFSET EQU 0101B

 6 0000= CAFRST EQU 0000B

 7 0010= CTBS EQU 10H

 8 0008= CTBE EQU 08H

 9 0001= CBFSET EQU 0001B

 10 0004= CBFRST EQU 0100B

 11

 12 COUNT MACRO FSET,FRST,CTS,CTE

 13 LOCAL LOOP1

 14 SET F,FSET

 15 RST F,FRST

 16 LD A,0

 17 LD X,CTS

 18 LOOP1 ACPX MX,A

 19 CP XL,CTE

 20 JP NZ,LOOP1

 21 ENDM

 22

 23 COUNTA COUNT CAFSET,CAFRST,CTAS,CTAE

 24 0 2 00 F45 + SET F,CAFSET

 25 0 2 01 F50 + RST F,CAFRST

 26 0 2 02 E00 + LD A,0

 27 0 2 03 B00 + LD X,CTAS

 28 0 2 04 F28 + ??0001 ACPX MX,A

 29 0 2 05 A52 + CP XL,CTAE

 30 0 2 06 704 + JP NZ,??0001

 31 0 2 07 FDF RET

 32

 33 COUNTB COUNT CBFSET,CBFRST,CTBS,CTBE

 34 0 2 08 F41 + SET F,CBFSET

 35 0 2 09 F54 + RST F,CBFRST

 36 0 2 0A E00 + LD A,0

 37 0 2 0B B10 + LD X,CTBS

 38 0 2 0C F28 + ??0002 ACPX MX,A

 39 0 2 0D A58 + CP XL,CTBE

 40 0 2 0E 70C + JP NZ,??0002

 41 0 2 0F FDF RET

 42

 43 END

I-33

E0C6281 Cross Assembler

5. ERROR MESSAGES

If an error occurs during assembly, ASM62XX outputs the appropriate error symbol or error message listed

below to the console and assembly listing file.

Only a single error symbol is output at the beginning (column 1) of the statement that caused the error. (If

two or more errors occurred, only the error with highest priority is output.)

The following error symbols are listed in order of priority, starting with the one with the highest priority.

– S (Syntax Error): An unrecoverable syntax error was encountered.

– U (Undefined Error): The label or symbol of the operand has not been defined.

– M (Missing Label): The label field has been omitted.

– O (Operand Error): A syntax error was encountered in the operand, or the operand could

not be evaluated.

– P (Phase Error): The same label or symbol was defined more than once.

– R (Range Error): –The location counter value exceeded the upper limit of the program

memory, or a location exceeding the upper limit was specified.

–A value greater than that which the number of significant digits of the

operand will accommodate was specified.

– ! (Warning): –Memory areas overlapped because of a "PAGE" or "ORG" pseudo-

instruction or both.

–A statement exceeded a page boundary although its location was not

specified.

I-34

E0C6281 Cross Assembler

– FILE NAME ERROR: The source file name was longer than 8 characters.

– FILE NOT PRESENT: The specified source file was not found.

– DIRECTORY FULL: No space was left in the directory of the specified disk.

– FATAL DISK WRITE ERROR: The file could not be written to the disk.

– LABEL TABLE OVERFLOW: The number of defined labels and symbols exceeded the

label table capacity (2000).

– CROSS REFERENCE TABLE OVERFLOW:

The label/symbol reference count exceeded the cross-

reference table capacity (only when the cross-reference

table is generated).

I-35

E0C6281 Cross Assembler

A>TYPE C2XX0A0.DAT
;
;*******<< SAMPLE PROGRAM :E0C62XX >>*******
;
ABC EQU 0F0H
TEN EQU 10
;
START LD A,0
LD X,8
LD Y,3
LDPX A,MX
;
ORG 0E0H
;
NEXT ADD B,TEN
LD MX,XH
AND A,101B
FAN MY,A
RCF
SCPX MX,B
JP C,NEXT
;
;-------<< ERROR >>-------
 EQU 0CH-2
ERROR EQU 4
ERROR LD A,3
 SBD MX,A
 INC Z
 JP UNDEF
 ORG 11100000B
 NOP5
 SECTION
 ORG ABC+0FH
 NOP7
 NOP7
 END

APPENDIX ASM62XX EXECUTION EXAMPLE

 1) Source file (C2XX0A0.DAT)

I-36

E0C6281 Cross Assembler

A>ASM62XX C2XX0A0
 *** E0C62XX CROSS ASSEMBLER. --- VERSION 2.00 ***

 (C) COPYRIGHT 1989 SEIKO EPSON CORP.

 SOURCE FILE NAME IS " C2XXYYY.DAT "

 THIS SOFTWARE MAKES NEXT FILES.

 C2XXYYYH.HEX ... HIGH BYTE OBJECT FILE.
 C2XXYYYL.HEX ... LOW BYTE OBJECT FILE.
 C2XXYYY .PRN ... ASSEMBLY LIST FILE.

 DO YOU NEED AUTO PAGE SET?(Y/N) N
 DO YOU NEED CROSS REFERENCE TABLE?(Y/N) Y
 M 23 000A= EQU 0CH-2
 P 24 0004= ERROR EQU 4
 P 25 0 0 E7 E03 ERROR LD A,3
 S 26 0 0 E8 FFF SBD MX,A
 O 27 0 0 E9 FFF INC Z
 U 28 0 0 EA 000 JP UNDEF
 ! 30 NOP5
 R 34 0 1 00 NOP7

 8 ERROR OR WARNING(S) DETECTED
 Used : 6/2000 symbols

A>

EEEEEEEEEE PPPPPPPP SSSSSSS OOOOOOOO NNN NNN
EEEEEEEEEE PPPPPPPPPP SSS SSSS OOO OOO NNNN NNN
EEE PPP PPP SSS SSS OOO OOO NNNNN NNN
EEE PPP PPP SSS OOO OOO NNNNNN NNN
EEEEEEEEEE PPPPPPPPPP SSSSSS OOO OOO NNN NNN NNN
EEEEEEEEEE PPPPPPPP SSSS OOO OOO NNN NNNNNN
EEE PPP SSS OOO OOO NNN NNNNN
EEE PPP SSS SSS OOO OOO NNN NNNN
EEEEEEEEEE PPP SSSS SSS OOO OOO NNN NNN
EEEEEEEEEE PPP SSSSSSS OOOOOOOO NNN NN

 2) Running the assembler (display on the console)

I-37

E0C6281 Cross Assembler

A>TYPE C2XX0A0.PRN
LISTING OF ASM62XX C2XX0A0.PRN PAGE 1
 LINE BANK PCP PCS OBJ SOURCE STATEMENT
 1 ;
 2 ;*******<< SAMPLE PROGRAM :E0C62XX >>*******
 3 ;
 4 00F0= ABC EQU 0F0H
 5 000A= TEN EQU 10
 6 ;
 7 0 0 00 E00 START LD A,0
 8 0 0 01 B08 LD X,8
 9 0 0 02 803 LD Y,3
 10 0 0 03 EE2 LDPX A,MX
 11 ;
 12 ORG 0E0H
 13 ;
 14 0 0 E0 C1A NEXT ADD B,TEN
 15 0 0 E1 EA6 LD MX,XH
 16 0 0 E2 C85 AND A,101B
 17 0 0 E3 F1C FAN MY,A
 18 0 0 E4 F5E RCF
 19 0 0 E5 F39 SCPX MX,B
 20 0 0 E6 2E0 JP C,NEXT
 21 ;
 22 ;-------<< ERROR >>-------
M 23 000A= EQU 0CH-2
P 24 0004= ERROR EQU 4
P 25 0 0 E7 E03 ERROR LD A,3
S 26 0 0 E8 FFF SBD MX,A
O 27 0 0 E9 FFF INC Z
U 28 0 0 EA 000 JP UNDEF
 29 ORG 11100000B
! 30 NOP5
 31 SECTION
 32 ORG ABC+0FH
 33 0 0 FF FFF NOP7
R 34 0 1 00 NOP7
 35 END
8 ERROR OR WARNING(S) DETECTED
 LABEL TABLE PAGE L- 1
 ABC =00F0 ERROR =0004 NEXT 0-0-E0 START 0-0-00
 TEN =000A U UNDEF 0-0-00
 CROSS REFERENCE TABLE PAGE X- 1
ABC 4# 32
ERROR 24# 25#
NEXT 14# 20
START 7#
TEN 5# 14
UNDEF 28

 3) Assembly listing file (C2XX0A0.PRN)

I-38

E0C6281 Cross Assembler

A>TYPE C2XX0A0L.HEX

 :10000000000803E2FFFFFFFFFFFFFFFFFFFFFFFF0F
 :10001000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0
 :10002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
 :10003000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD0
 :10004000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0
 :10005000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB0
 :10006000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA0
 :10007000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF90
 :10008000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF80
 :10009000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF70
 :1000A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF60
 :1000B000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF50
 :1000C000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF40
 :1000D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF30
 :1000E0001AA6851C5E39E003FFFF00FFFFFFFFFF3C
 :1000F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF10
 :10010000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
 :10011000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF
 :10012000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDF
 :10013000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCF
 :10014000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBF
 :10015000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAF
 :10016000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F
 :10017000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8F
 :10018000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F
 :10019000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6F
 :1001A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F
 :1001B000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4F
 :1001C000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F
 :1001D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2F
 :1001E000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F
 :1001F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0F
 :10020000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE
 :10021000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEE
 :10022000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDE
 :10023000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCE
 :10024000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBE
 :10025000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAE
 :10026000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9E
 :10027000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8E
 :10028000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7E
 :10029000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6E
 :1002A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5E
 :1002B000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4E
 :1002C000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3E
 :1002D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2E
 :1002E000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1E
 :1002F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0E

 4) Object files (C2XX0A0H.HEX, C2XX0A0L.HEX)

I-39

E0C6281 Cross Assembler

 :10030000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD
 :10031000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED
 :10032000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDD
 :10033000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCD
 :10034000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBD
 :10035000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAD
 :10036000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9D
 :10037000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8D
 :10038000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7D
 :10039000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6D
 :1003A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D
 :1003B000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D
 :1003C000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3D
 :1003D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2D
 :1003E000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1D
 :1003F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0D
 :00000001FF

 (When ROM capacity is in 1,024 steps)

I-40

E0C6281 Cross Assembler

A>TYPE C2XX0A0H.HEX

 :100000000E0B080EFFFFFFFFFFFFFFFFFFFFFFFFCD
 :10001000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0
 :10002000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE0
 :10003000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD0
 :10004000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC0
 :10005000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB0
 :10006000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA0
 :10007000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF90
 :10008000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF80
 :10009000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF70
 :1000A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF60
 :1000B000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF50
 :1000C000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF40
 :1000D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF30
 :1000E0000C0E0C0F0F0F020E0F0F00FFFFFFFFFF94
 :1000F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0F00
 :10010000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
 :10011000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF
 :10012000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDF
 :10013000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCF
 :10014000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBF
 :10015000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAF
 :10016000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F
 :10017000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8F
 :10018000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7F
 :10019000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6F
 :1001A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5F
 :1001B000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4F
 :1001C000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3F
 :1001D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2F
 :1001E000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1F
 :1001F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0F
 :10020000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE
 :10021000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEE
 :10022000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDE
 :10023000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCE
 :10024000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBE
 :10025000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAE
 :10026000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9E
 :10027000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8E
 :10028000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7E
 :10029000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6E
 :1002A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5E
 :1002B000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4E
 :1002C000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3E
 :1002D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2E
 :1002E000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1E
 :1002F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0E
 :10030000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFD
 :10031000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED

I-41

E0C6281 Cross Assembler

 :10032000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDD
 :10033000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCD
 :10034000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBD
 :10035000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAD
 :10036000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9D
 :10037000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8D
 :10038000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7D
 :10039000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6D
 :1003A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D
 :1003B000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF4D
 :1003C000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3D
 :1003D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2D
 :1003E000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1D
 :1003F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0D
 :00000001FF

 (When ROM capacity is in 1,024 steps)

Note: The size of the object file differs depending on the device and the ROM capacity.

See "1. E0C62XX RESTRICTIONS".

II. E0C6281MELODY ASSEMBLER MANUAL

PREFACE

This manual mainly explains how to operate the MLA6281 melody-assembler for the E0C6281 4-bit,

single-chip microcomputers, and how to generate source files.

For details on the E0C6281, refer to the "E0C6281 Technical Hardware Manual" and "E0C6281

Technical Software Manual".

Chapter 1 and subsequent chapters provide information common to all E0C6280 models, the

model name being denoted "8X". Read this manual, replacing "8X" with "81".

628X → 6281

C28X → C281

CONTENTS

1 INTRODUCTION .. II-1

1.1 Outline of MLA628X .. II-1

1.2 MLA628X Input/output File ... II-2

2. Activating MLA628X ... II-3

3. FORMAT OF SOURCE FILE ... II-7

3.1 Source File Name .. II-7

3.2 Statement (line) ... II-7

3.2.1 Attack field .. II-8

3.2.2 Note field ... II-8

3.2.3 Scale field .. II-8

3.2.4 End bit field ... II-8

3.2.5 Comment field ... II-8

3.2.6 Fields and corresponding melody data .. II-9

3.3 Pseudo-instruction ...II-10

3.3.1 Address-setting pseudo-instruction ...II-10

3.3.2 Option-setting pseudo-instructions ...II-10

4. ERROR MESSAGES...II-12

5. EXAMPLES OF INPUT-OUTPUT FILES ...II-13

5.1 Example of Source File ...II-13

5.2 Example of Assembly List ..II-14

5.3 Example of Melody Hex File Data Format ...II-15

5.4 Example of Assembly List When Error Occurs ..II-16

5.5 Example of Melody Document File Format..II-18

II-1

E0C6281 Melody Assembler

1.1 Outline of MLA628X

The Melody Assembler MLA628X (hereafter abbreviated as MLA628X) is an assembler that

outputs melody ROM data of the 4-bit single-chip microcomputers E0C628X and 62L8X.

MLA628X can be used with both MS-DOS and PC-DOS.

The MLA628X system disks come in two types: for the NEC PC9801 V series (5.25", 2HD) and

the IBM PC/XT and PC/AT (5.25", 2D). Basically, the system is configured as follows:

– PC9801 V series

Host computer: PC9801 V series

Disk drive: Housing at least one floppy disk (5.25", 2HD)

Operating system: MS-DOS Ver. 3.1 or later

Printer: For printing source files, assembly lists, error messages

– IBM PC/XT, PC/AT

Host computer: IBM PC/XT, PC/AT

Disk drive: Housing at least one floppy disk (5.25", 2D)

Operating system: PC-DOS (MS-DOS) Ver. 3.1 or later

Printer: For printing source files, assembly lists, error messages

The Melody Assembler's program name is "MLA628X.EXE".

Figure 1.1 shows the flow of executing MLA628X.

1. INTRODUCTION

A>EDLIN C28XYYY.MDT
Create the source file

A>MLA628X C28XYYY
Execute the melody assembler

C28XYYY
.MDT

C28XYYY
.MPR

C28XYYYA
.HEX

C28XYYYA
.DOC

Error
message

Error
message

Assembly
list file

Source file

Melody
Hex File

Melody
Document File

Fig. 1.1 Flow of execution of MLA628X

II-2

E0C6281 Melody Assembler

1.2 MLA628X Input/output File

MLA628X inputs the source file, and after assembly it outputs the object file, assembly list file

and document file.

– Source file (C28XYYY.MDT)

Source program file created with an editor, such as EDLIN.

Create the file name using seven characters maximum, in the format "C28XYYY". For "YYY",

use the model name from Seiko Epson.

Also, be sure to make the extension ".MDT".

– Melody HEX file (C28XYYYA.HEX)

Program file of Intel hexadecimal format created by the assembler.

Note: When loaded with ICE, the file format is checked, and an error results when it is not

following format.

· Main ROM high-order data = 00H or 01H

· Main ROM low-order data = 00H–FFH

· When 80 bytes are not used, the space is filled out with FF.

– Melody assembly list file (C28XYYY.MPR)

Melody ROM list file with melody ROM data and error messages (if any) added to each line of

the source file. The scale ROM table can be created at the end of the file. The file specifier is

"C28XYYY.MPR".

– Document file (C28XYYYA.DOC)

File containing hexadecimal data of melody ROM and scale ROM as well as information on

melody options. The file specifier is "C28XYYYA.DOC".

II-3

E0C6281 Melody Assembler

2. ACTIVATING MLA628X

To activate MLA628X, input the following from the DOS command level (that is, when the

prompt "A>" appears on the screen).

MLA628X_[drive name:]source filename[.shp]_[-H] ↵

_ indicates where a space is to be input.

[] indicates that this parameter may be omitted.

↵ indicates where the Return key (Enter key) is pressed.

Drive name: When the source file is in a different drive from MLA628X.MDT, the drive

name is input before the source filename. If in the same drive, then it may be

omitted.

Source filename: The source file to input to MLA628X.

Note: Make the source filename up to seven characters long, and do not

input the extension (".MDT").

.shp: s, h, and p are options specifying the file's input/output drive, as explained

below. These may be omitted, and input is valid for both upper- and lower-

case.

s: Specifies the drive from A through P that inputs the source file.

When "@" is specified, the source file on the current drive (directory) is

input.

The "s" specification is valid when the drive name is input before the

source filename.

h: Specifies the drive from A through P that outputs the melody HEX file

and melody document file.

When "@" is specified, output is made to the current drive (directory).

When "Z" is specified, only assembly is performed and the melody HEX

file and melody document file are not created.

p: Specifies the drive from A through P that outputs the assembly list file.

When "@" is specified, output is made to the current drive (directory).

When "X" is specified the list including error messages is output from the

console.

When "Z" is specified, the assembly list file is not created.

Specify s, h and p at the same time. These cannot be specified separately.

-H: "-H" is the option to indicate activation of the conversion program from the

melody document file to the melody HEX file.

When this option is specified, the [shp] option is disabled. The melody

document file of the current drive is input and the melody HEX file is created

for the current drive. Input can be in upper- and lower-case.

II-4

E0C6281 Melody Assembler

Examples:

A>MLA628X C28XYYY ↵

In this example, the source file C28XYYY.MDT is input from drive A, and the melody

HEX file C28XYYYA.HEX, melody assembly list file C28XYYY.MPR, and melody

document file C28XYYYA.DOC are created on drive A.

A>MLA628X B:C28XYYY ↵

In this example, the source file C28XYYY.MDT is input from drive B, and the melody

HEX file C28XYYYA.HEX, melody assembly list file C28XYYY.MPR, and melody

document file C28XYYYA.DOC are created on drive B.

A>MLA628X C28XYYY.BBZ ↵

In this example, the source file C28XYYY.MDT is input from drive B, and the melody

HEX file C28XYYYA.HEX and melody document file C28XYYYA.DOC are created on

drive B. The melody assembly list is not created.

II-5

E0C6281 Melody Assembler

When MLA628X is activated, the activation messages appear as shown below.

Example: When assembling C28X0A0.MDT (Basic assembly)

With the message "STRIKE ANY KEY ", the program is requesting key input for confirmation.

The program will proceed when any key is pressed.

To cancel the program, press the CTRL and C keys together. This will return you to the DOS

command level.

A>MLA628X C28X0A0 ↵
 *** MLA628X MELODY ASSEMBLER. --- Ver 3.00 ***

 EEEEEEEEEE PPPPPPPP SSSSSSS OOOOOOOO NNN NNN
 EEEEEEEEEE PPPPPPPPPP SSS SSSS OOO OOO NNNN NNN
 EEE PPP PPP SSS SSS OOO OOO NNNNN NNN
 EEE PPP PPP SSS OOO OOO NNNNNN NNN
 EEEEEEEEEE PPPPPPPPPP SSSSSS OOO OOO NNN NNN NNN
 EEEEEEEEEE PPPPPPPP SSSS OOO OOO NNN NNNNNN
 EEE PPP SSS OOO OOO NNN NNNNN
 EEE PPP SSS SSS OOO OOO NNN NNNN
 EEEEEEEEEE PPP SSSS SSS OOO OOO NNN NNN
 EEEEEEEEEE PPP SSSSSSS OOOOOOOO NNN NN

 (C) COPYRIGHT 1989 SEIKO EPSON CORP.

 SOURCE FILE NAME IS “ C28XYYY.MDT “.

 THIS SOFTWARE MAKES NEXT FILES.

 C28XYYYA.HEX ... MELODY HEX FILE.
 C28XYYYA.DOC ... MELODY DOCUMENT FILE.
 C28XYYY .MPR ... MELODY ASSEMBLY LIST FILE.

 STRIKE ANY KEY

II-6

E0C6281 Melody Assembler

Example: -H option use

(activation of program to convert melody document file to melody HEX file)

A>MLA628X C28X0A0 -H ↵
 *** MLA628X MELODY ASSEMBLER. --- Ver 3.00 ***

 EEEEEEEEEE PPPPPPPP SSSSSSS OOOOOOOO NNN NNN
 EEEEEEEEEE PPPPPPPPPP SSS SSSS OOO OOO NNNN NNN
 EEE PPP PPP SSS SSS OOO OOO NNNNN NNN
 EEE PPP PPP SSS OOO OOO NNNNNN NNN
 EEEEEEEEEE PPPPPPPPPP SSSSSS OOO OOO NNN NNN NNN
 EEEEEEEEEE PPPPPPPP SSSS OOO OOO NNN NNNNNN
 EEE PPP SSS OOO OOO NNN NNNNN
 EEE PPP SSS SSS OOO OOO NNN NNNN
 EEEEEEEEEE PPP SSSS SSS OOO OOO NNN NNN
 EEEEEEEEEE PPP SSSSSSS OOOOOOOO NNN NN

 (C) COPYRIGHT 1989 SEIKO EPSON CORP.

 SOURCE FILE NAME IS “ C28XYYYA.DOC “.

 THIS SOFTWARE MAKES NEXT FILES.

 C28XYYYA.HEX ... MELODY HEX FILE.

 STRIKE ANY KEY

With the message "STRIKE ANY KEY ", the program is requesting key input for confirmation.

Check the source filename and option that you have input.

The program will proceed when any key is pressed. To cancel the program, press the CTRL and

C keys together. This will return you to the DOS command level.

II-7

E0C6281 Melody Assembler

3. FORMAT OF SOURCE FILE

Contents of the source file, created with an editor such as EDLIN, are configured from the

E0C628X/62L8X melody codes and the pseudo-instructions described later.

3.1 Source File Name

The source file can be named with a maximum of any seven characters. As a rule, keep to the

following format.

C28XYYY.MDT

Three alphanumerics are entered in the "YYY" part. Refer to the model name from Seiko Epson.

The extension must be ".MDT".

3.2 Statement (line)

Write each of the source file statements (lines) as follows:

Basic format: <attack> <note> <scale> <end bit> <comment>

Example: .TEMPC0=5

.TEMPC1=8

.OCTAVE=32
;
0 1 C3
0 4 D4
0 4 E4#
0 2 F5
0 3 G5#
1 7 A4
1 5 B4
0 6 A4# 1 ;1st Melody
;
ORG 10H
;
0 2 C3#
0 3 $45
0 7 $E3
1 6 $97
0 5 C6
0 7 A5#
1 3 $42 1 ;2nd Melody

Attack field Note field Scale field End bit field Comment field

The statement is made up of the five fields: attack field, note field, scale field, end bit field, and

comment field. Up to 80 characters can be written in the statement. The fields are separated by

one or more spaces or by inserting tabs.

The end bit fields and comment fields can be filled in on an as-needed basis.

A blank line is also permitted for the CR (carriage return) code only. However, it is not permitted

on the last line. Each of the fields can be started from any column.

II-8

E0C6281 Melody Assembler

3.2.1 Attack field

Control of the attack output is written.

When "1" is written, attack output is performed. When "0" is written, attack output is not

performed.

3.2.2 Note field

Eight notes can be specified with the melody data D5 through D7. Fill in the note field with

numbers from 1 to 8.

Table 3.2.2 Notes and corresponding codes

3.2.3 Scale field

The scale field can be filled in with any scale (C3 through C6#).

When inputting the scale data directly, prefix the data with "$". In this case, the input data range

is 00H through FDH.

3.2.4 End bit field

The instruction indicating the end of the melody is written in the end bit field. When "1" is

written, the melody finishes with the melody data of that address. Otherwise, write "0", or omit it

altogether.

3.2.5 Comment field

Any comment, such as the program index or processing details, can be written in the comment

field, with no affect on the object file created with the assembler.

The comment field is the area between the semicolon ";" and the CR code at the end of the line.

A line can be made up of a comment field alone. However, if the comment extends into two or

more lines, each line must be headed with a semicolon.

No.

Note

1 2 3 4 5 6 7 8

II-9

E0C6281 Melody Assembler

3.2.6 Fields and corresponding melody data

* Melody data

Example: D8 D7 D6 D5 D4 D3 D2 D1 D0

1 1 0 1 1 1 0 1 0

End data

Scale address data

Note data

Attack data

- End data

Becomes "0" when "0" is entered or no entry is made; otherwise, "1".

- Scale address data

The scale or scale data written in the scale field is loaded into the scale ROM, and the address

of the loaded scale data becomes the scale address data.

Table 3.2.6.a Correspondence between scale and scale data

- Note data

The correspondence between notes and note data are as follows.

Table 3.2.6.b Correspondence between notes and note data

- Attack data

"0" or "1" written in the attack field becomes the attack data.

Note Data

Note

111 110 101 100 011 010 001 000

Scale
Scale Data

S7 S6 S5 S4 S3 S2 S1 S0

0 0 0 0 0 1 0 0 04C3
0 0 0 1 0 0 1 0 12C3#
0 0 1 0 0 0 0 0 20D3
0 0 1 0 1 1 1 1 2FD3#
0 0 1 1 1 0 1 1 3BE3
0 1 0 0 0 1 0 0 44F3
0 1 0 1 0 0 0 1 51F3#
0 1 0 1 1 0 1 1 5BG3
0 1 1 0 0 1 0 1 65G3#
0 1 1 0 1 1 0 0 6CA3
0 1 1 1 0 1 0 0 74A3#
0 1 1 1 1 1 0 0 7CB3
1 0 0 0 0 1 0 0 84C4
1 0 0 0 1 1 0 1 8DC4#
1 0 0 1 0 0 1 0 92D4
1 0 0 1 1 0 0 0 98D4#
1 0 0 1 1 1 1 0 9EE4
1 0 1 0 0 1 0 0 A4F4
1 0 1 0 1 0 1 1 ABF4#

Hex.
Scale

Scale Data
S7 S6 S5 S4 S3 S2 S1 S0

1 0 1 1 0 0 0 1 B1G4
1 0 1 1 0 1 0 1 B5G4#
1 0 1 1 1 0 0 0 B8A4
1 0 1 1 1 1 0 0 BCA4#
1 1 0 0 0 0 0 0 C0B4
1 1 0 0 0 1 0 0 C4C5
1 1 0 0 1 0 0 0 C8C5#
1 1 0 0 1 1 0 1 CDD5
1 1 0 0 1 1 1 0 CED5#
1 1 0 1 0 0 1 1 D3E5
1 1 0 1 0 1 0 0 D4F5
1 1 0 1 1 0 0 1 D9F5#
1 1 0 1 1 0 1 1 DBG5
1 1 0 1 1 1 0 0 DCG5#
1 1 0 1 1 1 1 0 DEA5
1 1 1 0 0 0 0 0 E0A5#
1 1 1 0 0 0 1 0 E2B5
1 1 1 0 0 1 0 0 E4C6
1 1 1 0 0 1 1 0 E6C6#

Hex.

II-10

E0C6281 Melody Assembler

3.3 Pseudo-instruction

The pseudo-instruction is for the assembler, and cannot be executed by the melody data after

development.

In the explanations below, the symbols "<" and ">" used in the pseudo-instruction format indicate

the contents of the statement. These symbols are not actually written. "_" indicates one or more

spaces or tabs. The symbol, constant, arithmetic expression and so forth is written in

"<expression>".

3.3.1 Address-setting pseudo-instruction

– ORG (ORIGIN)

ORG_<expression> Sets location counter

The ORG instruction sets the value of <expression> in the location counter.

If the ORG instruction does not head the source file, the location counter is set to 0 and

assembly is performed. The ORG instruction can be used in multiple places in the

program. However, it cannot be set in a location ahead of the current location counter,

otherwise all the statements will be invalid until the next correct setting is performed, and

"!" (Warning) is displayed.

When a value exceeding the ROM capacity is specified, an R error results.

3.3.2 Option-setting pseudo-instructions

– .TEMPC0

.TEMPC0=n Sets TEMPC0 (n = 0–15)

The TEMPC0 option is set by specifying n as an integer in the range 0 to 15.

This setting cannot be omitted.

– .TEMPC1

.TEMPC1=n Sets TEMPC1 (n = 0–15)

The TEMPC1 option is set by specifying n as an integer in the range 0 to 15.

This setting cannot be omitted.

II-11

E0C6281 Melody Assembler

– .OCTAVE

.OCTAVE=m Sets scale range (m = 32 or 64)

Decides the scale range by selecting the specification of the melody multiplier

circuit.

The specification becomes 32 kHz for m=32, and the range becomes (C3–C6#).

The specification becomes 64 kHz for m=64, enabling output of notes one octave

higher (C4–C7#) than can be done with the 32 kHz specification.

For instance, even if the scale in the source file is C5, the actual sound generated

will be C6.

This setting cannot be omitted.

II-12

E0C6281 Melody Assembler

4. ERROR MESSAGES

When errors occur during assembly, MLA628X outputs the following error symbols or error

messages to the console and assembly list file.

Just one error symbol is output at the head (first column) of the statement that generated an error.

(When multiple errors have been generated, the symbol for the error of highest priority is output.)

The following error symbols are shown in order from highest priority.

– Error symbol (errors that can be assembled)

- S (Syntax error) Major syntax error

· Error in scale field (Exceeded scale range: C3–C6#)

· Error in note field (Exceeded note range: 1–8)

· Error in attack field (Number other than 0 or 1 was input.)

· Error in end bit field (Number other than 0 or 1 was input.)

- O (Scale ROM overflow)

The definition exceeded the scale ROM capacity.

- R (Range error)

The value of the location counter exceeded the upper limit of the melody

ROM capacity. Otherwise, the specified location exceeded the upper limit.

– Error messages

(Fatal errors preventing assembly or output of assembly results.)

- OPTION COMMAND MISSING

Options cannot be set.

- FILE NAME ERROR

The source filename has eight or more characters.

- FILE NOT PRESENT

The specified source file is not there.

- DIRECTORY FULL

No more room in the directory of the specified disk.

- FATAL DISK WRITE ERROR

The file cannot be written to the disk.

II-13

E0C6281 Melody Assembler

5. EXAMPLES OF INPUT-OUTPUT FILES

5.1 Example of Source File

.TEMPC0=5

.TEMPC1=8

.OCTAVE=32

;

0 1 C3

0 4 D4

0 4 E4#

0 2 F5

0 3 G5#

1 7 A4

1 5 B4

0 6 A4# 1

;

ORG 10H

;

0 2 $C3

0 3 $45

0 7 $E3

1 6 $97

0 5 C6

0 7 A5#

1 3 $42 1

;

;

;

;

;

;

;

; 1st Melody

;

;

;

;

;

;

; 2nd Melody

II-14

E0C6281 Melody Assembler

5.2 Example of Assembly List

LISTING OF MLA628X C28XYYY.MPR 1989-9-01 14:25...PAGE 1

 ADRS CODE SOURCE

 .TEMPC0 = 5
 .TEMPC1 = 8
 .OCTAVE = 32
 ;
 0 000 0 1 C3
 1 062 0 4 D4
 2 064 0 4 F4
 3 026 0 2 F5
 4 048 0 3 G5#
 5 1CA 1 7 A4
 6 18C 1 5 B4
 7 0AF 0 6 A4# 1
 ;
 ORG 10H
 ;
 10 030 0 2 $C3
 11 052 0 3 $45
 12 0D4 0 7 $E3
 13 1B6 1 6 $97
 14 098 0 5 C6
 15 0DA 0 7 A5#
 16 159 1 3 $42 1

0 ERROR(S) DETECTED

SCALE ROM TABLE PAGE S-1

ADRS SCALE CODE

0000 C3 04
0001 D4 92
0010 F4 A4
0011 F5 D4
0100 G5# DC
0101 A4 B8
0110 B4 C0
0111 A4# BC
1000 $C3 C3
1001 $45 45
1010 $E3 E3
1011 $97 97
1100 C6 E4
1101 A5# E0
1110 -- FF
1111 RR C4

Time

Date

File specifier of mel-
ody assembly list

Example of scale ROM table

- Hyphens "-- " indicate unused code.

- When unused, the code is FFH.

- The last location, ADRS = "1111", of the scale ROM is
 fixed at SCALE = "RR" and CODE = "C4".

;
;
;
;
;
;
;
; 1st Melody

;
;
;
;
;
;
; 2nd Melody

II-15

E0C6281 Melody Assembler

5.3 Example of Melody Hex File Data Format

:100000000000000000010100FFFFFFFFFFFFFFFFF6 (1)
:1000100000000001000001FFFFFFFFFFFFFFFFFFE7
:100100000062642648CA8CAFFFFFFFFFFFFFFFFFBF (2)
:100110003052D4B698DA59FFFFFFFFFFFFFFFFFF12
:100200000492A4D4DCB8C0BCC345E397E4E0FFFF8E (3)
:10030000110010011111001010001110001001104A (4)
:00000001FF

(1) Main ROM high-order (D8)

(Of the 256 bytes, the 80 bytes from 0 to 4F are enabled.)

(2) Main ROM low-order (D0–D7)

(Of the 256 bytes, the 80 bytes from 0 to 4F are enabled.)

(3) Scale ROM (D0–D7)

(Of the 256 bytes, the 16 bytes from 0 to F are enabled.)

(4) Option

- Tempo

- Octave

II-16

E0C6281 Melody Assembler

5.4 Example of Assembly List When Error Occurs

When an error occurs the code is made FFF forcibly. A value is not entered for the scale ROM.

LISTING OF MLA628X C28XYYY.MPR 1989-9-01 17:30...PAGE 1

 ADRS CODE SOURCE

 .TEMPC0 = 5
 .TEMPC1 = 8
 .OCTAVE = 32
 ;
 0 000 0 1 C3
 1 062 0 4 D4
 2 064 0 4 F4
S 3 FFF 0 2 F6
 4 048 0 3 G5#
S 5 FFF 2 7 A4
S 6 FFF 1 9 B4
 7 0A9 0 6 A4# 1
 ;
 ORG 10H
 ;
 10 02A 0 2 $C3
 11 06C 0 3 $17
 12 0CE 0 7 $E3
 13 1B0 1 6 $97
 14 092 0 5 C6
 15 0D4 0 7 A5#
 16 056 0 3 E3
 17 078 0 4 G5
 18 09A 0 5 G4
 19 07C 0 4 G4#
O 1A FFF 0 3 A4
 1B 15F 1 3 RR 1
 ·
 ·
 ·
 4E 05A 0 3 G4
 4F 05A 0 3 G4
R 50 FFF 0 3 G4
S 51 FFF 4 3 G4
R 52 FFF 0 3 G4 1

7 ERROR(S) DETECTED

;
;
;
;
;
;

; 1st Melody

;
;
;
;
;
;
;
;
;
;
;
; 2nd Melody

;
;
;
;
;

II-17

E0C6281 Melody Assembler

SCALE ROM TABLE PAGE S-1

ADRS SCALE CODE

0000 C3 04
0001 D4 92
0010 F4 A4
0011 G5# DC
0100 A4# BC
0101 $C3 C3
0110 $17 17
0111 $E3 E3
1000 $97 97
1001 C6 E4
1010 A5# E0
1011 E3 3B
1100 G5 DB
1101 G4 B1
1110 G4# B5
1111 RR C4

II-18

E0C6281 Melody Assembler

5.5 Example of E0C6281–A.DOC File Format

:100000000.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0...
:100010000.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0...
:100020000.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0...
:100030000.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0...
:100040000.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0...
:100050000.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0...
:00000001FF

:10000000..................................
:10001000..................................
:10002000..................................
:10003000..................................
:10004000..................................
:10005000..................................
:00000001FF

:10000000..................................
:00000001FF

*
* OCTAVE CIRCUIT
* 32KHZ --------------------- SELECTED
OPT2001 01
*
* TEMPO SELECT0 TEMPO0 ------- SELECTED
* TEMPO SELECT1 TEMPO0 ------- SELECTED
OPT2101 02
OPT2102 02
OPT2103 02
OPT2104 02
¥¥END

Scale ROM

Intel hexadecimal format

"." indicates data 0–F.

Option selection

Main ROM (high side)

Intel hexadecimal format

"." indicates data 0–F.

Main ROM (low side)

Intel hexadecimal format

"." indicates data 0–F.

III. E0C6281 FUNCTION OPTION GENERATOR MANUAL

PREFACE

This manual explains how to operate the FOG6281 Function Option Generator for setting the hard-

ware options of 4-bit single-chip E0C6281 microcomputer and details the specifications of their

options.

Refer to "E0C6281 Technical Hardware Manual" for details about the E0C6281. Refer to "E0C62

Family Technical Guide" for details about the development procedure.

CONTENTS

1 GENERAL .. III-1

1.1 Outline of Function Option Generator ... III-1

1.2 Execution Flow and I/O Files .. III-2

2 OPTION LIST GENERATION.. III-4

2.1 Option List Recording Procedure ... III-4

2.2 Option List ... III-4

2.3 Option Specifications ... III-6

2.3.1 Device type.. III-6

2.3.2 Multiple key entry reset .. III-7

2.3.3 Interrupt noise rejector .. III-8

2.3.4 Input ports pull down resistor ... III-9

2.3.5 Output port (R00–R03) output specification..III-10

2.3.6 R10 specification ..III-11

2.3.7 R11 specification ..III-12

2.3.8 R12 specification ..III-13

2.3.9 I/O port specification..III-15

2.3.10 LCD common duty ...III-16

2.3.11 OSC1 system clock ..III-17

3 FUNCTION OPTION GENERATOR OPERATION PROCEDUREIII-18

3.1 Creating Work Disk ..III-18

3.2 Starting FOG6281 ...III-19

3.3 Setting New Function Options ..III-21

3.4 Modifying Function Option Settings ..III-23

3.5 Selecting Function Options ...III-25

3.5.1 Selecting the device type ..III-26

3.5.2 Selecting multiple key entry reset function ..III-26

3.5.3 Selecting input interrupt noise rejector ..III-26

3.5.4 Selecting input port pull down resistor ..III-27

3.5.5 Selecting output port (R00–R03) output specificationIII-28

3.5.6 Selecting R10 terminal specification ...III-29

3.5.7 Selecting R11 terminal specification ...III-29

3.5.8 Selecting R12 terminal specification ...III-30

3.5.9 Selecting I/O port specification ..III-30

3.5.10 Selecting LCD common (drive) duty ...III-31

3.5.11 Selecting OSC1 osillation circuit ...III-31

3.6 HEX File Generation and EPROM Selection ...III-32

3.7 End Procedure ...III-33

4 SAMPLE FILE ..III-34

III-1

E0C6281 Function Option Generator

1 GENERAL

1.1 Outline of Function Option Generator

With the 4-bit single-chip E0C6281 microcomputers, the customer may select 11 hardware

options. By modifying the mask patterns of the E0C6281 according to the selected options, the

system can be customized to meet the specifications of the target system.

The FOG6281 Function Option Generator (hereinafter called FOG6281) is a software tool for

generating data files used to generate mask patterns. It enables the customer to interactively

select and specify pertinent items for each hardware option. From the data file created with

FOG6281, the E0C6281 mask pattern is automatically generated by a general purpose computer.

The HEX file for the evaluation board (EVA6281) hardware option ROM is simultaneously

generated with the data file. By writing the contents of the HEX file into the EPROM and

mounting it on the EVA6281, option functions can be executed on the EVA6281.

Two FOG6281 system disks are supplied by SEIKO EPSON: one for NEC PC-9801V series

(5.25" 2HD) and one for IBM PC/XT and PC/AT (5.25" 2D). The basic configurations are as

follows.

– PC-9801V series

Host computer: PC-9801V series

Disk drive: FD (5.25" 2HD) x 1 or more

Operating system: MS-DOS Ver. 3.1 or later

ROM writer: Required when using EVA6281

– IBM PC/XT and PC/AT

Host computer: IBM PC/XT and PC/AT

Disk drive: FD (5.25" 2D) x 1 or more

Operating system: PC-DOS Ver. 2.1 or later

ROM writer: Required when using EVA6281

The program name of FOG6281 is as follows:

FOG6281.EXE

III-2

E0C6281 Function Option Generator

1.2 Execution Flow and I/O Files

Figure 1.2 shows the FOG6281 execution flow.

Seiko Epson

EVA6281

C281XXXF.
HEX

C281XXXF.
DOC

Set function
option

Start OPG6281

Floppy disk

EPROM

Option list
generation

Fig. 1.2 Execution Flow

III-3

E0C6281 Function Option Generator

(1) Option list generation

Select the hardware options that meet the specifications of the target system and record them in

the option list (paper for recording items in preparation for input operation; explained later).

(2) FOG6281 execution

Start FOG6281 and select the required function options. Function options can be interactively

selected, so an input file need not be generated. Already selected options can be modified.

FOG6281 outputs the following data files:

· Function option document file (C281XXXF.DOC)

This is a data file used to generate the mask patterns for such items as I/O ports. This file must

be sent with the completed program file.

· Function option HEX file (C281XXXF.HEX)

This is a function option file (Intel hexa format) used for EVA6281. One EVA6281 function

option ROM is generated by writing this file with the ROM writer.

* File name "XXX" is specified for each customer by Seiko Epson.

* Copy the document file, the program files (C281XXXH.HEX and C281XXXL.HEX) and the

segment option document file (C281XXXS.DOC) in a batch to another disk and send it to Seiko

Epson.

* Set all unused ROM areas to FFH when writing the HEX file into the EPROM. (Refer to

"EVA6281 Manual" for the ROM installation location.)

III-4

E0C6281 Function Option Generator

2 OPTION LIST GENERATION

2.1 Option List Recording Procedure

Multiple specifications are available in each option item as indicated in the Option List in Section

2.2. Using "2.3 Option Specifications" as reference, select the specifications that meet the target

system and check (✔) the appropriate box ■■. Be sure to record the specifications for unused ports

too, according to the instructions provided.

2.2 Option List

The E0C6281 option list is as follows:

1. DEVICE TYPE

- E0C6281...................................... ■■

- E0C62L81 ■■

2. MULTIPLE KEY ENTRY RESET

- Not Use ■■

- Use .. ■ ■ K00, K01

■ ■ K00, K01, K02

■ ■ K00, K01, K02, K03

3. INTERRUPT NOISE REJECTOR

- K00–K03 ■■ Use ■■ Not Use

- K10 .. ■■ Use ■■ Not Use

4. INPUT PORT PULL DOWN RESISTOR

- K00 .. ■■ With Resistor ■■ Gate Direct

- K01 .. ■■ With Resistor ■■ Gate Direct

- K02 .. ■■ With Resistor ■■ Gate Direct

- K03 .. ■■ With Resistor ■■ Gate Direct

- K10 .. ■■ With Resistor ■■ Gate Direct

5. OUTPUT PORT OUTPUT SPECIFICATION (R00–R03)

- R00 .. ■■ Complementary ■■ Pch-OpenDrain

- R01 .. ■■ Complementary ■■ Pch-OpenDrain

- R02 .. ■■ Complementary ■■ Pch-OpenDrain

- R03 .. ■■ Complementary ■■ Pch-OpenDrain

III-5

E0C6281 Function Option Generator

6. R10 SPECIFICATION

- OUTPUT TYPE ■■ D.C.

 ■■ FOUT 32768 [Hz]

 ■■ FOUT 16384 [Hz]

 ■■ FOUT 8192 [Hz]

 ■■ FOUT 4096 [Hz]

 ■■ FOUT 2048 [Hz]

 ■■ FOUT 1024 [Hz]

 ■■ FOUT 512 [Hz]

 ■■ FOUT 256 [Hz]

- OUTPUT SPECIFICATION ■■ Complementary ■■ Pch-OpenDrain

7. R11 SPECIFICATION

- OUTPUT SPECIFICATION ■■ Complementary ■■ Pch-OpenDrain

8. R12 SPECIFICATION

- OUTPUT TYPE ■■ D.C.

 ■■ Melody inverted output (fixed to Complementary)

 ■■ Envelope (fixed to Nch-OpenDrain)
- OUTPUT SPECIFICATION (When D.C. is selected)

......... ■■ Complementary ■■ Pch-OpenDrain

9. I/O PORT SPECIFICATION

- P00 .. ■■ Complementary ■■ Pch-OpenDrain

- P01 .. ■■ Complementary ■■ Pch-OpenDrain

- P02 .. ■■ Complementary ■■ Pch-OpenDrain

- P03 .. ■■ Complementary ■■ Pch-OpenDrain

10. LCD COMMON DUTY

- 1/4 Duty ■■

- 1/3 Duty ■■

11. OSC1 SYSTEM CLOCK

- Crystal ... ■■

- CR ... ■■

III-6

E0C6281 Function Option Generator

2.3 Option Specifications

2.3.1 Device type

· E0C6281 ... ■■

· E0C62L81 ... ■■

Select the chip specification.

E0C6281 and E0C62L81 denote 3[V] power source voltage specification, and LOW POWER

specification for 1.5[V] power source voltage, respectively.

When it uses E0C62A81, it selects E0C6281 and in the case of E0C62B81, it does E0C62L81.

III-7

E0C6281 Function Option Generator

2.3.2 Multiple key entry reset

- Not Use ... ■■

- Use .. ■ ■ K00, K01

■ ■ K00, K01, K02

■ ■ K00, K01, K02, K03

The reset function is set when K00 through K03 are entered.

When "Not Use" is selected, the reset function is not activated even if K00 through K03 are

entered. When "Use K00, K01" is selected, the system is reset immediately the K00 and K01

inputs go high at the same time. Similarly, the system is reset as soon as the K00 through K02

inputs or the K00 through K03 inputs go high.

However, the system is reset when a high signal is input for more than a rule time (1–3[sec]).

The system reset circuit is shown in Figure 2.3.2.

OSC1
OSC2

K00

K01

K02

K03

RESET

Mask option

Oscillation

detection

circuit

f

Vss

Oscillation
circuit

Fig. 2.3.2 The System Reset Circuit

III-8

E0C6281 Function Option Generator

2.3.3 Interrupt noise rejector

· K00–K03 .. ■■ Use ■■ Not Use

· K10 .. ■■ Use ■■ Not Use

Select whether noise rejector will be supplemented to the input interruptor of K00–K03 and K10.

When "Use" is selected, the entry signal will pass the noise rejector, and occurrence of interrupt

errors due to noise or chattering can be avoided. Note, however, that because the noise rejector

performs entry signal sampling at 4[kHz], "Not Use" should be selected when high speed

response is required.

III-9

E0C6281 Function Option Generator

2.3.4 Input ports pull down resistor

· K00 ... ■■ With Resistor ■■ Gate Direct
· K01 ... ■■ With Resistor ■■ Gate Direct
· K02 ... ■■ With Resistor ■■ Gate Direct
· K03 ... ■■ With Resistor ■■ Gate Direct
· K10 ... ■■ With Resistor ■■ Gate Direct

Select whether input ports (K00–K03 and K10) will each be supplemented with pull down

resistors or not.

When "Gate Direct" is selected, see to it that entry floating state does not occur. Select "with

Resistor" pull down resistor for unused ports.

Moreover, the input port status is changed from "H" level (VDD) to "L" (VSS) with pull down

resistors, a delay of approximately 1[ms] in waveform rise time will occur depending on the pull

down resistor and entry load time constant. Because of this, when input reading is to be

conducted, ensure the appropriate wait time with the program.

The configuration of the pull down resistor circuit is shown in Figure 2.3.4.

V DD

K Data bus

Read signal

Vss

Fig. 2.3.4 Configuration of Pull Down Resisters

III-10

E0C6281 Function Option Generator

2.3.5 Output port (R00–R03) output specification

· R00 .. ■■ Complementary ■■ Pch-OpenDrain

· R01 .. ■■ Complementary ■■ Pch-OpenDrain

· R02 .. ■■ Complementary ■■ Pch-OpenDrain

· R03 .. ■■ Complementary ■■ Pch-OpenDrain

Select the output specification for the output ports (R00–R03).

Either complementary output or Pch open drain output may be selected.

When output port is to be used on key matrix configuration, select Pch open drain output.

For unused output ports, select complementary output.

The output circuit configuration is shown in Figure 2.3.5.

Output
register

Output
register

Vss

VDD

R

Complementary output

R

VDD

Vss

Pch Open drain output

Fig. 2.3.5 Configuration of Output Circuit

III-11

E0C6281 Function Option Generator

FOUT output

R10 register 0 1 0

Specified frequency

Vss

VDD

V DD

Vss
0 1 0

R10 output

R10 register
(F4H,D0)

2.3.6 R10 specification

· OUTPUT TYPE ■■ D.C.

 ■■ FOUT 32768 [Hz]

 ■■ FOUT 16384 [Hz]

 ■■ FOUT 8192 [Hz]

 ■■ FOUT 4096 [Hz]

 ■■ FOUT 2048 [Hz]

 ■■ FOUT 1024 [Hz]

 ■■ FOUT 512 [Hz]

 ■■ FOUT 256 [Hz]
· OUTPUT SPECIFICATION ■■ Complementary ■■ Pch-OpenDrain

Select the output specification for R10 terminal.

Either complementary output or Pch open drain output may be selected.

When DC output is selected, R10 becomes a regular output port. When FOUT is selected, clock

with frequency selected from R10 terminal is generated by writing "1" to the R10 register.

– When DC output is selected

When R10 register (F4 address, D0 bit) is set to "1", the R10 terminal output goes high (VDD), and

goes low (VSS) when set to "0".

Output waveform is shown in Figure 2.3.6.a.

Fig. 2.3.6.a Output Waveform at DC Output Selection

– When FOUT output is selected

When FOUT bit (R10 register) is set to "1", 50% duty and VDD–VSS amplitude square wave is

generated at the specified frequency. When set to "0", the FOUT terminal goes low (VSS). A

FOUT frequency may be selected from among 8 types, ranging from 256[Hz] to 32,768[Hz].

FOUT output is normally utilized to provide clock to other devices but since hazard occurs at the

square wave breaks, great caution must be observed when using it.

Output waveform is shown in Figure 2.3.6.b.

Fig. 2.3.6.b Output Waveform at R10 FOUT Output Selection

III-12

E0C6281 Function Option Generator

2.3.7 R11 specification

· OUTPUT SPECIFICATION ■■ Complementary ■■ Pch-OpenDrain

Select the output specification for R11 terminal.

Either complementary output or Pch open drain output may be selected.

The circuit configuration is the same as that of output ports (R00–R03 shown in Figure 2.3.5).

III-13

E0C6281 Function Option Generator

2.3.8 R12 specification

· OUTPUT TYPE ■■ D.C.

 ■■ Melody inverted output (fixed to Complementary)
 ■■ Envelope (fixed to Nch-OpenDrain)

· OUTPUT SPECIFICATION ■■ Complementary ■■ Pch-OpenDrain

Select the specification for R12 terminal.

Any one of the following may be selected for the output type: DC output, melody inverted output,

or envelope.

When DC output is selected, either complementary output or Pch open drain output may be

selected for the output specification.

When melody inverted output is selected, output specification is fixed to complementary output.

When envelope is selected, output specification is fixed to Nch open drain output.

– When DC output is selected

When R12 register (F4 address, D2 bit) is set to "1", the R12 terminal output goes high (VDD), and

goes low (VSS) when set to "0".

Output waveform is shown in Figure 2.3.8.a.

Fig. 2.3.8.a Output Waveform at DC Output Selection

V DD

Vss
0 1 0

R12 output

R12 register
(F4H,D2)

III-14

E0C6281 Function Option Generator

– When melody inverted output is selected

When a melody is output from MO (R13), R12 terminal outputs the melody inverted wavefrom.

Figure 2.3.8.b shows the output waveform when melody inverted output is selected.

Fig. 2.3.8.b R12 Terminal Output Waveform when Melody Inverted Output is Selected

– When envelope is selected

Envelope waveform can be generated from MO terminal by connecting the capasitor to R12

terminal.

Figure 2.3.8.c shows the output waveform when envelope is selected.

Fig. 2.3.8.c Output Waveform when Envelope is Selected

MO (R13)

MO (R12)

ATK

Melody
signal

MO

MO

III-15

E0C6281 Function Option Generator

2.3.9 I/O port specification

· P00 .. ■■ Complementary ■■ Pch-OpenDrain

· P01 .. ■■ Complementary ■■ Pch-OpenDrain

· P02 .. ■■ Complementary ■■ Pch-OpenDrain

· P03 .. ■■ Complementary ■■ Pch-OpenDrain

Select the output specification to be used during I/O ports (P00–P03) output mode selection.

Either complementary output or Pch open drain output may be selected.

The circuit configuration of the output driver is the same as that of output ports (R00–R03 shown

in Figure 2.3.5).

Select complementary output for unused ports.

The I/O ports can control the input/output direction according to the IOC bit (FC address, D0 bit);

at "1" and "0" settings, it is set to output port and input port, respectively.

The pull down resistor of this port is turned on by the read signal and is normally turned off to

minimize leak current.

Because of this, when the port is set for input, take care that a floating state does not occur in the

terminal.

The circuit configuration I/O ports is shown in Figure 2.3.9.

D
at

a
bu

s Read signal

Register

I/O control
register

P

Vss

 Fig. 2.3.9 The Circuit Configuration I/O Ports

III-16

E0C6281 Function Option Generator

2.3.10 LCD common duty

· 1/4 DUTY ... ■■ 1/4

· 1/3 DUTY ... ■■ 1/3

Select the common (drive) duty for the LCD segment.

When 1/3 duty is selected, with 3 COM terminals and 26 SEG terminals, i.e., up to 78 segments

may be driven; when 1/4 duty is selected, with 4 COM terminals and 26 SEG terminals, up to 104

segment drives will be possible.

When 1/3 duty is selected, COM terminals COM0–COM2 become effective and COM3 will

always generate OFF signals.

For drive duty selection, please refer to Table 2.3.10.

Table 2.3.10 Common (Drive) Duty Selection Standard
Number of LCD segument drives Common (Drive) duty

1 – 78 1/3

79 – 104 1/4

The drive waveform of the COM terminals is shown in Figure 2.3.10.

COM0

COM1

COM2

COM3

COM0

COM1

COM2

COM3

-V
-V
-V
-V

DD

L1

L2

L3

1/3 duty drive waveform 1/4 duty drive waveform

-V
-V
-V
-V

DD

L1

L2

L3

Fig. 2.3.10 Drive Waveform of COM Terminals

III-17

E0C6281 Function Option Generator

2.3.11 OSC1 system clock

· Crystal .. ■■

· CR .. ■■

Select oscillation circuit that uses OSC1 and OSC2.

To minimize external components, CR oscillation circuit would be suitable; to obtain a stable

oscillation frequency, crystal oscillation circuit would be suitable.

When CR oscillation circuit is selected, only resistors are needed as external components since

capacities are built-in.

On the other hand, when crystal oscillation circuit is selected, crystal oscillator and trimmer

capasitor are needed as external components. Although when crystal oscillation circuit is

selected, it is fixed at 32.768[kHz], when CR oscillation circuit is selected, frequency may be

modified to a certain extent depending on the resistance of external components.

III-18

E0C6281 Function Option Generator

3 FUNCTION OPTION GENERATOR OPERATION PROCEDURE

3.1 Creating Work Disk

To prevent inadvertent destruction of the contents of the FOG6281 program disk, create a work

disk by copying the program disk, place a write protection tab on the system disk, and keep the

system disk as a master disk in a safe place. Use the work disk for actual operation. The work

disk creation procedure is as follows.

* In examples, means press the RETURN key (↵).

(1) Activate MS-DOS (Ver. 3.1 or later) or PC-DOS (Ver. 2.1 or later) and format a new floppy

disk.

Example: Insert the DOS system disk into drive A and a new floppy disk (to be used

as the work disk) into drive B, then format the disk in drive B.

A>FORMAT B:/S ← The DOS is also copied.

(2) Copy the FOG6281 program disk.

Example: Insert the FOG6281 program disk into drive A and the formatted work disk

into drive B, then copy the disk in drive A to the one in drive B.

A>COPY . B:

After copying, check that the "FOG6281.EXE" file has been copied onto the work disk. Copy the

editor also when performing all operations with this disk.

Now, the work disk is ready for use. The two required files are generated on this disk.

III-19

E0C6281 Function Option Generator

3.2 Starting FOG6281

To start FOG6281, insert the work disk into the current drive at the DOS command level (state in

which a prompt such as A>is displayed), then enter the program name as shown below.

* In examples, means press the RETURN key "↵".

A>FOG6281

When FOG6281 is started, the following message is displayed.

 *** E0C6281 FUNCTION OPTION GENERATOR. --- Ver 3.00 ***

EEEEEEEEEE PPPPPPPP SSSSSSS OOOOOOOO NNN NNN
EEEEEEEEEE PPPPPPPPPP SSS SSSS OOO OOO NNNN NNN
EEE PPP PPP SSS SSS OOO OOO NNNNN NNN
EEE PPP PPP SSS OOO OOO NNNNNN NNN
EEEEEEEEEE PPPPPPPPPP SSSSSS OOO OOO NNN NNN NNN
EEEEEEEEEE PPPPPPPP SSSS OOO OOO NNN NNNNNN
EEE PPP SSS OOO OOO NNN NNNNN
EEE PPP SSS SSS OOO OOO NNN NNNN
EEEEEEEEEE PPP SSSS SSS OOO OOO NNN NNN
EEEEEEEEEE PPP SSSSSSS OOOOOOOO NNN NN

 (C) COPYRIGHT 1989 SEIKO EPSON CORP.

 THIS SOFTWARE MAKES NEXT FILES.

 C232XXXF.HEX ... FUNCTION OPTION HEX FILE.
 C232XXXF.DOC ... FUNCTION OPTION DOCUMENT FILE.

 STRIKE ANY KEY.

For "STRIKE ANY KEY," press any key to advance the program execution. To suspend

execution, hold down CTRL and press C: the sequence returns to the DOS command level. (It is

possible by pressing STOP key depending on the PC used.)

III-20

E0C6281 Function Option Generator

Following the start message, the date currently set in the personal computer is displayed,

prompting entry of a new date.

*** E0C6281 USER'S OPTION SETTING. --- Ver 3.00 ***

CURRENT DATE IS 89/07/13

PLEASE INPUT NEW DATE : 89/07/20

When modifying the date, enter the 2-digit year, month, and day of the month by delimiting them

with a slash ("/").

When not modifying the date, press the RETURN key "↵" to continue.

When the date is set, the following operation selection menu is displayed on the screen.

*** OPERATION SELECT MENU ***

 1. INPUT NEW FILE

 2. EDIT FILE

 3. RETURN TO DOS

PLEASE SELECT NO.?

Enter a number from 1 to 3 to select a subsequent operation. The items indicate the following.

1. INPUT NEW FILE: Used to set new function options.

2. EDIT FILE: Used to read the already-generated function option document file and

set or modify the option contents. In this case, the work disk must

contain the function option document file (C281XXXF.DOC)

generated by "1. INPUT NEW FILE ".

3. RETURN TO DOS: Used to terminate FOG6281 and return to the DOS command level.

III-21

E0C6281 Function Option Generator

3.3 Setting New Function Options

This section explains how to set new function options.

* In examples, means press the RETURN key "↵".

*** OPERATION SELECT MENU ***

 1. INPUT NEW FILE

 2. EDIT FILE

 3. RETURN TO DOS

PLEASE SELECT NO.? 1 .. (1)

PLEASE INPUT FILE NAME? C2810A0 .. (2)

PLEASE INPUT USER'S NAME? SEIKO EPSON CORP. .. (3)
PLEASE INPUT ANY COMMENT

(ONE LINE IS 50 CHR)? TOKYO DESIGN CENTER .. (4)

 ? 390-4 HINO HINO-SHI TOKYO 191 JAPAN

 ? TEL 0425-83-7313

 ? FAX 0425-83-7413

 ?

(1) PLEASE SELECT NO.?

Select "1. INPUT NEW FILE " on the operation selection menu.

(2) PLEASE INPUT FILE NAME?

Enter the file name. Do not enter the extended part of the file name. In case a function option

document file (C281XXXF.DOC) with the same name as the file name specified in the

current drive exists, the user is asked whether overwrition is desired. Enter "Y" or "N"

accordingly.

Example: PLEASE INPUT FILE NAME? C2810N0

EXISTS OVERWRITE (Y/N)?

(3) PLEASE INPUT USER'S NAME?

Enter the customer's company name.

III-22

E0C6281 Function Option Generator

(4) PLEASE INPUT ANY COMMENT

Enter any comment. Up to 50 characters may be entered in one line. If 51 or more characters

are entered in one line, they are ignored. Up to 10 comment lines may be entered. To end

entry of comments, press the RETURN key "↵". Include the following in comment lines:

- Company, department, division, and section names

- Company address, phone number, and FAX number

- Other information, including technical information

Next, start function option setting. For new settings, select function options from No. 1 to

No. 11 sequentially and interactively. (See 3.5 for the option selection procedure.)

III-23

E0C6281 Function Option Generator

3.4 Modifying Function Option Settings

This section explains how to modify the function option settings.

* In examples, means press the RETURN key "↵".

*** OPERATION SELECT MENU ***

 1. INPUT NEW FILE

 2. EDIT FILE

 3. RETURN TO DOS

PLEASE SELECT NO.? 2 ... (1)

*** SOURCE FILE(S) ***

C2810A0 C2810B0 C2810C0 ... (2)

PLEASE INPUT FILE NAME? C2810A0 ... (3)
PLEASE INPUT USER'S NAME? ... (4)

PLEASE INPUT ANY COMMENT

(ONE LINE IS 50 CHR)? ... (5)
PLEASE INPUT EDIT NO.? 4 ... (6)

(1) PLEASE SELECT NO.?

Select "2. EDIT FILE " on the operation selection menu.

(2) SOURCE FILE(S)

Will display the files on the current drive.

If no modifiable source exists, the following message is displayed and the program is

terminated.

FUNCTION OPTION DOCUMENT FILE IS NOT FOUND.

III-24

E0C6281 Function Option Generator

(3) PLEASE INPUT FILE NAME?

Enter a file name. Do not enter the extended part of the file name. If the function option document

file (C281XXXF.DOC) is not in the current drive, an error message like the one below is output,

prompting entry of other file name.

Example: PLEASE INPUT FILE NAME? C2810N0

FUNCTION OPTION DOCUMENT FILE IS NOT FOUND.

(4) PLEASE INPUT USER'S NAME?

When modifying the customer's company name, enter a new name. The previously entered name

may be used by pressing the RETURN key "↵".

(5) PLEASE INPUT ANY COMMENT

When modifying a comment, enter all the comment lines anew, beginning with the first line;

comment data cannot be partially modified. Previously entered comment data can be used by

pressing the RETURN key "↵". The input condition are the same as for new settings.

(6) PLEASE INPUT EDIT NO.?

Enter the number (1 to 11) of the function option to be modified, then start setting the option

contents (See 3.5).

When selection of one option is complete, the system prompts entry of another function option

number. Repeat selection until all options to be modified are selected.

If the "↵" key is pressed without entering a number, the option of the subsequent number can be

selected.

Enter "E"+"↵" to end option setting. Then, move to the confirmation procedure for HEX file

generation (See 3.6).

Example: - When modifying the settings of the function option of No. 9

PLEASE INPUT EDIT NO.? 9

- When ending setting

PLEASE INPUT EDIT NO.? E

III-25

E0C6281 Function Option Generator

3.5 Selecting Function Options

Selection procedure for function options are described below.

* Option selection is done interactively. For new settings, set Options 1–11 sequentially; to modify

settings, the specified option number may be set directly.

* The selections for each option correspond one to one to the option list. While referring to the

contents recorded in the option list, enter the selection number.

* In the message that prompts entry, the value in parentheses () indicates the default value in case

of new settings, or the previously set value in case of setting modification. This value is set when

only the RETURN key "↵" is pressed.

* In examples, means press the RETURN key "↵".

III-26

E0C6281 Function Option Generator

3.5.1 Selecting the device type

*** OPTION NO.1 ***

--- DEVICE TYPE ---

 1. E0C6281 (Normal Type)
 2. E0C62L81 (Low Power Type)

PLEASE SELECT NO.(1) ? 2

 2. E0C62L81 (Low Power Type) SELECTED

3.5.2 Selecting multiple key entry reset function

*** OPTION NO.2 ***

--- MULTIPLE KEY ENTRY RESET ---

 COMBINATION 1. Not Use
 2. Use K00,K01
 3. Use K00,K01,K02
 4. Use K00,K01,K02,K03

PLEASE SELECT NO.(1) ? 2

 2. Use K00,K01 SELECTED

3.5.3 Selecting input interrupt noise rejector

*** OPTION NO.3 ***

--- INTERRUPT NOISE REJECTOR ---

 K00-K03 1. Use
 2. Not Use

PLEASE SELECT NO.(1) ? 1

 K10 1. Use
 2. Not Use

PLEASE SELECT NO.(1) ? 1

 K00-K03 1. Use SELECTED
 K10 1. Use SELECTED

III-27

E0C6281 Function Option Generator

3.5.4 Selecting input port pull down resistor

*** OPTION NO.4 ***

--- INPUT PORT PULL DOWN RESISTOR ---

 K00 1. With Resistor

 2. Gate Direct

PLEASE SELECT NO.(1) ? 1

 K01 1. With Resistor

 2. Gate Direct

PLEASE SELECT NO.(1) ? 1

 K02 1. With Resistor

 2. Gate Direct

PLEASE SELECT NO.(1) ? 1

 K03 1. With Resistor

 2. Gate Direct

PLEASE SELECT NO.(1) ? 1

 K10 1. With Resistor

 2. Gate Direct

PLEASE SELECT NO.(1) ? 1

 K00 1. With Resistor SELECTED

 K01 1. With Resistor SELECTED

 K02 1. With Resistor SELECTED

 K03 1. With Resistor SELECTED

 K10 1. With Resistor SELECTED

III-28

E0C6281 Function Option Generator

3.5.5 Selecting output port (R00–R03) output specification

*** OPTION NO.5 ***

--- OUTPUT PORT OUTPUT SPECIFICATION (R00-R03) ---

 R00 1. Complementary

 2. Pch-OpenDrain

PLEASE SELECT NO.(1)? 1

 R01 1. Complementary

 2. Pch-OpenDrain

PLEASE SELECT NO.(1)? 1

 R02 1. Complementary

 2. Pch-OpenDrain

PLEASE SELECT NO.(1)? 2

 R03 1. Complementary

 2. Pch-OpenDrain

PLEASE SELECT NO.(1)? 2

 R00 1. Complementary SELECTED

 R01 1. Complementary SELECTED

 R02 2. Pch-OpenDrain SELECTED

 R03 2. Pch-OpenDrain SELECTED

III-29

E0C6281 Function Option Generator

3.5.6 Selecting R10 terminal specification

*** OPTION NO.6 ***

--- R10 SPECIFICATION ---

 OUTPUT TYPE 1. D.C.

 2. Fout 32768 [Hz]

 3. Fout 16384 [Hz]

 4. Fout 8192 [Hz]

 5. Fout 4096 [Hz]

 6. Fout 2048 [Hz]

 7. Fout 1024 [Hz]

 8. Fout 512 [Hz]

 9. Fout 256 [Hz]

PLEASE SELECT NO.(1) ? 2

 OUTPUT SPECIFICATION 1. Complementary

 2. Pch-OpenDrain

PLEASE SELECT NO.(1) ? 1

 OUTPUT TYPE 2. Fout 32768 [Hz] SELECTED

 OUTPUT SPECIFICATION 1. Complementary SELECTED

3.5.7 Selecting R11 terminal specification

*** OPTION NO.7 ***

--- R11 SPECIFICATION ---

 1. Complementary

 2. Pch-OpenDrain

PLEASE SELECT NO.(1) ? 2

 2. Pch-OpenDrain SELECTED

III-30

E0C6281 Function Option Generator

3.5.8 Selecting R12 terminal specification

*** OPTION NO.8 ***

--- R12 PORT OUTPUT SPECIFICATION ---

 OUTPUT TYPE 1. D.C.
 2. /MELODY OUTPUT
 3. ENVELOPE

PLEASE SELECT NO.(1) ? 2

 OUTPUT SPECIFICATION 1. Complementary
 2. Pch-OpenDrain

PLEASE SELECT NO.(1) ?

 OUTPUT TYPE 2. /MELODY OUTPUT SELECTED
 OUTPUT SPECIFICATION 1. Complementary SELECTED

3.5.9 Selecting I/O port specification

*** OPTION NO.9 ***

--- I/O PORT OUTPUT SPECIFICATION ---

 P00 1. Complementary
 2. Pch-OpenDrain

PLEASE SELECT NO.(1) ? 1

 P01 1. Complementary
 2. Pch-OpenDrain

PLEASE SELECT NO.(1) ? 1

 P02 1. Complementary
 2. Pch-OpenDrain

PLEASE SELECT NO.(1) ? 1

 P03 1. Complementary
 2. Pch-OpenDrain

PLEASE SELECT NO.(1) ? 1

 P00 1. Complementary SELECTED
 P01 1. Complementary SELECTED
 P02 1. Complementary SELECTED
 P03 1. Complementary SELECTED

III-31

E0C6281 Function Option Generator

3.5.10 Selecting LCD common (drive) duty

*** OPTION NO.10 ***

--- LCD COMMON DUTY ---

 1. 1/4 Duty

 2. 1/3 Duty

PLEASE SELECT NO.(1) ? 1

 1. 1/4 Duty SELECTED

3.5.11 Selecting OSC1 oscillation circuit

*** OPTION NO.11 ***

--- OSC 1 SYSTEM CLOCK ---

 1. Cristal

 2. CR

PLEASE SELECT NO.(1) ? 1

 1. Cristal SELECTED

III-32

E0C6281 Function Option Generator

3.6 HEX File Generation and EPROM Selection

When setting function options setting is completed, the following message is output to ask the

operator whether to generate the HEX file.

END OF OPTION SETTING.

DO YOU MAKE HEX FILE (Y/N) ? Y (1)

*** OPTION EPROM SELECT MENU ***

 1. 27C64

 2. 27C128

 3. 27C256

 4. 27C512

PLEASE SELECT NO.? 2 (2)

 2. 27C128 SELECTED

(1) DO YOU MAKE HEX FILE (Y/N)?

When debugging the program with EVA6281, HEX file C281XXXF.HEX is needed, so

enter "Y". If "N" is entered, no HEX file is generated and only document file

C281XXXF.DOC is generated.

(2) PLEASE SELECT NO.?

For the option ROM selection menu displayed when "Y" is entered in Step (1), select the

EPROM to be used for setting EVA6281 options. This menu is not displayed when "N" is

entered in Step (1).

One EPROM is required for setting function options (27C128 is selected in the above

example).

When the above operation is completed, FOG6281 generates files and the sequence returns

to the operation selection menu.

MAKING FILE(S) IS COMPLETED.

Note: The EPROM to be mounted on the EVA6281 must satisfy the following conditions:

EPROM for setting function options: TACC ≤ 250 ns

 (TACC: Access time)

III-33

E0C6281 Function Option Generator

3.7 End Procedure

This section explains how to end FOG6281 execution.

*** OPERATION SELECT MENU ***

 1. INPUT NEW FILE

 2. EDIT FILE

 3. RETURN TO DOS

PLEASE SELECT NO.? 3

A>

When a series of operations are complete, the sequence returns to the operation selection menu.

Execution of FOG6281 can be ended by selecting "3. RETURN TO DOS " on this menu. If "1.

INPUT NEW FILE " or "2. EDIT FILE " is selected, setting function options can be

performed again.

FOG6281 can be forcibly terminated by pressing the "CTRL" and "C" keys together during

program execution. (It is possible by pressing STOP key depending on the PC used.)

III-34

E0C6281 Function Option Generator

* E0C6281 FUNCTION OPTION DOCUMENT V 3.00

*

* FILE NAME C2810A0F.DOC

* USER’S NAME SEIKO EPSON CORP.

* INPUT DATE 89/07/20

* COMMENT TOKYO DESIGN CENTER

* 390-4 HINO HINO-SHI TOKYO 191 JAPAN

* TEL 0425-83-7313

* FAX 0425-83-7413

*

*

* OPTION NO.1

* < DEVICE TYPE >

* E0C62L81 (LOW POWER TYPE) ------------------------- SELECTED

 OPT0101 02

*

* OPTION NO.2

* < MULTIPLE KEY ENTRY RESET >

* COMBINATION USE K00,K01 -------------------------- SELECTED

 OPT0201 02

*

* OPTION NO.3

* < INTERRUPT NOISE REJECTOR >

* K00-K03 USE -------------------------------------- SELECTED

* K10 USE -------------------------------------- SELECTED

 OPT0301 01

 OPT0302 01

*

* OPTION NO.4

* < INPUT PORT PULL DOWN RESISTOR >

* K00 WITH RESISTOR -------------------------------- SELECTED

* K01 WITH RESISTOR -------------------------------- SELECTED

* K02 WITH RESISTOR -------------------------------- SELECTED

* K03 WITH RESISTOR -------------------------------- SELECTED

* K10 WITH RESISTOR -------------------------------- SELECTED

 OPT0401 01

 OPT0402 01

 OPT0403 01

 OPT0404 01

 OPT0405 01

*

* OPTION NO.5

* < OUTPUT PORT OUTPUT SPECIFICATION (R00-R03) >

* R00 COMPLEMENTARY -------------------------------- SELECTED

* R01 COMPLEMENTARY -------------------------------- SELECTED

* R02 PCH-OPENDRAIN -------------------------------- SELECTED

* R03 PCH-OPENDRAIN -------------------------------- SELECTED

 OPT0501 01

 OPT0502 01

4 SAMPLE FILE

Function Option Document File

III-35

E0C6281 Function Option Generator

 OPT0503 02

 OPT0504 02

*

* OPTION NO.6

* < R10 SPECIFICATION >

* OUTPUT TYPE FOUT 32768 [HZ] ------------ SELECTED

* OUTPUT SPECIFICATION COMPLEMENTARY --------------- SELECTED

 OPT0601 02

 OPT0602 01

 OPT0603 01

*

* OPTION NO.7

* < R11 SPECIFICATION >

* PCH-OPENDRAIN ------------------------------------- SELECTED

 OPT0701 02

*

* OPTION NO.8

* < R12 PORT OUTPUT SPECIFICATION >

* OUTPUT TYPE /MELODY OUTPUT -------------- SELECTED

* OUTPUT SPECIFICATION COMPLEMENTARY --------------- SELECTED

 OPT0801 02

 OPT0802 01

*

* OPTION NO.9

* < I/O PORT OUTPUT SPECIFICATION >

* P00 COMPLEMENTARY -------------------------------- SELECTED

* P01 COMPLEMENTARY -------------------------------- SELECTED

* P02 COMPLEMENTARY -------------------------------- SELECTED

* P03 COMPLEMENTARY -------------------------------- SELECTED

 OPT0901 01

 OPT0902 01

 OPT0903 01

 OPT0904 01

*

* OPTION NO.10

* < LCD COMMON DUTY >

* 1/4 DUTY -- SELECTED

 OPT1001 01

*

* OPTION NO.11

* < OSC 1 SYSTEM CLOCK >

* CRISTAL --- SELECTED

 OPT1101 01

*

*

* SEIKO EPSON’S AREA

*

*

 OPT1201 01

 OPT1202 01

 OPT1203 01

 OPT1204 01

III-36

E0C6281 Function Option Generator

*

 OPT1301 02

 OPT1302 02

 OPT1303 02

 OPT1304 02

*

 OPT1401 01

*

 OPT1501 01

 OPT1502 01

*

 OPT1601 01

 OPT1602 01

¥¥END

Note: End mark "¥¥END" may be used instead of "\\END" depending on the PC used.

 (Because the code of both ¥ and \ is 5CH.)

IV. E0C6281 SEGMENT OPTION GENERATOR MANUAL

PREFACE

This manual explains how to operate the SOG6281 Segment Option Generator for setting the hard-

ware options of 4-bit single-chip E0C6281 microcomputer and details the specifications of their

options.

Refer to "E0C6281 Technical Hardware Manual" for details about the E0C6281. Refer to "E0C62

Family Technical Guide" for details about the development procedure.

CONTENTS

1 GENERAL .. IV-1

1.1 Outline of Segment Option Generator ... IV-1

1.2 Execution Flow and I/O Files .. IV-2

2 OPTION LIST GENERATION.. IV-4

2.1 Option List Recording Procedure ... IV-4

2.2 Option List ... IV-4

2.3 Segment Ports Output Specifications ... IV-5

3 SEGMENT OPTION GENERATOR OPERATION PROCEDURE IV-6

3.1 Creating Work Disk ... IV-6

3.2 Creating Segment Option Source File .. IV-7

3.3 Starting SOG6281 ...IV-10

3.4 Input File Selection ... IV-11

3.5 HEX File Generation and EPROM Selection ...IV-13

3.6 End Procedure ...IV-14

4 ERROR MESSAGES..IV-15

5 SAMPLE FILES..IV-19

5.1 Segment Option Source File ...IV-19

5.2 Segment Option Document File ..IV-20

IV-1

E0C6281 Segment Option Generator

1 GENERAL

1.1 Outline of Segment Option Generator

With the 4-bit single-chip E0C6281 microcomputers, the customer may select the LCD segment

options. By modifying the mask patterns of the E0C6281 according to the selected options, the

system can be customized to meet the specifications of the target system.

The SOG6281 Segment Option Generator (hereinafter called SOG6281) is a software tool for

generating data files used to generate mask patterns. From the data file created with SOG6281,

the E0C6281 mask pattern is automatically generated by a general purpose computer.

The HEX file for the evaluation board (EVA6281) hardware option ROM is simultaneously

generated with the data file. By writing the contents of the HEX file into the EPROM and

mounting it on the EVA6281, option functions can be executed on the EVA6281.

Two SOG6281 program disks are supplied by SEIKO EPSON: one for NEC PC-9801V series

(5.25" 2HD) and one for IBM PC/XT and PC/AT (5.25" 2D). The basic configurations are as

follows.

– PC-9801V series

Host computer: PC-9801V series

Disk drive: FD (5.25" 2HD) x 1 or more

Operating system: MS-DOS Ver. 3.1 or later

ROM writer: Required when using EVA6281

– IBM PC/XT and PC/AT

Host computer: IBM PC/XT and PC/AT

Disk drive: FD (5.25" 2D) x 1 or more

Operating system: PC-DOS Ver. 2.1 or later

ROM writer: Required when using EVA6281

The program name of SOG6281 is as follows:

SOG6281.EXE

IV-2

E0C6281 Segment Option Generator

1.2 Execution Flow and I/O Files

Figure 1.2 shows the SOG6281 execution flow.

Fig. 1.2 Execution Flow

Seiko Epson

EVA6281

C281XXXS.
HEX

C281XXXS.
DOC

Start SOG6281

Floppy disk

EPROM

Segment source
file generation

C281XXX.
SEG

Option list
generation

IV-3

E0C6281 Segment Option Generator

(1) Option list generation

Select the hardware options that meet the specifications of the target system and record them in

the option list (paper for recording items in preparation for input operation; explained later).

(2) Segment source file (C281XXX.SEG) generation

The specifications of segment ports must be set in the segment source file (input file for

SOG6281). If the segment source file is not generated, SOG6281 stops execution.

Generate the segment source file using an editor such as EDLIN while referencing the option list

generated by (1). The file name is C281XXX.SEG.

(3) SOG6281 execution

SOG6281 outputs the following data files:

· Segment option document file (C281XXXS.DOC)

This is a data file used to generate the mask patterns of the segment decoder and segment

output port.

This file must be sent with the completed program file.

· Segment option HEX file (C281XXXS.HEX)

This is a segment option file for EVA6281 (Intel hexa format). Two EVA6281 segment option

ROMs containing the same data are generated by writing this file with the ROM writer.

* File name "XXX" is specified for each customer by Seiko Epson.

* Copy the segment option document file, the program files (C281XXXH.HEX and C281XXXL

.HEX) and the function option document file (C281XXXF.DOC) in a batch to another disk and

send it to Seiko Epson.

* Set all unused ROM areas to FFH when writing the HEX file into the EPROM. (Refer to

"EVA6281 Manual" for the ROM installation location.)

IV-4

E0C6281 Segment Option Generator

2 OPTION LIST GENERATION

2.1 Option List Recording Procedure

Multiple specifications are available in segment option item as indicated in the Option List in

Section 2.2. Using "2.3 Segment ports output specifications" as reference, select the

specifications that meet the target system and check (✔) the appropriate box ■■. Be sure to record

the specifications for unused ports too, according to the instructions provided.

Furthermore, write the segment memory addresses as well as the selected output specifications.

2.2 Option List

Legend: 〈ADDRESS〉 〈OUTPUT SPECIFICATION〉
H : High order address within the page (9–A) C : Complementary output

L : Low order address within the page (0–F) P : Pch open drain output

D : Data bit (0–3)

Note: 1. Even if there are unused areas, set "--- " (3 hyphens) in the COM0–COM3 such that there

are no blank columns.

2.When DC output is selected, the segment memory of the COM0 column becomes.

OUTPUT SPECIFICATIONCOM0 COM1 COM2 COM3
ADDRESS

SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
SEG8
SEG9
SEG10
SEG11
SEG12
SEG13
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24
SEG25

LH D LH D LH D LH D
SEG output
DC output
SEG output
DC output
SEG output
DC output
SEG output
DC output
SEG output
DC output
SEG output
DC output
SEG output
DC output
SEG output
DC output
SEG output
DC output
SEG output
DC output
SEG output
DC output
SEG output
DC output

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 P

 P

 P

 P

 P

 P

 P

 P

 P

 P

 P

 P

 P

TERMINAL
NAME

SEG output
DC output

IV-5

E0C6281 Segment Option Generator

2.3 Segment Ports Output Specifications

The E0C6281 as a segment port has 26 (SEG0–SEG25) output terminals; segment output and DC

output can be selected in units of two terminals.When used for liquid crystal panel drives, select

segment output; when used as regular output port, select DC output. When DC output is selected,

either complementary output or Pch open drain output may further be selected.

However, for segment output ports that will not be used, select segment output.

– When segment output is selected

The segment output port has a segment decoder built-in, and the data bit of the optional address in

the segment memory area (090H–0AFH) can be allocated to the optional segment.

With this, up to 104 segments (78 segments when 1/3 duty is selected) of liquid crystal panel

could be driven. However, the segment memory may be allocated only one segment and multiple

setting is not possible. Accordingly, it is required that all of the 104 segments be allocated unique

addresses and data bits.

The allocated segment displays when the bit for this segment memory is set to 1, and goes out

when bit is set to 0.

Segment allocation is set to H for high address (9–A), to L for low address (0–F), and to D for

data bit (0–3) and are recorded in their respective column in the option list. For segment ports

that will not be used, write "--- " (hyphen) in the H, L, and D columns of COM0–COM3.

– When DC output is selected

The DC output can be selected in units of 2 terminals and up to 26 terminals may be allocated for

DC output. Also, either complementary output or Pch open drain output is likewise selected in

units of 2 terminals. When the bit for the selected segment memory is set to 1, the segment output

port goes high (VDD), and goes low (VSS) when set to 0. Segment allocation is the same as when

segment output is selected but for the while the segment memory allocated to COM1–COM3

becomes ineffective. Write "--- " (hyphen) in the COM1–COM3 columns in the option list.

IV-6

E0C6281 Segment Option Generator

3 SEGMENT OPTION GENERATOR OPERATION PROCEDURE

3.1 Creating Work Disk

To prevent inadvertent destruction of the contents of the SOG6281 program disk, create a work

disk by copying the program disk, place a write protection tab on the program disk, and keep the

system disk as a master disk in a safe place. Use the work disk for actual operation. The work

disk creation procedure is as follows.

* In examples, means press the RETURN key (↵).

(1) Activate MS-DOS (Ver. 3.1 or later) or PC-DOS (Ver. 2.1 or later) and format a new floppy

disk.

Example: Insert the DOS system disk into drive A and a new floppy disk (to be used

as the work disk) into drive B, then format the disk in drive B.

A>FORMAT B:/S ← The DOS is also copied.

(2) Copy the SOG6281 program disk.

Example: Insert the SOG6281 program disk into drive A and the formatted work disk

into drive B, then copy the disk in drive A to the one in drive B.

A>COPY ＊.＊ B:

After copying, check that the "SOG6281.EXE" file has been copied onto the work disk. Copy the

editor also when performing all operations with this disk.

Now, the work disk is ready for use. The two required files are generated on this disk.

IV-7

E0C6281 Segment Option Generator

3.2 Creating Segment Option Source File

The segment option generator requires a segment option source file containing segment output

port specifications to serve as an input file. Refer to the specification explanation in Section 2.3

and after recording out the necessary items in the option list, create a segment option source file

according to the format described in below.

The SOG6281 needs, as an input file, a segment option source file containing the specifications

for the segment output ports. Using the editor, generate this source file on the work disk by

referencing the contents of the option list.

Use the following file name. For XXX, enter the string distributed by Seiko Epson.

C281XXX.SEG

(XXX: A string distributed to each customer from Seiko Epson)

Example: C2810A0.SEG

Write the output specifications (SEG output, DC complementary output, or DC Pch open drain

output) and the segment memory–SEG ports correspondence data (data that associates segment

memory addresses to SEG ports) in the file. Comments may also be written in the file. The

description procedure is explained by using a sample segment option source file.

; C2810A0.SEG, VER.1.21

; EVA6281 LCD SEGMENT DECODE TABLE 　Comment

;

 0 901 900 932 A20 S ;1st DIGIT

 1 912 911 910 923 S

 2 913 920 921 922 S

 3 A00 902 930 931 S

 4 941 940 972 A21 S ;2nd DIGIT

 5 952 951 950 963 S

 6 953 960 961 962 S

 7 A01 942 970 971 S

 8 981 980 9B2 A22 S ;3rd DIGIT

 9 992 991 990 9A3 S

10 993 9A0 9A1 9A2 S

 : : : : : :

21 A03 A43 A83 AC3 S

22 933 973 9B3 9F3 S

23 A33 A73 AB3 AF3 S

24 AE0 --- --- --- C ;DC OUTPUT

25 AF0 --- --- --- C

Segment memory–SEG ports
correspondence data

 Output
 specification data

Comment

IV-8

E0C6281 Segment Option Generator

(1) Comment

A statement beginning with a semicolon ";" is considered a comment. Such items as date,

summary, and version may be written in such a line.

(2) Segment memory–SEG ports correspondence data

This data indicates correspondence between segment memory addresses and segment ports. The

arrangement is the same as that of the option list, so write the data in the following format while

referencing the option list.

0_901_900_932_A20

1_912_911_910_923

2_913_920_921_922

 : : : : :

25_AF0_---_---_---

Segment memory data bit (D) 0–3
Segment memory low-order address (L) 0–FCOM3

Segment memory high-order address (H) 9–A

Segment memory data bit (D) 0–3
Segment memory low-order address (L) 0–FCOM2

Segment memory high-order address (H) 9–A

Segment memory data bit (D) 0–3
Segment memory low-order address (L) 0–FCOM1

Segment memory high-order address (H) 9–A

Segment memory data bit (D) 0–3
Segment memory low-order address (L) 0–FCOM0

Segment memory high-order address (H) 9–A

SEG port number

- Each SEG port number corresponds to an actual device, so it must be unique. Moreorve, data

descriptions in accordance with the following format are required for segments SEG0–SEG25.

- Off areas COM0 to COM3, write three successive "--- " (3 hyphens) as data for unused areas.

SEG port numbers are needed even if the ports themselves will not be used, so write "--- "(3

hyphens) for all areas COM0 to COM3.

IV-9

E0C6281 Segment Option Generator

Example: When not using COM2 in SEG8

 8_981_980_---_A22

Example: When not using SEG12

12_---_---_---_---

- When "DC output" is selected, write the segment memory–SEG ports correspondence data for

COM0; "--- "(hyphen) for COM1 to COM3.

Example: When outputting SEG21 and SEG22 as DC output

21_933_---_---_---

22_A33_---_---_---

- Symbol "_" indicates a blank or tab. Be sure to write one or more blanks or a tab between the

SEG port number, COM0, COM1, COM2, and COM3.

(3) Output specification selection data

This data is used to specify whether the SEG port will be used as a segment output port, a DC

complementary output port, or a DC Pch open drain output port.

Write data after inserting one or more blanks or a tab after the segment memory–SEG ports

correspondence data.

S: Segment output

C: DC complementary output

P: DC Pch open drain output

- The SEG port output specifications must be selected in units of two ports, so write the selection

data carefully while referencing the option list.

Example: When outputting SEG23 and SEG24 as DC complementary output

23_AE0_---_---_--- C

24_AF0_---_---_--- C

- Select "SEG output" for the segment ports that will not be used.

Example: When not using SEG18

18_---_---_---_--- S

Note: Only complementary output is enabled as the DC output of the SEG ports of EVA6281.

Therefore, complementary output is enabled even if Pch open drain output is selected. Respond

to it by adding external circuits as required.

Generate the segment option source file according to the formats and restrictions above.

IV-10

E0C6281 Segment Option Generator

3.3 Starting SOG6281

To start SOG6281, insert the work disk into the current drive at the DOS command level (state in

which a prompt such as A> is displayed), then enter the program name as shown below. The

work disk must contain the segment option source file (C281XXX.SEG).

* In examples, means press the RETURN key (↵). _indicates a blank.

[] indicates that this parameter may be omitted.

A>SOG6281_[-H]

–H: Specifies the segment option document file (C281XXX.DOC) for input file of SOG6281.

When SOG6281 is started, the following message is displayed.

 *** E0C6281 SEGMENT OPTION GENERATOR. --- Ver 3.00 ***

EEEEEEEEEE PPPPPPPP SSSSSSS OOOOOOOO NNN NNN
EEEEEEEEEE PPPPPPPPPP SSS SSSS OOO OOO NNNN NNN
EEE PPP PPP SSS SSS OOO OOO NNNNN NNN
EEE PPP PPP SSS OOO OOO NNNNNN NNN
EEEEEEEEEE PPPPPPPPPP SSSSSS OOO OOO NNN NNN NNN
EEEEEEEEEE PPPPPPPP SSSS OOO OOO NNN NNNNNN
EEE PPP SSS OOO OOO NNN NNNNN
EEE PPP SSS SSS OOO OOO NNN NNNN
EEEEEEEEEE PPP SSSS SSS OOO OOO NNN NNN
EEEEEEEEEE PPP SSSSSSS OOOOOOOO NNN NN

 (C) COPYRIGHT 1989 SEIKO EPSON CORP.

 SEGMENT OPTION SOURCE FILE NAME IS " C281XXX.SEG ".

 THIS SOFTWARE MAKES NEXT FILES.

 C281XXXS.HEX ... SEGMENT OPTION HEX FILE.
 C281XXXS.DOC ... SEGMENT OPTION DOCUMENT FILE.

 STRIKE ANY KEY.

For "STRIKE ANY KEY," press any key to advance the program execution. To suspend

execution, hold down CTRL and press C: the sequence returns to the DOS command level. (It is

possible by pressing STOP key depending on the PC used.)

Following the start message, the date currently set in the personal computer is displayed,

prompting entry of a new date.

IV-11

E0C6281 Segment Option Generator

*** E0C6281 USER'S OPTION SETTING. --- Ver 3.00 ***

CURRENT DATE IS 89/07/13

PLEASE INPUT NEW DATE : 89/07/20

When modifying the date, enter the 2-digit year, month, and day of the month by delimiting them

with a slash ("/").

When not modifying the date, press the RETURN key (↵) to continue.

3.4 Input File Selection

This section explains how to select the input file.

* In examples, � means press the RETURN key "↵".

*** SOURCE FILE(S) ***

C2810A0 C2810B0 C2810B1 C2810C0 .. (1)

PLEASE INPUT SEGMENT SOURSE FILE NAME? C2810A0 .. (2)

PLEASE INPUT USER'S NAME? SEIKO EPSON CORP. .. (3)
PLEASE INPUT ANY COMMENT

(ONE LINE IS 50 CHR)? TOKYO DESIGN CENTER .. (4)

 ? 390-4 HINO HINO-SHI TOKYO 191 JAPAN

 ? TEL 0425-83-7313

 ? FAX 0425-83-7413

 ?
　　　　　

(1) ＊＊＊ SOURCE FILE(S) ＊＊＊
• H option use

Will display the segment option source files on the current drive.

If no source files exists, the following message will be displayed and the program will be

terminated.

SEGMENT OPTION SOURCE FILE IS NOT FOUND.

• H option not use

Will display the segment option document files on the current drive.

If no document files exists, the following message will be displayed and the program will be

terminated.

SEGMENT OPTION DOCUMENT FILE IS NOT FOUND.

IV-12

E0C6281 Segment Option Generator

(2) PLEASE INPUT SEGMENT SOURCE FILE NAME?

• H option use

Enter the segment option source file name. Do not enter the extended part of the file name. If the

specified file name is not found in the current drive, an error message like the one below is

output, prompting entry of another file name:

Example: PLEASE INPUT SEGMENT SOURCE FILE NAME? C2810N0

SEGMENT OPTION SOURCE FILE IS NOT FOUND.

• H option not use

Enter the segment option document file name. Do not enter the extended part of the file name. If

the specified file name is not found in the current drive, an error message like the one below is

output, prompting entry of another file name:

Example: PLEASE INPUT SEGMENT DOCUMENT FILE NAME? C2810N0

SEGMENT OPTION DOCUMENT FILE IS NOT FOUND.

(3) PLEASE INPUT USER'S NAME?

Enter the customer's company name.

(4) PLEASE INPUT ANY COMMENT

Enter any comment. Up to 50 characters may be entered in one line. If 51 or more characters are

entered in one line, they are ignored. Up to 10 comment lines may be entered. To end entry of

comments, press the RETURN key "↵". Include the following in comment lines:

- Company, department, division, and section names

- Company address, phone number, and FAX number

- Other information, including technical information

When the above operations are complete, move to the confirmation procedure for HEX file

generation.

IV-13

E0C6281 Segment Option Generator

3.5 HEX File Generation and EPROM Selection

When input file selection is completed, the following message is output to ask the operator

whether to generate the HEX file.

END OF OPTION SETTING.

DO YOU MAKE HEX FILE (Y/N) ? Y (1)

*** OPTION EPROM SELECT MENU ***

 1. 27C64

 2. 27C128

 3. 27C256

 4. 27C512

PLEASE SELECT NO.? 2 (2)

 2. 27C128 SELECTED

(1) DO YOU MAKE HEX FILE (Y/N)?

When debugging the program with EVA6281, HEX file C281XXXS.HEX is needed, so

enter "Y". If "N" is entered, no HEX file is generated and only document file

C281XXXS.DOC is generated.

However, when H option is used, HEX file is generated without any conditions. Therefore,

this menu is noy displayed.

(2) PLEASE SELECT NO.?

For the option ROM selection menu displayed when "Y" is entered in Step (1), select the

EPROM to be used for setting EVA6281 options. This menu is not displayed when "N" is

entered in Step (1).

A total of two EPROMs of the same type are required for setting segment options (27C128

is selected in the above example).

When the above operation is completed, SOG6281 generates files. If no error is committed

while setting segment options, the following message will be displayed and the SOG6281

program will be terminated.

MAKING FILE IS COMPLETED.

Note: The EPROM to be mounted on the EVA6281 must satisfy the following conditions:

EPROM for setting segment option: TACC ≤ 170 ns

 (TACC: Access time)

IV-14

E0C6281 Segment Option Generator

3.6 End Procedure

When a series of operations are complete, the SOG6281 program will be terminated.

OPG6281 can be forcibly terminated by pressing the "CTRL" and "C" keys together during pro-

gram execution. (It is possible by pressing STOP key depending on the PC used.)

IV-15

E0C6281 Segment Option Generator

4 ERROR MESSAGES

If an error is detected in the segment option source file, an error message is displayed. In this

case, the segment option HEX file is not generated, and the segment option document file con-

sisting of the segment option source file and an error message is generated.

N 12 66 9B0 9B1 9B2 9B3 S

S 16 15 9F0MSD 9F1 9F2 9F3 S

D 20 19 A30 A31 A32 A31 S

N 22 42 A50 A51 A52 A53 S

D 23 22 A60 A61 A31 A31 S

R 25 24 A80 881 A82 A83 S

Duprication is SEG NO. 19 COM NO. 3

Duprication is SEG NO. 22 COM NO. 2

Duprication is SEG NO. 22 COM NO. 3

7 ERROR(S)

STRIKE ANY KEY.

MAKING SEGMENT OPTION FILES IS NOT COMPLETED BY SOURCE FILE ERROR-(S).

If one or more errors are detected, error symbols are output in column 0 and the source lists

containing the errors are output in subsequent columns.

The following four error symbols are used for SOG6281:

S: Syntax error

N: Segment number selection error

R: RAM address selection error

D: Duplication error

The priority order is S, N, R, and D.

IV-16

E0C6281 Segment Option Generator

 ↑

Each type of error is explained here.

– S: Syntax error

This type of error occurs when the data was written in an invalid format. Correct the segment

option source file format.

Example: S 16 15 9F0MSD 9F1 9F2 9F3 S

 This format is invalid.

– N: Segment number selection error

This type of error occurs when a segment number outside the specificable range is specified.

Correct the segment option source file so that all segment numbers are 0 to 25.

Example: N 12 66 9B0 9B1 9B2 9B3 S

N 22 42 A50 A51 A52 A53 S

 This part is out of the range specified.

– R: RAM address selection error

This type of error occurs when the segment memory address or data bit outside the specificable

range is specified. Correct the segment option source file so that all addresses are 90 to AF and

all data bits are 0 to 3.

Example: R 25 24 A80 881 A82 A83 S

 ↑
This part is out of the range specified.

– D: Duplication error

This type of error occurs when the same data (SEG port No., segment memory address, or data

bit) is specified more than once. Correct the segment option source file so that each data item is

unique in the description.

Example: D 20 19 A30 A31 A32 A31 S

D 23 22 A60 A61 A31 A31 S

"A31" is used more then once.

Duplication is SEG NO. 19 COM NO. 3

Duplication is SEG NO. 22 COM NO. 3

Message "Duplication is ..." is output only for the second and subsequent duplicated data items.

 ↑

IV-17

E0C6281 Segment Option Generator

In some cases, the following error message is output.

– Out port set error

This error occurs when the output specifications were not set in units of two ports. Correct the

segment option source file to satisfy this condition.

Example: Segment No. 18 - 19 Out Port Set Error

This error is not checked when one of the above four errors (S, N, R, or D) is detected. Therefore,

this error may occur after the above error are corrected.

If an error occurs, the displayed message can be checked by referencing the segment option docu-

ment file. Correct the segment option source file by comparing it with the option list, then rerun

the program.

IV-18

E0C6281 Segment Option Generator

The following is an example of the segment option document file when some errors occurred.

 LINE SOURCE STATEMENT

 1 0 900 901 902 903 S

 2 1 910 911 912 913 S

 3 2 920 921 922 923 S

 4 3 930 931 932 933 S

 5 4 940 941 942 943 S

 6 5 950 951 952 953 S

 7 6 960 961 962 963 S

 8 7 970 971 972 973 S

 9 8 980 981 982 983 S

 10 9 990 991 992 993 S

 11 10 9A0 9A1 9A2 9A3 S

N 12 66 9B0 9B1 9B2 9B3 S

 13 12 9C0 9C1 9C2 9C3 S

 14 13 9D0 9D1 9D2 9D3 S

 15 14 9E0 9E1 9E2 9E3 S

S 16 15 9F0MSD 9F1 9F2 9F3 S

 17 16 A00 A01 A02 A03 S

 18 17 A10 A11 A12 A13 S

 19 18 A20 A21 A22 A23 S

D 20 19 A30 A31 A32 A31 S

 21 20 A40 A41 A42 A43 S

N 22 42 A50 A51 A52 A53 S

D 23 22 A60 A61 A31 A31 S

 24 23 A70 A71 A72 A73 S

R 25 24 A80 881 A82 A83 S

 26 25 A90 A91 A92 A93 S

 S --- Syntax Error

 N --- Segment No. Select Error

 R --- RAM Address Select Error

 D --- Duprication Error

Duprication is SEG NO. 19 COM NO. 3

Duprication is SEG NO. 22 COM NO. 3

IV-19

E0C6281 Segment Option Generator

5 SAMPLE FILES

5.1 Segment Option Source File

; C2810A0.SEG,VER.3.00

; EVA6281 LCD SEGMENT DECODE TABLE

;

 0 901 900 932 AE0 S ;1st DIGIT

 1 912 911 910 923 S

 2 913 920 921 922 S

 3 AC0 902 930 931 S

 4 941 940 972 AE1 S ;2nd DIGIT

 5 952 951 950 963 S

 6 953 960 961 962 S

 7 AC1 942 970 971 S

 8 981 980 9B2 AE2 S ;3rd DIGIT

 9 992 991 990 9A3 S

10 993 9A0 9A1 9A2 S

11 AC2 982 9B0 9B1 S

12 9C1 9C0 9F2 AE3 S ;4th DIGIT

13 9D2 9D1 9D0 9E3 S

14 9D3 9E0 9E1 9E2 S

15 AC3 9C2 9F0 9F1 S

16 A01 A00 A32 AF0 S ;5th DIGIT

17 A12 A11 A10 A23 S

18 A13 A20 A21 A22 S

19 AD0 A02 A30 A31 S

20 A41 A40 A72 AF1 S ;6th DIGIT

21 A52 A51 A50 A63 S

22 A53 A60 A61 A62 S

23 AD1 A42 A70 A71 S

24 AF3 --- --- --- C ;DC OUTPUT

25 AF3 --- --- --- C

IV-20

E0C6281 Segment Option Generator

* E0C6281 SEGMENT OPTION DOCUMENT V 3.00
*
* FILE NAME C2810A0S.DOC
* USER’S NAME SEIKO EPSON CORP.
* INPUT DATE 89/07/20
* COMMENT TOKYO DESIGN CENTER
* 390-4 HINO HINO-SHI TOKYO 191 JAPAN
* TEL 0425-83-7313
* FAX 0425-83-7413
*
*
* OPTION NO.12
*
* < LCD SEGMENT DECODE TABLE >
*
* SEG COM0 COM1 COM2 COM3 SPEC
*
 0 901 900 932 AE0 S
 1 912 911 910 923 S
 2 913 920 921 922 S
 3 AC0 902 930 931 S
 4 941 940 972 AE1 S
 5 952 951 950 963 S
 6 953 960 961 962 S
 7 AC1 942 970 971 S
 8 981 980 9B2 AE2 S
 9 992 991 990 9A3 S
 10 993 9A0 9A1 9A2 S
 11 AC2 982 9B0 9B1 S
 12 9C1 9C0 9F2 AE3 S
 13 9D2 9D1 9D0 9E3 S
 14 9D3 9E0 9E1 9E2 S
 15 AC3 9C2 9F0 9F1 S
 16 A01 A00 A32 AF0 S
 17 A12 A11 A10 A23 S
 18 A13 A20 A21 A22 S
 19 AD0 A02 A30 A31 S
 20 A41 A40 A72 AF1 S
 21 A52 A51 A50 A63 S
 22 A53 A60 A61 A62 S
 23 AD1 A42 A70 A71 S
 24 AF3 A80 AB2 AF2 C
 25 AF3 A91 A90 AA3 C
¥¥END

Note: End mark "¥¥END" may be used instead of " \\END" depending on the PC used.

 (Because the code of both ¥ and \ is 5CH.)

V. E0C6281 DEVELOPMENT TOOL USER'S MANUAL

PREFACE

This manual mainly explains the outline of the development support tool for

the 4-Bit Single Chip Microcomputer E0C6281 and starting procedures

through the DEV6281 menu.

For details on the E0C6281, refer to the "E0C6281 Technical Manual"; for

development procedures and related subject, see the "E0C62 Family

Technical Guide".

CONTENTS

CHAPTER 1 OUTLINE OF THE E0C6281 DEVELOPMENT
SUPPORT TOOL .. V-1

1.1 Developmental Environment .. V-1

1.2 Development Tool Management System (DMS6200) V-2

1.3 Cross Assembler (ASM6281) ... V-3

1.4 Function Option Generator (FOG6281) V-4

1.5 Segment Option Generator (SOG6281) V-5

1.6 Melody Assembler (MLA6281) V-6

1.7 In-Circuit Emulator (ICE6200)

& ICE Control Software (ICS6281) V-7

1.8 Mask Data Checker (MDC6281) V-8

1.9 Evaluation Board (EVA6281) ... V-9

1.10 Demonstration Tool (DMT6281) V-10

CHAPTER 2 CREATION OF DISK FOR DEV6281 EXECUTION V-11

CHAPTER 3 DEV6281 STARTING PROCEDURES IN MENU FORM...... V-12

APPENDIX List of Development Support Tool (Software Products)
Names and Starting Command Formats.................... V-17

CHAPTER 1: OUTLINE OF THE E0C6281 DEVELOPMENT SUPPORT TOOL V-1

CHAPTER 1

1.1 Developmental Environment
The software product of the E0C6281 development support

tool (DEV6281) operates on the following host systems:

• IBM PC-XT/AT (at least PC-DOS Ver. 2.0)

• NEC PC-9801V Series (at least MS-DOS Ver. 3.1)

In order for the MDC6281 to handle numerous files, set the

number of files described in the CONFIG.SYS to 10 or more

(e.g., FILES = 20).

Since the ICE6200 is connected to the host computer with a

RS-232C serial interface, adapter board for asynchronous

communication will be required on IBM PC-XT. Moreover,

install RS-232C driver with the CONFIG.SYS.

When developing the E0C6281 series, the above-mentioned

host computer, editor, P-ROM writer, printer, etc. must be

prepared by the user in addition to the development tool

which is normally supported by Epson.

System Configuration

OUTLINE OF THE E0C6281
DEVELOPMENT SUPPORT TOOL

RS-232C
ICE6200

Personal computer

 PC9801V Series
 IBM-PC/AT[]

ICE6200

EVA6281 Target board

EPSON

5" 2HD
EDLIN

Editor

 P-ROM writer
 Printer

To be prepared by the user

SMC6281 Series Development Tool

EPSON

5" 2HD
DEV6281

DMS6200
ASM6281
MLA6281
FOG6281
SOG6281
ICS6281
MDC6281

V-2 E0C6281 DEVELOPMENT TOOL USER'S MANUAL

1.2 Development Tool Management System
(DMS6200)

Outline: This is a software which selects the DEV6281 software

development support tool in menu form and starts it.

Features: - Simple and easy software development tool starting

procedure in menu form

- By copying the external commands such as those of the

editor to the execution disk, starting procedure in menu

form can be possible

ASM6281 ICS6281 FOG6281 SOG6281 MLA6281 MDC6281

To DOS

Menu
selections

DMS6200

CHAPTER 1: OUTLINE OF THE E0C6281 DEVELOPMENT SUPPORT TOOL V-3

1.3 Cross Assembler (ASM6281)

Outline: The Cross Assembler ASM6281 will assemble the program

source files which have been input by the user's editor and

will generate an object file in Intel-Hex format and assembly

list file.

Features: - The macro def init ion function makes program

modularization possible

- The automatic page setting function makes programming

unconscious of ROM page structure possible

- Converts the source program to object codes in Intel-HEX

format

- Attaches label table and cross-reference table to the

assemble list file

- Checks program capacity (ROM capacity) overflows

- Checks undefined codes for errors

Cross Assembler ASM6281

Execution Flow

A>EDLIN C2810A0.DAT
 Source file preparation

A>ASM6281 C2810A0
 Cross Assembler execution

C2810A0
.DAT

C2810A0
.PRN

C2810A0L
.HEX

C2810A0H
.HEX

Error
message

Assembly
list file Object files

C2810A0.DAT is an example
of source file name.

Note:

Error
message

V-4 E0C6281 DEVELOPMENT TOOL USER'S MANUAL

1.4 Function Option Generator (FOG6281)

Outline: In the E0C6281 series, I/O port specifications may be

selected with the hardware option and the mask pattern

according to the setting is generated on the general-purpose

computer.

The Function Option Generator FOG6281 is a software that

performs this hardware option selection on the personal

computer and creates data files for mask pattern generation.

- Interactively selects mask option settings

- Creates data in Intel-Hex form for the hardware option

ROM to be mounted on the EVA6281

Features:

Function Option Generator

FOG6281 Execution Flow

A>FOG6281
 Function Option Generator execution

C2810A0F
.HEX

for EVA6281 use

C2810A0F
.DOC

Function option
HEX file

Function option
document file

CHAPTER 1: OUTLINE OF THE E0C6281 DEVELOPMENT SUPPORT TOOL V-5

1.5 Segment Option Generator (SOG6281)

Outline: In the E0C6281 series, the LCD segment structure may be

selected with the hardware option and the mask pattern

according to the setting is generated on the general-purpose

computer.

The Segment Option Generator SOG6281 is a software that

performs this hardware option selection on the personal

computer and creates data files for mask pattern generation.

Features:

- Creates data in Intel- Hex format for the segment data ROM to be mounted on

the EVA6281

Segment Option Generator

SOG6281 Execution Flow

A>EDLIN C2810A0.SEG
Segment option source file preparation

A>SOG6281
Segment Option Generator execution

C2810A0
.SEG

C2810A0S
.HEX

Error
message

for EVA6281 use

C2810A0S
.DOC

Option list file

Segment option
HEX file

Segment option
document file

C2810A0.SEG is an example
of source file name.

Note:

Error
message

V-6 E0C6281 DEVELOPMENT TOOL USER'S MANUAL

1.6 Melody Assembler (MLA6281)

- Melody HEX file is generated which needs for melody

emulation by assembling the scale data, note data and

melody option contained in the source file

- Checks melody ROM and scale ROM capacity overflows

Features:

Outline: The Melody Assembler MLA6281 assembles the source file

which has been input by the user's editor and outputs the

object file in Intel-Hex format as well as the assembly list file

and document file.

Melody Assembler MLA6281

Execution Flow

A>EDLIN C2810A0.MDT
 Source file preparation

A>MLA6281 C2810A0
Melody Assembler execution

C2810A0
.MDT

C2810A0
.MPR

C2810A0A
.HEX

C2810A0A
.DOC

Error
message

Error
message

Melody
assembly
list file

Melody
HEX file

Melody
document file

C2810A0.MDT is an example
of source file name.

Note:

for EVA6281 use

CHAPTER 1: OUTLINE OF THE E0C6281 DEVELOPMENT SUPPORT TOOL V-7

1.7 In-Circuit Emulator (ICE6200) & ICE Control
Software (ICS6281)

Outline: The In-circuit Emulator ICE6200 connects the target board

produced by the user via the EVA6281 and performs real time

target system evaluation and debugging by passing through

the RS-232C from the host computer and controlling it. The

operation on the host computer side and ICE6200 control is

done through the ICE Control Software ICS6281.

Features:

- Establishes high-level debugging environment by utilizing the user's personal

computer as host computer

- Has a set of numerous and highly functional emulation

commands which provide sophisticated break function,

on-the-fly data display, history display, etc.

- Power supply exclusively for ICE6200 is built-in (can

supply power to EVA6281)

- Analysis of hardware is possible

RS-232C
ICE6200

Personal computer

 PC9801V Series
 IBM-PC/AT[]

ICE6200

EVA6281 Target board

Debugging System

Using ICE6200

ICE6200
SMC62 FAMILY IN-CIRCUIT EMULATOR

POWER
EMULATION

HALT

F5

F1
SEIKO EPSON CORP.

HIGH LOW

CB

RESETBREAKSYNCHALTGNDDSW

ON

V-8 E0C6281 DEVELOPMENT TOOL USER'S MANUAL

1.8 Mask Data Checker (MDC6281)

Outline: This is a software for checking the format of the debugged

mask creation data (program data and option data) and

creating the file for submission.

- Checks the mask creation data for submission (program

data/option data/melody data)

- Performs packing and unpacking of program data and

option data

Features:

Mask Data Checker MDC6281

Execution Flow

A>MDC6281
 Mask Data Checker execution

C2810A0
.PA0

C2810A0H
.HEX

C2810A0L
.HEX

Error
message

Error
message

C2810A0S
.DOC

C2810A0F
.DOC

Segment
option
document
file

Object file

File for submission

C2810A0A
.DOC

Melody
document
file

Function
option
document
file

CHAPTER 1: OUTLINE OF THE E0C6281 DEVELOPMENT SUPPORT TOOL V-9

1.9 Evaluation Board (EVA6281)

Outline: The Evaluation Board EVA6281 will implement almost the

same functions as the actual CPU by creating ROM from the

object files and option data files generated through ASM6281,

MLA6281, FOG6281 and SOG6281 and mounting it.

Features:

stand-alone board by installing a program ROM

- Makes option data setting possible by installing an option

ROM

- Has a simple and easy debugging function for PC Break,

Step operation and monitor display by LED

- May be connected to ICE6200 through a special cable

EVA6281

- May operate as a

0123

3 2 1 0

RUN STEP

0123456789AB

012345670123

0123456789A

IF DF ZF CF0123

EN

0123456789A

0123456789A

0123456789A

01234567

B

B

B

PCB

BB

B

DIS BREAK POINT RAM ADDRESS

SABSBP

PCSPCP

IR

RAM SP F

A

BY

X

EVA6281
SMC6281 EVALUATION BOARD

I/O #0

LCD #0 LCD #1

F5 F1

OFF ON

POWER

FUSE
3A

DC IN
5V

H

SEIKO EPSON CORP.

L

1.10

V-10 E0C6281 DEVELOPMENT TOOL USER'S MANUAL

Demons t ra t ion Tool (DMT6281)

Outline: This demonstration tool is intended for users who are

currently planning applications using the E0C6281 series to

better understand the E0C6281 as well as to evaluate its

functions.

Features: - Allows the E0C6281 user to evaluate the functions

- Allows the E0C6281 user to perform evaluation of

electrical characteristics such as power current

consumption and drive capabilities.

CHAPTER 2: CREATION OF DISK FOR DEV6281 EXECUTION V-11

CHAPTER 2 CREATION OF DISK FOR DEV6281
EXECUTION

The DEV6281 software product is of two types: the PC-DOS

version and the MS-DOS version, supplied in 5-inch 2D and

5-inch 2HD floppy disks, respectively. Note, however, that

the DOS is not implemented. Copy the floppy disk and create

a disk for execution. Keep the original floppy disk in a safe

place as your master copy. When copying to a hard disk,

create a sub-directory first and then make the copy to that

sub-directory.

• Disk Contents: <PC-DOS Version>

ASM6281.EXE Cross Assembler execution file

DMS6200.EXE Development Tool Management System

execution file

FOG6281.EXE Function Option Generator execution file

ICS6281B.BAT ICE Control Software batch file

ICS6281P.PAR ICE Control Software parameter file

ICS6281W.EXE.... ICE Control Software execution file

MDC6281.EXE Mask Data Checker execution file

MLA6281.EXE...... Melody Assembler execution file

SOG6281.EXE Segment Option Generator execution file

<MS-DOS Version>

ASM6281.EXE Cross Assembler execution file

DMS6200.EXE Development Tool Management System

execution file

FOG6281.EXE Function Option Generator execution file

ICS6281.BAT ICE Control Software batch file

ICS6281J.EXE ICE Control Software execution file

ICS6281P.PAR ICE Control Software parameter file

MDC6281.EXE Mask Data Checker execution file

MLA6281.EXE...... Melody Assembler execution file

SOG6281.EXE Segment Option Generator execution file

V-12 SMC6281 DEVELOPMENT TOOL USER'S MANUAL

CHAPTER 3 DEV6281 STARTING PROCEDURES
IN MENU FORM

DMS6200 (Development tool Management System) can start

the DEV6281 development support tools in menu form. Since

the development support tools each require input files (e.g.,

source file), first create the input files according to the

support tool manuals and then perform the following

operations:

(1) The following is entered on the execution disk:

DMS6200↵

The title is then displayed. To return to DOS at this point,

press ^C (CTRL + C).

*** SMC6200 Development tool Management System. --- Ver 1.0 ***

EEEEEEEEEE PPPPPPPP SSSSSSS OOOOOOOO NNN NNN
EEEEEEEEEE PPPPPPPPPP SSS SSSS OOO OOO NNNN NNN
EEE PPP PPP SSS SSS OOO OOO NNNNN NNN
EEE PPP PPP SSS OOO OOO NNNNNN NNN
EEEEEEEEEE PPPPPPPPPP SSSSSS OOO OOO NNN NNN NNN
EEEEEEEEEE PPPPPPPP SSSS OOO OOO NNN NNNNNN
EEE PPP SSS OOO OOO NNN NNNNN
EEE PPP SSS SSS OOO OOO NNN NNNN
EEEEEEEEEE PPP SSSS SSS OOO OOO NNN NNN
EEEEEEEEEE PPP SSSSSSS OOOOOOOO NNN NN

 (C) Copyright 1990 SEIKO EPSON CORP.

 STRIKE ANY KEY.

CHAPTER 3: DEV6281 STARTING PROCEDURES IN MENU FORM V-13

(2) Press any key and the following menu screen will be

displayed. A list of all executable files having "EXE",

"COM" and "BAT" extensions will appear on this menu

screen; if any execution file other than DEV6281 were

copied to the disk for execution, it will differ from the

displays shown below.

To return to DOS at this point, press the <ESC> key.

<MS-DOS Version>

DMS6200 Version 1.0 Copyright(C) SEIKO EPSON CORP. 1990.

1) ASM6281 .EXE
2) FOG6281 .EXE
3) ICS6281 .BAT
4) ICS6281J.EXE
5) MDC6281 .EXE
6) MLA6281 .EXE
7) SOG6281 .EXE

Input Number ? []

<PC-DOS Version>

DMS6200 Version 1.0 Copyright(C) SEIKO EPSON CORP. 1990.

1) ASM6281 .EXE
2) FOG6281 .EXE
3) ICS6281B.BAT
4) ICS6281W.EXE
5) MDC6281 .EXE
6) MLA6281 .EXE
7) SOG6281 .EXE

Input Number ? []

V-14 SMC6281 DEVELOPMENT TOOL USER'S MANUAL

(3) Input the number of the development support tool you

wish to start and then press the RETURN key.

<Conditions for Starting>

- ICS6281W.EXE, ICS6281J.EXE

To start ICS6281W.EXE or ICS6281J.EXE, there is

need to set the RS-232C beforehand. Set the RS-232C

by using the RS-232C driver installed through the

CONFIG.SYS and any of the following commands:

MS-DOS: SPEED command

PC-DOS: MODE command

At least 140K bytes are required for the RAM.

- ICS6281.BAT, ICS6281B.BAT

Since batch processing is programmed in the

ICS6281.BAT and ICS6281B.BAT such that it will start

wi th SPEED command or MODE command,

ICS6281.BAT must be started after "PATH" of the disk

containing SPEED command or MODE command and

sub-directory has been specified.

Likewise, the ICS6281W.EXE requires the installation

of RS-232C driver through the CONFIG.SYS.

At least 140K bytes are required for the RAM.

- MDC6281.EXE

Because the MDC6281.EXE handles numerous files,

set the number of files in the CONFIG.SYS to at least 10

files.

CHAPTER 3: DEV6281 STARTING PROCEDURES IN MENU FORM V-15

(4) Next, the screen for entering the source file will be

displayed. Pressing the <ESC> key here will return the

previous screen.

The following sample screen is the screen which will be

displayed when ASM6281 is selected.

DMS6200 Version 1.0 Copyright(C) SEIKO EPSON CORP. 1990.

 1) C2810A0 .DAT

 2) C2810A0 .MDT

 3) C2810A0 .MPR

 4) C2810A0 .PRN

 5) C2810A0 .SEG

 6) C2810A0A.DOC

 7) C2810A0A.HEX

 8) C2810A0F.DOC

 9) C2810A0F.HEX

10) C2810A0H.HEX

11) C2810A0L.HEX

12) C2810A0S.DOC

13) C2810A0S.HEX

14) C62810A0.PA0

 Input Number ? [1]

 Edit > [ASM6281 C2810A0]

When the source file is selected by number, the edit line

enclosed in [] will appear; enter the option parameter if

necessary. The <BS> key is valid on the edit line. Press the

ENTER key when input is completed.

- ASM6281 will start.

- MLA6281 will also start with the same operations.

When starting, press the RETURN key twice particularly

for the following support tools which do not require source

files.

V-16 SMC6281 DEVELOPMENT TOOL USER'S MANUAL

Refer to the support manuals regarding operations after

starting.

FOG6281

ICS6281

ICS6281W

ICS6281J

MDC6281

SOG6281

(5) When execution of the development support tool is

completed, the following message will appear:

Input Any Key ...

Press any key and the first menu screen will be returned.

VI. SMC6281 ICE OPERATION MANUAL

For details on the SMC6281, refer to the "SMC6281 Technical Hardware Manual" and "SMC6281

Technical Software Manual". For such items as development procedure, refer to the "SMC62 Family

Technical Guide".

Chapter 2 and subsequent chapters provide information common to all SMC62 Family models,

the model name being denoted "XX". Read this manual, replacing "XX" with "81".

62XX → 6281

PREFACE

This manual explains the function of ICE6200, a software development support system for the E0C6281

4-bit Single Chip Microcomputer, and the operation of ICS6281, its ICE control software.

CONTENTS

1 ICS6281 RESTRICTIONS AND ADDITIONS... VI-1

1.1 ROM Area .. VI-1

1.2 RAM Area .. VI-1

1.3 Undefined Code ... VI-1

1.4 OPTLD Command ... VI-1

2 ICE6200 SPECIFICATIONS.. VI-2

2.1 Features .. VI-2
2.1.1 Description ... VI-3
2.1.2 Software Configuration .. VI-3
2.1.3 Function Table ... VI-4
2.1.4 Function-differentiated Command List .. VI-5
2.1.5 Alphabetical Listing of Commands ... VI-7

2.2 Connecting and Starting the System .. VI-9
2.2.1 HOST Settings ..VI-10
2.2.2 Starting the ICS62XX ...VI-12

2.3 ICE6200 Operation and Functions ..VI-13
2.3.1 Operating Features ..VI-13
2.3.2 Break Mode and Break Function ..VI-15
2.3.3 SYNC Pin and HALT Pin Output ...VI-17
2.3.4 Display During Run Mode and During Break ..VI-18
2.3.5 Break Assigning Commands ...VI-20
2.3.6 Target Interrupt and Break ..VI-21
2.3.7 History Function ...VI-22
2.3.8 Break Delay Function ...VI-24
2.3.9 Coverage Function ..VI-24
2.3.10 Measurement During Command Execution ..VI-25
2.3.11 Self-diagnostic Function ...VI-26
2.3.12 Starting the Printer ..VI-27
2.3.13 Limitations During Emulation ..VI-28

2.4 Command Details ..VI-30
2.4.1 Display Command Group ...VI-31

- L Command ..VI-32
- DP Command ...VI-34
- DD Command ...VI-36
- DR Command ...VI-38
- H Command ..VI-39
- HB and HG Commands ..VI-42
- HS, HSR, and HSW Commands ..VI-44
- HP and HPS Commands ...VI-45
- CHK Command ..VI-46
- DXY Command ..VI-47
- CVD and CVR Commands ...VI-48

2.4.2 Set Command Group ...VI-49
- A Command ..VI-50
- FP Command ..VI-52
- FD Command ...VI-53
- MP Command ...VI-54
- MD Command ..VI-55
- SP Command ..VI-56
- SD Command ...VI-57
- SR Command ..VI-58
- SXY Command ...VI-59
- HC Command ...VI-60
- HA, HAD, and HAR Commands ...VI-61

2.4.3 Break and Go Command Group..VI-63
- BA and BAR Commands ...VI-64
- BD and BDR Commands ...VI-65
- BR and BRR Commands ..VI-66
- BM and BMR Commands ..VI-68
- BC Command ...VI-70
- BRES Command ...VI-71
- G Command ..VI-72
- T Command ..VI-75
- U Command ..VI-77
- BE and BSYN Commands ...VI-78
- BT Command..VI-79
- BRKSEL Command ...VI-80

2.4.4 File Command Group..VI-81
- RF and RFD Commands ...VI-82
- VF and VFD Commands ..VI-83
- WF and WFD Commands ..VI-84
- CL and CS Commands ...VI-85
- OPTLD Command ..VI-86

2.4.5 ROM Command Group ...VI-87
- RP Command ..VI-88
- VP Command ...VI-89
- ROM Command ...VI-90

2.4.6 Control Command Group..VI-91
- I Command ...VI-92
- TIM Command ...VI-93
- OTF Command ...VI-94
- Q Command ..VI-95

2.4.7 HELP Command ...VI-97

2.5 Error Message Summary ..VI-102

2.6 FD File Configuration ..VI-103

2.7 Appendix HEX File Format ..VI-104

VI-1

E0C6281 ICE Operation

1 ICS6281 RESTRICTIONS AND ADDITIONS

1.1 ROM Area

The ROM area is limited to a maximum address of 3FFH.

Assigning data above the 3FFH address causes an error.

1.2 RAM Area

The RAM area is limited to a maximum address of 0FFH.

However, as the following addresses are in the unused area, designation of this area with the ICE

commands produces an error.

060H to 08FH

0B0H to 0DFH

Memory 090H to 0AFH is display memory; 0E0H to 0FFH is I/O memory.

(Refer to the "E0C6281 Technical Hardware Manual" for details.)

1.3 Undefined Code

The instructions below are not specified for the E0C6281 and so cannot be used.

SLP

PUSH XP PUSH YP

POP XP POP YP

LD XP,r LD YP,r

LD r,XP LD r,YP

1.4 OPTLD Command

This command is used to load melody HEX files (MLA6281 melody assembler output files) in

the EVA6281 melody data memory with the ICE6200. It is also necessary in order to play a

melody using the ICE6200 and EVA6281. For an explanation of the command, see page 86,

reference items are described on pages 6, 8, 99, 100, and 103.

VI-2

E0C6281 ICE Operation

2 ICE6200 SPECIFICATIONS

2.1 Features

The ICE6200 is a microcomputer software development support tool that increases the efficiency

of software development for the E0C62 Family of 4-bit single chip microcomputers.

The ICE6200 and the E0C62 Family evaluation board EVA62XX, when used in combination,

provide an exceptionally powerful hardware and software development support environment.

The following flow chart shows the creation sequence of the single chip microcomputer system

from development through mass production.

Determination of specifications

Hardware Software

Prototype operation Software General purpose
Operation of target development personal computers,
system connected to cross assemblers, etc.
an evaluation board

Debugging and Debug procedure with
system evaluation ICE6200, EVA62XX,

target and peripheral
devices connected

Sample order

Sample evaluation

Mass production order

Mass production

Use of the ICE6200 and EVA62XX can greatly shorten the development process time required

for debugging and system evaluation procedures.

Refer to "E0C62 Family Technical Guide" to get more detailed information about "Sample

order" to "Mass production" above mentioned flow chart.

VI-3

E0C6281 ICE Operation

2.1.1 Description

A description of the ICE6200 follows.

(1) The ICE6200 operates by connecting to a general purpose personal computer (NEC PC-

9801V Series, IBM PC/XT, PC/AT). The debugging environment is constructed by the user's

personal computer acting as the host system.

(2) High-performance emulation commands are provided.

A variety of commands are supplied, such as a register value implemented break function, on-

the-fly data display, history display, and other high-level functions.

(3) The ICE6200 is equipped with a special power supply. This power source supplies VDD to the

evaluation board, making additional power supply from the user side unnecessary.

(4) The ICE6200 can also be used to analyze hardware. Hardware debugging is supported

through the SYNC and HALT terminals.

2.1.2 Software Configuration

OS (Operating System)
MS-DOS/PC-DOS

General ASM62XX ICS62XX ICE control software
Purpose Cross ICE Control runs on personal
Editor Assembler Software computer (FD)

Cross Assembler

leased the E0C62XX (FD)

- - - - - - - - - - - - - - - - - - - -
ICE6200 Control program
Firmware mounted on the ICE6200

Application Customer's application
Program program mounted on

the ICE6200 (ROM)

VI-4

E0C6281 ICE Operation

2.1.3 Function Table

Table 2.1.3 shows the functions supported by the ICE6200.

Table 2.1.3 ICE6200 Functions
Item Item Brief description of function Commentsnumber
1 Real-time break The target program is interrupted under optional conditions

(1) Break by program counter (PC)
(2) RAM address, data, R/W break
(3) Break by register value
(4) Break via a combination of items (1)–(3) (AND, OR)
(5) Forced break by RESET or BREAK switch settings
(6) Forced break by host system Escape key input

2 History EVA62XXCPU data collection during emulation
(1) Collection of PC, instruction code, RAM R/W, or CPU register

values
(2) Approx. 2048 instruction bus data collections
(3) Collects information up to the hit of break condition, or before

or after the hit
(4) Collects history information within the specified program area
(5) Searches for history information

3 Real-time Target program is run in real time at frequencies up to 4MHz
execution

4 Real-time Emulation run in real time (up to approx. 425ms) or
measurement Step number count

5 Target memory (1) ICE packaged target program memory is referenced, modified,
referenced or or dumped
modified (2) Target program memory-mapped I/O is referenced or modified

(3) Internal CPU registers are referenced or modified
6 Trace Target program is executed step by step and register contents are

displayed
7 Assemble/ Mnemonic input is converted to machine language and stored in

Disassemble program memory; contents of memory are disassembled
8 FD loaded, (1) Data from FD is loaded to the program or verified

saved or (2) Program data is saved to FD
verified (3) ICE interim results are loaded or saved to FD

(4) Data from FD memory is loaded, saved or verified
9 ROM read or Program is loaded to program memory from the ICE ROM socket

verify and verified
10 Execution During G command execution, the program counter and

supervision halt state are displayed
11 Coverage Acquire coverage information
12 Other (1) Printer start and stop

(2) ICE command display
(3) Evaluation board CPU reset
(4) Evaluation board CPU status on LED display
(5) Execution with SYNC pulse output at breakpoint, but without

break
(6) 2764 to 27512 EPROM (target) support
(7) ICE6200 hardware check

VI-5

E0C6281 ICE Operation

Item Command ReferenceFunction Description of operationnumber configuration page

1 Assemble #A,a ↵↵ Assemble command mnemonic code and store at 50
address "a"

2 Disassemble #L,a1,a2 ↵↵ Contents of addresses a1 to a2 are disassembled 32
and displayed

3 Dump #DP,a1,a2 ↵↵ Contents of program area a1 to a2 are displayed 34

#DD,a1,a2 ↵↵ Content of data area a1 to a2 are displayed 36

4 Fill #FP,a1,a2,d ↵↵ D is set in addresses a1 to a2 (program area) 52

#FD,a1,a2,d ↵↵ D is set in addresses a1 to a2 (data area) 53

5 Set #G,a ↵↵ Program is executed from the "a" address 72

Run Mode #TIM ↵↵ Execution time and step counter selection 93

#OTF ↵↵ On-the-fly display selection 94

6 Trace #T,a,n ↵↵ Executes program while displaying results of step 75
instruction from "a" address

#U,a,n ↵↵ Displays only the final step of #T,a,n 77

7 Break #BA,a ↵↵ Sets Break at program address "a" 64

#BAR,a ↵↵ Cancels breakpoint

#BD ↵↵ Break condition is set for data RAM 65

#BDR ↵↵ Breakpoint is canceled

#BR ↵↵ Break condition is set for EVA62XXCPU internal 66
registers

#BRR ↵↵ Breakpoint is canceled

#BM ↵↵ Combined break conditions set for program 68
data RAM address and registers

#BMR ↵↵ Cancel combined break conditions for program
data ROM address and registers

#BRES ↵↵ All break conditions canceled 71

#BC ↵↵ Break condition displayed 70

#BE ↵↵ Enter break enable mode 78

#BSYN ↵↵ Enter break disable mode 78

#BT ↵↵ Set break stop/trace modes 79

#BRKSEL,REM ↵↵ Set BA condition clear/remain modes 80

8 Move #MP,a1,a2,a3 ↵↵ Contents of program area addresses a1 to a2 54
are moved to addresses a3 and after

#MD,a1,a2,a3 ↵↵ Contents of data area addresses a1 to a2 are 55
moved to addresses a3 and after

9 Data set #SP,a ↵↵ Data from program area address "a" are written 56
to memory

#SD,a ↵↵ Data from data area address "a" are written to 57
memory

2.1.4 Function-differentiated Command List

Table 2.1.4 shows the function-differentiated command list for the ICE6200.

Table 2.1.4 Function-differentiated command list

VI-6

E0C6281 ICE Operation

Item Command Reference
Function Description of operationnumber configuration page

10 Change CPU #DR ↵↵ Display EVA62XXCPU internal registers 38

Internal #SR ↵↵ Set EVA62XXCPU internal registers 58

Registers #I ↵↵ Reset EVA62XXCPU 92

#DXY ↵↵ Display X, Y, MX and MY 47

#SXY ↵↵ Set data for X and Y display and MX, MY 59

11 History #H,p1,p2 ↵↵ Display history data for pointer 1 and pointer 2 39

#HB ↵↵ Display upstream history data 42

#HG ↵↵ Display 21 line history data 42

#HP ↵↵ Display history pointer 45

#HPS ↵↵ Set history pointer 45

#HC,S/C/E ↵↵ Sets up the history information acquisition 60
before (S), before/after (C) and after (E)

#HA,a1,a2 ↵↵ Sets up the history information acquisition 61
from program area a1 to a2

#HAR,a1,a2 ↵↵ Sets up the prohibition of the history information 61
acquisition from program area a1 to a2

#HAD ↵↵ Indicates history acquisition program area 61

#HS,a ↵↵ Retrieves and indicates the history information 44
which executed a program address "a"

#HSW,a ↵↵ Retrieves and indicates the history information 44

#HSR,a ↵↵ which wrote or read the data area address "a"

12 File #RF,file ↵↵ Move program file to memory 82

#RFD,file ↵↵ Move data file to memory 82

#VF,file ↵↵ Compare program file and contents of memory 83

#VFD,file ↵↵ Compare data file and contents of memory 83

#WF,file ↵↵ Save contents of memory to program file 84

#WFD,file ↵↵ Save contents of memory to data file 84

#CL,file ↵↵ Load ICE6200 set condition from file 85

#CS,file ↵↵ Save ICE6200 set condition to file 85

#OPTLD,n,file ↵↵ Load HEXA data from file 86

13 Coverage #CVD ↵↵ Indicates coverage information 48

#CVR ↵↵ Clears coverage information 48

14 ROM Access #RP ↵↵ Move contents of ROM to program memory 88

#VP ↵↵ Compare contents of ROM with contents of 89
program memory

#ROM ↵↵ Set ROM type 90

15 Terminate #Q ↵↵ Terminate ICE and return to operating system 95
ICE control

16 Command #HELP ↵↵ Display ICE6200 instruction 98
Display

17 Self #CHK ↵↵ Report results of ICE6200 self diagnostic test 46
Diagnosis

VI-7

E0C6281 ICE Operation

1 #A,a ↵↵ Assemble mnemonic instruction and store in address "a" 50

2 #BA,a ↵↵ Set break at program address "a" 64

3 #BAR,a ↵↵ Cancel breakpoint 64

4 #BC ↵↵ Display break condition 70

5 #BD ↵↵ Set break condition for RAM data 65

6 #BDR ↵↵ Cancels the data RAM break condition 65

7 #BE ↵↵ Break enable mode 78

8 #BM ↵↵ Assign multiple break condition for program address, RAM data 68
and registers

9 #BMR ↵↵ Cancels the multiple break condition 68

10 #BR ↵↵ Break condition set for EVA62XXCPU registers 66

11 #BRR ↵↵ Cancels the register break condition 66

12 #BRES ↵↵ All break conditions canceled 71

13 #BRKSEL,REM ↵↵ Sets BA clear/remain modes 80

14 #BSYN ↵↵ Break disable mode 78

15 #BT ↵↵ Sets break stop/trace mode 79

16 #CHK ↵↵ Reports results of ICE6200 self diagnostic tests 46

17 #CL,file ↵↵ Loads ICE6200 set condition from file 85

18 #CS,file ↵↵ Saves ICE6200 set condition to file 85

19 #CVD ↵↵ Indicates coverage information 48

20 #CVR ↵↵ Clears coverage information 48

21 #DD,a1,a2 ↵↵ Displays contents of addresses a1 to a2 in the data area 36

22 #DP,a1,a2 ↵↵ Displays contents of addresses a1 to a2 in the program area 34

23 #DR ↵↵ Displays EVA62XXCPU internal registers 38

24 #DXY ↵↵ Displays X, Y and MX, MY 47

25 #FD,a1,a2,d ↵↵ Sets d to addresses a1 to a2 in the data area 53

26 #FP,a1,a2,d ↵↵ Sets d to addresses a1 to a2 in the program area 52

27 #G,a ↵↵ Executes the program from the "a" address 72

28 #H,p1,p2 ↵↵ Displays history data for pointers 1 and 2 39

29 #HA,a1,a2 ↵↵ Sets up the history information acquisition from program area 61
a1 to a2

30 #HAD ↵↵ Indicates the history acquisition program area 61

31 #HAR,a1,a2 ↵↵ Sets up the prohibition of the history information acquisition 61
from program area a1 to a2

32 #HB ↵↵ Displays upstream history data 42

33 #HC,S/C/E ↵↵ Sets up the history information acquisition before 60
(S), before/after (C) and after (E) the break hit

34 #HELP ↵↵ Display ICE6200 instructions 98

35 #HG ↵↵ Display history data in 21 lines 42

Item Command ReferenceDescription of operationnumber configuration page

2.1.5 Alphabetical Listing of Commands

Table 2.1.5 shows an alphabetical listing of ICE6200 commands.

Table 2.1.5 Alphabetical Listing of Commands

VI-8

E0C6281 ICE Operation

36 #HP ↵↵ Display history pointer 45

37 #HPS ↵↵ Set history pointer 45

38 #HS,a ↵↵ Retrieves and indicates the history information which executed 44
the program address "a"

39 #HSR,a ↵↵ Retrieves and indicates the history information which read the 44
data area address "a"

40 #HSW,a ↵↵ Retrieves and indicates the history information which wrote the 44
data area address "a"

41 #I ↵↵ Reset EVA62XXCPU 92

42 #L,a1,a2 ↵↵ Display disassembled contents of addresses a1 to a2 32

43 #MD,a1,a2,a3 ↵↵ Move contents of data area addresses a1 to a2 to address a3 55
and after

44 #MP,a1,a2,a3 ↵↵ Move contents of program area addresses a1 to a2 to address a3 54
and after

45 #OTF ↵↵ Select on-the-fly display 94

46 #OPTLD,n,file ↵↵ Load HEXA data from file 86

47 #Q ↵↵ Terminate ICE and return to operating system control 95

48 #RF,file ↵↵ Move program file to memory 82

49 #RFD,file ↵↵ Move data file to memory 82

50 #ROM ↵↵ Select ROM type 90

51 #RP ↵↵ Move ROM contents to program memory 88

52 #SD,a ↵↵ Write data from address "a" of the data area 57

53 #SP,a ↵↵ Write data from address "a" of the program area 56

54 #SR ↵↵ Set EVA62XXCPU internal registers 58

55 #SXY ↵↵ display X, Y and set data to MX, MY 59

56 #T,a,n ↵↵ Execute while displaying n step instruction results from 75
address "a"

57 #TIM ↵↵ Select execution time and step counter 93

58 #U,a,n ↵↵ Display only final step of #T,a,n 77

59 #VF,file ↵↵ Compare program file and memory contents 83

60 #VFD,file ↵↵ Compare data file and memory contents 83

61 #VP ↵↵ Compare contents of ROM and contents of program memory 89

62 #WF,file ↵↵ Save content of memory to the program file 84

63 #WFD,file ↵↵ Save content of memory to the data file 84

Item Command ReferenceDescription of operationnumber configuration page

VI-9

E0C6281 ICE Operation

2.2 Connecting and Starting the System

Fig. 2.2 System Connection Diagram

The ICE6200 connects to common personal computers and the E0C62 Family evaluation board

EVA62XX for operation, as shown in Fig. 2.2. The connection sequence described below should

be followed.

(1) Verify Power OFF status

Make sure the power sources for the personal computer and ICE6200 are switched OFF. (The

E0C62 Family evaluation board EVA62XX is powered by the ICE6200 power supply and

thus has no power source.)

(2) Cable Connections

Connect cables in the manner prescribed in the "ICE6200 Hardware Manual".

(3) Power ON

Switch ON the power supplies for the personal computer and the ICE6200 in any order.

RS-232C
ICE6200 EVA62XX

Personal computer

 PC9801V series
 IBM-PC/XT,PC/AT[]

VI-10

E0C6281 ICE Operation

2.2.1 HOST Settings

The ICE6200 is connected to a general purpose personal computer for operation.

The ICS62XX system program has an approximately 140KB capacity, and the personal computer

must be set to proper operating parameters for the ICS62XX to operate. An example follows.

– Program capacity

The ICS62XX system program requires a host system with a RAM capacity of about 140KB.

– RS232C Settings

* ICE Operation Using a PC9801V System with MS-DOS v.3.10

Enter settings (1) or (2) below. Item (2) is convenient since it has backup capability even after

switching power OFF.

(1) Execute SPEED command soon after starting MS-DOS.

Setting:

A>SPEED RO 9600 B8 PN S1 NONE ↵
Verify settings:

A>SPEED↵
SPEED version ?.?

Escape the command with:

RS232C-0 9600 BITS-8 PARITY-NONE STOP-1 NONE ↵
(end)

(2) SWITCH command operates with the same settings as (1), but the settings become effective

after the next boot.

Setting:

A>SWITCH RO[9600 B8 PN S1 NONE] ↵
Verify settings:

A>SWITCH↵
SWITCH Version ?.?

Escape the command with:

RS232C-0:9600 BITS-8 PARITY-NONE STOP-1 NONE

:

:

- ↵ to escape the command

VI-11

E0C6281 ICE Operation

* ICE Operation Using a PC/XT, PC/AT System with PC-DOS v.2.10

Execute MODE command soon after starting PC-DOS.

Setting:

A>MODE COM1:4800,n,8,1,P ↵
COM1:4800,n,8,1,P Settings can be confirmed.

A>

Set the ICE6200 baudrate to 4800.

VI-12

E0C6281 ICE Operation

2.2.2 Starting the ICS62XX

– Start the Operating System

First, call up the operating system (abbreviated OS below) for your general purpose personal

computer. The ICS62XX can operate in the following OS environments.

(1) MS-DOS version 3.10 or higher

(2) PC-DOS version 2.10 or higher

Refer to your OS manual for procedures on loading the system. After loading the system, set the

HOST setting as described in section "2.2.1".

– Starting the ICS62XX

(1) Insert the ICS62XX system software (supplied on 5.25" floppy disk) to the assigned floppy

disk drive in your personal computer.

(2) Input the following information through the keyboard.

B>ICS62XX↵
...The Epson logo is displayed for about one second...

* ICE POWER ON RESET *

* DIAGNOSTIC TEST OK *

_

 Cursor position

When the ICS62XX system program is loaded in the computer as described above, control of the

computer is given to the ICS62XX system program. ICS62XX commands are awaited when the

program is properly loaded and the # mark is displayed.

– Quitting ICS62XX Control

The ICS62XX program is terminated by entering the Q command; control is then returned to the

computer's operating system.

#Q↵
B>

VI-13

E0C6281 ICE Operation

2.3 ICE6200 Operation and Functions

ICE6200 operations, details on functions and emulation limitations are discussed in this section.

2.3.1 Operating Features

Fig. 2.3.1 Block Diagram of ICE6200 Functions

Figure 2.3.1 shows a block diagram of ICE6200 functions.

The ICE6200 has a built-in control processor which processes ICE commands.

Emulation consists of executing and terminating functions of the EVA62XXCPU and is

controlled via the emulation control portion. The EVA62XXCPU is halted unless the run (G

command) or single step (T command) operations are invoked. In this condition the emulation

lamp on the ICE6200 display is OFF and the HALT lamp is ON to indicate the set-up mode.

Thus, the A command, etc., are executed during the set-up mode.

The emulation program memory is set-up by instructions which activate the EVA62XXCPU.

In the set-up mode, such operations as loading from the ROM sockets by the ICE control

processor and program setting by the host processor are executed.

Similarly, the EVA62XXCPU data RAM is allocated to the emulation data memory.

RS-232C host
interface

ICE firmware

ROM sockets (H,L)

History control portion

Emulation control portion

Evalution board
interface

To the EVA62XX

ICE control
processor

Target monitor portion

Break control portion

Emulation program memory

Emulation data memory

VI-14

E0C6281 ICE Operation

The history control portion records the execution bus cycles of the EVA62XXCPU and consists

of a 8192 word × 88 bit memory. The large memory capacity allows EVA62XXCPU register

values to be recorded in real time. The history is written in target run mode, and is analyzed by

the ICE6200 control processor in the set-up mode.

The break control portion has the functions which check the EVA62XXCPU bus condition

whether it is at a break point or not, and will stop the execution at the break point. Breaking at

CPU register values is also possible in real time. The ICE6200 control processor monitors the

EVA62XXCPU on the target monitor during target run mode. Results are displayed as on- the-

fly information.

VI-15

E0C6281 ICE Operation

2.3.2 Break Mode and Break Function

Breaks are supported in many modes.

(1) Break enable mode:

Makes the break function valid. Actions during break are decided according to the mode

setting of break- trace/stop.

(2) Break disable mode:

Makes the break function invalid. ICE6200 SYNC pin pulse output mode which does not

terminate the G command when in break condition. This function can be used as an

oscilloscope synchronous signal to measure the target circuit timing using the pulse as a

reference.

(3) Break trace mode:

Temporarily stops the target run during break condition, and quickly restarts the program

after displaying the CPU register and execution time. Effective for viewing the program

operation timing, but not in true real time.

(4) Break stop mode:

A mode to break programs when they are consistent with break conditions.

Different types of breaks are described below.

(1) Reset switch:

Need not be in break mode to break. Used to reset the ICE6200; does not display the target

register during break.

(2) Break switch:

Need not be in break mode to break. EVA62XXCPU register is properly displayed during

break.

(3) ESC key:

Break induced by ESC key input from the host. Need not be in break mode to break.

EVA62XXCPU register is properly displayed during break.

(4) Break set command:

Break induced when CPU conditions and conditions set by BA, BD, BR or BM commands

agree. Causes a break in break enable mode and break stop mode, but does not cause break in

break disable mode. Cannot be set in break trace mode after completion of the instruction.

VI-16

E0C6281 ICE Operation

Table 2.3.2 shows the break modes and break types.

Table 2.3.2 Break modes and break types

Item Break mode Break method Description

1 Break enable Reset switch Normal use mode.

& break stop Break switch Start up mode at power on.

ESC key EVA62XXCPU runs in

Break instruction real time by entering GO

command after setting this

mode.

2 Break enable Reset switch Activates the break trace

& break trace Break switch function. This mode is set

ESC key by the BE command or BT

command. Register data is

displayed when the

EVA62XX CPU agrees

with the conditions set by

the break set instruction.

EVA62XXCPU does not

run in real time when GO

command is entered after

setting this mode.

3 Break disable Reset switch The SYNC output function

& break stop Break switch is executed. A pulse is

ESC key output to the SYNC pin

via the BSYN command

when the CPU agrees with

the condition set by the

break set instruction.

EVA62XXCPU runs in real

time by entering GO com-

mand after setting this mode.

4 Break disable Automatically sets to

& break trace ____ break disable and break trace.

Break enable mode is

automatically set when

break trace is set.

VI-17

E0C6281 ICE Operation

2.3.3 SYNC Pin and HALT Pin Output

(1) SYNC Pin Output

When the instruction cycle conforms to a break condition, a low level pulse is output by the first

half of the subsequent instruction fetch cycle.

Fig. 2.3.3.a SYNC Pin Output

(2) HALT Pin Output

A low level pulse is output when the evaluation board CPU is stopped (e.g., when the HALT or

SLEEP instructions are executed).

HALT output

Fig. 2.3.3.b HALT Pin Output

Indicate the CPU halt

Correspond to
break condition

Evaluation board
clock

Fetch signal

Instruction cycle

SYNC output

5 clock instruction

About 1 ˚S (clock 455kHz)
About 15.6 ˚S (clock 32kHz)

VI-18

E0C6281 ICE Operation

2.3.4 Display During Run Mode and During Break

During run mode, the ICE6200 control processor monitors the state of the EVA62XXCPU.

Monitored data EVA62XXCPU's executed program are displayed at intervals of about 500 ms

when the on-the-fly display mode is set (by the OTF command).

#G↵
 *PC= 0120 Underlined portion is displayed in succession.

 *PC=HALT Enter HALT mode, line feed, and HALT is displayed.

 *PC= 0200 HALT is canceled, operation is restarted, and PC is redisplayed.

Note: HALT indicates execution of the HALT or SLEEP instruction.

When the printer is online and started, the PC values are printed in succession. PC is not

displayed during on-the-fly inhibit mode.

During a break, the cause of the break, post break PC (the next executed program address), the

contents of the CPU registers, and execution time are displayed.

#G↵
 *PC=xxxx

 *EMULATION END STATUS=BREAK HIT (1)

 *PC=0201 A=0 B=0 X=070 Y=071 F=IDZC SP=10 (2)

 *RUN TIME=425.097mS (3)

(1) There are three statuses possible after completing the emulation: BREAK HIT, ESC KEY,

OR BREAK SW. When a number of conditions prevail, only the highest priority position is

displayed in the following priority ranking: BREAK SW > ESC KEY > BREAK HIT. A

break may also be initiated by the reset switch; a reset switch break causes

" *ICE6200 RESET SW TARGET* "

to be displayed and instructions are awaited. The register display and execution time display

are not active in this mode.

(2) The displayed PC shows the next executed value. Register values following "A" indicate the

values during a break. In the above example, the values (indicated 2) results from completing

to execute the instruction of address 0200.

VI-19

E0C6281 ICE Operation

(3) Execution time mode and step number mode can be set during run time (using the #TIM

command).

Millisecond is abbreviated to "mS". In step number mode, decimal values describe the run

time, as in :

" *RUN TIME=501 STEPS ".

When the execution time or step counters overflow, the message

" *RUN TIME=TIMEOVER "

is displayed. For more details, see section "2.3.10".

VI-20

E0C6281 ICE Operation

2.3.5 Break Assigning Commands

The ICE6200 has a variety of break setting functions.

(1) Set break by PC:

Set by the BA command. The instruction is executed when the EVA62XXCPU PC and the set

values agree, thus inducing a break. When the PSET command is entered at the set address, the

PSET and subsequent instruction are executed, then processing is halted. (When multiple PSET

commands are specified, the instructions are executed until a command other than PSET is

encountered.)

Breaks can be set for multiple PC's (to the maximum capacity of program memory).

(2) Set break by RAM data:

Set by the BD command. A break is induced by the RAM data address, data, or R/W AND

condition. Also, masks can be set for address, data and R/W respectively.

When a break is induced by writing F data at address 10, the settings are: address=10, data=F,

R/W=W. Any data can be used with the following settings: address=10, data=mask, R/W=W. A

break will occur after execution of the memory access instruction which equals the set conditions.

The break point can be set to one point through these settings.

(3) Set break by register value:

Set by BR command. When the register values of the EVA62XXCPU coincide with the set break

values, a break is initiated following execution of the instruction.

A break is induced by and AND condition set in the A, B, FI, FD, FZ, FC, X, or Y registers. Also,

a mask can be set in any of the registers. When a break is induced with register A=5, X=70, and

Y=0A, the other registers may be masked.

Example:

LD A,5

LD X,70

LD Y,0A A break is induced when the above instruction is executed.

These settings will allow the operation to run in real time. The break point can be set at only one

point.

Items (1), (2) and (3) above can be set independently.

When BA, BD and BR are set concurrently, a break will occur when any of the conditions

coincide.

VI-21

E0C6281 ICE Operation

(4) Set compound break:

Set by BM command. A compound break occurs when breaks (1), (2) and (3) include AND

statements. Breaks can have the following elements masked: (coincide with PC), (coincide with

RAM data address, data, R/W), (register value). The break point can be set at only one point. At

the current setting, setting (1) through (3) are automatically canceled. If settings (1) through (3)

follow the current setting, the BM condition is canceled.

Note: Since the RAM data condition is a break element, the break will not be initiated without

instructions which access the RAM data.

2.3.6 Target Interrupt and Break

When a target interrupt occurs the moment of a break it is given priority over the break. The

break is then induced after the interrupt process is stacked. Next, the interrupt routine is executed

from the top when the run mode commences.

The PC displayed during a break is the top interrupt address.

When a break is set by the BR command with FI=1, the break and interrupt are generated

simultaneously, but due to the interrupt process, the register values after the break are:

*PC=0000 A=.... F=.DZC X=000 Y=010
 |
 FI reset

so as to reset the FI flag status.

VI-22

E0C6281 ICE Operation

2.3.7 History Function

The EVA62XXCPU information (PC, instruction code, RAM data address and data content, and

CPU internal registers) while running an emulation are fetched to the history memory region with

each CPU bus cycle. The history memory has a capacity of 8291 cycles, and can store 2730 (5

clock instructions only) to 1365 (12 clock instructions only) new instructions executed by the

evaluation board.

History memory History memory
← Oldest instruction (HP=2730)

(HP=0) Effective Instruction
Effective history immediately
history ← prior to break

← Oldest instruction
Program (HP=0)
execution ← Instruction Effective

immediately history
Space prior to break

(HP=700)

Fig. 2.3.7 History Function Diagram

Figure 2.3.7 shows a diagram of the history function. When the history memory is filled, old data

is overwritten by new data.

The history pointer (HP) normally displays the oldest instruction at position 0, but during a break

it displays the newest instruction. The maximum value of the HP is about 2730 when 5 clock

instructions are executed.

∨
∨

History data

HP=0 Oldest
instruction

The HP can display optional positions via the H, HB,
↑ and HG commands.

→ HP data from 1980 to 1986 is displayed by entering:
#H, 1980, 1986↵

↓
Newest

HP=2700 instruction

VI-23

E0C6281 ICE Operation

#H, 1980, 1986 ↵
LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

1980 0200 FC1 PUSH B 0 0 03F 03F 1111 W010=0

1981 0201 423 CALL 23 0 0 03F 03F 1111 W00F=8 W00E=0 W00D=2(1)

1982 0223 FDF RET 0 0 03F 03F 1111 R00D=2 R00E=0 R00F=8

1983 0202 FD1 PDP B 0 0 03F 03F 1111 R010=0

 *1984 W010=8 W00F=0 W00E=2 INT1

1985 INT2

1986 00FE FFF NOP7 0 0 0FF 0FF 0111

(a) (b) (c) (d) (e) (f) (g) (h)

(a) History pointer displayed

(b) Executed instruction address displayed

(c) Instruction code displayed

(d) Mnemonic instruction displayed

(e) Register value displayed when instruction completed

(f) When each flag is set, 1 is reset to 0 and displayed

(g) When a data memory R/W operation occurs during execution of an instruction, the data

sequence write 8 to 0F address write 0 to 0E address write 2 to 0D address is sequentially

displayed (1).

(h) During the interrupt process, INT1 (stack) and INT2 (vector) are displayed. The INT1

memory operation indicates the stack cycle.

Note:* During interrupt processing, two HP are renewed.

Otherwise, HP is renewed by the instruction unit.

VI-24

E0C6281 ICE Operation

2.3.8 Break Delay Function

Users can refer to the programs until break by the history function mentioned in the previous

section. In the ICE6200 this function has been expanded so that the history information before

hitting the break condition or before and after hitting break condition can be acquired and

referred. To realize this function, this system is designed not to terminate the program right after

the hit of break condition, but to terminate the program after acquiring specified history data. This

specification is executed by the #HC command.

Note: When specifying the break delay by using the break enable & break stop mode (see Section

2.3.2.), be sure that break is not made at the specified break condition.

2.3.9 Coverage Function

ICE6200 can acquire and indicate the address information of the program which was accessed

during the execution of the program. One can confirm which parts have completed

troubleshooting and debugging by referring to coverage information which is a result of

executing programs for a long period of time. This coverage function is specified by #CVD, and

#CVR commands.

VI-25

E0C6281 ICE Operation

2.3.10 Measurement During Command Execution

The ICS62XX possesses a counting function which counts the time or the number of steps from

starting the target program to the occurrence of a break.

The counting range is described below.

(1) Time counting mode

6.5µS to 6.5 × 65535µS (=425.977mS)

Measurement error : ±6.5µS

(The display is in millisecond units: mS)

(2) Step counting mode

Step 1 to step 65535

Measurement error : 0 steps

(error of 1 step may be presumed during interrupt process)

When the measurement range is exceeded, the following message is displayed:

*RUN TIME=TIMEOVER.

VI-26

E0C6281 ICE Operation

2.3.11 Self-diagnostic Function

The ICE6200 performs a self-check at power ON. When a check instruction (#CHK↵) is input

from the host system, the self-test results are sent to the host.

#CHK↵
...System awaits instruction unless an error occurs.

A check instruction is automatically input when the ICS62XX system program is loaded.

B>ICS62XX ↵ (Epson logo appears)

* ICE POWER ON RESET *

* DIAGNOSTIC TEST OK * (Check instruction is automatically input; if no anomaly

occurs, the following message appears)

#

When the above display appears, it indicates that the ICE6200 and host are connected properly

and the ICE6200 is operating correctly.

If the ICE6200 is power supply is OFF or the the cable to the host is not connected at the prompt,

the following message appears:

B>ICS62XX↵
COMMUNICATION ERROR OR ICE NOT READY

Then, when the ICE6200 power supply is switched ON, a self-test is automatically performed

and the following message is displayed:

* ICE POWER ON RESET *

* DIAGNOSTIC TEST OK *

#

When an error message is displayed after entering the check instruction, it is likely to be due to

hardware failure. Contact customer support.

VI-27

E0C6281 ICE Operation

2.3.12 Starting the Printer

The printer is controlled by the operating system. The printer can be started and stopped by

entering "CTRL"+"P" key even while the ICS62XX system is running.

#BA,100 ↵
#"CTRL"+"P" T ↵ The monitor display following the "CTRL"+"P" key input

is printed.

PC=300 IR=FFF SP=010

:

:

:

#"CTRL"+"P" Stops the printer

VI-28

E0C6281 ICE Operation

2.3.13 Limitations During Emulation

When running emulations with the ICE6200 and evaluation board connected, the

EVA62XXCPU is normally stopped, as described in section 2.3.1 (set up mode).

In the set up mode, the EVA62XXCPU and peripherals are stopped, and inappropriate operations

cannot be initiated. Until the set up mode is canceled and the target program is executed, the

EVA62XXCPU executes instructions provided by the command program of the ICE6200. The

command program continues to operate when the emulation is completed and returns to the set up

mode.

Fig. 2.3.13 EVA62XXCPU operation

You should be aware that when the command program takes over, the timers and counters are

enabled and started from initial settings. Also, the watchdog timer is cleared immediately prior to

the ICE6200 switching to emulation mode while under command program control.

Prepare mode
(CPU halt)

About 30step
Execute the
emulation
(Running the target program)

About 30step

Prepare mode

CPU operation
(EVA62XX)

VI-29

E0C6281 ICE Operation

Accordingly, the following points should be noted when using the ICE6200.

(1) When execution of the trace instruction (T,U) is prolonged

Evaluation board timer values can be renewed while the command program is operative.

(2) When the run is halted and restarted

The watchdog timer is cleared by the ICE6200 before and after the emulation, thus the

watchdog timer is not continuous. The target program operates in real time when the run time

is sufficiently long.

The command program runs approximately 30 steps before and after an emulation. When

operating at 32kHz clock speed, these steps require 6ms + 6ms = 12ms. While at a clock speed of

455kHz, the command program steps before and after emulation require 400µs + 400µs = 800µs.

When the dump data command (#DD) is invoked, the I/O area interrupt condition flag is read but

not cleared.

VI-30

E0C6281 ICE Operation

2.4 Command Details

Detailed particulars on ICE6200 commands and explanations of functions are described in this

section. Commands are divided into six categories.

– DISPLAY:

This command group displays the contents of program memory and data memory, and history

information.

– SET:

This group of commands modifies the contents of memory (program and data memories).

– BREAK and GO:

Sets break conditions and starts emulations.

– FILE:

Controls transfer of files from the host to the ICE6200.

– ROM:

Controls the transfer of program memory and ROM (high and low) used by the evaluation board

CPU.

– CONTROL:

Sets the ICE6200 operation mode (including initialization of the target system).

An E0C6231/62L31 program is used in the examples, but output error messages may differ with

the type of device used.

The methods for entering instructions described in section 2.4.1 are as follows:

– A # mark is displayed when the program awaits instructions.

– Upper and lower case letters may be used to enter instructions.

– Individual instructions delineated by <> marks in the text should be separated by a comma when

entering instructions.

– Interactive instructions imbeded in commands are displayed by key input. The interactive por-

tions of instructions in the following examples are underlined in the text.

– The toggle instruction is set to reverse upon each command input.

– Notes indicates points for caution when using the described commands.

VI-31

E0C6281 ICE Operation

Format2.4.1 Display Command Group

L DISASSEMBLE LIST ... VI-32

DP DUMP PROGRAM ... VI-34

DD DUMP DATA RAM .. VI-36

DR DISPLAY CPU REGISTER .. VI-38

H HISTORY DATA DISPLAY .. VI-39

HB HISTORY DATA DISPLAY BACKWARD .. VI-42

HG HISTORY DATA DISPLAY FORWARD ... VI-42

HS HISTORY SEARCH PC .. VI-44

HSR HISTORY SEARCH MEMORY READ ... VI-44

HSW HISTORY SEARCH MEMORY WRITE ... VI-44

HP HISTORY POINTER DISPLAY... VI-45

HPS HISTORY POINTER SET .. VI-45

CHK CHECK ICE6200 HARDWARE ... VI-46

DXY DISPLAY X, Y REGISTER and MX, MY COUNT............................. VI-47

CVD DISPLAY COVERAGE .. VI-48

CVR RESET COVERAGE ... VI-48

VI-32

E0C6281 ICE Operation

Format

The program area (emulation program memory) is displayed disassembled from <address

1> to <address 2>.

(1) When <address 2> defaults, a single screen (22 lines) is displayed disassembled.

(2) When <address 1> and <address 2> default, a single screen is displayed disassembled

from the previous address plus one (one more than the previous address).

With only L↵↵ input after power on, the data from address 0 onward is displayed.

(3) When more than a single screen is displayed disassembled, a single line space appears

between each 22 lines with about a one second pause.

(4) The instruction can be interrupted by hitting the "ESC" key.

Program area (for E0C6231/62L31)

000

Address 1 ... 100

The instruction code and mnemonic

for this area is displayed.

Address 2 ... 2FF

3FF

Function

L DISASSEMBLE LIST

#L,<address 1>,<address 2>↵↵
#L,<address 1>↵↵
#L↵↵

VI-33

E0C6281 ICE Operation

Format

#L,100,1FF ↵ Contents of addresses 100 to 1FF of the program
 0100 FDF RET are displayed disassembled.
 0101 2FF JP C,FF

 : : :

 01FF FFF NOP7

#L,200 ↵ Contents from address 200 onward (22 lines)
 0200 E00 LD A,0 are displayed.
 0201 E6F LDPX MX,F

 : : :

 0215 FFF NOP7

#L↵ One more than the previous address at which the
 0216 FDF RET program stopped are displayed.
 0217 E05 LD A,5

 : : :

 022B FFB NOP5

#L,100,FFF ↵
 0100 FDF RET

 : : :

 0201 E6F LDPX MX,F

..... Interrupt via "ESC" key input.

#L,100,50 ↵ Address 1 > address 2 error.
 * COMMAND ERROR *

#L,100,100 ↵ Contents of address 100 are disassembled,
 0100 FDF RET and executed normally.

#L,3FC ↵
 03FC E00 LD A,0

 :

 03FF 20F JP C,F Last program area (3FF address in the case of
E0C6231/62L31) is passed, and instruction

terminates.

#

Examples

DISASSEMBLE LIST L

#L,<address 1>,<address 2>↵↵
#L,<address 1>↵↵
#L↵↵

VI-34

E0C6281 ICE Operation

Format

DP DUMP PROGRAM

#DP,<address 1>,<address 2>↵↵
#DP,<address 1>↵↵
#DP↵↵

The program area (emulation program memory) from <address 1> to <address 2> is

displayed in hexadecimal format.

(1) When <address 2> defaults, the contents of <address 1> are displayed in a single

screen (21 lines, 21×8=168 addresses).

(2) When <addresses 1> and <2> default, a single screen is displayed from the previous

address plus one (one more than the previous address).

When DP↵↵ alone is entered after power on, the data from address 0 are displayed.

(3) When more than one screen of data is displayed, a one line space appears between

every 21 lines with about a one second pause.

(4) Hexadecimal and ASCII codes can be displayed together, but the ASCII data operands

are converted by the RETD and LBPX instructions before display.

Example: Data content 142 ... ASCII display B

(Instruction: RETD 42)

(5) When the last program area passes, the operation terminates.

(6) Commands can be interrupted by input from the "ESC" key.

Program area (for E0C6231/62L31)

000

Address 1 ... 100

Program data from this area are

displayed.

Address 2 ... 2FF

3FF

Function

VI-35

E0C6281 ICE Operation

Format

DUMP PROGRAM DP

#DP,104,121 ↵ Specified area is displayed
 ADDR 0 1 2 3 4 5 6 7 ASCII

 0100 FFF FFB 930 142 ..0B

 0108 FFF FFF FFF FFF FFB 931 142 944 1BD

 : : : : : : : : :

 0118 FFF FFF FFF FFF FFB FFB FFB FFB

 0120 131 145 1E

#DP↵ 21 lines are displayed
 ADDR 0 1 2 3 4 5 6 7 ASCII

 0120 131 132 145 FFF FFB FFB 12E...

 : : : : : : : : :

 : : : : : : : : :

 : : : : : : : : :

21 line display

#DP,0,FFF ↵
ADDR 0 1 2 3 4 5 6 7 ASCII

 0000 FFF FFF FFF FFF FFF FFF FFF FFF

 : : : : : : : : :

 : : : : : : : : :

 : : : : : : : : :

..... Command interrupt via "ESC" key input

#DP,100,50 ↵ Address 1 > address 2 error
 * COMMAND ERROR *

#DP,400,FFF ↵ Error due to exceeding maximum value of program
 * COMMAND ERROR * area (3FF address in the case of E0C6231/62L31)

#DP,<address 1>,<address 2>↵↵
#DP,<address 1>↵↵
#DP↵↵

Examples

VI-36

E0C6281 ICE Operation

Format #DD,<address 1>,<address 2>↵↵
#DD,<address 1>↵↵
#DD↵↵

DD DUMP DATA RAM

Data in the RAM area from <address 1> to <address 2> are displayed in hexadecimal

format.

(1) When <address 2> defaults, the contents of <address 1> are displayed in a single

screen (21 lines or the last RAM address).

(2) When <addresses 1> and <2> default, a single screen is displayed from the previous

address plus one (one more than the previous address). When DD alone is entered

after power on, the data from address 0 are displayed.

(3) The contents from the WRITE ONLY I/O area cannot be read.

(4) The I/O address with mixed R/W data is read and displayed with a ! mark.

(5) Commands can be interrupted by input from the "ESC" key.

00

Data RAM

Address 1 ... 10

Data from this area is displayed

LCD RAM

Address 2 ... 6F

I/O area

7E

(for E0C6231/62L31)

Function

VI-37

E0C6281 ICE Operation

Format

DUMP DATA RAM DD

#DD,<address 1>,<address 2>↵↵
#DD,<address 1>↵↵
#DD↵↵

#DD,40,7E ↵
 ADDR 0 1 2 3 4 5 6 7 8 9 A B C D E F

 0040 5 2 3 4 A B B C D 0 F F F F F F

 0050 - - - - - - - - - - - - - - - -

 0060 - - - - - - - - - - - - - - - - Write only area is displayed
 0070 5 A 3 F 0 5 6 F 4 4 4 0 5 A A

#DD,100,FFF ↵ Error results when RAM address exceeds 7E
 * COMMAND ERROR * (in the case of E0C6231/62L31)

#DD,0 ↵
 ADDR 0 1 2 3 4 5 6 7 8 9 A B C D E F

 0000 F F F F F 0 0 0 0 0 0 1 1 1 2 3

 : :

 : :

 0070 5 A 3 F 0 5 6 F 4 4 4 0 5 A A

..... 21 lines or last RAM address is displayed

#DD↵ Display again from address 0 since last address exceeded
(same as above)

#DD,50,40 ↵
 * COMMAND ERROR * Address 1 > address 2 error

#DD,0,7E ↵
 ADDR 0 1 2 3 4 5 6 7 8 9 A B C D E F

 0000 F F F F F 0 0 0 0 0 0 1 1 1 2 3

 :

..... Instruction terminated by "ESC" key input
#DD,E40,F1F ↵
ADDR 0 1 2 3 4 5 6 7 8 9 A B C D E F

0E40 F 0 1 5 7 4 A 0 0 0 E F 3 2 0 1

..... When the unused area is one
0E80 0 0 3 2 7 6 C 1 1 2 0 0 6 5 4 9 entire line, the display skips
0E90 1 5 7 6 C F 3 2 0 1 0 1 E A C 0 that line (for E0C6246).
0EA0 0 0 0 1 4 0 5 0 0 0 3 0 0 1 5 2

0EBC 4 3 2 7 6 B A 0 1 5 D 3 2 7 4 3

0EC0 5 5 4 1 0 2 3 6 0 0 0 1 5 6 7 F

0F00 ! ! ! ! ! ! / / / / / / / / / / When addresses in the
0F10 F 0 1 0 F F / / / / / / / / / / displayed lines are unused

they are displayed as slashes

Examples

The read operation is invalid when the I/O address is set to write only.Note
(for E0C6246).

VI-38

E0C6281 ICE Operation

Format

Displays the value of the current register of the EVA62XXCPU.

(1) PC: Displays the address which starts the next emulation.

(2) A, B, X, Y, F, SP: Displays the current value (break or after break value).

(3) IR, Mnemonic: Displays the mnemonic code for the PC program area command code.

#DR↵↵

DR DISPLAY CPU REGISTER

Function

Example #DR↵
 * PC=0100 IR=FFF NOP7 A=0 B=0 X=06F Y=03A F= IDZC SP=10

|

Displays characters when F is set,
or . mark when F is reset.

VI-39

E0C6281 ICE Operation

Format

HISTORY DATA DISPLAY H

#H,<pointer 1>,<pointer 2>↵↵
#H,<pointer 1>↵↵

Function Displays history data.

(1) Displays history data from <pointer 1> to <pointer 2>.

(2) When <pointer 2> defaults, displays history data of <pointer 1> in 21 lines.

(3) Numerals displayed in <pointers 1> and <2> are decimal, from 0 to 9999.

(4) The following contents are displayed for each instruction:

LOC: History pointer (decimal)

PC: Program counter (hexadecimal) When a break, "[PC]" is displayed.

IR: Command code (hexadecimal)

OP: Command mnemonic

OPR: Command operand

A,B,X,Y: Contents of A, B (Xp, Xh, Xl), (Yp, Yh, Yl) registers

IDZC: Binary display of flag bit (1 when set, 0 when clear)

Other: During execution of an instruction, the memory R/W cycle and data are

displayed. Also, data interrupts INT1 (stack data) and INT2 are

displayed

(5) History memory has a capacity of 8192 bus cycles. One the other hand, the E0C6200

has 5, 7 and 12 clock instructions. The 5 clock instructions require three bus cycles, 7

clock instructions require four bus cycles, and 12 clock instructions require six bus

cycles. Thus, the final value of the history pointer is changed according to the

executed instruction. The maximum final value of the execution time for only a 5

clock instruction is approximately 2700, while the execution time for a 12 clock

instruction is about 1300. When a break occurs before the history memory reaches the

end, the last value of the history pointer is reduced.

(6) The history memory receives new data until a break occurs. Old data is erased when

number of executed GO commands exceeds 2700.

(7) The top of the history pointer is 0. When the last value of <address 2> is set, the values

are displayed to the last value.

(8) When there are no history data (Before GO command, after GO command execution,

during T command execution, or during HAR command execution), the following

message is displayed:

* NO HISTORY DATA *

(9) The HB command can be used to view history data immediately prior to a break.

VI-40

E0C6281 ICE Operation

Format

#H,200,205 ↵ Set range displayed
 LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 0200 0128 FDO POP A F 0 020 021 0011 R01F=0

 0201 0129 F70 DEC M0 0 0 020 021 0010 R000=1 W000=0

 0202 012A 722 JP NZ,22 0 0 020 021 0010

 0203 012B F71 DEC M1 0 0 020 021 0000 R001=2 W001=1

 0204 012C 721 JP NZ,21 0 0 020 021 0000

 0205 0121 F80 LD M0,A 0 0 020 021 0000 W000=0

#300 ↵ 21 lines displayed
 LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 0300 000F C1F ADD B,OF F 4 02D 031 0001

 0301 0010 70E JP NZ,OE F 3 02D 031 0001

 0302 000E EE8 LDPX MX,A F 3 02D 031 0001 W02D=F

 : : : : :

 0319 0124 E10 LD B,00 F 0 030 031 0001

 0320 0125 BD0 LD X,D0 F 0 010 031 0001

#H,0,100 ↵
 LDC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 0000 0000 E1C LD A,B 5 4 000 024 0000

 0001 0001 E16 LD B,06 4 4 000 024 0000

 0002 0002 822 LD Y,22 4 6 000 022 0000

 0003 0003 EF0 INC Y 4 6 000 022 0000

 0004 0004 EF3 LDPY A,MY 4 6 000 023 0000 R023=0

 0005 0005 90A LBPX MX,0A 0 6 001 024 0000 W000=A W001=0

 0006 0006 C05 ADD A,05 0 6 002 024 0000

 0007 0007 D52 SBC B,02 5 6 002 024 0000

 0008* 0008 17F RETD 7F 5 4 003 024 0000 R01A=C R01B=9 R01C=1 W002=F W003=7

 * Instruction terminates after exceeding last history memory.

#H,310,3000 ↵
 LDC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 0310 0010 70E JP NZ,0E F 0 020 021 0011

 0311 0011 8F1 LD Y,21 F 0 020 021 0011

 0312 0012 E38 LD MY,08 F 0 020 021 0011 W021=8

 : : : : : : : : :

 2430 0172 E32 LD MY,02 7 6 024 026 0000 W026=2

 2431 0173 F48 EI 7 6 024 026 0000

 2432 0174 FF8 HALT 7 6 024 026 1000

 2433 W01F=1 W01E=7 W01D=5 INT1

 2434 INT2

 2435* 0108 0E6 JP E6 7 6 024 026 0000

..... INT1 or INT2 displayed when interrupt only occurs

#H,<pointer 1>,<pointer 2>↵↵
#H,<pointer 1>↵↵

H HISTORY DATA DISPLAY

Examples

VI-41

E0C6281 ICE Operation

Format

#H,0,500 ↵
 LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 0000 0010 70E JP NZ,0E F B 015 021 0001

 0001 000E EE8 LDPX MX,A F B 015 021 0001 W015=F

 0002 000F C1F ADD B,0F F B 016 021 0001

 0003 0010 70E JP NZ,0E F A 016 021 0001

 0004 000E EE8 LDPX MX,A F A 016 021 0001 W016=F

 0005 000F C1F ADD B,0F F A 017 021 0001

 0006 0010 70E JP NZ,0E F 9 017 021 0001

 0007 000E EE8 LDPX MX,A F 9 017 021 0001 W017=F

 0008 000F C1F ADD B,0F F 9 018 021 0001

 0009 0010 70E JP NZ,0E F 8 018 021 0001

 0010 000E EE8 LDPX MX,A F 8 018 021 0001 W018=F

..... Instruction terminated by "ESC" key input

#

HISTORY DATA DISPLAY H

Example

#H,<pointer 1>,<pointer 2>↵↵
#H,<pointer 1>↵↵

The history data register value is changed by the line following the instruction execution

(limited to "LD X,x" and "LD Y,y").

Note

VI-42

E0C6281 ICE Operation

Format #HB↵↵
#HG↵↵

HB, HG HISTORY DATA DISPLAY BACKWARD/FORWARD

Function Indicates the history information before and after the history pointer.

(1) HB: 21 instructions displayed from the current history pointer. The current pointer

decrements 21 after display. (Validated in vicinity of last displayed history value.)

(2) HG: 21 instructions displayed from the current history pointer. The current pointer increments

21 after display. (Validated from old displayed history value by a screen.)

(3) The current history pointer indicates the last pointer after GO command completion.

← Current history pointer = last history pointer - 42

Displayed by HB 21 lines (Second HB execution)

← Current history pointer = last history pointer - 21

Displayed by HB 21 lines (First HB execution)

← Current history pointer = last history pointer

(immediately after GO command)

#BA,108 ↵

#G,R↵
 *PC=

 *PC=HALT

 *EMULATION END STATUS = BREAK HIT

 *PC=01E6 A=7 B=6 X=024 Y=026 F=.... SP=4D

 *RUN TIME=TIMEOVER

#HB↵
 LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 2415 0423 83A LD Y,3A 7 6 056 03A 0010

 2416 0424 CF1 OR MY,01 7 6 056 03A 0000 R03A=0 W03A=1

 2417 0425 FDF RET 7 6 056 03A 0000 R01D=6 R01E=6 R01F=1

 : : : : : : : : :

 2432 0174 FF8 HALT 7 6 024 026 1000

 2433 W01F=1 W01E=7 W01D=5 INT1

 2434 INT2

 2435* 0108 0E6 JP E6 7 6 024 026 0000

..... When an HB command is executed after a break hit, 21 lines
are displayed from the break address onward.

Examples

VI-43

E0C6281 ICE Operation

Format

#HPS,200 ↵

#HG↵ 21 history pointer instructions displayed from 200
 LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 0200 0128 FD0 POP A F 0 020 021 0011 R01F=0

 0201 0129 F70 DEC M0 0 0 020 021 0010 R000=1 W000=0

 0202 012A 722 JP NZ,22 0 0 020 021 0010

 0203 012B F71 DEC M1 0 0 020 021 0000 R001=2 W001=1

 : : : : : : : : :

 0218 000F C1F ADD B,0F F E 013 011 0001

 0219 0010 70E JP NZ,0E F D 013 011 0001

 0220 000E EE8 LDPX MX,A F D 013 011 0001 W013=F

#HPS,200 ↵

#HB↵ 21 history pointer instructions displayed from 200
 LDC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 0180 000F C1F ADD B,0F F 6 03B 021 0001

 0181 0010 70E JP NZ,0E F 5 03B 021 0001

 0182 000E EE8 LDPX MX,A F 5 03B 021 0001 W03B=F

 0183 000F C1F ADD B,0F F 5 03C 021 0001

 : : : : : : : : :

 0198 0012 E38 LD MY,08 F 0 020 021 0011 W021=8

 0199 0013 FDF RET F 0 020 021 0011 R01C=8 R01D=2 R01E=1

 0200 0128 FDO POP A F 0 020 021 0011 R01F=0

#HG↵
 LDC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 2418 0166 B3A LD Y,3A 7 6 03A 03A 0000

 2419 0167 CAE AND MX,0E 7 6 03A 03A 0010 R03A=1 W03A=0

 2420 0168 BFE LD X,2E 7 6 02E 03A 0010

 2421 0169 E20 LD MX,00 7 6 02E 03A 0010 W02E=0

 2422 016A BF0 LD X,20 7 6 020 03A 0010

 2423 016B 980 LBPX MX,B0 7 6 021 03A 0010 W020=0 W021=8

 2424 016C 9C1 LBPX MX,C1 7 6 023 03A 0010 W022=1 W023=C

..... Instruction terminated by "ESC" key input
#

HISTORY DATA DISPLAY BACKWARD/FORWARD HB, HG

#HB↵↵
#HG↵↵

Examples

VI-44

E0C6281 ICE Operation

Format

Retrieves and indicates history information under the following conditions.

(1) HS: Indicates the history information of the PC address specified by <address>.

(2) HSR: Indicates the history information which read the memory specified by

<address>.

(3) HSW: Indicates the history information which wrote the memory specified by

<address>.

#HS,<address> ↵↵
#HSR,<address> ↵↵
#HSW,<address> ↵↵

HS, HSR, HSW HISTORY SEARCH PC/MEMORY READ/MEMORY WRITE

Function

#HS,0700 ↵ Retrieves and indicates the history information of PC = 700
 LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 1980 0700 FC1 PUSH B 0 0 0FE 0FF 1111 W0F0=0

 2038 0700 FC1 PUSH B 5 1 0FE 0F0 1001 W0FE=1

 :

 :

#HSR,30 ↵ Retrieves and indicates the history information which read address 30
 LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 0820 0640 EC2 LD A,MX 0 0 030 0FF 1111 R030=0

 0950 084F EC6 LD B,MY 0 F 030 0FF 1111 R030=F

 :

 :

#HSW,30↵ Retrieves and indicates the history information which wrote address 30
 LOC PC IR OP OPR. A B X Y IDZC MEMORY OPERATION OTHER

 0838 0650 E60 LDPX MX,0 0 0 030 0FF 1111 W030=0

 0950 084F E71 LDPY MY,1 0 0 0FF 030 1111 W030=1

 :

 :

Examples

VI-45

E0C6281 ICE Operation

Format

HISTORY POINTER DISPLAY/SET HP, HPS

#HP↵↵
#HPS,<history pointer> ↵↵

Function (1) HP: Displays current history pointer value.

(2) HPS: Sets the displayed history pointer value in the current history pointer. When a

value is input which exceeds the last history pointer, the last pointer value is set

to the current history pointer.

(3) The history pointer is displayed in four lines of decimal code, and set.

#HP↵
 * LOC=2058 Pointer (last value) displayed at break

#HPS,1000 ↵ Pointer set to 1000

#HP↵
 * LOC=1000 Pointer value = 1000

#HPS,9999 ↵
 * LOC=2058 Return to last pointer value

Last pointer value is validated when last value is

#HP↵ exceeded

 * LOC=2058

Examples

VI-46

E0C6281 ICE Operation

Format

#CHK↵
 * ROM CHECK ERROR 5F=>FF * Message is displayed when an
 * RAM CHECK ERROR 001111 55=>FF * error is detected

#CHK↵

..... A waits command under normal conditions

#CHK↵↵

CHK CHECK ICE6200 HARDWARE

Function Displays the results of the ICE6200 initial test.

(ICE6200 executes the initial test at power on.)

The test consists of the following:

(1) Sum check test of ICE6200 firmware

(2) ICE6200 RAM R/W test

Note When an error message is displayed, avoid further use of the device since it is likely due to

hardware failure.

Examples

VI-47

E0C6281 ICE Operation

Format

#DXY↵
 X=070 MX= 5

 Y=07C MY= F

#DXY↵
 X=200 MX=-:OV Indicates the RAM area has been exceeded;
 Y=050 MY=- read operation not viable
 :.......... Indicates write only area; read operation not viable

#DXY↵
 X=E73 MX= / Shows that E73 is unused area
 Y=252 MY= F Read operation not viable

#

DISPLAY X, Y REGISTER, MY CONTENT DXY

#DXY↵↵

Function Displays current X register (Xp, Xh, Xl) and Y register (Yp, Yh, Yl), as well as MX and

MY (contents of memory specified by codes X and Y).

Examples

VI-48

E0C6281 ICE Operation

Format #CVD,<address 1>,<address 2> ↵↵
#CVD↵↵
#CVR↵↵

CVD, CVR DISPLAY/RESET COVERAGE

Function Indicates and clears coverage information.

(1) CVD: Indicates the coverage information ranging from <address1> to <address2>.

Indicates all coverage information when address are omitted.

(2) CVR: Clears coverage information.

#CVD,100,110 ↵ Indicates the coverage information ranging
 *CV 0100 from address 100 to 110
 *CV 0109..0110

#

#CVD↵ Indicates the whole coverage information
 *CV 0100

 *CV 0109..02FF

 *CV 0400..04FF

#

#CVR↵ Clear coverage information
#

Examples

VI-49

E0C6281 ICE Operation

Format2.4.2 Set Command Group

A ASSEMBLE PROGRAM .. VI-50

FP FILL PROGRAM... VI-52

FD FILL DATA RAM ... VI-53

MP MOVE PROGRAM ... VI-54

MD MOVE DATA RAM .. VI-55

SP SET PROGRAM .. VI-56

SD SET DATA RAM .. VI-57

SR SET REGISTER... VI-58

SXY SET MX, MY DATA... VI-59

HC SET HISTORY CONDITION ... VI-60

HA SET HISTORY RANGE.. VI-61

HAD DISPLAY HISTORY RANGE .. VI-61

HAR RESET HISTORY RANGE .. VI-61

VI-50

E0C6281 ICE Operation

Format

Function

A ASSEMBLE PROGRAM

#A,<address> ↵↵ (With guidance)

The mnemonic command is assembled and stored at the address indicated by <address>.

(1) Supports the mnemonics and operands in the instruction list used in the E0C62 Family.

(2) Operand expressions follow the configurations below:

p: 00 to 03 values

s: 00 to FF values

l: 00 to FF values

i: 00 to 0F values

r,q: A, B, MX or MY

In general, hexadecimal expressions do not have "H" appended at the end.

Three digit data can be input starting from the 0 column.

0FF input: Validates FF

00FF input: Causes an error

An error is generated by invalidated values entered for p, s, l or i.

Only binary expressions (xxxxB) are allowed in the input area. The x in this case has a

fixed length of from one to four digits comprised either of 0 or 1, with "B" input last.

When less than three digits are input, the expression is handled as a binary expression

or an error.

(3) Either upper or lower case letters may be used for input.

(4) Mnemonic and operand codes should be separated by one or more character spaces or

by a tab code.

(5) An error is generated when an unsupported instruction is entered.

(6) A or B input gains register priority. Input 0A or 0B when entering immediate value

settings.

LD A,B Contents of B register are input to A register.

LD B,0A Immediate value A is loaded to B register.

VI-51

E0C6281 ICE Operation

Format

#A,100 ↵ Instruction entered by key input
 0100 LD A,0F ↵ Address displayed; mnemonic input awaited (mnemonic

instruction, operand input)
 0101 / ↵ / ↵ input cancels instruction

#A,200 ↵
 0200 PUSH XP↵ Error generated by unapproved mnemonic input
 * ERROR * (for E0C62XX/62*XX); same address is redisplayed

with mnemonic request
 0200 NOP5↵
 0201 JJJ 0FF ↵
 * ERROR *

 0201 LD A,FF ↵ Error generated when valid operand range is exceeded
 * ERROR *

 0201 LD A,0F ↵
 0202 / ↵

#A,202 ↵
 0202 ^↵ Return to previous address (current address less one) via
 0201 / ↵ ^ key input

#

ASSEMBLE PROGRAM A

#A,<address> ↵↵ (With guidance)

Note "ESC" key nonfunctional; cancel operation by entering /↵.

Examples

VI-52

E0C6281 ICE Operation

Format

The contents of <address 1> and <address 2> of the program area (ICE emulation

memory) are stacked in the program data area.

Program area (for E0C6231/62L31)

000

Address 1 ... 100

Program data Reloads with specified data

Address 2 ... 2FF

3FF

Function

FP FILL PROGRAM

#FP,<address 1>,<address 2>,<program data> ↵↵

#FP,0,3FF,FFB ↵ Data from addresses 000 to 3FF of the program area are
stacked to the FFB (NOP5 code)

#FP,100,200,FF9 ↵ When undefined code is detected, an error message is
 * COMMAND ERROR * displayed and the instruction will not execute

#FP,200,100,FFF ↵
 * COMMAND ERROR * Address 1 > address 2 error

#FP,200,200,FFF ↵ Address 200 is modified to instruction code FFF (NOP7);
instruction completes normally

#

Examples

VI-53

E0C6281 ICE Operation

Format

FILL DATA RAM FD

#FD,<address 1>,<address 2>,<data> ↵↵

Function Data is stacked in the data RAM area at addresses 1 to 2 in hexadecimal or binary code.

Data RAM area (for E0C6231/62L31)

00

Address 1 ... 06

Data Reloads with specified data

Address 2 ... 40

LCD RAM

70 I / O
7E

#FD,60,7E,A ↵ Reloads the contents of the data RAM addresses 60
to 7E to A

#FD,10,2F,0101B ↵ Reloads address 10 to 2F with
data 0101 (binary) = 5 (hexadecimal)

#FD,50,1FF,0 ↵ Error is generated because settings exceed the RAM area
 * COMMAND ERROR * (address 7E for E0C6231/62L31) and the instruction

will not execute
#FD,70,60,0 ↵
 * COMMAND ERROR * Address 1 > address 2 error

#FD,0,7E,B ↵ Reloads the entire RAM area (for E0C6231/62L31)
with data B (hexadecimal)

#FD,40,40,0 ↵ 0 written to 40 address

Examples

(1) For binary expressions, four digit 0 (or 1) and B input (total of five characters) only are

accepted.

(2) Write operation is not performed to the read only address of the I/O area.

(3) When there is an unused area in the specified address, the data is rewritten except for

the unused area.

Notes

VI-54

E0C6281 ICE Operation

Format

Function

MP MOVE PROGRAM

#MP,<address 1>,<address 2>,<address 3> ↵↵

Contents of program area addresses 1 to 2 are transferred to addresses 3 and above.

 Program area (for E0C6231/62L31)

Address 1 ... 000

 A

Address 2 ... 0FF

Address 3 ... 100

 A <

1FF

3FF

#MP,0,FF,100 ↵ Contents of program area addresses 000 to 0FF are
transferred to addresses 100 to 1FF

#MP,100,2FF,300 ↵ When the transfer area surpasses address 3FF, an error
 * COMMAND ERROR * message is displayed and the instruction will not

execute
#MP,200,100,300 ↵
 * COMMAND ERROR * Address 1 > address 2 error

#MP,200,200,300 ↵ Contents of address 200 are copied to address 300, then
the instruction is executed normally

#

Examples

VI-55

E0C6281 ICE Operation

Format

MOVE DATA RAM MD

#MD,<address 1>,<address 2>,<address 3> ↵↵

Function Contents of addresses 1 to 2 in the data RAM area are transferred to addresses 3 and above.

 Data RAM area (for E0C6231/62L31)

Address 1 ... 00

 A

Address 2 ... 3F

Address 3 ... 50

 A <

4F

7E

#MD,10,1F,30 ↵ Contents of data RAM addresses 10 to 1F are moved to
addresses 30 to 3F

#MD,00,3F,70 ↵
 * COMMAND ERROR * When the transfer area exceeds the RAM area (7E for

E0C6231/62L31), an error is indicated and commands
are not executed

#MD,30,20,50 ↵
 * COMMAND ERROR * Address 1 > address 2 error

#MD,30,30,50 ↵ Contents of address 30 are copied to address 50, then
instruction is executed normally

#MD,E00,E1F,E60 ↵
 * UNUSED AREA * When there is an unused area in the transfer area (either

sending or receiving side), an unused area error message
is displayed (for E0C6246).

Examples

(1) A write operation cannot execute when the top transferred address coincides with the

I/O area read only region.

(2) A read operation cannot execute when the bottom transferred address coincides with

the I/O area write only region. In this case a 0 is written to the top address.

(3) When the transfer address coincides with an I/O address of mixed readable bits and

write only bits, either read or write operations can execute.

Notes

VI-56

E0C6281 ICE Operation

Format

Contents of the specified program area address are displayed or modified.Function

SP SET PROGRAM

#SP,<address> ↵↵ (With guidance)

#SP,100 ↵
 0100 FFF: ↵ Contents of address 100 are read, and cannot be modified

by a ↵ alone
 0101 FFF: FFB↵ New data is written
 0102 FFF: FF9↵
 * CODE ERROR * Error message is displayed when undefined code is

detected; contents are written unchanged to the same
address

 0102 FFF: FO5↵
 0103 FFF: A6B↵
 0104 FFF: ^↵ Operation returns to previous address (one less than
 0103 A6B: ^↵ current address) via input by entering ^↵
 0102 F05: F06↵
 0103 A6B: ↵
 0104 FFF: ABx↵
 * COMMAND ERROR * Error is generated by data setting error; message

displayed
 0104 FFF: ABC↵
 0105 FFF: / ↵ / ↵ input terminates instruction

#SP,400 ↵
 * COMMAND ERROR * Since it exceeds the program area (3FF for E0C6231/

62L31), an error is indicated
#SP,3FE ↵
 3FE FFF: 011↵
 3FF FFF: FFB↵ Instruction is completed after last address in input
#

Examples

VI-57

E0C6281 ICE Operation

Format

Contents of the data RAM are addresses are displayed or modified.

(1) Data cannot be written to the read only area.

(2) Data in the write only area cannot be read.

SET DATA RAM SD

#SD,<address> ↵↵ (With guidance)

Function

Examples #SD,20 ↵
 20 5: A↵ Contents of address 20 are modified and stored to A
 21 5: ^↵ Return to previous address (one less than the current
 20 A: B↵ address) by entering ↵̂
 21 5: F↵
 22 5: / ↵ Instruction terminated by /↵

#SD,FFF ↵
 * COMMAND ERROR * When specification exceeds the maximum value of the

RAM area (7F for E0C6231/62L31), an error is
indicated.

#SD,70 ↵
 70 4: - ↵
 71 F: - ↵ Hyphen only displayed due to read only address;
 72 5: - ↵ data input not accepted
 73 6: - ↵
 74 6: 5↵
 75 8: 4↵
 76 5: A↵
 77 8: 9↵
 78 8: 5↵
 79 A: - ↵
 7A B: - ↵
 : : :

 7E F: - ↵ Command terminates after last address entered

#SD,E50 ↵
 * UNUSED AREA * When an unused area has been specified, "UNUSED

AREA" is displayed (for E0C6246).
#SD,ECE↵
 ECE 0: F↵
 ECF 4: F↵
 * UNUSED AREA * When an unused area is entered into during data setting,

"UNUSED AREA" is displayed (for E0C6246).
#

VI-58

E0C6281 ICE Operation

Format

EVA62XXCPU registers are displayed and modified.

(1) Specified data is set in specified registers.

(2) Register names can be specified as: PC, A, B, X, Y, FI, FD, FZ, FC, and SP.

Function

SR SET REGISTER

#SR↵↵ (With guidance)

#SR,<register name>,<data> ↵↵

#SR↵
 PC=0100: 0105 ↵ Input data and ↵ to registers you wish to modify enter
 A= 5: ↵ ↵ only to skip to the next register
 B= A: 5↵
 X= 02F: 20↵
 Y= 010: 1A↵
 FI= 0: 1↵
 FD= 1: ↵
 FZ= 0: ↵
 FC= 1: 0↵
 SP= 4F: ^↵ Entering the ↵̂ returns operation to previous register
 FC= 0: 1↵ (one less than the current register)
 SP= 4F: ↵

#SR,X,AA ↵ X register only is changed to AA

#SR↵
 PC= 105: ↵ Current value is saved with ↵ key input
 A= 5: ↵
 B= 5: ↵
 X= 2A: ↵
 Y= 2A: ↵
 :

 :

 SP= 4F: ↵
#

Examples

Instruction will not complete with /↵ input; use ↵ up to the last register.Note

VI-59

E0C6281 ICE Operation

Format

SET MX, MY DATA SXY

#SXY↵↵ (With guidance)

Function Current contents of the X register (Xp, Xh, Xl), Y register (Yp, Yh, Yl), and MX and MY

(contents specify memory X, Y) are displayed. Contents of MX and MY can also be

modified.

#SXY↵ Display only; ↵ alone continues operation
 X=040 MX=5: ↵
 Y=030 MY=A: ↵

#SXY↵
 X=040 MX=5: 0↵ Sets new data to MX, MY
 Y=030 MY=A: F↵

#SXY↵
 X=070 MX=3:- Data to read only area not accepted
 Y=FFF MY=-:OV Input not accepted if RAM area is exceeded

#SXY↵
 X=E52 MX * UNUSED AREA * An unused area error message is displayed
 Y=1A7 MY=1: 3↵ for E52 (for E0C6246)

#

Examples

VI-60

E0C6281 ICE Operation

Format #HC,S/C/E ↵↵

Function

HC SET HISTORY CONDITION

Sets up the area for history extraction by means of the break point.

"[]" is added to the break point.

Examples #HC,S↵ Extracts the history from the break point

#HC,C↵ Extracts the history before and after the break point

#HC,E↵ Extracts the history up to the break point (default value)

VI-61

E0C6281 ICE Operation

Format

SET/DISPLAY/RESET HISTORY RANGE HA, HAD, HAR

#HA,<address 1,<address 2>/ALL ↵↵
#HAD↵↵
#HAR,<address 1,<address 2>/ALL ↵↵

Function Sets up, indicates and clears PC address within the history extraction area.

(1) HA: Extract the range specified by <address>.

When specifying ALL, all addresses will be specified.

(2) HAD: Indicates the address of history extraction area.

(3) HAR: Do not extract the range specified by <address>.

When specifying ALL, history isn't extracted.

#HAR,ALL↵ Clears the entire history extraction area

#HA,300,400 ↵ Specifies history extraction area

#HA,100,200 ↵

#HA,500,500 ↵

#HAD↵ Indicates history extraction area
 *HA 0100..0200

 *HA 0300..0400

 *HA 0500

#

Examples

VI-62

E0C6281 ICE Operation

Format

VI-63

E0C6281 ICE Operation

Format2.4.3 Break and Go Command Group

BA SET BREAK ADDRESS CONDITION .. VI-64

BAR RESET BREAK ADDRESS CONDITION VI-64

BD SET BREAK DATA CONDITION ... VI-65

BDR RESET BREAK DATA CONDITION .. VI-65

BR SET BREAK REGISTER CONDITION ... VI-66

BRR RESET BREAK REGISTER CONDITION VI-66

BM SET BREAK MULTIPLE CONDITION .. VI-68

BMR RESET BREAK MULTIPLE CONDITION VI-68

BC BREAK CONDITION DISPLAY ... VI-70

BRES RESET ALL BREAK CONDITION ... VI-71

G GO TARGET PROGRAM ... VI-72

T SINGLE STEP TRACE ... VI-75

U SINGLE STEP TRACE & LAST INFORMATION DISPLAY VI-77

BE BREAK ENABLE MODE SET ... VI-78

BSYN BREAK DISABLE & SYNC MODE SET VI-78

BT BREAK TRACE MODE SET.. VI-79

BRKSEL BREAK ADDRESS MODE SELECT ... VI-80

VI-64

E0C6281 ICE Operation

Format

Sets break condition for the PC.

(1) BA: The value indicated at the specified address is set to the break condition.

Multiple addresses are set by using commas to divide them. Consecutive

addresses are set by separating entries with two period marks (.). Entering

<address 3>..<address 4> sets a break condition such that <address 3> ≤ PC ≤
<address 4>.

(2) BAR: Can be cleared separately from break condition set by BA.

(3) Addresses which can be entered by a single BA or BAR instruction can be set multiple

times in a single line (80 columns).

(4) When the BA command is executed several times, previous settings are valid.

(5) When the BM command is executed, all BA conditions are canceled.

(6) When entering the GO command at a break, the BA condition may enter the clear

mode or a condition retaining mode. (Refer to the BRKSEL command.)

Function

BA, BAR SET/RESET BREAK ADDRESS CONDITION

#BA, <address 1>, <address 2>, <address 3>, <address 4>↵↵
#BAR,<address 1>, <address 2>, <address 3>, <address 4>↵↵

Examples #BA,100,200,101,1FF ↵ Break condition set at addresses 100, 200, 101 and 1FF

#BA,300..3FF ↵ Break conditions set at addresses 300 to 3FF

#BAR,100,200..3FF ↵ Break conditions canceled at address 100 and addresses
200 to 3FF (although break conditions were not set at
addresses 201 to 2FF, no error occurs even with BAR
setting)

#BC↵
 BA 0201 BA condition is displayed by BC command
 BA 02FF

 BD NONE

 BR NONE

 :

#

VI-65

E0C6281 ICE Operation

Format

Break condition set for data RAM read/write area.

(1) BD: Break condition set for RAM data address, data, and R/W. Address can be set

at one point, data set from addresses 0 to F or masked, and the R/W area set to

read, write, or masked. A break is generated when the three conditions

specified by address, data, and R/W coincide.

(2) BDR: Cancels the condition set by BD command.

(3) A break condition set by the BD command is functional at one point only, but can be

mixed with BA and BR commands.

(4) A BD condition can be canceled by executing the BM command.

SET/RESET BREAK DATA CONDITION BD, BDR

#BD↵↵ (With guidance)

#BDR↵↵

Function

#BD↵
 ADDR ---: 074↵ A hyphen (-) is displayed when the BD condition is
 DATA -: 5↵ absent. At address 74, the number 5 is entered as data
 R/W -: * ↵ and the R/W is masked (*)
In the above example, a break is set for when the number 5 is written to or read from the data RAM
address 074.

#BD↵
 ADDR 074: ↵ When no setting modification is made, hitting the ↵

key continues the operation to the next setting
 DATA 5 : 1*1*B ↵ Data is masked
 R/W * : W↵ Sets the R/W function to write
At the current settings, a break is generated when 1 is written to 23 bit and 21 bit at data RAM address
74.

#BDR↵ All BD conditions are cleared
#BD↵
 ADDR ---: ↵ Entering ↵ after canceling BD setting confirms
cancellation

Examples

VI-66

E0C6281 ICE Operation

Format

Function

BR, BRR SET/RESET BREAK REGISTER CONDITION

#BR↵↵ (With guidance)

#BRR↵↵

A break condition is set in the EVA62XXCPU registers A, B, FLAG, X (Xp, Xh, Xl,) or Y

(Yp, Yh, Yl).

(1) BR: A break condition is set in the target registers A, B, FLAG, X (Xp, Xh, Xl,) or

Y (Yp, Yh, Yl). The break condition in each register can be masked (a masked

register can generate a break in another register, whatever the specified value).

Break is induced when the values of each register correspond to the set values

in the internal CPU registers.

(2) BRR: Cancels a break condition set by BR command.

(3) A break set by the BR command is operative at one point. BA and BD settings can be

mixed.

(4) A BR condition can be canceled by executing the BM command.

#BR↵
 A -: C↵ A hyphen (-) is displayed when a BR condition is not
 B -: * ↵ set. Break condition is sequentially set
 FI -: 1↵
 FD -: * ↵ Enter an asterisk (*) mark to indicate masking
 FZ -: 0↵ This induces a break unrelated to the FD value
 FC -: * ↵
 X ---: 040↵
 Y ---: ^↵ If a parameter is mis-set, entering the ^ key will return
 X ---: 041↵ the operation to the previous setting (one less than the
 Y ---: 030↵ current setting)
A break condition set as described above, where A=C, FI=1, FZ=0, X=41, and Y=30.

#BR↵
 A C: ↵ Reads a previously set break condition
 B *: ↵ When no setting modification is made, hitting the ↵
 FI 1: * ↵ key continues the operation to the next setting
 FD *: ↵
 FZ 0: * ↵
 FC *: ↵
 X 041: 042↵
 Y 030: * ↵
Two break conditions where A=C and X=42 are described above.

Examples

VI-67

E0C6281 ICE Operation

Format

#BRR↵ A BR condition is cleared by the BRR command
#BR↵
 A -: ↵ Entering ↵ after canceling BR setting confirms

cancellation
#BR↵
 A -: 0↵
 B -: 0↵
 FI -: * ↵
 FD -: * ↵
 FZ -: * ↵
 FC -: * ↵
 X ---: 40↵
 Y ---: 30↵
A break condition is set wherein A=0, B=0, X=40, and Y=30.

#BR↵
 A 0: ↵
 B 0: 5↵
 FI *: / ↵ Entering / when no further setting changes are desired
completes the instruction
A break condition is set where A=0, B=5, X=40, and Y=30.

SET/RESET BREAK REGISTER CONDITION BR, BRR

#BR↵↵ (With guidance)

#BRR↵↵

Examples

Notes (1) The target system operates in real time even when a GO command is executed after

setting a BR condition.

(2) Each model (E0C62XX/62*XX) has a different RAM area, and XY settings in a BR

command can be set to FFF.

VI-68

E0C6281 ICE Operation

Format

Sets the compound break function for multiple breaks when all conditions for the

EVA62XXCPU PC, data RAM access, and register values coincide.

(1) Although the BA, BD and BR instructions can be set independently, the BM

command generates a break when all conditions for the PC, data RAM access, and

register values coincide. In other words, it can be thought of as the AND setting for the

BA, BD and BR commands.

(2) Previously set BA, BD and BR conditions are canceled by the BM instruction. Also,

the BM setting is canceled when the BA, BD and/or BR instructions are set after the

BM instruction is set.

(3) The BMR command cancels the BM instruction.

(4) A break is set at only one point by the BM command. Each register setting can be

masked.

Function

BM, BMR SET/RESET BREAK MULTIPLE CONDITION

#BM↵↵ (With guidance)

#BMR↵↵

#BM↵
 PC ----: 100↵ A hyphen (-) is displayed when a BM condition is
 ADDR ---: 70↵ canceled.
 DATA -: A↵ Break condition is set where PC=100, RAM access=70,
 R/W -: * ↵ RAM data=A, D and C flags=1, and Y register=3E.
 A -: * ↵ During execution of the instructions at address 100, a
 B -: * ↵ break occurs when the following conditions coincide:

 FI -: * ↵ RAM at address 70 is accessed, read/write data A,
FD and
 FD -: 1↵ FC are set, and Y register is 3E. (Valid for break during
 FZ -: * ↵ program loop.)
 FC -: 1↵
 X ---: * ↵ The point at which the break is placed is masked by an
Y ---: 3E↵ asterisk (*) mark.

Example

VI-69

E0C6281 ICE Operation

Format

#BM↵
 PC 100: * ↵ PC mask
 ADDR 70: 71↵
 DATA A: ^↵ Enables return to previous operation when ^ key is
 ADDR 71: 72↵ entered
 DATA A: ↵ Previous setting retained when ↵ alone is entered
 R/W *: W↵
 A *: ↵
 B *: ↵
 FI *: ↵
 FD 1: ↵
 FZ *: ↵
 FC 1: ↵
 X *: 70↵
 Y 7E: ↵
As shown above, a break is generated when data A is written to RAM address 72 if CPU register
X=70, Y=7E, FD=1 and FC=1.

#BM↵
 PC *: 100↵
 ADDR 71: / ↵ Entering/↵ does not alter later settings; adds PC=100 to

above conditions
#BMR↵ Cancels condition set by BM command

#BM↵
 PC ----: ↵ Entering ↵ after canceling BM setting confirms
cancellation

SET/RESET BREAK MULTIPLE CONDITION BM, BMR

#BM↵↵ (With guidance)

#BMR↵↵

Examples

(1) Use of the BM command automatically cancels BA, BD and BR commands.

(2) This instruction runs a break comparison only during execution with memory access.

The above described limitations remain even when ADDR, data and R/W are masked.

Therefore, a break will not occur when the instruction does not access data memory

even if the PC and register values coincide.

(3) Each model (E0C62XX/62*XX) has a different RAM area, and XY settings in a BM

command can be set to FFF.

Notes

VI-70

E0C6281 ICE Operation

Format

Displays the current break condition.Function

BC BREAK CONDITION DISPLAY

#BC↵↵

#BC↵ Break condition is verified after power on. All break
 * BA NONE conditions are canceled.
 * BD NONE

 * BR NONE

 * BM NONE

 * BREAK ENABLE MODE Enters break enable mode
 * BREAK STOP MODE Enters break stop mode
 * TIME COUNT MODE Enters real-time mode

#BA,100,101 ↵

#BC↵ Reads after address break condition set Break condition
 * BA 0100..0101 confirmed
 * BD NONE

 * BR NONE

 * BM NONE

 * BREAK ENABLE MODE

 * BREAK STOP MODE

 * TIME COUNT MODE

#BRES↵

#BA,100,102 ↵

#BC↵
 * BA 0100 Displays multiple executions of BA condition when
 * BA 0102 addresses are not consecutive
 :

 :

#

Examples

VI-71

E0C6281 ICE Operation

Format

All break conditions (BA, BD, BR, or BM settings) are canceled.

#BRES↵
#BC↵
 * BA NONE

 * BD NONE

 * BR NONE

 * BM NONE

 * BREAK ENABLE MODE

 * BREAK STOP MODE

 * TIME COUNT MODE

#

SRESET ALL BREAK CONDITION BRES

#BRES↵↵

Example

Function

Although the break condition is canceled, the break mode (enable/disable, trace, stop,

time/stop) is still operative.

Note

VI-72

E0C6281 ICE Operation

Format

This instruction runs the target program. When a break condition is detected, program

execution is halted and the break status is displayed to complete the instruction.

1. Setting the starting address

(1) When an address is entered, the run starts from that address.

(2) With an R setting the EVA62XXCPU is reset, and the run starts from the reset

address 0100.

(3) When the address and R setting are defaulted, the run starts from the current

address (PC which displays the status during the previous break).

When G↵ is entered after power on, the run starts from address 0100, but the

EVA62XXCPU is not reset.

2. Break Mode and Break Condition

Item Break mode(note) Break condition Comments

1 BE mode and * Reset switch Mode at power on.

Break Stop mode * Break switch

* Break set commands

 (BA, BD, BR, BM)

* ESC input

2 BE mode and * Reset switch When the break condition

Break trace mode * Break switch and EVA62XXCPU executed

* ESC input cycle coincide, the break

status alone is displayed and

the GO command is restarted.

3 BSYN mode and * Reset switch When the break condition and

Break stop mode * Break switch EVA62XXCPU executed

* ESC input cycle coincide, a pulse is

output to the SYNC pin.

 (Note) Refer to section 2.3.2 for more information on the break mode.

Function

G GO TARGET PROGRAM

#G↵↵
#G,<address> ↵↵
#G,R↵↵

VI-73

E0C6281 ICE Operation

Format

GO TARGET PROGRAM G

Function

#G↵↵
#G,<address> ↵↵
#G,R↵↵

3. Display During Execution of GO Instruction

Item Display mode (note) Display method

1 On-the-fly display mode#G↵
 *PC=xxxx ... Sampling of the PC is displayed

about every 500ms.

HALT message is displayed

during halt.

2 On-the-fly inhibit mode#G↵ Execution status is not displayed.

 (Note) Refer to section 2.3.4 for information on the display modes.

4. Break Display

#G↵
 *PC=xxxx

 *EMULATION END STATUS = BREAK HIT (A)

 * PC=0100 A=0 B=0 X=70 Y=00 F=ID.C SP=10 (B)

 *RUN TIME=xxx mS (C)

> The break status is displayed.

(A)BREAK HIT, ESC KEY, BREAK SW displays appear in parts. When the reset switch

is depressed, the message, *ICE6200 RESET SW TARGET* , is displayed without

displaying the break status, and the next instruction is awaited.

(B)Register contents are displayed in part when PC (next executed address) is stopped.

(C)The execution time or executed number of steps set by TIM command are displayed in

part. (Refer to page 93 for details of the TIM command.)

VI-74

E0C6281 ICE Operation

Format

#OTF↵ On-the-fly set command
 * ON THE FLY ON *

These settings
#BE↵ Break enable set command are set at power
 * BREAK ENABLE MODE * on; default is

command input
#BT↵ Break stop mode set command
 * BREAK STOP MODE *

#G,R↵ Target and evaluation board is reset; run starts from reset
address (0100)

 *PC=xxxx PC display is cyclic
 *EMULATION END STATUS = BREAK HIT (A)
 *PC=01FF A=5 B=0 X=70 Y=05 F=..ZC SP=20 (B)
 *RUN TIME=100mS (C)

(A) Break displayed through break condition (BA condition set at 01FE)
(B) F is expresses reset bit and (.) bit as English letter
(C) Run time is 100ms

G GO TARGET PROGRAM

#G↵↵
#G,<address> ↵↵
#G,R↵↵

Examples

VI-75

E0C6281 ICE Operation

Format

SINGLE STEP TRACE T

Function

#T,<address>,<step number> ↵↵
#T,<address> ↵↵
#T,,<step number> ↵↵
#T↵↵
Executes trace, and single step actions of programs.

(1) The specified portion of the target program executes with a frequency indicated by the

number of steps from the specified address (65535 possible in decimal code). The PC,

instruction word and register contents are displayed with each execution.

(2) When the step number is defaulted, only one step is executed.

(3) When the address is defaulted, the specified number of steps is executed from the

current PC (PC at which the previous T command completed).

(4) When both address and step number are defaulted, only one step is executed from the

current PC. When this setting occurs after power on, one step is executed from

PC=0100.

(5) When the step number is one (#T, <address> or #T), the instruction does not terminate

after one step, but a further step is executed by the "SP" key input, at which time the

instruction can be terminated by the "ESC" key input.

(6) In (1) above, the instruction is terminated by "ESC" key input.

#T,100,3 ↵
 *PC=0100 IR=FFF NOP7 A=0 B=0 X=00F Y=00F F=IDZC SP=10

 *PC=0101 IR=E05 LD A,5 A=5 B=0 X=00F Y=00F F=IDZC SP=10

 * PC=0102 IR=B05 ADC XH,5 A=5 B=0 X=051 Y=00F F=IDZC SP=10

 | | |

Executed PC Command code Correctors displayed when the flag is set
is displayed. and mnemonic and/or reset (After executing three steps,

are displayed. the current PC is 0103).

Example

VI-76

E0C6281 ICE Operation

Format

#

#T↵ Program executes sequentially in steps from current PC (=103) via "SP" key.
 *PC=0103 IR=FDF RET A=5 B=0 X=04F Y=03F F=IDZC SP=013 "SP"
 *PC=01AA IR=AD1 OR A,B A=5 B=0 X=04F Y=03F F=ID.C SP=013 "ESC"

Instruction is terminated by "ESC" key.

#T↵
 *PC=01AB IR=xxx PSET 2 A=x B=x X=xxx Y=xxx F=xxxx SP=013

 *PC=01AC IR=xxx JP 10 A=x B=x X=xxx Y=xxx F=xxxx SP=013 "ESC"

Because the PSET command is used in relation to the subsequent instruction,
two command executions can be set by invoking the T command once.

#T↵
 *PC=01AD IR=xxx HALT _

 Cursor
When the HALT command is executed by the T command, the command mnemonics are
displayed until the target interrupt as described above, but the register value is not displayed.
When an interrupt is properly input, the register is displayed and the next "SP" is awaited. The
SP input restarts the program after the interrupt routine.
When the target interrupt never occurs, the instruction can be forced to terminate by using the
"ESC" key. At that point, the HALT and T commands terminate, but the HALT command

T SINGLE STEP TRACE

Examples

#T,<address>,<step number> ↵↵
#T,<address> ↵↵
#T,,<step number> ↵↵
#T↵↵

(1) The T command does not operate in real time. Therefore, the target timer is

renewed.(For details refer to section 2.3.13.)

(2) When the H command is input after executing this command, the message, *NO

HISTORY DATA*, is displayed. Therefore, the G command must be used to analyze

history data.

Notes

VI-77

E0C6281 ICE Operation

Format

SINGLE STEP TRACE & LAST INFORMATION DISPLAY U

Function

#U,<address>,<step number> ↵↵
#U,,<step number> ↵↵

Executes trace and single step actions of programs and indicates final results alone.

(1) The target program is executed from the address specified in <address> for the

frequency specified in <step number> (65535 possible in decimal code), but the

results are not displayed until after the final instruction is completed.

(2) When the address is defaulted, execution starts from the current PC for the specified

number of steps.

#U,100,5 ↵
 *PC=01AA IR=ADI OR A,B A=5 B=0 X=04F T=03F F=ID.C SP=13

#U,,1 ↵
 *PC=01AB IR=FFF NOP7 A=5 B=0 X=04F Y=03F F=ID.C SP=13

#

Examples

(1) The U command does not run in real time, so the target timer is renewed. (For details

refer to section 2.3.13.)

(2) When the H command is input after executing this command, the message, *NO

HISTORY DATA*, is displayed. Therefore, the G command must be used to analyze

history data.

Notes

VI-78

E0C6281 ICE Operation

Format

Sets the break enable mode and break disable mode.

(1) BE: Sets the break enable mode. A break is generated when the BA, BD, BR or

BM conditions coincide with the EVA62XXCPU state.

(2) BSYN: Sets the break disable (synchronous) mode. When the BA, BD, BR or BM

conditions coincide with the EVA62XXCPU state, a pulse is output to the

ICE6200 SYNC pin and a break is not generated.

(3) At power on, the break enable mode is operative.

BE, BSYN BREAK ENABLE MODE SET/BREAK DISABLE & SYNC MODE SET

#BE↵↵
#BSYN↵↵

Function

#BE↵

 * BREAK ENABLE MODE

#BSYN↵

 * BREAK DISABLE MODE

 * BREAK STOP MODE

Examples

Details of break enable/disable functions can be found in section 2.3.2 Break Mode.Note

VI-79

E0C6281 ICE Operation

Format

BREAK TRACE MODE SET BT

Function

#BT↵↵ (Toggle)

Selects the break stop mode or the break trace mode. Setting is reversed with each

command input. At power on, the break stop mode is operative.

#BT↵
 * BREAK TRACE MODE Since the stop mode is operative at power on, the trace
 * BREAK ENABLE MODE mode is set by command input

#BT↵
 * BREAK STOP MODE The setting is reversed by command input

#

Examples

Refer to section 2.3.2 for details on break stop and trace modes.Note

VI-80

E0C6281 ICE Operation

Format

After setting the break address condition (BA), the program runs until stopped by a break

hit; the settings then remain or cancel the previously set BA condition. The cancel mode is

operative at power on. The BA condition remain mode (REM mode) is used when

multiple break conditions are set and the program runs to consecutive break points. The

BA condition cancel mode is used to debug when the break point is changed with each

break.

BRKSEL BREAK ADDRESS MODE SELECT

#BRKSEL,REM↵↵
#BRKSEL,CLR↵↵

Function

#BA,0100 ↵

#BRKSEL,REM↵ Remain mode is set

#BC↵
 BA 0100

 :

#G↵
 *PC=100

 *EMULATION END STATUS = BREAK HIT Break is generated when break
 *RUN TIME=10mS condition hits

#BA,200 ↵ New break condition is set

#BC↵
 BA 0100 Pre-break condition remains
 BA 0200

 :

#BRKSEL,CLR↵ Clear mode is set

#G↵
 *PC=101

 *EMULATION END STATUS = BREAK HIT Break condition hits
 *RUN TIME=30mS

#BA,300 ↵ New break condition is set

#BC↵
 BA 0300 Pre-break condition is canceled
 :

#BA,350,3A0 ↵

#BC↵
 BA 0300 After break condition remains
 BA 0350

 BA 03A0

#

Examples

VI-81

E0C6281 ICE Operation

Format2.4.4 File Command Group

RF READ PROGRAM FILE ... VI-82

RFD READ DATA FILE ... VI-82

VF VERIFY PROGRAM FILE ... VI-83

VFD VERIFY DATA FILE .. VI-83

WF WRITE PROGRAM FILE ... VI-84

WFD WRITE DATA FILE.. VI-84

CL CONDITION LOAD ... VI-85

CS CONDITION SAVE .. VI-85

OPTLD READ HEXA DATA FILE ... VI-86

VI-82

E0C6281 ICE Operation

Format

Loads files onto the emulation memories.

(1) RF: The hex file specified in <file name> is loaded in the emulation program

memory.

(2) RFD: The hex file (data RAM) specified in <file name> is loaded in the data memory.

Function

RF, RFD READ PROGRAM/DATA FILE

#RF,<file name> ↵↵
#RFD,<file name> ↵↵

#RF, C6200A0 ↵ C6200A0H.HEX file and C6200A0L.HEX file are loaded
in the program memory

#RFD,WORK↵ WORKD. HEX file is loaded in the data memory

Examples

(1) When the memory area is overreached (address 3FF in program memory; address 7E in

data memory for E0C6231/62L31) or an FD file format error is detected, an error

message, *FILE DATA FORMAT ERROR* , is displayed and the instruction terminates.

The contents of the emulation program memory and data memory are not secured.

(2) I/O memory, segment memory and unused area are not loaded into data memory.

(3) The files are in hexadecimal format. (For details, refer to section 2.7.)

(4) The file format is created by the E0C62XX/62*XX cross assembler. (For details, refer

to the "E0C62XX/62*XX Cross Assembler Manual".)

(5) "ESC" key is invalid during instruction execution.

(6) When an input error (FD error, not drive error) is detected on the PC side, control is

returned to the operating system, and therefore, the ICS62XX is terminated.

(7) When an undefined instruction is detected, an error message is displayed and the

ICS62XX program terminates. (For details, refer to section 2.5.)

Notes

VI-83

E0C6281 ICE Operation

Format

(1) Notes (1), (3), (4) and (6) in page 82 are applicable to these instructions.

(2) "ESC" key is valid during error message display; "ESC" key input terminates the

instruction.

(3) I/O memory, segment memory and unused area in data memory cannot be compared.

VERIFY PROGRAM/DATA FILE VF, VFD

Notes

Compares the contents of the emulation memories with those of files.

(1) VF: The contents of the emulation program memory and the hex file specified in

<file name> are collated.

(2) VFD: The contents of the emulation data memory (data RAM) and the hex file

specified in <file name> are collated.

#VF,<file name> ↵↵
#VFD,<file name> ↵↵

Function

#VF,C6200A0 ↵ C6200A0H.HEX and C6200A0L.HEX files and the
 ADDR FD:ICE program memory are collated
 0100 FFF:FFC The contents of the FD address and the memory are
 0300 FFC:FFB displayed only when the collated data do not agree.

#VFD,DATA↵
 ADDR FD:ICE

 001 1:3

 * ESC * Display can be interrupted by "ESC" key input

Examples

VI-84

E0C6281 ICE Operation

Format

Saves the contents of the emulation memories to files.

(1) WF: The contents of the emulation program memory are saved to the file specified

in <file name>.

(2) WFD: The contents of the emulation data memory (data RAM) are saved to the file

specified in <file name>.

Function

WF, WFD WRITE PROGRAM/DATA FILE

#WF,<file name> ↵↵
#WFD,<file name> ↵↵

#WF,C6200A0↵ Program memory is saved to C6200A0H.HEX and
C6200A0L.HEX files.

#WFD,WORK↵ Data memory is saved to WORKD.HEX file.

#WF,ABCDEFGH↵
 * COMMAND ERROR * An error occurs if the file name exceeds seven characters.

Examples

(1) Notes (3), (4), (5) and (6) of page 82 are applicable to these commands.

(2) I/O memory, segment memory and unused area in data memory cannot be saved.

Notes

VI-85

E0C6281 ICE Operation

Format

CONDITION LOAD/SAVE CL, CS

#CL,<file name> ↵↵
#CS,<file name> ↵↵

Function Loads the contents of the emulation memories of ICE6200 and the contents of each setting

from files or save them to files.

(1) CL: The program and data from the file specified in <file name> are loaded into the

program and data memories respectively. Each type of command set condition

is loaded, also.

(2) CS: The contents of the current ICE6200 emulation program memory and data

memory as well as each command set condition (break state, etc.) are saved to

the file specified in <file name>.

The loaded and saved contents are as follows:

– Target program (emulation program)

– Target data (emulation data)

– Current register values of the EVA62XXCPU (A, B, X, Y, F, SP, PC)

– Current break data (conditions set by BA, BD, BR and/or BM commands)

– Break mode data (execution time/steps, break stop/break trace, break enable/

break SYNC, with/without on-the-fly).

These instructions are valid when power is switched off and reapplied.

#CS,TEST↵ Current ICE6200 set conditions are saved to the
 : TESTC.HEX file; contents of emulation program
 : memory are saved to the TESTH.HEX file, while
Power OFF contents of data memory are saved to the TESTD.HEX
Power ON file
 :

#CL,TEST↵ Contents saved in CS are loaded; ICE6200 returns to
the status prior to power OFF

Examples

(1) Notes (1), (2), (3), (4), (5), and (6) of page 82 are applicable to these commands.

(2) A file name of up to seven characters may be specified as <file name> for #CS,<file

name>.

Notes

VI-86

E0C6281 ICE Operation

Format

Load melody HEX files in the EVA628X melody data memory.

These are HEX files output by the melody assembler and have intel HEX format.

#OPTLD,C2810A0↵ C2810A0.HEX files are loaded in the melody data memory

Function

#OPTLD,0,<file name> ↵↵

OPTLD READ HEXA DATA FILE

Example

VI-87

E0C6281 ICE Operation

Format2.4.5 ROM Command Group

RP LOAD ROM PROGRAM .. VI-88

VP VERIFY ROM PROGRAM .. VI-89

ROM ROM TYPE SELECT .. VI-90

VI-88

E0C6281 ICE Operation

Format

The program is loaded to the ICE6200 emulation memory from the ROM at the ICE ROM

socket (high and low). The FF ROM data is unassembled.

Function

RP LOAD ROM PROGRAM

#RP↵↵

#RP↵
 * NO ROM H/L * Error is generated because high and low ROM are

unassembled
#RP↵
 * NO ROM H * Error generated because high side ROM is unassembled

#RP↵
..... Contents of ROM are properly loaded

#

Examples

(1) Refer to the ROM commands for information on the valid loading region.

(2) When undefined code is detected, the ICS62XX program is terminated and control

returns to the operating system.

Notes

VI-89

E0C6281 ICE Operation

Format

VERIFY ROM PROGRAM VP

#VP↵↵

Function The contents of the ICE6200 ROM socket (high and low) and the ICE emulation memory

are compared. When they do not agree, the data contents are displayed.

#VP↵

When the results of the comparison are acceptable, the
 : program execution is at waiting until ordering the next
 : instruction

#VP↵
 ADDR ROM:ICE

 0100 FFF:FFC All non-agreeing data (ROM address, ROM contents,
 0300 0FF:0FC emulation memory contents) are displayed

 : : :

 03FF 000:001

#VP↵
 * NO ROM H * Error because high side ROM is unassembled

#VP↵
 ADDR ROM:ICE

 0100 FFF:FFC

 0300 0FF:0FC

 : : :

 * ESC * Processing is interrupted by "ESC" key input, and the
program execution is at waiting until entering the next

command

Examples

VI-90

E0C6281 ICE Operation

Format

The ROM type which is assembled to the ICE6200 ROM socket is set.

(1) 2764, 27128, 27256 or 27512 can be selected.

(2) The region to which the ROM type is loaded is described below.

Function

ROM ROM TYPE SELECT

#ROM↵↵ (With guidance)

#ROM↵
 *ROM 64: ↵ Initial value set at 64

When ↵ input alone is entered without modification of
data, the execution is at waiting until entering the next
command

#ROM↵
 *ROM 64: 256↵ Setting changed to 27256
#ROM↵
 *ROM 256: FF↵ Setting other than 64, 128, 256 or 512 results in an error
 * COMMAND ERROR *

#ROM↵
 *ROM 256: ↵
#

Examples

ROM which is assembled to the high and low IC sockets should be the same types.Note

2764 27128 27256 27512

Low High Low High Low High Low High
D0–D7 D0–D3 D0–D7 D0–D3 D0–D7 D0–D3 D0–D7 D0–D3

0 0 0 0

1FFF

1FFF 8000
9FFF

1FFF 3FFF 7FFF FFFF
iR0–iR7 iR8–iR11 iR0–iR7 iR8–iR11 iR0–iR7 iR8–iR11 iR0–iR7 iR8–iR11
Instruction code bit

Valid
ROM address

VI-91

E0C6281 ICE Operation

Format2.4.6 Control Command Group

I INITIALIZE TARGET CPU ... VI-92

TIM TIME OR STEP MODE SELECTION.. VI-93

OTF ON THE FLY MODE SET .. VI-94

Q QUIT .. VI-95

VI-92

E0C6281 ICE Operation

Format

Resets the EVA62XXCPU.

Resets the EVA62XXCPU, but the ICE6200 set conditions (break, etc.) are affected.

Function

I INITIALIZE TARGET CPU

#I ↵↵

#I ↵

The execution is at waiting until entering the next command

Example

VI-93

E0C6281 ICE Operation

Format

TIME OR STEP MODE SELECTION TIM

#TIM↵↵ (Toggle)

Function When the GO command is entered, the execution time counter, execution time count

mode or step count mode is operative. The execution time count mode is the default at

power on. The setting is reversed at each command input.

#TIM↵
 * STEP COUNT MODE Since the mode after power supply is the time count

mode, entering a command toggles the setting to step
mode

#TIM↵
 * TIME COUNT MODE Setting is reversed with each command input

#

Examples

Refer to section 2.3.10 for more details on the time count and step count modes.Note

VI-94

E0C6281 ICE Operation

Format

Selects whether or not to run the on-the-fly display during GO execution.

On-the-fly display mode is the default at power on. Use the display off mode when the

host is connected to a printer.

Function

OTF ON THE FLY MODE SET

#OTF↵↵ (Toggle)

#OTF↵
 * ON THE FLY OFF Since the display mode is the default at power on, a

command input toggles to the display off mode
#OTF↵
 * ON THE FLY ON On-the-fly display mode is operative

#G↵
 * PC=xxxx Displays fixed cycle of EVA62XXCPU's executed PC
 :

 :

 :

#OTF↵
 * ON THE FLY OFF

#G↵
..... PC is not displayed

Examples

For more details about the on-the-fly function, refer to section 2.3.4.Note

VI-95

E0C6281 ICE Operation

Format

QUIT Q

#Q↵↵

Function Terminates the ICS62XX program and returns control to the operating system.

#Q↵

B> Awaits control by host computer operating system

B>ICS62XX↵ Reloads the ICE
... Epson logo is displayed for about one second ...
 * ICE POWER ON RESET *

 * DIAGNOSTIC TEST OK *

..... Awaits ICE instruction

Example

VI-96

E0C6281 ICE Operation

Format

VI-97

E0C6281 ICE Operation

Format2.4.7 HELP Command

VI-98

E0C6281 ICE Operation

Format

#HELP↵

Refer to HELP messages on next page

 KEY IN 1.8 ENTER OR ENTER ONLY : 1↵

Displays DISPLAY COMMAND
(Refer to next page)

#HELP,F ↵ Error is generated if a value other than 1 to 8 is entered
 * COMMAND ERROR *

#

Displays the ICS62XX commands.

(1) All commands are displayed on a single screen when no option (,n) is set.

(2) Displays the related commands when an option (,n) is set.

Explanations for commands of the same group are displayed.

n value Command group

1 DISPLAY COMMAND

2 SET COMMAND

3 BREAK and GO COMMAND

4 FILE COMMAND

5 ROM COMMAND

6 CONTROL COMMAND

7 ALL COMMAND DISPLAY

8 BASIC COMMAND DISPLAY

Function

HELP

#HELP↵↵ (With guidance)

#HELP,n ↵↵ (n=1 to 8)

Examples

VI-99

E0C6281 ICE Operation

Format

HELP

#HELP↵↵ (With guidance)

#HELP,n ↵↵ (n=1 to 8)

Examples #HELP↵
 1.DISPLAY COMMAND #L #DP #DD #DR #H #HB #HG #HS #HSW #HSR
 #HP #CHK #DXY #CVD #HAD
 2.SET COMMAND #A #FP #FD #MP #MD #SP #SD #SR #SXY #HC
 #HA #HAR #HPS #CVR
 3.BREAK and GO COMMAND #BA #BD #BR #BM #BAR #BDR #BRR #BMR #BRES
 #BC #G #T #U #BSYN #BE #BT #BRKSEL
 4.FILE COMMAND #RF #VF #WF #RFD #VFD #WFD #CL #CS #OPTLD
 5.ROM COMMAND #RP #VP #ROM
 6.CONTROL COMMAND #I #TIM #OTF #Q
 7.ALL COMMAND DISPLAY
 8.BASIC COMMAND DISPLAY

 KEY IN 1..8 ENTER or ENTER ONLY : ↵
#

#HELP,1 ↵
 1.DISPLAY COMMAND
 (1)#L,addr1,addr2 program code and mnemonic display.
 (2)#DP,addr1,addr2 program area HEX display.
 (3)#DD,addr1,addr2 data area HEX display.
 (4)#DR register data display.
 (5)#H,addr1,addr2 history data display.
 (6)#HB or #HG history data display BACK or GO NEXT.
 (7)#HS,addr history serch and display.
 (8)#HSW,addr memory write history serch and display.
 (9)#HSR,addr memory read history serch and display.
(10)#HP current history pointer display.
(11)#CHK ice initial self test information display.
(12)#DXY X,Y register and MX,MY data display.
(13)#CVD,addr1,addr2 coverage area display.
(14)#HAD history PC area information display.

#

#HELP,2 ↵
 2.SET COMMAND
 (1)#A,addr assemble program.
 (2)#FP,addr1,addr2,data fill program addr1 to addr2 by data.
 (3)#FD,addr1,addr2,data fill data addr1 to addr2 by data.
 (4)#MP,addr1,addr2,addr3 move program from addr1..addr2 to addr3.
 (5)#MD,addr1,addr2,addr3 move data from addr1..addr2 to addr3.
 (6)#SP,addr program area patch.
 (7)#SD,addr data area patch.
 (8)#SR or #SR,reg,data register patch.
 (9)#SXY MX,MY patch.
(10)#HC,S/C/E history Start/Center/End set.
(11)#HA,addr1,addr2 set PC addr1..addr2 save to history memory.
 (#HA,ALL) (all data save.)
(12)#HAR,addr1,addr2 inhibit PC addr1..addr2 save to history memory.
 (#HAR,ALL) (all reset.)
(13)#HPS,addr set history pointer.
(14)#CVR reset coverage information.

#

VI-100

E0C6281 ICE Operation

Format

HELP

#HELP↵↵ (With guidance)

#HELP,n ↵↵ (n=1 to 8)

Examples #HELP,3 ↵
 3.BREAK and GO COMMAND
 (1)#BA,addr,... set break address.
 (2)#BD set break data condition.
 (3)#BR set break register condition.
 (4)#BM set break address,data,register multiple condition.
 (5)#BAR reset break address.
 (6)#BDR reset break data condition.
 (7)#BRR reset break register condition.
 (8)#BMR reset break address,data,register multiple condition.
 (9)#BRES reset all break condition.
(10)#BC break condition display.
(11)#G or #G,addr GO current address or GO from set addr.
(12)#G,R GO after reset cpu.
(13)#T,addr,step single step run and display break information.
(14)#U,addr,step single step run in ICE. and display last break informa-
tion.
(15)#BSYN set break disable mode.
(16)#BE set break enable mode.
(17)#BT set and reset break trace made. (alternate)
(18)#BRKSEL,CLR/REM set break address clear mode or remain mode.

#

#HELP,4 ↵
 4.FILE COMMAND
 (1)#RF,file program load.
 (2)#VF,file program verify.
 (3)#WF,file program save.
 (4)#RFD,file RAM data load.
 (5)#VFD,file RAM data verity.
 (6)#WFD,file RAM data save.
 (7)#CL,file program,RAM data,break condition load.
 (8)#CS,file program,RAM data,break condition save.
 (9)#OPTLD,option no.,file HEXA data load.

#

#HELP,5 ↵
 5.ROM COMMAND
 (1)#RP program load from ROM.
 (2)#VP program verify ice:ROM.
 (3)#ROM ROM type select. (64,128,256,512)

#

#HELP,6 ↵
 6.CONTROL COMMAND
 (1)#I reset target CPU.
 (2)#TIM set step count mode or time count mode. (alternate)
 (3)#OTF set on-the-fly display mode or inhibit mode. (alternate)
 (4)#Q program exit.

VI-101

E0C6281 ICE Operation

Format

HELP

#HELP↵↵ (With guidance)

#HELP,n ↵↵ (n=1 to 8)

Examples #

#HELP,8 ↵
 8.BASIC COMMAND
 (1)#L,addr1,addr2 program code and mnemonic display.
 (2)#DD,addr1,addr2 data area HEX display.
 (3)#DR register data display.
 (4)#BC break condition display.
 (5)#H,addr1,addr2 history data display.
 (6)#A,addr assemble program.
 (7)#SP,addr program area patch.
 (8)#SD,addr data area patch.
 (9)#SR register patch.
(10)#BA,abbr,... set break address.
(11)#BD set break data condition.
(12)#BR set break register condition.
(13)#BM set break address,data,register multiple condition.
(14)#BRES reset all break condition.
(15)#G or #G,addr GO current address or GO from set address.
(16)#T,addr,step single step run and display break information.
(17)#CL,file program,RAM data,break condition load.
(18)#CS,file program,RAM data,break condition save.
(19)#I reset target CPU.
(20)#Q program exit.

#

VI-102

E0C6281 ICE Operation

Format2.5 Error Message Summary

Error message * COMMUNICATION ERROR OR ICE NOT READY *
Meaning ICE6200 is disconnected or power is OFF.

Recovery procedure Switch OFF the host power supply, connect cable, and reapply power. Or

switch ON power to ICE6200.

Error message * TARGET DOWN(1) *
Meaning Evaluation board is disconnected. (Check at power ON)

Recovery procedure Switch OFF power to ICE, and connect the evaluation board. Then, apply

power to ICE6200.

Error message * TARGET DOWN(2) *
Meaning Evaluation board disconnected. (Check at command execution)

Recovery procedure Switch OFF power to ICE, and connect the evaluation board. Then, apply

power to ICE6200.

Error message * UNDEFINED PROGRAM CODE EXIST *
Meaning Undefined code is detected in the program loaded from ROM or FD. (ICE

program terminates)

Recovery procedure Convert ROM and FD data with the E0C62XX/62*XX cross assembler, then

restart the ICE6200.

Error message * COMMAND ERROR *
Meaning A miss occurs by command input.

Recovery procedure Reenter the proper command.

Error No response after power on.
Meaning The ICE-to-HOST cable is disconnected on the host side.

Recovery procedure Connect the cable.

VI-103

E0C6281 ICE Operation

Format2.6 FD File Configuration

The ICE6200 uses the types of FD files listed below. All are in hexadecimal file format. For

more details on hex file format, refer to section 2.7.

Command File

WF,<filename> ↵ The high order 4 bits and low order 8 bits of program memory are

RF,<filename> ↵ output (or input, or compared) to two files: filenameH.HEX and

VF,<filename> ↵ filenameL.HEX. The output object file of the E0C62XX/62*XX

cross assembler is loaded the emulation program memory via these

commands.

WFD,<filename> ↵ The contents of data RAM (4 bits. high order 4 bits are

RFD,<filename> ↵ meaningless) are output (or input, or compared) to

VFD,<filename> ↵ filenameD.HEX.

CS,<filename> ↵ Contents of program memory and data RAM are output (or input)

via the WF and/or WFD commands. During a break, data is output

(or input) to the file specified by filenameC.HEX.

OPTLD,n,<filename> ↵ HEXA data is loaded in the EVA62XX HEXA data memory with

the ICE6200 using this command.

ICE6200

Emulation
program memory

filenameL.HEX

filenameH.HEX

ICE6200

Emulation
data memory

filenameD.HEX

ICE6200

Data during
break

Emulation
program memory

Emulation
data memory

filenameC.HEX

filenameL.HEX

filenameH.HEX

filenameD.HEX

EVA628X

HEXA data
memory

HEXA dataICE6200

VI-104

E0C6281 ICE Operation

Format2.7 Appendix HEX File Format

Description of HEX file format

Example:

Data volume Type

 Address Data Sum check

: 10010000CD15010E20CD2901CD47010C79FE7FC20E
: 100110000501C303012124017EA7CA2301D3D123F2
: 10012000C31801C9AA40CE3700DBD1E604CA2901B1
: 1001300079D3D0C9CD3F01CA3401DBD0E67FC9DB1A
: 10014000D1E602C83EFFC9CD3F01FE00CA5C01CD29
: 100150003401FE03CA5D01FE13CC6001C9C3000077
: 10016000CD3F01FE00CA6001CD3401FE13C2600123
: 10017000C9000000000000000000000000000000B6
: 00000001FF

End mark

a) Data volume (1 byte): Indicates the quantity of data contained in the data area.

Maximum capacity is 10H (sixteen entries).

b) Address (2 bytes) : Indicates the top line of data at each address.

c) Type (1 byte) : Indicates the type of hexadecimal format, currently only 00.

d) Data (16 bytes max.) :Data is shown in hexadecimal format.

e) Sum check (1 byte) : Two complements resulting from adding all bytes from "data

volume bytes" to "final data byte" are expressed as hexadecimal

values.

f) End mark : Required to mark the end of the hex file.

VII. E0C6281MASK DATA CHECKER MANUAL

PREFACE

This manual explains how to operate the MDC6281 Mask Data Checker for 4-bit single-chip E0C6281

microcomputer.

Refer to "E0C6281 Technical Hardware Manual", "E0C6281 Technical Software Manual", and

"E0C6281 Development Tool Manuals" for details about the E0C6281. Refer to "E0C62 Family

Technical Guide" for details about the development procedure.

CONTENTS

1. INTRODUCTION ... VII-1

1.1 Outline of the Mask Data Checker .. VII-1

1.2 Execution Flow and Input/Output Files .. VII-2

2. MASK DATA CHECKER OPERATION .. VII-3

2.1 Creating a Work Disk ..VII- 3

2.2 Copying the Data File ... VII-3

2.3 Execution of MDC6281 .. VII-4

2.3.1 Starting MDC6281 ... VII-4

2.3.2 Packing of data ... VII-5

2.3.3 Unpacking of data .. VII-6

3. ERROR MESSAGES.. VII-7

3.1 Data Error .. VII-7

3.1.1 Program data error .. VII-7

3.1.2 Function option data error .. VII-7

3.1.3 Segment option data error .. VII-8

3.2 File Error ... VII-8

3.3 System Error .. VII-8

4. PACK FILE CONFIGURATION ...VII- 9

4.1 Program Data, Melody ROM Data and Scale ROM Data ... VII-10

4.2 Segment Data ... VII-11

VII-1

E0C6281 Mask Data Checker

1 INTRODUCTION

1.1 Outline of the Mask Data Checker

The Mask Data Checker MDC6281 is a software tool which checks the program data

(C281yyyH.HEX and C281yyyL.HEX), option data (C281yyyF.DOC and C281yyyS.DOC),

and melody data (C281yyyA.DOC) created by the user and creates the data file (C6281yyy.PAn)

for generating mask patterns.

The user must send the file generated through this software tool to Seiko Epson.

Moreover, MDC6281 has the capability to restore the generated data file (C6281yyy.PAn) to the

original file format (C281yyyH.HEX, C281yyyL.HEX, C281yyyF.DOC, C281yyyS.DOC, and

C281yyyA.DOC).

Two MDC6281 system disks are supplied by Seiko Epson: one for NEC PC-9801 series (5.25”

2HD) and one for IBM PC/XT and PC/AT (5.25” 2D).

The basic configurations are as follows.

– NEC PC-9801 series

Host computer: PC-9801 series

Disk drive: FD (5.25" 2HD) × 1 or more

OS: MS-DOS Ver. 3.1 or later

– IBM PC/XT or PC/AT

Host computer: IBM PC/XT or PC/AT

Disk drive: FD (5.25" 2D) × 1 or more

OS: PC-DOS Ver. 2.1 or later

The Mask Checker program name is as follows:

MDC6281.EXE

Note: In OS environment setup file CONFIG.SYS, the number of files that can be opened at the same

time must be set at least 10.

Example: FILES = 20

VII-2

E0C6281 Mask Data Checker

1.2 Execution Flow and Input/Output Files

The execution flow for MDC6281 is shown in Figure 1.2.

SEIKO EPSON

C281yyyH.
HEX

MDC6281

C281yyyL.
HEX

C6281yyy.
PAn

MDC6281

(4)

(1) (2)

C281yyyF.
DOC

C281yyyS.
DOC

C281yyyA.
DOC

(3)

C281yyyH.
PAn

C281yyyL.
PAn

C281yyyF.
PAn

C281yyyS.
PAn

C281yyyA.
PAn

(5)

Fig. 1.2 MDC6281 Execution Flow

(1) Preparation of program data files (C281yyyH.HEX and C281yyyL.HEX)

Prepare the program data files generated from the Cross Assembler (ASM6281).

(2) Preparation of option data files (C281yyyF.DOC and C281yyyS.DOC)

Prepare the function option data file (function option) generated from the Function Option

Generator (FOG6281) and segment option data file (segment option) generated from the

Segment Option Generator (SOG6281).

(3) Preparation of melody data file (C281yyyA.DOC)

Prepare the melody data file generated from the Melody Assembler (MLA6281).

(4) Packing of Data

Using the Mask Data Checker (MDC6281), compile the program data, option data, and

melody data in one mask data file (C6281yyy.PAn). This file must be sent to Seiko Epson.

(5) Unpacking of Data

Furthermore, the mask data file (C6281yyy.PAn) may be restored to the original program

data, option data, and melody data files using the Mask Data Checker (MDC6281).

VII-3

E0C6281 Mask Data Checker

2 MASK DATA CHECKER OPERATION

2.1 Creating a Work Disk

In order to prevent accidents due to misoperations such as program erasures, place a write

protection tab on the Mask Data Checker and keep it as master disk; actual operation should be

conducted on other disks.

Create a work disk and copy "MDC6281.EXE" on it.

2.2 Copying the Data File

When submitting data to Seiko Epson, copy on the work disk the data generated from Cross

Assembler (ASM6281), Function Option Generator (FOG6281), Segment Option Generator

(SOG6281) and Melody Assembler (MLA6281).

Be sure to assign the following file names (the yyy portion of the file name should be as

designated by Seiko Epson):

– Program data (HIGH side) : C281yyyH.HEX

(LOW side) : C281yyyL.HEX

– Option data (function option) : C281yyyF.DOC

(segment option) : C281yyyS.DOC

– Melody data (melody ROM, scale ROM, melody option) : C281yyyA.DOC

VII-4

E0C6281 Mask Data Checker

2.3 Execution of MDC6281

2.3.1 Starting MDC6281

To start MDC6281, insert the work disk into the current drive at the DOS command level (state in

which a prompt such as A> is displayed) and then enter the program name as follows:

A>MDC6281

* : means press the RETURN key.

When MDC6281 is started, the following message is displayed:

 *** E0C6281 PACK / UNPACK PROGRAM Ver 1.00 ***

EEEEEEEEEE PPPPPPPP SSSSSSS OOOOOOOO NNN NNN

EEEEEEEEEE PPPPPPPPPP SSS SSSS OOO OOO NNNN NNN

EEE PPP PPP SSS SSS OOO OOO NNNNN NNN

EEE PPP PPP SSS OOO OOO NNNNNN NNN

EEEEEEEEEE PPPPPPPPPP SSSSSS OOO OOO NNN NNN NNN

EEEEEEEEEE PPPPPPPP SSSS OOO OOO NNN NNNNNN

EEE PPP SSS OOO OOO NNN NNNNN

EEE PPP SSS SSS OOO OOO NNN NNNN

EEEEEEEEEE PPP SSSS SSS OOO OOO NNN NNN

EEEEEEEEEE PPP SSSSSSS OOOOOOOO NNN NN

 (C) COPYRIGHT 1990 SEIKO EPSON CORPORATION

 --- OPERATION MENU ---

 1. PACK

 2. UNPACK

 PLEASE SELECT NO.? 1

Here, the user is prompted to select operation options. When creating mask data for submission

to Seiko Epson, select "1"; when the mask data is to be split and restored to the original format

(C281yyyH.HEX, C281yyyL.HEX, C281yyyF.DOC, C281yyyS.DOC and C281yyyA.DOC),

select "2".

Note: In OS environment setup file CONFIG.SYS, the number of files that can be opened at the same

time must be set at least 10.

Example: FILES = 20

VII-5

E0C6281 Mask Data Checker

2.3.2 Packing of data

When generating data for submission to Seiko Epson, selecting "1" in the above section 2.3.1 will

prompt for the name of the file to be generated as follows:

 C281XXXH.HEX --------+
 |
 C281XXXL.HEX --------+
 |
 C281XXXA.DOC --------+-------- C6281XXX.PA0 (PACK FILE)
 |
 C281XXXF.DOC --------+
 |
 C281XXXS.DOC --------+

PLEASE INPUT PACK FILE NAME (C6281XXX.PAn) ? C62810A0.PA0

The XXX portion is as specified for the user by Seiko Epson. Moreover, after submitting the data

to Seiko Epson and there is a need to re-submit the data for reasons such as faulty programs, etc.,

increase the numeric value of "n" by one when the input is made. (Example: When re-submiting

data after "C62810A0.PA0" has been submitted, the pack file name should be entered as

"C62810A0.PA1".

When data is packed, there is need to create ROM data file and option data file in the work disk

beforehand.

When the file name has been input, mask data is generated and the corresponding file names are

displayed.

C2810A0H.HEX --------+
 |
C2810A0L.HEX --------+
 |
C2810A0A.DOC --------+-------- C2810A0.PA0
 |
C2810A0F.DOC --------+
 |
C2810A0S.DOC --------+

With this, the mask file (C6281yyy.PAn) is generated. Submit this file to Seiko Epson.

Note: Don't use the data generated with the -N option of the Cross Assembler (ASM6281) as program

data.

If the program data generated with the -N option of the Cross Assembler is packed, undefined

program area is filled with FFH code.

In this case, following message is displayed.

WARNING: FILLED <file_name> FILE WITH FFH.

VII-6

E0C6281 Mask Data Checker

2.3.3 Unpacking of data

In the process of restoring the packed data to the original file, when "2" is selected in the step

described in Section 2.3.1, the user is prompted for the input file name as follows:

 PLEASE INPUT PACKED FILE NAME (C6281XXX.PAn) ? C62810A0.PA0

When the file name has been entered, the unpacking process is executed and the corresponding

file names are displayed.

 +-------- C2810A0H.PA0
 |
 +-------- C2810A0L.PA0
 |
C62810A0.PA0 --------+-------- C2810A0A.PA0
 |
 +-------- C2810A0F.PA0
 |
 +-------- C2810A0S.PA0

With this, the mask data file (C6281yyy.PAn) is restored to the original file format, making it

possible to make comparison with the original data.

The restored data file names will be as follows:

– Program data (HIGH side) : C281yyyH.PAn

(LOW side) : C281yyyL.PAn

– Option data (function option) : C281yyyF.PAn

(segment option) : C281yyyS.PAn

– Melody data (melody ROM, scale ROM, melody option) : C281yyyA.PAn

VII-7

E0C6281 Mask Data Checker

3 ERROR MESSAGES

3.1 Data Error

The program data file, option data file and melody data file are checked during packing; the

packed data file is checked during unpacking.

If there are format problems, the following error messages are displayed.

3.1.1 Program data error

 1. HEX DATA ERROR : NOT COLON.

 2. HEX DATA ERROR : DATA LENGTH. (NOT 00–20h)

 3. HEX DATA ERROR : ADDRESS.

 4. HEX DATA ERROR : RECORD TYPE. (NOT 00)

 5. HEX DATA ERROR : DATA. (NOT 00–FFh)

There is no colon.

The data length of 1 line is not in the

00–20H range.

The address is beyond the valid range

of the program, melody and scale ROM.

The record type of 1 line is not 00.

The data is not in the range between

00H and 0FFH.

Error Message Explanation

 6. HEX DATA ERROR : TOO MANY DATA IN ONE LINE.

 7. HEX DATA ERROR : CHECK SUM.

 8. HEX DATA ERROR : END MARK.

 9. HEX DATA ERROR : DUPLICATE.

There are too many data in 1 line.

The checksum is not correct.

The end mark is not : 00000001FF.

There is duplicate definition of data

in the same address.

3.1.2 Function option data error

 1. OPTION DATA ERROR : START MARK.

 2. OPTION DATA ERROR : OPTION NUMBER.

 3. OPTION DATA ERROR : SELECT NUMBER.

 4. OPTION DATA ERROR : END MARK.

The start mark is not "¥OPTION". *

(during unpacking)

The option number is not correct.

The option selection number

is not correct.

The end mark is not"¥¥END"

(packing) or "¥END" (Unpacking). *

Error Message Explanation

* ¥ sometimes appears as \, depending on the personal computer being used.

VII-8

E0C6281 Mask Data Checker

3.1.3 Segment option data error

3.2 File Error

 1. SEGMENT DATA ERROR : START MARK.

 2. SEGMENT DATA ERROR : DATA.

 3. SEGMENT DATA ERROR : SEGMENT NUMBER.

 4. SEGMENT DATA ERROR : SPEC.

 5. SEGMENT DATA ERROR : END MARK.

The start mark is not "¥SEGMENT".

(during unpacking) *

The segment data is not correct.

The SEG No. is not correct.

The output specification of the

SEG terminal is not correct.

The end mark is not"¥¥END"

(packing) or "¥END" (Unpacking). *

Error Message Explanation

* ¥ sometimes appears as \, depending on the personal computer being used.

3.3 System Error

 1. DIRECTORY FULL.

 2. DISK WRITE ERROR.

The directory is full.

Writing on the disk is failed.

Error Message Explanation

 1. <File_name> FILE IS NOT FOUND.

 2. PACK FILE (File_name) ERROR.

 3. PACKED FILE NAME (File_name) ERROR.

The file is not found or the file number

set in CONFIG.SYS is less than 10.

The packed input format for the file

name is wrong.

The unpacked input format for the

file name is wrong.

Error Message Explanation

VII-9

E0C6281 Mask Data Checker

4 PACK FILE CONFIGURATION

The pack file is configured according to the following format:

* ¥ sometimes appears as \, depending on the personal computer being used.

*
* SMC6281 MASK DATA VER 1.00
*
¥ROM1
SMC6281yyy PROGRAM ROM
:100000000.................................
:100010000.................................
 : : : : : : : :
:00000001FF
:100000000.................................
:100010000.................................
 : : : : : : : :
:00000001FF
¥END
¥ROM2
SMC6281yyy MELODY ROM
:100000000.................................
 : : : : : : : :
:00000001FF
:10000000..................................
 : : : : : : : :
:00000001FF
¥END
¥ROM3
SMC6281yyy SCALE ROM
:10000000..................................
:00000001FF
 ¥END
 ¥OPTION1
*
* OCTAVE CIRCUIT
* 32kHz --------------------- SELECTED
 OPT2001 01
 : : : : : : : :
 OPT2104 04
 ¥END
 ¥OPTION2
* SMC6281 FUNCTION OPTION DOCUMENT V 3.00
*
* FILE NAME C281yyyF.DOC
* USER'S NAME SEIKO EPSON CORP.
* INPUT DATE 89/11/03
*
* OPTION NO.1
* < DEVICE TYPE >
* SMC6281 (NORMAL TYPE) --------- SELECTED
 OPT0101 01
 : : : : : : : : :
 OPT1602 01
¥END
 ¥SEGMENT
* SMC6281 SEGMENT OPTION DOCUMENT Ver 3.00
*
* FILE NAME C281yyyS.DOC
* USER'S NAME SEIKO-EPSON CORP.
* INPUT DATE 89/09/20
* COMMENT TOKYO DESIGN CENTER
* 390-4 HINO HINO-SHI TOKYO 191 JAPAN
* TEL 0425-83-7313
* FAX 0425-83-7413
*
*
* OPTION NO.22
*
* < LCD SEGMENT DECODE TABLE >
*
* SEG COM0 COM1 COM2 COM3
*
 0 S
 1 C
 : : : : :
¥END

Program Data Header
Model Name

Program Data
 High Side (Intel Hexa Format)

Program Data
 Low Side (Intel Hexa Format)

End Mark
Melody ROM Header
Model Name

Melody ROM Data
 High Side (Intel Hexa Format)

Melody ROM Data
 Low Side (Intel Hexa Format)

End Mark
Melody Scale ROM Header
Model Name
Melody Scale ROM Data
 (Intel Hexa Format)
End Mark
Melody Option Data Header

Melody Option Data

End Mark
Function Option Header

Function Option Data

End Mark
Segment Option Header

Segment Option Data

End Mark

VII-10

E0C6281 Mask Data Checker

4.1 Program Data, Melody ROM Data and Scale ROM Data

The program data, melody ROM data and scale ROM data are expressed as follows, using Intel

hexa format:

(1) Data Line

Colon 10 Address (4 digit) 00 Data 0 . . . Data 15 Check sum

Two complements resulting from
adding all bytes of data in 1 line

Hexadecimal 8-bit data

Fixed at 00 (record type)

Address is given in hexadecimal

Fixed at 10 (data length in 1 line)

Fixed at :

(2) End mark

: 00000001FF

VII-11

E0C6281 Mask Data Checker

 * OPTION NO.22

 *

 * < LCD SEGMENT DECODE TABLE >

 *

 * SEG COM0 COM1 COM2 COM3

 *

 0 S

 1 C

 : : : : : :

SEG terminal output specification

Segment memory data bit

Segment memory low-order address COM3

Segment memory high-order address

Segment memory data bit

Segment memory low-order address COM2

Segment memory high-order address

Segment memory data bit

Segment memory low-order address COM1

Segment memory high-order address

Segment memory data bit

Segment memory low-order address COM0

Segment memory high-order address

SEG terminal number

4.2 Segment Data

Segment data is configuerd according to the following format:

AMERICA

S-MOS SYSTEMS, INC.

150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238
Telex: 176079 SMOS SNJUD

S-MOS SYSTEMS, INC.

EASTERN AREA SALES AND TECHNOLOGY CENTER

301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-617-246-3600 Fax: +1-617-246-5443

S-MOS SYSTEMS, INC.

SOUTH EASTERN AREA SALES AND TECHNOLOGY CENTER

4300 Six Forks Road, Suite 430
Raleigh, NC 27609, U.S.A.
Phone: +1-919-781-7667 Fax: +1-919-781-6778

S-MOS SYSTEMS, INC.

CENTRAL AREA SALES AND TECHNOLOGY CENTER

1450 E.American Lane, Suite 1550
Schaumburg, IL 60173, U.S.A.
Phone: +1-847-517-7667 Fax: +1-847-517-7601

EUROPE

- HEADQUARTERS -

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15
80992 Muenchen, GERMANY
Phone : +49-(0)89-14005-0 Fax : +49-(0)89-14005-110

- GERMANY -

EPSON EUROPE ELECTRONICS GmbH

SALES OFFICE

Breidenbachstrasse 46
D-51373 Leverkusen, GERMANY
Phone : +49-(0)214-83070-0 Fax : +49-(0)214-83070-10

- UNITED KINGDOM -

EPSON EUROPE ELECTRONICS GmbH
UK BRANCH OFFICE

G6 Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

EPSON EUROPE ELECTRONICS GmbH
FRENCH BRANCH OFFICE

1 Avenue de l’ Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE
Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- HONG KONG, CHINA -

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- CHINA -

SHANGHAI EPSON ELECTRONICS CO., LTD.

4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

10F, No. 287,Nanking East Road, Sec. 3
Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
HSINCHU OFFICE

13F-3,No.295,Kuang-Fu Road,Sec.2
HsinChu 300,TAIWAN,R.O.C.
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION
KOREA OFFICE

10F, KLI 63 Bldg., 60 Yoido-Dong
Youngdeungpo-Ku, Seoul, 150-010, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I

 (Europe & U.S.A.)

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia)

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

 International Sales Operations

In pursuit of “Saving” Technology , Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices

assists in creating the products of our customers’ dreams.
Epson IS energy savings .

ELECTRONIC DEVICES MARKETING DIVISION

■ Electronic devices information on the Epson WWW server

http://www.epson.co.jp
Issue APRIL 1998 Printed in Japan M A

	䤀⸀ 䔀　䌀㘀㈀㠀㄀ 䌀刀伀匀匀 䄀匀匀䔀䴀䈀䰀䔀刀 䴀䄀一唀䄀䰀
	倀刀䔀䘀䄀䌀䔀
	㄀⸀ 䔀　䌀㘀㈀㠀㄀ 刀䔀匀吀刀䤀䌀吀䤀伀一匀
	㄀⤀ 刀伀䴀 䄀爀攀愀
	㈀⤀ 刀䄀䴀 䄀爀攀愀
	㌀⤀ 唀渀搀攀昀椀渀攀搀 挀漀搀攀猀

	㈀⸀ 䤀一吀刀伀䐀唀䌀吀䤀伀一
	㈀⸀㄀ 伀甀琀氀椀渀攀 漀昀 䄀匀䴀㘀㈀堀堀
	㈀⸀㈀ 䄀匀䴀㘀㈀堀堀 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀

	㌀⸀ 䄀匀䴀㘀㈀堀堀 伀倀䔀刀䄀吀䤀伀一 倀刀伀䌀䔀䐀唀刀䔀
	㌀⸀㄀ 匀琀愀爀琀椀渀最 䄀匀䴀㘀㈀堀堀
	㌀⸀㈀ 匀攀氀攀挀琀椀渀最 䄀甀琀漀ⴀ倀愀最攀ⴀ匀攀琀 䘀甀渀挀琀椀漀渀
	㌀⸀㌀ 䜀攀渀攀爀愀琀椀渀最 愀 䌀爀漀猀猀ⴀ刀攀昀攀爀攀渀挀攀 吀愀戀氀攀

	㐀⸀ 匀伀唀刀䌀䔀 䘀䤀䰀䔀 䘀伀刀䴀䄀吀
	㐀⸀㄀ 匀漀甀爀挀攀 䘀椀氀攀 一愀洀攀
	㐀⸀㈀ 匀琀愀琀攀洀攀渀琀猀
	㐀⸀㈀⸀㄀ 䰀愀戀攀氀 昀椀攀氀搀
	㐀⸀㈀⸀㈀ 䴀渀攀洀漀渀椀挀 昀椀攀氀搀
	㐀⸀㈀⸀㌀ 伀瀀攀爀愀渀搀 昀椀攀氀搀
	㐀⸀㈀⸀㐀 䌀漀洀洀攀渀琀 昀椀攀氀搀

	㐀⸀㌀ 䤀渀搀攀砀
	㐀⸀㌀⸀㄀ 䰀愀戀攀氀
	㐀⸀㌀⸀㈀ 匀礀洀戀漀氀

	㐀⸀㐀 䌀漀渀猀琀愀渀琀 愀渀搀 伀瀀攀爀愀琀椀漀渀愀氀 䔀砀瀀爀攀猀猀椀漀渀
	㐀⸀㐀⸀㄀ 一甀洀攀爀椀挀 挀漀渀猀琀愀渀琀
	㐀⸀㐀⸀㈀ 䌀栀愀爀愀挀琀攀爀 挀漀渀猀琀愀渀琀
	㐀⸀㐀⸀㌀ 伀瀀攀爀愀琀漀爀
	㐀⸀㐀⸀㐀 䰀漀挀愀琀椀漀渀 挀漀甀渀琀攀爀

	㐀⸀㔀 倀猀攀甀搀漀ⴀ䤀渀猀琀爀甀挀琀椀漀渀猀
	㐀⸀㔀⸀㄀ 䐀愀琀愀 搀攀昀椀渀椀琀椀漀渀 瀀猀攀甀搀漀ⴀ椀渀猀琀爀甀挀琀椀漀渀猀
	㐀⸀㔀⸀㈀ 䴀攀洀漀爀礀 猀攀琀琀椀渀最 瀀猀攀甀搀漀ⴀ椀渀猀琀爀甀挀琀椀漀渀猀
	㐀⸀㔀⸀㌀ 䄀猀猀攀洀戀氀攀爀 挀漀渀琀爀漀氀 瀀猀攀甀搀漀ⴀ椀渀猀琀爀甀挀琀椀漀渀猀

	㐀⸀㘀 䴀愀挀爀漀ⴀ䘀甀渀挀琀椀漀渀猀
	㐀⸀㘀⸀㄀ 䴀愀挀爀漀ⴀ椀渀猀琀爀甀挀琀椀漀渀猀
	㐀⸀㘀⸀㈀ 䴀愀挀爀漀ⴀ搀攀昀椀渀椀琀椀漀渀猀
	㐀⸀㘀⸀㌀ 䴀愀挀爀漀ⴀ挀愀氀氀猀

	㔀⸀ 䔀刀刀伀刀 䴀䔀匀匀䄀䜀䔀匀
	䄀倀倀䔀一䐀䤀堀 䄀匀䴀㘀㈀堀堀 䔀堀䔀䌀唀吀䤀伀一 䔀堀䄀䴀倀䰀䔀

	䤀䤀⸀ 䔀　䌀㘀㈀㠀㄀䴀䔀䰀伀䐀夀 䄀匀匀䔀䴀䈀䰀䔀刀 䴀䄀一唀䄀䰀
	倀刀䔀䘀䄀䌀䔀
	㄀⸀ 䤀一吀刀伀䐀唀䌀吀䤀伀一
	㄀⸀㄀ 伀甀琀氀椀渀攀 漀昀 䴀䰀䄀㘀㈀㠀堀
	㄀⸀㈀ 䴀䰀䄀㘀㈀㠀堀 䤀渀瀀甀琀⼀漀甀琀瀀甀琀 䘀椀氀攀

	㈀⸀ 䄀䌀吀䤀嘀䄀吀䤀一䜀 䴀䰀䄀㘀㈀㠀堀
	㌀⸀ 䘀伀刀䴀䄀吀 伀䘀 匀伀唀刀䌀䔀 䘀䤀䰀䔀
	㌀⸀㄀ 匀漀甀爀挀攀 䘀椀氀攀 一愀洀攀
	㌀⸀㈀ 匀琀愀琀攀洀攀渀琀 ⠀氀椀渀攀⤀
	㌀⸀㈀⸀㄀ 䄀琀琀愀挀欀 昀椀攀氀搀
	㌀⸀㈀⸀㈀ 一漀琀攀 昀椀攀氀搀
	㌀⸀㈀⸀㌀ 匀挀愀氀攀 昀椀攀氀搀
	㌀⸀㈀⸀㐀 䔀渀搀 戀椀琀 昀椀攀氀搀
	㌀⸀㈀⸀㔀 䌀漀洀洀攀渀琀 昀椀攀氀搀
	㌀⸀㈀⸀㘀 䘀椀攀氀搀猀 愀渀搀 挀漀爀爀攀猀瀀漀渀搀椀渀最 洀攀氀漀搀礀 搀愀琀愀

	㌀⸀㌀ 倀猀攀甀搀漀ⴀ椀渀猀琀爀甀挀琀椀漀渀
	㌀⸀㌀⸀㄀ 䄀搀搀爀攀猀猀ⴀ猀攀琀琀椀渀最 瀀猀攀甀搀漀ⴀ椀渀猀琀爀甀挀琀椀漀渀
	㌀⸀㌀⸀㈀ 伀瀀琀椀漀渀ⴀ猀攀琀琀椀渀最 瀀猀攀甀搀漀ⴀ椀渀猀琀爀甀挀琀椀漀渀猀

	㐀⸀ 䔀刀刀伀刀 䴀䔀匀匀䄀䜀䔀匀
	㔀⸀ 䔀堀䄀䴀倀䰀䔀匀 伀䘀 䤀一倀唀吀ⴀ伀唀吀倀唀吀 䘀䤀䰀䔀匀
	㔀⸀㄀ 䔀砀愀洀瀀氀攀 漀昀 匀漀甀爀挀攀 䘀椀氀攀
	㔀⸀㈀ 䔀砀愀洀瀀氀攀 漀昀 䄀猀猀攀洀戀氀礀 䰀椀猀琀
	㔀⸀㌀ 䔀砀愀洀瀀氀攀 漀昀 䴀攀氀漀搀礀 䠀攀砀 䘀椀氀攀 䐀愀琀愀 䘀漀爀洀愀琀
	㔀⸀㐀 䔀砀愀洀瀀氀攀 漀昀 䄀猀猀攀洀戀氀礀 䰀椀猀琀 圀栀攀渀 䔀爀爀漀爀 伀挀挀甀爀猀
	㔀⸀㔀 䔀砀愀洀瀀氀攀 漀昀 䔀　䌀㘀㈀㠀㄀郿䄀⸀䐀伀䌀 䘀椀氀攀 䘀漀爀洀愀琀

	䤀䤀䤀⸀ 䔀　䌀㘀㈀㠀㄀ 䘀唀一䌀吀䤀伀一 伀倀吀䤀伀一 䜀䔀一䔀刀䄀吀伀刀 䴀䄀一唀䄀䰀
	倀刀䔀䘀䄀䌀䔀
	㄀ 䜀䔀一䔀刀䄀䰀
	㄀⸀㄀ 伀甀琀氀椀渀攀 漀昀 䘀甀渀挀琀椀漀渀 伀瀀琀椀漀渀 䜀攀渀攀爀愀琀漀爀
	㄀⸀㈀ 䔀砀攀挀甀琀椀漀渀 䘀氀漀眀 愀渀搀 䤀⼀伀 䘀椀氀攀猀

	㈀ 伀倀吀䤀伀一 䰀䤀匀吀 䜀䔀一䔀刀䄀吀䤀伀一
	㈀⸀㄀ 伀瀀琀椀漀渀 䰀椀猀琀 刀攀挀漀爀搀椀渀最 倀爀漀挀攀搀甀爀攀
	㈀⸀㈀ 伀瀀琀椀漀渀 䰀椀猀琀
	㈀⸀㌀ 伀瀀琀椀漀渀 匀瀀攀挀椀昀椀挀愀琀椀漀渀猀
	㈀⸀㌀⸀㄀ 䐀攀瘀椀挀攀 琀礀瀀攀
	㈀⸀㌀⸀㈀ 䴀甀氀琀椀瀀氀攀 欀攀礀 攀渀琀爀礀 爀攀猀攀琀
	㈀⸀㌀⸀㌀ 䤀渀琀攀爀爀甀瀀琀 渀漀椀猀攀 爀攀樀攀挀琀漀爀
	㈀⸀㌀⸀㐀 䤀渀瀀甀琀 瀀漀爀琀猀 瀀甀氀氀 搀漀眀渀 爀攀猀椀猀琀漀爀
	㈀⸀㌀⸀㔀 伀甀琀瀀甀琀 瀀漀爀琀 ⠀刀　　郿刀　㌀⤀ 漀甀琀瀀甀琀 猀瀀攀挀椀昀椀挀愀琀椀漀渀
	㈀⸀㌀⸀㘀 刀㄀　 猀瀀攀挀椀昀椀挀愀琀椀漀渀
	㈀⸀㌀⸀㜀 刀㄀㄀ 猀瀀攀挀椀昀椀挀愀琀椀漀渀
	㈀⸀㌀⸀㠀 刀㄀㈀ 猀瀀攀挀椀昀椀挀愀琀椀漀渀
	㈀⸀㌀⸀㤀 䤀⼀伀 瀀漀爀琀 猀瀀攀挀椀昀椀挀愀琀椀漀渀
	㈀⸀㌀⸀㄀　 䰀䌀䐀 挀漀洀洀漀渀 搀甀琀礀
	㈀⸀㌀⸀㄀㄀ 伀匀䌀㄀ 猀礀猀琀攀洀 挀氀漀挀欀

	㌀ 䘀唀一䌀吀䤀伀一 伀倀吀䤀伀一 䜀䔀一䔀刀䄀吀伀刀 伀倀䔀刀䄀吀䤀伀一 倀刀伀䌀䔀䐀唀刀䔀
	㌀⸀㄀ 䌀爀攀愀琀椀渀最 圀漀爀欀 䐀椀猀欀
	㌀⸀㈀ 匀琀愀爀琀椀渀最 䘀伀䜀㘀㈀㠀㄀
	㌀⸀㌀ 匀攀琀琀椀渀最 一攀眀 䘀甀渀挀琀椀漀渀 伀瀀琀椀漀渀猀
	㌀⸀㐀 䴀漀搀椀昀礀椀渀最 䘀甀渀挀琀椀漀渀 伀瀀琀椀漀渀 匀攀琀琀椀渀最猀
	㌀⸀㔀 匀攀氀攀挀琀椀渀最 䘀甀渀挀琀椀漀渀 伀瀀琀椀漀渀猀
	㌀⸀㔀⸀㄀ 匀攀氀攀挀琀椀渀最 琀栀攀 搀攀瘀椀挀攀 琀礀瀀攀
	㌀⸀㔀⸀㈀ 匀攀氀攀挀琀椀渀最 洀甀氀琀椀瀀氀攀 欀攀礀 攀渀琀爀礀 爀攀猀攀琀 昀甀渀挀琀椀漀渀
	㌀⸀㔀⸀㌀ 匀攀氀攀挀琀椀渀最 椀渀瀀甀琀 椀渀琀攀爀爀甀瀀琀 渀漀椀猀攀 爀攀樀攀挀琀漀爀
	㌀⸀㔀⸀㐀 匀攀氀攀挀琀椀渀最 椀渀瀀甀琀 瀀漀爀琀 瀀甀氀氀 搀漀眀渀 爀攀猀椀猀琀漀爀
	㌀⸀㔀⸀㔀 匀攀氀攀挀琀椀渀最 漀甀琀瀀甀琀 瀀漀爀琀 ⠀刀　　郿刀　㌀⤀ 漀甀琀瀀甀琀 猀瀀攀挀椀昀椀挀愀琀椀漀渀
	㌀⸀㔀⸀㘀 匀攀氀攀挀琀椀渀最 刀㄀　 琀攀爀洀椀渀愀氀 猀瀀攀挀椀昀椀挀愀琀椀漀渀
	㌀⸀㔀⸀㜀 匀攀氀攀挀琀椀渀最 刀㄀㄀ 琀攀爀洀椀渀愀氀 猀瀀攀挀椀昀椀挀愀琀椀漀渀
	㌀⸀㔀⸀㠀 匀攀氀攀挀琀椀渀最 刀㄀㈀ 琀攀爀洀椀渀愀氀 猀瀀攀挀椀昀椀挀愀琀椀漀渀
	㌀⸀㔀⸀㤀 匀攀氀攀挀琀椀渀最 䤀⼀伀 瀀漀爀琀 猀瀀攀挀椀昀椀挀愀琀椀漀渀
	㌀⸀㔀⸀㄀　 匀攀氀攀挀琀椀渀最 䰀䌀䐀 挀漀洀洀漀渀 ⠀搀爀椀瘀攀⤀ 搀甀琀礀
	㌀⸀㔀⸀㄀㄀ 匀攀氀攀挀琀椀渀最 伀匀䌀㄀ 漀猀挀椀氀氀愀琀椀漀渀 挀椀爀挀甀椀琀

	㌀⸀㘀 䠀䔀堀 䘀椀氀攀 䜀攀渀攀爀愀琀椀漀渀 愀渀搀 䔀倀刀伀䴀 匀攀氀攀挀琀椀漀渀
	㌀⸀㜀 䔀渀搀 倀爀漀挀攀搀甀爀攀

	㐀 匀䄀䴀倀䰀䔀 䘀䤀䰀䔀

	䤀嘀⸀ 䔀　䌀㘀㈀㠀㄀ 匀䔀䜀䴀䔀一吀 伀倀吀䤀伀一 䜀䔀一䔀刀䄀吀伀刀 䴀䄀一唀䄀䰀
	倀刀䔀䘀䄀䌀䔀
	㄀ 䜀䔀一䔀刀䄀䰀
	㄀⸀㄀ 伀甀琀氀椀渀攀 漀昀 匀攀最洀攀渀琀 伀瀀琀椀漀渀 䜀攀渀攀爀愀琀漀爀
	㄀⸀㈀ 䔀砀攀挀甀琀椀漀渀 䘀氀漀眀 愀渀搀 䤀⼀伀 䘀椀氀攀猀

	㈀ 伀倀吀䤀伀一 䰀䤀匀吀 䜀䔀一䔀刀䄀吀䤀伀一
	㈀⸀㄀ 伀瀀琀椀漀渀 䰀椀猀琀 刀攀挀漀爀搀椀渀最 倀爀漀挀攀搀甀爀攀
	㈀⸀㈀ 伀瀀琀椀漀渀 䰀椀猀琀
	㈀⸀㌀ 匀攀最洀攀渀琀 倀漀爀琀猀 伀甀琀瀀甀琀 匀瀀攀挀椀昀椀挀愀琀椀漀渀猀

	㌀ 匀䔀䜀䴀䔀一吀 伀倀吀䤀伀一 䜀䔀一䔀刀䄀吀伀刀 伀倀䔀刀䄀吀䤀伀一 倀刀伀䌀䔀䐀唀刀䔀
	㌀⸀㄀ 䌀爀攀愀琀椀渀最 圀漀爀欀 䐀椀猀欀
	㌀⸀㈀ 䌀爀攀愀琀椀渀最 匀攀最洀攀渀琀 伀瀀琀椀漀渀 匀漀甀爀挀攀 䘀椀氀攀
	㌀⸀㌀ 匀琀愀爀琀椀渀最 匀伀䜀㘀㈀㠀㄀
	㌀⸀㐀 䤀渀瀀甀琀 䘀椀氀攀 匀攀氀攀挀琀椀漀渀
	㌀⸀㔀 䠀䔀堀 䘀椀氀攀 䜀攀渀攀爀愀琀椀漀渀 愀渀搀 䔀倀刀伀䴀 匀攀氀攀挀琀椀漀渀
	㌀⸀㘀 䔀渀搀 倀爀漀挀攀搀甀爀攀

	㐀 䔀刀刀伀刀 䴀䔀匀匀䄀䜀䔀匀
	㔀 匀䄀䴀倀䰀䔀 䘀䤀䰀䔀匀
	㔀⸀㄀ 匀攀最洀攀渀琀 伀瀀琀椀漀渀 匀漀甀爀挀攀 䘀椀氀攀

	嘀⸀ 䔀　䌀㘀㈀㠀㄀ 䐀䔀嘀䔀䰀伀倀䴀䔀一吀 吀伀伀䰀 唀匀䔀刀✀匀 䴀䄀一唀䄀䰀
	倀刀䔀䘀䄀䌀䔀
	䌀䠀䄀倀吀䔀刀 ㄀  伀唀吀䰀䤀一䔀 伀䘀 吀䠀䔀 䔀　䌀㘀㈀㠀㄀ഀ䐀䔀嘀䔀䰀伀倀䴀䔀一吀 匀唀倀倀伀刀吀 吀伀伀䰀ഀ伀唀吀䰀䤀一䔀 伀䘀 吀䠀䔀 䔀　䌀㘀㈀㠀㄀ഀ䐀䔀嘀䔀䰀伀倀䴀䔀一吀 匀唀倀倀伀刀吀 吀伀伀䰀
	㄀⸀㄀ 䐀攀瘀攀氀漀瀀洀攀渀琀愀氀 䔀渀瘀椀爀漀渀洀攀渀琀
	㄀⸀㈀ 䐀攀瘀攀氀漀瀀洀攀渀琀 吀漀漀氀 䴀愀渀愀最攀洀攀渀琀 匀礀猀琀攀洀ഀ⠀䐀䴀匀㘀㈀　　⤀
	㄀⸀㌀ 䌀爀漀猀猀 䄀猀猀攀洀戀氀攀爀 ⠀䄀匀䴀㘀㈀㠀㄀⤀
	㄀⸀㐀 䘀甀渀挀琀椀漀渀 伀瀀琀椀漀渀 䜀攀渀攀爀愀琀漀爀 ⠀䘀伀䜀㘀㈀㠀㄀⤀
	㄀⸀㔀 匀攀最洀攀渀琀 伀瀀琀椀漀渀 䜀攀渀攀爀愀琀漀爀 ⠀匀伀䜀㘀㈀㠀㄀⤀
	㄀⸀㘀 䴀攀氀漀搀礀 䄀猀猀攀洀戀氀攀爀 ⠀䴀䰀䄀㘀㈀㠀㄀⤀
	㄀⸀㜀 䤀渀ⴀ䌀椀爀挀甀椀琀 䔀洀甀氀愀琀漀爀 ⠀䤀䌀䔀㘀㈀　　⤀ ☀ 䤀䌀䔀 䌀漀渀琀爀漀氀ഀ匀漀昀琀眀愀爀攀 ⠀䤀䌀匀㘀㈀㠀㄀⤀
	㄀⸀㠀 䴀愀猀欀 䐀愀琀愀 䌀栀攀挀欀攀爀 ⠀䴀䐀䌀㘀㈀㠀㄀⤀
	㄀⸀㤀 䔀瘀愀氀甀愀琀椀漀渀 䈀漀愀爀搀 ⠀䔀嘀䄀㘀㈀㠀㄀⤀
	䐀攀洀漀渀猀琀爀愀琀椀漀渀 吀漀漀氀 ⠀䐀䴀吀㘀㈀㠀㄀⤀

	䌀䠀䄀倀吀䔀刀 ㈀  䌀刀䔀䄀吀䤀伀一 伀䘀 䐀䤀匀䬀 䘀伀刀 䐀䔀嘀㘀㈀㠀㄀ഀ䔀堀䔀䌀唀吀䤀伀一
	䌀䠀䄀倀吀䔀刀 ㌀  䐀䔀嘀㘀㈀㠀㄀ 匀吀䄀刀吀䤀一䜀 倀刀伀䌀䔀䐀唀刀䔀匀ഀ䤀一 䴀䔀一唀 䘀伀刀䴀

	嘀䤀⸀ 匀䴀䌀㘀㈀㠀㄀ 䤀䌀䔀 伀倀䔀刀䄀吀䤀伀一 䴀䄀一唀䄀䰀
	倀刀䔀䘀䄀䌀䔀
	㄀ 䤀䌀匀㘀㈀㠀㄀ 刀䔀匀吀刀䤀䌀吀䤀伀一匀 䄀一䐀 䄀䐀䐀䤀吀䤀伀一匀
	㄀⸀㄀ 刀伀䴀 䄀爀攀愀
	㄀⸀㈀ 刀䄀䴀 䄀爀攀愀
	㄀⸀㌀ 唀渀搀攀昀椀渀攀搀 䌀漀搀攀
	㄀⸀㐀 伀倀吀䰀䐀 䌀漀洀洀愀渀搀

	㈀ 䤀䌀䔀㘀㈀　　 匀倀䔀䌀䤀䘀䤀䌀䄀吀䤀伀一匀
	㈀⸀㄀ 䘀攀愀琀甀爀攀猀
	㈀⸀㄀⸀㄀ 䐀攀猀挀爀椀瀀琀椀漀渀
	㈀⸀㄀⸀㈀ 匀漀昀琀眀愀爀攀 䌀漀渀昀椀最甀爀愀琀椀漀渀
	㈀⸀㄀⸀㌀ 䘀甀渀挀琀椀漀渀 吀愀戀氀攀
	㈀⸀㄀⸀㐀 䘀甀渀挀琀椀漀渀ⴀ搀椀昀昀攀爀攀渀琀椀愀琀攀搀 䌀漀洀洀愀渀搀 䰀椀猀琀
	㈀⸀㄀⸀㔀 䄀氀瀀栀愀戀攀琀椀挀愀氀 䰀椀猀琀椀渀最 漀昀 䌀漀洀洀愀渀搀猀

	㈀⸀㈀ 䌀漀渀渀攀挀琀椀渀最 愀渀搀 匀琀愀爀琀椀渀最 琀栀攀 匀礀猀琀攀洀
	㈀⸀㈀⸀㄀ 䠀伀匀吀 匀攀琀琀椀渀最猀
	㈀⸀㈀⸀㈀ 匀琀愀爀琀椀渀最 琀栀攀 䤀䌀匀㘀㈀堀堀

	㈀⸀㌀ 䤀䌀䔀㘀㈀　　 伀瀀攀爀愀琀椀漀渀 愀渀搀 䘀甀渀挀琀椀漀渀猀
	㈀⸀㌀⸀㄀ 伀瀀攀爀愀琀椀渀最 䘀攀愀琀甀爀攀猀
	㈀⸀㌀⸀㈀ 䈀爀攀愀欀 䴀漀搀攀 愀渀搀 䈀爀攀愀欀 䘀甀渀挀琀椀漀渀
	㈀⸀㌀⸀㌀ 匀夀一䌀 倀椀渀 愀渀搀 䠀䄀䰀吀 倀椀渀 伀甀琀瀀甀琀
	㈀⸀㌀⸀㐀 䐀椀猀瀀氀愀礀 䐀甀爀椀渀最 刀甀渀 䴀漀搀攀 愀渀搀 䐀甀爀椀渀最 䈀爀攀愀欀
	㈀⸀㌀⸀㔀 䈀爀攀愀欀 䄀猀猀椀最渀椀渀最 䌀漀洀洀愀渀搀猀
	㈀⸀㌀⸀㘀 吀愀爀最攀琀 䤀渀琀攀爀爀甀瀀琀 愀渀搀 䈀爀攀愀欀
	㈀⸀㌀⸀㜀 䠀椀猀琀漀爀礀 䘀甀渀挀琀椀漀渀
	㈀⸀㌀⸀㠀 䈀爀攀愀欀 䐀攀氀愀礀 䘀甀渀挀琀椀漀渀
	㈀⸀㌀⸀㤀 䌀漀瘀攀爀愀最攀 䘀甀渀挀琀椀漀渀
	㈀⸀㌀⸀㄀　 䴀攀愀猀甀爀攀洀攀渀琀 䐀甀爀椀渀最 䌀漀洀洀愀渀搀 䔀砀攀挀甀琀椀漀渀
	㈀⸀㌀⸀㄀㄀ 匀攀氀昀ⴀ搀椀愀最渀漀猀琀椀挀 䘀甀渀挀琀椀漀渀
	㈀⸀㌀⸀㄀㈀ 匀琀愀爀琀椀渀最 琀栀攀 倀爀椀渀琀攀爀
	㈀⸀㌀⸀㄀㌀ 䰀椀洀椀琀愀琀椀漀渀猀 䐀甀爀椀渀最 䔀洀甀氀愀琀椀漀渀

	㈀⸀㐀 䌀漀洀洀愀渀搀 䐀攀琀愀椀氀猀
	㈀⸀㐀⸀㄀ 䐀椀猀瀀氀愀礀 䌀漀洀洀愀渀搀 䜀爀漀甀瀀
	䰀
	䐀倀
	䐀䐀
	䐀刀
	䠀
	䠀䈀Ⰰ 䠀䜀
	䠀匀Ⰰ 䠀匀刀Ⰰ 䠀匀圀
	䠀倀Ⰰ 䠀倀匀
	䌀䠀䬀
	䐀堀夀
	唀渀琀椀琀氀攀搀

	㈀⸀㐀⸀㈀ 匀攀琀 䌀漀洀洀愀渀搀 䜀爀漀甀瀀
	䄀
	䘀倀
	䘀䐀
	䴀倀
	䴀䐀
	匀倀
	匀䐀
	匀刀
	匀堀夀
	䠀䌀
	䠀䄀Ⰰ 䠀䄀䐀Ⰰ 䠀䄀刀

	㈀⸀㐀⸀㌀ 䈀爀攀愀欀 愀渀搀 䜀漀 䌀漀洀洀愀渀搀 䜀爀漀甀瀀
	䈀䄀Ⰰ 䈀䄀刀
	䈀䐀Ⰰ 䈀䐀刀
	䈀刀Ⰰ 䈀刀刀
	䈀䴀Ⰰ 䈀䴀刀
	䈀䌀
	䈀刀䔀匀
	䜀
	吀
	唀
	唀渀琀椀琀氀攀搀
	䈀吀
	䈀刀䬀匀䔀䰀

	㈀⸀㐀⸀㐀 䘀椀氀攀 䌀漀洀洀愀渀搀 䜀爀漀甀瀀
	刀䘀Ⰰ 刀䘀䐀
	嘀䘀Ⰰ 嘀䘀䐀
	圀䘀Ⰰ 圀䘀䐀
	䌀䰀Ⰰ 䌀匀
	伀倀吀䰀䐀

	㈀⸀㐀⸀㔀 刀伀䴀 䌀漀洀洀愀渀搀 䜀爀漀甀瀀
	刀倀
	嘀倀
	刀伀䴀

	㈀⸀㐀⸀㘀 䌀漀渀琀爀漀氀 䌀漀洀洀愀渀搀 䜀爀漀甀瀀
	䤀
	吀䤀䴀
	伀吀䘀
	儀

	㈀⸀㐀⸀㜀 䠀䔀䰀倀 䌀漀洀洀愀渀搀
	䠀䔀䰀倀

	㈀⸀㔀 䔀爀爀漀爀 䴀攀猀猀愀最攀 匀甀洀洀愀爀礀
	㈀⸀㘀 䘀䐀 䘀椀氀攀 䌀漀渀昀椀最甀爀愀琀椀漀渀
	㈀⸀㜀 䄀瀀瀀攀渀搀椀砀 䠀䔀堀 䘀椀氀攀 䘀漀爀洀愀琀

	嘀䤀䤀⸀ 䔀　䌀㘀㈀㠀㄀䴀䄀匀䬀 䐀䄀吀䄀 䌀䠀䔀䌀䬀䔀刀 䴀䄀一唀䄀䰀
	倀刀䔀䘀䄀䌀䔀
	㄀ 䤀一吀刀伀䐀唀䌀吀䤀伀一
	㄀⸀㄀ 伀甀琀氀椀渀攀 漀昀 琀栀攀 䴀愀猀欀 䐀愀琀愀 䌀栀攀挀欀攀爀
	㄀⸀㈀ 䔀砀攀挀甀琀椀漀渀 䘀氀漀眀 愀渀搀 䤀渀瀀甀琀⼀伀甀琀瀀甀琀 䘀椀氀攀猀

	㈀ 䴀䄀匀䬀 䐀䄀吀䄀 䌀䠀䔀䌀䬀䔀刀 伀倀䔀刀䄀吀䤀伀一
	㈀⸀㄀ 䌀爀攀愀琀椀渀最 愀 圀漀爀欀 䐀椀猀欀
	㈀⸀㈀ 䌀漀瀀礀椀渀最 琀栀攀 䐀愀琀愀 䘀椀氀攀
	㈀⸀㌀ 䔀砀攀挀甀琀椀漀渀 漀昀 䴀䐀䌀㘀㈀㠀㄀
	㈀⸀㌀⸀㄀ 匀琀愀爀琀椀渀最 䴀䐀䌀㘀㈀㠀㄀
	㈀⸀㌀⸀㈀ 倀愀挀欀椀渀最 漀昀 搀愀琀愀
	㈀⸀㌀⸀㌀ 唀渀瀀愀挀欀椀渀最 漀昀 搀愀琀愀

	㌀ 䔀刀刀伀刀 䴀䔀匀匀䄀䜀䔀匀
	㌀⸀㄀ 䐀愀琀愀 䔀爀爀漀爀
	㌀⸀㄀⸀㄀ 倀爀漀最爀愀洀 搀愀琀愀 攀爀爀漀爀
	㌀⸀㄀⸀㈀ 䘀甀渀挀琀椀漀渀 漀瀀琀椀漀渀 搀愀琀愀 攀爀爀漀爀
	㌀⸀㄀⸀㌀ 匀攀最洀攀渀琀 漀瀀琀椀漀渀 搀愀琀愀 攀爀爀漀爀

	㌀⸀㈀ 䘀椀氀攀 䔀爀爀漀爀
	㌀⸀㌀ 匀礀猀琀攀洀 䔀爀爀漀爀

	㐀 倀䄀䌀䬀 䘀䤀䰀䔀 䌀伀一䘀䤀䜀唀刀䄀吀䤀伀一
	㐀⸀㄀ 倀爀漀最爀愀洀 䐀愀琀愀Ⰰ 䴀攀氀漀搀礀 刀伀䴀 䐀愀琀愀 愀渀搀 匀挀愀氀攀 刀伀䴀 䐀愀琀愀
	㐀⸀㈀ 匀攀最洀攀渀琀 䐀愀琀愀

	䤀渀琀攀爀渀愀琀椀漀渀愀氀 匀愀氀攀猀 伀瀀攀爀愀琀椀漀渀猀

