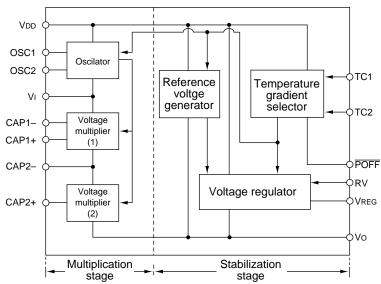
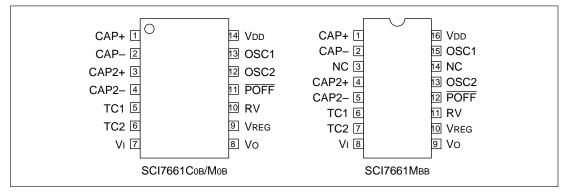


DESCRIPTION


The SCI7661 Series is a highly effecient CMOS DC/ DC converter for doubling or tripling an input voltage. It incorporates an on-chip voltage regulator to ensure stable output at the specified voltage. The SCI7661 Series offers a choice of three, optional temperature gradients for applications such as LCD panel power supplies. The SCI7661C0B is available in 14-pin plastic DIPs, the SCI7661M0B, in 14-pin plastic SOPs, and the SCI7661MBB in 16-pin plastic SSOPs.

FEATURES

- 95% (Typ.) conversion efficiency
- Up to four output voltages, Vo, relative to the input voltage, VI
- On-chip voltage regulator
- 20mA maximum output current at VI = -5V
- Three temperature gradients—0.1, 0.4 and 0.6%/°C
- External shut-down control
- 2µA maximum output current when shut-down
- Two-in-series configuration doubles negative output voltage.
- On-chip RC oscillator
- SCI7661C0Bpladtic DIP-14 pin SCI7661M0Bpladtic SOP5-14 Pin SCI7661MBBpladtic SSOP2-16 pin


APPLICATIONS

- Power supplies for LCD panels
- Fixed-voltage power supplies for battery-operated equipment
- Power supplies for pagers, memory cards, calculators and similar hand-held equipment
- Fixed-voltage power supplies for medical equipment
- Fixed-voltage power supplies for communications equipment
- · Power supplies for microcomputers
- Uninterruptable power supplies

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Number	Name	Description
1	CAP1+	Positive charge-pump connection for ×2 multiplier
2	CAP1-	Negative charge-pump connection for ×2 multiplier
3	CAP2+	Positive charge-pump connection for ×3 multiplier
4	CAP2-	Negative charge-pump connection for $\times 3$ multiplier or $\times 2$ multiplier output
5	TC1	Tomporature gradiant calente
6	TC2	Temperature gradient selects
7	VI	Negative supply (system ground)
8	Vo	×3 multiplier output
9	Vreg	Voltage regulator output
10	Rv	Voltage regulator output adjust
11	POFF	Voltage regulator output ON/OFF control
12	OSC2	Resistor connection. Open when using external clock
13	OSC1	Resistor connection. Clock input when using external clock
14	Vdd	Positive supply (system Vcc)

SPECIFICATIONS

Absolute Maximum Ratings

Items	Codes	Ratings	Units	Remarks		
			V	N = 2: Boosting to a double voltage		
Input supply voltage	VI – Vdd	-20/N to VDD + 0.3	V	N = 3: Boosting to a triple voltage		
Innut torminal valtage		VI - 0.3 to VDD + 0.3	V	OSC1, OSC2, POFF		
Input terminal voltage	VI – Vdd	Vo - 0.3 to VDD + 0.3	V	TC1, TC2, RV		
Output voltage	Vo – Vdd	-20 to VDD + 0.3	V	Vo Note 3)		
Output voltage		Vo to VDD + 0.3	V	VREG Note 3)		
Allowable dissipation	Pd	Max. 300	mW			
Working temperature	Topr	-40 to 85	°C	Plastic package		
Storage temperature	Tstg	-55 to 150	°C			
Soldering temperature	Tsol	260°C				
and time	1301	10 s (at leads)	_			

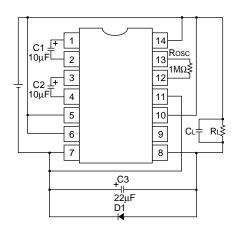
Notes

1. Using the IC under conditions exceeding the aforementioned absolute maximum ratings may lead to permanent destruction of the IC. Also, if an IC is operated at the absolute maximum ratings for a longer period of time, its functional reliability may be substantially deteriorated.

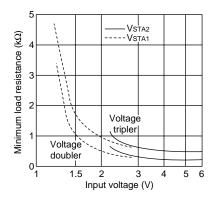
2. All the voltage ratings are based on VDD = 0V.

3. The output terminals (Vo,VREG) are meant to output boosted voltage or stabilized boosted voltage. They, therefore, are not the terminals to apply an external voltage. In case the using specifications unavoidably call for application of an external voltage, keep such voltage below the voltage ratings given above.

Recommended Operating Conditions


VDD = 0V, Ta = -40 to $85^{\circ}C$ unless otherwise noted

Parameter	Symbol	Conditions	Rating			
Falameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Oscillator startup voltage	Vsta	$\begin{array}{l} Rosc = 1M\Omega \\ C_3 = 10 \ \mu\text{F}, \ C\text{L}/C_3 \leq 1/20, \\ Ta = -40 \ to \ 85^{\circ}\text{C}. \\ \text{See note } 1. \end{array}$	-	-	-1.8	V
		$Rosc = 1M\Omega$	-	-	-2.2	
Oscillator shutdown voltage	VSTP	$Rosc = 1M\Omega$	-1.8	-	-	V
Load resistance	RL		R∟ min. See note 2.	-	_	Ω
Output current	lo		-	-	20.0	mA
Clock frequency	fosc		10.0	_	30.0	kHz
RC oscillator network resistance	Rosc		680	-	2,000	kΩ
Capacitance	C1, C2, C3		3.3	-	_	μF
Stabilization voltage sensing resis- tance	Rrv		100	_	1,000	kΩ

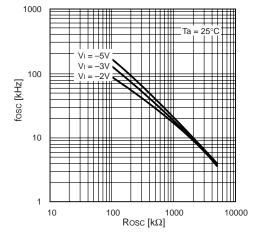

Notes

1. The recommended circuit configuration for low-valtage operation (when VI is between -1.2V and -2.2V) is shown in the following figure. Note that diode D1 should have a maximum forward voltage of 0.6V with 1.0mA forward current.

2. RL min can be varied depending on the input voltage.

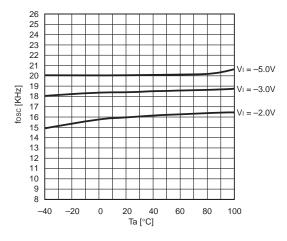
3. RL min is a function of V1 $\,$

Electrical Characteristics

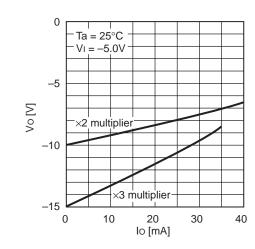

VDD = 0V, V1 = -5V, Ta = -40 to 85°C unless otherwise noted

Parameter	Symbol	Conditions	Rating				
i arameter	Symbol	conditions	Min.	Тур.	Max.	Unit	
Input voltage	Vi		-6.0	-	-1.8	V	
Output voltage	Vo		-18.0	-	-	V	
Regulator voltage	Vreg	$R_{L} = \infty, R_{RV} = 1M\Omega,$ $V_{O} = -18V$	-18.0	_	-2.6	V	
Stabilization circuit operating voltage	Vo		-18.0	_	-3.2	V	
Multiplier current	lopr1	$RL = \infty$, Rosc = 1M Ω	-	40	80	μΑ	
Stabilization current	lopr2	RL = ∞, RRV = 1MΩ, Vo = −15V	-	5.0	12.0	μA	
Quiescent current	lq	TC2 = TC1 = V0, RL = ∞	-	-	2.0	μΑ	
Clock frequency	fosc	$Rosc = 1M\Omega$	16.0	20.0	24.0	kHz	

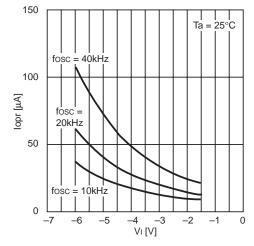
			Rating				
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Output impedance	Ro	lo = 10mA	-	150	200	Ω	
Multiplication efficiency	Peff	lo = 5mA	90.0	95.0	-	%	
Stabilization output voltage differential	$\frac{\Delta V_{REG}}{\Delta VO \cdot VREG}$	Vo = −18 to −8V, VREG = −8V, RL = ∞, Ta = 25°C	_	0.2	-	%/V	
Stabilization output load differential	ΔVreg ΔIO	$V_0 = -15V,$ $V_{REG} = -8V,$ Ta = 25°C, $I_0 = 0$ to 10µA, TC1 = V_{DD}, TC2 = V0	_	5.0	_	Ω	
Stabilization output saturation resistance	RSAT	RSAT = Δ (VREG - VO)/ Δ IO, IO = 0 to 10 μ A, RV = VDD, Ta = 25°C	_	8.0	_	Ω	
		RC2 = Vo, TC1 = Vdd, Ta = 25°C	-2.3	-1.5	-1.0		
Reference voltage	Vrv	TC2 = TC1 = Vo, Ta = 25°C	-1.7	-1.3	-1.1	V	
		TC2 = VDD, TC1 = Vo, Ta = 25°C	-1.1	-0.9	-0.8		
			-0.25	-0.1	-0.01		
Temperature gradient	Ст	See note.	-0.5	-0.4	-0.3	%/°C	
			-0.7	-0.6	-0.5	1	
POFF, TC1, TC2, OSC1, and RV input leakage current	Ilki		_	_	2.0	μA	

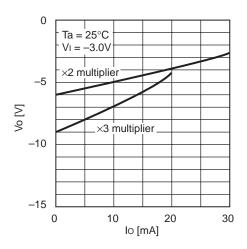

Note

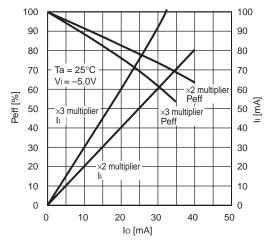
 $C_{T} = \frac{|V_{REG} \left(50^{\circ}C\right)| - |V_{REG} \left(0^{\circ}C\right)|}{50^{\circ}C - 0^{\circ}C} \times \frac{100}{|V_{REG} \left(25^{\circ}C\right)|}$

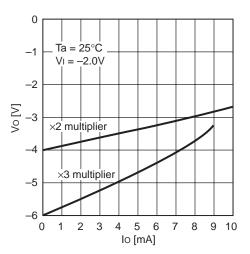


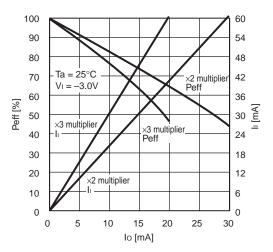
Typical Performance Characteristics


Clock frequency vs. External resistance

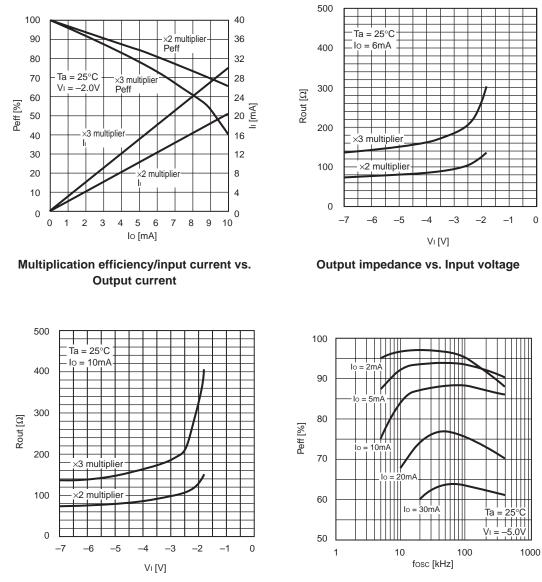

Clock frequency vs. Ambient temperature


Output voltage vs. Output current

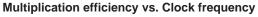

Multiplier current vs. Input voltage


Output voltage vs. Output current

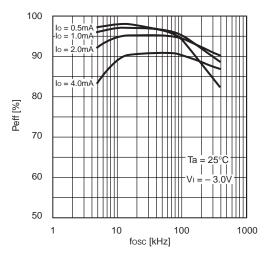
Multiplication efficiency/input current vs. Output current

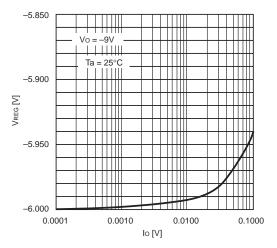


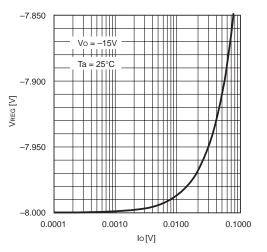
Output voltage vs. Output current

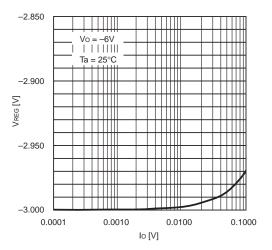


Multiplication efficiency/input current vs. Output current

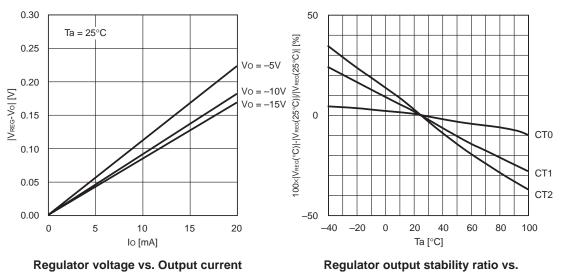

SCI7661 Series


Output impedance vs. Input voltage


0


Multiplication efficiency vs. Clock frequency

Output voltage vs. Output current



Output voltage vs. Output current

Output voltage vs. Output current

SCI7661 Series

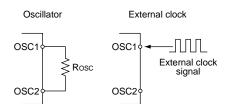
Ambient temperature

Temperature Gradient Control

The SCI7661C0B offers a choice of three temperature gradients which can be used to adjust the voltage regulator output in applications such as power supplies for driving LCDs.

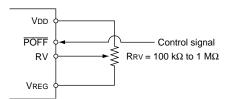
POFF	TC2	TC1	Temperature gradient	Voltage regulator	RC osciliator	Remarks
See note 1.		(%/°C) output		No oscillator	Remarks	
1 (Vdd)	LOW (Vo)	LOW (Vo)	-0.4	ON	ON	
1	LOW	HIGH (VDD)	-0.1	ON	ON	
1	HIGH (VDD)	LOW	-0.6	ON	ON	
1	HIGH	HIGH	-0.6	ON	OFF	Serial connection
0 (V1)	LOW	LOW	-	OFF (high impedance)	OFF	
0	LOW	HIGH	_	OFF (high impedance)	OFF	
0	HIGH	LOW	-	OFF (high impedance)	OFF	
0	HIGH	HIGH	_	OFF (high impedance)	OFF	Multiplier operational

Notes

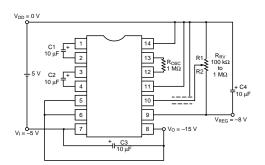

1. The definition of LOW for $\overline{\text{POFF}}$ differs from that for TC1 and TC2.

2. The temperature gradient affects the voltage between VDD and VREG.

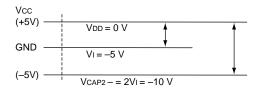
FUNCTIONAL DESCRIPTION


Oscillator

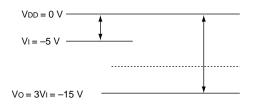
The on-chip RC oscillator network frequency is determined by the external resistor, Rosc, connected between OSC1 and OSC2. This oscillator can be disabled in favor of an external clock by leaving OSC2 open and applying an external clock signal to OSC1.


Reference Volatge Generator and Voltage Regulator

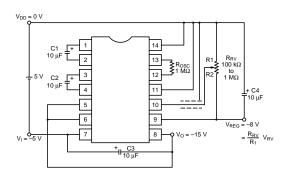
The reference voltage generator supplies a reference voltage to the voltage regulator to control the output. This voltage can be switched ON and OFF.



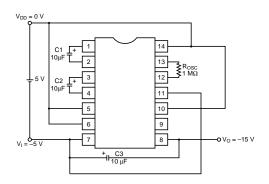
Voltage Multiplier


The voltage multiplier uses the clock signal from the oscillator to double or triple the input voltage. This requires three external capacitors–two charge-pump capacitors between CAP1+ and CAP1– and CAP2+ and CAP2–, respectively, and a smoothing capacitor between VI and Vo.

Double voltage potential levels



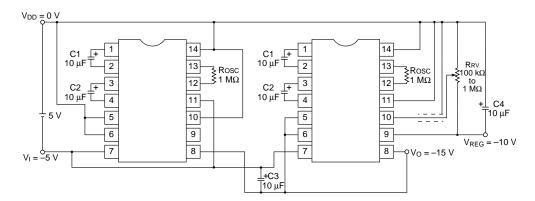
Tripled voltage potential levels


TYPICAL APPLICATIONS Voltage Tripler with Regulator

The following figure shows the circuit required to triple the input voltage, regulate the result and add a temperature gradient of -0.4%/°C. Note that the high input impedance of RV requires appropriate noise countermeasures.

Converting a Voltage Tripler to a Voltage Doubler

To convert this curcuit to a voltage doubler, remove capacitor C2 and short circuit CAP2– to Vo.



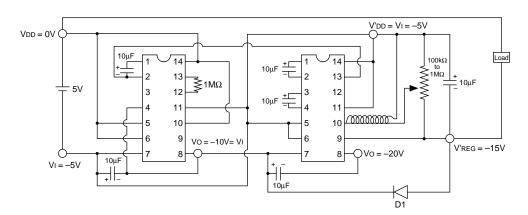
Parallel Connection

Connecting two or more chips in parallel reduces the output impedance by 1/n, where *n* is the number of devices used.

Only the single output smoothing capacitor, C3, is re-

quired when any number of devices are connected in parallel. Also, the voltage regulator in one chip is sufficient to regulate the combined output.

Serial Connection

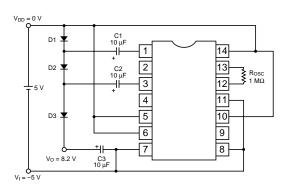

Connecting two or more chips in series obtains a higher output voltage than can be obtained using a parallel

<Precautions when connecting loads>

In case of series connections, when connecting loads between the first stage VDD (or other potential of the second stage VDD or up) and the second stage VREG as shown in Fig. 2-13, be cautions about the following point.

* When normal output is not occurring at the VREG terminal such as at times of starting up or when turning the VREG off by Poff signals, if current flows into the second stage VREG terminal through the load from connection, however, this also raises the output impedance.

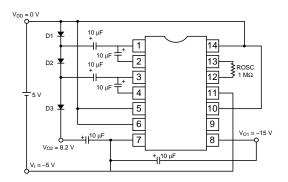
the first stage VDD (or other potential of the second stage VDD or up) to cause a voltage exceeding the absolute maximum rating for the second stage VDD at the VREG terminal, normal operation of the IC may be hampered. Consequently, When making a series connection, insert a diode D1 between the second stage VI and VREG as shown in Fig. 2-13 so that a voltage exceeding the second stage VDD or up may not be applied to the VREG terminal.



Positive Voltage Conversion

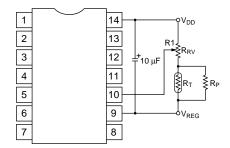
Adding diodes converts a negative voltage to a positive one.

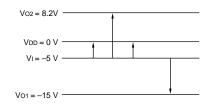
To convert the voltage tripler shown earlier to a voltage doubler, remove C2 and D2, and short circuit D3. Small Schottky diodes are recommended for all three diodes. The resulting voltage is lowered by VF, the voltage drop in the forward direction for each diode used. For example, if VDD = 0V, VI = -5V, and VF = 0.6V, the resulting voltages would be as follows.


- For a voltage tripler,
 - $Vo = 10 (3 \times 0.6) = 8.2V$
- For a voltage doubler, Vo = $5 - (2 \times 0.6) = 3.8$ V

Simultaneous Voltage Conversion

Combining a standard voltage tripler circuit with one for positive voltage conversion generates both -15 and 8.2V outputs from a single input, however, it also raises the output impedance.


A voltage doubler generates -10 and 3.8V outputs.


Using an External Gradient

The SCI7661C0B/M0B offers three built-in temperature gradients— $-0.1,\,-0.4$ and $-0.6\%/^{\circ}C.$

To set the gradient externally, place a thermistor, RT, in series with the variable resistor, RRV, used to adjust the output voltage.

Potential levels

