E0C6235 Technical Hardware E0C6235 Technical Software

NOTICE
No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency. Please note that "EOC" is the new name for the old product "SMC". If "SMC" appears in other manuals understand that it now reads "EOC".

PREFACE

This manual is individualy described about the hardware and the software of the E0C6235.

I. E0C6235 Technical Hardware

This part explains the function of the E0C6235, the circuit configurations, and details the controlling method.

II. E0C6235 Technical Software

This part explains the programming method of the E0C6235.

I.
 Technical Hardware

CONIENIS

CHAPIER 1 OVERVIEW. I-1
1.1 Configuration I-1
1.2 Features I-2
1.3 Block Diagram I-3
1.4 Pin Layout Diagram I-4
1.5 Pin Description I-6
CHAPIER 2 POWER SUPPLY AND INITIAL RESET I-8
2.1 Power Supply I-8
2.2 Initial Reset I-9
Oscillation detection circuit I-10
Reset terminal (RESET) I-10
Simultaneous high input to input ports (KOO-K03) I-10
Watchdog timer I-11
Internal register at initial reset I-11
2.3 Test Terminal (TEST) I-11
CHAPIER 3 CPU, ROM, RAM I-12
3.1 CPU I-12
3.2 ROM I-13
3.3 RAM I-14
CHAPIER 4 PERIPHERALCIRCUITS AND OPERATION I-15
4.1 Memory Map I-15
4.2 Resetting Watchdog Timer I-21
Configuration of watchdog timer I-21
Mask option I-21
Control of watchdog timer I-22
Programming note I-22
4.3 Oscillation Circuit and Prescaler I-23
OSC1 oscillation circuit I-23
OSC3 oscillation circuit I-23
Configuration of oscillation circuit and prescaler I-25
Control of oscillation circuit and prescaler I-26
Programming notes I-27
4.4 Input Ports (K00-K03, K10, K20-K23) I-28
Configuration of input ports I-28
Input comparison registers and interrupt function I-29
Mask option I-33
Control of input ports I-34
Programming notes I-36
4.5 Output Ports (R00-R03, R10-R13) I-38
Configuration of output ports I-38
Mask option I-39
Control of output ports I-43
Programming note I-45
4.6 I/O Ports (P00-P03, P10-P13) I-46
Configuration of I/O ports I-46
I/O control register and I/O mode I-47
Mask option I-47
Control of I/O ports I-48
Programming notes I-50
4.7 Serial Interface (SIN, SOUT, SCLK) I-51
Configuration of serial interface I-51
Master mode and slave mode of serial interface I-52
Data input/output and interrupt function I-54
Mask option I-58
Control of serial interface I-59
Programming notes I-63
4.8 LCD Driver (COM0-COM3, SEG0-SEG47) I-64
Configuration of LCD driver I-64
Switching between dynamic and static drive I-67
Mask option (segment allocation) I-68
Control of LCD driver I-70
Programming notes I-71
4.9 Clock Timer I-72
Configuration of clock timer I-72
Interrupt function I-73
Control of clock timer I-74
Programming notes I-76
4.10 Stopwatch Timer I-77
Configuration of stopwatch timer I-77
Count-up pattern I-78
Interrupt function I-79
Control of stopwatch timer I-80
Programming notes I-83
4.11 Sound Generator I-84
Configuration of sound generator I-84
Frequency setting I-85
Digital envelop I-86
Mask option I-88
Control of sound generator I-89
Programming note I-91
4.12 Event Counter I-92
Configuration of event counter I-92
Switching count mode I-93
Mask option I-94
Control of event counter I-95
Programming notes I-98
4.13 Analog Comparator I-99
Configuration of analog comparator I-99
Operation of analog comparator I-99
Control of analog comparator I-100
Programming notes I-101
4.14 Battery Life Detection (BLD) Circuit I-102
Configuration of BLD circuit I-102
Programmable selection of evaluation voltage I-103
Detection timing of BLD circuit I-103
Control of BLD circuit I-106
Programing notes I-109
4.15 Heavy Load Protection Function and Sub-BLD Circuit I-110
Configuration and operation of heavy load protection function I- 110
Operation of sub-BLD circuit I-1 12
Control of heavy load protection function and sub-BLD circuit I-113
Programming notes I-117
4.16 Interrupt and HALT I-1 19
Interrupt factors I-121
Specific masks and factor flags for interrupt I-122
Interrupt vectors I-123
Control of interrupt and HALT I-124
Programming notes I-126
CHAPTER 5 SUMMARY OF NOTES I-127
5.1 Notes for Low Current Consumption I-127
5.2 Summary of Notes by Function I-128
CHAPTER 6 DIAGRAM OF BASIC EXTERNAL CONNECTIONS I-136
CHAPTER 7 ELECTRICAL CHARACTERISTICS I- 139
7.1 Absolute Maximum Rating I-139
7.2 Recommended Operating Conditions I- 140
7.3 DC Characteristics I-141
7.4 Analog Circuit Characteristics and Consumed Current I-143
7.5 Oscillation Characteristics I- 149
CHAPTER 8 PACKAGE I-153
8.1 Plastic Package I-153
8.2 Ceramic Package for Test Samples I-155
CHAPTER 9 PAD LAYOUT I-156
9.1 Diagram of Pad Layout I-156
9.2 Pad Coordinates I-157

CHAPTER 1

OVERVIEW

The E0C6235 Series is a single-chip microcomputer made up of the 4-bit core CPU E0C6200, ROM (4,096 words, 12 bits to a word), RAM (576 words, 4 bits to a word) LCD driver, serial interface, event counter with dial input function, watchdog timer, and two types of time base counter. Because of its low-voltage operation and low power consumption, this series is ideal for a wide range of applications, and is especially suitable for battery-driven systems.

1.1 Configuration

The E0C6235 Series is configured as follows, depending on supply voltage and oscillation circuits.

Model	E0C6235	E0C62L35	E0C62A35
Supply voltage	3.0 V	1.5 V	3.0 V
Oscillation circuits	OSC1 only (Single clock)	OSC1 only (Single clock)	OSC1 and OSC3 (Twin clock)

1.2 Features

1.3 Block Diagram

Fig. 1.3.1
Block diagram

1.4 Pin Layout Diagram

F100-5

Fig. 1.4.1
Pin assignment

Pin No.	Pin Name						
1	COM1	26	SEG24	51	SEG0	76	P10
2	COM0	27	TEST	52	AMPP	77	R03
3	SEG47	28	SEG23	53	AMPM	78	R02
4	SEG46	29	SEG22	54	K23	79	R01
5	SEG45	30	SEG21	55	K22	80	R00
6	SEG44	31	SEG20	56	K21	81	R12
7	SEG43	32	SEG19	57	K20	82	R11
8	SEG42	33	SEG18	58	K10	83	R10
9	SEG41	34	SEG17	59	K03	84	R13
10	SEG40	35	SEG16	60	K02	85	Vss
11	SEG39	36	SEG15	61	K01	86	RESET
12	SEG38	37	SEG14	62	K00	87	OSC4
13	SEG37	38	SEG13	63	SIN	88	OSC3
14	SEG36	39	SEG12	64	SOUT	89	VS1
15	SEG35	40	SEG11	65	N.C.	90	OSC2
16	SEG34	41	SEG10	66	SCLK	91	OSC1
17	SEG33	42	SEG9	67	P03	92	VDD
18	SEG32	43	SEG8	68	P02	93	VL3
19	SEG31	44	SEG7	69	P01	94	VL2
20	SEG30	45	SEG6	70	P00	95	VL1
21	SEG29	46	SEG5	71	N.C.	96	CA
22	SEG28	47	SEG4	72	N.C.	97	CB
23	SEG27	48	SEG3	73	P13	98	CC
24	SEG26	49	SEG2	74	P12	99	COM3
25	SEG25	50	SEG1	75	P11	100	COM2

F100-15

Fig. 1.4.2
Pin assignment

Pin No.	Pin Name						
1	SEG47	26	SEG23	51	AMPPP	76	R02
2	SEG46	27	SEG22	52	AMPM	77	R01
3	SEG45	28	SEG21	53	K23	78	R00
4	SEG44	29	SEG20	54	K22	79	R12
5	SEG43	30	SEG19	55	K21	80	R11
6	SEG42	31	SEG18	56	K20	81	R10
7	SEG41	32	SEG17	57	K10	82	R13
8	SEG40	33	SEG16	58	K03	83	VSS
9	SEG39	34	SEG15	59	K02	84	RESET
10	SEG38	35	SEG14	60	K01	85	OSC4
11	SEG37	36	SEG13	61	K00	86	OSC3
12	SEG36	37	SEG12	62	SIN	87	VS1
13	SEG35	38	N.C.	63	SOUT	88	OSC2
14	SEG34	39	SEG11	64	N.C.	89	OSC1
15	SEG33	40	SEG10	65	SCLK	90	VDD
16	SEG32	41	SEG9	66	N.C.	91	VL3
17	SEG31	42	SEG8	67	P03	92	VL2
18	SEG30	43	SEG7	68	P02	93	VL1
19	SEG29	44	SEG6	69	P01	94	CA
20	SEG28	45	SEG5	70	P00	95	CB
21	SEG27	46	SEG4	71	P13	96	CC
22	SEG26	47	SEG3	72	P12	97	COM3
23	SEG25	48	SEG2	73	P11	98	COM2
24	SEG24	49	SEG1	74	P10	99	COM1
25	TEST	50	SEG0	75	R03	100	COM0

(F100-15)
N.C.=No Connection

1.5 Pin Description

F100-5

Table 1.5.1 Pin description (F100-5)

Pin Name	Pin Number	Input/output	Function
VDD	92	(I)	Power source positive terminal
Vss	85	(I)	Power source negative terminal
Vs1	89	-	Constant voltage output terminal for oscillation
VL1	95	-	Constant voltage output terminal for LCD (approx. -1.05 V)
VL2	94	-	Booster output terminal for LCD ($\mathrm{VLL}^{\times 2}$)
VL3	93	-	Booster output terminal for LCD (VL1 $\times 3$)
CA-CC	96-98	-	Booster condenser connector terminal
OSC1	91	I	Crystal oscillator input terminal
OSC2	90	O	Crystal oscillator output terminal
OSC3	88	I	* 1
OSC4	87	O	* 1
K00-23	54-62	I	Input terminal
P00-13	67-70, 73-76	I/O	Input/output terminal
R00-03	77-80	O	Output terminal
R10	83	O	Output terminal (Can output BZ through mask option)
R13	84	O	Output terminal (Can output $\overline{\mathrm{BZ}}$ through mask option)
R11	82	O	Output terminal (Can output SIOF through mask option)
R12	81	O	Output terminal (Can output FOUT through mask option)
SIN	63	I	Serial interface input terminal
SOUT	64	O	Serial interface output terminal
SCLK	66	I/O	Input/output terminal for serial interface clock
AMPP	52	I	Analog comparator noninverted input terminal
AMPM	53	I	Analog comparator inverted input terminal
SEG0-47	$\begin{aligned} & 3-26, \\ & 28-51 \end{aligned}$	O	LCD segment output terminal (DC output available through mask option)
COM0-3	1, 2, 99, 100	O	LCD common output terminal
RESET	86	I	Initial resetting input terminal
TEST	27	I	Test input terminal

*1 6235/62L35: N.C. (Not connected)
62A35: CR or ceramic oscillation input terminal (Switchable through mask option)

F100-15

Table 1.5.2 Pin description (F100-15)

Pin Name	Pin Number	Inputoutput	
VDD	90	()	Power source positive terminal
Vss	83	()	Power source negative terminal
Vs1	87	-	Constant voltage output terminal for oscillation
VL1	93	-	Constant voltage output terminal for LCD (approx. -1.05 V)
VL2	92	-	Booster output terminal for LCD (VL1 $\times 2$ 2)
VL3	91	-	Booster output terminal for LCD (VL1 $\times 3$)
CA-CC	$94-96$	-	Booster condenser connector terminal
OSC1	89	I	Crystal oscillator input terminal
OSC2	88	O	Crystal oscillator output terminal
OSC3	86	I	*1
OSC4	85	O	*1
K00-23	$53-61$	I	Input terminal
P00-13	$67-74$	I/O	Input/output terminal
R00-03	$75-78$	O	Output terminal
R10	81	O	Output terminal (Can output BZ through mask option)
R13	82	O	Output terminal (Can output $\overline{\text { BZ through mask option) }}$
R11	80	O	Output terminal (Can output SIOF through mask option)
R12	79	O	Output terminal (Can output FOUT through mask option)
SIN	62	I	Serial interface input terminal
SOUT	63	O	Serial interface output terminal
SCLK	65	I/O	Input/output terminal for serial interface clock
AMPP	51	I	Analog comparator noninverted input terminal
AMPM	52	I	Analog comparator inverted input terminal
SEG0-47	$1-24$,	O	LCD segment output terminal (DC output available through mask option)
COM0-3	$96-50$		O
RESET	84	LCD common output terminal	
TEST	25	Initial resetting input terminal	

*1 6235/62L35: N.C. (Not connected)
62A35: \quad CR or ceramic oscillation input terminal
(Switchable through mask option)

CHAPTER 2

POWER SUPPLY AND INITIAL RESET

2.1 Power Supply

With a single external power supply (*1) supplied to VDD through Vss, the E0C6235 Series generates the necessary internal voltage with the regulated voltage circuit (<Vsı $1>$ for oscillators, <VLl> for LCDs) and the voltage booster circuit (<VL2, VL3> for LCDs).
Figure 2.1 .1 shows the configuration of power supply.
*1 Supply voltage: 6235/62A35 .. 3 V, 62L35 .. 1.5 V

Notes - External loads cannot be driven by the regulated voltage and voltage booster circuit's output voltage.

- See "7 ELECTRICAL CHARACTERISTICS" for voltage values.

Fig. 2.1.1
Configuration of power supply

2.2 Initial Reset

To initialize the E0C6235 Series circuits, initial reset must be executed. There are four ways of doing this.
(1) Initial reset by the oscillation detection circuit
(2) External initial reset by the RESET terminal
(3) External initial reset by simultaneous high input to terminals K00-K03
(4) Initial reset by watchdog timer

Figure 2.2 .1 shows the configuration of the initial reset circuit.

Fig. 2.2.1

Oscillation detection circuit

The oscillation detection circuit outputs the initial reset signal at power-on until the crystal oscillation circuit (OSC1) begins oscillating, or when this crystal oscillation circuit (OSC1) halts oscillating for some reason. However, depending on the power-on sequence (voltage rise timing), the circuit may not work properly. Therefore, use the reset terminal or reset by simultaneous high input to the input port (KOO-KO3) for initial reset after turning power on.

Reset terminal (RESET)

Initial reset can be executed externally by setting the reset terminal to the high level. This high level must be maintained for at least 5 msec (when oscillating frequency is foscl $=32 \mathrm{kHz}$), because the initial reset circuit contains a noise rejector. When the reset terminal goes low the CPU begins to operate.

Simultaneous high input to input ports (KOO-KO3)

Another way of executing initial reset externally is to input a high signal simultaneously to the input ports (KOO-K03) selected with the mask option. The specified input port terminals must be kept high for at least 5 msec (when oscillating frequency is $\mathrm{fOSC} 1=32 \mathrm{kHz}$), because the initial reset circuit contains a noise rejector. Table 2.2 .1 shows the combinations of input ports (K00-K03) that can be selected with the mask option.

A	Not used
B	K00*K01
C	$\mathrm{K} 00 * \mathrm{KO1} * \mathrm{KO2}$
D	$\mathrm{K} 00 * \mathrm{KO1} * \mathrm{KO2} * \mathrm{KO3}$

When, for instance, mask option D (K00*K01*K02*K03) is selected, initial reset is executed when the signals input to the four ports K00-K03 are all high at the same time.

Further, the time authorize circuit can be selected with the mask option. The time authorize circuit performs initial reset, when the input time of the simultaneous high input is authorized and found to be the same or more than the defined time (1 to 2 sec).

If you use this function, make sure that the specified ports do not go high at the same time during ordinary operation.

If the CPU runs away for some reason, the watchdog timer will detect this situation and output an initial reset signal. See "4.2 Resetting Watchdog Timer" for details.

Internal register at

 initial reset| Table 2.2.2 | CPU Core | | | |
| :--- | :--- | :---: | :---: | :---: |
| | Name | Symbol | Number of bits | Setting value |
| | Program counter step | PCS | 8 | 00 H |
| | Program counter page | PCP | 4 | 1 H |
| | New page pointer | NPP | 4 | 1 H |
| | Stack pointer | SP | 8 | Undefined |
| | Index register X | X | 10 | Undefined |
| | Index register Y | Y | 10 | Undefined |
| | Register pointer | RP | 4 | Undefined |
| | General-purpose register A | A | 4 | Undefined |
| | General-purpose register B | B | 4 | Undefined |
| | Interrupt flag | I | 1 | 0 |
| | Decimal flag | D | 1 | Undefined |
| | Zero flag | Z | 1 | Undefined |
| Carry flag | C | 1 | Undefined | |

Peripheral circuits		
Name	Number of bits	Setting value
RAM	4	Undefined
Segment data	4	Undefined
Other peripheral circuit	4	$* 1$

*1 See "4.1 Memory Map"

2.3 Test Terminal (TEST)

This terminal is used when the IC load is being detected. During ordinary operation be certain to connect this terminal to Vss.

CHAPTER 3 CPU, ROM, RAM

3.1 CPU

The E0C6235 Series employs the core CPU E0C6200 for the CPU, so that register configuration, instructions and so forth are virtually identical to those in other family processors using the E0C6200.
Refer to "E0C6200 Core CPU Manual" for details about the E0C6200.
Note the following points with regard to the E0C6235 Series:
(1) The SLEEP operation is not assumed, so the SLP instruction cannot be used.
(2) Because the ROM capacity is 4,096 words, bank bits are unnecessary and PCB and NBP are not used.
(3) RAM is set up to two pages, so only the two low-order bits are valid for the page portion (XP, YP) of the index register that specifies addresses.
(The two high-order bits are ignored.)

3.2 ROM

The built-in ROM, a mask ROM for loading the program, has a capacity of 4,096 steps, 12 bits each. The program area is 16 pages ($0-15$), each of 256 steps ($00 \mathrm{H}-\mathrm{FFH}$). After initial reset, the program beginning address is page 1 , step 00 H . The interrupt vector is allocated to page 1 , steps $01 \mathrm{H}-0 \mathrm{FH}$.

Fig. 3.2.1
ROM configuration

3.3 RAM

The RAM, a data memory storing a variety of data, has a capacity of 576 words, each of four bits. When programming, keep the following points in mind.
(1) Part of the data memory can be used as stack area when subroutine calls and saving registers, so be careful not to overlap the data area and stack area.
(2) Subroutine calls and interrupts take up three words of the stack area.
(3) The data memory $000 \mathrm{H}-00 \mathrm{FH}$ is for the register pointers (RP), and is the addressable memory register area.

See "4.1 Memory Map" for details.

CHAPTER 4

PERIPHERAL CIRCUITS AND OPERATION

Peripheral circuits (timer, I/O, and so on) of the E0C6235
Series are memory mapped, and interfaced with the CPU. Thus, all the peripheral circuits can be controlled by using the memory operation command to access the I/O memory in the memory map.
The following sections describe how the peripheral circuits operation.

4.1 Memory Map

Data memory of the E0C6235 Series has an address space of 608 words (656 words when display memory is laid out over two pages), of which 48 words are allocated to display memory and 32 words to I/O memory.
Figures 4.1.1(a)-(c) present the overall memory maps of the E0C6235 Series, and Tables 4.1.1(a)-(c) the peripheral circuits' (I/O space) memory maps.

Fig. 4.1.1(a)
Memory map (page 0,1)

Fig. 4.1.1(b)
Memory map (page2)

Address Page		0	1	2	3	4		5	6		7	8	9	A	B	C	D	E	F
2	0	RAM (64 words $\times 4$ bits) R/W																	
	1																		
	2																		
	3																		
	4	Unused area																	
	5																		
	6																		
	7																		
	8																		
	9																		
	A																		
	B																		
	C																		
	D																		
	E	I/O memory [See Tables 4.1.1(a)-(c)]																	
	F																		

Fig. 4.1.1(c) Memory map (segment area)

Notes (1) See Tables 4.1.1(a)-(c) for details of I/O memory.
(2) The mask option can be used to select whether to assign the overall area of display memory to page 0 or page 2.

When page $0(040 \mathrm{H}-06 \mathrm{FH})$ is selected, read/write is enabled.
When page $2(240 \mathrm{H}-26 \mathrm{FH})$ is selected, write only is enabled.
If page 0 is assigned, RAM (040H-06FH) is 48 words, and used as the segment area.
(3) Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

Table 4.1.1(a) I/O memory map (2EOH-2EDH)

Table 4.1.1(b) I/O memory map (2EEH-2FBH)

Table 4.1.1(c) I/O memory map (2FCH-2FFH)

4.2 Resetting Watchdog Timer

Configuration of watchdog timer

The E0C6235 Series incorporates a watchdog timer as the source oscillator for OSC1 (clock timer 2 Hz signal). The watchdog timer must be reset cyclically by the software. If reset is not executed in at least 3 or 4 seconds, the initial reset signal is output automatically for the CPU.
Figure 4.2.1 is the block diagram of the watchdog timer.

Fig. 4.2.1 Watchdog timer block diagram

The watchdog timer, configured of a three-bit binary counter (WD0-WD2), generates the initial reset signal internally by overflow of the MSB.
Watchdog timer reset processing in the program's main routine enables detection of program overrun, such as when the main routine's watchdog timer processing is bypassed. Ordinarily this routine is incorporated where periodic processing takes place, just as for the timer interrupt routine.
The watchdog timer operates in the halt mode. If the halt status continues for 3 or 4 seconds, the initial reset signal restarts operation.

Mask option

You can select whether or not to use the watchdog timer with the mask option. When "Not use" is chosen, there is no need to reset the watchdog timer.

Control of watchdog Table 4.2.1 lists the watchdog timer's control bits and their timer addresses.

Table 4.2.1 Control bits of watchdog timer

WDRST: This is the bit for resetting the watchdog timer.

Watchdog timer reset (2EFH•D3)

When " 1 " is written : Watchdog timer is reset
When " 0 " is written : No operation
Read-out : Always "0"
When " 1 " is written to WDRST, the watchdog timer is reset, and the operation restarts immediately after this. When " 0 " is written to WDRST, no operation results.
This bit is dedicated for writing, and is always " 0 " for readout.

Programming note

When the watchdog timer is being used, the software must reset it within 3 -second cycles, and timer data (WD0-WD2) cannot be used for timer applications.

4.3 Oscillation Circuit and Prescaler

OSC1 oscillation circuit

Fig. 4.3.1
OSC1 oscillation circuit

The E0C6235 Series has a built-in crystal oscillation circuit (OSC1 oscillation circuit). As an external element, the OSC1 oscillation circuit generates the operating clock for the CPU and peripheral circuitry by connecting the crystal oscillator (Typ. 32.768 kHz) and trimmer capacitor ($5-25 \mathrm{pF}$).
Figure 4.3.1 is the block diagram of the OSC1 oscillation circuit.

As Figure 4.3.1 indicates, the crystal oscillation circuit can be configured simply by connecting the crystal oscillator (X'tal) between terminals OSC1 and OSC2 to the trimmer capacitor (Cgx) between terminals OSC1 and Vdd. Also, the crystal oscillator can be connected to the 38.4 kHz oscillator in addition to the 32.768 kHz oscillator (by mask option).

In the E0C6235 Series, the E0C63A35 has twin clock specification. The mask option enables selection of either the CR or ceramic oscillation circuit (OSC3 oscillation circuit) as the CPU's subclock. Because the oscillation circuit itself is built-in, it provides the resistance as an external element when CR oscillation is selected, but when ceramic oscillation is selected both the ceramic oscillator and two capacitors (gate and drain capacitance) are required.
Figure 4.3.2 is the block diagram of the OSC3 oscillation circuit.

Fig. 4.3.2
OSC3 oscillation circuit

As indicated in Figure 4.3.2, the CR oscillation circuit can be configured simply by connecting the resistor ($\mathrm{RcR}_{\mathrm{CR}}$) between terminals OSC3 and OSC4 when CR oscillation is selected. When $82 \mathrm{k} \Omega$ is used for Rcr, the oscillation frequency is about 410 kHz . When ceramic oscillation is selected, the ceramic oscillation circuit can be configured by connecting the ceramic oscillator (Typ. 500 kHz) between terminals OSC3 and OSC4 to the two capacitors (Cgc and Cdc) located between terminals OSC3 and OSC4 and Vdd. For both Cgc and Cdc, connect capacitors that are about 100 pF . To lower current consumption of the OSC3 oscillation circuit, oscillation can be stopped through the software.

For the E0C6235 and E0C62L35 (single clock specification), do not connect anything to terminals OSC3 and OSC4.

Configuration of oscillation circuit and prescaler

The E0C6235 and E0C62L35 have one oscillation circuit (OSC1), and the E0C62A35 has two oscillation circuits (OSC1 and OSC3). OSC1 is a crystal oscillation circuit that supplies the operating clock the CPU and peripheral circuits. OSC3 is either a CR or ceramic oscillation circuit. When processing with the E0C62A35 requires high-speed operation, the CPU operating clock can be switched from OSC1 to OSC3.
Figure 4.3.3 is the block diagram of this oscillation system.

Fig. 4.3.3
Oscillation system

As Figure 4.3.3 indicates, two prescalers (demultiplier stage) are connected to the oscillation circuit.
Prescaler 1 is for 32.768 kHz and prescaler 2 is for 38.4 kHz . These can be selected through the software to suit the crystal oscillator. This selection invokes the basic signal (256 Hz) for running the clock timer, stopwatch timer, and so forth.
Also for E0C62A35, selection of either OSC1 or OSC3 for the CPU's operating clock can be made through the software.

Control of Oscillation Table 4.3.1 lists the control bits and their addresses for the circuit and prescaler oscillation circuit.

Table 4.3.1 Control bits of oscillation circuit and prescaler

OSCC: Controls oscillation ON/OFF for the OSC3 oscillation circuit. OSC3 oscillation control (E0C62A35 only.)
(2FEH•D1)
When " 1 " is written : The OSC3 oscillation ON
When " 0 " is written : The OSC3 oscillation OFF Read-out : Valid

When it is necessary to operate the CPU of the E0C62A35 at high speed, set OSCC to "1". At other times, set it to "0" to lessen the current consumption.
For E0C6235 and E0C62L35, keep OSCC set to "0". At initial reset, OSCC is set to " 0 ".

CLKCHG: The CPU's operation clock is selected with this register.
The CPU's clock switch (E0C62A35 only.)
(2FEH•D2)
When " 1 " is written : OSC3 clock is selected When " 0 " is written : OSC1 clock is selected Read-out : Valid

When the E0C62A35's CPU clock is to be OSC3, set CLKCHG to " 1 "; for OSC1, set CLKCHG to "0". This register cannot be controlled for E0C6235 and E0C62L35, so that OSC1 is selected no matter what the set value.
At initial reset, CLKCHG is set to " 0 ".

PRSM: Selects the prescaler for the crystal oscillator of the OSC1

OSC1 prescaler selection
(2FEH•D3)

When " 1 " is written :	38.4 kHz
When "0" is written :	32.768 kHz
Read-out :	Valid

Operation of the clock timer and stopwatch timer can be mode accurate by selecting this register. When the set value for this register does not suit the crystal oscillator used, the operation cycles of the previously mentioned peripheral circuitry is multiplied as shown in Table 4.3.2.

$$
\begin{array}{|c|c|}
\hline 32.768 \mathrm{kHz}, \text { PRSM }=\text { "1" } & \mathrm{T}^{\prime} \approx 1.172 \mathrm{~T} \\
\hline 38.4 \mathrm{kHz}, \text { PRSM }=\text { "0" } & \mathrm{T} \approx \approx 0.853 \mathrm{~T} \\
\hline
\end{array}
$$

At initial reset, PRSM is set to " 0 ".

Programming notes

(1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON.
Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
(2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
(3) To operate the clock timer and stopwatch timer accurately, select the prescaler of the OSC1 to match the crystal oscillator used.

4.4 Input Ports (K00-K03, K10, K20-K23)

Configuration of input ports

The E0C6235 Series has nine bits (4 bits $\times 2+1$ bit) gen-eral-purpose input ports. Each of the input port terminals (K00-K03, K10, K20-K23) provides internal pull-down resistor. Pull-down resistor can be selected for each bit with the mask option.
Figure 4.4.1 shows the configuration of input port.

Fig. 4.4.1
Configuration of input port

Selection of "With pull-down resistor" with the mask option suits input from the push switch, key matrix, and so forth. When "Gate direct" is selected, the port can be used for slide switch input and interfacing with other LSIs.

Further, the input port terminal K02 and K03 are used as the input terminals for the event counter. (See "4.12 Event Counter" for details.)

Input comparison registers and interrupt function

Fig. 4.4.2 Input interrupt circuit configuration (K00-K03, K10)

All nine bits of the input ports (K00-K03, K10, K20-K23) provide the interrupt function for the five bits, K00-KO3 and K10. The conditions for issuing an interrupt can be set by the software for the five bits, K00-K03 and K10. Further, whether to mask the interrupt function can be selected individually for all nine bits by the software.
Figure 4.4.2 shows the configuration of K00-K03 and K10.
Figure 4.4.4 shows the configuration of K20-K23.

The input interrupt timing for K00-K03 and K1O depends on the value set for the input comparison registers (KCPOOKCP03 and KCP10). Interrupt can be selected to occur at the rising or falling edge of the input.
The interrupt mask registers (EIK00-EIK03, EIK10) enables the interrupt mask to be selected individually for K00-K03 and K10. However, whereas the interrupt function is enabled inside K00-K03, the interrupt occurs when the contents change from matching those of the input comparison register to non-matching contents. Interrupt for K10 can be generated by setting the same conditions individually. When the interrupt is generated, the interrupt factor flag (IK0 and IK1) is set to " 1 ".
Figure 4.4.3 shows an example of an interrupt for K00-K03.

Fig. 4.4.3
Example of interrupt of K00-K03

	Interrupt mask register				Input comparison register			
	EIK03	EIK02	EIK01	EIK00	KCP03	KCP02	KCP01	KCP00
	1	1	1	0	1	0	1	0
With the above setting, the interrupt for K00-K03 occurs in the following conditions.								
Input port					(Initial value)			
(1)	K03	K02	K01	K00				
	1	0	1	0				
\downarrow								
(2)	K03	K02	K01	K00				
	1	0	1	1				
\downarrow								
(3)	K03	K02	K01	K00	\rightarrow Interrupt generated			
	0	0	1	1				
(4)	\downarrow				K00 is masked, so the three bits of K01-K03 cease matching those of the input comparison register KCPO1-KCP03, and an			
	K03	K02	K01	K00				
	0	1	1	1				

K00 is masked by the interrupt mask register (EIK00), so that an interrupt does not occur at (2). At (3), K03 changes to " 0 "; the data of the terminal that is interrupt enabled no longer matches the data of the input comparison register, so that interrupt occurs. As already explained, the condition for the interrupt to occur is the change in the port data and contents of the input comparison register from matching to nonmatching. Hence, in (4), when the nonmatching status changes to another nonmatching status, an interrupt does not occur. Further, terminals that have been masked for interrupt do not affect the conditions for interrupt generation.

Fig. 4.4.4
Input interrupt circuit configuration (K20-K23)

There is no input comparison register for K20-K23, and interrupt is fixed to occur at th rising edge of input. The interrupt mask can be selected for each of the four terminals with the interrupt mask register (EIK20-EIK23). When all the enabled terminals are " 0 ", interrupt occurs when one or more of the ports changed to " 1 ".
When an interrupt occurs, the interrupt factor flag (IK2) is set to " 1 ".

Figure 4.4.5 shows an example of an interrupt being generated for K20-K23.

Fig. 4.4.5
Example of interrupt of K20-K23
Interrupt mask register

EIK23	EIK22	EIK21	EIK20
0	1	1	1

With the above setting, the interrupt for K20-K23 occurs in the following conditions.
(1)

Input port			
K23 K22 K21 K20 0 0 0 0 (Initial value)			

(2)

K23	K22	K21	K20
1	0	0	0

\downarrow
(3)

K23	K22	K21	K20
1	0	1	0

\downarrow
(4)

K23	K22	K21	K20
1	0	1	1

K23 is masked. Thus, the interrupt occurs when all three bits K20-K22 have been "0", and one or more terminals then change to " 1 ".

The mask register (EIK23) masks the interrupt of K23, so an interrupt does not occur at (2). At (3), K21 becomes "1", so that an interrupt occurs if the interrupt enabled terminals were all " 0 " and at least one terminal then changes to " 1 ". At (4), the conditions for interrupt are not established, so an interrupt does not occur.
Futher, terminals that have been masked for interrupt do not affect the conditions for interrupt generation.

The contents that can be selected with the input port mask option are as follows:
(1) Internal pull-down resistor can be selected for each of the nine bits of the input ports (K00-K03, K10, K20-K23). When you have selected "Gate direct", take care that the floating status does not occur for the input. Select "With pull-down resistor" for input ports that are not being used.
(2) The input interrupt circuit contains a noise rejector for preventing interrupt occurring through noise. The mask option enables selection of whether to use the noise rejector for each separate terminal series. When "Use" is selected, a maximum delay of 1 msec occurs from the time interrupt condition is established until the interrupt factor flag (IK) is set to " 1 ".

Control of input ports
Table 4.4.1 lists the input ports control bits and their addresses.

Table 4.4.1 Input port control bits

Address	Register					Init * 1	1	0	Comment											
	D3	D2	D1	D0	Name															
2E3H	K03	K02	K01	K00	$\begin{aligned} & \hline \text { K03 } \\ & \text { K02 } \\ & \text { K01 } \\ & \text { K00 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-* 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \end{aligned}$	High High High High	Low Low Low Low	Input port data (K00-K03)											
	K03	K02	K01	K00																
	R																			
2E4H					$\begin{aligned} & \text { KCPO3 } \\ & \text { KCP02 } \\ & \text { KCP01 } \\ & \text { KCPOO } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$$	7 Input comparison register (K00-K03)											
	KCP03	KCP02	KCP01	KCPOO																
	R/W																			
2E5H	EIK03	EIK02	EIK01	FIK00	EIK03 EIK02 EIK01 EIK00	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Enable Enable Enable Enable	Mask Mask Mask Mask	Interrupt mask register (K00-K03)											
		ElK02	ElKO1	EIKOO																
	R/W																			
2E7H	SCTRG	ElK10	KCP10	K10	SCTRG*3 EIK10 KCP10 K10	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & -* 2 \end{aligned}$	Trigger Enable 7 High	Mask $\stackrel{5}{5}$ Low	Serial interface clock trigger Interrupt mask register (K10) Input comparison register (K10) Input port data (K10)											
	W	R/W		R																
	W			R																
2EAH	IK1	IK0	SWIT1	SWIT0	$\begin{aligned} & \text { IK1 } * 4 \\ & \text { IK0 } * 4 \end{aligned}$ SWIT1 *4 SWITO *4	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes Yes Yes	No No No No	Interrupt factor flag (K10) Interrupt factor flag (K00-K03) Interrupt factor flag (stopwatch 1 Hz) Interrupt factor flag (stopwatch 10 Hz)											
	R																			
2F3H	0	0	IK2	ISIO	$\begin{array}{r} 0 * 3 \\ 0 * 3 \\ \text { IK2 } * 4 \\ \text { ISIO } * 4 \\ \hline \end{array}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} - \\ - \\ \text { Yes } \\ \text { Yes } \\ \hline \end{gathered}$	$\begin{gathered} - \\ - \\ \text { No } \\ \text { No } \\ \hline \end{gathered}$	Unused Unused Interrupt factor flag (K20-K23) Interrupt factor flag (serial interface)											
	R																			
2F4H	K23	K22	K21	K20	$\begin{aligned} & \text { K23 } \\ & \text { K22 } \\ & \text { K21 } \\ & \text { K20 } \\ & \hline \end{aligned}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$	High High High High	Low Low Low Low	Input port data (K20-K23)											
	R																			
2F5H	EIK23	EIK22	EIK21	EIK20	$\begin{aligned} & \text { EIK23 } \\ & \text { EIK22 } \\ & \text { EIK21 } \\ & \text { EIK20 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Enable Enable Enable Enable	Mask Mask Mask Mask	Interrupt mask register (K20-K23)											
	Ek23	EIK22	EIK21	E1K20																
	R/W																			
*1 Initial value at the time of initial reset *2 Not set in the circuit					*3 Constantly " 0 " when being read $\quad * 5$ Undefined*4 Reset (0) immediately after being read															

K00-K03, K10, K20-K23: Input data of the input port terminals can be read out with Input port data these registers.
(2E3H, 2E7H•D0, 2F4H)
When " 1 " is read out : High level
When " 0 " is read out : Low level
Writing : Invalid

The read-out is " 1 " when the terminal voltage of the nine bits of the input ports (K00-K03, K10, K20-K23) goes high (Vdd), and "0" when the voltage goes low (Vss).
These bits are dedicated for read-out, so writing cannot be done.

KCP00-KCP03, KCP10: Interrupt conditions for terminals K00-K03 and K10 can be Input comparison registers set with these registers.
(2E4H, 2E7H•D1)

When " 1 " is written :	Falling edge
When " 0 " is written :	Rising edge
Read-out:	Valid

Of the nine bits of the input ports, the interrupt conditions can be set for the rising or falling edge of input for each of the five bits (K00-K03 and K10), through the input comparison registers (KCPO0-KCP03 and KCP10).
At initial reset, these registers are set to " 0 ".

EIK00-EIK03, EIK10, Masking the interrupt of the input port terminals can be EIK20-EIK23: selected with these registers.

When " 1 " is written : Enable
When " 0 " is written : Mask
Read-out : Valid
With these registers, masking of the input port bits can be selected for each of the nine bits.

Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0").

At initial reset, these registers are all set to " 0 ".

IK0, IK1, IK2: These flags indicate the occurrence of input interrupt.

> When " 1 " is read out : Interrupt has occurred When " 0 " is read out : Interrupt has not occurred Writing : Invalid

The interrupt factor flags IK0, IK1 and IK2 are associated with K00-K03, K10 and K20-K23, respectively. From the status of these flags, the software can decide whether an input interrupt has occurred.

These flags are reset when the software reads them. Readout can be done only in the DI status (interrupt flag = "0"). At initial reset, these flags are set to " 0 ".

Programming notes
(1) When input ports are changed from high to low by pulldown resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 msec.
(2) When "Use" is selected with the noise rejector mask option, a maximum delay of 1 msec occurs from time the interrupt conditions are established until the interrupt factor flag (IK) is set to " 1 " (until the interrupt is actually generated).

Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.

For example, when performing a key scan with the key matrix, the key scan changes the input status to set the interrupt factor flag, so it has to be read out to reset it. However, if the interrupt factor flag is read out immediately after key scanning, the delay will cause the flag to be set after read-out, so that it will not be reset.
(3) Input interrupt programing related precautions

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at (1) and (2), (1) being the interrupt due to the falling edge and (2) the interrupt due to the rising edge.

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set.

Therefore, when using the input interrupt, the active status of the input terminal implies
input terminal = low status, when the falling edge interrupt is effected and
input terminal = high status, when the rising edge interrupt is effected
When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of (1) shown in Figure 4.4.6. However, when clearing the content of the mask register with the input terminal kept in the low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.
Consequently, when the input terminal is in the active status (low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (high status).
When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of (2) shown in Figure 4.4.6. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the low status. In addition, when the mask register $=" 1 "$ and the content of the input comparison register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input comparison register in the mask register $=$ " 0 " status.
(4) Read out the interrupt factor flag (IK) only in the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag = " 1 ") will cause malfunction.
(5) Write the interrupt mask register (EIK) only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.

4.5 Output Ports (R00-R03, R10-R13)

Configuration of output ports

The E0C6235 Series has eight bits (4 bits $\times 2$) general output ports.
Output specifications of the output ports can be selected individually with the mask option. Two kinds of output specifications are available: complementary output and Pch open drain output.
Further, the mask option enables the output ports R10-R13 to be used as special output ports.
Figure 4.5.1 shows the configuration of the output ports.

Mask option

The mask option enables the following output port selection.
(1)Output specifications of output ports

Output specifications for the output ports (R00-R03, R10-R13) enable selection of either complementary output or Pch open drain output for each of the eight bits.

However, even when Pch open drain output is selected, voltage exceeding source voltage must not be applied to the output port.

(2)Special output

In addition to the regular DC output, special output can be selected for the output ports R10-R13 as shown in Table 4.5.1. Figure 4.5 .2 shows the structure of the output ports R10-R13.

Table 4.5.1
Special output

Pin name	When special output selected
R10	BZ
R 13	$\overline{\mathrm{BZ}}$ (Only when $\mathrm{R} 10=\mathrm{BZ}$ output is selected)
R 11	SIOF
R 12	FOUT

Fig. 4.5.2
Structure of output port
R10-R13
$B Z, \overline{B Z}: \quad B Z$ and $\overline{B Z}$ are the buzzer signal output for driving the (R10, R13) piezoelectric buzzer. The buzzer signal is generated by demultiplicaion of foscl. The buzzer signal frequency can be selected by software. Also, a digital envelope can be added to the buzzer signal. See "4.11 Sound Generator" for details.

Notes • When the BZ and $\overline{B Z}$ output signals are turned ON or OFF, a hazard can result.

- When DC output is set for the output port R10, the output port $R 13$ cannot be set for $\overline{B Z}$ output.

Figure 4.5 .3 shows the output waveform for BZ and $\overline{\mathrm{BZ}}$.

Fig. 4.5.3
Output waveform of $B Z$ and $\overline{B Z}$
$\overline{B Z}$ output (R13 terminal)

Register
BZ output (R10 terminal)

SIOF: When the output port R11 is set for SIOF output, it outputs
(R11) the signal indicating the running status (RUN/STOP) of the serial interface.
See "4.7 Serial Interface" for details.

FOUT: When the output port R12 is set for FOUT output, it outputs (R12) the clock of foSCl or the demultiplied foscl. The clock frequency is selectable with the mask options, from the frequencies listed in Table 4.5.2.

Table 4.5.2
FOUT clock frequency

Setting value	Clock frequency (Hz)	
	fosc1 $=32,768$	fosc1 $=38,400$
fosc1 $/ 1$	32,768	38,400
fosc1 $/ 2$	16,384	19,200
fosc1 $/ 4$	8,192	9,600
fosc1 $/ 8$	4,096	4,800
fosc1 $/ 16$	2,048	2,400
foscl $/ 32$	1,024	1,200
fosc1 $/ 64$	512	600
fosc1 $/ 128$	256	300

Note A hazard may occur when the FOUT signal is turned ON or OFF.

Control of output ports

Table 4.5.3 lists the output ports' control bits and their addresses.

Table 4.5.3 Control bits of output ports

R00-R03, R10-R13 Sets the output data for the output ports. (when DC output):
Output port data (2EBH, 2ECH)

When " 1 " is written : High output
When " 0 " is written : Low output
Read-out :
Valid

The output port terminals output the data written in the corresponding registers (R00-R03, R10-R13) without changing it. When " 1 " is written in the register, the output port terminal goes high (VDD), and when " 0 " is written, the output port terminal goes low (Vss).
At initial reset, all registers are set to " 0 ".

R10, R13 (when BZ and These bits control the output of the buzzer signals (BZ, $\overline{B Z}$).
$\overline{\mathrm{BZ}}$ output is selected):
Special output port data (2ECH•D0 and D3)

When " 1 " is written : Buzzer signal is output When " 0 " is written : Low level (DC) is output Read-out : Valid
$\overline{\mathrm{BZ}}$ is output from terminal R13. With the mask option, selection can be made perform this output control by R13, or to perform output control simultaneously with BZ by R10.

- When R13 controls BZ output

BZ output and $\overline{\mathrm{BZ}}$ output can be controlled independently. BZ output is controlled by writing data to R10, and $\overline{\mathrm{BZ}}$ output is controlled by writing data to R13.

- When R10 controls $\overline{\mathrm{BZ}}$ output

BZ output and $\overline{\mathrm{BZ}}$ output can be controlled simultaneously by writing data to R10 only. For this case, R13 can be used as a one-bit general register having both read and write functions, and data of this register exerts no affect on $\overline{\mathrm{BZ}}$ output (output from the R13 pin).

At initial reset, registers R10 and R13 are set to "0".

R11 (when SIOF output is selected):
Special output port data (2ECH•D1)

Indicates the running status of the serial interface.
When " 1 " is read out : RUN
When " 0 " is read out : STOP
Writing : Valid
See "4.7 Serial Interface" for details of SIOF.
This bit is exclusively for reading out, so data cannot be written to it.

R12 Controls the FOUT (clock) output.
(when FOUT is selected):
Special output port data (2ECH•D2)

When " 1 " is written : Clock output When " 0 " is written : Low level (DC) output Read-out : Valid

FOUT output can be controlled by writing data to R12. At initial reset, this register is set to " 0 ".

Programming note

When $\mathrm{BZ}, \overline{\mathrm{BZ}}$ and FOUT are selected with the mask option, a hazard may be observed in the output waveform when the data of the output register changes.

4.6 I/O Ports (POO-P03, P10-P13)

Configuration of I/O ports

The E0C6235 Series eight bits (4 bits $\times 2$) has generalpurpose I/O ports. Figure 4.6 . 1 shows the configuration of the I/O ports.
The four bits of each of the I/O ports P00-P03 and P10-P13 can be set to either input mode or output mode. Modes can be set by writing data to the I/O control register.

Fig. 4.6.1
Configuration of I/O ports

I/O control register and I/O mode

Input or output mode can be set for the four bits of I/O port P00-P03 and I/O port P10-P13 by writing data into the corresponding I/O control register IOCO and IOC1.

To set the input mode, " 0 " is written to the I/O control register. When an I/O port is set to input mode, it becomes high impedance status and works as an input port.
However, the input line is pulled down when input data is read.

The output mode is set when " 1 " is written to the I/O control register. When an I/O port set to output mode works as an output port, it outputs a high signal (VDD) when the port output data is " 1 ", and a low signal (Vss) when the port output data is " 0 ".

At initial reset, the I/O control registers are set to " 0 ", and the I/O port enters the input mode.

Mask option

The output specification during output mode (IOC = " 1 ") of these I/O ports can be set with the mask option for either complementary output or Pch open drain output. This setting can be performed for each bit of each port. However, when Pch open drain output has been selected, voltage in excess of the power voltage must not be applied to the port.

Control of I/O ports

Table 4.6.1 lists the I/O ports' control bits and their addresses.

Table 4.6.1 I / O port control bits

Address	Register								Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
2EDH	P03	P02	P01	P00	$\begin{aligned} & \text { P03 } \\ & \text { P02 } \end{aligned}$	$\begin{aligned} & \hline-* 2 \\ & -* 2 \end{aligned}$	High High	$\begin{aligned} & \text { Low } \\ & \text { Low } \end{aligned}$	I/O port data (P00-P03)
	R/W				$\begin{aligned} & \text { P01 } \\ & \text { P00 } \\ & \hline \end{aligned}$	$\begin{aligned} & -* 2 \\ & -* 2 \end{aligned}$	High High	$\begin{aligned} & \text { Low } \\ & \text { Low } \\ & \hline \end{aligned}$	Output latch reset at time of SR
2EEH	TMRST	SWRUN	SWRST	IOCO	TMRST*3 SWRUN	Reset 0	Reset Run	Stop	Clock timer reset Stopwatch timer Run/Stop
	W	R/W	W	R/W	SWRST*3 IOCO	Reset 0	Reset Output	Input	Stopwatch timer reset I/O control register 0 (P00-P03)
2FDH	P13	P12	P11	P10	$\begin{aligned} & \text { P13 } \\ & \text { P12 } \end{aligned}$	$\begin{aligned} & -* 2 \\ & -* 2 \end{aligned}$	High High	$\begin{aligned} & \text { Low } \\ & \text { Low } \end{aligned}$	I/O port data (P10-P13)
	R/W				$\begin{aligned} & \text { P11 } \\ & \text { P10 } \\ & \hline \end{aligned}$	$\begin{aligned} & -* 2 \\ & -* 2 \end{aligned}$	High High	$\begin{aligned} & \text { Low } \\ & \text { Low } \end{aligned}$	Output latch reset at time of SR
2FEH	PRSM	CLKCHG	OSCC	IOC1	PRSM CLKCHG	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 38 \mathrm{kHz} \\ \text { OSC3 } \end{gathered}$	$\begin{gathered} 32 \mathrm{kHz} \\ \text { OSC1 } \end{gathered}$	OSC1 prescaler selection CPU clock switch
	R/W				$\begin{aligned} & \text { OSCC } \\ & \text { IOC1 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	On Output	Off Input	OSC3 oscillation On/Off I/O control register 1 (P10-P13)

[^0]*3 Constantly " 0 " when being read
*4 Reset (0) immediately after being read

P00-P03, P10-P13: I/O port data (2EDH, 2FDH)

- When writing data

When " 1 " is written : High level
When " 0 " is written : Low level
When an I/O port is set to the output mode, the written data is output unchanged from the I/O port terminal. When " 1 " is written as the port data, the port terminal goes high (VDD), and when " 0 " is written, the level goes low (Vss).
Port data can be written also in the input mode.

- When reading data out

When " 1 " is read out : High level
When " 0 " is read out : Low level
The terminal voltage level of the I/O port is read out. When the I/O port is in the input mode the voltage level being input to the port terminal can be read out; in the output mode the output voltage level can be read. When the terminal voltage is high (VDD) the port data that can be read is " 1 ", and when the terminal voltage is low (Vss) the data is " 0 ".
Further, the built-in pull-down resistance goes ON during read-out, so that the I/O port terminal is pulled down.

Notes - When the I/O port is set to the output mode and a low-impedance load is connected to the port terminal, the data written to the register may differ from the data read out.

- When the I/O port is set to the input mode and a low-level voltage (Vss) is input, erroneous input results if the time constant of the capacitive load of the input line and the built-in pull-down resistance load is greater than the read-out time. When the input data is being read out, the time that the input line is pulled down is equivalent to 1.5 cycles of the CPU system clock. However, the electric potential of the terminals must be settled within 0.5 cycles. If this condition cannot be fulfilled, some measure must be devised such as arranging pull-down resistance externally, or performing multiple read-outs.

IOC0, IOC1: The input and output modes of the I/O ports can be set I/O control registers with these registers.

When " 1 " is written:	Output mode
When " 0 " is written:	Input mode
Read-out :	Valid

The input and output modes of the I/O ports are set in units of four bits. IOCO sets the mode for POO-PO3, and IOC1 sets the mode for P10-P13.
Writing " 1 " to the I/O control register makes the corresponding I/O port enter the output mode, and writing " 0 " induces the input mode.
At initial reset, these two registers are set to " 0 ", so the I/O ports are in the input mode.
(1) When input data are changed from high to low by built-in pull-down resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Consequently, if data is read out while the CPU is running in the OSC3 oscillation circuit, data must be read out continuously for about $500 \mu \mathrm{sec}$.
(2) When the I/O port is set to the output mode and the data register has been read, the terminal data instead of the register data can be read out. Because of this, if a lowimpedance load is connected and read-out performed, the value of the register and the read-out result may differ.

4.7 Serial Interface (SIN, SOUT, SCLK)

Configuration of serial interface

The E0C6235 has a synchronous clock type 8 bits serial interface built-in.
The configuration of the serial interface is shown in Figure 4.7.1.

The CPU, via the 8 bits shift register, can read the serial input data from the SIN terminal. Moreover, via the same 8 bits shift register, it can convert parallel data to serial data and output it to the SOUT terminal.
The synchronous clock for serial data input/output may be set by selecting by software any one of 3 types of master mode (internal clock mode: when the E0C6235 is to be the master for serial input/output) and a type of slave mode (external clock mode: when the E0C6235 is to be the slave for serial input/output).
Also, when the serial interface is used at slave mode, SIOF signal which indicates whether or not the serial interface is available to transmit or receive can be output to output port R11 by mask option.

Master mode and slave mode of serial interface

The serial interface of the E0C6235 has two types of operation mode: master mode and slave mode.

In the master mode, it uses an internal clock as synchronous clock of the built-in shift register, generates this internal clock at the SCLK terminal and controls the external (slave side) serial device.
In the slave mode, the synchronous clock output from the external (master side) serial device is input from the SCLK terminal and uses it as the synchronous clock to the builtin shift register.
The master mode and slave mode are selected by writing data to registers SCS1 and SCS0 (address 2F2H•D2, D3).
When the master mode is selected, a synchronous clock may be selected from among 3 types as shown in Table 4.7.1.

Table 4.7.1
Synchronous clock selection

SCS1	SCS0	Mode	Synchronous clock
0	0		CLK
	Master mode		
	1		
1	0		External clock
1	1	Slave mode	

CLK : CPU system clock
At initial reset, the slave mode (external clock mode) is selected.
Moreover, the synchronous clock, along with the input /output of the 8 bits serial data, is controlled as follows:

- At master mode, after output of 8 clocks from the SCLK terminal, clock output is automatically suspended and SCLK terminal is fixed at low level.
- At slave mode, after input of 8 clocks to the SCLK terminal, subsequent clock inputs are masked.

Note When using the serial interface in the master mode, CPU system clock is used as the synchronous clock. Accordingly, when the serial interface is operating, system clock switching (fOSC1 \leftrightarrow fOSC3) should not be performed.

A sample basic serial input/output portion connection is shown in Figure 4.7.2.

b. Slave mode

Data input/output and interrupt function

The serial interface of E0C6235 can input/output data via the internal 8 bits shift register. The shift register operates by synchronizing with either the synchronous clock output from SCLK terminal (master mode), or the synchronous clock input to SCLK (slave mode).
The serial interface generates interrupt on completion of the 8 bits serial data input/output. Detection of serial data input/output is done by the counting of the synchronous clock (SCLK); the clock completes input/output operation when 8 counts (equivalent to 8 cycles) have been made and then generates interrupt.

The serial data input/output procedure data is explained below:
(1) Serial data output procedure and interrupt

The E0C6235 serial interface is capable of outputting parallel data as serial data, in units of 8 bits. By setting the parallel data to 4 bits registers SD0-SD3 (address 2 FOH) and SD4-SD7 (address 2 F 1 H) individually and writing " 1 " to SCTRG bit (address 2E7H•D3), it synchronizes with the synchronous clock and serial data is output at the SOUT terminal. The synchronous clock used here is as follows: in the master mode, internal clock which is output to the SCLK terminal while in the slave mode, external clock which is input from the SCLK terminal. The serial output of the SOUT termina changes with the rising edge of the clock that is input or output from the SCLK terminal.

The serial data to the built-in shift register is shifted with the rising edge of the SCLK signal when SE2 bit (address $2 \mathrm{~F} 2 \mathrm{H} \cdot \mathrm{D} 1$) is " 1 " and is shifted with the falling edge of the SCLK signal when SE2 bit (address 2F2H•D1) is "0". When the output of the 8 bits data from SD0 to SD7 is completed, the interrupt factor flag ISIO (address $2 \mathrm{~F} 3 \mathrm{H} \cdot \mathrm{D} 0$) is set to " 1 " and interrupt is generated. Moreover, the interrupt can be masked by the interrupt mask register EISIO (address 2F2H•D0).
(2) Serial data input procedure and interrupt

The E0C6235 serial interface is capable of inputting serial data as parallel data, in units of 8 bits.
The serial data is input from the SIN terminal, synchronizes with the synchronous clock, and is sequentially read in the 8 bits shift register. As in the above item (1), the synchronous clock used here is as follows: in the master mode, internal clock which is output to the SCLK terminal while in the slave mode, external clock which is input from the SCLK terminal.
The serial data to the built-in shift register is read with the rising edge of the SCLK signal when SE2 bit is "1" and is read with the falling edge of the SCLK signal when SE2 bit is " 0 ". Moreover, the shift register is sequentially shifted as the data is fetched.

When the input of the 8 bits data from SD0 to SD7 is completed, the interrupt factor flag ISIO is set to " 1 " and interrupt is generated. Moreover, the interrupt can be masked by the interrupt mask register EISIO. Note, however, that regardless of the setting of the interrupt mask register, the interrupt factor flag is set to " 1 " after input of the 8 bits data.

The data input in the shift register can be read from data registers SD0-SD7 by software.
(3) Serial data input/output permutation

E0C6235 allows the input/output permutation of serial data to be selected by mask option as to either LSB first or MSB first. The block diagram showing input/output permutation in case of LSB first and MSB first is provided in Figure 4.7.3.

Fig. 4.7.3
Serial data input/output permutation

(4) SIOF signal

When the E0C6235 serial interface is used in the slave mode (external clock mode), SIOF is used to indicate whether the internal serial interface is available to transmit or receive data for the master side (external) serial device. SIOF signal is generated from output port R11 by mask option.
SIOF signal becomes "1" (high) when the E0C6235 serial interface becomes available to transmit or receive data; normally, it is at " 0 " (low).
SIOF signal changes from " 0 " to " 1 " immediately after " 1 " is written to SCTRG and returns from " 1 " to " 0 " when eight synchronous clock has been counted.
(5) Timing chart

The E0C6235 serial interface timing chart is shown in Figure 4.7.4.

a. Timing chart, SE2 $=$ " 1 "

\qquad $\boxed{ }$

SCLK

SIN

8-BIT SHIFT REGISTER
SOUT

ISIO \qquad
SIOF

Fig. 4.7.4
Serial interface timing chart

Mask option

The serial interface may be selected for the following by mask option.
(1) Whether or not the SIN terminal will use built-in pull down resistor may be selected.
If the use of no pull down resistor is selected, take care that floating state does not occur at the SIN terminal. When the SIN terminal is not used, the use of pull down resistor should be selected.
(2) Either complementary output or P channel (Pch) open drain as output specification for the SOUT terminal may be selected.
However, even if Pch open drain has been selected, application of voltage exceeding power source voltage to the SOUT terminal will be prohibited.
(3) Whether or not the SCLK terminal will use pull down resistor which is turned ON during input mode (external clock) may be selected.
If the use of no pull down resistor is selected, take care that floating state does not occur at the SCLK terminal during input mode.
Normally, the use of pull down resistor should be selected.
(4) As output specification during output mode, either complementary output or P channel (Pch) open drain output may be selected for the SCLK terminal.
(5) Positive or negative logic can be selected for the signal logic of the SCLK pin (SCLK or $\overline{\text { SCLK }}$). However, keep in mind that only pull-down resistance can be set for the input mode (pull-up resistance is not built-in).
(6) LSB first or MSB first as input/output permutation of serial data may be selected.
(7) Output port R11 may be assigned as SIOF output terminal which will indicate whether the serial interface is available to transmit or receive signals.

Control of serial interface

The control registers for the serial interface are explained below.

Table 4.7.2 Control registers of serial interface

Address	Register								Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
2 FOH	SD3	SD2	SD1	SD0	$\begin{aligned} & \text { SD3 } \\ & \text { SD2 } \\ & \text { SD1 } \\ & \text { SD0 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \times * \\ & \times * 5 \\ & \times * 5 \\ & \times * 5 \\ & \hline \end{aligned}$			Serial interface data register (low-order 4 bits)
	R/W								
2F1H	SD7	SD6	SD5	SD4	$\begin{aligned} & \hline \text { SD7 } \\ & \text { SD6 } \\ & \text { SD5 } \\ & \text { SD4 } \end{aligned}$	$\begin{aligned} & \hline \times 5 \\ & \times * 5 \\ & \times * 5 \\ & \times * 5 \\ & \hline \end{aligned}$			Serial interface data register (high-order 4 bits)
	R/W								
2F2H	SCS1	SCS0	SE2	EISIO	$\begin{gathered} \text { SCS1 } \\ \text { SCS0 } \\ \text { SE2 } \\ \text { EISIO } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		7 Mask	
	R/W								
2F3H	0	0	IK2	ISIO	$\begin{array}{r} 0 * 3 \\ 0 * 3 \\ \text { IK2 } * 4 \\ \text { ISIO } * 4 \\ \hline \end{array}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	- Yes Yes	- No No	Unused Unused Interrupt factor flag (K20-K23) Interrupt factor flag (serial interface)
	R								
2E7H	SCTRG	EIK10	KCP10	K10	SCTRG*3 EIK10 KCP10 K10 R13	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & -* 2 \\ & \hline \end{aligned}$	Trigger Enable 7 High	Mask \lrcorner Low	Serial interface clock trigger Interrupt mask register (K10) Input comparison register (K10) Input port data (K10)
	W	R/W		R					
2 ECH	R13	R12	R11	R10	$\begin{gathered} \text { R13 } \\ \text { R12 } \\ \text { R11 } \\ \text { SIOF } \\ \text { R10 } \\ \hline \end{gathered}$	00000	High/On High/On High Run High/On	Low/Off	Output port (R13)//BZ output controlOutput port (R12)/FOUT output controlOutput port (R11, LAMP)Output port (SIOF)Output port (R10)/BZ output control
			SIOF					Low/Off	
	R/W			R/W				Low	
			R/W					Stop	
			R						

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Constantly " 0 " when being read
*4 Reset (0) immediately after being read

SD0-SD3, SD4-SD7: These registers are used for writing and reading serial data. Serial interface data
registers - During writing operation
(2F0H, 2F1H) When " 1 " is written: High level
When " 0 " is written : Low level
Writes serial data will be output to SOUT terminal. From the SOUT terminal, the data converted to serial data as high (Vdd) level bit for bits set at " 1 " and as low (Vss) level bit for bits set at " 0 ".

- During reading operation

When " 1 " is read out : High level
When " 0 " is read out : Low level
The serial data input from the SIN terminal can be read by this register.
The data converted to parallel data, as high (VDD) level bit
" 1 " and as low (Vss) level bit " 0 " input from SIN terminal.
Perform data reading only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).

At initial reset, these registers will be undefined.

SCS1, SCS0: Selects the synchronous clock for the serial interface
Clock mode selection (SCLK).
register
(2F2H•D3, D2)

Table 4.7.3	SCS1	SCS0	Mode	Synchronous clock
Synchronous clock selection	0	0	Master mode	CLK
	0	1		CLK/2
	1	0		CLK/4
	1	1	Slave mode	External clock

CLK : CPU system clock
Synchronous clock (SCLK) is selected from among the above 4 types: 3 types of internal clock and external clock.
At initial reset, external clock is selected.

SE2: Selects the timing for reading in the serial data input.

Clock edge selection
register (2F2H•D1)

When " 1 " is written : Rising edge of SCLK When " 0 " is written : Falling edge of SCLK Read-out: Valid

Selects whether the fetching for the serial input data to registers (SD0-SD7) at the rising edge (at " 1 " writing) or falling edge (at " 0 " writing) of the SCLK signal. Pay attention if the synchtonous clock goes into reverse phase (SCLK $\rightarrow \overline{\mathrm{SCLK}}$) through the mask option.

SCLK rising $=\overline{\mathrm{SCLK}}$ falling, SCLK falling $=\overline{\mathrm{SCLK}}$ rising

When the internal clock is selected as the synchronous clock (SCLK), a hazard occurs in the synchronous clock (SCLK) when data is written to register SE2.
The input data fetching timing may be selected but output timing for output data is fixed at SCLK rising edge. At initial reset, falling edge of SCLK (SE2 = " 0 ") is selected.

EISIO: This is the interrupt mask register of the serial interface.

Interrupt mask register
(2F2H•D0)
$\begin{array}{ll}\text { When " } 1 \text { " is written : } & \text { Enabled } \\ \text { When " } 0 \text { " is written : } & \text { Masked }\end{array}$
Read-out : Valid
At initial reset, this register is set to " 0 " (mask).

ISIO: This is the interrupt factor flag of the serial interface.
(2F3H•D0)
When " 1 " is read out : Interrupt has occurred

When " 0 " is read out : Interrupt has not occurred Writing : Invalid

From the status of this flag, the software can decide whether the serial interface interrupt.
The interrupt factor flag is reset when it has been read out. Note, however, that even if the interrupt is masked, this flag will be set to " 1 " after the 8 bits data input/output.

Be sure that the interrupt factor flag reading is done with the interrupt in the DI status (interrupt flag = "0"). At initial reset, this flag is set to " 0 ".

SCTRG: This is a trigger to start input/output of synchronous clock.
When " 1 " is written : Trigger
When " 0 " is written : No operation
Read-out : Always "0"
When this trigger is supplied to the serial interface activating circuit, the synchronous clock (SCLK) input/output is started.
As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing " 1 " to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.)
Supply trigger only once every time the serial interface is placed in the RUN state. Refrain from perfoming trigger input multiple times, as leads to malfunctioning.
Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.

SIOF: Indicates the running status of the serial interface.

Special output port data
(2ECH-D1)

When " 1 " is read out : RUN status
When " 0 " is read out : STOP status
Writing : Invalid
The RUN status is indicated from immediatery after " 1 " is written to SCTRG bit through to the end of serial data input/output.
(1) If the bit data of SE2 changes while SCLK is in the master mode, a hazard will be output to the SCLK pin. If this poses a problem for the system, be sure to set the SCLK to the external clock if the bit data of SE2 is to be changed.
(2) Be sure that read-out of the interrupt factor flag (ISIO) is done only when the serial port is in the STOP status (SIOF = "0") and the DI status (interrupt flag = "O"). If read-out is performed while the serial data is in the RUN status (during input or output), the data input or output will be suspended and the initial status resumed. Readout during the EI status (interrupt flag = "1") causes malfunctioning.
(3) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc $1 \leftrightarrow$ fosc 3) while the serial interface is operating.
(4) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
(5) As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing " 1 " to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
(6) Be sure that writing to the interrupt mask register is done only in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause malfunction.

4.8 LCD Driver (COM0-COM3, SEG0-SEG47)

Configuration of LCD The E0C6235 Series has four common terminals and 48 driver segment terminals, so that it can drive an LCD with a maximum of $192(48 \times 4)$ segments.
The power for driving the LCD is generated by the CPU internal circuit so that there is no need to apply power especially from outside.
The driving method is $1 / 4$ duty (or $1 / 3$ duty with the mask option) dynamic drive depending on the four types of potential, Vdd, VL1, VL2 and VL3. The frame frequency is foSc1/ $1,024 \mathrm{~Hz}$ for $1 / 4$ duty, and fosc $1 / 768 \mathrm{~Hz}$ for $1 / 3$ duty.

Figure 4.8 .1 shows the drive waveform for $1 / 4$ duty, and Figure 4.8 .2 shows the drive waveform for $1 / 3$ duty.

Note fOSC1 indicates the oscillation frequency of the OSC1 oscillation circuit.

LCD lighting status

- Not lit
- Lit

Fig. 4.8.1
Drive waveform for $1 / 4$ duty

LCD lighting status
COM0 -
COM1 -
COM2 -

Fig. 4.8.2
Drive waveform for $1 / 3$ duty

Switching between dynamic and static drive

The E0C6235 Series provides software setting of the LCD static drive. This function enables easy adjustment (cadence adjustment) of the oscillation frequency of the OSC1 oscillation circuit (crystal oscillation circuit).

The procedure for executing static drive of the LCD is as follows:
(1) Write " 1 " to register CSDC at address 2E8H•D3.
(2) Write the same value to all registers corresponding to COM0-COM3 of the display memory.

Notes - Even when $1 / 3$ duty is selected, COM3 is valid for static drive. However, the output frequency is the same as for the frame frequency.

- For cadence adjustment, set the segment data so that all the LCDs light.

Figure 4.8 .3 shows the drive waveform for static drive.

Fig. 4.8.3
LCD static drive waveform

Mask option (segment allocation)

(1) Segment allocation

As shown in Figure 4.1.1(c), segment data of the E0C6235 Series is decided depending on display data written to the display memory (write-only) at address $040 \mathrm{H}-06 \mathrm{FH}$ (page 0) or $240 \mathrm{H}-26 \mathrm{FH}$ (page 2).
(1) The mask option enables the display memory to be allocated entirely to either page 0 or page 2.
(2) The address and bits of the display memory can be made to correspond to the segment terminals (SEGOSEG47) in any form through the mask option. This makes design easy by increasing the degree of freedom with which the liquid crystal panel can be designed.

Figure 4.8 .4 shows an example of the relationship between the LCD segments (on the panel) and the display memory (when page 0 is selected) for the case of $1 / 3$ duty.

Address	Data			
	D3	D2	D1	D0
06AH	d	c	b	a
06 BH	p	g	f	e
06 CH	d^{\prime}	c^{\prime}	b^{\prime}	a^{\prime}
06 DH	p^{\prime}	g^{\prime}	f^{\prime}	e^{\prime}

Segment data memory allocation

Fig. 4.8.4
Segment allocation

	Common 0	Common 1	Common
SEG10	$6 \mathrm{~A}, \mathrm{DO}$ (a)	$\begin{aligned} & \hline 6 \mathrm{~B}, \mathrm{D1} \\ & \text { (f) } \end{aligned}$	6B, D0 (e)
SEG11	6A, D1 (b)	$\begin{gathered} 6 \mathrm{BB}, \mathrm{D} 2 \\ (\mathrm{~g}) \end{gathered}$	6A, D3 (d)
SEG12	$\begin{gathered} \text { 6D, D1 } \\ \left(\mathrm{f}^{\prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{~A}, \mathrm{D} 2 \\ \text { (c) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 6B, D3 } \\ \text { (p) } \\ \hline \end{gathered}$

Terminal address allocation \uparrow

Example of LCD panel
(2) Drive duty

With the mask option, either $1 / 4$ or $1 / 3$ duty can be selected for the LCD drive duty.
Table 4.8.1 shows the differences in the number of segments depending on the selected duty.

Table 4.8.1 Differences depending on selected duty

Duty	Terminals used in common	Maximum number of segments	Frame frequency (when fosc1 $=32 \mathrm{kHz}$)
$1 / 4$	COM0-3	$192(48 \times 4)$	foSc $1 / 1,024(32 \mathrm{~Hz})$
$1 / 3$	COM0-2	$144(48 \times 3)$	fosc $1 / 768(42.7 \mathrm{~Hz})$

(3) Output specification
(1) The segment terminals (SEG0-SEG47) are selected with the mask option in pairs for either segment signal output or DC output (VDD and Vss binary output). When DC output is selected, the data corresponding to COMO of each segment terminal is output.
(2) When DC output is selected, either complementary output or Pch open drain output can be selected for each terminal with the mask option.

Note The terminal pairs are the combination of SEG2*n and SEG2*n + 1 (where n is an integer from 0 to 23).

Control of LCD driver Table 4.8.2 shows the LCD driver's control bits and their addresses. Figure 4.8 .5 shows the display memory map.

Table 4.8.2 Control bits of LCD driver

Address	Register								Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
2E8H	CSDC	ETI2	ETI8	ETI32	CSDC	0	Static	Dynamic	LCD drive switch
					ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)
	R/W				ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)
					ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)

*1 Initial value at the time of initial reset
*3 Constantly "0" when being read
*5 Undefined
*2 Not set in the circuit
*4 Reset (0) immediately after being read

Address Page		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0 or 2	4	$\begin{gathered} \text { Display memory (} 48 \text { words } \times 4 \text { bits }) \\ 0 \text { page }=R / W \\ 2 \text { page }=W \end{gathered}$															
	5																
	6																

Fig. 4.8.5
Display memory map

CSDC: The LCD drive format can be selected with this switch.
LCD drive switch (2E8H•D3)

When " 1 " is written : Static drive
When "0" is written : Dynamic drive
Read-out: Valid
At initial reset, dynamic drive ($\mathrm{CSDC}=\mathrm{"O} 0$) is selected.

Display memory: The LCD segments are lit or turned off depending on this ($040 \mathrm{H}-06 \mathrm{FH}$ or data

240H-26FH)

When " 1 " is written :	Lit
When " 0 " is written :	Not lit
Read-out:	Valid for 0 page
	Undefined 2 page

By writing data into the display memory allocated to the LCD segment (on the panel), the segment can be lit or put out.

At initial reset, the contents of the display memory are undefined.

Programming notes

(1) When page 0 is selected for the display memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
(2) When page 2 is selected for the display memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).

4.9 Clock Timer

Configuration of clock timer

The E0C6235 Series has a built-in clock timer as the source oscillator for prescaler. The clock timer is configured of a seven-bit binary counter that serves as the input clock, a 256 Hz signal output by the prescaler. Data of the four high-order bits ($16 \mathrm{~Hz}-2 \mathrm{~Hz}$) can be read out by the software. Figure 4.9.1 is the block diagram for the clock timer.

Fig. 4.9.1
Block diagram of clock timer

Ordinarily, this clock timer is used for all types of timing functions such as clocks.
The input clock of the clock timer is output through the prescaler, so the prescaler mode must be set correctly to suit the crystal oscillator to be used (32.768 kHz or 38.4 kHz). For how to set the prescaler, see "Control of oscillation circuit and prescaler".

Interrupt function

The clock timer can cause interrupts at the falling edge of $32 \mathrm{~Hz}, 8 \mathrm{~Hz}$ and 2 Hz signals. Software can set whether to mask any of these frequencies.
Figure 4.9.2 is the timing chart of the clock timer.

Fig. 4.9.2
Timing chart of clock timer

As shown in Figure 4.9.2, interrupt is generated at the falling edge of the frequencies ($32 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{~Hz}$). At this time, the corresponding interrupt factor flag (TI32, TI8, TI2) is set to " 1 ". Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (ETI32, ETI8, ETI2). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to " 1 " at the falling edge of the corresponding signal.

Control of clock timer

Table 4.9.1 shows the clock timer control bits and their addresses.

Table 4.9.1 Control bits of clock timer

Address	Register								Comment	
	D3	D2	D1	D0	Name	Init *1	1	0		
2 EOH	TM3	TM2	TM1	TM0	$\begin{aligned} & \hline \text { TM3 } \\ & \text { TM2 } \\ & \text { TM1 } \\ & \text { TM0 } \\ & \hline \end{aligned}$	0			Timer data (clock timer 2 Hz)	
	TM3	TN2	TM1	TMO		0			Timer data (clock timer 4 Hz)	
	R					0			Timer data (clock timer 8 Hz)	
					0			Timer data (clock timer 16 Hz)		
2E8H	CSDC	ETI2	ETI8	ETI32		CSDC	0	Static	Dynamic	LCD drive switch
	CSDC		ET8	ET32	ETI2	0	Enable	Mask	Interrupt mask register (clock timer 2 Hz)	
	R/W				ETI8	0	Enable	Mask	Interrupt mask register (clock timer 8 Hz)	
					ETI32	0	Enable	Mask	Interrupt mask register (clock timer 32 Hz)	
2E9H	0	Tl2	T18	TI32	0*3	-*2	-	-	Unused	
	0	T12	T18	132	T12 *4	0	Yes	No	Interrupt factor flag (clock timer 2 Hz)	
	R				T18 * 4	0	Yes	No	Interrupt factor flag (clock timer 8 Hz)	
					TI32 *4	0	Yes	No	Interrupt factor flag (clock timer 32 Hz)	
2EEH	TMRST	SWRUN	SWRST	IOCO	TMRST*3	Reset	Reset	-	Clock timer reset	
					SWRUN	0	Run	Stop	Stopwatch timer Run/Stop	
	W		W	RNW	SWRST*3	Reset	Reset	-	Stopwatch timer reset	
	W	R/W	W	R/W	$10 C 0$	0	Output	Input	I/O control register 0 (P00-P03)	

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Constantly "0" when being read
*4 Reset (0) immediately after being read
*5 Undefined

TM0-TM3: The $16 \mathrm{~Hz}-2 \mathrm{~Hz}$ timer data of the clock timer can be read
Timer data out with this register. These four bits are read-out only, and $(2 \mathrm{EOH})$ writing operations are invalid.

At initial reset, the timer data is initialized to " OH ".

ETI32, ETI8, ETI2: These registers are used to select whether to mask the clock Interrupt mask registers timer interrupt.
(2E8H•D0-D2)
When " 1 " is written : Enabled
When " 0 " is written : Masked
Read-out : Valid
The interrupt mask registers (ETI32, ETI8, ETI2) are used to select whether to mask the interrupt to the separate frequencies ($32 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{~Hz}$).
Writing to the interrupt mask registers can be done only in the DI status (interrupt flag = "0").
At initial reset, these registers are all set to " 0 ".

TI32, TI8, TI2: These flags indicate the status of the clock timer interrupt.

Interrupt factor flags (2E9H•D0-D2)

When " 1 " is read out: Interrupt has occurred
When " 0 " is read out : Interrupt has not occurred Writing : Invalid

The interrupt factor flags (TI32, TI8, TI2) correspond to the clock timer interrupts of the respective frequencies ($32 \mathrm{~Hz}, 8$ $\mathrm{Hz}, 2 \mathrm{~Hz}$). The software can judge from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to " 1 " at the falling edge of the signal.
These flags can be reset through being read out by the software. Also, the flags can be read out only in the DI status (interrupt flag = "0").

At initial reset, these flags are set to " 0 ".

TMRST: This bit resets the clock timer.
Clock timer reset
(2EEH•D3)
When " 1 " is written : Clock timer reset
When " 0 " is written : No operation
Read-out : Always "0"
The clock timer is reset by writing " 1 " to TMRST. The clock timer starts immediately after this. No operation results when " 0 " is written to TMRST.
This bit is write-only, and so is always " 0 " at read-out.

Programming notes (1) The prescaler mode must be set correctly to suit the crystal oscillator to be used.
(2) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to " 1 ". Consequently, perform flag read-out (reset the flag) as necessary at reset.
(3) The input clock of the watchdog timer is the 2 Hz signal of the clock timer, so that the watchdog timer may be counted up at timer reset.
(4) Read-out the interrupt factor flag (TI) only during the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag = " 1 ") will cause malfunction.

4.10 Stopwatch Timer

Configuration of

 stopwatch timerThe E0C6235 Series incorporates a $1 / 100 \mathrm{sec}$ and $1 / 10 \mathrm{sec}$ stopwatch timer. The stopwatch timer is configured of a two-stage, four-bit BCD counter serving as the input clock of an approximately 100 Hz signal (signal obtained by approximately demultiplying the 256 Hz signal output by the prescaler). Data can be read out four bits at a time by the software.
Figure 4.10 .1 is the block diagram of the stopwatch timer.

The stopwatch timer can be used as a separate timer from the clock timer. In particular, digital watch stopwatch functions can be realized easily with software. The input clock of the stopwatch timer is output through the prescaler, so the prescaler mode must be set correctly to suit the crystal oscillator to be used $(32.768 \mathrm{kHz}$ or 38.4 kHz). For how to set the prescaler, see "Control of oscillation circuit and prescaler".

Count-up pattern
The stopwatch timer is configured of four-bit BCD counters SWL and SWH.
The counter SWL, at the stage preceding the stopwatch timer, has an approximated 100 Hz signal for the input clock. It counts up every $1 / 100 \mathrm{sec}$, and generates an approximated 10 Hz signal. The counter SWH has an approximated 10 Hz signal generated by the counter SWL for the input clock. It count-up every $1 / 10 \mathrm{sec}$, and generated 1 Hz signal.
Figure 4.10 .2 shows the count-up pattern of the stopwatch timer.

SWH count-up pattern SWH count value Count time (sec)

SWL count-up pattern 1 SWL count value

Count time (sec)

SWL count-up pattern 2
SWL count value
Count time (sec)

Fig. 4.10.2
Count-up pattern of stopwatch timer

SWL generates an approximated 10 Hz signal from the basic 256 Hz signal. The count-up intervals are $2 / 256 \mathrm{sec}$ and $3 /$ 256 sec , so that finally two patterns are generated: 25/256 sec and 26/256 sec intervals. Consequently, these patterns do not amount to an accurate $1 / 100 \mathrm{sec}$.
SWH counts the approximated 10 Hz signals generated by the $25 / 256 \mathrm{sec}$ and $26 / 256 \mathrm{sec}$ intervals in the ratio of $4: 6$, to generate a 1 Hz signal. The count-up intervals are $25 /$ 256 sec and $26 / 256 \mathrm{sec}$, which do not amount to an accurate $1 / 10 \mathrm{sec}$.

Interrupt function

The 10 Hz (approximate 10 Hz) and 1 Hz interrupts can be generated through the overflow of stopwatch timers SWL and SWH respectively. Also, software can set whether to separately mask the frequencies described earlier.
Figure 4.10 .3 is the timing chart for the stopwatch timer.

As shown in Figure 4.10.3, the interrupts are generated by the overflow of their respective counters (" 9 " changing to " 0 "). Also, at this time the corresponding interrupt factor flags (SWITO, SWIT1) are set to " 1 ".
The respective interrupts can be masked separately through the interrupt mask registers (EISWITO, EISWIT1). However, regardless of the setting of the interrupt mask registers, the interrupt factor flags are set to "1" by the overflow of their corresponding counters.

Control of stopwatch Table 4.10.1 lists the stopwatch timer control bits and their timer addresses.

Table 4.10.1 Stopwatch timer control bits

Address	Register								Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
2E1H	R				SWL3 SWL2 SWL1 SWLO	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$=$MSB Stopwatch timer data $1 / 100 \sec (B C D)$ LSB
2E2H	SWH3	SWH2	SWH1	SWHO	SWH3 SWH2 SWH1 SWHO	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$=$MSB Stopwatch timer data $1 / 10 \sec (B C D)$ LSB
2E6H	HLMOD	BLD0 R	R/W		$\begin{gathered} \text { HLMOD } \\ \text { BLDO } \\ \text { EISWIT1 } \\ \text { EISWIT0 } \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Heavy load Low Enable Enable	Normal Normal Mask Mask	Heavy load protection mode register Sub-BLD evaluation data Interrupt mask register (stopwatch 1 Hz) Interrupt mask register (stopwatch 10 Hz)
2EAH	IK1	IKO	SWIT1	SWITO	$\begin{array}{\|c\|} \hline \text { IK1 } * 4 \\ \text { IKO } * 4 \\ \text { SWIT1 } * 4 \\ \text { SWITO } * 4 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes Yes Yes	No No No No	Interrupt factor flag (K10) Interrupt factor flag (K00-K03) Interrupt factor flag (stopwatch 1 Hz) Interrupt factor flag (stopwatch 10 Hz)
2EEH	TMRST	SWRUN R/W	SWRST W	$10 C 0$ R/W	TMRST*3 SWRUN SWRST*3 IOCO	$\begin{gathered} \text { Reset } \\ 0 \\ \text { Reset } \\ 0 \\ \hline \end{gathered}$	Reset Run Reset Output	Stop Input	Clock timer reset Stopwatch timer Run/Stop Stopwatch timer reset I/O control register 0 (P00-P03)
$* 1$ Initial value at the time of initial reset $* 3 \operatorname{Constantly}$ " 0 " when being read $* 5$ Undefined $* 2$ Not set in the circuit $* 4 \operatorname{Reset}(0)$ immediately after being read									

SWL0-SWL3: Data (BCD) of the $1 / 100$ sec column of the stopwatch timer Stopwatch timer can be read out. These four bits are read-only, and cannot $1 / 100 \mathrm{sec}(2 \mathrm{E} 1 \mathrm{H})$ be used for writing operations.

At initial reset, the timer data is set to "OH".

SWH0-SWH3: Data (BCD) of the $1 / 10$ sec column of the stopwatch timer Stopwatch timer can be read out. These four bits are read-only, and cannot $1 / 10 \mathrm{sec}(2 \mathrm{E} 2 \mathrm{H})$ be used for writing operations.

At initial reset, the timer data is set to "OH".

EISWIT0, EISWIT1: These registers are used to select whether to mask the Interrupt mask register stopwatch timer interrupt.

When " 1 " is written :	Enabled
When " 0 " is written :	Masked
Read-out :	Valid

The interrupt mask registers (EISWITO, EISWIT1) are used to separately select whether to mask the 10 Hz and 1 Hz interrupts.
At initial reset, these registers are both set to " 0 ".

SWIT0, SWIT1: These flags indicate the status of the stopwatch timer interInterrupt factor flag (2EAH•D0 and D1) rupt.

When " 1 " is read out : Interrupt has occurred
When " 0 " is read out : Interrupt has not occurred
Writing : Invalid
The interrupt factor flags (SWITO, SWIT1) correspond to the 10 Hz and 1 Hz interrupts respectively. With these flags, the software can judge whether a stopwatch timer interrupt has occurred. However, regardless of the interrupt mask register setting, these flags are set to " 1 " by the counter overflow.

These flags are reset when read out by the software. Also, read-out is only possible in the DI status (interrupt flag = " 0 ").
At initial reset, these flags are set to " 0 ".

SWRST: This bit resets the stopwatch timer.

Stopwatch timer reset
(2EEH•D1)

When " 1 " is written : Stopwatch timer reset
When " 0 " is written : No operation
Read-out : Always "0"
The stopwatch timer is reset when " 1 " is written to SWRST. When the stopwatch timer is reset in the RUN status, operation restarts immediately. Also, in the STOP status the reset data is maintained.

This bit is write-only, and is always " 0 " at read-out.

SWRUN: This bit controls RUN/STOP of the stopwatch timer.

Stopwatch timer
RUN/STOP
(2EEH•D2)

When " 1 " is written : RUN
When "0" is written : STOP
Read-out: Valid

The stopwatch timer enters the RUN status when " 1 " is written to SWRUN, and the STOP status when " 0 " is written. In the STOP status, the timer data is maintained until the next RUN status or resets timer. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count.
When the timer data is read out in the RUN status, correct read-out may be impossible because of the carry from the low-order bit (SWL) to the high-order bit (SWH). This occurs when read-out has extended over the SWL and SWH bits when the carry occurs. To prevent this, perform read out after entering the STOP status, and then return to the RUN status. Also, the duration of the STOP status must be within $976 \mu \mathrm{sec}$ ($256 \mathrm{~Hz} \mathrm{1/4}$ cycle).
At initial reset, this register is set to " 0 ".
(1) The prescaler mode must be set correctly so that the stopwatch timer suits the crystal oscillator to be used.
(2) If timer data is read out in the RUN status, the timer must be made into the STOP status, and after data is read out the RUN status can be restored. If data is read out when a carry occurs, the data cannot be read correctly.
Also, the processing above must be performed within the STOP interval of $976 \mu \mathrm{sec}(256 \mathrm{~Hz} \mathrm{1/4}$ cycle).
(3) Read-out of the interrupt factor flag (SWIT) must be done only in the DI status (interrupt flag = "0").
Read-out during EI status (interrupt flag $=" 1 "$) will cause malfunction.

4.11 Sound Generator

Configuration of

 sound generatorThe E0C6235 Series outputs buzzer signals (BZ, $\overline{\mathrm{BZ}}$) to drive the piezoelectric buzzer.
The frequency of the buzzer signal is software-selectable from eight kinds of demultiplied fosc1. Further, a digital envelope can be added to the buzzer signal through duty ratio control.
Figure 4.11 .1 shows the sound generator configuration.
Figure 4.11 .2 shows the sound generator timing chart.

SR
BZ(R10 terminal) \qquad

Fig. 4.11.2 Timing chart of sound generator

Fig. 4.11.1 Configuration of sound generator
 register R10 control) $\overline{B Z}(R 13$ terminal register R13 control)

The frequencies of the buzzer signals (BZ, BZ) are set by writing data to registers BZFQ0-BZFQ2.
Table 4.11.1 lists the register setting values and the frequencies that can be set.

Table 4.11.1 Setting of frequencies of buzzer signals

BZFQ			Set frequecy (Hz)		
2	1	0	Demultiplier ratio	When fosc $1=32 \mathrm{kHz}$	When fosc $1=38.4 \mathrm{kHz}$
0	0	0	foscl/8	4,096.0	4,800.0
0	0	1	foscl/10	3,276.8	3,840.0
0	1	0	foscl/ 12	2,730.7	3,200.0
0	1	1	foscl/ 14	2,340.6	2,742.9
1	0	0	foscl/ 16	2,048.0	2,400.0
1	0	1	foscl/20	1,638.4	1,920.0
1	1	0	foscl/24	1,365.3	1,600.0
1	1	1	foscl/28	1,170.3	1,371.4

Note A hazard may be observed in the output waveform of the BZ and $\overline{B Z}$ signals when data of the buzzer frequency selection registers (BZFQ0-BZFQ2) changes.

Digital envelope

A duty ratio control data envelope (with duty ratio change in eight stages) can be added to the buzzer signal ($B Z, \overline{B Z}$). The duty ratio is the ratio of the pulse width compared with the pulse cycle. The BZ output is TH/ (TH+TL) when the high level output is TH and the low level output is TL. The $\overline{\mathrm{BZ}}$ output (BZ inverted output) is $\mathrm{TL} /(\mathrm{TH}+\mathrm{TL})$. Also, care must be taken because the duty ratio differs depending on the buzzer frequency.
The envelope is added by writing " 1 " to register ENVON. If " 0 " is written the duty ratio is fixed to the maximum. Also, if the envelope is added, the duty ratio is reverted to the maximum by writing " 1 " in register ENVRST, and the duty ratio also becomes the maximum at the start of the buzzer signal output.
The decay time of the envelope (time for the duty ratio to change) can be selected with the register ENVRT. This time is $62.5 \mathrm{msec}(16 \mathrm{~Hz}$) when " 0 " is written, and $125 \mathrm{msec}(8$ Hz) when " 1 " is written. However, a maximum difference of 4 msec is taken from envelope-ON until the first change.
Table 4.11.2 lists the duty rates and buzzer frequencies. Figure 4.11 .3 shows the digital envelope timing chart.

Table 4.11.2
Duty rates and buzzer frequencies

Mask option

(1) Selection can be made whether to output the BZ signal from the R10 pin.
(2) Selection can be made whether to output the $\overline{\mathrm{BZ}}$ signal from the R13 pin. However, if the BZ signal is not output the $\overline{\mathrm{BZ}}$ signal cannot be output.
(3) Selection can be made to perform the $\overline{\mathrm{BZ}}$ signal output control through register R10 or register R13.

See "4.5 Output Ports" for details of the above mask option.

Control of sound generator

Table 4.11.3 lists the sound generator's control bits and their addresses.

Table 4.11.3 Control bits of sound generator

Address	Register								Comment	
	D3	D2	D1	D0	Name	Init *1	1	0		
2 ECH	R13	R12	R11	R10	R13	0	High/On	Low/Off	Output port (R13)//̄ై output control	
			SIOF		R12	0	High/On	Low/Off	Output port (R12)/FOUT output control	
	R/W		R/W	R/W	R11	0	High	Low	Output port (R11, LAMP)	
			N		$\begin{gathered} \text { SIOF } \\ \text { R10 } \end{gathered}$	0	Run High/On	$\begin{gathered} \text { Stop } \\ \text { Low/Off } \end{gathered}$	Output port (SIOF)	
			R			0			Output port (R10)/BZ output control	
2F6H	BZFQ2	BZFQ1	BZFQ0	ENVRST	$\begin{aligned} & \text { BZFQ2 } \\ & \text { BZFQ1 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		-	7 Buzzer $\quad[\mathrm{BZFQ} 2-0] 0$	
									frequency Frequency foscl/8 foscl/10 foscl/12 foscl/14	
	R/W			W	BZFQ0	0			$\checkmark \begin{array}{lllllll} \\ \text { selection }\end{array}$	
				ENVRST*3	Reset	Envelope reset				
2F7H	ENVON	ENVRT	AMPDT		AMPON	ENVON ENVRT	0	$\begin{gathered} \text { On } \\ 1.0 \mathrm{sec} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Off } \\ 0.5 \mathrm{sec} \end{array}$	Envelope On/Off
				0			Envelope cycle selection register			
	R/W		R	R/W	AMPDT AMPON	10	$\begin{gathered} 1.0 \mathrm{sec} \\ +>- \\ \text { On } \end{gathered}$	$\begin{gathered} 0.5 \mathrm{sec} \\ +<- \\ \mathrm{Off} \end{gathered}$	Analog comparator data	
			Analog comparator On/Off							

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Constantly " 0 " when being read
*4 Reset (0) immediately after being read

BZFQ0-BZFQ2: This is used to select the frequency of the buzzer signal.
Buzzer frequency selection register (2F6H•D1-D3)

Table 4.11.4
Buzzer frequency

BZFQ2	BZFQ1	BZFQ0	Buzzer frequency (Hz)
0	0	0	fosc $1 / 8$
0	0	1	fosc $1 / 10$
0	1	0	fosc $1 / 12$
0	1	1	fosc $1 / 14$
1	0	0	fosc $1 / 16$
1	0	1	fosc $1 / 20$
1	1	0	fosc $1 / 24$
1	1	1	fosc $1 / 28$

Buzzer frequency is selected from the above eight types that have been divided by foscı (oscillation frequency of the OSCl oscillation circuit).
At initial reset, foscl/8 (Hz) is selected.

ENVRST: This is the reset input to make the duty ratio of the buzzer Envelope reset (2F6H-D0) signal the maximum.

When " 1 " is written : Reset input
When " 0 " is written : No operation
Read-out : Always "0"
When the envelope is added to the buzzer signal, the duty ratio is made maximum through this reset input. When the envelope is not added or when the buzzer signal is not output, the reset input is invalid.

ENVON: This controls adding the envelope to the buzzer signal.
Envelope ON/OFF
(2F7H•D3)

$$
\begin{array}{ll}
\text { When " } 1 \text { " is written : } & \text { Envelope added (ON) } \\
\text { When " } 0 \text { " is written : } & \text { No envelope (OFF) } \\
\text { Read-out : } & \text { Valid }
\end{array}
$$

The envelope is the digital envelope based on duty ratio control. When there is no envelope, the duty ratio is fixed to the maximum.
At initial reset, no envelope (OFF) is selected.

ENVRT: This input selects the decay time of the envelope added to Envelope decay time the buzzer signal.
(2F7H•D2)
When " 1 " is written : $1.0 \mathrm{sec}(125 \mathrm{msec} \times 7=875 \mathrm{msec})$
When " 0 " is written : $0.5 \mathrm{sec}(62.5 \mathrm{msec} \times 7=437.5 \mathrm{msec}$)
Read-out : Valid
The decay time of the digital envelope is decided by the time taken for the duty ratio to change. When " 1 " is written to ENVRT the time is $125 \mathrm{msec}(8 \mathrm{~Hz})$ units, and when " 0 " is written it is $62.5 \mathrm{msec}(16 \mathrm{~Hz})$ units.
At initial reset, $0.5 \mathrm{sec}(437.5 \mathrm{msec})$ is selected.

R10, R13 (at BZ, $\overline{B Z}$ output These control output of the buzzer signals ($B Z, \overline{B Z}$). selection):
Special output port data (2ECH•D0, D3)

When " 1 " is written : Buzzer signal output
When " 0 " is written : Low level (DC) output
Read-out :
Valid

- $\overline{\mathrm{BZ}}$ output under R13 control

BZ output and $\overline{\mathrm{BZ}}$ output can be controlled independently. BZ output is controlled by writing data to register R10.
$\overline{\mathrm{BZ}}$ output is controlled by writing data to register R13.

- $\overline{\mathrm{BZ}}$ output under R10 control

By writing data to register R10 only, BZ output and $\overline{\mathrm{BZ}}$ output can be controlled simultaneously. In this case, register R13 can be used as a read/write one-bit general register. This register does not affect BZ output (output to pin R13).

At initial reset, registers R10 and R13 are set to "0".

A hazard may be observed in the output waveform of the BZ and $\overline{B Z}$ signals when data of the output registers (R10, R13) and the buzzer frequency selection registers (BZFQ0BZFQ2) changes.

4.12 Event Counter

Configuration of event counter

The E0C6235 Series has an event counter that counts the clock signals input from outside.
The event counter is configured of a pair of eight-bit binary counters (UP counters). The clock pulses are input through terminals K02 and K03 of the input port.
The clock signals input from the terminals are input to the event counter via the noise rejector.
The event counter detects the phases of the two clock signals. Software selection provides for two modes, the phase detection mode in which one of the counters can be chosen to input the clock signal, and the separate mode in which each clock signal is input to different counters.
Figure 4.12 .1 shows the configuration of the event counter.

Switching count mode

The event counter detects the phases of the two clock signals. Software selection provides for two modes, the phase detection mode in which one of the counters can be chosen to input the clock signal, and the separate mode in which each clock signal is input to different counters.
Selection can be made by writing data to the EVSEL register.
When " 0 " is written the phase detection mode is enabled, and when " 1 " is written the separate mode is enabled.

In the phase detection mode, the clock signals having different phases must be input simultaneously to terminals K02 and K03. When the input from terminal K02 is fast the clock signal is input to event counter 1, and when the input from terminal K03 is fast the clock signal is input to event counter 0 .
In the separate mode, input from terminal K02 is made to event counter 0 , and input from terminal K03 is made to event counter 1 .
Figure 4.12 .2 is the timing chart for the event counter.

Fig. 4.12.2
Timing chart of
event counter

Mask option

The clock frequency of the noise rejector can be selected as fosc $1 / 16$ or fosc $1 / 128$.
Table 4.12.1 lists the defined time depending on the frequency selected.

Table 4.12.1
Defined time depending on frequency selected

Selection	fosc1 $=32,768 \mathrm{~Hz}$		fosc1 $=38,400 \mathrm{~Hz}$	
	fosc1/16	fosc1/128	fosc1/16	fosc1/128
TN	0.24	1.95	0.20	1.66
Ton	0.74	5.86	0.63	5.00
Toff	0.74	5.86	0.63	5.00
TP	0.74	5.86	0.63	5.00
TH	0.74	5.86	0.63	5.00
TL	0.74	5.86	0.63	5.00

Control of event counter

Table 4.12 .2 shows the event counter control bits and their addresses.

Table 4.12.2 Event counter control bits

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Constantly " 0 " when being read
*4 Reset (0) immediately after being read

EV00-EV03: The four low-order data bits of event counter 0 are read out. Event counter 0 Low-order These four bits are read-only, and cannot be used for writ(2F8H) ing.

At initial reset, event counter 0 is set to " 00 H ".

EV04-EV07: The four high-order data bits of event counter 0 are read out. Event counter 0 High-order These four bits are read-only, and cannot be used for writ(2F9H) ing.

At initial reset, event counter 0 is set to " 00 H ".

EV10-EV13: The four low-order data bits of event counter 1 are read out. Event counter 1 Low-order These four bits are read-only, and cannot be used for writ(2FAH) ing.

At initial reset, event counter 1 is set to " 00 H ".

EV14-EV17: The four high-order data bits of event counter 1 are read out.
Event counter 1 High-order These four bits are read-only, and cannot be used for writ-
(2FBH) ing.
At initial reset, event counter 1 is set to " 00 H ".

EVORST: This is the register for resetting event counter 0 . Event counter 0 reset (2FCH-D0)

When " 1 " is written : Event counter 0 reset
When " 0 " is written : No operation
Read-out : Always "0"
When " 1 " is written, event counter 0 is reset and the data becomes " 00 H ". When " 0 " is written, no operation is executed.
This is a write-only bit, and is always " 0 " at read-out.

EV1RST: This is the register for resetting event counter 1.

Event counter 1 reset
(2FCH•D1)

When " 1 " is written : Event counter 1 reset
When " 0 " is written : No operation
Read-out :
Always "0"

When " 1 " is written, event counter 1 is reset and the data becomes "00H". When " 0 " is written, no operation is executed.
This is a write-only bit, and is always " 0 " at read-out.

EVRUN: This register controls the event counter RUN/STOP status. Event counter RUN/STOP
(2FCH-D2)
When " 1 " is written : RUN
When " 0 " is written : STOP
Read-out : Valid
When " 1 " is written, the event counter enters the RUN status and starts receiving the clock signal input. When " 0 " is written, the event counter enters the STOP status and the clock signal input is ignored. (However, input to the input port is valid.) At initial reset, this register is set to " 0 ".

EVSEL: This register control the count mode of the event counter.

Event counter mode
(2FCH•D3)

When " 1 " is written: Separate
When " 0 " is written : Phase detection
Read-out: Valid

When " 0 " is written, the phases of the two clock signals are detected, and the phase detection mode is selected, in which one of the counters is chosen to input the clock signal.
When " 1 " is written, the separate mode is selected, in which each clock signal is input to different counters. At initial reset, this register is set to " 0 ".
(1) After the event counter has written data to the EVRUN register, it operates or stops in synchronization with the falling edge of the noise rejector clock or stops. Hence, attention must be paid to the above timing when input signals (input to K02 and K03) are being received.
(2) To prevent erroneous reading of the event counter data, read out the counter data several times, compare it, and use the matching data as the result.

4.13 Analog Comparator

Configuration of analog comparator

The E0C6235 Series incorporates an MOS input analog comparator. This analog comparator, which has two differential input terminals (inverted input terminal AMPM, noninverted input terminal AMPP), can be used for general purposes.
Figure 4.13 .1 shows the configuration of the analog comparator.

Fig. 4.13.1
Configuration of analog comparator

Operation of analog

 comparatorThe analog comparator is ON when the AMPON register is " 1 ", and compares the input levels of the AMPP and AMPM terminals. The result of the comparison is read from the AMPDT register. It is " 1 " when AMPP (+) > AMPM (-) and "0" when AMPP (+) < AMPM (-).

After the analog comparator goes ON it takes a maximum of 3 msec until the output stabilizes.

Control of analog comparator

Table 4.13.1 lists the analog comparator control bits and their addresses.

Table 4.13.1 Analog comparator control bits

Address	Register								Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
2F7H	ENVON	ENVRT	AMPDT	AMPON	ENVON	0	On	Off	Envelope On/Off
	ENVON	ENVT	AMPDT	AMPON	ENVRT	0	1.0 sec	0.5 sec	Envelope cycle selection register
	R/W		R	R/W	AMPDT AMPON	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} +>- \\ \text { On } \end{gathered}$	$\begin{gathered} +<- \\ \text { Off } \end{gathered}$	Analog comparator data Analog comparator On/Off

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Constantly " 0 " when being read
*4 Reset (0) immediately after being read

AMPON: Switches the analog comparator ON and OFF.

Analog comparator ON/OFF (2F7H•D0)

When " 1 " is written: The analog comparator goes ON When " 0 " is written : The analog comparator goes OFF Read-out : Valid

The analog comparator goes ON when " 1 " is written to AMPON, and OFF when " 0 " is written.
At initial reset, AMPON is set to " 0 ".

AMPDT: Reads out the output from the analog comparator.
Analog comparator data
(2F7H•D1)
When " 1 " is read out : AMPP (+) > AMPM (-)
When " 0 " is read out : AMPP (+) < AMPM (-)
Writing : Invalid
AMPDT is " 0 " when the input level of the inverted input terminal (AMPM) is greater than the input level of the noninverted input terminal (AMPP); and " 1 " when smaller. At initial reset, AMPDT is set to " 1 ".

Programming notes
(1) To reduce current consumption, set the analog comparator to OFF when it is not necessary.
(2) After setting AMPON to " 1 ", wait at least 3 msec for the operation of the analog comparator to stabilize before reading the output data of the analog comparator from AMPDT.

4.14 Battery Life Detection (BLD) Circuit

Configuration of BLD circuit

The E0C6235 Series has a built-in battery life detection (BLD) circuit, so that the software can find when the source voltage lowers. The configuration of the BLD circuit is shown in Figure 4.14.1.
Also provides a heavy load protection function and an associated sub-BLD circuit. See 4.15 "Heavy Load Protection Function and Sub-BLD Circuit".
Turning the BLD operation ON/OFF is controlled through the software (HLMOD, BLS). Moreover, when a drop in source voltage (BLDO = "1") is detected by the sub-BLD circuit, BLD operation is periodically performed by the hardware until the source voltage is recovered (BLDO = " 0 "). Because the power current consumption of the IC becomes big when the BLD operation is turned ON, set the BLD operation to OFF unless otherwise necessary.

Fig. 4.14.1
Configuration of BLD circuit

Programmable selection of evaluation voltage

Table 4.14.1
Evaluation voltages for BLD circuit

In the E0C6235 Series, the evaluation voltage for judging the battery life can be switched by programming. Consequently, the optimum evaluation voltage can be set for the battery used.
One of eight evaluation voltages can be selected with the software. Table 4.14.1 lists the evaluation voltages for the models in the E0C6235 Series.

Evaluation voltage setting		Evaluation voltage			
BLC2	BLC1	BLC0	E0C62L35	E0C6235	E0C62A35
0	0	0	1.05 V	2.20 V	2.20 V
0	0	1	1.10 V	2.25 V	2.25 V
0	1	0	1.15 V	2.30 V	2.30 V
0	1	1	1.20 V	2.35 V	2.35 V
1	0	0	1.25 V	2.40 V	2.40 V
1	0	1	1.30 V	2.45 V	2.45 V
1	1	0	1.35 V	2.50 V	2.50 V
1	1	1	1.40 V	2.55 V	2.55 V

See the electrical characteristics for the evaluation voltage accuracy.

Detection timing of

 BLD circuitThis section explains the timing for when the BLD circuit writes the result of the source voltage detection to the BLD latch.
Turning the BLD operation ON/OFF is controlled through the software (HLMOD, BLS). Moreover, when a drop in source voltage (BLDO = " 1 ") is detected by the sub-BLD circuit, BLD operation is periodically performed by the hardware until the source voltage is recovered (BLDO = " 0 "). The result of the source voltage detection is written to the BLD latch by the BLD circuit, and this data can be read out by the software to find the status of the source voltage. There are three status, explained below, for the detection timing of the BLD circuit.
(1) Sampling with HLMOD set to "1"

When HLMOD is set to " 1 " and BLD sampling executed, the detection results can be written to the BLD latch in the following two timings.
(1) Immediately after the time for one instruction cycle has ended immediately after HLMOD = " 1 "
(2) Immediately after sampling in the 2 Hz cycle output by the clock timer while HLMOD = " 1 "

Consequently, the BLD latch data is loaded immediately after HLMOD has been set to " 1 ", and at the same time the new detection result is written in 2 Hz cycles.
To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least $100 \mu \mathrm{sec}$.
When the CPU system clock is fosc3 in E0C62A35, the detection result at the timing in (1) above may be invalid or incorrect. (When performing BLD detection using the timing in ${ }^{(1)}$, be sure that the CPU system clock is fosc 1.$)$
(2) Sampling with BLS set to "1"

When BLS is set to " 1 ", BLD detection is executed. As soon as BLS is reset to " 0 " the detection result is loaded to the BLD latch. To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least 100 μ sec. Hence, to obtain the BLD detection result, follow the programming sequence below.

0 . Set HLMOD to "1" (only when the CPU system clock is fosc3 in E0C62A35)

1. Set BLS to "1"
2. Maintain at $100 \mu \mathrm{sec}$ minimum
3. Set BLS to "0"
4. Read out BLD
5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C62A35)

However, when a crystal oscillation clock (foscl) is selected for the CPU system clock in E0C6235, E0C62L35, and E0C62A35, the instruction cycles are long enough, so that there is no need for concern about maintaining $100 \mu \mathrm{sec}$ for the BLS = " 1 " with the software.
(3) Sampling by hardware when sub-BLD latch is set to "1"

When BLD0 (sub-BLD latch) is set to " 1 ", the detection results can be written to the BLDO (sub-BLD latch) and BLD1 (BLD latch) in the following two timings (same as that sampling with HLMOD set to " 1 ").
(1) Immediately after the time for one instruction cycle has ended immediately after BLD0 = " $1 "$
(2) Immediately after sampling in the 2 Hz cycle output by the clock timer while BLDO = " 1 "

Consequently, the BLD0 (sub-BLD latch) and BLD1 (BLD latch) data are loaded immediately after BLDO (sub-BLD latch) has been set to " 1 ", and at the same time the new detection result is written in 2 Hz cycles.
To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least $100 \mu \mathrm{sec}$.
When the CPU system clock is fosc3 in E0C62A35, the detection result at the timing in (1) above may be invalid or incorrect.

Control of BLD circuit Table 4.14.2 shows the BLD circuit's control bits and their addresses.

Table 4.14.2 Control bits of BLD circuit

[^1][^2]HLMOD:

When " 1 " is written : Heavy load protection mode is set When " 0 " is written : Heavy load protection mode is released Valid

When HLMOD is set to " 1 ", the IC operating status enters the heavy load protection mode and at the same time the battery life detection of the BLD circuit is controlled (ON/ OFF).
For details about the heavy load protection mode, see "4.15 Heavy Load Protection Function and Sub-BLD Circuit". When HLMOD is set to " 1 ", sampling control is executed for the BLD circuit ON time. There are two types of sampling time, as follows:
(1) The time of one instruction cycle immediately after HLMOD = " 1 "
(2) Sampling at cycles of 2 Hz output by the clock timer while HLMOD = " 1 "

The BLD circuit must be made ON with at least $100 \mu \mathrm{sec}$ for the BLD circuit to respond. Hence, when the CPU system clock is fosc3 in E0C62A35, the detection result at the timing in (1) above may be invalid or incorrect. When performing BLD detection using the timing in (1), be sure that the CPU system clock is foSc1.
When BLD sampling is done with HLMOD set to " 1 ", the results are written to the BLD latch in the timing as follows:
(1) As soon as the time has elapsed for one instruction cycle immediately following HLMOD = " 1 "
(2) Immediately on completion of sampling at cycles of 2 Hz output by the clock timer while HLMOD = " $1 "$

Consequently, the BLD latch data is written immediately after HLMOD is set to " 1 ", and at the same time the new detection result is written in 2 Hz cycles.

BLS/BLD1: When " 0 " is written : BLD detection OFF

BLD detection/BLD data (2F3H•D3)

When " 1 " is written : BLD detection ON
When " 0 " is read out : Source voltage (Vdd-Vss) is higher than BLD set value
When " 1 " is read out : Source voltage (Vdd-Vss) is lower than BLD set value

Note that the function of this bit when written is different to when read out.
When this bit is written to, ON/OFF of the BLD detection operation is controlled; when this bit is read out, the result of the BLD detection (contents of BLD latch) is obtained. Appreciable current is consumed during operation of BLD detection, so keep BLD detection OFF except when necessary.

When BLS is set to " 1 ", BLD detection is executed. As soon as BLS is reset to " 0 " the detection result is loaded to the BLD latch. To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least $100 \mu \mathrm{sec}$. Hence, to obtain the BLD detection result, follow the programming sequence below.

0 . Set HLMOD to "1" (only when the CPU system clock is fosc3 in E0C62A35)

1. Set BLS to "1"
2. Maintain at $100 \mu \mathrm{sec}$ minimum
3. Set BLS to "0"
4. Read out BLD
5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C62A35)

However, when a crystal oscillation clock (foscl) is selected for the CPU system clock in E0C6235, E0C62L35, and E0C62A35, the instruction cycles are long enough, so that there is no need for concern about maintaining $100 \mu \mathrm{sec}$ for the BLS = " 1 " with the software.
(1) It takes $100 \mu \mathrm{sec}$ from the time the BLD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:
(1) When the CPU system clock is foscl

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 1 instruction has passed.
2. When detection is done at BLS

After writing " 1 " on BLS, write " 0 " after at least 100 $\mu s e c$ has lapsed (possible with the next instruction) and then read the BLD.
(2) When the CPU system clock is fosc3 (in case of E0C62A35 only)

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 0.6 second has passed.
(HLMOD holds " 1 " for at least 0.6 second)
2. When detection is done at BLS

Before writing " 1 " on BLS, write " 1 " on HLMOD first; after at least $100 \mu \mathrm{sec}$ has lapsed after writing " 1 " on BLS, write " 0 " on BLS and then read the BLD.
(2) BLS resides in the same bit at the same address as BLD 1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.

4.15 Heavy Load Protection Function and SubBLD Circuit

This section explains the heavy load protection and sub-BLD circuit.

Configuration and operation of heavy load protection function

Note that the heavy load protection function on the E0C62L35 is different from the E0C6235/62A35.
(1) In case of E0C62L35

The E0C62L35 has the heavy load protection function for when the battery load becomes heavy and the source voltage drops, such as when an external buzzer sounds or an external lamp lights. The state where the heavy load protection function is in effect is called the heavy load protection mode. In this mode, operation with a lower voltage than normal is possible.
The normal mode changes to the heavy load protection mode in the following two cases:
(1) When the software changes the mode to the heavy load protection mode (HLMOD = "1")
(2) When source voltage drop ($\mathrm{BLDO}=" 1 \mathrm{l}$) in the sub-BLD circuit is detected, the mode will automatically shift to the heavy load protection mode until the source voltage is recovered (BLD0 = " 0 ")

The sub-BLD circuit, a BLD circuit dedicated to $2.4 \mathrm{~V} /$ 1.2 V detection, operates in synchronize with the BLD circuit. It is the E0C62L35's battery life detection circuit controlling the heavy load protection function so that operation is assured even when the source voltage drops. Based on the workings of the sub-BLD circuit and the heavy load protection function, the E0C62L35 realizes operation at 0.9 V source voltage. See the electrical characteristics for the precisions of voltage detection by this sub-BLD circuit.
Figure 4.15 .1 shows the configuration of the heavy load protection function and the sub-BLD circuit.

Fig. 4.15.1
Configuration of sub-BLD circuit

In the heavy load protection mode, the internally regulated voltage is generated by the liquid crystal driver source output VL2 so as to operate the internal circuit. Consequently, more current is consumed in the heavy load protection mode than in the normal mode. Unless it is necessary, be careful not to set the heavy load protection mode with the software.
(2) In case of E0C6235/62A35

The E0C6235/62A35 has the heavy load protection function for when the battery load becomes heavy and the source voltage changes, such as when an external buzzer sounds or an external lamp lights. The state where the heavy load protection function is in effect is called the heavy load protection mode. Compared with the normal operation mode, this mode can reduce the output voltage variation of the constant voltage/booster voltage circuit of the LCD system.
The normal mode changes to the heavy load protection mode in the following case:
(1) When the software changes the mode to the heavy load protection mode (HLMOD = " 1 ")

The heavy load protection mode switches the constant voltage circuit of the LCD system to the high-stability mode from the low current consumption mode. Consequently, more current is consumed in the heavy load protection mode than in the normal mode. Unless it is necessary, be careful not to set the heavy load protection mode with the software.

Operation of subBLD circuit

Software control of the sub-BLD circuit is virtually the same as for the BLD circuit, except that the evaluation voltage cannot be set by programming.
Just as for the BLD circuit, HLMOD or BLS control the detection timing of the sub-BLD circuit and the timing for writing the detection data to the sub-BLD latch. However, for the E0C62L35, even if the sub-BLD circuit detects a drop in source voltage (1.2 V or below) and invokes the heavy load protection mode, this will be the same as when the software invokes the heavy load protection mode, in that the BLD circuit and sub-BLD circuit will be sampled in timing synchronized to the 2 Hz output from the prescaler. If the subBLD circuit detects a voltage drop and enters the heavy load protection mode, it will return to the normal mode once the source voltage recovers and the BLD circuit judges that the source voltage is 1.2 V or more.
For the E0C6235/62A35, when the sub-BLD circuit detects a drop in source voltage (2.4 V or below) and the detection data is written to the sub-BLD latch, the BLD circuit and sub-BLD circuit will be sampled in timing synchronized to the 2 Hz output from the prescaler. Once the source voltage recovers and the BLD circuit judges that the source voltage is 2.4 V or more, the BLD circuit and sub-BLD circuit won't be sampled in timing synchronized to the 2 Hz output from the prescaler.

Control of heavy load protection function and subBLD circuit

Table 4.15 .1 shows the control bits and their addresses for the heavy load protection function and sub-BLD circuit.

Table 4.15.1 Control bits of BLD circuit

HLMOD: When " 1 " is written : Heavy load protection mode is set

Heavy load protection mode (2E6H•D3)

When " 0 " is written : Heavy load protection mode is released Read-out: Valid

When HLMOD is set to " 1 ", the IC operating status enters the heavy load protection mode and at the same time the battery life detection of the BLD circuit is controlled (ON/ OFF).
When HLMOD is set to " 1 ", sampling control is executed for the BLD circuit ON time. There are two types of sampling time, as follows:
(1) The time of one instruction cycle immediately after HLMOD = " 1 "
(2) Sampling at cycles of 2 Hz output by the clock timer while HLMOD = " 1 "

The BLD circuit must be made ON with at least $100 \mu \mathrm{sec}$ for the BLD circuit to respond. Hence, when the CPU system clock is fosc3 in E0C62A35, the detection result at the timing in (1) above may be invalid or incorrect. When performing BLD detection using the timing in (1), be sure that the CPU system clock is foscl.
When BLD sampling is done with HLMOD set to " 1 ", the results are written to the BLD latch in the timing as follows:
(1) As soon as the time has elapsed for one instruction cycle immediately following HLMOD = " 1 "
(2) Immediately on completion of sampling at cycles of 2 Hz output by the clock timer while HLMOD = " 1 "

Consequently, the BLD latch data is written immediately after HLMOD is set to " 1 ", and at the same time the new detection result is written in 2 Hz cycles.

BLDO:
Sub-BLD data
(2E6H•D2)

When " 0 " is read out :	High source voltage upward from
	about 2.4 V (E0C6235/62A35)
	$/ 1.2 \mathrm{~V}$ (E0C62L35)
When " 1 " is read out :	Low source voltage from about
	2.4 V (E0C6235/62A35)
	$/ 1.2 \mathrm{~V}($ E0C62L35) or under
Writing :	Invalid

When BLDO is " 1 " the CPU enters the heavy load protection mode. In the heavy load protection mode, the detection operation of the BLD circuit and sub-BLD circuit is sampled in 2 Hz cycles, and the respective detection results are written to the BLD latch and sub-BLD latch.

BLS/BLD1:

When " 0 " is written :	BLD detection OFF
When " 1 " is written :	BLD detection ON
When " 0 " is read out :	Source voltage (VDD-Vss)
	is higher than BLD set value
When " 1 " is read out :	Source voltage (VDD-Vss)
	is lower than BLD set value

Note that the function of this bit when written is different to when read out.
When this bit is written to, ON/OFF of the BLD detection operation is controlled; when this bit is read out, the result of the BLD detection (contents of BLD latch) is obtained. Appreciable current is consumed during operation of BLD detection, so keep BLD detection OFF except when necessary.

When BLS is set to " 1 ", BLD detection is executed. As soon as BLS is reset to " 0 " the detection result is loaded to the BLD latch. To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least $100 \mu \mathrm{sec}$.

Hence, to obtain the BLD detection result, follow the programming sequence below.

0 . Set HLMOD to "1" (only when the CPU system clock is fosc3 in E0C62A35)

1. Set BLS to "1"
2. Maintain at $100 \mu \mathrm{sec}$ minimum
3. Set BLS to "0"
4. Read out BLD
5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C62A35)

However, when a crystal oscillation clock (foscl) is selected for the CPU system clock in E0C6235, E0C62L35, and E0C62A35, the instruction cycles are long enough, so that there is no need for concern about maintaining $100 \mu \mathrm{sec}$ for the BLS = "1" with the software.
(1) It takes $100 \mu \mathrm{sec}$ from the time the BLD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:
(1) When the CPU system clock is foscl

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 1 instruction has passed.
2. When detection is done at BLS

After writing " 1 " on BLS, write " 0 " after at least 100 $\mu \mathrm{sec}$ has lapsed (possible with the next instruction) and then read the BLD.
(2) When the CPU system clock is fosc3 (in case of E0C62A35 only)

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 0.6 second has passed.
(HLMOD holds " 1 " for at least 0.6 second)
2. When detection is done at BLS

Before writing " 1 " on BLS, write " 1 " on HLMOD first; after at least $100 \mu \mathrm{sec}$ has lapsed after writing " 1 " on BLS, write " 0 " on BLS and then read the BLD.
(2) BLS resides in the same bit at the same address as BLD1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.
(3) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
(1) After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
(2) After heavy load drive is completed, switch BLS ON and OFF (at least $100 \mu \mathrm{sec}$ is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.
(4) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec .

4.16 Interrupt and HALT

The E0C6235 Series provides the following interrupt settings, each of which is maskable.

External interrupt: Input interrupt (three)
Internal interrupt: Timer interrupt (three)
Stopwatch interrupt (two)
Serial interface interrupt (one)
To authorize interrupt, the interrupt flag must be set to "1" (EI) and the necessary related interrupt mask registers must be set to " 1 " (enable).
When an interrupt occurs the interrupt flag is automatically reset to "0" (DI), and interrupts after that are inhibited. When a HALT instruction is input the CPU operating clock stops, and the CPU enters the HALT status.
The CPU is reactivated from the HALT status when an interrupt request occurs.
If reactivation is not caused by an interrupt request, initial reset by the watchdog timer causes reactivates the CPU (when the watchdog timer is enabled).
Figure 4.16 .1 shows the configuration of the interrupt circuit.

Fig. 4.16.1
Configuration of
interrupt circuit

Interrupt factors

Table 4.16 .1 shows the factors for generating interrupt requests.

The interrupt flags are set to " 1 " depending on the corresponding interrupt factors.
The CPU operation is interrupted when any of the conditions below set an interrupt factor flag to "1".

- The corresponding mask register is "1" (enabled)
- The interrupt flag is " 1 " (EI)

The interrupt factor flag is a read-only register, but can be reset to " 0 " when the register data is read out.
At initial reset, the interrupt factor flags are reset to " 0 ".
Note Read the interrupt factor flags only in the DI status (interrupt flag $=$ "0").
A malfunction could result from read-out during the EI status (interrupt flag = "1").

Table 4.16.1 Interrupt factors

Interrupt factor	Interrupt factor flag	
Clock timer 2 Hz falling edge	TI2	(2E9H•D2)
Clock timer 8 Hz falling edge	TI8	(2E9H•D1)
Clock timer 32 Hz falling edge	TI32	(2E9H•D0)
Stopwatch timer 1 Hz falling edge	SWIT1	(2EAH•D1)
Stopwatch timer 10 Hz falling edge	SWIT0	(2EAH•D0)
Serial interface When 8-bit data input/output has completed	ISIO	(2F3H•D0)
Input data (K00-K03) Rising or falling edge	IK0	(2EAH•D2)
Input data (K10) Rising or falling edge	IK1	(2EAH•D3)
Input data (K00-K03) Rising or falling edge	IK2	(2F3H•D1)

Specific masks and factor flags for interrupt

The interrupt factor flags can be masked by the corresponding interrupt mask registers.
The interrupt mask registers are read/write registers. They are enabled (interrupt authorized) when " 1 " is written to them, and masked (interrupt inhibited) when " 0 " is written to them.

At initial reset, the interrupt mask register is set to " 0 ".
Table 4.16 .2 shows the correspondence between interrupt mask registers and interrupt factor flags.

Table 4.16.2
Interrupt mask registers and interrupt factor flags

Interrupt mask register		Interrupt factor flag	
ETI2	(2E8H-D2)	TI2	(2E9H•D2)
ETI8	(2E8H•D1)	TI8	(2E9H•D1)
ETI32	(2E8H-D0)	TI32	(2E9H•D0)
EISWIT1	(2E6H•D1)	SWIT1	(2EAH•D1)
EISWIT0	(2E6H-D0)	SWIT0	(2EAH•D0)
EISIO	(2F2H-D0)	ISIO	(2F3H•D0)
EIK03	(2E5H-D3)	IKO	(2EAH•D2)
EIK02	(2E5H-D2)		
EIK01	(2E5H-D1)		
EIK00	(2E5H-D0)		
EIK10	(2E7H-D2)	IK1	(2EAH•D3)
EIK23	(2F5H.D3)	IK2	(2F3H-D1)
EIK22	(2F5H.D2)		
EIK21	(2F5H.D1)		
EIK20	(2F5H.D0)		

[^3]
Interrupt vectors

When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being executed is terminated, the interrupt processing is executed in the following order.
(1) The address data (value of program counter) of the program to be executed next is saved in the stack area (RAM).
(2) The interrupt request causes the value of the interrupt vector (page $1,01 \mathrm{H}-0 \mathrm{FH}$) to be set in the program counter.
(3) The program at the specified address is executed (execution of interrupt processing routine by software).

Table 4.16.3 shows the correspondence of interrupt requests and interrupt vectors.

Note The processing in (1) and (2) above take 12 cycles of the CPU system clock.

Table 4.16.3 Interrupt request and interrupt vectors

PC	Value	Interrupt request	
PCS3	1	Stopwatch interrupt	Enabled
	0		Masked
PCS2	1	Timer interrupt	Enabled
	0		Masked
PCS1	1	Input (K00-K03 or K10 or K20-K23) interrupt	Enabled
	0	Input (K00-K03 and K10 and K20-K23) interrupt	Masked
PCSO	1	Serial interface interrupt	Enabled
	0		Masked

The four low-order bits of the program counter are indirectly addressed through the interrupt request.

Control of interrupt and HALT

Table 4.16 .4 shows the interrupt control bits and their addresses.

Table 4.16.4 Interrupt control bits

Address	Register				Name	Init *1	1	0	Comment
	D3	D2	D1	D0					
2E4H	R/W			KCP00	$\begin{aligned} & \text { KCP03 } \\ & \text { KCP02 } \\ & \text { KCPO1 } \\ & \text { KCP00 } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$		$]$ Input comparison register (K00-K03)
2E5H	R/W				EIK03 EIK02 EIK01 EIK00	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Enable Enable Enable Enable	Mask Mask Mask Mask	$]$ Interrupt mask register (K00-K03)
2E6H	HLMOD	BLD0 R	EISWIT1	EISWITO	$\begin{array}{\|c\|} \hline \text { HLMOD } \\ \text { BLDO } \\ \text { EISWIT1 } \\ \text { EISWITO } \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Heavy load Low Enable Enable	Normal Normal Mask Mask	Heavy load protection mode register Sub-BLD evaluation data Interrupt mask register (stopwatch 1 Hz) Interrupt mask register (stopwatch 10 Hz)
2E7H	SCTRG W	R/W		K10 R	$\begin{array}{\|c\|} \hline \text { SCTRG*3 } \\ \text { EIK10 } \\ \text { KCP10 } \\ \text { K10 } \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & -* 2 \\ & \hline \end{aligned}$	Trigger Enable 7 High	Mask ـ Low	Serial interface clock trigger Interrupt mask register (K10) Input comparison register (K10) Input port data (K10)
2E8H	R/W			ETI32	CSDC ETI2 ETI8 ETI32	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Static Enable Enable Enable	Dynamic Mask Mask Mask	LCD drive switch Interrupt mask register (clock timer 2 Hz) Interrupt mask register (clock timer 8 Hz) Interrupt mask register (clock timer 32 Hz)
2E9H	R				$\begin{array}{\|r\|} \hline 0 * 3 \\ \mathrm{~T} \mid 2 * 4 \\ \mathrm{~T} \mid 8 * 4 \\ \mathrm{~T} \mid 32 * 4 \\ \hline \end{array}$	$\begin{aligned} & -* 2 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes Yes	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \\ & \hline \end{aligned}$	Unused Interrupt factor flag (clock timer 2 Hz) Interrupt factor flag (clock timer 8 Hz) Interrupt factor flag (clock timer 32 Hz)
2EAH	R			SWITO	$\begin{array}{\|c\|} \hline \text { IK1 } * 4 \\ \text { IKO } * 4 \\ \text { SWIT1 } * 4 \\ \text { SWIT0 } * 4 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes Yes Yes	No No No No	Interrupt factor flag (K10) Interrupt factor flag (K00-K03) Interrupt factor flag (stopwatch 1 Hz) Interrupt factor flag (stopwatch 10 Hz)
2F2H	R/W			EISIO	SCS1 SCSO SE2 EISIO	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Enable	7 Mask	SIF clock mode $[$ SCS1,0] 0 1 2 3 selection register Clock CLK CLK/2 CLK/4 slave SIF clock edge selection register Interrupt mask register (serial interface)
2F3H	0	0	IK2	ISIO	$0 * 3$ $0 * 3$ IK2 $* 4$ ISIO $* 4$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes	No No	Unused Unused Interrupt factor flag (K20-K23) Interrupt factor flag (serial interface)
2F5H	R/W				EIK23 EIK22 EIK21 EIK20	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Enable Enable Enable Enable	Mask Mask Mask Mask	Interrupt mask register (K20-K23)
*1 Initial value at the time of initial reset *2 Not set in the circuit					*3 Constantly "0" when being read *4 Reset (0) immediately after being read				

- ETI32, ETI8, ETI2: Interrupt mask registers (2E8H•D0-D2)
- TI32, TI8, TI2: Interrupt factor flags (2E9H•D0-D2)

See "4.9 Clock Timer".

- EISWIT0, EISWIT1: Interrupt mask registers (2E6H•D0-D1)
- SWIT0, SWIT1: Interrupt factor flags (2EAH•D0-D1) See "4.10 Stopwatch Timer".
- EISIO: Interrupt mask register (2F2H•D0)
- ISIO: Interrupt factor flag (2F3H•DO)

See "4.7 Serial Interface".

- KCP00-KCP03: Input comparison registers (2E4H)
- EIK00-EIK03: Interrupt mask registers (2E5H)
- IKO: Interrupt factor flag (2EAH•D2)

See "4.4 Input Ports".

- KCP10: Input comparison register (2E7H•D1)
- EIK10: Interrupt mask register (2E7H•D2)
- IK1: Interrupt factor flag (2EAH•D3)

See "4.4 Input Ports".

- EIK20-EIK23: Interrupt mask registers (2F5H)
- IK2: Interrupt factor flag (2F3H•D1)

See "4.4 Input Ports".
(1) When the interrupt mask register (EIK) is set to " 0 ", the interrupt factor flag (IK) of the input port cannot be set even though the terminal status of the input port has changed.
(2) The interrupt factor flags of the clock timer, stopwatch timer and serial interface (TI, SWIT, ISIO) are set when the timing condition is established, even if the interrupt mask registers (ETI, EISWIT, EISIO) are set to "0".
(3) Read out the interrupt factor flags only in the DI status (interrupt flag $=$ " 0 "). If read-out is performed in the EI status (interrupt flag = "1") a malfunction will result.
(4) Writing to the interrupt mask register only in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause mulfunction.

CHAPTER 5 SUMMARY OF NOTES

5.1 Notes for Low Current Consumption

The E0C6235 Series contains control registers for each of the circuits so that current consumption can be lowered. These control registers lower the current consumption through programs that operate the circuits at the minimum levels.
The following text explains the circuits that can control operation and their control registers. Refer to these when putting programs together.

Table 5.1.1 Circuits and control registers

Circuits (and Items)	Control registers	Order of consumed current
CPU	HALT instruction	See electrical characteristics (Chapter 7)
CPU operation frequency (E0C62A35)	CLKCHG, OSCC	See electrical characteristics (Chapter 7)
Heavy load protection mode	HLMOD	See electrical characteristics (Chapter 7)
BLD circuit	HLMOD, BLS	Several tens $\mu \mathrm{A}$
Analog comparator	AMPON	Several tens $\mu \mathrm{A}$

Below are the circuit statuses at initial reset.

CPU:	Operating status
CPU operating frequency:	Low speed side (CLKCHG $=" 0 ")$, OSC3 oscillation circuit stop status $(\mathrm{OSCC}=" 0 ")$
Heavy load protection mode:	Normal operating mode (HLMOD $=" 0 ")$
BLD circuit:	OFF status (HLMOD $=" 0 "$, BLS $=" 0 ")$
Analog comparator:	OFF status (AMPON $=" 0 ")$

Also, be careful about panel selection because the current consumption can differ by the order of several $\mu \mathrm{A}$ on account of the LCD panel characteristics.

5.2 Summary of Notes by Function

Here, the cautionary notes are summed up by function category. Keep these notes well in mind when programming.

Memory Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

Watchdog timer When the watchdog timer is being used, the software must reset it within 3 -second cycles, and timer data (WD0-WD2) cannot be used for timer applications.

Oscillation circuit and prescaler
(1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON.
Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
(2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
(3) To operate the clock timer and stopwatch timer accurately, select the prescaler of the OSC1 to match the crystal oscillator used.

Input port (1) When input ports are changed from high to low by pulldown resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time. Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 msec.
(2) When "Use" is selected with the noise rejector mask option, a maximum delay of 1 msec occurs from time the interrupt conditions are established until the interrupt factor flag (IK) is set to "1" (until the interrupt is actually generated).
Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.
For example, when performing a key scan with the key matrix, the key scan changes the input status to set the interrupt factor flag, so it has to be read out to reset it. However, if the interrupt factor flag is read out immediately after key scanning, the delay will cause the flag to be set after read-out, so that it will not be reset.
(3) Input interrupt programing related precautions

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at
Fig. 5.2.1
Input interrupt timing (1) and (2), (1) being the interrupt due to the falling edge and (2) the interrupt due to the rising edge.

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set. Therefore, when using the input interrupt, the active status of the input terminal implies
input terminal = low status, when the falling edge interrupt is effected and
input terminal = high status, when the rising edge interrupt is effected
When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of (1) shown in Figure 5.2.1.

However, when clearing the content of the mask register with the input terminal kept in the low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.
Consequently, when the input terminal is in the active status (low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (high status).
When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of (2) shown in Figure 5.2.1. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the low status. In addition, when the mask register $=" 1$ " and the content of the input comparison register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input comparison register in the mask register $=$ " 0 " status.
(4) Read out the interrupt factor flag (IK) only in the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag = " 1 ") will cause malfunction.
(5) Writing the interrupt mask register (EIK) only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.

Output port When $\mathrm{BZ}, \overline{\mathrm{BZ}}$ and FOUT are selected with the mask option, a hazard may be observed in the output waveform when the data of the output register changes.

I/O port (1) When input data are changed from high to low by built-in pull-down resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Consequently, if data is read out while the CPU is running in the OSC3 oscillation circuit, data must be read out continuously for about $500 \mu \mathrm{sec}$.
(2) When the I/O port is set to the output mode and the data register has been read, the terminal data instead of the register data can be read out. Because of this, if a lowimpedance load is connected and read-out performed, the value of the register and the read-out result may differ.

Serial interface (1) If the bit data of SE2 changes while SCLK is in the master mode, a hazard will be output to the SCLK pin. If this poses a problem for the system, be sure to set the SCLK to the external clock if the bit data of SE2 is to be changed.
(2) Be sure that read-out of the interrupt factor flag (ISIO) is done only when the serial port is in the STOP status $($ SIOF $=$ " 0 ") and the DI status (interrupt flag = "O"). If read-out is performed while the serial data is in the RUN status (during input or output), the data input or output will be suspended and the initial status resumed. Readout during the EI status (interrupt flag = "1") causes malfunctioning.
(3) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc $1 \leftrightarrow$ fosc 3) while the serial interface is operating.
(4) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
(5) As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing " 1 " to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
(6) Be sure that writing to the interrupt mask register is done only in the DI status (interrupt flag = "0"). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause malfunction.

LCD driver (1) When page 0 is selected for the display memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
(2) When page 2 is selected for the display memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).

Clock timer (1) The prescaler mode must be set correctly to suit the rystl oscillator to be used.
(2) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to " 1 ". Consequently, perform flag read-out (reset the flag) as necessary at reset.
(3) The input clock of the watchdog timer is the 2 Hz signal of the clock timer, so that the watchdog timer may be counted up at timer reset.
(4) Read-out the interrupt factor flag (TI) only during the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag $=" 1$ ") will cause malfunction.

Stopwatch timer (1) The prescaler mode must be set correctly so that the stopwatch timer suits the crystal oscillator to be used.
(2) If timer data is read out in the RUN status, the timer must be made into the STOP status, and after data is read out the RUN status can be restored. If data is read out when a carry occurs, the data cannot be read correctly.
Also, the processing above must be performed within the STOP interval of $976 \mu \mathrm{sec}(256 \mathrm{~Hz} \mathrm{1/4}$ cycle).
(3) Read-out of the interrupt factor flag (SWIT) must be done only in the DI status (interrupt flag = "0"). Read-out during EI status (interrupt flag = " 1 ") will cause malfunction.

Sound generator A hazard may be observed in the output waveform of the BZ and $\overline{B Z}$ signals when data of the output registers (R10, R13) and the buzzer frequency selection registers (BZFQ0BZFQ2) changes.

Event counter (1) After the event counter has written data to the EVRUN register, it operates or stops in synchronization with the falling edge of the noise rejector clock or stops. Hence, attention must be paid to the above timing when input signals (input to K02 and K03) are being received.
(2) To prevent erroneous reading of the event counter data, read out the counter data several times, compare it, and use the matching data as the result.

Analog comparator
(1) To reduce current consumption, set the analog comparator to OFF when it is not necessary.
(2) After setting AMPON to " 1 ", wait at least 3 msec for the operation of the analog comparator to stabilize before reading the output data of the analog comparator from AMPDT.

Battery life detection
(BLD) circuit
(1) It takes $100 \mu \mathrm{sec}$ from the time the BLD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:
(1) When the CPU system clock is foscl

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 1 instruction has passed.
2. When detection is done at BLS

After writing " 1 " on BLS, write " 0 " after at least 100 $\mu \mathrm{sec}$ has lapsed (possible with the next instruction) and then read the BLD.
(2) When the CPU system clock is fosc3 (in case of E0C62A35 only)

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 0.6 second has passed.
(HLMOD holds " 1 " for at least 0.6 second)
2. When detection is done at BLS Before writing " 1 " on BLS, write " 1 " on HLMOD first; after at least $100 \mu \mathrm{sec}$ has lapsed after writing " 1 " on BLS, write " 0 " on BLS and then read the BLD.
(2) BLS resides in the same bit at the same address as BLD 1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.

Heavy load protection (1) It takes $100 \mu \mathrm{sec}$ from the time the BLD circuit goes ON function and sub-BLD circuit until a stable result is obtained. For this reason, keep the following software notes in mind:
(1) When the CPU system clock is foSc 1

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 1 instruction has passed.
2. When detection is done at BLS

After writing " 1 " on BLS, write " 0 " after at least 100 $\mu \mathrm{sec}$ has lapsed (possible with the next instruction) and then read the BLD.
(2) When the CPU system clock is fosc3 (in case of E0C62A35 only)

1. When detection is done at HLMOD After writing " 1 " on HLMOD, read the BLD after 0.6 second has passed.
(HLMOD holds " 1 " for at least 0.6 second)
2. When detection is done at BLS

Before writing " 1 " on BLS, write " 1 " on HLMOD first; after at least $100 \mu \mathrm{sec}$ has lapsed after writing "1" on BLS, write " 0 " on BLS and then read the BLD.
(2) BLS resides in the same bit at the same address as BLD 1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.
(3) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
(1) After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
(2) After heavy load drive is completed, switch BLS ON and OFF (at least $100 \mu \mathrm{sec}$ is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.
(4) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec .

Interrupt and HALT (1) When the interrupt mask register (EIK) is set to " 0 ", the interrupt factor flag (IK) of the input port cannot be set even though the terminal status of the input port has changed.
(2) The interrupt factor flags of the clock timer, stopwatch timer and serial interface (TI, SWIT, ISIO) are set when the timing condition is established, even if the interrupt mask registers (ETI, EISWIT, EISIO) are set to "0".
(3) Read out the interrupt factor flags only in the DI status (interrupt flag = "0"). If read-out is performed in the EI status (interrupt flag $=" 1 "$) a malfunction will result.
(4) Writing to the interrupt mask register only in the DI status (interrupt flag = " 0 "). Writing to the interrupt mask register while in the EI status (interrupt flag = "1") may cause mulfunction.

CHAPTER 6
 DIAGRAM OF BASIC EXTERNAL CONNECTIONS

X'tal	Crystal oscillator	$32,768 \mathrm{~Hz}$ or $38,400 \mathrm{~Hz} \mathrm{CI}(\mathrm{MAX})=35 \mathrm{k} \Omega$
C CX	Trimmer capacitor	$5-25 \mathrm{pF}$
C 1		$0.1 \mu \mathrm{~F}$
C 2		$0.1 \mu \mathrm{~F}$
C 3		$0.1 \mu \mathrm{~F}$
C 4		$0.1 \mu \mathrm{~F}$
C 5		$0.1 \mu \mathrm{~F}$
C 6		$0.1 \mu \mathrm{~F}$
CP		$3.3 \mu \mathrm{~F}$

Note The above table is simply an example, and is not guaranteed to work.
E0C62A35

X'tal	Crystal oscillator	$32,768 \mathrm{~Hz}$ or $38,400 \mathrm{~Hz} \mathrm{CI}(\mathrm{MAX})=35 \mathrm{k} \Omega$
CGX	Trimmer capacitor	$5-25 \mathrm{pF}$
CR	Ceramic oscillator	500 kHz
CGC	Gate capacitance	100 pF
CDC	Drain capacitance	100 pF
RCR	Resistance for CR oscillation	$82 \mathrm{k} \Omega$
C 1		$0.1 \mu \mathrm{~F}$
C 2		$0.1 \mu \mathrm{~F}$
C 3		$0.1 \mu \mathrm{~F}$
C 4		$0.1 \mu \mathrm{~F}$
C5		$0.1 \mu \mathrm{~F}$
C6		$0.1 \mu \mathrm{~F}$
CP		$3.3 \mu \mathrm{~F}$

Note The above table is simply an example, and is not guaranteed to work.

When the piezoelectric buzzer is driven directly

RA1	Protection resistance	100Ω
RA2	Protection resistance	100Ω

CHAPTER 7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Rating

E0C6235 and E0C62A35

(VdD $=0 \mathrm{~V}$)			
Item	Code	Rated value	Unit
Supply voltage	Vss	-5.0 to 0.5	V
Input voltage (1)	Vi	Vss-0.3 to 0.5	V
Input voltage (2)	Viosc	Vs1-0.3 to 0.5	V
Permissible total output current *2	LIvss	10	mA
Operating temperature	Topr	-20 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$
Soldered temperature, time	Tsol	$260^{\circ} \mathrm{C}, 10 \mathrm{sec}$ (lead section)	-
Permitted loss *1	PD	250	mW

E0C62L35

(VDD $=0$ V)			
Item	Code	Rated value	Unit
Supply voltage	Vss	-2.0 to 0.5	V
Input voltage (1)	VI	Vss-0.3 to 0.5	V
Input voltage (2)	Viosc	Vs1-0.3 to 0.5	V
Permissible total output current $* 2$	CIvss	10	mA
Operating temperature	Topr	-20 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$
Soldered temperature, time	Tsol	$260^{\circ} \mathrm{C}, 10$ sec (lead section)	-
Permitted loss $* 1$	PD	250	mW

*1 For 100-pin plastic package
*2 The permissible total output current is the sum total of the current (average current) that simultaneously flows from the output pins (or is drawn in).

7.2 Recommended Operating Conditions

E0C6235

$\left(\mathrm{Ta}=-20\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Item	Code	Condition	Min.	Typ.	Max.	Unit
Supply voltage	Vss	VDD $=0 \mathrm{~V}$	-3.5	-3.0	-1.8	V
Oscillation frequency	fosc1	Either one	-	32,768	-	Hz
		is selected	-	38,400	-	Hz

E0C62L35
$\left(\mathrm{Ta}=-20\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Item	Code	Condition	Min.	Typ.	Max.	Unit
Supply voltage	Vss	V DD $=0 \mathrm{~V}$	-1.7	-1.5	-1.1	V
		$\begin{array}{\|l\|} \hline \mathrm{VDD}=0 \mathrm{~V} \\ \begin{array}{l} \text { Software } \\ \text { controllable } \end{array} \\ \hline{ }^{*} \end{array}$	-1.7	-1.5	-0.9 *2	V
		VdD $=0 \mathrm{~V}$ When use the analog comparator	-1.7	-1.5	-1.2	V
Oscillation frequency	fosc1	Either one	-	32,768	-	Hz
		is selected	-	38,400	-	Hz

* 1 When switching to heavy load protection mode. (See Section 4.15 for details.)
*2 The possibility of LCD panel display differs depending on the characteristics of the LCD panel.

E0C62A35

$\left(\mathrm{Ta}=-20\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Item	Code	Condition	Min.	Typ.	Max.	Unit
Supply voltage	Vss	VDD $=0 \mathrm{~V}$	-3.5	-3.0	-2.2	V
Oscillation frequency (1)	fosc1	Either one	-	32,768	-	Hz
	is selected	-	38,400	-	Hz	
Oscillation frequency (2)	fosc3	duty $50 \pm 5 \%$	50	500	600	kHz

7.3 DC Characteristics

E0C6235 and E0C62A35

(Vdd=0V, Vss $=-3.0 \mathrm{~V}$, fosc $1=32,768 \mathrm{~Hz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Vs1, VL1, VL2, VL3 are internal voltage, $\mathrm{C}_{1}=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=0.1 \mu \mathrm{~F}$)

Item	Code	Condition		Min.	Typ.	Max.	Unit
High-level input voltage (1)	VIH1		$\begin{aligned} & \hline \text { K00-03•10•20-23 } \\ & \text { SIN, P00-03•10-13 } \end{aligned}$	$\begin{aligned} & \hline 0.2 \\ & \text { VSS } \end{aligned}$		0	V
High-level input voltage (2)	VIH2		SCLK RESET, TEST	$\begin{aligned} & \hline 0.1 \\ & \text { Vss } \end{aligned}$		0	V
Low-level input voltage (1)	VIL1		$\begin{aligned} & \text { K00-03•10•20-23 } \\ & \text { SIN, P00-03•10-13 } \end{aligned}$	Vss		$\begin{aligned} & 0.8 \\ & \text { Vss } \end{aligned}$	V
Low-level input voltage (2)	VIL2		SCLK RESET, TEST	Vss		$\begin{aligned} & \hline 0.9 \\ & \text { Vss } \end{aligned}$	V
High-level input current (1)	IIH1	$\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}$ No pull-down resistance	$\begin{aligned} & \text { K00-03•10•20-23 } \\ & \text { P00-03•10-13 } \\ & \text { SIN, SCLK } \\ & \text { AMPP, AMPM, RESET } \end{aligned}$	0		0.5	$\mu \mathrm{A}$
High-level input current (2)	IIH2	VIH=0V With pull-down resistance	K00-03•10•20-23 SIN, SCLK	4		16	$\mu \mathrm{A}$
High-level input current (3)	IH3	$\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}$ With pull-down resistance	P00-03•10-13 RESET, TEST	25		100	$\mu \mathrm{A}$
Low-level input current	IIL	VIL=Vss	$\begin{aligned} & \text { K00-03•10•20-23 } \\ & \text { P00-03•10-13 } \\ & \text { SIN, SCLK, AMPP } \end{aligned}$ AMPM, RESET, TEST	-0.5		0	$\mu \mathrm{A}$
High-level output current (1)	IOH1	VOH1 $=0.1 \cdot \mathrm{Vss}$	R10, R11, R13			-1.8	mA
High-level output current (2)	IOH2	VOH2 $=0.1 \cdot \mathrm{VsS}$	$\begin{aligned} & \text { R00-03•12 } \\ & \text { P00-03•10-13 } \\ & \text { SOUT, SCLK } \\ & \hline \end{aligned}$			-0.9	mA
Low-level output current (1)	IoL1	VoL1 $=0.9 \cdot \mathrm{Vss}$	R10, R11, R13	6.0			mA
Low-level output current (2)	IoL2	VoL2 $=0.9 \cdot \mathrm{Vss}$	$\begin{aligned} & \hline \text { R00-03•12 } \\ & \text { P00-03•10-13 } \\ & \text { SOUT, SCLK } \end{aligned}$	3.0			mA
Common	IOH3	VOH3 $=-0.05 \mathrm{~V}$	COM0-3			-3	$\mu \mathrm{A}$
output current	Iol3	VOL3 $=$ VL3 +0.05 V		3			$\mu \mathrm{A}$
Segment output current	IOH4	VOH4=-0.05V	SEG0-47			-3	$\mu \mathrm{A}$
(at LCD output)	Iol4	Vol4 $=\mathrm{VL} 3+0.05 \mathrm{~V}$		3			$\mu \mathrm{A}$
Segment output current	Ioh5	ViH5 $=0.1 \cdot \mathrm{Vss}$	SEG0-47			-200	$\mu \mathrm{A}$
(at DC output)	IoL5	VIL5 $=0.9 \cdot \mathrm{Vss}$		200			$\mu \mathrm{A}$

E0C62L35
$\left(\mathrm{VdD}=0 \mathrm{~V}, \mathrm{Vss}=-1.5 \mathrm{~V}\right.$, fosc $1=32,768 \mathrm{~Hz}$, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vs} 1, \mathrm{VL} 1$, VL2, VL3 are internal voltage, $\left.\mathrm{C}_{1}=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=0.1 \mu \mathrm{~F}\right)$

Item	Code	Condition		Min.	Typ.	Max.	Unit
High-level input voltage (1)	VIH1		$\begin{aligned} & \text { K00-03•10 } \\ & \text { P00-03•10-13 } \end{aligned}$	$\begin{aligned} & 0.2 \\ & \text { Vss } \end{aligned}$		0	V
High-level input voltage (2)	VIH2		SCLK RESET, TEST	$\begin{aligned} & \hline 0.1 \cdot \\ & \text { Vss } \end{aligned}$		0	V
Low-level input voltage (1)	VIL1		$\begin{aligned} & \text { K00-03•10 } \\ & \text { P00-03•10-13 } \end{aligned}$	Vss		$\begin{aligned} & \hline 0.8 \\ & \text { Vss } \end{aligned}$	V
Low-level input voltage (2)	VIL2		SCLK RESET, TEST	Vss		$\begin{aligned} & 0.9 \\ & \text { Vss } \end{aligned}$	V
High-level input current (1)	IIH1	$\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}$ No pull-down resistance	$\begin{aligned} & \text { K00-03•10•20-23 } \\ & \text { P00-03•10-13 } \end{aligned}$ SIN, SCLK AMPP, AMPM, RESET	0		0.5	$\mu \mathrm{A}$
High-level input current (2)	IIH2	$\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}$ With pull-down resistance	K00-03•10•20-23 SIN, SCLK	2		10	$\mu \mathrm{A}$
High-level input current (3)	IH3	$\mathrm{V}_{\mathrm{IH}}=0$ With pull-down resistance	P00-03•10-13 RESET, TEST	12		60	$\mu \mathrm{A}$
Low-level input current	IIL	VIL=Vss	$\begin{aligned} & \text { K00-03•10•20-23 } \\ & \text { P00-03•10-13 } \end{aligned}$ SIN, SCLK, AMPP AMPM, RESET, TEST	-0.5		0	$\mu \mathrm{A}$
High-level output current (1)	IOH1	VOH1 $=0.1 \cdot \mathrm{Vss}$	R10, R11, R13			-300	$\mu \mathrm{A}$
High-level output current (2)	IOH2	VOH2 $=0.1 \cdot \mathrm{Vss}$	$\begin{aligned} & \text { R00-03•12 } \\ & \text { P00-03•10-13 } \\ & \text { SOUT, SCLK } \end{aligned}$			-150	$\mu \mathrm{A}$
Low-level output current (1)	IoL1	VoL1 $=0.9 \cdot$ Vss	R10, R11, R13	1400			$\mu \mathrm{A}$
Low-level output current (2)	IOL2	VoL2 $=0.9 \cdot \mathrm{Vss}$	$\begin{aligned} & \hline \text { R00-03•12 } \\ & \text { P00-03•10-13 } \\ & \text { SOUT, SCLK } \end{aligned}$	700			$\mu \mathrm{A}$
Common	ІоН3	VOH3 $=-0.05 \mathrm{~V}$	COM0-3			-3	$\mu \mathrm{A}$
output current	IoL3	Vol3 $=$ VL3+0.05V		3			$\mu \mathrm{A}$
Segment output current	IoH4	VOH4=-0.05V	SEG0-47			-3	$\mu \mathrm{A}$
(at LCD output)	IoL4	Vol4=VL3+0.05V		3			$\mu \mathrm{A}$
Segment output current	IOH5	VIH5 $=0.1 \cdot \mathrm{Vss}$	SEG0-47			-100	$\mu \mathrm{A}$
	IOL5	VIL5 $=0.9 \cdot \mathrm{VSS}$		100			$\mu \mathrm{A}$

7.4 Analog Circuit Characteristics and Consumed Current

E0C6235 (Normal operation mode)

(Vdd=0V, Vss $=-3.0 \mathrm{~V}$, fosc $1=32,768 \mathrm{~Hz}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vs} 1, \mathrm{Vl} 1, \mathrm{~V} 2$, Vl3 are internal voltage, $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=0.1 \mu \mathrm{~F}$)

Item	Code	Condition		Min.	Typ.	Max.	Unit
Internal voltage	VL1	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VL1 (No panel load)		-1.15	-1.05	-0.95	V
	VL2	Connects a $1 \mathrm{M} \Omega$ load resistance between VDd and VL2 (No panel load)		$\begin{gathered} \hline 2 \cdot \mathrm{VL1} \\ -0.1 \end{gathered}$		$\begin{aligned} & 2 \cdot \mathrm{VL1} \\ & \times 0.9 \end{aligned}$	V
	VL3	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VL3 (No panel load)		$\begin{gathered} 3 \cdot \mathrm{VL} 1 \\ -0.1 \end{gathered}$		$\begin{aligned} & 3 \cdot \mathrm{VLI} \\ & \times 0.9 \end{aligned}$	V
BLD voltage*1	Vbo	BLC $=$ "0"		-2.35	-2.20	-2.05	V
	Vb1	BLC $=$ "1"		-2.40	-2.25	-2.10	V
	VB2	BLC $=$ "2"		-2.45	-2.30	-2.15	V
	VB3	BLC $=$ "3"		-2.50	-2.35	-2.20	V
	VB4	BLC $=$ "4"		-2.55	-2.40	-2.25	V
	VB5	BLC $=$ "5"		-2.60	-2.45	-2.30	V
	VB6	BLC $=$ "6"		-2.65	-2.50	-2.35	V
	VB7	BLC = "7"		-2.70	-2.55	-2.40	V
BLD circuit response time	tB					100	$\mu \mathrm{sec}$
Sub-BLD voltage	VBS			-2.55	-2.40	-2.25	V
Sub-BLD circuit response time	tBS					100	$\mu \mathrm{sec}$
Analog comparator input voltage	VIP	Noninverted input (AMPP)		Vss+0.3		Vdd-0.9	V
	VIM	Inverted input (AMPM)					
Analog comparator offset voltage	VoF					10	mV
Analog comparator response time	tamp	$\begin{aligned} & \mathrm{V} \text { IP }=-1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IM}}=\mathrm{V}_{\mathrm{IP}} \pm 15 \mathrm{mV} \end{aligned}$				3	msec
Consumed current	IoP	During HALT	No panel load		1.8	4.0	$\mu \mathrm{A}$
		During operation ${ }^{2}$			6.0	10.0	$\mu \mathrm{A}$

*2 The BLD circuit, sub-BLD circuit and analog comparator are in the OFF status.

E0C6235 (Heavy load protection mode)
(Vdd=0V, Vss $=-3.0 \mathrm{~V}$, fosc $1=32,768 \mathrm{~Hz}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Vs1, Vlı, Vl2, Vl3 are internal voltage, $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=0.1 \mu \mathrm{~F})$

Item	Code	Condition		Min.	Typ.	Max.	Unit
Internal voltage	VL1	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VLl (No panel load)		-1.15	-1.05	-0.95	V
	VL2	Connects a $1 \mathrm{M} \Omega$ load resistance between VDD and VL2 (No panel load)		$\begin{gathered} 2 \cdot \mathrm{VLl}_{\mathrm{L}} \\ -0.1 \end{gathered}$		$\begin{aligned} & 2 \cdot V_{L 1} \\ & \times 0.9 \end{aligned}$	V
	VL3	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VL3 (No panel load)		$\begin{gathered} \hline 3 \cdot \mathrm{VL} 1 \\ -0.1 \end{gathered}$		$\begin{aligned} & 3 \cdot \mathrm{VL1} \\ & \times 0.9 \end{aligned}$	V
BLD voltage* ${ }^{*}$	Vbo	BLC $=$ " 0 "		-2.35	-2.20	-2.05	V
	VB1	BLC $=$ " 1 "		-2.40	-2.25	-2.10	V
	VB2	BLC $=$ "2"		-2.45	-2.30	-2.15	V
	VB3	BLC $=$ "3"		-2.50	-2.35	-2.20	V
	VB4	BLC $=$ "4"		-2.55	-2.40	-2.25	V
	VB5	BLC $=$ "5"		-2.60	-2.45	-2.30	V
	VB6	BLC $=$ "6"		-2.65	-2.50	-2.35	V
	VB7	BLC $=$ "7"		-2.70	-2.55	-2.40	V
BLD circuit response time	tB					100	$\mu \mathrm{sec}$
Sub-BLD voltage	Vbs			-2.55	-2.40	-2.25	V
Sub-BLD circuit response time	tBS					100	$\mu \mathrm{sec}$
Analog comparator input voltage	VIP	Noninverted input (AMPP)		Vss+0.3		Vdd-0.9	V
	VIM	Inverted input (AMPM)					
Analog comparator offset voltage	Vof					10	mV
Analog comparator response time	tamp	$\begin{aligned} & \text { VIP }=-1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IM}}=\mathrm{V}_{\mathrm{IP} \pm} \pm 15 \mathrm{mV} \end{aligned}$				3	msec
Consumed current	Iop	During HALT	No panel load		35	90	$\mu \mathrm{A}$
		During operation ${ }^{2}$			40	100	$\mu \mathrm{A}$

*2 The BLD circuit and sub-BLD circuit are in the ON status (HLMOD = " 1 ", BLS = " 0 "). The analog comparator is in the OFF status.

E0C62L35 (Normal operation mode)

(Vdd $=0 \mathrm{~V}, \mathrm{Vss}=-1.5 \mathrm{~V}, \mathrm{fosc} 1=32,768 \mathrm{~Hz}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vs} 1, \mathrm{Vl} 1, \mathrm{VL2}, \mathrm{VL} 3$ are internal voltage, $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=0.1 \mu \mathrm{~F}$)

Item	Code	Condition		Min.	Typ.	Max.	Unit
Internal voltage	VL1	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VL1 (No panel load)		-1.15	-1.05	-0.95	V
	VL2	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VL2 (No panel load)		$\begin{gathered} \hline 2 \cdot \mathrm{VL1} \\ -0.1 \end{gathered}$		$\begin{aligned} & 2 \cdot \mathrm{VL1} \\ & \times 0.9 \end{aligned}$	V
	VL3	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and Vl3 (No panel load)		$\begin{gathered} \hline 3 \cdot V \mathrm{~V} 1 \\ -0.1 \end{gathered}$		$\begin{aligned} & 3 \cdot \mathrm{VL1} \\ & \times 0.9 \end{aligned}$	V
BLD voltage*1	Vb0	BLC $=$ "0"		-1.15	-1.05	-0.95	V
	VB1	BLC $=$ "1"		-1.20	-1.10	-1.00	V
	VB2	BLC $=$ "2"		-1.25	-1.15	-1.05	V
	VB3	BLC $=$ " 3 "		-1.30	-1.20	-1.10	V
	VB4	BLC $=$ "4"		-1.35	-1.25	-1.15	V
	Vb5	BLC $=$ "5"		-1.40	-1.30	-1.20	V
	VB6	BLC $=$ "6"		-1.45	-1.35	-1.25	V
	VB7	BLC = "7"		-1.50	-1.40	-1.30	V
BLD circuit response time	tB					100	$\mu \mathrm{sec}$
Sub-BLD voltage	VBS			-1.30	-1.20	-1.10	V
Sub-BLD circuit response time	tBS					100	$\mu \mathrm{sec}$
Analog comparator input voltage	VIP	Noninverted input (AMPP)		Vss+0.3		Vdd-0.9	V
	VIM	Inverted input (AMPM)					
Analog comparator offset voltage	Vof					20	mV
Analog comparator response time	tamp	$\begin{aligned} & \mathrm{V}_{\mathrm{IP}}=-1.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IM}}=\mathrm{V}_{\mathrm{IP} \pm} \pm 30 \mathrm{mV} \end{aligned}$				3	msec
Consumed current	IoP	During HALT	No panel load		1.5	3.0	$\mu \mathrm{A}$
		During operation ${ }^{2}$			5.0	8.0	$\mu \mathrm{A}$

*1 The relationships among $V_{B 0}-V_{B 7}$ are $V_{B} 0>V_{B} 1>V_{B} 2>. . . V_{B 5}>V_{B 6}>V_{B 7}$.
*2 The BLD circuit, sub-BLD circuit and analog comparator are in the OFF status.

E0C62L35 (Heavy load protection mode)
(VdD=0V, Vss $=-1.5 \mathrm{~V}$, fosc $1=32,768 \mathrm{~Hz}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vs} 1, \mathrm{~V} 11, \mathrm{VL} 2, \mathrm{VL} 3$ are internal voltage, $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=0.1 \mu \mathrm{~F}$)

Item	Code	Condition		Min.	Typ.	Max.	Unit
Internal voltage	VL1	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VL1 (No panel load)		-1.15	-1.05	-0.95	V
	VL2	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VL2 (No panel load)		$\begin{gathered} 2 \cdot \mathrm{VL} 1 \\ -0.1 \end{gathered}$		$\begin{array}{\|c\|} \hline 2 \cdot V_{L 1} \\ \times 0.85 \end{array}$	V
	VL3	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VL3 (No panel load)		$\begin{gathered} \hline 3 \cdot \mathrm{VL} 1 \\ -0.1 \end{gathered}$		$\begin{array}{\|c\|} \hline 3 \cdot V_{L 1} \\ \times 0.85 \end{array}$	V
BLD voltage**	Vbo	BLC $=$ "0"		-1.15	-1.05	-0.95	V
	VB1	BLC $=$ "1"		-1.20	-1.10	-1.00	V
	VB2	BLC $=$ "2"		-1.25	-1.15	-1.05	V
	VB3	BLC $=$ "3"		-1.30	-1.20	-1.10	V
	VB4	BLC $=44$		-1.35	-1.25	-1.15	V
	Vb5	BLC $=$ "5"		-1.40	-1.30	-1.20	V
	Vb6	BLC $=$ "6"		-1.45	-1.35	-1.25	V
	VB7	BLC $=$ "7"		-1.50	-1.40	-1.30	V
BLD circuit response time	tb					100	$\mu \mathrm{sec}$
Sub-BLD voltage	VBS			-1.30	-1.20	-1.10	V
Sub-BLD circuit response time	tBS					100	$\mu \mathrm{sec}$
Analog comparator input voltage	VIP	Noninverted input (AMPP)		Vss+0.3		Vdd-0.9	V
	VIM	Inverted input (AMPM)					
Analog comparator offset voltage	Vof					20	mV
Analog comparator response time	tAMP	$\begin{aligned} & \mathrm{V}_{\mathrm{IP}}=-1.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IM}}=\mathrm{V}_{\mathrm{IP}} \pm 30 \mathrm{mV} \end{aligned}$				3	msec
Consumed current	Iop	During HALT	No panel load		3.0	7.0	$\mu \mathrm{A}$
		During operation ${ }^{* 2}$			10.0	18.0	$\mu \mathrm{A}$

*2 The BLD circuit and sub-BLD circuit are in the ON status (HLMOD = " 1 ", BLS = " 0 "). The analog comparator is in the OFF status.

E0C62A35 (Normal operation mode)

(Vdd=0V, Vss $=-3.0 \mathrm{~V}$, fosc $1=32,768 \mathrm{~Hz}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VS} 1, \mathrm{VL} 1, \mathrm{VL} 2, \mathrm{~V} 33$ are internal voltage, $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=0.1 \mu \mathrm{~F})$

Item	Code	Condition	Min.	Typ.	Max.	Unit
Internal voltage	VL1	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VL1 (No panel load)	-1.15	-1.05	-0.95	V
	VL2	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and Vl2 (No panel load)	$\begin{gathered} \hline 2 \cdot \mathrm{VLl}_{1} \\ -0.1 \end{gathered}$		$\begin{aligned} & \hline 2 \cdot \mathrm{VL1} \\ & \times 0.9 \end{aligned}$	V
	VL3	Connects a $1 \mathrm{M} \Omega$ load resistance between Vdd and VL3 (No panel load)	$\begin{gathered} \hline 3 \cdot \mathrm{VL} 1 \\ -0.1 \end{gathered}$		$\begin{aligned} & \hline 3 \cdot \mathrm{VL1} \\ & \times 0.9 \\ & \hline \end{aligned}$	V
BLD voltage ${ }^{* 1}$	Vbo	BLC $=$ " 0 "	-2.35	-2.20	-2.05	V
	Vb1	BLC $=$ "1"	-2.40	-2.25	-2.10	V
	VB2	BLC $=$ "2"	-2.45	-2.30	-2.15	V
	VB3	BLC $=$ "3"	-2.50	-2.35	-2.20	V
	VB4	BLC $=$ "4"	-2.55	-2.40	-2.25	V
	Vb5	BLC $=$ "5"	-2.60	-2.45	-2.30	V
	Vb6	BLC $=$ "6"	-2.65	-2.50	-2.35	V
	VB7	BLC $=$ "7"	-2.70	-2.55	-2.40	V
BLD circuit response time	tB				100	$\mu \mathrm{sec}$
Sub-BLD voltage	VBS		-2.55	-2.40	-2.25	V
Sub-BLD circuit response time	tBS				100	$\mu \mathrm{sec}$
Analog comparator input voltage	VIP	Noninverted input (AMPP)	Vss+0.3		Vdd-0.9	V
	VIM	Inverted input (AMPM)				
Analog comparator offset voltage	Vof				10	mV
Analog comparator response time	tamp	$\begin{aligned} & \mathrm{V}_{\mathrm{IP}}=-1.5 \mathrm{~V} \\ & \mathrm{VIM}_{\mathrm{IM}}=\mathrm{V}_{\mathrm{IP} \pm} \pm 15 \mathrm{mV} \end{aligned}$			3	msec
Consumed current	Iop	During HALT \quad No panel load		2.0	5.0	$\mu \mathrm{A}$
		During operation ${ }^{*}$		8.0	15	$\mu \mathrm{A}$
		During operation at $500 \mathrm{kHz}{ }^{*}{ }^{2}$		130	300	$\mu \mathrm{A}$

*2 The BLD circuit, sub-BLD circuit and analog comparator are in the OFF status.

E0C62A35 (Hevy load protection mode)
(Vdd=0V, Vss $=-3.0 \mathrm{~V}$, fosc $1=32,768 \mathrm{~Hz}, \mathrm{CG}=25 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vs} 1, \mathrm{~V} 11, \mathrm{~V} 22, \mathrm{~V} 3$ are internal voltage, $\mathrm{C} 1=\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=\mathrm{C} 6=0.1 \mu \mathrm{~F}$)

*1 The relationships among $V_{B} 0-V_{B 7}$ are $V_{B} 0>V_{B} 1>V_{B} 2>\ldots V_{B}>V_{B 6}>V_{B 7}$.
*2 The BLD circuit and sub-BLD circuit are in the ON status (HLMOD = " 1 ", BLS = " 0 "). The analog comparator is in the OFF status.

7.5 Oscillation Characteristics

The oscillation characteristics change depending on the conditions (components used, board pattern, etc.). Use the following characteristics as reference values.

E0C6235
If no special requirement
Vdd=0V, Vss=-3.0V, Crystal: C-002R (CI=35k Ω), $\mathrm{Cg}=25 \mathrm{pF}, \mathrm{Cd}=$ built-in,
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Code	Condition	Min.	Typ.	Max.	Unit
Oscillation start voltage	$\begin{aligned} & \hline \text { Vsta } \\ & \text { (Vss) } \\ & \hline \end{aligned}$	tsta $\leq 5 \mathrm{sec}$	-1.8			V
Oscillation stop voltage	$\begin{aligned} & \text { Vstp } \\ & \text { (Vss) } \\ & \hline \end{aligned}$	tstp $\leq 10 \mathrm{sec}$	-1.8			V
Built-in capacitance (drain)	CD	Including incidental capacitance inside IC		20		pF
Frequency/voltage deviation	f/V	Vss $=-1.8$ to -3.5 V			5	ppm
Frequency/IC deviation	f/IC		-10		10	ppm
Frequency adjustment range	f/CG	$\mathrm{CG}=5$ to 25 pF	35	45		ppm
Harmonic oscillation start voltage	$\begin{aligned} & \text { Vhho } \\ & \text { (Vss) } \end{aligned}$				-3.5	V
Permitted leak resistance	Rleak	Between OSC1 and Vdd, Vss	200			$\mathrm{M} \Omega$

If no special requirement
Vdd $=0 \mathrm{~V}$, Vss $=-1.5 \mathrm{~V}$, Crystal: C-002R ($\mathrm{CI}=35 \mathrm{k} \Omega$), $\mathrm{Cg}=25 \mathrm{pF}, \mathrm{Cd}=$ built-in,
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Code	Condition	Min.	Typ.	Max.	Unit
Oscillation start voltage	Vsta (Vss)	tsta 5 sec	-1.1			V
Oscillation stop voltage	Vstp (Vss)	tstp 10 sec	-1.1 $(-0.9)^{* 1}$			V
Built-in capacitance (drain)	CD	Including incidental capacitance inside IC		20		pF
Frequency/voltage deviation	f / V	Vss -1.1 to -1.7 V $(-0.9)^{* 1}$			5	ppm
Frequency/IC deviation	f / Ic	-10		10	ppm	
Frequency adjustment range	f/CG	CG $=5$ to 25pF	35	45		ppm
Harmonic oscillation start voltage	Vhho (Vss)				-1.7	V
Permitted leak resistance	Rleak	Between OSC1 and VDD, Vss	200			$\mathrm{M} \Omega$

*1 Parentheses indicate value for operation in heavy load protection mode.

OSC1, 2
If no special requirement
Vdd=0V, Vss=-3.0V, Crystal: C-002R (CI=35k $)$, Cg=25pF, Cd=built-in,
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Code	Condition	Min.	Typ.	Max.	Unit
Oscillation start voltage	$\begin{aligned} & \hline \text { Vsta } \\ & \text { (Vss) } \end{aligned}$	tsta $\leq 5 \mathrm{sec}$	-2.2			V
Oscillation stop voltage	$\begin{aligned} & \text { Vstp } \\ & \text { (Vss) } \end{aligned}$	tstp $\leq 10 \mathrm{sec}$	-2.2			V
Built-in capacitance (drain)	CD	Including incidental capacitance inside IC		20		pF
Frequency/voltage deviation	f/V	$\mathrm{Vss}=-2.2$ to -3.5 V			5	ppm
Frequency/IC deviation	f/IC		-10		10	ppm
Frequency adjustment range	f/Ca	$\mathrm{CG}=5$ to 25 pF	35	45		ppm
Harmonic oscillation start voltage	$\begin{aligned} & \text { Vhho } \\ & \text { (Vss) } \end{aligned}$				-3.5	V
Permitted leak resistance	Rleak	Between OSC1 and Vdd, Vss	200			$\mathrm{M} \Omega$

OSC3, OSC4 (for CR oscillation circuit)
If no special requirement
Vdd $=0 \mathrm{~V}, \mathrm{Vss}=-3.0 \mathrm{~V}, \mathrm{RcR}=82 \mathrm{k} \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Code	Condition	Min.	Typ.	Max.	Unit
Oscillation frequency	fosc3		-30	480 kHz	30	$\%$
Oscillation start voltage	Vsta		-2.2			V
Oscillation start time	tsta	Vss $=-2.2$ to -3.5 V			3	msec
Oscillation stop voltage	Vstp		-2.2			V

OSC3, OSC4 (for ceramic oscillation circuit)
If no special requirement
Vdd=0V, Vss=-3.0V, ceramic oscillation: 500 kHz
$\mathrm{CGC}=\mathrm{CdC}=100 \mathrm{pF}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Code	Condition	Min.	Typ.	Max.	Unit
Oscillation start voltage	Vsta		-2.2			V
Oscillation start time	tsta	Vss $=-2.2$ to -3.5 V			5	msec
Oscillation stop voltage	Vstp		-2.2			V

CHAPTER 8

 PACKAGE
8.1 Plastic Package

F100-5

100-pin Flat Package
(Unit: mm)

8.2 Ceramic Package for Test Samples
(Unit: mm)

CHAPTER 9

PAD LAYOUT

9.1 Diagram of Pad Layout

Chip thickness: $400 \mu \mathrm{~m}$
Pad opening: $95 \mu \mathrm{~m}$

9.2 Pad Coordinates

(Unit: $\mu \mathrm{m}$)

P A D		COORDINATE		P A D		COORDINATE		P A D		COORDINATE	
No	NAME	X	Y	No	NAME	X	Y	No	NAME	X	Y
1	AMPP	2235	2355	34	OSC3	-2295	357	67	SEG29	951	-2355
2	AMPM	2010	2355	35	Vs1	-2295	161	68	SEG28	1111	-2355
3	K23	1680	2355	36	OSC2	-2295	-43	69	SEG27	1271	-2355
4	K22	1511	2355	37	OSC1	-2295	-203	70	SEG26	1431	-2355
5	K21	1351	2355	38	VDD	-2295	-391	71	SEG25	1591	-2355
6	K20	1191	2355	39	VL3	-2295	-571	72	SEG24	1751	-2355
7	K10	1031	2355	40	VL2	-2295	-731	73	TEST	1921	-2355
8	K03	855	2355	41	VL1	-2295	-891	74	SEG23	2295	-2355
9	K02	695	2355	42	CA	-2295	-1099	75	SEG22	2295	-2195
10	K01	535	2355	43	CB	-2295	-1259	76	SEG21	2295	-1992
11	K00	375	2355	44	CC	-2295	-1419	77	SEG20	2295	-1427
12	SIN	199	2355	45	COM3	-2295	-1611	78	SEG19	2295	-1267
13	SOUT	28	2355	46	COM2	-2295	-1771	79	SEG18	2295	-1107
14	SCLK	-232	2355	47	COM1	-2295	-2028	80	SEG17	2295	-947
15	P03	-481	2355	48	COM0	-2295	-2188	81	SEG16	2295	-787
16	P02	-641	2355	49	SEG47	-1929	-2355	82	SEG15	2295	-627
17	P01	-801	2355	50	SEG46	-1769	-2355	83	SEG14	2295	-467
18	P00	-961	2355	51	SEG45	-1609	-2355	84	SEG13	2295	-307
19	P13	-1160	2355	52	SEG44	-1449	-2355	85	SEG12	2295	-147
20	P12	-1320	2355	53	SEG43	-1289	-2355	86	SEG11	2295	149
21	P11	-1480	2355	54	SEG42	-1129	-2355	87	SEG10	2295	309
22	P10	-1640	2355	55	SEG41	-969	-2355	88	SEG9	2295	469
23	R03	-1832	2355	56	SEG40	-809	-2355	89	SEG8	2295	629
24	R02	-2295	2355	57	SEG39	-649	-2355	90	SEG7	2295	789
25	R01	-2295	2136	58	SEG38	-489	-2355	91	SEG6	2295	949
26	R00	-2295	1976	59	SEG37	-329	-2355	92	SEG5	2295	1109
27	R12	-2295	1741	60	SEG36	-169	-2355	93	SEG4	2295	1269
28	R11	-2295	1541	61	SEG35	-9	-2355	94	SEG3	2295	1538
29	R10	-2295	1381	62	SEG34	151	-2355	95	SEG2	2295	1698
30	R13	-2295	1221	63	SEG33	311	-2355	96	SEG1	2295	1858
31	Vss	-2295	1033	64	SEG32	471	-2355	97	SEG0	2295	2018
32	RESET	-2295	834	65	SEG31	631	-2355				
33	OSC4	-2295	597	66	SEG30	791	-2355				

II.

E0C6235 Technical Software

CONTENTS

CHAPTER 1 OVERVIEW II-1
CHAPTER 2 BLOCK DIAGRAM II-2
CHAPTER 3 PROGRAM MEMORY (ROM) II-3
3.1 Configuration of ROM II-3
3.2 Interrupt Vector II-4
CHAPTER 4 DATA MEMORY (RAM, DISPLAY MEMORY, I/O MEMORY) II-5
4.1 Configuration of Data Memory II-5
4.2 I/O Memory Map II-7
CHAPTER 5 INITIAL RESET II-10
5.1 Internal Status at Initial Reset II-10
5.2 Example of Initialize Program II-11
CHAPTER 6 PERIPHERAL CIRCUITS II-13
6.1 Watchdog Timer II-13
I/O memory map of watchdog timer II-13
Program example II-14
Programming note II-14
6.2 Oscillation Circuit II-15
I/O memory map of oscillation circuit II-15
Program examples II-17
Programming notes II-18
6.3 Input Ports (K00-K03, K10, K20-K23) II-19
I/O memory map of input ports II-19
Program examples II-21
Programming notes II-23
6.4 Output Ports (R00-R03, R10-R13) II-25
I/O memory map of output ports II-25
Program examples II-28
Programming note II-29
6.5 I/O Ports (P00-P03, P10-P13) II-30
I/O memory map of I/O ports II-30
Program examples II-33
Programming notes II-35
6.6 LCD Driver (COM0-COM3, SEG0-SEG47) II-36
I/O memory map of LCD driver II-36
Program example II-38
Programming notes II-39
6.7 Clock Timer II-40
I/O memory map of clock timer II-40
Program examples II-43
Programming notes II-44
6.8 Stopwatch Timer II-45
I/O memory map of stopwatch timer II-45
Program examples II-49
Programming notes II-51
6.9 Event Counter II-52
I/O memory map of event counter II-52
Program examples II-55
Programming notes II-58
6.10 Battery Life Detection (BLD) Circuit II-59
I/O memory map of BLD circuit II-59
Program example II-62
Programming notes II-63
6.11 Heavy Load Protection Function and Sub-BLD Circuit II-65
I/O memory map of heavy load protection function and sub-BLD circuit II-65
Program example II-68
Programming notes II-71
6.12 Analog Comparator II-73
I/O memory map of analog comparator II-73
Program example II-74
Programming notes II-75
6.13 Serial Interface (SIN, SOUT, SCLK) II-76
I/O memory map of serial interface II-76
Program examples II-81
Programming notes II-83
6.14 Sound Generator II-84
I/O memory map of sound generator II-84
Program example II-87
Programming note II-88
6.15 Interrupt II-89
I/O memory map of interrupt II-89
Program example II-93
Programming notes II-97
CHAPTER 7 SUMMARY OF NOTES II-98
APPENDIX A. EOC6235 DATA MEMORY (RAM) MAP II-108
B. EOC6235 INSTRUCTION SET II-114
C. PSEUDO-INSTRUCTION TABLE OF THE CROSS ASSEMBLER II-119
D. COMMAND TABLE OF ICE6200 II-120

CHAPTER 1

OVERVIEW

The E0C6235 Series is a single-chip microcomputer made up of the 4-bit core CPU E0C6200, ROM (4,096 words, 12 bits to a word), RAM 576 words, 4 bits to a word) LCD driver circuit, serial interface, event counter with dial input functions, watchdog timer, and two types of time base counter. Because of its low-voltage operation and low power consumption, this series is ideal for a wide range of applications, and is especially suitable for battery-driven systems.

- Configuration

The E0C6235 Series is configured as follows, depending on supply voltage and oscillation circuits.

Model	E0C6235	E0C62L35	E0C62A35
Supply voltage	3.0 V	1.5 V	3.0 V
Oscillation circuit	OSC1 only (Single clock)	OSC1 only (Single clock)	OSC1 and OSC3 (Twin clock)

CHAPTER 2 BLOCK DIAGRAM

CHAPTER 3

PROGRAM MEMORY (ROM)

3.1 Configuration of ROM

The built-in ROM, a mask ROM for loading the program, has a capacity of 4,096 steps, 12 bits each. The program area is 16 pages ($0-15$), each of 256 steps $(00 H-F F H)$. After initial reset, the program beginning address is page 1 , step 00 H . The interrupt vector is allocated to page 1 , steps $01 \mathrm{H}-0 \mathrm{FH}$.

Fig. 3.1.1
Configuration of ROM

3.2 Interrupt Vector

When an interrupt request is input to the CPU, the CPU begins interrupt processing. After the program being executed is terminated, the interrupt processing is executed in the following order.
(1) The address data (value of program counter) of the program to be executed next is saved in the stack area (RAM).
(2) The interrupt request causes the value of the interrupt vector (page $1,01 \mathrm{H}-0 \mathrm{FH}$) to be set in the program counter.
(3) The program at the specified address is executed (execution of interrupt processing routine by software).

Table 3.2.1 shows the correspondence of interrupt requests and interrupt vectors.

Note The processing in (1) and (2) above take 12 cycles of the CPU system clock.

Table 3.2.1
Interrupt request and interrupt vectors

PC	Value	Interrupt request	
PCS3	1	Stopwatch interrupt	Enabled
	0	Stopwatch interrupt	Masked
PCS2	1	Timer interrupt	Enabled
	0	Timer interrupt	Masked
PCS1	1	Input (K00-K03) interrupt or Input (K10) interrupt or Input (K20-K23) interrupt	Enabled
	0	Input (K00-K03) interrupt and Input (K10) interrupt and Input (K20-K23) interrupt	Masked
PCS0	1	Serial interface interrupt	Enabled
	0	Serial interface interrupt	Masked

* The four low-order bits of the program counter are indirectly addressed through the interrupt request.

CHAPTER 4

DATA MEMORY
(RAM, DISPLAY MEMORY, I/O MEMORY)

4.1 Configuration of Data Memory

Data memory of the E0C6235 Series has an address space of 608 words (656 words when segment data memory is laid out over two pages), of which 48 words are allocated to display memory and 32 words to I/O memory.
Figures 4.1.1(a)-(c) present the overall data memory maps of the E0C6235 Series, and Tables 4.2.1(a)-(c) the peripheral circuits' (I/O space) memory maps.

Fig. 4.1.1(a)
Data memory map (page 0, page 1)

Fig. 4.1.1(b) Data memory map (page 2)

Fig. 4.1.1(c) Data memory map (segment area)

Address Page		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0 or 2	4	Display memory (48 words $\times 4$ bits) R/W (W)															
	5																
	6																

Notes (1) See Tables 4.2.1(a)-(c) for details of I/O memory.
(2) The mask option can be used to select whether to assign the overall area of display memory to page 0 or page 2.

When page $0(040 \mathrm{H}-06 \mathrm{FH})$ is selected, read/write is enabled.
When page $2(240 \mathrm{H}-26 \mathrm{FH})$ is selected, write only is enabled.
If page 0 is assigned, RAM ($040 \mathrm{H}-06 \mathrm{FH}$) is 48 words, and is used as the segment area.
(3) Memory is not mounted in unused area within the memory map and in memory area not indicated in this chapter. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

4.2 I/O Memory Map

Table 4.2.1(a) I/O memory map (2EOH-2EDH)

Address	Register				Name TM3 TM2 TM1 TM0	Init *1 0 0 0 0	1	0	Comment
	D3	D2	D1	D0					
2 EOH	TM3	TM2	TM1	TM0					Timer data (clock timer 2 Hz) Timer data (clock timer 4 Hz) Timer data (clock timer 8 Hz) Timer data (clock timer 16 Hz)
2E1H	R				SWL3 SWL2 SWL1 SWLO	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			\squareMSB Stopwatch timer data $1 / 100 \sec (B C D)$ LSB
2E2H	SWH3	SWH2	SWH1	SWH0	SWH3 SWH2 SWH1 SWH0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$=$MSB Stopwatch timer data $1 / 10 \sec (B C D)$ LSB
2E3H	K03	K02	K01	K00	$\begin{aligned} & \hline \text { K03 } \\ & \text { K02 } \\ & \text { K01 } \\ & \text { K00 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-* 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$	High High High High	Low Low Low Low	$]$ Input port data (K00-K03)
2E4H	R/W				$\begin{aligned} & \hline \text { KCP03 } \\ & \text { KCP02 } \\ & \text { KCP01 } \\ & \text { KCP00 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	7 z^{2} z^{2}	$\begin{aligned} & \uparrow \\ & \uparrow \\ & \uparrow \end{aligned}$	$]$ Input comparison register (K00-K03)
2E5H	R/W				EIK03 EIK02 EIK01 EIK00	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Enable Enable Enable Enable	Mask Mask Mask Mask	$]$ Interrupt mask register (K00-K03)
2E6H	HLMOD R/W	BLD0 R	EISWIT1 R/W	EISWIT0 W	$\begin{array}{\|c\|} \hline \text { HLMOD } \\ \text { BLD0 } \\ \text { EISWIT1 } \\ \text { EISWITO } \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Heavy load Low Enable Enable	Normal Normal Mask Mask	Heavy load protection mode register Sub-BLD evaluation data Interrupt mask register (stopwatch 1 Hz) Interrupt mask register (stopwatch 10 Hz)
2E7H	SCTRG W	R/W		K10 R	$\begin{gathered} \hline \text { SCTRG*3 } \\ \text { EIK10 } \\ \text { KCP10 } \\ \text { K10 } \\ \hline \end{gathered}$	$\begin{aligned} & \hline- \\ & 0 \\ & 0 \\ & -* 2 \\ & \hline \end{aligned}$	Trigger Enable 7 High	Mask $\begin{gathered} \stackrel{\sim}{\text { Low }} \end{gathered}$	Serial interface clock trigger Interrupt mask register (K10) Input comparison register (K10) Input port data (K10)
2E8H	R/W			ETI32	CSDC ETI2 ETI8 ETI32	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Static Enable Enable Enable	Dynamic Mask Mask Mask	LCD drive switch Interrupt mask register (clock timer 2 Hz) Interrupt mask register (clock timer 8 Hz) Interrupt mask register (clock timer 32 Hz)
2E9H	R			TI32	$\begin{array}{\|c\|} \hline 0 * 3 \\ \mathrm{TI} 2 * 4 \\ \mathrm{TI} 8 * 4 \\ \mathrm{TI} 32 * 4 \\ \hline \end{array}$	$\begin{aligned} & \hline-* 2 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes Yes	$\begin{aligned} & - \\ & \text { No } \\ & \text { No } \\ & \text { No } \end{aligned}$	Unused Interrupt factor flag (clock timer 2 Hz) Interrupt factor flag (clock timer 8 Hz) Interrupt factor flag (clock timer 32 Hz)
2EAH	R				$\begin{array}{\|c\|} \hline \text { IK1 } * 4 \\ \text { IKO } * 4 \\ \text { SWIT1 } * 4 \\ \text { SWITO } * 4 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes Yes Yes	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \\ & \text { No } \end{aligned}$	Interrupt factor flag (K10) Interrupt factor flag (K00-K03) Interrupt factor flag (stopwatch 1 Hz) Interrupt factor flag (stopwatch 10 Hz)
2EBH	R/W				$\begin{aligned} & \hline \text { R03 } \\ & \text { R02 } \\ & \text { R01 } \\ & \text { R00 } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	High High High High	Low Low Low Low	Output port (R03) Output port (R02) Output port (R01) Output port (R00)
2 ECH	R/W		R11 SIOF R/W R	R10 R/W	R13 R12 R11 SIOF R10	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	High/On High/On High Run High/On	Low/Off Low/Off Low Stop Low/Off	Output port (R13)/ $\overline{\mathrm{BZ}}$ output control Output port (R12)/FOUT output control Output port (R11, LAMP) Output port (SIOF) Output port (R10)/BZ output control
2EDH	R/W				$\begin{aligned} & \hline \text { P03 } \\ & \text { P02 } \\ & \text { P01 } \\ & \text { P00 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-* 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \end{aligned}$	High High High High	Low Low Low Low	I/O port data (P00-P03) Output latch reset at time of SR

[^4]Table 4.2.1(b) I/O memory map (2EEH-2FBH)

Address	Register								Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
2EEH	TMRST W	SWRUN R/W	SWRST W	IOCO RNW	TMRST*3 SWRUN SWRST*3 IOCO	$\begin{array}{\|c\|} \hline \text { Reset } \\ 0 \\ \text { Reset } \\ 0 \\ \hline \end{array}$	Reset Run Reset Output	Stop Input	Clock timer reset Stopwatch timer Run/Stop Stopwatch timer reset I/O control register 0 (P00-P03)
2EFH	WDRST W	WD2	R	WDO	WDRST*3 WD2 WD1 WDO	$\begin{gathered} \text { Reset } \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	Reset	-	Watchdog timer reset Timer data (watchdog timer) $1 / 4 \mathrm{~Hz}$ Timer data (watchdog timer) $1 / 2 \mathrm{~Hz}$ Timer data (watchdog timer) 1 Hz
2FOH	R/W				$\begin{aligned} & \text { SD3 } \\ & \text { SD2 } \\ & \text { SD1 } \\ & \text { SD0 } \end{aligned}$	$\begin{aligned} & \times * 5 \\ & \times \end{aligned}$			$]$ Serial interface data register (low-order 4 bits)
2F1H	SD7	$\mathrm{S}_{\text {SD6 }}$	$\xrightarrow{\text { SD5 }}$	SD4	$\begin{aligned} & \text { SD7 } \\ & \text { SD6 } \\ & \text { SD5 } \\ & \text { SD4 } \end{aligned}$	$\begin{aligned} & \times * 5 \\ & \times \end{aligned}$			$]$ Serial interface data register (high-order 4 bits)
2F2H	R/W				$\begin{gathered} \hline \text { SCS1 } \\ \text { SCSO } \\ \text { SE2 } \\ \text { EISIO } \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\text { Enable }}{\stackrel{\sim}{2}}$	$\underset{\text { Mask }}{7}$	
2F3H	0	0	$\underbrace{\text { IK2 }}_{\text {R }}$	ISIO	$\begin{array}{r} \left\lvert\, \begin{array}{r} 0 * 3 \\ 0 * 3 \\ \text { IK } 2 * 4 \\ \text { ISIO } * 4 \end{array}\right. \\ \hline \end{array}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline- \\ - \\ \text { Yes } \\ \text { Yes } \end{gathered}$	No No	Unused Unused Interrupt factor flag (K20-K23) Interrupt factor flag (serial interface)
2F4H	R				$\begin{aligned} & \text { K23 } \\ & \text { K22 } \\ & \text { K21 } \\ & \text { K20 } \\ & \hline \end{aligned}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \end{aligned}$	High High High High	Low Low Low Low	$]$ Input port data (K20-K23)
2F5H	RW				EIK23 EIK22 EIK21 EIK20	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Enable Enable Enable Enable	Mask Mask Mask Mask	$]$ Interrupt mask register (K20-K23)
2F6H	BZFQ2	BZFQ1 R/W	BZFQ0	ENVRST w	BZFQ2 BZFQ1 BZFQ0 ENVRST*3	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ \text { Reset } \\ \hline \end{array}$	Reset	-	
2F7H	ENVON	ENVRT w	AMPDT R	AMPON	$\begin{array}{\|l\|} \hline \text { ENVON } \\ \text { ENVRT } \\ \text { AMPDT } \\ \text { AMPON } \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{gathered} \text { On } \\ 1.0 \mathrm{sec} \\ +>- \\ \text { On } \end{gathered}$	$\begin{array}{c\|} \hline \text { Off } \\ 0.5 \mathrm{sec} \\ +<- \\ \text { Off } \\ \hline \end{array}$	Envelope On/Off Envelope cycle selection register Analog comparator data Analog comparator On/Off
2F8H	R				$\begin{aligned} & \text { EV03 } \\ & \text { EV02 } \\ & \text { EV01 } \\ & \text { EV00 } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$]$ Event counter 0 (low-order 4 bits)
2F9H	R				$\begin{aligned} & \text { EV07 } \\ & \text { EV06 } \\ & \text { EV05 } \\ & \text { EV04 } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$]$ Event counter 0 (high-order 4 bits)
2FAH	EV13	EV12	$\xrightarrow[\text { RV11 }]{\text { R }}$	EV10	EV13 EV12 EV11 EV10	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$]$ Event counter 1 (low-order 4 bits)
2FBH	EV17	EV16	$\mathrm{EVV}^{\text {EV15 }}$	EV14	$\begin{aligned} & \text { EV17 } \\ & \text { EV16 } \\ & \text { EV15 } \\ & \text { EV14 } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$]$ Event counter 1 (high-order 4 bits)

[^5]*3 Constantly " 0 " when being read
*4 Reset (0) immediately after being read

Table 4.2.1(c) I/O memory map (2FCH-2FFH)

CHAPTER 5 INITIAL RESET

5.1 Internal Status at Initial Reset

Initial reset initializes the CPU as shown in the table below.

Table 5.1.1 Initial values	CPU core			
	Name	Symbol	Bit length	Status
	Program counter step	PCS	8	00H
	Program counter page	PCP	4	1H
	New page pointer	NPP	4	1H
	Stack pointer	SP	8	Undefined
	Index register X	X	10	Undefined
	Index register Y	Y	10	Undefined
	Register pointer	RP	4	Undefined
	General register A	A	4	Undefined
	General register B	B	4	Undefined
	Interrupt flag	I	1	0
	Decimal flag	D	1	Undefined
	Zero flag	Z	1	Undefined
	Carry flag	C	1	Undefined

Peripheral circuits		
Name	Bit length	Status
RAM	4	Undefined
Segment data	4	Undefined
Other peripheral circuits	4	$* 1$

*1 See Tables 4.2.1(a)-(c).

5.2 Example of Initialize Program

ZTI	EQU	2E9H	
ZSWC	EQU	2EEH	
ZWDT	EQU	2EFH	
XTMRST	EQU	1000B	
XWDRST	EQU	1000B	
STACK	EQU	000H	
YRAMO 0	EQU	000H	
YRAM08	EQU	080H	
YRAM10	EQU	100H	
ZLCD24	EQU	240 H	
;			
	ORG	100H	
;			
	JP	INIT	; JUMP INIT. ROUTINE
;			
;			
	ORG	110 H	
;			
INIT	RST	F,0000B	; CLEAR IDZC FLAG
;			
	LD	A, STACK SHR	
	LD	SPH, A	
	LD	A, STACK SHR	
	LD	SPL, A	; SET STACK POINTER 000H
;			
	LD	X,LOW YRAMOO	; SELECT RAM ADDR. (000 H) BY X REG.
;			
RAMCL1	LD	XP, A	;
;			
RAMCL2	LBPX	MX, OOH	
	CP	XL, 0	
	JP	NZ, RAMCL2	
; ${ }^{\text {c }}$			
	CP	A, 2	; ALL CLEAR RAM \& LCD SEgMENT DATA
	JP	C, CONTCL	
	CP	$\mathrm{XH}, 7$; ADDR. 000 H TO 26FH
	JP	NC, QUITCL	
;			
CONTCL	CP	XH, 0	
	JP	NZ, RAMCL2	
	ADD	A, 1	
	JP	RAMCL1	;------------------------

```
QUITCL LD X,LOW ZSWC ;SELECT TMRST ADDR. BY X REG.
    OR MX,XTMRST ;RESET TM
;
    LD X,LOW ZWDT ; SELECT WDRST ADDR. BY X REG.
    LD MX,XWDRST ;RESET W.D.T.
;
    LD X,LOW ZTI ;SELECT TI ADDR. BY X REG.
    LD A,MX ;RESET INT. FLAG ( TI )
;
    LD A,0
    RST F,0000B ; CLEAR IDZC FLAG
```

This program is the basic initialize program for the E0C6235 Series. When this program is executed the internal circuits shown in Table 5.2.1 are initialized. When using the program example, use it after adding the setting items necessary for the application.

Table 5.2.1 Results of initializing internal circuits

Internal circuit		Setting value
General register	A	0 H
General register	B	0 H
Stack pointer	SP	000 H
Interrupt flag	IF	0
Decimal flag	DF	0
Zero flag	ZF	0
Carry flag	CF	0
RAM data	$(000 \mathrm{H}-06 \mathrm{FH})$	
	$(080 \mathrm{H}-0 \mathrm{EFH})$	0 H
	$(100 \mathrm{H}-1 \mathrm{FFH})$	
Segment data	$(240 \mathrm{H}-26 \mathrm{FH})$	0 H

CHAPTER 6 PERIPHERAL CIRCUITS

Peripheral circuits (timer, I/O, and so on) of the E0C6235 Series are memory mapped, and interfaced with the CPU. Thus, all the peripheral circuits can be controlled by using the memory operation command to access the I/O memory in the memory map.

6.1 Watchdog Timer

I/O memory map of
watchdog timer watchdog timer

Table 6.1.1 I/O memory map (watchdog timer)

Address	Register								Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
2EFH	WDRST	WD2	WD1	WDO	$\begin{array}{\|c\|} \hline \text { WDRST*3 } \\ \text { WD2 } \end{array}$	Reset 0	Reset	-	Watchdog timer reset Timer data (watchdog timer) $1 / 4 \mathrm{~Hz}$
	W		R		WD1	0			Timer data (watchdog timer) $1 / 2 \mathrm{~Hz}$
	W		R		WD0	0			Timer data (watchdog timer) 1 Hz

*1 Initial value at the time of initial reset
*2 Not set in the circuit

WDRST: This is the bit for resetting the watchdog timer.

Watchdog timer reset
(2EFH•D3)

When " 1 " is written: Watchdog timer is reset
When " 0 " is written: No operation
Read-out: Always "0"
When " 1 " is written to WDRST, the watchdog timer is reset, and the operation restarts immediately after this. When " 0 " is written to WDRST, no operation results.
This bit is dedicated for writing, and is always " 0 " for readout.

Program example •Watchdog timer reset

```
ZWDT EQU 2EFH
XWDRST EQU 1000B
;
    LD A,ZWDT SHR 8
    LD XP,A
    LD X,LOW ZWDT ; SELECT W.D.T. ADDR. BY X REG.
    LD MX,XWDRST ; RESET W.D.T.
```

The watchdog timer is reset when " 1 " is written to WDRST.

Programming note

When the watchdog timer is being used, the software must reset it within 3 -second cycles, and timer data (WD0-WD2) cannot be used for timer applications.

6.2 Oscillation Circuit

I/O memory map of oscillation circuit

The control registers of the oscillation circuit are shown in Table 6.2.1.

Table 6.2.1 l/O memory map (oscillation circuit)

Address	Register								mment
	D3	D2	D1	D0	Name	Init *1	1	0	Comment
2FEH	PRSM	CLKCHG	OSCC	IOC1	PRSM	0	38 kHz	32 kHz	OSC1 prescaler selection
	PRSM	CLKCHG	OSCC	10.1	CLKCHG	0	OSC3	OSC1	CPU clock switch
	R/W				OSCC	0	On	Off	OSC3 oscillation On/Off
					IOC1	0	Output	Input	I/O control register 1 (P10-P13)

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Constantly " 0 " when being read
*5 Undefined
*4 Reset (0) immediately after being read

OSCC: Controls oscillation ON/OFF for the OSC3 oscillation circuit.
OSC3 oscillation control (E0C62A35 only)
(2FEH•D1)
When " 1 " is written: The OSC3 oscillation ON
When " 0 " is written: The OSC3 oscillation OFF
Read-out: Valid

When it is necessary to operate the CPU of the E0C62A35 at high speed, set OSCC to " 1 ". At other times, set it to " 0 " to lessen the current consumption.
For E0C6235 and 62L35, keep OSCC set to "0".
At initial reset, OSCC is set to " 0 ".

CLKCHG: The CPU's operation clock is selected with this register.
The CPU's clock switch (E0C62A35 only)
(2FEH•D2)
When " 1 " is written: OSC3 clock is selected.
When " 0 " is written: OSC1 clock is selected.
Read-out: Valid

When the E0C62A35's CPU clock is to be OSC3, set CLKCHG to " 1 "; for OSC 1 , set CLKCHG to " 0 ". This register cannot be controlled for E0C6235 and 62L35, so that OSC1 is selected no matter what the set value.
At initial reset, CLKCHG is set to " 0 ".

PRSM: Selects the prescaler for the crystal oscillator of the OSC1 OSC1 prescaler selection oscillation circuit.
(2FEH•D3)

When " 1 " is written:	38.4 kHz
When "0" is written:	32.768 kHz
Read-out:	Valid

Operation of the clock timer and stopwatch timer can be made accurate by selecting this register. When the set value for this register does not suit the crystal oscillator used, the operation cycles of the previously mentioned peripheral circuitry is multiplied as shown in Table 6.2.2.

Table 6.2.2
Operation cycle when the setting is wrong

32.768 kHz, PRSM $={ }^{\prime \prime} 1 "$	$\mathrm{~T}^{\prime} \approx 1.172 \mathrm{~T}$
38.4 kHz, PRSM $={ }^{\prime \prime} 0 "$	$\mathrm{~T}^{\prime} \approx 0.853 \mathrm{~T}$

At initial reset, PRSM is set to " 0 ".

Program examples • Switching clock from OSC1 to OSC3

zosc	EQU	2 FEH	
XOSCC	EQU	0010B	
XCLKCG	EQU	0100B	
XLPCNT	EQU	OH	
XDECRG	EQU	OFH	
;			
	LD	A, ZOSC SHR 8	
	LD	XP, A	
	LD	X,LOW ZOSC	; SELECT OSC ADDR. BY X REG.
	OR	MX, XOSCC	; OSCC ON
;			
	LD	A, XLPCNT	
WAITLP	ADD	A, XDECRG	
	JP	NZ, WAITLP	; WAIT 6 msec
	OR	MX, XCLKCG	; CLK CHANGE OSC1 TO OSC3

It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. In the program example, it takes about $6 \mathrm{msec}\left(\mathrm{fOSCl}^{2}=32.768 \mathrm{kHz}\right.$) for OSC1 to switch to OSC3 after the OSC3 oscillation goes ON.

- Switching clock from OSC3 to OSC1

ZOSC	EQU	2FEH	
XOSCC	EQU	0010B	
XCLKCG	EQU	0100B	
;			
	LD	A, ZOSC SHR 8	
	LD	XP, A	
	LD	X,LOW ZOSC	; SELECT OSC ADDR. BY X REG.
	AND	MX, XCLKCG XOR OFH	; CLK ChANGE OSC3 TO OSC1
	AND	MX, XOSCC XOR OFH	; OSCC OFF

In the program example, the CPU operation clock is switched from OSC3 to OSC1, and in the next step OSC3 oscillation goes OFF.

In the program example, " 1 " is written to PRSM, to select the 38.4 kHz prescaler.

Programming notes

(1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON.
Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
(2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
(3) To operate the clock timer and stopwatch timer accurately, select the prescaler of the OSC1 to match the crystal oscillator used.

6.3 Input Ports (K00-K03, K10, K20-K23)

I/O memory map of The control registers of the input ports are shown in Table input ports

Table 6.3.1 I/O memory map (input ports)

Address	Register								Comment					
	D3	D2	D1	D0	Name	Init *1	1	0						
2E3H	K03	K02	K01	K00	$\begin{aligned} & \text { K03 } \\ & \text { K02 } \\ & \text { K01 } \\ & \text { K00 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-* 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$	High High High High	Low Low Low Low	Input port data (K00-K03)					
	R													
2E4H					$\begin{aligned} & \mathrm{KCPO} \\ & \mathrm{KCPO2} \\ & \mathrm{KCP} 01 \\ & \mathrm{KCPOO} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7^{2} \\ & 7^{2} \\ & z^{2} \end{aligned}$	$\begin{gathered} \uparrow \\ \uparrow \\ \uparrow \\ \leftarrow \end{gathered}$	Input comparison register (K00-K03)					
	KCP03	KCP02	KCP01	KCPOO										
	R/W													
2E5H	EIK03	EIK02	ElK01	EIK00	EIK03 EIK02 EIK01 EIKOO	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Enable Enable Enable Enable	Mask Mask Mask Mask	Interrupt mask register (K00-K03)					
	R/W													
2E7H	SCTRG	EIK10	KCP10	K10		$\begin{array}{\|c\|} \hline \text { SCTRG*3 } \\ \text { EIK10 } \\ \text { KCP10 } \\ \text { K10 } \\ \hline \end{array}$	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & -* 2 \\ & \hline \end{aligned}$	Trigger Enable 7 High	Mask \lrcorner Low	Serial interface clock trigger Interrupt mask register (K10) Input comparison register (K10) Input port data (K10)				
	SCTRG	EIK10	KCP10	K10										
	W	R/W		R										
	W			R										
2EAH	IK1	IKO	SWIT1	SWIT0	$\left\|\begin{array}{c} \text { IK1 } * 4 \\ \text { IK0 } * 4 \\ \text { SWIT1 } * 4 \\ \text { SWIT0 } * 4 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes Yes Yes	No No No No	Interrupt factor flag (K10)Interrupt factor flag (K00-K03)Interrupt factor flag (stopwatch 1 Hz)Interrupt factor flag (stopwatch 10 Hz)					
	R													
2F3H	0	0	IK2	ISIO	$\begin{array}{r} 0 * 3 \\ 0 * 3 \\ \text { IK2 } * 4 \\ \text { ISIO } * 4 \\ \hline \end{array}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	- Yes Yes	$\begin{gathered} - \\ - \\ \text { No } \\ \text { No } \end{gathered}$	Unused Unused Interrupt factor flag (K20-K23) Interrupt factor flag (serial interface)					
	0	0	IK2	ISIO										
	R													
2F4H	K23	K22	K21	K20	$\begin{aligned} & \text { K23 } \\ & \text { K22 } \\ & \text { K21 } \\ & \text { K20 } \\ & \hline \end{aligned}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$	High High High High	Low Low Low Low	Input port data (K20-K23)					
	R													
2F5H	EIK23	EIK22	EIK21	EIK20	$\begin{aligned} & \text { EIK23 } \\ & \text { EIK22 } \\ & \text { EIK21 } \\ & \text { EIK20 } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Enable Enable Enable Enable	Mask Mask Mask Mask	Interrupt mask register (K20-K23)					
	R/W													
*1 Initial value at the time of initial reset *2 Not set in the circuit					*4 Reset (0) immediately after being read					5 Undefined				

K00-K03, K10, K20-K23: Input data of the input port pins can be read out with these Input port data registers.
(2E3H, 2E7H•D0, 2F4H)

$$
\begin{array}{ll}
\text { When " } 1 \text { " is read out: } & \text { High level } \\
\text { When " } 0 \text { " is read out: } & \text { Low level } \\
\text { Writing: } & \text { Invalid }
\end{array}
$$

The read-out is " 1 " when the pin voltage of the nine bits of the input ports (K00-K03, K10, K20-K23) goes high (VDD), and " 0 " when the voltage goes low (Vss).
These bits are dedicated for read-out, so writing cannot be done.

KCP00-KCP03, KCP10: Input comparison registers (2E4H, 2E7H•D1)

Interrupt conditions for pins K00-K03 and K10 can be set with this register.

When " 1 " is written: Falling edge
When " 0 " is written: Rising edge
Read-out: Valid
Of the nine bits of the input ports, the interrupt conditions can be set for the rising or falling edge of input for each of the five bits (K00-K03 and K10), through the input comparison registers (KCP00-KCP03 and KCP10).

At initial reset, these registers are set to " 0 ".

EIK00-EIK03, EIK10, Masking the interrupt of the input port pins can be selected EIK20-EIK23: with these registers.
Interrupt mask registers
(2E5H, 2E7H•D2, 2F5H)

With these registers, masking of the input port bits can be selected for each of the nine bits.
At initial reset, these registers are all set to " 0 ".

IK0, IK1, IK2: These flags indicate the occurrence of input interrupt.

Interrupt factor flags (2EAH•D2 and D3, 2F3H-D1)

When " 1 " is read out: Interrupt has occurred When " 0 " is read out: Interrupt has not occurred Writing: Invalid

The interrupt factor flags IK0, IK1 and IK2 are associated with K00-K03, K10 and K20-K23, respectively. From the status of these flags, the software can decide whether an input interrupt has occurred.
These flags are reset when the software reads them. Readout can be done only in the DI status (interrupt flag = "0"). At initial reset, these flags are set to " 0 ".

Program examples • Reading out from input ports (K00-K03, K20-K23)

ZK0	EQU	2 E 3 H	
ZK2	EQU	2 F 4 H	
;			
	LD	A, ZK0 SHR 8	
	LD	XP, A	
	LD	X,LOW ZK0	;SELECT K0 ADDR. BY X REG.
	LD	A,MX	;READ K0 INPUT PORTS TO A REG.
			;SELECT K2 ADDR. BY X REG.
	LD	B, LOW ZK2	;READ K2 INPUT PORTS TO B REG.

In this program example, data from the input ports (KOOK03, K20-K23) is read to the general registers (A, B).
Figure 6.3.1 shows the correspondence of the input ports and general registers.

Fig. 6.3.1
Correspondence between input ports and general registers

A register			
D3	D2	D1	D0
K03	K02	K01	K00

B register			
D3	D2	D1	D0
K23	K22	K21	K20

- Setting of input comparison register and interrupt mask register

ZKCP 0	EQU	2E4H	
ZK10	EQU	2E7H	
ZEIK2	EQU	2F5H	
XKCP OD	EQU	1100 B	; INT. POS.-GOING EDGE K00,K01 ; INT. NEG.-GOING EDGE K02,K03
;			
XEIKOD	EQU	1111B	; INT. ENABLE K00-K03
XALK1D	EQU	0110 B	; INT. NEG.-GOING EDGE K10 ; INT. ENABLE K10
;			
XEIK2D	EQU	0011 B	; INT. ENABLE K20,K21
;			
;			
	LD	A, ZKCPO SHR	8
	LD	XP, A	
	LD	X, LOW ZKCPO	; SELECT KCPO ADDR. BY X REG.
	LDPX	MX, XKCP OD	; SET KCP00-KCP03 DATA
	LD	MX, XEIK0D	; SET EIK00-EIK03 DATA
;			
	LD	X, LOW ZK10	; SELECT EIK1 \& KCP1 ADDR. BY X
	LD	MX, XALK1D	; SET EIK10 \& KCP10 DATA
;			
	LD	X,LOW ZEIK2	; SELECT EIK2 ADDR. BY X REG.
	LD	MX, XEIK2D	; SET EIK20-EIK23 DATA

This program writes the data of the input comparison registers (KCP00-KCP03, KCP10) and interrupt mask registers (EIK00-EIK03, EIK10, EIK20-EIK23) to set the interrupt conditions as shown in Table 6.3.2.

Table 6.3.2
Example of setting interrupt conditions

Terminal	Interrupt status	Edge
K00	Generated	Rising
K01	Generated	Rising
K02	Generated	Falling
K03	Generated	Falling
K10	Generated	Falling
K20	Generated	Rising
K21	Generated	Rising
K22	Not generated	---
K23	Not generated	---

Programming notes (1) When input ports are changed from high to low by pulldown resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 msec .
(2) When "noise rejector circuit enable" is selected with the mask option, a maximum delay of 1 msec occurs from time the interrupt conditions are established until the interrupt factor flag (IK) is set to " 1 " (until the interrupt is actually generated).
Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.
For example, when performing a key scan with the key matrix, the key scan changes the input status to set the interrupt factor flag, so it has to be read out to reset it. However, if the interrupt factor flag is read out immediately after key scanning, the delay will cause the flag to be set after read-out, so that it will not be reset.
(3) Input interrupt programing related precautions

When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at
Fig. 6.3.2
Input interrupt timing (1) and (2), (1) being the interrupt due to the falling edge and (2) the interrupt due to the rising edge.

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set.

Therefore, when using the input interrupt, the active status of the input terminal implies
input terminal = low status, when the falling edge interrupt is effected and
input terminal $=$ high status, when the rising edge interrupt is effected.
When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of (1) shown in Figure 6.3.2. However, when clearing the content of the mask register with the input terminal kept in the low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set.
Consequently, when the input terminal is in the active status (low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (high status).
When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of (2) shown in Figure 6.3.2. In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the low status. In addition, when the mask register $=" 1 "$ and the content of the input comparison register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input comparison register in the mask register $=$ " 0 " status.
(4) Read-out of the interrupt factor flag (IK) can be done only in the DI status (interrupt flag = "O"). Read-out during EI status (interrupt flag $=$ " 1 ") will cause malfunction.
(5) Writing of the interrupt mask register (EIK) can be done only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.

6.4 Output Ports (R00-R03, R10-R13)

I/O memory map of The control registers of the output ports are shown in Table output ports 6.4.1.

Table 6.4.1 I/O memory map (output ports)

Address	Register								Comment		
	D3	D2	D1	D0	Name	Init *1	1	0			
2EBH	R03	R02	R01	R00	$\begin{aligned} & \text { R03 } \\ & \text { R02 } \\ & \text { R01 } \\ & \text { R00 } \\ & \hline \end{aligned}$	0	High	Low	Output port (R03)		
						0	High	Low	Output port (R02)		
	R/W					0	High	Low	Output port (R01)		
					0	High	Low	Output port (R00)			
2 ECH	R13	R12	R11	R10		R13 R12 R11 SIOF R10	0	High/On	Low/Off		
			SIOF		0		High/On	Low/Off	Output port (R12)/FOUT output control		
	R/W		R/W	R/W	0		High	Low	Output port (R11, LAMP)		
			R/W		0		Run	Stop	Output port (SIOF)		
			R		0		High/On	Low/Off	Output port (R10)/BZ output control		
*1 Initial value at the time of initial reset*2 Not set in the circuit					*3 Constantly "0" when being read *4 Reset (0) immediately after being read					Undefined	

$B Z, \overline{B Z}(R 10, R 13): \quad B Z$ and $\overline{B Z}$ are the buzzer signal output pins for driving the piezoelectric buzzer. The buzzer signal is generated by demultiplication of fosc 1 .
Also, a digital envelop can be added to the buzzer signal.
See "6.14 Sound Generator" for details.

Notes - When the BZ and $\overline{B Z}$ output signals are turned ON or OFF, a hazard can result.

- When DC output is set for the output port R10, the output port $R 13$ cannot be set for $\overline{B Z}$ output.

Figure 6.4 .1 shows the output waveform for BZ and $\overline{\mathrm{BZ}}$.

Fig. 6.4.1
Output waveform of BZ and BZ

SIOF (R11): When the output port R11 is set for SIOF output, it outputs the signal indicating the running status (RUN/STOP) of the serial interface.
See "6.13 Serial Interface" for details.

FOUT (R12): When the output port R12 is set for FOUT output, it outputs the clock of foSCl or the demultiplied foScl. The clock frequency is selectable with the mask options, from the frequencies listed in Table 6.4.2.

Table 6.4.2
FOUT clock frequency

Setting value	Clock frequency (Hz)	
	fosC1 $=32,768$	fosc $1=38,400$
foscl 11	32,768	38,400
foscl 12	16,384	19,200
foscl 14	8,192	9,600
foscl 18	4,096	4,800
foscl 16	2,048	2,400
fosc $1 / 32$	1,024	1,200
fosc $1 / 64$	512	600
foscl 128	256	300

Note A hazard may occur when the FOUT signal is turned ON or OFF.
R00-R03, R10-R13 (when Sets the output data for the output ports.

DC output):
Output port data (2EBH, 2ECH)

When " 1 " is written: High output
When " 0 " is written: Low output
Read-out: Valid

The output port pins output the data written in the corresponding registers (R00-R03, R10-R13) without changing it. When " 1 " is written in the register, the output port pin goes high (VDD), and when " 0 " is written, the output port pin goes low (Vss).

At initial reset, all registers are set to " 0 ".

R10, R13 (when BZ and $\overline{B Z}$ output is selected): Special output port data (2ECH•D0 and D3)

These bits control the output of the buzzer signals $(B Z, \overline{B Z})$.
When " 1 " is written: Buzzer signal is output
When " 0 " is written: Low level (DC) is output Read-out: Valid
$\overline{\mathrm{BZ}}$ is output from pin R13. With the mask option, selection can be made perform this output control by R13, or to perform output control simultaneously with BZ by R10.

- When R13 controls $\overline{\text { BZ }}$ output

BZ output and $\overline{\mathrm{BZ}}$ output can be controlled independently. BZ output is controlled by writing data to R10, and $\overline{\mathrm{BZ}}$ output is controlled by writing data to R13.

- When R10 controls $\overline{B Z}$ output

BZ output and $\overline{\mathrm{BZ}}$ output can be controlled simultaneously by writing data to R10 only. For this case, R13 can be used as a one-bit general register having both read and write functions, and data of this register exerts no affect on $\overline{\mathrm{BZ}}$ output (output from the R13 pin).

At initial reset, registers R10 and R13 are set to "0".

Indicates the running status of the serial interface.

R12 (when FOUT is selected):
Special output port data (2ECH•D2)

R11 (when SIOF output is selected):
Special output port data (2ECH•D1)
$\begin{array}{ll}\text { When " } 1 \text { " is read out: } & \text { RUN } \\ \text { When " } 0 \text { " is read out: } & \text { STOP } \\ \text { Writing: } & \text { Invalid }\end{array}$
$\begin{array}{ll}\text { When " } 1 \text { " is read out: } & \text { RUN } \\ \text { When " } 0 \text { " is read out: } & \text { STOP } \\ \text { Writing: } & \text { Invalid }\end{array}$
$\begin{array}{ll}\text { When " } 1 \text { " is read out: } & \text { RUN } \\ \text { When " } 0 \text { " is read out: } & \text { STOP } \\ \text { Writing: } & \text { Invalid }\end{array}$
See "6.13 Serial Interface" for details of SIOF. This bit is exclusively for reading out, so data cannot be written to it.

Controls the FOUT (clock) output.
When " 1 " is written: Clock output
When " 0 " is written: Low level (DC) output
Read-out: Valid
FOUT output can be controlled by writing data to R12. At initial reset, this register is set to " 0 ".

Program examples • Writing to output ports (R00-R03, R10-R13)

ZRO	EQU	2EBH	
;			
	LD	A, ZRO SHR	8
	LD	XP, A	
	LD	X,LOW ZR0	; SELECT RO ADDR. BY X REG.
	LDPX	MX, A	; WRITE A REG. TO RO OUTPUT PORTS
	LD	MX, B	; WRITE B REG. TO R1 OUTPUT PORTS

In this program example, the contents of the general registers A and B are written to the output ports R00-R03 and R10-R13.
Figure 6.4.2 shows the correspondence of the output ports and the general registers.

Fig. 6.4.2
Correspondence of output ports and general registers

- R12 clock output

(when R12 is made FOUT with the mask option)

```
ZR1 EQU 2ECH
XFOUT EQU 0100B
;
    LD A,ZR1 SHR 8
    LD XP,A
    LD X,LOW ZR1 ; SELECT FOUT(R12) ADDR. BY X REG.
    OR MX,XFOUT ; OUTPUT CLOCK
```

" 1 " is written to the output register R12, and the clock is output from the R12 pin.
Figure 6.4.3 shows the timing chart of the R12 clock output.

Fig. 6.4.3
Timing chart of the R12 clock output

Programming note

When $\mathrm{BZ}, \overline{\mathrm{BZ}}$ and FOUT are selected with the mask option, a hazard may be observed in the output waveform when the data of the output register changes.

6.5 I/O Ports (PO0-P03, P10-P13)

I/O memory map of The control registers of the I/O ports are shown in Table I/O ports 6.5.1.

Table 6.5.1 I/O memory map (I/O ports)

Address	Register								Comment	
	D3	D2	D1	D0	Name	Init *1	1	0		
2EDH	P03	P02	P01	P00	$\begin{aligned} & \hline \text { P03 } \\ & \text { P02 } \\ & \text { P01 } \\ & \text { P00 } \\ & \hline \end{aligned}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$	High High High High	Low Low Low Low	I/O port data (P00-P03) Output latch reset at time of SR	
	R/W									
2EEH	TMRST	SWRUN	SWRST	IOCO	$\begin{aligned} & \text { TMRST*3 } \\ & \text { SWRUN } \end{aligned}$	$\begin{gathered} \text { Reset } \\ 0 \\ \text { Reset } \\ 0 \\ \hline \end{gathered}$	Reset Run Reset Output		Clock timer reset Stopwatch timer Run/Stop Stopwatch timer reset I/O control register 0 (P00-P03)	
	W	R/W	W	R/W	SWRST*3 IOCO					
2FDH	P13	P12	P11	P10	$\begin{aligned} & \text { P13 } \\ & \text { P12 } \\ & \text { P11 } \\ & \text { P10 } \\ & \hline \end{aligned}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & -* 2 \\ & -* 2 \\ & \hline \end{aligned}$	High High High High	Low Low Low Low	I/O port data (P10-P13) Output latch reset at time of SR	
	R/W									
2FEH	PRSM	CLKCHG	OSCC	IOC1	PRSM CLKCHG OSCC IOC1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 38 \mathrm{kHz} \\ \text { OSC3 } \end{gathered}$	$\begin{aligned} & 32 \mathrm{kHz} \\ & \text { OSC1 } \end{aligned}$	OSC1 prescaler selection CPU clock switch	
	R/W					$\begin{aligned} & 0 \\ & 0 \end{aligned}$	On Output	Off Input	$\begin{array}{\|l} \text { OSC3 oscillation On/Off } \\ \text { I/O control register } 1 \text { (P10-P13) } \end{array}$	
*1 Initial value at the time of initial reset *2 Not set in the circuit					*3 Constantly "0" when being read *4 Reset (0) immediately after being read					5 Undefined

P00-P03, P10-P13: I/O port data can be read and output data can be set I/O port data through these ports.

When " 1 " is written: High level
When " 0 " is written: Low level
When an I/O port is set to the output mode, the written data is output unchanged from the I/O port pin. When " 1 " is written as the port data, the port pin goes high (VdD), and when " 0 " is written, the level goes low (Vss). Port data can be written also in the input mode.

- When reading data out

When " 1 " is read out: High level
When " 0 " is read out: Low level
The pin voltage level of the I/O port is read out. When the I/O port is in the input mode the voltage level being input to the port pin can be read out; in the output mode the output voltage level can be read. When the pin voltage is high (VDD) the port data that can be read is " 1 ", and when the pin voltage is low (Vss) the data is " 0 ". Further, the built-in pull-down resistance goes ON during read-out, so that the I/O port pin is pulled down.

Notes - When the I/O port is set to the output mode and a low-impedance load is connected to the port pin, the data written to the register may differ from the data read out.

- When the I/O port is set to the input mode and a low-level voltage (VSS) is input, erroneous input results if the time constant of the capacitive load of the input line and the built-in pulldown resistance load is greater than the read-out time. When the input data is being read out, the time that the input line is pulled down is equivalent to 1.5 cycles of the CPU system clock. However, the electric potential of the pins must be settled within 0.5 cycles. If this condition cannot be fulfilled, some measure must be devised such as arranging pull-down resistance externally, or performing multiple read-outs.

IOC0, IOC1: The input and output modes of the I/O ports can be set I/O control registers with these registers.

When " 1 " is written:	Output mode
When " 0 " is written:	Input mode
Read-out:	Valid

The input and output modes of the I/O ports are set in units of four bits. IOCO sets the mode for POO-PO3, and IOC1 sets the mode for P10-P13.
Writing " 1 " to the I/O control register makes the corresponding I/O port enter the output mode, and writing " 0 " induces the input mode.
At initial reset, these two registers are set to " 0 ", so the I/O ports are in the input mode.

Program examples • Reading out the I/O ports (P00-P03, P10-P13)

ZPO	EQU	2EDH	
ZP1	EQU	2FDH	
ZSWC	EQU	2EEH	
zoSC	EQU	2FEH	
XIOC0	EQU	0001B	
XIOC1	EQU	0001B	
;			
	LD	A, ZPO SHR 8	
	LD	XP, A	
	LD	X,LOW ZSWC	; SELECT IOCO ADDR. BY X REG.
	AND	MX, XIOCO XOR OFH	; SET PO I/O PORTS INPUT MODE
;			
	LD	X, LOW ZOSC	; SELECT IOC1 ADDR. BY X REG.
	AND	MX, XIOC1 XOR OFH	; SET P1 I/O PORTS INPUT MODE
;			
	LD	X,LOW ZPO	; SELECT PO ADDR. BY X REG.
	LD	A, MX	; READ PO INPUT PORTS TO A REG.
;			
	LD	X,LOW ZP1	; SELECT P1 ADDR. BY X REG.
	LD	B, MX	; READ P1 INPUT PORTS TO B REG.

In the example, data of the I/O ports (P00-P03, P10-P13) is read to the general registers (A, B).
Figure 6.5 .1 shows the correspondence between the I/O ports (input) and the general registers.

Fig. 6.5.1
Correspondence between I/O ports (input) and general registers

A register			
D3	D2	D1	D0
P03	P02	P01	P00

B register

D3	D2	D1	D0
P13	P12	P11	P10

- Writing to I/O ports (P00-P03, P10-P13)

ZP0	EQU	2EDH	
ZP1	EQU	2FDH	
ZSWC	EQU	2EEH	
zoSC	EQU	2 FEH	
XIOC0	EQU	0001B	
XIOC1	EQU	0001B	
;			
	LD	A, ZPO SHR 8	
	LD	XP, A	
	LD	X,LOW ZSWC	; SELECT IOCO ADDR. BY X REG.
	OR	MX, XIOC0	; SET PO I/O PORTS OUTPUT MODE
;			
	LD	X, LOW ZOSC	; SELECT IOC1 ADDR. BY X REG.
	OR	MX, XIOC1	; SET P1 I/O PORTS OUTPUT MODE
;			
	LD	X,LOW ZPO	; SELECT PO ADDR. BY X REG.
	LD	MX, A	; WRITE A REG. TO PO I/O PORTS
;			
	LD	X, LOW ZP1	; SELECT P1 ADDR. BY X REG.
	LD	MX, B	;WRITE B REG. TO P1 I/O PORTS

In this example, the contents of the general registers (A, B) are written to the I/O ports (P00-P03, P10-P13).
Figure 6.5.2 shows the correspondence between the I/O ports (output) and the general registers.

Fig. 6.5.2
Correspondence of I/O ports (output) and general registers

(1) When the I/O port is changed from high level to low level by the built-in pull down resistance, the falling-edge has the delay determined by the pull down resistance and the input gate capacitance. When the input data is being read out, the time that the input line is pulled down is equivalent to 1.5 cycles of the CPU system clock. However, the electric potential of the pins must be settled within 0.5 cycles. If this condition cannot be fulfilled, some measure must be devised such as arranging pulldown resistance externally, or performing multiple readouts. Consequently, if data is read out while the CPU is running in the OSC3 oscillation circuit, data must be read out continuously for about $500 \mu \mathrm{sec}$.
(2) When the I/O port is set to the output mode and the data register has been read, the pin data instead of the register data can be read out. Because of this, if a low-impedance load is connected and read-out performed, the value of the register and the read-out result may differ.

6.6 LCD Driver (COM0-COM3, SEG0-SEG47)

I/O memory map of The control register of the LCD driver is shown in Table LCD driver 6.6.1.

Table 6.6.1 I/O memory map (LCD driver)

CSDC: The LCD drive format can be selected with this switch.

LCD drive switch

(2E8H-D3) When " 1 " is written: Static drive
When " 0 " is written: Dynamic drive
Read-out: Valid
At initial reset, dynamic drive $(\mathrm{CSDC}=" 0$ ") is selected.

Fig. 6.6.1
Display memory map

Address Page	Low High	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0 or 2	4	$\begin{gathered} \text { Display memory (} 48 \text { words } \times 4 \text { bits) } \\ 0 \text { page }=R / W \\ 2 \text { page }=W \end{gathered}$															
	5																
	6																

Display memory: The LCD segments are lit or turned off depending on this $(040 \mathrm{H}-06 \mathrm{FH}$ or data. 240H-26FH)

$$
\begin{array}{ll}
\text { When " } 1 \text { " is written: } & \text { Lit } \\
\text { When " } 0 \text { " is written: } & \text { Not lit } \\
\text { Read-out: } & \text { Valid for page } 0 \\
& \text { Undefined for page } 2
\end{array}
$$

By writing data into the display memory allocated to the
LCD segment (on the panel), the segment can be lit or put out.
At initial reset, the contents of the display memory are undefined.

- Segment allocation

As shown in Figure 6.6.1, segment data of the E0C6235 Series is decided depending on display data written to the display memory (write-only) at address 040H-06FH (page 0) or $240 \mathrm{H}-26 \mathrm{FH}$ (page 2).
(1) The mask option enables the display memory to be allocated entirely to either page 0 or page 2 .
(2) The address and bits of the display memory can be made to correspond to the segment pins (SEG0-SEG47) in any form through the mask option. This makes design easy by increasing the degree of freedom with which the liquid crystal panel can be designed.

Figure 6.6.2 shows an example of the relationship between the LCD segments (on the panel) and the display memory (when page 0 is selected) for the case of $1 / 3$ duty.

Address	Data			
	D3	D2	D1	D0
06 AH	d	c	b	a
06 BH	p	g	f	e
06 CH	d^{\prime}	c^{\prime}	b^{\prime}	a^{\prime}
06 DH	p^{\prime}	g^{\prime}	f^{\prime}	e^{\prime}

Display memory assignment table

	Common 0	Common 1	Common 2
SEG10	6A, D0 (a)	6B, D1 (f)	6B, D0 (e)
SEG11	6A, D1 (b)	$6 B$, D2 (g)	$6 \mathrm{~A}, \mathrm{D} 3$ (d)
SEG12	6D, D1 (f')	6A, D2 (c)	6B, D3 (p)

Pin assignment table

Example of LCD panel

Program example • Seven-segment display

LCHR0	EQU	3FH	; CHR. DATA "O"
LCHR1	EQU	06H	; CHR. DATA "1"
LCHR2	EQU	5BH	; CHR. DATA "2"
LCHR3	EQU	4FH	; CHR. DATA "3"
LCHR4	EQU	66H	; CHR. DATA "4"
LCHR5	EQU	6DH	; CHR. DATA "5"
LCHR6	EQU	7DH	; CHR. DATA "6"
LCHR7	EQU	27H	; CHR. DATA "7"
LCHR8	EQU	7FH	; CHR. DATA "8"
LCHR9	EQU	6FH	; CHR. DATA "9"
SECT	EQU	OH	
;			
	ORG	OOOH	
;			
	RETD	LCHRO	; LCD DISPLAY "0"
	RETD	LCHR1	; LCD DISPLAY "1"
	RETD	LCHR2	; LCD DISPLAY "2"
	RETD	LCHR3	; LCD DISPLAY "3"
	RETD	LCHR4	; LCD DISPLAY "4"
	RETD	LCHR5	; LCD DISPLAY "5"
	RETD	LCHR6	; LCD DISPLAY "6"
	RETD	LCHR7	;LCD DISPLAY "7"
	RETD	LCHR8	; LCD DISPLAY "8"
	RETD	LCHR9	; LCD DISPLAY "9"
;			
DISP7S	LD	B, SECT	; SET PROGRAM SECTION
	JPBA		; JUMP DISPLAY TABLE

By setting the address of the segment to be lit in the X register and any value from 0 to 9 in the A register, and making CALL (CALZ) DISP7S, seven-segment display will be executed according to the contents of the A register. In the program example, correspondence of the segment and memory map is as shown in Figure 6.6.3.

Fig. 6.6.3
Correspondence with A register

A register	0	1	2	3	4
Display	-1	1	$\overline{-1}$	\mathbf{Z}_{1}^{\prime}	\mathbf{I}^{-1}

A register	5	6	7	8	9
Display	-		',	'二'	

Programming notes

(1) When page 0 is selected for the display memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
(2) When page 2 is selected for the display memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).

6.7 Clock Timer

I/O memory map of The control registers of the clock timer are shown in Table clock timer
6.7.1.

Table 6.7.1 I/O memory map (clock timer)

Address	Register				Name TM3 TM2 TM1 TM0	$\begin{gathered} \hline \text { Init } * 1 \\ \hline 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	1	0	Comment
	D3	D2	D1	D0					
2 EOH	TM3	TM2	TM1	TM0					Timer data (clock timer 2 Hz) Timer data (clock timer 4 Hz) Timer data (clock timer 8 Hz) Timer data (clock timer 16 Hz)
2E8H	CSDC	ETI2 R/	ETI8	ETI32	CSDC ETI2 ETI8 ETI32	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Static Enable Enable Enable	Dynamic Mask Mask Mask	LCD drive switch Interrupt mask register (clock timer 2 Hz) Interrupt mask register (clock timer 8 Hz) Interrupt mask register (clock timer 32 Hz)
2E9H	0	T12	T18	TI32	$\begin{array}{r} 0 * 3 \\ \mathrm{~T} \mid 2 * 4 \\ \mathrm{~T} \mid 8 * 4 \\ \mathrm{~T} \mid 32 * 4 \\ \hline \end{array}$	$\begin{aligned} & -* 2 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes Yes	No No No	Unused Interrupt factor flag (clock timer 2 Hz) Interrupt factor flag (clock timer 8 Hz) Interrupt factor flag (clock timer 32 Hz)
2EEH	TMRST	SWRUN R/W	SWRST W	IOCO R/W	TMRST*3 SWRUN SWRST*3 IOCO	Reset 0 Reset 0	Reset Run Reset Output	Stop - Input	Clock timer reset Stopwatch timer Run/Stop Stopwatch timer reset I/O control register 0 (P00-P03)

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Constantly " 0 " when being read
*4 Reset (0) immediately after being read

TM0-TM3: The $16 \mathrm{~Hz}-2 \mathrm{~Hz}$ timer data of the clock timer can be read Timer data $(2 \mathrm{EOH})$ out with this register. These four bits are read-out only, and writing operations are invalid.
At initial reset, the timer data is initialized to " OH ".

TMRST: This bit resets the clock timer.

Clock timer reset
(2EEH•D3)

When " 1 " is written: Clock timer reset
When " 0 " is written: No operation
Read-out: Always "0"

The clock timer is reset by writing " 1 " to TMRST. The clock timer starts immediately after this. No operation results when " 0 " is written to TMRST.
This bit is write-only, and so is always " 0 " at read-out.

ETI32, ETI8, ETI2: These registers are used to select whether to mask the clock Interrupt mask registers timer interrupt.
(2E8H•D0-D2)

$$
\begin{array}{ll}
\text { When " } 1 \text { " is written: } & \text { Enabled } \\
\text { When " } 0 \text { " is written: } & \text { Masked } \\
\text { Read-out: } & \text { Valid }
\end{array}
$$

The interrupt mask registers (ETI32, ETI8, ETI2) are used to select whether to mask the interrupt to the separate frequencies ($32 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{~Hz}$).
At initial reset, these registers are all set to " 0 ".
TI32, TI8, TI2: These flags indicate the status of the clock timer interrupt. Interrupt factor flags
(2E9H•D0-D2)

$$
\begin{array}{ll}
\text { When " } 1 \text { " is read out: } & \text { Interrupt has occurred } \\
\text { When " } 0 \text { " is read out: } & \text { Interrupt has not occurred } \\
\text { Writing: } & \text { Invalid }
\end{array}
$$

The interrupt factor flags (TI32, TI8, TI2) correspond to the clock timer interrupts of the respective frequencies $(32 \mathrm{~Hz}, 8$ $\mathrm{Hz}, 2 \mathrm{~Hz}$). The software can judge from these flags whether there is a clock timer interrupt. However, even if the interrupt is masked, the flags are set to " 1 " at the falling edge of the signal.
These flags can be reset through being read out by the software. Also, the flags can be read out only in the DI status (interrupt flag = "0").
At initial reset, these flags are set to " 0 ".

- Interrupt function

The clock timer can cause interrupts at the falling edge of 32
$\mathrm{Hz}, 8 \mathrm{~Hz}$ and 2 Hz signals. Software can set whether to mask any of these frequencies.
Figure 6.7.1 is the timing chart of the clock timer.

Fig. 6.7.1
Timing chart of the clock timer

As shown in Figure 6.7.1, interrupt is generated at the falling edge of the frequencies ($32 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{~Hz}$). At this time, the corresponding interrupt factor flag (TI32, TI8, TI2) is set to " 1 ". Selection of whether to mask the separate interrupts can be made with the interrupt mask registers (ETI32, ETI8, ETI2). However, regardless of the interrupt mask register setting, the interrupt factor flag is set to " 1 " at the falling edge of the corresponding signal.

Program examples

- Initializing the clock timer and setting the interrupt mask register

This program writes " 1 " to the interrupt mask register ETI2, to enable the 2 Hz interrupt. Also, the clock timer is initialized (reset) and the interrupt factor flag reset.

- Reading out clock timer

ZTM	EQU	2EOH	
;			
	LD	A, ZTM SHR 8	
	LD	XP, A	
	LD	X, LOW ZTM	;SELECT TM ADDR. BY X REG.
	LD	A, MX	;READ TM DATA TO A REG.

In this program example, the data of the clock timer (TMOTM3) is read into the A register. Figure 6.7.2 shows the correspondence of the clock timer and the A register.

Fig. 6.7.2
Correspondence of clock timer and A register

A register			
D3	D2	D1	D0
TM3	TM2	TM1	TM0

Programming notes
(1) The prescaler mode must be set correctly to suit the crystal oscillator to be used.
(2) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to " 1 ". Consequently, perform flag read-out (reset the flag) as necessary at reset.
(3) The input clock of the watchdog timer is the 2 Hz signal of the clock timer, so that the watchdog timer may be counted up at timer reset.
(4) Read-out of the interrupt factor flag (TI) can be done only in the DI status (interrupt flag = "0"). Read-out during the EI status (interrupt flag = " 1 ") will cause malfunctions.
(5) Writing of the interrupt mask register (ETI) can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = " 1 ") will cause malfunctions.

6.8 Stopwatch Timer

I/O memory map of stopwatch timer

The control registers of the stopwatch timer are shown in Table 6.8.1.

Table 6.8.1 I/O memory map (stopwatch timer)

SWL0-SWL3: Data (BCD) of the $1 / 100 \mathrm{sec}$ column of the stopwatch timer Stopwatch timer $1 / 100 \mathrm{sec}$ can be read out. These four bits are read-only, and cannot $(2 E 1 H)$ be used for writing operations.

At initial reset, the timer data is set to " OH ".

SWH0-SWH3: Data (BCD) of the $1 / 10$ sec column of the stopwatch timer Stopwatch timer $1 / 10 \mathrm{sec}$ can be read out. These four bits are read-only, and cannot $(2 \mathrm{E} 2 \mathrm{H})$ be used for writing operations.

At initial reset, the timer data is set to " OH ".

SWRST: This bit resets the stopwatch timer.

Stopwatch timer reset
(2EEH•D1)

When " 1 " is written: Stopwatch timer reset
When " 0 " is written: No operation
Read-out: Always "0"
The stopwatch timer is reset when " 1 " is written to SWRST. When the stopwatch timer is reset in the RUN status, operation restarts immediately. Also, in the STOP status the reset data is maintained.

This bit is write-only, and is always " 0 " at read-out.

SWRUN: This bit controls RUN/STOP of the stopwatch timer.
Stopwatch timer RUN/STOP (2EEH•D2)

When " 1 " is written: RUN
When " 0 " is written: STOP
Read-out: Valid
The stopwatch timer enters the RUN status when " 1 " is written to SWRUN, and the STOP status when " 0 " is written. In the STOP status, the timer data is maintained until the next RUN status or resets timer. Also, when the STOP status changes to the RUN status, the data that was maintained can be used for resuming the count. When the timer data is read out in the RUN status, correct read-out may be impossible because of the carry from the low-order bit (SWL) to the high-order bit (SWH). This occurs when read-out has extended over the SWL and SWH bits when the carry occurs. To prevent this, perform read out after entering the STOP status, and then return to the RUN status. Also, the duration of the STOP status must be within $976 \mu \mathrm{sec}$ ($256 \mathrm{~Hz} \mathrm{1/4}$ cycle).
At initial reset, this register is set to " 0 ".

EISWIT0, EISWIT1: These registers are used to select whether to mask the
Interrupt mask register stopwatch timer interrupt.
(2E6H•D0 and D1)

When " 1 " is written:	Enabled
When " 0 " is written:	Masked
Read-out:	Valid

The interrupt mask registers (EISWITO, EISWIT1) are used to separately select whether to mask the 10 Hz and 1 Hz interrupts.
At initial reset, these registers are both set to " 0 ".

SWIT0, SWIT1: These flags indicate the status of the stopwatch timer interInterrupt factor flag rupt. (2EAH•D0 and D1)

$$
\begin{array}{ll}
\text { When " } 1 \text { " is read out: } & \text { Interrupt has occurred } \\
\text { When " } 0 \text { " is read out: } & \text { Interrupt has not occurred } \\
\text { Writing: } & \text { Invalid }
\end{array}
$$

The interrupt factor flags (SWITO, SWIT1) correspond to the 10 Hz and 1 Hz interrupts respectively. With these flags, the software can judge whether a stopwatch timer interrupt has occurred. However, regardless of the interrupt mask register setting, these flags are set to "1" by the timer overflow. These flags are reset when read out by the software. Also, read-out is only possible in the DI status (interrupt flag = " 0 ").
At initial reset, these flags are set to " 0 ".

- Interrupt function

The 10 Hz (approximate 10 Hz) and 1 Hz interrupts can be generated through the overflow of stopwatch timers SWL and SWH respectively. Also, software can set whether to separately mask the frequencies described earlier. Figure 6.8.1 is the timing chart for the stopwatch timer.

Fig. 6.8.1 Timing chart for stopwatch timer

As shown in Figure 6.8.1, the interrupts are generated by the overflow of their respective timers (" 9 " changing to " 0 "). Also, at this time the corresponding interrupt factor flags (SWIT0, SWIT1) are set to " 1 ".
The respective interrupts can be masked separately through the interrupt mask registers (EISWITO, EISWIT1). However, regardless of the setting of the interrupt mask registers, the interrupt factor flags are set to "1" by the overflow of their corresponding timers.

Program examples

- Setting start and interrupt mask register of stopwatch timer

```
ZBLDSI EQU 2E6H
ZSWC EQU 2EEH
XESWIT EQU 0011B
XSWRUN EQU 0100B
;
    LD A,ZBLDSI SHR 8
    LD XP,A
    LD X,LOW ZBLDSI ; SELECT EISWIT ADDR. BY X REG.
    LD MX,XESWIT ;INT. ENABLE SW 10 & 1 Hz
;
    LD X,LOW ZSWC ;SELECT SWRUN ADDR. BY X REG.
    OR MX,XSWRUN ;START SW TIMER
```

" 1 " is written into the interrupt mask registers EISWIT0 and EISWIT1, enabling the 10 Hz and 1 Hz interrupts.
Also, " 1 " is written to SWRUN to start the stopwatch timer.

- Read-out of stopwatch timer

ZSWL	EQU	2E1H	
ZSWC	EQU	2EEH	
XSWRUN	EQU	0100B	
;			
	LD	A, ZSWC SHR 8	
	LD	XP, A	
	LD	X, LOW ZSWC	; SELECT SWRUN ADDR. ; BY X REG.
;			
	LD	YP, A	
	LD	Y, LOW ZSWL	; SELECT SWL ADDR. ; BY Y REG.
;			
	AND	MX, XSWRUN XOR OFH	; STOP SW TIMER
	LDPY	A, MY	; READ SWL DATA TO A REG.
	LD	B, MY	; READ SWH DATA TO B REG.
	OR	MX, XSWRUN	; RUN SW TIMER

In the program example, the data of the stopwatch timer (SWL, SWH) is written into the general registers (A, B). To read out data, the count is made into the STOP status, and after read-out it is set to the RUN status again (to prevent incorrect read-out).
Figure 6.8 .2 shows the correspondence between stopwatch timers and general registers.

Fig. 6.8.2
Correspondence between stopwatch timer and general

| A register | | | | B register | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D3 | D2 | D1 | D0 | | | |
| SWL3 | SWL2 | SWL1 | SWL0 | | | |

Programming notes (1) The prescaler mode must be set correctly so that the stopwatch timer suits the crystal oscillator to be used.
(2) If timer data is read out in the RUN status, the timer must be made into the STOP status, and after data is read out the RUN status can be restored. If data is read out when a carry occurs, the data cannot be read correctly.
Also, the processing above must be performed within the STOP interval of $976 \mu \mathrm{sec}$ ($256 \mathrm{~Hz} \mathrm{1/4} \mathrm{cycle)}$.
(3) Read-out of the interrupt factor flag (SWIT) can be done only in the DI status (interrupt flag = "0"). Read-out during the EI status (interrupt flag $=" 1 "$) will cause malfunctions.
(4) Writing of the interrupt mask register (EISWIT) can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = "1") will cause malfunctions.

6.9 Event Counter

I/O memory map of event counter

The control registers of the event counter are shown in Table 6.9.1.

Table 6.9.1 I/O memory map (event counter)

EV00-EV03: The four low-order data bits of event counter 0 are read out. Event counter 0 These four bits are read-only, and cannot be used for writ-Low-order $(2 \mathrm{~F} 8 \mathrm{H})$ ing. At initial reset, event counter 0 is set to " 00 H ".

EV04-EV07: The four high-order data bits of event counter 0 are read out. Event counter 0 These four bits are read-only, and cannot be used for writ-High-order (2F9H) ing. At initial reset, event counter 0 is set to " $00 \mathrm{H}^{2}$ ".

EV10-EV13: The four low-order data bits of event counter 1 are read out. Event counter 1 These four bits are read-only, and cannot be used for writ-Low-order (2FAH) ing. At initial reset, event counter 1 is set to " $00 \mathrm{H}^{\prime}$ ".

EV14-EV17: The four high-order data bits of event counter 1 are read out. Event counter 1 These four bits are read-only, and cannot be used for writ-High-order (2FBH) ing. At initial reset, event counter 1 is set to " 00 H ".

EVORST: This is the register for resetting event counter 0 .

Event counter 0 reset
(2FCH•DO)

When " 1 " is written: Event counter 0 reset When " 0 " is written: No operation Read-out: Always "0"

When " 1 " is written, event counter 0 is reset and the data becomes " 00 H ". When " 0 " is written, no operation is executed. This is a write-only bit, and is always " 0 " at read-out.

EV1RST: This is the register for resetting event counter 1.
Event counter 1 reset
(2FCH•D1)

When " 1 " is written: Event counter 1 reset When " 0 " is written: No operation Read-out: Always "0"

When " 1 " is written, event counter 1 is reset and the data becomes " 00 H ". When " 0 " is written, no operation is executed. This is a write-only bit, and is always " 0 " at read-out.

EVRUN: This register controls the event counter RUN/STOP status. Event counter RUN/STOP

When " 1 " is written:	RUN
When " 0 " is written:	STOP
Read-out:	Valid

When " 1 " is written, the event counter enters the RUN status and starts receiving the clock input.
When " 0 " is written, the event counter enters the STOP status and the clock input is ignored. (However, input to the input port is valid.)
At initial reset, this register is set to " 0 ".

EVSEL: This register control the count mode of the event counter.
When " 1 " is written: Separate
When " 0 " is written: Phase detection
Read-out: Valid

When " 0 " is written, the phases of the two clock signals are detected, and the phase detection mode is selected, in which one of the counters is chosen to input the clock signal. When " 1 " is written, the separate mode is selected, in which each clock signal is input to different counters.

At initial reset, this register is set to " 0 ".

Program examples • Initial restart of event counter

```
ZEVC EQU 2FCH
XEVIND EQU 0111B
;
    LD A,ZEVC SHR 8
    LD XP,A
    LD X,LOW ZEVC ; SELECT EVSEL, EVRUN,
                                    ; EVRST ADDR. BY X REG.
    OR MX,XEVIND ;EV. COUNTER RESET & START
```

This program initialized event counters 0 and 1 , and enables them to receive the external clock.

- Reading out event counter

STD03A	EQU	010H	
STD47A	EQU	012H	
STD03B	EQU	014H	
STD47B	EQU	016H	
STD03C	EQU	018H	
STD47C	EQU	01AH	
ZEVOL	EQU	2F8H	
;			
	LD	A, ZEVOL SHR	
	LD	XP, A	
	LD	YP, A	
;			
RETRY	LD	Y,LOW STD03A	; SELECT BUFO-A ADDR. BY Y REG.
	LD	B, 3	; INIT. READ TIMES COUNTER
;			
RDLP2	LD	A, 4	; INIT. WORD LEN. COUNTER
	LD	X,LOW ZEVOL	; SELECT EV03 ADDR. BY X REG.
;			
RDLP1	LDPY	MY, MX	; READ EV-CNT DATA TO BUF
	INC	X	; INC. EV-CNT ADDR.
	ADD	A, OFH	;DEC. WORD LEN. COUNTER
	JP	NZ, RDLP1	; IF W.L.C <> 0 THEN JUMP

```
    ADD B,OFH ;DEC. READ TIMES COUNTER
    JP NZ,RDLP2 ;IF R.T.C <> O THEN JUMP
;
    LD X,LOW STDO3A ; SELECT BUF0-A ADDR. BY X REG.
    LD Y,LOW STDO3B ;SELECT BUFO-B ADDR. BY Y REG.
    CALL CPDATA ;CALL ( COMP. BUFO-A BUF0-B )
    JP BADCP1
;
NEXTCP LD X,LOW STD47A ;SELECT BUF1-A ADDR. BY X REG.
    LD Y,LOW STD47B ;SELECT BUF1-B ADDR. BY Y REG.
    CALL CPDATA ;CALL ( COMP. BUF1-A BUF1-B )
    JP BADCP2
;
    JP READOK
;
BADCP1 LD X,LOW STD03B ; SELECT BUF0-B ADDR. BY X REG.
    LD Y,LOW STDO3C ;SELECT BUFO-C ADDR. BY Y REG.
    CALL CPDATA ;CALL ( COMP. BUFO-B BUFO-C )
    JP RETRY
;
    LD X,LOW STDO3A ; SELECT BUFO-A ADDR. BY X REG.
    LD Y,LOW STDO3B ; SELECT BUFO-B ADDR. BY Y REG.
    LDPX MX,MY
    INC Y
    LD MX,MY ;MOVE BUFO-A <= BUFO-B
    JP NEXTCP
;
BADCP2 LD X,LOW STD47B ;SELECT BUF1-B ADDR. BY X REG.
    LD Y,LOW STD47C ;SELECT BUF1-C ADDR. BY Y REG.
    CALL CPDATA ;CALL ( COMP. BUF1-B BUF1-C )
    JP RETRY
;
    LD X,LOW STD47A ;SELECT BUF1-A ADDR. BY X REG.
    LD Y,LOW STD47B ; SELECT BUF1-B ADDR. BY Y REG.
    LDPX MX,MY
    INC Y
    LD MX,MY ;MOVE BUF1-A <= BUF1-B
;
READOK LD X,LOW STDO3A ; SELECT EV-CNT DATA BUF.
```

```
;
;********** SUB ROUTINE ***********
;
;
CPDATA CP MX,MY ;COMP. LOW WORD DATA
    JP NZ,BADDT ;IF L-DATA DIFFERENT THEN JUMP
;
    INC X ;INC. BUF?-A OR BUF?-B
    INC Y ;INC. BUF?-B OR BUF?-C
    CP MX,MY ; COMP. HIGH WORD DATA
    JP NZ,BADDT ;IF H-DATA DIFFERENT THEN JUMP
;
    RETS ;DATA EQUAL
;
BADDT RET ;DATA NOT EQUAL
```

In this program example, event counters 0 and 1 are read out three times each, their data compared, and the result stored in RAM at address "010H-013H". This operation assures a correct result even if data is read out when the counter is changing (carry). The RAM address " $014 \mathrm{H}-01 \mathrm{BH}$ " is used as a work area for temporarily saving counter data. Also, the maximum input frequency that can be responded to is fosc $1 / 256 \mathrm{~Hz}$, on account of the software processing speed.
Table 6.9.2 shows the correspondence of event counters 0 and 1 and the data stored in RAM.

Table 6.9.2
Correspondence of event counters 0 and 1 and data stored in RAM

Address	Data bit			
	D3	D2	D1	D0
010 H	EV03	EV02	EV01	EV00
011 H	EV07	EV06	EV05	EV04
012 H	EV13	EV12	EV11	EV10
013 H	EV17	EV16	EV15	EV14

(1) After the event counter has written data to the EVRUN register, it operates or stops in synchronization with the falling edge of the noise rejector clock or stops. Hence, attention must be paid to the above timing when input signals (input to K02 and K03) are being received.
(2) To prevent erroneous reading of the event counter data, read out the counter data several times, compare it, and use the matching data as the result.

6.10 Battery Life Detection (BLD) Circuit

I/O memory map of BLD circuit

The control registers of the BLD circuit are shown in Table 6.10.1.

Table 6.10.1 I/O memory map (BLD circuit)

HLMOD:
Heavy load protection mode (2E6H-D3)

When " 1 " is written: Heavy load protection mode is set
When " 0 " is written: Heavy load protection mode is released
Valid

When HLMOD is set to " 1 ", the IC operating status enters the heavy load protection mode and at the same time the battery life detection of the BLD circuit is controlled (ON/ OFF). For details about the heavy load protection mode, see section 6.11.

When HLMOD is set to " 1 ", sampling control is executed for the BLD circuit ON time. There are two types of sampling time, as follows:
(1) The time of one instruction cycle immediately after HLMOD = " 1 "
(2) Sampling at cycles of 2 Hz output by the prescaler while HLMOD = "1"

The BLD circuit must be made ON with at least $100 \mu \mathrm{sec}$ for the BLD circuit to respond. When the CPU system clock is fosc3 in E0C62A35, the detection result at the timing in (1) above may be invalid or incorrect. Hence, when using timing (1) to execute battery life detection, be sure that the CPU clock is the OSC1 clock (for E0C62A35).
When BLD sampling is done with HLMOD set to " 1 ", the results are written to the BLD latch in the timing as follows:
(1) As soon as the time has elapsed for one instruction cycle immediately following HLMOD = " 1 "
(2) Immediately on completion of sampling at cycles of 2 Hz output by the prescaler while HLMOD = "1"

Consequently, the BLD latch data is written immediately after HLMOD is set to " 1 ", and at the same time the new detection result is written in 2 Hz cycles.

BLC0, BLC1, BLC2: In the E0C6235 Series, the evaluation voltage for judging

Evaluation voltage setting register (2FFH•D0-D2)
the battery life can be switched by programming. Consequently, the optimum evaluation voltage can be set for the battery used.
One of eight evaluation voltages can be selected with the software. Table 6.10.2 lists the evaluation voltages for the models in the E0C6235 Series.

Table 6.10.2
Evaluation voltages for BLD
circuit

BLS/BLD1:
BLD detection/BLD data
(2FFH•D3)

Evaluation voltage setting			Evaluation voltage		
BLC2	BLC1	BLC0	E0C62L35	E0C6235	E0C62A35
0	0	0	1.05 V	2.20 V	2.20 V
0	0	1	1.10 V	2.25 V	2.25 V
0	1	0	1.15 V	2.30 V	2.30 V
0	1	1	1.20 V	2.35 V	2.35 V
1	0	0	1.25 V	2.40 V	2.40 V
1	0	1	1.30 V	2.45 V	2.45 V
1	1	0	1.35 V	2.50 V	2.50 V
1	1	1	1.40 V	2.55 V	2.55 V

When " 0 " is written: BLD detection OFF
When " 1 " is written: BLD detection ON
When " 0 " is read out: Source voltage (VDD-Vss) is higher than BLD set value
When " 1 " is read out: Source voltage (VDD-VSs) is lower than BLD set value

Note that the function of this bit when written is different to when read out.
When this bit is written to, ON/OFF of the BLD detection operation is controlled; when this bit is read out, the result of the BLD detection (contents of BLD latch) is obtained. Appreciable current is consumed during operation of BLD detection, so keep BLD detection OFF except when necessary.
When BLS is set to " 1 ", BLD detection is executed. As soon as BLS is reset to " 0 " the detection result is loaded to the BLD latch. To obtain a stable BLD detection result, the BLD circuit must be set to ON with at least $100 \mu \mathrm{sec}$. Hence, to obtain the BLD detection result, follow the programming sequence below.

0 . Set HLMOD to " 1 " (only when the CPU system clock is fosc3 in E0C62A35)

1. Set BLS to "1"
2. Maintain at $100 \mu \mathrm{sec}$ minimum
3. Set BLS to "0"
4. Read out BLD
5. Set HLMOD to "0" (only when the CPU system clock is fosc3 in E0C62A35)

However, when a crystal oscillation clock (foscl) is selected for the CPU system clock in E0C6235, E0C62L35 and E0C62A35, the instruction cycles are long enough, so that there is no need for concern about maintaining $100 \mu \mathrm{sec}$ for the BLS = " 1 " with the software.

Program example	- Evaluation of source voltage 2.3 V (1.15 V)			
	ZOSC	EQU	2FEH	
	zBLC	EQU	2 FFH	
	XCLKCG	EQU	0100B	
	XBLDON	EQU	1010B	
	XBLDOF	EQU	0010B	
	;			
		LD	A, ZOSC SHR 8	
		LD	XP, A	
		LD	X, LOW ZOSC	; SELECT CLKCHG ADDR.
				; BY X REG.
		AND	MX, XCLKCG XOR OFH	; CLK CHANGE OSC3 TO OSC1
	;			
		LD	X, LOW ZBLC	; SELECT BLS \& BLC ADDR.
				; BY X REG.
		LD	MX, XBLDON	; BLD ON \& BLC <= 2
		LD	MX, XBLDOF	; BLD OFF
	;			
		LD	A, MX	; READ BLD1 DATA TO A REG.

In the program example, the three bits BLCO-2 are set to " 2 " to select the evaluation voltage $2.3 \mathrm{~V}(1.15 \mathrm{~V})$; the BLD circuit is operated and the result read into the A register. If the CPU's operating clock is OSC3, this is switched to OSC1. Figure 6.10 .1 shows the result of BLD detection.

Fig. 6.10.1
Result of BLD detection

A register			
D3	D2	D1	D0
BLD1	BLC2	BLC1	BLC0

(1) It takes $100 \mu \mathrm{sec}$ from the time the BLD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:
(1) When the CPU system clock is foSc 1

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 1 instruction has passed.
2. When detection is done at BLS

After writing " 1 " on BLS, write " 0 " after at least 100 $\mu \mathrm{sec}$ has lapsed (possible with the next instruction) and then read the BLD.
(2) When the CPU system clock is fosc3 (in case of E0C62A35 only)

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 0.6 second has passed.
(HLMOD holds " 1 " for at least 0.6 second)
2. When detection is done at BLS

Before writing " 1 " on BLS, write " 1 " on HLMOD first; after at least $100 \mu \mathrm{sec}$ has lapsed after writing " 1 " on BLS, write " 0 " on BLS and then read the BLD.
(2) To reduce current consumption, set the BLD operation to OFF unless otherwise necessary.
(3) BLS resides in the same bit at the same address as BLD 1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.
(4) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
(1) After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
(2) After heavy load drive is completed, switch BLS ON and OFF (at least $100 \mu \mathrm{sec}$ is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.
(5) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec .
(6) To reduce current consumption, be careful not to set the heavy load protection mode with the software unless otherwise necessary.

6.11 Heavy Load Protection Function and SubBLD Circuit

I/O memory map of heavy load protection function and

sub-BLD circuit

The control registers of the heavy load protection function and sub-BLD circuit are shown in Table 6.11.1.

Table 6.11.1 I/O memory map (HLMOD and sub-BLD circuit)

$$
\begin{aligned}
\text { BLD0: } & \text { When "O" is read out: } \\
\text { Sub-BLD data (2E6H-D2) } & \begin{array}{l}
\text { High source voltage upward from } \\
\text { about } 2.4 \mathrm{~V} \text { (E0C6235/62A35) /1.2 V } \\
\\
\\
\text { (E0C62L35) }
\end{array}
\end{aligned}
$$

When " 1 " is read out: Low source voltage from about 2.4 V (E0C6235/62A35) /1.2 V (E0C62L35) or under
Writing: Invalid

When BLDO is " 1 " the CPU enters the heavy load protection mode. In the heavy load protection mode, the detection operation of the BLD circuit and sub-BLD circuit is sampled in 2 Hz cycles, and the respective detection results are written to the BLD latch and sub-BLD latch.

HLMOD: When " 1 " is written: Heavy load protection mode is set

Heavy load protection mode (2E6H•D3)

When " 0 " is written: Heavy load protection mode is released Valid

When HLMOD is set to " 1 ", the IC operating status enters the heavy load protection mode and at the same time the battery life detection of the BLD circuit is controlled (ON/ OFF).
When HLMOD is set to " 1 ", sampling control is executed for the BLD circuit ON time. There are two types of sampling time, as follows:
(1) The time of one instruction cycle immediately after HLMOD = " 1 "
(2) Sampling at cycles of 2 Hz output by the prescaler while HLMOD = " 1 "

When BLD sampling is done with HLMOD set to " 1 ", the results are written to the BLD latch in the timing as follows:
(1) As soon as the time has elapsed for one instruction cycle immediately following HLMOD = " 1 "
(2) Immediately on completion of sampling at cycles of 2 Hz output by the prescaler while HLMOD = " 1 "

Consequently, the BLD latch data is written immediately after HLMOD is set to " 1 ", and at the same time the new detection result is written in 2 Hz cycles.

BLS/BLD1: When " 0 " is written: BLD detection OFF
BLD detection/BLD data When " 1 " is written: BLD detection ON
(2FFH•D3) When "0" is read out: Source voltage (VDD-Vss) is higher than BLD set value
When " 1 " is read out: Source voltage (VDD-Vss) is lower than BLD set value

Note that the function of this bit when written is different to when read out.
When this bit is written to, ON/OFF of the BLD detection operation is controlled; when this bit is read out, the result of the BLD detection (contents of BLD latch) is obtained. Appreciable current is consumed during operation of BLD detection, so keep BLD detection OFF except when necessary.
When BLS is set to " 1 ", BLD detection is executed. As soon as BLS is reset to " 0 " the detection result is loaded to the BLD latch.

Program example

The E0C62L35 and E0C6235/62A35 each have software processing for the heavy load protection function.

- Heavy load protection when buzzer sounds (E0C62L35)

ZBLDSI	EQU	2 E 6 H
ZR1	EQU	2 ECH
ZOSC	EQU	$2 F E H$
ZBLC	EQU	2 FFH
XHLMOD	EQU	1000 B
XR1013	EQU	1001 B
XCLKCG	EQU	0100 B
XBLDON	EQU	1000 B
XBLDOFF	EQU	0000 B

;
LD A, ZOSC SHR 8
LD XP,A
LD X,LOW ZOSC ; SELECT CLKCHG ADDR. BY X REG.
AND MX,XCLKCG XOR OFH ; CLK CHANGE OSC3 TO OSC1
;
LD X,LOW ZBLDSI ;SELECT HLMOD ADDR. BY X REG.
OR MX,XHLMOD ;HLMOD ON
;
LD X,LOW ZR1 ; SELECT R1 ADDR. BY X REG.
OR MX, XR1013 ;BZ, $\overline{B Z}$ ON
;
LD B,5
W30MS2 LD A,15
W30MS1 ADD A,0FH
JP NZ,W30MS1
ADD A,0FH ;ABOUT 30 msec WAIT
JP NZ,W30MS2 ; (OSC1 = 32768 Hz)
;
AND MX,XR1013 XOR OFH ; BZ, $\overline{\mathrm{BZ}}$ OFF
;
LD X,LOW ZBLC ;SELECT BLS ADDR. BY X REG.
LD MX,XBLDON ;BLD ON
LD MX, XBLDOFF ; BLD OFF
; (FOR HLMOD STATE HOLD)
;
LD X,LOW ZBLDSI ;SELECT HLMOD ADDR. BY X REG.
AND MX,XHLMOD XOR OFH ; HLMOD OFF

In this program example, HLMOD is " 1 " while the buzzer sounds, so the heavy load is protected against. Also, BLS is set ON and OFF immediately before the heavy load protection mode is released. In this way, when the source voltage is under 1.2 V after the heavy load protection mode is released, the hardware maintains the heavy load protection mode until 1.2 V is reached.
Figure 6.11.1 is the timing chart for the operation of the heavy load protection mode.

Fig. 6.11.1
Timing chart of operation of heavy load protection mode (E0C62L35) BLDO

- Heavy load protection when buzzer sounds (E0C6235/62A35)

```
ZBLDSI EQU 2E6H
ZR1 EQU 2ECH
ZOSC EQU 2FEH
XHLMOD EQU 1000B
XR1013 EQU 1001B
XCLKCG EQU 0100B
;
    LD A,ZBLDSI SHR 8
    LD XP,A
    LD YP,A
    LD X,LOW ZOSC ;SELECT CLKCHG ADDR. BY X REG.
    AND MX,XCLKCG XOR OFH ; CLK CHANGE OSC3 TO OSC1
;
    LD X,LOW ZBLDSI ; SELECT HLMOD ADDR. BY X REG.
    OR MX,XHLMOD ;HLMOD ON
;
    LD Y,LOW ZR1 ;SELECT R1 ADDR. BY Y REG.
    OR MY,XR1013 ;BZ, \overline{BZ ON}
;
    CALL ST10MS ;CALL (10 msec WAIT)
;
    AND MY,XR1013 XOR OFH ; BZ, \overline{BZ OFF}
    AND MX,XHLMOD XOR OFH ; HLMOD OFF
;
ST10MS LD A,0
    RDFz
ST10MS1 NOP7
    ADD A, OFH
    JP NZ,ST10MS1
    RET
```

The E0C6235 and E0C62A35 output a beep signal (BZ) for 10 msec in program examples of heavy load protection, then return to normal mode after driving the load (BZ output).

Fig. 6.11.2 BZ output
Timing chart of operation of heavy load protection mode (E0C6235/62A35)

HLMOD register \square
(1) It takes $100 \mu \mathrm{sec}$ from the time the BLD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:
(1) When the CPU system clock is foscl

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 1 instruction has passed.
2. When detection is done at BLS

After writing " 1 " on BLS, write " 0 " after at least 100 $\mu \mathrm{sec}$ has lapsed (possible with the next instruction) and then read the BLD.
(2) When the CPU system clock is fosc3 (in case of E0C62A35 only)

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 0.6 second has passed.
(HLMOD holds " 1 " for at least 0.6 second)
2. When detection is done at BLS

Before writing " 1 " on BLS, write " 1 " on HLMOD first; after at least $100 \mu \mathrm{sec}$ has lapsed after writing " 1 " on BLS, write " 0 " on BLS and then read the BLD.
(2) BLS resides in the same bit at the same address as BLD 1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.
(3) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
(1) After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
(2) After heavy load drive is completed, switch BLS ON and OFF (at least $100 \mu \mathrm{sec}$ is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.
(4) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec .
(5) To reduce current consumption, be careful not to set the heavy load protection mode with the software unless otherwise necessary.

6.12 Analog Comparator

I/O memory map of analog comparator

The control registers of the analog comparator are shown in Table 6.12.1.

Table 6.12.1 I/O memory map (analog comparator)

Address	Register								Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
2F7H	ENVON	ENVRT	AMPDT	AMPON	ENVON	0	On	Off	Envelope On/Off
		ENVT		AMPON	ENVRT	0	1.0 sec	0.5 sec	Envelope cycle selection register
	R/W		R	R/W	AMPDT	1	+ > -	+<-	Analog comparator data
					AMPON	0	On	Off	Analog comparator On/Off

*1 Initial value at the time of initial reset
*2 Not set in the circuit
*3 Constantly " 0 " when being read
*4 Reset (0) immediately after being read

AMPON: Switches the analog comparator ON and OFF.

Analog comparator ON/
OFF (2F7H-D0)

When " 1 " is written: The analog comparator goes ON
When " 0 " is written: The analog comparator goes OFF Read-out: Valid

The analog comparator goes ON when " 1 " is written to AMPON, and OFF when " 0 " is written.
At initial reset, AMPON is set to " 0 ".

AMPDT: Reads out the output from the analog comparator.

Analog comparator data
(2F7H•D1)

$$
\begin{array}{ll}
\text { When " } 1 \text { " is read out: } & \text { AMPP }(+)>\text { AMPM }(-) \\
\text { When " } 0 \text { " is read out: } & \text { AMPP }(+)<\text { AMPM (}- \text {) } \\
\text { Writing: } & \text { Invalid }
\end{array}
$$

AMPDT is " 0 " when the input level of the inverted input terminal (AMPM) is greater than the input level of the noninverted input terminal (AMPP); and " 1 " when smaller.

Program example - Setting the analog comparator ON and OFF, and reading data (when OSC1 is running)

zosc	EQU	2FEH	
ZENAMP	EQU	2F7H	
XCLKCHG	EQU	1011B	
XAMPON	EQU	0001B	
XAMPOFF	EQU	1110B	
;			
	LD	A, ZENAMP SHR	8;SET XP 2 PAGE
	LD	XP, A	
	LD	X, LOW ZOSC	; SELECT OSC ADDR. BY X REG.
	LD	B, MX	; STORE OSC STATUS TO B REG.
	AND	MX, XCLKCHG	; CLK CHANGE TO OSC1
;			
	LD	X,LOW ZENAMP	; SELECT ENAMP ADDR. BY X REG.
	LD	A, MX	
	OR	MX, XAMPON	; AMP CIRCUIT ON
	LD	A, 8	;3 msec DELAY
AMDLLP	ADD	A, 0FH	; DELAY LOOP
	JP	NZ, AMDLLP	
;			
	LD	A, MX	; STORE THE RESULT TO A REG.
	AND	MX, XAMPOFF	; AMP CIRCUIT OFF
	LD	X, LOW ZOSC	; SELECT OSC ADDR. BY X REG.
	LD	MX, B	; SET OSC STATUS TO
			; PREVIOUS CONDITION

In this program example, first sets the CPU clock to OSC1 (fosc $1=32.768 \mathrm{kHz}$), and then sets the AMP circuit to ON. Allows a delay, read the result into A register, sets the circuit to OFF, and switches the CPU clock to previous condition.

Programming notes
(1) To reduce current consumption, set the analog comparator to OFF when it is not necessary.
(2) After setting AMPON to " 1 ", wait at least 3 msec for the operation of the analog comparator to stabilize before reading the output data of the analog comparator from AMPDT.

6.13 Serial Interface (SIN, SOUT, SCLK)

I/O memory map of The control registers of the serial interface are shown in serial interface

Table 6.13.1 I/O memory map (serial interface)

Address	Register				Name	Init *1	1	0	Comment
	D3	D2	D1	D0					
2FOH	SD3	SD2	SD1	SD0	$\begin{aligned} & \text { SD3 } \\ & \text { SD2 } \\ & \text { SD1 } \\ & \text { SD0 } \\ & \hline \end{aligned}$	$\begin{aligned} & \times * 5 \\ & \hline \end{aligned}$			Serial interface data register (low-order 4 bits)
	R/W								
2F1H	SD7	SD6	SD5	SD4	$\begin{aligned} & \text { SD7 } \\ & \text { SD6 } \\ & \text { SD5 } \\ & \text { SD4 } \\ & \hline \end{aligned}$	$\begin{aligned} & \times * 5 \\ & \hline \end{aligned}$			Serial interface data register (high-order 4 bits)
	R/W								
2F2H	SCS1	SCSO	SE2	EISIO	$\begin{gathered} \hline \text { SCS1 } \\ \text { SCS0 } \\ \text { SE2 } \\ \text { EISIO } \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$		7 Mask	
	R/W								
2F3H	0	0	IK2	ISIO	$\begin{array}{\|r\|} \hline 0 * 3 \\ 0 * 3 \\ \text { IK2 } * 4 \\ \text { ISIO } * 4 \\ \hline \end{array}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes	No No	Unused Unused Interrupt factor flag (K20-K23) Interrupt factor flag (serial interface)
	R								
2E7H	SCTRG	EIK10	KCP10	K10	$\left\lvert\, \begin{gathered} \text { SCTRG*3 } \\ \text { EIK10 } \\ \text { KCP10 } \\ \text { K10 } \\ \hline \end{gathered}\right.$	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & -* 2 \\ & \hline \end{aligned}$	Trigger Enable 7 High	Mask \uparrow Low	Serial interface clock trigger Interrupt mask register (K10) Input comparison register (K10) Input port data (K10)
	W	R/W		R					
2 ECH	R13	R12	R11	R10	R13 R12 R11 SIOF R10	00000	High/On High/On High Run High/On	$\begin{array}{\|c\|} \hline \text { Low/Off } \\ \text { Low/Off } \\ \text { Low } \\ \text { Stop } \\ \text { Low/Off } \end{array}$	Output port (R13)//̄Z output controlOutput port (R12)/FOUT output controlOutput port (R11, LAMP)Output port (SIOF)Output port (R10)/BZ output control
			SIOF						
	R/W			R/W					
			R/W						
			R						

[^6]SD0-SD3, SD4-SD7: These registers are used for writing and reading serial data.

Serial interface data registers (2F0H, 2F1H)

- When writing data

When " 1 " is written: High level
When " 0 " is written: Low level
These registers write serial data to be output from the SOUT pin. The serially converted data is output from the SOUT pin as high (VDD) when the bit is set to " 1 " and as low (Vss) when the bit is set to " 0 ".

- When reading data

When " 1 " is read out: High level
When " 0 " is read out: Low level
Input serial data is read out from the SIN pin.
These registers are loaded with data that has been parallel converted so that the high (VDD) level bit input from the SIN pin is " 1 ", and the low (Vss) bit is " 0 ". Perform data reading only while serial interface is halted (i.e., the synchronous clock is neither being input or output).

Data is undefined in this register at initial reset.

SCS1, SCS0: The synchronous clock (SCLK) of the serial interface can be

Clock mode selection register (2F2H-D3 and D2)

Table 6.13.2
Synchronous clock selection
selected with these registers.

SCS1	SCS0	Mode	Synchronous clock
0	0		CLK
0	1	Master mode	CLK/2
			CLK/4
1	0		Slave mode
1	1	External clock	

CLK: CPU system clock
The synchronous clock (SCLK) can be selected from among the four types listed above, namely from three types of internal clock and one external clock.
At initial reset, the external clock is selected.

SE2: Timing for reading in the serial data input from the SIN pin Clock edge selection can be selected with these registers. register (2F2H•D1)

When " 1 " is written: SCLK rising edge
When " 0 " is written: SCLK falling edge
Read-out:
Valid
These registers enable selection of whether to perform reading to the serial input data register (SD0-SD7) at the SCLK signal's rising edge (when " 1 " is written) or falling edge (when "0" is written).
Pay attention if the synchronous clock goes into reverse phase (SCLK $\rightarrow \overline{\mathrm{SCLK}}$) through the mask option.

SCLK rising $=\overline{\text { SCLK }}$ falling, SCLK falling $=\overline{\text { SCLK }}$ rising
When the internal clock is selected as the synchronous clock (SCLK), a hazard occurs in the synchronous clock (SCLK) when data is written to register SE2.
The timing for reading in the input data can be selected, but the output timing for the output data is fixed to the SCLK rising edge.
At initial reset, SCLK falling (SE2 = " 0 ") is selected.

EISIO: The interrupt mask from the serial interface can be set with Interrupt mask register (2F2H-D0) this register.

When " 1 " is written: Enabled
When " 0 " is written: Masked
Read-out: Valid
At initial reset, the mask (EISIO $=" 0$ ") is selected.

ISIO: This flag indicates the status of the interrupt from the serial Interrupt factor flag interface.
(2F3H-D0) When " 1 " is read out: Interrupt has occurred When " 0 " is read out: Interrupt has not occurred Writing: Invalid

By reading out this interrupt factor flag, the software can judge whether an interrupt from the serial interface has occurred. The interrupt factor flag is reset when it has been read out. Note, however, that even if the interrupt is masked, this flag will be set to " 1 " after the 8 bits data input/output.
The flag can be read out only when in the DI status (interrupt flag = "0").
At initial reset, this flag is set to " 0 ".

SCTRG: This is the trigger for starting input or output of the synClock trigger (2E7H-D3) chronous clock (SCLK).

$$
\begin{array}{ll}
\text { When " } 1 \text { " is written: } & \text { Trigger input } \\
\text { When "0" is written: } & \text { No operation } \\
\text { Read-out: } & \text { Always "0" }
\end{array}
$$

When this trigger is supplied to the serial interface activating circuit, the synchronous clock (SCLK) input/output is started.
As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing " 1 " to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.)
Whenever the serial interface is in the RUN status, apply this trigger input once only. Refrain from performing trigger input multiple times, as this leads to malfunctioning. Further, if the synchronous clock (SCLK) is the external clock, start the external clock input after the trigger input.

SIOF: Indicates the running status of the serial interface.
Special output port data

(2ECH•D1)	When " 1 " is read out:	RUN status
	When " 0 " is read out:	STOP status
	Writing:	Invalid

The RUN status is indicated from the end of writing " 1 " to SCTRG through to the end of serial data input/output.

Program examples • Fetching data used by the internal clock

ZK10	EQU	2E7H	
ZR1	EQU	2ECH	
ZSDL	EQU	2FOH	
ZSDH	EQU	2F1H	
ZSC	EQU	2F2H	
XSCTRG	EQU	1000B	
XSIOF	EQU	0010B	
XSCS	EQU	1100B	
;			
	LD	A, ZSC SHR 8	
	LD	XP, A	
	LD	X, LOW ZSC	; SELECT SCS ADDR. BY X REG.
	AND	MX, XSCS XOR OFH	; SET INTERNAL CLOCK MODE ; (CLK/1)
;			
	LD	X,LOW ZSDH	; SELECT SD47 ADDR. BY X REG.
	LD	A, MX	; INIT. CIRCUIT
;			
	LD	X, LOW ZK10	; SELECT SCTRG ADDR. BY X REG.
	OR	MX, XSCTRG	; SHOT SCTRG
;			
	LD	X, LOW ZR1	; SELECT SIOF ADDR. BY X REG.
WAIT	FAN	MX, XSIOF	; CHECK SIO STATUS
	JP	NZ,WAIT	; IF SIO RUNNING THEN LOOP
;			
	LD	X,LOW ZSDL	; SELECT SD03 ADDR. BY X REG.
	LDPX	A, MX	; READ SD0-SD3 DATA TO A REG.
	LD	B, MX	; READ SD4-SD7 DATA TO B REG.

The above program outputs to the outside a clock having the same frequency as the CPU system clock, and takes serial data into the general registers (A, B). Figure 6.13 .1 shows an example of data being taken in when the mask option has been used to select SCLK = positive logic, permutation = MSB first, and R11 = SIOF.

Fig. 6.13.1 (SE2=0)

Example of fetching serial interface data

B registe			
D3	D2	D1	D0
1	0	1	0

A register			
D3	D2	D1	D0
0	1	0	1

- Output of data used by the external clock

ZK10	EQU	2E7H	
ZSDL	EQU	2 FOH	
ZSC	EQU	2 F 2 H	
XSCTRG	EQU	1000B	
XSCS	EQU	1100B	
;			
	LD	A, ZSC SHR 8	
	LD	XP, A	
	LD	X,LOW ZSC	; SELECT SCS ADDR. BY X REG.
	OR	MX, XSCS	; SET EXTERNAL CLOCK MODE
;			
	LD	X,LOW ZSDL	; SELECT SD03 ADDR. BY X REG.
	LDPX	MX, A	; WRITE A REG. TO SD0-SD3
	LD	MX, B	;WRITE B REG. TO SD4-SD7
;			
	LD	X, LOW ZK10	; SELECT SCTRG ADDR. BY X REG.
	OR	MX, XSCTRG	; SHOT SCTRG

This program synchronizes SCLK with the external clock it is assigned to, and sends the contents of the general registers (A, B) to the outside. Figure 6.13 .2 shows an output example when the mask option has been used to select SCLK $=$ positive logic, permutation $=$ MSB first, R11 $=$ SIOF.

B register			
D3	D2	D1	D0
1	0	0	1

| A register | | |
| :---: | :---: | :---: | :---: |
| D3 D2 D1
 0 1 1 | | |

Fig. 6.13.2
Example of output of serial
SCLK
interface data SOUT

Programming notes (1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc $1 \leftrightarrow$ fosc3) while the serial interface is operating.
(2) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
(3) As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing " 1 " to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
(4) If the bit data of SE2 changes while SCLK is in the master mode, a hazard will be output to the SCLK pin. If this poses a problem for the system, be sure to set the SCLK to the external clock mode if the bit data of SE2 is to be changed.
(5) Reading the interrupt factor flag (ISIO) can be done only in the DI status (interrupt flag = "0"). Reading during EI status (interrupt flag $=$ " 1 ") will cause malfunction.
(6) Writing the interrupt mask register (EISIO) can be done only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = "1") will cause malfunction.

6.14 Sound Generator

I/O memory map of The control registers of the sound generator are shown in sound generator

Table 6.14.1 I/O memory map (sound generator)

		Reg	ster						Comment
	D3	D2	D1	D0	Name	Init *1	1	0	
2 ECH	R13	R12	R11	R10	R13	0	High/On	Low/Off	Output port (R13)//户̄Z output controlOutput port (R12)/FOUT output controlOutput port (R11, LAMP)Output port (SIOF)Output port (R10)/BZ output control
			SIOF		R12	0	High/On	Low/Off	
	R/W		R/W	R/W	R11	0	High	Low	
			R/W		SIOF	0	Run	Stop	
			R		R10	0	High/On	Low/Off	
2F6H					BZFQ2	0			7 Buzzer $\quad\left[\begin{array}{l}\text { BZFQ2-0] }\end{array}\right.$
	BZFQ2	BZFQ1	BZFQ0	ENVRST	BZFQ1	0			frequency Frequency foscl/8 fosci/10 foscl/12 foscl/14
	R/W			W	BZFQ0	0			
				W	ENVRST*3	Reset	Reset	-	Envelope reset
2F7H	ENVON	ENVRT	AMPDT	AMPON	ENVON	0	On	Off	Envelope On/Off
					ENVRT	0	1.0 sec	0.5 sec	Envelope cycle selection register
	R/W		R	RM	AMPDT	1	+> -	+ <-	Analog comparator data
			R	R/W	AMPON	0	On	Off	Analog comparator On/Off

[^7][^8]*5 Undefined

BZFQ0-BZFQ2: This is used to select the frequency of the buzzer signal. Buzzer frequency selection The frequencies of the buzzer signals ($\mathrm{BZ}, \overline{\mathrm{BZ}}$) are set by register (2F6H•D1-D3) writing data to registers BZFQ0-BZFQ2.

Table 6.14.2
Buzzer frequency

BZFQ			Set frequency (Hz)		
2	1	0	Demultiplier ratio	When fosc1 $=32 \mathrm{kHz}$	When fosc $1=38.4 \mathrm{kHz}$
0	0	0	fosc $1 / 8$	4,096.0	4,800.0
0	0	1	foscl/10	3,276.8	3,840.0
0	1	0	foscl/12	2,730.7	3,200.0
0	1	1	fosc1/14	2,340.6	2,742.9
1	0	0	foscl/16	2,048.0	2,400.0
1	0	1	fosc1/20	1,638.4	1,920.0
1	1	0	fosc1/24	1,365.3	1,600.0
1	1	1	fosc1/28	1,170.3	1,371.4

Buzzer frequency is selected from the above eight types that have been divided by foscl (oscillation frequency of the OSC1 oscillation circuit).
At initial reset, fosc $1 / 8(\mathrm{~Hz})$ is selected.
Note A hazard may be observed in the output waveform of the $B Z$ and $\overline{B Z}$ signals when data of the buzzer frequency selection registers (BZFQ0-2) changes.

ENVRST: This is the reset input to make the duty ratio of the buzzer Envelope reset (2F6H-D0) signal the maximum.

When " 1 " is written: Reset input
When " 0 " is written: No operation
Read-out:
Always "0"
When the envelope is added to the buzzer signal, the duty ratio is made maximum through this reset input. When the envelope is not added or when the buzzer signal is not output, the reset input is invalid.

ENVON: This controls adding the envelope to the buzzer signal.
$\begin{array}{ll}\text { When " } 1 \text { " is written: } & \text { Envelope added (ON) } \\ \text { When " } 0 \text { " is written: } & \text { No envelope (OFF) } \\ \text { Read-out: } & \text { Valid }\end{array}$
The envelope is the digital envelope based on duty ratio control. When there is no envelope, the duty ratio is fixed to the maximum.
At initial reset, no envelope (OFF) is selected.

ENVRT: This input selects the decay time of the envelope added to

Envelope decay time
(2F7H-D2) the buzzer signal.

When " 1 " is written: $\quad 1.0 \mathrm{sec}(125 \mathrm{msec} \times 7=875 \mathrm{msec})$ When " 0 " is written: $\quad 0.5 \mathrm{sec}(62.5 \mathrm{msec} \times 7=437.5 \mathrm{msec}$) Read-out: Valid

The decay time of the digital envelope is decided by the time taken for the duty ratio to change. When " 1 " is written to ENVRT the time is $125 \mathrm{msec}(8 \mathrm{~Hz}$) units, and when " 0 " is written it is $62.5 \mathrm{msec}(16 \mathrm{~Hz})$ units.
At initial reset, $0.5 \mathrm{sec}(437.5 \mathrm{msec})$ is selected.
R10, R13 (at BZ, $\overline{B Z}$ output These control output of the buzzer signals ($B Z, \overline{B Z}$).
selection):
Special output port data
(2ECH•D0 and D3)

When " 0 " is written: Low level (DC) output
Read-out: Valid

- $\overline{\mathrm{BZ}}$ output under R 13 control
$B Z$ output and $\overline{B Z}$ output can be controlled independently. BZ output is controlled by writing data to register R10. $\overline{\mathrm{BZ}}$ output is controlled by writing data to register R13.

- BZ output under R10 control

By writing data to register R10 only, BZ output and $\overline{B Z}$ output can be controlled simultaneously. In this case, register R13 can be used as a read/write one-bit general register. This register does not affect $\overline{\mathrm{BZ}}$ output (output to pin R13).

At initial reset, registers R10 and R13 are set to "0".

Program example

- Alarm sound

TCNT	EQU	210 H	
ZTM	EQU	2 EOH	
ZR1	EQU	2 ECH	
ZBZFQ	EQU	2F6H	
;			
	LD	A, TCNT SHR 8	
	LD	XP, A	
	LD	X , LOW TCNT	; SELECT T-CNT ADDR. BY X REG.
	LD	MX, 0	; INIT. TIMING COUNTER (RAM)
;			
	LD	A, ZTM SHR 8	
	LD	YP, A	
	LD	Y, LOW ZTM	; SELECT TM ADDR. BY Y REG.
	LD	A, MY	; READ TM DATA TO A REG.
CKEDGE	LD	B, MY	; READ TM DATA TO B REG.
	XOR	A, B	
	FAN	A, 0100 B	; CHECK EDGE OF 4 Hz SIGNAL
	LD	A, B	; STORE NEW TM DATA
	JP	Z, CKEDGE	; IF EDGE NO CHANGE THEN JUMP
;			
	CP	MX, 1	; CHECK TIMING COUNTER
	JP	Z, INCPT	; IF T -CNT $=1$ THEN JUMP
	JP	NC, NEXT1	; IF T-CNT > 1 THEN JUMP
;			
	LD	X,LOW ZBZFQ	; SELECT BZFQ ADDR. BY X REG.
	LBPX	MX, 10000001B	; BZ $4 \mathrm{kHz}, ~ E N V . ~ O N ~ \& ~ R E S E T, ~$; RT 0.5 sec
;			
	LD	X, LOW ZR1	; SELECT R1 ADDR. BY X REG.
	OR	MX, 1001 B	; BZ, $\overline{\mathrm{BZ}}$ ON
;			
INCPT	LD	X, LOW TCNT	; SELECT T-CNT ADDR. BY X REG.
	ADD	MX, 1	; INC. TIMING COUNTER
	JP	CKEDGE	
;			
NEXT1	CP	MX, 2	; CHECK TIMING COUNTER
	JP	NZ, NEXT2	; IF T-CNT <> 2 THEN JUMP
;			

In the program example, the 1 -second alarm is sounded.
Figure 6.14 .1 is the timing chart for the effective value of the output waveform.

Fig. 6.14.1
Timing chart of effective value of output waveform

Programming note
A hazard may be observed in the output waveform of the BZ and $\overline{B Z}$ signals when data of the output registers (R10, R13) and the buzzer frequency selection registers (BZFQO-2) changes.

6.15 Interrupt

$\overline{\text { l/O memory map of }}$ The control registers of the interrupt are shown in Table

 interrupt 6.15.1.Table 6.15.1 I/O memory map (interrupt)

Address	Register					Init *1		0	Comment
	D3	D2	D1	D0					
2E4H	R/W				KCP03 KCP02 KCP01 KCP00	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & z^{2} \\ & 7 \end{aligned}$		$]$ Input comparison register (K00-K03)
2E5H	EIK03	ElK02	ElK01	EIK00	EIK03 EIK02 EIK01 EIK00	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Enable Enable Enable Enable	Mask Mask Mask Mask	$]$ Interrupt mask register (K00-K03)
2E6H	HLMOD	BLD0 R	EISWIT1	EISWITO	$\begin{array}{\|c} \hline \text { HLMOD } \\ \text { BLDO } \\ \text { EISWIT1 } \\ \text { EISWITO } \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Heavy load Low Enable Enable	Normal Normal Mask Mask	Heavy load protection mode register Sub-BLD evaluation data Interrupt mask register (stopwatch 1 Hz) Interrupt mask register (stopwatch 10 Hz)
2E7H	SCTRG w	ElK10	KCP10	K10 R	$\begin{array}{\|c\|} \hline \text { SCTRG*3 } \\ \text { EIK10 } \\ \text { KCP10 } \\ \text { K10 } \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & -* 2 \\ & \hline \end{aligned}$	Trigger Enable 7 High	Mask $\begin{gathered} \stackrel{\leftarrow}{\text { Low }} \end{gathered}$	Serial interface clock trigger Interrupt mask register (K10) Input comparison register (K10) Input port data (K10)
2E8H	CSDC	$\mathrm{ETI}^{\text {ET }}$	ETI8	ETI32	CSDC ETI2 ETI8 ETI32	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Static Enable Enable Enable	Dynamic Mask Mask Mask	LCD drive switch Interrupt mask register (clock timer 2 Hz) Interrupt mask register (clock timer 8 Hz) Interrupt mask register (clock timer 32 Hz)
2E9H	0	T12	T18	TI32	$\begin{array}{r} 0 * 3 \\ \mathrm{~T} \mid 2 * 4 \\ \mathrm{TI} 8 * 4 \\ \mathrm{~T} \mid 32 * 4 \\ \hline \end{array}$	$\begin{aligned} & \hline-* 2 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes Yes	No No No	Unused Interrupt factor flag (clock timer 2 Hz) Interrupt factor flag (clock timer 8 Hz) Interrupt factor flag (clock timer 32 Hz)
2EAH	IK1	IKO	SWIT1	SWITO	$\left.\begin{array}{\|c\|} \hline \text { IK1 } * 4 \\ \text { IKO } * 4 \\ \text { SWIT1 } * 4 \\ \text { SWITO } * 4 \end{array} \right\rvert\,$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes Yes Yes	$\begin{aligned} & \text { No } \\ & \hline \end{aligned}$	Interrupt factor flag (K10) Interrupt factor flag (K00-K03) Interrupt factor flag (stopwatch 1 Hz) Interrupt factor flag (stopwatch 10 Hz)
2F2H	SCS1	$\frac{\text { SCSO }}{\text { R/W }}$	SE2	EISIO	$\begin{gathered} \hline \text { SCS1 } \\ \text { SCS0 } \\ \text { SE2 } \\ \text { EISIO } \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Enable	Mask	7 SIF clock mode $[$ SCS1, 0$]$ 0 1 2 3 selection register Clock CLK CLK/2 CLK/4 slave SIF clock edge selection register Interrupt mask register (serial interface)
2F3H	0	0	IK2	ISIO	$\begin{array}{r} 0 * 3 \\ 0 * 3 \\ \text { IK2 } * 4 \\ \text { ISIO } * 4 \\ \hline \end{array}$	$\begin{aligned} & -* 2 \\ & -* 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Yes Yes	No No	Unused Unused Interrupt factor flag (K20-K23) Interrupt factor flag (serial interface)
2F5H	R/W				EIK23 EIK22 EIK21 EIK20	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Enable Enable Enable Enable	Mask Mask Mask Mask	Interrupt mask register (K20-K23)
*1 Initial value at the time of initial reset *2 Not set in the circuit					$* 3$ Constantly " 0 " when being read $* 5$ Undefined *4 Reset (0) immediately after being read				

- Interrupt factors

Table 6.15.2 shows the factors for generating interrupt requests.

The interrupt flags are set to " 1 " depending on the corresponding interrupt factors.
The CPU operation is interrupted when any of the conditions below set an interrupt factor flag to " 1 ".

- The corresponding mask register is "1" (enabled)
- The interrupt flag is " 1 " (EI)

The interrupt factor flag is a read-only register, but can be reset to " 0 " when the register data is read out.
At initial reset, the interrupt factor flags are reset to " 0 ".

Note Read the interrupt factor flags only in the DI status (interrupt flag = " 0 "). A malfunction could result from read-out during the EI status (interrupt flag = "1").

Table 6.15.2 Interrupt factors

Interrupt factor		Interrupt factor flag	
Clock timer	2 Hz falling edge	TI2	(2E9H.D2)
Clock timer	8 Hz falling edge	TI8	(2E9H.D1)
Clock timer	32 Hz falling edge	TI32	(2E9H•D0)
Stopwatch timer	1 Hz falling edge	SWIT	(2EAH•D1)
Stopwatch timer	10 Hz falling edge	SWI	(2EAH•D0)
Serial interface	When 8-bit data input/output has completed	ISIO	(2F3H•D0)
Input data (K00-K03)	Rising or falling edge	IK0	(2EAH•D2)
Input data (K10)	Rising or falling edge	IK1	(2EAH•D3)
Input data (K20-K23)	Rising edge	IK2	(2F3H•D1)

- Specific masks and factor flags for interrupt

The interrupt factor flags can be masked by the corresponding interrupt mask registers.
The interrupt mask registers are read/write registers. They are enabled (interrupt authorized) when " 1 " is written to them, and masked (interrupt inhibited) when " 0 " is written to them.
At initial reset, the interrupt mask register is set to "0". Table 6.15 .3 shows the correspondence between interrupt mask registers and interrupt factor flags.

Table 6.15.3
Interrupt mask registers and interrupt factor flags

Interrupt mask register		Interrupt factor flag	
ETI2	(2E8H•D2)	TI2	(2E9H•D2)
ETI8	(2E8H•D1)	TI8	(2E9H•D1)
ETI32	(2E8H•D0)	TI32	(2E9H•D0)
EISWIT1	(2E6H•D1)	SWIT1	(2EAH•D1)
EISWIT0	(2E6H•D0)	SWIT0	(2EAH•D0)
EISIO	(2F2H•D0)	ISIO	(2F3H.D0)
EIK03	(2E5H-D3)		
EIK02	(2E5H-D2)	IK0	(2EAH•D2)
EIK01	(2E5H.D1)		
EIK00	(2E5H•D0)		
EIK10	(2E7H•D2)	IK1	(2EAH•D3)
EIK23	(2F5H.D3)		
EIK22	(2F5H•D2)	IK2	(2F3H.D1)
EIK21	(2F5H.D1)		
EIK20	(2F5H.D0)		

* There is an interrupt mask register for each pin of the input ports.
- ETI32, ETI8, ETI2: Interrupt mask registers (2E8H•D0-D2)
- TI32, TI8, TI2: Interrupt factor flags (2E9H•D0-D2)

See "6.7 Clock Timer".

- EISWIT0, EISWIT1: Interrupt mask registers (2E6H•D0-D1)
- SWIT0, SWIT1: Interrupt factor flags (2EAH•D0-D1)

See "6.8 Stopwatch Timer".

- EISIO: Interrupt mask register (2F2H•DO)
- ISIO: Interrupt factor flag (2F3H•D0)

See "6.13 Serial Interface".

- KCP00-KCP03: Input comparison registers (2E4H)
- EIK00-EIK03: Interrupt mask registers (2E5H)
- IK0: Interrupt factor flag (2EAH•D2)

See "6.3 Input Ports".

- KCP10: Input comparison register (2E7H•D1)
- EIK10: Interrupt mask register (2E7H•D2)
- IK1: Interrupt factor flag (2EAH•D3)

See "6.3 Input Ports".

- EIK20-EIK23: Interrupt mask registers (2F5H)
- IK2: Interrupt factor flag (2F3H•D1)

See "6.3 Input Ports".

Program example • Interrupt vector processing

ZTI	EQU	2E9H	
ZIKSW	EQU	2EAH	
ZIK2SI	EQU	2F3H	
ZR1	EQU	2ECH	
ZOSC	EQU	2FEH	
XTI2	EQU	0100B	
XTI8	EQU	0010B	
XTI32	EQU	0001B	
XIK0	EQU	0100B	
XIK1	EQU	1000B	
XSWIT0	EQU	0001B	
XSWIT1	EQU	0010B	
XIK2	EQU	0010B	
XISIO	EQU	0001B	
XSIOF	EQU	0010B	
XCLKCG	EQU	0100B	
;			
;			
	ORG	101H	
;			
	JP	INTRPT	; SIO
	JP	INTRPT	; K0,K1, K2
	JP	INTRPT	; K0, K1, K2, SIO
	JP	INTRPT	; TM
	JP	INTRPT	; TM, SIO
	JP	INTRPT	; TM, K0, K1, K2
	JP	INTRPT	; TM, K0, K1, K2, SIO
	JP	INTRPT	; SW
	JP	INTRPT	; SW, SIO
	JP	INTRPT	; SW, K0, K1, K2
	JP	INTRPT	; SW, K0, K1, K2, SIO
	JP	INTRPT	; SW, TM
	JP	INTRPT	; SW, TM, SIO
	JP	INTRPT	; SW, TM, K0, K1, K2
	JP	INTRPT	; SW, TM, K0, K1, K2, SIO
;			
;			
INTRPT	PUSH	XP	
	PUSH	XH	
	PUSH	XL	; STORE X REG. (12 Bits)

```
;
PUSH YP
    PUSH YH ;STORE Y REG. ( 12 Bits )
    PUSH YL
;
    PUSH B ;STORE B REG.
    PUSH A ; STORE A REG.
    PUSH F ;STORE FLAG ( IDZC )
;
;
    LD A,ZIKSW SHR 8
    LD XP,A
    LD X,LOW ZIKSW ;SELECT IKO IK1 SWIT ADDR. X REG.
    LD A,MX
    LD MO,A ;STORE IKO IK1 SWITO SWIT1
;
    FAN A,XIKO ;CHECK IKO
    JP Z,CHKK1 ;IF IKO = 0 THEN JUMP
    CALL INTKO ;CALL KO INT. ROUTINE
CHKK1 LD A,M0
    FAN A,XIK1 ;CHECK IK1
    JP Z,CHKSWO ;IF IK1 = 0 THEN JUMP
    CALL INTK1 ;CALL K1 INT. ROUTINE
;
CHKSWO LD A,MO
    FAN A,XSWITO ;CHECK SWITO
    JP Z,CHKSW1 ;IF SWITO = 0 THEN JUMP
    CALL INTSWO ;CALL SW 10 Hz INT. ROUTINE
;
CHKSW1 LD A,M0
    FAN A,XSWIT1 ;CHECK SWIT1
    JP Z,CHKT32 ;IF SWIT1 = 0 THEN JUMP
    CALL INTSW1 ;CALL SW 1 Hz INT. ROUTINE
;
;
CHKT32 LD A,ZTI SHR 8
LD XP,A
LD X,LOW ZTI ;SELECT TI2 TI8 TI32 ADDR. X REG.
LD A,MX
LD MO,A ;STORE TI2 TI8 TI32
```

```
;
    FAN A,XTI32 ; CHECK TI32
    JP Z,CHKT8 ;IF TI32 = 0 THEN JUMP
    CALL INTT32 ;CALL TM 32 Hz INT. ROUTINE
;
CHKT8 LD A,M0
    FAN A,XTI8 ;CHECK TI8
    JP Z,CHKT2 ;IF TI8 = 0 THEN JUMP
    CALL INTT8 ; CALL TM 8 Hz INT. ROUTINE
;
CHKT2 LD A,M0
    FAN A,XTI2 ; CHECK TI2
    JP Z,CKSIOF ;IF TI2 = 0 THEN JUMP
    CALL INTT2 ; CALL TM 2 Hz INT. ROUTINE
;
;
CKSIOF LD A,ZOSC SHR 8
    LD XP,A
    LD X,LOW ZOSC ; SELECT CLKCHG ADDR. BY X REG.
    LD A,MX ;STORE CLKCHG
;
    AND MX,XCLKCG XOR OFH ;CLK CHANGE OSC3 TO OSC1
;
    LD B,11 ;SET 8 msec LOOP COUNTER
    LD X,LOW ZR1 ; SELECT R1 ADDR. BY X REG.
;
LPSIOF FAN MX,XSIOF ;CHECK SIOF
    JP Z,CHKK2 ;IF SIOF = 0 THEN JUMP
    ADD B,OFH ;DEC. LOOP COUNTER
    JP NZ,LPSIOF ;IF LOOP COUNTER <> O THEN JUMP
;
;
CHKK2 LD X,LOW ZOSC ; SELECT CLKCHG ADDR. BY X REG.
    LD MX,A ;LOAD CLKCHG
;
    LD X,LOW ZIK2SI ;SELECT IK2 ISIO ADDR. BY X REG.
    LD A,MX
    LD M0,A ;STORE IK2 ISIO
;
    FAN A,XIK2 ;CHECK IK2
    JP Z,CHKSIO ;IF IK2 = 0 THEN JUMP
```

```
    CALL INTK2
;
CHKSIO LD A,MO
    FAN A,XISIO ;CHECK ISIO
    JP Z,INTEND ;IF ISIO = 0 THEN JUMP
    CALL INTSIO
;
;
INTEND POP F ;LOAD FLAG ( IDZC )
    POP A ;LOAD A REG.
    POP B ;LOAD B REG.
;
    POP YL
    POP YH
    POP YP ;LOAD Y REG. ( 12 Bits )
;
    POP XL
    POP XH
    POP XP ;LOAD X REG. ( 12 Bits )
;
    EI ;ENABLE INTERRUPT
    RET
```

In the above interrupt vector program, the register data at the time of interrupt is saved, to be recovered when the interrupt processing ends; then the main routine is resumed.
Interrupt priority can be set by the software, interrupt nesting inhibited, and the processing executed in order of highest priority. The interrupt processing routine can be invoked by the CALL instruction for processing.
When the serial I/O ports are in operation, the interrupt factor flags IK2 and ISIO (address 2 F 3 H) cannot be read out. Their operating status can be monitored by the software, and if they are currently operating the read-out can be executed after waiting a maximum of $8 \mathrm{msec}(32.768 \mathrm{kHz})$. Table 6.15 .4 shows the order of priority of interrupts in the program example.

Table 6.15.4
Order of interrupt priority in program example

Priority	Interrupt factor
1	K00-K03 input port
2	K10 input port
3	Stopwatch timer 10 Hz
4	Stopwatch timer 1 Hz
5	Clock timer 32 Hz
6	Clock timer 8 Hz
7	Clock timer 2 Hz
8	K20-K23 input port
9	Serial interface

(1) When the interrupt mask register (EIK) is set to " 0 ", the interrupt factor flag (IK) of the input port cannot be set even though the pin status of the input port has changed.
(2) The interrupt factor flags of the clock timer, stopwatch timer and serial interface (TI, SWIT, ISIO) are set when the timing condition is established, even if the interrupt mask registers (ETI, EISWIT, EISIO) are set to "0".
(3) Read-out of the interrupt factor flags can be done only in the DI status (interrupt flag $=$ " 0 "). Read-out during the EI status (interrupt flag $=" 1$ ") will cause malfunction.
(4) Writing of the interrupt mask registers can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = "1") will cause malfunction.

CHAPTER 7 SUMMARY OF NOTES

Abstract

Data Memory The RAM, a data memory storing a variety of data, has a capacity of 480 words, each of four bits. When programming, keep the following points in mind.

(1) Part of the data memory can be used as stack area when saving subroutine calls and registers, so be careful not to overlap the data area and stack area.
(2) Subroutine calls and interrupts take up three words of the stack area.
(3) The data memory $000 \mathrm{H}-00 \mathrm{FH}$ is for the register pointers (RP), and is the addressable memory register area.
(4) The mask option can be used to select whether to assign the overall area of display memory to page 0 or page 2 . When page $0(040 H-06 F H)$ is selected, read/write is enabled.
When page $2(240 \mathrm{H}-26 \mathrm{FH})$ is selected, write only is enabled.

If page 0 is assigned, RAM ($040 \mathrm{H}-06 \mathrm{FH}$) is 48 words, and is used as the segment area.
(5) Memory is not mounted in unused area within the memory map and in memory area not indicated in this manual. For this reason, normal operation cannot be assured for programs that have been prepared with access to these areas.

Watchdog Timer When the watchdog timer is being used, the software must reset it within 3 -second cycles, and timer data (WD0-WD2) cannot be used for timer applications.

Oscillation Circuit (1) It takes at least 5 msec from the time the OSC3 oscillation circuit goes ON until the oscillation stabilizes. Consequently, when switching the CPU operation clock from OSC1 to OSC3, do this after a minimum of 5 msec have elapsed since the OSC3 oscillation went ON.

Further, the oscillation stabilization time varies depending on the external oscillator characteristics and conditions of use, so allow ample margin when setting the wait time.
(2) When switching the clock form OSC3 to OSC1, use a separate instruction for switching the OSC3 oscillation OFF. An error in the CPU operation can result if this processing is performed at the same time by the one instruction.
(3) To operate the clock timer and stopwatch timer accurately, select the prescaler of the OSC1 to match the crystal oscillator used.

Input Ports (1) When input ports are changed from high to low by pulldown resistance, the fall of the waveform is delayed on account of the time constant of the pull-down resistance and input gate capacitance. Hence, when fetching input ports, set an appropriate wait time.
Particular care needs to be taken of the key scan during key matrix configuration. Aim for a wait time of about 1 msec.
(2) When "noise rejector circuit enable" is selected with the mask option, a maximum delay of 1 msec occurs from time the interrupt conditions are established until the interrupt factor flag (IK) is set to " 1 " (until the interrupt is actually generated).
Hence, pay attention to the timing when reading out (resetting) the interrupt factor flag.
For example, when performing a key scan with the key matrix, the key scan changes the input status to set the interrupt factor flag, so it has to be read out to reset it. However, if the interrupt factor flag is read out immediately after key scanning, the delay will cause the flag to be set after read-out, so that it will not be reset.
(3) Input interrupt programing related precautions

Fig. 7.1
Input interrupt timing
When the content of the mask register is rewritten, while the port K input is in the active status. The input interrupt factor flags are set at (1) and (2), (1) being the interrupt due to the falling edge and (2) the interrupt due to the rising edge.

When using an input interrupt, if you rewrite the content of the mask register, when the value of the input terminal which becomes the interrupt input is in the active status, the factor flag for input interrupt may be set.
Therefore, when using the input interrupt, the active status of the input terminal implies
input terminal = low status, when the falling edge interrupt is effected and
input terminal = high status, when the rising edge interrupt is effected.
When an interrupt is triggered at the falling edge of an input terminal, a factor flag is set with the timing of (1) shown in Figure 7.1. However, when clearing the content of the mask register with the input terminal kept in the low status and then setting it, the factor flag of the input interrupt is again set at the timing that has been set. Consequently, when the input terminal is in the active status (low status), do not rewrite the mask register (clearing, then setting the mask register), so that a factor flag will only set at the falling edge in this case. When clearing, then setting the mask register, set the mask register, when the input terminal is not in the active status (high status).
When an interrupt is triggered at the rising edge of the input terminal, a factor flag will be set at the timing of (2) shown in Figure 7.1.

In this case, when the mask registers cleared, then set, you should set the mask register, when the input terminal is in the low status.
In addition, when the mask register $=" 1 "$ and the content of the input comparison register is rewritten in the input terminal active status, an input interrupt factor flag may be set. Thus, you should rewrite the content of the input comparison register in the mask register = "0" status.
(4) Read-out of the interrupt factor flag (IK) can be done only in the DI status (interrupt flag = "O"). Read-out during EI status (interrupt flag $=" 1$ ") will cause malfunction.
(5) Writing of the interrupt mask register (EIK) can be done only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag = " 1 ") will cause malfunction.

Output Ports When BZ, $\overline{\mathrm{BZ}}$ and FOUT are selected with the mask option, a hazard may be observed in the output waveform when the data of the output register changes.

I/O Ports (1) When the I/O port is changed from high level to low level by the built-in pull down resistance, the falling-edge has the delay determined by the pull down resistance and the input gate capacitance. When the input data is being read out, the time that the input line is pulled down is equivalent to 1.5 cycles of the CPU system clock. However, the electric potential of the pins must be settled within 0.5 cycles. If this condition cannot be fulfilled, some measure must be devised such as arranging pulldown resistance externally, or performing multiple readouts. Consequently, if data is read out while the CPU is running in the OSC3 oscillation circuit, data must be read out continuously for about $500 \mu \mathrm{sec}$.
(2) When the I/O port is set to the output mode and the data register has been read, the pin data instead of the register data can be read out. Because of this, if a low-impedance load is connected and read-out performed, the value of the register and the read-out result may differ.

LCD Driver (1) When page 0 is selected for the display memory, the memory data and the display will not match until the area is initialized (through, for instance, memory clear processing by the CPU). Initialize the display memory by executing initial processing.
(2) When page 2 is selected for the display memory, that area becomes write-only. Consequently, data cannot be rewritten by arithmetic operations (such as AND, OR, ADD, SUB).

Clock Timer (1) The prescaler mode must be set correctly to suit the crystal oscillator to be used.
(2) When the clock timer has been reset, the interrupt factor flag (TI) may sometimes be set to " 1 ". Consequently, perform flag read-out (reset the flag) as necessary at reset.
(3) The input clock of the watchdog timer is the 2 Hz signal of the clock timer, so that the watchdog timer may be counted up at timer reset.
(4) Read-out of the interrupt factor flag (IT) can be done only in the DI status (interrupt flag = "0"). Read-out during the EI status (interrupt flag = " 1 ") will cause malfunctions.
(5) Writing of the interrupt mask register (EIT) can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag $=" 1$ ") will cause malfunctions.

Stopwatch Timer (1) The prescaler mode must be set correctly so that the stopwatch timer suits the crystal oscillator to be used.
(2) If timer data is read out in the RUN status, the timer must be made into the STOP status, and after data is read out the RUN status can be restored. If data is read out when a carry occurs, the data cannot be read correctly.
Also, the processing above must be performed within the STOP interval of $976 \mu \mathrm{sec}(256 \mathrm{~Hz} \mathrm{1/4}$ cycle).
(3) Read-out of the interrupt factor flag (SWIT) can be done only in the DI status (interrupt flag $=" 0 "$). Read-out during the EI status (interrupt flag $=" 1 "$) will cause malfunctions.
(4) Writing of the interrupt mask register (EISWIT) can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = "1") will cause malfunctions.

Event Counter (1) After the event counter has written data to the EVRUN register, it operates or stops in synchronization with the falling edge of the noise rejector clock or stops. Hence, attention must be paid to the above timing when input signals (input to K02 and K03) are being received.
(2) To prevent erroneous reading of the event counter data, read out the counter data several times, compare it, and use the matching data as the result.

Battery Life Detection (BLD) Circuit
(1) It takes $100 \mu \mathrm{sec}$ from the time the BLD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:
(1) When the CPU system clock is foSCl

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 1 instruction has passed.
2. When detection is done at BLS

After writing " 1 " on BLS, write " 0 " after at least 100 $\mu \mathrm{sec}$ has lapsed (possible with the next instruction) and then read the BLD.
(2) When the CPU system clock is fosc3 (in case of E0C62A35 only)

1. When detection is done at HLMOD

After writing " 1 " on HLMOD, read the BLD after 0.6 second has passed.
(HLMOD holds "1" for at least 0.6 second)
2. When detection is done at BLS

Before writing " 1 " on BLS, write " 1 " on HLMOD first; after at least $100 \mu \mathrm{sec}$ has lapsed after writing " 1 " on BLS, write " 0 " on BLS and then read the BLD.
(2) To reduce current consumption, set the BLD operation to OFF unless otherwise necessary.
(3) BLS resides in the same bit at the same address as BLD1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.
(4) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
(1) After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
(2) After heavy load drive is completed, switch BLS ON and OFF (at least $100 \mu \mathrm{sec}$ is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.
(5) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec .
(6) To reduce current consumption, be careful not to set the heavy load protection mode with the software unless otherwise necessary.

Heavy Load Protection Function and SubBLD Circuit
(1) It takes $100 \mu \mathrm{sec}$ from the time the BLD circuit goes ON until a stable result is obtained. For this reason, keep the following software notes in mind:
(1) When the CPU system clock is foSCl

1. When detection is done at HLMOD After writing " 1 " on HLMOD, read the BLD after 1 instruction has passed.
2. When detection is done at BLS

After writing " 1 " on BLS, write " 0 " after at least 100 $\mu \mathrm{sec}$ has lapsed (possible with the next instruction) and then read the BLD.
(2) When the CPU system clock is fosc3 (in case of E0C62A35 only)

1. When detection is done at HLMOD After writing " 1 " on HLMOD, read the BLD after 0.6 second has passed.
(HLMOD holds " 1 " for at least 0.6 second)
2. When detection is done at BLS

Before writing " 1 " on BLS, write " 1 " on HLMOD first; after at least $100 \mu \mathrm{sec}$ has lapsed after writing " 1 " on BLS, write " 0 " on BLS and then read the BLD.
(2) BLS resides in the same bit at the same address as BLD 1, and one or the other is selected by write or read operation. This means that arithmetic operations (AND, OR, ADD, SUB and so forth) cannot be used for BLS control.
(3) Select one of the following software processing to return to the normal mode after a heavy load has been driven in the heavy load protection mode in the E0C62L35.
(1) After heavy load drive is completed, return to the normal mode after at least one second has elapsed.
(2) After heavy load drive is completed, switch BLS ON and OFF (at least $100 \mu \mathrm{sec}$ is necessary for the ON status) and then return to the normal mode.

The E0C6235/62A35 returns to the normal mode after driving a heavy load without special software processing.
(4) If the BLS is set to ON while the heavy load protection mode is in effect, keep the ON time within 10 msec .
(5) To reduce current consumption, be careful not to set the heavy load protection mode with the software unless otherwise necessary.

Analog Comparator (1) To reduce current consumption, set the analog comparator to OFF when it is not necessary.
(2) After setting AMPON to " 1 ", wait at least 3 msec for the operation of the analog comparator to stabilize before reading the output data of the analog comparator from AMPDT.

Serial Interface (1) When using the serial interface in the master mode, the synchronous clock uses the CPU system clock. Accordingly, do not change the system clock (fosc $1 \leftrightarrow$ fosc 3) while the serial interface is operating.
(2) Perform data writing/reading to data registers SD0-SD7 only while the serial interface is halted (i.e., the synchronous clock is neither being input or output).
(3) As a trigger condition, it is required that data writing or reading on data registers SD0-SD7 be performed prior to writing " 1 " to SCTRG. (The internal circuit of the serial interface is initiated through data writing/reading on data registers SD0-SD7.) Supply trigger only once every time the serial interface is placed in the RUN state. Moreover, when the synchronous clock SCLK is external clock, start to input the external clock after the trigger.
(4) If the bit data of SE2 changes while SCLK is in the master mode, a hazard will be output to the SCLK pin. If this poses a problem for the system, be sure to set the SCLK to the external clock mode if the bit data of SE2 is to be changed.
(5) Reading the interrupt factor flag (ISIO) can be done only when the serial interface is in the STOP status (SIOF = " 0 ") and the DI status (interrupt flag = " 0 "). If reading is performed while the serial interface is in the RUN mode (during input or output), the data input or output will be suspended and the initial status resumed. Reading during EI status (interrupt flag = " 1 ") will cause malfunction.
(6) Writing the interrupt mask register (EISIO) can be done only in the DI status (interrupt flag = "0"). Writing during EI status (interrupt flag $=" 1$ ") will cause malfunction.

Sound Generator A hazard may be observed in the output waveform of the BZ and $\overline{B Z}$ signals when data of the output registers (R10, R13) and the buzzer frequency selection registers (BZFQ0-2) changes.

Interrupt (1) When the interrupt mask register (EIK) is set to " 0 ", the interrupt factor flag (IK) of the input port cannot be set even though the pin status of the input port has changed.
(2) The interrupt factor flags of the clock timer, stopwatch timer and serial interface (TI, SWIT, ISIO) are set when the timing condition is established, even if the interrupt mask registers (ETI, EISWIT, EISIO) are set to "0".
(3) Read-out of the interrupt factor flags can be done only in the DI status (interrupt flag = "0"). Read-out during the EI status (interrupt flag $=" 1$ ") will cause malfunction.
(4) Writing of the interrupt mask registers can be done only in the DI status (interrupt flag = "0"). Writing during the EI status (interrupt flag = "1") will cause malfunction.

APPENDIX A

EOC6235 DATA MEMORY (RAM) MAP

PROGRAM NAME : C235																			
P	H	L	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
0	0	NAME																	
		MSB																	
		LSB																	
	1	NAME																	
		MSB																	
		LSB																	
	2	NAME																	
		MSB																	
		LSB																	
	3	NAME																	
		MSB																	
		LSB																	
	4	NAME																	
		MSB																	
		LSB																	
	5	NAME																	
		MSB																	
		LSB																	
	6	NAME																	
		MSB																	
		LSB																	
	7	NAME																	
		MSB																	
		LSB																	

PROGRAM NAME : C235

PROGRAM NAME : C235

PROGRAM NAME : C235

PROGRAM NAME: C235

APPENDIX B EOC6235 INSTRUCTION SET

Instruction Set (1)

Instruction Set (2)

Classification	Mnemonic	Operand	Operation Code									Flag	Clock	Operation
			B	A 9		76	54		32	1	0	I D Z C		
Index operation instructions	CP	XH, i	1	01		01	00		3 i 2	i1	0	$\downarrow \downarrow$	7	XH-i3~i0
		XL, i	1	01		01	01		3 i 2	i1	0	$\downarrow \downarrow$	7	XL-i3~i0
		YH, i	1	01		01	10		3 i 2	i1	0	$\downarrow \downarrow$	7	YH-13~i0
		YL, i	1	01		01	11		3 i 2	i1	0	$\downarrow \downarrow$	7	YL-i3~10
Data transfer instructions	LD	r, i	1	11		00	r1 r0		3 i 2	i1	0		5	$\mathrm{r} \leftarrow \mathrm{i} 3 \sim \mathrm{i} 0$
		r, q	1	11		11	00		1 r 0	q1			5	$\mathrm{r} \leftarrow \mathrm{q}$
		A, Mn	1	11		10	10		3 n 2	n 1 n			5	$\mathrm{A} \leftarrow \mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0)$
		B, Mn	1	11	1	10	11		3 n 2	n 1 n			5	$\mathrm{B} \leftarrow \mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0)$
		Mn, A	1	11	1	10	00		3 n 2	n 1 n			5	$\mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0) \leftarrow \mathrm{A}$
		Mn, B	1	11		10	01		3 n 2	n 1 n			5	$\mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0) \leftarrow \mathrm{B}$
	LDPX	MX, i	1	11		01	10		3 i 2	i1			5	$\mathrm{M}(\mathrm{X}) \leftarrow \mathrm{i} 3 \sim \mathrm{i} 0, \mathrm{X} \leftarrow \mathrm{X}+1$
		r, q	1	11		11	10		1 r 0	q1			5	$\mathrm{r} \leftarrow \mathrm{q}, \mathrm{X} \leftarrow \mathrm{X}+1$
	LDPY	MY, i	1	11		01	11		3 i 2	i1			5	$\mathrm{M}(\mathrm{Y}) \leftarrow \mathrm{i} 3 \sim \mathrm{i} 0, \mathrm{Y} \leftarrow \mathrm{Y}+1$
		r, q	1	11		11	11		1 r 0	q1			5	$\mathrm{r} \leftarrow \mathrm{q}, \mathrm{Y} \leftarrow \mathrm{Y}+1$
	LBPX	MX, l	1	00		716	1514		3 l 2	$l 1$			5	$\mathrm{M}(\mathrm{X}) \leftarrow l 3 \sim l 0, \mathrm{M}(\mathrm{X}+1) \leftarrow 17 \sim l 4, \mathrm{X} \leftarrow \mathrm{X}+2$
Flag operation instructions	SET	F, i	1	11		01	00		3 i 2	i1	0	$\uparrow \uparrow \uparrow \uparrow$	7	$\mathrm{F} \leftarrow \mathrm{FV} \backslash \mathrm{i} 3 \sim \mathrm{i} 0$
	RST	F, i	1	11		01	01		3 i 2	i1	0	$\downarrow \downarrow \downarrow \downarrow$	7	$\mathrm{F} \leftarrow \mathrm{F} \wedge \mathrm{i} 3 \sim \mathrm{i} 0$
	SCF		1	11		01	00		00	0	1	\uparrow	7	$\mathrm{C} \leftarrow 1$
	RCF		1	111		01	01		11	1	0	\downarrow	7	$\mathrm{C} \leftarrow 0$
	SZF		1	11		01	00		00	1	0	\uparrow	7	$\mathrm{Z} \leftarrow 1$
	RZF		1	11	0	01	01		11	0		\downarrow	7	$\mathrm{Z} \leftarrow 0$
	SDF		1	11	0	01	00		01	0	0	\uparrow	7	$\mathrm{D} \leftarrow 1$ (Decimal Adjuster ON)
	RDF		1	11		01	01		10	1	1	\downarrow	7	D $\leftarrow 0$ (Decimal Adjuster OFF)
	EI		1	11	0	01	00		10	0	0	\uparrow	7	$\mathrm{I} \leftarrow 1$ (Enables Interrupt)
	DI		1	11		01	01		01	1	1	\downarrow	7	$\mathrm{I} \leftarrow 0$ (Disables Interrupt)
Stack operation instructions	INC	SP	1	11		11	01		10	1			5	$\mathrm{SP} \leftarrow \mathrm{SP}+1$
	DEC	SP	1	11		11	00		10	1			5	$\mathrm{SP} \leftarrow \mathrm{SP}-1$
	PUSH	r	1	11	1	11	00		00	r1			5	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{r}$
		XP	1	11	1	11	00		01	0			5	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{XP}$
		XH	1	11	1	11	00		01	0			5	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{XH}$
		XL	1	11	1	11	00		01	1			5	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{XL}$
		YP	1	11	1	11	00		01	1			5	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{YP}$
		YH	1	11	1	11	00		10	0			5	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{YH}$
		YL	1	11	1	11	00		10	0			5	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{YL}$
		F	1	11		11	00		10	1			5	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{M}(\mathrm{SP}) \leftarrow \mathrm{F}$
	POP	r	1	111	1	11	01		00	r1			5	$\mathrm{r} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$
		XP	1	11	1	11	01		01	0			5	$\mathrm{XP} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$
		XH	1	111	1	11	01		01	0			5	$\mathrm{XH} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$
		XL	1	111	1	11	01		01	1			5	$\mathrm{XL} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$
		YP	1	111	1	11	01		01	1			5	$\mathrm{YP} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$

Instruction Set (3)

Classification	Mne- monic	Operand	Operation Code						Flag	Clock	Operation
			B	A 9		7	654	3210	I D Z C		
Stack operation instructions	POP	YH	1	11	1	1	101	$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$		5	$\mathrm{YH} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$
		YL	1	11		1	$\begin{array}{lll}1 & 0 & 1\end{array}$	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$		5	$\mathrm{YL} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$
		F	1	11		1	$\begin{array}{llll}1 & 0 & 1\end{array}$	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	$\downarrow \downarrow \downarrow \downarrow$	5	$\mathrm{F} \leftarrow \mathrm{M}(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+1$
	LD	SPH, r	1	11		1	110	0 0 rl r 0		5	$\mathrm{SPH} \leftarrow \mathrm{r}$
		SPL, r	1	11		1	111	0 0 rl r 0		5	SPL $\leftarrow \mathrm{r}$
		r, SPH	1	11		1	110	01 rl r 0		5	$\mathrm{r} \leftarrow \mathrm{SPH}$
		r, SPL	1	11		1	111	01 rl r 0		5	$\mathrm{r} \leftarrow$ SPL
Arithmetic instructions	ADD	r, i	1	10		0	$0 \mathrm{rl} \mathrm{r0}$	i3 i2 i1 i0	$\star \downarrow \downarrow$	7	$\mathrm{r} \leftarrow \mathrm{r}+\mathrm{i} 3 \sim \mathrm{i} 0$
		r, q	1	01		1	$\begin{array}{llll}0 & 0 & 0\end{array}$	r1 r0 q1 q0	$\star \downarrow \downarrow$	7	$\mathrm{r} \leftarrow \mathrm{r}+\mathrm{q}$
	ADC	r, i	1	10		0	$1 \mathrm{rl} \mathrm{r0}$	i3 i2 i1 i0	$\star \downarrow \downarrow$	7	$\mathrm{r} \leftarrow \mathrm{r}+\mathrm{i} 3 \sim \mathrm{i} 0+\mathrm{C}$
		r, q	1	01		1	$\begin{array}{llll}0 & 0 & 1\end{array}$	r1 r0 q1 q0	$\star \downarrow \downarrow$	7	$\mathrm{r} \leftarrow \mathrm{r}+\mathrm{q}+\mathrm{C}$
	SUB	r, q	1	01		1	$\begin{array}{llll}0 & 1 & 0\end{array}$	r1 r0 q1 q0	$\star \downarrow \downarrow$	7	$\mathrm{r} \leftarrow \mathrm{r}-\mathrm{q}$
	SBC	r, i	1	10		0	$1 \mathrm{rl} \mathrm{r0}$	i3 i2 i1 i0	$\star \uparrow \downarrow$	7	$\mathrm{r} \leftarrow \mathrm{r}-13 \sim \mathrm{i} 0-\mathrm{C}$
		r, q	1	01		1	$\begin{array}{llll}0 & 1 & 1\end{array}$	r1 r0 q1 q0	$\star \uparrow \downarrow$	7	$\mathrm{r} \leftarrow \mathrm{r}-\mathrm{q}-\mathrm{C}$
	AND	r, i	1	10		1	$0 \mathrm{rl} \mathrm{r0}$	i3 i2 i1 i0	\downarrow	7	$\mathrm{r} \leftarrow \mathrm{r} \wedge \mathrm{i} 3 \sim \mathrm{i} 0$
		r, q	1	01		1	100	r1 r0 q1 q0	\downarrow	7	$\mathrm{r} \leftarrow \mathrm{r} \wedge \mathrm{q}$
	OR	r, i	1	10	1	1	$1 \mathrm{rl} \mathrm{r0}$	i3 i2 i1 i0	\downarrow	7	$\mathrm{r} \leftarrow \mathrm{r} V \mathrm{i} 3 \sim \mathrm{i} 0$
		r, q	1	01	1	1	1011	r1 r0 q1 q0	\downarrow	7	$\mathrm{r} \leftarrow \mathrm{r} \vee \mathrm{q}$
	XOR	r, i	1	10	0	0	$0 \mathrm{rl} \mathrm{r0}$	i3 i2 i1 i0	\downarrow	7	$\mathrm{r} \leftarrow \mathrm{r} \forall \mathrm{i} 3 \sim \mathrm{i} 0$
		r, q	1	01	1	1	110	r1 r0 q1 q0	\downarrow	7	$\mathrm{r} \leftarrow \mathrm{r} \forall \mathrm{q}$
	CP	r, i	1	10	1	1	$1 \mathrm{rl} \mathrm{r0}$	i3 i2 i1 i0	$\downarrow \downarrow$	7	r-i3~i0
		r, q	1	11	0	0	000	r1 r0 q1 q0	$\downarrow \downarrow$	7	r-q
	FAN	r, i	1	10	1	1	$0 \mathrm{rl} \mathrm{r0}$	i3 i2 i1 i0	\downarrow	7	r \wedge i3~i0
		r, q	1	11	0	0	$\begin{array}{llll}0 & 0 & 1\end{array}$	r1 r0 q1 q0	\downarrow	7	$\mathrm{r} \wedge \mathrm{q}$
	RLC	r	1	01	1	1	111	r1 r0 r1 r0	$\downarrow \downarrow$	7	$\mathrm{d} 3 \leftarrow \mathrm{~d} 2, \mathrm{~d} 2 \leftarrow \mathrm{~d} 1, \mathrm{~d} 1 \leftarrow \mathrm{~d} 0, \mathrm{~d} 0 \leftarrow \mathrm{C}, \mathrm{C} \leftarrow \mathrm{d} 3$
	RRC	r	1	11	1	1	$\begin{array}{llll}0 & 0 & 0\end{array}$	11 rl r0	$\downarrow \downarrow$	5	$\mathrm{d} 3 \leftarrow \mathrm{C}, \mathrm{d} 2 \leftarrow \mathrm{~d} 3, \mathrm{~d} 1 \leftarrow \mathrm{~d} 2, \mathrm{~d} 0 \leftarrow \mathrm{~d} 1, \mathrm{C} \leftarrow \mathrm{d} 0$
	INC	Mn	1	11	0	0	$\begin{array}{llll}1 & 1 & 0\end{array}$	n 3 n 2 n 1 n 0	$\downarrow \downarrow$	7	$\mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0) \leftarrow \mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0)+1$
	DEC	Mn	1	11	0	0	$\begin{array}{llll}1 & 1 & 1\end{array}$	n 3 n 2 n 1 n 0	$\downarrow \downarrow$	7	$\mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0) \leftarrow \mathrm{M}(\mathrm{n} 3 \sim \mathrm{n} 0)-1$
	ACPX	MX, r	1	11	0	0	$\begin{array}{llll}0 & 1 & 0\end{array}$	10 rl r 0	$\star \downarrow \downarrow$	7	$\mathrm{M}(\mathrm{X}) \leftarrow \mathrm{M}(\mathrm{X})+\mathrm{r}+\mathrm{C}, \mathrm{X} \leftarrow \mathrm{X}+1$
	ACPY	MY, r	1	11	0	0	$\begin{array}{llll}0 & 1 & 0\end{array}$	11 rl r0	$\star \downarrow \downarrow$	7	$\mathrm{M}(\mathrm{Y}) \leftarrow \mathrm{M}(\mathrm{Y})+\mathrm{r}+\mathrm{C}, \mathrm{Y} \leftarrow \mathrm{Y}+1$
	SCPX	MX, r	1	11	0	0	$\begin{array}{llll}0 & 1 & 1\end{array}$	10 rl r 0	$\star \downarrow \downarrow$	7	$\mathrm{M}(\mathrm{X}) \leftarrow \mathrm{M}(\mathrm{X})-\mathrm{r}-\mathrm{C}, \mathrm{X} \leftarrow \mathrm{X}+1$
	SCPY	MY, r	1	11	0	0	$\begin{array}{llll}0 & 1 & 1\end{array}$	11 rl r0	$\star \downarrow \downarrow$	7	$\mathrm{M}(\mathrm{Y}) \leftarrow \mathrm{M}(\mathrm{Y})-\mathrm{r}-\mathrm{C}, \mathrm{Y} \leftarrow \mathrm{Y}+1$
	NOT	r	1	10	0	0	$0 \mathrm{rl} \mathrm{r0}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	\downarrow	7	$\mathrm{r} \leftarrow \overline{\mathrm{r}}$

Abbreviations used in the explanations have the following meanings.

Symbols associated with registers and memory

A \qquad
B \qquad
X \qquad XHL register (low order eight bits of index register IX)

Y \qquad YHL register (low order eight bits of index register IY)
XH XH register (high order four bits of Xhl register)
XL XL register (low order four bits of XHL register)
YH YH register (high order four bits of YhL register)
YL YL register (low order four bits of YhL register)
XP XP register (high order four bits of index register IX)
YP YP register (high order four bits of index register IY)
SP Stack pointer SP
SPH High-order four bits of stack pointer SP
SPL Low-order four bits of stack pointer SP
MX, $\mathrm{M}(\mathrm{X})$.. Data memory whose address is specified with index register IX
MY, $\mathrm{M}(\mathrm{Y})$... Data memory whose address is specified with index register IY
Mn, M(n) .. Data memory address 000H-00FH (address specified with immediate data n of $00 \mathrm{H}-0 \mathrm{FH}$)
M(SP) Data memory whose address is specified with stack pointer SP
r, q Two-bit register code r, q is two-bit immediate data; according to the contents of these bits, they indicate registers A, B, and MX and MY (data memory whose addresses are specified with index registers IX and IY)

r		q		Registers specified
r 1	$\mathrm{r0}$	q 1	q 0	
0	0	0	0	A
0	1	0	1	B
1	0	1	0	MX
1	1	1	1	MY

Symbols associated with NBP..... New bank pointer
program counter NPP New page pointer
PCB Program counter bank
PCP Program counter page
PCS Program counter step
PCSH .. Four high order bits of PCS
PCSL ... Four low order bits of PCS

Symbols associated with
F
Flag register (I, D, Z, C)
flags C......... Carry flag
Z Zero flag
D Decimal flag
I Interrupt flag
\downarrow............. Flag reset
\uparrow............. Flag set
$\hat{\imath}$........... Flag set or reset

Associated with	$\mathrm{p} \ldots . . .$. Five-bit immediate data or label 00H-1FH
immediate data	$\mathrm{s} \ldots \ldots .$. Eight-bit immediate data or label 00H-0FFH
	$1 \ldots \ldots .$. Eight-bit immediate data $00 \mathrm{H}-0 \mathrm{FFH}$
	i Four-bit immediate data $00 \mathrm{H}-0 \mathrm{FH}$

Associated with

+ Add
arithmetic and other - Subtract
operations ^............. Logical AND
\vee............ Logical OR
\forall............ Exclusive-OR
* Add-subtract instruction for decimal operation when the D flag is set

APPENDIX C

PSEUDO-INSTRUCTION TABLE OF THE CROSS ASSEMBLER

Item No.	Pseudo-instruction	Meaning	Example of Use		
1	EQU (Equation)	To allocate data to label	$\begin{aligned} & \hline \mathrm{ABC} \\ & \mathrm{BCD} \end{aligned}$	$\begin{aligned} & \hline \text { EQU } \\ & \text { EQU } \end{aligned}$	$\begin{aligned} & \hline 9 \\ & \mathrm{ABC}+1 \end{aligned}$
2	ORG (Origin)	To define location counter	$\begin{aligned} & \text { ORG } \\ & \text { ORG } \end{aligned}$	$\begin{aligned} & 100 \mathrm{H} \\ & 256 \end{aligned}$	
3	$\begin{aligned} & \text { SET } \\ & \text { (Set) } \end{aligned}$	To allocate data to label (data can be changed)	ABC ABC	$\begin{aligned} & \text { SET } \\ & \text { SET } \end{aligned}$	$\begin{aligned} & 0001 \mathrm{H} \\ & 0002 \mathrm{H} \end{aligned}$
4	DW (Define Word)	To define ROM data	ABC BCD	$\begin{aligned} & \text { DW } \\ & \text { DW } \end{aligned}$	'AB' 0FFBH
5	$\begin{aligned} & \text { PAGE } \\ & \text { (Page) } \end{aligned}$	To define boundary of page		PAGE PAGE	1H 15
6	SECTION (Section)	To define boundary of section	SECTION		
7	$\begin{aligned} & \hline \text { END } \\ & \text { (End) } \end{aligned}$	To terminate assembly	END		
8	MACRO (Macro)	To define macro	CHECK 1		
9	LOCAL (Local)	To make local specification of label during macro definition	CHECK LOCAL LOOP	$\begin{aligned} & \text { MACRO } \\ & \text { LOOP } \\ & \text { CP } \\ & \text { JP } \\ & \hline \end{aligned}$	DATA $\begin{aligned} & \text { MX,DATA } \\ & \text { NZ,LOOP } \end{aligned}$
10	ENDM (End Macro)	To end macro definition	ENDM		

Item No.	Function	Command Format	Outine of Operation
1	Assemble	\#A, a	Assemble command mnemonic code and store at address "a"
2	Disassemble	\#L, a1, 2 2 \square	Contents of addresses a1 to a2 are disassembled and displayed
3	Dump	\#DP, a1, 2 2 \square	Contents of program area a1 to a2 are displayed
		\#DD, a1, 2 2	Content of data area a1 to a2 are displayed
4	Fill	\#FP, a1, 2 2, d \square	Data d is set in addresses a1 to a2 (program area)
		\#FD, a1,a2, d \downarrow	Data d is set in addresses a1 to a2 (data area)
5	Set Run Mode	\#G,a	Program is executed from the "a" address
		\#TIM ${ }^{\text {d }}$	Execution time and step counter selection
		\#OTF	On-the-fly display selection
6	Trace	\#T, a, n ■	Executes program while displaying results of step instruction from "a" address
		\#U,a,n \downarrow	Displays only the final step of \#T, a, n
7	Break	$\begin{aligned} & \text { \#BA, } \square \\ & \text { \#BAR, } \square \end{aligned}$	Sets Break at program address "a" Breakpoint is canceled
		$\begin{aligned} & \text { \#BD■ } \\ & \text { \#BDR } \\ & \hline \end{aligned}$	Break condition is set for data RAM Breakpoint is canceled
		$\begin{aligned} & \text { \#BR } \downarrow \\ & \text { \#BRR } \square \\ & \hline \end{aligned}$	Break condition is set for EVA62XXCPU internal registers Breakpoint is canceled
		\#BM』 \#BMR	Combined break conditions set for program data RAM address and registers Cancel combined break conditions for program data ROM address and registers
		\#BRES \downarrow	All break conditions canceled
		\#BC	Break condition displayed
		\#BE	Enter break enable mode
		\#BSYN \square	Enter break disable mode
		\#BT	Set break stop/trace modes
		\#BRKSEL,REM \square	Set BA condition clear/remain modes
8	Move	\#MP, a1,a2,a3 \downarrow	Contents of program area addresses a1 to a2 are moved to addresses a3 and after
		\#MD, a1, 2 2, 3 3 \square	Contents of data area addresses a1 to a2 are moved to addresses a3 and after
9	Data Set	\#SP, a	Data from program area address "a" are written to memory
		\#SD,	Data from data area address "a" are written to memory
10	Change CPU Internal Registers	\#DR \square	Display EVA62XXCPU internal registers
		\#SR■	Set EVA62XXCPU internal registers
		\#I \square	Reset EVA62XXCPU
		\#DXY■	Display X, Y, MX and MY
		\#SXY	Set data for X and Y display and MX, MY

Item No.	Function	Command Format	Outtine of Operation
11	History	\#H,p1,p2	Display history data for pointer 1 and pointer 2
		\# HB \square	Display upstream history data
		\#HG \downarrow	Display 21 line history data
		\#HP	Display history pointer
		\#HPS, $\square^{\text {d }}$	Set history pointer
		\#HC,S/C/E	Sets up the history information acquisition before (S), before/after (C) and after (E)
		\#HA, a1, 2 2	Sets up the history information acquisition from program area a1 to a2
		\#HAR, a1, a2 \square	Sets up the prohibition of the history information acquisition from program area a1 to a2
		\#HAD \square	Indicates history acquisition program area
		\#HS, a	Retrieves and indicates the history information which executed a program address "a"
		$\begin{aligned} & \text { \#HSW,a } \square \\ & \text { \#HSR, } \square \end{aligned}$	Retrieves and indicates the history information which wrote or read the data area address "a"
12	File	\#RF,file \square	Move program file to memory
		\#RFD, file \downarrow	Move data file to memory
		\#VF,file $⿴$	Compare program file and contents of memory
		\#VFD, file \square	Compare data file and contents of memory
		\#WF,file \square	Save contents of memory to program file
		\#WFD, file \square	Save contents of memory to data file
		\#CL,file \square	Load ICE6200 set condition from file
		\#CS,file	Save ICE6200 set condition to file
13	Coverage	$\begin{aligned} & \text { \#CVD■ } \\ & \text { \#CVR } \\ & \hline \end{aligned}$	Indicates coverage information Clears coverage information
14	ROM Access	$\begin{aligned} & \text { \#RP } \\ & \text { \#VP } \end{aligned}$	Move contents of ROM to program memory Compare contents of ROM with contents of program memory
		\#ROM \downarrow	Set ROM type
15	Terminate ICE	\#Q■	Terminate ICE and return to operating system control
16	Command Display	\#HELP	Display ICE6200 instruction
17	Self Diagnosis	\#CHK \downarrow	Report results of ICE6200 self diagnostic test

\square means press the RETURN key.

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC.

- HEADQUARTERS -

1960 E. Grand Avenue
El Segundo, CA 90245, U.S.A.
Phone: +1-310-955-5300 Fax: +1-310-955-5400

- SALES OFFICES -

West

150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: +1-408-922-0200 Fax: +1-408-922-0238

Central

101 Virginia Street, Suite 290
Crystal Lake, IL 60014, U.S.A.
Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170
Alpharetta, GA 30005, U.S.A.
Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH

- HEADQUARTERS -

Riesstrasse 15
80992 Muenchen, GERMANY
Phone: +49-(0)89-14005-0 Fax: +49-(0)89-14005-110

- GERMANY -

SALES OFFICE

Altstadtstrasse 176
51379 Leverkusen, GERMANY
Phone: +49-(0)217-15045-0 Fax: +49-(0)217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE
2.4 Doncastle House, Doncastle Road

Bracknell, Berkshire RG12 8PE, ENGLAND
Phone: +44-(0)1344-381700 Fax: +44-(0)1344-381701

- FRANCE -

FRENCH BRANCH OFFICE

1 Avenue de I' Atlantique, LP 915 Les Conquerants
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE

Phone: +33-(0)1-64862350 Fax: +33-(0)1-64862355

ASIA

- CHINA -

EPSON (CHINA) CO., LTD.
28F, Beijing Silver Tower 2\# North RD DongSanHuan
ChaoYang District, Beijing, CHINA
Phone: 64106655 Fax: 64107320

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- HONG KONG, CHINA -

EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY \& TRADING LTD.
10F, No. 287, Nanking East Road, Sec. 3
Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2
HsinChu 300, TAIWAN, R.O.C.
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, \#36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-Dong
Youngdeungpo-Ku, Seoul, 150-010, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION

ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department
 IC Marketing \& Engineering Group
 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
 Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I (Europe \& U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564
ED International Marketing Department II (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "Saving" Technology, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams.

Epson IS energy savings.

EPSON

SEIKO EPSON CORPORATION

ELECTRONIC DEVICES MARKETING DIVISION

- EPSON Electronic Devices Website
http://www.epson.co.jp/device/

[^0]: *1 Initial value at the time of initial reset

[^1]: *1 Initial value at the time of initial reset
 *2 Not set in the circuit

[^2]: *3 Constantly " 0 " when being read
 *4 Reset (0) immediately after being read

[^3]: * There is an interrupt mask register for each pin of the input ports.

[^4]: *1 Initial value at the time of initial reset
 *2 Not set in the circuit

[^5]: *1 Initial value at the time of initial reset
 *2 Not set in the circuit

[^6]: *1 Initial value at the time of initial reset
 *3 Constantly " 0 " when being read
 *4 Reset (0) immediately after being read

[^7]: *1 Initial value at the time of initial reset
 *2 Not set in the circuit

[^8]: *3 Constantly " 0 " when being read
 *4 Reset (0) immediately after being read

