## 3. SED1606

## Dot Matrix LCD Segment Driver

OVERVIEW ..... 3-1
FEATURES ..... 3-1
BLOCK DIAGRAM ..... 3-2
PIN DESCRIPTION ..... 3-3
PAD LAYOUT AND COORDINATES ..... 3-4
Au bump specification [reference values] ..... 3-4
PIN LAYOUT ..... 3-6
FUNCTIONAL DESCRIPTION ..... 3-7
Enable shift registor ..... 3-7
Data registor ..... 3-7
Latch ..... 3-7
Level shifter ..... 3-7
LCD driver ..... 3-7
TIMING CHART ..... 3-8
When the duty is $1 / 200$ (Reference Example) ..... 3-8
ABSOLUTE MAXIMUM RATINGS ..... 3-9
ELECTRICAL CHARACTERISTICS ..... 3-10
DC characteristics ..... 3-10
AC CHARACTERISTICS ..... 3-11
Input timing characteristics ..... 3-11
Output timing characteristics ..... 3-12
LCD DRIVE POWER ..... 3-13
Each voltage level forming method ..... 3-13
Note in power ON/OFF ..... 3-13
Be sure to follow the power ON/OFF squence as shown below ..... 3-13
TYPICAL CIRCUIT DIAGRAM ..... 3-14
Configuration Drawing of Large Screen LCD ..... 3-14

## OVERVIEW

The SED1606 is an 80 output segment (column) driver which is suitable for driving a very high capacity dot-matrix LCD panels. It is intended to be used in conjunction with the SED1670/72 as a pair.
The SED1606 is featured in a high quality of picture in LCD display. It employs a high-speed enable chain system which is favorable to a low-power driving. Allowed to be operated with a low voltage in the logic system power supply, it can meet a wide range of applications.

## FEATURES

- Number of LCD drive output segments: 80
- Low current consumption
- Low voltage operation: -2.7 V (Max.)
- Wide range of LCD drive voltages: -8 V to -28 V
- High-speed and low-power data transfer enabled by means of a 4-bit bus and chain enable support
Shift clock frequency: 6.5 MHZ (at -2.7 V )
10.0 MHZ (at -4.5 V )
- Selectable pin output shift direction
- Adjustable offset bias of LCD power to a VdD level
- Logic system power supply : -2.7 V to -5.5 V
- Chip packaging

SED1606D0A (AL-pad die form)
SED1606D0B (Au bump die form)
SED1606D1A (AL-pad die form)
SED1606D1b (Au bump die form)
PKG SED1606F0A (QFP5-100 pin)

- No radial rays countermeasure taken in designing


## BLOCK DIAGRAM


*1 Dummy terminal NC when SED1606D0* is used.
DSPOFF terminal when SED1606D1* is used

## PIN DESCRIPTION

| Pin name | I/O | Function | Number of pins |
| :---: | :---: | :---: | :---: |
| O0 ~ O79 | 0 | Segment (column) output for LCD driving The output changes at the LP falling edge. | 80 |
| D0 ~ D3 | I | Display data input | 4 |
| XSCL | I | Display data shift clock input (Falling edge trigger) | 1 |
| LP | 1 | Display data latch pulse input (Falling edge trigger) | 1 |
| EIO1, EIO2 | I/O | Enable input/output <br> To be set to input or output according to the SHL input level. The output is reset by the LP input. Upon the end of fetching of 80-bit data, the system starts up automatically to "H". | 2 |
| SHL | 1 | Shift direction selection and EIO pin I/O control input When data is input to (D3, D2 ... D0 ) pins sequentially in order of (a3, a2, $\mathrm{a} 1, \mathrm{a} 0)$, (b3, b2, b1, b0) ... (t3, t2, t1, t0), the relationship between the data and segment output becomes as shown in the table below: <br> (Note) The relationship between the data and segment output is determined irrespective of the number of shift clock inputs. | 1 |
| FR | 1 | LCD drive output AC converted signal input | 1 |
| $\overline{\text { DSPOFF }}$ | 1 | Force input of blank V0 level is forcibly set by entering " $\llcorner$ " level (available with SED1606D1* alone). | 1 |
| Vdd, Vss | Power supply | Logic power supply VdD: 0 V Vss: -2.7 V to -5.5 V | 2 |
| $\begin{gathered} \text { V0, V2, } \\ \text { V3, V5 } \\ \text { *1 } \end{gathered}$ | Power supply | LCD drive circuit power supply $\begin{aligned} & \text { VDD: } 0 \mathrm{~V} \mathrm{~V}_{5}:-8 \mathrm{~V} \text { to }-28 \mathrm{~V} \\ & \text { VDD }^{\mathrm{V}} \mathrm{~V}_{0} \geq \mathrm{V}_{2} \geq 6 / 9 \mathrm{~V}_{5} \\ & 3 / 9 \mathrm{~V}_{5} \geq \mathrm{V}_{3} \geq \mathrm{V}_{5} \end{aligned}$ <br> When used at a same potential, $\mathrm{V}_{0}$ and VDD are used by grounding them close to the IC chip. | 4 |

*1 Be sure to connect $\mathrm{V}_{0}$ to $\mathrm{V}_{5}$ to their LCD power, respectively.
Total: 100
SED1606D0* (including four NC'4) SED1606D1* (including four NC'3)

## PAD LAYOUT AND COORDINATES



## Au bump specifications [Reference values]

Bump size: $\quad 117 \mu \mathrm{~m} \times 109 \mu \mathrm{~m} \pm 20 \mathrm{um}$
Bump height: $\quad 17 \mu \mathrm{~m}$ to $28 \mu \mathrm{~m}$ (Details shall be stipulated in the delivery specification.)

## AL-pad die form

Pad Opening $\quad 87 \times 76 \mu \mathrm{~m}$

Unit ( $\mu \mathrm{m}$ )

| PAD |  | Actual dimensions |  |
| :---: | :---: | :---: | :---: |
| NO. | NAME | X | $Y$ |
| 1 | O0 | -2227 | -1578 |
| 2 | O1 | -2073 |  |
| 3 | O2 | -1920 |  |
| 4 | O3 | -1766 |  |
| 5 | O4 | -1612 |  |
| 6 | O5 | -1459 |  |
| 7 | O6 | -1305 |  |
| 8 | O7 | -1152 |  |
| 9 | O8 | -998 |  |
| 10 | O9 | -845 |  |
| 11 | O10 | -691 |  |
| 12 | O10 | -537 |  |
| 13 | O12 | -384 |  |
| 14 | O13 | -230 |  |
| 15 | O14 | -76 |  |
| 16 | O15 | 77 |  |
| 17 | O16 | 231 |  |
| 18 | O17 | 384 |  |
| 19 | O18 | 538 |  |
| 20 | O19 | 692 |  |
| 21 | O20 | 845 |  |
| 22 | O21 | 999 |  |
| 23 | O22 | 1152 |  |
| 24 | O23 | 1306 |  |
| 25 | O24 | 1460 |  |
| 26 | O25 | 1613 |  |
| 27 | O26 | 1767 |  |
| 28 | O27 | 1921 |  |
| 29 | O28 | 2074 |  |
| 30 | O29 | 2228 |  |
| 31 | O30 | 2381 |  |
| 32 | O31 | 2622 | -1346 |
| 33 | O32 |  | -1188 |
| 34 | O33 | $\vee$ | -1029 |


| PAD |  | Actual dimensions |  |
| :---: | :---: | :---: | :---: |
| NO. | NAME | X | Y |
| 35 | O34 | 2622 | -871 |
| 36 | O35 |  | -713 |
| 37 | 036 |  | -554 |
| 38 | 037 |  | -396 |
| 39 | 038 |  | -238 |
| 40 | 039 |  | -79 |
| 41 | 040 |  | 79 |
| 42 | 041 |  | 238 |
| 43 | 042 |  | 396 |
| 44 | 043 |  | 554 |
| 45 | 044 |  | 713 |
| 46 | 045 |  | 871 |
| 47 | 046 |  | 1029 |
| 48 | 047 |  | 1188 |
| 49 | 048 | $\checkmark$ | 1346 |
| 50 | 049 | 2381 | 1578 |
| 51 | 050 | 2228 |  |
| 52 | 051 | 2074 |  |
| 53 | 052 | 1921 |  |
| 54 | 053 | 1767 |  |
| 55 | 051 | 1613 |  |
| 56 | 055 | 1460 |  |
| 57 | 056 | 1306 |  |
| 58 | 057 | 1152 |  |
| 59 | 058 | 999 |  |
| 60 | 059 | 845 |  |
| 61 | 060 | 692 |  |
| 62 | 061 | 538 |  |
| 63 | 062 | 384 |  |
| 64 | 063 | 231 |  |
| 65 | 064 | 77 |  |
| 66 | 065 | -76 |  |
| 67 | 066 | -230 |  |
| 68 | 067 | -384 | $V$ |


| PAD |  | Actual dimensions |  |
| :---: | :---: | :---: | :---: |
| NO. | NAME | X | Y |
| 69 | O68 | -537 | 1578 |
| 70 | O69 | -691 |  |
| 71 | O70 | -846 |  |
| 72 | O71 | -998 |  |
| 73 | O72 | -1152 |  |
| 74 | O73 | -1305 |  |
| 75 | O74 | -1459 |  |
| 76 | O75 | -1613 |  |
| 77 | O76 | -1766 |  |
| 78 | O77 | -1920 |  |
| 79 | O78 | -2073 |  |
| 80 | O79 | -2227 |  |
| 81 | EIO2 | -2381 | $\square$ |
| 82 | D0 | -2622 | 1346 |
| 83 | D1 |  | 1192 |
| 84 | D2 |  | 1039 |
| 85 | D3 |  | 885 |
| 86 | Dummy |  | 732 |
| 87 | Dummy |  | 578 |
| 88 | Dummy |  | 424 |
| 89 | $* 1$ |  | 271 |
| 90 | VDD |  | 106 |
| 91 | Vss |  | -58 |
| 92 | V0 |  | -224 |
| 93 | V2 |  | -389 |
| 94 | V3 |  | -553 |
| 95 | V5 | $\downarrow$ | -718 |
| 96 | SHL | -2611 | -885 |
| 97 | XSCL |  | -1039 |
| 98 | LP |  | -1192 |
| 99 | FR | $\checkmark$ | -1346 |
| 100 | EIO1 | -2381 | -1578 |
|  |  |  |  |
|  |  |  |  |

*1: Pad No. 89 is dummy when SED1606D0* is used. It will be DSPOFF with SED1606D1*.

## PIN LAYOUT

Package Type: QFP-5 100pin


| PIN No. | NAME |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | O0 | 21 | O20 | 41 | O40 | 61 | O60 | 81 | EIO2 |
| 2 | O1 | 22 | O21 | 42 | O41 | 62 | O61 | 82 | D0 |
| 3 | O2 | 23 | O22 | 43 | O42 | 63 | O62 | 83 | D1 |
| 4 | O3 | 24 | O23 | 44 | O43 | 64 | O63 | 84 | D2 |
| 5 | O4 | 25 | O24 | 45 | O44 | 65 | O64 | 85 | D3 |
| 6 | O5 | 26 | O25 | 46 | O45 | 66 | O65 | 86 | NC |
| 7 | O6 | 27 | O26 | 47 | O46 | 67 | O66 | 87 | NC |
| 8 | O7 | 28 | O27 | 48 | O47 | 68 | O67 | 88 | NC |
| 9 | O8 | 29 | O28 | 49 | O48 | 69 | O68 | 89 | ${ }^{* 1}$ |
| 10 | O9 | 30 | O29 | 50 | O49 | 70 | O69 | 90 | VDD |
| 11 | O10 | 31 | O30 | 51 | O50 | 71 | O70 | 91 | Vss |
| 12 | O11 | 32 | O31 | 52 | O51 | 72 | O71 | 92 | V0 |
| 13 | O12 | 33 | O32 | 53 | O52 | 73 | O72 | 93 | V2 |
| 14 | O13 | 34 | O33 | 54 | O53 | 74 | O73 | 94 | V3 |
| 15 | O14 | 35 | O34 | 55 | O54 | 75 | O74 | 95 | V5 |
| 16 | O15 | 36 | O35 | 56 | O55 | 76 | O75 | 96 | SHL |
| 17 | O16 | 37 | O36 | 57 | O56 | 77 | O76 | 97 | XSCL |
| 18 | O17 | 38 | O37 | 58 | O57 | 78 | O77 | 98 | LP |
| 19 | O18 | 39 | O38 | 59 | O58 | 79 | O78 | 99 | FR |
| 20 | O19 | 40 | O39 | 60 | O59 | 80 | O79 | 100 | EIO1 |

*1: Pad No. 89 is dummy when SED1606D0* is used. It will be DSPOFF with SED1606D1*.

## FUNCTIONAL DESCRIPTION

## Enable shift register

This is a bidirectional shift register with which the shift direction is selected by SHL input. The output of this shift register is used to store the data bus signals to data register.
When the enable signal is in the disable status, the internal clock signal and data bus are fixed to "L" and the system is made into the power save mode.
When using two or more segment drivers, connect the EIO pin of each driver in a cascade arrangement and the EIO pin of the leading driver to "VDD".
Since the enable controller circuit automatically detects that the data for 80 bits have been fetched thoroughly and then transfers the enable signal to the controller, it is not necessary to provide the control signal using the control LSI.

## Data register

This is a register used to convert the data bus signal into serial or parallel signal through the enable shift register output. Consequently, the relationship between the serial display data and segment output is determined irrespective of the number of shift clock inputs.

## Latch

This latch is used to fetch the content of data register at the LP falling edge trigger and to send its output to the level shifter.

## Level shifter

This is a level interface circuit used to convert the signal voltage level from the logic system level to LCD drive level.

## LCD driver

This driver outputs the LCD drive voltage.
The relationship among the data bus signal, AC converted signal FR and segment output voltage is as shown in the table below:
(SED1606D0*)

| Data bus <br> signal | FR | O output voltage |
| :---: | :---: | :---: |
| $H$ | H | $\mathrm{V}_{0}$ |
|  | L | $\mathrm{~V}_{5}$ |
| L | H | $\mathrm{V}_{2}$ |
|  | L | $\mathrm{~V}_{3}$ |

(SED1606D1*)

| $\overline{\text { DSPOFF }}$ | Data bus <br> signal | FR | O output voltage |
| :---: | :---: | :---: | :---: |
| $H$ | $H$ | $H$ | $\mathrm{~V}_{0}$ |
|  | H | L | $\mathrm{V}_{5}$ |
| H | L | H | $\mathrm{V}_{2}$ |
|  | L | L | $\mathrm{~V}_{3}$ |
| L | - | - | $\mathrm{V}_{0}$ |

## TIMING CHART

When the duty is $\mathbf{1 / 2 0 0}$ (Reference Example)

(1) to (3) stand for a cascaade No. of driver.


When SED1606D1* is used:
The driver output is forcibly switched to V0 output upon switching of DSPOFF

## ABSOLUTE MAXIMUM RATINGS

VdD=0V

| Parameter | Symbol | Rating | Unit |
| :--- | :---: | :---: | :---: |
| Power voltage (1) | Vss | -7.0 to +0.3 | V |
| Power voltage (2) | $\mathrm{V}_{5}$ | -30.0 to +0.3 | V |
| Power voltage (3) | $\mathrm{V}_{0}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ | $\mathrm{~V}_{5}-0.3$ to $\mathrm{VDD}+0.3$ | V |
| Input voltage | V I | $\mathrm{Vss}-0.3$ to $\mathrm{VDD}+0.3$ | V |
| Output voltage | Vo | $\mathrm{Vss}-0.3$ to $\mathrm{VDD}+0.3$ | V |
| EIO output current | lo | 20 | mA |
| Operating temperature | Topr | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storing temperature 1 | Tstg 1 | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |

Notes:

1. The storage temperature 1 stipulates the temperature by unit of a chip.
2. The voltage of $V 0, V_{2}$ and $V 3$ must always satisfy the condition of $V D D \geq V_{0} \geq V_{2} \geq V_{3} \geq V_{5}$.

3. Floating of the logic system power during while the LCD drive system power is applied, or exceeding VSS $=-2.6 \mathrm{~V}$ can cause permanent damage to the LSI. Functional operation under these conditions is not implied.
Care should be taken to the power supply sequence especially in the system power ON or OFF.

## ELECTRICAL CHARACTERISTICS

## DC characteristics

Unless otherwise specified, $\mathrm{VDD}=\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{Vss}=-5.0 \mathrm{~V} \pm 10 \%$ and $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$.

| Parameter | Symbol | Condition |  | Min. | Typ. | Max. | Unit | Applicable pin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply voltage (1) | Vss | - |  | -5.5 | -5.0 | -2.7 | V | Vss |
| Recommended operating voltage | V5 | $\mathrm{V} s \mathrm{~s}=-2.7$ to -5.5 V |  | -28.0 | - | -12.0 | V | V5 |
| Operation enable voltage | $V_{5}$ | Function |  | - | - | -8.0 | V | V5 |
| Supply voltage (2) | Vo | Recommended value |  | VDD-2.5 | - | VDD | V | Vo |
| Supply voltage (3) | $\mathrm{V}_{2}$ | Recommended value |  | $3 / 9 \mathrm{~V}_{5}$ | - | - | V | $\mathrm{V}_{2}$ |
| Supply voltage (4) | V3 | Recommended value |  | $\mathrm{V}_{5}$ | - | 6/9V5 | V | V3 |
| " H " input voltage | VIH | $\mathrm{Vss}=-2.7$ to -5.5 V |  | 0.2Vss | - | - | V | EIO1, EIO2, FR, |
| "L" input voltage | VIL |  |  | - | - | 0.8 Vss | V | SHL, LP |
| "H" output voltage | VOH | Vss $=-2.7$ to -5.5 V | $\mathrm{IOH}=-0.6 \mathrm{~mA}$ | Vdd-0.4 | - | - | V | EIO1, EIO2 |
| "L" output voltage | Vol |  | $\mathrm{loL}=0.6 \mathrm{~mA}$ | - | - | Vss+0.4 | V |  |
| Input leakage current | ILI | $\mathrm{Vss} \leq \mathrm{VIN} \leq \mathrm{VdD}$ |  | - | - | 2.0 | $\mu \mathrm{A}$ | D0 to D3, LP, FR XSCL, SHL |
| Input/output leakage current | ILI/O | $\mathrm{VSS} \leq \mathrm{VIN} \leq$ VdD |  | - | - | 5.0 | $\mu \mathrm{A}$ | ElO1, ElO2 |
| Static current | Iss | $\begin{aligned} & \text { V5 }=-28.0 \text { to }-14.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IH }}=\mathrm{V} \text { DD, } \mathrm{V} \text { IL }=\mathrm{V}_{\text {ss }} \end{aligned}$ |  | - | - | 25 | $\mu \mathrm{A}$ | Vss |
| Output resistance | Rseg | $\begin{aligned} & \Delta \mathrm{VON}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{5}=-20.0 \mathrm{~V} \quad \mathrm{~V}_{3}=13 / 15 \cdot \mathrm{~V}_{5} \\ & \mathrm{~V}_{2}=2 / 15 \cdot \mathrm{~V}_{5} \quad \mathrm{~V}_{0}=\mathrm{VDD} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$ |  | - | 1.2 | 1.6 | $\mathrm{K} \Omega$ | O0 to O79 |
| Average operating current consumption (1) | Iss | $\begin{aligned} & \text { VSS }=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{VDD}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{VSS}, \mathrm{f}_{\mathrm{XSCL}}=2.69 \mathrm{MHz} \\ & \mathrm{fLP}^{2}=16.8 \mathrm{KHz}, \mathrm{f}_{\mathrm{FR}}=70 \mathrm{~Hz} \end{aligned}$ <br> Input data: Dice display at no load $\mathrm{Vss}=-3.0 \mathrm{~V}$ <br> Other conditions are the same as Vss $=-5 \mathrm{~V}$ |  | - - - | $\begin{gathered} 0.10 \\ ---- \\ 0.07 \end{gathered}$ | $\begin{gathered} 0.2 \\ --- \\ 0.15 \end{gathered}$ | mA | Vss |
| Average operating current consumption (2) | I5 | $\begin{aligned} & \text { Vss }=-5.0 \mathrm{~V}, \\ & \mathrm{~V}_{0}=0.0 \mathrm{~V}, \mathrm{~V}_{2}=-9.3 \mathrm{~V} \\ & \mathrm{~V}_{3}=-18.6 \mathrm{~V}, \mathrm{~V}_{5}=-28.0 \mathrm{~V} \end{aligned}$ <br> Other conditions are the same as in the item of Iss. |  | - | 0.05 | 0.08 | mA | V5 |
| Input pin capacitance | Cl | $\begin{aligned} & \text { Freq. }=1 \mathrm{MHz} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \text { By unit of a chip } \end{aligned}$ |  | - | - | 8 | pF | $\begin{aligned} & \text { D0 to D3, LP, FR } \\ & \text { XSCL, SHL } \end{aligned}$ |
| Input/output pin capacitance | Cl/o |  |  | - | - | 15 | pF | EIO1, EIO2 |

## AC CHARACTERISTICS

Input timing characteristics


Vss $=-5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

| Parameter | Symbol | Condition | Min. | Max. | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| XSCL period | tc | - | 100 | - | ns |
| XSCL "H" pulsewidth | twCH | - | 30 | - | ns |
| XSCL "L" pulsewidth | twCL | - | 30 | - | ns |
| Data setup time | tDS | - | 20 | - | ns |
| Data hold time | tDH | - | 10 | - | ns |
| XSCL-rise to LP-rise time | tLD | - | 0 | - | ns |
| LP-fall to XSCL-fall time | tLH | - | 40 | - | ns |
| LP "H" pulsewidth | twLH | *3 | 40 | - | ns |
| Allowable FR delay time | tDF | - | -900 | +900 | ns |
| EIO setup time | tsue | - | 35 | - | ns |

Vss $=-4.5 \mathrm{~V}$ to $-2.7 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

| Parameter | Symbol | Condition | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| XSCL period | tc | $\mathrm{Vss}=-2.7 \mathrm{~V}$ *1 | 153 | - | ns |
|  |  | $\mathrm{V} s \mathrm{~s}=-3.0 \mathrm{~V}$ *2 | 133 | - |  |
| XSCL "H" pulsewidth | twCH | - | 50 | - | ns |
| XSCL "L" pulsewidth | twCL | - | 50 | - | ns |
| Data setup time | tDs | - | 30 | - | ns |
| Data hold time | tD | - | 15 | - | ns |
| XSCL-rise to LP-rise time | tLD | - | 0 | - | ns |
| LP-fall to XSCL-fall time | tᄂH | $\mathrm{Vss}=-2.7 \mathrm{~V}$ | 75 | - | ns |
|  |  | $\mathrm{Vss}=-3.0 \mathrm{~V}$ | 65 | - |  |
| LP "H" pulsewidth | twLH | $\mathrm{Vss}=-2.7 \mathrm{~V}$ *3 | 75 | - | ns |
|  |  | $\mathrm{Vss}=-3.0 \mathrm{~V}$ * 3 | 65 | - |  |
| Allowable FR delay time | tDF | - | -900 | +900 | ns |
| EIO setup time | tsue | V ss=-2.7V | 60 | - | ns |
|  |  | $\mathrm{Vss}=-3.0 \mathrm{~V}$ | 51 | - |  |

*1 Equivalent to 6.5 MHz
*2 Equivalent to 7.5 MHz
*3 twLH stipulates the time when LP is " H " and XSCL is " L ".
*4 tr and tf of input signal are stipulated by unit of 20 ns .
*5 At a high-speed operation, tr and $\mathrm{tf}=\{\mathrm{tc}-(\mathrm{tdCL}+\mathrm{tsuE})\} / 2$

## Output timing characteristics



VDD $=-5.0 \pm 0.5 \mathrm{~V}, \mathrm{~V}_{5}=-12.0$ to -28.0 V

| Parament | Symbol | Condition | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EIO reset time | ter | $\mathrm{CL=15pF}(\mathrm{EIO})$ | - | 90 | ns |
| EIO output delay time | tDCL |  | - | 55 | ns |
| LP to SEG output delay time | tLSD | CL=100pF (On) | - | 200 | ns |
| FR to SEG output delay time | tFRSD |  | - | 400 | ns |

$\mathrm{V} D=-4.5 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~V}_{5}=-12.0$ to -28.0 V

| Parament | Symbol | Condition |  | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EIO reset time | ter | $\mathrm{CL}=15 \mathrm{pF}$ <br> (EIO) |  | - | 150 | ns |
| EIO output delay time | tocl |  | Vss=-2.7V | - | 88 | ns |
|  |  |  | $\mathrm{Vss}=-3.0 \mathrm{~V}$ | - | 77 | ns |
| LP to SEG output delay time | tLSD | CL=100pF (On) |  | - | 400 | ns |
| FR to SEG output delay time | tFRSD |  |  | - | 800 | ns |

*1 tr and tf of input signal are stipulated by unit of 20 ns .
*2 At a high-speed operation, tr and $\mathrm{tf}=\{\mathrm{tc}-(\mathrm{tDCL}+\mathrm{tSUE})\} / 2$

## LCD DRIVE POWER

## Each voltage level forming method

To obtain each voltage level for LCD driving, it is optimum to divide the resistance of potential between V5 and VDD to drive the LCD using the voltage follower with an operational amplifier. In taking into consideration of such a case using the operational amplifier, the maximum potential level V0 for LCD driving has been made a separate pin from VDD.
When the potential of V0 lowers than that of VDD and the potential difference between the two becomes larger, however, the capacity of LCD drive output driver lowers. To avoid it, use the system with the potential difference of 0 V to 2.5 V between V 0 and VDD.

When no operational amplifier is used, connect V0 and VDD close to the IC chip.
When a series resistance exists in the power supply line of V5 and VDD, a voltage drop of V5 and VDD occurs at the LSI power supply pin, the relationship with the LCD's intermediate potential (VDD $\geq \mathrm{V} 0 \geq \mathrm{V}_{2} \geq \mathrm{V} 3 \geq \mathrm{V} 5$ ) cannot be met, this causing the LSI to be broken down in some cases. When a protection resistor is inserted, it is necessary to stabilize the voltage by capacitance.

## Note in power ON/OFF

Since this LSI is high in the voltage of LCD driving system, when a high voltage is applied to the LCD driving system with the logic system power supply kept floating or above VSS $=-2.6 \mathrm{~V}$, and when the LCD driving signal is output before the applied voltage to the LCD driving system is stabilized, an overcurrent flows and LSI breaks down in some cases.

## Be sure to follow the power ON/OFF sequence as shown below:

At power ON ... Logic system ON $\quad \rightarrow$ LCD driving system ON or simultaneous ON of the both
At power OFF .. LCD driving system OFF $\rightarrow$ Logic system OFF or simultaneous OFF of the both
For a countermeasure to such overcurrent, it is effective to put a high-speed melting fuse or protection resistor in series with the LCD power unit.
It is then required to select the optimum value in the protection resistance according to the capacitance of LC cell.

Until the LCD driver voltage stabilizes. It is recommended to set the LCD driver output potential to V0 using the display off function (DSPOFF).


## TYPICAL CIRCUIT DIAGRAM

Configuration Drawing of Large Screen LCD


