3. SED152A Series

OVERVIEW	3-1
FEATURES	3-1
BLOCK DIAGRAM	3-2
PAD	3-3
Pad Arrangement	3-3
PAD ARRANGEMENT	3-4
PIN DESCRIPTION	3-5
(1) Power Pins	3-5
(2) System Bus Connection Pins	
(3) LCD Drive Circuit Signals	
BLOCK DESCRIPTION	3-7
System Bus	3-7
Display Start Line and Line Count Registers	3-8
Column Address Counter	3-8
Page Register	3-8
Display Data RAM	3-8
Display Timing Generation Circuit	3-10
Display Data Latch Circuit	3-10
Liquid Crystal Drive Circuit	3-10
Reset Circuit	3-10
Status in Initial Setting	
COMMANDS	3-12
Summary	3-12
Command Description	3-12
SPECIFICATIONS	3-18
Absolute Maximum Ratings	3-18
Electrical Specifications	3-18
CONNECTION EXAMPLE	3-24
MPU Interface	3-24

Contents

OVERVIEW

The SED152A family of dot matrix LCD drivers are designed for the display of characters and graphics. The drivers generate LCD drive signals derived from bit mapped data stored in an internal RAM.

The SED1520 family drivers incorporate innovative circuit design strategies to achieve very low power dissipation at a wide range of operating voltages.

FEATURES

- Fast 8-bit MPU interface compatible with 80- and 68family microcomputers
- 32×80 bit RAM
- Many command set
- Total 80 (segment + common) drive sets
- Low power $30 \,\mu\text{W}$ at 2 kHz external clock
- Wide range of supply voltages VDD – VSS: 2.4V to 6.0 V VC5 – VSS: 3.5V to 6.0 V
- Low-power CMOS
- Al-pad chip

BLOCK DIAGRAM

PAD

Pad Arrangement

Chip specifications of AL pad package

Chip size: 4.80×7.04×0.400 mm Pad pitch: 100×100 μm

PAD ARRANGEMENT

SED152AD Pad Center Coordinates

Pad No.	Pin Name	Х	Y	Pad No.	Pin Name	X	Y		Pad No.	Pin Name	Х	Y
1	SEG71	159	6507	35	SEG37	1302	159		69	SEG3	4641	4148
2	SEG70	159	6308	36	SEG36	1502	159		70	SEG2	4641	4347
3	SEG69	159	6108	37	SEG35	1701	159		71	SEG1	4641	4547
4	SEG68	159	5909	38	SEG34	1901	159		72	SEG0	4641	4789
5	SEG67	159	5709	39	SEG33	2100	159		73	A0	4641	5048
6	SEG66	159	5510	40	SEG32	2300	159		74	CS	4641	5247
7	SEG65	159	5310	41	SEG31	2499	159		75	CL	4641	5447
8	SEG64	159	5111	42	SEG30	2699	159		76	E (RD)	4641	5646
9	SEG63	159	4911	43	SEG29	2898	159		77	R/W (WR)	4641	5846
10	SEG62	159	4712	44	SEG28	3098	159		78	Vdd	4641	6107
11	SEG61	159	4512	45	SEG27	3297	159		79	DB0	4641	6307
12	SEG60	159	4169	46	SEG26	3497	159		80	DB1	4641	6506
13	SEG59	159	3969	47	SEG25	3696	159		81	DB2	4295	6884
14	SEG58	159	3770	48	SEG24	3896	159		82	DB3	4095	6884
15	SEG57	159	3570	49	SEG23	4095	159		83	DB4	3896	6884
16	SEG56	159	3371	50	SEG22	4295	159		84	DB5	3696	6884
17	SEG55	159	3075	51	SEG21	4641	482		85	DB6	3497	6884
18	SEG54	159	2876	52	SEG20	4641	681		86	DB7	3297	6884
19	SEG53	159	2676	53	SEG19	4641	881		87	Vss	3098	6884
20	SEG52	159	2477	54	SEG18	4641	1080		88	RES	2898	6884
21	SEG51	159	2277	55	SEG17	4641	1280		89	FR	2699	6884
22	SEG50	159	2078	56	SEG16	4641	1479		90	VC2	2499	6884
23	SEG49	159	1878	57	SEG15	4641	1679		91	VC3	2300	6884
24	SEG48	159	1679	58	SEG14	4641	1878		92	VC5	2100	6884
25	SEG47	159	1479	59	SEG13	4641	2078		93	SEG79	1901	6884
26	SEG46	159	1280	60	SEG12	4641	2277		94	SEG78	1701	6884
27	SEG45	159	1080	61	SEG11	4641	2477		95	SEG77	1502	6884
28	SEG44	159	881	62	SEG10	4641	2676		96	SEG76	1302	6884
29	SEG43	159	681	63	SEG9	4641	2876		97	SEG75	1103	6884
30	SEG42	159	482	64	SEG8	4641	3075		98	SEG74	903	6884
31	SEG41	504	159	65	SEG7	4641	3275		99	SEG73	704	6884
32	SEG40	704	159	66	SEG6	4641	3474		100	SEG72	504	6884
33	SEG39	903	159	67	SEG5	4641	3674					
34	SEG38	1103	159	68	SEG4	4641	3948					

PIN DESCRIPTION

(1) Power Pins

Name	Description
Vdd	Connected to the +5Vdc power. Common to the Vcc MPU power pin.
Vss	0 Vdc pin connected to the system ground.
VC5, VC3, VC2	Multi-level power supplies for LCD driving. The voltage determined for each liquid crystal cell is divided by resistance or it is converted in impedance by the op amp, and supplied. These voltages must satisfy the following: $V_{C5} \ge V_{C3} \ge V_{C2} \ge V_{SS}$

(2) System Bus Connection Pins

D7 to D0 *1	Three-state I/O. The 8-bit bidirectional data buses to be connected to the 8- or 16-bit standard MPU data buses.
A0	Input. Usually connected to the low-order bit of the MPU address bus and used to identify the data or a command. Low level (0): D0 to D7 are display control data. High level (1): D0 to D7 are display data.
RES	Input. When the RES signal goes the 68-series MPU is initialized, and when it goes, the 80-series MPU is initialized. The system is reset during edge sense of the RES signal. The interface type to the 68-series or 80-series MPU is selected by the level input as follows: High level: 68-series MPU interface Low level: 80-series MPU interface
CS	Input. Active low. An address bus signal is usually decoded by use of chip select signal.
E (RD)	 If the 68-series MPU is connected: Input. Active high. Used as an enable clock input of the 68-series MPU. If the 80-series MPU is connected: Input. Active low. The RD signal of the 80-series MPU is entered in this pin. When this signal is kept low, the SED1520 data bus is in the output status.
R/W (WR) WR (R/W)	 If the 68-series MPU is connected: Input. Used as an input pin of read control signals (if R/W is high) or write control signals (if low). If the 80-series MPU is connected: Input. Active low. The WR signal of the 80-series MPU is entered in this pin. A signal on the data bus is fetched at the rising edge of WR signal.

(3) LCD Drive Circuit Signals

Name	Description									
CL	Input. Effective for an external clock operation model only. This is a display data latch signal to count up the line counter and common counter at each signal falling and rising edges.									
FR	Input. This is an input pin of LCD AC signals, and connected to the FR pin of common driver.									
SEGn	Output. The output pin for LCD column (segment) driving. A single level of Vc5, Vc3, Vc2, Vss is selected by the combination of display RAM contents and FR signal.									
	FR signal									
	Data 1 0 1 0									
	Output level Vc5 Vc3 Vss Vc2									

BLOCK DESCRIPTION

System Bus

MPU interface

1. Selecting an interface type

The SED152A series transfers data via 8-bit bidirectional data buses (D0 to D7). As its Reset pin has the MPU interface select function, the 80-series MPU or the 68-series MPU can directly be connected to the MPU bus by the selection of high or low RES signal level after reset (see Table 1).

When the \overline{CS} signal is high, the SED152A series is disconnected from the MPU bus and set to stand by. (However, the reset signal is entered regardless of the internal setup status.)

RES signal input level	MPU type	A0	RD	WR	CS	D0 to D7
Active	80-series	A0	RD	WR	CS	D0 to D7
Active	68-series	A0	E	R/W	CS	D0 to D7

Data transfer

The SED152A drivers use the A0, E (or $\overline{\text{RD}}$) and $\overline{\text{R/W}}$ (or $\overline{\text{WR}}$) signals to transfer data between the system MPU and internal registers. The combinations used are given in the table blow.

In order to match the timing requirements of the MPU with those of the display data RAM and control registers all data is latched into and out of the driver. This introduces a one cycle delay between a read request for data and the data arriving. For example when the MPU executes a read cycle to access display RAM the current contents of the latch are placed on the system data bus while the desired contents of the display RAM are moved into the latch.

This means that a dummy read cycle has to be executed at the start of every series of reads. See Figure 1.

No dummy cycle is required at the start of a series of writes as data is transferred automatically from the input latch to its destination.

Common	80 N	/IPU	68 MPU	Function			
A0	RD	WR	R/W	Function			
1	0	1	1	Read display data			
1	1	0	0	Write display data			
0	0	1	1	Read status			
0	1	0	0	Write to internal register (command)			

Figure 1 Bus Buffer Delay

Busy flag

When the Busy flag is logical 1, the SED1520 series is executing its internal operations. Any command other than Status Read is rejected during this time. The Busy flag is output at pin D7 by the Status Read command. If an appropriate cycle time (tcyc) is given, this flag needs not be checked at the beginning of each command and, therefore, the MPU processing capacity can greatly be enhanced.

Display Start Line and Line Count Registers

The contents of this register form a pointer to a line of data in display data RAM corresponding to the first line of the display (COM0), and are set by the Display Start Line command. See section 3.

The contents of the display start line register are copied into the line count register at the start of every frame, that is on each edge of FR. The line count register is incremented by the CL clock once for every display line, thus generating a pointer to the current line of data, in display data RAM, being transferred to the segment driver circuits.

Column Address Counter

The column address counter is a 7-bit presettable counter that supplies the column address for MPU access to the display data RAM. See Figure 2. The counter is incremented by one every time the driver receives a Read or Write Display Data command. Addresses above 50H are invalid, and the counter will not increment past this value. The contents of the column address counter are set with the Set Column Address command.

Page Register

The page resiter is a 2-bit register that supplies the page address for MPU access to the display data RAM. See Figure 3. The contents of the page register are set by the Set Page Register command.

Display Data RAM

The display data RAM stores the LCD display data, on a 1-bit per pixel basis. The relation-ship between display data, display address and the display is shown in Figure 3.

Figure 2 Display Data RAM Addressing

Display Timing Generation Circuit

The master clock CL and the frame signal FR generate internal timing. The master clock CL causes the line counter to operate, which synchronizes with the line counter. Therefore, the master clock CL and the frame signal FR input signals of the same phases as those of the CR and FR signals of the common driver, respectively.

Display Data Latch Circuit

The display data latch circuit is a latch that temporarily memorizes the display data to be output to the liquid crystal drive circuit from the display data RAM for each common period. Display ON/OFF and Display All Lamps ON/OFF commands control the data in this latch. Therefore, data in the display data RAM are never to be modified.

Liquid Crystal Drive Circuit

This circuit comprises 80 sets of multiplexers to generate four-value level for the liquid crystal drive. Various combinations of display data in the display data latch and the FR signals output the liquid crystal waveforms as shown in Fig. 3.

Reset Circuit

This circuit detects the $\overline{\text{RES}}$ input rise or fall edge and performs initialization.

RES input is level-sensed, then, as shown in Table 1, the MPU interface mode is selected.

When connecting to MPU, the output port of MPU is used and the reset signal is input through software. Otherwise, the circuit is connected to the reset terminal of MPU and the $____$ reset signal via the inverter is input for 80-system MPU, and the $____$ reset signal for the 68-system MPU.

RES input causes initialization of SEDI52A, and initialization of the MPU is <u>performed</u> at the same time. Failure of initialization by the RES terminal upon applying power may lead to a status that cannot be released.

If the reset command is used, items 2 and 5 of the following initial settings are to be executed:

Status in Initial Setting

- 1. Display OFF
- 2. To set the display start line register on the first line.
- 3. Display All Lamps OFF
- 4. To set the column address counter to address 0.
- 5. To set the page address counter to the third page.
- 6. ADC select: normal rotation (ADC command = "0", ADC status flag "1")
- 7. Read/Modify/Write OFF

COM0 -

COM1 -

COM2 -

COM3 -

COM4 -

COM5 -

COM6 -

COM7 -

COM8 -

COM9 -

COM10 —

-

-)

COM11 -

COM12 -

COM13 -

COM14 -

COM15 -

COMMANDS

Summary

Command						Code	Franction						
Command	A0	RD	WR	D7	D6	D5	D4	D 3	D2	D 1	D0	Function	
	0	1	0	1	0	1	0	4	1	1	0/1	Turns display on or off.	
Display On/OFF	0		0		0		0				0/1	1: ON, 0: OFF	
Display start line	0	1	0	1	1	0	Dicol	ov eto	rt odd	rocc (0 -	to 21)	Specifies RAM line corresponding to top line	
	0		0			0	Бізрі	ay sia		1633 (0	10 31)	of display.	
Set name address	0	1	0	1	0	1	1	1	0	Page	(0 to 3)	Sets display RAM page in page address	
	0			' '						1 age (0 10 0)	register.	
Set column	0	1	0	0		Col	umn ado	Iress	(0 to 7	'9)		Sets display RAM column address in	
(segment) address	Ŭ	Ľ	Ŭ	Ľ						•)		column address register.	
												Reads the following status:	
												BUSY 1: Busy	
												0: Ready	
												ADC 1: CW output	
Read status	0	0	1	Busy	ADC	ON/OFF	Reset	0	0	0	0	0: CCW output	
													ON/OFF 1: Display off
												0: Display on	
												RESET 1: Being reset	
												0: Normal	
Write display data	1	1	0				Write da	ita				Writes data from data bus into display RAM.	
Read display data	1	0	1				Read da	ata				Reads data from display RAM onto data	
	'		_ '			1						bus.	
Select ADC	0	1	0	1	0	1	0	0	0	0	0/1	0: CW output, 1: CCW output	
All-display	0	1	0	1	0	1	0	0	1	0	0/1	Selects static driving operation.	
ON/OFF												1: Static drive, 0: Normal driving	
Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-modify-write ON	
End	0	1	0	1	1	1	0	1	1	1	0	Read-modify-write OFF	
Reset	0	1	0	1	1	1	0	0	0	1	0	Software reset	

Command Description

Table 3 is the command table. The SED152A identifies a data bus using a combination of A0 and R/W (\overline{RD} or \overline{WR}) signals. As the MPU translates a command in the internal timing only (independent from the external clock), its speed is very high. The busy check is usually not required.

Display ON/OFF

Ao	<u>(E)</u> RD	(R/\overline{W}) WR	D7	D6	D5	D4	D3	D2	D1	Do	
0	1	0	1	0	1	0	1	1	1	D	AEH, AFH

This command turns the display on and off.

• D=1: Display ON

• D=0: Display OFF

Display Start Line

This command specifies the line address shown in Figure 2 and indicates the display line that corresponds to COM0. The display area begins at the specified line address and continues in the line address increment direction. This area having the number of lines of the specified display duty is displayed. If the line address is changed dynamically by this command, the vertical smooth scrolling and paging can be used.

Ao	(E) RD	(R/\overline{W}) WR	D7	D6	D5	D4	D3	D2	D1	Do	
0	1	0	1	1	0	A4	Аз	A2	A1	Ao	C0H to DFH

This command loads the display start line register.

A4	Аз	A2	A1	A0	Line Address
0	0	0	0	0	0
0	0	0	0	1	1
		:			:
		:			:
1	1	1	1	1	31

See Figure 2.

Set Page Address

This command specifies the page address that corresponds to the low address of the display data RAM when it is accessed by the MPU. Any bit of the display data RAM can be accessed when its page address and column address are specified. The display status is not changed even when the page address is changed.

Ao	<u>(E)</u> RD	(R/\overline{W}) $\overline{W}R$	D7	D6	D5	D4	Dз	D2	D1	Do	
0	1	0	1	0	1	1	1	0	A1	Ao	B8H to BBH

This command loads the page address register.

A1	A0	Page Address
0	0	0
0	1	1
1	0	2
1	1	3

See Figure 2.

Set Column Address

This command specifies a column address of the display data RAM. When the display data RAM is accessed by the MPU continuously, the column address is incremented by 1 each time it is accessed from the set address. Therefore, the MPU can access to data continuously. The column address stops to be incremented at address 80, and the page address is not changed continuously.

Ao	(E) RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	Do	
0	1	0	0	A6	A5	A4	Аз	A2	A1	Ao	00H to 4FH

This command loads the column address register.

A6	A5	A4	Аз	A2	A1	A0	Column Address
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
			:				:
1	0	0	: 1	1	1	1	: 79

Read Status

Ao	<u>(E)</u> RD	(R/\overline{W}) WR	D7	D6	D5	D4	D3	D2	D1	Do
0	0	1	BUSY	ADC	ON/OFF	RESET	0	0	0	0

Reading the command I/O register (A0=0) yields system status information.

• The busy bit indicates whether the driver will accept a command or not.

- Busy=1: The driver is currently executing a command or is resetting. No new command will be accepted. Busy=0: The driver will accept a new command.
- The ADC bit indicates the way column addresses are assigned to segment drivers.
- ADC=1: Normal. Column address $n \rightarrow$ segment driver n. ADC=0: Inverted. Column address 79-n \rightarrow segment driver u.
- The ON/OFF bit indicates the current status of the display. It is the inverse of the polarity of the display ON/OFF command. ON/OFF=1: Display OFF ON/OFF=0: Display ON
- The RESET bit indicates whether the driver is executing a hardware or software reset or if it is in normal operating mode. RESET=1: Currently executing reset command. RESET=0: Normal operation

Write Display Data

Ao	<u>(E)</u> RD	(R/\overline{W}) WR	D7	D6	D5	D4	D3	D2	D1	Do
1	1	0				Write	data			

Writes 8-bits of data into the display data RAM, at a location specified by the contents of the column address and page address registers and then increments the column address register by one.

Read Display Data

Ao	<u>(E)</u> RD	(R/\overline{W}) WR	D7	D6	D5	D4	Dз	D2	D1	Do
1	0	1				Read	data			

Reads 8-bits of data from the data I/O latch, updates the contents of the I/O latch with display data from the display data RAM location specified by the contents of the column address and page address registers and then increments the column address register.

After loading a new address into the column address register one dummy read is required before valid data is obtained.

Select ADC

Ao	(E) RD	(R/\overline{W}) WR	D7	D6	D5	D4	D3	D2	D1	Do	
0	1	0	1	0	1	0	0	0	0	D	A0H, A1H

This command selects the relationship between display data RAM column addresses and segment drivers.

D=1: SEG0 \leftarrow column address 4FH, ... (inverted)

D=0: SEG0 \leftarrow column address 00H, ... (normal)

This command is provided to reduce restrictions on the placement of driver ICs and routing of traces during printed circuit board design. See Figure 2 for a table of segments and column addresses for the two values of D.

All Display ON/OFF

Ao	<u>(E)</u> RD	(R/\overline{W}) WR	D7	D6	D5	D4	D3	D2	D1	Do	
0	1	0	1	0	1	0	0	1	0	D	A4H, A5H

Forces display on and all common outputs to be selected.

D=1: All display on

D=0: All display off

Read-Modify-Write

Ao	<u>(E)</u> RD	(R/W) WR	D7	D6	D5	D4	D3	D2	D1	Do	
0	1	0	1	1	1	0	0	0	0	0	E0H

This command defeats column address register auto-increment after data reads. The current conetents of the column address register are saved. This mode remains active until an End command is received.

Operation sequence during cursor display

When the End command is entered, the column address is returned to the one used during input of Read-Modify-Write command. This function can reduce the load of MPU when data change is repeated at a specific display area (such as cursor blinking).

* Any command other than Data Read or Write can be used in the Read-Modify-Write mode. However, the Column Address Set command cannot be used.

End

Ao	(E) RD	(R/\overline{W}) WR	D7	D6	D5	D4	D3	D2	D1	Do	
0	1	0	1	1	1	0	1	1	1	0	EEH

This command cancels read-modify-write mode and restores the contents of the column address register to their value prior to the receipt of the Read-Modify-Write command.

Reset

Ao	<u>(E)</u> RD	$(\frac{R}{W})$	D7	D6	D5	D4	D3	D2	D1	Do	
0	1	0	1	1	1	0	0	0	1	0	E2H

This command clears

- the display start line register.
- and set page address register to 3 page.

It does not affect the contents of the display data RAM.

When the power supply is turned on, a Reset signal is entered in the $\overline{\text{RES}}$ pin. The Reset command cannot be used instead of this Reset signal.

Power Save (Combination command)

The Power Save mode is selected if the static drive is turned ON when the display is OFF. The current consumption can be reduced to almost the static current level. In the Power Save mode:

(a) The LCD drive is stopped, and the segment and common driver outputs are set to the VDD level.

(b) The external oscillation clock input is inhibited, and the OSC2 is set to the floating mode.

(c) The display and operation modes are kept.

The Power Save mode is released when the display is turned ON or when the static drive is turned OFF. If the LCD drive voltage is supplied from an external resistance divider circuit, the current passing through this resistor must be cut by the Power Save signal.

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage (1)	Vdd	-0.3 to +7.0	V
Supply voltage (2)	VC5	-0.3 to +7.0	V
Supply voltage (3)	VC3, VC2	-0.3 to Vc5+3	V
Input voltage	Vin	-0.3 to VDD +0.3	V
Output voltage	Vo	-0.3 to VDD +0.3	V
Operating temperature	Topr	-40 to +85	deg. C
Storage temperature	Tstg	-55 to +125	deg. C

Notes: 1. All voltages are specified relative to Vss = 0 V.

2. The following relation must be always hold $V_{C5} \ge V_{C3} \ge V_{C2} \ge V_{SS}$

3. Exceeding the absolute maximum ratings may cause permanent damage to the device. Functional operation under these conditions is not implied.

Moisture resistance of flat packages can be reduced by the soldering process, so care should be taken to avoid thermally stressing the package during board assembly.

Electrical Specifications

DC Characteristics

Ta = -20 to 75 deg. C, VDD = 0 V unless stated otherwise

Pa	ramatar	Symbol	Condi	tion		Rating		Unit	Applicable Bin	
Fa	ameter	Symbol	Condi	lion	Min.	Тур.	Max.	Unit	Applicable Fill	
Operating	Recommended	Voo			4.5	5.0	5.5	V	Vdd	
See note 1.	Allowable	VUU			2.4	—	6.0	v	*1	
Operating	Allowable	VC5			3.5	—	6.0	V	Vc5 *2	
voltogo (2)	Allowable	VC3			0.5×Vc5	—	VC5	V	VC3	
	Allowable	VC2			Vss	—	0.5×Vc5	V	VC2	
		Vih			0.8×Vdd	—	Vdd	V	*3	
High lovel in		VIL			Vss	_	0.2×Vdd	V	*3	
	iput voltage	VOH1	Iон = –1 mA		0.8×Vdd		Vdd	V	*4	
		VOH2	VDD = -2.7 V IOH = -0.5 mA		0.8×Vdd	—	Vdd	V	*4	
	put voltogo	VOL1	IOL = 1 mA		Vss		0.2×Vdd	V	*4	
LOM-level III	put voltage	VOL2	VDD = 2.7 V	ol = 0.5 mA	Vss		0.2×Vdd	V	*4	
Input leakag	je current	IL1			-1.0	_	1.0	μA	*5	
Output leaka	age current	IL2			-3.0	_	3.0	μA	*6	
	N registance				V5 = 6.0 V	_	1.3	3.0	kO	SEG0 to 79,
LCD driver C	JIN resistance	NUN	ra = 25 deg. C	V5 = 3.5 V	_	2.5	6.0	KS2	*7	

(continued)

DC Characteristics (Cont'd)

Deremoi	hor	Symbol	Condition		Rating		Unit	Applicable Pin	
Falalle	lei	Symbol	Condition	Min.	Тур.	Max.	Unit		
Static current dise	sipation	Issq	$\overline{CS} = CL = FR = VDD$	—	0.01	1.0	μA	Vss	
Dynamic current	During display	Iss (1)	$VDD = 5 V$ $Vc5 = 5 V$ $Ta = 25^{\circ}C$ $fcL = 2 KHz$ $VDD = 3.0 V$ $Vc5 = 5 V$ $Ta = 25^{\circ}C$	_	2.0	5.0	μΑ	Vss *8 Vss	
	Durina		$f_{CL} = 2 \text{ KHz}$ VDD = 5 V teve = 200 KHz		300	500		*8 Vss	
	access	access Iss (2)	VDD = 3.0 V tcyc = 200 KHz		150	300	μA	*9	
Input pin capacita	ance	CIN	Ta = 25 deg. C, f = 1 MHz	_	5.0	8.0	pF	All input pins	

Ta = -20 to 75 deg. C, VDD = 0 V unless stated otherwise

Notes: 1. Although this equipment is capable of withstanding a wide range of operating voltage, it is not designed for withstanding a sudden voltage change while accessing the MPU.

2. Ranges of Operating Voltage for VDD and VC5 Systems

- 3. D0 to D7, A0, $\overline{\text{RES}}$, $\overline{\text{CS}}$, $\overline{\text{RD}}$, (E), $\overline{\text{WR}}$, (R/ $\overline{\text{W}}$), CL, and FR terminals.
- 4. D0 to D7 terminals.
- 5. A0, $\overline{\text{RES}}$, $\overline{\text{CS}}$, $\overline{\text{RD}}$ (E), $\overline{\text{WR}}$ (R/ $\overline{\text{W}}$), and CL terminals.
- 6. FR, D0 to D7 (in high impedance status) terminals.
- 7. These are resistance values obtained when voltage of 0.1 V is applied between the output terminals (SEG) and the respective power terminals (VC3, VC2). These are defined within the range of the operating voltage.
- 8. This is current consumed by a single IC, not including current required by the LCD panel capacity or by the wiring capacity.
- 9. This indicates current consumption at the time the pattern of vertical stripes is always wrapped in by the tcyc. Current consumption while accessing roughly proportionate to the tcyc for access. If not accessed, only Iss1 is relevant.

Timing Characteristics

• System Bus Read/Write Characteristic 1 (80-system MPU)

 $(VDD = 5.0 V \pm 10\%, Ta = -40 \text{ to } 85^{\circ}C)$

Paramete	r	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time Address set-up tir	e ne	$\frac{A0}{CS}$	tah8 taw8	_	10 20	—	ns ns
System cycle time	e		tCYC8	—	1000	_	ns
Control pulse	Write		too		100	_	ns
width	Read	κυ		—	200	_	ns
Data set-up time Data hold time			tDS8 tDH8	_	80 10	—	ns ns
RD access time Output disable time		DU 10 D7	tACC8 tOH8	CL = 100 pF	 10	180 90	ns ns

$(VDD = 2.7 V \text{ to } 4.5 V, Ta = -40 \text{ to } 85^{\circ}C)$

				(- ,	
Paramete	r	Signal	Symbol	Condition	Min.	Max.	Unit
Address hold time Address set-up tir	e me	$\frac{A0}{CS}$	tah8 taw8		20 40	—	ns ns
System cycle time	Э		tCYC8	—	2000		ns
Control pulse	Write		too		200	—	ns
width	Read	KD			400		ns
Data set-up time Data hold time			tDS8 tDH8		160 20		ns ns
RD access time Output disable time			tACC8 tOH8	C∟ = 100 pF	 20	360 180	ns ns

Note: * The rise time (tr) and fall time (tf) of the input signal are defined within 15 ns. Tr and tf are to define the AC timing of the input waveform, and operates without any problem even when a signal beyond the specification (15 ns) is input. However, it should be noted that the bigger tr and and tf are, the lower the margin for noise becomes.

* All timings are defined based on the standards of 20% and 80% of VDD.

• System Bus Read/Write Characteristic 2 (68-system MPU)

 $(VDD = 5.0 V \pm 10\%, Ta = -40 \text{ to } 85^{\circ}C)$

Paramete	r	Signal	Symbol	Condition	Min.	Max.	Unit
System cycle time	e *1	A0	tCYC6	—	1000		ns
Address set-up tir Address hold time	me e	CS R/W	taw6 tah6	_	20 10		ns ns
Data set-up time Data hold time Output disable time Access time		D0 to D7	tDS6 tDH6	_	80 10		ns ns
			tOH6 tACC6	CL = 100 pF	10	90 180	ns ns
Enable pulse	Write	F	1		100		ns
width	Read				200		ns

 $(VDD = 2.7 V \text{ to } 4.5 V, Ta = -40 \text{ to } 85^{\circ}C)$

				•			,
Paramete	r	Signal	Symbol	Condition	Min.	Max.	Unit
System cycle time	e *1	A0	tCYC6	—	2000	_	ns
Address set-up time Address hold time		CS R/W	taw6 tah6	_	40 20		ns ns
Data set-up time Data hold time Output disable time Access time			tDS6 tDH6		160 20		ns ns
			tOH6 tACC6	C∟ = 100 pF	20	180 360	ns ns
Enable pulse	Write	F	1-14		200	_	ns
width	Read		TEW		400	_	ns

Notes: 1 "tCYC6" represents the cycle of signal E when $\overline{CS} = "L"$. If $\overline{CS} = "H" \rightarrow "L"$, it is necessary to secure tCYC6 after $\overline{CS} = "L"$ is attained.

Note: * The rise time (tr) and fall time (tf) of the input signal are defined within 15 ns. Tr and tf are to define the AC timing of the input waveform, and operates without any problem even when a signal beyond the specification (15 ns) is input. However, it should be noted that the bigger tr and and tf are, the lower the margin for noise becomes.

* All timings are defined based on the standards of 20% and 80% of VDD.

SED152A Series

• Display Control Input Timing

 $(V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ Ta} = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Low-level pulse width	- CL	twlcl	—	35			μs
High-level pulse width		tWHCL	—	35	—		μs
Rise time		tr	—		30	150	ns
Fall time		tf	—	—	30	150	ns
FR delay time	FR	tDFR		-2.0	0.2	2.0	μs

 $(VDD = 2.7 V \text{ to } 4.5 V, Ta = -40 \text{ to } 85^{\circ}C)$

Parameter	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Low-level pulse width		twlcl	—	70	—		μs
High-level pulse width	CL	tWHCL	—	70	_		μs
Rise time		tr	—		60	300	ns
Fall time		tf	—	—	60	300	ns
FR delay time	FR	tDFR	—	-4.0	0.4	4.0	μs

Note: All timings are defined based on the standards of 20% and 80% of VDD.

• Reset Input Timing (80-system MPU)

Parameter	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time		tR8		2.0			μs
Reset "H" pulse width	RES	trw8		1.0			μs

$(VDD = 2.7 V \text{ to } 4.5 V, Ta = -40 \text{ to } 85^{\circ}C)$

Parameter	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time		tR8		4.0	_		μs
Reset "H" pulse width	RES	tRW8		2.0			μs

Note: * The rise time (tr) and fall time (tf) of the input signal are defined within 15 ns. Tr and tf are to define the AC timing of the input waveform, and operates without any problem even when a signal beyond the specification (15 ns) is input. However, it should be noted that the bigger tr and and tf are, the lower the margin for noise becomes.

* All timings are defined based on the standards of 10% and 90% of VDD.

• Reset Input Timing (68-system MPU)

 $(VDD = 5.0 V \pm 10\%, Ta = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time		tR6		2.0			μs
Reset "L" pulse width	RES	tRW6		1.0			μs

$(VDD = 2.7 V \text{ to } 4.5 V, Ta = -40 \text{ to } 85^{\circ}C)$

Parameter	Signal	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time		tR6		4.0			μs
Reset "L" pulse width	RES	tRW6		2.0			μs

Note: * The rise time (tr) and fall time (tf) of the input signal are defined within 15 ns. Tr and tf are to define the AC timing of the input waveform, and operates without any problem even when a signal beyond the specification (15 ns) is input. However, it should be noted that the bigger tr and and tf are, the lower the margin for noise becomes.

* All timings are defined based on the standards of 10% and 90% of VDD.

CONNECTION EXAMPLE MPU Interface (MPU example: SMC88316)

- **Notes:** 1 See SMC88316 technical Manual for the signals of SMC88316.
 - 2 The reset input for 80-system MPU interface of SED152A is the opposite phase of that for the reset input of SMC83315.
 - 3 For the reset input of SED152A, we recommend that you use the output port of SMC88316 and send the reset signals through software.

EXAMPLE OF CONNECTIONS TO LIQUID CRYSTAL PANEL

