12. SED15A6 Series

Contents

1. DESCRIPTION	12-1
2. FEATURES	12-1
3. BLOCK DIAGRAM	12-2
4. PIN DIMENSIONS	12-3
5. PIN DESCRIPTION	
6. FUNCTIONAL DESCRIPTION	
7. COMMANDS	
8. AN EXAMPLE OF FUNCTION SETUP USING COMMANDS	
9. ABSOLUTE MAXIMUM RATING	
10. DC CHARACTERISTICS	
11. AC CHARACTERISTICS	
12. MPU INTERFACE (EXAMPLES)	

1. DESCRIPTION

The SED15A6 series is a single-chip liquid crystal display (=LCD) driver for dot-matrix LCDs that can be connected directly to a microprocessor (=MPU) bus. It accepts 8-bit parallel or serial display data from a MPU, stores it in an on-chip display data RAM (=DDRAM), and generates a LCD drive signal independent of the MPU clock.

The use of the on-chip DDRAM of 65×102 bits and a one-to-one correspondence between LCD panel pixel dots and on-chip DDRAM bits offer high flexibility in graphic display.

The SED15A6 series does not need external operation clock for DDRAM read/write operations, and has a onchip LCD power supply circuit featuring very low current consumption with few external components, and moreover has a on-chip CR oscillator circuit.

And the SED15A6 does not need smoothing capacitor on the LCD power supply.

Consequently, the SED15A6 series can be realize a high-performance handy display system with a minimum current consumption and the fewest components.

2. FEATURES

- Direct display of RAM data through the display data RAM.
- RAM bit data : "1" Non-illuminated "0" Illuminated (during normal display)
 RAM capacity 65×102 = 6630 bits
- Display driver circuits
- SED15A6*** : 55 common output and 102 segment outputs
- High-speed 8-bit MPU interface(The chip can be connected directly to the 8080 series MPUs and the 6800 series MPUs)
- High-speed Serial interface are supported.
- Abundant command functions

Display data Read/Write, display ON/OFF, Normal/ Reverse display mode, page address set,

display start line set, column address set, display all points ON/OFF, LCD bias set, electronic

volume, read/modify/write, segment driver direction select, power saver, common driver

direction select, V₀ voltage regulation internal resistor ratio set.

• Low-power liquid crystal display power supply circuit equipped internally.

Booster circuit(with Boost ratios of Double/Triple/ Quad, where the step-up voltage reference power supply can be input externally)

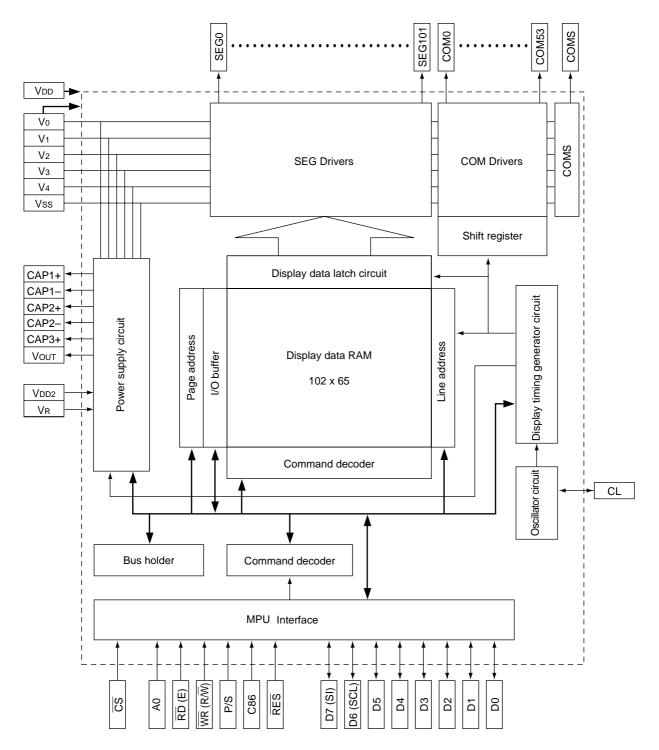
- High-accuracy voltage adjustment circuit (Thermal gradient –0.1%/°C)
- V₀ voltage divider resistors equipped internally, V₁ to V₄ voltage divider resistors equipped internally, electronic volume function equipped internally, voltage follower.
- Component that can be omitted (you may omit the smoothing capacitor on the voltage follower).
- CR oscillator circuit equipped internally(external clock can also be input)
- Extremely low power consumption

Operating power when the built-in power supply is used(an example) SED15A6DoB (79uA)

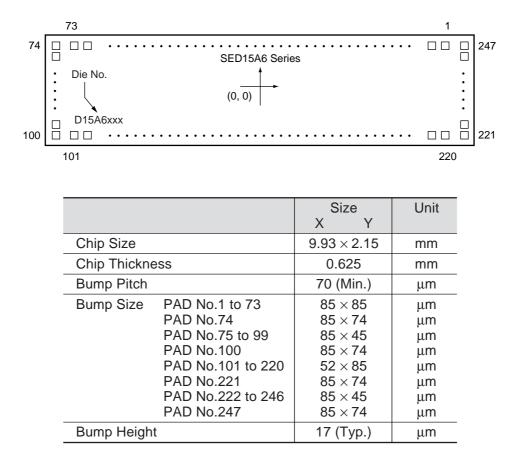
Condition : VDD–Vss = 1.8V, VDD2–Vss = 3.3V,V0– Vss = 9.0V, triple boosting, all white is displayed, Ta = 25°C

• Power supply

Operable on the low 1.8 voltage Logic power supply : VDD–Vss = 1.8V to 3.6V Boost reference voltage : VDD2–Vss = 1.8V to 5.0V Liquid crystal drive power supply : V0–Vss = 4.5V to 9.0V


- Wide range of operating temperatures : -40 to +85°C
- CMOS process
- Shipping forms include bare chip and TCP.
- There chip not designed for resistance to light or resistance to radiation.

Series Specifications


Product Name	Duty	Bias	SEG Dr	COM Dr	VREG Temperature Gradient	Power supply specification	Shipping Forms
SED15A6DOB	1/55	1/6,1/8	102	55	−0.1%/°C	Built-in power supply is only used	Bare Chip
*SED15A6D1B	1/55	1/6,1/8	102	55	−0.1%/°C	Vo or Vout External supply voltage follower is used	Bare Chip
*SED15A6D _{2B}	1/55	1/6,1/8	102	55	−0.1%/°C	External power supply is only used	Bare Chip
SED15A6T0	1/55	1/6,1/8	102	55	−0.1%/°C		TCP

* : Being planned

3. BLOCK DIAGRAM

4. PIN DIMENSIONS

SED15A6**** Pad Center Coordinates

Units: µm

PAD No.	Pin Name	X	Y	PAD No.	Pin Name	x	Y	PAD No.	Pin Name	X	Y
1	(NC)	4570	921	51	V3	-1915	921	101	(NC)	-4623	-921
2	TESTO	4449		52	V4	-2035		102	(NC)	-4545	
3	TEST1	4300		53	CAP2+	-2156		103	COM2	-4467	
4	Vss	4151		54	CAP2+	-2277		104	COM1	-4389	
5	TEST2	4030		55	(NC)	-2397		105	COM0	-4312	
6	TEST3	3910		56	(NC)	-2518		106	(NC)	-4234	
7	RES	3789		57	(NC)	-2639		107	(NC)	-4156	
8	CS	3668		58	(NC)	-2760		108	(NC)	-4079	
9	Vss_	3547		59	(NC)	-2880		109	(NC)	-4001	
10	$\overline{WR}(R/W)$	3427		60	CAP2-	-3001		110	SEG0	-3923	
11	RD(E)	3306		61	CAP2-	-3122		111	SEG1	-3846	
12		3185		62	(NC)	-3242		112	SEG2	-3768 -3690	
13 14	CL A0	3065 2944		63 64	(NC) (NC)	-3363 -3484		113 114	SEG3 SEG4	-3690	
15	D7(SI)	2823		65	(NC)	-3604		115	SEG5	-3535	
16	D6(SCL)	2703		66	CAP1+	-3725		116	SEG6	-3457	
17	D5	2582		67	CAP1+	-3864		117	SEG7	-3380	
18	D4	2461		68	CAP1-	-3967		118	SEG8	-3302	
19	D3	2340		69	CAP1-	-4087		119	SEG9	-3224	
20	D2	2220		70	CAP3+	-4208		120	SEG10	-3146	
21	D1	2099		71	CAP3+	-4329		121	SEG11	-3069	
22	D0	1978		72	Vout	-4449		122	SEG12	-2991	
23	Vdd	1858		73	(NC)	-4570	+	123	SEG13	-2913	
24	Vdd	1737		74	(NC)	-4808	926	124	SEG14	-2836	
25	Vdd	1616		75	COMS		842	125	SEG15	-2758	
26	Vdd2	1496		76	COM26		771	126	SEG16	-2680	
27	Vdd2	1375		77	COM25		701	127	SEG17	-2603	
28	VDD2	1254		78	COM24		631	128	SEG18	-2525	
29 30	Vdd P/S	1133		79 80	COM23 COM22		561 491	129 130	SEG19 SEG20	-2447 -2370	
30	C86	1013 892		81	COM22 COM21		491	130	SEG20 SEG21	-2292	
32	Vss	771		82	COM21 COM20		351	131	SEG21 SEG22	-2292	
33	TEST4	651		83	COM120 COM19		281	132	SEG23	-2136	
34	TEST5	474		84	COM18		210	134	SEG24	-2059	
35	TEST6	297		85	COM17		140	135	SEG25	-1981	
36	Vss	120		86	COM16		70	136	SEG26	-1903	
37	Vss	0		87	COM15		0	137	SEG27	-1826	
38	Vss	-121		88	COM14		-70	138	SEG28	-1748	
39	TEST7	-298		89	COM13		-140	139	SEG29	-1670	
40	TEST8	-475		90	COM12		-210	140	SEG30	-1593	
41	TEST9	-652		91	COM11		-281	141	SEG31	-1515	
42	TEST10	-828		92	COM10		-351	142	SEG32	-1437	
43	Vout	-949		93	COM9		-421	143	SEG33	-1360	
44	Vout	-1070		94	COM8		-491	144	SEG34	-1282	
45	Vout	-1190		95	COM7		-561	145	SEG35	-1204	
46	Vss	-1311		96	COM6		-631	146	SEG36	-1127	
47 48	Vr Vo	-1432 -1553		97 98	COM5 COM4		-701 -771	147 148	SEG37 SEG38	-1049 -971	
40	V0 V1	-1673		90	COM4 COM3		-842	140	SEG38	-893	
50	V1 V2	-1794		100	(NC)		-926	149	SEG40	-816	
			♥			▼			01010		V

							·
PAD No.	Pin Name	X	Y	PAD No.	Pin Name	Х	Y
		X -738 -660 -583 -505 -427 -350 -272 -194 -117 -39 39 117 194 272 350 427 505 583 660 738 816 893 971 1049 1127 1204 1282 1360 1437 1515 1593 1670 1748 1826 1903 1981 2059 2136 2214 2292 2370 2447 2525 2603 2680 2758 2836 2913 2991 3069	Y -921			X 3146 3224 3380 3457 3535 3613 3690 3768 3846 3923 4001 4079 4156 4234 4312 4389 4467 4545 4623 4808	Y -921 -926 -842 -771 -631 -561 -491 -351 -210 -140 -70 0 70 140 210 281 351 421 -351 -281 -70 0 70 140 210 281 351 421 926

Units: µm

5. PIN DESCRIPTION

Power supply pins

Name	I/O	Description	Number of pins
Vdd	Supply	Power supply. Connect to MPU power pin Vcc.	5
Vdd2	Supply	Externally-input reference power supply for booster circuit.	3
Vss	Supply	This is a 0V terminal connected to the system GND.	7
V0, V1, V2 V3, V4	Supply	Multi-level power supply for LCD drive. The voltages are determined by LCD cell. The voltages should maintain the following relationship : $V_0 \ge V_1 \ge V_2 \ge V_3 \ge V_4 \ge V_{SS}$. When on-chip power supply circuit turns on, V0 voltage are generated, and the following voltages are generated to V1 to V4. Either voltage can be selected by LCD bias set command.	5
		SED15A6*** V1 5/6 • V0, 7/8 • V0 V2 4/6 • V0, 6/8 • V0 V3 2/6 • V0, 2/8 • V0 V4 1/6 • V0, 1/8 • V0	

LCD power supply circuit pins

Name	I/O	Description	Number of pins
CAP1+	0	Boosting capacitor positive connection pin. Capacitor is connected across CAP1- pins.	2
CAP1-	0	Boosting capacitor negative connection pin. Capacitor is connected across CAP1+ pins.	2
CAP2+	0	Boosting capacitor positive connection pin. Capacitor is connected across CAP2- pins.	2
CAP2-	0	Boosting capacitor negative connection pin. Capacitor is connected across CAP2+ pins.	2
CAP3+	0	Boosting capacitor positive connection pin. Capacitor is connected across CAP1- pins.	2
Vout	0	Booster output. Capacitor is connected across Vss or VDD2.	4
VR	I	Voltage adjustment pin. Provides Vo voltage using external resistors. When internal resistors are used, this pin cannot be used. Operable only when the built-in resistor for Vo adjustment is not used. [Vo resistance ratio is (D2, D1, D0) = (1.1.1)] This pin is disabled when the built-in resistor for Vo adjustment is used. This pin must be open in this case.	1

System bus connection pins

Pin name	I/O	Description	Number of pins
D7 to D0 (SL) (SCL)	I/O	 8-bit bi-directional data bus to be connected to the standard 8-bit or 16-bit MPU data bus. When the serial interface is selected (P/S=LOW); D7 : Serial data input (SI) D6 : Serial clock input (SCL) At this time, D0 through D5 will go under the Hz mode. When the chip selects are in non-active state, D0 through D7 will go under the Hz mode. 	8
A0	Ι	Control/data flag input. A0=HIGH : The data on D7 to D0 is display data. A0=LOW : The data on D7 to D0 is control data.	1
CS	I	Chip select input. Data input is enable when \overline{CS} is low.	1
RES	Ι	When RES is caused to go low, initialization is executed. A reset operation is performed at the signal level.	1
RD (E)	I	 When connected to an 8080-series MPU; This is active-LOW. This pin is connected to the RD signal of the 8080-series MPU. While this signal is low, SED15A6 series data bus in an output status. When connected to an 6800-series MPU; This is active-HIGH. This is used as an enable clock input pin of the 6800-series MPU. 	1
WR (R/W)	Ι	 When connected to an 8080-series MPU ; This is active-LOW. This pin is connected to the WR signal of the 8080-series MPU. The signals on the data bus are latched at the rising edge of the WR signal. When connected to an 6800-series MPU ; This is the read/write control signal input . R/W=HIGH : Read. R/W=LOW : Write. 	1
C86	Ι	MPU interface selection pin. C86=HIGH : 6800-series MPU interface C86=LOW : 8080-series MPU interface	1
P/S	Ι	Serial data input/parallel data input selection pin. P/S=HIGH : Parallel data input P/S=LOW : Serial data input The following applies depending on the P/S status : P/S Data/Command Data Read/Write Serial Clock HIGH A0 D7 to D0 RD, WR – LOW A0 SI (D7) Write only SCL (D6) In serial mode, no data can be read from DDRAM. When P/S=LOW,D5 to D0 are HZ. D5 to D0 may be HIGH, LOW or Open, and moreover A0, RD, WR, C86 may be HIGH or LOW.	1

LCD driver pins

Name	I/O		Descriptio	on				Number of pins	
CL	I	circuit for the di CL = HIGH: Bu CL = LOW: Bui Select CL = LO	in is used for enabling or disabling the built-in oscillation for the display clock. HGH: Built-in oscillation circuit is enabled. .OW: Built-in oscillation circuit (external input) is disabled. CL = LOW to turn the external clock off. using the built-in oscillation circuit, select CL = HIGH (VDD).						
SEG0 to SEG101	0	These pins out One of V ₀ , V ₂ , V a given combin	/₃ and Vss le	vels is sele	cted c			102	
		RAM data	Internal FR	0	Dutput	t voltage			
		RAIVI Uala	signal	Normal dis	splay	Reversing display			
		HIGH	HIGH	V ₀		V2			
		HIGH	LOW	Vss		V3			
		LOW	HIGH	V2		Vo			
		LOW	LOW	V3		Vss			
		Power save	_		V	lss			
COM0 to COM53	0	These pins output the signal for the common drive of LCD. Following number of pins are assigned to SED15A6***.							
		Model	C	OM	Nur	nber of COM pins			
		SED15A6**	* COM0	~COM53		54			
		One of V ₀ , V ₁ , V a given combin	/4 and Vss le ation of scar	evels is sele data and F	cted c R sig	lepending on nal.			
		Scar	n data	FR	(Dutput voltage			
		HI	GH	HIGH		Vss			
		HI	GH	LOW		Vo			
		LC	W	HIGH		V1			
		LC	W	LOW		V4			
	Power save – Vss								
COMS	0	They are COM			or the i	indicator.		2	
		Both pins outpu They must be r			əd.				

Test pins

Name	I/O	Description	Number of pins
TEST0 to 10	I/O	These are terminals for IC chip testing. They are set to OPEN.	11
		Total : 220 pins for the	SED15A6***.

Note and caution

• If control signal from MPU is Hz, an over-current may flow through the IC. A protection is required to prevent the Hz signal at the input pins.

6. FUNCTIONAL DESCRIPTION

Microprocessor Interface

Interface type selection

The SED15A6 series can transfer data via 8-bit bidirectional data buses (D7 to D0) or via serial data input (SI). Through selecting the P/S pin polarity to the HIGH

Table 1

P/S	CS	A0	RD	WR	C86	D7	D6	D5 to D0
HIGH:Parallel Input	CS	A0	RD	WR	C86	D7	D6	D5 to D0
LOW:Serial Input	CS	A0	I	-	-	SI	SCL	-

- : Must always be HIGH or LOW

Parallel interface

When the parallel interface has been selected (P/S =HIGH), then it is possible to connect directly to either

an 8080-series MPU or a 6800-series MPU (as shown in Table 2) by selecting C86 pin to either HIGH or LOW.

or LOW, it is possible to select either 8-bit parallel data

input or serial data input as shown in Table 1.

Table 2

C86	CS	A0	RD	WR	D7 to D0
HIGH:6800-series MPU bus	CS	A0	Е	R/W	D7 to D0
LOW:8080-series MPU bus	CS	A0	RD	WR	D7 to D0

Moreover, the SED15A6 series identifies the data bus signal according to A0, $\overline{\text{RD}}(\text{E})$, $\overline{\text{WR}}(\text{R}/\overline{\text{W}})$ signals, as

shown in Table 3.

Table 3

Common	6800-series	8080-	series		
A0	R/W	RD	WR	Function	
1	1	0 1		Reads the display data	
1	0	1	0	Writes the display data	
0	1	1	0	Writes control data (command)	

Serial interface

When the serial interface has been selected (P/S=LOW) then when the chip is in active state($\overline{CS}=LOW$) the serial data input (SI) and the serial clock input (SCL) can be received.

The serial data is read from the serial data input pin in the rising edge of the serial clocks D7, D6 through D0, in this order. This data is converted to 8 bits parallel data in the rising edge of the eighth serial clock for the processing. The A0 input is used to determine whether the serial data input is display data or command data; when A0=HIGH, the data is display data, and when A0=LOW then the data is command data.

The A0 input is read and used for detection every 8th rising edge of the serial clock after the chip becomes active.

Figure 1 is a serial interface signal chart.

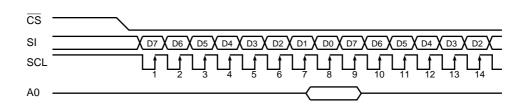
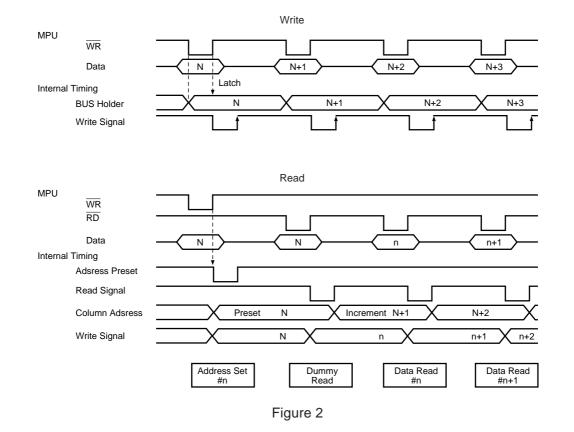


Figure 1

- * When the chip is inactive, the shift register and the counter is reset to the initial state.
- * Data read is not available as long as the serial interface is selected.
- * Reasonable care must be exercised so that SCL signal may not be exposed undesirable effects resulting from, for instance, terminal reflection of wiring or external noises. Before using the signal, it is recommended to test the signal in actual system.

Chip select input

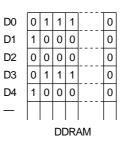
The MPU interface (either papallel or serial) is enabled only when \overline{CS} =LOW.

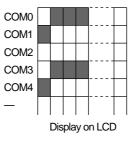

When the chip select is inactive, D7 to D0 enter a high impedance state, and A0, $\overline{\text{RD}}$ and $\overline{\text{WR}}$ inputs are disabled. When the serial interface is selected, the shift register and the counter are reset.

Access to DDRAM and internal registers

In accessing the DDRAM and the internal registers of the SED15A6 series, the MPU is required to satisfy the only cycle time (tcvc), and is not needed to consider the wait time. Accordingly, it is possible to transfer data at higher speed.

In order to realize the higher speed accessing, the


SED15A6 series can perform a type of pipeline processing between LSIs using bus holder of internal data bus when data is sent from/to the MPU. For example, when the MPU writes data to the DDRAM. once the data is stored in the bus holder, then it is written to the DDRAM before the next data write cycle. And when the MPU reads the contents of the DDRAM, the first data read cycle (dummy read cycle) stores the read data in the bus holder, and then the data is read from the bus holder to the system bus at the next data read cycle. Thus, there is a certain restriction in the DDRAM read sequence. When an address is set, the specified address data is NOT output at the immediately following read instruction. The address data is output during second data read. A single dummy read must be inserted after address setup and after write cycle (refer to Figure 2).


DDRAM

DDRAM and page/column address circuit

The DDRAM stores pixel data for LCD. It is a 65-row (8 page by 8 bit + 1) by 102-column addressable array. As is shown in Figure 3, the D7 to D0 display data from the MPU corresponds to the LCD common direction. Moreover, reading from and writing to the display RAM from the MPU side is performed through the I/O

buffer, which is an independent operation from signal reading for the liquid crystal driver. Consequently, even if the display data RAM is accessed asynchronously during liquid crystal display, it will not cause adverse effects on the display (such as flickering).

Page address circuit

Each pixel can be selected when page address and column address are specified(refer to Figure 5). The MPU issues Page address set command to change the page and access to another page. Page address 8 (D3,D2,D1,D0 = 1,0,0,0) is DDRAM area dedicate to the indicator, and display data D0 is only valid. The DDRAM column address is specified by Column

address set command. The specified column address is

automatically incremented by +1 when a Display data read/write command is entered. After the last column address (65H) ,column address returns to 00H and page address incremented by +1 (refer to Figure 4). After the very last address (column = 65H,page = 7H),both column address and page address return to 00H (column address = 00H, page address = 0H).

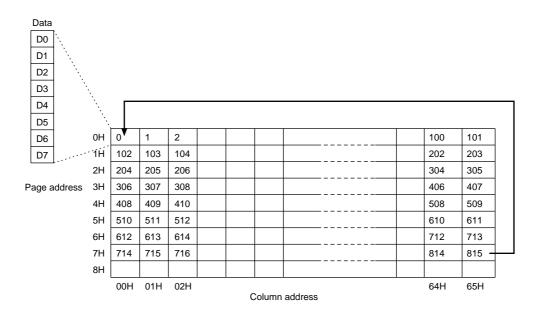


Figure 4

Column address circuit

Designate the column side address of the indication data RAM as shown in Fig. 5, using the column address setting command. Since the designated column address increments (+1) each time an indication data•read/write command is input, the MPU can make access to the indication data in succession.

Also, as shown in Fig. 4, after an access has been made to the final column address (65H), the column address will return to (00H) and the page address will be automatically incremented (by +1). Thanks to this feature, it is possible to write continuous data being divided between adjoining pages. Furthermore, after accesses have been made to the final addresses of both of the page and column (column = 65H and page = 7H), both of the column address and the page address returns to (00H).

(The page will not increment to "8H". Therefore, be careful when executing "read•modify•write" processes.) Also, as shown in Table 4, the correlation between the column address of the indication data RAM and the segment output can be reversed by use of the ADC command (segment driver direction select command). Thanks to this feature, IC layout limitations when constituting an LCD module can be lessened.

Table 4

Column Address	00H	01H	02H	63H	64H	65H
Normal Direction	SEG0	SEG1	SEG2	SEG99	SEG100	SEG101
Reverse Direction	SEG101	SEG100	SEG99	SEG2	SEG1	SEG0

Line address circuit

The line address circuit specifies the line address (as shown Figure 5) relating to the COM output when the contents of the DDRAM are displayed. The display start line address, what is normally the top line of the display, can be specified by Display start line address set command. And Common driver direction select command can be used to reverse the relationship between the DDRAM line address and common output. For example, as is shown in Table 5, the display start line address corresponds to the COM0 output when the common driver direction is normal, or the COM53 output when common driver direction is reversed.And the display area is followed by the higher number line addresses in ascending order from the display start line address, corresponding to the duty cycle. This allows flexible IC layout during LCD module assembly. If the display start line address is changed dynamically using the Display start line address set command,then screen scrolling and page swapping can be performed.

Table 5 (at display start line address=1CH)

Line Address	1CH	1DH	3FH	00H	11H	12H
Normal Direction	COM0	COM1	COM35	COM36	COM52	COM53
Reverse Direction	COM53	COM52	COM18	COM17	 COM1	COM0

Display data latch circuit

The display data latch circuit is a latch temporarily stored the display data that is output to the LCD driver circuit from the DDRAM.

Display ON/OFF command, Display normal/reverse

command, and Displayd all points ON/OFF command control only the data within the latch, and do not change the data within the DDRAM.

Display data RAM

The display data RAM stores pixel data for the LCD. It is a 102-column \times 65-row addressable array as shown in Figure 5.

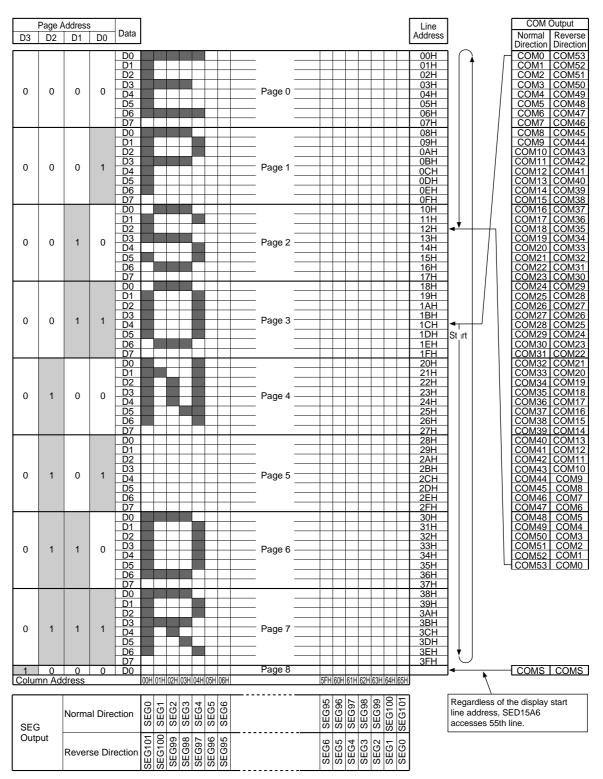


Figure 5

Oscillation circuit

The SED15A6 series generates display clocks using its built-in CR oscillation circuit. The built-in oscillation circuit is enabled when CL = HIGH is selected and the power save mode is turned off.

You can stop operation of the CR oscillation circuit by selecting CL = LOW. Display clock can be externally entered via CL pin (when external clock is turned off, CL pin must be placed in LOW).

Table 6

CL	Operation
HIGH	Built-in CR oscillation circuit is enabled.
LOW	Built-in CR oscillation circuit is turned off [display clock is turned off].
Clock input	External clock input mode

Table 7 shows relationship between frequency of external clock (fcL), frequency of built-in clock circuit (fosc) and fFR. Since CL pin is used for resetting the built-in CR clock circuit, it must satisfy the fcL requirements given in the "DC Characteristics".

Table 7

	ltem	ffr computation formula
SED15A6***	When built-in oscillation circuit is used	frr=fosc / (55×8) [Hz]
	When external clock input is used	ffr=fcl/ (55×16) [Hz]

Display timing generator circuit

The display timing generator circuit generates the timing signal to the line address circuit and the display data latch circuit, and generates COM scan signal and the LCD AC signal (dual-frame AC driver waveform).

LCD driver circuits

These are multiplexers outputting the LCD panel driving 4-level signal which level is determined by a combination of display data, COM scan signal, and LCD AC signal (FR). Figure 6 shows an example of SEG and COM output waveforms.

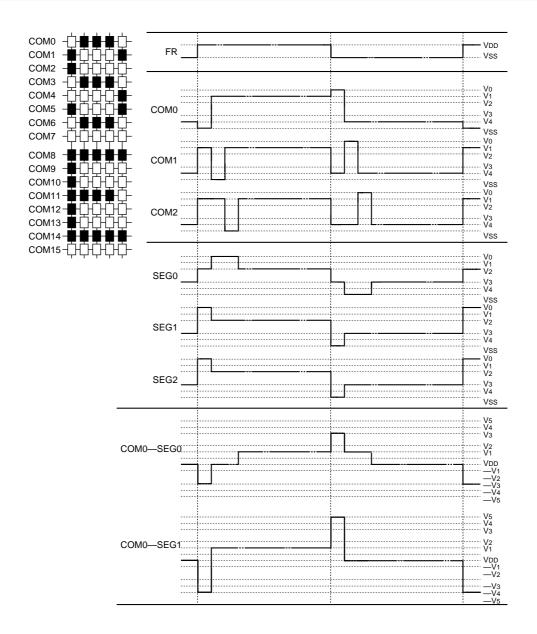


Figure 6

Power supply circuit

The power supply circuit generates the voltage to drive the LCD panel at low power consumption.

The power supply circuit consists of a booster circuit, voltage regulator circuit, and voltage follower circuit, and is controlled by Power control set command. Using this command, the booster circuit, the voltage regulator circuit, and the voltage follower circuit can be independently turned ON or OFF. Consequently, the external power supply and part of internal power supply circuit functions can be used simultaneously. Table 8 shows reference combinations.

Table 8 lists the functions controllable from 3 bits data of the power control set command. And, Table 9 shows sample combinations of the bits.

Select the models depending on the state of use.

Table 8

ltem	State			
Item	"1"	"0"		
D2 Booster circuit control bit	ON	OFF		
D1 Voltage adjusting circuit (V adjusting circuit) control bit	ON	OFF		
D0 Voltage follower circuit (V/F circuit) control bit	ON	OFF		

Table 9

Usage	Model	D2	D1	D0	Booster circuit.	V adjusting circuit.	V/F circuit.	External voltage entered.	Pins on booster circuit
Built-in power supply alone is used	*1	1	1	1	ON	ON	ON	Vdd2	Used
V adjusting and	*2	0	1	1	OFF	ON	ON	Vоит *4	OPEN
V/F circuits alone are used V/F circuit alone is used	*2	0	0	1	OFF	OFF	ON	Vo *4	OPEN
External power supply alone is used	*3	0	0	0	OFF	OFF	OFF	Vo to V4 *4	OPEN

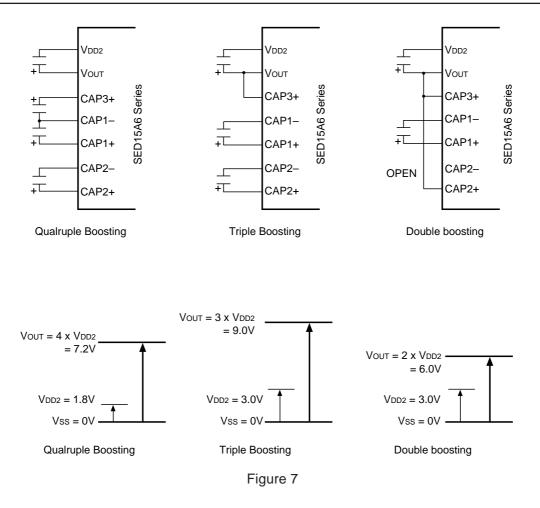
* Pins on the booster circuits denote CAP1+, CAP1-, CAP2+, CAP2- and CAP3+ pins.

* Although other combinations than the above are available, they are not pragmatic and thus not recommendable.

*1: SED15A6D0B *2: SED15A6D1B *3: SED15A6D2B

*4: VDD2 is recommended to short-circuit to VDD

Booster circuit


Using the booster circuit, it is possible to produce Quad/ Triple/Double boosting of the VDD2–Vss voltage level. Quad boosting : If capacitor are inserted between CAP1+ and CAP1-, between CAP2+ and CAP2-, between CAP3+ and CAP1-, between Vout and VDD2, the potential between VDD2 and Vss is boosted to quadruple toward the positive side and it is output at Vout pin.

Triple boosting : If capacitor are inserted between CAP1+ and CAP1-, between CAP2+ and CAP2-,

between Vout and VDD2, and jumper between CAP3+ and Vout, the triple boosted voltage appears at Vout pin.

Double boosting : If capacitor are inserted between CAP1+ and CAP1-, between Vout and VDD2, open CAP2-, and jumper between CAP2+, CAP3+ and Vout, the double boosted voltage appears at Vout pin. The boosted voltage relationships are shown in Figure

The boosted voltage relationships are shown in Figure 7.

*VDD2 voltage must be set so that VOUT voltage does not exceed the absolute maximun rated value.

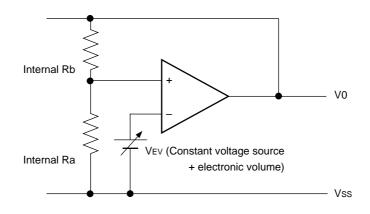
*The Capacitance depend on the load of the LCD panel to be driven. Set a value that LCD driver voltage may be stable (reference value = 1.0 to 4.7μ F).

Voltage regulator circuit

The boosting voltage occurring at the Vout pin is sent to the voltage regulator, and the V₀ voltage (LCD driver voltage) is output.

Because the SED15A6 series has the high-accuracy constant voltage source, the 32-level electronic volume function and the internal resistor for the V₀ voltage regulator (= V₀-resistor), it is possible to construct a high-accuracy voltage regulator circuit without external component. And V₀ voltage can be adjusted by commands only to adjust the LCD contrast.

The V_0 voltage can be calculated using the following equation within the range of $V_0 < V_{\rm OUT}.$


 $V_0 = (1+Rb/Ra) \bullet V_{EV}$

= $(1+Rb/Ra) \cdot (1-\alpha/200)$ Vreg (Expression A-1) Vev = $(1-\alpha/200) \cdot$ Vreg

VREG is the on-chip constant voltage as shown in Table 10 at Ta= 25° C.

Table 10

Model	Vreg	Thermal Gradient
SED15A6D**	1.2V	−0.1%/°C

 α is a value of the electronic volume, and can be set to one of 32-states by Electronic volume command setting

Table 11

D4	D3	D2	D1	D0	α
0	0	0	0	0	31
0	0	0	0	1	30
0	0	0	1	0	29
		:			:
		:			:
1	1	1	0	0	3
1	1	1	0	1	2
1	1	1	1	0	1
1	1	1	1	1	0

Rb/Ra is the Vo-resistor ratio, and can be set to one of 7states by Vo-resistor ratio set command setting the 3-bit the 5-bit data in the electronic volume register. Table 11 shows the value of α .

			1+Rb/Ra
D3	D2	D1	SED15A6 (Typ.)
0	0	0	5.45
0	0	1	5.71
0	1	0	6.00
0	1	1	6.32
1	0	0	6.67
1	0	1	7.06
1	1	0	7.50
1	1	1	External resistor can be used.

data in the V₀-resistor ratio register. Table 12 shows the value of (1+Rb/Ra) ratio (reference value).

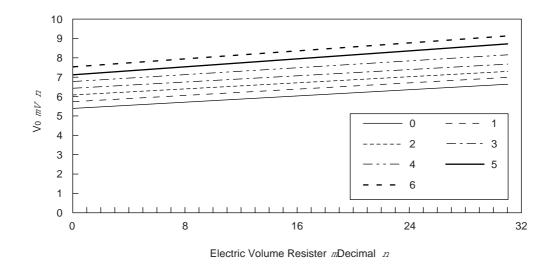


Figure 9 The V₀ voltage as a function of the V₀ voltage regulator internal resister internal resistor and the electronic volume register [Ta=25°C]

<Setup example : When setting Ta = 25C and V_0 = 7V on an SED15A6*** model with temperature gradient of -0.1% /°C>

From Figure 9 and expression A-1, the following setting will be employed.

Table 13

Content	Resistors								
Content	D7	D6	D5	D4	D3	D2	D1	D0	
Resistance ratio of Vo adjusting built-in resistors	0	0	1	0	0	0	1	1	
Electronic volume	1	0	0	1	0	0	0	0	

Table 14 shows V_0 voltage variable range and its variable step available from the electronic volume function

when the above setting is employed.

Table 14

Vo	Min.		Тур.		Max.	Unit
Variable range	6.41[80H]	to	7.0[90H]	to	7.58[9FH]	[V]
Variable step			37.92			[mV]

[]: Commands selected from the electronic volume.

When external resistor is used (when the builtin resistor for Vo adjustment is not used)

It is also possible to select a supply voltage V₀ for LCD without using the built-in V₀ voltage adjusting resistors (resistance ratio select command [27H] for the built-in V₀ voltage adjusting resistors) by adding a resistor across Vss and V_R as well as V_R and V₀. In this case too, using the electronic volume allows you to control LCD V₀ through the command and, thus, adjust contrast of LCD

display.

Voltage V₀ is given by the following expression when external resistance values Ra' and Rb' are specified in the range of V₀ < V_{OUT}:

 $V_0 = (1 + Rb/Ra) \cdot V_{EV}$

= $(1+Rb/Ra) \cdot (1-\alpha/200) V_{REG}$ (Expression B-1) Vev = $(1-\alpha/200) \cdot V_{REG}$

VREG represents the constant voltage source on the IC. Its value at Ta = 25 °C is constant as shown in Table 10.

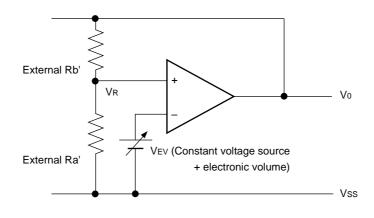


Figure 10

<A setting example: When setting Ta = 25C and V₀ = 7V on an SED15A6*** model with temperature gradient =-0.1% C>

When the intermediate resistor values (D4, D3, D2, D1, D0) = (1, 0, 0, 0) are selected from the electronic volume, the following is given by expression B-1 since α = 15 and V REG = 1.2V (Expression B-2).

 $V_0 = (1+Rb'/Ra') \bullet (1-\alpha/200) \bullet V_{REG}$

 $7V = (1+Rb'/Ra') \cdot (1-15/200) \cdot 1.2$

(Expression B-2)

If you select 5 μ A for the current conducted to Ra' and

Table 15

Rb', the following expression is derived:

 $Ra' + Rb' = 1.4M\Omega \qquad (Expression B-3)$ Thus, the following is derived from expressions B-2 and B-3:

 \therefore Ra' = 220k Ω , Rb' = 1180k Ω

Table 14 shows the command selected from the electronic volume. Table 16 lists V₀ voltage variable range and variable steps available from the electronic volume function.

Content				Re	esiste	ors		
Content	D7	D6	D5	D4	D3	D2	D1	D0
Resistance ratio of built-in Vo voltage adjusting resistors	0	0	1	0	0	1	1	1
Electronic volume	1	0	0	1	0	0	0	0

Table 16

Vo	Min.		Тур.		Max.	Unit
Variable range	6.45[80H]	to	7.0[90H]	to	7.64[9FH]	[V]
Variable step			38.4			[mV]

[]: Commands selected from the electronic volume.

When using external resistors (When using variable resistors in stead of the built-in V₀ voltage adjusting resistors)

Adding external variable resistors to the above mentioned external resistors allows you to select an LCD drive voltage V_0 through fine tuning of Ra' and Rb'. In this case too, using the electronic volume function permits you to control an LCD voltage through the command and, thus, adjust contrast of the LCD display.

You can determine the V₀ voltage from the following expression when fine adjustment of Ra' and Rb' is done

by specifying resistance values of external resistors R1 and R2 (variable resistors) and R3 within the range of $|V_0| < |V_{OUT}|$:

$$V_{0} = \{1+(R3+R2-\Delta R2) / (R1+\Delta R2)\} \bullet V_{EV} \\ = \{1+(R3+R2-\Delta R2) / (R1+\Delta R2)\} \bullet \\ (1-\alpha/200) \bullet V_{REG} \qquad (Expression C-1) \\ [V_{EV} = (1-\alpha/200) \bullet V_{REG}]$$

Where, VREG is the constant voltage source in the IC and its value remains at a constant level as shown in Table 10.

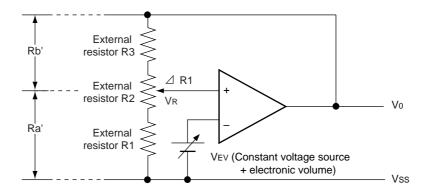


Figure 11

<A setting example: When setting Ta = 25C and V_0 = 5 to 9V on an SED15A6*** model with Temperature gradient = -0.1% C>

 $\alpha = 15$ and $V_{REG} = 1.2V$ when intermediate resistor values (D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0) are selected from the electronic volume. Thus, using expression C-1, you can select $V_0 = 9V$ when $\Delta R2 = 0\Omega$ in the following manner:

 $9V = \{1+(R3+R2) / R1\} \bullet (1-15/200) \bullet 1.2$

 $R3 + R2 = 7.11 \cdot R1$ (Expression C-2) If you select 5 uA for the current to be conducted across V₀ and Vss when V₀ = 7V, sum of resistance of R1, R2 and R3 can be derived as shown below:

```
\begin{array}{ll} R1+R2+R3=1.4M\Omega & (Expression C-3).\\ From expressions C-2 and C-3, R1=1.4M\Omega / \\ 8.11=173K\Omega.\\ And, you can select V = 5V when $\Delta R2 = R2$ through the following computation: \\ 5V = = {1+R3/(R1+R2) } \bullet (1-15/200) \bullet 1.2\\ R3/(R1+R2) = 3.5 & (Expression C-4).\\ R2 = 137@ and R3 = 1.09 M\Omega are derived from expressions C-2, C-3 and C-4.\\ Table 15 lists the commands used, and Table 17 shows \\ \end{array}
```

Table 15 lists the commands used, and Table 17 shows V₀ voltage variable voltage range and variable steps available from the electronic volume.

Table 17

Vo	Min.		Тур.		Max.	Unit
Variable range	6.39[80H]	to	7.0[90H]	to	7.57[9FH]	[V]
Variable step			38.1			[mV]

[]: Commands selected from the electronic volume.

- * When using the built-in V₀ voltage adjusting resistors or the electronic volume function, both of the voltage adjustment circuit and the voltage follower circuit must be activated, as a minimum requirement, by the power control set command. When the booster is circuit is turned off, necessary voltage must be supplied from Vout.
- * VR pin is enabled only when the built-in Vo voltage adjusting resistors are not used. VR pin must be made open when these resistors are used.
- * Since VR pin has a higher input impedance, appropriate noise protection measures must provided including cutting the wiring distance shorter or using shielded wire.

Voltage Follower Circuit

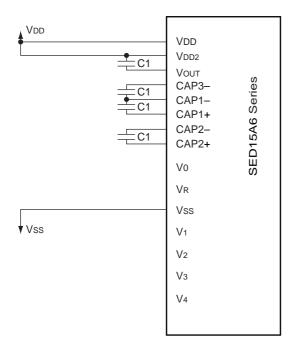
The V₀ voltage is divided to generate the V₁, V₂, V₃ and V₄ voltages by on-chip resistor circuit. And the V₁, V₂, V₃ and V₄ voltages are impedance-converted by voltage follower, and provide to LCD driver circuit.

LCD bias ratio can be selected by LCD bias set command which is 1/6 bias or 1/8 bias for SED15A6 series.

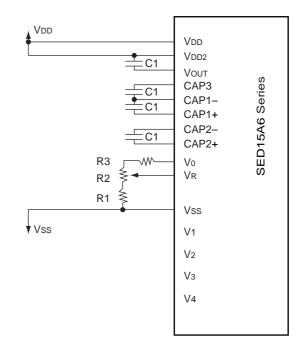
On-chip Power Supply Turn Off Sequence

Before turning the built-in power supply off, to discharge the remaining electric charge of LCD panel and power supply PIN etc., it is recommended to turn on the power save mode employing the following command sequence. You can also turn the built-in power supply off by initializing it using RES pin or the reset command. Here, of SED15A6D0B with built-in power supply being only used, LOW level signal entering RES pin discharges Vout, thereby introducing shorting across Vout–VDD2 and Vo–Vss. Of SED15A6D1B/SED15A6D2B with external power supply being used, discharge the electric charge by short-circuiting the external power supply to Vss when the power supply is off or power is being saved. (VOUT and V0 electric charge discharging functions are not in the IC)

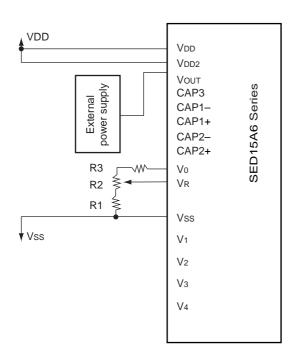
Comuchan	Contents		_	Со	mmar	nd ad	dress		
Sequence	(command and state)	D7	D6	D5	D4	D3	D2	D1	D0
Step1	Display OFF	1	0	1	0	1	1	1	0
	\downarrow								
Step2	Display all points on	1	0	1	0	0	1	0	1
	\downarrow								
End	Built-in power OFF	0	0	1	0	1	0	0	0

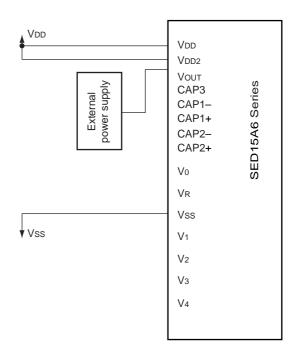

Table 18

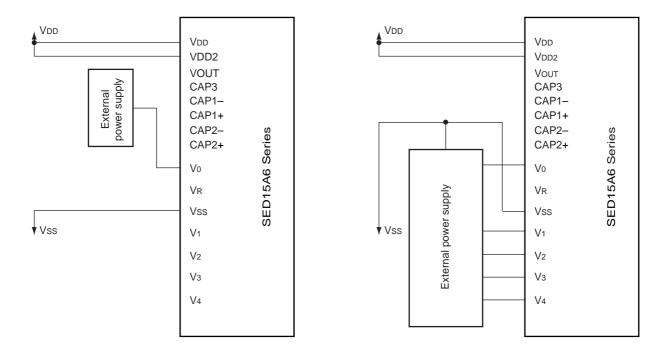
Power save command (composite command)


Sample Circuits

1. When the booster, voltage adjustment and V/F circuits are all used [SED15A6D0B] $\,$


(1) When built-in V₀ voltage adjusting resistors are used (When V_{DD2} = V_{DD} is boosted 4 times)


(2) When built-in V₀ voltage adjusting resistors are not used (When V_{DD2} = V_{DD} boosted 4 times)


- 2. When the voltage adjustment and V/F circuits alone are used
- (1) When built-in V $_0$ voltage adjusting resistors are not used [SED15A6D1B]

(2) When built-in V₀ voltage adjusting resistors are used Voltage Follower Circuit [SED15A6D1B]

4. When built-in power supply is not used[SED15A6D2B]

3. When V/F circuit alone is used [SED15A6D1B]

* Since VR pin has a higher impedance, wiring distance must be minimized or shielded wire must be used.

.

	Sample setting								
When V ₀ is varied between 8 and 9V.									
ltem	Setting Unit								

Figure 12

Reset Circuit

When pin goes low, $\overline{\text{RES}}$ or when Reset command is used, this LSI is initialized.

Initialized states

- Serial interface internal shift register and counter clear
- Power saver mode is entered.
 - Oscillation circuit is stopped.
 - The LCD power supply circuit is stopped.
 - Display OFF
 - Display all points ON (Display all points ON ON/ OFF command D0 = "1")
 - Segment/common driver outputs go to the Vss level.
- Display normal
- Page address=0H
- Column address=0H
- Display start line address=set at the first line
- Segment driver direction=normal
- Common driver direction=normal
- Read modify write OFF
- Power control register (D2, D1, D0) = (0, 0, 0)
- V0-resistor ratio register (D2, D1, D0) = (0, 0, 0)
- Electronic volume register (D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0)
- LCD power supply bias ratio = 1/6 bias (SED15A6)
- Test mode is released.

* Voltage short-circuit across Vout and VDD2 as well as Vo and Vss [allowed only when RES pin = LOW level].

When reset is detected, this LSI is set to above initialized states. However it has no effect on contents of DDRAM. As seen in "Microprocessor Interface (Reference Example)", connect $\overline{\text{RES}}$ pin to the reset pin of the MPU and initialize the MPU at the same time. The initialization by $\overline{\text{RES}}$ pin is always required during power-on.

If the control signal from MPU is HZ, an overcurrent may flow through the LSI. A protection is required to prevent the HZ signal at the input pin during power-on. In case the SED15A6 series does not use the on-chip LCD power supply circuit, after RES pin is turnd LOW to HIGH, the external LCD power supply must be turned on.

7. COMMANDS

The SED15A6 series identifies the data bus by a combination of A0, $\overline{\text{RD}}$ (E), $\overline{\text{WD}}(R/\overline{W})$ signals.

In the 8080-series MPU interface, the command is activated when a low pulse is input to $\overline{\text{RD}}$ pin for reading and when a low pulse is input to $\overline{\text{WD}}$ pin for writing. In the 6800-series MPU interface, the SED15A6 series enters a read mode when a high level is input to $\overline{\text{R/W}}$ pin and a write mode when a low level is input to $\overline{\text{R/W}}$ pin, and the command is activated when a high pulse is input to $\overline{\text{E}}$ pin. Therefore, in the command explanation and command table, the 6800-series MPU interface is different from the 8080-series MPU interface in that $\overline{\text{RD}}(\text{E})$ becomes "1 (H)" in Display data read command. And when the serial interface is selected, the data is input in sequence starting with D7.

Taking the 8080-series MPU interface as an example, commands will be explained below.

Explanation of commands

Display ON/OFF

This command turns the display ON and OFF.

A0	E RD	R/₩ WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	1	1	1	0 1	Display OFF Display ON

When the Display OFF command is executed when in the Display all points ON mode, Power saver mode is entered. See the section on the Power saver for details.

Display normal/reverse

This command can reverse the lit and unlit display without overwriting the contents of the DDRAM.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	1		Normal:DDRAM Data HIGH =LCD ON voltage Reverse:DDRAM Data LOW =LCD ON voltage

Display all points ON/OFF

This command makes it possible to force all display points ON regardless of the content of the DDRAM. Even when this is done, the DDRAM contents are maintained. This command takes priority over the Display normal/reverse command.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	0	0 1	Normal display mode Display all points ON

When the Display all points ON command is executed when in the Display OFF mode, Power saver mode is entered. See the section on the Power saver for details.

Page address set

This command specifies the page address of the DDRAM (refer to Figure 5).

Specifying the page address and column address enables to access a desired bit of the DDRAM. After the last column address (65H), page address incremented by +1 (refer to Figure 4). After the very last address (column = 65H, page = 7H), page address return to 0H.

Page address 8H is the DDRAM area dedicate to the indicator, and only D0 is valid for data change. See the function explanation in "DDRAM and page/column address circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Page address
0	1	0	1	0	1	1	0 0 0	0 0 0	0 0 1	0 1 0	0H 1H 2H
							0 1	: 1 0	1 0	1 0	: 7H 8H

Column address set

This command specifies the column address of the DDRAM (refer to Figure 5).

The column address is split into tow sections (the upper 3-bits and lower 4-bits) when it is set (fundamentally, set continuously).

Each time the DDRAM is accessed, the column address automatically increments by +1, making it possible for the MPU to continuously access to the display data. After the last column address (65H) ,column address returns to 00H (refer to Figure 4).

See the function explanation in "DDRAM and page/column address circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	
0	1	0	0	0	0	1 0	* A3	A6 A2	A5 A1	A4 A0	Upper bit address Lower bit address

*Dis	Disabled bit														
	A6	A5	A4	A3	A2	A1	A0	Column address							
	0	0	0	0	0	0	0	00H							
	0	0	0	0	0	0	1	01H							
	0	0	0	0	0	1	0	02H							
				:				:							
	1	1	0	0	1	0	0	64H							
	1	1	0	0	1	0	1	65H							

Display start line address set

This command is used to specify the display start line address of the DDRAM (refer to Figure 5).

If the display start line address is changed dynamically using this command, then screen scrolling, page swapping can be performed.

See the function explanation in "Line address circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Line address
0	1	0	0	1	0	0	0	0	0	0	00H
					0	0	0	0	0	1	01H
					0	0	0	0	1	0	02H
							:				:
					1	1	1	1	1	0	3EH
					1	1	1	1	1	1	3FH

Segment driver direction select

This command can reverse the correspondence between the DDRAM column address and the segment driver output. See the function explanation in "DDRAM and page/column address circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	0	0	0 1	Normal Reverse

Common driver direction select

This command can reverse the correspondence between the DDRAM line address and the common driver output. See the function explanation in "Line address circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	1	0	0	0 1	*	*	*	Normal Reverse

*Disabled bit

Display data read

This command reads 8-bit data from the specified DDRAM address. Since the column address is automatically incremented by +1 after each read ,the MPU can continuously read multiple-word data. One dummy read is required immediately after the address has been set. See the function explanation in "Access to DDRAM and internal registers" and "DDRAM and page/column address circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	1				Read	d Data			

Display data write

This command writes 8-bit data to the specified DDRAM address. Since the column address is automatically incremented by +1 after each write ,the MPU can continuously write multiple-word data. See the function explanation in "DDRAM and page/column address circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
1	1	0				Write	Data			

Read modify write

This command is used paired with End command. Once this command is issued, the column address is not incremented by Display data read command, but is incremented by Display data write command. This mode is maintained until End command is issued. When End command is issued, the column address returns to the address it was at when Read modify write command was issued. This function makes it possible to reduce the MPU load when there are the data to change repeatedly in a specified display region, such as blinking cursor.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	0

*When End command is issued, only column address returns to the address it was at when Read modify write command was issued, but page address does not return. Consequently, Read modify Write mode cannot be used over pages. When you want to maintain the current page address after a read modify write operation done on a column address between the start and the final column address (65H), you must specify the page address again after the operation is over.

*Even if Read modify write mode, other commands besides Display data read/write can also be used. However, Column address set command cannot be used.

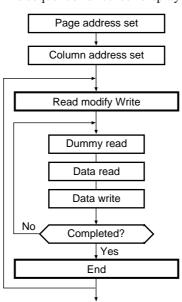


Figure 13

End

This command releases the Read modify write mode, and returns the column address to the address it was when Read modify write command was issued .

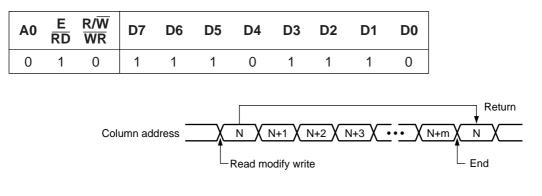


Figure 14

Power control set

This command sets the on-chip power supply function ON/OFF. See the function explanation in "Power supply circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Mode
0	1	0	0	0	1	0	1	0 1			Booster : OFF Booster : ON
									0 1		Voltage regulator : OFF Voltage regulator : ON
									·	0 1	Voltage follower : OFF Voltage follower : ON

Vo-resistor ratio set

This command sets the internal resistor ratio "Rb/Ra" for the V₀ voltage regulator to adjust the contrast of LCD panel display. See the function explanation in "Power supply circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Rb/Ra :	Vo voltage
0	1	0	0	0	1	0	0	0	0	0	small	low
								0	0	1		
								0	1	0		
								0	1	1	\downarrow	\downarrow
								1	0	0	·	·
								1	0	1		
								1	1	0	large	high
								1	1	1	External resistor mode	

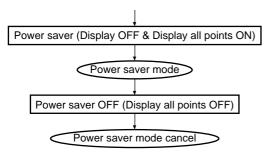
Electronic volume

This command sets a value of electronic volume " α " for the V₀ voltage regulator to adjust the contrast of LCD panel display. See the function explanation in "Power supply circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	α:	Vo voltage
0	1	0	1	0	0	0 0	0 0	0 0	0	0 1	31 30	low
						0 1	0 1	0 ↓ 1	1	0	29 ↓ 1	\downarrow
						1	1	1	1	1	0	high

LCD bias set

This command selects the voltage bias ratio required for the LCD. This command is enabled when the voltage follower circuit operates.


A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Bias SED15A6
0	1	0	1	0	1	0	0	0	1	0 1	1/8 bias 1/6 bias

Power saver

When the display all points ON command is executed when in the display OFF mode, power saver mode is entered, and the power consumption can be greatly reduced.

This mode stops every operation of the LCD display system, and can reduce current consumption nearly to a static current value if no access is made from the MPU. The internal states in the power saver mode is as follows:

- The oscillation circuit is stopped.
- The LCD power supply circuit is stopped.
- The LCD driver circuit is stopped and segment/common driver outputs output the Vss level.
- The display data and operation mode before execution of the Power saver command are held, and the MPU can access to the DDRAM and internal registers.

Reset

When this command is issued, this LSI is initialized. This command, however, is not used for introducing short circuit across Vout and VDD2 or V0 and Vss (only when $\overline{\text{RES}}$ pin = LOW). Also note that initialization of the display data RAM does not take place in parallel with initialization of the LSI. See the function explanation in "Reset circuit", for detail.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

When initializing the LSI while power is turned on, reset signal to the $\overline{\text{RES}}$ pin is used. This signal cannot be replaced by the reset command.

NOP

Non-operation command

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	1

Test

This is a command for LSI chip testing. Please do not use. If the test command is issued by accident, it can be cleared by applying an LOW signal to the pin, or by issuing the Reset command or the Display ON/OFF command.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	*	1	*	*	*	*
							* D	isabled	l bit	

(Note):

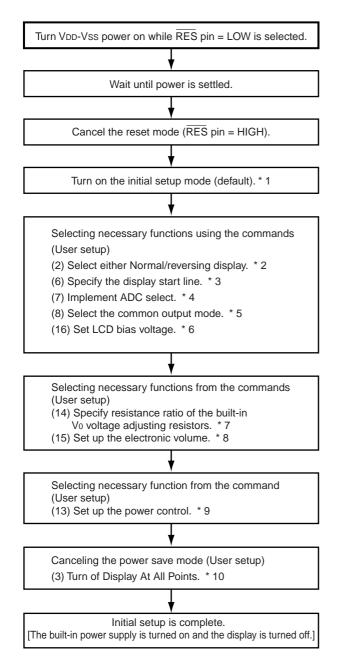
The SED15A6 series chip maintain their operating modes ,but excessive external noise,etc.,may happen to change them. Thus in the packaging and system design it is necessary to suppress the noise or take measures to prevent the noise. Moreover, it is recommended that the operating modes are refreshed periodically to prevent the effects of unanticipated noise.

Command Table

Table 19

Command					Co	de						
Command	A0	XR	XW	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1)Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0	LCD display
(2) Diaplay parmal/rayaraa	0	1	0	1	0	1	0	0	1	1	1	0:OFF, 1:ON LCD display
(2)Display normal/reverce	0	I	0	1	0	I	0	0	I	I	1	0:normal, 1:reverce
(3)Display all points	0	1	0	1	0	1	0	0	1	0	0	LCD display
ON/OFF		-	÷	-	-	-	-	÷		-	1	0:normal display, 1:all points ON
(4)Page address set	0	1	0	1	0	1	1	ado	lress	5		Sets the DDRAM page address
(5)Column address set Upper 3-bit address	0	1	0	0	0	0	1	*	ado	lres	3	Sets the DDRAM column address
Column address set Lower 4-bit address	0	1	0	0	0	0	0	ado	lress	5		
(6)Display start line address set	0	1	0	0	1		ado	lress	5			Sets the DDRAM display start line address.
(7)Segment driver directuin select	0	1	0	1	0	1	0	0	0	0	0 1	Sets the correspondence between the DDRAM column address and the SEG driver output. 0:normal, 1:reverse
(8)Common driver direction select	0	1	0	1	1	0	0	0 1	*	*	*	Sets the correspondence between the DDRAM line address and the COM driver output. 0:normal, 1:reverse
(9)Display data read	1	0	1			Re	ad d	ata				Reads from the DDRAM.
(10)Display data write	1	1	0			Wt	ite d	ata				Writes to the DDRAM.
(11)Read modify write	0	1	0	1	1	1	0	0	0	0	0	Column address increment at write:+1, at read:0.
(12)End	0	1	0	1	1	1	0	1	1	1	0	Releases Read modify write mode.
(13)Power control set	0	1	0	0	0	1	0	1	Op mo	erati de	ng	Sets the on-chip power supply circuit operating mode.
(14)Vo-resistor ratio set	0	1	0	0	0	1	0	0	Res rati	sisto o	r	Sets the Vo-resistor ratio value.
(15)Electronic volume	0	1	0	1	0	0	Ele valu		nic v	olum	ne	Sets the electronic volume value.
(16)LCD bias set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio SED15A6 0:1/8bias, 1:1/6bias
(17)Power saver	-	-	-	-	-	-	-	-	-	-	-	Compound command of Display OFF and Display all points ON
(18)Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
(19)NOP	0	1	0	1	1	1	0	0	0	1	1	Non-operation
(20)Test	0	1	0	1	1	*	1	*	*	*	*	IC test command. Do not use.

(Note)*:disabled bit


8. AN EXAMPLE OF FUNCTION SETUP USING COMMANDS

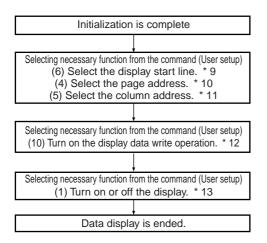
Instruction Setup Example

(For your reference)

Note: If charge remains on the smoothing capacitor connected across the LCD drive voltage output pin and VDD2 pin, troubles (such as momentary blackening) can occur

1. When switching to the built-in power supply takes place immediately after powering on:

on the display screen during its powering on process. In order to avoid such troubles, it is recommended to implement the following flow.


Note: Reference Items

* 1: Refer to the "Description of Functions; Reset Circuit".

In the initial setup mode (default), too, contents of the display data RAM is still uncertain.

- * 2: Refer to the "(2) Normal/reversing Display" in the "Description of Commands".
- * 3: Refer to the "(6) Display Line Setup" in the "Description of Commands".
- * 4: Refer to the "(7) ADC Select" in the "Description of Commands".
- * 5: Refer to the "(8) Common Output Mode Select" in the "Description of Commands".
- * 6: Refer to the "(16) LCD Bias Set" in the "Description of Commands".
- * 7: Refer to the "Description of Functions; Power Supply Circuit" and "Description of Commands - (14) Specifying resistance ratio of built-in V0 voltage adjusting resistors".
- * 8: Refer to the "Description of Functions; Power Supply Circuit" and "Description of Commands - (15) Electronic Volume".
- * 9: Refer to the "Description of Functions; Power Supply Circuit" and "Description of Commands - (13) Setting Up Power Control".
- * 10: Refer to the "(17) Power Save" in the "Description of Commands".

2. Data display

3. Powering off * 14

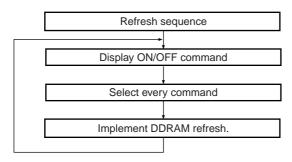
1) Turn on any desired mode. 1) Turn on any desired mode. 1) Turn on any desired mode. Selecting necessary function from the command (User setup) (17) Select the power save mode. * 15 Select the reset active (RES pin = LOW). Select the reset active (RES pin = LOW). Turn VDD-VSS power off.

Note:

- * 14: This IC is provided on the power supply VDD-Vss logic circuit to offer control over the V0-Vss drivers on the LCD power supply. Thus, if the power supply V0-Vss is turned off while voltage is still remaining on the LCD power supply V0-Vss, the drivers (both COM and SEG) can generate uncontrolled output. Make sure to observe the following powering off procedure:
 - Turn off the built-in power supply first, then, after making sure that potential on V₀ to V₄ is lower than the LCD panel threshold voltage, turn the IC power (V_{DD}-V_{SS}) off. Also refer to the "Power Supply Circuit" in the Description of Functions.
- * 15: Refer to the "(17) Power Save" in the "Description of Commands".

After entering the power save command, you must implement reset procedure from the $\overline{\text{RES}}$ pin before turning off VDD-Vss power.

Note: Reference Items


- * 9: Refer to the "(6) Setup of Display Start Line" in the "Description of Commands".
- * 10: Refer to the "(4) Page Address Set" in the "Description of Commands".
- * 11: Refer to the "(5) Column Address Set" in the "Description of Commands".
- * 12: Refer to the "(10) Display Data Write" in the "Description of Commands".
- * 13: Refer to the "(1) Display Data ON/OFF" in the "Description of Commands".

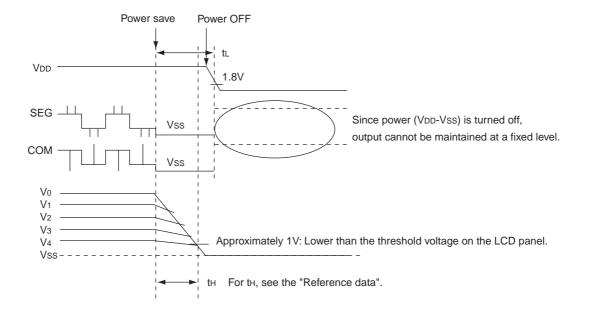
The all-white display of data should be avoided as much as practicable right after the display mode is turned on (right after the display has been turned on).

12-34

4. Refresh

It is recommended to implement the refresh sequence on a regular basis.

5. Precautions on powering off

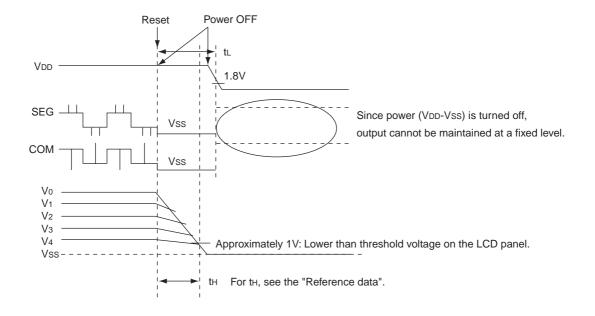

<Powering off (VDD-Vss) off> Turn the power (V0-Vss) save mode off -> Then, turn the power (VDD-Vss) off.

* The requirement "tL > tH" must be strictly observed.

* If " $t_L < t_H$ ", display failures can result.

tL must be specified on software from MPU.

tH depends on discharging capability of the drivers. See the "Reference data" in the following section. It also depends on a given LCD panel, thus actual timing must be determined after experimenting on your LCD panel.


<When powering off (VDD-Vss) is not available with the command>

Turn off the reset mode (LCD power (Vo-Vss) system). -> Then, turn power (VDD-Vss) off.

* The requirement " $t_L > t_H$ " must be observed.

* When specifying tL, measures such as extending fall

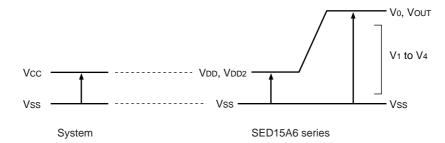
time of power supply (VDD-VSS) should be considered. tH depends on the drivers' discharging capability. See the "Reference data" in the following section. It also depends on model of a given LCD panel, thus actual timing must be determined after experimentation on your LCD panel.

6. Reference data

The following data is for your reference alone. th is significantly affected by capacity of V₀ pin, thus you must verify appropriateness of a selected th on the panel being equipped with the pin.

[Conditions: $V_{DD} = 1.8V$, voltage is tripled and capacity of the boosting capacitor = $1.0 \,\mu F$]

When V₀ is under no-load, th per voltage is 22 μ s. It becomes 220 μ s when V₀ = 9V. Capacity dependency is 1 pF. Δ th per voltage is 50 ns.


An example: When $V_{DD} = 1.8V$, $V_0 = 8V$ and V_0 pin capacity [board capacity] (CL) = 100 pF. $t_H = 22\mu s \times 8V + 50ns \times 100pF \times 8V = 216\mu s$

9. ABSOLUTE MAXIMUM RATING

Unless otherwise noted, Vss = 0V.

Parameter		Symbol	Conditions	Unit
Power supply voltage (1)		Vdd	-0.3 to 0.6	V
Power supply voltage (2)		Vdd2	-0.3 to 0.6	V
	Double boosting		-0.3 to 5.0	
	Triple boosting		-0.3 to 3.3	
	Quadruple boosting		-0.3 to 2.5	
Power supply voltage (3)		Vo, Vout	-0.3 to 10.0	V
Power supply voltage (4)		V1, V2, V3, V4	-0.3 to Vo	V
Input voltage		Vin	-0.3 to VDD+0.3	V
Output voltage		Vo	-0.3 to VDD+0.3	V
Operating temperature		Topr	-40 to 85	°C
Storage temperature	ТСР	Tstr	-55 to 100	°C
	Bare chip		-55 to 125	

Notes and Conditions

- 1. Vss = 0V is assumed for every voltage indicated above.
- 2. Voltage V0, V1, V2, V3, V4 must always keep up the condition of $V_0 \ge V_1 \ge V_2 \ge V_3 \ge V_4 \ge V_{SS}$ and $V_{OUT} \ge V_0 \ge V_{SS}$.
- 3. If the LSI exceeds its absolute maximum rating, it may be damage permanently. It is desirable to use it under electrical characteristics conditions during general operation. Otherwise, a malfunction of the LSI may be caused and LSI reliability may be affected.

10. DC CHARACTERISTICS

Table 21

Vss=0V, Vdd=3V \pm 10%, Ta=-40~85°C unless otherwise noted.

lto		Symbol	Condition	Sta	andard v	alue	Unit	Din used
lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Supply voltage(1)	Recommended operation	Vdd	(Vss is used as the reference)	2.7	_	3.3	V	Vdd *1
	Operational available	Vdd	(Vss is used as the reference)	1.8	_	3.6	V	
Supply voltage(2)	Recommended operation	Vdd2	reference)		V	Vdd2 *1		
Supply voltage(3)	Operational available	Vo	(Vss is used as the reference)4.5-9.0		9.0		Vo *2	
	Operational available	V1, V2	(Vss is used as the reference)	0.6×V0	_	Vo	V	V1, V2
	Operational available	V3, V4	(Vss is used as the reference)	Vss	_	0.4×V0		V3, V4
High-level i	nput voltage	Vін		0.7×Vdd	-	Vdd	V	*3
Low-level ir	nput voltage	Vil		Vss	-	0.3×Vdd	V	5
High-level of	output voltage	Vон	Іон=–0.5mA	0.7×Vdd	-	Vdd	V	*4
Low-level o	utput voltage	Vol	lo∟=0.5mA	Vss	-	0.3×Vdd	V	4
Input leak c	current	LI	VIN=VDD or Vss	-1.0	-	1.0	μA	*5
Output leak	age current	Ilo		-3.0	-	3.0	μA	*6
LCD driver	ON resistance	Ron	V0=7.0V Ta=25°C	_	2.0	5.0	KΩ	SEGn, COMn *7
Static curre	ent consumption	Iddq	Ta=25°C	-	0.01	5.0	μA	Vdd,Vdd2
Output leak	current	loq	V0=7.0V Ta=25°C	_	0.01	15.0	μA	Vo
Input termir	nal capacitance	CIN	CIN Ta=25°C, f =1MHz 10.0 15.0 p		pF			
Oscillation	Built-in oscillation	fosc	Ta=25°C	31.68	35.20	38.72	kHz	*8
frequency	External input	fc∟	14-20 0	35.2	70.4	140.8		CL *8

Table 22

	ltem	Symbol	Condition	Sta	ndard v	value	Unit	Pin used
	item	Symbol	Condition	Min.	Тур.	Max.	Unit	Fill useu
			When voltage is doubled (Vss is used as the reference)	1.8	_	5.0		
rcuit	Input voltage VDD2		When voltage is tripled (Vss is used as the reference)	1.8	-	3.3		Vdd2 *1
supply ci			When voltage is quadrupled (Vss is used as the reference)	1.8	_	2.5		
sup	Boosted output voltage	Vout	(Vss is used as the reference)	-	-	10.0	V	Vout
power	Operating current of voltage adjustment circuit	Vout	(Vss is used as the reference)	5.0	_	10.0		Vout
Built-in	V/F circuit operating voltage	Vo	(Vss is used as the reference)	4.5	_	9.0		Vo *9
B	Reference voltage	Vreg	−0.1%/°C Ta=25°C (Vss is used as the reference)	1.16	1.2	1.24		*10

Note 1: Vss = 0V is assumed for every voltage indicated.

Note 2: Voltages V0, V1, V2, V3 and V4 must conform to the requirements that V0≧V1≧V2≧V3≧V4≧VSS as well as V0UT ≧ V0 ≧ VSS.
Note 3: Operating the LSI is operated beyond the maximum absolute rating can damage it permanently. In the normal operation, it is desirable to use the LSI in compliance with its electric characteristics. If the LSI is used under any conditions conflicting with its electric characteristics, not only its malfunctioning but also serious loss of reliability can result.

 \diamond Dynamic operating current (1) - When display is turned on with the built-in power supply being disconnected [Ta = 25°C and output under no-load].

Following shows current consumed by entire IC when external power supply is used.

Table 23-1 Display: All-white

ltem	Symbol	Requirement	Min.	Тур.	Max.	Unit	Remarks
SED15A6***	lss(1)	VDD=VDD2=1.8V, V0=7.2V	-	23	48		*11
SEDISA0 **	lss(1)	VDD=VDD2=1.8V, V0=9.0V	_	25	50	μA	11

Table 23-2 Display: Checker pattern

ltem	Symbol	Requirement	Min.	Тур.	Max.	Unit	Remarks
SED15A6***	lss(1)	VDD=VDD2=1.8V, V0=7.2V	_	26	54	uА	*11
SED15A0 **	lss(1)	VDD=VDD2=1.8V, V0=9.0V	_	29	57	μΛ	11

 \diamond Dynamic operating current (2) - When display is turned on with the built-in power supply being connected [Ta = 25°C and output under no-load].

Table 24-1 Display: All-white

ltem	Symbol	Requirement	Min.	Тур.	Max.	Unit	Remarks
SED15A6***	lss(2)	VDD=1.8V,VDD2=3.3V, V0=7.2V, and voltage is tripled.	Ι	68	101	•	*10
SED13A0 **	lss(2)	VDD=1.8V,VDD2=3.3V, V0=7.2V, and voltage is tripled.	-	79	112	μA	*12

Table 24-2 Display: Checker pattern

ltem	Symbol	Requirement	Min.	Тур.	Max.	Unit	Remarks
SED15A6***	lss(2)	VDD=1.8V,VDD2=3.3V, V0=7.2V, and voltage is tripled.	Ι	- 75 103			*40
SED15A0 **	lss(2)	V_{DD} =1.8V, V_{DD2} =3.3V, V_0 =7.2V, and voltage is tripled.	Ι	87	112	μA	*12

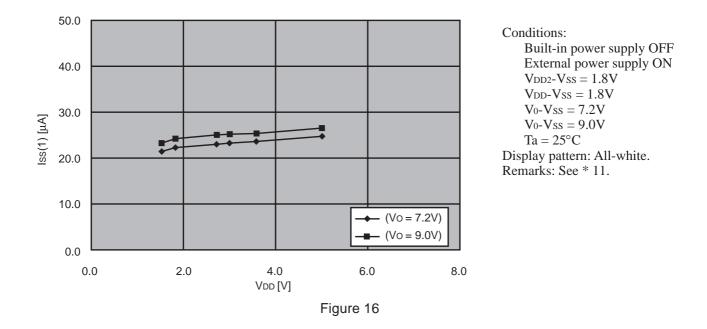
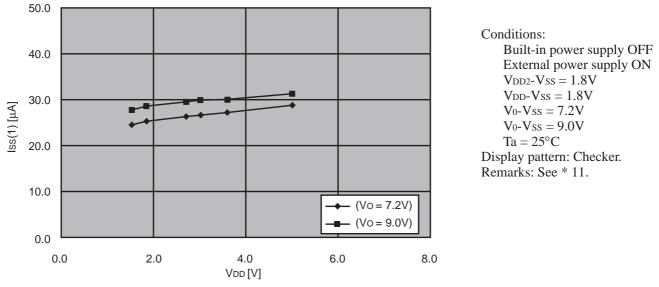
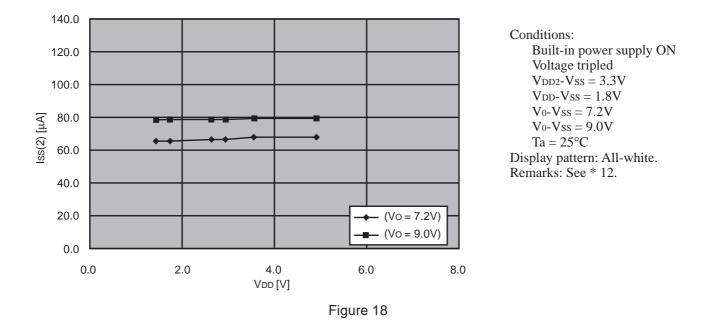

 \diamond Current consumption in the power save mode [Ta = 25°C and output under no-load]

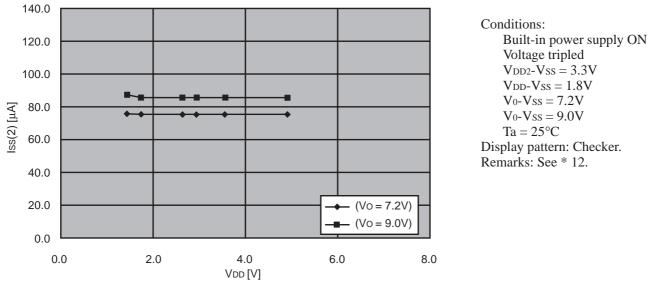
Table 25


Item	Symbol	Requirement	Min.	Тур.	Max.	Unit	Remarks
SED15A6***	lss(3)	VDD=VDD2=1.8~3.6V	-	0.01	5	μΑ	

[Reference data 1]

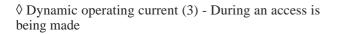
 \Diamond Dynamic operating current (1) - When LCD display is turned on with external power supply being connected (All-white display)

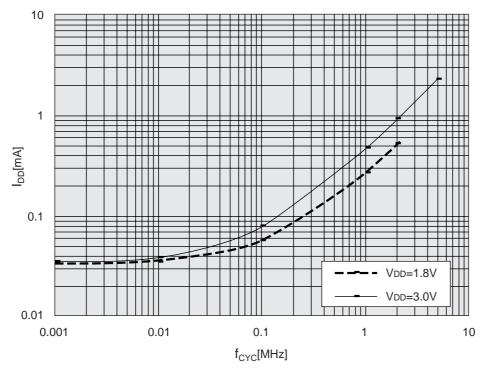

◊ Dynamic operating current (1) - When LCD display is turned on with external power supply being connected (Checker pattern display)



[Reference data 2]

 \Diamond Dynamic operating current (2) - When LCD display is turned on with built-in power supply being connected (All-white display)




◊ Dynamic operating current (2) - When LCD display is turned on with built-in power supply being connected (Checker pattern display)

[Reference data 3]

This chart shows current consumption when the checker pattern write is constantly implemented in fcYc. Iss (1) alone is consumed when an access is not taking place.

Conditions:

Built-in power supply OFF External power supply ON VDD2–VSS=3.0V V0–VSS=9.0V Ta=25°C

Figure 20

[Reference data 4] ◊ Operating voltage range of VDD and V0 systems.

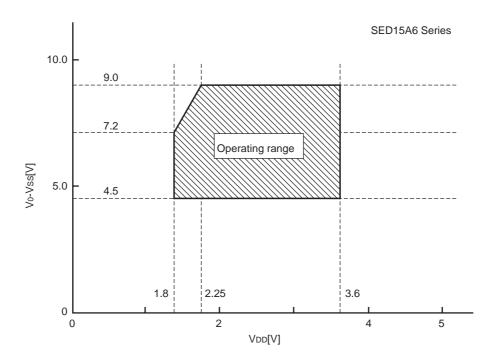


Figure 21

[Reference items]

- * 1 : Although wide operating voltage range is warranted, an exemption to it is when an access made by MPU is accompanied with radical voltage fluctuations.
- * 2 : See Figure 21 for the operating voltage range of VDD and V0 systems. It is applicable when an external power supply is used.
- * 3 : A0, D0 to D5, D6 (SCL), D7 (SI), $\overline{\text{RD}}$ (E), $\overline{\text{WR}}$ (R/ $\overline{\text{W}}$), CS, CL, C86, P/S and $\overline{\text{RES}}$ pins. VIH = 0.8 × VDD to VDD, VIL = Vss to 0.2 × VDD when VDD = 1.8V to 2.7V.
- * 4 : D0 to D7 pins. IOH = -0.25 mA, IOL = 0.25 mA when VDD = 1.8V to 2.7V.
- * 5 : A0, $\overline{\text{RD}}$ (E), $\overline{\text{WR}}$ (R/ $\overline{\text{W}}$), $\overline{\text{CS}}$, C86, CL and $\overline{\text{RES}}$ pins.
- * 6 : It is applicable when D0 to D5, D6 (SCL) and D7 (SI) pins are placed in high impedance.
- * 7 : It represents the resistance value to be employed when 0.1V is applied across the output pin SEGn or COMn and respective power terminals (V₁, V₂, V₃ and V4). It must be selected within the operating voltage range (3).
 RoN = 0.1V/ΔI (ΔI represents the current conducted when 0.1V is applied when the power supply is turned on).
- * 8 : For the relationship between the oscillating frequency and frame frequency, refer to Table 6. External inputs listed in the standard value space are recommended values.
- * 9 : Adjustment of the V₀ voltage adjustment circuit must be done within the operating voltage range of the voltage follower circuit.
- * 10 : The built-in reference voltage source of the V₀ voltage adjustment circuit. Two types of V_{REG} temperature gradients are supported by the SED15A6; (1) Approximately -0.1%/°C and (2) External input.
- * 11/12: The built-in oscillation circuit is used. It indicates current consumed by the independent IC when the display is turned on. Current consumption of the SED15A6 indicated here is one when the 1/6 bias mode is turned on. It does not includes current consumed due to the LCD panel capacity or wiring capacity (driver output is under no-load). These values are applicable when an access is not made by MPU.
- * 12 : These values are applicable when the V₀ voltage adjusting built-in resistors are used on an SED15A6 model with V_{REG} optional temperature gradient of -0.1%/°C.

11. AC CHARACTERISTICS

System Bus Read/Write Characteristics 1 (For the 8080-series MPU)

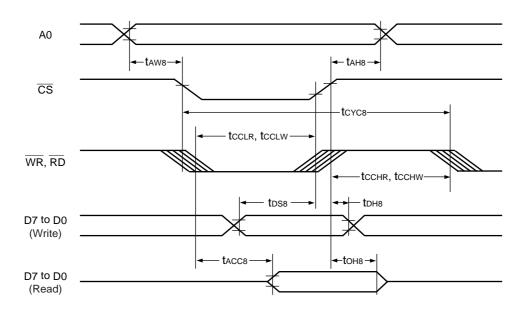


Figure 22

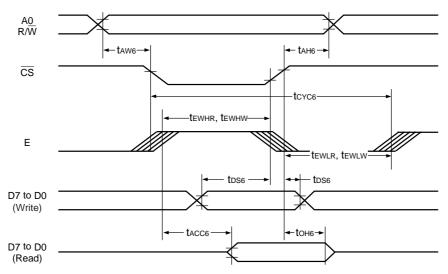

Table 26			[Vdd=	=2.7V to 3.	6V, Ta=–4	l0 to 85°C
ltem	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time	A0	tAH8		0	_	ns
Address setup time		tAW8		0	_	
System cycle time		tCYC8		500	_	
Control LOW pulse width(\overline{WR})	WR	tCCLW		100	_	
Control LOW pulse width(\overline{RD})	RD	tCCLR		200	_	
Control HIGH pulse width(WR)	WR	tCCHW		100	_	
Control HIGH pulse width(RD)	RD	t CCHR		100	_	
Data setup time	D7 to D0	tDS8		70	_	
Data hold time		tDH8		0	_	
Access time		tACC8	CL=100pF	_	180	
Output disable time		toh8		10	100	

Table 27			[Vdd=	=1.8V to 2.	7V, Ta=–4	0 to 85°C
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time	A0	tah8		0	_	ns
Address setup time		tAW8		0	_	
System cycle time		tCYC8		1000	_	
Control LOW pulse width(WR)	WR	tCCLW		150	_	
Control LOW pulse width(RD)	RD	tCCLR		300	_	
Control HIGH pulse width(WR)	WR	tcchw		150	_	
Control HIGH pulse width(\overline{RD})	RD	tCCHR		150	_	
Data setup time	D7 to D0	tDS8		120	_	
Data hold time		tdh8		0	_	
Access time		tACC8	CL=100pF	_	260	
Output disable time		tOH8		10	200	

*1. The input signal rise time and fall time (tr, tf) is specified at 15ns or less. When the system cycle time is extremely fast, it is specified by $(tr, tf) \leq (tcycs-tcclw-tcchw)$ or $(tr, tf) \leq (tcycs-tcclr-tcchr)$.

*2. Every timing is specified on the basis of 20% and 80% of V_{DD}. *3. tCCLW and tCCLR are specified by the overlap period in which \overline{CS} is "0" and \overline{WR} , \overline{RD} are "0".

*4. Timing of A0 is determined by the overlap period in which $\overline{\text{CS}}$ is LOW and $\overline{\text{WR}}$ and $\overline{\text{RD}}$ are LOW, too.

System Bus Read/Write Characteristics 2 (For the 6800-series MPU)

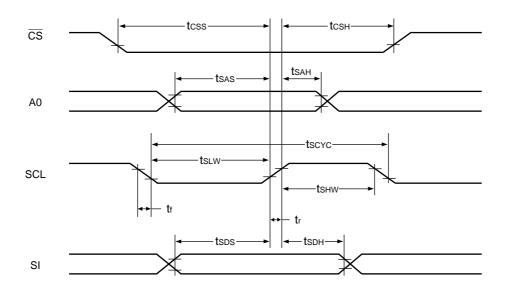
Table 28

[VDD=2.7V to 3.6V, Ta=-40 to 85°C]

ltem		Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		A0,	tah6		0	-	ns
Address setup time		WR	tAW6		0	_	
System cycle time			tCYC6		500	_	
Enable	width	E	tewhw		100	_	
HIGH pulse width	Read		tewhr		200	-	
Enable	width		tewlw		100	-	
LOW pulse width	Read		tEWLR		100	_	
Data setup time		D7 to D0	tDS6		70	_	
Data hold time			tDH6		0	-	
Access time			tACC6	CL=100pF	_	180	
Output disable time			tOH6		10	100	

Table 29

[VDD=1.8V to 2.7V, Ta=-40 to 85°C]


ltem		Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		A0,	tAH6		0	-	ns
Address setup time		WR	tAW6		0	_	
System cycle time			tCYC6		1000	-	
Enable	width	E	tewhw		150	_	
HIGH pulse width	Read		tewhr		300	-	
Enable	width		tewlw		150	-	
LOW pulse width	Read		tewlr		150	_	
Data setup time		D7 to D0	tDS6		120	-	
Data hold time			tdh6		0	-	
Access time			tACC6	CL=100pF	_	260	
Output disable time			tOH6		10	200	

* 1. The input signal rise time and fall time (tr, tf) is specified at 15ns or less. When the system cycle time is extremely fast, it is specified by (tr, tf) \geq (tcyc6-tewhw-tewlw) or (tr, tf) \geq (tcyc6-tewhR-tewlR). * 2. Every timing is specified on the basis of 20% and 80% of VDD.

* 3. tewnw and tewn are specified by the overlap period in which \overline{CS} is "0" and E is "1".

* 4. Timing of A₀ is determined by the overlap period in which \overline{CS} is LOW and E is HIGH.

Serial interface

Table 30 [VDD=2.7V to 3.6V, Ta=-				6V, Ta=–4	0 to 85°C]	
Parameter	Signal	Symbol	Condition	Min.	Max.	Units
Serial clock cycle	SCL	tscyc		125	_	ns
Serial clock HIGH pulse width		tshw		50	_	
Serial clock LOW pulse width		tsLw		50	_	
Address setup time	A0	tsas		75	_	
Address hold time		t SAH		75	_	
Data setup time	SI	tsds		50	_	
Data hold time		tSDH		50	-	
CS serial clock time	CS	tcss		75	_	
		tсsн		75	-	

Table 31	[VDD=1.8V to 2.7V, Ta=-40 to 85°C					
Parameter	Signal	Symbol	Condition	Min.	Max.	Units
Serial clock cycle	SCL	tscyc		200	_	ns
Serial clock HIGH pulse width		tshw		75	_	
Serial clock LOW pulse width		tsLw		75	_	
Address setup time	A0	tsas		75	_	
Address hold time		tsah		75	_	
Data setup time	SI	tsds		50	_	
Data hold time		tSDH		50	_	
CS serial clock time	CS	tcss		100	_	
		tcsн		100	_	

Note : 1. The input Signal rise and fall times must be with in 15ns.

2. Every timing is specified on the basis of 20% and 80% of VDD.

Reset timing

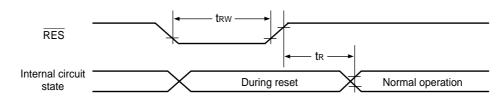


Figure 25

Table 32

[VDD=2.7V to 3.6V, Ta=-40 to 85°C]

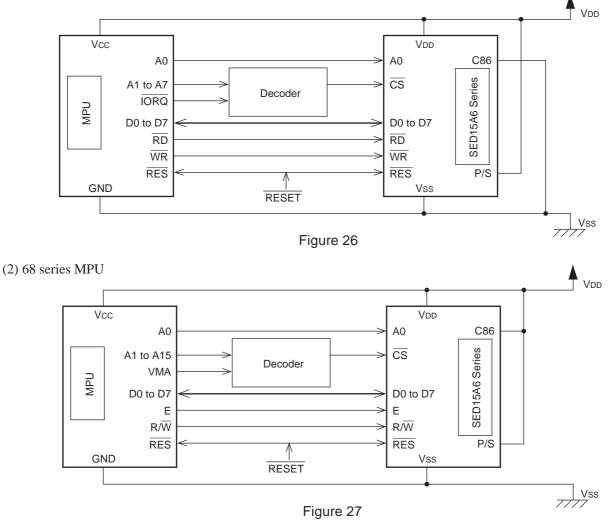
Parameter	Signal	Symbol	Condition	Min.	Max.	Units
Reset time		tR		-	1000	ns
Reset LOW pulse width	RES	tRW		1000	_	

Table 33

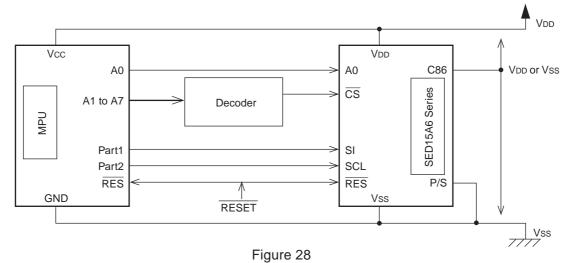
[VDD=1.8V to 2.7V, Ta=-40 to 85°C]

Parameter	Signal	Symbol	Condition	Min.	Max.	Units
Reset time		tR		_	1500	ns
Reset LOW pulse width	RES	trw		1500	_	

Note: 1. The input Signal rise and fall times must be with in 15ns.


2. Every timing is specified on the basis of 20% and 80% of VDD.

12. MPU INTERFACE (EXAMPLES)


The SED15A6 series can be directly connected to the 80 series MPU or 68 series MPU. Adding a serial interface allows you to drive the SED15A6 with less number of signal lines.

After initialization is completed from the $\overline{\text{RES}}$ pin, make sure that respective input pins on the SED15A6 series are normally controlled.

(1) 80 series MPU

(3) Serial interface

