EPSON

SEIKO EPSON CORPORATION

MLS Chipset Chipset Chipset

"Seiko Epson is neither licensed nor authorized to license its customers under one or more patents held by Motif Corporation to use this integrated circuit in the manufacture of liquid crystal display modules. Such license, however, may be obtained directly from MOTIF by writing to: Motif, Inc., c/o In Focus Systems, Inc., 27700A SW Parkway Avenue, Wilsonville, OR 97070-9215, Attention: Vice President Corporate Development."

NOTICE

No parts of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind aristing out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export licence from teh Ministry of International Trade and Industry or other approval from another government agency.

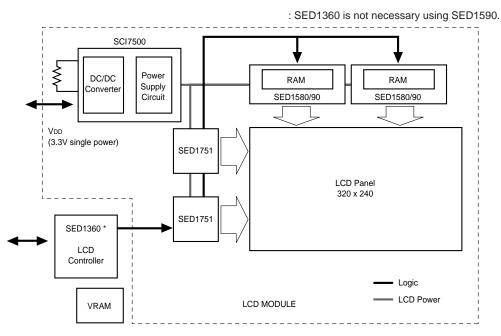
CONTENTS

SED1360	Seri	es	 	• •	 	•		 	•	 	•	 • •	•	•	• •	1-1
SED1580			 		 		• •	 		 		 	•			2-1
SED1590			 		 		• •	 		 		 	•			3-1
SED1750			 		 			 		 		 				4-1
SED1751			 		 		• •	 		 		 	•			5-1
SCI7500F	0A .		 		 			 		 		 				6-1

FEATURE

This chip set works to support the MLS (Multi Line Selection) drive method capable of making high-speed responses consisting of multiple numbers of SED1580, SED1590, SED1751, SED1360 and SCI7500 ICs. Since the indication data are stored in the indication RAM built into the X-driver to issue LCD drive signals, transference of indication data from the controller will be interrupted except for the period when the indications are being revised. Also, the complicated processings necessary for MLS drive are completed between the X-driver and the Y-driver so users need not be concerned about them. Consequently, the existing interface is usable.

Moreover, we are preparing exclusive power ICs to help configure the display systems for handy, high performance equipment.


CHIP SET CONFIGURATION

- SED1360F0A LCD controller (applicable to drivers with display RAM)
- SED1580T0A/D0B 160-output, 4-line distributed MLS drive method LCD segment driver
- SED1590T0A/D0B 160-output, 4-line distributed MLS drive method LCD segment driver + controller
- SED1751T0A/D0B 120/100-output, 4-line distributed MLS drive method LCD common driver
- SCI7500F0A 4-line MLS driver with exclusive power supply

FEATURES OF CHIP SETS

- Ultra-low power consumption with newly power circuits.
- About 5mW with 320×240 dots FTN reflection monochrome display.
- Single power supply : 3.3V, on chip DC/DC converter.
- Two types of interface.
- High contrast, High quality with no flicker.

BLOCK DIAGRAM

SED1360F0A LCD CONTROLLER (applicable to drivers with built-in indication RAM)

Power supply	: Logic channel 2.7 – 5.5V
Package	: GFP6-60 pin

SED1580T0A/D0B MLS drive method LCD segment driver

Number of LCD outputs	: 160 outputs
Driving duty	: 1/240 duty
Built-in indication RAM	: 160×240 bits
Power supply	: Logic channel 3.0 – 3.6V
	LCD channel $6.0 - 7.2V$
Package	: TCP or Au bump chip

SED1590T0A/D0B MLS drive method LCD segment driver + controller

Number of LCD outputs	: 160 outputs
Driving duty	: 1/240 duty
Built-in indication RAM	: 160×240 bits
Power supply	: Logic channel 2.7 – 3.6V
	LCD channel $5.4 - 7.2V$
Package	: TCP (under development) or Au bump chip
Others	: Built-in LCD controller function (with 31 types of commands)

SED1751T0A/D0B MLS DRIVE METHOD LCD COMMON DRIVER

Number of LCD outputs	: 120 outputs/100-output changeover
Driving duty	: 1/480 duty
Built-in indication RAM	: 160×240 bits
Power supply	: Logic channel 2.7 – 5.5V
	LCD channel $14 - 42V$
Package	: TCP or Au bump chip

SCI7500F0A 4-line MLS driver with exclusive power supply

Incorporating a built-in DC/DC converter with a voltage conversion circuit and a bias circuit necessary for quintuple (1/200 duty) and sextuple boosted (1/240 duty) 4-line MLS driving.

Power supply	: $2.4 - 3.6V$ single power input
Package	: GFP12-48 pin

SED1360 Series

Contents

INTRODUCTION	1-1
FEATURES	1-1
OVERVIEW DESCRIPTION	1-2
PINOUT DIAGRAM	1-5
PIN DESCRIPTION	1-8
D.C. CHARACTERISTICS	1-11
A.C. CHARACTERISTICS	1-14
OPERATION DESCRIPTION	1-19
OSCILLATION DESCRIPTION	1-25
COMMAND DESCRIPTION	
ERRORTA	1-29
NOTICE	1-29

INTRODUCTION

Scope

This is the Functional Specification for SED1360 3.3 V Ultra Low Power LCD Controller Chip.

Objectives

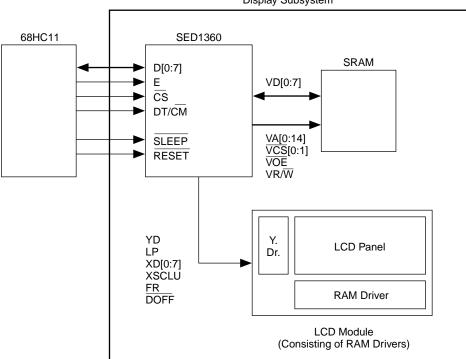
- (1) To specify functions and interface requirements of the chip.
- (2) To allow review of the functions of the chip, as a preliminary specification.

FEATURES

Technology

- ultra low power CMOS process
- 3.3 volt operation
- chip supply with aluminum pad
- 64 pin QFP6 surface mount package

System


- Direct connection to the 68 family CPUs.
- minimum CPU Interface pin count.
- no buffers are required in a 3.3 V-System.
- internal oscillator with external Capacitance and Resistance, or external oscillator for a low frequency input source.
- interfaces to 64 kb and, or 256 kb SRAMs.
- controls Seiko Epson's RAM integrated Segment Drivers.
- self-controlled Doze Mode.
- optimized Hardware for low to medium resolution LCDs.
- ultra low power consumption.

OVERVIEW DESCRIPTION

SED1360 is an ultra low power 3.3 V LCD controller which is optimized to drive low to medium resolution LCD panels. SED1360 can interface to the 68 family CPUs in the Port Peripheral Timing.

Typical System Block Diagram

The following figure shows typical system implementation with SED1360.

Display Subsystem

Figure 1. Typical System Block Diagram

SED1360

- (1) 3.3 V operational low power LCD Controller Chip.
- (2) receives Data from CPU.
- (3) stores the Display Data into SRAM.
- (4) reads the Data written in the SRAM to update LCD Display.
- (5) transfers the read Data to LCD Module automatically.
- (6) controls entering to Doze Mode and returning to Active Mode automatically.
- (7) supports local oscillation or low frequency input to realize the Ultra Low Power LCD Display Subsystem.
- (8) supports Hardware Suspend Mode.

LCD Module

- (1) 3.3 V operational low power LCD Module.
- (2) consists of Seiko Epson's RAM integrated Segment Drivers, Common Drivers and an LCD panel.
- (3) The LCD Module enters into Power Save Mode automatically, if "XSCLU" is not provided.

SRAM

- (1) SED1360 uses the SRAM to store the Display Data written by CPU in order to arbitrate between CPU access and LCD Display refresh.
- (2) has to be 3.3 V operational.

SED1360 Internal Block Diagram

The following figure shows an overview of the LCD Controller chip SED1360.

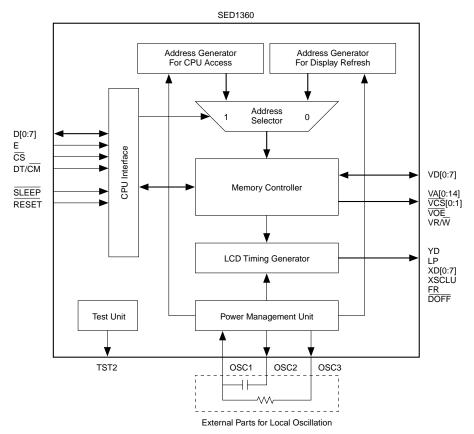


Figure 2. SED1360 Internal Block Diagram

CPU Interface

- (1) 3.3 V 68XX dedicated CPU Interface.
- (2) 8 bit Data are used to transfer Data or Commands.
- (3) The rising edge of " \overline{CS} " signal is used to execute the Data Transfer.
- (4) "DT/ \overline{CM} " is used for CPU to indicate either Data or Command is on the bus.
- (5) "SLEEP" signal is used to set the chip in Sleep Mode.
- (6) No other signals are required for the normal operation.
- (7) "RESET" is used to initialize the chip.

Address Generator for CPU Access

- (1) The internal CPU Write Start Address can be set by the command.
- (2) After every single CPU Display Data Write Access, the internal CPU Write Address Counter is increased by one.

Address Generator for Display Refresh

- (1) "E" is used to generate the Display Refresh Address.
- (2) Address Generator begins when the immediate Frame comes after the CPU Display Data Write Access occurs or when CPU sets the "Display Data Transfer" command.
- (3) Address Generation stops if no CPU Display Data Write Access occurs for two LCD Frame period.

Address Selector

When CPU Display Data Write Access occurs, the internal CPU Write Address is selected to generate the address for SRAM.

Memory Controller

- (1) When CPU Display Data Write Access occurs, Memory Controller stores the data into SRAM.
- (2) The Memory Controller begins reading the data stored in the SRAM to transfer to the LCD Module when the immediate Frame comes after the CPU Display Data Write Access occurs or when CPU sets the "Display Data Transfer" command.
- (3) The Memory Controller stops reading the data from the SRAM if no CPU Display Data Write Access occurs for two LCD Frame period.

LCD Timing Generator

- Local oscillation is directly used to generate "LP" (Horizontal Sync. Pulse), "YD" (Vertical Sync. Pulse) and "FR" (LCD voltage alternation signal).
- (2) The updated data stored in the SRAM is transferred through the Memory Controller and the LCD Timing Generator to the LCD Module, if the CPU Display Data Write Access occurs or when CPU sets the "Display Data Transfer" command.
- (3) The LCD Timing Generator uses "E" to generate "XSCLU".
- (4) "XSCLU" is automatically controlled by the CPU Display Data Write Access or setting the "Display Data Transfer" command.

Power Management Unit

(1) Power Management Unit monitors the occurrence of CPU Display Data Write Access, the execution of the "Display Data Transfer" command, the internal state of LCD Frame period and the "SLEEP" signal in order to determine entering to Doze Mode and returning to Active Mode. And this unit also controls local oscillation.

Test Unit

Test Unit controls test functions of the chip if the chip is in Test Mode.

PINOUT DIAGRAM

SED1360D0A

The following figure shows a pinout placement.

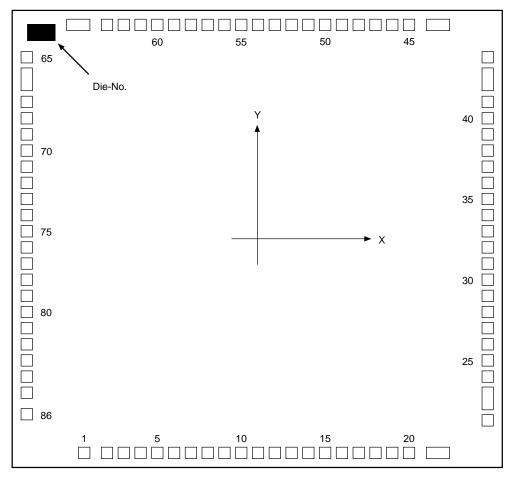


Figure 3. SED1360D0A Pinout Diagram

chip size	$4.21 \text{ mm} \times 4.11 \text{ mm}$
chip thickness	400 µm
pad pich (min.)	136 µm
pad size (min.)	$100 \ \mu m \times 100 \ \mu m$

Pin No.	Χ (μm)	Υ (μm)	Pin No.	Χ (μm)	Υ (μm)
1	-1425	-1913	44	1506	1913
2	-1221		45	1227	
3	-1085		46	1091	
4	-949		47	955	
5	-813		48	819	
6	-677		49	683	
7	-541		50	547	
8	-405		51	411	
9	-269		52	275	
10	-133		53	139	
11	3		54	3	
12	139		55	-133	
13	275		56	-269	
14	411		57	-405	
15	547		58	-541	
16	683		59	-677	
17	819		60	-813	
18	955		61	-949	
19	1091		62	-1085	
20	1227		63	-1221	
21	1506	↓	64	-1476	↓
22	1964	-1560	65	-1964	1547
23		-1359	66		1350
24		-1159	67		1153
25		-1023	68		1017
26		-887	69		881
27		-751	70		745
28		-615	71		609
29		-479	72		473
30		-343	73		337
31		-207	74		201
32		-71	75		65
33		65	76		-71
34		201	77		-207
35		337	78		-343
36		473	79		-479
37		609	80		-615
38		745	81		-751
39		881	82		-887
40		1017	83		-1023
41		1153	84		-1159
42		1359	85		-1295
43	🔸	1564	86	▼	-1499

Table 1.	SED1360D0A	Pin Coordinates	
10010 11	00000000		

SED1360F0A

The following figure shows a pinout placement.

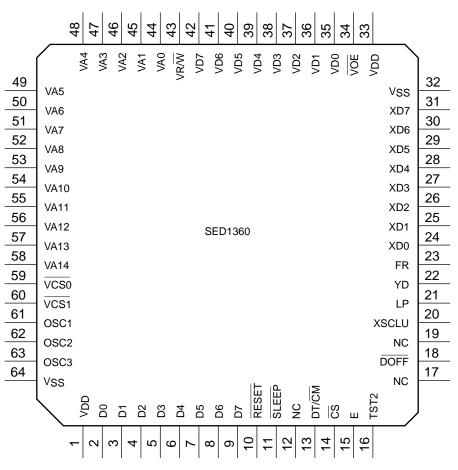


Figure 4. SED1360F0A Pinout Diagram

Note: Pinout placement subject to change. Package type: 64 pin surface mount QFP6 NC pins are left unconnected.

PIN DESCRIPTION

Key

- C = CMOS level input
- CS = CMOS level input with hysteresis
- Cosc = CMOS level input for an internal oscillation inverter
- T = TTL level input
- Ox = CMOS output, x denotes output driver type.
- OOSC = CMOS output for an internal oscillation inverter
- PU = integrated pull-up resistor
- PD = integrated pull-down resistor

CPU Interface

The CPU interface signals are placed on one side of the chip for easy connection to CPU. And the input levels of all CPU Interface pins are unified with CMOS level to allow easy connection to 3.3 V 68 family CPUs.

Pin Name	Туре	Pin No.	Drv	Description
D [0:7]	I	29	С	Data inputs. The data is captured into an SED1360's input data register by the rising edge of "CS".
E	I	15	С	In Active Mode, "E" is used to write or read the CPU data to from SRAM and transfer the data written in the SRAM to the LCD Module.
CS	I	14	С	The rising edge of this signal is used to capture the state of <u>"D</u> [0:7] and "DT/ \overline{CM} " into SED1360. When " \overline{CS} " is high, no data captures occur.
DT/CM	I	13	С	If this signal is high, Data is on the bus. If this signal is low, Command is on the bus.
SLEEP	I	11	С	If this signal is pulled low, the chip enters Sleep Mode. In the Sleep Mode, internal oscillation is disabled, all of the input signals are masked and all of the output signals are controlled to inactive state.
RESET	I	10	CS	The active low "RESET" signal from the system clears all internal registers.

Table 2.	CPU Interface	Pin Description
----------	---------------	-----------------

SRAM Interface

The SRAM Interface signals are basically placed on two sides of the chip. The input level of "VD [0:7]" is met with TTL level to connect with generic 3.3 V SRAMs. And also "VD [0:7]" have integrated pullup resistors to eliminate current consumption at the input buffers in Doze Mode.

Pin Name	Туре	Pin No.	Drv	Description
VD [0:7]	I/O	3542	T O2 PU	The "VD [0:7]" signals are connected to SRAM's 8 bit data. The captured display data in SED1360 are stored in the SRAM through "VD [0:7]" by the "VR/ \overline{W} " signal.
VA [0:14]	0	4458	O2	The "VA [0:14]" signals are connected to SRAM's address lines. "VA [0:14]" generate either CPU Display Data Write Address or Display Refresh Address depending upon operation modes.
VCS [0:1]	0	59, 60	02	SED1360 manages up to 64 kb of SRAM as a frame buffer memory. SED1360 is configured to primarily use two 256 kb SRAMs. "VCS0" is active when 1st 32 kb is selected. "VCS1" is active when the rest 32 kb is selected. "VCS [0:1]" are connected to SRAM's chip select inputs (active low). Those signals are inactie (high), if the chip is in Sleep Mode.
VOE	0	34	02	The "VOE" signal is connected to SRAM's data output enable input.
VR/W	0	43	02	The "VR/ \overline{W} " signal is connected to SRAM's write strobe input.

	Table 3.	SRAM Interfa	ace Pin Description
--	----------	--------------	---------------------

LCD Interface

The LCD interface signals are placed on the rest one side of the chip. The output type of all signals is optimized to drive the Ultra Low Power LCD Module properly.

Pin Name	Туре	Pin No.	Drv	Description
XD [0:7]	0	2431	O1	The "XD [0:7]" signals are connected to the display data inputs of the LCD Module. During Doze Mode, the signals are driven low. "XD [0:7] are transferred to the LCD Module by the falling edge of "XSCLU".
XSCLU	0	20	O1	The "XSCLU" signal is connected to the display data shift clock of the LCD Module. During Doze Mode, the signal is driven low to force the RAM integrated Segment Drivers to be in Power Save Mode.
LP	0	21	O1	The "LP" signal is connected to te input, which drives the data latching pulse of the segment drivers and the scanning clock of the common drivers, of the LCD Module. The "LP" period is directly generated by the signal which is input through "OSC1".
YD	0	22	01	The "YD" is connected to the frame start pulse signal of the LCD Module.
FR	0	23	01	The "FR" signal is connected to the signal which alternates the LCD voltage in the LCD Module.
DOFF	0	18	01	This signal outputs low if the chip is in Sleep Mode.

Table 4.	LCD Interface Pin Description
----------	-------------------------------

Oscillation

The oscillation pins are used to generate the low frequency which directly generates the "LP" signal.

Pin Name	Туре	Pin No.	Drv	Description
OSC1	I	61	Cosc	The pin is connected to the one node of the capacitance and the one node of the resistance. If an external oscillator is used as a clock source, then this pin is the clock input.
OSC2	0	62	Oosc	This pin is connected to the other node of the capacitance. If an external oscillator is used as a clock source, then this pin should be left unconnected.
OSC3	0	63	Oosc	This pin is connected to the other node of the resistance. If an external oscillator is used as a clock source, then this pin should be left unconnected.

Table 5.	Oscillation	Pin	Description

Test

The test signals are prepared for testing the chip itself.

Table 6. Test Pin Description

Pin Name	Туре	Pin No.	Drv	Description		
NC	_	12, 17, 19		NC pins are not connected to the chip. These pins should be left unconnected.		
TST2	0	16	01	This pin should be left unconnected.		

Power Supply

Table 7. Power Supply Pin Description

Pin Name	Туре	Pin No.	Drv	Description		
Vdd	Р	1, 33		VDD supply for the chip. Normally 3.3 volt.		
Vss	Р	32, 64		Vss supply for the chip. Normally 0 volt.		

Units

V

V

Vdd

Vss

D.C. CHARACTERISTICS

Conditions: $VDD = 3.0 \text{ V} \sim 3.6 \text{ V}$, $Ta = -10^{\circ}\text{C}$ to 70°C unless otherwise specified

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
Supply Voltage	Vdd	Vss – 0.3 to 5.0	Volts
Input Voltage	Vin	Vss - 0.3 to VDD + 0.3	Volts
Output Voltage	Vout	Vss to VDD	
Operating Temperature	Topr	-10 to +70	°C
Storage Temperature	Тѕтс	-65 to +150	°C
Soldering Temperature/Time	Tsol	260 for 10 sec max. at lead	°C

Table 8. Absolute Maximum Ratings

Recommended Operating Conditions

Input Voltage

	0. 10000111	nended operating cond				
Parameter	Symbol	Condition	Min	Тур	Max	ĺ
Supply Voltage	Vdd	Vss = 0 V	3.0	3.3	3.6	ĺ

Vin

Table 9.	Recommended	Operating	Conditions

Input Specification

Parameter	Symbol	Condition	Min	Тур	Max	Units
Low Level Input Voltage for type C input pins	VIL1 (C)	Vdd = MIN			0.6	V
High Level Input Voltage for type C input pins	VIH1 (C)	Vdd = MAX	2.5			V
High Level Input Voltage for type CS input pins	VIL2 (CS)	VDD = 3.3 V			0.5	V
High Level Input Voltage for type CS input pins	VIH2 (CS)	VDD = 3.3 V	2.9			V
Hysteresis Voltage for type CS input pins	Vнүs (CS)	VDD = 3.3 V		0.1		V
High Level Input Voltage for type T input pins	VIL3 (T)	Vdd = MIN			0.5	V
High Level Input Voltage for type T input pins	Vінз (T)	Vdd = MAX	1.7			V
Low Level Input Voltage for type Cosc input pins	VIL4 (Cosc)	Vdd = MIN			0.6	V
Low Level Input Voltage for type Cosc input pins	VIH4 (Cosc)	Vdd = MAX	2.5			V
Input Leakage Current	lız	Vdd = MAX Vil = Vss, Vih = Vdd	-1.0		1.0	μA
Input Pin Capacitance	CIN			10		pF
Pull Down Resistance	Rpd (PU)	VDD = 3.3 V	90		1100	kΩ
Pull Up Resistance	Rpu (PU)	Vdd = 3.3 V	90		1100	kΩ

Table 10. Input Specifications

Output Specifications

Table 11. Output Specifications

Parameter	Symbol	Condition	Min	Тур	Max	Units
Low Level Output Voltage for type O1 output pins	Vol1 (O1)	VDD = MIN IOL = 1.0 mA	Vss +0.3			V
Low Level Output Voltage for type O1 output pins	Vон1 (O1)	Vdd = MIN Ioh = -0.5 mA			Vdd -0.3	V
Low Level Output Voltage for type O2 output pins	Vol2 (O2)	VDD = MIN IOL = 3.0 mA	Vss +0.3			V
Low Level Output Voltage for type O2 output pins	Vон2 (O2)	Vdd = MIN Іон = -1.5 mA			Vdd -0.3	V
Low Level Output Voltage for type Oosc output pins	Vol3 (Oosc)	Vdd = MIN Iol = 100 μA	Vss +0.3			V
Low Level Output Voltage for type Oosc output pins	Voнз (Oosc)	Vdd = MIN Ιοη = -100 μΑ			Vdd -0.3	V
Output Leakage Current	loz	Vdd = MAX Voh = Vdd, Vol = Vss	-1.0		1.0	μΑ
Output Pin Capacitance	Соит			10		pF

Power Consumption

Parameter	Symbol	Condition	Min	Тур	Max	Units
Current Consumption in Active Mode with CPU write access	IOP1	VDD = 3.3 V tcyce = 500 ns fosc = 24 kHz		5		mA
Current Consumption in Active Mode with no CPU write access	IOP2	VDD = 3.3 V tcyce = 500 ns "CS" = high fosc = 24 kHz		1		mA
Current Consumption in Doze Mode with CPU write access	ЮРЗ	VDD = 3.3 V tcyce = 500 ns fosc = 24 kHz		4		mA
Current Consumption in Doze Mode with no CPU write access	IOP4	VDD = 3.3 V tcyce = 500 ns "CS" = high fosc = 24 kHz		150		μΑ
Current Consumption in Sleep Mode	IOP5	VDD = 3.3 V No input signals toggle.		1		μΑ

Table 12. Power Consumption

Note: The above table shows the target power consumption.

A.C. CHARACTERISTICS

Conditions: VDD = 3.3 V, $Ta = 0^{\circ}C$ to $70^{\circ}C$ unless otherwise specified Tr, Tf for all inputs must be -10 ns (10% to 90%)CL = 10 pF (SRAM Interface)CL = 20 pF (LCD Interface)

A single 1.5 V threshold voltage is used for the A.C. measurements.

CPU Interface Timing

Parameter	Symbol	Min	Тур	Мах	Units
"CS" period	tcycCS	t cycE			ns
"CS" low pulse width	tics	170			ns
"CS" high pulse width	thcs	100			ns
"DT/CM" setup to "CS"	tdsu1	20			ns
"DT/CM" hold from "CS"	tdh1	0			ns
"D [0:7]" setup to "CS"	tdsu2	70			ns
"D [0:7]" hold from "CS"	tdh2	0			ns

Table 13. CPU Interface Timing

Figure 5. CPU Interface Timing

SRAM Interface Timing

Parameter	Symbol	Min	Тур	Мах	Units
"E" period	t cycE	333			ns
"E" low pulse width	t⊫	142			ns
"E" high pulse width	thE	137			ns
"VR/W" period	t cycVW	t cycE			ns
"VR/W" low pulse width	tıvw		t hE - 40		ns
"VR/W" high pulse width	t h∨W		t⊫		ns
"VA [0:14]", "VCS [0:1]" setup to "VR/W"	t asu∨W	0			ns
"VA [0:14]", "VCS [0:1]" hold from "VR/W"	tah∨W	0			ns
"VD [0:7]" setup to "VR/W"	t dsuVW	t ivw-20	tıvw-10		ns
"VD [0:7]" hold from "VR/W"	t dh∨W	0			ns
valid address period for the Display Refresh	t avr	t⊫-15	t⊫		ns
valid address period for the CPU data write	ta∨w	the-15	thE		ns
SRAM read data access from the valid address	tacc∨			tavR-25	ns
SRAM read data hold time from the valid address	t pdh∨	0			ns
"VA [0:14]", "VCS [0:1]" setup to "VOE"	tasuOE	0			ns
"VOE" hold from "VA [0:14]", "VCS [0:1]"	t ahOE	0			ns
"VOE" low pulse width	tioe		t⊫		ns
"VOE" high pulse width	t hOE		t hE		ns
"VR/W" delay from "VOE"	t pdOW	0			ns
"VOE" delay from "VR/OW"	t pdWO	0			ns

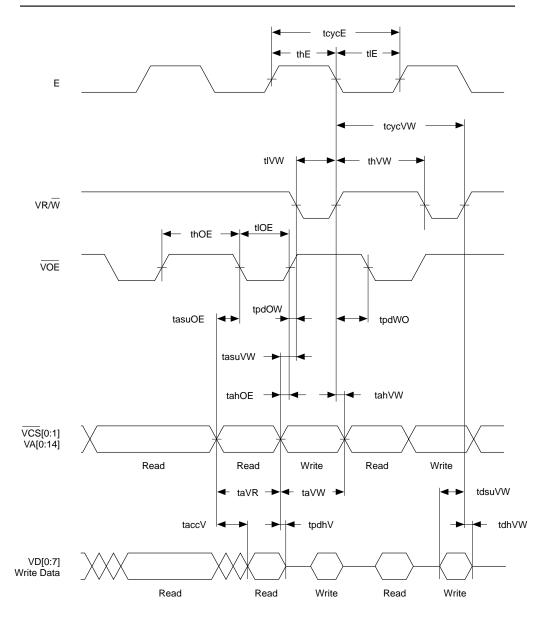


Figure 6. SRAM Interface Timing

LCD Interface Timing

Parameter	Symbol	Min	Тур	Max	Units
"XSCLU" period	t cycXC	t cycE			ns
"XSCLU" low pulse width	tixc		ti⊨		ns
"XSCLU" high pulse width	t hXC		thE		ns
"XD [0:7]" setup to "XSCL"	t dsuXC		thE		ns
"XD [0:7]" hold from "XSCL"	t dhXC		ti⊨		ns
"YD" delay from "LP"	t pdLY	0			ns
"LP" period	t cycLP	tcycOSC	2tcycOSC	4tcycOSC	ns
"LP" high pulse width	t hLP	500	700	1200	ns
"XSCL" delay from "LP"	t pdLXC	3tcycE +thE-50	4tcycE	4 t cycE + t hE+50	ns
"LP" delay from "XSCL"	t _{pdXCL}				ns
"XSCL" enabled	txsc∟		[(Hor. size/8)-1] × t _{cyE+thE}		ns
"YD" period	t cycYD		$\stackrel{(\text{Ver.size})}{\times t_{\text{cycLP}}}$		ns
"FR" high or Low time	t cycFR		t cycYD		ns
"FR" delay from "LP"	tpdLF	10	0	200	ns

Table 15. LCD Interface Timing

Notes: 1. t_{cycOSC} is a period of frequency given to or generated at "OSC1".
2. Hor.size is described in the section Display Size.
3. Ver.size is described in the section Display Size.

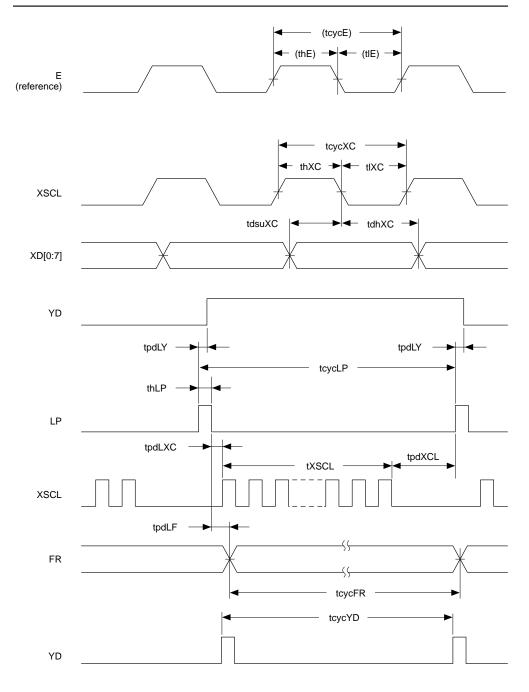


Figure 7. LCD Interface Timing

Oscillation Timing

Parameter	Symbol	Min	Тур	Мах	Units
"OSC1" period	tcycOSC	20 tosc = 50 kHz	41.7 fosc = 24 kHz	50 fosc = 20 kHz	μs
"OSC1" low width if external oscillation is used.	tiosc		0.5tcycOSC		μs
"OSC1" high width if external oscillation is used.	thosc		0.5tcycosc		μs

Table 16. LCD Interface Timing

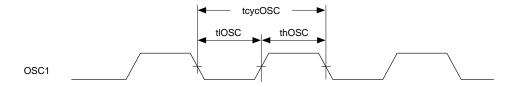


Figure 8. LCD Interface Timing

OPERATION DESCRIPTION

CPU Write Data Transfer

The following figure gives a basic timing for SED1360 to receive the CPU Write Data and relationship between CPU Data and pixels on the LCD panel. It is assumed that both CPU Write Start Address and Display Refresh Start Address are the same and the 320×200 dot LCD is used in the following figure.

- (1) The rising edge of " \overline{CS} " is used for SED1360 to latch the CPU data.
- (2) The CPU Data Write, after the "Display Data Write" command is executed, will be stored in the SRAM according to the internal CPU Write Address.
- (3) The first 40 Byte data will be stored in SRAM and displayed continuously on the same line.
- (4) The data will be displayed at the most left position on the next line on the panel every 40 Byte data.

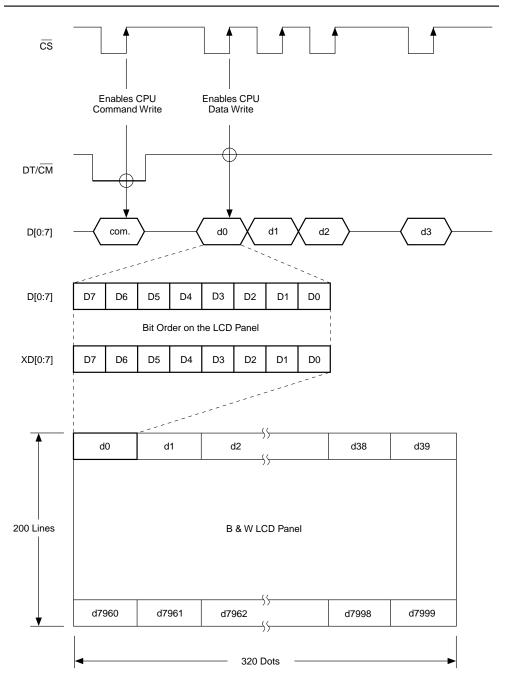


Figure 9. CPU Write Data Transfer

Display Data Transfer Modes

Display Data Auto Transfer Mode

The following figure gives a basic operation mode which SED1360 switches automatically. The figure assumes that the chip is configured in Display Data Auto Transfer Mode.

- (1) If CPU Display Data Write Access occurs, then the next Frame period will be Active Mode. That is the Active Mode is initiated by the CPU Display Data Write Access, if the chip is configured in Display Data Auto Transfer Mode.
- (2) If no CPU Display Data Write Access occurs in one Frame period, then the next Frame period will be Doze Mode.
- (3) SED1360 switches the whole LCD Display Subsystem between Doze Mode and Active Mode.
- (4) In the Active Mode, SED1360 reads the data from the SRAM, enables "XSCLU" in order to transfer the data stored in the SRAM to the LCD Module, then the RAM integrated Segment Drivers wake up from the power save mode.
- (5) In the Doze Mode, SED1360 stops reading the data from the SRAM, disables "XSCLU" in order for the RAM integrated Segment Drivers to enter into the Power Save Mode.

Figure 10. Display Data Auto Transfer Mode

Display Data Manual Transfer Mode

The following figure gives another basic operation mode which SED1360 controls Active Mode with the "Display Data Transfer" command. The figure assumes that the chip is configured in Display Data Manual Transfer Mode.

- (1) If the "Display Data Transfer" command is set to the chip, then the next Frame period will be Active Mode. That is the Active Mode is initiated by the Display Data Transfer" command, if the chip is configured in Display Data Manual Transfer Mode.
- (2) Once one Frame of display data, which are in the SRAM, are transferred to the LCD Module, the chip switches to Doze Mode and it keeps the Doze Mode until next "Display Data Transfer" command is executed. But if the next "Display Data Transfer" command is set without having any other commands between these two "Display Data Transfer" commands, the next "Display Data Transfer" command is ignored. That is in this case the next "Display Data Transfer" command does not set the chip in the Active Mode.
- (3) SED1360 switches the whole LCD Display Subsystem between Doze Mode and Active Mode.
- (4) In the Active Mode, SED1360 reads the data from the SRAM, enables "XSCLU" in order to transfer the data stored in the SRAM to the LCD Module, then the RAM integrated Segment Drivers wake up from the power save mode.
- (5) In the Doze Mode, SED1360 stops reading the data from the SRAM, disables "XSCLU" in order for the RAM integrated Segment Drivers to enter into the Power Save Mode.

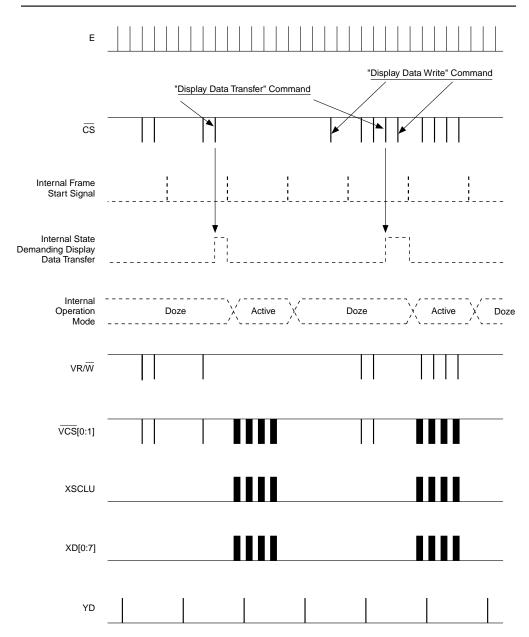


Figure 11. Display Data Manual Transfer Mode

Sleep Mode

SED1360 can enter into the Sleep Mode by setting the "SLEEP" signal low. This mode is prepared to shut the whole LCD Display Subsystem off with keeping the data in the SRAM. In the Sleep Mode, the chip will be in the following state.

- (1) The internal oscillation is displayed.
- (2) VA [0:14] output low, VCS [0:1] output high, VD [0:7] will be high impedance (pins are pulled high by the integrated pull-up resisters).
- (3) "FR", "YD", "LP", "XSCLU", "XD [0:7]" and "DOFF" output low. VOE, VR/W output high.
- (4) "D [0:7]", "E" "CS", "DT/CM" and "RESET" are internally masked but they also should be kept in invalid state.

OSCILLATION DESCRIPTION

SED1360's Hardware is optimized to display 320×200 LCD panel driven by RAM integrated Segment Drivers as a default chip configuration. This section describes how to determine the frequency which is input to OSC1 and how to generate the frequency by using the internal oscillation function.

OSC1 Frequency Determination

Conditions: 320 × 200 single scan LCD panel assumes 60 Hz as an LCD frame frequency

- (1) "LP" period is obtained by the following calculation.
- $60 \times 200 = 12$ kHz (2) If an external oscillator is used, the OSC1 frequency can be the same as "LP". Then 12 kHz is the required frequency for OSC1.
- (3) If an internal oscillator is used, the oscillation frequency has to be doubled to be 24 kHz. The internal oscillation might be unstable below 24 kHz. So if the required frequency is below 20 kHz, it is recommended to generate doubled frequency. There is a register which divides the internal oscillation frequency by two, four or eight.

Internal Oscillation

The following figure shows how to connect a capacitance and a resistance to the oscillation pins. The values of C and R have to be determined on the actual system.

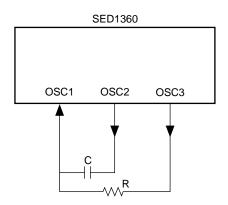


Figure 12. Internal Oscillation Implementation

COMMAND DESCRIPTION

SED1360 has several commands which can manipulate the data transfer procedure between CPU, SRAM, LCD Module and SED1360.

Display Size

command;	$DT/\overline{CM} = 0$
----------	------------------------

D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	1	01H
data: [- 1						

data; L		= 1	-	-	-	-		_
0	0	HC5	HC4	HC3	HC2	HC1	HC0	data1
VC7	VC6	VC5	VC4	VC3	VC2	VC1	VC0	data2

(1) This command sets the size of the display.

(2) This command requires two bytes of data which follow this command.

- (3) The first data defines a horizontal size of the display in byte unit, and the second data defines a vertical size of the display in line unit.
- (4) The horizontal size is set 320 dots and the vertical size is set 200 lines when the "RESET" signal is set low.

Table 17. Horizontal Size

Hor. size	HC [5:0]
8	00h
16	01h
24	02h
240	1Dh
320	27h
512	3Fh

Table 18. Vertical Size

VC [7:0]
00h
01h
02h
C7h
Efh
Ffh

Display Data Auto Transfer Mode

command; $DT/\overline{CM} = 0$

D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	1	0	02H

(1) This command configures the chip in the Display Data Auto Transfer Mode. Detailed functional explanation is described in "Display Data Auto Transfer Mode".

Display Data Manual Transfer Mode

command; $DT/\overline{CM} = 0$								
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	1	1	03H

(1) This command configures the chip in the Display Data Manual Transfer Mode. Detailed functional explanation is described in "Display Manual Transfer Mode".

Display Data Transfer

comma	and; D1	Г/СМ =	0	-				
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	1	0	0	04

(1) This command force the chip to go into the Active Mode so that the chip can start transferring the display data to the LCD Module. Detailed functional explanation is described in "Display Data Manual Transfer Mode". This command is executable in not only Display Data Manual Transfer Mode but also Display Data Auto Transfer Mode.

Display Data Write

command; $DT/\overline{CM} = 0$								_
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	1	0	1	05H
data; $DT/\overline{CM} = 1$							_	
*	*	*	*	*	*	*	*	data1
*	*	*	*	*	*	*	*	data2
*	*	*	*	*	*	*	*	datan
								-

- (1) This command enables the chip to receive the data as the display data which are stored in SRAM.
- (2) Data (data1,...datan) which follow this command are stored in SRAM until other commands are executed. If any other command breaks Display Data Write Access to the SRAM through the chip, this command has to be set again before starting Display Data Write Access.

CPU Write Start Address

command; $DT/\overline{CM} = 0$								
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	1	1	0	06H
data; D	DT/CM	= 1						_
WA7	WA6	WA5	WA4	WA3	WA2	WA1	WA1	data1
WA15	WA14	WA13	WA12	WA11	WA10	WA9	WA8	data2

(1) This command sets the SRAM address which CPU Display Data can be stored.

(2) This command requires two bytes of data which follow this command.

(3) The order of two byte data is that the first data is lower byte and second data is higher byte.

(4) The two bytes of data are temporarily set to the internal CPU Write Address Counter by this command. And the CPU Write Address Counter is increased by one, when CPU Display Data Write Access occurs.

Display Refresh Start Address

command; $DT/\overline{CM} = 0$

								_
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	1	1	1	07H
data;	data; DT/CM = 1							
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA1	data1
RA15	RA14	RA13	RA12	RA11	RA10	RA9	RA8	data2

(1) This command sets the SRAM address which SED1360 starts reading the data from, to transfer the display data to the LCD Module in Active Mode.

(2) This command requires two bytes of data which follow this command.

(3) The order of two byte data is that the first data is lower byte and second data is higher byte.

(4) The two bytes of data are set to the internal Display Data Refresh Address Counter by this command.

Display ON/OFF

command; $DT/\overline{CM} = 0$

D7	D6	D5	D4	D3	D2	D1	D0	
1	0	0	0	0	0	0	ON/ OFF	81H 80H

(1) This command controls " $\overline{\text{DOFF}}$ " output.

(2) If the ON/OFF is set to high "DOFF" outputs high. If the ON/OFF is set to low "DOFF" outputs low.

(3) The ON/\overline{OFF} is set to low at the reset.

LP Configuration

command; $DT/\overline{CM} = 0$								_
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	1	0	0	0	08H
data; DT/ CM = 1								-
0	0	0	0	0	0	FS1	FS0	data1

(1) This command selects "LP" period.

- (2) FS1,0 select the period of the signal "LP". The following table shows how to select the required frequency for the signal "LP".
- (3) FS [1,0] = [0,0] is set when the "RESET" signal is set low.

FS1	FS0	LP frequency
0	0	fosc
0	1	fosc/2
1	0	fosc/4
1	1	fosc/8

Table 19. LP Frequency

ERRORTA

This version has one error. About CPU Write Start Address, Values which CPU wrote is increased by one. So, you should set values which is decreased by one.

NOTICE

No parts of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind aristing out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty what anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions there of may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

Pay attention to the following point when using a semiconductor device. A semiconductor device will be deteriorated in its characteristic when it is exposed to light. For this reason, this IC might malfunction in some cases when exposed to the light. To avoid causing such malfunction, steps be taken to shield the light in its packaging or enclosure to prevent the surface, rear and side of this IC from being exposed to the light.

SED1580

Contents

INTRODUCTION	2-1
FEATURES	2-1
BLOCK DIAGRAM	2-2
PIN CONFIGURATION	2-3
ELECTRICAL CHARACTERISTICS	2-15
POWER SOURCE	2-19
EXAMPLE OF EXTERNAL CONNECTIONS	2-20

OVERVIEW

Description

The SED1580 is a 160-output, 5-level segment (column) driver for MLS (Multi-Line Selection) driving, able to drive with both high contrast and high speed. It is used in conjunction with the SED1751. When paired with the SED1751 it can be connected to the SED1360 LCD controller.

Because the SED1580 stores display data in its internal display RAM and generates LC drive signals, display data transmission from the controller can be suspended except for when there are changes to the display, thereby enabling an ultra low power display system.

The SED1580 uses a slim package, facilitating the construction of thinner LCD panels, and the low-voltage operation of its logic power source makes it appropriate to a wide range of applications.

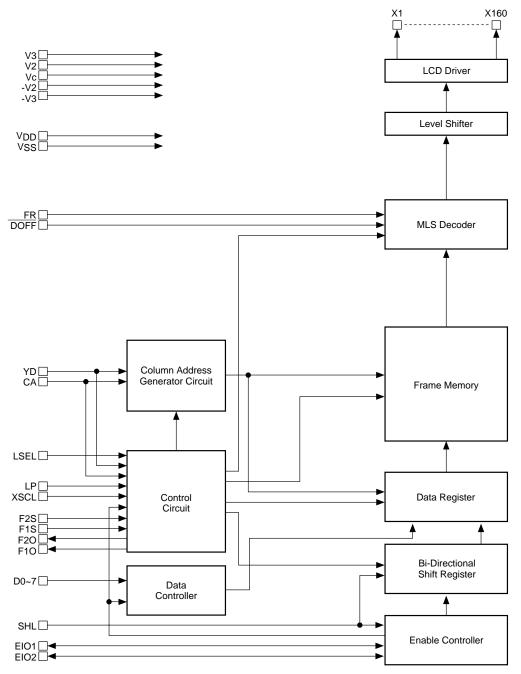
FEATURES

- Number of simultaneous line selects: 4 Lines
- Drive duty ratio (MAX) 1/240 duty
- LCD driver outputs 160 outputs
- Internal display RAM 160×240 bit
- Extremely low consumption current
- Power Source Voltages Logic System: 3.0 to 3.6V (Max)

LCD System: 6.0 to 7.2V (Max)

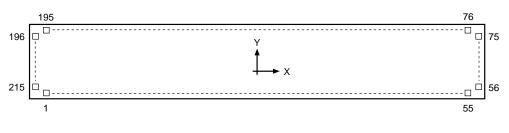
- High speed, low power data transmission possible through the 4-bit/8-bit switchable bus enable chain method
- Non-biased display off function
- Output shift direction pin select supported
- Slim chip shape

•


Shipment status:

In CHIP formSED1580D0B In TCP formSED1580T0A

This product is not designed for resistance to light or radiation


BLOCK DIAGRAM

Block Diagram

PIN CONFIGURATION

Pad Layout

Bump size (Unit: µm)

Pad number		
i ad number	Х	Y
56 to 215	67	63
1, 7 to 16, 18 to 36, 38 to 49, 55	74	74
2 to 6, 17, 37, 50 to 54	110	74
22	110	75

Bump specifications (reference values)

Items		Specifications	
nems	MIN	TYP	MAX
Bump size specifications	-4 μm	Bump size	+4 µm
Bump height specifications	–5.5 μm	22.5 μm	+5.5 μm
Bump strength	30g		

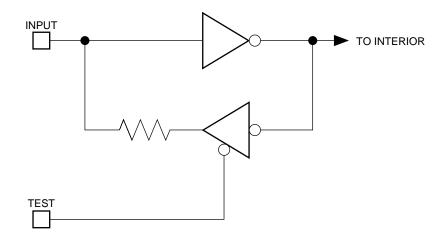
Pin Coordinates

SED1580 Bump Center Coordinates

Pin	Name	Х	Y	Pin	Name	Х	Y	Pin	Name	X	Y
1	EIO2	-5378	-1240	63	X8	6303	-265	125	X70	1075	1246
2	-V3	-5222		64	X9		-159	126	X71	972	
3	-V2	-5044		65	X10		-53	127	X72	870	
4	VC	-4866		66	X11		53	128	X73	767	
5	V2	-4688		67	X12		159	129	X74	665	
6	V3	-4510		68	X13		265	130	X75	562	
7	NC	-4322		69	X14		372	131	X76	460	
8	NC	-4144		70	X15		478	132	X77	357	
9	NC	-3966		71	X16		584	133	X78	255	
10	NC	-3789		72	X17		690	134	X79	152	
11	NC	-3611		73	X18		797	135	X80	50	
12	F10	-3449		74	X19		903	136	X81	-52	
13	F20	-2915		75	X20	♥	1009	137	X82	-154	
14	NC	-2266		76	X20	6098	1246	138	X83	-257	
15	SHL	-2086		77	X22	5995	1240	139	X84	-359	
16	TEST	-1906		78	X23	5893		140	X85	-462	
17	Vss	-1726		79	X24	5790		140	X86	-564	
	BSEL	-1546		80	X24 X25	5688		141	X87	-567	
18	LSEL								X88		
19 20		-1366		81	X26	5585		143		-769	
20	FR	-1186		82	X27	5483		144	X89	-872	
21	YD	-1006		83	X28	5380		145	X90	-974	
22	NC	-826		84	X29	5278		146	X91	-1077	
23	CA	-546		85	X30	5175		147	X92	-1179	
24	LP	-466		86	X31	5073		148	X93	-1282	
25	XSCL	-286		87	X32	4970		149	X94	-1385	
26	D0	163		88	X33	4868		150	X95	-1487	
27	D1	343		89	X34	4765		151	X96	-1590	
28	D2	523		90	X35	4663		152	X97	-1692	
29	D3	703		91	X36	4560		153	X98	-1795	
30	D4	883		92	X37	4458		154	X99	-1897	
31	D5	1063		93	X38	4355		155	X100	-2000	
32	D6	1243		94	X39	4253		156	X101	-2102	
33	D7	1423		95	X40	4150		157	X102	-2205	
34	F2S	1603		96	X41	4048		158	X103	-2307	
35	F1S	1783		97	X42	3945		159	X104	-2410	
36	DOFF	1963		98	X43	3843		160	X105	-2512	
37	Vdd	2143		99	X44	3740		161	X106	-2615	
38	NC	2387		100	X45	3637		162	X107	-2717	
39	NC	2564		101	X46	3535		163	X108	-2820	
40	NC	2742		102	X47	3432		164	X109	-2922	
41	NC	2920		103	X48	3330		165	X110	-3025	
42	NC	3098		104	X49	3227		166	X111	-3127	
43	NC	3275		105	X50	3125		167	X112	-3230	
43 44	NC	3453		105	X51	3022		168	X112 X113	-3332	
45	NC	3631		100	X52	2920		169	X113	-3435	
40	NC	3809		107	X53	2920		170	X114 X115	-3433	
40 47	NC	3986		108	X54	2715		170	X115	-3640	
47	NC	4164		110	X55	2612		171	X110 X117	-3640	
49 50	NC	4342		111	X56	2510		173	X118	-3845	
50	V3	4722		112	X57	2407		174	X119	-3947	
51	V2	4900		113	X58	2305		175	X120	-4050	
52	Vc	5077		114	X59	2202		176	X121	-4152	
53	-V2	5255		115	X60	2100		177	X122	-4255	
54	-V3	5433	🖌	116	X61	1997		178	X123	-4357	
55	EIO1	5629		117	X62	1895		179	X124	-4460	
56	X1	6303	-1009	118	X63	1792		180	X125	-4562	
57	X2		-903	119	X64	1690		181	X126	-4655	
58	X3		-797	120	X65	1587		182	X127	-4767	
59	X4		-690	121	X66	1485		183	X128	-4870	
60	X5		-584	122	X67	1382		184	X129	-4972	
61	X6		-478	123	X68	1280		185	X130	-5075	
62	X7	V V	-371	124	X69	1177	V	186	X131	-5177	I V

Units: µm

													Units: µm
Pin	Name	Х	Y		Pin	Name	Х	Y	[Pin	Name	Х	Y
187	X132	-5280	1246		197	X142	-6303	903		207	X152	-6303	-159
188	X133	-5382			198	X143		797		208	X153		-265
189	X134	-5485			199	X144		690		209	X154		-371
190	X135	-5587		2	200	X145		584		210	X155		-478
191	X136	-5690		2	201	X146		478		211	X156		-584
192	X137	-5792		2	202	X147		372		212	X157		-690
193	X138	-5895		2	203	X148		265		213	X158		-797
194	X139	-5997		12	204	X149		159		214	X159		-903
195	X140	-6100	♥	1	205	X150		53		215	X160	♥	-1009
196	X141	-6303	1009	2	206	X151		-53					


Pin Functions

Pin Functions Table

Pin Name	I/O	Function	# of Pins
X1 to X160	0	Segment (column) output to drive the LC. Output transition occurs on falling edge of LP.	160
BSEL	I	Display data input bit number select input. "L": 4 bit input. "H": 8 bit input.	1
LSEL	I	1/2 H operation select input. "L": Normal operation. "H": 1/2 H operation.	1
D0 to D7	I	Display data input. When 4 bit input is used, D0 to D3 is used, and D4 to D7 can be left NC.	8
XSCL	I	Display data shift clock input. Display data (D0 to D7) is read sequentially into the data register on the falling edge.	1
LP	I	 Display data latch clock input * Accepts into the LCD driver the control signal from the LC driver selected by the MLS decoder, doing so at the falling edge, and outputs the LC driver output. * Writes the contents of the data registers to the frame memory 4 LP at a time for the specified column address. * Resets the enable control circuit. * When 1/2 operation is selected, inputs the LP with twice the normal frequency. 	1
EIO1 EIO2	I/O	 Enable I/O * Is set to input or output depending on the SHL input level. * When output, the LP input is reset (in an "H" state), and when the 160 bit of display data has been read in, the signal automatically falls to L. * When connected in cascade, is connected to the next stage EIO input. 	1 1

Pin Name	I/O	Function	# of Pins							
SHL		Shift direction select and EIO terminal I/O control input. <u>WHEN BSEL = "L" (i.e. 4-bit input):</u> When the display data has been input to terminals (D3, D2, D1, D0) in the order (a, b, c, d) (e, f, g, h) (w, x, y, z), the relationship between the data and the segment is as shown in the table below:								
		SHL EIO 160 159 158 157 156 155 154 153 8 7 6 5 4 3 2 1 1 2 L a b c d e f g h s t u v w x y z Output Input H z y x w u t s h g f e d c b a Input Output	1							
		<u>WHEN BSEL = "H" (i.e., 8-bit input):</u> When the display data has been input to terminals (D7, D6, D5, D4, D3, D2, D1, D0) in the order (a, b, c, d, e, f, g, h) (s, t, u, v, w, x, y, z), the relationship between the data and the segment is as shown in the table below:								
		EIO SHL EIO 160 159 158 157 156 155 154 153 8 7 6 5 4 3 2 1 1 2 L a b c d e f g h s t u v w x y z Output Input H z y x w u t s h g f e d c b a Input Output H z y x w u t s h g f e d c b output								
DOFF	I	Forced blank input. When at "L" level, segment output is forced to Vc. The display RAM data is maintained.	1							
FR	I	LC drive output AC signal input. With terminator (*1).	1							
YD	I	Frame running start input * Resets the column address for writing or reading. * The number of running lines for writing (column address number) relating to frame memory is determined based on the number of LP pulses input during a single YD cycle.	1							
СА	I	Field delimiter signal input. With terminator (*1). This signal is input at the start of each new field, and is output by the SED1751.	1							
F1S F2S	I	Drive pattern cutover gap set input (F2S, F1S) = $(0,0)$, $(0,1)$, $(1,0)$, $(1,1)$ Cutover gap Field, 8H, 2H, 4H	1 1							
F1O F2O	0	Driver pattern select output for the Y driver. Connects to the common (row) driver.								
TEST	I	Test input. Normally fixed at "L".	1							
Vdd, Vss	Power	Power supply for logic.	1 each							
V3, V2, VC, -V2, -V3	Power	Power supply for LC driver. $V_3 > V_2 > V_C > -V_2 > -V_3$	5 each							

Note: *1 Regarding the terminator

FUNCTIONS The Functional Blocks Enable Control

When the enable signal is in a disable state (EIO = "H"), the internal clock signal and data bus are fixed at "L", placing the chip in power save mode.

When multiple segment drivers are used, the EIO terminals of the various drivers are cascade connected and the EIO terminal of the first driver is connected to "Vss".

The enable control circuit automatically senses when 160 bits worth of data have been received, and automatically sends the enable signal, thus eliminating the need for a control signal from the control LSI.

Bi-directional Shift Register

This sends the control signal for writing the display data DO - D7 to the data register. The order in which the display data is latched into the data register by the SHL input is returned (SIC? Reversed?).

Data Register

This is a 160 dot register which controls writing to the display RAM. It has 4 lines. At each falling edge of the LP signal it accepts display data from one line, and writes to the frame memory after it has stored 4 lines of data.

Frame Memory

This is static RAM (with peripheral circuits) that stores LC display data. It has a capacity of 160 segments by 240 lines.

MLS Decoder

This outputs the drive control signals necessary for the 4 MLS driving. The control signal is set by field information provided by the four lines of display data, FR, DOFF, and the control circuit.

LCD Driver

The LCD driver outputs the LC drive voltage. The driver voltage is selected by the control signal from the 5 levels V3, V2, VC, -V2 and -V3, determined by the MLS decoder.

Column Address Generating Circuit

When writing to or reading from frame memory, this outputs the column address corresponding to the location of the RAM in frame memory.

Level Shifter

This is a level interface circuit used to convert signal levels when signals are propagated from low-voltage parts to high-voltage parts.

Data Control

This accepts display data input when enabled, and sends it to the data register.

Control Circuit

This determines the self refresh rate, enables the data register to write to the display RAM, controls the output of the column address generator, and performs field control on the MLS decoder.

The Self Refresh Function

Setting the Self Refresh Mode

"Self refresh mode" refers to a situation where the transmission of display data from the display controller to the SED1580 is suspended when the content of the display does not change, and where the SED1580 automatically senses this and enters a power down display mode.

To place the SED1580 in the self refresh mode maintain the shift clock XSCL at the "L" level during four horizontal display periods (4x the LP signal period) after the completion of the input of the display data of an n + 3 line.

When the XSCL is suspended, the power is reduced, so display data inputs D0 - D7 are suspended, as is transmission from the display controller, being set to "H" or "L". At this time the display controller must send LP, YD, or FR signals periodically to the SED1580 as it does when data is being sent. The SED1580 receives these signals, periodically reads display data from its internal RAM, and refreshes the display. The display off function is operational even when in the self refresh mode.

Getting Out of the Self Refresh Mode

In order to get out of the self refresh mode, the display controller inputs the shift clock XSCL to the SED1580 for four or more horizontal display periods with the timing of the data transmission from the falling edge of the LP signal at the time of an n + 3 line. With the falling edge of the LP signal after the fourth horizontal period after getting out of this mode, the display data transmitted during the four horizontal display intervals is written to frame memory.

When SED1580s are cascade connected, if the number of XSCL clocks input does not correspond to the cascade connections, then not all of the SED1580s will be released from self refresh mode.

n lines	1, 5, 9,233, 237 (1 + multiples of 4)
n + 1 lines	2, 6, 10,234, 238 (2 + multiples of 4)
n + 2 lines	3, 7, 11,235, 239 (3 + multiples of 4)
n + 3 lines	4, 8, 12,236, 240 (Multiples of 4)

Note: When the number of lines is 240:

The Relationship Between Drive Output Voltages and Display Data

F20, F10, and the common drive voltage have the following relationships:

FR		l	-		н							
F10 F20	1	0 1 1 0		0	1	0	1	0				
n line	V1	V1	-V1	V1	-V1	-V1	V1	-V1				
n + 1 line	-V1	V1	V1	V1	V1	-V1	-V1	-V1				
n + 2 line	V1	-V1	V1	V1	-V1	V1	-V1	-V1				
n + 3 line	V1	V1	V1	-V1	-V1	-V1	-V1	V1				

Note: Voltage relationships: V1 > VC > -V1 (VC is the middle voltage level)

The transitions in (F2O, F1O) within each field when the drive pattern changes:

First field	In the order $(1,1) \rightarrow (1,0) \rightarrow (0,1) \rightarrow (0,0) \rightarrow (1,1) \rightarrow (1,0) \rightarrow (0,1) \rightarrow (0,0)$
Second field	In the order $(1,0) \rightarrow (0,1) \rightarrow (0,0) \rightarrow (1,1) \rightarrow (1,0) \rightarrow (0,1) \rightarrow (0,0) \rightarrow (1,1)$
Third field	In the order $(0,1) \rightarrow (0,0) \rightarrow (1,1) \rightarrow (1,0) \rightarrow (0,1) \rightarrow (0,0) \rightarrow (1,1) \rightarrow (1,0)$
Fourth field	In the order $(0,0) \rightarrow (1,1) \rightarrow (1,0) \rightarrow (0,1) \rightarrow (0,0) \rightarrow (1,1) \rightarrow (1,0) \rightarrow (0,1)$

This is determined by the values of the inputs (F2S, F1S) during the changeover interval. The relationship between F2S and F1S and the changeover interval is as follows:

When the changeover interval is selected for each field, the value stored in the field is the first value shown in the shown in the (F2O, F1O) change table above (the value on the left).

F2S	F1S	Changeover Interval
0	0	Field
0	1	8-line interval
1	0	2-line interval
1	1	4-line interval

The relationship between the display data, the LC AC signal FR, and the segment output voltage is as shown below. The output voltage changes in conjunction with the F20, F10 values that determine the common drive voltage.

Display data: 0 = not lit, 1 = lit

When FR =	"L"																
	n line	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Display	n + 1 line	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
Line	n + 2 line	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	n + 3 line	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	(F2O, F1O) = (1,1)	V2	Vc	Vc	-V2	V3	V2	V2	Vc	Vc	-V2	–V2	-V3	V2	Vc	Vc	–V2
Drive	(F2O, F1O) = (1,0)	V2	Vc	V3	V2	Vc	-V2	V2	Vc	Vc	-V2	V2	Vc	-V2	-V3	Vc	–V2
Voltage	(F2O, F1O) = (0,1)	V2	Vc	Vc	-V2	Vc	-V2	-V2	-V3	V3	V2	V2	Vc	V2	Vc	Vc	–V2
	(F2O, F1O) = (0,0)	V2	Vз	Vc	V2	Vc	V2	-V2	Vc	Vc	V2	-V2	Vc	-V2	Vc	-V3	-V2

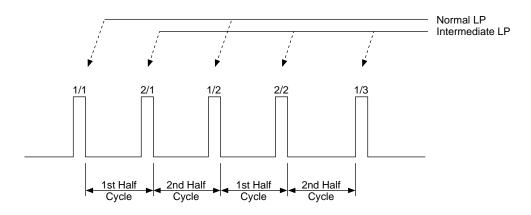
When FR = "H"

	n line	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Display	n + 1 line	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
Line	n + 2 line	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	n + 3 line	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	(F2O, F1O) = (1,1)	-V2	Vc	Vc	V2	-V3	-V2	-V2	Vc	Vc	V2	V2	V3	-V2	Vc	Vc	V2
Drive	(F2O, F1O) = (1,0)	–V2	Vc	-V3	-V2	Vc	V2	-V2	Vc	Vc	V2	-V2	Vc	V2	V3	Vc	V2
Voltage	(F2O, F1O) = (0,1)	-V2	Vc	Vc	V2	Vc	V2	V2	V3	-V3	-V2	-V2	Vc	-V2	Vc	Vc	V2
	(F2O, F1O) = (0,0)	-V2	-V3	Vc	-V2	Vc	-V2	V2	Vc	Vc	-V2	V2	Vc	V2	Vc	V3	V2

When $\overline{\text{DOFF}}$ = "L", all drive outputs are tied to the Vc level.

LC Drive Output Voltages During 1/2 H Operation

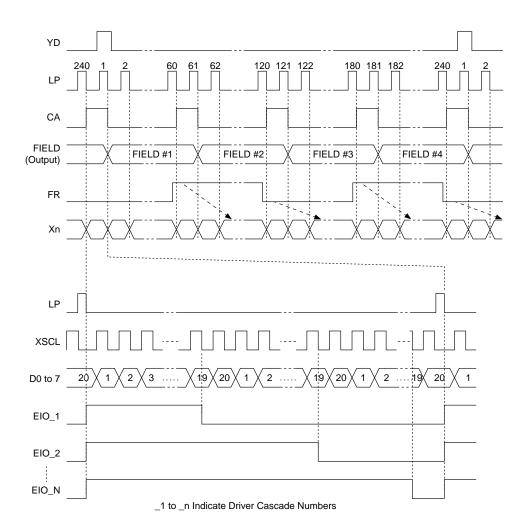
When LSEL is set to "H" and twice the normal frequency is applied to the LP input terminal, then the chip functions in 1/2 mode. Each time LP is input the field data changes, thus the output changes at the center point of the 1H interval. However, the input of display data to the D1580, writing of display data to the frame memory, and read in display data from the frame memory is the same as in the normal drive.

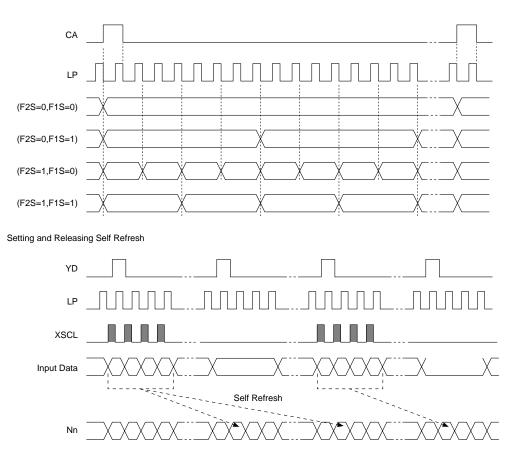

The Y driver output changes according to the field data output by the X driver with each LP input, causing a transition at the center point of the 1H interval; however, the transition of the drive line occurs each 1H, just as in the normal drive.

During 1/2 H operation, the changes of the F20, F10 in each field are as shown in the table below. In this table the statuses of the F20 and F10 are represented as given below:

(F2O, F1O) = (1,1)	(1)
(F2O, F1O) = (1,0)	(2)
(F2O, F1O) = (0,1)	(3)
(F2O, F1O) = (0,0)	(4)

	First Half Cycle	Second Half Cycle	First Half Cycle	Second Half Cycle	
Field #1	(4)	(1)	(1)	(4)	
Field #2	(1)	(4)	(4)	(1)	This pattern is
Field #3	(3)	(2)	(2)	(3)	repeated hereafter.
Field #4	(2)	(3)	(3)	(2)	


During 1/2H operation, the values of F2S and F1S are ignored.


The segment output voltage during 1/2 H operation also follows the display data of 4.3 and the diagram showing the relationship between the LC AC signal FR and the segment output voltage. In the signal B/ A that indicates the number of the LP, the "A" in the figure indicates LP during a normal drive, and "B" differentiates between the normal LP and the intermediate LP (where B = 1 is normal and B = 2 is intermediate).

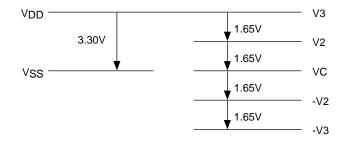
Timing diagram (assuming 1/240 duty)


(This diagram provided only as a reference.) **Normal Drive Timing**

F2O, F1O Change Timing

1/2 H Drive Timing

ELECTRICAL CHARACTERISTICS

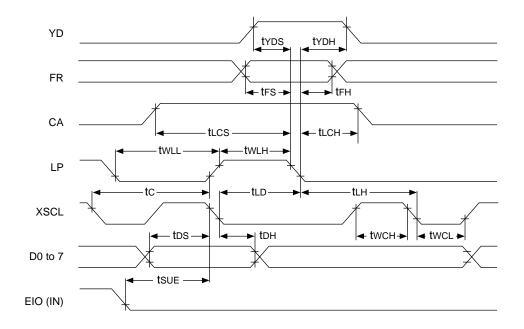

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
Power voltage (1)	Vss	-7.0 to +0.3	V
Power voltage (2)	-V3	-8.0 to +0.3	V
Input voltage	Vi	Vss -0.3 to VDD +0.3	V
Output voltage	Vo	Vss -0.3 to VDD +0.3	V
EIO output current	IO1	20	mA
Operating temperature	Topr	-20 to +85	°C
Storage temperature 1	Tstg1	-65 to +150	°C
Storage temperature 2	Tstg2	-55 to +100	°C

Note 1: The voltages are all relative to VDD = 0V.

Storage temperature 1 is the recommendation for the chip itself or for the chip and a plastic package, and storage temperature 2 is the recommendation for the chip mounted on TCP. Ensure that the relationship between V3, V2, VC, -V2 and -V3 is always as follows: Note 2:

Note 3: $V_{DD} \ge V_3 > V_2 > V_C > -\hat{V_2} > -V_3$

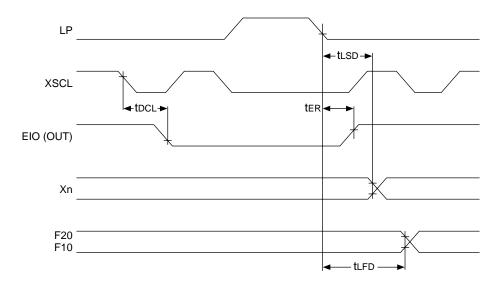

DC Characteristics

	Unless	otherwi	se specified, VDD	= V3 = 0	/, Vss = -3	3.3V ± 0.	3V, Ta	= -20 to	85°C
Parame	ter	Symbol	Conditions	Conditions		Min	Тур	Max	Units
Power voltage	e (1)	Vss			Vss	-3.6	-3.3	-3.0	V
Power voltage	e (2)	-V3	Vss = -3.0V to -3.6V	Vss = -3.0V to -3.6V		-7.2	-6.4	-6.0	V
Power voltage	9 (3)	-V2	Vss = -3.0V to -3.6V	/	-V2		(–V3)* 3/4		V
Power voltage	e (4)	Vc	Vss = -3.0V to -3.6V	/	Vc		(–V3)* 2/4		V
Power voltage	e (5)	V2	Vss = -3.0V to -3.6V	1	V2		(-V3)* 1/4		V
High-level inp	ut voltage	Vін	Vss =	EIO1, EIO2 LSEL, FR, Y	, SHL, BSEL, /D, CA, LP,	0.2* Vss			V
Low-level inpu	it voltage	VIL	-3.3V to -3.6V	XSCL, D0 to F2S, DOFF				0.8* Vss	V
High-level out voltage	put	Vон	Vss =	Іон = -0.6mA	EIO1, EIO2	Vdd - 0.4			V
Low-level outp voltage	out	Vol	-3.3V to -3.6V	IoL = 0.6mA	F10, F20			Vss + 0.4	V
Input leakage	current	L	$V_{SS} \leq V_{IN} \leq V_{DD} \qquad \begin{array}{c} SHL, BSEL, \\ YD, CA, LP, \\ D0 \text{ to } D7, F' \\ \hline DOFF \end{array}$, XSCL,			5.0	μΑ
I/O leakage cu	urrent	ILI/O VSS ≤ VIN ≤ VDD EIO1, EIO		EIO1, EIO2				5.0	μΑ
Static current (1) Issq		Issq	VIN = VDD or VSS VSS					10	μA
Static current	(2)	—I зт	$-V_3 = -6.6V$ $-V_3$					5	μA
Output resistance RsEG V3 Vc		$\begin{array}{l} \Delta V_{ON} = 0.5V, V_{SS} = -3.30V, \\ V_3 = V_{DD} = 0V, V_2 = -1.65V, \\ V_C = -3.30V, -V_2 = -4.95V, \\ V_3 = 6.60V \end{array}$		X1 to X160		0.8	1.5	KΩ	
Average operating consumption current (1)	Data Transfer Mode	Isst	Vss = $-3.30V$, V3 = VDD = $0V$, V2 = $-1.65V$, Vc = $-3.30V$ -V2 = -4.95V, $-V3 = -6.60VVIN = VDD or Vss, fxsct = 480 kHz,fLP = 12kHz, fFR = 30Hz,Input Data: checker pattern,8-bit, 320 \times 200, no load$		Vss		70	100	μΑ
	Self Refresh Mode	Isss	XSCL = Vss Other parameters are the same as for Isst				50	70	μΑ
Average operating consumption current (2) -I 3T Param Isst		Parameters are the Isst	same as for	-V3		10	20	μΑ	
		CI	Freq = 1 MHz	SHL, BSEL YD, CA, LP D0 to D7, F DOFF	, XSCL,			8	pF
		CI/O	Ta = 25°C Chip alone	EIO1, EIO2				15	pF
Output terminal		со		F10, F20				7	pF

Liploco othorwico or contribute 1/2 = 0/1/2 and 1/2 = -3/2/1 = 0.3/1 = -20 to 85°

AC Characteristics

Input Timing Characteristics

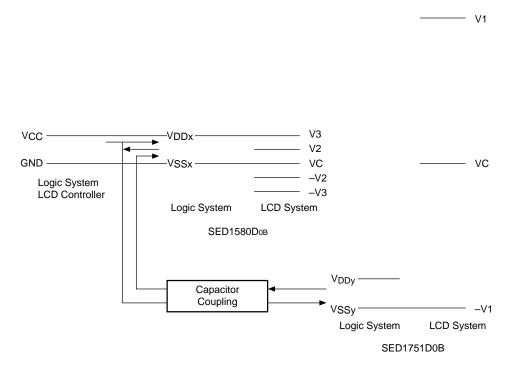


Parameter	Symbol	Conditions	Min	Max	Units
XSCL period	tc		150		ns
XSCL high level pulse width	twcн		20		ns
XSCL low level pulse width	twcL		20		ns
Data setup time	tos		10		ns
Data hold time	tон		10		ns
Time between XSCL and LP fall	tld		10		ns
Time between LP and XSCL fall	t∟н		150		ns
LP high level pulse width	twLH		100		ns
LP low level pulse width	twll		100		ns
FR setup time	trs		25		ns
FR hold time	tгн		10		ns
EIO setup time	tsue		30		ns
YD setup time	tyds		50		ns
YD hold time	tydh		50		ns
CA setup time	t∟cs		10		μs
CA hold time	t LCH		-200	200	ns
Input signal rise time and fall time	tr, tf			30	ns

Note: CA is only effective at the first LP in the field. Assuming 1/N duty, the "first LP" refers to 1 and 1+ (multiples of (N/4).

FR is accepted at the falling edge of LP, and its state is reflected into the output that changes at the falling edge the following 1H.

Output Timing Characteristics



VSS = -3	$.3V \pm 0.3V$,	VIH = 0.2 VSS, VIL	= 0.8 VSS,	-V3 = -6.6	$V \pm 0.6V$
Parameter	Symbol	Conditions	Min	Max	Units
EIO reset time	t er			80	ns
EIO output delay time	t DCL	C∟ = 15 pF (EI0)		90	ns
$LP \rightarrow Xn$ output delay time	t lsd	CL 100 pF		400	ns
$LP \rightarrow F2O$, F1O output delay time	t lfd	CL = 100 pF		3000	ns

Vss = $-3.3V \pm 0.3V$, Vih = 0.2 Vss, Vil = 0.8 Vss, $-V_3 = -6.6V \pm 0.6V$

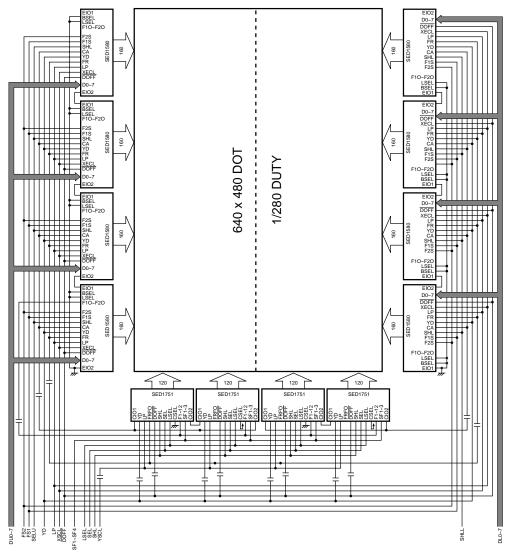
POWER SOURCE

The Relationship Between Voltage Levels

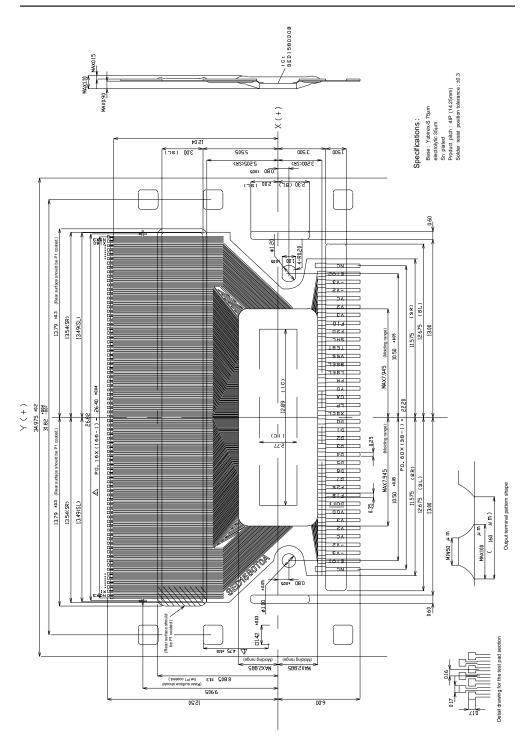
When the SED1580 and SED1751 are used to structure an extremely low-power module system, the power supplies for the SED1580 logic systems and LCD systems, and the power supplies for the LCD controller should have the voltage relationships shown in the figure above.

In this case, caution is required when sending signals to the logic system. Specifically, use caution with the following:

LCD Controller	\rightarrow	SED1580	Direct connection
LCD Controller	\rightarrow	SED1751	Requires a capacitor coupling
SED1580	\rightarrow	SED1751	Requires a capacitor coupling
SED1751	\rightarrow	SED1580	Requires a capacitor coupling


Cautions During Power Up and Power Down

This LSI requires special attention to be paid to the sequence in which the power supplies are turned on. Ensure that the power supply ON sequence is always one of the sequences below:


Logic system ON \rightarrow First LP cycle \rightarrow LCD system ON or Logic system ON $\rightarrow \overline{\text{DOFF}} = \text{"L"} \rightarrow \text{LCD}$ system ON $\rightarrow \text{First}$ LP cycle (*2) $\rightarrow \overline{\text{DOFF}} = \text{"H"}$

After applying power to the SED1580, the 2 frame interval is not displayed correctly because the number of LP cycles input in the first frame is counted and used to determine an address in the frame memory. This requires the use of DOFF. Consequently, display data should be transmitted at the point marked with (*2). For power down, use the LCD system OFF \rightarrow Logic system OFF sequence, or power both down at the same time.

EXAMPLE OF EXTERNAL CONNECTIONS

Controller

EPSON

Notes

Regarding this development specification, take the followings into consideration.

- The contents of this development specification may be revised without prior notice.
 This development specification does not guarantee or grant the industrial property rights or any other rights.

The application examples contained in this development manual are given in order to help customers understand the product. Note that we shall not take any responsibility regarding problems on circuits. Regarding the use of semiconductor elements, take the followings into consideration.

[Precautions on Handling Optical Parts]

Following the solar cell theory, the characteristics of a semiconductor element changes as it is exposed to the light. Therefore, if this IC is exposed to the light, malfunction may occur.

- Design and mount the IC so that it won't be exposed to the light when in use.
 Design and mount the IC so that it won't be exposed to the light in the inspection process.
- (3) Be concerned about shading of all the surfaces (front, back and side) of the IC.

SED1590

Contents

OVERVIEW	3-1
TERMINAL FUNCTIONS	3-3
EXPLANATION OF FUNCTIONS	3-9
COMMANDS	3-18
ELECTRICAL CHARACTERISTICS	3-26
EXAMPLE OF USE	3-31

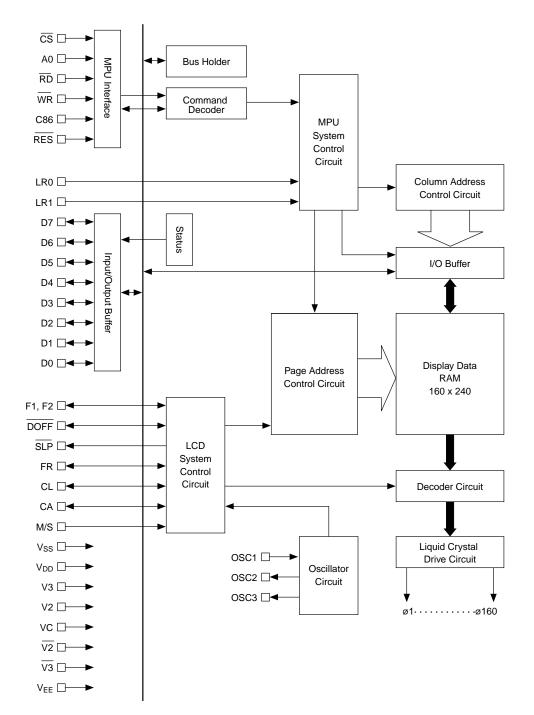
OVERVIEW

Description

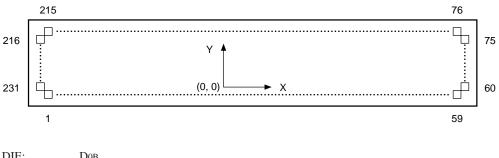
The SED 1590 is a high image quality mid-display-size-compatible RAM-integrated segment (column) driver that boasts the low power consumption required by portable devices. It is used in a set with the SED 1751 common (row) driver and the SCI 7500 power supply IC.

The SED 1590 can be connected directly to the MPU bus. It stores in its internal display RAM memory the 8-bit parallel display data sent to it from the MPU and then issues the LCD drive signals independent of the MPU. The chip has 160 LCD drive outputs and is equipped with 160 out \times 240 line internal display RAM. Furthermore, because there is a one-to-one correspondence between picture elements on the LCD display and internal RAM dots, displays can be created with a high degree of flexibility.

Because it is not necessary to supply an external clock when writing to the SED 1590 internal RAM from the MPU side, these operations can be performed with an absolute minimum power consumption. Moreover, even when multiple SED 1590 chips are used, single chip select is supported; thus it is not necessary for the MPU to distinguish between the multiple chips.


The SED 1590 has a slim form that is useful in creating thinner LCD panels. It can operate using a low-voltage logic power supply system, and is thus suited to a broad range of applications.

Features


 Number of LCD drive outputs: 1 0 out Drive duty ratio (MAX):
• RAM data displayed directly using the display data RAM.
• RAM bit data (when in normal display mode):
"1" - On
• Internal RAM capacity:
• High speed 8-bit MPU interface
• Compatible with both 80x86 series and 68000 series MPUs.
• Single chip select when multiple chips are used.
Rich command functions.
Extremely low consumption current.
• Power supply
• Logic system: 2.7 to 3.6 V
• LCD system: 5.4 to 7.2 V
 Non-biased display off function
Slim chip shape
• Package: DIE
ТСР ТХХ
• This product is not designed for resistance to rediction or exposure to l

• This product is not designed for resistance to radiation or exposure to light.

Block Diagram

TERMINAL FUNCTIONS Terminal Layout Diagram Dob

DIE.	DOB
Chip size:	$14.82 \text{ mm} \times 2.50 \text{ mm}$
Bump size:	67 μm × 80 μm (min.)
Bump pitch:	100 μm (min.)
Bump height:	$22.5 \pm 5.5 \ \mu m$

Terminal Coordinates D0B

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-1130 -837 -693 -549 -369 -268 -167 -66 33 134 235
2 VC -6548 60 V3 7290 3 V2 -6404 61 VEE 1 4 V3 -6260 62 NC 1 5 Vss -6025 63 NC 1 6 OSC1 -5846 64 O160 1 7 OSC2 -5588 65 O159 1 8 OSC3 -5292 66 O158 1 9 Vss -5016 67 O157 1	-837 -693 -549 -369 -268 -167 -66 33 134
4 V3 -6260 62 NC 5 Vss -6025 63 NC 6 OSC1 -5846 64 O160 7 OSC2 -5588 65 O159 8 OSC3 -5292 66 O158 9 Vss -5016 67 O157	-549 -369 -268 -167 -66 33 134
5 Vss -6025 63 NC 6 OSC1 -5846 64 O160 7 OSC2 -5588 65 O159 8 OSC3 -5292 66 O158 9 Vss -5016 67 O157	-369 -268 -167 -66 33 134
6 OSC1 -5846 64 O160 7 OSC2 -5588 65 O159 8 OSC3 -5292 66 O158 9 Vss -5016 67 O157	-268 -167 -66 33 134
7 OSC2 -5588 65 O159 8 OSC3 -5292 66 O158 9 Vss -5016 67 O157	-167 -66 33 134
8 OSC3 -5292 66 O158 9 Vss -5016 67 O157	-66 33 134
9 Vss -5016 67 O157	33 134
	134
10 NC -4847 68 O156	235
11 NC –4703 69 O155	
12 CS –4507 70 O154	336
13 <u>A0</u> –4344 71 O153	437
14 RD -4181 72 O152	537
15 <u>WR</u> –4019 73 O151	638
16 RES -3856 74 O150	739
17 Vss –3703 75 NC V	840
18 C86 -3508 76 NC 7007	1130
19 VDD -3355 77 O149 6904	
20 LR0 -3160 78 O148 6804	
21 Vss -3001 79 0147 6703	
22 LR1 –2805 80 O146 6602	
23 VDD -2652 81 O145 6501	
24 MS -2453 82 0144 6400	
25 Vss -2295 83 0143 6300	
26 D0 -1926 84 O142 6199	
27 D1 -1609 85 O141 6098	
28 VDD -1309 86 O140 5997 29 D2 -1055 87 O139 5896	
29 D2 -1055 87 O139 5896 30 D3 -728 88 O138 5796	
30 D3 -720 88 0138 3790 31 D4 -432 89 0137 5695	
31 D4 -432 39 0137 3033 32 D5 -104 90 0136 5594	
33 D6 191 91 0135 5493	
34 D7 518 92 0134 5392	
35 FR 858 93 0133 5292	
36 CL 1154 94 0132 5191	
37 Vss 1413 95 0131 5090	
38 F1 1882 96 0130 4989	
39 F2 2178 97 0129 4888	
40 DOF 2506 98 0128 4788	
41 CA 2802 99 O127 4687	
42 <u>SLP</u> 3191 100 O126 4586	
43 COD0 3519 101 O125 4485	
44 COD1 3815 102 O124 4384	
45 COD2 4142 103 O123 4284	
46 COD3 4438 104 O122 4183	
47 COD4 4766 105 O121 4082	
48 NC 5002 106 O120 3981	
49 NC 5146 107 O119 3880	
50 NC 5290 108 O118 3780	
51 NC 5434 109 0117 3679	
52 NC 5578 110 0116 3578	
53 NC 5722 111 0115 3477	
54 NC 5866 112 0114 3376	
55 NC 6010 113 0113 3276	
56 V3 6260 114 0112 3175	
57 V2 6404 115 0111 3074	∣ ↓
58 VC 6548 ▼ 116 O110 2973	V

Pin	Name	Х	Y	Pin	Name	X	Y
117	O109	2872	1130	175	O51	-2973	1130
118	O108	2772		176	O50	-3074	1
119	O107	2671		177	O49	-3175	
120	O106	2570		178	O48	-3276	
121	O105	2469		179	047	-3376	
122	O104	2368		180	O46	-3477	
123	O103	2268		181	O45	-3578	
124	O102	2167		182	O44	-3679	
125	O101	2066		183	O43	-3780	
126	O100	1965		184	O42	-3880	
127	O99	1864		185	O41	-3981	
128	O98	1764		186	O40	-4082	
129	097	1663		187	O39	-4183	
130	096	1562		188	O38	-4284	
131	O95	1461		189	037	-4384	
132	O94	1360		190	O36	-4485	
133	O93	1260		190	O35	-4586	
134	O92	1159		191	033 034	-4687	
134	O92 O91	1058		192	O34 O33	-4007	
135	091	957		193	O33 O32	-4788	
130	O90 O89	856		194	032	-4989	
137	O88	756		195	O30	-5090	
139	087	655		190	O30 O29	-5191	
139	087 086	554		197	O29 O28	-5292	
141	O85	453		199	027	-5392	
142	O84	352		200	O26	-5493	
143	O83	252		201	O25	-5594 -5695	
144	O82	151		202	024	1	
145	O81	50		203	023	-5796	
146	O80	-50		204	022	-5896	
147	079	-151		205	O21	-5997	
148	078	-252		206	O20	-6098	
149	077	-352		207	O19	-6199	
150	076	-453		208	018	-6300	
151	075	-554		209	017	-6400	
152	074	-655		210	O16	-6501	
153	073	-756		211	O15	-6602	
154	072	-856		212	014	-6703	
155	071	-957		213	013	-6804	
156	O70 O69	-1058		214 215	O12 NC	-6904 -7007	V
157		-1159		215	NC	-7290	* 840
158	O68	-1260				-7290	
159	O67	-1360		217	011		739
160	O66	-1461		218	010		638 527
161	O65	-1562		219	09		537
162	O64	-1663		220	08		437
163	O63	-1764		221	07		336
164	O62	-1864		222	06		235
165	O61	-1965		223	05		134
166	O60	-2066		224	04		33
167	O59	-2167 -2268		225	03		-66 167
168	O58			226	02		-167
169	057	-2368		227	01		-268
170	O56	-2469		228	NC		-369
171	O55	-2570		229	NC		-549
172	054	-2671		230	VEE	🖌	-693
173	O53	-2772		231	V3		-837
174	O52	-2872	▼				

Explanation of Terminals

Power Supply Terminals

Terminal Name	I/O	Explanation	No. of Terminals
Vdd	Power Supply	These are connected to Vcc (the system power supply).	3
Vss	Power Supply	These are connected to the system GND.	6
Vee	Power Supply	These are the liquid crystal drive system load-side power supplies. VDD–VEE.	2
V3, V2, VC, -V2, -V3	Power Supply	These are the liquid crystal drive multi-level power supplies. The relationships between the various levels must be: $VDD \ge V3 \ge V2 \ge VC > -V2 > -V3 \ge VEE$	2 Each

Terminals Pertaining to the MPU

Terminal Name	I/O	Explanation	No. of Terminals
D7 to D0	I	These comprise the 8-bit bi-directional data bus, and are connected to a standard 8-bit or 16-bit MPU data bus.	8
A0	Ι	The least significant bit of the address bus of a normal MPU is connected to discern between data and commands. H: Inidcates that D7 to D0 are control data. L: Indicates that D7 to D0 are display data.	1
RES	I	When initial settings are restored by placing $\overline{\text{RES}}$ to "L". The reset operation is performed based on the $\overline{\text{RES}}$ level. Schmidt trigger.	1
CS	I	This is the chip select signal. In the SED 1590, even if multiple chips are used, the \overline{CS} is a shared line. When \overline{CS} is in a non-active state, D7 to D0 enter a high-impedance state.	1
RD (E)	I	 When connected to an 80x86 series MPU Active "L" This terminal connects to the RD signal of the 80x86 MPU, and while this signal is low, the data bus is in an output state. When connected to a 68000 series MPU Active "H" This serves as the 68000 MPU-enabled clock input terminal. 	1
WR (R/W)	I	 When connected to an 80x86 system MPU Active "L" This terminal is connected to the WR signal of the 80x86 series MPU. The data bus signals are latched on the rising edge of the WR signal. When connected to a 68000 series MPU This is the read/write control input terminal. R/W = "H": Read R/W = "L": Write 	1
C86	I	This is the MPU interface switch terminal. C86 = "H": The 68000 MPU interface. C86 = "L": The 80x86 series MPU interface.	1

Liquid Crystal Drive Circuit Signals

Terminal Name	I/O	Explanation				
OSC1	I	This is for the oscillator circuit. When an external input is used, it is input to this terminal. Connect to "H" or "L" in case of slave operations.				
OSC2	0	This is a terminal for the oscillator circuit. When the internal oscillator circuit is used, connect to OSC1 through a capacitor. Make this terminal open in case of slave operations.				
OSC3	0	This is a terminal for the oscillator circuit. When the internal oscillator circuit is used, connect to OSC1 through a resistor. Make this terminal open in case of slave operations.				
M/S	I/O	This terminal selects master/slave operation. In master mode, signals required for the liquid crystal display are output, while during slave operation signals that are required to the liquid crystal display are input, thereby synchronizing the liquid crystal display system. M/S = "H": Master operation M/S = "L": Slave operation	1			
CL	I/O	This is the display clock input/output terminal. When using master/slave mode, this is connected to the various CL terminals. This is also connected to the common driver YSCL terminals. When M/S = "H": Output When M/S = "L": Input	1			
FR	I/O	This is the liquid crystal alternating current input/output terminal. When using master/slave mode, this is connected to the various FR terminals. This is also connected to the common driver FR terminals. When M/S = "H": Output When M/S = "L": Input	1			
CA	I/O	This is the field start signal. When using master/slave mode, this is connected to the various CA terminals. This is also connected to the common driver CA terminals. When M/S = "H": Output When M/S = "L": Input	1			
DOF	I/O	This is the liquid crystal display blanking control terminal. When using master/slave mode, this is connected to the various DOFF terminals. This is also connected to the common driver DOFF terminals. When M/S = "H": Output When M/S = "L": Input	1			
SLP	0	This is the sleep control terminal. When set to a sleep status by the MCU, both the master and the slave circuits enter the sleep mode. This terminal is not connected between the master and the slave. Connect to the SCI 7500 $\overline{\text{SLP}}$ terminal for the master only.	1			
F1, F2	I/O	These are the drive pattern signal input/output terminals. When in master/slave mode, these are connected to the F1 and F2 terminals respectively. These are connected to the common driver F1 and F2 terminals. When M/S = "H": Output When M/S = "L": Input	1 each			
On	0	Liquid crystal segment drive outputs	160			

Control Terminals

Terminal Name	I/O	Explanation	No. of Terminals
LR0, LR1	I	When multiple SED1590 chips are used, these terminals specify the various segment driver layout positions. Using this information, the SED1590 determines the relationships between the various segments and the position in internal RAM.	1 each
COD0 COD1 COD2 COD3 COD4	0	These comprise the 5-bit output port. The status of this port can be controlled by commands from the MPU. They can be used for controls of the electronic volume control knobs and other applications.	1 each

EXPLANATION OF FUNCTIONS

The MPU Interface

The SED1590 exchanges data with the MPU through an 8-bit bi-directional data bus (D7 to D0). By setting the C86 terminal to "H" or "L" the SED1590 can be connected directly to the MPU bus for either the 80x86 system MPUs or the 68000 system MPUs, as shown in Table 1.

Table 1

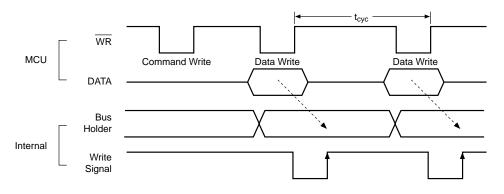
C86	Туре	CS	A0	RD	WR	D0 to D7
Н	68000 MPU bus	CS	A0	E	R/W	D0 to D7
L	80×86 MPU bus	CS	A0	RD	WR	D0 to D7

The SED1590 identifies data bus signals using combinations of the A0, E, R/W and $(\overline{RD}, \overline{WR})$ signals as shown in Table 2.

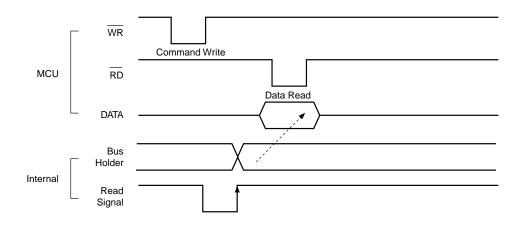
Table 2

Common	68 System	80 System		
A0	R/W	RD	WR	Function
1	0	1	0	Write display data
0	1	0	1	Read status
0	0	1	0	Write to internal register (command)

The SED1590 possesses a function that automatically identifies the segment driver position by the LR0 and LR1 terminals even when multiple SED1590 chips are used, so from the perspective of the MPU, there is no need for the MPU to identify the individual segment drivers. As a result, the \overline{CS} chip select terminals can share a common line from the outside. The LR will be discussed below.


When the chips are not selected, D0 to D7 enter a high impedance state and terminals A0, \overline{RD} , and \overline{WR} inputs are disabled.

Accessing the Display Data RAM and the Internal Registers.


The SED1590 uses a type of pipeline process between LSIs through the bus holders in the internal data bus in order to match the operating frequencies between the MPU and the display data RAM and internal registers. Consequently, when viewed from the MPU side, there are no constraints on accessing the SED1590 in terms of the display data RAM access time (tACC), but rather the cycle time is dominant. When the cycle time is not adequate, then the MPU may insert an NOP command, which is equivalent to executing a dummy wait.

SED1590

• Writing

• Reading

Busy Flag

When the busy flag is "L", the SED1569 is making internal operations. The busy flag is being output through the terminal D7 by the status read command. Although commands from the MPU are being accepted even while the busy flag is appearing, it is necessary to secure due cycle time (tcyc) in order to make proper writing of the indication data. Meanwhile, in case the cycle time is being satisfied, it is not necessary to check this flag.

Page Address Control Circuit

Page direction address control is performed when the display RAM is accessed by the MPU and when contents of the display data RAM are read for the liquid crystal display.

When the page direction scan is designated by the scan direction select command, the page address will increment each time the MPU makes the writing operation. While the internal RAM contains 240 lines worth of data, because the MPU access processes in 8 dot units in the common direction, the number of pages is 240/8 = 30 pages.

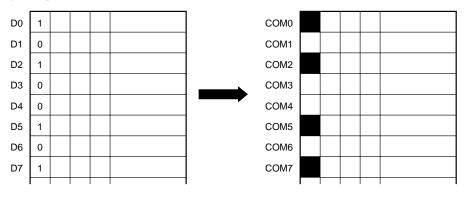
Consequently, the count is locked when address value 29 is reached, and there is no incrementation beyond this level. The count lock is cleared next time the page address is set. Moreover, the counter within the page address control circuit is independent of the column address control circuit counter. When there is a read operation for the liquid crystal display, incrementation is synchronized with the CL

When there is a read operation for the liquid crystal display, incrementation is synchronized with the CL signal, and the count is reset when the display line that is set by a control command from the MPU has been reached.

The Column Address Control Circuit

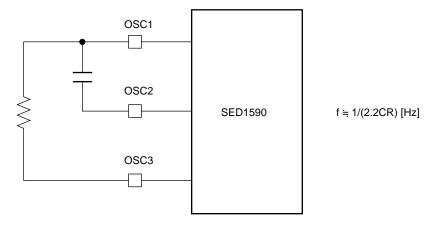
Address control in the column direction is performed when the display RAM is accessed from the MPU. The SED1590 unit has only 160 columns; however, using multiple chips the SED1590 can handle continuous column addressing even when using four chips in the column direction (640 columns). Consequently, from the MPU perspective, the MPU need not be aware of the multiple chips.

The address value is incremented or decremented when a write or read operation is performed by the MPU. In the increment mode, the count is locked at 279H (639), while in the decrement mode the count is locked at 000H (0). Incrementing/decrementing will not proceed past that count. The count lock is cleared the next time that a column address set is performed. Moreover, the counter within the column address control circuit operates independently of the page address control circuit counter.


The I/O Buffer

The I/O buffer is a bi-directional buffer for cases where the MPU accesses the display data RAM via the SED1590 internal bus.

The Display Data RAM


The display data RAM is RAM in which is stored the dot data for the display. It has a 160×240 bit structure. The data can be selected by specifying the page address and the column address. The display data D0 to D7 from the MPU corresponds to 8 dots in the common direction of the liquid crystal display, and thus when multiple SED1590 chips are used, there are few constraints when the display data is sent, allowing the display to be structured freely.

MPU-side display RAM reading and writing is done through the I/O buffer, which operates to prevent timing overlaps with the display RAM reads for driving the liquid crystal. Consequently, there is absolutely no negative effect on the display such as flickering even if operations that write data to the RAM or read data from the RAM are performed completely asynchronously with the liquid crystal drive timing during the dipslay.

The Oscillator Circuit

The oscillator circuit generates the synch circuit for the liquid crystal drive. When the internal oscillator circuit of the SED1590 is used, then a capacitor must be placed between OSC1 and OSC2, and a resistor must be placed between OSC1 and OSC3, as shown in the figure below. Determine the C and R values based on the oscillation frequency formula given below.

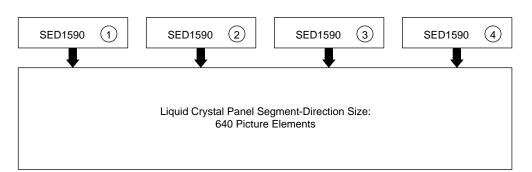
When the internal oscillator circuit is not used (i.e. when an external clock input is used instead), input the external clock into OSC1. Leave OSC2 and OSC3 open.

M/S		OSC1	OSC2	OSC3
"H"	Master operation	Re	fer to Fig.	. 3
	(using the internal oscillation circuit)	ind	icated abo	ve.
"H"	Master operation (using external signal inputs)	Input terminal.	Open	Open
"L"	Slave operation	Connect to "H" or "L".	Open	Open

The Decoder

The decoder outputs the segment driver control signal that is required for the liquid crystal drive. This control signal is determined by the display data, the drive pattern signals F1 and F2, and by the liquid crystal alternating current signal FR.

The Liquid Crystal Drive Circuit


This outputs the liquid crystal drive voltage. The liquid crystal drive voltage can be of one of five values: V3, V2, VC, $\overline{V2}$, $\overline{V3}$. These values are selected by the drive control signal determined by the decoder.

The Internal Timing Generator Circuit

The internal timing generator circuit controls the internal write operations when the display data RAM is accessed by the MPU. Moreover, in this case the column address counter and page address counter incrementation/decrementation is also controlled by the internal timing generator circuit.

When a module is structured from multiple chips, the SED1590 automatically determines from LR0 and LR1 which chip corresponds to which segments on the panel so that only the address relating to the corresponding segment responds. Consequently, from the perspective of the MPU, there is no need to identify each individual SED1590 chip, but rather when accessing in the column direction, continuous addresses can be handled in so far as the addresses are in the same page. As a result, the CS line can be shared. In this case, the relationship between the actual segment output and the column address is as shown in the following figure.

When there is an access race where both the MPU system and the display system are attempting to access the display data RAM simultaneously, the conflict between both accesses is mediated by the display control circuit. Consequently, there is no need for the MPU to perform a busy check in so far as the accesses ensure the cycle time that is set by the AC timing.

Table 3

	LR1	LR0	Corresponding Picture Elements	Column Address (10-bit binary display)
SED1590 1	"L"	"L"	1 to 160	000000000B to 0010011111B
SED1590 2	"L"	"H"	161 to 320	0010100000B to 0100111111B
SED1590 3	"H"	"L"	321 to 480	0101000000B to 0111011111B
SED1590 4	"H"	"H"	481 to 640	0111100000B to 1001111111B

The Display Control Circuit

The display control circuit generates the timing signals CL, CA, FR, along with the drive pattern signals F1 and F2, for the display based on the oscillator output from the oscillator circuit. Moreover, depending on the commands from the MPU, this circuit generates the $\overrightarrow{\text{DOFF}}$ display On/Off control signal and the $\overrightarrow{\text{SLP}}$ sleep signal as well.

When multiple SED1590 chips are used, the input and output statuses of these signals are as given in Table 4.

Table 4

Operating Mode	CL	СА	F1, F2	FR	DOFF	SLP
Master	Output	Output	Output	Output	Output	Output
Slave	Input	Input	Input	Input	Input	Output

The Relationship Between the Display Drive Output Voltage and the Display Data

Table 5 shows the relationships between F1, F2 and the common drive voltage.

Table 5

FR	L				н			
F1	Н	L	Н	L	Н	L	Н	L
F2	Н	Н	L	L	Н	Н	L	L
n Line	V1	V1	-V1	V1	-V1	-V1	V1	-V1
n + 1 Line	-V1	V1	V1	V1	V1	-V1	-V1	-V1
n + 2 Lines	V1	-V1	V1	V1	-V1	V1	-V1	-V1
n + 3 Lines	V1	V1	V1	-V1	-V1	-V1	-V1	V1

Note: The voltage relationships are as follows: V1 > VC > -V1 (where VC is the central voltage).

The values of F1 and F2 change for each horizontal interval (as described below) and for each CA set by the commands. The changes are as shown below. Moreover, in this display the numbers are described as (F2, F2).

$(1,1) \longrightarrow (1,0) \longrightarrow (0,1) \longrightarrow (0,0) \longrightarrow (0,0) \longrightarrow (0,1) \longrightarrow (1,0)$	
$(1,0) \longrightarrow (0,1) \longrightarrow (0,0) \longrightarrow (0,0) \longrightarrow (0,1) \longrightarrow (1,0) \longrightarrow (1,1)$	
$(0,1) \longrightarrow (0,0) \longrightarrow (0,0) \longrightarrow (0,1) \longrightarrow (1,0) \longrightarrow (1,1) \longrightarrow (1,0)$	→ (0,1)
$(0,0) \longrightarrow (0,0) \longrightarrow (0,1) \longrightarrow (1,0) \longrightarrow (1,1) \longrightarrow (1,0) \longrightarrow (0,1)$	→ (0,0)

Changes in the horizontal direction indicate changes that happen each horizontal interval, where the horizontal interval was set by using commands. The changes in the vertical direction, shown on the column on the left, show the value change that starts with each CA.

The relationships between the display data, the liquid crystal alternating current signal FR, and the segment drive voltage are as shown in Table 6. These drive voltages change according to the combination of F1 and F2. In this table, "0" indicates "Off" and "1" indicates "On".

Table 6

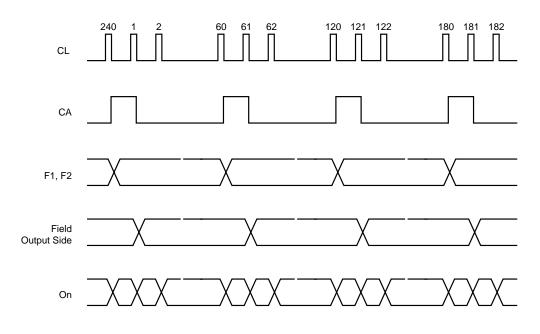
FR = "L"

	n	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Display Picture	n + 1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
Element	n + 2	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	n + 3	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	1	V2	VC	VC	-V2	V3	V2	V2	VC	VC	V2	-V2	-V3	V2	VC	VC	-V2
Drive	2	V2	VC	V3	V2	VC	-V2	V2	VC	VC	-V2	V2	VC	-V2	-V3	VC	-V2
Voltage	3	V2	VC	VC	-V2	VC	-V2	-V2	-V3	V3	V2	V2	VC	V2	VC	VC	-V2
	4	V2	V3	VC	V2	VC	V2	-V2	VC	VC	V2	-V2	VC	-V2	VC	-V3	-V2

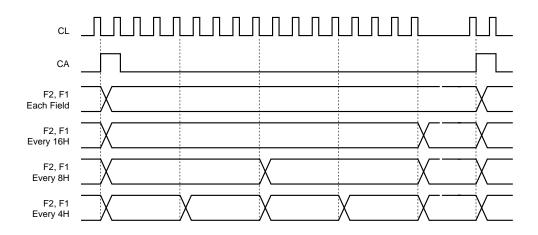
FR = "H"

	n	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Display Picture	n + 1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
Element	n + 2	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	n + 3	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	1	-V2	VC	VC	V2	-V3	-V2	-V2	VC	VC	V2	V2	V3	-V2	VC	VC	V2
Drive	2	-V2	VC	-V3	-V2	VC	V2	-V2	VC	VC	V2	-V2	VC	V2	V3	VC	V2
Voltage	3	-V2	VC	VC	V2	VC	V2	V2	V3	-V3	-V2	-V2	VC	-V2	VC	VC	V2
	4	-V2	-V3	VC	-V2	VC	-V2	V2	VC	VC	-V2	V2	VC	V2	VC	V3	V2

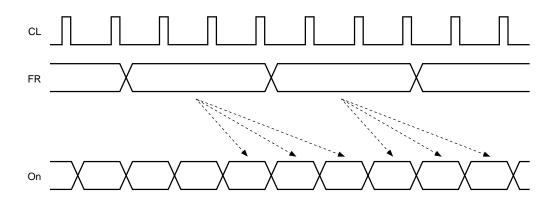
Notes: (1), (2), (3) and (4) correspond to the following drive pattern:


(1): (F2, F1) = (H, H)

(2): (F2, F1) = (H, L) (3): (F2, F1) = (L, H)


(3): (F2, F1) = (L, T1)(4): (F2, F1) = (L, L)

Timing Diagram


The timing diagram for the liquid crystal display is as shown in the following figure. Example: The example shows the fields used in a 1/240 duty, where the liquid crystal drive pattern (F2, F1) switches for each field.

The figure below shows an example where the drive pattern (F2, F1) is different. The drive pattern is changed with the falling edge of CL and the status is reflected to the driver output that changes at the next falling edge of CL.

The figure below shows the timing with which FR changes. FR changes on the falling edge of CL, and the changes are reflected to the driver which changes on the next falling edge of CL (master mode). Moreover, in the case of slave mode, the FR status is accepted with the falling edge of CL, and is reflected to the driver output that changes on the next falling edge of CL.

COMMANDS

Table of Commands

Table 7 shows a table of SED1590 commands

Table 7

Com	mand Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	Parameters
1	DON	0	1	0	1	0	1	0	1	1	1	1	Display ON	None
2	DOFF	0	1	0	1	0	1	0	1	1	1	0	Display OFF	None
3	DISNOR	0	1	0	1	0	1	0	0	1	1	0	Normal display	None
4	DISINV	0	1	0	1	0	1	0	0	1	1	1	Inverse display	None
5	DTYSET	0	1	0	1	0	1	0	1	0	0	0	Duty set	1 byte
6	LINSET	0	1	0	1	1	0	0	1	0	1	0	FR interval set	1 byte
7	PATSET	0	1	0	1	1	0	0	1	1	0	0	Drive pattern set	1 byte
8	VOLCTL	0	1	0	1	1	0	0	0	1	1	0	Output port control	1 byte
9	SLPON	0	1	0	1	0	0	1	0	1	0	1	Sleep on	None
10	SLPOFF	0	1	0	1	0	0	1	0	1	0	0	Sleep off	None
11	DVDSET	0	1	0	1	0	1	1	0	1	0	0	Divide offset	1 byte
12	PASET	0	1	0	0	1	1	1	0	1	0	1	Page address set	1 byte
13	PDNOR	0	1	0	0	1	1	0	1	0	1	0	Page direction normal	None
14	PDINV	0	1	0	0	1	1	0	1	0	1	1	Page direction inverse	None
15	CASET	0	1	0	0	0	0	1	0	1	0	1	Column address set	2 byte
16	CAINC	0	1	0	0	1	0	1	1	0	1	0	Column address increment	None
17	CADEC	0	1	0	0	1	0	1	1	0	1	1	Column address decrement	None
18	PDIR	0	1	0	0	1	0	0	1	0	1	0	Page direction scan	None
19	CDIR	0	1	0	0	1	0	0	1	0	1	1	Column direction scan	None
20	MWRITE	0	1	0	0	1	0	1	1	1	0	0	Memory write	Data
21	CNTCLR	0	1	0	0	1	0	1	0	1	1	0	Counter clear	None
22	PCCLR	0	1	0	0	0	0	0	1	0	1	0	Page counter clear	None
23	CCCLR	0	1	0	0	0	0	0	0	1	0	1	Column counter clear	None
24	CKSET	0	1	0	1	0	1	1	1	1	1	1	Clock divide set	1 byte
25	RETURN	0	1	0	1	0	1	1	1	1	1	0	Return	None
26	VOLRD	0	1	0	1	0	1	1	0	1	1	0	Output port set read	1 byte
27	STREAD	0	0	1									Status read	

Command Details

The SED1590 identifies the data bus signals by a combination of A0, \overline{RD} (E), \overline{WR} (R/ \overline{W}). The command interpretation and execution is performed based entirely on internal timing without relying on any external clock.

In the 80×86 MPU interface, a low pulse is sent to the \overline{WR} terminal to launch the command when writing. In the 68000 series MPU interface, a "L" input to the R/\overline{W} terminal causes a write state, and then the commands are launched when a high pulse input is sent to the E terminal. Consequently, the 68000 series MPU interface is different from the 80x86 MPU interface in the command details and command tables, and in that the \overline{RD} (E) terminal is "1" ("H") when performing status reads and when reading display data. The commands will be explained below using the 80×86 MPU interface in the examples.

Display ON/OFF Command: 1, Parameter:0

This command forces the entire display ON or OFF. When the display is OFF, all outputs are fixed at VC. Because the display is not possible when in sleep mode, make sure that this command is used after the sleep mode is turned OFF.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
DON	0	1	0	1	0	1	0	1	1	1	1	Display ON
DOFF	0	1	0	1	0	1	0	1	1	1	0	Display OFF

Page Address Set Command: 1, Parameter: 1

This command and its following parameters makes it possible to set the page address corresponding to the low address when accessing the display data RAM from the MPU side. The desired bit of the display data RAM can be accessed by specifying the page address and the column address. The page addresses are 5 bits, corresponding to 30 pages (pages 0 to 29). Even if the page address changes, there is no change to the display status.

This command is input into the registers and loaded in the counters). That which is input is stored within the register, and can be reloaded by the PACLR command.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
PASET	0	1	0	0	1	1	1	0	1	0	1	Page address set
Parameter	1	1	0				D	D	D	D	D	

Page Address Direction Command: 1, Parameter: 0

This command makes it possible to reverse the position of page 0 in the page address of the display RAM data. Consequently, it is possible to reverse the page address scan direction when the MPU uses the display data in the page direction. The relationship between the physical position in internal RAM and the page address is inverted:

Normal: $0 \rightarrow 29$

Reversed: $24 \leftarrow 0$

When reversed, the final page address becomes 24. Consequently, the number of lines which can be indicated becomes upto 200.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
PDNOR	0	1	0	0	1	1	0	1	0	1	0	Page direction normal
PDINV	0	1	0	0	1	1	0	1	0	1	1	Page direction inverted

Column Address Set Command: 1, Parameter: 2

This command and its following parameters make it possible to specify the column address when the MPU accesses display data RAM in the column direction. The desired bit of display data RAM can be accessed by specifying the page address and the column address. The column address has 10 bits, and when four of the chips are used in the column direction, up to 640 dots (pixels) are supported. Even when the address changes, the state of the display does not change. There are 640 columns (columns 0 to 639).

The address value is input with the less significant address 5 bit first and then the more significant 5 bit. With the less significant alone, when another command is entered, only the less significant is entered into the register, however, the counter is not loaded. When the less significant is followed by the more significant, they are loaded into the counter and the input is stored in the register. When the less significant address is followed by some other command, the counter will not be loaded and the command will be cancelled. With this command, the set values can be reloaded by the CCCLR command.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
CASET	0	1	0	0	0	0	1	0	1	0	1	Column address set
Parameter 1	1	1	0				D	D	D	D	D	Lower 5 bits
Parameter 2	1	1	0				D	D	D	D	D	Upper 5 bits

Column Address Direction Command: 1, Parameters: 0

This command specifies the behavior of the column address counter (increment vs. decrement). The address increments or decrements each time RAM accesses the display data. In the increment mode, the count operation stops when the value reaches 279H (639), or when the value reaches 000H (0) in the decrement mode.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
CAINC	0	1	0	0	1	0	1	1	0	1	0	Column address increment
CADEC	0	1	0	0	1	0	1	1	0	1	1	Column address decrement

Scan Direction Select Command: 1, Parameter: 0

When the MPU continuously accesses display memory, this determines whether the scanning will be done in the page direction or in the column direction.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
PDIR	0	1	0	0	1	0	0	1	0	1	0	Page direction scan
CDIR	0	1	0	0	1	0	0	1	0	1	1	Column direction scan

Display Data Write Command: 1, Parameter: Number of data to be written

When the MPU writes data to the memory, this command places the chip in a data entry mode. By writing data again after this command, the display data RAM contents can be changed. The data write mode is cleared automatically when another command is entered.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
MWRITE	0	1	0	0	1	0	1	1	1	0	0	Memory write
Parameter	1	1	0	D	D	D	D	D	D	D	D	Write data

Status Read

This read operation makes it possible to monitor the internal operating status of the SED1590. No other command except for the status read command will be accepted with a RAM busy state (1). If the cycle time is followed, then there is no need to check for the RAM busy state under normal use.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
STREAD	0	0	1	0	0	0	0	0	0	0	0	Status

D7:	Busy/Ready	Busy: 1, Ready: 0
D6:	Page Address Direction	Normal: 1, Inverted: 0
D5:	Column Address Direction	Normal: 1, Inverted:0
D4:	Increment Direction	Column: 0, Page: 1
D3:	Display ON/OFF	Off: 1, On: 0
D2:	SLEEP ON/OFF	Off: 0, On: 1
D1:	INVERT	Normal Display: 1, Invert Display: 0
D0:	Reserved terminal	

Display Normal/Inverted Command: 1, Parameter:0

This command makes it possible to inert the ON/OFF status of each point on the display without having to rewrite the contents of the display data RAM. Because all points in the display are either set to the normal display or reverse, partial inversions are not supported.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
DISNOR	0	1	0	1	0	1	0	0	1	1	0	Display normal
DISINV	0	1	0	1	0	1	0	0	1	1	1	Display inverted

Duty Set Command: 1, Parameter: 1

This command combined with the following paramenter sets the duty.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
DTYSET	0	1	0	1	0	1	0	1	0	0	0	Duty set
Parameter	1	1	0			D	D	D	D	D	D	(Number of display lines)/ 4/1
Example: 1/200 duty	1	1	0	0	0	1	1	0	0	0	1	
Example: 1/240 duty	1	1	0	0	0	1	1	1	0	1	1	

Sleep Mode On/Off Command: 1, Parameter:0

This command controls the sleep mode of the LCD module. Before launching this command, be sure that the Display OFF command has been entered and that the display is in an OFF state. Moreover, after issuing the Sleep OFF command, be sure to maintain the logic power supply for 40 ms to discharge the load of the power supply IC.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
SLPON	0	1	0	1	0	0	1	0	1	0	1	Sleep ON
SLPOFF	0	1	0	1	0	0	1	0	1	0	0	Sleep OFF

Line Inverse Number Set Tab Command: 1, Parameter: 1

This command controls the number of lines inverted in the LCD module.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
LINSET	0	1	0	1	1	0	0	1	0	1	0	FR inverse set
Parameter	1	1	0					D	D	D	D	FR inverse set value

The default value is being set to 11H inverse. (D3 to D0 = 1010)

Pattern Set Command: 1, Parameter: 1

This command controls the MLS pattern switching interval.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
PATSET	0	1	0	1	1	0	0	1	1	0	0	Drive pattern set
Parameter	1	1	0							D	D	Drive pattern set value

The correspondence between the input data and the switching interval is as follows:

(The default value will be set to 8H.)

	8H	4H	16H	Field
D0:	0	1	0	1
D1:	0	0	1	1

Output Port Control Command: 1, Parameter: 1

This command sets 5 bit data to control the LCD power supply.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	
VOLCTL	0	1	0	1	1	0	0	0	1	1	0	Output port control	
Parameter	1	1	0				D	D	D	D	D	Output port control value	
											D0: 0	COD 0 D1: COD 1	
											D2: (COD 2 D3: COD 3	

D4: COD 4

Partition DOFF Set Command: 1, Parameter: 1

This command controls the LCD module display on/off for each driver.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
DVDSET	0	1	0	1	0	1	1	0	1	0	0	Partition offset
Parameter	1	1	0					D	D	D	D	Partition offset set value

D= "1": Display ON D = "0": Display OFF

(LR1, LR0): (0, 0) \rightarrow D0; (0,1) \rightarrow D1; (1, 0) \rightarrow D2; (1,1) \rightarrow D3

Initialize Command: 1, Parameter: 0

These commands clear the contents of the page counter, the page register, the column counter, and the column register to 0.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
CNTCLR	0	1	0	0	1	0	1	0	1	1	0	Counter clear
PCCLR	0	1	0	0	0	0	0	1	0	1	0	Page counter clear
CCCLR	0	1	0	0	0	0	0	0	1	0	1	Column counter clear

CNTCLR: Resets the page counter and register to 0, and the column counter and register to 0.

PACLR: Loads the register value to the page counter.

CACLR: Loads the register value to the column counter.

Clock Divide Set Command: 1, Parameter: 1

This command sets the CL division ratio that serves as the basis for the timing signal for the liquid crystal display.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
CKSET	0	1	0	1	0	1	1	1	1	1	1	Clock division set
Parameter	1	1	0							D	D	Clock division set value

Correspondence of Divider Ratios

		2	1	4	8
Data	D1:	0	0	1	1
	D0:	0	1	0	1

Return Command: 1, Parameter: 0

This command sets the scan direction counter to the set value, and increments (+1) the counter in the fixed direction.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
RETURN	0	1	0	1	0	1	1	1	1	1	0	Address return

Output Port Setting Read Command: 1

This command reads the output port set bit to the data bus. Perform a read operation after this command is input. Only the master chip gives an output.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
VOLRD	0	1	0	1	0	1	1	0	1	1	0	Output port set read
Parameter	1	0	1				0	0	0	0	0	

NOP (Non-operating) Command: 1, Parameter: 0

This command has no effect on operations.

Command Name	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
NOP1	0	1	0	0	0	1	0	0	1	0	1	NOP
NOP2	0	1	0	0	1	0	0	0	1	0	0	NOP

ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings

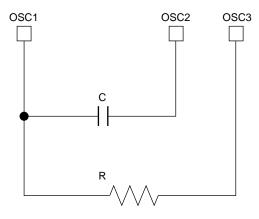
ltem	Signal	Rated Value	Units
Power supply voltage (1)	Vss	-7.0 to +0.3	V
Power supply voltage (2)	VEE	-8.0 to +0.3	V
Power supply voltage (3)	V3, V2, VC, -V2, -V3	VEE to +0.3	V
Input voltage	Vin	Vss -0.3 to +0.3	V
Output voltage	Vouт	Vss -0.3 to +0.3	V
Operating temperature	Topr	-20 to +85	°C
Storage temperature 1	Tstg1	-65 to +150	°C
Storage temperature 2	Tstg2	-55 to +100	°C

Note 1: The voltages are all relative to VDD = 0V.

Note 2: Storage temperature 1 is the storage temperature for the bare chip or the plastic chip package products, and storage temperature 2 is the specification for the TCP packaged product.

Note 3: Be sure that the relationships between voltages V3, V2, VC, -V2, -V3 are always such that $VDD \ge V3 > V2 > VC > -V3 \ge VEE$.

Note 4: This LSI chip may be permanently damaged if the LSI chip is used in conditions exceeding the absolute maximum ratings. Furthermore, it is desirable to always operate the LSI chip within these electrical characteristic conditions, not only may the LSI chip malfunction if these conditions are exceeded, but there will be adverse effects on the reliability of the LSI chip.

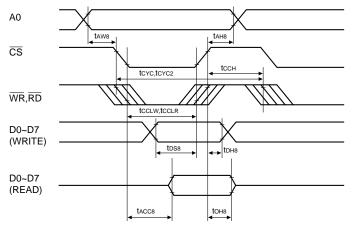

DC Characteristics

Unless otherwise stated, VDD = V3 = 0V, VSS = -3.0V, VEE = -V3 = -6.0V, V2 = -1.5V, VC = -3.0, -V2 = -4.5V

Item	Symbol	Parameter	Min	Тур	Мах	Units	Corresponding Terminal
Power supply voltage (1)	Vss		-3.6	-3.0	-2.7	V	Vss
Power supply voltage (2)	VEE		-7.2	-6.0	-5.4	V	Vee
Power supply voltage (3)	V3				Vdd	V	V3
Power supply voltage (4)	V2			0.25 Vee		V	V2
Power supply voltage (5)	VC			0.50 Vee		V	VC
Power supply voltage (6)	-V2			0.75 Vee		V	-V2
Power supply voltage (7)	-V3		Vee			V	-V3
High-level input voltage	VIHC		0.3Vss	_	Vdd	V	*1
Low-level input voltage	VILC		Vss	_	0.7 Vss	V	*1
High-level output voltage	Vон	Iон = -0.6mA	Vdd-0.4	_	Vdd	V	*2
Low-level output voltage	Vol	IoL = +0.6mA	Vss	_	Vss+0.4	V	*2
Schmidt high-level input voltage	Vihs		0.3Vss	_	Vdd	V	RES
Schmidt low-level input voltage	Vils		Vss	_	0.7Vss	V	RES
Input leakage current	LI	Vss ≤Vin≤Vdd	—	_	5.0	μΑ	*3
Input/output leakage current	Ili/o	VIN=VDD, VSS	_	_	5.0	μΑ	*4
Driver output resistance	Ron	$Vss = -3.0V, \\ VEE = -6.0V \\ V3 = 0V, \\ V2 = -1.5V \\ VC = -3.0V \\ -V2 = -4.5V \\ -V3 = -6.0V, \\ \Delta V = 0.5V$	_	0.6	1.0	kΩ	01~ 0160
Static consumption current	Issq	VIN = VDD or Vss	_	—	5	μΑ	Vss
Static consumption current	IEEQ	VEE = -6.0V	_	_	5	μΑ	VEE
Dynamic consumption current	ISSOP1	MPU access *6	_	1.5	2.0	μΑ	Vss
Dynamic consumption current	ISSOP2	MPU no access *6	_	90	130	μΑ	Vss
Dynamic consumption current	IEEOP	VEE = -6.0V	_	12	20	μΑ	VEE
Input terminal capacitance	CI			_	8	pF	*3
Input/output terminal capacitance	CI/O	Freq. = 1MHz Ta = 25°C IC alone			15	pF	*4
Output terminal capacitance	со		_	_	7	pF	SLP
Oscillator frequency	lfosc	Ta = 25°C		24	-	kHz	*5

DC Characteristics: Supplemental Explanation for Corresponding Terminals

- *1 •Input terminals: A0, RES, CS, RD, WR, C86, OSC1, M/S, LR0, and LR1.
 •Input/output terminals (Input mode): D[0:7], CL, FR, CA, DOFF, SLP, F1 and F2.
- *2 •Input/output terminals (Output mode): D[0:7], CL, FR, CA, DOFF, F1, and F2.
 •Output terminals: OSC2, OSC3, and SLP
- *3 •Input terminals: A0, RES, CS, RD, WR, C86, OSC1, M/S, LR0, and LR1.
- *4 •Input/Output terminals (Input mode): D[0:7], CL, FR, CA, DOFF, SLP, F1, and F2.
- *5 •Local oscillator circuit depending on CR.
- *6 •Frame frequency = 60 Hz, Duty = 1/200 and CR oscillation 24 kHz should be split into twodivisions when used.
 - •Adjust the "C" to C = 100 pF and adjust the R to 24 kHz, using a variable resistor.
 - •Access of the MPU will be made by continuous writing of the indicated data within the cycle time of 1,333 ns (750 kHz).
 - •The indicated data will appear in black or white in units of 4 lines each, repetitively.



Oscillating frequency: f = 1/(2.2 CR)

AC Characteristics

The System Bus

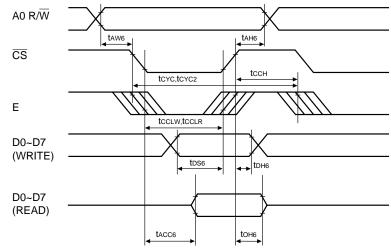
Read/Write Characteristics I (80×86 Series MPUs)

 $[Ta = -20 \text{ to } 85^{\circ}C, Vss = -3.0 \text{ to } -3.6V]$

Signal	Symbol	Parameter	Min	Мах	Units	Measurement Conditions
AO	tah8	Address hold time	5	_	ns	
AU	taw8	Address setup time	5	—	ns	
	tcyc	Write cycle	1300	—	ns	
	tcyc2	Read cycle (Status read, output port read)	300	—	ns	
WR, RD	tссн	Duration of the control pulse "H"	600	—	ns	
	tcclw	Duration of the control pulse "L" (WR)	50	—	ns	
	t CCLR	Duration of the control pulse "L" (RD)	140	—	ns	
	tDS8	Data setup time	35	—	ns	
D0 to D7	tdh8	Data hold time	5	_	ns	
D0 10 D7	tACC8	Read access time	—	140	ns	CL = 100 pF
	tонв	Output disable time	30	90	ns	

$[Ta = -20 \text{ to } 85^{\circ}C]$	Vss = -2.7 to -3.0 V
--------------------------------------	------------------------

					,	2.1 10 0.01
Signal	Symbol	Parameter	Min	Мах	Units	Measurement Conditions
A0	tans	Address hold time	5	_	ns	
	taw8	Address setup time	5	_	ns	
	tcyc	Write cycle	1600	_	ns	
	tcyc2	Read cycle (Status read, output port read)	350	—	ns	
WR, RD	tссн	Duration of the control pulse "H"	900	—	ns	
	tcclw	Duration of the control pulse "L" (WR)	70	—	ns	
	t CCLR	Duration of the control pulse "L" (RD)	160	—	ns	
	tDS8	Data setup time	50		ns	
D0 to D7	tdh8	Data hold time	5	—	ns	CL = 100 pF
D0 10 D7	tacc8	Read access time	—	160	ns	CL = 100 pr
	tонв	Output disable time	40	110	ns	


• The timing for the input signal rising edge and the input signal falling edge (tr, tf) is specified at 15 ns or less.

• All timings are specified based on 20% or 80% VDD - Vss.

• The "tccLw" and "tccLR" are being specified depending on the overlap period where the CS is being on the "L" level and the WR, RD are being on the "L" level.

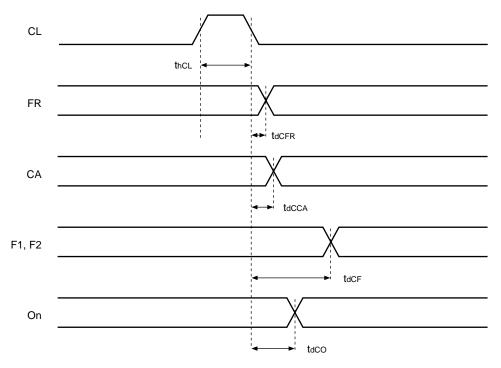
• These specifications guarantee writing into the RAM of the indicated data, output port reading and status reading only.

Read/Write Characteristics II (68000 Series MPUs)

 $[Ta = -20 \text{ to } 85^{\circ}C, Vss = -3.0 \text{ to } -3.6V]$

Signal	Symbol	Parameter	Min	Мах	Units	Measurement Conditions
A0, R/W	tah6	Address hold time	5	—	ns	
, 10, 10, 10	taw6	Address setup time	5	—	ns	
	tcyc	Write cycle	1300	_	ns	
	tcyc2	Read cycle (Status read, output port read)	300	—	ns	
E	tссн	Duration of the control pulse "H"	600	—	ns	
	tcclw	Duration of the control pulse "L" (WR)	50	_	ns	
	t CCLR	Duration of the control pulse "L" (RD)	140	—	ns	
	tDS6	Data setup time	35		ns	
D0 to D7	tdh6	Data hold time	5	—	ns	Cl = 100 pE
D0 10 D7	tACC6	Read access time	_	140	ns	CL = 100 pF
	tон6	Output disable time	30	90	ns	

[Ta = −20 to 85°C,	Vss = -2.7 to -3.0V]
--------------------	----------------------

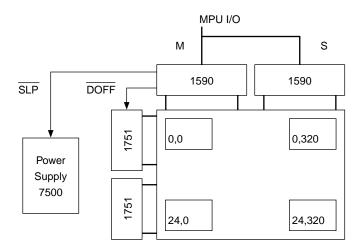

Signal	Symbol	Parameter	Min	Мах	Units	Measurement Conditions
A0, R/W	tah6	Address hold time	5	_	ns	
AU, K/W	taw6	Address setup time	5	—	ns	
	tcyc	Write cycle	1600	_	ns	
	tcyc2	Read cycle (Status read, output port read)	350	_	ns	
E	tссн	Duration of the control pulse "H"	900	—	ns	
	tcclw	Duration of the control pulse "L" (WR)	70	—	ns	
	t CCLR	Duration of the control pulse "L" (RD)	160	—	ns	
	tDS6	Data setup time	50	_	ns	
D0 to D7	tdh6	Data hold time	5	—	ns	CL = 100 pF
D0 10 D7	tACC6	Read access time	—	160	ns	CL = 100 pF
	tон6	Output disable time	40	110	ns	

• The timing for the input signal rising edge and the input signal falling edge (tr, tf) is specified at 15 ns or less.

• All timings are specified based on 20% or 80% VDD - Vss.

- The "tccLw" and "tccLR" are being specified depending on the overlap period where the CS is being on the "L" level and the WR, RD are being on the "L" level.
- These specifications guarantee writing into the RAM of the indicated data, output port reading and status reading only.

Output Timing Characteristics


Signal	Symbol	Parameter	Min	Тур	Мах	Units	Measurement Conditions
CL	t hCL	CL pulse width	100	_	1000	ns	CL = 100 pF
FR	tdCFR	FR output delay	10	_	1000	ns	
CA	tdCCA	CA output delay	10	_	1000	ns	
F1, F2	tdCF	F1, F2 output delay	10	_	1000	ns	
On	t⊲co	ON output delay	—		500	ns	

EXAMPLE OF USE

The use of the commands will be explained based on actual examples of use.

Assuming 1/200 Duty (200-line Display)

X driver: SED 1590, Y Driver: SED 1751 Power supply: SLP is input to the SLP terminal of the SCI7500

Address (24, 320) is written with the page address first followed by the column address. The page is 24, and because processing is performed in 1 byte units, $30 \times 8 = 200$ line displays.

Example of Actual Use

The Power-up Process

Turn on the system power supply (VCC). J Do not neglect the power-on reset. At the time of reset the default values will be as follows: Sleep status: Sleep status DOFF Status DON/DOFF status: (The divider OFF has not been applied.) Display normal/reversed: Normal Duty: 1/240 (set to 240 lines) Non-display interval: 0 selected intervals FR period: Each 11 selected intervals Page address register: 00.H Column address register: 000.H Forward direction Page address direction: Column address direction: Increment Scanning direction: Column direction MLS pattern: Changes at each 8 selected intervals Power supply control bit: 00.H 0.HClock 2 divider: J Input commands for the settings to be changed Example: Change the duty Reverse the scan direction Set the scaning direction to the page direction Set the non-display interval T Sleep off Display Data input Example: Write Start Write data input 1 line's worth J Return command Repeat for the number of lines to be displayed. Display ON (at least 40 ms after the sleep was released). Rewrite only a portion of the display contents. Example: Page address set Column address set Write start Write data input J The amount to be rewritten Return command Repeat for the number of lines to be displayed. Ĵ Read the part where there is content displayed. Example: Page address set Column address set Read start Data read \downarrow The amount to be read Return command Repeat for the number of lines to be displayed. \downarrow

```
Reverse the display contents
       Example:
                  Page address set
                   Column address set
                   Read-modify-write start
                                     The amount to be rewritten
                   Return command
       Repeat for the number of times to modify lines
Display off.
Change settings
Rewrite all display data
       Example:
                  Initialize command (CNTCLR) input
                   Write start
                   Write data input
                                     The amount to be rewritten
                  Return command
Repeat for the number of lines to be rewritten.
Display O
Display OFI
Sleep on
                  Hold the power supply for 10 ms
Power supply OFF (VDD, Vss)
```

Notes and Cautions:

- 1) When rewriting all data, do it with the display OFF.
- 2) Even when partial data is rewritten, do not continually rewrite the same area many times within a single frame interval (i.e. if the display is at 60 Hz, 16.6 mS).
- 3) Follow the specified sequences when turning the display ON and OFF.
- 4) Only the following three commands will affect the display because of noise:
 - 1. Display ON/OFF
 - 2. Display normal/inverted
 - 3. Sleep ON/OFF

If there is noise regardless of efforts, periodically insert the above three commands.

When entering data, set the address to start the data entry without using the return command.

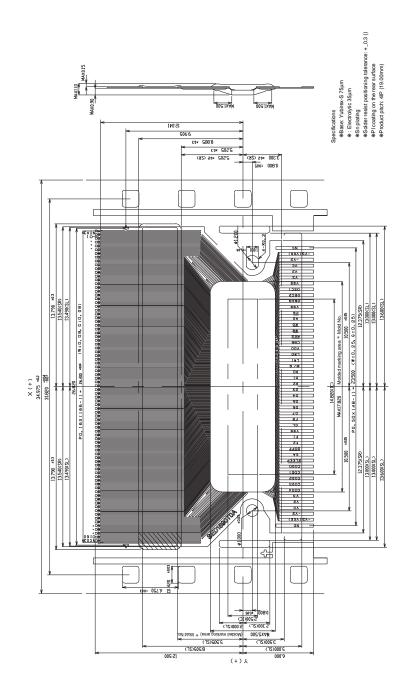
Notes

Be aware of the following when using these development specifications:

- 1. To facilitate improvements, the contents of these development specifications are subject to change without notice.
- 2. These development specifications neither guarantee the execution of industrial property rights or other authorities, nor grant execution authorities.

The examples of application found in these development specifications are strictly to assist in the understanding of this product; be aware that we assume absolutely no responsibility for problems in circuits wherein these examples are used.

Pay attention to the following precautions when using the SED1590 Series devices.


[Use When Exposed to Light]

The properties of semiconducting elements change when exposed to light because of the same principle used in everyday solar cells. Thus, exposure to light may cause this IC to malfunction.

- (1) Design and package the actual application of the IC in a structure eliminates light.
- (2) In test processes, design and package this IC in a structure that eliminates light.
- (3) When eliminating light from the IC, eliminate light from the front surface, side surfaces, and back surface of the IC.

[Precautions against external noise, etc.]

- (1) Although the SED1590 Series devices can preserve and store the operation status and the indicated data, excessive external noise may force to change the internal status. Consequently, take necessary measures to suppress noise or to avoid influences of the noise when designing their package or when designing a system using them.
- (2) We recommend you to program a software which works to refresh the operation statuses (such as resetting of the commands and re-transference of the indicated data) periodically to deal with occurrences of the sudden noise.

punch

Output pin pattern

Detail drawing for the test pad section

3–34

SED1750

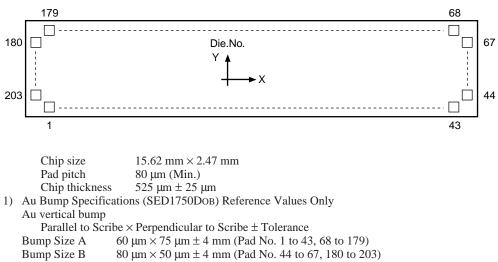
Contents

OVERVIEW	
TERMINAL FUNCTIONS	
ABSOLUTE MAXIMUM RATINGS	

OVERVIEW

The SED1750 is an MLS (Multi Line Selection) driving, 160 output, triple-value low resistance common (low) driver which can realize high picture quality and high speed responses.

Receiving signals from an LCD controller such as the SED1335 or SED1351, it works to make 4-line MLS drives in combination with the SED1580 or in combination with the SED1590 receiving signals direct from the MPU. Employing the SCI7500 as the power IC, the power to use for the MLS drive liquid crystal display system can be prepared easily.


Adopting a slim chip shape which is more advantageous to realize narrower borders with the LCD panels, the SED1750 is capable of making low voltage logic power operations and is applicable to a wide range of applications.

Owing to its pad layout designed to facilitate its installation to the substrate and thanks to its two-way choices of the driver output sequence, the highest working efficiency can be acquired with a 1/160 or 1/320 duty panel.

Features

- LCD driver outputs 160
- Low output ON resistance
- High duty drive supported 1/320 (Reference value)
- Broad range of LC drive voltages+ 14 to + 42 V (VCC = 2.7 to 5.5 V)
- Output shift direction pin select is possible
- Can be switched between 140 and 160 outputs
- Non-biased display OFF function
- Logic system power source2.7 V to 5.5 V
- LC power source offset bias can be adjusted relative to the VDDH and GND levels
- Slim chip shape
- DOB Au Bump die
- T0A TCP

Pad Layout

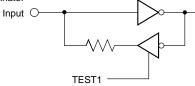
Bump height 17 to 28 µm (The details specified in the acceptance specifications.)

Pad Coordinates

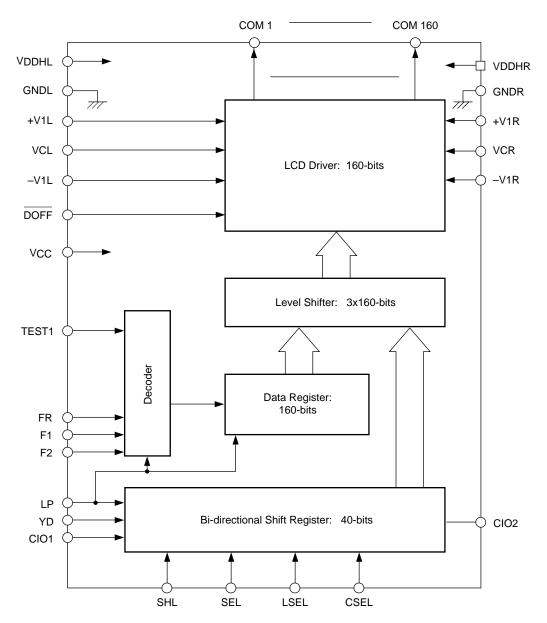
Units: µm

2 +V1 -7427 52 COM9 -295 102 COM59 2874.7 3 VC -7332 53 COM10 -215 103 COM69 2874.7 5 Vss -7142 55 COM11 -135 104 COM61 207.4 5 Vss -7142 55 COM13 25 106 COM63 2430 7 SEL -6579 57 COM14 105 107 COM64 2206.4 8 Vcc -6241 58 COM16 1265 109 COM66 1393 0 DCFF -5538 60 COM17 345 110 COM66 1393 10 DCFF -5538 60 COM19 505 1112 COM69 1586.1 13 DM -3943 63 COM20 585 113 COM70 1404.4 14 DM -3583 66 COM20	Pin	Name	Х	Y	Pin	Name	Х	Y]	Pin	Name	Х	Y
3 VC -7332 53 COM10 -215 103 COM60 2741 4 -V1 -7237 54 COM11 -135 104 COM60 2674 5 V58 -7142 55 COM12 -55 105 COM62 2473.7 6 SHL -68079 57 COM14 105 107 COM66 2204.4 8 VCc -6241 58 COM15 185 108 COM66 1805.4 11 FR -4791 61 COM18 425 111 COM66 1805.4 12 DM -3433 63 COM20 585 113 COM71 1270.7 15 DM -3863 64 COM21 665 114 COM71 1270.7 15 DM -3863 64 COM22 745 115 COM72 1137.1 14 DM -3663 67 COM24 905 117 COM74 89.7 15 DM -1182 C	1	Vddh	-7522	-1045	51	COM8	7655	-375		101	COM58	3008.4	1083
4 -V1 -7237 54 COM11 -135 104 COM61 2607.4 5 Vss -7142 55 COM12 -55 105 COM62 2473.7 6 SHL -68679 57 COM14 105 107 COM64 2206.4 8 Vcc -6241 58 COM15 185 108 COM66 1939 10 DOFF -5538 60 COM17 345 110 COM66 1939 10 DOFF -5538 60 COM19 505 112 COM66 1671.7 12 DM -3363 64 COM20 585 113 COM70 1404.4 14 DM -383 66 COM21 665 114 COM73 103.4 17 CSEL -2336 67 COM22 745 116 COM74 869.7 18 LP -199 68 COM27 715.2 120 COM76 766.1 19 DM -347 <	2	+V1	-7427		52	COM9		-295		102	COM59	2874.7	
5 Vss -7142 55 COM12 -55 105 COM62 2473.7 6 SHL -6804 56 COM13 25 106 COM63 2340 7 SEL -6579 57 COM14 105 107 COM64 2206.4 8 Vcc -6241 58 COM15 185 108 COM65 2072.7 9 LSEL -5802 59 COM16 265 109 COM66 1939 10 DOFF -5538 60 COM17 345 110 COM68 1671.7 12 DM -4323 62 COM19 505 112 COM69 1538.1 13 DM -3943 63 COM20 855 113 COM71 1270.7 15 DM -3183 65 COM21 665 114 COM71 1270.7 16 DM -2803 66 COM22 7419.3 108 118 COM74 869.7 17 CSEL <	3	VC	-7332		53	COM10		-215		103	COM60	2741	
6 SHL -6804 56 COM13 25 106 COM63 2340 7 SEL -6579 57 COM14 105 107 COM64 2206.4 8 VCc -6241 58 COM16 265 109 COM66 1939 10 DOFF -5538 60 COM17 345 110 COM66 1939 10 DOFF -5538 60 COM17 345 110 COM66 1939 10 DOFF -5538 60 COM17 345 110 COM68 1671.7 12 DM -4323 62 COM19 505 112 COM69 1538.1 13 DM -3833 65 COM21 665 114 COM71 1270.7 15 DM -1162 69 COM24 905 117 COM74 869.7 16 DM -162 69 COM27	4	-V1	-7237		54	COM11		-135		104	COM61	2607.4	
7 SEL -6579 57 COM14 105 107 COM64 2206.4 8 Vcc -6241 58 COM15 185 108 COM65 2072.7 9 LSEL -5902 S59 COM16 265 109 COM66 1393 10 DOFF -5538 60 COM17 345 110 COM68 1671.7 12 DM -3323 63 COM20 585 113 COM70 1404.4 14 DM -3633 64 COM21 666 114 COM71 1207.7 15 DM -3183 65 COM22 745 115 COM71 103.4 17 CSEL -2336 67 COM24 905 117 COM74 89.7 18 LP -1998 68 COM27 7152 120 COM74 489.7 12 DM -347 71 COM28	5	Vss	-7142		55	COM12		-55		105	COM62	2473.7	
8 Vcc -6241 58 COM15 185 108 COM65 2072.7 9 LSEL -5902 59 COM16 265 109 COM66 1339 10 DOFF -5538 60 COM18 425 111 COM66 1839 11 FR -4731 61 COM18 425 111 COM69 1538.1 13 DM -3943 63 COM21 665 114 COM71 1404.4 14 DM -3663 66 COM21 665 116 COM71 103.4 17 CSEL -2336 67 COM24 905 117 COM73 103.4 18 LP -1998 68 COM25 714.3 1083 118 COM75 736.1 19 DM -347 71 COM28 786.5 119 COM76 602.4 20 CO17755 74 COM30 <td>6</td> <td>SHL</td> <td>-6804</td> <td></td> <td>56</td> <td>COM13</td> <td></td> <td>25</td> <td></td> <td>106</td> <td>COM63</td> <td>2340</td> <td></td>	6	SHL	-6804		56	COM13		25		106	COM63	2340	
9 LSEL -5902 59 COM16 265 109 COM66 1939 10 DOFF -5538 60 COM17 345 110 COM67 1805.4 11 FR -47323 62 COM18 425 111 COM67 1805.4 12 DM -3433 63 COM20 585 113 COM70 1404.4 14 DM -3663 64 COM21 6665 114 COM71 103.4 15 DM -3183 65 COM22 745 115 COM73 103.4 16 DM -2803 66 COM24 905 117 COM73 103.4 17 CSEL -2336 67 COM26 7285.6 119 COM76 602.4 20 CIO2 -755 70 COM27 718.3 121 COM76 602.4 22 DM 0 72 COM29	7	SEL	-6579		57	COM14		105		107	COM64	2206.4	
10 DOFF -5538 60 COM17 345 110 COM67 1805.4 11 FR -4791 61 COM18 425 111 COM68 1671.7 12 DM -3943 62 COM19 505 112 COM69 1538.1 13 DM -3943 63 COM20 585 113 COM71 120.7 15 DM -3183 65 COM22 745 115 COM72 103.4 17 CSEL -2336 66 COM25 7419.3 1083 118 COM73 103.4 18 LP -1998 68 COM27 7152 120 COM76 602.4 20 CIO2 -755 70 COM27 7152 120 COM76 602.4 21 DM -347 71 COM29 684.7 122 COM76 602.4 22 DM 0 72 COM29 684.7 122 COM79 201.4 23 DM	8	Vcc	-6241		58	COM15		185		108	COM65	2072.7	
11 FR -4791 61 COM18 425 111 COM68 1671.7 12 DM -3233 62 COM19 505 112 COM69 1538.1 13 DM -3943 63 COM20 585 113 COM70 1404.4 14 DM -3663 64 COM21 665 114 COM71 1270.7 15 DM -3183 65 COM23 825 116 COM74 689.7 17 CSEL -2336 67 COM24 905 117 COM74 689.7 18 LP -1998 68 COM27 7152 120 COM74 689.7 20 CIO2 -755 70 COM27 7152 120 COM77 468.7 21 DM -347 71 COM26 7018.3 121 COM78 335.1 22 DM 0 72 COM26 648.7 122 COM81 67.7 24 CIO1 755 <td< td=""><td>9</td><td>LSEL</td><td>-5902</td><td></td><td>59</td><td>COM16</td><td></td><td>265</td><td></td><td>109</td><td>COM66</td><td>1939</td><td></td></td<>	9	LSEL	-5902		59	COM16		265		109	COM66	1939	
12 DM -4323 62 COM19 505 112 COM69 1538.1 13 DM -3943 63 COM20 585 113 COM70 1404.4 14 DM -3563 64 COM21 665 114 COM71 1270.7 15 DM -3183 66 COM22 745 115 COM72 1303.4 16 DM -2803 66 COM25 7419.3 1083 118 COM75 736.1 19 DM -1162 69 COM26 7285.6 119 COM76 602.4 20 CIO2 -755 70 COM27 7152 120 COM78 335.1 21 DM 0 72 COM28 7018.3 121 COM78 335.1 22 DM 0 72 COM26 688.4.7 122 COM79 201.4 23 DM 347 73 COM30 6751 123 COM80 67.7 24 CIO1 <	10	DOFF	-5538		60	COM17		345		110	COM67	1805.4	
13 DM -3943 63 COM20 585 113 COM70 1404.4 14 DM -3563 64 COM21 665 114 COM71 1270.7 15 DM -3183 65 COM22 745 115 COM71 1270.7 16 DM -2803 66 COM23 825 116 COM71 1003.4 17 CSEL -2336 67 COM24 ♥ 905 117 COM74 869.7 18 LP -1998 68 COM27 7152 120 COM75 736.1 19 DM -1162 69 COM27 7152 120 COM77 868.7 21 DM -347 71 COM28 7018.3 121 COM78 335.1 22 DM 347 73 COM30 6511 123 COM80 67.7 24 CIO1 755 74 COM31 617.3 124 COM80 67.7 25 DM 18	11	FR	-4791		61	COM18		425		111	COM68	1671.7	
14 DM -3563 64 COM21 665 114 COM71 1270.7 15 DM -3183 65 COM22 745 115 COM72 1137.1 16 DM -2803 66 COM22 745 115 COM72 1137.1 17 CSEL -2336 67 COM24 905 117 COM74 869.7 18 LP -1998 68 COM25 7419.3 1083 118 COM75 736.1 19 DM -1162 69 COM26 7285.6 119 COM76 602.4 20 CIO2 -755 70 COM29 6884.7 122 COM76 602.4 23 DM 347 73 COM30 6751 123 COM80 67.7 24 CIO1 755 74 COM31 6643.7 125 COM80 -67.7 25 DM 1462 75 COM36 6350 126 COM84 -67.7 26 YD	12	DM	-4323		62	COM19		505		112	COM69	1538.1	
15 DM -3183 65 COM22 745 115 COM72 1137.1 16 DM -2803 66 COM23 905 1116 COM73 1003.4 17 CSEL -2336 67 COM24 905 1117 COM73 1803.7 18 LP -1998 68 COM25 7419.3 1083 118 COM76 602.4 20 ClO2 -755 70 COM27 715.2 120 COM77 662.4 21 DM -347 71 COM26 7285.6 1119 COM77 468.7 22 DM 0 72 COM26 684.7 122 COM77 468.7 23 DM 347 73 COM30 6751 123 COM80 67.7 24 ClO1 755 74 COM31 6617.3 124 COM81 -67.7 25 DM 1162 75 COM36 6350 126 COM82 -602.4 26 DM	13	DM	-3943		63	COM20		585		113	COM70	1404.4	
16 DM -2803 66 COM23 825 116 COM73 1003.4 17 CSEL -2336 67 COM24 ♥ 905 117 COM73 1003.4 18 LP -1998 68 COM25 7419.3 1083 118 COM75 736.1 19 DM -1162 69 COM26 7285.6 119 COM76 602.4 20 CIO2 -755 70 COM27 715.2 120 COM77 468.7 21 DM -347 71 COM28 7018.3 121 COM78 335.1 22 DM 0 72 COM29 6884.7 122 COM77 468.7 24 CIO11 755 74 COM31 6617.3 124 COM81 -67.7 25 DM 1162 75 COM32 6483.7 125 COM84 -602.4 26 YD 1998 76 COM35 6082.7 128 COM85 -602.4 29<	14	DM	-3563		64	COM21		665		114	COM71	1270.7	
16 DM -2803 66 COM23 825 116 COM73 1003.4 17 CSEL -2336 67 COM24 ♥ 905 117 COM73 869.7 18 LP -1998 68 COM25 7419.3 1083 118 COM75 736.1 19 DM -1162 69 COM26 7285.6 119 COM76 602.4 20 CIO2 -755 70 COM27 7152 120 COM77 468.7 21 DM -347 71 COM26 6884.7 122 COM77 468.7 22 DM 0 72 COM26 6884.7 122 COM78 335.1 24 CIO1 755 74 COM31 6617.3 124 COM81 -67.7 25 DM 1162 75 COM32 6483.7 125 COM83 -602.4 26 YD 1998 76 COM33 6350 126 COM85 -602.4 29	15	DM			65			1		115	COM72		
17 CSEL -2336 67 COM24 ♥ 905 117 COM74 869.7 18 LP -1998 68 COM25 7419.3 1083 118 COM75 736.1 20 CIO2 -755 70 COM27 7152 120 COM76 602.4 21 DM -347 71 COM28 7018.3 121 COM78 335.1 22 DM 0 72 COM29 6884.7 122 COM74 667.7 24 CIO1 755 74 COM31 6617.3 124 COM81 -67.7 25 DM 1162 75 COM33 6350 126 COM83 -335.1 27 DM 2336 77 COM34 6216.3 127 COM85 -602.4 28 DM 2803 78 COM35 682.7 128 COM85 -602.4 29 DM 3183 79 COM35 5815.3 130 COM86 -736.1 30		DM			66			825		116	COM73		
18 LP -1998 68 COM25 7419.3 1083 118 COM75 736.1 19 DM -1162 69 COM26 7285.6 119 COM76 602.4 20 CIO2 -755 70 COM27 7152 120 COM77 468.7 21 DM -347 71 COM28 7018.3 121 COM77 468.7 22 DM 0 72 COM29 6884.7 122 COM77 9201.4 23 DM 347 73 COM30 6751 123 COM80 67.7 24 CIO1 755 74 COM31 6617.3 124 COM81 -67.7 25 DM 1162 75 COM32 6483.7 125 COM82 -201.4 26 YD 1998 76 COM36 632.7 128 COM85 -602.4 29 DM 3183 79 COM36 594.9 129 COM86 -736.1 30 DM							🗡	1		1			
19 DM -1162 69 COM26 7285.6 119 COM76 602.4 20 CIO2 -755 70 COM27 7152 120 COM77 468.7 21 DM -347 71 COM28 7018.3 121 COM78 335.1 22 DM 0 72 COM29 6884.7 122 COM79 201.4 23 DM 347 73 COM30 6751 122 COM80 67.7 24 CIO1 755 74 COM31 6617.3 124 COM81 -67.7 25 DM 1162 75 COM32 6483.7 125 COM82 -201.4 26 YD 1998 76 COM33 6360 126 COM83 -335.1 27 DM 2363 78 COM35 692.7 128 COM84 -67.7 28 DM 3183 79 COM36 5949 129 COM86 -736.1 30 DM 3563							7419.3	1					
21 DM -347 71 COM28 7018.3 121 COM78 335.1 22 DM 0 72 COM29 6884.7 122 COM79 201.4 23 DM 347 73 COM30 6751 122 COM79 201.4 23 DM 347 73 COM30 6751 122 COM79 201.4 24 CIO1 755 74 COM31 6617.3 124 COM80 67.7 25 DM 1162 75 COM32 6483.7 125 COM83 -335.1 26 YD 1998 76 COM33 6082.7 128 COM85 -602.4 29 DM 3183 79 COM36 5949 129 COM86 -736.1 30 DM 3563 80 COM37 5815.3 130 COM88 -100.4 31 DM 3423 82 COM39 5548 132 COM89 -1137.1 33 DM 4791	19	DM	-1162		69	COM26	7285.6			119	COM76	602.4	
22 DM 0 72 COM29 6884.7 122 COM79 201.4 23 DM 347 73 COM30 6751 123 COM80 67.7 24 CIO1 755 74 COM31 6617.3 124 COM81 -67.7 25 DM 1162 75 COM32 6483.7 125 COM82 -201.4 26 YD 1998 76 COM34 6216.3 127 COM84 -468.7 28 DM 2803 78 COM35 6082.7 128 COM85 -602.4 29 DM 3183 79 COM36 5949 129 COM86 -736.1 30 DM 3663 80 COM37 5815.3 130 COM89 -1127.7 31 DM 3943 81 COM38 5681.7 131 COM89 -1127.7 34 DM 5538 84 COM41 5280.7 134 COM90 -1270.7 34 DM 6241 <td>20</td> <td>CIO2</td> <td>-755</td> <td></td> <td>70</td> <td>COM27</td> <td>7152</td> <td></td> <td></td> <td>120</td> <td>COM77</td> <td>468.7</td> <td></td>	20	CIO2	-755		70	COM27	7152			120	COM77	468.7	
23 DM 347 73 COM30 6751 123 COM80 67.7 24 CIO1 755 74 COM31 6617.3 124 COM81 -67.7 25 DM 1162 75 COM32 6483.7 125 COM82 -201.4 26 YD 1998 76 COM33 6350 126 COM83 -335.1 27 DM 2336 77 COM36 5949 129 COM86 -736.1 30 DM 3563 80 COM37 5815.3 130 COM87 -669.7 31 DM 3943 81 COM38 5681.7 131 COM88 -103.4 32 DM 4323 82 COM39 5548 132 COM89 -1270.7 34 DM 5538 84 COM41 5280.7 134 COM93 -1671.7 35 F1 5902 85 COM42 5147 135 COM93 -1671.7 36 DM 6241 <td></td> <td>DM</td> <td>-347</td> <td></td> <td>71</td> <td>COM28</td> <td></td> <td></td> <td></td> <td>121</td> <td>COM78</td> <td>335.1</td> <td></td>		DM	-347		71	COM28				121	COM78	335.1	
23 DM 347 73 COM30 6751 123 COM80 67.7 24 CIO1 755 74 COM31 6617.3 124 COM81 -67.7 25 DM 1162 75 COM32 6483.7 125 COM82 -201.4 26 YD 1998 76 COM33 6350 126 COM83 -335.1 27 DM 2336 77 COM36 5949 129 COM86 -736.1 30 DM 3563 80 COM37 5815.3 130 COM87 -669.7 31 DM 3943 81 COM38 5681.7 131 COM88 -103.4 32 DM 4323 82 COM39 5548 132 COM89 -1270.7 34 DM 5538 84 COM41 5280.7 134 COM93 -1671.7 35 F1 5902 85 COM42 5147 135 COM93 -1671.7 36 DM 6241 <td>22</td> <td>DM</td> <td>0</td> <td></td> <td></td> <td>COM29</td> <td></td> <td></td> <td></td> <td>122</td> <td>COM79</td> <td>201.4</td> <td></td>	22	DM	0			COM29				122	COM79	201.4	
25 DM 1162 75 COM32 6483.7 125 COM82 -201.4 26 YD 1998 76 COM33 6350 126 COM83 -335.1 27 DM 2336 77 COM34 6216.3 127 COM84 -468.7 28 DM 2803 78 COM35 6082.7 128 COM85 -602.4 29 DM 3183 79 COM36 5949 129 COM66 -736.1 30 DM 3943 81 COM39 5548 131 COM88 -1003.4 31 DM 4323 82 COM39 5548 132 COM89 -117.1 33 DM 4791 83 COM40 5414.3 133 COM90 -1270.7 34 DM 5538 84 COM41 528.7 134 COM91 -1404.4 35 F1 5902 85 COM42 5147 135 COM93 -1671.7 37 F2 6579 </td <td>23</td> <td>DM</td> <td>347</td> <td></td> <td>73</td> <td>COM30</td> <td></td> <td></td> <td></td> <td>123</td> <td>COM80</td> <td></td> <td></td>	23	DM	347		73	COM30				123	COM80		
25 DM 1162 75 COM32 6483.7 125 COM82 -201.4 26 YD 1998 76 COM33 6350 126 COM83 -335.1 27 DM 2336 77 COM34 6216.3 127 COM84 -468.7 28 DM 2803 78 COM35 6082.7 128 COM85 -602.4 29 DM 3183 79 COM36 5949 129 COM66 -736.1 30 DM 3563 80 COM37 5815.3 130 COM87 -869.7 31 DM 3943 81 COM38 5681.7 131 COM88 -100.4 32 DM 4791 83 COM40 5414.3 133 COM89 -1270.7 34 DM 5538 84 COM41 528.7 134 COM90 -1270.7 35 F1 5902 85 COM42 5147 135 COM93 -1671.7 36 DM 624	24	CIO1	755		74	COM31	6617.3			124	COM81	-67.7	
26 YD 1998 76 COM33 6350 126 COM83 -335.1 27 DM 2336 77 COM34 6216.3 127 COM84 -468.7 28 DM 2803 78 COM35 6082.7 128 COM85 -602.4 29 DM 3183 79 COM36 5949 129 COM86 -736.1 30 DM 3563 80 COM37 5815.3 130 COM88 -103.4 32 DM 4323 82 COM39 5548 132 COM88 -1137.1 33 DM 4791 83 COM40 5414.3 133 COM90 -1270.7 34 DM 5538 84 COM41 5280.7 134 COM91 -1404.4 35 F1 5902 85 COM42 5147 135 COM94 -1671.7 36 DM 6241 86 COM43 5013.3 136 COM94 -1805.4 37 F2 65	25	DM			75	COM32				125	COM82		
27 DM 2336 77 COM34 6216.3 127 COM84 -468.7 28 DM 2803 78 COM35 6082.7 128 COM85 -602.4 29 DM 3183 79 COM36 5949 129 COM86 -736.1 30 DM 3563 80 COM37 5815.3 130 COM87 -869.7 31 DM 3943 81 COM38 5681.7 131 COM88 -103.4 32 DM 4323 82 COM39 5548 132 COM89 -117.1 33 DM 4791 83 COM40 5414.3 133 COM90 -1270.7 34 DM 5538 84 COM41 5280.7 134 COM91 -1404.4 35 F1 5902 85 COM42 5147 135 COM93 -1671.7 36 DM 6241 86 COM44 4879.7 137 COM94 -1805.4 38 TEST1 <													
28 DM 2803 78 COM35 6082.7 128 COM85 -602.4 29 DM 3183 79 COM36 5949 129 COM86 -736.1 30 DM 3563 80 COM37 5815.3 130 COM87 -869.7 31 DM 3943 81 COM38 5681.7 131 COM88 -1003.4 32 DM 4323 82 COM39 5548 132 COM89 -1137.1 33 DM 4791 83 COM40 5414.3 133 COM90 -1270.7 34 DM 5538 84 COM41 5280.7 134 COM91 -1404.4 35 F1 5902 85 COM42 5147 135 COM93 -1671.7 36 DM 6241 86 COM43 5013.3 136 COM94 -1805.4 38 TEST1 6804 88 COM45 4746 138 COM97 -2206.4 41 VC	27	DM			77	COM34				127	COM84	-468.7	
30 DM 3563 80 COM37 5815.3 130 COM87 -869.7 31 DM 3943 81 COM38 5681.7 131 COM88 -1003.4 32 DM 4323 82 COM39 5548 132 COM89 -1137.1 33 DM 4791 83 COM40 5414.3 133 COM90 -1270.7 34 DM 5538 84 COM41 5280.7 134 COM91 -1404.4 35 F1 5902 85 COM42 5147 135 COM92 -1538.1 36 DM 6241 86 COM43 5013.3 136 COM93 -1671.7 37 F2 6579 87 COM44 4879.7 137 COM94 -1805.4 38 TEST1 6804 88 COM45 4746 138 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM98 -2340 42 +V1		DM	2803		78	COM35				128	COM85	-602.4	
31 DM 3943 81 COM38 5681.7 131 COM88 -1003.4 32 DM 4323 82 COM39 5548 132 COM89 -1137.1 33 DM 4791 83 COM40 5414.3 133 COM90 -1270.7 34 DM 5538 84 COM41 5280.7 134 COM91 -1404.4 35 F1 5902 85 COM42 5147 135 COM92 -1538.1 36 DM 6241 86 COM43 5013.3 136 COM93 -1671.7 37 F2 6579 87 COM44 4879.7 137 COM94 -1805.4 38 TEST1 6804 88 COM45 4746 138 COM97 -2206.4 41 VC 7332 90 COM47 4478.7 140 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM98 -2340 42 +V1	29	DM	3183		79	COM36	5949			129	COM86	-736.1	
32 DM 4323 82 COM39 5548 132 COM89 -1137.1 33 DM 4791 83 COM40 5414.3 133 COM90 -1270.7 34 DM 5538 84 COM41 5280.7 134 COM90 -1270.7 35 F1 5902 85 COM42 5147 135 COM92 -1538.1 36 DM 6241 86 COM43 5013.3 136 COM93 -1671.7 37 F2 6579 87 COM44 4879.7 137 COM94 -1805.4 38 TEST1 6804 88 COM45 4746 138 COM97 -1939 39 Vss 7142 89 COM46 4612.3 139 COM96 -2072.7 40 -V1 7237 90 COM47 4478.7 140 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM98 -2340 42 +V1	30	DM	3563		80	COM37	5815.3			130	COM87	-869.7	
33 DM 4791 83 COM40 5414.3 133 COM90 -1270.7 34 DM 5538 84 COM41 5280.7 134 COM90 -1270.7 35 F1 5902 85 COM42 5147 135 COM92 -1538.1 36 DM 6241 86 COM43 5013.3 136 COM93 -1671.7 37 F2 6579 87 COM44 4879.7 137 COM94 -1805.4 38 TEST1 6804 88 COM45 4746 138 COM97 -1939 39 Vss 7142 89 COM46 4612.3 139 COM96 -2072.7 40 -V1 7237 90 COM47 4478.7 140 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM98 -2340 42 +V1 7427 92 COM50 4077.7 143 COM100 -2607.4 44 COM1	31	DM	3943		81	COM38	5681.7			131	COM88	-1003.4	
34 DM 5538 84 COM41 5280.7 134 COM91 -1404.4 35 F1 5902 85 COM42 5147 135 COM92 -1538.1 36 DM 6241 86 COM43 5013.3 136 COM93 -1671.7 37 F2 6579 87 COM44 4879.7 137 COM94 -1805.4 38 TEST1 6804 88 COM45 4746 138 COM97 -1939 39 Vss 7142 89 COM46 4612.3 139 COM96 -2072.7 40 -V1 7237 90 COM47 4478.7 140 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM98 -2340 42 +V1 7427 92 COM49 4211.4 142 COM99 -2473.7 43 VDDH 7522 93 COM50 4077.7 143 COM100 -2607.4 44 COM1 <td>32</td> <td>DM</td> <td>4323</td> <td></td> <td>82</td> <td>COM39</td> <td>5548</td> <td></td> <td></td> <td>132</td> <td>COM89</td> <td>-1137.1</td> <td></td>	32	DM	4323		82	COM39	5548			132	COM89	-1137.1	
35 F1 5902 85 COM42 5147 135 COM92 -1538.1 36 DM 6241 86 COM43 5013.3 136 COM92 -1538.1 37 F2 6579 87 COM44 4879.7 137 COM94 -1805.4 38 TEST1 6804 88 COM45 4746 138 COM92 -1939 39 Vss 7142 89 COM46 4612.3 139 COM96 -2072.7 40 -V1 7237 90 COM47 4478.7 140 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM98 -2340 42 +V1 7427 92 COM49 4211.4 142 COM99 -2473.7 43 VDDH 7522 93 COM50 4077.7 143 COM100 -2607.4 44 COM1 7655 -935 94 COM51 3944 144 COM101 -2741 45 <td>33</td> <td>DM</td> <td>4791</td> <td></td> <td>83</td> <td>COM40</td> <td>5414.3</td> <td></td> <td></td> <td>133</td> <td>COM90</td> <td>-1270.7</td> <td></td>	33	DM	4791		83	COM40	5414.3			133	COM90	-1270.7	
36 DM 6241 86 COM43 5013.3 136 COM93 -1671.7 37 F2 6579 87 COM44 4879.7 137 COM94 -1805.4 38 TEST1 6804 88 COM45 4746 138 COM94 -1805.4 39 Vss 7142 89 COM46 4612.3 139 COM96 -2072.7 40 -V1 7237 90 COM47 4478.7 140 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM98 -2340 42 +V1 7427 92 COM49 4211.4 142 COM99 -2473.7 43 VDDH 7522 93 COM50 4077.7 143 COM100 -2607.4 44 COM1 7655 -935 94 COM51 3944 144 COM101 -2741 45 COM2 -855 95 COM52 3810.4 145 COM102 -2874.7 <td< td=""><td>34</td><td>DM</td><td>5538</td><td></td><td>84</td><td>COM41</td><td>5280.7</td><td></td><td></td><td>134</td><td>COM91</td><td>-1404.4</td><td></td></td<>	34	DM	5538		84	COM41	5280.7			134	COM91	-1404.4	
37 F2 6579 87 COM44 4879.7 137 COM94 -1805.4 38 TEST1 6804 88 COM45 4746 138 COM94 -1805.4 39 Vss 7142 89 COM46 4612.3 139 COM96 -2072.7 40 -V1 7237 90 COM47 4478.7 140 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM98 -2340 42 +V1 7427 92 COM49 4211.4 142 COM99 -2473.7 43 VDH 7522 93 COM50 4077.7 143 COM100 -2607.4 44 COM1 7655 -935 94 COM51 3944 144 COM101 -2741 45 COM2 -855 95 COM52 3810.4 145 COM102 -2874.7 46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 <	35	F1	5902		85	COM42	5147			135	COM92	-1538.1	
38 TEST1 6804 88 COM45 4746 138 COM95 -1939 39 Vss 7142 89 COM46 4612.3 139 COM96 -2072.7 40 -V1 7237 90 COM47 4478.7 140 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM97 -2206.4 42 +V1 7427 92 COM49 4211.4 142 COM99 -2473.7 43 VDDH 7522 93 COM50 4077.7 143 COM100 -2607.4 44 COM1 7655 -935 94 COM51 3944 144 COM101 -2741 45 COM2 -855 95 COM52 3810.4 145 COM102 -2874.7 46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 47 COM4 -695 97 COM54 3543 147 COM104 -3142 <td>36</td> <td>DM</td> <td>6241</td> <td></td> <td>86</td> <td>COM43</td> <td>5013.3</td> <td></td> <td></td> <td>136</td> <td>COM93</td> <td>-1671.7</td> <td></td>	36	DM	6241		86	COM43	5013.3			136	COM93	-1671.7	
39 Vss 7142 89 COM46 4612.3 139 COM96 -2072.7 40 -V1 7237 90 COM47 4478.7 140 COM96 -2072.7 41 VC 7332 91 COM48 4345 141 COM98 -2340 42 +V1 7427 92 COM49 4211.4 142 COM99 -2473.7 43 VDH 7522 93 COM50 4077.7 143 COM100 -2607.4 44 COM1 7655 -935 94 COM51 3944 144 COM101 -2741 45 COM2 -855 95 COM52 3810.4 145 COM102 -2874.7 46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 47 COM4 -695 97 COM54 3543 147 COM104 -3142	37	F2	6579		87	COM44	4879.7			137	COM94	-1805.4	
40 -V1 7237 90 COM47 4478.7 140 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM97 -2206.4 42 +V1 7427 92 COM49 4211.4 142 COM99 -2473.7 43 VDDH 7522 93 COM50 4077.7 143 COM100 -2607.4 44 COM1 7655 -935 94 COM51 3944 144 COM101 -2741 45 COM2 -855 95 COM52 3810.4 145 COM102 -2874.7 46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 47 COM4 -695 97 COM54 3543 147 COM104 -3142	38	TEST1	6804		88	COM45	4746			138	COM95	-1939	
40 -V1 7237 90 COM47 4478.7 140 COM97 -2206.4 41 VC 7332 91 COM48 4345 141 COM97 -2206.4 42 +V1 7427 92 COM49 4211.4 142 COM99 -2473.7 43 VDDH 7522 93 COM50 4077.7 143 COM100 -2607.4 44 COM1 7655 -935 94 COM51 3944 144 COM101 -2741 45 COM2 -855 95 COM52 3810.4 145 COM102 -2874.7 46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 47 COM4 -695 97 COM54 3543 147 COM104 -3142	39	Vss	7142		89					139			
41 VC 7332 91 COM48 4345 141 COM98 -2340 42 +V1 7427 92 COM49 4211.4 142 COM99 -2473.7 43 VDDH 7522 93 COM50 4077.7 143 COM100 -2607.4 44 COM1 7655 -935 94 COM51 3944 144 COM101 -2741 45 COM2 -855 95 COM52 3810.4 145 COM102 -2874.7 46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 47 COM4 -695 97 COM54 3543 147 COM104 -3142	40	-V1	7237		90					140	COM97		
42 +V1 7427 92 COM49 4211.4 142 COM99 -2473.7 43 VDDH 7522 93 COM50 4077.7 143 COM100 -2607.4 44 COM1 7655 -935 94 COM51 3944 144 COM101 -2741 45 COM2 -855 95 COM52 3810.4 145 COM102 -2874.7 46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 47 COM4 -695 97 COM54 3543 147 COM104 -3142	41	VC	7332		91	COM48	4345			141	COM98		
44 COM1 7655 -935 94 COM51 3944 144 COM101 -2741 45 COM2 -855 95 COM52 3810.4 145 COM102 -2874.7 46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 47 COM4 -695 97 COM54 3543 147 COM104 -3142	42	+V1			92	COM49	4211.4			142	COM99		
45 COM2 -855 95 COM52 3810.4 145 COM102 -2874.7 46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 47 COM4 -695 97 COM54 3543 147 COM104 -3142	43	Vddh	7522	♥	93	COM50	4077.7			143	COM100	-2607.4	
46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 47 COM4 -695 97 COM54 3543 147 COM104 -3142	44	COM1	7655	-935	94	COM51	3944			144	COM101	-2741	
46 COM3 -775 96 COM53 3676.7 146 COM103 -3008.4 47 COM4 -695 97 COM54 3543 147 COM104 -3142	45	COM2		-855	95	COM52	3810.4			145	COM102	-2874.7	
47 COM4 -695 97 COM54 3543 147 COM104 -3142	46	COM3		-775		COM53	3676.7			146			
	47	COM4				COM54				147	COM104	-3142	
48 CUIVI5	48	COM5		-615	98	COM55	3409.4			148	COM105	-3275.7	
49 COM6 -535 99 COM56 3275.7 149 COM106 -3409.4	49									149			
50 COM7 ♥ -455 100 COM57 3142 ♥ 150 COM107 -3543 ♥	50		V		100			🗡		150		-3543	♥

Pin	Name	Х	Y	Pin	Name	Х	Y	Pin	Name	Х	Y
151	COM108	-3676.7	1083	169	COM126	-6082.7	1083	187	COM144	-7655	345
152	COM109	-3810.4		170	COM127	-6216.3		188	COM145		265
153	COM110	-3944		171	COM128	-6350		189	COM146		185
154	COM111	-4077.7		172	COM129	-6483.7		190	COM147		105
155	COM112	-4211.4		173	COM130	-6617.3		191	COM148		25
156	COM113	-4345		174	COM131	-6751		192	COM149		-55
157	COM114	-4478.7		175	COM132	-6884.7		193	COM150		-135
158	COM115	-4612.3		176	COM133	-7018.3		194	COM151		-215
159	COM116	-4746		177	COM134	-7152		195	COM152		-295
160	COM117	-4879.7		178	COM135	-7285.6		196	COM153		-375
161	COM118	-5013.3		179	COM136	-7419.3		197	COM154		-455
162	COM119	-5147		180	COM137	-7655	905	198	COM155		-535
163	COM120	-5280.7		181	COM138		825	199	COM156		-615
164	COM121	-5414.3		182	COM139		745	200	COM157		-695
165	COM122	-5548		183	COM140		665	201	COM158		-775
166	COM123	-5681.7		184	COM141		585	202	COM159		-855
167	COM124	-5815.3		185	COM142		505	203	COM160	V	-935
168	COM125	-5949	V	186	COM143	♥	425				


TERMINAL FUNCTIONS

Terminal Name	I/O		Function			Number of Terminals			
COM1 to COM160	0		on (row) output to drive LC. transition occurs on falling edge	e of LP.		160			
CIO1 CIO2	I/O	This is	ignal I/O. set to input or output depending ∟ input. Output transition occurs			2			
YD	Ι	Frame	start/pulse input, with terminato	or. (*1)		1			
F1, F2	Ι	Drive p	attern select signal input, with to	erminato	r. (*1)	2			
LP	I		ock input for display data. rs on falling edge.) With termina	ator. (*1)		1			
		Shift dir	rection select and CIO terminal	I/O conti	rol input.				
		SHL	Output Shift Direction	CIO1	CIO2				
SHL		L	1(9) → 160(148)	Input	Output	1			
		H	$160(148) \rightarrow 1(9)$	Output	Input				
		The nu	mbers in parentheses are for 14						
SEL	I	Select i 160 out L: CON	nput for the number of COM outputs $\leftarrow \rightarrow$ 140 outputs 11 to COM160 19 to COM148			1			
LSEL	I		peration select signal input. nal operation. H: 1/2 operation.			1			
CSEL	I	is used	ling chip	cade cor	nnection	1			
FR	Ι	LC driv	e output AC signal input. With t	erminato	r (*1)	1			
DOFF	I	all com The cor	C display blanking control input. With a low level input, Il common outputs are temporarily set to the Vc level. he contents of the latches are maintained. With erminator (*1)						
TEST1	Ι	Test1 s	ignal input. Normally tied at L.			1			
Vcc, GNDL, GNDR	Power		source for logic: V, Vcc: +2.7 to 5.5 V			3			
Vcl, Vcr, +V1l, +V1r, -V1l, -V1r, Vddhl, Vddhr	Power	GND: 0	re Power: \ V, ⊦ 14.0 to 42.0 V, VDDH ≥ +V1 ≥ \	VC ≥ −V1	≥ GND	8			
DM		Dummy	/ pad			19			


Total 203

Note: *1

Terminator

Block Diagram

Explanation of Each Block

Shift Register

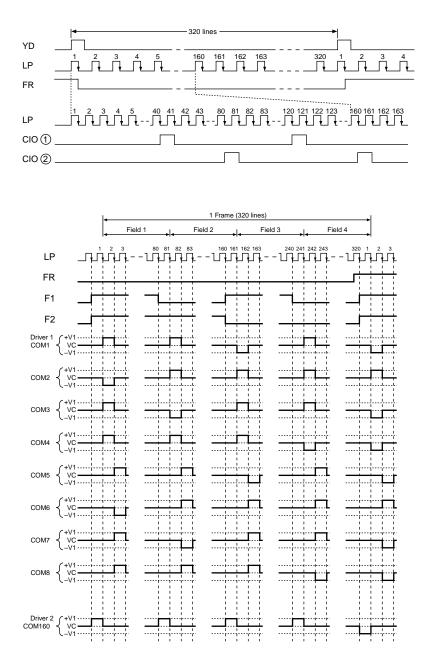
This is a bi-directional shift register used for transmitting common data. The display data shifts on the falling edge of LP.

Level Shifter

The level shifter is a voltage level converter circuit which converts the signal voltage level from a logic system level to the LC driver system voltage level.

LCD Driver

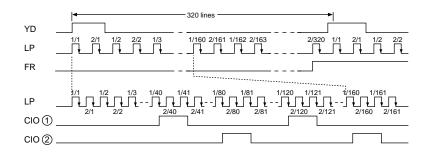
The LCD driver outputs the LC drive voltage.

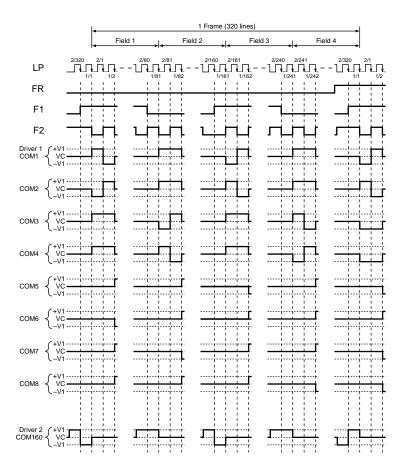

The relationship between the display blanking signal $\overline{\text{DOFF}}$, the field recognition signals F1 & F2, the AC signal FR, and the common output voltage is as follows:

DOFF		Н								
FR		L	-			—				
F1,F2	1,1	0,1	1,0	0,0	1,1	0,1	1,0	0,0	—	
Line 1	+V1	+V1	-V1	+V1	-V1	-V1	+V1	-V1	Vc	
Line 2	-V1	+V1	+V1	+V1	+V1	-V1	-V1	-V1	Vc	
Line 3	+V1	-V1	+V1	+V1	-V1	+V1	-V1	-V1	Vc	
Line 4	+V1	+V1	+V1	-V1	-V1	-V1	-V1	+V1	Vc	

Voltage level relationships: $+V_1 > V_C > -V_1$ (VC is the center voltage level)

Timing Diagram (1)

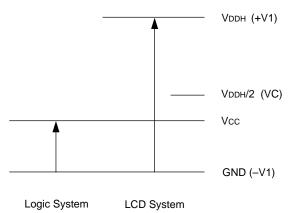

1/320 duty, normal operation. SHL = L, SEL = L, LSEL = L, CSEL = L (This diagram provided only as a reference.)



Timing Diagram (2)

1/320 duty, 1/2 H operation.

SHL = L, SEL = L, LSEL = H, CSEL = L (This diagram provided only as a reference.)

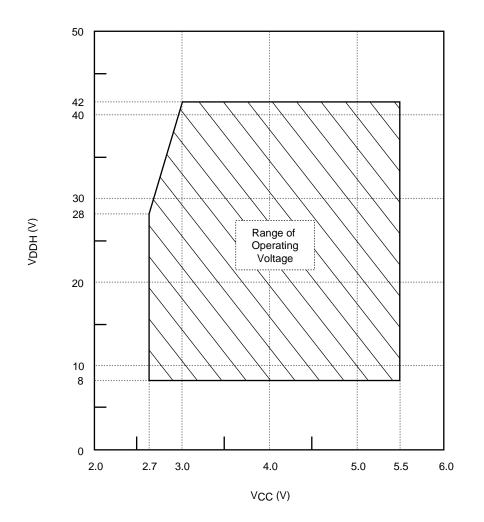

ABSOLUTE MAXIMUM RATINGS

Item	Signal	Rated Value	Units
Power voltage (1)	Vcc	-0.3 to +7.0	V
Power voltage (2)	Vddh	-0.3 to + 45.0	V
Power voltage (3)	± V1, VC	GND - 0.3 to VDDH + 0.3	V
Input voltage	VI	GND - 0.3 to Vcc + 0.3	V
Output voltage	Vo	GND - 0.3 to Vcc + 0.3	V
CIO output current	lO1	20	mA
Operating temperature	Topr	-30 to +85	°C
Storage temperature 1	Tstg1	-65 to +150	°C
Storage temperature 2	Tstg2	-55 to +100	°C

NOTE 1: The voltages are all relative to GND = 0 V.

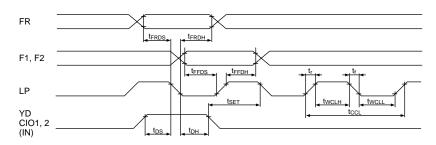
NOTE 2: Storage temperature 1 is for the chip alone, and storage temperature 2 is for the TCP product.

NOTE 3: Ensure that the relationship between +V1, VC, and -V1 is always as follows: $VDDH \ge +V1 \ge VC \ge -V1 \ge GND.$


NOTE 4: The LSI may be permanently damaged if the logic system power is floating or VCC is less than or equal to 2.6 V when power is applied to the LC drive system. Special caution must be paid to the power sequences during power up and power down.

Electrical Characteristics

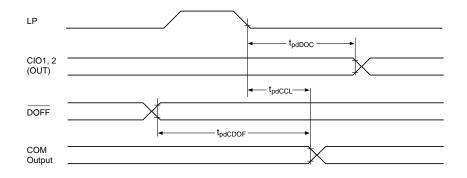
DC Characteristics


Ur	nless of	herwise noted, G	SND = 0 V	, VCC = + 5	0 V ± 1	0%, Ta :	=30 to	85°C
Item	Signal	Paramete	r	Applicable Terminals	Min	Тур	Max	Unit
Power Supply Voltage (1)	Vcc			Vcc	2.7	5.0	5.5	V
Range Operating Voltages	Vddh	Function	Vddh	8.0		42.0	V	
Power Supply Voltage (2)	+V1	Recommended Valu	e	+V1			Vddh	V
Power Supply Voltage (3)	Vc	Recommended Valu	e	Vc		Vddh/2		V
Power Supply Voltage (4)	-V1	Recommended Valu	е	-V1	GND			V
High-level Input Voltage	Vін	Vcc = 2.7 to 5.5V	N/ 0.7 (5.5 V					V
Low-level Input Voltage	VIL	100.00		LSEL,CSEL, DOFF,F1,F2, TEST1			0.2Vcc	V
High-level Output Voltage	Vон	Vcc = 2.7 to 5.5V	Іон = _0.3mA	- CIO1,CIO2	Vcc-0.4			V
Low-level Output Voltage	Vol	100.00	lo∟ = 0.3mA	0101,0102			0.4	V
Input Leakage Current	lu	$GND \leq V \text{in} \leq V \text{cc}$		LP,YD,SHL,SEL, LSEL,CSEL,F1, F2,DOFF,TEST1, FR			2.0	μΑ
Input/Output Leakage Current	Ili/o	$GND \leq V \text{IN} \leq V \text{CC}$		CIO1,CIO2			5.0	μA
Static Current	Ignd	VDDH = 14.0~42.0V VIH = Vcc, VIL = GNE)	GND			25	μΑ
Output Resistance	Rсом	$\Delta V_{ON} = 0.5 V$ Recommended	Vddh = +30.0V	COM1 to		0.55	0.7	kΩ
Output Resistance	ICOM	parameter	Vddh = +40.0V	COM120		0.5	0.7	K22
Average Operating Consumption Current	Icc	$\begin{array}{l} Vcc = +5.0 \ V, \ VIH = V \\ VIL = GND, \ f_{LP} = 22.4 \\ f_{FR} = 70 \ Hz, \\ Input \ data: \ 1/320 \end{array}$		Vcc		12	25	μΑ
(1)		Vcc = 3.0 V All other parameters the same as Vcc = 5				8	17	
Average Operating Consumption Current (2)	Іддн	$\begin{array}{l} VDDH = +V1 = +30.0 \\ VC = VDDH/2, -V1 = 0 \\ VCc = 5.0 \\ V \\ All other parameters \\ the same as the lcc \\ \end{array}$	Vddh		7	13	μΑ	
Input Terminal Capacity	Сі	Freq. = 1 MHz Chip alone		LP,YD,SHL,SEL, LSEL,CSEL,F1,F2, DOFF,TEST1,FR			10	pF
Input/Output Terminal Capacity	Ci/o	Ta = 25°C		CIO1,CIO2			18	pF

Range of Operating Voltages: VCC – VDDH It is necessary to set the voltage for VDDH within the VCC – VDDH operating voltage range shown in the diagram below.

AC Characteristics

Input Timing Characteristics

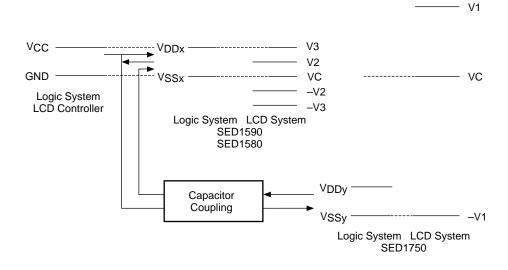

The FR latched at the nth LP is reflected in the output at the n+1th LP.

		(VCC = +5.0	V ± 10%,	Ta = -30 to	<u> +85°C)</u>
Item	Signal	Parameter	Min	Max	Units
LP Frequency	tcc∟		500		ns
LP "H" Pulse Width	twclh		55		ns
LP "L" Pulse Width	twcll		330		ns
FR Setup Time	t FRDS		100		ns
FR Hold Time	t frdh		40		
F1, F2 Setup Time	t FFDS		100		
F1, F2 Hold Time	t ffdh		40		
Input Signal Rise Time	tr			50	ns
Input Signal Fall Time	tf			50	ns
CIO Setup Time	tos		100		ns
CIO Hold Time	tон		40		ns
$YD \rightarrow LP$ Allowable Time	t SET		80		ns

		(VCC = +2.7 V)	ι0 4.5 V,	a = -30 c	(-100 + 00 + 0)
Item	Signal	Parameter	Min	Max	Units
LP Frequency	tcc∟		800		ns
LP "H" Pulse Width	twclh		100		ns
LP "L" Pulse Width	twcll		660		ns
FR Setup Time	trrds		200		ns
FR Hold Time	t FRDH		40		
F1, F2 Setup Time	tffds		200		
F1, F2 Hold Time	t ffdh		40		
Input Signal Rise Time	tr			100	ns
Input Signal Fall Time	tf			100	ns
CIO Setup Time	tos		200		ns
CIO Hold Time	tон		40		ns
$YD \rightarrow LP$ Allowable Time	t set		150		ns

(Vcc = +2.7 V to 4.5 V, Ta = -30 to +85°C)

Output Timing Characteristics


(Vcc = 5.0 V	+ 10%	14 0 to +	4201/	Ta – _30 to	+85°C)
	v = 0.0 v	± 1070,	14.0 10 +	ΨZ.U V,	1a = -30 10	+03 C)

ltem	Signal	Parameter	Min	Max	Units
Delay time from LP to CIO output	t pdDOC	CL = 15 pF		300	ns
Delay time from LP to COM output	t pdCCL	VDDH =		350	ns
Delay time from DOFF to COM output	t _{pdCDOF}	14.0 V to 40.0 V		700	ns

(VCC = +2.7 V to 4.5 V, VDDH = +14.0 to +28.0 V, Ta = -30 to +8	5°C)
---	------

ltem	Signal	Parameter	Min	Max	Units
Delay time from LP to CIO output	t pdDOC	CL = 15 pF		600	ns
Delay time from LP to COM output	t pdCCL	VDDH =		500	ns
Delay time from DOFF to COM output	t pdCDOF	14.0 V to 40.0 V		1400	ns

When the SED1590 (SED1580) and the SED1750 are used to form an extremely low power module system, the power relationships as shown in the figure above between the SED1590 (SED1580) and SED1750 logic systems, and the LCD system power supply, and the LCD controller power supply are optimal.

In this case, care is required when it comes to signal propagation in the logic system.

LCD Controller	\rightarrow	SED1580, SED1590	Direct
LCD Controller	\rightarrow	SED1750	Capacitor coupling is required
SED1580, SED1590	\rightarrow	SED1750	Capacitor coupling is required
SED1750	\rightarrow	SED1580, SED1590	Capacitor coupling is required

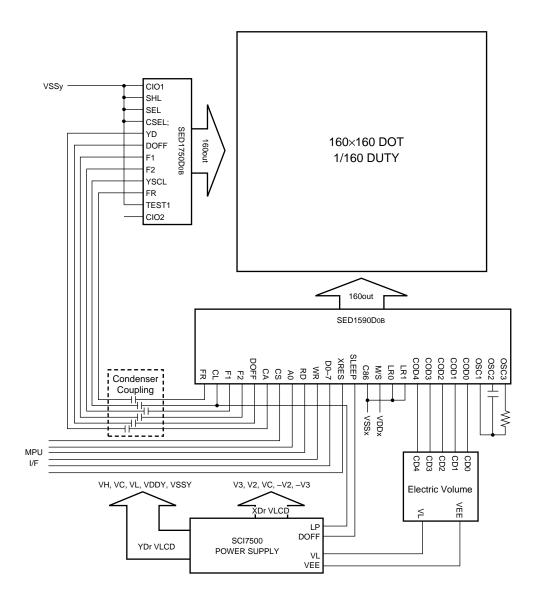
Cautions at Power Up and Power Down

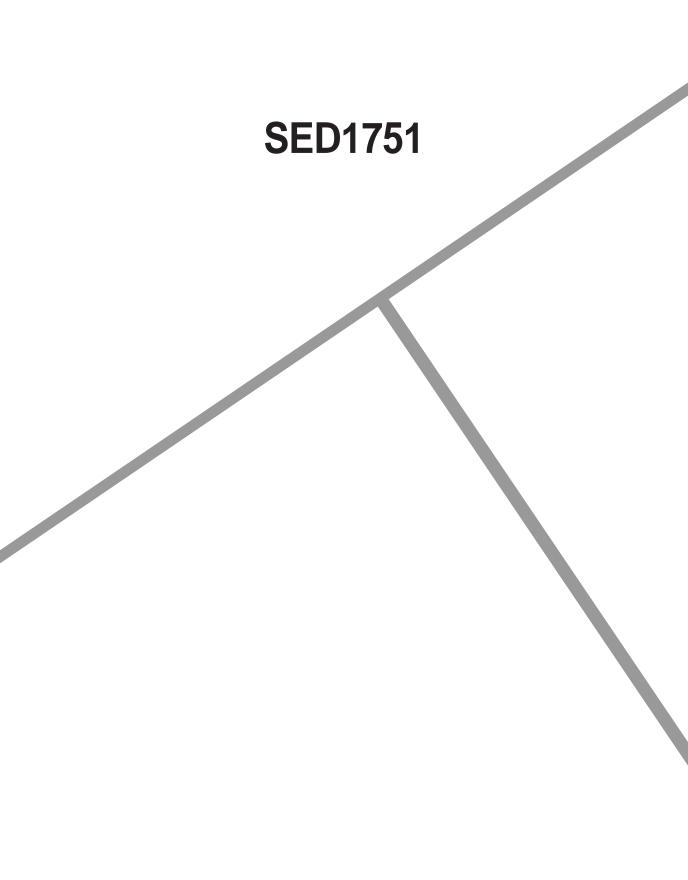
Because the voltage level in the LCD system is high voltage, if the logic system power supply of this LSI is floating or if VCC is 2.6 V or less when the LCD system high voltage (30 V or above) is applied, or if the LCD drive signal is output before the voltage level that is applied to the LCD system has stabilized, then there is the risk that there will be an over current condition in this LSI, resulting in permanent damage to this LSI.

It is recommended that the display OFF function (DOFF) is used until the LCD system voltage stabilizes to insure that the LCD drive output power level is at the VC level.

Be sure to follow the sequences below when turning the power supplies ON and OFF:

When turning the power supply ON:


Logic system ON \rightarrow LCD drive system ON, or simultaneously ON.


When turning the power supply OFF:

LCD drive system OFF \rightarrow Logic system OFF, or simultaneously OFF.

As a countermeasure to guard against over current conditions, it is effective to insert a high-speed fuse or a guard resistance in series with the LC power supply. The guard resistance value must be optimized depending on the capacity of the LC cell.

Example of Connection

Contents

OVERVIEW	5-1
TERMINAL FUNCTIONS	5-3
ABSOLUTE MAXIMUM RATINGS	5-9

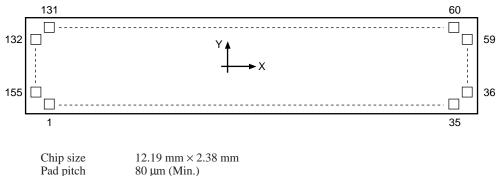
OVERVIEW

Description

The SED1751 is an 120 output, 3-level low-resistance common (row) driver suitable for high-quality, high-response-speed MLS (Multi Line Selection) driving.

The SED1751 receives signals from LCD controllers such as the SED1335, and when used is used in conjunction with the SED1580, can be used to structure a 4-line MLS drive.

The SED1751 uses a slim-chip form that is useful for making LCD panels slimmer. It also supports reduced logic system voltage operation, making it suitable for a broad range of applications.


The SED1751 has a pad layout supporting easy mounting, and supports bi-directional selection of driver output order, and has the highest use efficiency for 1/240 and 1/480 duty panels.

Features

- LCD driver outputs 120
- Low output ON resistance
- High duty drive supported 1/480 (Reference value)
- Broad range of LC drive voltages+ 14 to + 42 V (VCC = 2.7 to 5.5 V)
- Output shift direction pin select is possible
- Can be switched between 100 and 120 outputs
- Non-biased display OFF function
- Logic system power source2.7 V to 5.5 V
- LC power source offset bias can be adjusted relative to the VDDH and GND levels
- Slim chip shape
- Dob Au Bump die
- T0A TCP

Pad Layout

1

	Chip Size	12.17 11111 × 2.50 11111
	Pad pitch	80 µm (Min.)
	Chip thickness	$525 \ \mu m \pm 25 \ \mu m$
1)	Au Bump Specifica	tions (SED1751DOB) Reference Values Only
	Au vertical bump	
	Parallel to Scrib	$e \times Perpendicular$ to Scribe \pm Tolerance
	Bump Size A	60 μ m \times 75 μ m \pm 4 μ m (Pad No. 1 to 35, 60 to 131)
	Bump Size B	80 μ m × 50 μ m ± 4 μ m (Pad No. 36 to 59, 132 to 155)

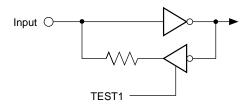
Bump height 17 to 28 µm (The details specified in the acceptance specifications.)

Pad Coordinates

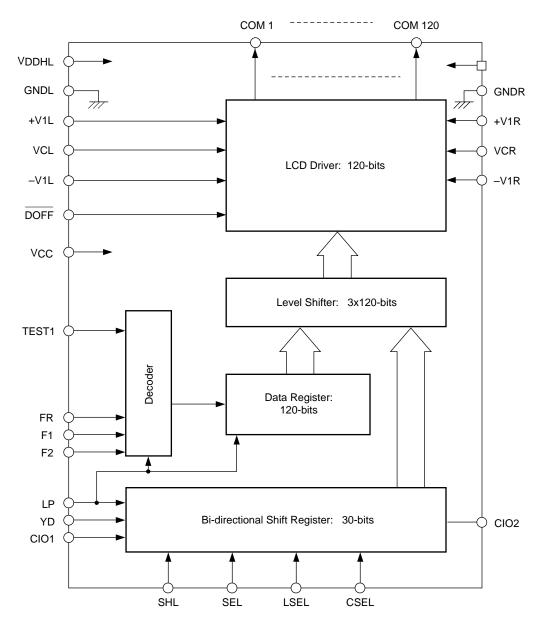
Units: µm

Pin	Name	Х	Y
1	Vddhl	-5812	-1012
2	+V1L	-5717	
3	VCL	-5622	
4	–V1L	-5527	
5	GNDL	-5432	
6	SHL	-5094	
7	SEL	-4869	
8	Vcc	-4531	
9	LSEL	-4192	
10	DOFF	-3828	
11	FR	-3081	
12	CSEL	-2336	
13	LP	-1998	
14	DM	-1162	
15	CIO2	-755	
16	DM	-347	
17	DM	0	
18	DM	347	
19	CIO1	755	
20	DM	1162	
21	YD	1998	
22	DM	2336	
23	DM	2674	
24	DM	3081	
25	DM	3489	
26	DM	3828	
27	F1	4192	
28	DM	4531	
29	F2	4869	
30	TEST1	5094	
31	GNDR	5432	
32	–V1R	5527	
33	Vcr	5622	
34	+V1R	5717	
35	Vddhr	5812	V

			Units: µm
Pin	Name	Х	Y
36	COM1	5945	-902
37	COM2		-822
38	COM3		-742
39	COM4	V	-662
\downarrow	\downarrow	\downarrow	\downarrow
57	COM22	5945	778
58	COM23	5945	858
59	COM24	5945	938
60	COM25	5709	1034
61	COM26	5549	1034
62	COM27	5389	1034
\downarrow	\downarrow	\downarrow	\downarrow
93	COM58	429	1034
94	COM59	269	
95	COM60	109	
96	COM61	-109	
97	COM62	-269	
98	COM63	-429	★
\downarrow	\downarrow	\downarrow	\downarrow
129	COM94	-5389	1034
130	COM95	-5549	1034
131	COM96	-5709	1034
132	COM97	-5945	938
133	COM98	-5945	858
134	COM99	-5945	778
\downarrow	\downarrow	\downarrow	\downarrow
152	COM117	-5945	-662
153	COM118		-742
154	COM119		-822
155	COM120	¥	-902


COMn XY coordinates:

TERMINAL FUNCTIONS


Terminal Name	I/O		Function				
COM1 to COM120	0		ommon (row) output to drive LC. utput transition occurs on falling edge of LP.				
CIO1 CIO2	I/O	This is	ignal I/O. set to input or output dependin L input. Output transition occur			2	
YD	I	Frame	start/pulse input, with terminate	or. (*1)		1	
F1, F2	I	Drive p	attern select signal input, with	terminato	r. (*1)	2	
LP	I	(Trigge	ock input for display data. rs on falling edge.) With termin			1	
		Shift di	rection select and CIO terminal	I I/O conti	rol input.		
		SHL	Output Shift Direction	С	10		
SHL		SHL	Output Shift Direction	CIO1	CIO2	1	
SHE		L	$1(9) \rightarrow 120(108)$	Input	Output	I	
		Н	$120(108) \rightarrow 1(9)$	Output	Input		
		The nu	e numbers in parentheses are for 100 output mode.				
SEL	I	120 out L: CON	elect input for the number of COM output terminals: 20 outputs $\leftarrow \rightarrow$ 100 outputs COM1 to COM120 : COM9 to COM108				
LSEL	I		peration select signal input. nal operation. H: 1/2 operation.	1		1	
CSEL	I	is used L: Lead	hip select signal input for when a cascade connection				
FR	I	LC driv	e output AC signal input. With	terminato	or (*1)	1	
DOFF	I	all com The coi	C display blanking control input. With a low level input, I common outputs are temporarily set to the Vc level. he contents of the latches are maintained. With erminator (*1)				
TEST1	I	Test1 s	ignal input. Normally tied at L.			1	
Vcc, GNDL, GNDR	Power		source for logic: V , Vcc: +2.7 to 5.5 V			3	
Vcl, Vcr, +V1l, +V1r, -V1l, -V1r, Vddhl, Vddhr	Power	GND: 0	C Drive Power: ND: 0 V, DDH: + 14.0 to 42.0 V, VDDH \ge +V1 \ge VC \ge -V1 \ge GND			8	
DM		Dummy	/ pad			11	

Total 155

Note: *1

Block Diagram

Explanation of Each Block

Shift Register

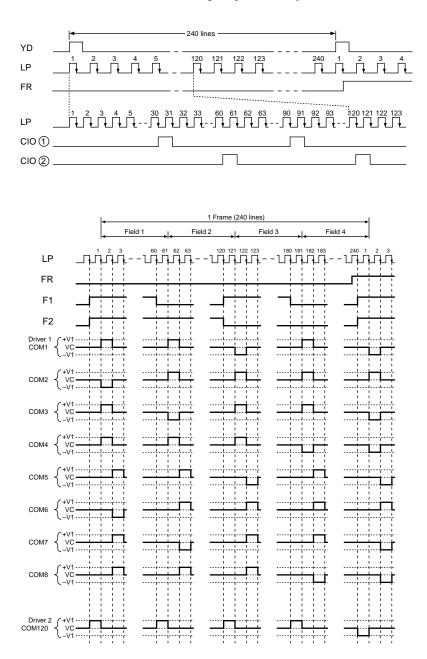
This is a bi-directional shift register used for transmitting common data. The display data shifts on the falling edge of LP.

Level Shifter

The level shifter is a voltage level converter circuit which converts the signal voltage level from a logic system level to the LC driver system voltage level.

LCD Driver

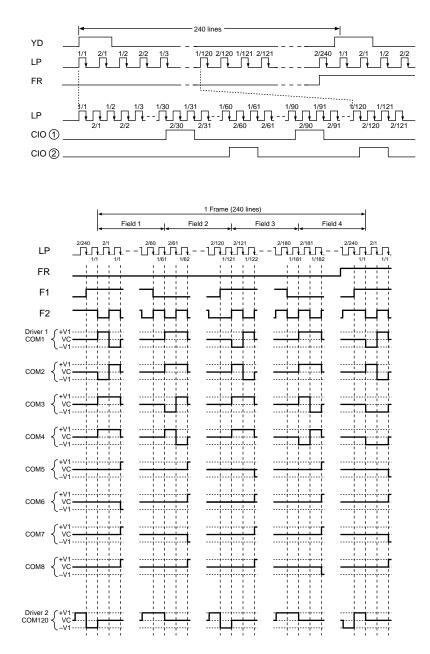
The LCD driver outputs the LC drive voltage.


The relationship between the display blanking signal $\overline{\text{DOFF}}$, the field recognition signals F1 & F2, the AC signal FR, and the common output voltage is as follows:

DOFF	Н						L		
FR	L			Н					
F1,F2	1,1	0,1	1,0	0,0	1,1	0,1	1,0	0,0	
Line 1	+V1	+V1	-V1	+V1	-V1	-V1	+V1	-V1	Vc
Line 2	-V1	+V1	+V1	+V1	+V1	-V1	-V1	-V1	Vc
Line 3	+V1	-V1	+V1	+V1	-V1	+V1	-V1	-V1	Vc
Line 4	+V1	+V1	+V1	-V1	-V1	-V1	-V1	+V1	Vc

Voltage level relationships: $+V_1 > V_C > -V_1$ (VC is the center voltage level)

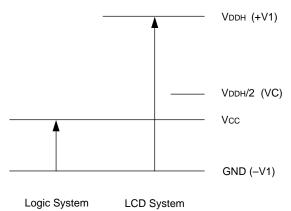
Timing Diagram (1)


1/240 duty, normal operation. SHL = L, SEL = L, LSEL = L, CSEL = L (This diagram provided only as a reference.)

Timing Diagram (2)

1/240 duty, 1/2 H operation.

SHL = L, SEL = L, LSEL = H, CSEL = L (This diagram provided only as a reference.)

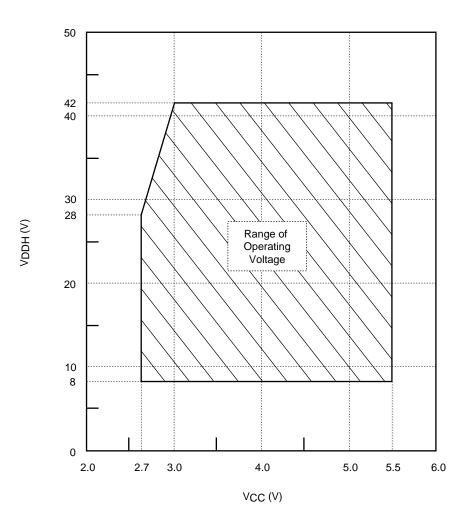

ABSOLUTE MAXIMUM RATINGS

Item	Signal	Rated Value	Units
Power voltage (1)	Vcc	-0.3 to +7.0	V
Power voltage (2)	Vddh	-0.3 to + 45.0	V
Power voltage (3)	± V1, VC	GND - 0.3 to VDDH + 0.3	V
Input voltage	VI	GND - 0.3 to Vcc + 0.3	V
Output voltage	Vo	GND - 0.3 to Vcc + 0.3	V
CIO output current	IO1	20	mA
Operating temperature	Topr	-30 to +85	°C
Storage temperature 1	Tstg1	-65 to +150	°C
Storage temperature 2	Tstg2	-55 to +100	°C

NOTE 1: The voltages are all relative to GND = 0 V.

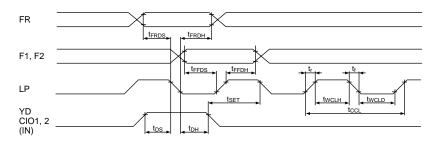
NOTE 2: Storage temperature 1 is for the chip alone, and storage temperature 2 is for the TCP product.

NOTE 3: Ensure that the relationship between +V1, VC, and -V1 is always as follows: $VDDH \ge +V1 \ge VC \ge -V1 \ge GND.$


NOTE 4: The LSI may be permanently damaged if the logic system power is floating or VCC is less than or equal to 2.6 V when power is applied to the LC drive system. Special caution must be paid to the power sequences during power up and power down.

Electrical Characteristics

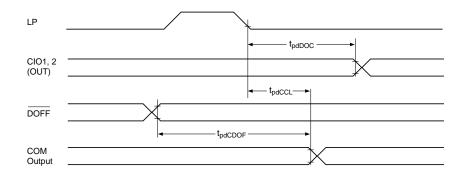
DC Characteristics


Ui	nless of	herwise noted, G	ND = 0 V	, Vcc = + 5	.0 V ± 10	0%, Ta :	=30 to	85°C
ltem	Signal	Paramete	r	Applicable Terminals	Min	Тур	Max	Unit
Power Supply Voltage (1)	Vcc			Vcc	2.7	5.0	5.5	V
Range Operating Voltages	Vddh	Function		Vddh	8.0		42.0	V
Power Supply Voltage (2)	+V1	Recommended Valu	+V1			Vddh	V	
Power Supply Voltage (3)	Vc	Recommended Valu	е	Vc		Vddh/2		V
Power Supply Voltage (4)	-V1	Recommended Valu	e	-V1	GND			V
High-level Input Voltage	Vін			CIO1,CIO2,FR, YD,LP,SHL,SEL,	0.8Vcc			V
Low-level Input Voltage	VIL	Vcc = 2.7 to 5.5V		LSEL,CSEL, DOFF,F1,F2, TEST1			0.2Vcc	V
High-level Output Voltage	Vон		Іон = -0.3mA		Vcc-0.4			V
Low-level Output Voltage	Vol	Vcc = 2.7 to 5.5V	IoL = 0.3mA	CIO1,CIO2			0.4	V
Input Leakage Current	Iu	GND ≤ VIN ≤ Vcc		LP,YD,SHL,SEL, LSEL,CSEL,F1, F2,DOFF,TEST1, FR			2.0	μΑ
Input/Output Leakage Current	Ili/o	GND ≤ VIN ≤ Vcc		CIO1,CIO2			5.0	μΑ
Static Current	Ignd	VDDH = 14.0~42.0V VIH = Vcc, VIL = GND)	GND			25	μΑ
		ΔVon = 0.5 V	VDDH = +30.0V	COM1 to		0.55	0.7	
Output Resistance	Rсом	Recommended parameter	VDDH = +40.0V	COM120		0.5	0.7	kΩ
Average Operating Consumption Current	Icc	$V_{CC} = +5.0 V, V_{IH} = V$ $V_{IL} = GND, f_{LP} = 16.8$ $f_{FR} = 70 Hz,$ Input data: 1/240		Vcc		10	25	μΑ
(1)	Vcc = 3.0 V All other parameters the same as Vcc = 5.0 V.				7	17		
Average Operating Consumption Current (2)	Iddh	VDDH = +V1 = +30.0 V, Vc = VDDH/2, -V1 = 0.0 V, Vcc = 5.0 V All other parameters the same as the loc item.		Vddh		6	13	μΑ
Input Terminal Capacity	Сі	Freq. = 1 MHz		LP,YD,SHL,SEL, LSEL,CSEL,F1,F2, DOFF,TEST1,FR			10	pF
Input/Output Terminal Capacity	Cı/o	Chip alone Ta = 25°C		CIO1,CIO2			18	pF

Range of Operating Voltages: VCC – VDDH It is necessary to set the voltage for VDDH within the VCC – VDDH operating voltage range shown in the diagram below.

AC Characteristics

Input Timing Characteristics

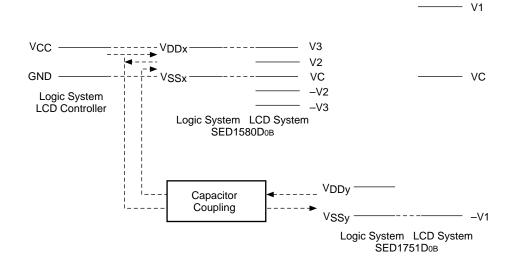

The FR latched at the nth LP is reflected in the output at the n+1th LP.

		(Vcc = +5.0 V ± 10%, Ta = −30 to +85°C				
Item	Signal	Parameter	Min	Max	Units	
LP Frequency	tcc∟		500		ns	
LP "H" Pulse Width	twclh		55		ns	
LP "L" Pulse Width	twcll		330		ns	
FR Setup Time	t FRDS		100		ns	
FR Hold Time	t FRDH		40			
F1, F2 Setup Time	t FFDS		100			
F1, F2 Hold Time	t ffdh		40			
Input Signal Rise Time	tr			50	ns	
Input Signal Fall Time	tf			50	ns	
CIO Setup Time	tos		100		ns	
CIO Hold Time	tdн		40		ns	
$YD \rightarrow LP$ Allowable Time	t SET		80		ns	

Item	Signal	Parameter	Min	Max	Units
LP Frequency	tccL		800		ns
LP "H" Pulse Width	twclh		100		ns
LP "L" Pulse Width	twcll		660		ns
FR Setup Time	t FRDS		200		ns
FR Hold Time	t frdh		80		
F1, F2 Setup Time	t FFDS		200		
F1, F2 Hold Time	tffdh		80		
Input Signal Rise Time	tr			100	ns
Input Signal Fall Time	tf			100	ns
CIO Setup Time	tos		200		ns
CIO Hold Time	tон		80		ns
$YD \rightarrow LP$ Allowable Time	t SET		150		ns

(Vcc = +2.7 V to 4.5 V, Ta = -30 to +85°C)

Output Timing Characteristics


ltem	Signal	Parameter	Min	Max	Units
Delay time from LP to CIO output	t pdDOC	CL = 15 pF		300	ns
Delay time from LP to COM output	t _{pdCCL}	VDDH =		350	ns
Delay time from DOFF to COM output	t _{pdCDOF}	14.0 V to 40.0 V		700	ns

$(VCC = +2.7 V \text{ to } 4.5 V, VDDH = +14.0 \text{ to } +28.0 V, Ta = -30 \text{ to } +85^{\circ}C)$

ltem	Signal	Parameter	Min	Max	Units
Delay time from LP to CIO output	t pdDOC	CL = 15 pF		600	ns
Delay time from LP to COM output	t _{pdCCL}	VDDH =		500	ns
Delay time from DOFF to COM output	t pdCDOF	14.0 V to 40.0 V		1400	ns

The Power Supply

When the SED1580 and the SED1751 are used to form an extremely low power module system, the power relationships as shown in the figure above between the SED1580 and SED1751 logic systems, and the LCD system power supply, and the LCD controller power supply are optimal.

In this case, care is required when it comes to signal propagation in the logic system.

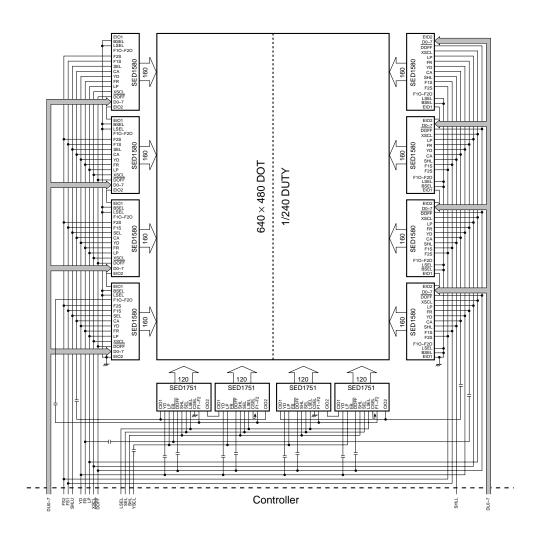
LCD Controller	\rightarrow	SED1580	Direct
LCD Controller	\rightarrow	SED1751	Capacitor coupling is required
SED1580	\rightarrow	SED1751	Capacitor coupling is required
SED1751	\rightarrow	SED1580	Capacitor coupling is required

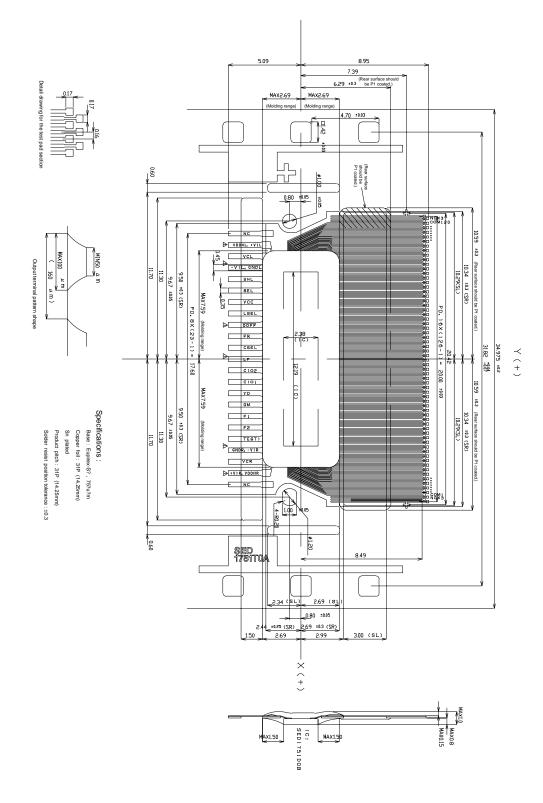
Cautions at Power Up and Power Down

Because the voltage level in the LCD system is high voltage, if the logic system power supply of this LSI is floating or if VCC is 2.6 V or less when the LCD system high voltage (30 V or above) is applied, or if the LCD drive signal is output before the voltage level that is applied to the LCD system has stabilized, then there is the risk that there will be an over current condition in this LSI, resulting in permanent damage to this LSI.

It is recommended that the display OFF function (DOFF) is used until the LCD system voltage stabilizes to insure that the LCD drive output power level is at the VC level.

Be sure to follow the sequences below when turning the power supplies ON and OFF:


When turning the power supply ON:


Logic system ON \rightarrow LCD drive system ON, or simultaneously ON. When turning the power supply OFF:

LCD drive system OFF \rightarrow Logic system OFF, or simultaneously OFF.

As a countermeasure to guard against over current conditions, it is effective to insert a high-speed fuse or a guard resistance in series with the LC power supply. The guard resistance value must be optimized depending on the capacity of the LC cell.

Example of Connection Large Screen LCD Structure Diagram

Example of External Connections

SCI7500F0A

Contents

OVERVIEW	6-1
TERMINAL FUNCTIONS	6-4
EXPLANATIONS OF FUNCTIONS	6-8
ELECTRICAL CHARACTERISTICS	6-15
EXAMPLE OF CONNECTIONS (REFERENCE)	6-20
EXTERNAL DIMENSIONS (REFERENCE)	6-22
EXTERNAL SHAPE OF THE CHIP (SCI7500D0A)	6-23
COORDINATES OF RESPECTIVE PAD CENTERS	6-24

OVERVIEW

Description

The SCI7500F0A is a four-line simultaneous selection method MLS (Multi Line Selection) drive power supply IC for driving liquid crystal displays. Using its CMOS charge pump-type high-efficiency voltage converter circuit, the chip is able to generate all the bias voltages required for the four-line MLS drive based on a single 3.0 V power supply input.

When a system is structured from column (segment) drivers such as the SED1580, row (common) drivers such as the SED1751, and this IC, this structure is able to produce a module with extremely low power consumption when compared to a conventional drive method.

Moreover, even greater power conservation is possible when combined with an LCD controller that can pause data transmission (a controller such as the SED1360).

Features

- Power Supply Voltage:
- 2.4 V to 3.6 V single-input power supply • Low Consumption Current: 340 μ A (in 6 × step-up mode, TYP)
- Standby Current:
- High Voltage Conversion Efficiency: 88% (6 × step-up mode, TYP)
- Generates all bias voltages required for 4-line MLS driving. An external contrast adjustment function can also be attached.
- Equipped with an internal charge pump-type DC/DC voltage converter circuit. Depending on the terminal settings, the chip can be switched between $5 \times \text{step-up}$ (compatible with 1/200 duty) and $6 \times$ step-up (compatible with 1/240 duty).

5 uA (MAX)

- Built-in electric charge discharging circuit for the liquid crystal drive current (VL).
- Internal "power off" function using an external signal (XSLP).
- Equipped internally with a liquid crystal drive polarity reverse signal generator circuit.
- The terminal settings can be used to set the range of time for the polarity reversal to 2H to 17H.
- Recommended panel size: VGA, 6.3" or less
- Product being shipped in QFP form (QFP12-48 pin) SCI7500F0A
- Product being shipped in chip form SCI7500D0A
- This product not designed for resistance to radiation.

Block Diagram

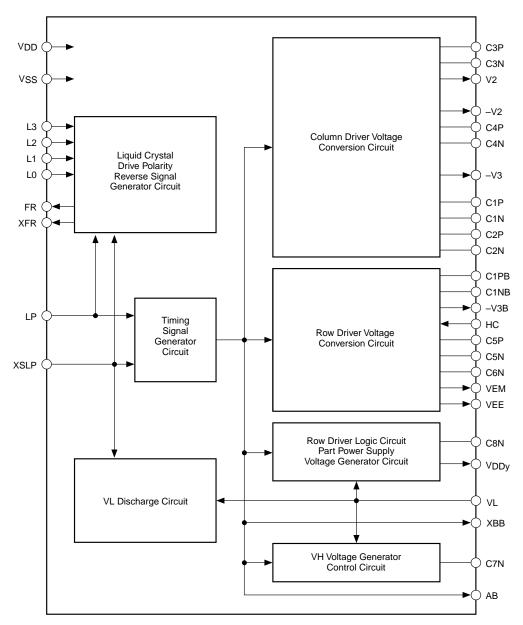
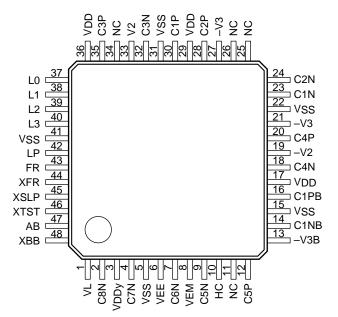


Figure 1: Block Diagram

Explanation of Block Diagram


• Liquid Crystal Drive Polarity Reverse Signal Generator Circuit

This circuit generates the reverse polarity signal FR from the 1H period pulse signal LP. Pins L0 to L3 can be used to set the polarity reversal interval to 2H to 17H. Moreover, so that it will be possible to drive the top and bottom screens in a 2-screen drive panel in opposite phases, this IC outputs two signals with opposite polarities of each other (FR, XFR).

- Timing Signal Generator Circuit This circuit generates the clock for the charge pump from the 1H period pulse signal LP. When the display off control signal XSLP is set to the Vss level, the clock stops and the voltage converter operation stops.
- Column Driver Voltage Conversion Circuit
 - This circuit generates the V2, -V2, and -V3 voltage levels required for column driving.
- Row Driver Voltage Conversion Circuit This generates the voltage (VEE) required for generating the power supply voltages (VH, VL) required for the row drivers. Using VDD as the reference, this generates either a 5 × or 6 × voltage level in the negative direction relative to the input power supply voltage. A terminal can be used to switch between the step-up modes. The contrast adjustment function is performed through the use of an external emitter follower circuit to adjust VEE to generate VL.
- Row Driver Logic Circuit Part Power Supply Voltage Generator Circuit This generates the power supply voltage (VDDy) required by the row driver logic circuit part. This generates a voltage that is higher than the voltage level VL by an amount equal to VDD–VSS.
- VH Voltage Generator Control Circuit This is a circuit for generating the power supply voltage (VH) required for the row driver. The VH voltage can be generated by an external MOS transistor and this circuit.
- VL Discharge Circuit At power off or display off, this circuit discharges the charge remaining on the row driver negative voltage level-side power supply voltage terminal (VL).

TERMINAL FUNCTIONS

Terminal Layout Diagram

Terminal No.	Terminal Name	Terminal No.	Terminal Name	Terminal No.	Terminal Name	Terminal No.	Terminal Name
1	VL	13	—Vзв	25		37	L0
2	C8N	14	C1NB	26	_	38	L1
3	Vddy	15	Vss	27	-V3	39	L2
4	C7N	16	C1PB	28	C2P	40	L3
5	Vss	17	Vdd	29	Vdd	41	Vss
6	VEE	18	C4N	30	C1P	42	LP
7	C6N	19	-V2	31	Vss	43	FR
8	VEM	20	C4P	32	C3N	44	XFR
9	C5N	21	-V3	33	V2	45	XSLP
10	HC	22	Vss	34		46	XTST
11		23	C1N	35	C3P	47	AB
12	C5P	24	C2N	36	Vdd	48	XBB

Explanation of Terminals Liquid Crystal Drive Polarity Reverse Signal Generator Circuit

Terminal Name	I/O	SCI7500FoA Terminal Number	SCI7500D _{0A} PAD Number	Function	
L0 to L3	I	37 to 40	1 to 4	Polarity reverse time setting terminals. These are the input terminals for setting the polarity reverse time. The time can be set in the range of 2H to 17H.	
FR	0	43	7	Polarity reverse forward phase signal terminal. This terminal outputs the signal that is generated by the polarity reverse signal generating circuit.	
XFR	0	44	8	Polarity reverse signal reverse phase terminal. This outputs the signal that is in the reverse phase from the polarity reverse forward phase signal terminal.	

Timing Signal Generator Circuit

Terminal Name	I/O	SCI7500F _{0A} Terminal Number	SCI7500D _{0A} PAD Number	Function	
LP	I	42	6	Display data latch pulse input terminal. This is the input terminal for generating the charge pump clock and the polarity reverse signal. It is necessary to input into this terminal a pulse signal with a period of 1H.	
XSLP	I	45	9	The display off control signal terminal. Setting this terminal to the VSS level stops the clock and stops the operations of the voltage converter.	

Column Driver Voltage Conversion Circuit

Terminal Name	I/O	SCI7500F _{0A} Terminal Number	SCI7500D _{0A} PAD Number	Function
C3P	(O)	35	43	The positive-side connection terminal for the flying capacitor CP3 for generating the V ₂ output voltage.
C3N	(O)	32	41	The negative-side connection terminal for the flying capacitor CP3 for generating the V2 output voltage.
V2	0	33	42	V2 output voltage terminal.
C4P	(O)	20	31	The positive-side connection terminal for the flying capacitor CP4 for generating the $-V_2$ output voltage.
C4N	(O)	18	29	The negative-side connection terminal for the flying capacitor CP4 for generating the $-V_2$ output voltage.
-V2	0	19	30	-V2 output voltage terminal.
C1P	(O)	30	39	The positive-side connection terminal for the flying capacitor CP1 for generating the $-V_3$ output voltage.
C1N	(O)	23	34	The negative-side connection terminal for the flying capacitor CP1 for generating the $-V_3$ output voltage.
C2P	(O)	28	37	The positive-side connection terminal for the flying capacitor CP2 for generating the $-V_3$ output voltage.
C2N	(O)	24	35	The negative-side connection terminal for the flying capacitor CP2 for generating the $-V_3$ output voltage.
-V3	0	21, 27	32, 36	-V ₃ output voltage terminal.

Terminal Name	I/O	SCI7500F _{0A} Terminal Number	SCI7500D _{0A} PAD Number	Function
C1PB	(O)	16	27	The positive-side connection terminal for the flying capacitor CP1B and CP8 for generating the $-V_{3B}$ output voltage.
C1NB	(O)	14	25	The negative-side connection terminal for the flying capacitor CP1B for generating the $-V_{3B}$ output voltage.
—Vзв	0	13	24	The negative V _{3B} output voltage terminal. This is an output terminal equipped as the middle voltage level for generating the VEE output voltage.
НС	I	10	22	The step-up mode select terminal. When this terminal is tied Vss, then the chip is put into 5 X step-up mode. However, when it is connected to $-3B$, the chip is set to 6 X step-up mode.
C5P	(O)	12	23	The positive-side connection terminal for the flying capacitor CP5 and CP6 for generating the VEM output voltage.
C5N	(O)	9	21	The negative-side connection terminal for the flying capacitor CP5 for generating the VEM output voltage.
VEM	0	8	20	The VEM output voltage terminal. This is an output terminal equipped as the middle voltage level for generating the VEE output voltage.
C6N	(O)	7	19	The negative-side connection terminal for the flying capacitor CP6 for generating the VEE output voltage. (The positive-side of CP6 is C5P.)
Vee	0	6	18	The VEE output voltage terminal. By changing the HC terminal interconnection method, it is possible to switch between the 5-level step-up mode and the 6-level step-up mode.

Row Driver Voltage Conversion Circuit

Common Driver Logic Circuit Part Power Supply Voltage Generator Circuit

Terminal Name	I/O	SCI7500F _{0A} Terminal Number	SCI7500D _{0A} PAD Number	Function	
C8N	(O)	2	14	The negative-side connection terminal for the flying capacitor CP8 for generating the VDDy output voltage. The positive connection terminal for CP8 is the same as C1PB.	
Vddy	0	3	15	The row driver logic circuit part power supply output terminal. This generates the power supply voltage required for the row driver logic circuit part. The output is higher than the VL level in the positive direction by an amount equal to the difference between VDD and Vss.	

VH Voltage Generator Control Circuit

Terminal Name	I/O	SCI7500F _{0A} Terminal Number	SCI7500D _{0A} PAD Number	Function	
AB	0	47	11	The V _H output voltage generator clock terminal A. This is the clock output terminal for the external N-channel MOS transistor control.	
ХВВ	0	48	12	The VH output voltage generator clock terminal B. This is the clock output terminal for the external P-channel MOS transistor control.	
C7N	(O)	4	16	The negative-side connection terminal for the flying capacitor CP7 for generating the VH output voltage. The positive-side connection terminal corresponds to the external transistor.	

VL Discharge Circuit

Terminal Name	I/O	SCI7500FoA Terminal Number	SCI7500D _{0A} PAD Number	Function	
VL	I	1	13	This is the row driver negative voltage level power supply voltage terminal. The VL signal that is used to adjust the contrast is input to this terminal. This serves as the power supply for the VH voltage generator control circuit. XSLP operates the discharge circuit at the VSS level.	

The Test Circuit

Terminal Name	I/O	SCI7500F _{0A} Terminal Number	SCI7500D _{0A} PAD Number	Function
XTST	I	46	10	This is a test terminal. Insure that this terminal is always tied to the Vod level.

Power Supply Terminals <Note 1>

Terminal Name	I/O	SCI7500FoA Terminal Number	SCI7500D _{0A} PAD Number	Function	
Vdd	I	17, 29, 36 *1	28, 38 44 *1	Input power supply terminals (positive).	
Vss	I	5, 15, 22, 31, 41 *1	5, 17, 26 33, 40 *1	Input power supply terminals (negative).	

Note: *1 Please connect these power supply terminals externally.

EXPLANATIONS OF FUNCTIONS

Overview of Operation

The SCI7500F0A is a power supply IC for operating the 4-line simultaneous selection method MLS (Multi Line Selection) driver LCDs. Using its CMOS charge pump-type high-efficiency voltage converter circuit, this chip can produce all of the bias voltages necessary for a 4-line MLS driving based on a single 3.0 V power supply.

The voltage levels produced are as follows:

- The liquid crystal drive power supply voltages required for the column drivers (V3 = VDD, V2, VC = VSS, -V2, -V3).
- The liquid crystal drive power supply voltages required for the row drivers (VH, VC = VSS, VL).
- The power supply voltages for the logic circuits of the row driver (VDDy).

However, the row driver low voltage-side power supply voltage (VL) requires an external bipolar transistor for adjusting the contrast. Moreover, external MOS transistors (2SK***, 2SJ***) are required for generating the row driver high-level power supply voltage (VH).

Depending on a terminal setting, the chip can switch between 6 X step-up mode and 5 X step-up mode, with 1/240 duty and 1/200 duty, respectively. Consequently, it is possible to obtain the required voltages with maximum efficiency.

An example of a system structure diagram for the power supply interconnections is given below:

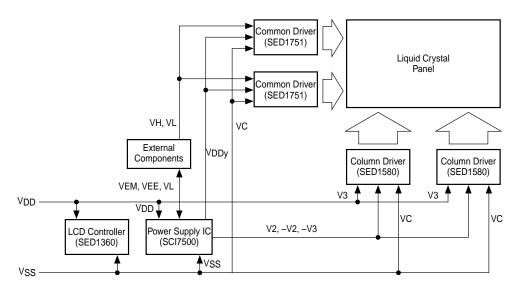
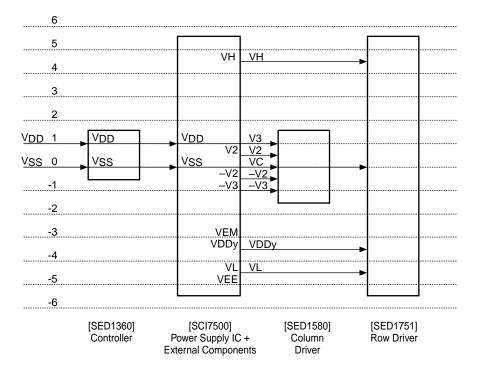



Figure 2: The System Configuration

The relationships between voltage levels in the system shown in Figure 2 are given in the table below.

Figure 3: The Relationships Between Voltages Within the System (in 6 × step-up mode)

The logical formulas for each of the voltage levels is as given below:

When in 6 × s (when HC is con		When in 5 \times step-up mode (when HC is connected to Vss).		
Logical Formula	Voltage level when VDD = 3.0V and Vss = 0V	Logical Formula	Voltage level when V _{DD} = 3.0V and Vss = 0V	
$VH = -VL = 5 (VDD - VSS) - \alpha$	15.0–α	$V_{H} = -V_{L} = 4 (V_{DD} - V_{SS}) - \alpha$	12.0–α	
V3 = VDD-VSS	3.0	V3 = VDD-VSS	3.0	
V ₂ = 1/2 (VDD-VSS)	1.5	V2 = 1/2 (VDD-VSS)	1.5	
Vc = Vss	0	Vc = Vss	0	
$-V_2 = -1/2$ (VDD-VSS)	-1.5	$-V_2 = -1/2$ (VDD-VSS)	-1.5	
$-V_3 = -V_{3B} = -(V_{DD} - V_{SS})$	-3.0	$-V_3 = -V_{3B} = -(V_{DD} - V_{SS})$	-3.0	
Vem = -3 (Vdd-Vss)	-9.0	$V_{EM} = -2 (V_{DD} - V_{SS})$	-6.0	
$VDDy = -4 (VDD-VSS) + \alpha$	-12.0 + α	$V_{DDy} = -3 (V_{DD} - V_{SS}) + \alpha$	-9.0 + α	
$V_L = -5 (V_{DD} - V_{SS}) + \alpha$	-15.0 + α	$VL = -4 (VDD - VSS) + \alpha$	-12.0 + α	
Vee = -5 (Vdd-Vss)	-15.0	VEE = -4 (VDD-VSS)	-12.0	

Where $\alpha = \text{variable} \ge 0$ (contrast adjustment)

The Liquid Crystal Drive Polarity Reverse Signal Generator Circuit

This circuit produces the polarity reverse signal from the 1H period pulse signal LP. Terminals L0 to L3 can be used to set the polarity reversed period in the range of 2H to 17H. So that the upper and lower screens can be driven in mutually opposite phases when a 2-screen drive panel is used, this IC outputs two signals with mutually opposing polarities (i.e. with opposite phases) from the FR and the XFR terminals. The timing of the output transitions is synchronized with the falling edge of the LP signal.

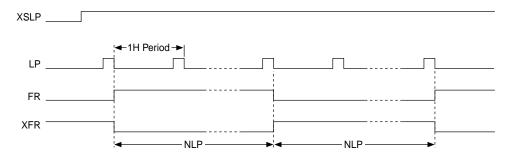


Figure 4: LP and FR Signal Timing Diagram

The relationship between the NLP during the polarity reversed interval and the settings of terminals L0 to L3 is as shown below:

Terminal	Terminal Settings While Polarity is Reversed					Function		
L3	L2	L1	L0	Time	N	_P		
		0	0	17H	LP Signal	17th pulse		
	0	0	1	2H	LP Signal	2nd pulse		
	0	1	0	ЗH	LP Signal	3rd pulse		
		I	1	4H	LP Signal	4th pulse		
0		0	0	5H	LP Signal	5th pulse		
	1	0	1	6H	LP Signal	6th pulse		
		1	0	7H	LP Signal	7th pulse		
			1	8H	LP Signal	8th pulse		
	0	0	0	9H	LP Signal	9th pulse		
			1	10H	LP Signal	10th pulse		
		1	0	11H	LP Signal	11th pulse		
1			1	12H	LP Signal	12th pulse		
1		0	0	13H	LP Signal	13th pulse		
		0	1	14H	LP Signal	14th pulse		
	1	1	0	15H	LP Signal	15th pulse		
			1	16H	LP Signal	16th pulse		

The Timing Signal Generator Circuit

This generates the clock for the charge pump from the 1H period pulse signal LP. When the display off control signal XSLP is set to Vss, this clock stops and the IC voltage converter operation halts. The VH output voltage generator clocks AB and XBB are also produced by this circuit.

Input Signal XSLP	
Input Signal LP	
Output Signal AB	
Output Signal XBB	

Figure 5: The AB and XBB Signal Output Timing

The Voltage Converter Circuit

The voltage converter circuit comprises a CMOS charge pump-type DC/DC converter. The relational diagram of the voltage converter circuits within this IC is as shown below. The numbers within parentheses in the diagram correspond to the number in "Figure 1: Block Diagram."

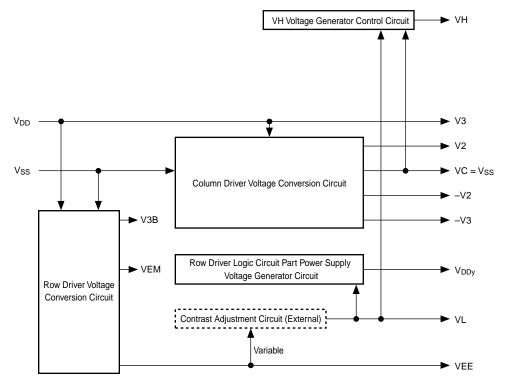


Figure 6: A Relational Diagram of the Voltage Converter Circuits

When in 6 \times step-up mode (when HC is connected to –V3B).		When in 5 \times step-up mode (when HC is connected to VSS).	
Logical Formula	Voltage level when VDD = 3.0V and VSS = 0V	Logical Formula	Voltage level when VDD = 3.0V and VSS = 0V
VH = -VL = 5 (VDD-VSS)-a	15.0–α	$V_{H} = -V_{L} = 4 (V_{DD} - V_{SS}) - \alpha$	12.0–α
V3 = VDD-VSS	3.0	V3 = VDD-VSS	3.0
V2 = 1/2 (VDD-VSS)	1.5	V ₂ = 1/2 (V _{DD} -V _{SS})	1.5
Vc = Vss	0	Vc = Vss	0
$-V_2 = -1/2$ (VDD-VSS)	-1.5	$-V_2 = -1/2$ (VDD-VSS)	-1.5
$-V_3 = -V_{3B} = -(V_{DD} - V_{SS})$	-3.0	$-V_3 = -V_{3B} = -(V_{DD} - V_{SS})$	-3.0
Vem = -3 (Vdd-Vss)	-9.0	VEM = -2 (VDD-VSS)	-6.0
$VDDy = -4 (VDD-VSS) + \alpha$	-12.0+ α	$VDDy = -3 (VDD-VSS) + \alpha$	-9.0 + α
$V_L = -5 (V_{DD} - V_{SS}) + \alpha$	-15.0+ α	$VL = -4 (VDD - VSS) + \alpha$	-12.0 + α
VEE = -5 (VDD-VSS)	-15.0	VEE = -4 (VDD-VSS)	-12.0

Logical Formulas for the Various Voltage Levels

Where $\alpha = variable \ge 0$ (contrast adjustment)

The capacitors for the charge pump can be of two different types: the flying capacitors which transition between a charged state and a discharged state, and the storage capacitor that stores charge. The clock that controls the state changes in the flying capacitors is generated by the timing signal generator circuit from the display data latch pulse input terminal LP. The operating frequency f sw of the flying capacitor is calculated as follows:

 $fsw = 1/(2 \times t_{CLP})$ Where t CLP is the LP frequency.

The voltage logic that is biased by both ends of the flying capacitors and storage capacitors is as shown below: (Reference "10. Example of Connections (Reference)" regarding recommended capacitance values and connection methods for the capacitors.)

Flying Capacitors and Storage Capacitors

Capacitor Name		Voltage logic formula biased by both ends of the capacitors		Column side/
		6 × step-up mode	$5 \times \text{step-up mode}$	Row side
Flying Capacitor	CP1	Vdd-Vss	VDD-VSS	- Column Side
	CP2	VDD-VSS	VDD-VSS	
	CP3	1/2 (VDD-VSS)	1/2 (VDD-VSS)	
	CP4	1/2 (VDD-VSS)	1/2 (VDD-VSS)	
	CP1B	Vdd-Vss	VDD-VSS	Row side
	CP5	2 (VDD-Vss)	VDD-VSS	
	CP6	2 (VDD-VSS)	2 (VDD-VSS)	
	CP7	5 (Vdd-Vss) -α	4 (VDD-VSS) -α	
	CP8	5 (Vdd-Vss) -α	4 (VDD-VSS) -α	
Storage Capacitor	CB1	Vdd-Vss	VDD-VSS	Column side
	CB3	1/2 (VDD-VSS)	1/2 (VDD-VSS)	
	CB4	1/2 (VDD-VSS)	1/2 (VDD-VSS)	
	CB1B	VDD-VSS	VDD-VSS	Row side
	CB5	2 (VDD-VSS)	VDD-VSS	
	CB6	2 (VDD-VSS)	2 (VDD-VSS)	
	CB7	5 (VDD–VSS) – α	4 (VDD-VSS) -α	
	CB8	Vdd-Vss	VDD-VSS	
	CVL	5 (Vdd-Vss) -α	4 (VDD-VSS) -α	

Where α = variable \geq 0 (contrast adjustment)

In the column driver voltage converter circuit either flying capacitor CP1 or CP2 can be omitted. When the panel is smaller than a 6.3 inch VGA panel, or if one wishes to sacrifice image quality to save cost, one may consider this omission; however, the output impedance will increase and will be outside of what is indicated in "Electrical Characteristics," and thus we recommend that you experimentally confirm the structure for each application.

Switching between the step-up modes in the row driver voltage converter circuits can be done by setting the HC terminal. When the HC terminal is connected to -V3B, then the system will be in $6 \times$ step-up mode, but when the HC terminal is connected to the Vss terminal, then the system will be in $5 \times$ step-up mode. Furthermore, by connecting the -V3 terminal to the -V3B terminal, it is possible to omit the flying capacitor CP1B and storage capacitor CP1B. However, when these capacitors are omitted, the output impedance will increase and will be outside of what is indicated in "Electrical Characteristics," and thus we recommend that you experimentally confirm the structure for each application.

The Contrast Adjustment Circuit

The row driver negative voltage-side power supply voltage VL can be adjusted and generated by an external emitter follower circuit using VEE. The contrast adjustment function is shown in the circuit connection example below:

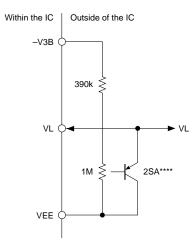


Figure 7: Contrast Adjustment Circuit

The VH Voltage Generator Control Circuit

The row driver positive voltage-side power supply voltage VH can be generated from this circuit and the VH output voltage generator clocks AB, XBB, and external components. This is shown in the circuit connection example below.

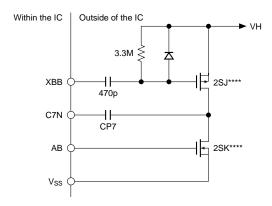


Figure 8: Example of Circuit Connections for Generating the VH Voltage

The VL Discharge Circuit

When XSLP is put to the Vss level, the VL discharge circuit within the IC is triggered, and residual charge at the row driver negative voltage-side power supply voltage terminal VL is discharged to the Vss level. The VL voltage adjusted for the contrast must be input to the VL terminal. (See "The Contrast Adjustment Circuit.")

The VH Discharge Circuit

When XSLP is put to the Vss level, the residual charge at the row driver positive voltage-side power supply terminal VH can be discharged to the Vss level through an external MOS transistor. An example circuit connection is shown below.

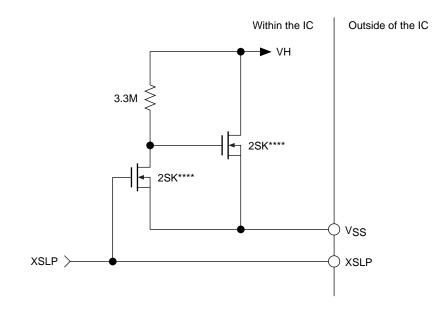


Figure 9: The VH Discharge Circuit

• •

~ /

ELECTRICAL CHARACTERISTICS

The Absolute Maximum Ratings

					Vss = 0V
ltem	Signal	Rated	Value	Units	Notes
item	Signal	Minimum	Maximum	Units	Notes
Input power supply voltage 1	Vdd		3.7	V	VDD terminal
Input power supply voltage 2	VL	VEE-0.3	0.3	V	VL terminal
Input terminal voltage	VI	-0.3	Vdd + 3.0	V	The L3 to L0, LP, XSLP, and XTST terminals
Input current	IDD	—	10	mA	Vdd, Vl
Output current 1	IV2	—	6	mA	V2 terminal
Output current 2	I-V2	—	6	mA	-V2 terminal
Output current 3	I-V3	_	5	mA	-V3 terminal
Output current 4	I VEE		1	mA	VEE terminal
Output current 5	I VDDy		0.1	mA	VDDy terminal
Allowable loss	Pd		100	mW	Ta ≤ 55 °C
Operating temperature	Topr	-30	85	°C	—
Storage temperature	Tstg	-55	150	°C	_
Soldering temperature and time	Tsol	—	260 imes 10	$^{\circ}C \times S$	At the lead

Notes: *1 Do not apply a voltage from the outside to the output terminals nor to the capacitor connection terminals.

Notes: *2 Operating failures and/or permanent damage may occur if this chip is used under conditions exceeding the absolute maximum ratings listed above. Moreover, the reliability of this chip may be dramatically compromised even if the chip continues to function normally for a time.

DC Characteristics

Standard connections <note 1="">, LP period = 69μs, LP width = 1μs.</note>								
ltem	Sumbol	Parameters		9	Standards			Notes
item	Symbol			Min	Тур	Max	Units	notes
Input power supply voltage	Vdd	_		2.4	3.0	3.6	V	—
Input power supply voltage	VL	_		VEE+0.6	—	-V3	V	—
High level input voltage	Vін	Applicable terminals		0.8Vdd	—	Vdd	V	—
Low level input voltage	VIL	XSLP, L0 to L3, XT VDD = 2.4 to 3.6V	51	0	—	0.2Vdd	V	—
Input leakage current	Ilin	$\label{eq:VSS} \begin{array}{l} Vss \leq Vi \leq Vdd, \\ Vdd = 2.4 \text{ to } 3.6 V \end{array}$		-0.5	—	0.5	μΑ	—
V2 output		lo = 2mA	VDD = 2.4V	1.148	_	1.2	V	—
voltage	V2	(to Vss)	VDD = 2.7V	1.298	_	1.35		
-V2 output	-V2	lo = 2mA	VDD = 2.4V	-1.2	_	-1.120	V	2
voltage	-v2	(from Vss)	VDD = 2.7V	-1.35	—	-1.272		
–V3 output	14	lo = 1mA	VDD = 2.4V	-2.4	_	-2.340	V	2
voltage	-V3	(from Vss)	VDD = 2.7V	-2.7	_	-2.644		
VEE output	\/	lo = 0.4mA	VDD = 2.4V	-12.0	_	-11.2	V	_
voltage	VEE	(from Vss)	VDD = 2.7V	-13.5	_	-12.7		
VDDy output	Vddy	lo = 0.02mA	VDD = 2.4V	VL + 2.33	_	VL + 2.40	V	_
voltage	VDDy	(to VL)	VDD = 2.7V	VL + 2.63	_	VL + 2.70		
Output	Ron1	Applicable terminal: C7N	VDD = 2.4V	_	_	16	Ω	3
resistor 1		Іон = -0.2mA	VDD = 2.7V	—	—	15		
Output resistor 1	Ron2	Applicable terminal: C7N	VDD = 2.4V	_	_	21	Ω	3
		loн = 0.2mA	VDD = 2.7V	—	—	20		
High level output voltage	Vон	Applicable terminals:	Іон = –20µА	Vdd-0.1	_	Vdd	V	—
Low level output voltage	Vol	XBB, AB, FR, XFR VDD = 2.4 to 3.6V	Ιοι = 20μΑ	0	—	0.1	V	—
Consumption	IOPR5	$5 \times \text{step-up}$, no load VDD = 3.0 V		—	250	330	μΑ	—
Current	IOPR6	6 × step-up, no load VDD = 3.0V		—	340	470	μΑ	—
Static current	la	VDD = 2.4 to 3.6V, XSLP = 0V		—	—	5	μΑ	—
Step-up power converter efficiency	Peff	$6 \times \text{step-up}, V_{DD} = 3.0V$ The load conditions were as follows: V_2 : $Io = 2mA$ $-V_2$: $Io = 2mA$ $-V_3$: $Io = 1mA$ V_L : $Io = 0.4mA$ $V_D_D_Y$: $Io = 0.02mA$		_	88	_	%	_

When not otherwise specified: $Ta = -30^{\circ}C$ to $+85^{\circ}C$, Vss = 0V, $6 \times$ step-up, VL = VEE + 0.6V, Standard connections <Note 1>, LP period = 69µs, LP width = 1µs.

Notes 1. For standard connections, see "Example of Connections (Reference)."

2. Measured in a state where negative charges were not applied to -V2 and -V3 simultaneously.

3. The measurement circuits and timing of the output resistance 1 RON1, and output resistance 2 RON2 are as shown below.

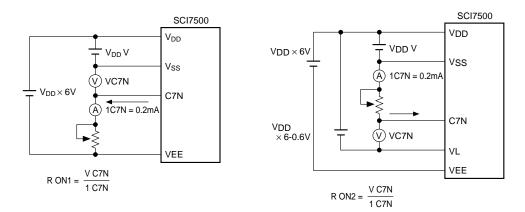
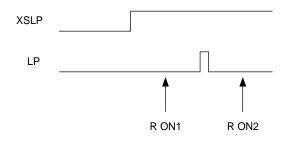
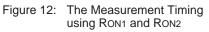
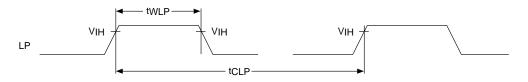




Figure 11: The RON2 Measurement Circuit

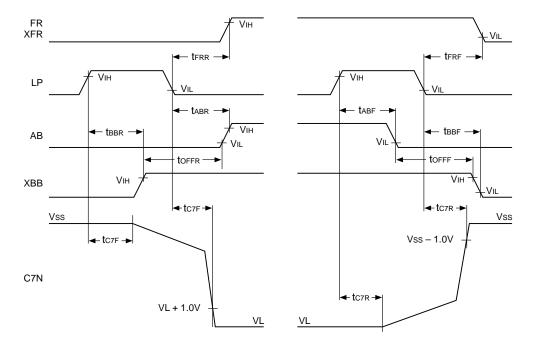


AC Characteristics

The AC test parameters:

- Input voltage level: VIH = 0.8 VDD V
- VIL = 0.2 VDD V
- Input signal rise time: Tr = max 10 ns
 Input signal fall time: Tf = max 10 ns
 - $V_{DD} = 2.4 \text{ to } 3.6 \text{ V}$ $V_{SS} = 0 \text{ V}$ $T_a = -30 \text{ to } 85 \text{ °C}$

Input Timing Characteristics



lteres	Currents el	Ratings				
Item	Symbol	Min	Тур	Max	Units	Notes
LP Period	tclp	50	65 to 90	125	μs	
LP Pulse Width	twlp	70		2000	ns	*1

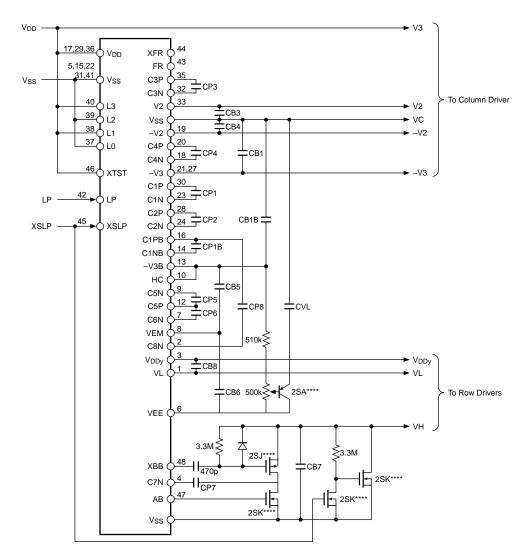
Note *1 While the chip continues to function with LP pulse widths in excess of 2000 ns, the wider the LP pulse width, the higher the output impedance of the various output voltages. For this IC, although we are recommending inputting of LP signals through the LP pin as the basic clock, inputting of other signals through the LP pin will also provide the same characteristics as far as the signals being input can satisfy the above specifications.

(Reference) LP Period

Frame Frequency	Duty	LP Period
40	1/200	125 μs
60	1/200	83 µs
60	1/240	69 µs
80	1/240	52 μs

Output Timing Characteristics

LP pulse width = 1μ s, 6 X	step-up voltag	ge, VL = V	EE + 0.6V, S	tandard Conn	ections

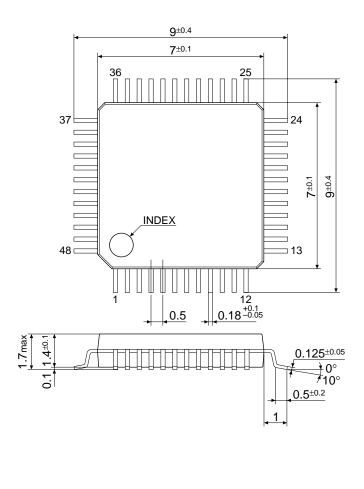

ltem	Signal	Applicable	Load	Rated Values		Units
Item	Signal	Terminals	Conditions	Min	Max	Units
FR signal rise delay time	t FRR	FR, XFR		330	3300	ns
FR signal fall delay time	t FRF	FR, XFR	C∟ = 50pF	330	3300	ns
AB signal rise delay time	t abr	AB		230	2000	ns
AB signal fall delay time	t ABF	AB		180	1900	ns
XBB signal rise delay time	t BBR	XBB		130	1100	ns
XBB signal fall delay time	t BBF	XBB	*2	280	3200	ns
Rising edge output phase differential time	toffr	AB, XBB		1000	2400	ns
Falling edge output phase differential time	tofff	AB, XBB		1000	2200	ns
C7N signal falling edge delay time	tc7F	C7N	*3	270	2400	ns
C7N signal rising edge delay time	tc7R	C7N	3	490	3800	ns

*2 When 2SJ185, 2SK1399 (manufactured by NEC) are used.*3 With a load with standard connections. Note

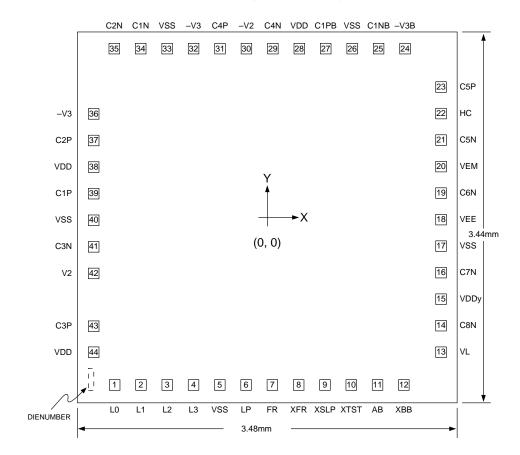
Note

EXAMPLE OF CONNECTIONS (REFERENCE)

Standard Connections for the $6 \times$ step-up mode.



Capacitor Name	Capacitance Value (µF)	Capacitor Name	Capacitance Value (µF)
CP1	4.7	CB1	4.7
CP2	4.7	CB3	4.7
CP3	4.7	CB4	4.7
CP4	4.7	CB5	1.0
CP5	1.0	CB6	1.0
CP6	1.0	CB7	1.0
CP7	1.0	CB8	0.1
CP8	0.1	CB1B	4.7
CP1B	4.7	CVL	1.0


The capacitance values for the capacitors are the recommended value for a 6.3 inch VGA liquid crystal panel. The characteristics shown in "Electrical Characteristics" are the characteristics obtained when capacitors with the values shown above are used. Consequently, while one may consider reducing the capacitance values of these capacitors when a liquid crystal panel smaller than a 6.3-inch VGA screen is used, in such a case the output impedance would increase, and thus we recommend experimental verification for each product type, and that the capacitance values be set such that the liquid crystal drive voltages are stable.

EXTERNAL DIMENSIONS (REFERENCE)

Note: These dimensions are subject to change without notice.

Plastic QFP12-48 pin

EXTERNAL SHAPE OF THE CHIP (SCI7500D0A)

PAD layout

Chip size:	3.48 mm $\times 3.44$ mm
Chip thickness:	$400 \mu m \pm 30 \mu m$
PAD hole size:	$100 \mu m imes 100 \mu m$
Substrate potential:	VDD
DIE number:	F7500D0A

COORDINATES OF RESPECTIVE PAD CENTERS

Unit: µm

PAD No.	PAD name	Х	Y
1	LO	-1431.2	-1554.4
2	L1	-1191.2	
3	L2	-951.2	
4	L3	-711.2	
5	Vss	-471.2	
6	LP	-280.8	
7	FR	-40.8	
8	XFR	199.2	
9	XSLP	439.2	
10	XTST	679.2	
11	AB	919.2	
12	XBB	1159.2	V
13	VL	1574.4	-1264.8
14	C8N		-1024.8
15	VDDy		-784.8
16	C7N		-544.8
17	Vss		-304.8
18	VEE	-64	
19	C6N		175.2
20	VEM		415.2
21	C5N		655.2
22	HC	V	895.2

			e inter pun
PAD No.	PAD name	Х	Y
23	C5P	1574.4	1135.2
24	-V3B	1235.2	1554.4
25	C1NB	995.2	
26	Vss	755.2	
27	C1PB	475.2	
28	Vdd	235.2	
29	C4N	-4.8	
30	-V2	-244.8	
31	C4P	-484.8	
32	-V3	-724.8	
33	Vss	-964.8	
34	C1N	-1204.8	
35	C2N	-1444.8	V
36	-V3	-1574.4	935.2
37	C2P		655.2
38	VDD		415.2
39	C1P		175.2
40	Vss		-64.8
41	C3N		-304.8
42	V2		-544.8
43	C3P		-1024.8
44	VDD	V	-1264.8

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC. HEADQUARTERS

1960 E. Grand Ave El Segundo, CA 90245, U.S.A. Phone : +1-310-955-5300 Fax : +1-310-955-5400

SALES OFFICES West

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone : +1-408-922-0200 Fax : +1-408-922-0238

Central

1450 East American Lane Suite 1550 Schaumburg, IL 60173, U.S.A. Phone : +1-847-517-7667 Fax : +1-847-517-7601

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone : +1-815-455-7630 Fax : +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone : +1-781-246-3600 Fax : +1-781-246-5443

Southeast

4300 Six Forks Road, Suite 430 Raleigh, NC 27609, U.S.A. Phone : +1-919-781-7667 Fax : +1-919-781-6778

1700 Spinnaker Drive Alptaretta, GA 30005, U.S.A. Phone : +1-770-754-4872 Fax : +1-770-753-0601

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS

Riesstrasse 15 80992 Muenchen, GERMANY Phone : +49- (0) 89-14005-0 Fax : +49- (0) 89-14005-110

- GERMANY -SALES OFFICE

Breidenbachstrasse 46 D-51373 Leverkusen, GERMANY Phone : +49- (0) 214-83070-0 Fax : +49- (0) 214-83070-10

- UNITED KINGDOM -

UK BRANCH OFFICE G6 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone : +44- (0) 1344-381700 Fax : +44- (0) 1344-381701

- FRANCE -FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone : +33- (0) 1-64862350 Fax : +33- (0) 1-64862355

ASIA

- HONG KONG, CHINA -EPSON HONG KONG LTD. 20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone : +852-2585-4600 Fax : +852-2827-4346 Telex : 65542 EPSCO HX

- CHINA -

SHANGHAI EPSON ELECTRONICS CO., LTD. 4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone : 21-6485-5552 Fax : 21-6485-0775

- TAIWAN, R.O.C. - **EPSON TAIWAN TECHNOLOGY & TRADING LTD.** 10F, No. 287,Nanking East Road, Sec. 3 Taipei, TAIWAN, R.O.C. Phone : 02-2717-7360 Fax : 02-2712-9164 Telex : 24444 EPSONTB

HSINCHU OFFICE

13F-3, No.295, Kuang-Fu Road, Sec. 2 HsinChu 300, TAIWAN, R.O.C. Phone : 03-573-9900 Fax : 03-573-9169

- SINGAPORE -

 EPSON SINGAPORE PTE., LTD.

 No. 1 Temasek Avenue, #36-00

 Millenia Tower, SINGAPORE 039192

 Phone : +65-337-7911

 Fax : +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

10F, KLI 63 Bldg., 60 Yoido-Dong Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone : 02-784-6027 Fax : 02-767-3677

- JAPAN -SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department I

(Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of **"Saving" Technology**, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings**. **MLS Driver Chip Set**

SEIKO EPSON CORPORATION

ELECTRONIC DEVICES MARKETING DIVISION

Electronic Devices Information on Epson WWW Server

http://www.epson.co.jp