9. SED1670 Dot Matrix LCD Common Driver

CONTENTS

OVERVIEW 9-1
FEATURES
BLOCK DIAGRAM
PIN DESCRIPTION 9-3
PAD LAYOUT AND COORDINATES
FUNCTIONAL DESCRIPTION 9-6 Shift registor 9-6 Level shifter 9-6 LCD driver 9-6
TIMING CHART9-7
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS 9-5 DC characteristics 9-5
AC CHARACTERISTICS
LCD DRIVE POWER
CONNECT EXAMPLE9-13
DIFFERENT POINTS FROM REPLACEMENT PRODUCT9-12

OVERVIEW

The SED1670 is a 100 output low-power resistance common (row) driver which is suitable for driving a very high capacity dotmatrix LCD panels upto a duty ratio of 1/300. It is intended to be used in conjunction with the SED1640D or SED1606D as a pair.

Since the SED1670 is so designed to drive LCDs over a wide range of voltages, and also the maximum potential V0 of its LCD drive bias voltages is isolated from VDD to allow the LCD driving bias voltages to be externally generated optionally with a high accuracy, it can cope with a wide range of LCD panels.

Owing to its pad layout which can minimize its PC boards mounting space in addition to its selectable bidirectional driver output sequence and as many as 100 LCD output segments of high pressure resistance and low output impedance, it is possible to obtain the highest driver working efficiency for the 1/200 duty panel.

And the SED1670 can display 65 x 132 panel when used as a common driver of RAM buit-in driver, SED1531.

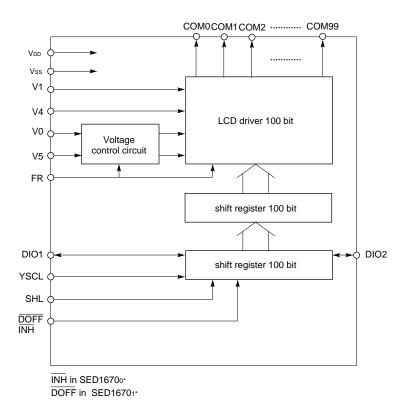
FEATURES

- Number of LCD drive output segments: 100
- Common output ON resistance: 700Ω (Typ.)
- Display duty ratio: 1/64 to 1/300 (Reference)
- Display capacity: Possible to display 640 × 480 dots when used in combination with SED 1640D or SED1606D.
- Selectable pin output shift direction
- No-bias display OFF function (*1*)
- Instantaneous display blanking enabled by inhibit function (*0*)
- Adjustable offset bias of LCD power to VDD level
- Wide range of LCD drive voltages: -7 V to -28 V (Absolute maximum rated voltage: -30 V)
- Logic system power supply: -2.7 V to -5.5 V
- Chip packaging

SED1670D0A (AL-pad die form)

SED1670D1A

SED1670D0B (Au bump die form)


SED1670D1B

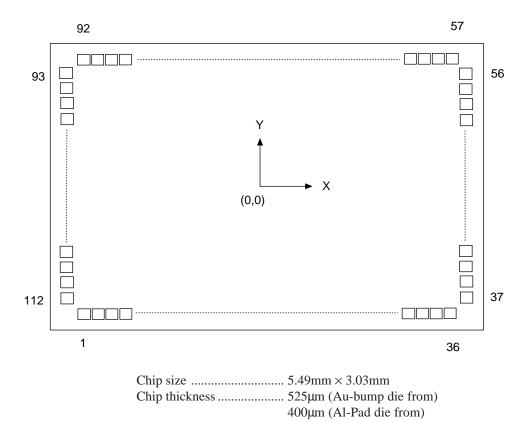
SED1670T0A (TCP die form)

SED1670T1A

· No radial rays countermeasure taken in designing

BLOCK DIAGRAM

9-2 SEIKO EPSON CORP.


PIN DESCRIPTION

Pin name	I/O		Function				
COM0 to COM099	0		e common (row ut changes at th	, ,	ng edge.		100
DIO1, DIO2	I/O	To be se	nift register seria t to input or outp ut changes at th	out according	to the SHL ir	nput	2
YSCL	I		ta shift clock inp ning data is shi		ing edge.		1
		Shift dire	ction selection a	and DIO pin I/	O control inp	ut	
		SHL	COM output s	shift direction	DIO1	DIO2	
SHL	1	L	0 –	→ 99	Input	Output	1
		Н	99 –	→ 0	Ourput	Input	
DOFF	1	When "L	olay blanking co is input, the co outputs become 0D1B).	ntent of shift r			1
(ĪNH)	I	When "L common Commor	LCD drive display blanking control input When "L" is input, the content of shift register is cleared and all common outputs become the non-select level instantaneously. Common output = V4 (when FR = L) Common output = V1 (when FR = H) (SED1670D0B)				
FR	1	LCD driv	LCD drive output AC converted signal input				1
VDD, VSS	Power supply	Logic po	Logic power supply VDD: 0 V (GND) Vss: -5.0 V			2	
V0, V1, V4, V5	Power supply	LCD driv	e power supply	V5: -7 V to VDD \geq V0 \geq \			4

INH for SED1670*0*
DOFF for SED1671*1*

Total: 112

PAD LAYOUT AND COORDINATES

1) Au bump specification reference values

Bump specific: High Quarity Au bump

Bump size : $90\mu m \times 90\mu m$ Bump height : $17\mu m \sim 28\mu m$

2) AL Pad specification reference values

Pad Opening: $100\mu m \times 100\mu m$

9-4 SEIKO EPSON CORP.

	PAD	Actual di	mensions		PAD	Actual di	mensions		PAD	Actual di	mensions
NO.	NAME	X	Y	NO.	NAME	X	Y	NO.	NAME	X	Y
1	COM5	-2187	-1357	41	COM45	2584	-711	81	COM85	-803	1357
2	6	-2058		42	46	1	-581	82	86	-932	1
3	7	-1929		43	47		-452	83	87	-1062	
4	8	-1799		44	48		-323	84	88	-1191	
5	9	-1670		45	49		-194	85	89	-1320	
6	10	-1541		46	50		-65	89	90	-1449	
7	11	-1412		47	51		65	87	91	-1578	
8	12	-1283		48	52		194	88	92	-1708	
9	13	-1153		49	53		323	89	93	-1837	
10	14	-1024		50	54		452	90	94	-1966	
11	15	-895		51	55		581	91	95	-2095	
12	16	-766		52	56		711	92	96	-2224	1357
13	17	-637		53	57		840	93	97	-2473	1334
14	18	-507		54	58		969	94	98	1	1201
15	19	-378		55	59	↓	1098	95	99		1071
16	20	-249		56	60	2584	1231	96	DIO2		941
17	21	-120		57	61	2298	1357	97	DOFF		715
18	22	10		58	62	2168	1007	(97)	(INH)		'''
19	23	139		59	63	2039		98	FR		585
20	24	268		60	64	1910		99	YSCL		455
21	25	397		61	65	1781		100	SHL		325
22	26	526		62	66	1652		101	VDD		185
23	27	656		63	67	1522		102	Vss		46
24	28	785		64	68	1393		103	V0		-112
25	29	914		65	69	1264		104	V1		-252
26	30	1043		66	70	1135		105	V4		-391
27	31	1172		67	71	1006		106	V5		-531
28	32	1302		68	72	876		107	DIO1		-671
29	33	1431		69	73	747		108	COMO		-810
30	34	1560		70	74	618		109	1		-941
31	35	1689		71	75	489		110	2		-1071
32	36	1818		72	76	360		111	3		-1201
33	37	1948		73	77	230		112	4	-2473	-1334
34	38	2077		74	78	101				2.75	100 /
35	39	2206		75	79	-28					
36	40	2335	-1357	76	80	-157					
37	41	2584	-1231	77	81	-286					
38	42	2584	-1094	78	82	-416					
39	43	2584	-969	79	83	-545					
40	44	2584	-840	80	84	-674	1357				
	77	2004	0-0		07	517	1001				

PAD No. 97: INH for SED1670*0*

DOFF for SED1670*1*

FUNCTIONAL DESCRIPTION

Shift register

This is a bidirectional shift register to transfer common data.

Level shifter

This is a level interface circuit used to convert the signal voltage level from the logic system level to LCD drive level.

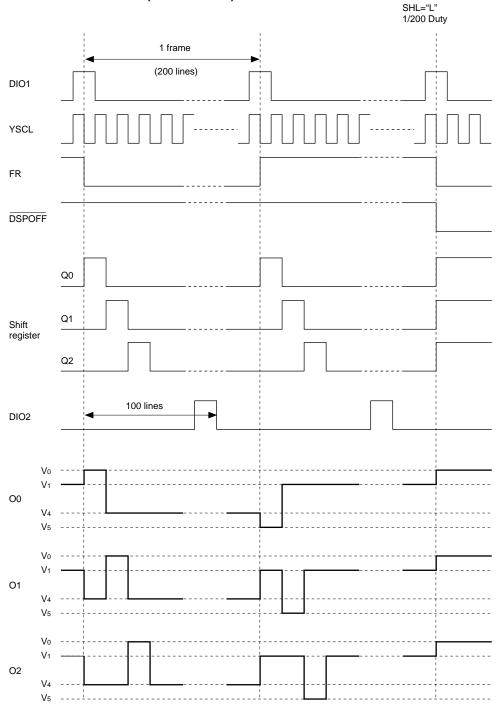
LCD driver circuit

This driver outputs the LCD drive voltage.

The relationship among the display blanking signal DOFF, contents of shift register, AC converted signal FR and common output voltage is as shown in the table below:

(SED1670*1*)

DOFF	Contents of shift register	FR	COM output voltage		
	Н	Н	V5	(Salaat laval)	
	П	L	Vo	(Select level)	
H		Н	V1	(Non-select	
	L	L	V4	level)	
L	Fixed to L	_	Vo	_	


The relationship among the display blanking signal INH, contents of the shift register, AC converted signal FR and COM output voltage is as shown in the table below:

(SED1670*0*)

INH	Contents of shift register	FR	COM output voltage		
	Н	Н	V5	(Salaat laval)	
Н	П	L	Vo	(Select level)	
П		Н	V1	(Non-select	
	L	L	V4	level)	
	Fixed to L	Н	V1	(Non-select	
<u> </u>	FIXEU IO L	L	V4	level)	

9-6 SEIKO EPSON CORP.

TIMING CHART (SED1670D1B)

The V1 or V4 non-select level is output corresponding to the FR in SED1670D0B or $\overline{\text{INH}}=\text{L}$, respectively.

ABSOLUTE MAXIMUM RATINGS

V_{DD}=0V

	T	1	
Parameter	Symbol	Rating	Unit
Supply voltage (1)	Vss	-7.0 to +0.3	V
Supply voltage (2)	V5	-30.0 to +0.3	V
Supply voltage (3)	V0, V1, V4	V5-0.3 to +0.3	V
Input voltage	Vı	Vss-0.3 to +0.3	V
Output voltage	Vo	Vss-0.3 to +0.3	V
Output current (1)	lo	20	mA
Output current (2)	Іосом	20	mA
Operating temperature	Topr	-40 to + 85	°C
Storing temperature 1	Tstg	-65 to +150	°C

Notes:

- 1. The voltage of V0, V1 and V4 must always satisfy the condition of $VDD \ge V0 \ge V1 \ge V4 \ge V5$.
- 2. Floating of the logic system power during while the LCD drive system power is applied, or exceeding Vss = -2.6 V or more can cause permanent damage to the LSI. Functional operation under these conditions is not implied.

Care should be taken to the power supply sequence especially in the system power ON or OFF.

9-8 SEIKO EPSON CORP.

ELECTRICAL CHARACTERISTICS

DC characteristics

Unless otherwise specified, VDD = V0 = 0V, $VSS = -5.0V \pm 10\%$, Ta = -40 to $85^{\circ}C$.

Parameter	Symbol		Conditio	on	Min.	Тур.	Max.	Unit	Applicable pin
Supply voltage (1)	Vss		_		-5.5	-5.0	-2.7	V	Vss
Recommended operating voltage	V ₅		_		-28.0	-	-7.0	V	V ₅
Operation enable voltage	V ₅	Fur	nctional op	eration	-	_	-7.0	V	V ₅
Supply voltage (2)	Vo	Rec	ommende	d value	-2.5	_	0	V	Vo
Supply voltage (3)	V1	Red	ommende	d value	2/9·V ₅	-	VDD	V	V ₁
Supply voltage (4)	V4	Rec	ommende	ed value	V ₅	_	7/9·V5	V	V4
"H" input voltage (1)	VIH	., .	7)// 5.5	-> /	0.2Vss	-	0	V	DIO1, DIO2,
"L" input voltage (1)	VIL	VSS=-2.	7V to –5.5	V	Vss	-	0.8Vss	V	YSCL, SHL, FR
"H" input voltage (2)	VIHT	Vss=-2	7V to -5.5	5V	0.2Vss	_	0	V	DOFF, INH
"L" input voltage (2)	VILT	1 000 2.	7 7 10 0.0	, ,	Vss	-	0.85Vss	V	5 5011, 11411
"H" output voltage	Vон	Iон=-0.3 Iон=-0.2 (Vss=-2.			-0.4	_	0	٧	DIO1, DIO2
"L" output voltage	Vol	IOL=+0.3 IOL=+0.2 (Vss=-2.			Vss	-	Vss+0.4	V	, ,
Input leakage current	lu	Vss ≤ Vin ≤ 0V		_	_	2.0	μА	YSCL, SHL, DOFF, INH, FR	
Input/output leakage current	Ili/O	Vss ≤ VIN ≤ 0V		-	-	5.0	μА	DIO1, DIO2	
Static current	IDDS		to -28.0V , VIL=Vss	1	-	-	25	μА	VDD
Output resistance	Rсом	ΔVON =0.5V	V ₅ = -20.0V	When the V1, V4, V0 or V5 level is output	-	0.70	1.40	ΚΩ	COM0~COM99
Average operating current consumption (1)	Iss ₁	VIL=Vss Frame f Input da every 1/	Vss=-5.0V, ViH=VDD, ViL=Vss, fyscL=12KHz, Frame frequency=60Hz Input data; "H" at no load every 1/200 duty Other conditions are the		-	7	15	μΑ	Vss
		same as Vss = -3.0 V		_	5	10			
Average operating current consumption (2)	Iss2	Vss=–5.0, V,=–2.0V, V4=–18.0V, V5=–20.0V Other conditions are the same as in the item of Iss1.		-	7	15	μА	V5	
Input pin capacitance	Cı	Ta=25°C		-	-	8	pF	YSCL, SHL, DOFF, INH, FR	
Input/output pin capacitance	Cı/o				_	-	15	pF	DIO1, DIO2

AC CHARACTERISTICS

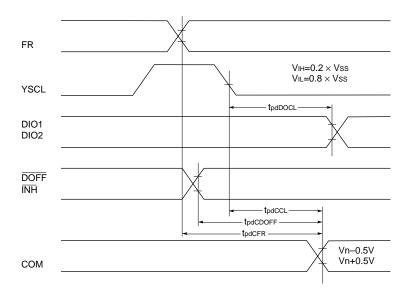
Input timing characteristics

VIH=0.2 × Vss VIL=0.8 × Vss FR

tr
twclH
twclH
twclL
DIO1
DIO2

Unless otherwise specified Vss=-5.0V±10%, Ta=-40 to 85°C

Parameter	Symbol	Condition	Min.	Max.	Unit
Input signal rise time	tr	_	_	50	ns
Input signal fall time	tf	_	_	50	ns
YSCL period	tccl	_	500	_	ns
YSCL "H" pulsewidth	twclh	_	70	_	ns
YSCL "L" pulsewidth	twcll	_	330	_	ns
Data setup time	tos	_	100	_	ns
Data hold time	tDH	_	10	_	ns
Allowable FR delay time	tdfr	_	-500	500	ns


Unless otherwise specified Vss=-2.7V to -4.5V, Ta=-40 to 85°C

Symbol	Condition	Min.	Max.	Unit
tr	ı	-	50	ns
t f	1	_	50	ns
tccL	-	1000	_	ns
twclh	-	160	_	ns
twcll	ı	330	_	ns
tDS	ı	200	_	ns
tDH	_	10	_	ns
tDFR	_	-500	500	ns
	tr tr tccL twcLH twcLL tDS tDH	tr — tr — tr — tr — tccl — twclh — twcll — tbs — tdh —	tr - - tf - - tccl - 1000 twclh - 160 twcll - 330 tds - 200 tdh - 10	tr - - 50 tr - - 50 tccl - 1000 - twclh - 160 - twcll - 330 - tbs - 200 - tdh - 10 -

The standard applicable to tCCL, tWCLH, tWCLL and tDS when Vss = -2.4 V shall be 1.3 times of that applies when Vss = -2.7 V to -4.5 V.

9-10 SEIKO EPSON CORP.

Output timing characteristics

Unless otherwise specified Vss=-5.0V±10%, Ta=-40 to 85°C

Parament	Symbol	Condition	Min.	Max.	Unit
(YSCL - fall to DIO) delay time	tpdDOCL	CL=15pF	30	300	ns
(YSCL - fall to COM output) delay time	tpdccL	V ₅ =-7.0 to			
(DOFF to COM output) delay time	tpdcDOFF	-28.0V	_	3.0	μs
(INH to COM output) delay time	tpdcinh	-28.0V CL=100pF			
(FR to COM output) delay time	tpdcfr	CL=100pr	_	3.0	μs

Unless otherwise specified Vss=-2.7V to -4.5V, Ta=-40 to 85°C

Parament	Symbol	Condition	Min.	Max.	Unit
(YSCL - fall to DIO) delay time	tpdDOCL	C _L =15pF	60	600	ns
(YSCL - fall to COM output) delay time	tpdccL	V5=-7.0 to			
(DOFF to COM output) delay time	tpdcDOFF	-28.0V	_	3.0	μs
(INH to COM output) delay time	tpdcinh	-28.0V CL=100pF			
(FR to COM output) delay time	tpdcfr	GL=100pi	_	3.0	μs

The standard applicable at Vss = -2.4V shall be the same as that employed when Vss = -2.7V to -4.5V.

LCD DRIVE POWER

Each voltage level forming method

To obtain each voltage level for LCD driving, it is the most simple to divide the resistance of potential as shown in the connection example. On the other hand, to obtain a high quality display, it is necessary to raise the accuracy and constancy of each voltage level and to set the divided resistance value as low as possible in the range of system power capacity.

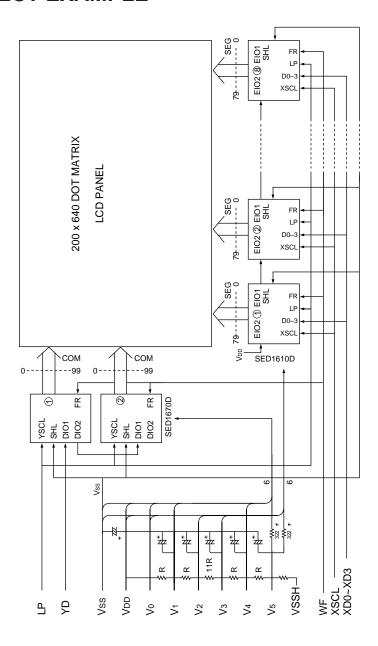
Especially when a low-power LCD driving is required, set the divided resistance to a higher value and drive the LCD with a voltage follower by means of operational amplifier instead. In taking into consideration of a case where the operational amplifier is employed, the maximum potential level V0 for LCD driving has been isolated from the VDD pin.

When the potential of V_0 lowers than that of V_{DD} and the potential difference between the two becomes larger, however, the capacity of LCD drive output driver lowers. To avoid it, use the system with the potential difference of 0~V to 2.5~V between V_0 and V_{DD} .

When no operational amplifier is used, connect V₀ and V_{DD} pins.

Note in power ON/OFF

Since this LSI is high in the voltage of LCD driving system, when a high voltage is applied to the LCD driving system with the logic system power supply kept floating, an overcurrent flows and LSI breaks down in some cases.

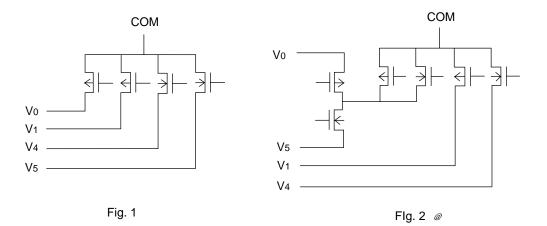

Be sure to follow the power ON/OFF sequence as shown below:

At power ON ... Logic system ON \rightarrow LCD driving system ON or simultaneous ON of the both

At power OFF ... LCD driving system OFF \rightarrow Logic system OFF or simultaneous OFF of the both

9-12 SEIKO EPSON CORP.

CONNECT EXAMPLE



Note *1 It must be provided as the protective resister against overcurrent. Also, the bypass capacitor (0.01 μ F) for noise suppression must be provided near to Vss and V5 terminals on each LSI.

DIFFERENT POINTS FROM REPLACEMENT PRODUCT

	SED1670*0*	SED1631***
Function	Bidirectional shift register	Bidirectional shift register
	ĪNH	ĪNH
	100 output segments	100 output segments
Output Tr configuration	Fig. 1	Fig. 2
PAD layout	Identical to the equivalent product	_
PAD coordinates	Different from the equivalent product	-

	SED1670*1*	SED1635***
Function	Bidirectional shift register	Bidirectional shift register DOFF
	100 output segments	100 output segments
Output Tr configuration	Fig. 1	Fig. 2
PAD layout	Identical to the equivalent product	_
PAD coordinates	Different from the equivalent product	_

9-14 SEIKO EPSON CORP.