MF436-06

CMOS 4-BIT SINGLE CHIP MICROCOMPUTER

E0C6235 Technical Hardware E0C6235 Technical Software

SEIKO EPSON CORPORATION

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. Please note that "E0C" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it now reads "E0C".

Software

PREFACE

This manual is individually described about the hardware and the software of the E0C6235.

I. E0C6235 Technical Hardware

This part explains the function of the E0C6235, the circuit configurations, and details the controlling method.

II. E0C6235 Technical Software

This part explains the programming method of the E0C6235.

E0C6235 E0C6235 Technical Hardware

CONTENTS

CHAPTER 1	OVE	RVIEW	I-1
	1.1	Configuration	I-1
	1.2	Features	I-2
	1.3	Block Diagram	I-3
	1.4	Pin Layout Diagram	I-4
	1.5	Pin Description	I-6
CHAPTER 2	POW	VER SUPPLY AND INITIAL RESET	I-8
	2.1	Power Supply	I-8
	2.2	Initial Reset Oscillation detection circuit I Reset terminal (RESET) I Simultaneous high input to input ports (K00–K03) I Watchdog timer I Internal register at initial reset I Test Terminal (TEST) I	[-10 [-10 [-10 [-11 [-11
CHAPTER 3	CPU	, ROM, RAM I	-12
	3.1	CPU	
	3.2	ROM	
	3.3	RAM I	
CHAPTER 4	PERI	PHERAL CIRCUITS AND OPERATION	-15
	4.1	Memory Map I	[-15
	4.2	Resetting Watchdog Timer I Configuration of watchdog timer I Mask option I Control of watchdog timer I Programming note I	[-21 [-21 [-22

4.3	Oscillation Circuit and Prescaler	I-23
	OSC1 oscillation circuit	I-23
	OSC3 oscillation circuit	I-23
	Configuration of oscillation circuit and prescaler	I-25
	Control of oscillation circuit and prescaler	I-26
	Programming notes	I-27
4.4	Input Ports (K00–K03, K10, K20–K23)	I-28
	Configuration of input ports	I-28
	Input comparison registers and interrupt function	I-29
	Mask option	
	Control of input ports	I-34
	Programming notes	I-36
4.5	Output Ports (R00–R03, R10–R13)	I-38
-	Configuration of output ports	
	Mask option	
	Control of output ports	
	Programming note	
4.6	I/O Ports (P00–P03, P10–P13)	I-46
	Configuration of I/O ports	
	I/O control register and I/O mode	
	Mask option	
	Control of I/O ports	
	Programming notes	
4.7	Serial Interface (SIN, SOUT, SCLK)	I-51
	Configuration of serial interface	
	Master mode and slave mode of serial interface	
	Data input/output and interrupt function	
		I-58
	Control of serial interface	I-59
	Programming notes	I-63
4.8	LCD Driver (COM0–COM3, SEG0–SEG47)	I-64
	Configuration of LCD driver	I-64
	Switching between dynamic and static drive	
	Mask option (segment allocation)	
	Control of LCD driver	
	Programming notes	I-71

4.9	Clock Timer	I-72
	Configuration of clock timer	I-72
	Interrupt function	I-73
	Control of clock timer	I-74
	Programming notes	I-76
4.10	Stopwatch Timer	I-77
	Configuration of stopwatch timer	I-77
	Count-up pattern	I-78
	Interrupt function	I-79
	Control of stopwatch timer	I-80
	Programming notes	I-83
4.11	Sound Generator	I-84
	Configuration of sound generator	I-84
	Frequency setting	I-85
	Digital envelop	I-86
	Mask option	I-88
	Control of sound generator	I-89
	Programming note	I-91
4.12	Event Counter	I-92
	Configuration of event counter	I-92
	Switching count mode	I-93
	Mask option	I-94
	Control of event counter	I-95
	Programming notes	I-98
4.13	Analog Comparator	I-99
	Configuration of analog comparator	I-99
	Operation of analog comparator	I-99
	Control of analog comparator	I-100
	Programming notes	I-101
4.14	Battery Life Detection (BLD) Circuit	
	Configuration of BLD circuit	I-102
	Programmable selection of evaluation voltage	I-103
	Detection timing of BLD circuit	I-103
	Control of BLD circuit	I-106
	Programing notes	I-109

CONTENTS

	4.15	Heavy Load Protection Function and Sub-BLD Circuit Configuration and operation of heavy load	I-110
		protection function	I-110
		Operation of sub-BLD circuit	
		Control of heavy load protection function and	
		sub-BLD circuit	I-113
		Programming notes	I-117
	4.16	Interrupt and HALT	I-119
		Interrupt factors	I-121
		Specific masks and factor flags for interrupt	I-122
		Interrupt vectors	
		Control of interrupt and HALT	
		Programming notes	I-126
CHAPTER 5	SUM	MARY OF NOTES	I-127
	5.1	Notes for Low Current Consumption	I-127
	5.2	Summary of Notes by Function	I-128
CHAPTER 6	DIAG	GRAM OF BASIC EXTERNAL CONNECTIONS	I-136
			1 100
CHAPTER 7		CTRICAL CHARACTERISTICS	
			I-139
	ELEC		I-139 I-139
	ELEC 7.1	Absolute Maximum Rating	I-139 I-139 I-140
	ELEC 7.1 7.2	CTRICAL CHARACTERISTICS Absolute Maximum Rating Recommended Operating Conditions	I-139 I-139 I-140 I-141
	ELEC 7.1 7.2 7.3	CTRICAL CHARACTERISTICS Absolute Maximum Rating Recommended Operating Conditions DC Characteristics	I-139 I-139 I-140 I-141 I-143
	ELEC 7.1 7.2 7.3 7.4 7.5	CTRICAL CHARACTERISTICS Absolute Maximum Rating Recommended Operating Conditions DC Characteristics Analog Circuit Characteristics and Consumed Current	I-139 I-139 I-140 I-141 I-143 I-143
CHAPTER 7	ELEC 7.1 7.2 7.3 7.4 7.5 PAC	CTRICAL CHARACTERISTICS Absolute Maximum Rating Recommended Operating Conditions DC Characteristics Analog Circuit Characteristics and Consumed Current Oscillation Characteristics	I-139 I-139 I-140 I-141 I-143 I-149 I-153
CHAPTER 7	ELEC 7.1 7.2 7.3 7.4 7.5 PAC 8.1	CTRICAL CHARACTERISTICS Absolute Maximum Rating Recommended Operating Conditions DC Characteristics Analog Circuit Characteristics and Consumed Current Oscillation Characteristics KAGE Plastic Package	I-139 I-139 I-140 I-141 I-143 I-149 I-153 I-153
CHAPTER 7	ELEC 7.1 7.2 7.3 7.4 7.5 PAC	CTRICAL CHARACTERISTICS Absolute Maximum Rating Recommended Operating Conditions DC Characteristics Analog Circuit Characteristics and Consumed Current Oscillation Characteristics	I-139 I-139 I-140 I-141 I-143 I-149 I-153 I-153
CHAPTER 7	ELEC 7.1 7.2 7.3 7.4 7.5 PAC 8.1 8.2	CTRICAL CHARACTERISTICS Absolute Maximum Rating Recommended Operating Conditions DC Characteristics Analog Circuit Characteristics and Consumed Current Oscillation Characteristics KAGE Plastic Package	I-139 I-139 I-140 I-141 I-143 I-149 I-153 I-153 I-155
CHAPTER 7	ELEC 7.1 7.2 7.3 7.4 7.5 PAC 8.1 8.2	CTRICAL CHARACTERISTICS Absolute Maximum Rating Recommended Operating Conditions DC Characteristics Analog Circuit Characteristics and Consumed Current Oscillation Characteristics KAGE Plastic Package Ceramic Package for Test Samples	I-139 I-139 I-140 I-141 I-143 I-149 I-153 I-153 I-155 I-156

CHAPTER 1

OVERVIEW

The E0C6235 Series is a single-chip microcomputer made up of the 4-bit core CPU E0C6200, ROM (4,096 words, 12 bits to a word), RAM (576 words, 4 bits to a word) LCD driver, serial interface, event counter with dial input function, watchdog timer, and two types of time base counter. Because of its low-voltage operation and low power consumption, this series is ideal for a wide range of applications, and is especially suitable for battery-driven systems.

1.1 Configuration

The E0C6235 Series is configured as follows, depending on supply voltage and oscillation circuits.

Model	E0C6235	E0C62L35	E0C62A35
Supply voltage	3.0 V	1.5 V	3.0 V
Oscillation	OSC1 only	OSC1 only	OSC1 and OSC3
circuits	(Single clock)	(Single clock)	(Twin clock)

1.2 Features

Instruction set108 typesInstruction execution time (differs depending on instruction) (CLK: CPU operation frequency)153 µsec, 214 µsec, 366 µsec (CLK = 32,768 Hz)(CLK: CPU operation frequency)130 µsec, 182 µsec, 313 µsec (CLK = 38,400 Hz)(CLK: CPU operation frequency)10 µsec, 14 µsec, 24 µ (CLK = 500 kHz)ROM capacity4,096 words, 12 bits per wordRAM capacity576 words, 4 bits per wordInput ports9 bits (pull-down resistor can be added through mask option)Output ports8 bits (BZ, BZ, FOUT and SIOF outputs are available through mask option)I/O ports8 bits (pull-down resistor is added during input data reat-out)Serial interface1 port (serial 8 bits, clock synchronized)LCD driverEither 48 segments x 4 or 3 common (selected through mask option)			E0C6235	E0C62L35	E0C62A35				
$ \begin{array}{ c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c c } \label{eq:constraint} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	OSC1 oscillat	tion circuit	Crystal oscillation circuit 32,768 Hz (Typ.), 38,400 Hz (Typ.)						
	OSC3 oscillation circuit		No setting CR or Ceramic osci						
Instruction set 108 types Instruction execution time (differs depending on instruction) (CLK: CPU operation frequency) 153 µsec, 214 µsec, 366 µsec (CLK = 32,768 Hz) 130 µsec, 182 µsec, 313 µsec (CLK = 38,400 Hz) 10 µsec, 14 µsec, 24 µ (CLK = 500 kHz) RAM capacity 576 words, 4 bits per word RAM capacity 576 words, 4 bits per word Input ports 9 bits (pull-down resistor can be added through mask option) Output ports 8 bits (BZ, BZ, FOUT and SIOF outputs are available through mask option) I/O ports 8 bits (pull-down resistor can be added during input data read-out) Serial interface 1 port (senial 8 bits, clock synchronized) LCD driver Either 48 segments x 4 or 3 common (selected through mask option) V-3 V 1/4 or 1/3 duty (regulated voltage circut and booster voltage circui tbuilt-in) Time base counter Two 8-bit inputs (dial input evaluation or independent) Sound generator Programmable in 8 sounds (8 frequencies) Digital envelope built-in (can be disabled through mask option) Analog comparator Input interrupt, triple system Internal interrupt Input interrupt, triple system Supply voltage 3.0 V (1.8–3.5 V) 1.5 V (0.9–1.7 V) 3.0 V (2.2–3.5 V) Consumed (urrent) CLK = 32,768 Hz (when halte				circuit (selected by mask					
$ \begin{array}{ $					option) 500 kHz (Typ.)				
	Instruction se	t	108 types						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Instruction ex	ecution time	153 µsec, 214 µsec, 366	μsec (CLK = 32,768 Hz)					
$ \begin{array}{ c c c } \mbox{CLK} = 500 \ \mbox{KHz}) \\ \hline \begin{tabular}{ c c c c c } \label{eq:constraint} \end{tabular} \\ \hline \begin{tabular}{ c c c c c c c } \label{eq:constraint} \end{tabular} \\ \hline \begin{tabular}{ c c c c c c } \label{eq:constraint} \end{tabular} \\ \hline \begin{tabular}{ c c c c c c } \label{eq:constraint} \end{tabular} \\ \hline \begin{tabular}{ c c c c c c } \label{eq:constraint} \end{tabular} \\ \hline \begin{tabular}{ c c c c c c } \label{eq:constraint} \end{tabular} \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(differs depen	nding on instruction)	130 µsec, 182 µsec, 313	μsec (CLK = 38,400 Hz)					
$\begin{array}{ c c c } ROM capacity & 4,096 words, 12 bits per word \\ \hline RAM capacity & 576 words, 4 bits per word \\ \hline RAM capacity & 576 words, 4 bits per word \\ \hline RAM capacity & 576 words, 4 bits per word \\ \hline Input ports & 9 bits (pull-down resistor can be added through mask option) \\ \hline Output ports & 8 bits (pull-down resistor is added during input data read-out) \\ \hline Serial interface & 1 port (serial 8 bits, clock synchronized) \\ \hline LCD driver & Either 48 segments x 4 or 3 common (selected through mask option) \\ \hline V-3 V 1/4 or 1/3 duty (regulated voltage circut and booster voltage circut built-in) \\ \hline Time base counter & Two types (timer and stopwatch) \\ \hline Watchdog timer & Built-in (can be disabled through mask option) \\ \hline Event counter & Two 8-bit inputs (dial input evaluation or independent) \\ \hline Sound generator & Programmable in 8 sounds (8 frequencies) \\ \hline Digital envelope built-in (car be disabled through mask option) \\ \hline Analog comparator & Inverted input x 1, noninverted input x 1 \\ \hline Battery life detcor circuit (BLD) \\ \hline Input interrupt; triple system \\ \hline Time base counter interrupt; dual system \\ \hline Serial interface interrupt; single system \\ \hline Serial interface interrupt; single system \\ \hline ClK = 32,768 Hz (when halted) \\ \hline ClK = 32,768 Hz (when halted) \\ \hline ClK = 500 KHz (when h$	(CLK: CPU of	peration frequency)			10 µsec, 14 µsec, 24 µsec				
$ \begin{array}{ c c c } RAM capacity & 576 words, 4 bits per word \\ \hline Input ports & 9 bits (pull-down resistor can be added through mask option) \\ \hline Output ports & 8 bits (pull-down resistor can be added during input data read-out) \\ \hline Output ports & 8 bits (pull-down resistor is added during input data read-out) \\ \hline Serial interface & 1 port (serial 8 bits, clock synchronized) \\ LCD driver & Either 48 segments x 4 or 3 common (selected through mask option) \\ \hline V-3 V 1/4 or 1/3 duty (regulated voltage circut and booster voltage circuit built-in) \\ \hline Time base counter & Two types (timer and stopwatch) \\ \hline Watchdog timer & Built-in (can be disabled through mask option) \\ Event counter & Two 8-bit inputs (dial input evaluation or independent) \\ \hline Sound generator & Programmable in 8 sounds (8 frequencies) \\ \hline Digital envelope built-in (can be disabled through mask option) \\ \hline Analog comparator & Inverted input x 1, noninverted input x 1 \\ \hline Battery life detection circuit (BLD) \\ \hline Let all interrupt & Input interrupt; triple system \\ \hline Input interrupt with interrupt interrupt; single system \\ \hline Serial interface interrupt; single system \\ \hline Supply voltage \\ \hline CLK = 32,768 Hz (when halted) \\ \hline CLK = 500 KHz (when halted) \\ \hline $					(CLK = 500 kHz)				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ROM capacity	у	4,096 words, 12 bits per	word					
$ \begin{array}{ c c c } \hline Output ports & 8 bits (BZ, BZ, FOUT and SIOF outputs are available through mask option) \\ \hline I/O ports & 8 bits (bgull-down resistor is added during input data read-out) \\ \hline Serial interface & 1 port (serial 8 bits, clock synchronized) \\ \hline LCD driver & Either 48 segments x 4 or 3 common (selected through mask option) \\ \hline V-3 V 1/4 or 1/3 duty (regulated voltage circuit and booster voltage circuit built-in) \\ \hline Time base counter & Two types (timer and stopwatch) \\ \hline Watchdog timer & Built-in (can be disabled through mask option) \\ \hline Event counter & Two 8-bit inputs (dial input evaluation or independent) \\ \hline Sound generator & Programmable in 8 sounds (8 frequencies) \\ \hline Digital envelope built-in (can be disabled through mask option) \\ \hline Analog comparator & Inverted input x 1, noninverted input x 1 \\ \hline Battery life detection circuit (BLD) \\ \hline Letternal interrupt & Input interrupt; triple system \\ \hline Internal interrupt & Iime base counter interrupt; dual system \\ \hline Supply voltage & 3.0 V (1.8-3.5 V) \\ \hline Consumed (when halted) \\ \hline CLK = 32,768 Hz (when halted) \\ \hline CLK = 500 \text{kHz} \\ (Typ. value) \hline \\ \hline CLK = 500 \text{kHz} \\ (when halted) & - & - \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	RAM capacity	/	576 words, 4 bits per wor	d					
$\begin{tabular}{ c c c c c c } \begin{tabular}{ c c c c c c c } \line run run run run run run run run run run$	Input ports		9 bits (pull-down resistor	can be added through mask c	option)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output ports		8 bits (BZ, BZ, FOUT and	I SIOF outputs are available the	hrough mask option)				
$ \begin{array}{c c c c c c c } LCD driver & Either 48 segments x 4 or 3 common (selected through mask option) \\ \hline V-3 V 1/4 or 1/3 duty (regulated voltage circut and booster voltage circuit built-in) \\ \hline V-3 V 1/4 or 1/3 duty (regulated voltage circut and booster voltage circuit built-in) \\ \hline Watchdog timer & Built-in (can be disabled through mask option) \\ \hline Watchdog generator & Programmable in 8 sounds (8 frequencies) \\ \hline Digital envelope built-in (can be disabled through mask option) \\ \hline Analog comparator & Inverted input x 1, noninverted input x 1 \\ \hline Battery life detection circuit (BLD) & Dual system (programmable in octal values and fixed values) \\ \hline 2.4 V, 2.2-2.55 V & 1.2 V, 1.05-1.4 V & 2.4 V, 2.2-2.55 V \\ \hline External interrupt & Input interrupt; triple system \\ \hline Internal interrupt & Input interrupt; triple system \\ \hline Serial interface interrupt; single system \\ \hline Supply voltage & 3.0 V (1.8-3.5 V) & 1.5 V (0.9-1.7 V) & 3.0 V (2.2-3.5 V) \\ \hline Consumed \\ cLK = 32,768 Hz \\ (when halted) & 1.8 \mu A & 1.5 \mu A & 2.0 \mu A \\ \hline CLK = 32,768 Hz \\ (when executed) & 6.0 \mu A & 5.0 \mu A & 8.0 \mu A \\ \hline CLK = 500 KHz \\ (when halted) & - & - & 130 \mu A \\ \hline \end{array}$	I/O ports		8 bits (pull-down resistor	is added during input data rea	ad-out)				
$ \begin{array}{ c c c } V-3 \ V \ 1/4 \ or \ 1/3 \ duty (regulated voltage circuit and booster voltage circuit built-in) \\ \hline Time base counter & Two types (timer and stopwatch) \\ \hline Watchdog timer & Built-in (can be disabled through mask option) \\ \hline Event counter & Two 8-bit inputs (dial input evaluation or independent) \\ \hline Event counter & Two 8-bit inputs (dial input evaluation or independent) \\ \hline Sound generator & Programmable in 8 sounds (8 frequencies) \\ \hline Digital envelope built-in (can be disabled through mask option) \\ \hline Analog comparator & Inverted input x 1, noninverted input x 1 \\ \hline Battery life detection circuit (BLD) & Dual system (programmable in octal values and fixed values) \\ \hline 2.4 \ V, 2.2-2.55 \ V & 1.2 \ V, 1.05-1.4 \ V & 2.4 \ V, 2.2-2.55 \ V \\ \hline External interrupt & Input interrupt; triple system \\ \hline Serial interface interrupt; single system \\ \hline Supply voltage & 3.0 \ V \ (1.8-3.5 \ V) & 1.5 \ V \ (0.9-1.7 \ V) & 3.0 \ V \ (2.2-3.5 \ V) \\ \hline Consumed current & (when halted) & 1.8 \ \mu A & 1.5 \ \mu A & 2.0 \ \mu A \\ \hline (Typ. value) & (when executed) & 6.0 \ \mu A & 5.0 \ \mu A & 8.0 \ \mu A \\ \hline (CLK = 32,768 \ Hz & 6.0 \ \mu A & 5.0 \ \mu A & 8.0 \ \mu A \\ \hline (When halted) & - & - & 130 \ \mu A \\ \hline \end{array}$	Serial interfac	ce	1 port (serial 8 bits, clock	1 port (serial 8 bits, clock synchronized)					
$\begin{tabular}{ c c c c } \hline Two types (timer and stopwatch) & $$$$$$$$$$$$$$$Watchdog timer $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	LCD driver		Either 48 segments x 4 or 3 common (selected through mask option)						
$\begin{tabular}{ c c c c } \hline Watchdog timer & Built-in (can be disabled through mask option) \\ \hline Event counter & Two 8-bit inputs (dial input evaluation or independent) \\ \hline Sound generator & Programmable in 8 sounds (8 frequencies) \\ \hline Digital envelope built-in (can be disabled through mask option) \\ \hline Analog comparator & Inverted input x 1, noninverted input x 1 \\ \hline Battery life detection circuit (BLD) & Dual system (programmable in octal values and fixed values) \\ \hline 2.4 V, 2.2-2.55 V & 1.2 V, 1.05-1.4 V & 2.4 V, 2.2-2.55 V \\ \hline External interrupt & Input interrupt; triple system \\ \hline Internal interrupt & Time base counter interrupt; dual system \\ \hline Serial interface interrupt; single system \\ \hline Supply voltage & 3.0 V (1.8-3.5 V) & 1.5 V (0.9-1.7 V) & 3.0 V (2.2-3.5 V) \\ \hline Consumed current & (when halted) & 1.8 \ \mu A & 1.5 \ \mu A & 2.0 \ \mu A \\ \hline (Typ. value) & (when executed) & 6.0 \ \mu A & 5.0 \ \mu A & 8.0 \ \mu A \\ \hline (When halted) & - & - & 130 \ \mu A \\ \hline \end{tabular}$			V-3 V 1/4 or 1/3 duty (regulated voltage circut and booster voltage circuit built-in)						
$\begin{tabular}{ c c c c c } \hline I wo 8-bit inputs (dial input evaluation or independent)$ \\ \hline $Sound generator$ $Programmable in 8 sounds (8 frequencies)$ \\ \hline $Digital envelope built-in (can be disabled through mask option)$ \\ \hline $Analog comparator$ $Inverted input x 1, noninverted input x 1$ \\ \hline $Analog comparator$ $Inverted input x 1, noninverted input x 1$ \\ \hline $Battery life detection circuit (BLD)$ $Dual system (programmable in octal values and fixed values)$ \\ \hline $2.4 V, 2.2-2.55 V$ $1.2 V, 1.05-1.4 V$ $2.4 V, 2.2-2.55 V$ \\ \hline $External interrupt$ $Input interrupt; triple system$ $Inverted input x 1$ $Input interrupt; triple system$ $Serial interface interrupt; single system$ $Serial interface interrupt; single system$ $Supply voltage$ $3.0 V (1.8-3.5 V)$ $1.5 V (0.9-1.7 V)$ $3.0 V (2.2-3.5 V)$ $Consumed$ $CLK = 32,768 Hz$ $(when halted)$ $1.8 μA$ $1.5 μA$ $2.0 μA$ $$0 μA$	Time base co	ounter	Two types (timer and stopwatch)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Watchdog tim	ner	Built-in (can be disabled through mask option)						
$\begin{tabular}{ c c c c c } \hline Digital envelope built-in (can be disabled through mask option) \\ \hline Analog comparator & Inverted input x 1, noninverted input x 1 \\ \hline Battery life detection circuit (BLD) & Dual system (programmable in octal values and fixed values) \\ \hline 2.4 V, 2.2-2.55 V & 1.2 V, 1.05-1.4 V & 2.4 V, 2.2-2.55 V \\ \hline External interrupt & Input interrupt; triple system \\ \hline Input interrupt; triple system \\ \hline Internal interrupt & Inme base counter interrupt; dual system \\ \hline Serial interface interrupt; dual system \\ \hline Supply voltage & 3.0 V (1.8-3.5 V) & 1.5 V (0.9-1.7 V) & 3.0 V (2.2-3.5 V) \\ \hline Consumed current & (when halted) & 1.8 \ \mu A & 1.5 \ \mu A & 2.0 \ \mu A \\ \hline CLK = 32,768 \ Hz & 6.0 \ \mu A & 5.0 \ \mu A & 8.0 \ \mu A \\ \hline (Typ. value) & CLK = 500 \ KHz & - & - & 130 \ \mu A \\ \hline \end{tabular}$	Event counter	r	Two 8-bit inputs (dial input evaluation or independent)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sound genera	ator	Programmable in 8 sound	ds (8 frequencies)					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Digital envelope built-in (can be disabled through mask option)						
$ \begin{array}{ c c c c c c c c } \hline 2.4 \ V, \ 2.2-2.55 \ V & 1.2 \ V, \ 1.05-1.4 \ V & 2.4 \ V, \ 2.2-2.55 \ V \\ \hline \ $	Analog compa	arator	Inverted input x 1, noninverted input x 1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Battery life de	etection circuit (BLD)	Dual system (programmable in octal values and fixed values)						
$ \begin{array}{ c c c c c } \hline Internal interrupt \\ \hline Interface inter$			2.4 V, 2.2–2.55 V	1.2 V, 1.05–1.4 V	2.4 V, 2.2–2.55 V				
$\begin{tabular}{ c c c c c } \hline Serial interface interrupt; single system \\ \hline Supply voltage & 3.0 V (1.8–3.5 V) & 1.5 V (0.9–1.7 V) & 3.0 V (2.2–3.5 V) \\ \hline Consumed \\ current \\ (when halted) & 1.8 \mu A & 1.5 \mu A & 2.0 \mu A \\ \hline CLK = 32,768 Hz \\ (when halted) & 6.0 \mu A & 5.0 \mu A & 8.0 \mu A \\ \hline CLK = 500 \ kHz \\ (when halted) & - & - & 130 \mu A \\ \hline \end{array}$	External inter	rupt	Input interrupt; triple syste	Input interrupt; triple system					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Internal interr	upt	Time base counter interrupt; dual system						
$ \begin{array}{c c} Consumed \\ current \\ (Typ. value) \end{array} \begin{array}{c} CLK = 32,768 \ Hz \\ (when halted) \end{array} \begin{array}{c} 1.8 \ \mu A \end{array} \begin{array}{c} 1.5 \ \mu A \end{array} \begin{array}{c} 2.0 \ \mu A \end{array} \end{array} \\ \begin{array}{c} CLK = 32,768 \ Hz \\ (when executed) \end{array} \begin{array}{c} CLK = 32,768 \ Hz \\ (when executed) \end{array} \begin{array}{c} 6.0 \ \mu A \end{array} \begin{array}{c} 5.0 \ \mu A \end{array} \end{array} \\ \begin{array}{c} S.0 \ \mu A \end{array} \begin{array}{c} 8.0 \ \mu A \end{array} \end{array}$			Serial interface interrupt;	Serial interface interrupt; single system					
current(when halted) $1.8 \mu A$ $1.5 \mu A$ $2.0 \mu A$ (Typ. value)CLK = 32,768 Hz (when executed) $6.0 \mu A$ $5.0 \mu A$ $8.0 \mu A$ (when executed)CLK = 500 kHz (when halted) $ -$	Supply voltag	e	3.0 V (1.8–3.5 V)	1.5 V (0.9–1.7 V)	3.0 V (2.2–3.5 V)				
$\begin{array}{c} \text{(when halted)} \\ \text{(Typ. value)} \\ \hline \text{(Typ. value)} \\ \hline \text{(LK = 32,768 Hz} \\ \text{(when executed)} \\ \hline \text{CLK = 500 kHz} \\ \text{(when halted)} \\ \hline \text{-} \\ \hline \text{(when halted)} \\ \hline \text{-} \\ \hline \begin{array}{} \text{-} \\ \text{-} \\ \hline \text{-} \\ \hline \text{-} \\ \hline \begin{array}{} \text{-} \\ \text{-} \\ \hline \text{-} \\ \hline \text{-} \\ \hline \begin{array}{} \text{-} \\ \text{-} \\ \hline \text{-} \\ \hline \begin{array}{} \text{-} \\ \text{-} \\ \hline \begin{array}{} \text{-} \\ \text{-} \\ \hline \end{array}{-} \\ \hline \begin{array}{} \text{-} \\ \text{-} \\ \hline \end{array}{-} \\ \hline \begin{array}{} \text{-} \\ \text{-} \\ \hline \end{array}{-} \\ \hline \begin{array}{} \text{-} \\ \text{-} \\ \hline \end{array}{-} \\ \hline \end{array}{-} \\ \hline \begin{array}{} \text{-} \\ \hline \end{array}{-} \\ \hline \end{array}{-} \\ \hline \begin{array}{} \text{-} \\ \hline \end{array}{-} \\ \end{array}{-} \\ \end{array}{-} \\ \hline \end{array}{-} \\ \end{array}{-} \\ \hline \end{array}{-} \\ \hline \end{array}{-} \\ \hline \end{array}{-} \\ \end{array}{-} $	Consumed	CLK = 32,768 Hz	1.8 ٨	150	2.00				
(Typ. value) (when executed) 6.0 μA 5.0 μA 8.0 μA CLK = 500 kHz - - 130 μA (when halted) - - 130 μA	current	(when halted)	1.0 μΑ	1.5 μΑ	2.0 μΑ				
(Typ. value) (when executed) CLK = 500 kHz - (when halted) -		CLK = 32,768 Hz	60	5.0	8.00				
(when halted) – – 130 µA	(Typ. value)	(when executed)	0.0 μΑ	5.0 μΑ	ο.υ μΑ				
(when halted)		CLK = 500 kHz	_		130 μΑ				
Form when shipped 100-pin QFP (plastic) or chip		(when halted)	_						
	Form when sl	hipped	100-pin QFP (plastic) or o	100-pin QFP (plastic) or chip					

1.3 Block Diagram

Fig. 1.3.1 Block diagram

1.4 Pin Layout Diagram

F100-5

					-			
	Pin No.	Pin Name						
	1	COM1	26	SEG24	51	SEG0	76	P10
	2	COM0	27	TEST	52	AMPP	77	R03
	3	SEG47	28	SEG23	53	AMPM	78	R02
	4	SEG46	29	SEG22	54	K23	79	R01
	5	SEG45	30	SEG21	55	K22	80	R00
	6	SEG44	31	SEG20	56	K21	81	R12
	7	SEG43	32	SEG19	57	K20	82	R11
	8	SEG42	33	SEG18	58	K10	83	R10
	9	SEG41	34	SEG17	59	K03	84	R13
	10	SEG40	35	SEG16	60	K02	85	Vss
	11	SEG39	36	SEG15	61	K01	86	RESET
	12	SEG38	37	SEG14	62	K00	87	OSC4
	13	SEG37	38	SEG13	63	SIN	88	OSC3
	14	SEG36	39	SEG12	64	SOUT	89	Vs1
	15	SEG35	40	SEG11	65	N.C.	90	OSC2
	16	SEG34	41	SEG10	66	SCLK	91	OSC1
	17	SEG33	42	SEG9	67	P03	92	Vdd
	18	SEG32	43	SEG8	68	P02	93	VL3
	19	SEG31	44	SEG7	69	P01	94	VL2
	20	SEG30	45	SEG6	70	P00	95	VL1
	21	SEG29	46	SEG5	71	N.C.	96	CA
	22	SEG28	47	SEG4	72	N.C.	97	CB
	23	SEG27	48	SEG3	73	P13	98	CC
Fig. 1.4.1	24	SEG26	49	SEG2	74	P12	99	COM3
assignment	25	SEG25	50	SEG1	75	P11	100	COM2
(5400 5)						NC		nantion

Pin assignment (F100-5)

N.C.=No Connection

	Pin No.	Pin Name						
	1	SEG47	26	SEG23	51	AMPP	76	R02
	2	SEG46	27	SEG22	52	AMPM	77	R01
	3	SEG45	28	SEG21	53	K23	78	R00
	4	SEG44	29	SEG20	54	K22	79	R12
	5	SEG43	30	SEG19	55	K21	80	R11
	6	SEG42	31	SEG18	56	K20	81	R10
	7	SEG41	32	SEG17	57	K10	82	R13
	8	SEG40	33	SEG16	58	K03	83	Vss
	9	SEG39	34	SEG15	59	K02	84	RESET
	10	SEG38	35	SEG14	60	K01	85	OSC4
	11	SEG37	36	SEG13	61	K00	86	OSC3
	12	SEG36	37	SEG12	62	SIN	87	Vs1
	13	SEG35	38	N.C.	63	SOUT	88	OSC2
	14	SEG34	39	SEG11	64	N.C.	89	OSC1
	15	SEG33	40	SEG10	65	SCLK	90	VDD
	16	SEG32	41	SEG9	66	N.C.	91	VL3
	17	SEG31	42	SEG8	67	P03	92	VL2
	18	SEG30	43	SEG7	68	P02	93	VL1
	19	SEG29	44	SEG6	69	P01	94	CA
	20	SEG28	45	SEG5	70	P00	95	CB
	21	SEG27	46	SEG4	71	P13	96	CC
	22	SEG26	47	SEG3	72	P12	97	COM3
	23	SEG25	48	SEG2	73	P11	98	COM2
Fig. 1.4.2	24	SEG24	49	SEG1	74	P10	99	COM1
assignment	25	TEST	50	SEG0	75	R03	100	COM0
-						NC		

Pin assignment (F100-15)

N.C.=No Connection

1.5 Pin Description

F100-5

Pin Name	Pin Number	Input/output	Function
Vdd	92	(I)	Power source positive terminal
Vss	85	(I)	Power source negative terminal
VS1	89	-	Constant voltage output terminal for oscillation
VL1	95	-	Constant voltage output terminal for LCD (approx1.05 V)
VL2	94	-	Booster output terminal for LCD (VL1 \times 2)
Vl3	93	-	Booster output terminal for LCD (VL1 \times 3)
CA-CC	96–98	-	Booster condenser connector terminal
OSC1	91	Ι	Crystal oscillator input terminal
OSC2	90	0	Crystal oscillator output terminal
OSC3	88	Ι	*1
OSC4	87	0	*1
K00-23	54-62	Ι	Input terminal
P00-13	67-70, 73-76	I/O	Input/output terminal
R00-03	77–80	0	Output terminal
R10	83	0	Output terminal (Can output BZ through mask option)
R13	84	0	Output terminal (Can output $\overline{\text{BZ}}$ through mask option)
R11	82	0	Output terminal (Can output SIOF through mask option)
R12	81	0	Output terminal (Can output FOUT through mask option)
SIN	63	Ι	Serial interface input terminal
SOUT	64	0	Serial interface output terminal
SCLK	66	I/O	Input/output terminal for serial interface clock
AMPP	52	Ι	Analog comparator noninverted input terminal
AMPM	53	Ι	Analog comparator inverted input terminal
SEG0-47	3–26,	0	LCD segment output terminal
	28-51		(DC output available through mask option)
COM0-3	1, 2, 99, 100	0	LCD common output terminal
RESET	86	Ι	Initial resetting input terminal
TEST	27	Ι	Test input terminal

Table 1.5.1 Pin description (F100-5)

*1 6235/62L35: N.C. (Not connected)

62A35: CR or ceramic oscillation input terminal (Switchable through mask option)

F100-15

Pin Name	Pin Number	Input/output	Function
VDD	90	(I)	Power source positive terminal
Vss	83	(I)	Power source negative terminal
Vs1	87	_	Constant voltage output terminal for oscillation
VL1	93	-	Constant voltage output terminal for LCD (approx1.05 V)
VL2	92	_	Booster output terminal for LCD (VL1 \times 2)
Vl3	91	_	Booster output terminal for LCD (VL1 \times 3)
CA-CC	94–96	_	Booster condenser connector terminal
OSC1	89	Ι	Crystal oscillator input terminal
OSC2	88	0	Crystal oscillator output terminal
OSC3	86	I	*1
OSC4	85	0	*1
K00-23	53–61	Ι	Input terminal
P00-13	67–74	I/O	Input/output terminal
R00-03	75–78	0	Output terminal
R10	81	0	Output terminal (Can output BZ through mask option)
R13	82	0	Output terminal (Can output $\overline{\mathrm{BZ}}$ through mask option)
R11	80	0	Output terminal (Can output SIOF through mask option)
R12	79	0	Output terminal (Can output FOUT through mask option)
SIN	62	I	Serial interface input terminal
SOUT	63	0	Serial interface output terminal
SCLK	65	I/O	Input/output terminal for serial interface clock
AMPP	51	I	Analog comparator noninverted input terminal
AMPM	52	Ι	Analog comparator inverted input terminal
SEG0-47	1–24,	0	LCD segment output terminal
	26-50		(DC output available through mask option)
COM0-3	97–100	0	LCD common output terminal
RESET	84	Ι	Initial resetting input terminal
TEST	25	Ι	Test input terminal

Table 1.5.2 Pin description (F100-15)

*1 6235/62L35: N.C. (Not connected)

62A35:

CR or ceramic oscillation input terminal (Switchable through mask option)

CHAPTER 2 POWER SUPPLY AND INITIAL RESET

2.1 Power Supply

With a single external power supply (*1) supplied to VDD through Vss, the EOC6235 Series generates the necessary internal voltage with the regulated voltage circuit (<VS1> for oscillators, <VL1> for LCDs) and the voltage booster circuit (<VL2, VL3> for LCDs).

Figure 2.1.1 shows the configuration of power supply. *1 Supply voltage: 6235/62A35 .. 3 V, 62L35 .. 1.5 V

- Notes External loads cannot be driven by the regulated voltage and voltage booster circuit's output voltage.
 - See "7 ELECTRICAL CHARACTERISTICS" for voltage values.

Fig. 2.1.1 Configuration of power supply

2.2 Initial Reset

To initialize the E0C6235 Series circuits, initial reset must be executed. There are four ways of doing this.

- (1) Initial reset by the oscillation detection circuit
- (2) External initial reset by the RESET terminal
- (3) External initial reset by simultaneous high input to terminals K00–K03
- (4) Initial reset by watchdog timer

Figure 2.2.1 shows the configuration of the initial reset circuit.

Oscillation detection circuit	The oscillation detection circuit outputs the initial reset signal at power-on until the crystal oscillation circuit (OSC1) begins oscillating, or when this crystal oscillation circuit (OSC1) halts oscillating for some reason. However, depending on the power-on sequence (voltage rise timing), the circuit may not work properly. Therefore, use the reset terminal or reset by simultaneous high input to the input port (K00–K03) for initial reset after turning power on.
Reset terminal (RESET)	Initial reset can be executed externally by setting the reset terminal to the high level. This high level must be main- tained for at least 5 msec (when oscillating frequency is fOSC1 = 32 kHz), because the initial reset circuit contains a noise rejector. When the reset terminal goes low the CPU begins to operate.
Simultaneous high input to input ports (K00–K03)	Another way of executing initial reset externally is to input a high signal simultaneously to the input ports (K00–K03) selected with the mask option. The specified input port terminals must be kept high for at least 5 msec (when oscillating frequency is fosc1 = 32 kHz), because the initial reset circuit contains a noise rejector. Table 2.2.1 shows the combinations of input ports (K00–K03) that can be selected with the mask option.
Table 2.2.1 Input port combinations	A Not used B K00*K01 C K00*K01*K02 D K00*K01*K02*K03

When, for instance, mask option D (K00*K01*K02*K03) is selected, initial reset is executed when the signals input to the four ports K00–K03 are all high at the same time.

Further, the time authorize circuit can be selected with the mask option. The time authorize circuit performs initial reset, when the input time of the simultaneous high input is authorized and found to be the same or more than the defined time (1 to 2 sec).

If you use this function, make sure that the specified ports do not go high at the same time during ordinary operation.

Watchdog timer

If the CPU runs away for some reason, the watchdog timer will detect this situation and output an initial reset signal. See "4.2 Resetting Watchdog Timer" for details.

Internal register at initial reset

Initial reset initializes the CPU as shown in the table below.

Table 2.2.2
Initial values

C	PU Core		
Name	Symbol	Number of bits	Setting value
Program counter step	PCS	8	00H
Program counter page	PCP	4	1H
New page pointer	NPP	4	1H
Stack pointer	SP	8	Undefined
Index register X	Х	10	Undefined
Index register Y	Y	10	Undefined
Register pointer	RP	4	Undefined
General-purpose register A	Α	4	Undefined
General-purpose register B	В	4	Undefined
Interrupt flag	Ι	1	0
Decimal flag	D	1	Undefined
Zero flag	Ζ	1	Undefined
Carry flag	С	1	Undefined

Peripheral circuits										
Name	Number of bits	Setting value								
RAM	4	Undefined								
Segment data	4	Undefined								
Other peripheral circuit	4	*1								

*1 See "4.1 Memory Map"

2.3 Test Terminal (TEST)

This terminal is used when the IC load is being detected. During ordinary operation be certain to connect this terminal to Vss.

CHAPTER 3 CPU, ROM, RAM

3.1 CPU

The E0C6235 Series employs the core CPU E0C6200 for the CPU, so that register configuration, instructions and so forth are virtually identical to those in other family processors using the E0C6200.

Refer to "E0C6200 Core CPU Manual" for details about the E0C6200.

Note the following points with regard to the E0C6235 Series:

- (1) The SLEEP operation is not assumed, so the SLP instruction cannot be used.
- (2) Because the ROM capacity is 4,096 words, bank bits are unnecessary and PCB and NBP are not used.
- (3) RAM is set up to two pages, so only the two low-order bits are valid for the page portion (XP, YP) of the index register that specifies addresses.

(The two high-order bits are ignored.)

3.2 ROM

The built-in ROM, a mask ROM for loading the program, has a capacity of 4,096 steps, 12 bits each. The program area is 16 pages (0–15), each of 256 steps (00H–FFH). After initial reset, the program beginning address is page 1, step 00H. The interrupt vector is allocated to page 1, steps 01H–0FH.

Fig. 3.2.1 ROM configuration

3.3 RAM

The RAM, a data memory storing a variety of data, has a capacity of 576 words, each of four bits. When programming, keep the following points in mind.

- (1) Part of the data memory can be used as stack area when subroutine calls and saving registers, so be careful not to overlap the data area and stack area.
- (2) Subroutine calls and interrupts take up three words of the stack area.
- (3) The data memory 000H–00FH is for the register pointers (RP), and is the addressable memory register area.

See "4.1 Memory Map" for details.

CHAPTER 4 PERIPHERAL CIRCUITS AND OPERATION

Peripheral circuits (timer, I/O, and so on) of the E0C6235 Series are memory mapped, and interfaced with the CPU. Thus, all the peripheral circuits can be controlled by using the memory operation command to access the I/O memory in the memory map.

The following sections describe how the peripheral circuits operation.

4.1 Memory Map

Data memory of the E0C6235 Series has an address space of 608 words (656 words when display memory is laid out over two pages), of which 48 words are allocated to display memory and 32 words to I/O memory.

Figures 4.1.1(a)–(c) present the overall memory maps of the E0C6235 Series, and Tables 4.1.1(a)–(c) the peripheral circuits' (I/O space) memory maps.

Address	Low																
		0	1	2	3	4	5	6	7	8	9	A	в	С	D	Е	F
Page	High																
	0	M0	M1	M2	М3	M4	M5	M6	M7	M8	M9	MA	MB	MC	MD	ME	Ν
	1																
	2																
	3																
	4																
	5																
	6																
0	7						RA	M (2	56 w	ords	x 4 h	its)					
0	8						10	M (2	R/	W	~ + 0	113)					
	9																
	A																
	В																
	С																
	D																
	E																
	F																
	0																
	1																
	2																
	3																
	4																
	5																
	6																
1	7						RA	M (2	56 w	ords	x 4 b	its)					
•	8								R/	W							
	9																
	A																
	В																
	С																
	D																
	E																
	F																

	Address	Low																
			0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	Page	High																
		0																
		1						-										
		2						R/	AM (6	64 wc /R	ords x W	4 bit	is)					
		3																
		4																
		5																
		6																
	2	7																
	2	8								nuse	dara	~						
		9							0	nuse	u ale	a						
		Α																
		В																
		С																
		D																
o)		E					1/0		on/ [9	200 T	ablo	- 1 1	.1(a)-	(c)]				
2)		F					1/0	nem		bee I	aule	5 4.1.	. i (a)-	-(ບ)]				

Notes (1) See Tables 4.1.1(a)–(c) for details of I/O memory.

(2) The mask option can be used to select whether to assign the overall area of display memory to page 0 or page 2.

When page 0 (040H–06FH) is selected, read/write is enabled. When page 2 (240H–26FH) is selected, write only is enabled.

If page 0 is assigned, RAM (040H–06FH) is 48 words, and used as the segment area.

(3) Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

A		Reg	ister						0
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	TM3	TM2	TM1	тмо	TM3	0			Timer data (clock timer 2 Hz)
2E0H	11110	11112		11110	TM2	0			Timer data (clock timer 4 Hz)
		I	ર		TM1	0			Timer data (clock timer 8 Hz)
					TM0	0			Timer data (clock timer 16 Hz)
	SWL3	SWL2	SWL1	SWL0	SWL3 SWL2	0 0			MSB
2E1H					SWL2	0			Stopwatch timer data 1/100 sec (BCD)
		I	2		SWLO	0			
					SWH3	0			☐ MSB
05011	SWH3	SWH2	SWH1	SWH0	SWH2	0			
2E2H					SWH1	0			Stopwatch timer data 1/10 sec (BCD)
		1		1	SWH0	0			LSB
	K03	K02	K01	коо	K03	_ *2	High	Low	7
2E3H		1102			K02	_ *2	High	Low	Input port data (K00–K03)
		I	2		K01	- *2	High	Low	
					K00	_ *2	High	Low	<u></u>
	KCP03	KCP02	KCP01	KCP00	KCP03 KCP02	0 0			
2E4H					KCP02	0			Input comparison register (K00-K03)
		R	W/W		KCP00	0		f	
					EIK03	0	Enable	Mask	7
05511	EIK03	EIK02	EIK01	EIK00	EIK02	0	Enable	Mask	
2E5H		D			EIK01	0	Enable	Mask	Interrupt mask register (K00–K03)
		к/	W.		EIK00	0	Enable	Mask	
	HLMOD	BLD0	EISWIT1	FISWITO	HLMOD	0	Heavy load	Normal	Heavy load protection mode register
2E6H	THEMIOD	DEDU	LIOWIT	LIGHTIG	BLD0	0	Low	Normal	Sub-BLD evaluation data
	R/W	R	R	w	EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)
					EISWITO	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)
	SCTRG	EIK10	KCP10	K10	SCTRG*3 EIK10	- 0	Trigger Enable	– Mask	Serial interface clock trigger Interrupt mask register (K10)
2E7H					KCP10	0			Input comparison register (K10)
	W	R	W	R	K10	_ *2	High	Low	Input port data (K10)
					CSDC	0	Static	Dynamic	LCD drive switch
05011	CSDC	ETI2	ETI8	ETI32	ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
2E8H		D	W		ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
		N/		1	ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	TI2	TI8	TI32	0 *3	_ *2	-	-	Unused
2E9H					TI2 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
		I	ર		TI8 *4	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
					TI32 *4 IK1 *4	0	Yes Yes	No No	Interrupt factor flag (clock timer 32 Hz) Interrupt factor flag (K10)
	IK1	IK0	SWIT1	SWIT0	IK1 *4 IK0 *4	0	Yes	No	Interrupt factor flag (K00–K03)
2EAH			1		SWIT1 *4	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
		I	2		SWIT0 *4		Yes	No	Interrupt factor flag (stopwatch 10 Hz)
	Dea	Dee	Det	Daa	R03	0	High	Low	Output port (R03)
2EBH	R03	R02	R01	R00	R02	0	High	Low	Output port (R02)
ZEÖN		D	w		R01	0	High	Low	Output port (R01)
		rt.			R00	0	High	Low	Output port (R00)
	R13	D10	R11	D10	R13	0	High/On	Low/Off	Output port $(R13)/\overline{BZ}$ output control
	K13	R12	SIOF	R10	R12	0	High/On	Low/Off	Output port (R12)/FOUT output control
2ECH			R/W		R11	0	High	Low	Output port (R11, LAMP)
	R/	W	R	R/W	SIOF	0 0	Run High/On	Stop Low/Off	Output port (SIOF)
					R10 P03	0 _ *2	High/On High	Low/OII	Output port (R10)/BZ output control
	P03	P02	P01	P00	P03 P02	- *2 - *2	High	Low	I/O port data (P00–P03)
2EDH		1		1	P01	_ *2	High	Low	Output latch reset at time of SR
		R	W		P00	- *2	High	Low	
Initial 81	value at	the time	of initial	reset		*3 Cons	tantly "0"		ing read *5 Undefined

Table 4.1.1(a) I/O memory map (2E0H-2EDH)

*2 Not set in the circuit

^{*4} Reset (0) immediately after being read

		Reg	ister						
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	TMRST	SWDUN	SWRST	10C0	TMRST*3	Reset	Reset	-	Clock timer reset
2EEH	TIVINGT	SWKUN	30031	1000	SWRUN	0	Run	Stop	Stopwatch timer Run/Stop
	w	R/W	w	R/W	SWRST*3	Reset	Reset	-	Stopwatch timer reset
						0 Decet	Output	Input	I/O control register 0 (P00–P03)
	WDRST	WD2	WD1	WD0	WDRST*3 WD2	Reset 0	Reset	-	Watchdog timer reset Timer data (watchdog timer) 1/4 Hz
2EFH					WD2 WD1	0			Timer data (watchdog timer) 1/4 Hz Timer data (watchdog timer) 1/2 Hz
	W		R		WD0	0			Timer data (watchdog timer) 1 Hz
	600	600	6.01	600	SD3	× *5			
2F0H	SD3	SD2	SD1	SD0	SD2	$\times *5$			Social interface data register (low order 4 hite)
21 011		R	Ŵ		SD1	× *5			Serial interface data register (low-order 4 bits)
			1	1	SD0	× *5			
	SD7	SD6	SD5	SD4	SD7	× *5			
2F1H					SD6 SD5	× *5 × *5			Serial interface data register (high-order 4 bits)
		R	/W		SD3 SD4	× *5			
					SCS1	1			SIF clock mode [SCS1, 0] 0 1 2 3
05011	SCS1	SCS0	SE2	EISIO	SCS0	1			selection register Clock CLK CLK/2 CLK/4 slave
2F2H					SE2	0	ſ	٦.	SIF clock edge selection register
		ĸ	/W		EISIO	0	Enable	Mask	Interrupt mask register (serial interface)
	0	0	IK2	ISIO	0 *3	_ *2	-	-	Unused
2F3H		Ŭ		1010	0 *3	- *2	-	-	Unused
		1	R		IK2 *4	0	Yes	No	Interrupt factor flag (K20–K23)
					ISIO *4 K23	0	Yes	No Low	Interrupt factor flag (serial interface)
	K23	K22	K21	K20	K23 K22	_ *2 _ *2	High High	Low	
2F4H					K22	_ *2	High	Low	Input port data (K20–K23)
		I	R		K20	_ *2	High	Low	
	FILCOD	FIK22	FII/01	FIK20	EIK23	0	Enable	Mask	
2F5H	EIK23	EIK22	EIK21	EIK20	EIK22	0	Enable	Mask	Interrupt mask register (K20, K22)
21 311		R	Ŵ		EIK21	0	Enable	Mask	Interrupt mask register (K20–K23)
				1	EIK20	0	Enable	Mask	$\square \text{ Purzor } [BZFO2-0] 0 1 2 3$
	BZFQ2	BZFQ1	BZFQ0	ENVRST	BZFQ2	0			$\frac{1}{10000000000000000000000000000000000$
2F6H					BZFQ1 BZFQ0	0 0			[BZFQ2-0] 4 5 6 7
		R/W		w	ENVRST*3	Reset	Reset	_	ightarrow selection Frequency fosci/16 fosci/20 fosci/24 fosci/28 Envelope reset
					ENVON	0	On	Off	Envelope On/Off
05711	ENVON	ENVRT	AMPDT	AMPON	ENVRT	0	1.0 sec	0.5 sec	Envelope cycle selection register
2F7H	D	W	R	R/W	AMPDT	1	+ > -	+ < -	Analog comparator data
	K/	vv	ĸ	R/W	AMPON	0	On	Off	Analog comparator On/Off
	EV03	EV02	EV01	EV00	EV03	0			7
2F8H					EV02	0			Event counter 0 (low-order 4 bits)
-		1	R		EV01	0			
					EV00 EV07	0			
	EV07	EV06	EV05	EV04	EV07 EV06	0			
2F9H				I	EV00	0			Event counter 0 (high-order 4 bits)
			R		EV04	0			
	EV/12	EV/10	E\/11	E\/10	EV13	0			
2FAH	EV13	EV12	EV11	EV10	EV12	0			Event counter 1 (low-order 4 bits)
21 711			R		EV11	0			Even counter 1 (low-order 4 bits)
			-	1	EV10	0			
	EV17	EV16	EV15	EV14	EV17	0			
2FBH					EV16	0			Event counter 1 (high-order 4 bits)
		I	R		EV15 EV14	0 0			
		4	of initial	nacat		8 Const	l	l when h	eing read *5 Undefined

Table 4.1.1(b) I/O memory map (2EEH-2FBH)

*1 Initial value at the time of initial reset*2 Not set in the circuit

*3 Constantly "0" when being read *4 Reset (0) immediately after being read *5 Undefined

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	EVSEL		EV1RST	EVADST	EVSEL	0	Separate	Phase	Event counter mode
2FCH	LVJLL	LINKON	LVIKSI	LVUKSI	EVRUN	0	Run	Stop	Event counter Run/Stop
21011	D	W		V	EV1RST*3	Reset	Reset	-	Event counter 1 reset
	N/	~~	, v	v	EV0RST*3	Reset	Reset	-	Event counter 0 reset
	P13	P12	P11	P10	P13	_ *2	High	Low	
2FDH	FIJ	F 12	FII	FIU	P12	- *2	High	Low	I/O port data (P10–P13)
21 011		R/	ΛΛ <i>Ι</i>		P11	_ *2	High	Low	Output latch reset at time of SR
		N/	vv	-	P10	_ *2	High	Low	
	PRSM	CLKCHG	oscc	10C1	PRSM	0	38 kHz	32 kHz	OSC1 prescaler selection
2FEH	PROIVI	CLKCHG	USCC	1001	CLKCHG	0	OSC3	OSC1	CPU clock switch
21 L11		D	/W		OSCC	0	On	Off	OSC3 oscillation On/Off
		N/	~~~		IOC1	0	Output	Input	I/O control register 1 (P10–P13)
	BLS				BLS	0	On	Off	BLD On/Off
	BLD1	BLC2	BLC1	BLC0	BLD1	0	Low	Normal	BLD voltage evaluation data
2FFH			1	I	BLC2	× *5			\neg Evaluation voltage setting register [BLC2–0] 0 1 2 3 4 5 6 7
	W		R/W		BLC1	× *5			$\begin{bmatrix} 13122-0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 0 & 7 \\ E0C6235/62A35 & 2.20 & 2.25 & 2.30 & 2.35 & 2.40 & 2.45 & 2.50 & 2.55 & (V) \end{bmatrix}$
	R				BLC0	× *5			E0C62L35 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 (V)

Table 4.1.1(c) I/O memory map (2FCH-2FFH)

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*3 Constantly "0" when being read*4 Reset (0) immediately after being read

*5 Undefined

4.2 Resetting Watchdog Timer

Configuration of watchdog timer

The E0C6235 Series incorporates a watchdog timer as the source oscillator for OSC1 (clock timer 2 Hz signal). The watchdog timer must be reset cyclically by the software. If reset is not executed in at least 3 or 4 seconds, the initial reset signal is output automatically for the CPU. Figure 4.2.1 is the block diagram of the watchdog timer.

The watchdog timer, configured of a three-bit binary counter (WD0–WD2), generates the initial reset signal internally by overflow of the MSB.

Watchdog timer reset processing in the program's main routine enables detection of program overrun, such as when the main routine's watchdog timer processing is bypassed. Ordinarily this routine is incorporated where periodic processing takes place, just as for the timer interrupt routine.

The watchdog timer operates in the halt mode. If the halt status continues for 3 or 4 seconds, the initial reset signal restarts operation.

Mask optionYou can select whether or not to use the watchdog timer
with the mask option. When "Not use" is chosen, there is no
need to reset the watchdog timer.

Control of watchdog Table 4.2.1 lists the watchdog timer's control bits and their addresses. timer

		Reg	ister						2 minut
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
0000	WDRST	WD2	WD1	WD0	WDRST*3 WD2	Reset 0	Reset	-	Watchdog timer reset Timer data (watchdog timer) 1/4 Hz
2EFH	w		R		WD1 WD0	0 0			Timer data (watchdog timer) 1/2 Hz Timer data (watchdog timer) 1 Hz
*1 Initial *2 Not se			of initial	reset			tantly "0' : (0) imm		read *5 Undefined *5 Undefined
١	Watch	dog tir		eset D3)	Wh Wh Rea When and th is writ	en "1 en "0 ad-ou "1" is ne ope ten te	" is w " is w t : s writt eratio o WD	rritter rritter ten to n res RST,	8
Progr	amm	ning	note					0	mer is being used, the software must nd cycles, and timer data (WD0–WD2)

cannot be used for timer applications.

Table 4.2.1 Control bits of watchdog timer

4.3 Oscillation Circuit and Prescaler

OSC1 oscillation circuit

The E0C6235 Series has a built-in crystal oscillation circuit (OSC1 oscillation circuit). As an external element, the OSC1 oscillation circuit generates the operating clock for the CPU and peripheral circuitry by connecting the crystal oscillator (Typ. 32.768 kHz) and trimmer capacitor (5-25 pF). Figure 4.3.1 is the block diagram of the OSC1 oscillation circuit.

Fig. 4.3.1 OSC1 oscillation circuit

As Figure 4.3.1 indicates, the crystal oscillation circuit can be configured simply by connecting the crystal oscillator (X'tal) between terminals OSC1 and OSC2 to the trimmer capacitor (Cgx) between terminals OSC1 and VDD. Also, the crystal oscillator can be connected to the 38.4 kHz oscillator in addition to the 32.768 kHz oscillator (by mask option).

OSC3 oscillation circuit

In the E0C6235 Series, the E0C63A35 has twin clock specification. The mask option enables selection of either the CR or ceramic oscillation circuit (OSC3 oscillation circuit) as the CPU's subclock. Because the oscillation circuit itself is built-in, it provides the resistance as an external element when CR oscillation is selected, but when ceramic oscillation is selected both the ceramic oscillator and two capacitors (gate and drain capacitance) are required. Figure 4.3.2 is the block diagram of the OSC3 oscillation circuit.

As indicated in Figure 4.3.2, the CR oscillation circuit can be configured simply by connecting the resistor (RCR) between terminals OSC3 and OSC4 when CR oscillation is selected. When 82 k Ω is used for RCR, the oscillation frequency is about 410 kHz. When ceramic oscillation is selected, the ceramic oscillation circuit can be configured by connecting the ceramic oscillator (Typ. 500 kHz) between terminals OSC3 and OSC4 to the two capacitors (CGC and CDC) located between terminals OSC3 and OSC4 and VDD. For both CGC and CDC, connect capacitors that are about 100 pF. To lower current consumption of the OSC3 oscillation circuit, oscillation can be stopped through the software.

For the E0C6235 and E0C62L35 (single clock specification), do not connect anything to terminals OSC3 and OSC4.

Configuration of
oscillation circuitThe E0C6235 and E0C62L35 have one oscillation circuit
(OSC1), and the E0C62A35 has two oscillation circuits
(OSC1 and OSC3). OSC1 is a crystal oscillation circuit that
supplies the operating clock the CPU and peripheral cir-
cuits. OSC3 is either a CR or ceramic oscillation circuit.
When processing with the E0C62A35 requires high-speed
operation, the CPU operating clock can be switched from
OSC1 to OSC3.

Figure 4.3.3 is the block diagram of this oscillation system.

Fig. 4.3.3 Oscillation system

As Figure 4.3.3 indicates, two prescalers (demultiplier stage) are connected to the oscillation circuit.

Prescaler 1 is for 32.768 kHz and prescaler 2 is for 38.4 kHz. These can be selected through the software to suit the crystal oscillator. This selection invokes the basic signal (256 Hz) for running the clock timer, stopwatch timer, and so forth.

Also for E0C62A35, selection of either OSC1 or OSC3 for the CPU's operating clock can be made through the software.

Control of oscillationTable 4.3.1 lists the control bits and their addresses for thecircuit and prescaleroscillation circuit.

Address		Reg	ister						Commont
Address	D3	D2	D1	D0 Name Init *1 1 0 Comment		Comment			
	DDCM	CLKCHG	0500	10C1	PRSM	0	38 kHz	32 kHz	OSC1 prescaler selection
2FEH	PRSM	CLKCHG	USCC	1001	CLKCHG	0	OSC3	OSC1	CPU clock switch
21 L11		R/	\A/		OSCC	0	On	Off	OSC3 oscillation On/Off
		K/	vv		I0C1	0	Output	Input	I/O control register 1 (P10–P13)
*1 Initial value at the time of initial reset				;	∗3 Const	antly "0"	when be	eing read *5 Undefined	

Table 4.3.1 Control bits of oscillation circuit and prescaler

*2 Not set in the circuit

*4 Reset (0) immediately after being read

OSCC: Controls oscillation ON/OFF for the OSC3 oscillation circuit. OSC3 oscillation control (EOC62A35 only.)

(2FEH·D1)

When "1" is written :The OSC3 oscillation ONWhen "0" is written :The OSC3 oscillation OFFRead-out :Valid

When it is necessary to operate the CPU of the EOC62A35 at high speed, set OSCC to "1". At other times, set it to "0" to lessen the current consumption. For EOC6235 and EOC62L35, keep OSCC set to "0".

At initial reset, OSCC is set to "0".

CLKCHG:	The CPU's operation cloc	k is selected with this register.
The CPU's clock switch	(E0C62A35 only.)	
(2FEH·D2)		OSC3 clock is selected OSC1 clock is selected Valid
		PU clock is to be OSC3, set
		1, set CLKCHG to "0". This register E0C6235 and E0C62L35. so that
	OSC1 is selected no mat	
	At initial reset, CLKCHG	

PRSM: Selects the prescaler for the crystal oscillator of the OSC1 OSC1 prescaler selection oscillation circuit. (2FEH·D3)

When "1" is written :38.4 kHzWhen "0" is written :32.768 kHzRead-out :Valid

Operation of the clock timer and stopwatch timer can be mode accurate by selecting this register. When the set value for this register does not suit the crystal oscillator used, the operation cycles of the previously mentioned peripheral circuitry is multiplied as shown in Table 4.3.2.

Table 4.3.2	32.768 kHz, PRSM = "1"	T'≈1.172T
Operation cycle when the setting is wrong	38.4 kHz, PRSM = "0"	T'≈0.853T

At initial reset, PRSM is set to "0".

Programming notes

- (1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON. Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
 - (2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
 - (3) To operate the clock timer and stopwatch timer accurately, select the prescaler of the OSC1 to match the crystal oscillator used.

4.4 Input Ports (K00-K03, K10, K20-K23)

Configuration of input ports

The E0C6235 Series has nine bits (4 bits \times 2 + 1 bit) general-purpose input ports. Each of the input port terminals (K00–K03, K10, K20–K23) provides internal pull-down resistor. Pull-down resistor can be selected for each bit with the mask option.

Figure 4.4.1 shows the configuration of input port.

Selection of "With pull-down resistor" with the mask option suits input from the push switch, key matrix, and so forth. When "Gate direct" is selected, the port can be used for slide switch input and interfacing with other LSIs.

Further, the input port terminal K02 and K03 are used as the input terminals for the event counter. (See "4.12 Event Counter" for details.)

Input comparison registers and interrupt function

All nine bits of the input ports (K00–K03, K10, K20–K23) provide the interrupt function for the five bits, K00–K03 and K10. The conditions for issuing an interrupt can be set by the software for the five bits, K00–K03 and K10. Further, whether to mask the interrupt function can be selected individually for all nine bits by the software. Figure 4.4.2 shows the configuration of K00–K03 and K10. Figure 4.4.4 shows the configuration of K20–K23.

The input interrupt timing for K00–K03 and K10 depends on the value set for the input comparison registers (KCP00– KCP03 and KCP10). Interrupt can be selected to occur at the rising or falling edge of the input.

The interrupt mask registers (EIK00–EIK03, EIK10) enables the interrupt mask to be selected individually for K00–K03 and K10. However, whereas the interrupt function is enabled inside K00–K03, the interrupt occurs when the contents change from matching those of the input comparison register to non-matching contents. Interrupt for K10 can be generated by setting the same conditions individually. When the interrupt is generated, the interrupt factor flag (IK0 and IK1) is set to "1".

Figure 4.4.3 shows an example of an interrupt for K00–K03.

K00 is masked by the interrupt mask register (EIK00), so that an interrupt does not occur at (2). At (3), K03 changes to "0"; the data of the terminal that is interrupt enabled no longer matches the data of the input comparison register, so that interrupt occurs. As already explained, the condition for the interrupt to occur is the change in the port data and contents of the input comparison register from matching to nonmatching. Hence, in (4), when the nonmatching status changes to another nonmatching status, an interrupt does not occur. Further, terminals that have been masked for interrupt do not affect the conditions for interrupt generation.

There is no input comparison register for K20–K23, and interrupt is fixed to occur at th rising edge of input. The interrupt mask can be selected for each of the four terminals with the interrupt mask register (EIK20–EIK23). When all the enabled terminals are "0", interrupt occurs when one or more of the ports changed to "1".

When an interrupt occurs, the interrupt factor flag (IK2) is set to "1".

Figure 4.4.5 shows an example of an interrupt being generated for K20–K23.

The mask register (EIK23) masks the interrupt of K23, so an interrupt does not occur at (2). At (3), K21 becomes "1", so that an interrupt occurs if the interrupt enabled terminals were all "0" and at least one terminal then changes to "1". At (4), the conditions for interrupt are not established, so an interrupt does not occur.

Futher, terminals that have been masked for interrupt do not affect the conditions for interrupt generation.

Mask option	The contents that can be selected with the input port mask option are as follows:	
	 (1) Internal pull-down resistor can be selected for each of the nine bits of the input ports (K00–K03, K10, K20–K23). When you have selected "Gate direct", take care that the floating status does not occur for the input. Select "With pull-down resistor" for input ports that are not being used. 	
	(2) The input interrupt circuit contains a noise rejector for preventing interrupt occurring through noise. The mask option enables selection of whether to use the noise rejector for each separate terminal series.When "Use" is selected, a maximum delay of 1 msec occurs from the time interrupt condition is established until the interrupt factor flag (IK) is set to "1".	

Control of input ports Table 4.4.1 lists the input ports control bits and their addresses.

Table 4.4.1	Input port control bits
-------------	-------------------------

Address		Reg	ister							Comment
Audress	D3	D2	D1	D0	Name	Init *1	1	0		Comment
	К03	K02	K01	коо	K03	_ *2	High	Low		
2E3H	KU3	KU2	KUI	KUU	K02	_ *2	High	Low		Input port data (K00–K03)
2001		,	R		K01	- *2	High	Low		input port data (K00–K03)
			κ		K00	_ *2	High	Low		
	KCP03	KCP02	KCP01	KCP00	KCP03	0	-		רו	
2E4H	KCI 03	KCI UZ	KCI UI	KCI 00	KCP02	0	1	Ī		Input comparison register (K00–K03)
26411		P	W		KCP01	0	ł			hiput comparison register (K00–K03)
		10			KCP00	0	•			
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask		
2E5H	LIKUJ	LINUZ	LIKUT	LIKOU	EIK02	0	Enable	Mask		Interrupt mask register (K00–K03)
22011		R	W		EIK01	0	Enable	Mask		inchupt mask register (Koo-Kos)
		TV.			EIK00	0	Enable	Mask		
	SCTRG	EIK10	КСР10	K10	SCTRG*3	-	Trigger	-		rial interface clock trigger
2E7H		2			EIK10	0	Enable	Mask		terrupt mask register (K10)
	W R/W	Ŵ	R	KCP10	0				put comparison register (K10)	
				K10	_ *2	High	Low	-	put port data (K10)	
	IK1	IKO SWITI SWITO	IK1 *4	0	Yes	No		terrupt factor flag (K10)		
2EAH			IK0 *4	0	Yes	No		terrupt factor flag (K00–K03)		
	R		SWIT1 *4	0	Yes	No		terrupt factor flag (stopwatch 1 Hz)		
	R.		SWIT0 *4	0	Yes	No		terrupt factor flag (stopwatch 10 Hz)		
	0	0	IK2	ISIO	0 *3	_ *2	-	-	-	nused
2F3H		-			0 *3	_ *2	-	-	-	nused
		I	R		IK2 *4	0	Yes	No		terrupt factor flag (K20–K23)
					ISIO *4	0	Yes	No	Int	terrupt factor flag (serial interface)
	К23	K22	K21	К20	K23	_ *2	High	Low	П	
2F4H					K22 K21	- *2	High	Low		Input port data (K20–K23)
	R		R			_ *2	High	Low		input port data (1120-1120)
					K20	_ *2	High	Low		
	EIK23	EIK22	EIK21	EIK20	EIK23	0	Enable	Mask		
2F5H				2	EIK22	0	Enable	Mask		Interrupt mask register (K20-K23)
		R	/W		EIK21	0	Enable	Mask		
				EIK20	0	Enable	Mask			
*1 Initial	value at	the time	of initial	reset	2	k3 Const	antly "0"	when be	eing	g read *5 Undefined

*2 Not set in the circuit

*4 Reset (0) immediately after being read

K00–K03, K10, K20–K23: Input data of the input port terminals can be read out with Input port data these registers.

(2E3H, 2E7H·D0, 2F4H)

When "1" is read out : High level When "0" is read out : Low level Invalid Writing :

The read-out is "1" when the terminal voltage of the nine bits of the input ports (K00-K03, K10, K20-K23) goes high (VDD), and "O" when the voltage goes low (Vss). These bits are dedicated for read-out, so writing cannot be done.

Input comparison registers	Interrupt conditions for terminals K00–K03 and K10 can be set with these registers.			
(2E4H, 2E7H·D1)	When "1" is written :Falling edgeWhen "0" is written :Rising edgeRead-out:Valid			
	Of the nine bits of the input ports, the interrupt conditions can be set for the rising or falling edge of input for each of the five bits (K00–K03 and K10), through the input compari- son registers (KCP00–KCP03 and KCP10). At initial reset, these registers are set to "0".			
EIK00–EIK03, EIK10, EIK20–EIK23:	Masking the interrupt of the input port terminals can be selected with these registers.			
Interrupt mask registers (2E5H, 2E7H·D2, 2F5H)	When "1" is written :EnableWhen "0" is written :MaskRead-out :Valid			
	With these registers, masking of the input port bits can be selected for each of the nine bits.			
	Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0").			
	At initial reset, these registers are all set to "0".			
	These flags indicate the occurrence of input interrupt.			
Interrupt factor flags (2EAH·D2 and D3, 2F3H·D1)	When "1" is read out : Interrupt has occurredWhen "0" is read out : Interrupt has not occurredWriting :Invalid			
	The interrupt factor flags IK0, IK1 and IK2 are associated with K00–K03, K10 and K20–K23, respectively. From the status of these flags, the software can decide whether an input interrupt has occurred. These flags are reset when the software reads them. Read- out can be done only in the DI status (interrupt flag = "0"). At initial reset, these flags are set to "0".			

Programming notes	 (1) When input ports are changed from high to low by pull- down resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 msec.
	 (2) When "Use" is selected with the noise rejector mask option, a maximum delay of 1 msec occurs from time the interrupt conditions are established until the interrupt factor flag (IK) is set to "1" (until the interrupt is actually generated). Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag. For example, when performing a key scan with the key matrix, the key scan changes the input status to set the interrupt factor flag, so it has to be read out to reset it. However, if the interrupt factor flag is read out immediately after key scanning, the delay will cause the flag to be set after read-out, so that it will not be reset.
	(3) Input interrupt programing related precautions

which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set.

Therefore, when using the input interrupt, the active status of the input terminal implies

input terminal = low status, when the falling edge interrupt is effected and

input terminal = high status, when the rising edge interrupt is effected.

When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of ① shown in Figure 4.4.6. However, when clearing the content of the mask register with the input terminal kept in the low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (high status).

When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of ⁽²⁾ shown in Figure 4.4.6. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the low status. In addition, when the mask register = "1" and the content of the input comparison register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input comparison register in the mask register = "0" status.

- (4) Read out the interrupt factor flag (IK) only in the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag = "1") will cause malfunction.
- (5) Write the interrupt mask register (EIK) only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.

4.5 Output Ports (R00-R03, R10-R13)

Configuration of output ports

The E0C6235 Series has eight bits (4 bits \times 2) general output ports.

Output specifications of the output ports can be selected individually with the mask option. Two kinds of output specifications are available: complementary output and Pch open drain output.

Further, the mask option enables the output ports R10–R13 to be used as special output ports.

Figure 4.5.1 shows the configuration of the output ports.

Fig. 4.5.1 Configuration of output ports

Mask optionThe mask option enables the following output port selection.

(1)Output specifications of output ports

Output specifications for the output ports (R00–R03, R10–R13) enable selection of either complementary output or Pch open drain output for each of the eight bits.

However, even when Pch open drain output is selected, voltage exceeding source voltage must not be applied to the output port.

(2) Special output

In addition to the regular DC output, special output can be selected for the output ports R10–R13 as shown in Table 4.5.1. Figure 4.5.2 shows the structure of the output ports R10–R13.

Table 4.5.1	Pin name	When special output selected
Special output	R10	BZ
	R13	$\overline{\mathrm{BZ}}$ (Only when R10 = BZ output is selected)
	R11	SIOF
	R12	FOUT

Fig. 4.5.2 Structure of output port R10–R13

- BZ, \overline{BZ} : BZ and \overline{BZ} are the buzzer signal output for driving the
- (R10, R13) piezoelectric buzzer. The buzzer signal is generated by demultiplication of fosc1. The buzzer signal frequency can be selected by software. Also, a digital envelope can be added to the buzzer signal. See "4.11 Sound Generator" for details.
 - Notes When the BZ and \overline{BZ} output signals are turned ON or OFF, a hazard can result.
 - When DC output is set for the output port R10, the output port R13 cannot be set for \overline{BZ} output.

Figure 4.5.3 shows the output waveform for BZ and $\overline{\text{BZ}}$.

- SIOF: When the output port R11 is set for SIOF output, it outputs
- (R11) the signal indicating the running status (RUN/STOP) of the serial interface.

See "4.7 Serial Interface" for details.

- FOUT: When the output port R12 is set for FOUT output, it outputs
 - (R12) the clock of fosc1 or the demultiplied fosc1. The clock frequency is selectable with the mask options, from the frequencies listed in Table 4.5.2.

Table	4.5.2
FOUT clock freq	uency

Sotting volue	Clock frequency (Hz)			
Setting value	fosc1 = 32,768	fosc1 = 38,400		
fosc1 / 1	32,768	38,400		
fosc1 / 2	16,384	19,200		
fosc1 / 4	8,192	9,600		
fosc1 / 8	4,096	4,800		
fosc1 / 16	2,048	2,400		
fosc1 / 32	1,024	1,200		
fosc1 / 64	512	600		
fosc1 / 128	256	300		

Note A hazard may occur when the FOUT signal is turned ON or OFF.

Control of output ports

Table 4.5.3 lists the output ports' control bits and their addresses.

Register Address Comment D3 D2 D1 D0 Name Init *1 1 0 R03 High Low Output port (R03) 0 R03 R02 R01 R00 R02 0 High Low Output port (R02) 2FBH R01 0 High Low Output port (R01) R/W R00 0 High Low Output port (R00) R13 High/On Low/Off Output port (R13)/BZ output control R11 0 R13 R12 R10 R12 0 High/On Low/Off Output port (R12)/FOUT output control SIOF 2ECH R11 0 High Low Output port (R11, LAMP) R/W SIOF 0 Run Stop Output port (SIOF) R/W R/W R R10 ٥ High/On Low/Off Output port (R10)/BZ output control *3 Constantly "0" when being read

Table 4.5.3 Control bits of output ports

*1 Initial value at the time of initial reset

*5 Undefined

*2 Not set in the circuit

*4 Reset (0) immediately after being read

R00–R03, R10–R13 Sets the output data for the output ports.

(when DC output): Output port data (2EBH, 2ECH)

When "1" is written : High output When "0" is written : Low output Read-out : Valid

The output port terminals output the data written in the corresponding registers (R00–R03, R10–R13) without changing it. When "1" is written in the register, the output port terminal goes high (VDD), and when "0" is written, the output port terminal goes low (Vss).

At initial reset, all registers are set to "0".

R10, R13 (when BZ and	These bits control the output of the buzzer signals (BZ, $\overline{\text{BZ}}$).		
BZ output is selected):	TT71		
Special output port data (2ECH·D0 and D3)	when 1 is written :	Buzzer signal is output	
	When "0" is written :	Low level (DC) is output	
(2ECI1.D0 and D3)	Read-out :	Valid	

BZ is output from terminal R13. With the mask option, selection can be made perform this output control by R13, or to perform output control simultaneously with BZ by R10.

• When R13 controls BZ output

BZ output and $\overline{\text{BZ}}$ output can be controlled independently. BZ output is controlled by writing data to R10, and $\overline{\text{BZ}}$ output is controlled by writing data to R13.

• When R10 controls BZ output

BZ output and $\overline{\text{BZ}}$ output can be controlled simultaneously by writing data to R10 only. For this case, R13 can be used as a one-bit general register having both read and write functions, and data of this register exerts no affect on $\overline{\text{BZ}}$ output (output from the R13 pin).

At initial reset, registers R10 and R13 are set to "0".

R11 (when SIOF output is	Indicates the running sta	atus of the serial interface.
selected): Special output port data (2ECH·D1)	When "1" is read out : When "0" is read out :	
	Writing :	Valid
	See "4.7 Serial Interface" This bit is exclusively for written to it.	for details of SIOF. reading out, so data cannot be

	Controls the FOUT (clock	s) output.	
(when FOUT is selected): Special output port data (2ECH·D2)	When "1" is written : When "0" is written : Read-out :	Clock output Low level (DC) output Valid	
	FOUT output can be controlled by writing data to R12. At initial reset, this register is set to "0".		
Programming note	When BZ, $\overline{\text{BZ}}$ and FOUT are selected with the mask option, a hazard may be observed in the output waveform when the data of the output register changes.		

4.6 I/O Ports (P00-P03, P10-P13)

Configuration of I/O ports

The EOC6235 Series eight bits (4 bits \times 2) has generalpurpose I/O ports. Figure 4.6.1 shows the configuration of the I/O ports.

The four bits of each of the I/O ports P00–P03 and P10–P13 can be set to either input mode or output mode. Modes can be set by writing data to the I/O control register.

Fig. 4.6.1 Configuration of I/O ports

I/O control register and I/O mode	Input or output mode can be set for the four bits of I/O port P00–P03 and I/O port P10–P13 by writing data into the corresponding I/O control register IOC0 and IOC1. To set the input mode, "0" is written to the I/O control register. When an I/O port is set to input mode, it becomes high impedance status and works as an input port. However, the input line is pulled down when input data is read.		
	The output mode is set when "1" is written to the I/O control register. When an I/O port set to output mode works as an output port, it outputs a high signal (VDD) when the port output data is "1", and a low signal (VSS) when the port output data is "0".		
	At initial reset, the I/O control registers are set to "0", and the I/O port enters the input mode.		
Mask option	The output specification during output mode (IOC = "1") of these I/O ports can be set with the mask option for either complementary output or Pch open drain output. This setting can be performed for each bit of each port. However, when Pch open drain output has been selected, voltage in excess of the power voltage must not be applied to the port.		

Control of I/O ports

Table 4.6.1 lists the I/O ports' control bits and their addresses.

Address		Reg	ister		Comment		Comment			
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	P03	P02	P01	P00	P03	_ *2	High	Low		
2EDH	F03	FUZ	FVI	FUU	P02	- *2	High	Low	I/O port data (P00–P03)	
ZEDIT		R/	\M/		P01	_ *2	High	Low	Output latch reset at time of SR	
		10	~~		P00	_ *2	High	Low		
	TMRST	SWRUN	SWDST	10C0	TMRST*3	Reset	Reset	-	Clock timer reset	
2EEH	TIVINGT	SWKUN	30031	1000	SWRUN	0	Run	Stop	Stopwatch timer Run/Stop	
	w	R/W	w	R/W	SWRST*3	Reset	Reset	-	Stopwatch timer reset	
	vv	N/ W	vv	N/ W	IOC0	0	Output	Input	I/O control register 0 (P00–P03)	
	P13	P12	P11	P10	P13	_ *2	High	Low	7	
2FDH	115	1 12		1 10	P12	_ *2	High	Low	I/O port data (P10–P13)	
21 011		R/	\ \ /		P11	- *2	High	Low	Output latch reset at time of SR	
		N/	vv		P10	_ *2	High	Low		
	PRSM	CLKCHG	OSCC	10C1	PRSM	0	38 kHz	32 kHz	OSC1 prescaler selection	
2FEH	FKSIVI	CERCING	0300	1001	CLKCHG	0	OSC3	OSC1	CPU clock switch	
		R/W				0	On	Off	OSC3 oscillation On/Off	
		K/	vv		I0C1	0	Output	Input	I/O control register 1 (P10–P13)	
*1 Initial value at the time of initial reset			3	3 Const	antly "0"	when be	sing read *5 Undefined			

Table 4.6.1 I/O port control bits

*2 Not set in the circuit

*4 Reset (0) immediately after being read

P00–P03, P10–P13: I/O port data can be read and output data can be set I/O port data through these ports.

(2EDH, 2FDH)

· When writing data

When "1" is written :High levelWhen "0" is written :Low level

When an I/O port is set to the output mode, the written data is output unchanged from the I/O port terminal. When "1" is written as the port data, the port terminal goes high (VDD), and when "0" is written, the level goes low (Vss).

Port data can be written also in the input mode.

• When reading data out

When "1" is read out : High level When "0" is read out : Low level

The terminal voltage level of the I/O port is read out. When the I/O port is in the input mode the voltage level being input to the port terminal can be read out; in the output mode the output voltage level can be read. When the terminal voltage is high (VDD) the port data that can be read is "1", and when the terminal voltage is low (Vss) the data is "0".

Further, the built-in pull-down resistance goes ON during read-out, so that the I/O port terminal is pulled down.

- Notes When the I/O port is set to the output mode and a low-impedance load is connected to the port terminal, the data written to the register may differ from the data read out.
 - When the I/O port is set to the input mode and a low-level voltage (Vss) is input, erroneous input results if the time constant of the capacitive load of the input line and the built-in pull-down resistance load is greater than the read-out time. When the input data is being read out, the time that the input line is pulled down is equivalent to 1.5 cycles of the CPU system clock. However, the electric potential of the terminals must be settled within 0.5 cycles. If this condition cannot be fulfilled, some measure must be devised such as arranging pull-down resistance externally, or performing multiple read-outs.

IOC0, IOC1: The input and output modes of the I/O ports can be set I/O control registers with these registers.

(2EEH·D0, 2FEH·D0)

When "1" is written :	Output mode
When "0" is written :	Input mode
Read-out :	Valid

The input and output modes of the I/O ports are set in units of four bits. IOC0 sets the mode for P00–P03, and IOC1 sets the mode for P10–P13.

Writing "1" to the I/O control register makes the corresponding I/O port enter the output mode, and writing "0" induces the input mode.

At initial reset, these two registers are set to "0", so the I/O ports are in the input mode.

Programming notes (1) When input data are changed from high to low by built-in pull-down resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Consequently, if data is read out while the CPU is running in the OSC3 oscillation circuit, data must be read out continuously for about 500 µsec.

(2) When the I/O port is set to the output mode and the data register has been read, the terminal data instead of the register data can be read out. Because of this, if a low-impedance load is connected and read-out performed, the value of the register and the read-out result may differ.

4.7 Serial Interface (SIN, SOUT, SCLK)

Configuration of The E0C6235 has a synchronous clock type 8 bits serial interface built-in. serial interface The configuration of the serial interface is shown in Figure 4.7.1. The CPU, via the 8 bits shift register, can read the serial input data from the SIN terminal. Moreover, via the same 8 bits shift register, it can convert parallel data to serial data and output it to the SOUT terminal. The synchronous clock for serial data input/output may be set by selecting by software any one of 3 types of master mode (internal clock mode: when the E0C6235 is to be the master for serial input/output) and a type of slave mode (external clock mode: when the E0C6235 is to be the slave for serial input/output). Also, when the serial interface is used at slave mode, SIOF signal which indicates whether or not the serial interface is available to transmit or receive can be output to output port R11 by mask option.

Master mode and slave mode of serial interface	The serial interface of the EOC6235 has two types of opera- tion mode: master mode and slave mode. In the master mode, it uses an internal clock as synchro- nous clock of the built-in shift register, generates this inter- nal clock at the SCLK terminal and controls the external (slave side) serial device. In the slave mode, the synchronous clock output from the external (master side) serial device is input from the SCLK terminal and uses it as the synchronous clock to the built- in shift register. The master mode and slave mode are selected by writing data to registers SCS1 and SCS0 (address 2F2H·D2, D3). When the master mode is selected, a synchronous clock may be selected from among 3 types as shown in Table 4.7.1.

Table 4.7.1	
Synchronous clock selection	

SCS1	SCS0	Mode	Synchronous clock
0	0		CLK
0	1	Master mode	CLK/2
1	0		CLK/4
1	1	Slave mode	External clock

CLK: CPU system clock

At initial reset, the slave mode (external clock mode) is selected.

Moreover, the synchronous clock, along with the input /output of the 8 bits serial data, is controlled as follows:

- At master mode, after output of 8 clocks from the SCLK terminal, clock output is automatically suspended and SCLK terminal is fixed at low level.
- At slave mode, after input of 8 clocks to the SCLK terminal, subsequent clock inputs are masked.

Note When using the serial interface in the master mode, CPU system clock is used as the synchronous clock. Accordingly, when the serial interface is operating, system clock switching (fOSC1 ↔ fOSC3) should not be performed.

A sample basic serial input/output portion connection is shown in Figure 4.7.2.

Data input/output and interrupt func- tion	The serial interface of E0C6235 can input/output data via the internal 8 bits shift register. The shift register operates by synchronizing with either the synchronous clock output from SCLK terminal (master mode), or the synchronous clock input to SCLK (slave mode). The serial interface generates interrupt on completion of the 8 bits serial data input/output. Detection of serial data input/output is done by the counting of the synchronous clock (SCLK); the clock completes input/output operation when 8 counts (equivalent to 8 cycles) have been made and then generates interrupt. The serial data input/output procedure data is explained below:
	 (1) Serial data output procedure and interrupt The EOC6235 serial interface is capable of outputting parallel data as serial data, in units of 8 bits. By setting the parallel data to 4 bits registers SD0–SD3 (address 2F0H) and SD4–SD7 (address 2F1H) individually and writing "1" to SCTRG bit (address 2E7H·D3), it synchronizes with the synchronous clock and serial data is output at the SOUT terminal. The synchronous clock used here is as follows: in the master mode, internal clock which is output to the SCLK terminal while in the slave mode, external clock which is input from the SCLK terminal. The serial output of the SOUT termina changes with the rising edge of the clock that is input or output from the SCLK terminal. The serial data to the built-in shift register is shifted with the rising edge of the SCLK signal when SE2 bit (address 2F2H·D1) is "1" and is shifted with the falling edge of the SCLK signal when SE2 bit (address 2F2H·D1) is "0". When the output of the 8 bits data from SD0 to SD7 is completed, the interrupt factor flag ISIO (address
	$2F3H\cdot D0$) is set to "1" and interrupt is generated. More- over, the interrupt can be masked by the interrupt mask register EISIO (address $2F2H\cdot D0$).

(2) Serial data input procedure and interrupt

The E0C6235 serial interface is capable of inputting serial data as parallel data, in units of 8 bits. The serial data is input from the SIN terminal, synchronizes with the synchronous clock, and is sequentially read in the 8 bits shift register. As in the above item (1), the synchronous clock used here is as follows: in the master mode, internal clock which is output to the SCLK terminal while in the slave mode, external clock which is input from the SCLK terminal.

The serial data to the built-in shift register is read with the rising edge of the SCLK signal when SE2 bit is "1" and is read with the falling edge of the SCLK signal when SE2 bit is "0". Moreover, the shift register is sequentially shifted as the data is fetched.

When the input of the 8 bits data from SD0 to SD7 is completed, the interrupt factor flag ISIO is set to "1" and interrupt is generated. Moreover, the interrupt can be masked by the interrupt mask register EISIO. Note, however, that regardless of the setting of the interrupt mask register, the interrupt factor flag is set to "1" after input of the 8 bits data.

The data input in the shift register can be read from data registers SD0–SD7 by software.

(3) Serial data input/output permutation

E0C6235 allows the input/output permutation of serial data to be selected by mask option as to either LSB first or MSB first. The block diagram showing input/output permutation in case of LSB first and MSB first is provided in Figure 4.7.3.

(4) SIOF signal

When the EOC6235 serial interface is used in the slave mode (external clock mode), SIOF is used to indicate whether the internal serial interface is available to transmit or receive data for the master side (external) serial device. SIOF signal is generated from output port R11 by mask option.

SIOF signal becomes "1" (high) when the EOC6235 serial interface becomes available to transmit or receive data; normally, it is at "0" (low).

SIOF signal changes from "0" to "1" immediately after "1" is written to SCTRG and returns from "1" to "0" when eight synchronous clock has been counted.

(5) Timing chart

The E0C6235 serial interface timing chart is shown in Figure 4.7.4.

b. Timing chart, SE2 = "0"

Mask option	The serial interface may be selected for the following by mask option.
	(1) Whether or not the SIN terminal will use built-in pull down resistor may be selected.If the use of no pull down resistor is selected, take care that floating state does not occur at the SIN terminal.When the SIN terminal is not used, the use of pull down resistor should be selected.
	(2) Either complementary output or P channel (Pch) open drain as output specification for the SOUT terminal may be selected.
	However, even if Pch open drain has been selected, appli- cation of voltage exceeding power source voltage to the SOUT terminal will be prohibited.
	 (3) Whether or not the SCLK terminal will use pull down resistor which is turned ON during input mode (external clock) may be selected. If the use of no pull down resistor is selected, take care that floating state does not occur at the SCLK terminal during input mode. Normally, the use of pull down resistor should be selected.
	(4) As output specification during output mode, either com- plementary output or P channel (Pch) open drain output may be selected for the SCLK terminal.
	 (5) Positive or negative logic can be selected for the signal logic of the SCLK pin (SCLK or SCLK). However, keep in mind that only pull-down resistance can be set for the input mode (pull-up resistance is not built-in).
	(6) LSB first or MSB first as input/output permutation of serial data may be selected.
	(7) Output port R11 may be assigned as SIOF output termi- nal which will indicate whether the serial interface is available to transmit or receive signals.

Control of serialThe control registers for the serial interface are explainedinterfacebelow.

Address		Reg	ister				Comment				
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment		
	SD3	SD2	SD1	SD0	SD3	× *5					
2F0H	000	002	00.	050	SD2	× *5			Serial interface data register (low-order 4 bits)		
		R	w		SD1	× *5					
					SD0	× *5					
	SD7	SD6	SD5	SD4	SD7	× *5					
2F1H					SD6	× *5			Serial interface data register (high-order 4 bits)		
		R	Ŵ		SD5 SD4	× *5 × *5					
					SCS1				$\boxed{\begin{array}{c} \square \\ \square \\ SIF clock mode \end{array}} SIF clock mode \qquad [SCS1, 0] \qquad 0 \qquad 1 \qquad 2 \qquad 3$		
	SCS1	SCS0	SE2	EISIO	SCS0	1			selection register $\frac{[3C31, 0]}{Clock}$ CLK CLK/2 CLK/4 slave		
2F2H		1		I	SE2	0	f]]	SIF clock edge selection register		
		R/W				ő	Enable	Mask	Interrupt mask register (serial interface)		
					EISIO 0 *3	_ *2	_	_	Unused		
	0 0 $ K2$ $ S 0$ $0*3$ $-*2$ $-$ Unused		Unused								
2F3H					IK2 *4	0	Yes	No	Interrupt factor flag (K20–K23)		
		ł	R		ISIO *4	0	Yes	No	Interrupt factor flag (serial interface)		
	SCTRG	FII/10	KCP10	K10	SCTRG*3	-	Trigger	-	Serial interface clock trigger		
2E7H	SCIRG	EIK10	KCPIU	K IU	EIK10	0	Enable	Mask	Interrupt mask register (K10)		
2670	w	W R/		R	KCP10	0	7	L T	Input comparison register (K10)		
	vv	N/		ĸ	K10	_ *2	High	Low	Input port data (K10)		
			R11	540	R13	0	High/On	Low/Off	Output port (R13)/BZ output control		
	R13	R12	SIOF	R10	R12	0	High/On	Low/Off	Output port (R12)/FOUT output control		
2ECH		1	R/W		R11	0	High	Low	Output port (R11, LAMP)		
	R/	W		R/W	SIOF	0	Run	Stop	Output port (SIOF)		
			R		R10	0	High/On				
*1 Initial	value at	the time	of initial	reset	;	*3 Const	tantlv "0'	' when be	eing read *5 Undefined		

Table 4.7.2 Control registers of serial interface

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*3 Constantly "0" when being read*4 Reset (0) immediately after being read

*5 Undefined

SD0–SD3, SD4–SD7: These registers are used for writing and reading serial data.

Serial interface data

registers - During writing operation (2F0H, 2F1H) When "1" is written : High level When "0" is written : Low level

Writes serial data will be output to SOUT terminal. From the SOUT terminal, the data converted to serial data as high (VDD) level bit for bits set at "1" and as low (Vss) level bit for bits set at "0".

- During reading operation

When "1" is read out : High level When "0" is read out : Low level

The serial data input from the SIN terminal can be read by this register.

The data converted to parallel data, as high (VDD) level bit "1" and as low (Vss) level bit "0" input from SIN terminal. Perform data reading only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).

At initial reset, these registers will be undefined.

SCS1, SCS0: Selects the synchronous clock for the serial interface Clock mode selection (SCLK).

register (2F2H·D3, D2)

Table 4.7.3 Synchronous clock selection

SCS1	SCS0	Mode	Synchronous clock
0	0		CLK
0	1	Master mode	CLK/2
1	0		CLK/4
1	1	Slave mode	External clock

CLK: CPU system clock

Synchronous clock (SCLK) is selected from among the above 4 types: 3 types of internal clock and external clock. At initial reset, external clock is selected.

SE2:	Selects the timing for reading in the serial data input.						
Clock edge selection register (2F2H·D1)	When "1" is written : When "0" is written : Read-out :	Rising edge of SCLK Falling edge of SCLK Valid					
	Selects whether the fetching for the serial input data to registers (SD0–SD7) at the rising edge (at "1" writing) or falling edge (at "0" writing) of the SCLK signal. Pay attention if the synchtonous clock goes into reverse phase (SCLK \rightarrow SCLK) through the mask option.						
	SCLK rising = $\overline{\text{SCLK}}$ fa	lling, SCLK falling = $\overline{\text{SCLK}}$ rising					
	clock (SCLK), a hazard od (SCLK) when data is write The input data fetching to timing for output data is	s selected as the synchronous ecurs in the synchronous clock ten to register SE2. iming may be selected but output fixed at SCLK rising edge. ge of SCLK (SE2 = "0") is selected.					
EISIO: Interrupt mask register (2F2H·D0)	This is the interrupt mas When "1" is written :	k register of the serial interface. Enabled					
(21 21 00)	When "0" is written : Read-out :	Masked Valid					
	At initial reset, this regist						
	This is the interrupt facto	or flag of the serial interface.					
Interrupt factor flag (2F3H·D0)		Interrupt has occurred Interrupt has not occurred Invalid					
	the serial interface interr The interrupt factor flag i Note, however, that even	ag, the software can decide whether upt. s reset when it has been read out. if the interrupt is masked, this flag 8 bits data input/output.					
	Be sure that the interrup the interrupt in the DI sta At initial reset, this flag is	- •					

SCTRG: This is a trigger to start input/output of synchronous clock.

Clock trigger		
(2E7H·D3)	When "1" is written :	Trigger
(2011-03)	When "0" is written :	No operation
	Read-out :	Always "0"

When this trigger is supplied to the serial interface activating circuit, the synchronous clock (SCLK) input/output is started.

As a trigger condition, it is required that data writing or reading on data registers SDO–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0–SD7.)

Supply trigger only once every time the serial interface is placed in the RUN state. Refrain from perfoming trigger input multiple times, as leads to malfunctioning. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.

SIOF: Indicates the running status of the serial interface.

Special output port data (2ECH·D1) Wh Wh

When "1" is read out :RUN statusWhen "0" is read out :STOP statusWriting :Invalid

The RUN status is indicated from immediatery after "1" is written to SCTRG bit through to the end of serial data input/output. **Programming notes** (1) If the bit data of SE2 changes while SCLK is in the master mode, a hazard will be output to the SCLK pin. If this poses a problem for the system, be sure to set the SCLK to the external clock if the bit data of SE2 is to be changed.

- (2) Be sure that read-out of the interrupt factor flag (ISIO) is done only when the serial port is in the STOP status
 (SIOF = "0") and the DI status (interrupt flag = "0"). If read-out is performed while the serial data is in the RUN status (during input or output), the data input or output will be suspended and the initial status resumed. Read-out during the EI status (interrupt flag = "1") causes malfunctioning.
- (3) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc1 \leftrightarrow fosc3) while the serial interface is operating.
- (4) Perform data writing/reading to data registers SD0–SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
- (5) As a trigger condition, it is required that data writing or reading on data registers SDO–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SDO–SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
- (6) Be sure that writing to the interrupt mask register is done only in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause malfunction.

4.8 LCD Driver (COM0-COM3, SEG0-SEG47)

Configuration of LCD The E0C6235 Series has four common terminals and 48 segment terminals, so that it can drive an LCD with a maxidriver mum of 192 (48×4) segments. The power for driving the LCD is generated by the CPU internal circuit so that there is no need to apply power especially from outside. The driving method is 1/4 duty (or 1/3 duty with the mask option) dynamic drive depending on the four types of potential, VDD, VL1, VL2 and VL3. The frame frequency is fOSC1/ 1,024 Hz for 1/4 duty, and fosc1/768 Hz for 1/3 duty. Figure 4.8.1 shows the drive waveform for 1/4 duty, and Figure 4.8.2 shows the drive waveform for 1/3 duty. Note fosc1 indicates the oscillation frequency of the OSC1 oscillation circuit.

Fig. 4.8.1 Drive waveform for 1/4 duty

Fig. 4.8.2 Drive waveform for 1/3 duty

Switching between	The E0C6235 Series provides software setting of the LCD
dynamic and static	static drive. This function enables easy adjustment (ca-
drive	dence adjustment) of the oscillation frequency of the OSC1 oscillation circuit (crystal oscillation circuit).

The procedure for executing static drive of the LCD is as follows:

- ① Write "1" to register CSDC at address 2E8H·D3.
- ② Write the same value to all registers corresponding to COM0–COM3 of the display memory.
- Notes Even when 1/3 duty is selected, COM3 is valid for static drive. However, the output frequency is the same as for the frame frequency.
 - For cadence adjustment, set the segment data so that all the LCDs light.

Figure 4.8.3 shows the drive waveform for static drive.

Fig. 4.8.3 LCD static drive waveform

Mask option (segment allocation)

(1) Segment allocation

As shown in Figure 4.1.1(c), segment data of the E0C6235 Series is decided depending on display data written to the display memory (write-only) at address 040H–06FH (page 0) or 240H–26FH (page 2).

- The mask option enables the display memory to be allocated entirely to either page 0 or page 2.
- ② The address and bits of the display memory can be made to correspond to the segment terminals (SEG0– SEG47) in any form through the mask option. This makes design easy by increasing the degree of freedom with which the liquid crystal panel can be designed.

Figure 4.8.4 shows an example of the relationship between the LCD segments (on the panel) and the display memory (when page 0 is selected) for the case of 1/3 duty.

Address	Data										
Audress	D3	D2	D1	D0							
06AH	d	с	b	а	1						
06BH	р	g	f	e	$ \rightarrow$						
06CH	ď	c'	b'	a'							
06DH	р'	g'	f′	e'							

Segment data memory allocation

		Common 0	Common 1	Common 2
	SEG10	6A, D0	6B, D1	6B, D0
		(a)	(f)	(e)
•	SEG11	6A, D1	6B, D2	6A, D3
		(b)	(g)	(d)
	SEG12	6D, D1	6A, D2	6B, D3
		(f')	(c)	(p)

Terminal address allocation

Example of LCD panel

Fig. 4.8.4 Segment allocation

(2) Drive duty

With the mask option, either 1/4 or 1/3 duty can be selected for the LCD drive duty.

Table 4.8.1 shows the differences in the number of segments depending on the selected duty.

Table 4.8.1 Differences depending on selected duty

Duty	Terminals used in common	Maximum number of segments	Frame frequency (when fosc1 = 32 kHz)
1/4	COM0-3	192 (48 × 4)	fosc1/1,024 (32 Hz)
1/3	COM0-2	144 (48×3)	fosc1/768 (42.7 Hz)

(3) Output specification

- The segment terminals (SEG0–SEG47) are selected with the mask option in pairs for either segment signal output or DC output (VDD and Vss binary output).
 When DC output is selected, the data corresponding to COM0 of each segment terminal is output.
- ② When DC output is selected, either complementary output or Pch open drain output can be selected for each terminal with the mask option.
- Note The terminal pairs are the combination of SEG2*n and SEG2*n + 1 (where n is an integer from 0 to 23).

Control of LCD driver Table 4.8.2 shows the LCD driver's control bits and their addresses. Figure 4.8.5 shows the display memory map.

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	CSDC	ETI2	ETI8	ETI32	CSDC	0	Static	Dynamic	LCD drive switch
2E8H	CSDC	EIIZ	EII8	ETI32	ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
2001		R/	14/		ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
		K/	vv		ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
*1 Initial	value at	the time	of initial	reset	:	*3 Const	antly "0"	when be	eing read *5 Undefined

Table 4.8.2 Control bits of LCD driver

*2 Not set in the circuit

*3 Constantly "0" when being read *4 Reset (0) immediately after being read

Address Low 0 2 А В С D Е F 1 3 4 5 6 7 8 9 Page High 4 Display memory (48 words x 4 bits) 5 0 or 2 0 page = R/W2 page = W 6

Fig. 4.8.5

Display memory map

CSDC: LCD drive switch (2E8H·D3)	The LCD drive format can be selected with this switch. When "1" is written : Static drive When "0" is written : Dynamic drive Read-out : Valid At initial reset, dynamic drive (CSDC = "0") is selected.								
Display memory: (040H–06FH or 240H–26FH)	The LCD segments are lit or turned off depending on this data. When "1" is written : Lit When "0" is written : Not lit Read-out : Valid for 0 page Undefined 2 page								
	By writing data into the display memory allocated to the LCD segment (on the panel), the segment can be lit or put out. At initial reset, the contents of the display memory are undefined.								
Programming notes	(1) When page 0 is selected for the display memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.								
	(2) When page 2 is selected for the display memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR,								

ADD, SUB).

4.9 Clock Timer

Configuration of clock timer

The E0C6235 Series has a built-in clock timer as the source oscillator for prescaler. The clock timer is configured of a seven-bit binary counter that serves as the input clock, a 256 Hz signal output by the prescaler. Data of the four high-order bits (16 Hz–2 Hz) can be read out by the software. Figure 4.9.1 is the block diagram for the clock timer.

Fig. 4.9.1 Block diagram of clock timer

Ordinarily, this clock timer is used for all types of timing functions such as clocks.

The input clock of the clock timer is output through the prescaler, so the prescaler mode must be set correctly to suit the crystal oscillator to be used (32.768 kHz or 38.4 kHz). For how to set the prescaler, see "Control of oscillation circuit and prescaler".

Interrupt function

The clock timer can cause interrupts at the falling edge of 32 Hz, 8 Hz and 2 Hz signals. Software can set whether to mask any of these frequencies.

Figure 4.9.2 is the timing chart of the clock timer.

	Address	Register	Frequency										(Clo	ck	tim	ner	tim	ninę	g cł	nar	t											
		D0	16 Hz				L													L		L											
	2E0H	D1	8 Hz				1											l															
	2001	D2	4 Hz																														
		D3	2 Hz																														
	32 Hz iı	nterrupt	request	t	t	t	t	t i	t 1	t t	t	t	t	t	t	t	t	t	t	t	t	t	t 1	t	t	t	t	t	t	t	t 1	t t	٦
Fig. 4.9.2	8 Hz ii	8 Hz interrupt request					t			t				t				t				t			t				t			t	
Timing chart of clock timer	2 Hz interrupt request																	t														t	

As shown in Figure 4.9.2, interrupt is generated at the falling edge of the frequencies (32 Hz, 8 Hz, 2 Hz). At this time, the corresponding interrupt factor flag (TI32, TI8, TI2) is set to "1". Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (ETI32, ETI8, ETI2). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to "1" at the falling edge of the corresponding signal.

Control of clockTable 4.9.1 shows the clock timer control bits and their
addresses.

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	TM3	TM2	TM1	тмо	TM3	0			Timer data (clock timer 2 Hz)
2E0H	11013	TIVIZ	TIVIT	TIVIU	TM2	0			Timer data (clock timer 4 Hz)
22011		ſ	2		TM1	0			Timer data (clock timer 8 Hz)
			`		TM0	0			Timer data (clock timer 16 Hz)
	CSDC	ETI2	ETI8	ETI32	CSDC	0	Static	Dynamic	LCD drive switch
2E8H	CSDC	ETIZ	ETIO	ETISZ	ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
22011		D	/W		ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
		rt/	vv		ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	TI2	TI8	TI32	0 *3	_ *2	-	-	Unused
2E9H	0	112	110		TI2 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
20311		r	2		TI8 *4	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
		r	1		TI32 *4	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	TMRST	SWRUN	CWDCT	IOC0	TMRST*3	Reset	Reset	-	Clock timer reset
2EEH	TIVIKST	SWRUN	300631	1000	SWRUN	0	Run	Stop	Stopwatch timer Run/Stop
	w	R/W	w	R/W	SWRST*3	Reset	Reset	-	Stopwatch timer reset
	vv	N/W	vv	K/W	IOC0	0	Output	Input	I/O control register 0 (P00–P03)
*1 Initial	value at	the time	of initial	reset	2	3 Const	tantly "0'	when be	eing read *5 Undefined

Table 4.9.1 Control bits of clock timer

*1 Initial value at the time of initi *2 Not set in the circuit *3 Constantly "0" when being read *4 Reset (0) immediately after being read

TM0–TM3: The 16 Hz–2 Hz timer data of the clock timer can be readTimer data out with this register. These four bits are read-out only, and(2E0H) writing operations are invalid.

At initial reset, the timer data is initialized to "OH".

ETI32, ETI8, ETI2: These registers are used to select whether to mask the clock Interrupt mask registers timer interrupt.

(2E8H·D0-D2)

When "1" is written :EnabledWhen "0" is written :MaskedRead-out :Valid

The interrupt mask registers (ETI32, ETI8, ETI2) are used to select whether to mask the interrupt to the separate frequencies (32 Hz, 8 Hz, 2 Hz).

Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0").

At initial reset, these registers are all set to "0".

TI32, TI8, TI2: These flags indicate the status of the clock timer interrupt.

Interrupt factor flags
(2E9H·D0–D2)When "1" is read out : Interrupt has occurred
When "0" is read out : Interrupt has not occurred
Writing : Invalid

The interrupt factor flags (TI32, TI8, TI2) correspond to the clock timer interrupts of the respective frequencies (32 Hz, 8 Hz, 2 Hz). The software can judge from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to "1" at the falling edge of the signal.

These flags can be reset through being read out by the software. Also, the flags can be read out only in the DI status (interrupt flag = "0").

At initial reset, these flags are set to "0".

TMRST: This bit resets the clock timer.

Clock timer reset
(2EEH·D3)When "1" is written :Clock timer resetWhen "0" is written :No operation
Read-out :Always "0"

The clock timer is reset by writing "1" to TMRST. The clock timer starts immediately after this. No operation results when "0" is written to TMRST.

This bit is write-only, and so is always "0" at read-out.

Programming notes	(1) The prescaler mode must be set correctly to suit the crystal oscillator to be used.
	(2) When the clock timer has been reset, the interrupt fact

- (2) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to "1". Consequently, perform flag read-out (reset the flag) as necessary at reset.
- (3) The input clock of the watchdog timer is the 2 Hz signal of the clock timer, so that the watchdog timer may be counted up at timer reset.
- (4) Read-out the interrupt factor flag (TI) only during the DI sta**tus** (interrupt flag = "0"). Read-out during EI status (interrupt flag = "1") will cause malfunction.

4.10 Stopwatch Timer

Configuration of
stopwatch timerThe E0C6235 Series incorporates a 1/100 sec and 1/10 sec
stopwatch timer. The stopwatch timer is configured of a
two-stage, four-bit BCD counter serving as the input clock
of an approximately 100 Hz signal (signal obtained by ap-
proximately demultiplying the 256 Hz signal output by the
prescaler). Data can be read out four bits at a time by the
software.

Figure 4.10.1 is the block diagram of the stopwatch timer.

The stopwatch timer can be used as a separate timer from the clock timer. In particular, digital watch stopwatch functions can be realized easily with software. The input clock of the stopwatch timer is output through the prescaler, so the prescaler mode must be set correctly to suit the crystal oscillator to be used (32.768 kHz or 38.4 kHz). For how to set the prescaler, see "Control of oscillation circuit and prescaler".

Count-up pattern

stopwatch timer

The stopwatch timer is configured of four-bit BCD counters SWL and SWH.

The counter SWL, at the stage preceding the stopwatch timer, has an approximated 100 Hz signal for the input clock. It counts up every 1/100 sec, and generates an approximated 10 Hz signal. The counter SWH has an approximated 10 Hz signal generated by the counter SWL for the input clock. It count-up every 1/10 sec, and generated 1 Hz signal.

Figure 4.10.2 shows the count-up pattern of the stopwatch timer.

SWL generates an approximated 10 Hz signal from the basic 256 Hz signal. The count-up intervals are 2/256 sec and 3/ 256 sec, so that finally two patterns are generated: 25/256 sec and 26/256 sec intervals. Consequently, these patterns do not amount to an accurate 1/100 sec.

SWH counts the approximated 10 Hz signals generated by the 25/256 sec and 26/256 sec intervals in the ratio of 4:6, to generate a 1 Hz signal. The count-up intervals are 25/256 sec and 26/256 sec, which do not amount to an accurate 1/10 sec.

Interrupt functionThe 10 Hz (approximate 10 Hz) and 1 Hz interrupts can be
generated through the overflow of stopwatch timers SWL
and SWH respectively. Also, software can set whether to
separately mask the frequencies described earlier.
Figure 4.10.3 is the timing chart for the stopwatch timer.

Fig. 4.10.3 Timing chart for stopwatch timer

As shown in Figure 4.10.3, the interrupts are generated by the overflow of their respective counters ("9" changing to "0"). Also, at this time the corresponding interrupt factor flags (SWIT0, SWIT1) are set to "1".

The respective interrupts can be masked separately through the interrupt mask registers (EISWITO, EISWIT1). However, regardless of the setting of the interrupt mask registers, the interrupt factor flags are set to "1" by the overflow of their corresponding counters.

Control of stopwatchTable 4.10.1 lists the stopwatch timer control bits and their
addresses.

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	CM/I 2	SWL2	SWL1	SWL0	SWL3	0			MSB
2E1H	SWL3	SWLZ	SWLI	SWLU	SWL2	0			Starrent the time of the 1/100 and (DCD)
		r	2		SWL1	0			Stopwatch timer data 1/100 sec (BCD)
		r	х 	-	SWL0	0			_ LSB
	SWH3	SWH2	SWH1	SWH0	SWH3	0			MSB
2E2H	30013	SWHZ	30011	30000	SWH2	0			Stonwatch times data 1/10 and (BCD)
2620					SWH1	0			Stopwatch timer data 1/10 sec (BCD)
					SWH0	0			_ LSB
	HLMOD	BLD0	EISWIT1	EISMITO	HLMOD	0	Heavy load	Normal	Heavy load protection mode register
2E6H	HLIVIOD	BLDU	EISWITT	EISWITU	BLD0	0	Low	Normal	Sub-BLD evaluation data
2001	R/W	R	R/W		EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)
	N/ W	ĸ	Ň	~~~	EISWIT0	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)
	IK1	IK0	SWIT1	SWITO	IK1 *4	0	Yes	No	Interrupt factor flag (K10)
2EAH		INU	300111	30010	IK0 *4	0	Yes	No	Interrupt factor flag (K00-K03)
26411		r	2		SWIT1 *4	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
		r	x		SWIT0 *4	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)
	TMRST	SWRUN	SWDCT	10C0	TMRST*3	Reset	Reset	-	Clock timer reset
2EEH	TIVINGT	SWKUN	300031	1000	SWRUN	0	Run	Stop	Stopwatch timer Run/Stop
	w	R/W	w	DAV	SWRST*3	Reset	Reset	-	Stopwatch timer reset
	vv	K/W	vv	R/W	IOC0	0	Output	Input	I/O control register 0 (P00–P03)
*1 Initial	voluo ot	the time	of initial	racat	-	2 Cone	tantly "0"	when h	sing read *5 Undefined

Table 4.10.1 Stopwatch timer control bits

*1 Initial value at the time of initial reset

*3 Constantly "0" when being read

*5 Undefined

*2 Not set in the circuit

*4 Reset (0) immediately after being read

I-80

Stopwatch timer	Data (BCD) of the 1/100 sec column of the stopwatch timer can be read out. These four bits are read-only, and cannot be used for writing operations. At initial reset, the timer data is set to "0H".							
Stopwatch timer	Data (BCD) of the 1/10 sec column of the stopwatch timer can be read out. These four bits are read-only, and cannot be used for writing operations. At initial reset, the timer data is set to "OH".							
EISWIT0, EISWIT1: Interrupt mask register (2E6H·D0 and D1)	These registers are used to select whether to mask the stopwatch timer interrupt. When "1" is written : Enabled When "0" is written : Masked Read-out : Valid							
	The interrupt mask registers (EISWIT0, EISWIT1) are used to separately select whether to mask the 10 Hz and 1 Hz interrupts. At initial reset, these registers are both set to "0".							
SWIT0, SWIT1: Interrupt factor flag (2EAH·D0 and D1)	These flags indicate the status of the stopwatch timer interrupt. When "1" is read out : Interrupt has occurred When "0" is read out : Interrupt has not occurred Writing : Invalid The interrupt factor flags (SWITO, SWIT1) correspond to the 10 Hz and 1 Hz interrupts respectively. With these flags, the software can judge whether a stopwatch timer interrupt has occurred. However, regardless of the interrupt mask register setting, these flags are set to "1" by the counter overflow. These flags are reset when read out by the software. Also, read-out is only possible in the DI status (interrupt flag = "0"). At initial reset, these flags are set to "0".							

SWRST: This bit resets the stopwatch timer.

Stopwatch timer reset (2EEH·D1)

When "1" is written :Stopwatch timer resetWhen "0" is written :No operationRead-out :Always "0"

The stopwatch timer is reset when "1" is written to SWRST. When the stopwatch timer is reset in the RUN status, operation restarts immediately. Also, in the STOP status the reset data is maintained.

This bit is write-only, and is always "0" at read-out.

SWRUN: This bit controls RUN/STOP of the stopwatch timer.

Stopwatch timer	When "1" is written :	RUN
RUN/STOP	When "0" is written :	11011
(2EEH·D2)		
()	Read-out :	Valid

The stopwatch timer enters the RUN status when "1" is written to SWRUN, and the STOP status when "0" is written. In the STOP status, the timer data is maintained until the next RUN status or resets timer. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count. When the timer data is read out in the RUN status, correct read-out may be impossible because of the carry from the low-order bit (SWL) to the high-order bit (SWH). This occurs when read-out has extended over the SWL and SWH bits when the carry occurs. To prevent this, perform read out after entering the STOP status, and then return to the RUN status. Also, the duration of the STOP status must be within 976 µsec (256 Hz 1/4 cycle).

At initial reset, this register is set to "0".

Programming notes	(1) The prescaler mode must be set correctly so that the stopwatch timer suits the crystal oscillator to be used.
	 (2) If timer data is read out in the RUN status, the timer must be made into the STOP status, and after data is read out the RUN status can be restored. If data is read out when a carry occurs, the data cannot be read correctly. Also, the processing above must be performed within the STOP interval of 976 µsec (256 Hz 1/4 cycle).
	(3) Read-out of the interrupt factor flag (SWIT) must be done only in the DI status (interrupt flag = "0").Read-out during EI status (interrupt flag = "1") will cause malfunction.

4.11 Sound Generator

Configuration of sound generator

The E0C6235 Series outputs buzzer signals (BZ, $\overline{\text{BZ}}$) to drive the piezoelectric buzzer.

The frequency of the buzzer signal is software-selectable from eight kinds of demultiplied fosc1. Further, a digital envelope can be added to the buzzer signal through duty ratio control.

Figure 4.11.1 shows the sound generator configuration. Figure 4.11.2 shows the sound generator timing chart.

Frequency setting

The frequencies of the buzzer signals (BZ, $\overline{\text{BZ}}$) are set by writing data to registers BZFQ0–BZFQ2. Table 4.11.1 lists the register setting values and the frequencies that can be set.

Table 4.11.1 Setting of frequencies of buzzer signals

	BZFQ	Set frequecy (Hz)					
	2 1 0	Demultiplier ratio	When fosc1 = 32 kHz	When fosc1 = 38.4 kHz			
ſ	0 0 0	fosc1/8	4,096.0	4,800.0			
	0 0 1	fosc1/10	3,276.8	3,840.0			
	0 1 0	fosc1/12	2,730.7	3,200.0			
	0 1 1	fosc1/14	2,340.6	2,742.9			
	1 0 0	fosc1/16	2,048.0	2,400.0			
	1 0 1	fosc1/20	1,638.4	1,920.0			
	1 1 0	fosc1/24	1,365.3	1,600.0			
	1 1 1	fosc1/28	1,170.3	1,371.4			

Note A hazard may be observed in the output waveform of the BZ and \overline{BZ} signals when data of the buzzer frequency selection registers (BZFQ0–BZFQ2) changes.

Digital envelope	A duty ratio control data envelope (with duty ratio change in
•	eight stages) can be added to the buzzer signal (BZ, $\overline{\mathrm{BZ}}$).
	The duty ratio is the ratio of the pulse width compared with
	the pulse cycle. The BZ output is TH/ (TH+TL) when the
	high level output is TH and the low level output is TL. The
	$\overline{\mathrm{BZ}}$ output (BZ inverted output) is TL/ (TH+TL). Also, care
	must be taken because the duty ratio differs depending on
	the buzzer frequency.
	The envelope is added by writing "1" to register ENVON. If
	"0" is written the duty ratio is fixed to the maximum. Also, if
	the envelope is added, the duty ratio is reverted to the
	maximum by writing "1" in register ENVRST, and the duty
	ratio also becomes the maximum at the start of the buzzer
	signal output.
	The decay time of the envelope (time for the duty ratio to
	change) can be selected with the register ENVRT. This time
	is 62.5 msec (16 Hz) when "0" is written, and 125 msec (8
	Hz) when "1" is written. However, a maximum difference of
	4 msec is taken from envelope-ON until the first change.
	Table 4.11.2 lists the duty rates and buzzer frequencies.
	Figure 4.11.3 shows the digital envelope timing chart.

Table 4.11.2
Duty rates and buzzer
frequencies

BZFQ (register)	2	0	1	0	1	0	1	0	1
	1	0	0	0	0	1	1	1	1
Duty rate	0	0	0	1	1	0	0	1	1
Level 1 (max.)		8 / 16		8 /	20	12	/ 24	12	/ 28
Level 2		7 / 16 7 / 20		20	11 / 24		11 / 28		
Level 3		6 / 16		6 /	20	10	/ 24	10	/ 28
Level 4		5 /	16	5 /	20	9 /	24	9 /	28
Level 5		4 /	16	4 /	20	8 /	24	8 /	28
Level 6		3 / 16		3 / 20		7 /	24	7 /	28
Level 7		2 /	16	2 /	20	6 /	24	6 /	28
Level 8 (mi	n.)	1 /	16	1 /	20	5 /	24	5 /	28

Fig. 4.11.3 Digital envelop timing chart

Mask option(1) Selection can be made whether to output the BZ signal
from the R10 pin.

- (2) Selection can be made whether to output the $\overline{\text{BZ}}$ signal from the R13 pin. However, if the BZ signal is not output the $\overline{\text{BZ}}$ signal cannot be output.
- (3) Selection can be made to perform the $\overline{\text{BZ}}$ signal output control through register R10 or register R13.

See "4.5 Output Ports" for details of the above mask option.

Control of sound generator

Т

Table 4.11.3 lists the sound generator's control bits and their addresses.

Address		Reg	ister					Commont			
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment		
R11 R13 0 High/On Low/Off Output port (R13)				Output port (R13)/BZ output control							
	R13	R12	SIOF	R10	R12	0	High/On	Low/Off	Output port (R12)/FOUT output control		
2ECH					R11	0	High	Low	Output port (R11, LAMP)		
	R/	W	R/W	R/W	SIOF	0	Run	Stop	Output port (SIOF)		
			R		R10	0	High/On	h Low/Off Output port (R10)/BZ output control			
		07504			BZFQ2	0			\Box Buzzer [BZFQ2–0] 0 1 2 3		
0.5011	BZFQ2	BZFQ1	FOI BZFOO	ENVRST	BZFQ1	0			frequency Frequency fosci/8 fosci/10 fosci/12 fosci/14		
2F6H				BZEO0	BZFQ0 0			$\begin{bmatrix} BZFQ2-0 \end{bmatrix} 4 5 6 7 \\ \hline Frequency fosc1/16 fosc1/20 fosc1/24 fosc1/28 \end{bmatrix}$			
		R/W		W	ENVRST*3	Reset	Reset	-	→ selection Frequency fosci/16 fosci/20 fosci/24 fosci/28 Envelope reset		
					ENVON	0	On	Off	Envelope On/Off		
2F7H	ENVON ENVRT		ENVRT AMPDT AMPON		ENVRT	0	1.0 sec	0.5 sec	Envelope cycle selection register		
2610		NA/	R	R/W	AMPDT	1	+ > -	+ < -	Analog comparator data		
	R/	vv	R	K/W	AMPON	0	On	Off	Analog comparator On/Off		
*1 Initial	value at	the time	of initial	recet		3 Cone	tantly "O'	when he	aing read *5 Undefined		

Table 4.11.3 Control bits of sound generator

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*3 Constantly "0" when being read

*5 Undefined

*4 Reset (0) immediately after being read

BZFQ0–BZFQ2: This is used to select the frequency of the buzzer signal. Buzzer frequency selection register (2F6H·D1–D3)

> Table 4.11.4 Buzzer frequency

BZFQ2	BZFQ1	BZFQ0	Buzzer frequency (Hz)
0	0	0	fosc1 / 8
0	0	1	fosc1 / 10
0	1	0	fosc1 / 12
0	1	1	fosc1 / 14
1	0	0	fosc1 / 16
1	0	1	fosc1 / 20
1	1	0	fosc1 / 24
1	1	1	fosc1 / 28

Buzzer frequency is selected from the above eight types that have been divided by fOSC1 (oscillation frequency of the OSC1 oscillation circuit).

At initial reset, fOSC1/8 (Hz) is selected.

 $\label{eq:ENVRST: This is the reset input to make the duty ratio of the buzzer \\ \mbox{Envelope reset (2F6H-D0)} signal the maximum.$

When "1" is written :Reset inputWhen "0" is written :No operationRead-out :Always "0"

When the envelope is added to the buzzer signal, the duty ratio is made maximum through this reset input. When the envelope is not added or when the buzzer signal is not output, the reset input is invalid.

	This controls adding the envelope to the buzzer signal.				
Envelope ON/OFF (2F7H·D3)	When "1" is written : When "0" is written : Read-out :	Envelope added (ON) No envelope (OFF) Valid			
	- 0	al envelope based on duty ratio o envelope, the duty ratio is fixed to pe (OFF) is selected.			
ENVRT: Envelope decay time (2F7H·D2)	the buzzer signal.	cay time of the envelope added to $1.0 \sec (125 \operatorname{msec} \times 7 = 875 \operatorname{msec})$ $0.5 \sec (62.5 \operatorname{msec} \times 7 = 437.5 \operatorname{msec})$ Valid			
	taken for the duty ratio to				

R10, R13 (at BZ, $\overline{\text{BZ}}$ output selection): Special output port data (2ECH·D0, D3)	-	he buzzer signals (BZ, BZ). Buzzer signal output Low level (DC) output Valid
	ently. BZ output is co R10.	ntrol put can be controlled independ- ontrolled by writing data to register d by writing data to register R13.
	output can be controll register R13 can be us register. This register to pin R13).	ister R10 only, BZ output and $\overline{\text{BZ}}$ led simultaneously. In this case, sed as a read/write one-bit general does not affect $\overline{\text{BZ}}$ output (output
	At initial reset, registers	R10 and R13 are set to "0".
Programming note	and $\overline{\text{BZ}}$ signals when dat	ed in the output waveform of the BZ a of the output registers (R10, R13) v selection registers (BZFQ0–

4.12 Event Counter

Configuration of
event counterThe EOC6235 Series has an event counter that counts the
clock signals input from outside.
The event counter is configured of a pair of eight-bit binary
counters (UP counters). The clock pulses are input through
terminals K02 and K03 of the input port.
The clock signals input from the terminals are input to the
event counter via the noise rejector.
The event counter detects the phases of the two clock sig-
nals. Software selection provides for two modes, the phase
detection mode in which one of the counters can be chosen
to input the clock signal, and the separate mode in which
each clock signal is input to different counters.
Figure 4.12.1 shows the configuration of the event counter.

Switching count mode	The event counter detects the phases of the two clock sig- nals. Software selection provides for two modes, the phase detection mode in which one of the counters can be chosen to input the clock signal, and the separate mode in which
	each clock signal is input to different counters.
	Selection can be made by writing data to the EVSEL register.
	When "0" is written the phase detection mode is enabled,
	and when "1" is written the separate mode is enabled.
	In the phase detection mode, the clock signals having differ-
	ent phases must be input simultaneously to terminals K02
	and K03. When the input from terminal K02 is fast the
	clock signal is input to event counter 1, and when the input
	from terminal K03 is fast the clock signal is input to event
	counter 0.
	In the separate mode, input from terminal K02 is made to
	event counter 0, and input from terminal K03 is made to

event counter 1.

Figure 4.12.2 is the timing chart for the event counter.

Terminal K02 input			Тн Тр Т		TP TH TP TL		Noise
Terminal K03 input		Ton T	OFF				
EVRUN	STOP	RUN					
Input to event	"0" (phase detection r						
counter 0					П	П	
Input to event counter 1							
When EVSEL	="1" (separate mode)	п	п	п	пп		
Input to event counter 0	t						
Input to event counter 1	:						
Defined time	$\begin{array}{l} \text{TON} \ \geq 1.5 \ \text{Tch} \\ \text{TOFF} \geq 1.5 \ \text{Tch} \\ \text{TN} \ < 0.5 \ \text{Tch} \end{array}$	TP ≥ 1.5 Tch TH ≥ 1.5 Tch TL ≥ 1.5 Tch	noise reje	ock frequer ctor, can be 6 or fOSC1/ option	e selected		
Fig. 4.12.2							
Timing chart of							
event counter							

Mask option

The clock frequency of the noise rejector can be selected as fosc1/16 or fosc1/128.

Table 4.12.1 lists the defined time depending on the frequency selected.

Table 4.12.1 Defined time depending on frequency selected

Selection	fosc1 = 3	2,768 Hz	fosc1 = 38,400 Hz		
Selection	fosc1/ 16	fosc1/128	fosc1/ 16	fosc1/128	
TN	0.24	1.95	0.20	1.66	
TON	0.74	5.86	0.63	5.00	
Toff	0.74	5.86	0.63	5.00	
TP	0.74	5.86	0.63	5.00	
Тн	0.74	5.86	0.63	5.00	
TL	0.74	5.86	0.63	5.00	

(Unit:msec)

TN : Max value Others : Min value

Control of event counter

Table 4.12.2 shows the event counter control bits and their addresses.

Table 4.12.2 Event counter control bits

Addroop		Reg	ister		Commont					
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
2F8H	EV03	EV02	EV01	EV00	EV03	0				
		LVUZ			EV02	0			Event counter 0 (low-order 4 bits)	
21011		ŗ	2		EV01	0			Event counter o (low order + ons)	
					EV00	0				
	EV07	EV06	EV05	EV04	EV07	0				
2F9H	LV07	L V 00	L V03	LV04	EV06	0			Event counter 0 (high-order 4 bits)	
21 011		ŗ	2		EV05	0			Event counter o (ingli-order 4 ons)	
	R				EV04	0				
	EV13	EV12	EV11	EV10	EV13	0				
2FAH	2010			2010	EV12	0			Event counter 1 (low-order 4 bits)	
		F	2		EV11	0			Event counter 1 (low order 4 ons)	
	N.			EV10	0					
	EV17	EV16	EV15	EV14	EV17	0				
2FBH			2010	2	EV16	0			Event counter 1 (high-order 4 bits)	
		F	2		EV15 EV14	0				
		i c				0				
2FCH	EVSEL	FNRUN	EV1RST	EVORST	EVSEL	0	Separate		Event counter mode	
					EVRUN	0	Run	Stop	Event counter Run/Stop	
	R/W		w		EV1RST*3	Reset	Reset	-	Event counter 1 reset	
			EV0RST*3	Reset	Reset	-	Event counter 0 reset			
*1 Initial value at the time of initial reset *3 Constantly "0" when being read *5 Under *5 U							eing read *5 Undefined			

Constantly "0" when being read

*2 Not set in the circuit

*4 Reset (0) immediately after being read

	The four low-order data bits of event counter 0 are read out. These four bits are read-only, and cannot be used for writ- ing. At initial reset, event counter 0 is set to "00H".					
	The four high-order data bits of event counter 0 are read out. These four bits are read-only, and cannot be used for writ- ing. At initial reset, event counter 0 is set to "00H".					
	The four low-order data bits of event counter 1 are read out. These four bits are read-only, and cannot be used for writ- ing. At initial reset, event counter 1 is set to "00H".					
	The four high-order data bits of event counter 1 are read out. These four bits are read-only, and cannot be used for writ- ing. At initial reset, event counter 1 is set to "00H".					
EV0RST: Event counter 0 reset (2FCH·D0)	This is the register for resetting event counter 0. When "1" is written : Event counter 0 reset When "0" is written : No operation Read-out : Always "0" When "1" is written, event counter 0 is reset and the data becomes "00H". When "0" is written, no operation is exe- cuted.					
	This is a write-only bit, and is always "0" at read-out.					

EV1RST: This is the register for resetting event counter 1.

Event counter 1 reset	When "1" is written :	Event counter 1 reset	
(2FCH·D1)	When "0" is written :	No operation	
	Read-out :	Always "0"	

When "1" is written, event counter 1 is reset and the data becomes "00H". When "0" is written, no operation is executed.

This is a write-only bit, and is always "0" at read-out.

EVRUN: This register controls the event counter RUN/STOP status.

Eveni counter KON/STOP	When "1" is written :	DUN
(2FCH·D2)	when I is written.	RUN
(-)	When "0" is written :	STOP
	Read-out :	Valid

When "1" is written, the event counter enters the RUN status and starts receiving the clock signal input. When "0" is written, the event counter enters the STOP status and the clock signal input is ignored. (However, input to the input port is valid.) At initial reset, this register is set to "0".

EVSEL: This register control the count mode of the event counter.

Event counter mode

(2FCH·D3)	When "1" is written :	Separate
()	When "0" is written :	Phase detection
	Read-out :	Valid

When "0" is written, the phases of the two clock signals are detected, and the phase detection mode is selected, in which one of the counters is chosen to input the clock signal. When "1" is written, the separate mode is selected, in which each clock signal is input to different counters. At initial reset, this register is set to "0".

Programming notes	(1) After the event counter has written data to the EVRUN					
	register, it operates or stops in synchronization with the					
	falling edge of the noise rejector clock or stops. Hence,					
	attention must be paid to the above timing when input					
	signals (input to K02 and K03) are being received.					

(2) To prevent erroneous reading of the event counter data, read out the counter data several times, compare it, and use the matching data as the result.

4.13 Analog Comparator

Configuration of analog comparator

The E0C6235 Series incorporates an MOS input analog comparator. This analog comparator, which has two differential input terminals (inverted input terminal AMPM, noninverted input terminal AMPP), can be used for general purposes.

Figure 4.13.1 shows the configuration of the analog comparator.

Operation of analogThe analog comparator is ON when the AMPON register is
"1", and compares the input levels of the AMPP and AMPM
terminals. The result of the comparison is read from the
AMPDT register. It is "1" when AMPP (+) > AMPM (-) and "0"
when AMPP (+) < AMPM (-).</th>

After the analog comparator goes ON it takes a maximum of 3 msec until the output stabilizes.

Control of analog comparator

Table 4.13.1 lists the analog comparator control bits and their addresses.

Addroop		Reg	ister					Commont		
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	ENVON ENVRT		ENVRT AMPDT AMP		ENVON	0	On	Off	Envelope On/Off	
2F7H	EINVOIN	LINVICI	AIVIPUT	AWPUN	ENVRT	0	1.0 sec	0.5 sec	Envelope cycle selection register	
	R/W		R	R/W	AMPDT	1	+ > -	+ < -	Analog comparator data	
					AMPON	0	On	Off	Analog comparator On/Off	
*1 Initial value at the time of initial reset						*3 Cone	antly "0"	when he	aing read *5 Undefined	

Table 4.13.1 Analog comparator control bits

*1 Initial value at the time of initial reset*2 Not set in the circuit

*3 Constantly "0" when being read *4 Reset (0) immediately after being read *5 Undefined

AMPON: Switches the analog comparator ON and OFF.

	_		
Analog comparator ON/OFF (2F7H·D0)		The analog comparator goes ON The analog comparator goes OFF Valid	
	The analog comparator g AMPON, and OFF when ' At initial reset, AMPON is		
AMPDT:	Reads out the output from	m the analog comparator.	

	_	
Analog comparator data (2F7H·D1)	When "1" is read out :	AMPP (+) > AMPM (-)
(26711.01)	When "0" is read out :	AMPP (+) < AMPM (-)
	Writing :	Invalid

AMPDT is "0" when the input level of the inverted input terminal (AMPM) is greater than the input level of the noninverted input terminal (AMPP); and "1" when smaller. At initial reset, AMPDT is set to "1".

Programming notes	(1) To reduce current consumption, set the analog compara- tor to OFF when it is not necessary.
	(2) After setting AMPON to "1", wait at least 3 msec for the operation of the analog comparator to stabilize before
	reading the output data of the analog comparator from AMPDT.

4.14 Battery Life Detection (BLD) Circuit

Configuration of BLD circuit

The E0C6235 Series has a built-in battery life detection (BLD) circuit, so that the software can find when the source voltage lowers. The configuration of the BLD circuit is shown in Figure 4.14.1. Also provides a heavy load protection function and an associated sub-BLD circuit. See 4.15 "Heavy Load Protection Function and Sub-BLD Circuit". Turning the BLD operation ON/OFF is controlled through the software (HLMOD, BLS). Moreover, when a drop in source voltage (BLD0 = "1") is detected by the sub-BLD circuit, BLD operation is periodically performed by the hardware until the source voltage is recovered (BLD0 = "0"). Because the power current consumption of the IC becomes big when the BLD operation is turned ON, set the BLD operation to OFF unless otherwise necessary.

Programmable selection of evaluation voltage

In the E0C6235 Series, the evaluation voltage for judging the battery life can be switched by programming. Consequently, the optimum evaluation voltage can be set for the battery used.

One of eight evaluation voltages can be selected with the software. Table 4.14.1 lists the evaluation voltages for the models in the EOC6235 Series.

Table 4.14.1
Evaluation voltages for BLD
circuit

Evaluati	on voltage	e setting	Evaluation voltage				
BLC2	BLC1	BLC0	E0C62L35	E0C6235	E0C62A35		
0	0	0	1.05 V	$2.20~\mathrm{V}$	2.20 V		
0	0	1	1.10 V	$2.25\mathrm{V}$	$2.25~\mathrm{V}$		
0	1	0	1.15 V	$2.30 \mathrm{V}$	2.30 V		
0	1	1	1.20 V	$2.35\mathrm{V}$	$2.35~\mathrm{V}$		
1	0	0	$1.25\mathrm{V}$	$2.40\mathrm{V}$	2.40 V		
1	0	1	1.30 V	$2.45\mathrm{V}$	$2.45~\mathrm{V}$		
1	1	0	1.35 V	$2.50~\mathrm{V}$	$2.50 \mathrm{V}$		
1	1	1	1.40 V	$2.55~\mathrm{V}$	$2.55~\mathrm{V}$		

See the electrical characteristics for the evaluation voltage accuracy.

Detection timing of BLD circuit	This section explains the timing for when the BLD circuit writes the result of the source voltage detection to the BLD latch.
	Turning the BLD operation ON/OFF is controlled through
	the software (HLMOD, BLS). Moreover, when a drop in
	source voltage (BLD0 = "1") is detected by the sub-BLD \sim
	circuit, BLD operation is periodically performed by the
	hardware until the source voltage is recovered (BLD0 = "0").
	The result of the source voltage detection is written to the
	BLD latch by the BLD circuit, and this data can be read out
	by the software to find the status of the source voltage.
	There are three status, explained below, for the detection
	timing of the BLD circuit.

(1) Sampling with HLMOD set to "1"

When HLMOD is set to "1" and BLD sampling executed, the detection results can be written to the BLD latch in the following two timings.

- Immediately after the time for one instruction cycle has ended immediately after HLMOD = "1"
- ② Immediately after sampling in the 2 Hz cycle output by the clock timer while HLMOD = "1"

Consequently, the BLD latch data is loaded immediately after HLMOD has been set to "1", and at the same time the new detection result is written in 2 Hz cycles. To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least 100 µsec. When the CPU system clock is fosc3 in E0C62A35, the detection result at the timing in ① above may be invalid or incorrect. (When performing BLD detection using the timing in ①, be sure that the CPU system clock is fosc1.)

(2) Sampling with BLS set to "1"

When BLS is set to "1", BLD detection is executed. As soon as BLS is reset to "0" the detection result is loaded to the BLD latch. To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least 100 µsec. Hence, to obtain the BLD detection result, follow the programming sequence below.

0. Set HLMOD to "1" (only when the CPU system clock is fosc3 in E0C62A35)

- 1. Set BLS to "1"
- 2. Maintain at 100 μsec minimum
- 3. Set BLS to "0"
- 4. Read out BLD
- 5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C62A35)

However, when a crystal oscillation clock (fOSC1) is selected for the CPU system clock in EOC6235, EOC62L35, and EOC62A35, the instruction cycles are long enough, so that there is no need for concern about maintaining 100 µsec for the BLS = "1" with the software.

(3) Sampling by hardware when sub-BLD latch is set to "1"

When BLD0 (sub-BLD latch) is set to "1", the detection results can be written to the BLD0 (sub-BLD latch) and BLD1 (BLD latch) in the following two timings (same as that sampling with HLMOD set to "1").

- Immediately after the time for one instruction cycle has ended immediately after BLD0 = "1"
- ② Immediately after sampling in the 2 Hz cycle output by the clock timer while BLD0 = "1"

Consequently, the BLD0 (sub-BLD latch) and BLD1 (BLD latch) data are loaded immediately after BLD0 (sub-BLD latch) has been set to "1", and at the same time the new detection result is written in 2 Hz cycles.

To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least 100 µsec.

When the CPU system clock is fosc3 in E0C62A35, the detection result at the timing in \oplus above may be invalid or incorrect.

Control of BLD circuit Table 4.14.2 shows the BLD circuit's control bits and their addresses.

	Reg	ister		Commont						
D3	D2	D1	D0	Name	Init *1	1	0	Comment		
				HLMOD	0	Heavy load	Normal	Heavy load protection mode register		
HLINUD	BLDU	EISWITT	EISWITU	BLD0	0	Low	Normal	Sub-BLD evaluation data		
DAM				EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)		
R/W	ĸ	R/W		EISWIT0	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)		
BLS				BLS	0	On	Off	BLD On/Off		
RI D1	BLC2	BLC2	BLC2	BLC1	BLC0	BLD1	0	Low	Normal	
DLDT				BLC2	BIC2 × *5			Evaluation voltage setting register		
w				DLC1				[BLC2-0] 0 1 2 3 4 5 6 7		
		R/W		BLUI				E0C6235/62A35 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 (V)		
R				BLC0	× *5			E0C62L35 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 (V)		
	HLMOD R/W BLS BLD1 W	D3 D2 HLMOD BLD0 R/W R BLS BLC2 BLD1 W	HLMOD BLD0 EISWIT1 R/W R R/ BLS BLC2 BLC1 W R/W	D3 D2 D1 D0 HLMOD BLD0 EISWIT1 EISWIT0 R/W R R/W BLS BLC2 BLC1 BLC0 W R/W R/W	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

*1 Initial value at the time of initial reset

*3 Constantly "0" when being read*4 Reset (0) immediately after being read

*5 Undefined

*2 Not set in the circuit

HLMOD:	When "1" is written :	Heavy load protection mode is set
Heavy load protection	When "0" is written :	Heavy load protection mode
mode		is released
(2E6H·D3)	Read-out :	Valid

When HLMOD is set to "1", the IC operating status enters the heavy load protection mode and at the same time the battery life detection of the BLD circuit is controlled (ON/ OFF).

For details about the heavy load protection mode, see "4.15 Heavy Load Protection Function and Sub-BLD Circuit". When HLMOD is set to "1", sampling control is executed for the BLD circuit ON time. There are two types of sampling time, as follows:

- (1) The time of one instruction cycle immediately after HLMOD = "1"
- (2) Sampling at cycles of 2 Hz output by the clock timer while HLMOD = "1"

The BLD circuit must be made ON with at least 100 µsec for the BLD circuit to respond. Hence, when the CPU system clock is fosc3 in E0C62A35, the detection result at the timing in (1) above may be invalid or incorrect. When performing BLD detection using the timing in (1), be sure that the CPU system clock is fosc1.

When BLD sampling is done with HLMOD set to "1", the results are written to the BLD latch in the timing as follows:

- (1) As soon as the time has elapsed for one instruction cycle immediately following HLMOD = "1"
- (2) Immediately on completion of sampling at cycles of 2 Hz output by the clock timer while HLMOD = "1"

Consequently, the BLD latch data is written immediately after HLMOD is set to "1", and at the same time the new detection result is written in 2 Hz cycles.

BLS/BLD1:	When "0" is written :	BLD detection OFF
BLD detection/BLD data	When "1" is written :	BLD detection ON
(2F3H·D3)	When "0" is read out :	Source voltage (VDD-VSS)
		is higher than BLD set value
	When "1" is read out :	Source voltage (VDD-VSS)
		is lower than BLD set value
	NT-4- 414 41 6	

Note that the function of this bit when written is different to when read out.

When this bit is written to, ON/OFF of the BLD detection operation is controlled; when this bit is read out, the result of the BLD detection (contents of BLD latch) is obtained. Appreciable current is consumed during operation of BLD detection, so keep BLD detection OFF except when necessary.

When BLS is set to "1", BLD detection is executed. As soon as BLS is reset to "0" the detection result is loaded to the BLD latch. To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least 100 µsec. Hence, to obtain the BLD detection result, follow the programming sequence below.

- 0. Set HLMOD to "1" (only when the CPU system clock is fosc3 in E0C62A35)
- 1. Set BLS to "1"
- 2. Maintain at 100 μsec minimum
- 3. Set BLS to "0"
- 4. Read out BLD
- 5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C62A35)

However, when a crystal oscillation clock (fosc1) is selected for the CPU system clock in E0C6235, E0C62L35, and E0C62A35, the instruction cycles are long enough, so that there is no need for concern about maintaining 100 μ sec for the BLS = "1" with the software.

Programming notes	(1) It takes 100 μsec from the time the BLD circuit goes ON
	until a stable result is obtained. For this reason, keep
	the following software notes in mind:

- 1 When the CPU system clock is fosc1
 - When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.
 - When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µsec has lapsed (possible with the next instruction) and then read the BLD.
- ② When the CPU system clock is fosc3 (in case of E0C62A35 only)
 - When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second)
 - When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 µsec has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD.
- (2) BLS resides in the same bit at the same address as BLD1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.

4.15 Heavy Load Protection Function and Su	b-
BLD Circuit	

This section explains the heavy load protection and sub-BLD circuit.

Note that the heavy load protection function on the E0C62L35 is different from the E0C6235/62A35.

(1) In case of E0C62L35

Configuration and

operation of heavy

load protection

function

The E0C62L35 has the heavy load protection function for when the battery load becomes heavy and the source voltage drops, such as when an external buzzer sounds or an external lamp lights. The state where the heavy load protection function is in effect is called the heavy load protection mode. In this mode, operation with a lower voltage than normal is possible.

The normal mode changes to the heavy load protection mode in the following two cases:

- ① When the software changes the mode to the heavy load protection mode (HLMOD = "1")
- ② When source voltage drop (BLD0 = "1") in the sub-BLD circuit is detected, the mode will automatically shift to the heavy load protection mode until the source voltage is recovered (BLD0 = "0")

The sub-BLD circuit, a BLD circuit dedicated to 2.4 V/ 1.2 V detection, operates in synchronize with the BLD circuit. It is the E0C62L35's battery life detection circuit controlling the heavy load protection function so that operation is assured even when the source voltage drops. Based on the workings of the sub-BLD circuit and the heavy load protection function, the E0C62L35 realizes operation at 0.9 V source voltage. See the electrical characteristics for the precisions of voltage detection by this sub-BLD circuit.

Figure 4.15.1 shows the configuration of the heavy load protection function and the sub-BLD circuit.

Fig. 4.15.1 Configuration of sub-BLD circuit

In the heavy load protection mode, the internally regulated voltage is generated by the liquid crystal driver source output VL2 so as to operate the internal circuit. Consequently, more current is consumed in the heavy load protection mode than in the normal mode. Unless it is necessary, be careful not to set the heavy load protection mode with the software.

(2) In case of E0C6235/62A35

The E0C6235/62A35 has the heavy load protection function for when the battery load becomes heavy and the source voltage changes, such as when an external buzzer sounds or an external lamp lights. The state where the heavy load protection function is in effect is called the heavy load protection mode. Compared with the normal operation mode, this mode can reduce the output voltage variation of the constant voltage/booster voltage circuit of the LCD system.

The normal mode changes to the heavy load protection mode in the following case:

① When the software changes the mode to the heavy load protection mode (HLMOD = "1")

The heavy load protection mode switches the constant voltage circuit of the LCD system to the high-stability mode from the low current consumption mode. Consequently, more current is consumed in the heavy load protection mode than in the normal mode. Unless it is necessary, be careful not to set the heavy load protection mode with the software.

Operation of sub-	Software control of the sub-BLD circuit is virtually the same
BLD circuit	as for the BLD circuit, except that the evaluation voltage
	cannot be set by programming.
	Just as for the BLD circuit, HLMOD or BLS control the
	detection timing of the sub-BLD circuit and the timing for
	writing the detection data to the sub-BLD latch. However,
	for the E0C62L35, even if the sub-BLD circuit detects a drop
	in source voltage (1.2 V or below) and invokes the heavy load
	protection mode, this will be the same as when the software
	invokes the heavy load protection mode, in that the BLD
	circuit and sub-BLD circuit will be sampled in timing syn-
	chronized to the 2 Hz output from the prescaler. If the sub-
	BLD circuit detects a voltage drop and enters the heavy load
	protection mode, it will return to the normal mode once the
	source voltage recovers and the BLD circuit judges that the
	source voltage is 1.2 V or more.
	For the E0C6235/62A35, when the sub-BLD circuit detects
	a drop in source voltage (2.4 V or below) and the detection
	data is written to the sub-BLD latch, the BLD circuit and
	sub-BLD circuit will be sampled in timing synchronized to
	the 2 Hz output from the prescaler. Once the source voltage
	recovers and the BLD circuit judges that the source voltage
	is $2.4\ \mathrm{V}$ or more, the BLD circuit and sub-BLD circuit won't
	be sampled in timing synchronized to the 2 Hz output from
	the prescaler.

Control of heavy load protection function and sub-BLD circuit

Table 4.15.1 shows the control bits and their addresses for the heavy load protection function and sub-BLD circuit.

Address	Register								Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	HLMOD	BLD0	EISWIT1		HLMOD	0	Heavy load	Normal	Heavy load protection mode register
2E6H	HLIVIOD	BLDU	EISWITT	EISWIIU	BLD0	0	Low	Normal	Sub-BLD evaluation data
2001	R/W	R	р	NA /	EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)
	IK/VV	R/W R	R/W	EISWITO	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)	
	BLS				BLS	0	On	Off	BLD On/Off
	BLD1	BLC2	BLC1	BLC0	BLD1	0	Low	Normal	BLD voltage evaluation data
2FFH	FH H				BLC2	× *5			Evaluation voltage setting register
	W		R/W		BLC1	× *5			[BLC2-0] 0 1 2 3 4 5 6 7 E0C6235/62A35 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 (V)
	R		10/00		BLC0	× *5			$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
*1 Initia	*1 Initial value at the time of initial reset					*3 Cone	tantly "O'	when he	ing read *5 Undefined

Table 4.15.1 Control bits of BLD circuit

 $\ast 1$ Initial value at the time of initial reset

*2 Not set in the circuit

*3 Constantly "0" when being read *4 Reset (0) immediately after being read *5 Undefined

HLMOD:	When "1" is written :	Heavy load protection mode is set
Heavy load protection	When "0" is written :	Heavy load protection mode
mode (2E6H·D3)		is released
	Read-out :	Valid

When HLMOD is set to "1", the IC operating status enters the heavy load protection mode and at the same time the battery life detection of the BLD circuit is controlled (ON/ OFF).

When HLMOD is set to "1", sampling control is executed for the BLD circuit ON time. There are two types of sampling time, as follows:

- (1) The time of one instruction cycle immediately after HLMOD = "1"
- (2) Sampling at cycles of 2 Hz output by the clock timer while HLMOD = "1"

The BLD circuit must be made ON with at least 100 µsec for the BLD circuit to respond. Hence, when the CPU system clock is fosc3 in E0C62A35, the detection result at the timing in (1) above may be invalid or incorrect. When performing BLD detection using the timing in (1), be sure that the CPU system clock is fosc1.

When BLD sampling is done with HLMOD set to "1", the results are written to the BLD latch in the timing as follows:

- (1) As soon as the time has elapsed for one instruction cycle immediately following HLMOD = "1"
- (2) Immediately on completion of sampling at cycles of 2 Hz output by the clock timer while HLMOD = "1"

Consequently, the BLD latch data is written immediately after HLMOD is set to "1", and at the same time the new detection result is written in 2 Hz cycles.

When "0" is read out :	High source voltage upward from
	about 2.4 V (E0C6235/62A35)
	/1.2 V (E0C62L35)
When "1" is read out :	Low source voltage from about
	2.4 V (E0C6235/62A35)
	/1.2 V (E0C62L35) or under
Writing :	Invalid
	When "1" is read out :

When BLD0 is "1" the CPU enters the heavy load protection mode. In the heavy load protection mode, the detection operation of the BLD circuit and sub-BLD circuit is sampled in 2 Hz cycles, and the respective detection results are written to the BLD latch and sub-BLD latch.

BLS/BLD1:	When "0" is written :	BLD detection OFF
BLD detection/BLD data	When "1" is written :	BLD detection ON
(2F3H·D3)	When "0" is read out :	Source voltage (VDD-Vss)
		is higher than BLD set value
	When "1" is read out :	Source voltage (VDD–Vss)
		is lower than BLD set value

Note that the function of this bit when written is different to when read out.

When this bit is written to, ON/OFF of the BLD detection operation is controlled; when this bit is read out, the result of the BLD detection (contents of BLD latch) is obtained. Appreciable current is consumed during operation of BLD detection, so keep BLD detection OFF except when necessary.

When BLS is set to "1", BLD detection is executed. As soon as BLS is reset to "0" the detection result is loaded to the BLD latch. To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least 100 µsec. Hence, to obtain the BLD detection result, follow the programming sequence below.

- 0. Set HLMOD to "1" (only when the CPU system clock
- is fosc3 in E0C62A35) 1. Set BLS to "1"
- 2. Maintain at 100 µsec minimum
- 3. Set BLS to "0"
- 4. Read out BLD
- 5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C62A35)

However, when a crystal oscillation clock (fosc1) is selected for the CPU system clock in EOC6235, EOC62L35, and EOC62A35, the instruction cycles are long enough, so that there is no need for concern about maintaining 100 µsec for the BLS = "1" with the software.

Programming notes	(1) It takes 100 µsec from the time the BLD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:
	0 When the CPU system clock is fosci
	 When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.
	 When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µsec has lapsed (possible with the next instruction) and then read the BLD.
	When the CPU system clock is fosc3 (in case of E0C62A35 only)
	 When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second)
	 When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 µsec has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD.
	(2) BLS resides in the same bit at the same address as BLD1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND,

control.

OR, ADD, SUB and so forth) cannot be used for BLS

- (3) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
 - ① After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
 - ② After heavy load drive is completed, switch BLS ON and OFF (at least 100 µsec is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.

(4) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec.

4.16 Interrupt and HALT

The E0C6235 Series provides the following interrupt settings, each of which is maskable.

External interrupt:	Input interrupt (three)
Internal interrupt:	Timer interrupt (three)
	Stopwatch interrupt (two)
	Serial interface interrupt (one)

To authorize interrupt, the interrupt flag must be set to "1" (EI) and the necessary related interrupt mask registers must be set to "1" (enable).

When an interrupt occurs the interrupt flag is automatically reset to "0" (DI), and interrupts after that are inhibited. When a HALT instruction is input the CPU operating clock stops, and the CPU enters the HALT status.

The CPU is reactivated from the HALT status when an interrupt request occurs.

If reactivation is not caused by an interrupt request, initial reset by the watchdog timer causes reactivates the CPU (when the watchdog timer is enabled).

Figure 4.16.1 shows the configuration of the interrupt circuit.

Interrupt factors	Table 4.16.1 shows the factor requests.	rs for generating interrupt				
	The interrupt flags are set to "1" depending on the corre- sponding interrupt factors. The CPU operation is interrupted when any of the conditions below set an interrupt factor flag to "1".					
	 The corresponding mask report of the interrupt flag is "1" (EI) 	0	(enabled)			
	The interrupt factor flag is a reset to "0" when the register At initial reset, the interrupt	data is rea	d out.			
Note	 Read the interrupt factor flags only in the DI status (interrupt flag = "0"). A malfunction could result from read-out during the EI status (interrupt flag = "1"). 					
Table 4.16.1	Interrupt factor	Inter	rupt factor flag			
Interrupt factors	Clock timer 2 Hz falling edge	TI2	(2E9H·D2)			
	Clock timer 8 Hz falling edge	TI8	(2E9H·D1)			
	Clock timer 32 Hz falling edge	TI32	(2E9H·D0)			
	Stopwatch timer	SWIT1				
	1 Hz falling edge		(2EAH·D1)			
	Stopwatch timer	SWIT0				
	10 Hz falling edge		(2EAH·D0)			
	Serial interface	ISIO				
	When 8-bit data input/output		(2F3H·D0)			
	has completed					
	Input data (K00–K03)	IK0				
	Rising or falling edge	117.1	(2EAH·D2)			
	Input data (K10)	IK1				
	Rising or falling edge Input data (K00–K03)	IK2	(2EAH·D3)			
	Rising or falling edge	1112	(2F3H·D1)			

Specific masks and				
factor flags for inter-				
rupt				

The interrupt factor flags can be masked by the corresponding interrupt mask registers.

The interrupt mask registers are read/write registers. They are enabled (interrupt authorized) when "1" is written to them, and masked (interrupt inhibited) when "0" is written to them.

At initial reset, the interrupt mask register is set to "0". Table 4.16.2 shows the correspondence between interrupt mask registers and interrupt factor flags.

Table 4.16.2 Interrupt mask registers and interrupt factor flags

Interrupt m	nask register	Interrupt factor flag		
ETI2	(2E8H·D2)	TI2	(2E9H·D2)	
ETI8	(2E8H·D1)	TI8	(2E9H·D1)	
ETI32	(2E8H·D0)	TI32	(2E9H·D0)	
EISWIT1	(2E6H·D1)	SWIT1	(2EAH·D1)	
EISWITO	(2E6H·D0)	SWIT0	(2EAH·D0)	
EISIO	(2F2H·D0)	ISIO	(2F3H·D0)	
EIK03	(2E5H·D3)			
EIK02	(2E5H·D2)	IKO	(2EAH·D2)	
EIK01	(2E5H·D1)	INU	(20/11/02)	
EIK00	(2E5H·D0)			
EIK10	(2E7H·D2)	IK1	(2EAH·D3)	
EIK23	(2F5H·D3)			
EIK22	(2F5H·D2)	IK2	(2F3H·D1)	
EIK21	(2F5H·D1)	1112	(21 011 D1)	
EIK20	(2F5H·D0)			

* There is an interrupt mask register for each pin of the input ports.

Interrupt vectors	When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being exe- cuted is terminated, the interrupt processing is executed in the following order.							
	 The address data (value of program counter) of the pro- gram to be executed next is saved in the stack area (RAM). 							
		-	equest causes the value of p 01H–0FH) to be set in the p					
	-	0	the specified address is ex processing routine by soft		eu-			
	Table 4.16.3 shows the correspondence of interrupt reques and interrupt vectors.							
Note	The proces system cloc	•	and @ above take 12 cycles	of the CPU				
Table 4.16.3	PC	Value	Interrupt request					
Interrupt request and	PCS3	1	Stopwatch interrupt	Enabled				
interrupt vectors		0		Masked				
	PCS2	1	Timer interrupt	Enabled				
		0		Masked				
	PCS1	1	Input (K00–K03 or K10	Enabled				
			or K20–K23) interrupt					
		0	Input (K00–K03 and K10	Masked				
			and K20–K23) interrupt					

The four low-order bits of the program counter are indirectly addressed through the interrupt request.

Serial interface interrupt

PCS0

1

0

Enabled

Masked

Control of interruptTable 4.16.4 shows the interrupt control bits and theirand HALTaddresses.

	Register								
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
					KCP03	0	-	f	
	KCP03	KCP02	KCP01	KCP00	KCP02	0		l f	
2E4H					KCP01	0		Ī	Input comparison register (K00–K03)
		R	/W		KCP00	0		I F	
					EIK03	0	Enable	Mask	
	EIK03	EIK02	EIK01	EIK00	EIK02	0	Enable	Mask	
2E5H					EIK01	0	Enable	Mask	Interrupt mask register (K00–K03)
		R	/W		EIK00	0	Enable	Mask	
					HLMOD	0	Heavy load		Heavy load protection mode register
	HLMOD	BLD0	EISWIT1	EISWIT0	BLD0	0	Low	Normal	Sub-BLD evaluation data
2E6H					EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)
	R/W	R	R	/W	EISWITO	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)
					SCTRG*3	-	Trigger	_	Serial interface clock trigger
	SCTRG	EIK10	KCP10	K10	EIK10	0	Enable	Mask	Interrupt mask register (K10)
2E7H					KCP10	0	7		Input comparison register (K10)
	W	R	/W	R	K10	_ *2	High	Low	Input port data (K10)
					CSDC	0	Static	Dynamic	LCD drive switch
	CSDC	ETI2	ETI8	ETI32	ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
2E8H			ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)		
		R	/W		ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
					0 *3	- *2	-	-	Unused
	0	TI2	TI8	TI32	TI2 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
2E9H		-			TI8 *4	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
		I	R		TI32 *4	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
			014/74	011/170	IK1 *4	0	Yes	No	Interrupt factor flag (K10)
05411	IK1	IK0	SWIT1	SWIT0	IK0 *4	0	Yes	No	Interrupt factor flag (K00–K03)
2EAH					SWIT1 *4	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
		I	R		SWIT0 *4	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)
	0.001	6.000	050	FICIO	SCS1	1			\Box SIF clock mode [SCS1, 0] 0 1 2
05011	SCS1	SCS0	SE2	EISIO	SCS0	1			selection register Clock CLK CLK/2 CLK/4
2F2H					SE2	0	ſ	1	SIF clock edge selection register
	R/W			EISIO	0	Enable	Mask	Interrupt mask register (serial interface)	
				1010	0 *3	- *2	-	-	Unused
05011	0	0	IK2	ISIO	0 *3	_ *2	-	-	Unused
2F3H					IK2 *4	0	Yes	No	Interrupt factor flag (K20–K23)
		I	R		ISIO *4	0	Yes	No	Interrupt factor flag (serial interface)
	FILCO	FILCOO	FILCO	FILCOO	EIK23	0	Enable	Mask	7
05511	EIK23	EIK22	EIK21	EIK20	EIK22	0	Enable	Mask	
2F5H			0.07		EIK21	0	Enable	Mask	Interrupt mask register (K20–K23)
R/W		EIK20	0	Enable	Mask				

Table 4.16.4 Interrupt control bits

*1 Initial value at the time of initial reset

*3 Constantly "0" when being read

*5 Undefined

3 slave

*2 Not set in the circuit

*4 Reset (0) immediately after being read

- ETI32, ETI8, ETI2: Interrupt mask registers (2E8H·D0–D2)
- TI32, TI8, TI2: Interrupt factor flags (2E9H·D0–D2)
 See "4.9 Clock Timer".
- EISWIT0, EISWIT1: Interrupt mask registers (2E6H·D0–D1)
- SWIT0, SWIT1: Interrupt factor flags (2EAH·D0–D1)
 See "4.10 Stopwatch Timer".
- EISIO: Interrupt mask register (2F2H·D0)
- ISIO: Interrupt factor flag (2F3H·D0)
 See "4.7 Serial Interface".
- KCP00-KCP03: Input comparison registers (2E4H)
- EIK00-EIK03: Interrupt mask registers (2E5H)
- IK0: Interrupt factor flag (2EAH·D2)

See "4.4 Input Ports".

- KCP10: Input comparison register (2E7H·D1)
- EIK10: Interrupt mask register (2E7H·D2)
- IK1: Interrupt factor flag (2EAH·D3)

See "4.4 Input Ports".

- EIK20-EIK23: Interrupt mask registers (2F5H)
- IK2: Interrupt factor flag (2F3H·D1)

See "4.4 Input Ports".

Programming notes	(1) When the interrupt mask register (EIK) is set to "0", the interrupt factor flag (IK) of the input port cannot be set even though the terminal status of the input port has changed.
	(2) The interrupt factor flags of the clock timer, stopwatch timer and serial interface (TI, SWIT, ISIO) are set when the timing condition is established, even if the interrupt mask registers (ETI, EISWIT, EISIO) are set to "0".
	(3) Read out the interrupt factor flags only in the DI status (interrupt flag = "0"). If read-out is performed in the EI status (interrupt flag = "1") a malfunction will result.
	(4) Writing to the interrupt mask register only in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause mulfunction.

CHAPTER 5 SUMMARY OF NOTES

5.1 Notes for Low Current Consumption

The E0C6235 Series contains control registers for each of the circuits so that current consumption can be lowered. These control registers lower the current consumption through programs that operate the circuits at the minimum levels.

The following text explains the circuits that can control operation and their control registers. Refer to these when putting programs together.

Table 5.1.1 Circuits and control registers

Circuits (and Items)	Control registers	Order of consumed current
CPU	HALT instruction	See electrical characteristics (Chapter 7)
CPU operation frequency	CLKCHG, OSCC	See electrical characteristics (Chapter 7)
(E0C62A35)		
Heavy load protection mode	HLMOD	See electrical characteristics (Chapter 7)
BLD circuit	HLMOD, BLS	Several tens µA
Analog comparator	AMPON	Several tens µA

Below are the circuit statuses at initial reset.

CPU:	Operating status
CPU operating frequency:	Low speed side (CLKCHG = $"0"$),
	OSC3 oscillation circuit stop
	status (OSCC = "0")
Heavy load protection mode:	Normal operating mode
	(HLMOD = "0")
BLD circuit:	OFF status (HLMOD = "0", BLS = "0")
Analog comparator:	OFF status (AMPON = "0")

Also, be careful about panel selection because the current consumption can differ by the order of several μA on account of the LCD panel characteristics.

5.2 Summary of Notes by Function

Here, the cautionary notes are summed up by function category. Keep these notes well in mind when programming.

Memory Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

- Watchdog timer When the watchdog timer is being used, the software must reset it within 3-second cycles, and timer data (WD0–WD2) cannot be used for timer applications.
- Oscillation circuit (1) It takes at least 5 msec from the time the OSC3 oscillaand prescaler tion circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON. Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
 - (2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
 - (3) To operate the clock timer and stopwatch timer accurately, select the prescaler of the OSC1 to match the crystal oscillator used.
 - Input port (1) When input ports are changed from high to low by pulldown resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 msec.

(2) When "Use" is selected with the noise rejector mask option, a maximum delay of 1 msec occurs from time the interrupt conditions are established until the interrupt factor flag (IK) is set to "1" (until the interrupt is actually generated).

Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.

For example, when performing a key scan with the key matrix, the key scan changes the input status to set the interrupt factor flag, so it has to be read out to reset it. However, if the interrupt factor flag is read out immediately after key scanning, the delay will cause the flag to be set after read-out, so that it will not be reset.

(3) Input interrupt programing related precautions

However, when clearing the content of the mask register with the input terminal kept in the low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (high status).

When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of ② shown in Figure 5.2.1. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the low status. In addition, when the mask register = "1" and the content of the input comparison register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input comparison register in the mask register = "0" status.

- (4) Read out the interrupt factor flag (IK) only in the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag = "1") will cause malfunction.
- (5) Writing the interrupt mask register (EIK) only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.
- Output port When BZ, $\overline{\text{BZ}}$ and FOUT are selected with the mask option, a hazard may be observed in the output waveform when the data of the output register changes.
 - I/O port (1) When input data are changed from high to low by built-in pull-down resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Consequently, if data is read out while the CPU is running in the OSC3 oscillation circuit, data must be read out continuously for about 500 µsec.

- (2) When the I/O port is set to the output mode and the data register has been read, the terminal data instead of the register data can be read out. Because of this, if a lowimpedance load is connected and read-out performed, the value of the register and the read-out result may differ.
- Serial interface (1) If the bit data of SE2 changes while SCLK is in the master mode, a hazard will be output to the SCLK pin. If this poses a problem for the system, be sure to set the SCLK to the external clock if the bit data of SE2 is to be changed.
 - (2) Be sure that read-out of the interrupt factor flag (ISIO) is done only when the serial port is in the STOP status (SIOF = "0") and the DI status (interrupt flag = "0"). If read-out is performed while the serial data is in the RUN status (during input or output), the data input or output will be suspended and the initial status resumed. Read-out during the EI status (interrupt flag = "1") causes malfunctioning.
 - (3) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc1 ↔ fosc3) while the serial interface is operating.
 - (4) Perform data writing/reading to data registers SD0–SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
 - (5) As a trigger condition, it is required that data writing or reading on data registers SDO–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SDO–SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
 - (6) Be sure that writing to the interrupt mask register is done only in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause malfunction.

- LCD driver (1) When page 0 is selected for the display memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
 - (2) When page 2 is selected for the display memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).
- Clock timer (1) The prescaler mode must be set correctly to suit the rystl oscillator to be used.
 - (2) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to "1". Consequently, perform flag read-out (reset the flag) as necessary at reset.
 - (3) The input clock of the watchdog timer is the 2 Hz signal of the clock timer, so that the watchdog timer may be counted up at timer reset.
 - (4) Read-out the interrupt factor flag (TI) only during the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag = "1") will cause malfunction.
- Stopwatch timer (1) The prescaler mode must be set correctly so that the stopwatch timer suits the crystal oscillator to be used.
 - (2) If timer data is read out in the RUN status, the timer must be made into the STOP status, and after data is read out the RUN status can be restored. If data is read out when a carry occurs, the data cannot be read correctly.

Also, the processing above must be performed within the STOP interval of 976 μsec (256 Hz 1/4 cycle).

(3) Read-out of the interrupt factor flag (SWIT) must be done only in the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag = "1") will cause malfunction.

- Sound generator A hazard may be observed in the output waveform of the BZ and $\overline{\text{BZ}}$ signals when data of the output registers (R10, R13) and the buzzer frequency selection registers (BZFQ0–BZFQ2) changes.
 - Event counter (1) After the event counter has written data to the EVRUN register, it operates or stops in synchronization with the falling edge of the noise rejector clock or stops. Hence, attention must be paid to the above timing when input signals (input to K02 and K03) are being received.
 - (2) To prevent erroneous reading of the event counter data, read out the counter data several times, compare it, and use the matching data as the result.
- Analog comparator (1) To reduce current consumption, set the analog comparator to OFF when it is not necessary.
 - (2) After setting AMPON to "1", wait at least 3 msec for the operation of the analog comparator to stabilize before reading the output data of the analog comparator from AMPDT.
- Battery life detection (1) It takes 100 µsec from the time the BLD circuit goes ON (BLD) circuit until a stable result is obtained. For this reason, keep the following software notes in mind:
 - ① When the CPU system clock is fosc1
 - 1. When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.
 - When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µsec has lapsed (possible with the next instruction) and then read the BLD.
 - When the CPU system clock is fosc3 (in case of EOC62A35 only)
 - When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second)

- When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 µsec has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD.
- (2) BLS resides in the same bit at the same address as BLD1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.
- Heavy load protection(1) It takes 100 µsec from the time the BLD circuit goes ONfunction and sub-BLD
circuituntil a stable result is obtained. For this reason, keep
the following software notes in mind:
 - ① When the CPU system clock is fosc1
 - 1. When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.
 - When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µsec has lapsed (possible with the next instruction) and then read the BLD.
 - When the CPU system clock is fosc3 (in case of EOC62A35 only)
 - When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second)
 - When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 µsec has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD.
 - (2) BLS resides in the same bit at the same address as BLD1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.

- (3) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
 - ① After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
 - ② After heavy load drive is completed, switch BLS ON and OFF (at least 100 µsec is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.

- (4) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec.
- Interrupt and HALT (1) When the interrupt mask register (EIK) is set to "0", the interrupt factor flag (IK) of the input port cannot be set even though the terminal status of the input port has changed.
 - (2) The interrupt factor flags of the clock timer, stopwatch timer and serial interface (TI, SWIT, ISIO) are set when the timing condition is established, even if the interrupt mask registers (ETI, EISWIT, EISIO) are set to "0".
 - (3) Read out the interrupt factor flags only in the DI status (interrupt flag = "0"). If read-out is performed in the EI status (interrupt flag = "1") a malfunction will result.
 - (4) Writing to the interrupt mask register only in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause mulfunction.

CHAPTER 6 DIAGRAM OF BASIC EXTERNAL CONNECTIONS

X'tal	Crystal oscillator	32,768 Hz or 38,400 Hz CI (MAX)=35 k Ω
Cgx	Trimmer capacitor	5–25 pF
C1		0.1 μF
C2		0.1 μF
Сз		0.1 μF
C4		0.1 µF
C5		0.1 μF
C6		0.1 μF
СР		3.3 µF

Note The above table is simply an example, and is not guaranteed to work.

X'tal	Crystal oscillator	32,768 Hz or 38,400 Hz CI (MAX)=35 k Ω
Cgx	Trimmer capacitor	5–25 pF
CR	Ceramic oscillator	500 kHz
CGC	Gate capacitance	100 pF
CDC	Drain capacitance	100 pF
RCR	Resistance for CR oscillation	82 kΩ
C1		0.1 μF
C2		0.1 μF
Сз		0.1 μF
C4		0.1 μF
C5		0.1 μF
C6		0.1 μF
СР		3.3 μF

Note The above table is simply an example, and is not guaranteed to work.

When the piezoelectric buzzer is driven directly

RA1	Protection resistance	100 Ω
RA2	Protection resistance	100 Ω

CHAPTER 7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Rating

E0C6235 and E0C62A35

		(VDD	0 = 0 V
Item	Code	Rated value	Unit
Supply voltage	Vss	-5.0 to 0.5	V
Input voltage (1)	VI	Vss-0.3 to 0.5	V
Input voltage (2)	VIOSC	Vs1-0.3 to 0.5	V
Permissible total output current *2	∑Ivss	10	mA
Operating temperature	Topr	-20 to 70	°C
Storage temperature	Tstg	-65 to 150	°C
Soldered temperature, time	Tsol	260°C, 10 sec (lead section)	-
Permitted loss *1	Pd	250	mW

E0C62L35

(VDD = 0 V)

Item	Code	Rated value	Unit
Supply voltage	Vss	-2.0 to 0.5	V
Input voltage (1)	VI	Vss-0.3 to 0.5	V
Input voltage (2)	Viosc	Vs1-0.3 to 0.5	V
Permissible total output current *2	∑Ivss	10	mA
Operating temperature	Topr	-20 to 70	°C
Storage temperature	Tstg	-65 to 150	°C
Soldered temperature, time	Tsol	260°C, 10 sec (lead section)	-
Permitted loss *1	PD	250	mW

*1 For 100-pin plastic package

*2 The permissible total output current is the sum total of the current (average current) that simultaneously flows from the output pins (or is drawn in).

7.2 Recommended Operating Conditions

E0C6235

 $(Ta = -20 \text{ to } 70^{\circ}\text{C})$

Item	Code	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vss	VDD = 0V	-3.5	-3.0	-1.8	V
Oscillation frequency	fosc1	Either one	-	32,768	_	Hz
		is selected	-	38,400	-	Hz

E0C62L35

 $(Ta = -20 \text{ to } 70^{\circ}\text{C})$

Item	Code	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vss	VDD = 0V	-1.7	-1.5	-1.1	V
		$V_{DD} = 0V$ Software *1 controllable	-1.7	-1.5	-0.9 ^{*2}	V
		VDD = 0V When use the analog comparator	-1.7	-1.5	-1.2	V
Oscillation frequency	fosc1	Either one	-	32,768	-	Hz
		is selected	-	38,400	-	Hz

*1 When switching to heavy load protection mode. (See Section 4.15 for details.)

*2 The possibility of LCD panel display differs depending on the characteristics of the LCD panel.

E0C62A35

 $(Ta = -20 \text{ to } 70^{\circ}\text{C})$

Item	Code	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vss	VDD = 0V	-3.5	-3.0	-2.2	V
Oscillation frequency (1)	fosc1	Either one	-	32,768	-	Hz
		is selected	-	38,400	-	Hz
Oscillation frequency (2)	fosc3	duty 50±5%	50	500	600	kHz

7.3 DC Characteristics

E0C6235 and E0C62A35

(VDD=0V, Vss=-3.0V, fosc1=32,768Hz, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=C6=0.1 µF)

Item	Code	Co	ndition	Min.	Тур.	Max.	Unit
High-level	VIH1		K00-03·10·20-23	0.2.		0	V
input voltage (1)			SIN, P00-03·10-13	Vss			
High-level	VIH2		SCLK	0.1.		0	V
input voltage (2)			RESET, TEST	Vss			
Low-level	VIL1		K00-03·10·20-23	Vss		0.8.	V
input voltage (1)			SIN, P00-03·10-13			Vss	
Low-level	VIL2		SCLK	Vss		0.9.	V
input voltage (2)			RESET, TEST			Vss	
High-level	IIH1	VIH=0V	K00-03·10·20-23	0		0.5	μA
input current (1)			P00-03·10-13				
		No pull-down	SIN, SCLK				
		resistance	AMPP, AMPM, RESET				
High-level	IIH2	VIH=0V	K00-03·10·20-23	4		16	μA
input current (2)		With pull-down resistance	SIN, SCLK				
High-level	IH3	VIH=0V	P00-03·10-13	25		100	μΑ
input current (3)		With pull-down resistance	RESET, TEST				
Low-level	IIL	VIL=Vss	K00-03·10·20-23	-0.5		0	μΑ
input current			P00-03·10-13				
			SIN, SCLK, AMPP				
			AMPM, RESET, TEST				
High-level	IOH1	VOH1=0.1·Vss	R10, R11, R13			-1.8	mA
output current (1)							
High-level	IOH2	VOH2=0.1·Vss	R00-03-12			-0.9	mA
output current (2)			P00-03·10-13				
			SOUT, SCLK				
Low-level	IOL1	VOL1=0.9·Vss	R10, R11, R13	6.0			mA
output current (1)							
Low-level	IOL2	VOL2=0.9·Vss	R00-03-12	3.0			mA
output current (2)			P00-03·10-13				
			SOUT, SCLK				
Common	Іонз	Voh3=-0.05V	COM0-3			-3	μΑ
output current	IOL3	Vol3=Vl3+0.05V		3			μΑ
Segment output current	IOH4	Voh4=-0.05V	SEG0-47			-3	μΑ
(at LCD output)	IOL4	V0L4=VL3+0.05V		3			μΑ
Segment output current	IOH5	VIH5=0.1·Vss	SEG0-47			-200	μΑ
(at DC output)	IOL5	VIL5=0.9·Vss		200			μA

E0C62L35

(VDD=0V, VSs=-1.5V, fosc1=32,768Hz, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=C6=0.1µF)

Item	Code	Co	ndition	Min.	Тур.	Max.	Unit
High-level	VIH1		K00-03·10	0.2.		0	V
input voltage (1)			P00-03·10-13	Vss			
High-level	VIH2		SCLK	0.1.		0	V
input voltage (2)			RESET, TEST	Vss			
Low-level	VIL1		K00-03·10	Vss		0.8.	V
input voltage (1)			P00-03·10-13			Vss	
Low-level	VIL2		SCLK	Vss		0.9.	V
input voltage (2)			RESET, TEST			Vss	
High-level	IIH1	VIH=0V	K00-03·10·20-23	0		0.5	μΑ
input current (1)			P00-03·10-13				
		No pull-down	SIN, SCLK				
		resistance	AMPP, AMPM, RESET				
High-level	IIH2	VIH=0V	K00-03·10·20-23	2		10	μΑ
input current (2)		With pull-down resistance	SIN, SCLK				
High-level	IH3	VIH=0	P00-03·10-13	12		60	μΑ
input current (3)		With pull-down resistance	RESET, TEST				
Low-level	IIL	VIL=Vss	K00-03·10·20-23	-0.5		0	μΑ
input current			P00-03·10-13				
			SIN, SCLK, AMPP				
			AMPM, RESET, TEST				
High-level	IOH1	VOH1=0.1·Vss	R10, R11, R13			-300	μΑ
output current (1)							
High-level	IOH2	VOH2=0.1·Vss	R00-03·12			-150	μA
output current (2)			P00-03·10-13				
			SOUT, SCLK				
Low-level	IOL1	VOL1=0.9·Vss	R10, R11, R13	1400			μA
output current (1)							
Low-level	IOL2	VOL2=0.9·Vss	R00-03·12	700			μA
output current (2)			P00-03·10-13				
			SOUT, SCLK				
Common	Іонз	Voh3=-0.05V	COM0-3			-3	μΑ
output current	IOL3	Vol3=Vl3+0.05V		3			μΑ
Segment output current	IOH4	Voh4=-0.05V	SEG0-47			-3	μΑ
(at LCD output)	IOL4	Vol4=Vl3+0.05V		3			μΑ
Segment output current	IOH5	VIH5=0.1·Vss	SEG0-47			-100	μΑ
(at DC output)	IOL5	VIL5=0.9·Vss		100			μΑ

7.4 Analog Circuit Characteristics and Consumed Current

E0C6235 (Normal operation mode)

(VDD=0V, Vss=-3.0V, fosc1=32,768Hz, Cg=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=C6=0.1 μF)

Item	Code	Condition		Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load r	esistance	-1.15	-1.05	-0.95	V
		between VDD and VL1 (N	o panel load)				
	VL2	Connects a $1M\Omega$ load r	esistance	$2 \cdot V_{L1}$		2·VL1	V
		between VDD and VL2 (N	o panel load)	-0.1		× 0.9	
	VL3	Connects a $1M\Omega$ load r	esistance	3.VL1		3.VL1	V
		between VDD and VL3 (N	o panel load)	-0.1		× 0.9	
BLD voltage ^{*1}	VB0	BLC = "0"		-2.35	-2.20	-2.05	V
	VB1	BLC = "1"		-2.40	-2.25	-2.10	V
	VB2	BLC = "2"		-2.45	-2.30	-2.15	V
	VB3	BLC = "3"		-2.50	-2.35	-2.20	V
	VB4	BLC = "4"		-2.55	-2.40	-2.25	V
	VB5	BLC = "5"		-2.60	-2.45	-2.30	V
	VB6	BLC = "6"		-2.65	-2.50	-2.35	V
	VB7	BLC = "7"		-2.70	-2.55	-2.40	V
BLD circuit response time	tв					100	µsec
Sub-BLD voltage	VBS			-2.55	-2.40	-2.25	V
Sub-BLD circuit response time	tBS					100	µsec
Analog comparator	VIP	Noninverted input (AMI	PP)	Vss+0.3		VDD-0.9	V
input voltage	VIM	Inverted input (AMPM)					
Analog comparator	Vof					10	mV
offset voltage							
Analog comparator	tamp	VIP = -1.5V				3	msec
response time		$VIM = VIP \pm 15mV$					
Consumed current	IOP	During HALT No	panel load		1.8	4.0	μΑ
		During operation ^{*2}			6.0	10.0	μΑ

*1 The relationships among VB0–VB7 are VB0>VB1>VB2>...VB5>VB6>VB7.

*2 The BLD circuit, sub-BLD circuit and analog comparator are in the OFF status.

E0C6235 (Heavy load protection mode)

(VDD=0V, Vss=-3.0V, fosc1=32,768Hz, Cg=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=C6=0.1 μ F)

Item	Code	Condition		Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load	resistance	-1.15	-1.05	-0.95	V
		between VDD and VL1	(No panel load)				
	VL2	Connects a $1M\Omega$ load	resistance	$2 \cdot V_{L1}$		$2 \cdot V_{L1}$	V
		between VDD and VL2	(No panel load)	-0.1		$\times 0.9$	
	VL3	Connects a $1M\Omega$ load	resistance	3.VL1		3·VL1	V
		between VDD and VL3	(No panel load)	-0.1		$\times 0.9$	
BLD voltage ^{*1}	VB0	BLC = "0"		-2.35	-2.20	-2.05	V
	VB1	BLC = "1"		-2.40	-2.25	-2.10	V
	VB2	BLC = "2"		-2.45	-2.30	-2.15	V
	VB3	BLC = "3"		-2.50	-2.35	-2.20	V
	VB4	BLC = "4"		-2.55	-2.40	-2.25	V
	VB5	BLC = "5"		-2.60	-2.45	-2.30	V
	VB6	BLC = "6"		-2.65	-2.50	-2.35	V
	VB7	BLC = "7"		-2.70	-2.55	-2.40	V
BLD circuit response time	tв					100	µsec
Sub-BLD voltage	VBS			-2.55	-2.40	-2.25	V
Sub-BLD circuit response time	t _{BS}					100	µsec
Analog comparator	VIP	Noninverted input (AN	MPP)	Vss+0.3		VDD-0.9	V
input voltage	VIM	Inverted input (AMPM	1)				
Analog comparator	Vof					10	mV
offset voltage							
Analog comparator	tamp	VIP = -1.5V				3	msec
response time		$VIM = VIP \pm 15mV$					
Consumed current	IOP	During HALT No	o panel load		35	90	μА
		During operation ^{*2}			40	100	μA

*1 The relationships among VB0–VB7 are VB0>VB1>VB2>...VB5>VB6>VB7.

*2 The BLD circuit and sub-BLD circuit are in the ON status (HLMOD = "1", BLS = "0"). The analog comparator is in the OFF status.

E0C62L35 (Normal operation mode)

(VDD=0V, Vss=-1.5V, fosc1=32,768Hz, CG=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=C6=0.1 μ F)

Item	Code	Condition	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load resistance	e -1.15	-1.05	-0.95	V
		between VDD and VL1 (No panel lo	ad)			
	VL2	Connects a $1M\Omega$ load resistance	e 2.VL1		2·VL1	V
		between VDD and VL2 (No panel lo	ad) -0.1		$\times 0.9$	
	VL3	Connects a $1M\Omega$ load resistance	e 3.VL1		3.VL1	V
		between VDD and VL3 (No panel lo	ad) -0.1		$\times 0.9$	
BLD voltage*1	VB0	BLC = "0"	-1.15	-1.05	-0.95	V
	VB1	BLC = "1"	-1.20	-1.10	-1.00	V
	VB2	BLC = "2"	-1.25	-1.15	-1.05	V
	VB3	BLC = "3"	-1.30	-1.20	-1.10	V
	VB4	BLC = "4"	-1.35	-1.25	-1.15	V
	VB5	BLC = "5"	-1.40	-1.30	-1.20	V
	VB6	BLC = "6"	-1.45	-1.35	-1.25	V
	VB7	BLC = "7"	-1.50	-1.40	-1.30	V
BLD circuit response time	tв				100	µsec
Sub-BLD voltage	VBS		-1.30	-1.20	-1.10	V
Sub-BLD circuit response time	tBS				100	µsec
Analog comparator	VIP	Noninverted input (AMPP)	Vss+0.3		VDD-0.9	V
input voltage	VIM	Inverted input (AMPM)				
Analog comparator	Vof				20	mV
offset voltage						
Analog comparator	tamp	VIP = -1.1V			3	msec
response time		$VIM = VIP \pm 30mV$				
Consumed current	IOP	During HALT No panel loa	ad	1.5	3.0	μΑ
		During operation ^{*2}		5.0	8.0	μΑ

*1 The relationships among VB0–VB7 are VB0>VB1>VB2>...VB5>VB6>VB7.

 $\ast 2$ The BLD circuit, sub-BLD circuit and analog comparator are in the OFF status.

E0C62L35 (Heavy load protection mode)

(VDD=0V, VSS=-1.5V, fosc1=32,768Hz, CG=25pF, Ta=25°C, VS1, VL1, VL2, VL3 are
internal voltage, C1=C2=C3=C4=C5=C6=0.1 μ F)

Item	Code	Condition	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load resistance	-1.15	-1.05	-0.95	V
		between VDD and VL1 (No panel load)			
	VL2	Connects a $1M\Omega$ load resistance	$2 \cdot V_{L1}$		2·VL1	V
		between VDD and VL2 (No panel load) -0.1		$\times 0.85$	
	VL3	Connects a $1M\Omega$ load resistance	3.VL1		3.VL1	V
		between VDD and VL3 (No panel load) -0.1		$\times 0.85$	
BLD voltage ^{*1}	VB0	BLC = "0"	-1.15	-1.05	-0.95	V
	VB1	BLC = "1"	-1.20	-1.10	-1.00	V
	VB2	BLC = "2"	-1.25	-1.15	-1.05	V
	VB3	BLC = "3"	-1.30	-1.20	-1.10	V
	VB4	BLC = "4"	-1.35	-1.25	-1.15	V
	VB5	BLC = "5"	-1.40	-1.30	-1.20	V
	VB6	BLC = "6"	-1.45	-1.35	-1.25	V
	VB7	BLC = "7"	-1.50	-1.40	-1.30	V
BLD circuit response time	tв				100	µsec
Sub-BLD voltage	VBS		-1.30	-1.20	-1.10	V
Sub-BLD circuit response time	tвs				100	µsec
Analog comparator	VIP	Noninverted input (AMPP)	Vss+0.3		VDD-0.9	V
input voltage	VIM	Inverted input (AMPM)				
Analog comparator	Vof				20	mV
offset voltage						
Analog comparator	tamp	VIP = -1.1V			3	msec
response time		$V_{IM} = V_{IP} \pm 30 mV$				
Consumed current	IOP	During HALT No panel load		3.0	7.0	μΑ
		During operation ^{*2}		10.0	18.0	μΑ

*1 The relationships among VB0–VB7 are VB0>VB1>VB2>...VB5>VB6>VB7.

*2 The BLD circuit and sub-BLD circuit are in the ON status (HLMOD = "1", BLS = "0"). The analog comparator is in the OFF status.

E0C62A35 (Normal operation mode)

(VDD=0V, VSS=-3.0V, fosc1=32,768Hz, CG=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=C6=0.1 μ F)

Item	Code	Condition		Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load resist	Connects a $1M\Omega$ load resistance				V
		between VDD and VL1 (No page	anel load)				
	VL2	Connects a $1M\Omega$ load resist	stance	$2 \cdot V_{L1}$		$2 \cdot V_{L1}$	V
		between VDD and VL2 (No page	anel load)	-0.1		$\times 0.9$	
	VL3	Connects a $1M\Omega$ load resis	stance	3·VL1		3.VL1	V
		between VDD and VL3 (No p	anel load)	-0.1		$\times 0.9$	
BLD voltage ^{*1}	VB0	BLC = "0"		-2.35	-2.20	-2.05	V
	VB1	BLC = "1"		-2.40	-2.25	-2.10	V
	VB2	BLC = "2"		-2.45	-2.30	-2.15	V
	VB3	BLC = "3"		-2.50	-2.35	-2.20	V
	VB4	BLC = "4"		-2.55	-2.40	-2.25	V
	VB5	BLC = "5"		-2.60	-2.45	-2.30	V
	VB6	BLC = "6"		-2.65	-2.50	-2.35	V
	VB7	BLC = "7"		-2.70	-2.55	-2.40	V
BLD circuit response time	tв					100	µsec
Sub-BLD voltage	VBS			-2.55	-2.40	-2.25	V
Sub-BLD circuit response time	tвs					100	µsec
Analog comparator	Vip	Noninverted input (AMPP)		Vss+0.3		VDD-0.9	V
input voltage	VIM	Inverted input (AMPM)					
Analog comparator	Vof					10	mV
offset voltage							
Analog comparator	tamp	VIP = -1.5V				3	msec
response time		$VIM = VIP \pm 15mV$					
Consumed current	Iop	During HALT No	o panel load		2.0	5.0	μΑ
		During operation ^{*2}			8.0	15	μΑ
		During operation at 500kHz ^{*2}			130	300	μΑ

*1 The relationships among VB0–VB7 are VB0>VB1>VB2>...VB5>VB6>VB7.

*2 The BLD circuit, sub-BLD circuit and analog comparator are in the OFF status.

E0C62A35 (Hevy load protection mode)

(VDD=0V, Vss=-3.0V, fosc1=32,768Hz, Cg=25pF, Ta=25°C, Vs1, VL1, VL2, VL3 are internal voltage, C1=C2=C3=C4=C5=C6=0.1 μ F)

Item	Code	Condition	•	Min.	Тур.	Max.	Unit
Internal voltage	VL1	Connects a $1M\Omega$ load res	sistance	-1.15	-1.05	-0.95	V
		between VDD and VL1 (No	panel load)				
	VL2	Connects a $1M\Omega$ load res	sistance	$2 \cdot V_{L1}$		$2 \cdot V_{L1}$	V
		between VDD and VL2 (No	panel load)	-0.1		$\times 0.9$	
	VL3	Connects a $1M\Omega$ load res	sistance	3.VL1		3.VL1	V
		between VDD and VL3 (No	panel load)	-0.1		$\times 0.9$	
BLD voltage ^{*1}	VB0	BLC = "0"		-2.35	-2.20	-2.05	V
	VB1	BLC = "1"		-2.40	-2.25	-2.10	V
	VB2	BLC = "2"		-2.45	-2.30	-2.15	V
	VB3	BLC = "3"		-2.50	-2.35	-2.20	V
	VB4	BLC = "4"		-2.55	-2.40	-2.25	V
	VB5	BLC = "5"	BLC = "5"			-2.30	V
	VB6	BLC = "6"	BLC = "6"			-2.35	V
	VB7	BLC = "7"		-2.70	-2.55	-2.40	V
BLD circuit response time	tв					100	µsec
Sub-BLD voltage	VBS			-2.55	-2.40	-2.25	V
Sub-BLD circuit response time	tвs					100	µsec
Analog comparator	Vip	Noninverted input (AMP	P)	Vss+0.3		Vdd-0.9	V
input voltage	VIM	Inverted input (AMPM)					
Analog comparator	Vof				10	mV	
offset voltage							
Analog comparator	tamp	VIP = -1.5V			3	msec	
response time		$VIM = VIP \pm 15mV$					
Consumed current	IOP	During HALT	No panel load		22	40	μΑ
		During operation ^{*2}			28	50	μΑ
		During operation at 500kHz^{*2}			150	350	μΑ

*1 The relationships among VB0–VB7 are VB0>VB1>VB2>...VB5>VB6>VB7.

*2 The BLD circuit and sub-BLD circuit are in the ON status (HLMOD = "1", BLS = "0"). The analog comparator is in the OFF status.

7.5 Oscillation Characteristics

The oscillation characteristics change depending on the conditions (components used, board pattern, etc.). Use the following characteristics as reference values.

E0C6235

If no special requirement

VDD=0V, Vss=-3.0V, Crystal: C-002R (CI=35k Ω), Cg=25pF, CD=built-in, Ta=25°C

Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation start	Vsta	tsta≤5sec	-1.8			V
voltage	(Vss)					
Oscillation stop	Vstp	tstp≤10sec	-1.8			V
voltage	(Vss)					
Built-in capacitance	CD	Including incidental		20		pF
(drain)		capacitance inside IC				
Frequency/voltage	f/V	Vss = -1.8 to -3.5V			5	ppm
deviation						
Frequency/IC	f/Ic		-10		10	ppm
deviation						
Frequency adjustment	f/Cg	CG = 5 to 25pF	35	45		ppm
range						
Harmonic oscillation	Vhho				-3.5	V
start voltage	(Vss)					
Permitted leak	Rleak	Between OSC1	200			MΩ
resistance		and VDD, Vss				

E0C62L35

If no special requirement

VDD=0V, Vss=-1.5V, Crystal: C-002R (CI=35k Ω), Cg=25pF, CD=built-in, Ta=25°C

Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation start	Vsta	tsta≤5sec	-1.1			V
voltage	(Vss)					
Oscillation stop	Vstp	tstp≤10sec	-1.1			V
voltage	(Vss)		(-0.9) ^{*1}			
Built-in capacitance	Cd	Including incidental		20		pF
(drain)		capacitance inside IC				
Frequency/voltage	f/V	Vss = -1.1 to -1.7V			5	ppm
deviation		(-0.9) ^{*1}				
Frequency/IC	f/Ic		-10		10	ppm
deviation						
Frequency adjustment	f/Cg	$C_G = 5 \text{ to } 25 \text{pF}$	35	45		ppm
range						
Harmonic oscillation	Vhho				-1.7	V
start voltage	(Vss)					
Permitted leak	Rleak	Between OSC1	200			MΩ
resistance		and VDD, Vss				

*1 Parentheses indicate value for operation in heavy load protection mode.

E0C62A35

OSC1, 2

If no special requirement

Vdd=0V, Vss=-3.0V, Crystal: C-002R (CI=35k Ω), Cg=25pF, Cd=built-in, Ta=25°C

Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation start	Vsta	tsta≤5sec	-2.2			V
voltage	(Vss)					
Oscillation stop	Vstp	tstp≤10sec	-2.2			V
voltage	(Vss)					
Built-in capacitance	CD	Including incidental		20		pF
(drain)		capacitance inside IC				
Frequency/voltage	f/V	Vss = -2.2 to -3.5V			5	ppm
deviation						
Frequency/IC	f/Ic		-10		10	ppm
deviation						
Frequency adjustment	f/Cg	CG = 5 to 25pF	35	45		ppm
range						
Harmonic oscillation	Vhho				-3.5	V
start voltage	(Vss)					
Permitted leak	Rleak	Between OSC1	200			MΩ
resistance		and VDD, Vss				

OSC3, OSC4 (for CR oscillation circuit)

If no special requirement

VDD=0V, Vss=-3.0V, Rcr=82k Ω , Ta=25°C

Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation frequency	fosc3		-30	480 kHz	30	%
Oscillation start voltage	Vsta		-2.2			V
Oscillation start time	tsta	Vss = -2.2 to -3.5V			3	msec
Oscillation stop voltage	Vstp		-2.2			V

OSC3, OSC4 (for ceramic oscillation circuit)

If no special requirement

VDD=0V, Vss=-3.0V, ceramic oscillation: 500kHz

CGC=CDC=100pF, Ta=25°C

Item	Code	Condition	Min.	Тур.	Max.	Unit
Oscillation start voltage	Vsta		-2.2			V
Oscillation start time	tsta	Vss = -2.2 to -3.5V			5	msec
Oscillation stop voltage	Vstp		-2.2			V

CHAPTER 8 PACKAGE

8.1 Plastic Package

F100-5

100-pin Flat Package (Unit: mm)

100-pin Flat Package (Unit: mm)

8.2 Ceramic Package for Test Samples

(Unit: mm)

CHAPTER 9 PAD LAYOUT

9.1 Diagram of Pad Layout

Chip thickness:400 μmPad opening:95 μm

9.2 Pad Coordinates

(Unit:	um)
(01110)	P,

F	P A D	COORD	DINATE	F	P A D	COORE	DINATE	Р	A D	COORE	DINATE
No	NAME	Х	Y	No	NAME	Х	Y	No	NAME	Х	Y
1	AMPP	2235	2355	34	OSC3	-2295	357	67	SEG29	951	-2355
2	AMPM	2010	2355	35	VS1	-2295	161	68	SEG28	1111	-2355
3	K23	1680	2355	36	OSC2	-2295	-43	69	SEG27	1271	-2355
4	K22	1511	2355	37	OSC1	-2295	-203	70	SEG26	1431	-2355
5	K21	1351	2355	38	VDD	-2295	-391	71	SEG25	1591	-2355
6	K20	1191	2355	39	VL3	-2295	-571	72	SEG24	1751	-2355
7	K10	1031	2355	40	VL2	-2295	-731	73	TEST	1921	-2355
8	K03	855	2355	41	VL1	-2295	-891	74	SEG23	2295	-2355
9	K02	695	2355	42	CA	-2295	-1099	75	SEG22	2295	-2195
10	K01	535	2355	43	СВ	-2295	-1259	76	SEG21	2295	-1992
11	K00	375	2355	44	CC	-2295	-1419	77	SEG20	2295	-1427
12	SIN	199	2355	45	COM3	-2295	-1611	78	SEG19	2295	-1267
13	SOUT	28	2355	46	COM2	-2295	-1771	79	SEG18	2295	-1107
14	SCLK	-232	2355	47	COM1	-2295	-2028	80	SEG17	2295	-947
15	P03	-481	2355	48	COM0	-2295	-2188	81	SEG16	2295	-787
16	P02	-641	2355	49	SEG47	-1929	-2355	82	SEG15	2295	-627
17	P01	-801	2355	50	SEG46	-1769	-2355	83	SEG14	2295	-467
18	P00	-961	2355	51	SEG45	-1609	-2355	84	SEG13	2295	-307
19	P13	-1160	2355	52	SEG44	-1449	-2355	85	SEG12	2295	-147
20	P12	-1320	2355	53	SEG43	-1289	-2355	86	SEG11	2295	149
21	P11	-1480	2355	54	SEG42	-1129	-2355	87	SEG10	2295	309
22	P10	-1640	2355	55	SEG41	-969	-2355	88	SEG9	2295	469
23	R03	-1832	2355	56	SEG40	-809	-2355	89	SEG8	2295	629
24	R02	-2295	2355	57	SEG39	-649	-2355	90	SEG7	2295	789
25	R01	-2295	2136	58	SEG38	-489	-2355	91	SEG6	2295	949
26	R00	-2295	1976	59	SEG37	-329	-2355	92	SEG5	2295	1109
27	R12	-2295	1741	60	SEG36	-169	-2355	93	SEG4	2295	1269
28	R11	-2295	1541	61	SEG35	-9	-2355	94	SEG3	2295	1538
29	R10	-2295	1381	62	SEG34	151	-2355	95	SEG2	2295	1698
30	R13	-2295	1221	63	SEG33	311	-2355	96	SEG1	2295	1858
31	Vss	-2295	1033	64	SEG32	471	-2355	97	SEG0	2295	2018
32	RESET	-2295	834	65	SEG31	631	-2355				
33	OSC4	-2295	597	66	SEG30	791	-2355				

E0C6235 Technical Software

CONTENTS

CHAPTER 1	OVERVIEW II-1
CHAPTER 2	BLOCK DIAGRAM II-2
CHAPTER 3	PROGRAM MEMORY (ROM) II-3
	3.1 Configuration of ROM II-3
	3.2 Interrupt Vector II-4
CHAPTER 4	DATA MEMORY
	(RAM, DISPLAY MEMORY, I/O MEMORY) II-5
	4.1 Configuration of Data Memory II-5
	4.2 I/O Memory Map II-7
CHAPTER 5	INITIAL RESET II-10
	5.1 Internal Status at Initial Reset II-10
	5.2 Example of Initialize Program II-11
CHAPTER 6	PERIPHERAL CIRCUITS II-13
	6.1Watchdog TimerII-13I/O memory map of watchdog timerII-13Program exampleII-14Programming noteII-14
	6.2 Oscillation Circuit II-15 I/O memory map of oscillation circuit II-15 Program examples II-17

6.3	Input Ports (K00–K03, K10, K20–K23) I/O memory map of input ports Program examples Programming notes	II-19 II-21
6.4	Output Ports (R00–R03, R10–R13) I/O memory map of output ports Program examples Programming note	II-25 II-28
6.5	I/O Ports (P00–P03, P10–P13) I/O memory map of I/O ports Program examples Programming notes	II-30 II-33
6.6	LCD Driver (COM0–COM3, SEG0–SEG47) I/O memory map of LCD driver Program example Programming notes	II-36 II-38
6.7	Clock Timer I/O memory map of clock timer Program examples Programming notes	II-40 II-43
6.8	Stopwatch Timer I/O memory map of stopwatch timer Program examples Programming notes	II-45 II-49
6.9	Event Counter I/O memory map of event counter Program examples Programming notes	II-52 II-55
6.10	Battery Life Detection (BLD) Circuit I/O memory map of BLD circuit Program example Programming notes	II-62

	6.11 Heavy Load Protection Function
	and Sub-BLD Circuit II-65
	I/O memory map of heavy load protection function
	and sub-BLD circuit II-65
	Program example II-68
	Programming notes II-71
	6.12 Analog Comparator II-73
	I/O memory map of analog comparator II-73
	Program example II-74
	Programming notes II-75
	6.13 Serial Interface (SIN, SOUT, SCLK) II-76
	I/O memory map of serial interface II-76
	Program examples II-81
	Programming notes II-83
	6.14 Sound Generator II-84
	I/O memory map of sound generator II-84
	Program example II-87
	Programming note II-88
	6.15 Interrupt II-89
	I/O memory map of interrupt II-89
	Program example II-93
	Programming notes II-97
CHAPTER 7	SUMMARY OF NOTES II-98
APPENDIX	A. E0C6235 DATA MEMORY (RAM) MAP II-108
	B. E0C6235 INSTRUCTION SET II-114
	C. PSEUDO-INSTRUCTION TABLE OF THE CROSS ASSEMBLER II-119
	D. COMMAND TABLE OF ICE6200 II-120

CHAPTER 1

OVERVIEW

The E0C6235 Series is a single-chip microcomputer made up of the 4-bit core CPU E0C6200, ROM (4,096 words, 12 bits to a word), RAM 576 words, 4 bits to a word) LCD driver circuit, serial interface, event counter with dial input functions, watchdog timer, and two types of time base counter. Because of its low-voltage operation and low power consumption, this series is ideal for a wide range of applications, and is especially suitable for battery-driven systems.

• Configuration

The E0C6235 Series is configured as follows, depending on supply voltage and oscillation circuits.

Model	E0C6235	E0C62L35	E0C62A35
Supply voltage	3.0 V	1.5 V	3.0 V
Oscillation circuit	OSC1 only (Single clock)	OSC1 only (Single clock)	OSC1 and OSC3 (Twin clock)

CHAPTER 2 BLOCK DIAGRAM

CHAPTER 3 PROGRAM MEMORY (ROM)

3.1 Configuration of ROM

The built-in ROM, a mask ROM for loading the program, has a capacity of 4,096 steps, 12 bits each. The program area is 16 pages (0–15), each of 256 steps (00H–FFH). After initial reset, the program beginning address is page 1, step 00H. The interrupt vector is allocated to page 1, steps 01H–0FH.

3.2 Interrupt Vector

When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being executed is terminated, the interrupt processing is executed in the following order.

- ① The address data (value of program counter) of the program to be executed next is saved in the stack area (RAM).
- ② The interrupt request causes the value of the interrupt vector (page 1, 01H–0FH) to be set in the program counter.
- ③ The program at the specified address is executed (execution of interrupt processing routine by software).

Table 3.2.1 shows the correspondence of interrupt requests and interrupt vectors.

Note The processing in ① and ② above take 12 cycles of the CPU system clock.

PC	Value	Interrupt request	
PCS3	1	Stopwatch interrupt	Enabled
	0	Stopwatch interrupt	Masked
PCS2	1	Timer interrupt	Enabled
	0	Timer interrupt	Masked
PCS1	1	Input (K00-K03) interrupt or	
		Input (K10) interrupt or	Enabled
		Input (K20–K23) interrupt	
	0	Input (K00–K03) interrupt and	
		Input (K10) interrupt and	Masked
		Input (K20–K23) interrupt	
PCS0	1	Serial interface interrupt	Enabled
	0	Serial interface interrupt	Masked

* The four low-order bits of the program counter are indirectly addressed through the interrupt request.

Table 3.2.1 Interrupt request and interrupt vectors

CHAPTER 4 DATA MEMORY (RAM, DISPLAY MEMORY, I/O MEMORY)

4.1 Configuration of Data Memory

Data memory of the E0C6235 Series has an address space of 608 words (656 words when segment data memory is laid out over two pages), of which 48 words are allocated to display memory and 32 words to I/O memory.

Figures 4.1.1(a)–(c) present the overall data memory maps of the EOC6235 Series, and Tables 4.2.1(a)–(c) the peripheral circuits' (I/O space) memory maps.

Fig. 4.1.1(a) Data memory map (page 0, page 1)

Notes (1) See Tables 4.2.1(a)–(c) for details of I/O memory.

(2) The mask option can be used to select whether to assign the overall area of display memory to page 0 or page 2.

When page 0 (040H–06FH) is selected, read/write is enabled. When page 2 (240H–26FH) is selected, write only is enabled.

If page 0 is assigned, RAM (040H–06FH) is 48 words, and is used as the segment area.

(3) Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

4.2 I/O Memory Map

	. ,						•		
Address			ister						Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
	TM3	TM2	TM1	тм1 тмо	TM3	0			Timer data (clock timer 2 Hz)
2E0H					TM2	0			Timer data (clock timer 4 Hz)
		F	2		TM1	0			Timer data (clock timer 8 Hz)
					TM0	0			Timer data (clock timer 16 Hz)
	SWL3	SWL2	SWL1	SWL0	SWL3 SWL2	0 0			MSB
2E1H					SWL2 SWL1	0			Stopwatch timer data 1/100 sec (BCD)
		F	2		SWLO	0			
					SWL0	0			
	SWH3	SWH2	SWH1	SWH0	SWH2	0			MDD
2E2H					SWH1	0			Stopwatch timer data 1/10 sec (BCD)
					SWH0	0			
					K03	- *2	High	Low	7
05011	K03	K02	K01	K00	K02	_ *2	High	Low	
2E3H					K01	_ *2	High	Low	Input port data (K00–K03)
		F	<		К00	_ *2	High	Low	
	KCP03	KCP02	KCP01	KCP00	KCP03	0	<u> </u>		
2E4H	KCP03	KUPUZ	NUPUI	KCPUU	KCP02	0	<u> </u>		Input comparison register (K00–K03)
26711		P	W		KCP01	0	<u> </u>	1	mpar comparison register (K00–K03)
			••		KCP00	0	Ţ.		
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	
2E5H					EIK02	0	Enable	Mask	Interrupt mask register (K00-K03)
		R/	W		EIK01	0	Enable	Mask	
					EIK00	0	Enable	Mask	
	HLMOD	BLD0	EISWIT1	EISWITO	HLMOD	0	Heavy load		Heavy load protection mode register
2E6H					BLD0	0	Low	Normal Mask	Sub-BLD evaluation data
	R/W	R	R/	W	EISWIT1 EISWIT0	0 0	Enable Enable	Mask Mask	Interrupt mask register (stopwatch 1 Hz)
					SCTRG*3	-	Trigger	IVId5K	Interrupt mask register (stopwatch 10 Hz) Serial interface clock trigger
	SCTRG	EIK10	KCP10	K10	EIK10	0	Enable	– Mask	Interrupt mask register (K10)
2E7H				_	KCP10	0			Input comparison register (K10)
	W R/W R		R	K10	- *2	High	Low	Input port data (K10)	
	00000	ET! 0	ETIO	ETIOO	CSDC	0	Static	Dynamic	LCD drive switch
05011	CSDC	ETI2	ETI8	ETI32	ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
2E8H	R/W			ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)	
		R/	٧٧		ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)
	0	TI2	TI8	TI32	0 *3	- *2	-	-	Unused
2E9H	0	112	110	1132	TI2 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
20311	D				TI8 *4	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
L	R				TI32 *4	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	IK1	IK0	SWIT1	SWIT0	IK1 *4	0	Yes	No	Interrupt factor flag (K10)
2EAH					IK0 *4	0	Yes	No	Interrupt factor flag (K00–K03)
		F	2		SWIT1 *4	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
		-			SWIT0 *4	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)
	R03	R02	R01	R00	R03	0	High	Low	Output port (R03)
2EBH					R02	0	High	Low	Output port (R02)
		R/	W		R01	0	High	Low	Output port (R01)
			D11		R00 R13	0	High High/On	Low Low/Off	Output port (R00) Output port (R13)/BZ output control
	R13	R12	R11	R10	R13	0	High/On		Output port (R13)/BZ output control Output port (R12)/FOUT output control
2ECH	-		SIOF		R12	0	High	Low	Output port (R12)/FOUT output control Output port (R11, LAMP)
22011			R/W		SIOF	0	Run	Stop	Output port (SIOF)
	R/	vv	R	R/W	R10	0	High/On		Output port (R10)/BZ output control
					P03	_ *2	High	Low	
	P03	P02	P01	P00	P02	_ *2	High	Low	I/O port data (P00–P03)
2EDH		-		•	P01	- *2	High	Low	Output latch reset at time of SR
	R/W		W		P00	- *2	i s	Low	
*1 Initial	value at	the time	of initial	reset		*3 Cons	tantly "0'	when be	eing read *5 Undefined
							(0) !		

Table 4.2.1(a) I/O memory map (2E0H-2EDH)

*2 Not set in the circuit

^{*3} Constantly "0" when being read *4 Reset (0) immediately after being read

							,				
Address		-	ister	D 0	News	India and	4	6	Comment		
	D3	D2	D1	D0	Name TMRST*3	Init *1 Reset	1 Reset	0	Clock timer reset		
	TMRST	SWRUN	SWRST	IOC0	SWRUN	0	Run	Stop	Stopwatch timer Run/Stop		
2EEH		5.44		5.00	SWRST*3	Reset	Reset	-	Stopwatch timer reset		
	W	R/W	W	R/W	IOC0	0	Output	Input	I/O control register 0 (P00–P03)		
	WDRST	WD2	WD1	WD0	WDRST*3	Reset	Reset	-	Watchdog timer reset		
2EFH	WDRST	VVD2	WDT	WD0	WD2	0			Timer data (watchdog timer) 1/4 Hz		
	w		R		WD1	0			Timer data (watchdog timer) 1/2 Hz		
					WD0	0 × *5			Timer data (watchdog timer) 1 Hz		
	SD3	SD2	SD1	SD0	SD3 SD2	× *5 × *5					
2F0H					SD2 SD1	× *5			Serial interface data register (low-order 4 bits)		
		R	W		SD0	× *5					
	SD7	SD6	SD5	SD4	SD7	×*5			7		
2F1H	307	300	303	304	SD6	$\times *^5$			Serial interface data register (high-order 4 bits)		
21		R	W		SD5	× *5			bertal interface data register (ingli-order + oris)		
		-			SD4	× *5					
	SCS1	SCS0	SE2	EISIO	SCS1 SCS0	1 1			SIF clock mode [SCS1, 0] 0 1 2 3 selection register Clock CLK CLK/2 CLK/4 slave		
2F2H					SE2	0	ſ	7	SIF clock edge selection register		
		R	W		EISIO	0	Enable	Mask	Interrupt mask register (serial interface)		
		_		1010	0 *3	_ *2	_	-	Unused		
2F3H	0	0	IK2	ISIO	0 *3	- *2	-	-	Unused		
21 311	R				IK2 *4	0	Yes	No	Interrupt factor flag (K20–K23)		
				ISIO *4	0	Yes	No	Interrupt factor flag (serial interface)			
	К23	K22	K21	K20	K23	- *2	High	Low			
2F4H				K22 K21	_ *2 _ *2	High	Low	Input port data (K20–K23)			
		F	R		K21 K20	_ *2 _ *2	High High	Low Low			
					EIK23	0	Enable	Mask	7		
05511	EIK23	EIK23 EIK22		EIK21 EIK20		0	Enable	Mask			
2F5H		R/W			EIK21	0	Enable	Mask	Interrupt mask register (K20–K23)		
	R/W				EIK20	0	Enable	Mask			
	BZFQ2	BZFQ1	BZFQ0	0 ENVRST	BZFQ2	0			Buzzer $[BZFQ2-0] 0 1 2 3$ Frequency fosci/8 fosci/10 fosci/12 fosci/14		
2F6H		_			BZFQ1	0			[BZFQ2-0] 4 5 6 7		
		R/W			BZFQ0 ENVRST*3	0 Reset	Reset	_	☐ selection Frequency fosc1/16 fosc1/20 fosc1/24 fosc1/2 Envelope reset		
					ENVON	0	On	Off	Envelope On/Off		
05711	ENVON	ENVRT	AMPDT	AMPON	ENVRT	0	1.0 sec	0.5 sec	Envelope cycle selection register		
2F7H				DAA	AMPDT	1	+ > -	+ < -	Analog comparator data		
	K/	W	R	R/W	AMPON	0	On	Off	Analog comparator On/Off		
	EV03	EV02	EV01	EV00	EV03	0			[7]		
2F8H					EV02	0			Event counter 0 (low-order 4 bits)		
		I	R		EV01	0					
					EV00 EV07	0			-		
0.5.0	EV07	EV06	EV05	EV04	EV07	0					
2F9H					EV05	0			Event counter 0 (high-order 4 bits)		
	R			EV04	0						
	EV13	EV12	EV11	EV10	EV13	0			7		
2FAH	EVI3 EVIZ EVII EVIO			EV12	0			Event counter 1 (low-order 4 bits)			
		I	R		EV11	0					
					EV10 EV17	0					
	EV17	EV16	EV15	EV14	EV17 EV16	0					
2FBH			1	EV10	0		Event counter 1 (high-order 4 bits)				
		1	R		EV14	0					
	1 /	a	of initial				tantly "0'	I wikan h	eing read *5 Undefined		

Table 4.2.1(b) I/O memory map (2EEH–2FBH)

*1 Initial value at the time of initial reset

*3 Constantly "0" when being read

*5 Undefined

*2 Not set in the circuit

*4 Reset (0) immediately after being read
EPSON

	Reg	ister						Commont
D3	D2	D1	D0	Name	Init *1	1	0	Comment
		EV/1DCT	EVADOT	EVSEL	0	Separate	Phase	Event counter mode
EVSEL	ENRUN	EVIRSI	EVURSI	EVRUN	0	Run	Stop	Event counter Run/Stop
D	NA/		N	EV1RST*3	Reset	Reset	-	Event counter 1 reset
K/	vv	VV		EV0RST*3	Reset	Reset	-	Event counter 0 reset
D12	D12	D11	D10	P13	- *2	High	Low	7
P13	PIZ	PII	PIU	P12	_ *2	High	Low	I/O port data (P10–P13)
	D	^		P11	_ *2	High	Low	Output latch reset at time of SR
R/W				P10	- *2	High	Low	
PRSM				PRSM	0	38 kHz	32 kHz	OSC1 prescaler selection
	CLKCHG	USCC	0300 1001		0	OSC3	OSC1	CPU clock switch
DAW				OSCC	0	On	Off	OSC3 oscillation On/Off
R/W		vv	.v		0	Output	Input	I/O control register 1 (P10–P13)
BLS				BLS	0	On	Off	BLD On/Off
RI D1	BLC2	BLC1	BLC1 BLC0	BLD1	0	Low	Normal	BLD voltage evaluation data
				BLC2	$\times *^5$			\neg Evaluation voltage setting register [BLC2–0] 0 1 2 3 4 5 6 7
W		R/W		BLC1	$\times *^5$			$\begin{bmatrix} \underline{BLC2-0} & 0 & 1 & 2 & 3 & 4 & 5 & 0 & 7 \\ \underline{E0C6235/62A35} & 2.20 & 2.25 & 2.30 & 2.35 & 2.40 & 2.45 & 2.50 & 2.55 & (V) \end{bmatrix}$
R				BLC0	× *5			
	EVSEL R/ P13 PRSM BLS BLD1 W R	D3 D2 EVSEL ENRUN P13 P12 P13 P12 R PRSM CLKCHG RLS BLD1 BLC2 W R	EVSEL ENRUN EV1RST R/W V V P13 P12 P11 R/W R/W V PRSM CLKCHG OSCC R/W BLC1 BLC1 W R/W R/W	D3 D2 D1 D0 EVSEL ENRUN EV1RST EV0RST R/W W W P13 P12 P11 P10 R/W R/W V V PRSM CLKCHG OSCC IOC1 R/W R/W V V V PLS BLC2 BLC1 BLC0 W R/W R/W V	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 4.2.1(c) I/O memory map (2FCH–2FFH)

*1 Initial value at the time of initial reset

*3 Constantly "0" when being read

*5 Undefined

*2 Not set in the circuit

*4 Reset (0) immediately after being read

CHAPTER 5 INITIAL RESET

5.1 Internal Status at Initial Reset

Initial reset initializes the CPU as shown in the table below.

Table 5.1.1	CPU core							
Initial values	Name	Symbol	Bit length	Status				
	Program counter step	PCS	8	00H				
	Program counter page	PCP	4	1H				
	New page pointer	NPP	4	1H				
	Stack pointer	SP	8	Undefined				
	Index register X	X	10	Undefined				
	Index register Y	Y	10	Undefined				
	Register pointer	RP	4	Undefined				
	General register A	Α	4	Undefined				
	General register B	В	4	Undefined				
	Interrupt flag	Ι	1	0				
	Decimal flag	D	1	Undefined				
	Zero flag	Z	1	Undefined				
	Carry flag	С	1	Undefined				

Peripheral circuits	6	
Name	Bit length	Status
RAM	4	Undefined
Segment data	4	Undefined
Other peripheral circuits	4	*1

*1 See Tables 4.2.1(a)–(c).

5.2 Example of Initialize Program

ZTI	EQU	2E9H	
ZSWC	EQU	2EEH	
ZWDT	EQU	2efh	
XTMRST	EQU	1000B	
XWDRST	EQU	1000B	
STACK	EQU	000H	
YRAM00	EQU	000H	
YRAM08	EQU	080H	
YRAM10	EQU	100H	
ZLCD24	EQU	240H	
;			
	ORG	100H	
;			
	JP	INIT	;JUMP INIT. ROUTINE
;			
;			
	ORG	110H	
;			
INIT	RST	F,0000B	;CLEAR IDZC FLAG
;			
	LD	A, STACK SHR 4	
	LD	SPH,A	
	LD	A, STACK SHR 8	
	LD	SPL,A	;SET STACK POINTER 000H
;			
	LD	X,LOW YRAM00	;SELECT RAM ADDR. (000H) BY X REG.
;			
RAMCL1	LD	XP,A	;
;			
RAMCL2	LBPX	MX,00H	
	CP	XL,0	
	JP	NZ,RAMCL2	
;			
	CP	A,2	;ALL CLEAR RAM & LCD SEGMENT DATA
	JP	C,CONTCL	
	CP	ХН,7	;ADDR. 000H TO 26FH
	JP	NC,QUITCL	
;			
CONTCL	CP	ХН,0	
		NZ, RAMCL2	
	ADD	A,1	
	JP	RAMCL1	;
;			

QUITCL	LD	X,LOW ZSWC	;SELECT TMRST ADDR. BY X REG.
	OR	MX,XTMRST	;RESET TM
;			
	LD	X,LOW ZWDT	;SELECT WDRST ADDR. BY X REG.
	LD	MX,XWDRST	;RESET W.D.T.
;			
	LD	X,LOW ZTI	;SELECT TI ADDR. BY X REG.
	LD	A,MX	;RESET INT. FLAG (TI)
;			
	LD	A,0	
	RST	F,0000B	;CLEAR IDZC FLAG

This program is the basic initialize program for the EOC6235 Series. When this program is executed the internal circuits shown in Table 5.2.1 are initialized. When using the program example, use it after adding the setting items necessary for the application.

Internal	Setting value	
General register	А	0H
General register	В	0H
Stack pointer	SP	000H
Interrupt flag	IF	0
Decimal flag	DF	0
Zero flag	ZF	0
Carry flag	CF	0
RAM data	(000H–06FH)	
	(080H–0EFH)	0H
	(100H–1FFH)	
Segment data	(240H–26FH)	0H

Table 5.2.1 Results of initializing internal circuits

CHAPTER 6 PERIPHERAL CIRCUITS

Peripheral circuits (timer, I/O, and so on) of the E0C6235 Series are memory mapped, and interfaced with the CPU. Thus, all the peripheral circuits can be controlled by using the memory operation command to access the I/O memory in the memory map.

6.1 Watchdog Timer

I/O memory map ofThe control register of the watchdog timer is shown in Tablewatchdog timer6.1.1.

Table 6.1.1	I/O memory map	(watchdog timer)
-------------	----------------	------------------

Address		Register			Comment					
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	WDRST	WD2	WD1	WD0	WDRST*3	Reset	Reset	-	Watchdog timer reset	
2EFH	WDRST	WDZ	WDT	WDU	WD2	0			Timer data (watchdog timer) 1/4 Hz	
	w	P		WD1	0			Timer data (watchdog timer) 1/2 Hz		
	vv	R			WD0	0			Timer data (watchdog timer) 1 Hz	
*1 Initial	*1 Initial value at the time of initial reset					3 Const	tantly "0"	when be	eing read *5 Undefined	

*1 Initial value at the time of if *2 Not set in the circuit *3 Constantly "0" when being read *4 Reset (0) immediately after being read

WDRST: This is the bit for resetting the watchdog timer.

Watchdog timer reset (2EFH·D3)

When "1" is written:Watchdog timer is resetWhen "0" is written:No operationRead-out:Always "0"

When "1" is written to WDRST, the watchdog timer is reset, and the operation restarts immediately after this. When "0" is written to WDRST, no operation results.

This bit is dedicated for writing, and is always "0" for readout.

Program example • Watchdog timer reset

ZWDT	EQU	2EFH
XWDRST	EQU	1000B
;		
	LD	A,ZWDT SHR 8
	LD	XP,A
	LD	X,LOW ZWDT ;SELECT W.D.T. ADDR. BY X REG.
	LD	MX,XWDRST ;RESET W.D.T.

The watchdog timer is reset when "1" is written to WDRST.

Programming note

When the watchdog timer is being used, the software must reset it within 3-second cycles, and timer data (WD0–WD2) cannot be used for timer applications.

6.2 Oscillation Circuit

I/O memory map of Table 6.2.1. oscillation circuit

The control registers of the oscillation circuit are shown in

Table 6.2.1 I/O memory map (oscillation circuit)

Adroca		Reg	ister						Commont			
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment			
	PRSM	СІКСНС	OSCC	10C1	PRSM	0	38 kHz	32 kHz	OSC1 prescaler selection			
2FEH	TROM	OLIVOITO	0000	1001	CLKCHG		OSC3	OSC1	CPU clock switch			
		R	W		OSCC	0 0	On	Off	OSC3 oscillation On/Off			
I Initial	value at	the time	of initial	reset	IOC1		Output	Input when be	I/O control register 1 (P10–P13) ing read *5 Undefined			
*2 Not se			or minuar	reset			-		Ifter being read			
OSC3	oscil	lation		ol (E	0C62	A35 (only)	on ON itten:	/OFF for the OSC3 oscillation circu The OSC3 oscillation ON			
					Whe	n "0"	is wr	itten:	The OSC3 oscillation OFF			
					Read	l-out:			Valid			
				Fo	or EOO	623	5 and	l 62L3	sumption. 35, keep OSCC set to "0". s set to "0".			
The (CPU's	clock	switc	h (E	ne CP 0C62		-	ion cl	ock is selected with this register.			
		(2F	EH•D2	<u>(</u>)	Whe	n "1"	is wr	itten:	OSC3 clock is selected.			
								ritten:				
								itten:				
					Read	l-out			Valid			
				Cl ca	When the EOC62A35's CPU clock is to be OSC3, set CLKCHG to "1"; for OSC1, set CLKCHG to "0". This register cannot be controlled for EOC6235 and 62L35, so that OSC1 is selected no matter what the set value. At initial reset, CLKCHG is set to "0".							

PRSM: Selects the prescaler for the crystal oscillator of the OSC1 OSC1 prescaler selection oscillation circuit.

(2FEH·D3)

When "1" is written:38.4 kHzWhen "0" is written:32.768 kHzRead-out:Valid

Operation of the clock timer and stopwatch timer can be made accurate by selecting this register. When the set value for this register does not suit the crystal oscillator used, the operation cycles of the previously mentioned peripheral circuitry is multiplied as shown in Table 6.2.2.

Table 6.2.2 Operation cycle when the setting is wrong

32.768 kHz, PRSM = "1"	T'≈1.172T
38.4 kHz, PRSM = "0"	T'≈0.853T

At initial reset, PRSM is set to "0".

ZOSC	EQU	2FEH	
XOSCC	EQU	0010B	
XCLKCG	EQU	0100B	
XLPCNT	EQU	ОН	
XDECRG	EQU	OFH	
;			
	LD	A,ZOSC SHR 8	
	LD	XP,A	
	LD	X,LOW ZOSC	;SELECT OSC ADDR. BY X REG.
	OR	MX,XOSCC	;OSCC ON
;			
	LD	A,XLPCNT	
WAITLP	ADD	A, XDECRG	
	JP	NZ,WAITLP	;WAIT 6 msec
	OR	MX,XCLKCG	CLK CHANGE OSC1 TO OSC3

Program examples • Switching clock from OSC1 to OSC3

It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. In the program example, it takes about 6 msec (fosc1 = 32.768 kHz) for OSC1 to switch to OSC3 after the OSC3 oscillation goes ON.

• Switching clock from OSC3 to OSC1

ZOSC	EQU	2FEH	
XOSCC	EQU	0010B	
XCLKCG	EQU	0100B	
;			
	LD	A,ZOSC SHR 8	
	LD	XP,A	
	LD	X,LOW ZOSC	;SELECT OSC ADDR. BY X REG.
	AND	MX,XCLKCG XOR 0FH	;CLK CHANGE OSC3 TO OSC1
	AND	MX,XOSCC XOR 0FH	;OSCC OFF

In the program example, the CPU operation clock is switched from OSC3 to OSC1, and in the next step OSC3 oscillation goes OFF.

ZOSC	EQU	2FEH	
XPRSM	EQU	1000B	
;			
	LD	A,ZOSC SHR 8	
	LD	XP,A	
	LD	X,LOW ZOSC	;SELECT PRSM ADDR. BY X REG.
	OR	MX,XPRSM	;SET OSC1 38.4 kHz MODE

• OSC1 crystal selection (38.4 kHz)

In the program example, "1" is written to PRSM, to select the 38.4 kHz prescaler.

Programming notes	(1) It takes at least 5 msec from the time the OSC3 oscilla-
• •	tion circuit goes ON until the oscillation stabilizes. Con-
	sequently, when switching the CPU operation clock from
	OSC1 to OSC3, do this after a minimum of 5 msec have
	elapsed since the OSC3 oscillation went ON.
	Further, the oscillation stabilization time varies depend-
	ing on the external oscillator characteristics and condi-
	tions of use, so allow ample margin when setting the wait
	time.
	(2) When switching the clock form OSC3 to OSC1, use a

- (2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
- (3) To operate the clock timer and stopwatch timer accurately, select the prescaler of the OSC1 to match the crystal oscillator used.

6.3 Input Ports (K00-K03, K10, K20-K23)

I/O memory map ofThe control registers of the input ports are shown in Tableinput ports6.3.1.

Address		Reg	ister						Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	K03	K02	K01	коо	K03	- *2	High	Low	7
2E3H	KU3	KU2	KUI	KUU	K02	_ *2	High	Low	Input port data (K00–K03)
2001		r	c		K01	_ *2	High	Low	input port data (K00–K03)
	R				K00	- *2	High	Low	
	KCP03	KCP02	KCP01	KCP00	KCP03	0		1	7
2E4H	KCI 05	KOI UZ	KOLOT	KCI 00	KCP02	0	Ţ	<u> </u>	Input comparison register (K00–K03)
22		R/W			KCP01	0	7	Ī	input comparison register (Roo-Ros)
		10/			KCP00	0	L.		
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	
2E5H	LIKUS	LIKUZ	LIKUT	LIKOU	EIK02	0	Enable	Mask	Interrupt mask register (K00–K03)
22011	R/W		EIK01	0	Enable	Mask	interrupt mask register (Koo–Kos)		
		10			EIK00	0	Enable	Mask	
	SCTRG	EIK10	КСР10	К10	SCTRG*3		Trigger	-	Serial interface clock trigger
2E7H			EIK10	0	Enable	Mask	Interrupt mask register (K10)		
	w	R/	w	R	KCP10	0		⊥	Input comparison register (K10)
		R/W R			K10	- *2	High	Low	Input port data (K10)
	IK1	IK0	SWIT1	SWITO	IK1 *4	0	Yes	No	Interrupt factor flag (K10)
2EAH		-			IK0 *4	0	Yes	No	Interrupt factor flag (K00–K03)
		F	2		SWIT1 *4	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
			r		SWIT0 *4	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)
	0	0	IK2	ISIO	0 *3	_ *2	-	-	Unused
2F3H					0 *3	- *2	-	-	Unused
		F	२		IK2 *4	0	Yes	No	Interrupt factor flag (K20–K23)
					ISIO *4	0	Yes	No	Interrupt factor flag (serial interface)
	K23	K22	K21	K20	K23	- *2	High	Low	
2F4H					K22	- *2	High	Low	Input port data (K20–K23)
	R			K21	- *2	High	Low		
					K20	- *2	High	Low	
	EIK23	EIK22	EIK21	EIK20	EIK23	0	Enable	Mask	
2F5H					EIK22	0	Enable	Mask Mask	Interrupt mask register (K20-K23)
		R/	W		EIK21	0	Enable		
L					EIK20	0	Enable	Mask	

Table 6.3.1 I/O memory map (input ports)

 $\ast 1~$ Initial value at the time of initial reset

*3 Constantly "0" when being read

*5 Undefined

*2 Not set in the circuit

*4 Reset (0) immediately after being read

K00–K03, K10, K20–K23: Input data of the input port pins can be read out with these Input port data registers.

(2E3H, 2E7H·D0, 2F4H)

(2E3H, 2E7H, D0, 2F4H)					
(,,,,, _, _, , , , , ,	When "1" is read out:	High level			
	When "0" is read out:	Low level			
	Writing:	Invalid			
	the input ports (K00–K03 and "0" when the voltage	the pin voltage of the nine bits of 3, K10, K20–K23) goes high (VDD), goes low (VSS). for read-out, so writing cannot be			
KCP00–KCP03, KCP10:	Interrupt conditions for p	oins K00–K03 and K10 can be set			
Input comparison registers					
(2E4H, 2E7H·D1)	When "1" is written:Falling edgeWhen "0" is written:Rising edgeRead-out:Valid				
	Of the nine bits of the input ports, the interrupt conditions can be set for the rising or falling edge of input for each of				

the five bits (K00–K03 and K10), through the input comparison registers (KCP00–KCP03 and KCP10).

At initial reset, these registers are set to "0".

EIK00–EIK03, EIK10, Masking the interrupt of the input port pins can be selected EIK20–EIK23: with these registers.

(2E5H, 2E7H·D2, 2F5H)	When "1" is written:	Enable
	When "0" is written:	Mask
	Read-out:	Valid

With these registers, masking of the input port bits can be selected for each of the nine bits. At initial reset, these registers are all set to "0". IKO, IK1, IK2: These flags indicate the occurrence of input interrupt.

interrupt factor hags		
(2EAH·D2 and D3,	When "1" is read out:	Interrupt has occurred
2F3H·D1)	When "0" is read out:	Interrupt has not occurred
	Writing:	Invalid

The interrupt factor flags IK0, IK1 and IK2 are associated with K00–K03, K10 and K20–K23, respectively. From the status of these flags, the software can decide whether an input interrupt has occurred.

These flags are reset when the software reads them. Readout can be done only in the DI status (interrupt flag = "0"). At initial reset, these flags are set to "0".

Program examples • Reading out from input ports (K00-K03, K20-K23)

ZK0	EQU	2E3H	
ZK2	EQU	2F4H	
;			
	LD	A,ZKO SHR 8	
	LD	XP,A	
	LD	X,LOW ZKO	;SELECT KO ADDR. BY X REG.
	LD	A,MX	;READ KO INPUT PORTS TO A REG.
;			
	LD	X,LOW ZK2	;SELECT K2 ADDR. BY X REG.
	LD	B,MX	;READ K2 INPUT PORTS TO B REG.

In this program example, data from the input ports (K00–K03, K20–K23) is read to the general registers (A, B). Figure 6.3.1 shows the correspondence of the input ports and general registers.

Fig. 6.3.1	A register					B register			
Correspondence between	D3	D2	D1	D0]	D3	D2	D1	D0
input ports and general	K03	K02	K01	K00		K23	K22	K21	K20
registers									

ZKCP0	EQU	2E4H			
ZK10	EQU	2E7H			
ZEIK2	EQU	2F5H			
XKCP0D	EQU	1100B	;INT. F	POSGOING EDG	Е КОО,КОІ
			;INT. N	NEGGOING EDG	Е КО2,КОЗ
;					
XEIK0D	EQU	1111B	;INT. E	ENABLE K00-K03	
XALK1D	EQU	0110B	;INT. N	NEGGOING EDG	E K10
			;INT. E	ENABLE K10	
;					
XEIK2D	EQU	0011B	;INT. E	ENABLE K20,K21	
;					
;					
	LD	A,ZKCP0 SHR	8		
	LD	XP,A			
	LD	X,LOW ZKCP0	;SELECT	KCP0 ADDR. BY	X REG.
	LDPX	MX,XKCP0D	;SET KCF	200-KCP03 DATA	
	LD	MX,XEIKOD	;SET EIK	COO-EIKO3 DATA	
;					
	LD	X,LOW ZK10	;SELECT	EIK1 & KCP1 A	DDR. BY X REG.
	LD	MX,XALK1D	;SET EIK	K10 & KCP10 DA	ТА
;					
	LD	X,LOW ZEIK2	;SELECT	EIK2 ADDR. BY	X REG.
	LD	MX,XEIK2D	;SET EIK	C20-EIK23 DATA	

• Setting of input comparison register and interrupt mask register

This program writes the data of the input comparison registers (KCP00–KCP03, KCP10) and interrupt mask registers (EIK00–EIK03, EIK10, EIK20–EIK23) to set the interrupt conditions as shown in Table 6.3.2.

Table 6.3.2	Terminal	Interrupt status	Edge
Example of setting interrupt	K00	Generated	Rising
conditions	K01	Generated	Rising
	K02	Generated	Falling
	K03	Generated	Falling
	K10	Generated	Falling
	K20	Generated	Rising
	K21	Generated	Rising
	K22	Not generated	
	K23	Not generated	

Programming notes(1) When input ports are changed from high to low by pull-
down resistance, the fall of the waveform is delayed on
account of the time constant of the pull-down resistance
and input gate capacitance. Hence, when fetching input
ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during
key matrix configuration. Aim for a wait time of about 1
msec.

(2) When "noise rejector circuit enable" is selected with the mask option, a maximum delay of 1 msec occurs from time the interrupt conditions are established until the interrupt factor flag (IK) is set to "1" (until the interrupt is actually generated).

Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.

For example, when performing a key scan with the key matrix, the key scan changes the input status to set the interrupt factor flag, so it has to be read out to reset it. However, if the interrupt factor flag is read out immediately after key scanning, the delay will cause the flag to be set after read-out, so that it will not be reset.

(3) Input interrupt programing related precautions

Therefore, when using the input interrupt, the active status of the input terminal implies

input terminal = low status, when the falling edge interrupt is effected and

input terminal = high status, when the rising edge interrupt is effected.

When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of ① shown in Figure 6.3.2. However, when clearing the content of the mask register with the input terminal kept in the low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.

Consequently, when the input terminal is in the active status (low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (high status).

When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of ② shown in Figure 6.3.2. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the low status. In addition, when the mask register = "1" and the content of the input comparison register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input comparison register in the mask register = "0" status.

- (4) Read-out of the interrupt factor flag (IK) can be done only in the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag = "1") will cause malfunction.
- (5) Writing of the interrupt mask register (EIK) can be done only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.

6.4 Output Ports (R00-R03, R10-R13)

I/O memory map of The control registers of the output ports are shown in Table 6.4.1. output ports

A		Reg	ister						0t
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	R03	R02	R01	R00	R03	0	High	Low	Output port (R03)
2EBH	R03	RUZ	RUI	R00	R02	0	High	Low	Output port (R02)
260П		D	W		R01	0	High	Low	Output port (R01)
		K/	IV		R00	0	High	Low	Output port (R00)
			R11		R13	0	High/On	Low/Off	Output port (R13)/BZ output control
	R13	R12	SIOF	R10	R12	0	High/On	Low/Off	Output port (R12)/FOUT output control
2ECH					R11	0	High	Low	Output port (R11, LAMP)
	R/	W	R/W	R/W	SIOF	0	Run	Stop	Output port (SIOF)
			R		R10	0	High/On	Low/Off	Output port (R10)/BZ output control
*1 Initial value at the time of initial reset			,	*3 Cons	tantly "0"	when be	eing read *5 Undefined		

*2 Not set in the circuit

*4 Reset (0) immediately after being read

BZ, \overline{BZ} (R10, R13): BZ and \overline{BZ} are the buzzer signal output pins for driving the piezoelectric buzzer. The buzzer signal is generated by demultiplication of fosc1.

> Also, a digital envelop can be added to the buzzer signal. See "6.14 Sound Generator" for details.

- Notes -When the BZ and \overline{BZ} output signals are turned ON or OFF, a hazard can result.
 - When DC output is set for the output port R10, the output port -R13 cannot be set for \overline{BZ} output.

Figure 6.4.1 shows the output waveform for BZ and $\overline{\text{BZ}}$.

- SIOF (R11): When the output port R11 is set for SIOF output, it outputs the signal indicating the running status (RUN/STOP) of the serial interface. See "6.13 Serial Interface" for details.
- FOUT (R12): When the output port R12 is set for FOUT output, it outputs the clock of fosc1 or the demultiplied fosc1. The clock frequency is selectable with the mask options, from the frequencies listed in Table 6.4.2.

Table 6.4.2 FOUT clock frequency

O atting a second second	Clock frequency (Hz)					
Setting value	fosc1 = 32,768	fosc1 = 38,400				
fosc1/1	32,768	38,400				
fosc1/2	16,384	19,200				
fosc1/4	8,192	9,600				
fosc1/8	4,096	4,800				
fosc1/16	2,048	2,400				
fosc1/32	1,024	1,200				
fosc1/64	512	600				
fosc1/128	256	300				

Note A hazard may occur when the FOUT signal is turned ON or OFF.

R00-R03, R10-R13 (when	Sets the output data for the output ports.				
DC output):	When "1" is written:	High output			
Output port data	When "0" is written:	Low output			
(2EBH, 2ECH)	Read-out:	Valid			

The output port pins output the data written in the corresponding registers (R00–R03, R10–R13) without changing it. When "1" is written in the register, the output port pin goes high (VDD), and when "0" is written, the output port pin goes low (Vss).

At initial reset, all registers are set to "0".

R10, R13 (when BZ and	These bits control the ou	hese bits control the output of the buzzer signals (BZ, $\overline{\mathrm{BZ}}$).				
BZ output is selected): Special output port data (2ECH·D0 and D3)	When "1" is written: When "0" is written: Read-out:	Buzzer signal is output Low level (DC) is output Valid				
	$\overline{\text{BZ}}$ is output from pin R13. With the mask option, selection can be made perform this output control by R13, or to perform output control simultaneously with BZ by R10.					
	• When R13 controls \overline{BZ} output BZ output and \overline{BZ} output can be controlled independ- ently. BZ output is controlled by writing data to R10, and \overline{BZ} output is controlled by writing data to R13.					
	 When R10 controls BZ output BZ output and BZ output can be controlled simultane- ously by writing data to R10 only. For this case, R13 can be used as a one-bit general register having both read and write functions, and data of this register exerts no affect on BZ output (output from the R13 pin). At initial reset, registers R10 and R13 are set to "0". 					
R11 (when SIOF output is selected): Special output port data (2ECH·D1)	When "1" is read out: When "0" is read out: Writing: See "6.13 Serial Interfac	atus of the serial interface. RUN STOP Invalid e" for details of SIOF. This bit is at, so data cannot be written to it.				
R12 (when FOUT is selected): Special output port data (2ECH·D2)	Controls the FOUT (clock When "1" is written: When "0" is written: Read-out: FOUT output can be com At initial reset, this regist	Clock output Low level (DC) output Valid trolled by writing data to R12.				

Program examples • Writing to output ports (R00–R03, R10–R13)

ZR0	EQU	2EBH	
;			
	LD	A,ZRO SHR	8
	LD	XP,A	
	LD	X,LOW ZRO	;SELECT R0 ADDR. BY X REG.
	LDPX	MX,A	;WRITE A REG. TO RO OUTPUT PORTS
	LD	MX,B	;WRITE B REG. TO R1 OUTPUT PORTS

In this program example, the contents of the general registers A and B are written to the output ports R00–R03 and R10–R13.

Figure 6.4.2 shows the correspondence of the output ports and the general registers.

• R12 clock output (when R12 is made FOUT with the mask option)

ZR1	EQU	2ECH				
XFOUT	EQU	0100B				
;						
	LD	A,ZR1 SHR	8			
	LD	XP,A				
	LD	X,LOW ZR1	;SELECT	FOUT(R12)	ADDR.	BY X REG.
	OR	MX,XFOUT	;OUTPUT	CLOCK		

"1" is written to the output register R12, and the clock is output from the R12 pin.

Figure 6.4.3 shows the timing chart of the R12 clock output.

Programming note

When BZ, $\overline{\text{BZ}}$ and FOUT are selected with the mask option, a hazard may be observed in the output waveform when the data of the output register changes.

6.5 I/O Ports (P00-P03, P10-P13)

I/O memory map ofThe control registers of the I/O ports are shown in TableI/O ports6.5.1.

Table 6.5.1 I/O memory map (I/O ports)

Address		Reg	ister						_	Comment
Address	D3	D2	D1	D0	Name	Init *1	1	0		Comment
	P03	P02	P01	P00	P03	_ *2	High	Low		
2EDH	F 03	FUZ	FUI	FUU	P02	_ *2	High	Low		I/O port data (P00–P03)
ZEDIT		R/	14/		P01	- *2	High	Low		Output latch reset at time of SR
		K/	vv		P00	_ *2	High	Low		
	TMRST	SWRUN	SWDST	IOC0	TMRST*3	Reset	Reset	-	C	Clock timer reset
2EEH	TIVIKST	SWRUN	300631	1000	SWRUN	0	Run	Stop	s	topwatch timer Run/Stop
ZLLII	w	R/W	w	R/W	SWRST*3	Reset	Reset	-	s	topwatch timer reset
	vv	N/ W	vv	N/W	IOC0	0	Output	Input	I/	O control register 0 (P00–P03)
	P13	P12	P11	P10	P13	- *2	High	Low		
2FDH	P 13	PIZ	PII	P 10	P12	_ *2	High	Low		I/O port data (P10–P13)
21011		R/	\ \/		P11	_ *2	High	Low		Output latch reset at time of SR
		N/	vv		P10	- *2	High	Low	_	
	PRSM	CLKCHG	OSCC	10C1	PRSM	0	38 kHz	32 kHz	C	SC1 prescaler selection
2FEH		CERCING	0300	1001	CLKCHG	0	OSC3	OSC1	C	PU clock switch
		R/	\ \/		OSCC	0	On	Off	C	OSC3 oscillation On/Off
		K/	vv		IOC1	0	Output	Input	I/	O control register 1 (P10–P13)

*1 Initial value at the time of initial reset

*3 Constantly "0" when being read

*5 Undefined

*2 Not set in the circuit

*4 Reset (0) immediately after being read

E0C6235 TECHNICAL SOFTWARE

P00–P03, P10–P13: I/O port data can be read and output data can be set I/O port data through these ports.

(2EDH, 2FDH) • When writing data

When "1" is written:High levelWhen "0" is written:Low level

When an I/O port is set to the output mode, the written data is output unchanged from the I/O port pin. When "1" is written as the port data, the port pin goes high (VDD), and when "0" is written, the level goes low (VSS). Port data can be written also in the input mode.

• When reading data out

When "1" is read out: High level When "0" is read out: Low level

The pin voltage level of the I/O port is read out. When the I/O port is in the input mode the voltage level being input to the port pin can be read out; in the output mode the output voltage level can be read. When the pin voltage is high (VDD) the port data that can be read is "1", and when the pin voltage is low (VSS) the data is "0". Further, the built-in pull-down resistance goes ON during read-out, so that the I/O port pin is pulled down.

- Notes When the I/O port is set to the output mode and a low-impedance load is connected to the port pin, the data written to the register may differ from the data read out.
 - When the I/O port is set to the input mode and a low-level voltage (VSS) is input, erroneous input results if the time constant of the capacitive load of the input line and the built-in pull-down resistance load is greater than the read-out time. When the input data is being read out, the time that the input line is pulled down is equivalent to 1.5 cycles of the CPU system clock. However, the electric potential of the pins must be settled within 0.5 cycles. If this condition cannot be fulfilled, some measure must be devised such as arranging pull-down resistance externally, or performing multiple read-outs.

IOC0, IOC1: The input and output modes of the I/O ports can be set I/O control registers with these registers.

(2EEH·D0, 2FEH·D0)

When "1" is written:	Output mode
When "0" is written:	Input mode
Read-out:	Valid

The input and output modes of the I/O ports are set in units of four bits. IOC0 sets the mode for P00–P03, and IOC1 sets the mode for P10–P13.

Writing "1" to the I/O control register makes the corresponding I/O port enter the output mode, and writing "0" induces the input mode.

At initial reset, these two registers are set to "0", so the I/O ports are in the input mode.

ZP0	EQU	2edh	
ZP1	EQU	2FDH	
ZSWC	EQU	2EEH	
ZOSC	EQU	2FEH	
XIOC0	EQU	0001B	
XIOC1	EQU	0001B	
;			
	LD	A,ZPO SHR 8	
	LD	XP,A	
	LD	X,LOW ZSWC	;SELECT IOCO ADDR. BY X REG.
	AND	MX,XIOCO XOR OFH	;SET PO I/O PORTS INPUT MODE
;			
	LD	X,LOW ZOSC	;SELECT IOC1 ADDR. BY X REG.
	AND	MX,XIOC1 XOR OFH	;SET P1 I/O PORTS INPUT MODE
;			
	LD	X,LOW ZPO	;SELECT PO ADDR. BY X REG.
	LD	A,MX	;READ PO INPUT PORTS TO A REG.
;			
	LD	X,LOW ZP1	;SELECT P1 ADDR. BY X REG.
	LD	B,MX	;READ P1 INPUT PORTS TO B REG.

Program examples • Reading out the I/O ports (P00–P03, P10–P13)

In the example, data of the I/O ports (P00–P03, P10–P13) is read to the general registers (A, B).

Figure 6.5.1 shows the correspondence between the I/O ports (input) and the general registers.

Fig. 6.5.1 Correspondence between I/O ports (input) and general registers

	A reg	gister		
D3	D2	D1	D0	
P03	P02	P01	P00	

B register										
D3	D2	D1	D0							
P13	P12	P11	P10							

ZP0	EQU	2edh	
ZP1	EQU	2FDH	
ZSWC	EQU	2EEH	
ZOSC	EQU	2FEH	
XIOC0	EQU	0001B	
XIOC1	EQU	0001B	
;			
	LD	A,ZPO SHR 8	
	LD	XP,A	
	LD	X,LOW ZSWC	;SELECT IOCO ADDR. BY X REG.
	OR	MX,XIOC0	;SET PO I/O PORTS OUTPUT MODE
;			
	LD	X,LOW ZOSC	;SELECT IOC1 ADDR. BY X REG.
	OR	MX,XIOC1	;SET P1 I/O PORTS OUTPUT MODE
;			
	LD	X,LOW ZPO	;SELECT PO ADDR. BY X REG.
	LD	MX,A	;WRITE A REG. TO PO I/O PORTS
;			
	LD	X,LOW ZP1	;SELECT P1 ADDR. BY X REG.
	LD	MX,B	;WRITE B REG. TO P1 I/O PORTS

• Writing to I/O ports (P00–P03, P10–P13)

In this example, the contents of the general registers (A, B) are written to the I/O ports (P00–P03, P10–P13). Figure 6.5.2 shows the correspondence between the I/O ports (output) and the general registers.

Programming notes
(1) When the I/O port is changed from high level to low level by the built-in pull down resistance, the falling-edge has the delay determined by the pull down resistance and the input gate capacitance. When the input data is being read out, the time that the input line is pulled down is equivalent to 1.5 cycles of the CPU system clock. However, the electric potential of the pins must be settled within 0.5 cycles. If this condition cannot be fulfilled, some measure must be devised such as arranging pull-down resistance externally, or performing multiple readouts. Consequently, if data is read out while the CPU is running in the OSC3 oscillation circuit, data must be read out continuously for about 500 µsec.

(2) When the I/O port is set to the output mode and the data register has been read, the pin data instead of the register data can be read out. Because of this, if a low-impedance load is connected and read-out performed, the value of the register and the read-out result may differ.

6.6 LCD Driver (COM0-COM3, SEG0-SEG47)

I/O memory map ofThe control register of the LCD driver is shown in TableLCD driver6.6.1.

Table 6.6.1 I/O memory map (LCD driver)

	Address		Reg	ister						Comment
	Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
		CSDC	ETI2	ETI8	ETI32	CSDC	0	Static	Dynamic LCD drive switch	
	2E8H	CSDC	ETIZ	EIIO	EIISZ	ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
	2001		R/	\A/		ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
			K/	vv		ETI32 0 Enable Mask Interrupt mask register (clock t		Interrupt mask register (clock timer 32 Hz)		
*1 Initial value at the time of initial reset					:	*3 Const	tantly "0'	when be	sing read *5 Undefined	

*2 Not set in the circuit

*4 Reset (0) immediately after being read

CSDC: The LCD drive format can be selected with this switch.

LCD	drive	switch
	(2E8	3H·D3)

Static drive
Dynamic drive
Valid

At initial reset, dynamic drive (CSDC = "0") is selected.

	Address	Low																
	Deser		0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	Page	High 🔪																
		4					Dis	nlav	mem	ory (48 \	arde	v 4 hi	ite)				
Fig. 6.6.1	0 or 2	5		Display memory (48 words x 4 bits) 0 page = R/W														
Display memory map		6							2	page	e = V	/						

Display memory: The LCD segments are lit or turned off depending on this (040H–06FH or data.

240H–26FH)

When "1" is written:LitWhen "0" is written:Not litRead-out:Valid for page 0Undefined for page 2

By writing data into the display memory allocated to the LCD segment (on the panel), the segment can be lit or put out.

At initial reset, the contents of the display memory are undefined.

Segment allocation

As shown in Figure 6.6.1, segment data of the E0C6235 Series is decided depending on display data written to the display memory (write-only) at address 040H–06FH (page 0) or 240H–26FH (page 2).

- The mask option enables the display memory to be allocated entirely to either page 0 or page 2.
- ② The address and bits of the display memory can be made to correspond to the segment pins (SEG0–SEG47) in any form through the mask option. This makes design easy by increasing the degree of freedom with which the liquid crystal panel can be designed.

Figure 6.6.2 shows an example of the relationship between the LCD segments (on the panel) and the display memory (when page 0 is selected) for the case of 1/3 duty.

Address	Data										
Address	D3	D2	D1	D0							
06AH	d	с	b	а							
06BH	р	g	f	e							
06CH	d'	c'	b'	a'							
06DH	p'	g'	f'	e'							

Common 0 Common 1 Common 2 6A. D0 6B. D1 6B. D0 SEG10 (a) (f) (e) SEG11 6A, D1 6B, D2 6A, D3 (b) (d) (g) SEG12 6D, D1 6A, D2 6B, D3 (f') (c) (p)

Display memory assignment table

Pin assignment table

Example of LCD panel

Fig. 6.6.2 Segment allocation

Program example

• Seven-segment display

LCHR0	EQU	3FH	;CHR. DATA "0"
LCHR1	EQU	06H	;CHR. DATA "1"
LCHR2	EQU	5BH	;CHR. DATA "2"
LCHR3	EQU	4FH	;CHR. DATA "3"
LCHR4	EQU	66H	;CHR. DATA "4"
LCHR5	EQU	6DH	;CHR. DATA "5"
LCHR6	EQU	7DH	;CHR. DATA "6"
LCHR7	EQU	27H	;CHR. DATA "7"
LCHR8	EQU	7FH	;CHR. DATA "8"
LCHR9	EQU	6FH	;CHR. DATA "9"
SECT	EQU	ОН	
;			
	ORG	000H	
;			
	RETD	LCHR0	;LCD DISPLAY "0"
	RETD	LCHR1	;LCD DISPLAY "1"
	RETD	LCHR2	;LCD DISPLAY "2"
	RETD	LCHR3	;LCD DISPLAY "3"
	RETD	LCHR4	;LCD DISPLAY "4"
	RETD	LCHR5	;LCD DISPLAY "5"
	RETD	LCHR6	;LCD DISPLAY "6"
	RETD	LCHR7	;LCD DISPLAY "7"
	RETD	LCHR8	;LCD DISPLAY "8"
	RETD	LCHR9	;LCD DISPLAY "9"
;			
DISP7S	LD	B,SECT	;SET PROGRAM SECTION
	JPBA		;JUMP DISPLAY TABLE

By setting the address of the segment to be lit in the X register and any value from 0 to 9 in the A register, and making CALL (CALZ) DISP7S, seven-segment display will be executed according to the contents of the A register. In the program example, correspondence of the segment and memory map is as shown in Figure 6.6.3.

Programming notes (1) When page 0 is selected for the display memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.

(2) When page 2 is selected for the display memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).

6.7 Clock Timer

I/O memory map of The control registers of the clock timer are shown in Table 6.7.1. clock timer

Address		Reg	ister			Comment			
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	TM3	TM2	TM1	TM0	TM3	0			Timer data (clock timer 2 Hz)
2E0H	11013	TIVIZ	I IVI I	TIVIU	TM2	0			Timer data (clock timer 4 Hz)
22011		ſ	2		TM1	0			Timer data (clock timer 8 Hz)
			`		TM0	0			Timer data (clock timer 16 Hz)
	CSDC	ETI2	ETI8	ETI32	CSDC	0	Static	Dynamic	LCD drive switch
2501	2E8H R/W		EIIO	ETISZ	ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
22011			\ \/		ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
				ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)	
	0	TI2	TI8	TI32	0 *3	_ *2	-	-	Unused
2E9H	0	112	110	1132	TI2 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
20311		ſ	2		TI8 *4	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
		·	\ 		TI32 *4	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	TMDST	SWRUN	SWDST	IOC0	TMRST*3	Reset	Reset	-	Clock timer reset
2EEH	TIVINGT	SWKUN	30031	1000	SWRUN	0	Run	Stop	Stopwatch timer Run/Stop
	w	R/W	w	R/W	SWRST*3	Reset	Reset	-	Stopwatch timer reset
	VV R/VV VV R		17/17	IOC0	0	Output	Input	I/O control register 0 (P00–P03)	
*1 Initial value at the time of initial reset					;	∗3 Const	antly "0'	when be	ing read *5 Undefined

Table 6.7.1 I/O memory map (clock timer)

*2 Not set in the circuit

*4 Reset (0) immediately after being read

TMO-TM3: The 16 Hz-2 Hz timer data of the clock timer can be read Timer data (2E0H) out with this register. These four bits are read-out only, and writing operations are invalid.

At initial reset, the timer data is initialized to "OH".

TMRST:	This bit resets the clock	timer.						
Clock timer reset (2EEH·D3)	When "1" is written:	Clock timer reset						
(2007)	When "0" is written:	No operation						
	Read-out:	Always "0"						
	The clock timer is reset by writing "1" to TMRST. The clock timer starts immediately after this. No operation results							

timer starts immediately after this. No operation results when "0" is written to TMRST.

This bit is write-only, and so is always "0" at read-out.

ETI32, ETI8, ETI2: These registers are used to select whether to mask the clock Interrupt mask registers timer interrupt.

(2E8H·D0-D2)

When "1" is written:	Enabled
When "0" is written:	Masked
Read-out:	Valid

The interrupt mask registers (ETI32, ETI8, ETI2) are used to select whether to mask the interrupt to the separate frequencies (32 Hz, 8 Hz, 2 Hz). At initial reset, these registers are all set to "0".

TI32, TI8, TI2: These flags indicate the status of the clock timer interrupt.

Interrupt factor flags

(2E9H·D0–D2)

When "1" is read out:Interrupt has occurredWhen "0" is read out:Interrupt has not occurredWriting:Invalid

The interrupt factor flags (TI32, TI8, TI2) correspond to the clock timer interrupts of the respective frequencies (32 Hz, 8 Hz, 2 Hz). The software can judge from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to "1" at the falling edge of the signal.

These flags can be reset through being read out by the software. Also, the flags can be read out only in the DI status (interrupt flag = "0").

At initial reset, these flags are set to "0".

• Interrupt function

The clock timer can cause interrupts at the falling edge of 32 Hz, 8 Hz and 2 Hz signals. Software can set whether to mask any of these frequencies.

Figure 6.7.1 is the timing chart of the clock timer.

Address	Register	Frequency								(Clo	ck	tim	er ti	mir	ng c	cha	rt											
	D0	16 Hz																											
2E0H	D1	8 Hz							ſ																				
2001	D2	4 Hz																											
	D3	2 Hz																											
32 Hz ii	nterrupt	request	t 1	t t	t	t t	t	• •	t 1	t	t	t	t	t t	t	t	t	t	t	† 1	t t	t	t	t	t	t	t	t 1	1
8 Hz ii	nterrupt	request			t			ł			t			t				t			t				t			1	1
2 Hz ii	nterrupt	request												t														1	1

As shown in Figure 6.7.1, interrupt is generated at the falling edge of the frequencies (32 Hz, 8 Hz, 2 Hz). At this time, the corresponding interrupt factor flag (TI32, TI8, TI2) is set to "1". Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (ETI32, ETI8, ETI2). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to "1" at the falling edge of the corresponding signal.

Program examples • Initializing the clock timer and setting the interrupt mask register

```
ZETI
       EQU
             2E8H
ZSWC
       EQU
            2eeh
XETI2
       EQU 0100B
            1000B
XTMRST EQU
;
       LD
             A,ZETI SHR 8
       LD
             XP,A
             X,LOW ZETI
       LD
                        ;SELECT ETI ADDR. BY X REG.
       LDPX MX,XETI2
                         ; INT. ENABLE TM 2 Hz
;
       LD
             YP,A
             Y,LOW ZSWC
       LD
                         ;SELECT TMRST ADDR. BY Y REG.
       OR
             MY,XTMRST
                         ;RESET TM
;
       LD
             A,MX
                         ;RESET INT. FLAG (TI)
```

This program writes "1" to the interrupt mask register ETI2, to enable the 2 Hz interrupt. Also, the clock timer is initialized (reset) and the interrupt factor flag reset.

• Reading out clock timer

ZTM	EQU	2E0H	
;			
	LD	A,ZTM SHR 8	
	LD	XP,A	
	LD	X,LOW ZTM	;SELECT TM ADDR. BY X REG.
	LD	A,MX	;READ TM DATA TO A REG.

In this program example, the data of the clock timer (TMO– TM3) is read into the A register. Figure 6.7.2 shows the correspondence of the clock timer and the A register.

Fig. 6.7.2	A register							
Correspondence of clock	D3	D2	D1	D0				
timer and A register	TM3	TM2	TM1	TM0				

Programming notes	(1) The prescaler mode must be set correctly to suit the crystal oscillator to be used.
	(2) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to "1". Consequently, perform flag read-out (reset the flag) as necessary at reset.
	(3) The input clock of the watchdog timer is the 2 Hz signal of the clock timer, so that the watchdog timer may be counted up at timer reset.
	(4) Read-out of the interrupt factor flag (TI) can be done only in the DI status (interrupt flag = "0"). Read-out during the EI status (interrupt flag = "1") will cause malfunc- tions.
	(5) Writing of the interrupt mask register (ETI) can be done

tions.

only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = "1") will cause malfunc-

6.8 Stopwatch Timer

I/O memory map of stopwatch timer

The control registers of the stopwatch timer are shown in Table 6.8.1.

Address	Address							Comment		
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	CM/L 2	CMIL 2	CM/I 1	CW/1-0	SWL3	0			MSB	
2E1H	SWL3	SWL2	SWL1	SWL0	SWL2	0			Stermental times late 1/100 and (DCD)	
2010					SWL1	0			Stopwatch timer data 1/100 sec (BCD)	
		ł	2		SWL0	0			LSB	
	SWH3	SWH2	SWH1	SWH0	SWH3	0			MSB	
2E2H	30013	SWHZ	30011	30000	SWH2	0			Stonwatch times data 1/10 and (BCD)	
26211					SWH1	0			Stopwatch timer data 1/10 sec (BCD)	
						0			LSB	
	HLMOD BLDO EISWIT		EISWIT1	EISWITO	HLMOD	0	Heavy load	Normal	Heavy load protection mode register	
2E6H	HLINIOD	BLDU	EISWITT	EISWIIU	BLD0	0	Low	Normal	Sub-BLD evaluation data	
2001	R/W	R	R/W		EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)	
	N/W	ĸ	K/	K/W		0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)	
	IK1	ко	SWIT1	SWITO	IK1 *4	0	Yes	No	Interrupt factor flag (K10)	
2EAH		IKU	30011	30010	IK0 *4	0	Yes	No	Interrupt factor flag (K00-K03)	
20/01		ſ	2		SWIT1 *4	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)	
		г	、 		SWIT0 *4	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)	
	TMRST	SWRUN	SWPST	IOC0	TMRST*3	Reset	Reset	-	Clock timer reset	
2EEH	1101131	30000	30031	1000	SWRUN	0	Run	Stop	Stopwatch timer Run/Stop	
2001	w	R/W	w	R/W	SWRST*3	Reset	Reset	-	Stopwatch timer reset	
	vv	K/W	VV	R/W	IOC0	0	Output	Input	I/O control register 0 (P00–P03)	

Table 6.8.1	I/O memory map	(stopwatch timer)
-------------	----------------	-------------------

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*3 Constantly "0" when being read *4 Reset (0) immediately after being read *5 Undefined

SWL0–SWL3: Data (BCD) of the 1/100 sec column of the stopwatch timer Stopwatch timer 1/100 sec can be read out. These four bits are read-only, and cannot (2E1H) be used for writing operations.

At initial reset, the timer data is set to "OH".

SWH0–SWH3: Data (BCD) of the 1/10 sec column of the stopwatch timer Stopwatch timer 1/10 sec can be read out. These four bits are read-only, and cannot (2E2H) be used for writing operations.

At initial reset, the timer data is set to "OH".

SWRST: This bit resets the stopwatch timer.

Stopwatch timer reset (2EEH·D1)

When "1" is written:Stopwatch timer resetWhen "0" is written:No operationRead-out:Always "0"

The stopwatch timer is reset when "1" is written to SWRST. When the stopwatch timer is reset in the RUN status, operation restarts immediately. Also, in the STOP status the reset data is maintained. This bit is write-only, and is always "0" at read-out.

SWRUN: This bit controls RUN/STOP of the stopwatch timer.

Stopwatch timer RUN/STOP (2EEH·D2)

ner 02)	When "1" is written:	RUN
)2)	When "0" is written:	STOP
	Read-out:	Valid

The stopwatch timer enters the RUN status when "1" is written to SWRUN, and the STOP status when "0" is written. In the STOP status, the timer data is maintained until the next RUN status or resets timer. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count. When the timer data is read out in the RUN status, correct read-out may be impossible because of the carry from the low-order bit (SWL) to the high-order bit (SWH). This occurs when read-out has extended over the SWL and SWH bits when the carry occurs. To prevent this, perform read out after entering the STOP status, and then return to the RUN status. Also, the duration of the STOP status must be within 976 µsec (256 Hz 1/4 cycle).

At initial reset, this register is set to "0".

EISWIT0, EISWIT1: These registers are used to select whether to mask the Interrupt mask register stopwatch timer interrupt.

(2E6H.D0 and D1)

When "1" is written:	Enabled
When "0" is written:	Masked
Read-out:	Valid

The interrupt mask registers (EISWIT0, EISWIT1) are used to separately select whether to mask the 10 Hz and 1 Hz interrupts.

At initial reset, these registers are both set to "0".

(2EAH·D0 and D1)

When "1" is read out:Interrupt has occurredWhen "0" is read out:Interrupt has not occurredWriting:Invalid

The interrupt factor flags (SWITO, SWIT1) correspond to the 10 Hz and 1 Hz interrupts respectively. With these flags, the software can judge whether a stopwatch timer interrupt has occurred. However, regardless of the interrupt mask register setting, these flags are set to "1" by the timer overflow. These flags are reset when read out by the software. Also, read-out is only possible in the DI status (interrupt flag = "0").

At initial reset, these flags are set to "0".

• Interrupt function

The 10 Hz (approximate 10 Hz) and 1 Hz interrupts can be generated through the overflow of stopwatch timers SWL and SWH respectively. Also, software can set whether to separately mask the frequencies described earlier. Figure 6.8.1 is the timing chart for the stopwatch timer.

Fig. 6.8.1 Timing chart for stopwatch timer

As shown in Figure 6.8.1, the interrupts are generated by the overflow of their respective timers ("9" changing to "0"). Also, at this time the corresponding interrupt factor flags (SWIT0, SWIT1) are set to "1".

The respective interrupts can be masked separately through the interrupt mask registers (EISWIT0, EISWIT1). However, regardless of the setting of the interrupt mask registers, the interrupt factor flags are set to "1" by the overflow of their corresponding timers.

Program examples • Setting start and interrupt mask register of stopwatch timer

ZBLDSI	EQU	2Е6Н	
ZSWC	EQU	2EEH	
XESWIT	EQU	0011B	
XSWRUN	EQU	0100B	
;			
	LD	A,ZBLDSI SHR	8
	LD	XP,A	
	LD	X,LOW ZBLDSI	;SELECT EISWIT ADDR. BY X REG.
	LD	MX,XESWIT	;INT. ENABLE SW 10 & 1 Hz
;			
	LD	X,LOW ZSWC	;SELECT SWRUN ADDR. BY X REG.
	OR	MX,XSWRUN	;START SW TIMER

"1" is written into the interrupt mask registers EISWITO and EISWIT1, enabling the 10 Hz and 1 Hz interrupts. Also, "1" is written to SWRUN to start the stopwatch timer.

ZSWL 2E1H EQU ZSWC EQU 2eeh XSWRUN EOU 0100B ; LDA,ZSWC SHR 8 XP,A LDLD X,LOW ZSWC ;SELECT SWRUN ADDR. ; BY X REG. ; YP,A LD LDY,LOW ZSWL ;SELECT SWL ADDR. ; BY Y REG. ; AND MX,XSWRUN XOR OFH ;STOP SW TIMER LDPY A,MY ;READ SWL DATA TO A REG. ;READ SWH DATA TO B REG. LD B,MY OR MX,XSWRUN ;RUN SW TIMER

• Read-out of stopwatch timer

In the program example, the data of the stopwatch timer (SWL, SWH) is written into the general registers (A, B). To read out data, the count is made into the STOP status, and after read-out it is set to the RUN status again (to prevent incorrect read-out).

Figure 6.8.2 shows the correspondence between stopwatch timers and general registers.

Fig. 6.8.2	A register					B register			
Correspondence between	D3	D2	D1	D0		D3	D2	D1	D0
stopwatch timer and general	SWL3	SWL2	SWL1	SWL0		SWH3	SWH2	SWH1	SWH0
stopwatch timer and general									

registers

Programming notes	(1) The prescaler mode must be set correctly so that the
	stopwatch timer suits the crystal oscillator to be used.

(2) If timer data is read out in the RUN status, the timer must be made into the STOP status, and after data is read out the RUN status can be restored. If data is read out when a carry occurs, the data cannot be read correctly.

Also, the processing above must be performed within the STOP interval of 976 μ sec (256 Hz 1/4 cycle).

- (3) Read-out of the interrupt factor flag (SWIT) can be done only in the DI status (interrupt flag = "0"). Read-out during the EI status (interrupt flag = "1") will cause malfunctions.
- (4) Writing of the interrupt mask register (EISWIT) can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = "1") will cause malfunctions.

6.9 Event Counter

event counter

I/O memory map of The control registers of the event counter are shown in Table 6.9.1.

Table 6.9.1	I/O memory map	(event counter)
-------------	----------------	-----------------

Adroop		Reg	ister						Commont
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	EV03	EV02	EV01	EV00	EV03	0			7
2F8H					EV02	0			Event counter 0 (low-order 4 bits)
		F	2		EV01	0			
	IX.				EV00	0			
	EV07	EV06	EV05	EV04	EV07	0			7
2F9H	LV07	L V 00	LV03	LV04	EV06	0			Event counter 0 (high-order 4 bits)
21 911		r	2		EV05	0			Event counter 0 (ingn-order 4 bits)
		ł	۲		EV04	0			
	EV13 EV12	EV11	EV10	EV13	0			7	
2FAH		EVIZ	EVII	EVIU	EV12	0			
ZFAH					EV11	0			Event counter 1 (low-order 4 bits)
		ŀ	2		EV10	0			
	E)/4.7	E)/1/	E) /4 E	51/14	EV17	0			7
05511	EV17	EV16	EV15	EV14	EV16	0			
2FBH					EV15	0			Event counter 1 (high-order 4 bits)
		ŀ	2		EV14	0			
	-				EVSEL	0	Separate	Phase	Event counter mode
	EVSEL	ENRUN	EV1RST	EVORST	EVRUN	0	Run	Stop	Event counter Run/Stop
2FCH					EV1RST*3	Reset	Reset	_	Event counter 1 reset
	R/	W	\	W		Reset	Reset	_	Event counter 0 reset
*1 Initial value at the time of initial reset					1		tantly "0"	when be	ing read *5 Undefined

*2 Not set in the circuit

*4 Reset (0) immediately after being read

EV00-EV03:	The four low-order data b	oits of event counter 0 are read out.				
Event counter 0	These four bits are read-only, and cannot be used for writ-					
Low-order (2F8H)	ing. At initial reset, event counter 0 is set to "00H".					
EV04–EV07:	The four high-order data	bits of event counter 0 are read out.				
Event counter 0	These four bits are read-	only, and cannot be used for writ-				
High-order (2F9H)	ing. At initial reset, event	t counter 0 is set to "00H".				
EV10-EV13:	The four low-order data b	oits of event counter 1 are read out.				
Event counter 1	These four bits are read-	only, and cannot be used for writ-				
Low-order (2FAH)	ing. At initial reset, event	t counter 1 is set to "00H".				
EV14–EV17:	The four high-order data	bits of event counter 1 are read out.				
Event counter 1	These four bits are read-only, and cannot be used for writ-					
High-order (2FBH)	ing. At initial reset, event	t counter 1 is set to "00H".				
EV0RST:	This is the register for re	setting event counter 0.				
Event counter 0 reset	When "1" is written:	Event counter 0 reset				
(2FCH·D0)	When "0" is written:	No operation				
	Read-out:	Always "0"				
	itelu out.	Inways o				
	When "1" is written, event counter 0 is reset and the data					
	becomes "00H". When "0" is written, no operation is exe-					
	cuted. This is a write-onl	y bit, and is always "0" at read-out.				
EV1RST: Event counter 1 reset	This is the register for rea	setting event counter 1.				
(2FCH·D1)	When "1" is written:	Event counter 1 reset				
	When "0" is written:	No operation				
	Read-out:	Always "0"				
	becomes "00H". When "0	nt counter 1 is reset and the data)" is written, no operation is exe- y bit, and is always "0" at read-out.				

EVRUN: Event counter RUN/STOP	This register controls the	e event counter RUN/STOP status.
(2FCH·D2)	When "1" is written:	RUN
	When "0" is written:	STOP
	Read-out:	Valid
	status and starts receivin When "0" is written, the	event counter enters the STOP ut is ignored. (However, input to
EVSEL: Event counter mode	This register control the	count mode of the event counter.
(2FCH·D3)	When "1" is written:	Separate
(21 011 20)	When "0" is written:	Phase detection
	Read-out:	Valid
	detected, and the phase one of the counters is ch	

Program examples • Initial restart of event counter

ZEVC	EQU	2FCH	
XEVIND	EQU	0111B	
;			
	LD	A,ZEVC SHR 8	
	LD	XP,A	
	LD	X,LOW ZEVC	;SELECT EVSEL, EVRUN,
			; EVRST ADDR. BY X REG.
	OR	MX,XEVIND	;EV. COUNTER RESET & START

This program initialized event counters 0 and 1, and enables them to receive the external clock.

• Reading out event counter

STD03A	EQU	010H	
STD47A	EQU	012H	
STD03B	EQU	014H	
STD47B	EQU	016H	
STD03C	EQU	018H	
STD47C	EQU	01AH	
ZEVOL	EQU	2F8H	
;			
	LD	A,ZEVOL SHR 8	3
	LD	XP,A	
	LD	YP,A	
;			
RETRY	LD	Y,LOW STD03A	;SELECT BUF0-A ADDR. BY Y REG.
	LD	в,3	;INIT. READ TIMES COUNTER
;			
RDLP2	LD	A,4	; INIT. WORD LEN. COUNTER
	LD	X,LOW ZEVOL	;SELECT EV03 ADDR. BY X REG.
;			
RDLP1	LDPY	MY,MX	;READ EV-CNT DATA TO BUF
	INC	Х	; INC. EV-CNT ADDR.
	ADD	A,OFH	;DEC. WORD LEN. COUNTER
	JP	NZ,RDLP1	;IF W.L.C <> 0 THEN JUMP
;			

ADD B,OFH ; DEC. READ TIMES COUNTER NZ, RDLP2 ; IF R.T.C <> 0 THEN JUMP JP ; X,LOW STD03A ;SELECT BUF0-A ADDR. BY X REG. T'D LD Y,LOW STD03B ;SELECT BUF0-B ADDR. BY Y REG. CALL CPDATA ;CALL (COMP. BUF0-A BUF0-B) BADCP1 JP ; NEXTCP LD X,LOW STD47A ;SELECT BUF1-A ADDR. BY X REG. LD Y,LOW STD47B ;SELECT BUF1-B ADDR. BY Y REG. ;CALL (COMP. BUF1-A BUF1-B) CALL CPDATA JP BADCP2 ; JP READOK ; BADCP1 LD X,LOW STD03B ;SELECT BUF0-B ADDR. BY X REG. Y,LOW STD03C ;SELECT BUF0-C ADDR. BY Y REG. LD CALL CPDATA ;CALL (COMP. BUF0-B BUF0-C) JP RETRY ; T'D X,LOW STD03A ;SELECT BUF0-A ADDR. BY X REG. Y,LOW STD03B ;SELECT BUF0-B ADDR. BY Y REG. T'D LDPX MX,MY INC Y ;MOVE BUF0-A <= BUF0-B LDMX,MY JP NEXTCP ; BADCP2 LD X,LOW STD47B ;SELECT BUF1-B ADDR. BY X REG. LD Y,LOW STD47C ;SELECT BUF1-C ADDR. BY Y REG. CALL CPDATA ;CALL (COMP. BUF1-B BUF1-C) JP RETRY ; LD X,LOW STD47A ;SELECT BUF1-A ADDR. BY X REG. Y,LOW STD47B ;SELECT BUF1-B ADDR. BY Y REG. LD LDPX MX,MY INC Y LDMX,MY ;MOVE BUF1-A <= BUF1-B : READOK LD X,LOW STD03A ;SELECT EV-CNT DATA BUF. ;

```
;
; * * * * * * * * * *
             SUB ROUTINE
                           *******
;
CPDATA
        CP
              MX,MY
                           ; COMP. LOW WORD DATA
                          ; IF L-DATA DIFFERENT THEN JUMP
        JP
              NZ,BADDT
;
        INC
              Х
                           ;INC. BUF?-A OR BUF?-B
        INC
                          ;INC. BUF?-B OR BUF?-C
             Υ
                           ;COMP. HIGH WORD DATA
        CP
              MX,MY
              NZ,BADDT
                          ; IF H-DATA DIFFERENT THEN JUMP
        JP
;
        RETS
                           ;DATA EQUAL
;
BADDT
        RET
                           ;DATA NOT EQUAL
```

In this program example, event counters 0 and 1 are read out three times each, their data compared, and the result stored in RAM at address "010H–013H". This operation assures a correct result even if data is read out when the counter is changing (carry). The RAM address "014H–01BH" is used as a work area for temporarily saving counter data. Also, the maximum input frequency that can be responded to is f0sc1/256 Hz, on account of the software processing speed.

Table 6.9.2 shows the correspondence of event counters 0 and 1 and the data stored in RAM.

Table 6.9.2
Correspondence of event
counters 0 and 1 and data
stored in RAM

Address		Dat	a bit	
Address	D3	D2	D1	D0
010H	EV03	EV02	EV01	EV00
011H	EV07	EV06	EV05	EV04
012H	EV13	EV12	EV11	EV10
013H	EV17	EV16	EV15	EV14

Programming notes	(1) After the event counter has written data to the EVRUN
	register, it operates or stops in synchronization with the
	falling edge of the noise rejector clock or stops. Hence,
	attention must be paid to the above timing when input
	signals (input to K02 and K03) are being received.

(2) To prevent erroneous reading of the event counter data, read out the counter data several times, compare it, and use the matching data as the result.

6.10 Battery Life Detection (BLD) Circuit

I/O memory map of 6.10.1. **BLD** circuit

The control registers of the BLD circuit are shown in Table

Addrooo		Reg	ister			Comment				
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	HLMOD	D BLD0	EISWIT1	EISWITO	HLMOD	0	Heavy load	Normal	Heavy load protection mode register	
2E6H			EISWITT	EISWIIU	BLD0	0	Low	Normal	Sub-BLD evaluation data	
200	R/W R	R	DAV		EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)	
			R/W	vv	EISWIT0	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)	
	BLS				BLS	0	On	Off	BLD On/Off	
	BLD1	BLC2	BLC1	BLC0	BLD1	0	Low	Normal	BLD voltage evaluation data	
2FFH	DLDT				BLC2	× *5			Evaluation voltage setting register	
	W		DAM		BLC1	× *5			$\begin{bmatrix} BLC2-0 \end{bmatrix} 0 1 2 3 4 5 6 7 \\ \hline BCC225 (C2) 25 20 2 25 2 20 2 25 2 40 2 45 2 50 2 55 (D) \end{bmatrix}$	
	R		R/W		BLCO	× *5			E0C6235/62A35 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 (V) E0C62L35 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 (V)	
*1 Initial value at the time of initial reset				;	*3 Cons	tantly "0'	when be	eing read *5 Undefined		

Table 6.10.1 I/O memory map (BLD circuit)

*2 Not set in the circuit

*4 Reset (0) immediately after being read

HLMOD: Heavy load protection mode (2E6H·D3) When "1" is written: When "0" is written: Read-out: Valid

Heavy load protection mode is set Heavy load protection mode is released

When HLMOD is set to "1", the IC operating status enters the heavy load protection mode and at the same time the battery life detection of the BLD circuit is controlled (ON/ OFF). For details about the heavy load protection mode, see section 6.11.

When HLMOD is set to "1", sampling control is executed for the BLD circuit ON time. There are two types of sampling time, as follows:

- (1) The time of one instruction cycle immediately after HLMOD = "1"
- (2) Sampling at cycles of 2 Hz output by the prescaler while HLMOD = "1"

The BLD circuit must be made ON with at least 100 µsec for the BLD circuit to respond. When the CPU system clock is fosc3 in E0C62A35, the detection result at the timing in (1) above may be invalid or incorrect. Hence, when using timing (1) to execute battery life detection, be sure that the CPU clock is the OSC1 clock (for E0C62A35).

When BLD sampling is done with HLMOD set to "1", the results are written to the BLD latch in the timing as follows:

- (1) As soon as the time has elapsed for one instruction cycle immediately following HLMOD = "1"
- (2) Immediately on completion of sampling at cycles of 2 Hz output by the prescaler while HLMOD = "1"

Consequently, the BLD latch data is written immediately after HLMOD is set to "1", and at the same time the new detection result is written in 2 Hz cycles.

Evaluation voltage setting register (2FFH-D0-D2)

BLC0, BLC1, BLC2: In the E0C6235 Series, the evaluation voltage for judging the battery life can be switched by programming. Consequently, the optimum evaluation voltage can be set for the battery used.

> One of eight evaluation voltages can be selected with the software. Table 6.10.2 lists the evaluation voltages for the models in the E0C6235 Series.

Evaluati	on voltage	esetting	Evaluation voltage			
BLC2	BLC1	BLC0	E0C62L35	E0C6235	E0C62A35	
0	0	0	1.05 V	2.20 V	2.20 V	
0	0	1	1.10 V	2.25 V	2.25 V	
0	1	0	1.15 V	2.30 V	2.30 V	
0	1	1	1.20 V	2.35 V	2.35 V	
1	0	0	1.25 V	2.40 V	2.40 V	
1	0	1	1.30 V	2.45 V	2.45 V	
1	1	0	1.35 V	2.50 V	2.50 V	
1	1	1	1.40 V	2.55 V	2.55 V	

Table 6.10.2 Evaluation voltages for BLD circuit

BLS/BLD1: BLD detection/BLD data (2FFH·D3)

When "0" is written: When "1" is written:	
When "0" is read out:	Source voltage (VDD–VSS) is higher than BLD set value
When "1" is read out:	Source voltage (VDD–VSS) is lower than BLD set value

Note that the function of this bit when written is different to when read out.

When this bit is written to, ON/OFF of the BLD detection operation is controlled; when this bit is read out, the result of the BLD detection (contents of BLD latch) is obtained. Appreciable current is consumed during operation of BLD detection, so keep BLD detection OFF except when necessary.

When BLS is set to "1", BLD detection is executed. As soon as BLS is reset to "0" the detection result is loaded to the BLD latch. To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least 100 µsec. Hence, to obtain the BLD detection result, follow the programming sequence below.

0. Set HLMOD to "1" (only when the CPU system clock is fosc3 in E0C62A35)

- 1. Set BLS to "1"
- 2. Maintain at 100 µsec minimum
- 3. Set BLS to "0"
- 4. Read out BLD
- 5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C62A35)

However, when a crystal oscillation clock (fosc1) is selected for the CPU system clock in E0C6235, E0C62L35 and E0C62A35, the instruction cycles are long enough, so that there is no need for concern about maintaining 100 μ sec for the BLS = "1" with the software.

Program example	• Evalu	ation	of source voltage 2	.3 V (1.15 V)
	ZOSC	EQU	2FEH	
	ZBLC	EQU	2FFH	
	XCLKCG	EQU	0100B	
	XBLDON	EQU	1010B	
	XBLDOF	EQU	0010B	
	;			
		LD	A,ZOSC SHR 8	
		LD	XP,A	
		LD	X,LOW ZOSC	;SELECT CLKCHG ADDR.
				; BY X REG.
		AND	MX,XCLKCG XOR OFH	;CLK CHANGE OSC3 TO OSC1
	;			
		LD	X,LOW ZBLC	;SELECT BLS & BLC ADDR.
				; BY X REG.
		LD	MX,XBLDON	;BLD ON & BLC <= 2
		LD	MX,XBLDOF	;BLD OFF
	;			
		LD	A,MX	;READ BLD1 DATA TO A REG.

In the program example, the three bits BLCO–2 are set to "2" to select the evaluation voltage 2.3 V (1.15 V); the BLD circuit is operated and the result read into the A register. If the CPU's operating clock is OSC3, this is switched to OSC1. Figure 6.10.1 shows the result of BLD detection.

Fig. 6.10.1 Result of BLD detection

	A reg	gister	
D3	D2	D1	D0
BLD1	BLC2	BLC1	BLC0

Programming notes	(1) It takes 100 μsec from the time the BLD circuit goes ON
	until a stable result is obtained. For this reason, keep
	the following software notes in mind:

- ① When the CPU system clock is fosc1
 - 1. When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.
 - When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µsec has lapsed (possible with the next instruction) and then read the BLD.
- When the CPU system clock is fosc3 (in case of E0C62A35 only)
 - When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second)
 - When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 µsec has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD.
- (2) To reduce current consumption, set the BLD operation to OFF unless otherwise necessary.
- (3) BLS resides in the same bit at the same address as BLD1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.

- (4) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
 - After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
 - ② After heavy load drive is completed, switch BLS ON and OFF (at least 100 µsec is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.

- (5) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec.
- (6) To reduce current consumption, be careful not to set the heavy load protection mode with the software unless otherwise necessary.

6.11 Heavy Load Protection Function and Sub-**BLD Circuit**

I/O memory map of The control registers of the heavy load protection function and sub-BLD circuit are shown in Table 6.11.1. heavy load protection function and sub-BLD circuit

Table 6.11.1 I/O memory map (HLMOD and sub-BLD circuit)

Addroop		Reg	ister						Comment	
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
	HLMOD	DLDO	EISWIT1	EISWITO	HLMOD	0	Heavy load	Normal	Heavy load protection mode register	
2E6H	HLIVIOD	BLD0	EISWITT	EISWIIU	BLD0	0	Low	Normal	Sub-BLD evaluation data	
-	R/W R	R		R/W		0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)	
			R/	vv	EISWIT0	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)	
	BLS				BLS	0	On	Off	BLD On/Off	
	BLD1	BLC2 BLC1	BLC1 BLC0	BLC0	BLD1	0	Low	Normal	BLD voltage evaluation data	
2FFH	DLDT				BLC2	× *5			– Evaluation voltage setting register	
	W					× *5			[BLC2-0] 0 1 2 3 4 5 6 7	
			R/W		BLC1				E0C6235/62A35 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 (V)	
	R				BLCO	× *5			E0C62L35 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 (V)	

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*3 Constantly "0" when being read

*5 Undefined

*4 Reset (0) immediately after being read

When "0" is read out: High source voltage upward from BLD0: about 2.4 V (E0C6235/62A35) /1.2 V Sub-BLD data (2E6H·D2) (E0C62L35) When "1" is read out: Low source voltage from about 2.4 V (E0C6235/62A35) /1.2 V (E0C62L35) or under Invalid Writing:

> When BLD0 is "1" the CPU enters the heavy load protection mode. In the heavy load protection mode, the detection operation of the BLD circuit and sub-BLD circuit is sampled in 2 Hz cycles, and the respective detection results are written to the BLD latch and sub-BLD latch.

HLMOD:	When "1" is written:	Heavy load protection mode is set
Heavy load protection	When "0" is written:	Heavy load protection mode is
mode (2E6H·D3)		released
	Read-out:	Valid

When HLMOD is set to "1", the IC operating status enters the heavy load protection mode and at the same time the battery life detection of the BLD circuit is controlled (ON/ OFF).

When HLMOD is set to "1", sampling control is executed for the BLD circuit ON time. There are two types of sampling time, as follows:

- (1) The time of one instruction cycle immediately after HLMOD = "1"
- (2) Sampling at cycles of 2 Hz output by the prescaler while HLMOD = "1" $\,$

When BLD sampling is done with HLMOD set to "1", the results are written to the BLD latch in the timing as follows:

- (1) As soon as the time has elapsed for one instruction cycle immediately following HLMOD = "1"
- (2) Immediately on completion of sampling at cycles of 2 Hz output by the prescaler while HLMOD = "1"

Consequently, the BLD latch data is written immediately after HLMOD is set to "1", and at the same time the new detection result is written in 2 Hz cycles.

BLS/BLD1:	When "0" is written:	BLD detection OFF
BLD detection/BLD data	When "1" is written:	BLD detection ON
(2FFH·D3)	When "0" is read out:	Source voltage (VDD–VSS) is higher
		than BLD set value
	When "1" is read out:	Source voltage (VDD–VSS) is lower
		than BLD set value

Note that the function of this bit when written is different to when read out.

When this bit is written to, ON/OFF of the BLD detection operation is controlled; when this bit is read out, the result of the BLD detection (contents of BLD latch) is obtained. Appreciable current is consumed during operation of BLD detection, so keep BLD detection OFF except when necessary.

When BLS is set to "1", BLD detection is executed. As soon as BLS is reset to "0" the detection result is loaded to the BLD latch.

Program exampleThe E0C62L35 and E0C6235/62A35 each have software
processing for the heavy load protection function.

ZBLDSI EQU 2E6H EQU 2ECH ZR1 ZOSC EQU 2FEH ZBLC EQU 2FFH XHLMOD EQU 1000B XR1013 EQU 1001B XCLKCG EQU 0100B XBLDON EQU 1000B XBLDOFF EQU 0000B ; LD A,ZOSC SHR 8 XP,A LD LD X,LOW ZOSC ;SELECT CLKCHG ADDR. BY X REG. AND MX, XCLKCG XOR OFH ; CLK CHANGE OSC3 TO OSC1 ; LD ; SELECT HLMOD ADDR. BY X REG. X,LOW ZBLDSI ;HLMOD ON OR MX,XHLMOD ; X,LOW ZR1 ;SELECT R1 ADDR. BY X REG. LD OR MX,XR1013 ; BZ, BZ ON ; LD в,5 W30MS2 LDA,15 W30MS1 ADD A,OFH JP NZ,W30MS1 ADD A,OFH ;ABOUT 30 msec WAIT JP NZ,W30MS2 ;(OSC1 = 32768 Hz) ; AND MX,XR1013 XOR OFH ; BZ, BZ OFF ; ;SELECT BLS ADDR. BY X REG. LD X,LOW ZBLC LD MX,XBLDON ;BLD ON T.D MX,XBLDOFF ;BLD OFF ; (FOR HLMOD STATE HOLD) ; ; SELECT HLMOD ADDR. BY X REG. LD X,LOW ZBLDSI AND MX, XHLMOD XOR 0FH ; HLMOD OFF

• Heavy load protection when buzzer sounds (E0C62L35)

In this program example, HLMOD is "1" while the buzzer sounds, so the heavy load is protected against. Also, BLS is set ON and OFF immediately before the heavy load protection mode is released. In this way, when the source voltage is under 1.2 V after the heavy load protection mode is released, the hardware maintains the heavy load protection mode until 1.2 V is reached.

Figure 6.11.1 is the timing chart for the operation of the heavy load protection mode.

ZBLDSI	EQU	2E6H	
ZR1	EQU	2ECH	
ZOSC	EQU	2FEH	
XHLMOD	EQU	1000B	
XR1013	EQU	1001B	
XCLKCG	EQU	0100B	
;			
	LD	A,ZBLDSI SHR 8	
	LD	XP,A	
	LD	YP,A	
	LD	X,LOW ZOSC	;SELECT CLKCHG ADDR. BY X REG.
	AND	MX,XCLKCG XOR 0FH	;CLK CHANGE OSC3 TO OSC1
;			
	LD	X,LOW ZBLDSI	;SELECT HLMOD ADDR. BY X REG.
	OR	MX,XHLMOD	;HLMOD ON
;			
	LD	Y,LOW ZR1	;SELECT R1 ADDR. BY Y REG.
	OR	MY,XR1013	; BZ, $\overline{\text{BZ}}$ ON
;			
	CALL	ST10MS	;CALL (10 msec WAIT)
;			
	AND	MY,XR1013 XOR OFH	; BZ, BZ OFF
	AND	MX,XHLMOD XOR 0FH	;HLMOD OFF
;			
ST10MS	LD	A,0	
	RDFz		
ST10MS1	NOP7		
	ADD	A,OFH	
	JP	NZ,ST10MS1	
	RET		

• Heavy load protection when buzzer sounds (E0C6235/62A35)

The E0C6235 and E0C62A35 output a beep signal (BZ) for 10 msec in program examples of heavy load protection, then return to normal mode after driving the load (BZ output).

Programming notes	(1) It takes 100 µsec from the time the BLD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:
	0 When the CPU system clock is fosci
	 When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.
	 When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µsec has lapsed (possible with the next instruction) and then read the BLD.
	When the CPU system clock is fosc3 (in case of E0C62A35 only)
	 When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second)
	 When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 µsec has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD.
	(2) BLS resides in the same bit at the same address as BLD1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND,

control.

OR, ADD, SUB and so forth) cannot be used for BLS

- (3) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
 - After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
 - ② After heavy load drive is completed, switch BLS ON and OFF (at least 100 µsec is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.

- (4) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec.
- (5) To reduce current consumption, be careful not to set the heavy load protection mode with the software unless otherwise necessary.

6.12 Analog Comparator

I/O memory map of The control registers of the analog comparator are shown in Table 6.12.1. analog comparator

Address		Reg	ister		Comment				
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
			AMPDT		ENVON	0	On	Off	Envelope On/Off
2F7H	ENVON	ENVRI	AWPDT	AMPON	ENVRT	0	1.0 sec	0.5 sec	Envelope cycle selection register
		NA/	/ R	DAM	AMPDT	1	+ > -	+ < -	Analog comparator data
	R/W		R R/W	R/W	AMPON	0	On	Off	Analog comparator On/Off
*1 Initial value at the time of initial reset					;	*3 Const	tantly "0'	when be	eing read *5 Undefined

*2 Not set in the circuit

*4 Reset (0) immediately after being read

AMPON: Switches the analog comparator ON and OFF.

Analog comparator ON/ OFF (2F7H·D0)	When "1" is written: When "0" is written: Read-out:	The analog comparator goes ON The analog comparator goes OFF Valid			
	The analog comparator g AMPON, and OFF when At initial reset, AMPON is				
AMPDT: Analog comparator data (2F7H·D1)	Reads out the output fro When "1" is read out: When "0" is read out: Writing:				
	AMPDT is "0" when the input level of the inverted input terminal (AMPM) is greater than the input level of the noninverted input terminal (AMPP); and "1" when smaller.				

Program example

• Setting the analog comparator ON and OFF, and reading data (when OSC1 is running)

ZOSC	EQU	2FEH	
ZENAMP	EQU	2F7H	
XCLKCHG	EQU	1011B	
XAMPON	EQU	0001B	
XAMPOFF	EQU	1110B	
;			
	LD	A,ZENAMP SHR 8	;SET XP 2 PAGE
	LD	XP,A	
	LD	X,LOW ZOSC	;SELECT OSC ADDR. BY X REG.
	LD	B,MX	;STORE OSC STATUS TO B REG.
	AND	MX,XCLKCHG	;CLK CHANGE TO OSC1
;			
	LD	X,LOW ZENAMP	;SELECT ENAMP ADDR. BY X REG.
	LD	A,MX	
	OR	MX,XAMPON	;AMP CIRCUIT ON
	LD	A,8	;3 msec DELAY
AMDLLP	ADD	A,OFH	;DELAY LOOP
	JP	NZ,AMDLLP	
;			
	LD	A,MX	;STORE THE RESULT TO A REG.
	AND	MX,XAMPOFF	;AMP CIRCUIT OFF
	LD	X,LOW ZOSC	;SELECT OSC ADDR. BY X REG.
	LD	MX,B	;SET OSC STATUS TO
			; PREVIOUS CONDITION

In this program example, first sets the CPU clock to OSC1 (fosc1 = 32.768 kHz), and then sets the AMP circuit to ON. Allows a delay, read the result into A register, sets the circuit to OFF, and switches the CPU clock to previous condition.

Programming notes	(1) To reduce current consumption, set the analog compara- tor to OFF when it is not necessary.
	(2) After setting AMPON to "1", wait at least 3 msec for the
	operation of the analog comparator to stabilize before reading the output data of the analog comparator from

AMPDT.

6.13 Serial Interface (SIN, SOUT, SCLK)

I/O memory map of The control registers of the serial interface are shown in Table 6.13.1.

Address Integration Name Init *1 1 0 Comment 2F0H SD3 SD2 SD1 SD0 SD3 \times *5 SD2 SD1 SD0 SD2 \times *5 SD1 \times *5 SD2 \times *5 SD1 \times \times Serial interface data register (high-order 4 bight) \times	s)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	s)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	s)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$2F1H \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- /
$2F1H \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
R/W SD4 ×*5	.ts)
\Box SCS1 1 \Box SIE clock mode [SCS1 0] 0 1	2 3
SCS1 SCS0 SE2 EISIO SCS1 1 SCS0 1 SCS0 SE2 EISIO SCS1 1 SCS0 1 SCS0 SE2 SCS1 0 O 1	
2F2H SE2 0 SIF clock edge selection register	2 CLK/4 Slave
R/W EISIO 0 Enable Mask Interrupt mask register (serial interface)	
0 *3 - *2 Unused	
0 0 $K2$ SIO 0^{*3} $-*2$ $-$ Unused	
2F3H K2 *4 0 Yes No Interrupt factor flag (K20–K23)	
R ISIO *4 0 Yes No Interrupt factor flag (serial interface)	
SCTRG EIK10 KCP10 K10 SCTRG*3 - Trigger - Serial interface clock trigger	
2E7H SCTRG EIK10 KCP10 K10 EIK10 0 Enable Mask Interrupt mask register (K10)	
2E771 W R/W R KCP10 0 - f Input comparison register (K10)	
K10 - *2 High Low Input port data (K10)	
R11 R13 0 High/On Low/Off Output port (R13)/BZ output control	
R13 R12 SIOF R10 R12 0 High/On Low/Off Output port (R12)/FOUT output control	
2ECH R11 0 High Low Output port (R11, LAMP)	
R/W R/W SIOF 0 Run Stop Output port (SIOF)	
R R10 0 High/On Low/Off Output port (R10)/BZ output control *1 Initial value at the time of initial reset *3 Constantly "0" when being read *5 Undefi	

Table 6.13.1 I/O memory map (serial interface)

*1 Initial value at the time of initial reset

*3 Constantly "0" when being read

*5 Undefined

*2 Not set in the circuit

*4 Reset (0) immediately after being read

SD0–SD3, SD4–SD7: Serial interface data

registers (2F0H, 2F1H)

• When writing data

When "1" is written:High levelWhen "0" is written:Low level

These registers write serial data to be output from the SOUT pin. The serially converted data is output from the SOUT pin as high (VDD) when the bit is set to "1" and as low (VSS) when the bit is set to "0".

These registers are used for writing and reading serial data.

• When reading data

When "1" is read out: High level When "0" is read out: Low level

Input serial data is read out from the SIN pin. These registers are loaded with data that has been parallel converted so that the high (VDD) level bit input from the SIN pin is "1", and the low (VSS) bit is "0". Perform data reading only while serial interface is halted (i.e., the synchronous clock is neither being input or output).

Data is undefined in this register at initial reset.

SCS1, SCS0: The synchronous clock (SCLK) of the serial interface can be Clock mode selection selected with these registers. register (2F2H-D3 and D2)

Table 6.13.2 Synchronous clock selection

SCS1	SCS0	Mode	Synchronous clock
0	0		CLK
0	1	Master mode	CLK/2
1	0		CLK/4
1	1	Slave mode	External clock

CLK: CPU system clock

The synchronous clock (SCLK) can be selected from among the four types listed above, namely from three types of internal clock and one external clock.

At initial reset, the external clock is selected.

Ir T

SE2: Timing for reading in the serial data input from the SIN pin Clock edge selection can be selected with these registers.

register (2F2H·D1)

When "1" is written:	SCLK rising edge
When "0" is written:	SCLK falling edge
Read-out:	Valid

These registers enable selection of whether to perform reading to the serial input data register (SD0–SD7) at the SCLK signal's rising edge (when "1" is written) or falling edge (when "0" is written).

Pay attention if the synchronous clock goes into reverse phase (SCLK \rightarrow SCLK) through the mask option.

SCLK rising = $\overline{\text{SCLK}}$ falling, SCLK falling = $\overline{\text{SCLK}}$ rising

When the internal clock is selected as the synchronous clock (SCLK), a hazard occurs in the synchronous clock (SCLK) when data is written to register SE2.

The timing for reading in the input data can be selected, but the output timing for the output data is fixed to the SCLK rising edge.

At initial reset, SCLK falling (SE2 = "0") is selected.

EISIO: The interrupt mask from the serial interface can be set with Interrupt mask register this register.

(2F2H·D0)

When "1" is written:	Enabled
When "0" is written:	Masked
Read-out:	Valid

At initial reset, the mask (EISIO = "0") is selected.

ISIO: This flag indicates the status of the interrupt from the serial Interrupt factor flag interface.

(2F3H·D0) When "1" is read out: Interrupt has occurred When "0" is read out: Interrupt has not occurred Writing: Invalid

> By reading out this interrupt factor flag, the software can judge whether an interrupt from the serial interface has occurred. The interrupt factor flag is reset when it has been read out. Note, however, that even if the interrupt is masked, this flag will be set to "1" after the 8 bits data input/output.

The flag can be read out only when in the DI status (interrupt flag = "0").

At initial reset, this flag is set to "0".

SCTRG: This is the trigger for starting input or output of the syn-Clock trigger (2E7H·D3) chronous clock (SCLK).

When "1" is written:Trigger inputWhen "0" is written:No operationRead-out:Always "0"

When this trigger is supplied to the serial interface activating circuit, the synchronous clock (SCLK) input/output is started.

As a trigger condition, it is required that data writing or reading on data registers SDO–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0–SD7.)

Whenever the serial interface is in the RUN status, apply this trigger input once only. Refrain from performing trigger input multiple times, as this leads to malfunctioning. Further, if the synchronous clock (SCLK) is the external clock, start the external clock input after the trigger input. SIOF: Indicates the running status of the serial interface.

Special output port data (2ECH·D1)

When "1" is read out:RUN statusWhen "0" is read out:STOP statusWriting:Invalid

The RUN status is indicated from the end of writing "1" to SCTRG through to the end of serial data input/output.

	0	•	
ZK10	EQU	2E7H	
ZR1	EQU	2ECH	
ZSDL	EQU	2F0H	
ZSDH	EQU	2F1H	
ZSC	EQU	2F2H	
XSCTRG	EQU	1000B	
XSIOF	EQU	0010B	
XSCS	EQU	1100B	
;			
	LD	A,ZSC SHR 8	
	LD	XP,A	
	LD	X,LOW ZSC	;SELECT SCS ADDR. BY X REG.
	AND	MX,XSCS XOR OFH	;SET INTERNAL CLOCK MODE
			; (CLK/1)
;			
	LD	X,LOW ZSDH	;SELECT SD47 ADDR. BY X REG.
	LD	A,MX	;INIT. CIRCUIT
;			
	LD	X,LOW ZK10	;SELECT SCTRG ADDR. BY X REG.
	OR	MX,XSCTRG	;SHOT SCTRG
;			
	LD	X,LOW ZR1	;SELECT SIOF ADDR. BY X REG.
WAIT	FAN	MX,XSIOF	;CHECK SIO STATUS
	JP	NZ,WAIT	; IF SIO RUNNING THEN LOOP
;			
	LD	X,LOW ZSDL	;SELECT SD03 ADDR. BY X REG.
	LDPX	A,MX	;READ SD0-SD3 DATA TO A REG.
	LD	B,MX	;READ SD4-SD7 DATA TO B REG.

Program examples • Fetching data used by the internal clock

The above program outputs to the outside a clock having the same frequency as the CPU system clock, and takes serial data into the general registers (A, B). Figure 6.13.1 shows an example of data being taken in when the mask option has been used to select SCLK = positive logic, permutation = MSB first, and R11 = SIOF.

ZK10	EQU	2E7H	
ZSDL	EQU	2F0H	
ZSC	EQU	2F2H	
XSCTRG	EQU	1000B	
XSCS	EQU	1100B	
;			
	LD	A,ZSC SHR 8	
	LD	XP,A	
	LD	X,LOW ZSC	;SELECT SCS ADDR. BY X REG.
	OR	MX,XSCS	;SET EXTERNAL CLOCK MODE
;			
	LD	X,LOW ZSDL	;SELECT SD03 ADDR. BY X REG.
	LDPX	MX,A	;WRITE A REG. TO SD0-SD3
	LD	MX,B	;WRITE B REG. TO SD4-SD7
;			
	LD	X,LOW ZK10	;SELECT SCTRG ADDR. BY X REG.
	OR	MX,XSCTRG	;SHOT SCTRG

• Output of data used by the external clock

This program synchronizes SCLK with the external clock it is assigned to, and sends the contents of the general registers (A, B) to the outside. Figure 6.13.2 shows an output example when the mask option has been used to select SCLK = positive logic, permutation = MSB first, R11 = SIOF.

Programming notes	(1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accord- ingly, do not change the system clock (foSC1 ↔ foSC3) while the serial interface is operating.
	(2) Perform data writing/reading to data registers SD0–SD7 only while the serial interface is halted (i.e., the synchro- nous clock is neither being input or output).
	(3) As a trigger condition, it is required that data writing or reading on data registers SDO–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SDO–SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. More- over, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
	(4) If the bit data of SE2 changes while SCLK is in the master mode, a hazard will be output to the SCLK pin. If this poses a problem for the system, be sure to set the SCLK to the external clock mode if the bit data of SE2 is to be changed.
	(5) Reading the interrupt factor flag (ISIO) can be done only in the DI status (interrupt flag = "0"). Reading during EI status (interrupt flag = "1") will cause malfunction.
	(6) Writing the interrupt mask register (EISIO) can be done only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.

6.14 Sound Generator

sound generator

I/O memory map of The control registers of the sound generator are shown in Table 6.14.1.

Address	Register						Commont			
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment	
			R11		R13	0	High/On	Low/Off	Output port (R13)/BZ output control	
	R13	R12	SIOF	R10	R12	0	High/On	Low/Off	Output port (R12)/FOUT output control	
2ECH					R11	0	High	Low	Output port (R11, LAMP)	
	R/	w	R/W	R/W	SIOF	0	Run	Stop	Output port (SIOF)	
		R			R10	0	High/On	Low/Off	Output port (R10)/BZ output control	
	BZFQ2	BZFQ1	D7E00	ENVRST	BZFQ2	0			Buzzer [BZFQ2-0] 0 1 2 3	
05011	BZFQZ	BZFQT	BZFQU	EINVRST	BZFQ1	0			frequency Frequency $\frac{1}{10000000000000000000000000000000000$	
2F6H		544		w		0				
		R/W		vv	ENVRST*3	Reset	Reset	-	Envelope reset	
					ENVON	0	On	Off	Envelope On/Off	
05711		ENVON	ENVRT	AMPDT	AMPON	ENVRT	0	1.0 sec	0.5 sec	Envelope cycle selection register
	2F7H			DAV	AMPDT	1	+ > -	+ < -	Analog comparator data	
	R/	vv	R	R/W	AMPON	0	On	Off	Analog comparator On/Off	
*1 Initial	value at	the time	of initial	reset	2	∗3 Cons	tantly "0'	' when be	eing read *5 Undefined	

Table 6.14.1 I/O memory map (sound generator)

*1 Initial value at the time of initial reset

*2 Not set in the circuit

*4 Reset (0) immediately after being read

BZFQ0–BZFQ2: This is used to select the frequency of the buzzer signal. Buzzer frequency selection The frequencies of the buzzer signals (BZ, BZ) are set by register (2F6H D1–D3) writing data to registers BZFQ0–BZFQ2.

> Table 6.14.2 Buzzer frequency

	BZFQ		Set frequency (Hz)				
2	1	0	Demultiplier ratio	When fosc1 = 32 kHz	When fosc1 = 38.4 kHz		
0	0	0	fosc1/8	4,096.0	4,800.0		
0	0	1	fosc1/10	3,276.8	3,840.0		
0	1	0	fosc1/12	2,730.7	3,200.0		
0	1	1	fosc1/14	2,340.6	2,742.9		
1	0	0	fosc1/16	2,048.0	2,400.0		
1	0	1	fosc1/20	1,638.4	1,920.0		
1	1	0	fosc1/24	1,365.3	1,600.0		
1	1	1	fosc1/28	1,170.3	1,371.4		

Buzzer frequency is selected from the above eight types that have been divided by fOSC1 (oscillation frequency of the OSC1 oscillation circuit).

At initial reset, fosc1/8 (Hz) is selected.

Note A hazard may be observed in the output waveform of the BZ and BZ signals when data of the buzzer frequency selection registers (BZFQ0-2) changes.

ENVRST: This is the reset input to make the duty ratio of the buzzer Envelope reset (2F6H·D0) signal the maximum.

When "1" is written:	Reset input
When "0" is written:	No operation
Read-out:	Always "0"

When the envelope is added to the buzzer signal, the duty ratio is made maximum through this reset input. When the envelope is not added or when the buzzer signal is not output, the reset input is invalid.

	This controls adding the envelope to the buzzer signal.					
Envelope ON/OFF (2F7H·D3)	When "1" is written: When "0" is written: Read-out:	Envelope added (ON) No envelope (OFF) Valid				
		al envelope based on duty ratio o envelope, the duty ratio is fixed to pe (OFF) is selected.				
Envelope decay time	-	cay time of the envelope added to				
(2F7H·D2)	When "1" is written: When "0" is written: Read-out:	1.0 sec (125 msec × 7 = 875 msec) 0.5 sec (62.5 msec × 7 = 437.5 msec) Valid				
	The decay time of the digital envelope is decided by the time taken for the duty ratio to change. When "1" is written to ENVRT the time is 125 msec (8 Hz) units, and when "0" is written it is 62.5 msec (16 Hz) units. At initial reset, 0.5 sec (437.5 msec) is selected.					
	These control output of t	he buzzer signals (BZ, $\overline{\text{BZ}}$).				
selection): Special output port data (2ECH·D0 and D3)	When "1" is written: When "0" is written: Read-out:	Buzzer signal output Low level (DC) output Valid				
	• BZ output under R13 control BZ output and BZ output can be controlled independ- ently. BZ output is controlled by writing data to register R10. BZ output is controlled by writing data to register R13.					
	• BZ output under R10 control By writing data to register R10 only, BZ output and $\overline{\text{BZ}}$ output can be controlled simultaneously. In this case, register R13 can be used as a read/write one-bit general register. This register does not affect $\overline{\text{BZ}}$ output (output to pin R13).					

At initial reset, registers R10 and R13 are set to "0".

Program example • Alarm sound

TCNT	EQU	210H	
ZTM	EQU	2E0H	
ZR1	EQU	2ECH	
ZBZFQ	EQU	2F6H	
;			
	LD	A,TCNT SHR 8	
	LD	XP,A	
	LD	X,LOW TCNT	;SELECT T-CNT ADDR. BY X REG.
	LD	MX,0	;INIT. TIMING COUNTER (RAM)
;			
	LD	A,ZTM SHR 8	
	LD	YP,A	
	LD	Y,LOW ZTM	;SELECT TM ADDR. BY Y REG.
	LD	A,MY	;READ TM DATA TO A REG.
CKEDGE	LD	B,MY	;READ TM DATA TO B REG.
	XOR	A,B	
	FAN	A,0100B	;CHECK EDGE OF 4 Hz SIGNAL
	LD	A,B	;STORE NEW TM DATA
	JP	Z , CKEDGE	; IF EDGE NO CHANGE THEN JUMP
;			
	CP	MX,1	;CHECK TIMING COUNTER
	JP	Z,INCPT	; IF T-CNT = 1 THEN JUMP
	JP	NC,NEXT1	; IF T-CNT > 1 THEN JUMP
;			
	LD	X,LOW ZBZFQ	;SELECT BZFQ ADDR. BY X REG.
	LBPX	MX,1000001B	;BZ 4 kHz, ENV. ON & RESET,
			; RT 0.5 sec
;			
	LD	X,LOW ZR1	;SELECT R1 ADDR. BY X REG.
	OR	MX,1001B	;BZ, $\overline{\text{BZ}}$ ON
;			
INCPT	LD	X,LOW TCNT	;SELECT T-CNT ADDR. BY X REG.
	ADD	MX,1	; INC. TIMING COUNTER
	JP	CKEDGE	
;			
NEXT1	CP	MX,2	;CHECK TIMING COUNTER
	JP	NZ,NEXT2	;IF T-CNT <> 2 THEN JUMP
;			

	LD	X,LOW ZBZFQ	;SELECT BZFQ ADDR. BY X REG.
	LBPX	MX,10000011B	;BZ 3.3 kHz, ENV. ON & RESET,
			; RT 0.5 sec
	JP	INCPT	
;			
NEXT2	CP	MX,8	;CHECK TIMING COUNTER
	JP	C,INCPT	; IF T-CNT < 8 THEN JUMP
;			
	LD	X,LOW ZR1	;SELECT R1 ADDR. BY X REG.
	AND	MX,0110B	;BZ, $\overline{\text{BZ}}$ OFF

In the program example, the 1-second alarm is sounded. Figure 6.14.1 is the timing chart for the effective value of the output waveform.

Fig. 6.14.1 Timing chart of effective value of output waveform

Programming note

A hazard may be observed in the output waveform of the BZ and $\overline{\text{BZ}}$ signals when data of the output registers (R10, R13) and the buzzer frequency selection registers (BZFQ0–2) changes.

6.15 Interrupt

I/O memory map ofThe control registers of the interrupt are shown in Tableinterrupt6.15.1.

Table 6.15.1	I/O memor	v map ((interrupt)

A	Register						0-mm-mt		
Address	D3	D2	D1	D0	Name	Init *1	1	0	Comment
	KCP03	KCP02	KCP01	KCP00	KCP03	0			
2E4H	KCPU3 KCPU2		KCI UI	KCI 00	KCP02	0	_ t _	f	Input comparison register (K00–K03)
26411		R/W				0	_ <u>+</u>		input comparison register (Koo–Kos)
		N.			KCP00	0	<u> </u>	ſ	
	EIK03	EIK02	EIK01	EIK00	EIK03	0	Enable	Mask	
2E5H	LIKUS	LIKUZ	LIKUT	LIKOU	EIK02	0	Enable	Mask	Interrupt mask register (K00–K03)
22011		R	W		EIK01	0	Enable	Mask	interrupt mask register (Koo–Kos)
				1	EIK00	0	Enable	Mask	
	HLMOD	BLD0	EISWIT1	FISWITO	HLMOD	0	Heavy load	Normal	Heavy load protection mode register
2E6H	TILIVIOD	DLDU	LISWITT	LISWIIU	BLD0	0	Low	Normal	Sub-BLD evaluation data
22011	R/W	R	R	W	EISWIT1	0	Enable	Mask	Interrupt mask register (stopwatch 1 Hz)
	17/10			~~~	EISWIT0	0	Enable	Mask	Interrupt mask register (stopwatch 10 Hz)
	SCTRG	EIK10	KCP10	K10	SCTRG*3	-	Trigger	-	Serial interface clock trigger
2E7H	30110	LIKIU	KCI IU	KIU	EIK10	0	Enable	Mask	Interrupt mask register (K10)
22711	w	R	W	R	KCP10	0	↓	ſ	Input comparison register (K10)
	**	10		ĸ	K10	- *2	High	Low	Input port data (K10)
	CSDC	ETI2	ETI8	ETI32	CSDC	0	Static	Dynamic	LCD drive switch
2E8H	0300				ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
22011		P	ΛN		ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
	R/W			ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)	
	0	TI2	TI8	TI32	0 *3	_ *2	-	-	Unused
2E9H	0	112	110	1152	TI2 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)
22011		ſ	R		TI8 *4	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)
			` <u> </u>		TI32 *4	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)
	IK1	IK0	SWIT1	SWIT0	IK1 *4	0	Yes	No	Interrupt factor flag (K10)
2EAH		iito	50011	50010	IK0 *4	0	Yes	No	Interrupt factor flag (K00–K03)
22/01		ſ	R		SWIT1 *4	0	Yes	No	Interrupt factor flag (stopwatch 1 Hz)
			`		SWIT0 *4	0	Yes	No	Interrupt factor flag (stopwatch 10 Hz)
	SCS1	SCS0	SE2	EISIO	SCS1	1			$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
2F2H	3031	5050	562	LISIO	SCS0	1	_	_	☐ selection register Clock CLK CLK/2 CLK/4 slave
2.2.1		P	W		SE2	0	ſ		SIF clock edge selection register
		N/			EISIO	0	Enable	Mask	Interrupt mask register (serial interface)
	0	0	IK2	ISIO	0 *3	_ *2	-	-	Unused
2F3H	0	0	111.2	1510	0 *3	- *2	-	-	Unused
21 011		ſ	R		IK2 *4	0	Yes	No	Interrupt factor flag (K20–K23)
		1	· · · · · · · · · · · · · · · · · · ·		ISIO *4	0	Yes	No	Interrupt factor flag (serial interface)
	EIK23	EIK22	EIK21	EIK20	EIK23	0	Enable	Mask	17
2F5H					EIK22	0	Enable	Mask	Interrupt mask register (K20–K23)
21 011		D	W		EIK21	0	Enable	Mask	merupi mask register (K20–K23)
		IN/	••		EIK20	0	Enable	Mask	

*1 Initial value at the time of initial reset

*3 Constantly "0" when being read

*5 Undefined

• Interrupt factors

Table 6.15.2 shows the factors for generating interrupt requests.

The interrupt flags are set to "1" depending on the corresponding interrupt factors.

The CPU operation is interrupted when any of the conditions below set an interrupt factor flag to "1".

The corresponding mask register is "1" (enabled)The interrupt flag is "1" (EI)

The interrupt factor flag is a read-only register, but can be reset to "0" when the register data is read out. At initial reset, the interrupt factor flags are reset to "0".

Note Read the interrupt factor flags only in the DI status (interrupt flag = "0"). A malfunction could result from read-out during the EI status (interrupt flag = "1").

Inter	Interrup	t factor flag	
Clock timer	2 Hz falling edge	TI2	(2E9H·D2)
Clock timer	8 Hz falling edge	TI8	(2E9H·D1)
Clock timer	32 Hz falling edge	TI32	(2E9H·D0)
Stopwatch timer	1 Hz falling edge	SWIT1	(2EAH·D1)
Stopwatch timer	10 Hz falling edge	SWIT0	(2EAH·D0)
Serial interface	When 8-bit data input/output	ISIO	(2F3H·D0)
	has completed		
Input data (K00–K03)	Rising or falling edge	IK0	(2EAH·D2)
Input data (K10)	Rising or falling edge	IK1	(2EAH·D3)
Input data (K20–K23)	Rising edge	IK2	(2F3H·D1)

Table 6.15.2 Interrupt factors

• Specific masks and factor flags for interrupt

The interrupt factor flags can be masked by the corresponding interrupt mask registers.

The interrupt mask registers are read/write registers. They are enabled (interrupt authorized) when "1" is written to them, and masked (interrupt inhibited) when "0" is written to them.

At initial reset, the interrupt mask register is set to "0". Table 6.15.3 shows the correspondence between interrupt mask registers and interrupt factor flags.

Interrupt m	ask register	Interrupt factor flag		
ETI2	(2E8H·D2)	TI2	(2E9H·D2)	
ETI8	(2E8H·D1)	TI8	(2E9H·D1)	
ETI32	(2E8H·D0)	TI32	(2E9H·D0)	
EISWIT1	(2E6H·D1)	SWIT1	(2EAH·D1)	
EISWIT0	(2E6H·D0)	SWIT0	(2EAH·D0)	
EISIO	(2F2H·D0)	ISIO	(2F3H·D0)	
EIK03	(2E5H·D3)			
EIK02	(2E5H·D2)	IK0	(2EAH·D2)	
EIK01	(2E5H·D1)			
EIK00	(2E5H·D0)			
EIK10	(2E7H·D2)	IK1	(2EAH·D3)	
EIK23	(2F5H·D3)			
EIK22	(2F5H·D2)	IK2	(2F3H·D1)	
EIK21	(2F5H·D1)			
EIK20	(2F5H·D0)			

* There is an interrupt mask register for each pin of the input ports.

Table 6.15.3 Interrupt mask registers and interrupt factor flags

- ETI32, ETI8, ETI2: Interrupt mask registers (2E8H·D0–D2)
- TI32, TI8, TI2: Interrupt factor flags (2E9H·D0–D2)
 See "6.7 Clock Timer".
- EISWIT0, EISWIT1: Interrupt mask registers (2E6H·D0–D1)
- SWIT0, SWIT1: Interrupt factor flags (2EAH·D0–D1)
 See "6.8 Stopwatch Timer".
- EISI0: Interrupt mask register (2F2H·D0)
- ISI0: Interrupt factor flag (2F3H·D0)
 See "6.13 Serial Interface".
- KCP00-KCP03: Input comparison registers (2E4H)
- EIK00-EIK03: Interrupt mask registers (2E5H)
- IK0: Interrupt factor flag (2EAH·D2)
 See "6.3 Input Ports".
- KCP10: Input comparison register (2E7H·D1)
- EIK10: Interrupt mask register (2E7H·D2)
- IK1: Interrupt factor flag (2EAH·D3)

See "6.3 Input Ports".

- EIK20-EIK23: Interrupt mask registers (2F5H)
- IK2: Interrupt factor flag (2F3H·D1)
 See "6.3 Input Ports".

Program example • Interrupt vector processing

ZTI	EQU	2Е9Н	
ZIKSW	EQU	2EAH	
ZIK2SI	EQU	2F3H	
ZR1	EQU	2ECH	
ZOSC	EQU	2FEH	
XTI2	EQU	0100B	
XTI8	EQU	0010B	
XTI32	EQU	0001B	
XIKO	EQU	0100B	
XIK1	EQU	1000B	
XSWIT0	EQU	0001B	
XSWIT1	EQU	0010B	
XIK2	EQU	0010B	
XISIO	EQU	0001B	
XSIOF	EQU	0010B	
XCLKCG	EQU	0100B	
;			
;			
	ORG	101H	
;			
	JP	INTRPT	;SIO
	JP	INTRPT	;K0,K1,K2
	JP	INTRPT	;K0,K1,K2,SIO
	JP	INTRPT	;TM
	JP	INTRPT	;TM,SIO
	JP	INTRPT	;TM,K0,K1,K2
	JP	INTRPT	;TM,K0,K1,K2,SIO
	JP	INTRPT	;SW
	JP	INTRPT	;SW,SIO
	JP	INTRPT	;SW,K0,K1,K2
	JP	INTRPT	;SW,K0,K1,K2,SIO
	JP	INTRPT	;SW,TM
	JP	INTRPT	;SW,TM,SIO
	JP	INTRPT	;SW,TM,K0,K1,K2
	JP	INTRPT	;SW,TM,K0,K1,K2,SIO
i			
;			
INTRPT	PUSH	XP	
	PUSH	XH	
	PUSH	XL	;STORE X REG. (12 Bits)

; PUSH YP PUSH YH ;STORE Y REG. (12 Bits) PUSH YL ; PUSH B ;STORE B REG. PUSH A ;STORE A REG. PUSH F ;STORE FLAG (IDZC) ; ; A,ZIKSW SHR 8 LDLD XP,A X,LOW ZIKSW ;SELECT IKO IK1 SWIT ADDR. X REG. LDLD A,MX M0,A ;STORE IKO IK1 SWITO SWIT1 LD ; FAN A,XIKO ;CHECK IKO JP Z,CHKK1 ; IF IKO = 0 THEN JUMP ;CALL KO INT. ROUTINE CALL INTKO ; CHKK1 LD A,MO ;CHECK IK1 FAN A,XIK1 JP Z,CHKSWO ; IF IK1 = 0 THEN JUMP CALL INTK1 ;CALL K1 INT. ROUTINE ; CHKSW0 LD A,M0 FAN A,XSWITO ;CHECK SWIT0 JP Z,CHKSW1 ; IF SWITO = 0 THEN JUMP CALL INTSW0 ;CALL SW 10 Hz INT. ROUTINE ; CHKSW1 LD A,M0 FAN A,XSWIT1 ;CHECK SWIT1 JP Z,CHKT32 ; IF SWIT1 = 0 THEN JUMP CALL INTSW1 ;CALL SW 1 Hz INT. ROUTINE ; ; CHKT32 LD A,ZTI SHR 8 LD XP,A LD X,LOW ZTI ;SELECT TI2 TI8 TI32 ADDR. X REG. LD A,MX LD M0,A ;STORE TI2 TI8 TI32

; FAN A,XTI32 ;CHECK TI32 JP Z,CHKT8 ; IF TI32 = 0 THEN JUMP CALL INTT32 ;CALL TM 32 Hz INT. ROUTINE ; CHKT8 A,MO LD FAN A,XTI8 ;CHECK TI8 JP Z,CHKT2 ; IF TI8 = 0 THEN JUMP ;CALL TM 8 Hz INT. ROUTINE CALL INTT8 ; CHKT2 LD A,MO FAN A,XTI2 ;CHECK TI2 JP Z,CKSIOF ; IF TI2 = 0 THEN JUMP CALL INTT2 ;CALL TM 2 Hz INT. ROUTINE ; : CKSIOF LD A,ZOSC SHR 8 LD XP,A X,LOW ZOSC ;SELECT CLKCHG ADDR. BY X REG. LD ;STORE CLKCHG LD A,MX ; MX,XCLKCG XOR 0FH ;CLK CHANGE OSC3 TO OSC1 AND ; в,11 ;SET 8 msec LOOP COUNTER LD X,LOW ZR1 ;SELECT R1 ADDR. BY X REG. LD ; LPSIOF FAN MX,XSIOF ;CHECK SIOF JP Z,CHKK2 ; IF SIOF = 0 THEN JUMP ADD B,OFH ;DEC. LOOP COUNTER ; IF LOOP COUNTER <> 0 THEN JUMP JP NZ,LPSIOF ; ; X,LOW ZOSC ;SELECT CLKCHG ADDR. BY X REG. CHKK2 LD;LOAD CLKCHG LD MX,A ; LD X,LOW ZIK2SI ;SELECT IK2 ISIO ADDR. BY X REG. LD A,MX LD M0,A ;STORE IK2 ISIO ; ;CHECK IK2 FAN A,XIK2 JP Z,CHKSIO ; IF IK2 = 0 THEN JUMP

	CALL	INTK2	
;			
CHKSIO	LD	A,M0	
	FAN	A,XISIO	;CHECK ISIO
	JP	Z,INTEND	; IF ISIO = 0 THEN JUMP
	CALL	INTSIO	
;			
;		_	
INTEND	-		;LOAD FLAG (IDZC)
	POP		;LOAD A REG.
	POP	В	;LOAD B REG.
;			
	POP	YL	
	POP	YH	
	POP	YP	;LOAD Y REG. (12 Bits)
;			
	POP	XL	
	POP	XH	
	POP	XP	;LOAD X REG. (12 Bits)
;			
	EI		;ENABLE INTERRUPT
	RET		

In the above interrupt vector program, the register data at the time of interrupt is saved, to be recovered when the interrupt processing ends; then the main routine is resumed.

Interrupt priority can be set by the software, interrupt nesting inhibited, and the processing executed in order of highest priority. The interrupt processing routine can be invoked by the CALL instruction for processing. When the serial I/O ports are in operation, the interrupt factor flags IK2 and ISI0 (address 2F3H) cannot be read out. Their operating status can be monitored by the software, and if they are currently operating the read-out can be executed after waiting a maximum of 8 msec (32.768 kHz). Table 6.15.4 shows the order of priority of interrupts in the program example.

Priority	Interrupt factor
1	K00–K03 input port
2	K10 input port
3	Stopwatch timer 10 Hz
4	Stopwatch timer 1 Hz
5	Clock timer 32 Hz
6	Clock timer 8 Hz
7	Clock timer 2 Hz
8	K20–K23 input port
9	Serial interface

Table 6.15.4 Order of interrupt priority in program example

Programming notes

- (1) When the interrupt mask register (EIK) is set to "0", the interrupt factor flag (IK) of the input port cannot be set even though the pin status of the input port has changed.
- (2) The interrupt factor flags of the clock timer, stopwatch timer and serial interface (TI, SWIT, ISIO) are set when the timing condition is established, even if the interrupt mask registers (ETI, EISWIT, EISIO) are set to "0".
- (3) Read-out of the interrupt factor flags can be done only in the DI status (interrupt flag = "0"). Read-out during the EI status (interrupt flag = "1") will cause malfunction.
- (4) Writing of the interrupt mask registers can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = "1") will cause malfunction.

CHAPTER 7 SUMMARY OF NOTES

Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.

- (2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
- (3) To operate the clock timer and stopwatch timer accurately, select the prescaler of the OSC1 to match the crystal oscillator used.
- **Input Ports** (1) When input ports are changed from high to low by pulldown resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 msec.
 - (2) When "noise rejector circuit enable" is selected with the mask option, a maximum delay of 1 msec occurs from time the interrupt conditions are established until the interrupt factor flag (IK) is set to "1" (until the interrupt is actually generated).

Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.

For example, when performing a key scan with the key matrix, the key scan changes the input status to set the interrupt factor flag, so it has to be read out to reset it. However, if the interrupt factor flag is read out immediately after key scanning, the delay will cause the flag to be set after read-out, so that it will not be reset.

(3) Input interrupt programing related precautions

shown in Figure 7.1.

In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the low status.

In addition, when the mask register = "1" and the content of the input comparison register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input comparison register in the mask register = "0" status.

- (4) Read-out of the interrupt factor flag (IK) can be done only in the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag = "1") will cause malfunction.
- (5) Writing of the interrupt mask register (EIK) can be done only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.
- **Output Ports** When BZ, $\overline{\text{BZ}}$ and FOUT are selected with the mask option, a hazard may be observed in the output waveform when the data of the output register changes.
 - **I/O Ports** (1) When the I/O port is changed from high level to low level by the built-in pull down resistance, the falling-edge has the delay determined by the pull down resistance and the input gate capacitance. When the input data is being read out, the time that the input line is pulled down is equivalent to 1.5 cycles of the CPU system clock. However, the electric potential of the pins must be settled within 0.5 cycles. If this condition cannot be fulfilled, some measure must be devised such as arranging pull-down resistance externally, or performing multiple readouts. Consequently, if data is read out while the CPU is running in the OSC3 oscillation circuit, data must be read out continuously for about 500 µsec.
 - (2) When the I/O port is set to the output mode and the data register has been read, the pin data instead of the register data can be read out. Because of this, if a low-impedance load is connected and read-out performed, the value of the register and the read-out result may differ.

- **LCD Driver** (1) When page 0 is selected for the display memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
 - (2) When page 2 is selected for the display memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).
- **Clock Timer** (1) The prescaler mode must be set correctly to suit the crystal oscillator to be used.
 - (2) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to "1". Consequently, perform flag read-out (reset the flag) as necessary at reset.
 - (3) The input clock of the watchdog timer is the 2 Hz signal of the clock timer, so that the watchdog timer may be counted up at timer reset.
 - (4) Read-out of the interrupt factor flag (IT) can be done only in the DI status (interrupt flag = "0"). Read-out during the EI status (interrupt flag = "1") will cause malfunctions.
 - (5) Writing of the interrupt mask register (EIT) can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = "1") will cause malfunctions.
- **Stopwatch Timer** (1) The prescaler mode must be set correctly so that the stopwatch timer suits the crystal oscillator to be used.
 - (2) If timer data is read out in the RUN status, the timer must be made into the STOP status, and after data is read out the RUN status can be restored. If data is read out when a carry occurs, the data cannot be read correctly.

Also, the processing above must be performed within the STOP interval of 976 μsec (256 Hz 1/4 cycle).

- (3) Read-out of the interrupt factor flag (SWIT) can be done only in the DI status (interrupt flag = "0"). Read-out during the EI status (interrupt flag = "1") will cause malfunctions.
- (4) Writing of the interrupt mask register (EISWIT) can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = "1") will cause malfunctions.
- **Event Counter** (1) After the event counter has written data to the EVRUN register, it operates or stops in synchronization with the falling edge of the noise rejector clock or stops. Hence, attention must be paid to the above timing when input signals (input to K02 and K03) are being received.
 - (2) To prevent erroneous reading of the event counter data, read out the counter data several times, compare it, and use the matching data as the result.

Battery Life Detection(1) It takes 100 μsec from the time the BLD circuit goes ON
until a stable result is obtained. For this reason, keep
the following software notes in mind:

- ① When the CPU system clock is fosc1
 - 1. When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.
 - When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µsec has lapsed (possible with the next instruction) and then read the BLD.
- When the CPU system clock is fosc3 (in case of EOC62A35 only)
 - When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second)

2.	When detection is done at BLS
	Before writing "1" on BLS, write "1" on HLMOD first;
	after at least 100 µsec has lapsed after writing "1"
	on BLS, write "0" on BLS and then read the BLD.

- (2) To reduce current consumption, set the BLD operation to OFF unless otherwise necessary.
- (3) BLS resides in the same bit at the same address as BLD1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.
- (4) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
 - ① After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
 - ② After heavy load drive is completed, switch BLS ON and OFF (at least 100 µsec is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.

- (5) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec.
- (6) To reduce current consumption, be careful not to set the heavy load protection mode with the software unless otherwise necessary.
- Heavy Load Protection(1) It takes 100 µsec from the time the BLD circuit goes ONFunction and Sub-
BLD Circuituntil a stable result is obtained. For this reason, keep
the following software notes in mind:
 - 1 When the CPU system clock is fosc1
 - 1. When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 1 instruction has passed.

- When detection is done at BLS After writing "1" on BLS, write "0" after at least 100 µsec has lapsed (possible with the next instruction) and then read the BLD.
- ② When the CPU system clock is fosc3 (in case of E0C62A35 only)
 - When detection is done at HLMOD After writing "1" on HLMOD, read the BLD after 0.6 second has passed. (HLMOD holds "1" for at least 0.6 second)
 - When detection is done at BLS Before writing "1" on BLS, write "1" on HLMOD first; after at least 100 µsec has lapsed after writing "1" on BLS, write "0" on BLS and then read the BLD.
- (2) BLS resides in the same bit at the same address as BLD1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.
- (3) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the EOC62L35.
 - After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
 - ② After heavy load drive is completed, switch BLS ON and OFF (at least 100 µsec is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.

- (4) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec.
- (5) To reduce current consumption, be careful not to set the heavy load protection mode with the software unless otherwise necessary.

- **Analog Comparator** (1) To reduce current consumption, set the analog comparator tor to OFF when it is not necessary.
 - (2) After setting AMPON to "1", wait at least 3 msec for the operation of the analog comparator to stabilize before reading the output data of the analog comparator from AMPDT.
 - **Serial Interface** (1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accord-ingly, do not change the system clock ($fOSC1 \leftrightarrow fOSC3$) while the serial interface is operating.
 - (2) Perform data writing/reading to data registers SD0–SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
 - (3) As a trigger condition, it is required that data writing or reading on data registers SDO–SD7 be performed prior to writing "1" to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SDO–SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
 - (4) If the bit data of SE2 changes while SCLK is in the master mode, a hazard will be output to the SCLK pin. If this poses a problem for the system, be sure to set the SCLK to the external clock mode if the bit data of SE2 is to be changed.
 - (5) Reading the interrupt factor flag (ISIO) can be done only when the serial interface is in the STOP status (SIOF = "0") and the DI status (interrupt flag = "0"). If reading is performed while the serial interface is in the RUN mode (during input or output), the data input or output will be suspended and the initial status resumed. Reading during EI status (interrupt flag = "1") will cause malfunction.
 - (6) Writing the interrupt mask register (EISIO) can be done only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.

- **Sound Generator** A hazard may be observed in the output waveform of the BZ and $\overline{\text{BZ}}$ signals when data of the output registers (R10, R13) and the buzzer frequency selection registers (BZFQ0–2) changes.
 - **Interrupt** (1) When the interrupt mask register (EIK) is set to "0", the interrupt factor flag (IK) of the input port cannot be set even though the pin status of the input port has changed.
 - (2) The interrupt factor flags of the clock timer, stopwatch timer and serial interface (TI, SWIT, ISIO) are set when the timing condition is established, even if the interrupt mask registers (ETI, EISWIT, EISIO) are set to "0".
 - (3) Read-out of the interrupt factor flags can be done only in the DI status (interrupt flag = "0"). Read-out during the EI status (interrupt flag = "1") will cause malfunction.
 - (4) Writing of the interrupt mask registers can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = "1") will cause malfunction.

APPENDIX A

E0C6235 DATA MEMORY (RAM) MAP

F	R	OGRAM	NAME	: C23	5													
	Н	L	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	0	NAME																
		MSB																
Ļ		LSB																
	1	NAME																
		MSB																
		LSB																
F	2	NAME																
		MSB																
		LSB																
	3	NAME																
		MSB																
-		LSB																
		NAME																
		MSB																
		LSB																
F	5	NAME																
	-	MSB																
		LSB												-				
	6	NAME																
		MSB																
┝	7	LSB NAME																
	'	MSB		+														
			+	+							+							
			+	+													••••••	
		LSB																

Η		0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
8	NAME																
	MSB		1					1	1		+						1
			1	1				1									1
			1	1				1	1	+	1						1
	LSB		1	1				1	1	1	1						1
9	NAME																
	MSB		+					1	†	+	+						†
			1	1				1									1
			1	1		1			1								1
	LSB		1	1		1		1	1								1
А	NAME																
	MSB		1						1								1
			1	1				1									+
			1	1		1			1								1
	LSB		1	1		1		1	1								T
В	NAME																
	MSB		1						1								1
			1	1				1	1								1
			1	1				1	1								1
	LSB		1	1		1		1	1					1			1
С	NAME																
	MSB		T	1		T		T	T	T	T			T			T
			T	1		T		T	T	T	T			T			T
			T	1		T		T	T	T	T			T			T
	LSB		T	T		T		T	T	T	T		T	T			T
D	NAME																
	MSB		T	T		T		T	T	T	T			T			1
			T	1		T		T	T	T	T			T			T
								Ι	[Γ
	LSB							Ι									Ι
Е	NAME																
	MSB																
								L	L		L	L		L			
						1		1	1	1			L	1			
	LSB																
F	NAME																
	MSB		Ι	[[[[Ι			[
			T	1		T		T	T		T	T	T	T			Ť
			1	1	+	1		1	†	1	†	†	+	1			1
	LSB	+	+	+	• † • • • • • •	+	-+	†	†	†	†	†	†	+	†	+	†

	OGRAM																
ΡH		0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
1 0	NAME		L														
	MSB		+														
			+														
			+														
	LSB																
1	NAME		+														
	MSB		+														
			+														
	LSB		+														
2	NAME																
	MSB		+														
	LSB																
3	NAME		+														
	MSB		+														
			+														
			+														
	LSB NAME																
4	MSB	+	+														
	IVIOD		+	+						+							
			+														
	LSB																
5	NAME																
	MSB																
			ļ														
			+														
	LSB																
6	NAME		+														
	MSB		+														
			+	+						+							
	LSB	+	+	+		+	+			+			+				+
7	NAME																
	MSB	+	†			+	+										
																	[
	LSB																

Н	L	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
8	NAME																
	MSB		+					1	†	+	+						†
			+	+	- +	+	-+	+	†	+	+	+	+	+	+	+	†
		+	+	+	-+	+	-+	+	+	+	+	+	+	+	+	+	†
	LSB		+	+	• 🕇 • • • • • •	+	• † • • • • •	†	+	+	+	+	+	+	+	+	†
۵	NAME		-														
0	MSB	+	+	+	• 🕂 • • • • • •	+	-+	+	+	+	+	+	+	+	+	+	+
	INIOD		+	+	• 🕂 • • • • •	+	• 🕂 • • • • • •	+	+	+	+	+	+	+	+	+	+
			+	+	• 🕂 • • • • • •	+	• 🕂 • • • • • •	+	+	+	+	+	+	+	+	+	+
	LSB		+	+	• 🕂 • • • • • •	+	• 🛉 • • • • • •	+	+	+	+	+	+	+	+	+	<u>+</u>
٨	NAME		-						-								
А	MSB		+	+	. +	+	• + • • • • •	+	+	+	+	+	+	+	+	+	+
	INIOD		+	+	• + • • • • •	+	• + • • • • •	+	+	+	+	+	+	+	+	+	+
		+	+	+	- +	+	- 🕂	+	+	+	+	+	+	+	+	+	+
			+	+	. +	+	• 🕂 • • • • • •	+	+	+	+	+	+	+	+	+	+
_	LSB		-	-													-
В	NAME		+	+	. +	+	. +	+	+	+	+	+	+	+	+	+	+
	MSB		+	+		+		+	+	+	+	+	+	+	+	+	+
			+			+		+	+	+	+	+	+	+	+	+	+
			+	+		+		+	+	+	+	+	+	+	+	+	+
	LSB		-														-
С	NAME		+	. +		+		+	+	+	+	+	+	+	+	+	+
	MSB		+			+		+	+	+	+	+	+	+	+	+	+
			+			+		+	+	+	+	+	+	+	+	+	+
			+	+		+		+	+	+	+	+		+	+	+	+
	LSB																
D	NAME		+			+		+	 	+	+	+	+	+	.	ļ	<u> </u>
	MSB		+			+		L	 		L			L	ļ		ļ
			+			+		L	 		L			L	ļ	ļ	ļ
			+			+		_	.								ļ
	LSB																
Е	NAME							L	L								L
	MSB					1			L								ļ
						1			L								ļ
			1	1	.	1	.	l	 	L	l		L	L	L	 	ļ
	LSB																
F	NAME													L			
	MSB																
			1	1				1	1	1	1						Ť.
			1	1	. †	1	*****	1	†	1	†	†	T	†	T	1	†
	LSB	+	+	+	• † • • • • •	+	-+	†	†	†	†	†	+	+	†	†	†

	PR	OGRAM	NAME	E : C23	5													
Ρ	Н	L	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
2	0	NAME																
		MSB																
				ļ														
				+	+													
		LSB																
		NAME		+	+													
		MSB		+	+													
				+	+													
				+	+													
	_	LSB																
	2	NAME		+	++		+											
		MSB		+	+													
				+	++		+			+								
		LSB		+	+		+											
	2	NAME																
	3	MSB		+	++		+											
				+	++		+			+	+							
				+	++		+											
		LSB		+	+		+											
	4	NAME																
	·	MSB		+	+		+			+								
				+	+													
		LSB																
	5	NAME		L			L											
		MSB					L											
					+													
		LSB																
		NAME		+	+													
		MSB		+	+													
				+	+													
				+	+		+											
	-	LSB																
	1	NAME		+	+		+			+	+	+						
		MSB		+	+		+	+		+	+	+						
				+	++		+			+	+	+						
		LSB		+	++		+			+	+	+						
		LOD		1														

Н	L	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
8	NAME																
	MSB		Ι	Ι				Ι									
		L	L														L
		L	L														L
	LSB																
9	NAME		L														L
	MSB	L	ļ														L
			.					L						+			
			 					+						+			
	LSB																
A	NAME	+	.	+	+			+	+					+		+	
	MSB	+	 	+	+			+	+					+		+	
		+	+	+	+			+	+					+		+	
		+	+	+	+			+	+					+		+	+
	LSB																
В	NAME	+	+	+	+			+	+					+		+	+
	MSB	+	+	+	+			+	+		+			+		+	+
		+	+	+	+			+	+		+			+		+	+
		+	+	+	+			+	+		+			+		+	+
~	LSB																
U	NAME MSB	+	+	+	+			+	+					+		+	+
	IVIOD	+	+	+	+			+	+					+		+	+
		+	+	+	+			+	+		+		+	+		+	+
	LSB	+	+	+	+			+	+		+			+		+	+
П	NAME																
υ	MSB	+	+	+	+			+	+		+			+		+	+
	INIOD	+	+	+	+			+	+		+			+		+	+
		+	+	+	+			+	+		+		+	+		+	+
	LSB	+	†	+	+			+	+		+			+		+	+
Е	NAME	ZTM	ZSWL	ZSWH	ZK0	ZKCP0	ZEIK0	ZBLDSI	ZK10	ZETI	ZTI	ZIKSW	ZR0	ZR1	ZP0	ZSWC	ZWD
	MSB	TM3	SWL3	SWH3	K03	KCP03	EIK03	T	SCTRG			IK1	R03	R13	P03	TMRST	WDR
		TM2	SWL2	SWH2	K02	KCP02	EIK02	BLDO	EIK10	ETI2	TI2	IK0	R02	R12	P02	SWRUN	WD2
		TM1	SWL1	SWH1	K01	KCP01	EIK01	+	KCP10	ETI8	TI8	SWIT1	R01	R11/SF		SWRST	
	LSB	TM0	SWLO	SWH0	K00	KCP00	EIK00	T	K10	ETI32	TI32	SWIT0	R00	R10	P00	IOC0	WD0
F	NAME	ZSDL	ZSDH	ZSC	ZIK2SI	ZK2	ZEIK2	ZBZFQ	ZENAMP	ZEVOL	ZEV0H	ZEV1L	ZEV1H	ZEVC	ZP1	ZOSC	ZBLC
	MSB	SD3	SD7	SCS1		K23	EIK23	+	ENVON	EV03	EV07	EV13	EV17	EVSEL	P13	PRSM	BLS/
		SD2	SD6	SCS0		K22	EIK22	BZFQ1	ENVRT	EV02	EV06	EV12	EV16	EVRUN	P12	CLKCHG	BLC2
		SD1	SD5	SE2	IK2	K21	EIK21	+	AMPDT	EV01	EV05	EV11	EV15	EV1RST	P11	oscc	BLC1
	LSB		SD4	EISIO	ISIO	K20	EIK20	ENVRST		EV00	EV04	EV10	EV14	EVORST		10C1	BLC

APPENDIX B

E0C6235 INSTRUCTION SET

Instruction Set (1)

01 15 11	Mne-						Оре	eratio	on C	ode					Flag			
Classification	monic	Operand	В	А	9	8	7	6	5	4	3	2	1	0	IDZO	; C	Clock	Operation
Branch	PSET	р	1	1	1	0	0	1	0	p4	p3	p2	p1	p0			5	NBP \leftarrow p4, NPP \leftarrow p3~p0
instructions	JP	s	0	0	0	0	s7	s6	s5	s4	s3	s2	s1	s0			5	$\text{PCB} \leftarrow \text{NBP}, \text{PCP} \leftarrow \text{NPP}, \text{PCS} \leftarrow \text{s7}\text{-s0}$
		C, s	0	0	1	0	s7	s6	s5	s4	s3	s2	s1	s0			5	PCB ← NBP, PCP ← NPP, PCS ← s7~s0 if C=1
		NC, s	0	0	1	1	s7	s6	s5	s4	s3	s2	s1	s0			5	PCB ← NBP, PCP ← NPP, PCS ← s7~s0 if C=0
		Z, s	0	1	1	0	s7	s6	s5	s4	s3	s2	s1	s0			5	PCB \leftarrow NBP, PCP \leftarrow NPP, PCS \leftarrow s7~s0 if Z=1
		NZ, s	0	1	1	1	s7	s6	s5	s4	s3	s2	s1	s0			5	PCB ← NBP, PCP ← NPP, PCS ← s7~s0 if Z=0
	JPBA		1	1	1	1	1	1	1	0	1	0	0	0			5	$\text{PCB} \leftarrow \text{NBP}, \text{PCP} \leftarrow \text{NPP}, \text{PCSH} \leftarrow \text{B}, \text{PCSL} \leftarrow \text{A}$
	CALL	s	0	1	0	0	s7	s6	s5	s4	s3	s2	s1	s0			7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
																		SP \leftarrow SP-3, PCP \leftarrow NPP, PCS \leftarrow s7~s0
	CALZ	s	0	1	0	1	s7	s6	s5	s4	s3	s2	s1	s0			7	$M(SP-1) \leftarrow PCP, M(SP-2) \leftarrow PCSH, M(SP-3) \leftarrow PCSL+1$
																		SP \leftarrow SP-3, PCP \leftarrow 0, PCS \leftarrow s7~s0
	RET		1	1	1	1	1	1	0	1	1	1	1	1			7	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																		SP←SP+3
	RETS		1	1	1	1	1	1	0	1	1	1	1	0			12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																		$SP \leftarrow SP+3, PC \leftarrow PC+1$
	RETD	l	0	0	0	1	17	<i>l</i> 6	15	<i>l</i> 4	13	12	<i>l</i> 1	10			12	$PCSL \leftarrow M(SP), PCSH \leftarrow M(SP+1), PCP \leftarrow M(SP+2)$
																		SP \leftarrow SP+3, M(X) \leftarrow l3~l0, M(X+1) \leftarrow l7~l4, X \leftarrow X+2
System	NOP5		1	1	1	1	1	1	1	1	1	0	1	1			5	No operation (5 clock cycles)
control	NOP7		1	1	1	1	1	1	1	1	1	1	1	1			7	No operation (7 clock cycles)
instructions	HALT		1	1	1	1	1	1	1	1	1	0	0	0			5	Halt (stop clock)
Index	INC	Х	1	1	1	0	1	1	1	0	0	0	0	0			5	$X \leftarrow X+1$
operation		Y	1	1	1	0	1	1	1	1	0	0	0	0			5	$Y \leftarrow Y+1$
instructions	LD	X, x	1	0	1	1	x7	x6	x5	x4	x3	x2	x1	x0			5	$XH \leftarrow x7 \sim x4, XL \leftarrow x3 \sim x0$
		Ү, у	1	0	0	0	y7	y6	y5	y4	y3	y2	y1	y0			5	YH← y7~y4, YL← y3~y0
		XP, r	1	1	1	0	1	0	0	0	0	0	r1	r0			5	XP←r
		XH, r	1	1	1	0	1	0	0	0	0	1	r1	r0			5	XH←r
		XL, r	1	1	1	0	1	0	0	0	1	0	r1	r0			5	XL←r
		YP, r	1	1	1	0	1	0	0	1	0	0	r1	r0			5	YP←r
		YH, r	1	1	1	0	1	0	0	1	0	1	r1	r0			5	YH←r
		YL, r	1	1	1	0	1	0	0	1	1	0	r1	r0			5	YL←r
		r, XP	1	1	1	0	1	0	1	0	0	0	r1	r0			5	r←XP
		r, XH	1	1	1	0	1	0	1	0	0	1	r1	r0			5	r←XH
		r, XL	1	1	1	0	1	0	1	0	1	0	r1	r0			5	r←XL
		r, YP	1	1	1	0	1	0	1	1	0	0	r1	r0			5	r←YP
		r, YH	1	1	1	0	1	0	1	1	0	1	r1	r0			5	r←YH
		r, YL	1	1	1	0	1	0	1	1	1	0	r1	r0			5	r←YL
	ADC	XH, i	1	0	1	0	0	0	0	0	i3	i2	i1	i0	11)	7	XH←XH+i3~i0+C
		XL, i	1	0	1	0	0	0	0	1	i3	i2	i1	i0	1	2	7	XL←XL+i3~i0+C
		YH, i	1	0	1	0	0	0	1	0	i3	i2	i1	i0	11)	7	YH← YH+i3~i0+C
							-									-		

Instruction Set (2)

	Mne-						Ope	ratic	on C	ode					Flag				
Classification	monic	Operand	В	А	9	8	7	6	5	4	3	2	1	0	IDZ	С	Cl	ock	Operation
Index	СР	XH, i	1	0	1	0	0	1	0	0	i3	i2	i1	i0	\$	\uparrow	,	7	XH-i3~i0
operation		XL, i	1	0	1	0	0	1	0	1	i3	i2	i1	i0	\$	\uparrow	,	7	XL-i3~i0
instructions		YH, i	1	0	1	0	0	1	1	0	i3	i2	i1	i0	\$	\uparrow	,	7	YH-i3~i0
		YL, i	1	0	1	0	0	1	1	1	i3	i2	i1	i0	\$	\uparrow	,	7	YL-i3~i0
Data	LD	r, i	1	1	1	0	0	0	r1	r0	i3	i2	i1	i0				5	r←i3~i0
transfer		r, q	1	1	1	0	1	1	0	0	r1	r0	q1	q0				5	$r \leftarrow q$
instructions		A, Mn	1	1	1	1	1	0	1	0	n3	n2	n1	n0				5	$A \leftarrow M(n3 \sim n0)$
		B, Mn	1	1	1	1	1	0	1	1	n3	n2	n1	n0				5	$B \leftarrow M(n3 \sim n0)$
		Mn, A	1	1	1	1	1	0	0	0	n3	n2	n1	n0			:	5	$M(n3 \sim n0) \leftarrow A$
		Mn, B	1	1	1	1	1	0	0	1	n3	n2	n1	n0				5	$M(n3 \sim n0) \leftarrow B$
	LDPX	MX, i	1	1	1	0	0	1	1	0	i3	i2	i1	i0				5	$M(X) \leftarrow i3 \sim i0, X \leftarrow X+1$
		r, q	1	1	1	0	1	1	1	0	r1	r0	q1	q0				5	$r \leftarrow q, X \leftarrow X+1$
-	LDPY	MY, i	1	1	1	0	0	1	1	1	i3	i2	i1	i0				5	$M(Y) \leftarrow i3 \sim i0, Y \leftarrow Y+1$
		r, q	1	1	1	0	1	1	1	1	r1	r0	q1	q0				5	$r \leftarrow q, Y \leftarrow Y+1$
-	LBPX	MX, l	1	0	0	1	17	<i>l</i> 6	15	<i>l</i> 4	13	12	<i>l</i> 1	10				5	$M(X) \leftarrow l 3 \sim l0, M(X+1) \leftarrow l 7 \sim l 4, X \leftarrow X+2$
Flag	SET	F, i	1	1	1	1	0	1	0	0	i3	i2	i1	i0	$\uparrow\uparrow\uparrow$	\uparrow	,	7	F←F∀i3~i0
operation	RST	F, i	1	1	1	1	0	1	0	1	i3	i2	i1	i0	$\downarrow \downarrow \downarrow \downarrow$	\downarrow		7	F←F∧i3~i0
instructions	SCF		1	1	1	1	0	1	0	0	0	0	0	1		\uparrow		7	C←1
-	RCF		1	1	1	1	0	1	0	1	1	1	1	0		\downarrow	,	7	C←0
-	SZF		1	1	1	1	0	1	0	0	0	0	1	0	\uparrow		,	7	Z←1
-	RZF		1	1	1	1	0	1	0	1	1	1	0	1	\downarrow		,	7	Z←0
-	SDF		1	1	1	1	0	1	0	0	0	1	0	0	Ŷ		,	7	D←1 (Decimal Adjuster ON)
-	RDF		1	1	1	1	0	1	0	1	1	0	1	1	\downarrow		,	7	D←0 (Decimal Adjuster OFF)
-	EI		1	1	1	1	0	1	0	0	1	0	0	0	↑		,	7	$I \leftarrow 1$ (Enables Interrupt)
-	DI		1	1	1	1	0	1	0	1	0	1	1	1	\downarrow		,	7	$I \leftarrow 0$ (Disables Interrupt)
Stack	INC	SP	1	1	1	1	1	1	0	1	1	0	1	1			:	5	SP← SP+1
operation	DEC	SP	1	1	1	1	1	1	0	0	1	0	1	1				5	SP← SP-1
instructions	PUSH	r	1	1	1	1	1	1	0	0	0	0	r1	r0				5	$SP \leftarrow SP-1, M(SP) \leftarrow r$
		XP	1	1	1	1	1	1	0	0	0	1	0	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow XP$
		XH	1	1	1	1	1	1	0	0	0	1	0	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow XH$
		XL	1	1	1	1	1	1	0	0	0	1	1	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow XL$
		YP	1	1	1	1	1	1	0	0	0	1	1	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow YP$
		YH	1	1	1	1	1	1	0	0	1	0	0	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow YH$
		YL	1	1	1	1	1	1	0	0	1	0	0	1				5	$SP \leftarrow SP-1, M(SP) \leftarrow YL$
		F	1	1	1	1	1	1	0	0	1	0	1	0				5	$SP \leftarrow SP-1, M(SP) \leftarrow F$
-	POP	r	1	1	1	1	1	1	0	1	0	0	r1	r0				5	$r \leftarrow M(SP), SP \leftarrow SP+1$
		XP	1	1	1	1	1	1	0	1	0	1	0	0				5	$XP \leftarrow M(SP), SP \leftarrow SP+1$
		XH	1	1	1	1	1	1	0	1	0	1	0	1				5	$XH \leftarrow M(SP), SP \leftarrow SP+1$
		XL	1	1	1	1	1	1	0	1	0	1	1	0				5	$XL \leftarrow M(SP), SP \leftarrow SP+1$
		YP	1	1	1	1	1	1	0	1	0	1	1	1				5	$YP \leftarrow M(SP), SP \leftarrow SP+1$

Instruction Set (3)

Classification	Mne-	Onerend					Оре	ratio	n C	ode					Flag	Naak	Oncertion
Classification	monic	Operand	В	А	9	8	7	6	5	4	3	2	1	0	IDZC	Clock	Operation
Stack	POP	YH	1	1	1	1	1	1	0	1	1	0	0	0		5	$YH \leftarrow M(SP), SP \leftarrow SP+1$
operation		YL	1	1	1	1	1	1	0	1	1	0	0	1		5	$YL \leftarrow M(SP), SP \leftarrow SP+1$
instructions		F	1	1	1	1	1	1	0	1	1	0	1	0	$\uparrow \uparrow \uparrow \uparrow \uparrow$	5	$F \leftarrow M(SP), SP \leftarrow SP+1$
	LD	SPH, r	1	1	1	1	1	1	1	0	0	0	r1	r0		5	SPH← r
		SPL, r	1	1	1	1	1	1	1	1	0	0	r1	r0		5	$SPL \leftarrow r$
		r, SPH	1	1	1	1	1	1	1	0	0	1	r1	r0		5	r←SPH
		r, SPL	1	1	1	1	1	1	1	1	0	1	r1	r0		5	$r \leftarrow SPL$
Arithmetic	ADD	r, i	1	1	0	0	0	0	r1	r0	i3	i2	i1	i0	★ ↓ ↓	7	r←r+i3~i0
instructions		r, q	1	0	1	0	1	0	0	0	r1	r0	q1	q0	★ ↓ ↓	7	r←r+q
	ADC	r, i	1	1	0	0	0	1	r1	r0	i3	i2	i1	i0	★ ↓ ↓	7	r←r+i3~i0+C
		r, q	1	0	1	0	1	0	0	1	r1	r0	q1	q0	★ ↓ ↓	7	$r \leftarrow r + q + C$
	SUB	r, q	1	0	1	0	1	0	1	0	r1	r0	q1	q0	★ ↓ ↓	7	r←r-q
	SBC	r, i	1	1	0	1	0	1	r1	r0	i3	i2	i1	i0	★ ↓ ↓	7	r←r-i3~i0-C
		r, q	1	0	1	0	1	0	1	1	r1	r0	q1	q0	★ ↓ ↓	7	r←r-q-C
	AND	r, i	1	1	0	0	1	0	r1	r0	i3	i2	i1	i0	\uparrow	7	r←r∧i3~i0
		r, q	1	0	1	0	1	1	0	0	r1	r0	q1	q0	\uparrow	7	$r \leftarrow r \land q$
	OR	r, i	1	1	0	0	1	1	r1	r0	i3	i2	i1	i0	\uparrow	7	r←r∀i3~i0
		r, q	1	0	1	0	1	1	0	1	r1	r0	q1	q0	\uparrow	7	r←r∨q
	XOR	r, i	1	1	0	1	0	0	r1	r0	i3	i2	i1	i0	\uparrow	7	r←r∀i3~i0
		r, q	1	0	1	0	1	1	1	0	r1	r0	q1	q0	\uparrow	7	$r \leftarrow r \forall q$
	СР	r, i	1	1	0	1	1	1	r1	r0	i3	i2	i1	i0	\uparrow \uparrow	7	r-i3~i0
		r, q	1	1	1	1	0	0	0	0	r1	r0	q1	q0	\uparrow \uparrow	7	r-q
	FAN	r, i	1	1	0	1	1	0	r1	r0	i3	i2	i1	i0	\uparrow	7	r∧i3~i0
		r, q	1	1	1	1	0	0	0	1	r1	r0	q1	q0	\uparrow	7	r∧q
	RLC	r	1	0	1	0	1	1	1	1	r1	r0	r1	r0	\uparrow \uparrow	7	$d3 \leftarrow d2, d2 \leftarrow d1, d1 \leftarrow d0, d0 \leftarrow C, C \leftarrow d3$
	RRC	r	1	1	1	0	1	0	0	0	1	1	r1	r0	\uparrow \uparrow	5	$d3 \leftarrow C, d2 \leftarrow d3, d1 \leftarrow d2, d0 \leftarrow d1, C \leftarrow d0$
	INC	Mn	1	1	1	1	0	1	1	0	n3	n2	n1	n0	\uparrow \uparrow	7	$M(n3 \sim n0) \leftarrow M(n3 \sim n0) + 1$
	DEC	Mn	1	1	1	1	0	1	1	1	n3	n2	n1	n0	\uparrow \uparrow	7	$M(n3 \sim n0) \leftarrow M(n3 \sim n0) - 1$
	ACPX	MX, r	1	1	1	1	0	0	1	0	1	0	r1	r0	★ ↓ ↓	7	$M(X) \leftarrow M(X)+r+C, X \leftarrow X+1$
	ACPY	MY, r	1	1	1	1	0	0	1	0	1	1	r1	r0	★ ↓ ↓	7	$M(Y) \leftarrow M(Y) + r + C, Y \leftarrow Y + 1$
	SCPX	MX, r	1	1	1	1	0	0	1	1	1	0	r1	r0	★ ↓ ↓	7	$M(X) \leftarrow M(X)$ -r-C, $X \leftarrow X+1$
	SCPY	MY, r	1	1	1	1	0	0	1	1	1	1	r1	r0	★ ↓ ↓	7	$M(Y) \leftarrow M(Y)$ -r-C, $Y \leftarrow Y$ +1
	NOT	r	1	1	0	1	0	0	r1	r0	1	1	1	1	\uparrow	7	$r \leftarrow \overline{r}$

Abbreviations used in the explanations have the following meanings.

Symbolo accepted with	Δ	A regi	ster				
Symbols associated with							
registers and memory	XXHL register (low order eight bits of index regis					x register	
	IX)						
			egister	· (low	order	eight bits of index	ζ.
	register IY)						
	XHXH register (high order four bits of XHL regi					egister)	
	XLXL register (low order four bits of XHL register)						
	YH YH register (high order four bits of YHL register)					egister)	
	YL				ister)		
	ХР	XP reg	gister	(high (order	four bits of index	
	register IX)						
	YPYP register (high order four bits of index						
	register IY)						
	SP Stack pointer SP						
	SPH High-order four bits of stack pointer SP						
	SPL Low-order four bits of stack pointer SP						
	MX, M(X) Data memory whose address is specified with index register IX						
	MY, M(Y) Data memory whose address is specified with					with	
	index register IY					WICH	
	Mn, M(n) Data memory address 000H–00FH (address					ess	
	specified with immediate data n of 00H–0FH)						
	M(SP) Data memory whose address is specified with				with		
		stack	pointe	er SP			
	r, q Two-bit register code						
	r, q is two-bit immediate data; according to the						
	contents of these bits, they indicate registers A,						
	B, and MX and MY (data memory whose ad-						
	dresses are specified with index registers IX and						
	IY)				1		
			r		9	Registers specified	
		r1	r0	q1	0p		
			0	0	0	A	
		0	1	0	1	В	

0

1

1

1

1

1

0

1

MX

MY

Symbols associated with	NBP New bank pointer
program counter	NPP New page pointer
	PCB Program counter bank
	PCP Program counter page
	PCS Program counter step
	PCSH Four high order bits of PCS
	PCSL Four low order bits of PCS
Symbols associated with	F Flag register (I, D, Z, C)
	C Carry flag
	Z Zero flag
	D Decimal flag
	I Interrupt flag
	↓Flag reset
	↑ Flag set
	↓ Flag set or reset
Associated with	p Five-bit immediate data or label 00H–1FH
immediate data	s Eight-bit immediate data or label 00H–0FFH
	l Eight-bit immediate data 00H–0FFH
	i Four-bit immediate data 00H–0FH

Associated with	+ Add
arithmetic and other	Subtract
operations	∧ Logical AND
	∨ Logical OR
	∀ Exclusive-OR
	\star Add-subtract instruction for decimal operation
	when the D flag is set

APPENDIX C PSEUDO-INSTRUCTION TABLE OF THE CROSS ASSEMBLER

Item No.	Pseudo-instruction	Meaning		Example of	Use
1	EQU	To allocate data to label	ABC	EQU	9
	(Equation)		BCD	EQU	ABC+1
2	ORG	To define location counter	ORG	100H	
	(Origin)		ORG	256	
3	SET	To allocate data to label	ABC	SET	0001H
	(Set)	(data can be changed)			
			ABC	SET	0002H
4	DW	To define ROM data	ABC	DW	'AB'
	(Define Word)				
			BCD	DW	0FFBH
5	PAGE	To define boundary of page		PAGE	1H
C C	(Page)	To define country of Page		11102	
				PAGE	15
6	SECTION	To define boundary of section		SECTION	N
-	(Section)				
7	END	To terminate assembly		END	
	(End)				
8	MACRO	To define macro		CHECK	1
	(Macro)				
9	LOCAL	To make local specification of	CHECK	MACRO	DATA
	(Local)	label during macro definition	LOCAL		
			LOOP	СР	MX,DATA
				JP	NZ,LOOP
10	ENDM	To end macro definition			
	(End Macro)			ENDM	

APPENDIX D

COMMAND TABLE OF ICE6200

Item No.	Function	Command Format	Outline of Operation
1	Assemble	#A,a 🞜	Assemble command mnemonic code and store at address "a"
2	Disassemble	#L,a1,a2 🖵	Contents of addresses a1 to a2 are disassembled and displayed
3	Dump	#DP,a1,a2 🖵	Contents of program area a1 to a2 are displayed
		#DD,a1,a2 J	Content of data area a1 to a2 are displayed
4	Fill	#FP,a1,a2,d 🖵	Data d is set in addresses a1 to a2 (program area)
		#FD,a1,a2,d 🖵	Data d is set in addresses a1 to a2 (data area)
5	Set	#G,a Program is executed from the "a" address	
	Run Mode	#TIM J	Execution time and step counter selection
		#OTFJ	On-the-fly display selection
6	Trace	#T,a,n 🖵	Executes program while displaying results of step instruction
			from "a" address
		#U,a,n 🖵	Displays only the final step of #T,a,n
7	Break	#BA,a 🖵	Sets Break at program address "a"
		#BAR,a 🖵	Breakpoint is canceled
		#BDJ	Break condition is set for data RAM
		#BDR ┛	Breakpoint is canceled
		#BR J	Break condition is set for EVA62XXCPU internal registers
		#BRR J	Breakpoint is canceled
		#BM J	Combined break conditions set for program data RAM address
			and registers
		#BMR J	Cancel combined break conditions for program data ROM
			address and registers
		#BRES J	All break conditions canceled
		#BC J	Break condition displayed
		#BE J	Enter break enable mode
		#BSYN J	Enter break disable mode
		#BT J	Set break stop/trace modes
		#BRKSEL,REM 🖵	Set BA condition clear/remain modes
8	Move	#MP,a1,a2,a3 🚽	Contents of program area addresses a1 to a2 are moved to
			addresses a3 and after
		#MD,a1,a2,a3 🖵	Contents of data area addresses a1 to a2 are moved to addresses
			a3 and after
9	Data Set	#SP,a 🚽	Data from program area address "a" are written to memory
		#SD,aJ	Data from data area address "a" are written to memory
10	Change CPU	#DR J	Display EVA62XXCPU internal registers
	Internal	#SR J	Set EVA62XXCPU internal registers
	Registers	#I 🖵	Reset EVA62XXCPU
		#DXY J	Display X, Y, MX and MY
		#SXYJ	Set data for X and Y display and MX, MY

Item No.	Function	Command Format	Outline of Operation
11	History	#H,p1,p2 🖵	Display history data for pointer 1 and pointer 2
		#HB 🖵	Display upstream history data
		#HG J	Display 21 line history data
		#HP 🕽	Display history pointer
		#HPS,a 🖵	Set history pointer
		#HC,S/C/EJ	Sets up the history information acquisition before (S),
			before/after (C) and after (E)
		#HA,a1,a2 🖵	Sets up the history information acquisition from program area
			a1 to a2
		#HAR,a1,a2 🖵	Sets up the prohibition of the history information acquisition
			from program area a1 to a2
		#HAD J	Indicates history acquisition program area
		#HS,a 🖵	Retrieves and indicates the history information which executed
			a program address "a"
		#HSW,a 🖵	Retrieves and indicates the history information which wrote or
		#HSR,a 🖵	read the data area address "a"
12	File	#RF,file 🖵	Move program file to memory
		#RFD,file 🖵	Move data file to memory
		#VF,file 🖵	Compare program file and contents of memory
		#VFD,file 🖵	Compare data file and contents of memory
		#WF,file 🖵	Save contents of memory to program file
		#WFD,file 🖵	Save contents of memory to data file
		#CL,file 🖵	Load ICE6200 set condition from file
		#CS,file 🖵	Save ICE6200 set condition to file
13	Coverage	#CVDJ	Indicates coverage information
		#CVR J	Clears coverage information
14	ROM Access	#RP J	Move contents of ROM to program memory
		#VPJ	Compare contents of ROM with contents of program memory
		#ROM J	Set ROM type
15	Terminate	#QJ	Terminate ICE and return to operating system control
	ICE		
16	Command	#HELP J	Display ICE6200 instruction
	Display		
17	Self	#CHK J	Report results of ICE6200 self diagnostic test
	Diagnosis		

I means press the RETURN key.

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A. Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -Riesstrasse 15 80992 Muenchen, GERMANY Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

SALES OFFICE Altstadtstrasse 176 51379 Leverkusen, GERMANY

Phone: +49-(0)217-15045-0

UK BRANCH OFFICE

2.4 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

Fax: +49-(0)217-15045-10

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -

EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan ChaoYang District, Beijing, CHINA Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

 10F, No. 287, Nanking East Road, Sec. 3

 Taipei, TAIWAN, R.O.C.

 Phone: 02-2717-7360
 Fax: 02-2712-9164

 Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2 HsinChu 300, TAIWAN, R.O.C. Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD. No. 1 Temasek Avenue. #36-00

Millenia Tower, SINGAPORE 039192 Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-Dong Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "**Saving**" **Technology**, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings**.

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

EPSON Electronic Devices Website http://www.epson.co.jp/device/