8. SED1651

Dot Matrix LCD Common Driver

OVERVIEW 8-1
FEATURES 8-1
BLOCK DIAGRAM 8-2
PIN DESCRIPTION 8-3
PAD LAYOUT AND COORDINATES 8-4
AL pad specifications (SED1651D0A) 8-4
FUNCTIONAL DESCRIPTION 8-6
Shift registor 8-6
Level shifter 8-6
LCD driver 8-6
TIMING CHART 8-7
ABSOLUTE MAXIMUM RATINGS 8-8
ELECTRICAL CHARACTERISTICS 8-9
DC characteristics 8-9
AC CHARACTERISTICS 8-10
Input timing characteristics 8-10
Output timing characteristics 8-11
LCD DRIVE POWER 8-12
Each voltage level forming method 8-12
Note in power ON/OFF 8-12
Be sure to follow the power ON/OFF squence as shown below 8-12
TYPICAL CIRCUIT DIAGRAM 8-13
Configuration Drawing of Large Screen LCD 8-13

OVERVIEW

The SED1651 is a 100 output low-power resistance common)row) driver which is suitable for driving a very high capacity dotmatrix LCD panels. It is intended to be used in conjunction with the SED1648 as a pair.
Since the SED1651 is so designed to drive LCD's over a wide range of voltages, and also the maximum potential Vo of its LCD driving bias voltages is isolated from VDD to allow the LCD driving bias voltages to be externally generated optionally with a high accuracy, it can cope with a wide range of LCD panels.
Owing to its pad layout which can minimize its PC boards mounting space in addition to its selectable bidirectional driver output sequence and as many as 100 LCD output segments of high pressure resistance and low output impedance, it is possible to obtain the highest driver working efficiency for the $1 / 200$ duty panel.

FEATURES

- Number of LCD drive output segments: 100
- Super slim chip configuration
- Common output ON resistance: 750Ω (Typ.)
- Display capacity ... Possible to display 640×480 dots.
- Selectable pin output shift direction
- No bias display OFF function
- Adjustable offset bias of LCD power to VDD level
- Wide range of LCD drive voltages: -8 V to -28 V (Absolute maximum rated voltage: -30 V)
- Logic system power supply: -2.7 V to -5.5 V
- Chip packaging SED1651D0A (AL-pad die form)
- No radial rays countermeasure taken in designing

BLOCK DIAGRAM

PIN DESCRIPTION

PAD LAYOUT AND COORDINATES

1) AL pad specifications (SED1651D0A)

Pad a Opening (X, Y) $\quad 110 \times 110 \mu \mathrm{~m}$
PAD No 30 to 109
Pad b Opening (X, Y) $110 \times 110 \mu \mathrm{~m}$
PAD No 20 to 29, 110 to 119
Pad c Opening (X, Y) $110 \times 110 \mu \mathrm{~m} \quad$ PAD No 1 to 19

Unit ($\mu \mathrm{m}$)

PAD		Actual dimensions	
NO.	NAME	X	Y
1	DIO2	-5985	-709
2	vo	-5510	
3	V1	-5035	
4	V4	-4560	
5	V5	-4038	
6	Vss	-3164	
7	SEL	-2280	
8	SHL	-1767	
9	DI3	-1064	
10	YSCL	-181	
11	Vdo	770	
12	$\overline{\text { DSPOFF }}$	1283	
13	FR	2176	
14	Vss	2879	
15	V5	3753	
16	V4	4560	
17	V1	5035	
18	Vo	5510	
19	DIO1	5985	
20	O0	6560	-610
21	01	6430	-466
22	O2	6560	-321
23	O3	6430	-177
24	04	6560	-32
25	O5	6430	112
26	06	6560	257
27	07	6430	401
28	O8	6560	545
29	09	6430	690
30	O10	6079	727
31	011	5925	
32	012	5771	
33	013	5617	
34	014	5463	
35	015	5310	
36	016	5156	
37	017	5002	
38	018	4848	
39	019	4694	
40	O20	4540	
41	O21	4386	
42	022	4232	

PAD		Actual dimensions	
NO.	NAME	X	Y
43	O23	4078	727
44	O24	3924	
45	O25	3771	
46	026	3617	
47	027	3463	
48	028	3309	
49	029	3155	
50	O30	3001	
51	031	2847	
52	O32	2693	
53	033	2539	
54	O34	2385	
55	O35	2232	
56	036	2078	
57	037	1924	
58	O38	1770	
59	039	1616	
60	O40	1462	
61	041	1308	
62	042	1154	
63	043	1000	
64	044	846	
65	045	693	
66	046	539	
67	047	385	
68	048	231	
69	049	77	
70	050	-77	
71	051	-231	
72	052	-385	
73	053	-539	
74	054	-693	
75	055	-846	
76	055	-1000	
77	057	-1154	
78	058	-1308	
79	059	-1462	
80	060	-1616	
81	061	-1770	
82	062	-1924	
83	063	-2078	
84	064	-2232	

PAD		Actual dimensions	
NO.	NAME	X	Y
85	065	-2385	727
86	066	-2539	
87	067	-2693	
88	068	-2847	
89	069	-3001	
90	070	-3155	
91	071	-3309	
92	072	-3463	
93	073	-3617	
94	074	-3771	
95	078	-3924	
96	076	-4078	
97	077	-4232	
98	078	-4386	
99	079	-4540	
100	080	-4694	
101	081	-4848	
102	082	-5002	
103	083	-5156	
104	084	-5310	
105	085	-5463	
106	086	-5617	
107	087	-5771	
108	088	-5925	
109	089	-6079	1
110	090	-6430	690
111	091	-6560	545
112	092	-6430	401
113	093	-6560	257
114	094	-6430	112
115	095	-6560	-32
116	096	-6430	-177
117	097	-6560	-321
118	098	-6430	-466
119	099	-6560	-610

FUNCTIONAL DESCRIPTION

Shift register

This is a bidirectional shift register to transfer common data.
Being a 50×2 bits configuration, this register can select 50×2 bits or 100 bits according to the status of SEL.
When the 50×2 bits configuration is selected, the input of the 50 -bit shift register becomes D13.

Level shifter

This is a level interface circuit used to convert the signal voltage level from the logic system level to LCD drive level.

LCD driver

This driver outputs the LCD drive voltage.
The relationship among the display blanking signal $\overline{\mathrm{DSPOFF}}$, contents of shift register, AC converted signal FR and On output voltage is as shown in the table below:

DSPOFF	Content of shift register	FR	O output voltage	
H	H	H	V_{5}	(Select level)
		L	V_{0}	
	L	H	V_{1}	(Non-select
		V_{4}	level)	

TIMING CHART

SHL="L"
1/200 Duty

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V} D \mathrm{D}=0 \mathrm{~V}$

Parameter	Symbol	Rating	Unit
Supply voltage (1)	Vss	-7.0 to +0.3	V
Supply voltage (2)	V_{5}	-30.0 to +0.3	V
Supply voltage (3)	$\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{4}$	$\mathrm{~V}_{5}-0.3$ to +0.3	V
Input voltage	V I	$\mathrm{Vss}-0.3$ to +0.3	V
Output voltage	Vo	$\mathrm{Vss}-0.3$ to +0.3	V
Output current (1)	lo	20	mA
Output current (2)	locom	20	mA
Operating temperature	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$
Storing temperature 1	Tstg 1	-65 to +150	${ }^{\circ} \mathrm{C}$

Notes*

1. The voltage of $\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{4}$ and V_{5} must always satisfy the condition of $\mathrm{VDD}_{\mathrm{D}} \geq \mathrm{V}_{0} \geq \mathrm{V}_{1} \geq \mathrm{V}_{4} \geq$ V5.

2. Floating of the logic system power during while the LCD drive system power is applied, or exceeding VSS $=-2.6 \mathrm{~V}$ or less can cause permanent damage to the LSI. Functional operation under these conditions is not implied.
Care should be taken to the power supply sequence especially in the system power ON or OFF.

ELECTRICAL CHARACTERISTICS

DC characteristics

Unless otherwise specified, $\mathrm{VdD}=\mathrm{V} 0=0 \mathrm{~V}, \mathrm{Vss}=-5.5 \mathrm{~V}-2.7 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$.

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Applicable pin
Supply voltage (1)	Vss	-	-5.5	-5.0	-2.7	V	Vss
Recommended operating voltage	V5	-	-28.0	-	-12.0	V	V5
Operation enable voltage	V5	Functional operation	-	-	-8.0	V	V_{5}
Supply voltage (2)	Vo	-	2.5	-	0	V	Vo
Supply voltage (3)	V_{1}	-	2/9.V5	-	VDD	V	V_{1}
Supply voltage (4)	V_{4}	-	V_{5}	-	7/9.V5	V	V_{4}
" H " input voltage	VIH	-	0.2.Vss	-	-	V	DIO1, DIO2, FR,
"L" input voltage	VIL	-	-	-	$0.8 \cdot \mathrm{Vss}$	V	DSPOFF, SEL
"H" output voltage	VOH	$\mathrm{IOH}=-0.3 \mathrm{~mA}$	Vdd-0.4	-	-	V	DIO1, DIO2
"L" output voltage	Vol	$\mathrm{IOL}=0.3 \mathrm{~mA}$	-	-	Vss+0.4	V	DIO1, DIO2
Input leakage current	ILI	$\mathrm{Vss} \leq \mathrm{VIN} \leq 0 \mathrm{~V}$	-	-	2.0	$\mu \mathrm{A}$	YSCL, SHL, DI3 DSPOFF, FR, SEL
Input/output leakage current	ILI/O	$\mathrm{Vss} \leq \mathrm{Vin} \leq 0 \mathrm{~V}$	-	-	5.0	$\mu \mathrm{A}$	DIO1, DIO2
Static current	IdDS	$\begin{aligned} & \mathrm{V}_{5}=-12.0 \sim-28.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\text {IL }}=\mathrm{V}_{\mathrm{SS}} \end{aligned}$	-	-	25	$\mu \mathrm{A}$	Vdd
Output resistance	Rсом	$\begin{aligned} & \Delta \mathrm{V} O N=0.5 \mathrm{~V} \\ & \mathrm{~V}_{0}=\mathrm{VDD}, \mathrm{~V}_{1}=-1.5 \mathrm{~V} \\ & \mathrm{~V}_{4}=-18.5 \mathrm{~V} \quad \mathrm{~V}_{5}=-20.0 \mathrm{~V} \end{aligned}$	-	0.75	1.0	$\mathrm{K} \Omega$	O0~099
Average operating current consumption (1)	Iss1	V ss $=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V} \mathrm{DD}$ VIL=Vss, fyscl=12KHz Frame frequency $=60 \mathrm{~Hz}$ Input data: 1/200 $\mathrm{Ta}=25^{\circ} \mathrm{C}$? Vss=-3.0V Other conditions are the same as $\mathrm{Vss}=-5.0 \mathrm{~V}$	- -- - -	7	15 10	$\mu \mathrm{A}$	Vss
Average operating current consumption (2)	Iss2	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=-5.0 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}, \\ & \mathrm{~V}_{1}=1.5 \mathrm{~V}, \mathrm{~V}_{4}=18.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{E}}=\mathrm{V} 5=-20.0 \mathrm{~V} \end{aligned}$ Other conditions are the same as in the item of ISS 1.	-	7	15	$\mu \mathrm{A}$	V5
Input pin capacitance	Cl	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-	-	8	pF	$\begin{aligned} & \text { YSCL, SHL, } \\ & \text { DSPOFF, FR, } \\ & \text { DI3, SEL } \end{aligned}$
Input/output pin capacitance	Cl/o		-	-	15	pF	DIO1, DIO2

AC CHARACTERISTICS

Input timing characteristics

Vss $=-5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Min.	Max.	Unit
Input signal rise time	tr	-	-	50	ns
Input signal fall time	tf	-	-	50	ns
YSCL period	tcCL	-	500	-	ns
YSCL "H" pulsewidth	twCLH	-	70	-	ns
YSCL "L" pulsewidth	twCLL	-	330	-	ns
Data setup time	tDS	-	100	-	ns
Data hold time	tDH	-	10	-	ns
Allowable FR delay time	tDFR	-	-300	300	ns

Vss $=-5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Min.	Max.	Unit
Input signal rise time	tr	-	-	50	ns
Input signal fall time	tf	-	-	50	ns
YSCL period	tccL	-	1000	-	ns
YSCL "H" pulsewidth	twCLH	-	160	-	ns
YSCL "L" pulsewidth	twCLL	-	330	-	ns
Data setup time	tDS	-	200	-	ns
Data hold time	tDH	-	10	-	ns
Allowable FR delay time	tDFR	-	-500	500	ns

Output timing characteristics

Vss $=-5.0 \pm 10 \%, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$

Parament	Symbol	Condition	Min.	Max.	Unit
(YSCL - fall to DIO) delay time	tpdDocL	$\mathrm{CL}=15 \mathrm{pF}$	-	350	ns
(YSCL - fall to On output) delay time	tpdccL	$\mathrm{V}_{5}=-12.0$ to			
-28.0 V					

Vss $=-4.5-2.7 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$

Parament	Symbol	Condition	Min.	Max.	Unit
(YSCL - fall to DIO) delay time	tpdDocL	CL=15pF	-	400	ns
(YSCL - fall to On output) delay time	tpdccL	$\mathrm{V}_{5}=-12.0$ to			
-28.0 V					

LCD DRIVE POWER

Each voltage level forming method

To obtain each voltage level for LCD driving, it is optimum to divide the resistance of potential between VDDH and GND to drive the LCD using the voltage follower with an operational amplifier. In taking into consideration of such a case using the operational amplifier, the maximum potential level V_{0} for LCD driving has been made a separate pin from VDD.
When no operational amplifier is used in V_{0}, set $\mathrm{V}_{0}=\mathrm{VDD}$.
When a resistive divider is used, set it to a resistance value as low as possible in the system power capacity.
When a series resistance exists in the power supply line of VDD, a voltage drop of VDD occurs at the LSI power supply pin, the relationship with the LCD's intermediate potential (VDD $\geq \mathrm{V} 0 \geq \mathrm{V} 1 \geq \mathrm{V} 4$ \geq V5) cannot be met, this causing the LSI to be broken down in some cases. When a protection resistor is inserted, it is necessary to stabilize the voltage by capacitance.

Note in power ON/OFF

Since this LSI is high in the voltage of LCD driving system, when a high voltage is applied to the LCD driving system with the logic system power supply kept floating or above Vss $=-2.5 \mathrm{~V}$, an overcurrent flows and LSI breaks down in some cases.
To avoid this, it is recommended to suppress the potential of LCD drive output to Vo level using the display off function ($\overline{\mathrm{DSPOFF}})$ until the LCD driving system voltage is stabilized.

Be sure to follow the power ON/OFF sequence as shown below:

At power ON ... Logic system ON
\rightarrow LCD driving system ON or simultaneous ON of the both
At power OFF ... LCD driving system OFF \rightarrow Logic system OFF or simultaneous OFF of the both
For a countermeasure to such overcurrent, it is effective to put a high-speed melting fuse or protection resistor in series with the LCD power unit.
It is then required to select the optimum value in the protection resistance according to the capacitance of LC cell.

TYPICAL CIRCUIT DIAGRAM

Configuration Drawing of Large Screen LCD

