SED1234/35 Series LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW	5–
FEATURES	5–′
BLOCK DIAGRAM	5–2
CHIP SPECIFICATION	5–3
DESCRIPTION OF PINS	5–8
FUNCTIONAL DESCRIPTION	5–11
COMMANDS	5–17
CHARACTER GENERATOR	
ABSOLUTE MAXIMUM RATINGS	5–2
DC CHARACTERISTICS	5–28
TIMING CHARACTERISTICS	5–30
MPU INTERFACE (REFERENCE EXAMPLES)	5–33
INTERFACE TO LCD CELLS (REFERENCE)	5–34
LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS)	5–35

OVERVIEW

The SED1234, 1235 Series is a dot matrix LCD controller driver for character display, and can display a maximum of 48 characters, 4 user-defined characters, and a maximum of 48 symbols by means of 4-bit, 8-bit or serial data sent from a microcomputer.

A built-in character generator ROM is prepared for 256 character types, and each character font consists of 5×7 dots. A user-defined character RAM for four characters of 5×7 dots are incorporated, and a symbol register is also incorporated. With these, it is possible to apply this Series to display with a high degree of freedom. This Series can operate handy units with a minimum power consumption by means of its low power consumption and sleep mode.

SED1234, and 1235 depending on the duty of use and the number of display columns.

FEATURES

- Built-in diplay RAM 48 characters + 4 user-defined characters + 48 sym-
- CG ROM (for up to 256 characters), CG RAM (4 characters), and symbol register (48 symbols)
- Number of display columns × number of lines $(12 \text{ columns} + 2 \text{ segment for signal}) \times 4 \text{ lines} + 48$ symbols: SED1234

 $(12 \text{ columns} + 2 \text{ segment for signal}) \times 2 \text{ lines} + 48$ symbols: SED1235

• CR oscillation circuit (on-chip C and R)

· High-speed MPU interface

Interfacing with both 68 series and 80 series MPU

Interfacing in 4 bits/8 bits

Serial interface

Character font 5×7 dots Duty ratio 1/16 (SED1235) 1/30 (SED1234)

Simple command setting

- Built-in liquid crystal driving power circuit Power boosting circuit, power regulating circuit, voltage follower $\times 4$
- Built-in electronic volume function
- Low power consumption

100 µA Max. (In normal operation mode: Including the operating current of the built-in power supply)

Power supply

VDD - VSS (logic section): -2.4 V to -3.6 V VDD - V5 (liquid crystal drive section)

: -5.0 V to -8.0 V

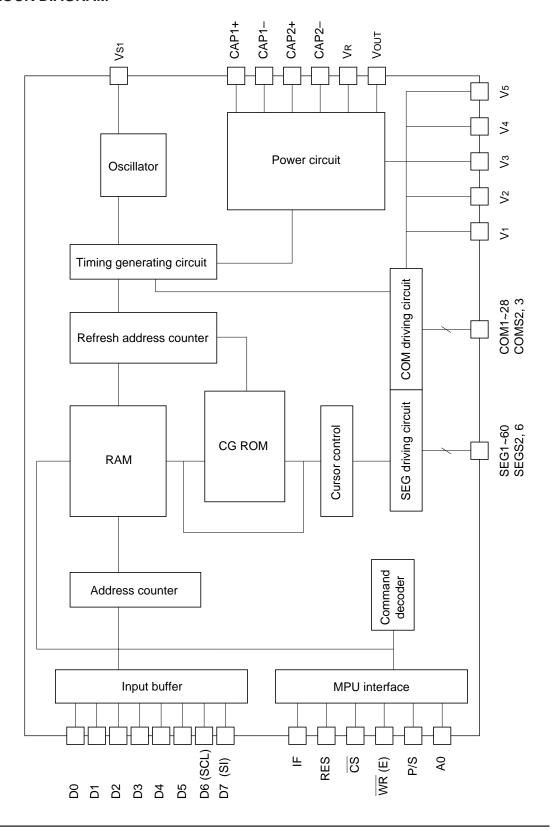
Wide operating temperature range

 $Ta = -30 \text{ to } 85^{\circ}\text{C}$

CMOS process

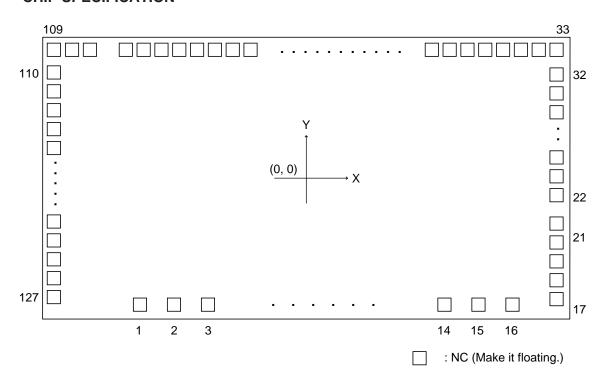
(Pad Pitch)

COB assemble 126 um min.


- Delivery form: Chip SED123*D*A, SED123*D*C, SED123*D*F
- This IC is not designed with a protection against radioactive rays.

SED1230 Series (SED1234, SED1235) Chip Specifications

Product name	Duty	No. of digits indicated	No. of lines indicated		Font	VREG temper- ature slope	Chip thickness	Form at delivery
SED1234DBA	1/30	12 columns +	4 lines	Table 6	SED123*D _{B*}	-0.17%/°C	625μm	AL-PAD chip
		2 segment for signal						
SED1235DAA	1/16	12 columns +	2 lines	Table 5	SED123*DA*	-0.17%/°C	625μm	AL-PAD chip
		2 segment for signal						
SED1235DAB	1/16	12 columns +	2 lines	Table 6	SED123*D _{B*}	-0.17%/°C	625μm	AL-PAD chip
		2 segment for signal						
SED1235DGA	1/16	12 columns +	2 lines	Table 7	SED123*DG*	−0.17%/°C	625µm	AL-PAD chip
		2 segment for signal						
SED1235D2C	1/16	12 columns +	2 lines	Table 7	SED123*Dg*	External Input	525μm	AL-PAD chip
		2 segment for signal						


EPSON 5-1

BLOCK DIAGRAM

5–2 EPSON

CHIP SPECIFICATION

SED1234D** 1/30 duty SED1235D_{**} 1/16 duty

#1 Column for CG ROM pattern change

Chip size: $10.23 \times 3.11 \text{ mm}$ Pad pitch: 126 µm (Min.)

Chip thickness: $625 \pm 25 \,\mu m \,(SED123*D*A)$ $525 \pm 25 \,\mu m \,(SED123 *D*C)$

1) A1 pad specification

Pad size: A 91 $\mu m \times$ 90 μm

B 114 μ m \times 114 μ m

EPSON 5-3

<SED1234D**> (1/2)

Unit: μm

P	AD	COOR	DINATES	Р	PAD		DINATES
No.	Name	Х	Υ	No.	Name	Х	Υ
1	VDD	-4077	-1371	55	SEG15	2106	1406
2	Vssl	-3526		56	SEG16	1979	
3	V5	-2975		57	SEG17	1852	
4	V4	-2424		58	SEG18	1725	
5	V3	-1855		59	SEG19	1598	
6	V2	-1287		60	SEG20	1471	
7	V1	-719		61	SEG21	1345	
8	V ₀	-151		62	SEG22	1218	
9	VR	400		63 64	SEG23	1091	
10 11	Vout CAP2-	968 1519		65	SEG24 SEG25	964 837	
12	CAP2+	2070		66	SEG25	710	
13	CAP1-	2638		67	SEG27	584	
14	CAP1+	3189		68	SEG28	457	
15	VSSR	3757		69	SEG29	330	
16	VDD	4308		70	SEG30	203	
17	(NC)	4883		71	SEG31	76	
18	(NC)	4883		72	SEG32	-51	
19	(NC)	4883		73	SEG33	-177	
20	(NC)	4883		74	SEG34	-304	
21	Vs1	4929		75	SEG35	-431	
22	P/S	4924		76	SEG36	-558	
23	IF	4924		77	SEG37	-685	
24	RES	4924		78	SEG38	-812	
25	COMS2	4950		79	SEG39	-938	
26	COM1	4950		80	SEG40	-1065	
27	COM2	4950		81	SEG41	-1192	
28	COM3	4950		82	SEG42	-1319	
29	COM4	4950		83	SEG43	-1446	
30	COM5	4950		84	SEG44	-1572	
31	COM6	4950		85	SEG45	-1699	
32	COM7	4950		86 87	SEG46 SEG47	-1826	
33 34	COM8 COM9	4896 4769		88	SEG47 SEG48	-1953 -2080	
35	COM10	4642		89	SEG49	-2207	
36	COM11	4515		90	SEG50	-2333	
37	COM12	4388		91	SEG51	-2460	
38	COM13	4262		92	SEG52	-2587	
39	COM14	4135		93	SEG53	-2714	
40	SEGS2	4008		94	SEG54	-2841	
41	SEG1	3881		95	SEG55	-2968	
42	SEG2	3754		96	SEG56	-3094	
43	SEG3	3627		97	SEG57	-3221	
44	SEG4	3501		98	SEG58	-3348	
45	SEG5	3374		99	SEG59	-3475	
46	SEG6	3247		100	SEG60	-3602	
47	SEG7	3120		101	SEGS6	-3729	
48	SEG8	2993		102	COM28	-3855	
49	SEG9	2866		103	COM27	-3982	
50	SEG10	2740		104	COM26	-4109	
51	SEG11	2613		105	COM25	-4236	
52	SEG12	2486		106	COM24	-4363	1405
53 54	SEG13	2359		107	COM23	-4679 4806	1405
54	SEG14	2232	†	108	COM22	-4806	1405

5–4 EPSON

<SED1234D**> (2/2)

P	AD	COOR	DINATES
No.	Name	Х	Y
109	COM21	-4933	1405
110	COM20	-49 <u>6</u> 4	1094
111	COM19		966
112	COM18		839
113	COM17		712
114	COM16		584
115	COM15		457
116	COMS3		330
117	_A0		202
118	WR		75
119	CS		-52
120	D7		-180
121	D6		-307
122	D5		-434
123	D4		-562
124	D3		-689
125	D2		-816
126	D1		-943
127	D0		-1071

 $\begin{tabular}{ll} Note 1: & Set the pin (NC) to the floating state. \\ & 2: & Be sure to connect the pins VssL and VssR \end{tabular}$ outside. They are called Vss in the following text descriptions.

<SED1235D**> (1/2)

Unit: μm

Р	AD	COOR	DINATES	Р	AD	COOR	DINATES
No.	Name	Х	Υ	No.	Name	Х	Y
1	VDD	-4077	-1371	55	SEG15	2106	-1406
2	Vssl	-3526		56	SEG16	1979	
3	V5	-2975		57	SEG17	1852	
4	V4	-2424		58	SEG18	1725	
5 6	V3	-1855		59 60	SEG19 SEG20	1598	
7	V2 V1	-1287 -719		61	SEG20 SEG21	1471 1345	
8	V I V0	-719 -151		62	SEG22	1218	
9	VR VR	400		63	SEG23	1091	
10	Vout	968		64	SEG24	964	
11	CAP2-	1519		65	SEG25	837	
12	CAP2+	2070		66	SEG26	710	
13	CAP1-	2638		67	SEG27	584	
14	CAP1+	3189		68	SEG28	457	
15	Vssr	3757		69	SEG29	330	
16	VDD	4308	4040	70	SEG30	203	
17 18	(NC) (NC)	4883 4883	-1343 -1233	71 72	SEG31 SEG32	76 –51	
19	(NC)	4883	-1233 -1123	73	SEG32 SEG33	–31 –177	
20	(NC)	4883	-1013	74	SEG34	-304	
21	VS1	4929	- 903	75	SEG35	-431	
22	P/S	4924	-184	76	SEG36	-558	
23	IF	4924	– 57	77	SEG37	-685	
24	RES	4924	70	78	SEG38	-812	
25	COMS2	4950	255	79	SEG39	-938	
26	COM1	4950	382	80	SEG40	-1065	
27 28	COM2 COM3	4950 4950	510 637	81 82	SEG41 SEG42	–1192 –1319	
29	COM4	4950	764	83	SEG42	-1319 -1446	
30	COM5	4950	891	84	SEG44	-1572	
31	COM6	4950	1019	85	SEG45	-1699	
32	COM7	4950	1146	86	SEG46	-1826	
33	COM8	4896	1406	87	SEG47	-1953	
34	COM9	4769		88	SEG48	-2080	
35	COM10	4642		89	SEG49	-2207	
36	COM11	4515		90	SEG50	-2333	
37	COM12	4388		91 92	SEG51	-2460	
38 39	COM13 COM14	4262 4135		92	SEG52 SEG53	–2587 –2714	
40	SEGS2	4008		94	SEG54	-2714 -2841	
41	SEG1	3881		95	SEG55	-2968	
42	SEG2	3754		96	SEG56	-3094	
43	SEG3	3627		97	SEG57	-3221	
44	SEG4	3501		98	SEG58	-3348	
45	SEG5	3374		99	SEG59	-3475	
46	SEG6	3247		100	SEG60	-3602	
47	SEG7	3120		101	SEGS6	-3729	
48 49	SEG8 SEG9	2993 2866		102 103	(NC) (NC)	-3855 -3982	
50	SEG10	2740		103	(NC)	-3962 -4109	
51	SEG11	2613		105	(NC)	-4236	
52	SEG12	2486		106	(NC)	-4363	
53	SEG13	2359		107	(NC)	-4679	1405
54	SEG14	2232		108	(NC)	-4806	1405

5–6 EPSON

<SED1235D**> (2/2)

Р	AD	COOR	DINATES
No.	Name	Х	Y
109	COM14	-4933	1405
110	COM13	-4964	1094
111	COM12		966
112	COM11		839
113	COM10		712
114	COM9		584
115	COM8		457
116	COMS3		330
117	_A0_		202
118	WR		75
119	CS		– 52
120	D7		-180
121	D6		-307
122	D5		-434
123	D4		-562
124	D3		-689
125	D2		-816
126	D1		-943
127	D0		-1071

Note 1: Set the pin (NC) to the floating state.

2: Be sure to connect the pins VSSL and VSSR outside. They are called VSS in the following text descriptions.

DESCRIPTION OF PINS

Power Pins

Pin name	I/O	Description	Q'ty	
VDD	Power supply	Logic + power pin. Also used as MPU power pin Vcc.	2	
Vss	Power supply	Logic – power pin. Connected to the system GND.	2	
V0, V1	Power supply	Multi-level power supply for liquid crystal drive.	6	
V2, V3		The voltage determined in the liquid crystal cell is resistance-		
V4, V5		divided or impedance-converted by operational amplifier, and the		
		resultant voltage is applied.		
		The potential is determined on the basis of VDD and the following		
		equation must be respected.		
		$VDD = V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$, $VDD \ge VSS \ge V5 \ge VOUT$		
		When the built-in power supply is ON, the following voltages are		
		given to pins V1 to V4 by built-in power circuit:		
		V1 = 1/5 V5		
		$V_2 = 2/5 V_5$		
		V3 = 3/5 V5		
		V4 = 4/5 V5		
Vs1	Vs1 O Power supply voltage output pin for oscillating circuit.			
		Don't connect this pin to an external load.		

LCD Power Circuit Pins

Pin name	I/O	Description					
CAP1+	0	Capacitor positive side connecting pin for boosting.	1				
		This pin connects the capacitor with pin CAP1–.					
CAP1-	0	Capacitor negative side connecting pin for boosting.	1				
		This pin connects a capacitor with pin CAP+.					
CAP2+	0	Capacitor positive side connecting pin for boosting.					
		This pin connects a capacitor with pin CAP2					
CAP2-	0	Capacitor negative side connecting pin for boosting.	1				
		This pin connects a capacitor with pin CAP2+.					
Vout	0	Output pin for boosting. This pin connects a smoothing capacitor	1				
		with VSS pin.					
VR	I	Voltage regulating pin. This pin gives a voltage between VDD and	1				
		V ₅ by resistance-division of voltage.					

5–8 **EPSON**

Pins for System Bus Connection

Pin name	I/O	Description	Q'ty				
D7 (SI) D6 (SCL) D5 ~ D0	I	8-bit input data bus. These pins are connected to a 8-bit or 16-bit standard MPU data bus. When P/S = "Low", the D7 and D6 pins are operated as a serial data input and a serial clock input respectively.					
		$\begin{array}{ c c c c c c c c c }\hline P/S & D7 & D6 & D5 \sim D0 & \overline{CS} & A0\\\hline "Low" & SI & SCL & & \overline{CS} & A0\\\hline "High" & D7 & D6 & D5 \sim D0 & \overline{CS} & A0\\\hline \hline When P/S = "Low," be sure to fix D5 to D0 to "High" or "Low."\\\hline \end{array}$					
AO	I	Usually, this pin connects the least significant bit of the MPU address bus and identifies a data command. 0: Indicates that D0 to D7 are a command. 1: Indicates that D0 to D7 are display data.	1				
RES	I	In case of a 68 series MPU, initialization can be performed by changing RES . In case of an 80 series MPU, initialization can be performed by changing . A reset operation is performed by edge sensing of the RES signal. An interface type for the 68/80 series MPU is selected by input level after initialization. "L": 80 series MPU interface "H": 68 series MPU interface	1				
CS	I	Chip select signal. Usually, this pin inputs the signal obtained by decoding an address bus signal. At the "Low" level, this pin is enabled.	1				
WR (E)	I	When connecting an 80 series MPU> Active "Low". This pin connects the WR signal of the 80 series MPU. The signal on the data bus is fetched at the rise of the WR signal. When P/S = "Low," be sure to fix the WR signal to "High" or "Low." When connecting a 68 series MPU> Active "High". This pin becomes an enable clock input of the 68 series MPU.					
P/S	I	This pin switches between serial data input and parallel data input. P/S Chip Select Data/Command Data Serial Clock "High" CS A0 D0~D7 — "Low" CS A0 SI SCL					
IF	I	Interface data length select pin for parallel data input. "High": 8-bit parallel input "Low": 4-bit parallel input When P/S = "Low", connect this pin to VDD or Vss.					

Liquid Crystal Drive Circuit Signals

SED1234

Pin name	I/O	Description	Q'ty	
COM1~	0	Common signal output pin (for characters)	28	
COM28		Common signal output pin (for characters)	20	
COMS2,	0	Common signal output pin (except for characters)	2	
CMOS3		CMOS2, CMOS3: Common output for symbol display		
SEG1~	0	Comment signal systems him (for share store)	60	
SEG60		Segment signal output pin (for characters)		
SEGS2,	0	Segment signal output pin (except for characters)		
SEGS6	0	SEGS2, SEGS6: Segment output for signal output	2	

SED1235

Pin name	I/O	Description	Q'ty
COM1~	0	Common signal output pin (for characters)	14
COM14	O	COM8~COM14:W output	(21)
COMS2,	0	Common signal output pin (except for characters)	2
CMOS3	U	CMOS2, CMOS3: Common output for symbol display	2
SEG2~	0	Comment signal output his /far sharastars)	60
SEG60	U	Segment signal output pin (for characters)	60
SEGS2,	0	Segment signal output pin (except for characters)	2
SEGS6	0	SEGS2, SEGS6: Segment output for signal output	

5–10 **EPSON**

FUNCTIONAL DESCRIPTION

MPU Interface

Selection of interface type

In the SED1234, SED1235, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting "High" or "Low" as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table

Table 1

	P/S	Type	CS	A0	WR	SI	SCL	D0~D7
"H	High"	Parallel Input	CS	A0	WR	_	_	D0~D7
"	Low"	Serial Input	CS	A0	_	SI	SCL	_

Parallel Input

In the SED1234, SED1235, when parallel input is selected (P/S = "High"), it can be directly connected to the 80 series MPU bus or 68 series MPU bus, as shown in Table 2, if either "High" or "Low" is selected as RES pin polarity after a reset input, because the RES pin has an MPU select function.

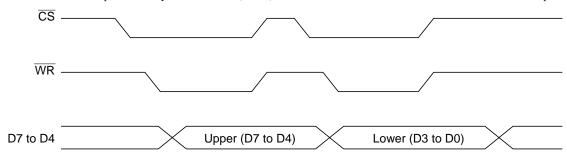

Selection between 8 bits and 4 bits is performed by command.

Table 2

RES input polarity	Туре	A0	WR	CS	D0~D7
High-to-low active	68 series	A0	Е	CS	D0~D7
Low-to-high active	80 series	A0	WR	CS	D0~D7

Interface with 4-bit MPU interface

When data transfer is performed by 4-bit interface (IF = 0), an 8-bit command, data and address are divided into two parts,

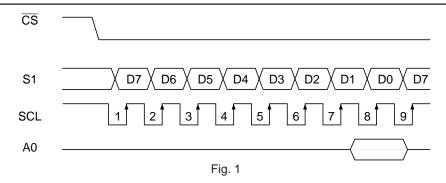
Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then perform writing.

Serial interface (P/S = "Low")

The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled in the ship selected status (CS = "Low").

When no chip is selected, the shift register and counter are reset to the initial status.

Serial data is input in the order of D7, D6 D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL). At the rising edge of the 8th serial clock, the serial data is converted into 8-bit parallel data and this data is processed. The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when A0 = "High", it is regarded as display data. When A0 = "Low", it is regarded as a command.


The AO input is read in and identified at the rise of the 8 x n-th clock of Serial Clock (SCL) after chip selection. Fig. 1 shows a timing chart of the serial interface.

Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length.

We recommend the user to perform an operation check with a real machine.

We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.

EPSON 5-11

Identification of data bus signals

The SED1234, SED1235 series identifies data bus signals, as shown in Table 3, by combinations of A0 and \overline{WR} (E).

Table 3

Common	68 series	80 series	Function
A0	E	WR	Function
1	1	0	Writing to RAM and symbol register
0	1	0	Writing to internal register (command)

Chip select

The SED1234, SED1235 series has a chip select pin $\overline{(CS)}$. Only when \overline{CS} = "Low", MPU interfacing is enabled. In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is input regardless of the \overline{CS} status.

Power Circuit

This is a low-power-consumption power circuit that generates a voltage required for liquid crystal drive. The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.

The power circuit incorporated in the SED1234, SED1235 Series is set for a small-scale liquid crystal panel, so that its display quality may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity. In this case, an external power supply must be used.

A power circuit function can be selected by power control command. With this, an external power supply and a part of the internal power supply can be used together.

	Boosting circuit	Voltage regulat- ing circuit	Voltage follower	External voltage input	Boosting system pin
	0	0	0	_	
Note 1	×	0	0	Vout	OPEN
Note 2	×	×	0	V5 = VOUT	OPEN
Note 3	×	×	×	V1, V2, V3, V4, V5	OPEN

- Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open and give a liquid crystal drive voltage to the Vout pin from the outside.
- Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins open, connect between the V5 pin and VOUT pin, and give a liquid crystal drive voltage from the outside.
- Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages V1, V2, V3, V4 and V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and VOUT pins open.

5–12 **EPSON**

Triple boosting circuit

When a capacitor is connected between CAP1+ and CAP1-, between CAP2+ and CAP2-, and between Vss pin and VouT pin respectively, the potential between the VDD pin and Vss pin is boosted triple and output to the VouT pin. In case of double boosting, remove the capacitor between CAP2+ and CAP2- in connection for triple boosting operation and strap between CAP2- and

Potential during double boosting

Voltage regulating circuit

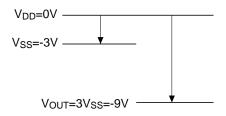
The voltage regulation circuit regulates the boosted voltage developed at Vout. It outputs the regulated LCD driving voltage at the V5 terminal. An internal resistor can be inserted into the regulation circuit feedback loop providing the following voltage levels at the V5 terminal.

When V5 is required to be different than the above case, leave the internal feedback resistor out of the circuit. V5 can be regulated within a range of |V5|<|VOUT|. It may be calculated by the following formula:

$$V_5 = (1 + \frac{Rb}{Ra}) \bullet V_{REG}$$

Wherein, VREG is the constant voltage source inside the SED1230 Series and the voltage is constant at VREG \leftrightarrows 3.1V. Voltage regulation of the V5 output is accomplished by connecting a variable resistor between VR, VDD and V5. For fine adjustment of the V5 voltage, use a combination of fixed resistors R1 and R3 and a variable resistor R2.

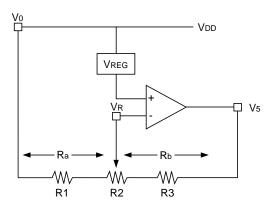
Example 1:


Condition:
$$I(R1, R2, R3) \le 5\mu A$$
 $V_5 = -6 \text{ to } -8V$

$$\begin{array}{ll} \mbox{Setting:} & R1 + R2 + R3 = 8V/5\mu A = 1.6M\Omega \\ & 8V = (1 + Rb/Ra) \ 3.0V \ Rb/Ra = 1.67 \\ & 6V = (1 + Rb/Ra) \ 3.0V \ Rb/Ra = 1 \end{array} \right\} \cdots \quad \left\{ \begin{array}{ll} R1 = 600 K\Omega \\ R2 = 200 K\Omega \\ R3 = 800 K\Omega \end{array} \right.$$

VOUT pin. Then, a double boosted output can be obtained from the VOUT pin (CAP2-).

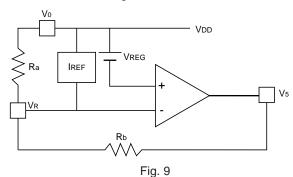
The boosting circuit uses a signal from the oscillator ourput.


Accordingly, it is necessary that the oscillating circuit must be in operation. The potential relationship of boosting is shown below.

Potential during triple boosting

The voltage regulator circuit carries a temperature gradient of about -0.17%/°C under VREG outputs. When any other temperature gradient is required, connect a thermistor in series to the output voltage regulating register.

Since the VR terminal has a high input impedance, it is necessary to take noise suppression measures such as shortening the input wiring and shielding the wiring run.


 Voltage Regulation Circuit Using Electronic Contrast Control Register

The contrast control register controls the liquid crystal driving voltage (V5). This is accomplished by an electronic volume control register set command that adjusts the contrast of the liquid crystal display (see section 1-22).

The commands provide 4-bits of voltage level data to the electronic volume control register. This provides for the selection of 16 different voltage levels for the liquid crystal driving voltage. When using the electronic volume control function, it is necessary to close the voltage regulation circuit using electronic control commands. For reference information, when the electronic volume control registor value is at (1, 1, 1, 1), the constant current value becomes: IREF $= 3.65\mu A$.

[An exemplary constant setting when the electronic volume control function is being used]

$$V_5 = (1 + \frac{R_b}{Rc}) \bullet V_{REG} \cdots 2$$

$$R_c = \frac{R_a \times R_I}{R_a + R_I}$$

$$R_I = \frac{V_R}{I_{REF}}$$

- Determining the V5 voltage setting range by the electronic volume control Liquid crystal driving voltage V5: max. -6v ~ min. -8V V5 variable voltage range: 2V
- (2) Determining the Rb

Rb = V5 variable voltage range/ IREF = $2V/3.65\mu$ A = 548KΩ

(3) Determining the Ra

 $R_{a} = \frac{V_{REG}}{(V_{5} \text{ voltage setting max - V}_{REG}) / R_{b}} \text{ (Use absolute values for V}_{REG} \text{ and V}_{5} \text{ voltage settings.)}$ $= \frac{3.1V}{(6V - 3.1V) / 548K\Omega}$ $= 585K\Omega$

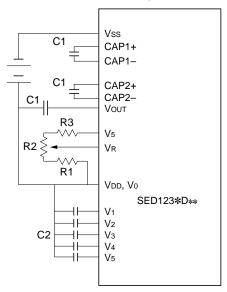
(4) Regulating the Ra

Set the electronic volume control register to (D3, D2, D1, D0) = (1, 0, 0, 0) or (0, 1, 1, 1) before matching the Ra value to the optimum contrast.

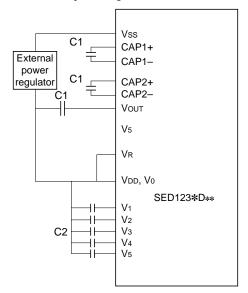
Since IREF is a simplified constant voltage source, fluctuations upto \pm 40% must be taken into consideration, as a dispersion range during manufacture. Meanwhile, the temperature dependency of IREF is : Δ IREF = -0.037 μ A/°C. Determine the Ra and Rb for the using LCD panel in consideration of the above dispersion and the variation by the temperature.

When using the electronic volume control function, in order to compensate the V5 voltage for dispersion of VREG and IREF, use a variable registor as Ra and perform optimum contrast adjustment according to the above item (4) with each IC chip.

When the electronic volume control function is not being used, set the electronic volume control register to (0, 0, 0, 0) using the RES signal or the electronic volume control register setting command.


5–14 **EPSON**

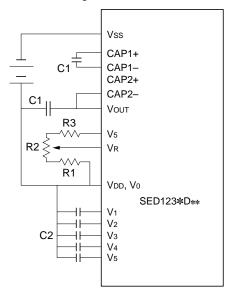
Liquid crystal voltage generating circuit


The V5 potential is resistance-divided inside the IC so that V1, V2, V3 and V4 potentials are generated for liquid crystal drive.

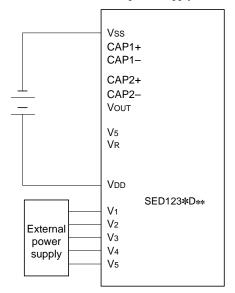
Furthermore, the V₁, V₂, V₃ and V₄ are impedanceconverted by voltage follower and the then supplied to

When a built-in power supply is used Under a triple boosting

When an external power regulator is used (The built-in power regulator is not used)



the liquid crystal drive circuit.


The liquid crystal drive voltage is fixed to 1/5 bias.

As shown in the diagrams below, the capacitor (C2) for voltage stabilization must be externally connected to the V1 to V5 pins of liquid crystal power pins.

The diagram under a double boosting

When a built-in power supply is not used

Reference setting values: C1: $0.1 - 4.7 \mu F$

C2: 0.1 µF

We recommend the user to set the optimum values to capacitors C1 and C2 according to the panel size watching the liquid crystal display and drive waveforms.

Low Power Consumption Mode

The SED1234, SED1235 Series is provided with the standby mode and sleep mode with the object of low power consumption when the unit is in the standby state.

Sleep Mode

After the power circuit and oscillating circuit are turned off by command and the power save command is executed, the sleep mode is set. This mode permits reducing current consumption nearly to the static current value.

- Liquid crystal display output COM1 ~ COM28, COMS2, COMS3 : VDD level SEG1 ~ SEG60, SEGS2, SEGS6 : VDD level
- DD RAM, CG RAM and symbol register Written contents do not change and are stored regardless of whether the sleep mode is turned on or off.
- 3. In the operation mode, the status precedent to execution of the sleep mode is held. All the internal circuits stops
- Power circuit and oscillating circuit
 Turn off the built-in power supply and oscillating circuit by power save command and power control command.

Reset Circuit

When the RES input goes active, this LSI enters the initialization status.

1. Display ON/OFF control

C = 0 : Cursor OFF B = 0 : Blink OFF DC = 0 : Double cursor OFF D = 0 : Display OFF

2. Power save

O = 0 : Oscillating circuit OFF PS = 0 : Power save OFF

3. Power control

VC = 0 : Voltage regulating circuit OFF

VF = 0 : Voltage follower OFF P = 0 : Boosting circuit OFF

4. System set

CG = 0: No use of CG RAM

As described in 6.1 MPU Interface, the RES pin is connected to the MPU reset pin and performs initialization concurrently with the MPU.

Regarding the reset signal, a pulse of at least 10 µs or more active level must be input as described in 9. DC Characteristics. Usually, the operation status is started in 1 µs from the edge of the RES signal.

In the SED 1230 Series where the built-in liquid crystal power circuit is not used, the RES input must be active when the external liquid crystal power supply is turned on.

5–16 **EPSON**

COMMANDS

Table 4 shows a command list. In the SED1230 Series, each data bus signal is identified by a combination of A0 and \overline{WR} (E).

Command interpretation and execution are performed by only internal timing. This permits high-speed processing.

· Outline of Commands

Command type	Command name	A0	WR
Display control	Cursor Home	0	0
instruction	Display ON/OFF Control	0	0
Power control	Power Save	0	0
	Power Control	0	0
	Electronic Volume	0	0
	Register Set		
Address control	Address Set	0	0
instruction			
Data input	Data Write	1	0
instruction			

The execution time of each instruction is determined by the internal processing time of the SED1230 Series. Accordingly, to execute instructions in succession, reserve a time exceeding the cycle time (tcyc) and execute the next instruction.

• Outline of Commands

(1) Cursor Home

This command presets the address counter to 30H. When the cursor is displayed, this command moves it to column 1 of line 1.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	*	*	*	*

*: Don't Care

(2) Display ON/OFF Control

This command performs display and cursor setting.

Note: Control the symbols that are driven by COMS1 and SEGS1, by the Static Display Control command.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	C	В	DC	D

D = 0: Display OFF

1 : Display ON

DC = 0: Double cursor OFF

1 : Double cursor ON

B = 0 : Cursor blink OFF 1 : Cursor blink ON

In the blink state, display characters in normal video and display characters in monochrome reverse video are displayed alternately.

The repetition cycle of alternate display is about 1 second.

C = 0 : Non-display of cursor 1 : Display of cursor

The relationship between C and B registers and cursor display is shown in the following table.

С	В	Cursor display
0	0	Non-display
0	1	Non-display
1	0	Display in monochrome reverse
		video
1	1	Alternate display of display charac
		ters in normal video and display
		characters in monochrome reverse
		video

The cursor display position corresponds to the position indicated by address counter.

Accordingly, to move the cursor, change the address counter value by the RAM Address Set command or auto increment by writing RAM data.

If the address counter is set at the symbol register position with (C, B) = (1, 0), symbols can be caused to blink selectively.

(3) Power Save

This command is used to control the oscillating circuit and set and reset sleep mode.

0 0 0 1 0 0 * * O PS	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	1	0	0	*	*	О	PS

* : Don't Care

PS = 0 : Power save OFF (reset) 1 : Power save ON (set)

O = 0 : Oscillating circuit OFF (stop of

oscillation)

1 : Oscillating circuit ON (oscilla

tion)

(4) Power Control

This command is used to control the operation of the built-in power circuit.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	VC	VF	P

P = 0 : Boosting circuit OFF

1 : Boosting circuit ON

Note: To operate the boosting circuit the oscillating circuit must be in operation.

= 0 : Voltage follower OFF

1 : Voltage follower ON

VC = 0 : Voltage regulating circuit OFF

: Voltage regulating circuit ON

(5) System Set

VF

This command set the use or non-use of display lines and CG RAM.

Execute this command first after turning on the power supply or after resetting.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	N2	N1	*	PS

* : Don't Care

CG = 0: Use of CG RAM

1 : Non-use of CG RAM

N2 N1

0 0 : 2 lines 0 1 : 3 lines 1 0 : 4 lines

(6) Electronic Volume Register Set

This command controls the liquid crystal driving voltage V5 output from the voltage regulating circuit of the built-in liquid crystal power supply,

thereby adjusting the gradation of liquid crystal display.

When data is set in the 4-bit register, the liquid crystal driving voltage can take one of 16 voltage states.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	1	1	MSB	*	*	LSB
						Н	v Co	nde	

Hex Code 70H ~7FH

MSB			LSB	V5	Iref
0	0	0	0	Small	0.0μΑ
			:	:	:
			:	:	:
1	1	1	1	Large	3.65µA

When the electronic volume function is not used, set (A3, A2, A1, A0) = (0, 0, 0, 0).

(7) RAM Address Set

This command sets addresses to write data into the DD RAM, CG RAM and symbol register in the address counter.

When the cursor is displayed, the cursor is displayed at the display position corresponding to the DDRAM address set by this command.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	1		ADDRESS						

- ① The settable address length is ADDRESS = 00H to 7FH
- ② Before writing data into the RAM, set the data write address by this command. Next, when data is written in succession, the address is automatically incremented.

RAM Map

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
0 0 H		С	G R	АМ	(0 0) H)		_		C	G R	АМ	(01	H)		_
10H		С	G R	A M	(02	2 H)		_		C	G R	АМ	(03	H)		-
20H							ι	Jnuse	d							
30H			DE	RAM	line 1										Unus	ed
40H			DE	DRAM	line 2	2		Fo	r signa	als					"	
50H			DE	DRAM	line 3	3									"	
60H			DE	DRAM	line 4	1									"	
70 H			Sv	mbol ı	eaist	er									"	

: Unused

For signals: Output from SEGS2 to SEGS6.

5–18 **EPSON**

(8) Data Write

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	
1	0		DATA							

- ① This command writes data into the DD RAM, CG RAM or symbol register.
- ② After this command is executed, the address counter is automatically incremented by 1. This permits writing data in succession.

<Example of Data Writing>

The following is an example of writing one-line data into the DD RAM in succession.

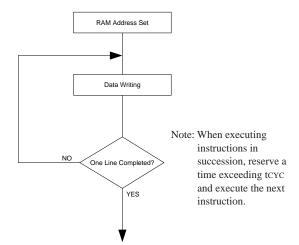


Table 4 SED1234/SED1235 Command List

G 1					Со	de					F
Command	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Cursor Home	0	0	0	0	0	1	*	*	*	*	Moves the cursor to the home position.
(2) Display ON/OFF Control	0	0	0	0	1	1	С	В	DC	D	Sets cursor ON/OFF (C), cursor blink ON//OFF (B), double cursor ON/OFF (DC) and display ON/OFF (D). C = 1 (cursor ON) 0 (cursor OFF), B = 1 (blink ON) 0 (blink OFF) DC = 1 (double cursor ON) 0 (double cursor OFF), D = 1 (display ON) D = 0 (display OFF)
(3) Power Save	0	0	0	1	0	0	*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (0). PS = 1 (power save ON) 0 (power save OFF), 0 = 1 (oscillating circuit ON) 0 (oscillating circuit OFF)
(4) Power Control	0	0	0	1	0	1	0	VC	VF	P	Sets voltage regulating circuit ON/OFF and boosting circuit ON/OFF (P). VC = 1 (voltage regulating circuit ON) 0 (voltage regulating circuit OFF) VF = 1 (voltage follower ON) 0 (voltage follower OFF), P = 1 (boosting circuit ON) 0 (boosting circuit OFF)
(5) System Set	0	0	0	1	1	0	N2	N1	*	CG	Sets the use or non-use of CG RAM and display lines (N2, N1). CG = 1 (use of CG RAM) 0 (non-use of CG RAM), N2, N1 = 0, 0 (2 lines) 0, 1 (3 lines) 1, 0 (4 lines)
(6) Electronic Volume Register	0	0	0	1	1	1	M	SB	LS	SB	Sets the electronic volume register value.
(7) RAM Address Set	0	0	1			AD	DRI	ESS			Sets the DD RAM, CG RAM or symbol register address.
(8) RAM Write	1	0				DA	TA				Writes data into the DD RAM, CG RAM or symbol register address.
(9) NOP	0	0	0	0	0	0	0	0	0	0	Non-operation command
(10) Test Mode	0	0	0	0	0	0	1	0	1	0	Command for IC chip test. Don't use this command.

5–20 **EPSON**

CHARACTER GENERATOR Character Generator ROM (CG ROM)

The SED1234/1235 is provided with a character generator ROM consisting of a up to 256-type characters. Each character size is 5×7 dots.

Table 5 shows a character code table of the SED1230 Series.

The 4characters of character codes 00H to 03H are set by the System Set command to specify for which of CG ROM and CG RAM they are to be used.

The CG ROM of the SED1234/1235 is a mask ROM and compatible with the use-dedicated CG ROM. Please ask us for further information of it.

Regarding changed CG ROM, it is defined in product name as follows:

(Example) S E D 1 2 3 4 D $\underline{0}$ A $\underline{\uparrow}$ Digit for CG ROM pattern change

SED123*DA*

Table 5

5–22 **EPSON**

SED123*DB*

SED123*DG*

5–24 **EPSON**

Character Generator RAM (CG RAM)

The SED1230 Series is provided with a CG RAM that permits user-programming character patterns so that they can be displayed with a high degree of freedom for signal display.

Before using the CG RAM, select the use of CG RAM by the System Set command.

The capacity of the CG RAM is 140 bits and arbitrary patterns of 4 types consisting of 5×7 dots can be registered.

The relationship among CG RAM patterns, CG RAM addresses, and character codes is shown below.

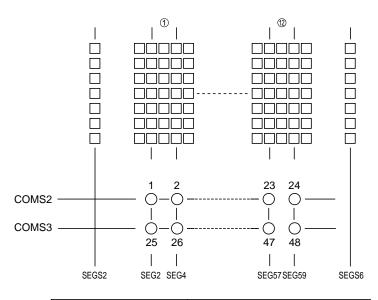
Character code	PAM address	RAM address		RAN	/I dat	ta (c	hara	cter	patt	ern)	Display
Character code	NAIVI addiess		D7							D0	
00H	00H~06H	0	*	*	*	0	1	1	1	1	
02H	10H~16H	1	*	*	*	1	0	0	0	0	
		2	*	*	*	1	0	0	0	0	
		3	*	*	*	0	1	1	1	1	
		4	*	*	*	0	0	0	0	1	
		5	*	*	*	0	0	0	0	1	
		6	*	*	*	1	1	1	1	0	
01H	08H~0EH	8	*	*	*	0	0	1	0	0	
03H	18H~1EH	9	*	*	*	0	0	1	0	0	
		Α	*	*	*	0	1	1	1	0	
		В	*	*	*	0	1	1	1	0	
		С	*	*	*	0	1	1	1	0	
		D	*	*	*	1	1	1	1	1	
		Е	*	*	*	1	1	1	1	1	

Unused

Character data

1: Display

0: Non-display

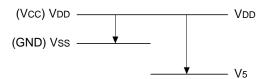

EPSON 5-25

Symbol Register

The SED1234, 1235 provided with a symbol register that permits displaying each symbol so that symbol display may be performed on the screen.

The capacity of the symbol register is 48 bits. In case of 48 symbols can be displayed.

The relationship among symbol register display patterns, RAM addresses and write data is shown below.


RAM address				Sy						
RAM address		D7	_					_	D0	
	0	*	*	*	25	1	26	2	*	Bit
70H~7BH	1	*	*	*	27	3	28	4	*	1: Display 0: Not display
					:				U: Not display	
	В	*	*	*	47	23	48	24	*	

- Notes: 1. We recommend to drive a symbol by dividing it into COMS2 and COMS3 separately if it is larger than other dots for 1.5 times or more.
 - 2. Do not cross a segment (other than those used for symbol display) with COMS2 or COMS3. If segment crossing is required, set the symbol registers of COMS3 to all zeros (0s).

EPSON 5-26

ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit
Power supply voltage	(1)	Vss	-6.0~+0.3	V
Power supply voltage	(2)	V5	-16.0~+0.3	V
Power supply voltage	(3)	V1, V2, V3, V4	V5~+0.3	V
Input voltage		VIN	Vss-0.3~+0.3	V
Output voltage		Vo	Vss-0.3~+0.3	V
Operating temperature		Topr	-30~+85	°C
Storago tomporaturo	TCP	Tstr	-55~+100	°C
Storage temperature	Bare chip	ı str	-65~+125	

- Notes: 1. All the voltage values are based on VDD = 0 V.
 - 2. For voltages of V1, V2, V3 and V4, keep the condition of VDD \geq V1 \geq V2 \geq V3 \geq V4 \geq V5 and VDD \geq VSS \geq V5 \geq VOUT at all times.
 - 3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction. In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the reliability of the LSI.

EPSON 5-27

DC CHARACTERISTICS

VDD = 0 V, Vss = -3.6 V to -2.4 V, Ta = -30 to 85°C unless otherwise specified.

	Item		Symbol		Condition	min	typ	max	Unit	Applicable pin
Powe	er	Recommended				-3.6	-3.0	-2.4	V	Vss
supp	ly	operation	Vss							
volta	ge (1)	Operable				-5.5	-3.0	-2.4		*1
Powe	er	Recommended				-8.0		-5.0	V	V5
supp	ly	operation	V5							
volta	ge (2)	Operable				-11.0		-4.5		*2
		Operable	V1, V2			0.6×V5		VDD	V	V1, V2
		Operable	V3, V4			VDD		0.4×V5	V	V3, V4
High	-level ir	nput voltage	VIHC			0.2×Vss		VDD	V	*3
Low-	level in	put voltage	VILC			Vss		0.8×Vss		*3
Input	t leakaç	ge current	ILI	VIN = VDD or VS	s-1.0		1.0	μA	*3	
LC d	river Ol	N resistance	Ron	Ta=25°C	V5=-7.0V		20	40	$K\Omega$	COM,SEG
				ΔV=0.1V						*4
Stati	c curre	nt consumption	IDDQ				0.1	5.0	μΑ	VDD
Dyna	amic cu	rrent	IDD	Display state	$V_5 = -7 \text{ V}$ without load			100	μΑ	VDD *5
cons	umptio	n		Standby state	Oscillation ON,			20	μΑ	VDD *6
					Power OFF					
				Sleep state	Oscillation OFF,			5	μΑ	VDD
					Power OFF					
				Access state	fcyc=200KHz			500	μΑ	VDD *7
Fram	ne frequ	uency	fFR	Ta=25°C Vs	s=-3.0V	70	100	130	Hz	*11
Input	t pin ca	pacity	CIN	Ta=25°C f=1	MHz		5.0	8.0	pF	*3
Rese	et time		tR			1.0			μs	*8
Rese	et pulse	width	trw			10			μs	*9
	et start f		tres			50			ns	*9
	Innut	voltage	Vss			-3.6		-2.4	V	*10
		er output voltage	VOUT	Double boosting	n stata	-7.2		-2.4	V	Vout
ply	Doosi	er output voitage	V 001	Triple boosting		-10.8			v	V 001
dns	Voltac	ge follower	V ₅	Triple boosting	State	-11.0		-4.5	V	
wer	,	iting voltage	V5			-11.0		-4.5	٧	
od		ence voltage	VREG	Ta = 25°C		-3.5	-3.1	-2.7	V	*12
Built-in power supply	(stand	•	VKEG	1a = 25 C		-3.5	-3.1	-2.1	V	14
Ba	,	ence voltage	VDEC/VC4V	Ta = 25°C		-2.4	-2.1	-1.8	V	*12
	(optio	•	VKEG(VST)	1a = 25 C		-2.4	-2.1	-1.0	V	14
	(Upillo	11)								

^{*1:} A wide operating voltage range is guaranteed but an abrupt voltage variation in the access status of the MPU is not guaranteed.

COMSn, and each power pin (V1, V2, V3 or V4). It is specified in the range of operating voltage (2).

 $Ron = 0.1 \text{ V} / \Delta I$

(ΔI : Current flowing when 0.1 V is applied between the power and output)

*5: Character"

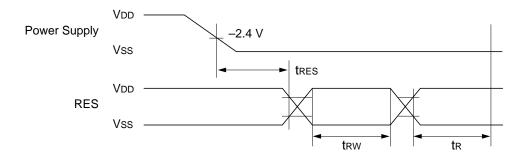
"display. This is applicable to the

case where no access is made from the MPU and the built-in power circuit and oscillating circuit are in operation.

5–28 **EPSON**

^{*2:} The operating voltage range is applicable to the case where an external power supply is used.

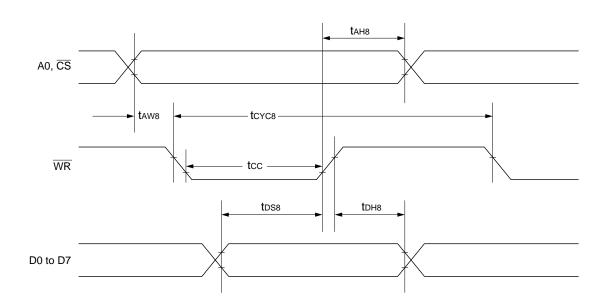
^{*3:} D0 ~ D5, D6 (SCL), D7 (SI), A0, RES, $\overline{\text{CS}}$ $\overline{\text{WR}}$ (E), P/S, IF


^{*4:} This is a resistance value when a voltage of 0.1 V is applied between output pin SEGn, SEGSn, COMn or

- *6: This is applicable to the case where the built-in power circuit is OFF and the oscillating circuit is in operation in the standby mode.
- *7: Current consumption when data is always written by feve.
 - The current consumption in the access state is almost proportional to the access frequency (fcyc). When no access is made, only IDD (I) occurs.
- *8: tR (reset time) indicates the internal circuit reset completion time from the edge of the RES signal. Accordingly, the SED123* usually enters the operating state after tR.
- *9: Specifies the minimum pulse width of the RES signal. It is reset when a signal having the pulse width greater than tRW is entered.

- *10: When operating the boosting circuit, the power supply Vss must be used within the input voltage range.
- *11: The fosc frequency of the oscillator circuit for internal circuit drive may differ from the fBST boosting clock on some models. The following provides the relationship between the fosc frequency, fBST boosting clock, and fFR frame frequency.

fosc = (No. of digits) × (1/Duty) × fFR
fBST = (1/2) × (1/No. of digits) × fosc
Example: The SED1230 has 13 digits of display
and 1/30 duty.
fosc =
$$13 \times 30 \times 100 = 39$$
 kHz
fBST = (1/2) × (1/13) × 39 K = 1.5 kHz


*12: The VREG reference voltage has the temperature characteristics of approximately -0.17%/°C (standard specifications). An optional model having the temperature characteristics of approximately -0.04%/°C is also available. The CGROM modification rules apply to the optional models.

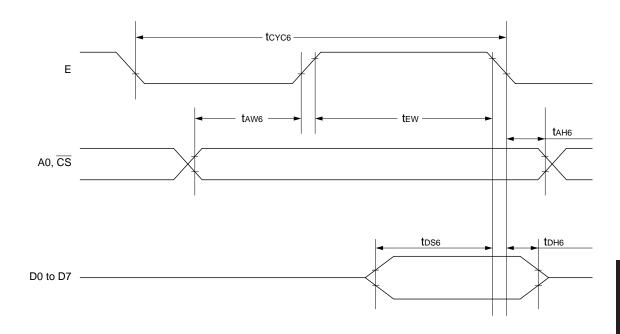
All signal timings are based on 20% and 80% of Vss signals.

TIMING CHARACTERISTICS

(1) System Bus Write Characteristic I (80 series MPU)

[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	t AH8		30		ns
Address setup time		t AW8		60		ns
System cycle time	WR	t CYC8	Vss = -3.0	500		ns
			-2.7	550		
			-2.4	650		
Control pulse width (WR)		t cc	Vss = -3.0	100		ns
			-2.7	120		
			-2.4	150		
Data setup time	D0 ~ D7	t DS8		100		ns
Data hold time		t DH8		50		ns


^{*1:} For the rise and fall of an input signal, set a value not exceeding 25 ns.

5–30 **EPSON**

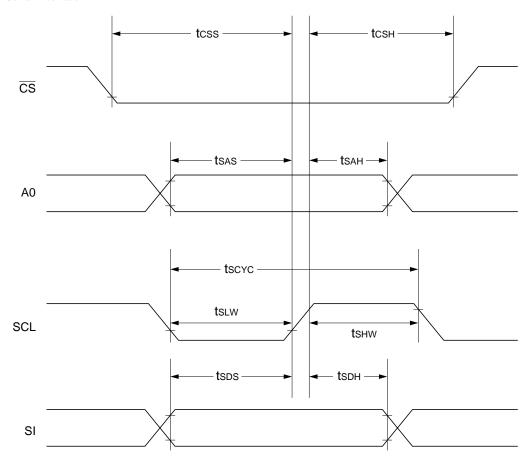
^{*2:} Every timing is specified on the basis of 20% and 80% of Vss.

^{*3:} For A0 and \overline{CS} , the same time is not required. Input signals so that A0 and \overline{CS} may satisfy tAW8 and tAH8 respectively.

(2) System Bus Write Characteristic II (68 series MPU)

[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, CS	t CYC6	Vss = -3.0	500		ns
	,		-2.7	550		
			-2.4	650		
Address setup time		t AW6		60		
Address hold time		t AH6		30		ns
Data setup time	D0 ~ D7	t DS6		100		ns
Data hold time		t DH6		50		ns
Enable pulse width	E	t EW	Vss = -3.0	100		ns
			-2.7	120		
			-2.4	150		


^{*1:} tCYC6 denotes the cycle of the E signal in the \overline{CS} active state. tCYC6 must be reserved after \overline{CS} becomes active.

^{*2:} For the rise and fall of an input signal, set a value not exceeding 25 ns.

^{*3:} Every timing is specified on the basis of 20% and 80% of Vss.

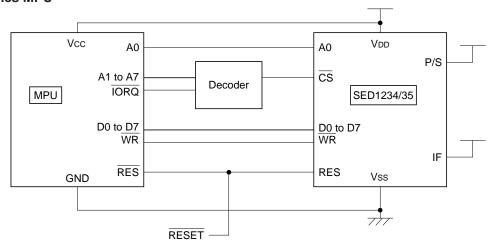
^{*4:} For A0 and CS, the same timing is not required. Input signals so that A0 and CS may satisfy tAW6 and tAH6 respectively.

(3) Serial Interface

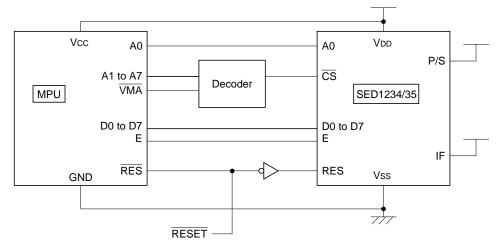
[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C]

	T		[100 -			
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tscyc	Vss = -3.0	700		ns
			-2.7	800		ns
			-2.4	1000		ns
SCL "H" pulse width		tshw		300		ns
SCL "L" pulse width		tslw		300		ns
Address setup time	A0	tsas		50		ns
Address hold time		tsah	Vss = -3.0	350		ns
			-2.7	400		ns
			-2.4	500		ns
Data setup time	SI	tsds		50		ns
Data hold time		tsdh		50		ns
CS-SCL time	CS	tcss		150		ns
		tcsH	Vss = -3.0	550		ns
			-2.7	650		ns
			-2.4	700		ns

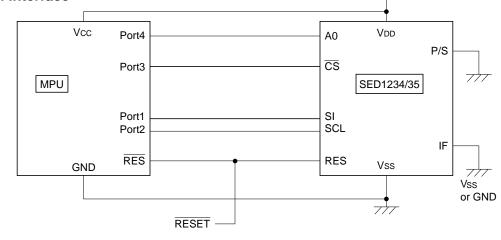
^{*1:} For the rise and fall of an input signal, set a value not exceeding 25 ns.


5–32 **EPSON**

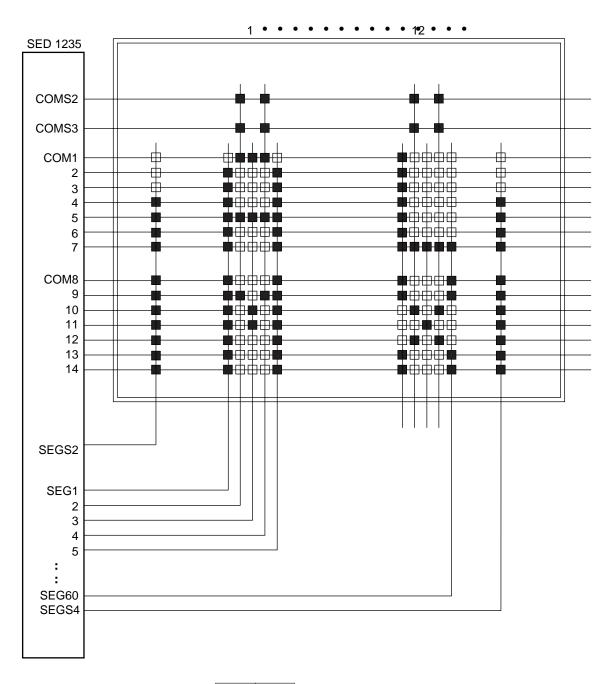
^{*2:} Every timing is specified on the basis of 20% and 80% of Vss.


MPU INTERFACE (REFERENCE EXAMPLES)

The SED1234, 1235 can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the SED1234, 1235 Series can be operated by less signal lines.

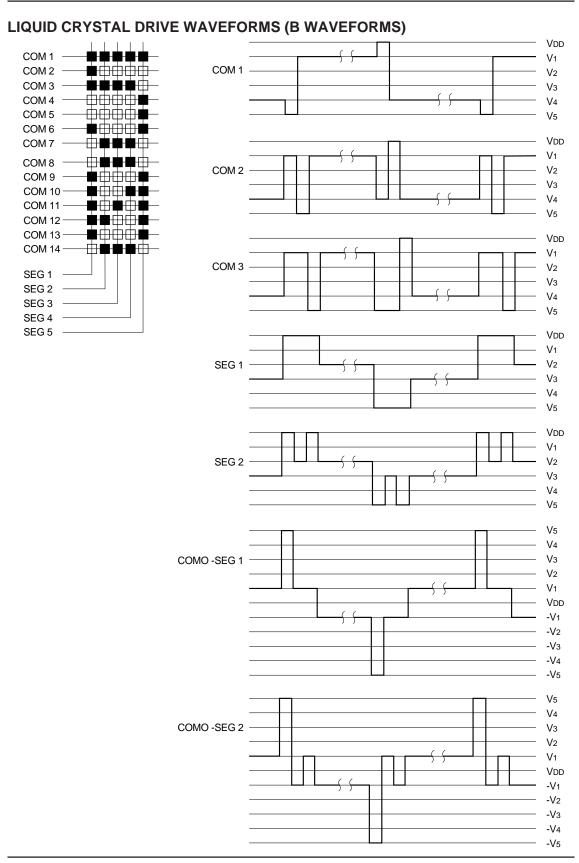

80 Series MPU

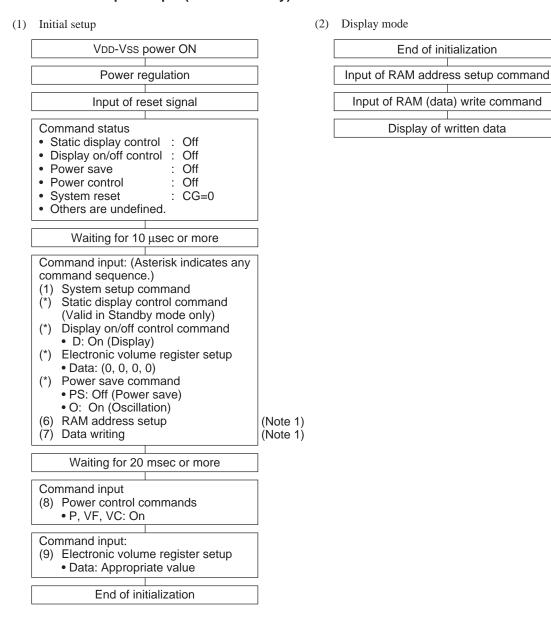
68 Series MPU



Serial Interface

INTERFACE TO LCD CELLS (REFERENCE)


12 columns by 2 lines, 5×7-dot matrix segments and symbols


■ System Setup

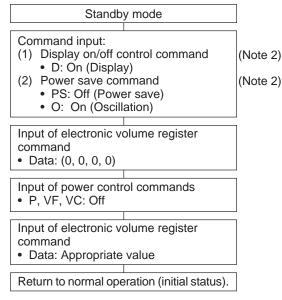
N2	N1
0	0

5–34 **EPSON**

Instruction Setup Example (Reference Only)

Note 1: Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area must satisfy the following conditions (for RAM clear).

- DDRAM: Write the 20H data (character code).
- CGRAM: Write the 00H data (null data).
- Symbol register: Write the 00H data (null data).


As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not, unexpected display may result.

5–36 **EPSON**

(3-1) Selecting the Standby mode End of initialization Normal operation (Power Save is released and oscillator circuit is turned ON.) Command input: (1) Display on/off control command (Note 2) • D: Off (Display) (2) Power save command (Note 2) PS: On (Power save) • O: On (Oscillation) (3) Power control commands · P, VF, VC: Off Standby status Static display control

commands can be used.

(3-2) Releasing the Standby mode

Note 2: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

Note 3: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.