
EPSON

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

©Seiko Epson Corporation 1998 All rights reserved.

PC/AT,PS/2,VGA and Monochrome are trademarks and/or registered trademarks of International Business Machines Corporation. MS-DOS is registered trademark of Microsoft. AMD and Am486 are trademarks of Advanced Micro Devices, Inc.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

1	BASI	C SPECIFICATIONS	1
	1.1	Block Diagram	3
2.	PHYS	SICAL SPECIFICATIONS	4
	21	Dimensions	4
		Weight	
		Installation Method	
	-10		
3.	PIN C	CONFIGURATION	6
4.		UNCTIONS	
		ISA Bus	
		LCD Interfaces	
		CRT Interfaces	
		IDE Interfaces	
		FDD Interfaces	
		Keyboard Interfaces	
		Mouse Interfaces	
		Parallel Interfaces	
		Serial Interfaces	
		ROM Update Interfaces	
		2 Speaker Interfaces	
		Power Supply	
			13
5.	DETA	AILED DESCRIPTION OF FUNCTIONS	14
	5.1	System Overview	14
		5.1.1 Memory map	14
		5.1.2 DMA controllers	
		5.1.3 System interrupts and interrupt controller	
		5.1.4 Timer counter	
		5.1.5 Real-time clock and CMOS RAM	
		5.1.6 I/O MAP	
	5.2	ISA Bus Interface	
		5.2.1 ISA Bus signals	
		5.2.2 ISA bus cycles	
		5.2.3 Memory read cycles	
		5.2.4 I/O read cycles	
		5.2.5 DMA cycles	
		5.2.0 External bus master cycles	
		5.2.7 Freeautons on Exernal Bus Waster	
	5.3	Hard Disk Bus Interface	
	5.5	5.3.1 Features of the hard disk interface	
		5.3.2 Hard disk interface signals	
		5.3.3 Hard disk bus cycles	
		5.3.4 Hard disk hardware options	
	5.4	Serial Port Interface	
		5.4.1 Serial port interface signals	
		5.4.2 Serial port functions	
		5.4.3 Serial port buffers	
		5.4.4 Infrared Communications	49

	5.5	Parallel Port Interface	
		5.5.1 Parallel port signals	
		5.5.2 Parallel port functions	
		5.5.3 High-speed parallel mode functions	
		5.5.4 Parallel port buffring	
		5.5.5 Pin configuration	
	5.6	Power Management	
		5.6.1 Power management signals	
		5.6.2 Suspend and Resume Control	
		5.6.3 SMOUT	59
	5.7	Keyboard Controller	60
		5.7.1 Signals concerning the keyboard controller	60
		5.7.2 Explanation of registers and commands	60
		5.7.3 Keyboard and mouse interfaces	
	5.8	VGA Controller	
		5.8.1 CRT and LCD interface signals	
		5.8.2 Panel interface	64
	5.9	Floppy Disk Controller	67
		5.9.1 Floppy disk control signals	67
		5.9.2 Floppy disk interface	
	5.10) RTC and CMOS RAM Interface	
		5.10.1 Description of Registers	
		5.10.2 Vвк	
		5.10.3 POWERGOOD	
	5.11	Output of General Purpose Timer (Watchdog Timer)	71
6.	ENVI	RONMENTAL REQUIREMENTS	72
	6.1	Temperature	72
	6.2	Humidity	72
	6.3	Electrostatic Breakdown Immunity	
7.	MEC	HANICAL CHARACTERISTICS	73
	7.1	Insertion and Removal Force	73
	7.2	Bending	73
	7.3	Dropping	73
		Twisting	
		Insertions and Removals	
	7.6	Weight	73
8.	DC C	HARACTERISTICS (Recommended and Nominal)	74
9.	PIN E	ELECTRICAL CHARACTERISTICS	78
1(). AC C	HARACTERISTICS (recommended and reference values)	85
		Timing Chart	
		ں ت	

1. BASIC SPECIFICATIONS

SCE86537 Series (CARD-586) consolidates the main board blocks of the ISA architecture into a credit card sized card. The configuration is described below.

CPU

Am486DX5	133 MHz	(manufactured by AMD Corp.)
Am486DX2	66MHz	(manufactured by AMD Corp.)

I/O block

ISP0015	(manufactured by Seiko Epson Corp.)
SPC8221	(manufactured by Seiko Epson Corp.)
Interrupt controllers	(82C59A x2)
Programmable timers	(82C54 x2)
DMA controllers	(82C37A x2)
Memory mapper	(74LS612 equivalent)
Parallel I/O port	
Serial I/O ports	(16C550 x2)
Real-time clock	(146818 equivalent)
IDE interface	
• Support for la	rge-capacity IDE HDD (8.4 GB)

Memory block

- DRAM 16, 32,48Mbyte (Line up of 48MB-DRAM size is only for 133MHz version.)
- Flash ROM (for BIOS) 256 KB

Keyboard interface block

8042 software emulation

- PS/2 style keyboard
- PS/2 style mouse

Video block

SPC8110

(manufactured by Seiko Epson Corp.)

- CRT
- STN mono/color (single/dual panel)
- TFT color
- VRAM 1MB (256 color)

FDC block

SPC2052

(manufactured by Seiko Epson Corp.)

- Equivalent to µPD765
- Drive : Supports two units.
- Transfer rate : 250 Kbps, 300 Kbps, 500 Kbps

CARD-586 Model List

Model NO	CPU Clock	DRAM
SCE8653702	Am486DX2,66MHz	16Mbyte
SCE8653703	Am486DX2,66MHz	32Mbyte
SCE8653710	Am486DX5,133MHz	16Mbyte
SCE8653711	Am486DX5,133MHz	32Mbyte
SCE8653712	Am486DX5,133MHz	48Mbyte

1.1 Block Diagram

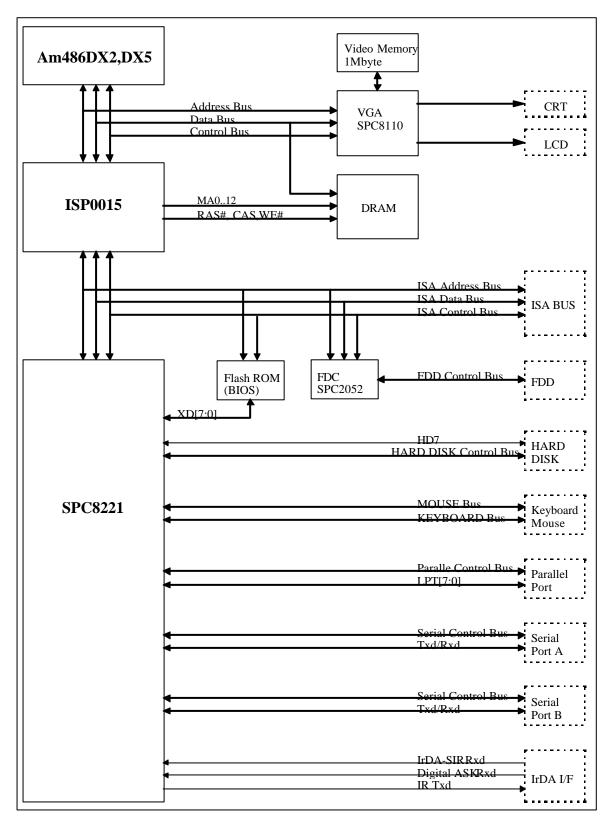
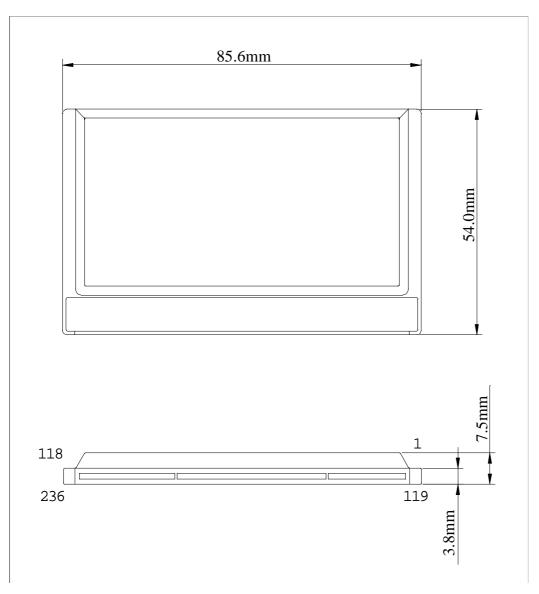


Figure 1-1 CARD-586 Block Diagram


2. PHYSICAL SPECIFICATIONS

2.1 Dimensions

85.6mm x 54.0mm x 7.5mm

2.2 Weight

About 65g

2.3 Installation Method

The card socket side connector SEK6669P01 (without ejector) can be used. Note: SEK6669P02 (with ejector) cannot be used.

- Thickness of board to which socket side connector is fitted should not exceed 1.6 mm.
- Socket side connector fixing should be done with screws.
- (Screws M2.5 \times 8 hexagonal nuts)

When using the SEK6669P01 (no ejector) with a retainer (SEK6676P01) to prevent card removal, use screws (M2.5 \times 12).

CAUTION

During and just after use, the Card PC can get hot enough to burn you, so please observe the following precautions carefully:

- Make sure to advise anyone who could touch the Card PC, such as a service technician, that it gets very hot.
- If necessary to protect users, attach a notice about high temperature on the visible part of the Card PC.
- If necessary to protect users, make a cover to prevent anyone from touching the Card PC.

3. PIN CONFIGURATION

CARD-586 Pin Configuration

1 GND	119	GND	4	1 COMACTS#	159	COMARXD	81	SA15	199	SCLK
2 GND	120	GND	4	2 COMARTS#	160	COMATXD	82	VCC3	200	VCC3
3 EXDOTCLK	121	FPDOTCLK	4	3 COMADSR#	161	COMADCD#	83	VCC3	201	VCC3
4 LD6	122	LD7	4	4 IRRX	162	IRTX	84	VCC5	202	VCC5
5 LD4	123	LD5	4	5 LPTSTROBE#	163	LPTAFD#	85	VCC5	203	VCC5
6 LD2	124	LD3	4	6 LPTD0	164	LPTERROR#	86	SA14	204	IRQ7
7 LD0	125	LD1	4	7 LPTACK#	165	LPTBUSY	87	SA13	205	IRQ6
8 FPVTIM	126	FPHTIM	4	8 LPTPE	166	LPTSLCT	88	SA12	206	IRQ5
9 FPAC	127	LD8	4	9 LPTD1	167	LPTINIT#	89	SA11	207	IRQ4
10 FPVCCON	128	FPVEEON	5	0 LPTD2	168	LPTSLCTIN#	90	SA10	208	IRQ3
11 LD9	129	FPBLANK#	5	1 LPTD3	169	LPTD4	91	SA9	209	DACK2#
12 LD11	130	LD10	5	2 LPTD5	170	LPTD6	92	SA8	210	TC
13 LD13	131	LD12	5	3 LPTD7	171	LPTDIR	93	SA7	211	BALE
14 LD15	132	LD14	54	4 HDIR	172	HD7	94	SA6	212	OSC
15 BLUE	133	BRTN	5	5 HDENL#	173	HDENH#	95	SA5	213	MEMCS16#
16 GREEN	134	GRTN	5	6 HDCS0#	174	HDCS1#	96	SA4	214	IOCS16#
17 RED	135	RRTN	5	7 SUSSTAT#	175	VBK	97	SA3	215	IRQ10
18 VSYNC	136	HSYNC	5	8 BATLOW#	176	EXTSMI#	98	SA2	216	IRQ11
19 LD17	137	LD16	5	9 GND	177	GND	99	SA1	217	IRQ12
20 RESERVE	138	RESERVE	6	0 GND	178	GND	100	SA0	218	IRQ15
21 MSDATA	139	MSCLK	6	1 BATWRN#	179	RESERVE	101	SBHE#	219	IRQ14
22 KBDATA	140	KBCLK	6	2 PWRGOOD	180	SRBTN#	102	LA23	220	DACK0#
23 FDWP#	141	FDRD#	6	3 SPKOUT	181	WDTIM#	103	LA22	221	DRQ0
24 FDINDEX#	142	FDDCHG#	6	4 FLOAT#	182	PGM	104	LA21	222	DACK5#
25 FDTRK0#	143	FDWE#	6	5 ROMCE0#	183	RESERVE	105	LA20	223	DRQ5
26 FDWD#	144	FDHIDEN	6	6 RESERVE	184	RESERVE	106	LA19	224	DACK6#
27 VCC5	145	VCC5	6	7 SD7	185	RESETDRV	107	LA18	225	DRQ6
28 VCC5	146	VCC5	6	8 SD6	186	IOCHCK#	108	LA17	226	DACK7#
29 VCC3	147	VCC3	6	9 SD5	187	IRQ9	109	MEMR#	227	DRQ7
30 VCC3	148	VCC3	7	0 SD4	188	DRQ2	110	MEMW#	228	MASTER#
31 FDDS2#	149	FDDS1#	7	1 SD3	189	WS0#	111	SD8	229	SD12
32 FDMT2#	150	FDMT1#	72	2 SD2	190	SMEMW#	112	SD9	230	SD13
33 FDSIDE	151	FDSTEP#		3 SD1	191	SMEMR#		SD10		SD14
34 FDDIR	152	RESERVE	74	4 SD0	192	IOW#	114	SD11	232	SD15
35 RESERVE	153	DARX		5 IOCHRDY	193	IOR#	115	SMOUT3	233	SMOUT2
36 COMBDTR#	154	COMBRI#	7	6 AEN	194	DACK3#	116	SMOUT1	234	SMOUT0
37 COMBCTS#	155	COMBRXD	7	7 SA19	195	DRQ3	117	GND	235	GND
38 COMBRTS#	156	COMBTXD	7	8 SA18	196	DACK1#	118	GND	236	GND
39 COMBDSR#	157	COMBDCD#	7	9 SA17	197	DRQ1				
40 COMADTR#	158	COMARI#	8	0 SA16	198	REF#				

4. PIN FUNCTIONS

The pin functions are described below for each of the interfaces. The abbreviations in the "Type" column have the following meanings:

I:	Input pin
0:	Output pin
O OD:	Output pin open-drain output
IO:	Input/output pin
IO OD:	Input/output pin open-drain output

4.1 ISA Bus

Pin Name	Туре	Functions
SA[19:17]	0	System Address Bus
SA[16:0]	IO	SA19-SA0 of the bus
LA[23:17]	IO	Latchable Address Bus
		LA23-LA17 of the bus
SBHE#	IO	System Byte High Enable Active Low
		This signal indicates that SD[15:8] is effective.
SD[15:0]	IO	System Data Bus
		16-bit data bus
IOR#	IO	I/O Read Active Low
		This signal request the I/O device on the bus to output data to SD[15:8] or SD[7:0].
IOW#	IO	I/O Write Active Low
		This signal requests the I/O device on the bus to accept data of SD[15:8] or SD[7:0].
IOCS16#	Ι	I/O chip select 16 Active low
		This signal lets the I/O device on the bus indicate the CARD-586 that 16-bit transfer is possible
		by the current I/O cycle.
MEMR#	IO	Memory read Active low
		This signal requests the memory device on the bus to output data to SD[15:8] or SD[7:0].
MEMW#	IO	Memory write Active low
	10	This signals request the memory device on the bus to accept data of SD[15:8] or SD[7:0].
SMEMW#	0	System memory write Active low
	-	This signal is active when a memory write cycle is started for the 0-1 MB memory space on the bus.
SMEMR#	0	System memory read Active low
	0	This signal is active when a memory read cycle is started for the 0 to 1 MB memory space on the
		bus.
MEMCS16#	I	Memory chip select 16 Active low
		This signal lets the memory device on the bus indicate the CARD-586 that 16-bit transfer is
		possible by the current memory cycle.
AEN	0	Address enable
	-	This signal indicates that the current cycle is a DMA cycle or a refresh cycle.
DRQ[7:5,3:0]	0	DMA request Active high
	Ĩ	These signals request the CARD-586 for DMA transfer.
DRQ2	Ю	DRQ2 becomes an output signal when the internal FDD interface is enabled and becomes an
		input signal when it is disabled.
DACK[7:5,3:0]#	0	DMA acknowledge Active low
		These signals indicate the DMA channel, which requested for a DMA transfer, that the request
		was accepted.
TC	0	Terminal count Active high
	0	In a DMA transfer, this signal indicates the end of the DMA transfer.
REF#	IO OD	Refresh Active low
		When this signal is active, it indicates that the cycle is a refresh cycle.
MASTER#	I	Master Active low
	1	The bus master on this bus make this active in order to acquire the control authority of the bus.
		Before making this signal active, the bus master must make DRQn# active first and must receive
		DACKn#.
		DACMIT.

Pin Name	Туре	Functions
SCLK	0	System clock
		Basic Clock of ISA bus
		CPU Clock : SCLK
		133MHz : 8MHz
		66MHz : 8MHz
		This signal is not output when POWERGOOD is inactive.
		The SCLK frequency varies with the CPU and the CPU clock of the CARD-PC.
OSC	0	Oscillator
	-	14.3 MHz 50% duty clock output. This signal is not synchronized with the system clock.
IOCHCK#	Ι	I/O channel check Active low
		This signal informs the CARD-586 that a parity error or a nonrecoverable error has
		occurred in the memory or the I/O device on the bus. When this signal becomes active,
		NMI occurs to the CPU.
IOCHRDY	IO OD	I/O channel ready Active high
		This signal terminates the bus cycle. When the memory or the I/O device on the bus
		wants to extend the bus cycle, it can extend the cycle by setting this signal to low
		immediately after detecting an effective address and command. The CARD-586
		continues the bus cycle until this signal becomes high.
		When the DMA or the bus master is transferred to the internal DRAM of the CARD-586,
		the CARD-586 makes IOCHRDY inactive to extend the bus cycle.
WS0#	Ι	Zero wait state Active low
		Make this signal active in order to terminate the bus cycle without any wait states.
RESETDRV	0	Reset drive Active high
		System initialization signal. Initialize devices on the bus by using this signal.
BALE	0	Buffered address enable Active high
		This signal indicates that SA[19:0] and LA[23:17] have become effective and the CPU
		cycle has started. During the DMA and refresh cycles, this signal becomes high.
		Note : In case of the standard IBM PC/AT, LA[23:17] becomes effective only at the
		beginning of the CPU cycle and devices on the bus need latch LA[23:17] by BALE. But
		the CARD-586 keep outputting effective addresses to LA[23:17] until the end of the
IDO[15 14 0]	I	cycle.
IRQ[15, 14, 9]	1	Interrupt request Active high These signals request the CARD-586 for interruption.
IRQ12	0	Since being used by the mouse interface, IRQ12 cannot be used on the bus.
IRQ12 IRQ[11,10,7:3]	IO	When being used by the serial interface inside the CARD-586, IRQ[11,10,4,3] become
my[11,10,7.3]	10	outputs. When being not used, they become inputs and can be used on the bus
		When being used by the parallel interface inside the the CARD-586, IRQ[7,5] become
		outputs. When being not used, they become inputs and can be used on the bus.
		When being used by the FDD interface inside the CARD-586, IRQ6 becomes an output.
		When being not used, it becomes an input and can be used on the bus.

4.2 LCD Interfaces

Pin Name	Туре	Functions
LD[17:0]	0	Display data for flat panel display.
		Flat panel display data
FPVTIM	0	Vertical display timing signal for a flat panel display.
		This signal indicates the display start timing of a screen for the flat panel.
FPHTIM	0	Horizontal display timing signal for a flat panel display.
		This signal gives the timing for the start of a scan line.
FPDOTCLK	0	Data shift clock signal for a flat panel display.
		This signal provides the shift clock for the display data.
EXDOTCLK	0	Specify Flat Panel Data Shift Clock (normally not used)
FPVCCON O		Flat panel display power supply control signal.
		This signal turns on the logic power supply of the flat panel.
FPVEEON	0	Flat panel display power supply control signal.
		This signal turns on the bias power supply of the flat panel.
FPAC	0	Liquid crystal AC signal.
		This signal can be used when the simple matrix display monochrome panel requires an
		alternation signal.
BLANK#	0	Flat panel data blank signal
This signal indicat		This signal indicates the period that no data is displayed on the TFT panel. This signal is
		generally connected to the display enable (DE) of the TFT panel.

4.3 CRT Interfaces

Pin Name	Туре	Functions	
VSYNC	0	Vertical display timing.	
		This signal provides the vertical sync signal for a CRT.	
HSYNC	0	Horizontal display timing.	
		This signal provides the horizontal sync signal for a CRT.	
RED	0	Analog Color signal	
RRTN		Red return signal.	
GREEN	0	Analog Color signal	
GRTN		Green return signal.	
BLUE	0	Analog Color signal	
BRTN		Blue return signal.	

4.4 IDE Interfaces

Pin Name	Туре	Functions		
HDCS0#	0	Hard disk chip select 0	Active low	
		1F0H-1F7H select signal.		
HDCS1#	0	Hard disk chip select 0	Active low	
		3F6H-3F7H select signal.		
HDENH#	0	Hard disk buffer enable low	Active low	
		This signal is active during all 16-bit accesse	es to the disk, and can be used for buffer control of	
		data bits DATA8-15 of the IDE drive interface	ce.	
HDENL#	0	Hard disk buffer enable low	Active low	
		This signal is active during all disk cycles, an	nd can be used for buffer control of data bits	
		DATA0-7 of the IDE drive interface.		
HD7	IO	Hard disk bit 7		
		Bit 7 of the data bus in the hard disk interface.		
HDIR	0	Hard disk bus data direction		
		Outout for direction control of hard disk data	a buffer. This signal is high during read cycle.	

4.5 FDD Interfaces

Pin Name	Туре	Functions	
FDDS1#	OD	Drive select 1	Active low
		Used as a select signal for drive 1.	
FDDS2#	OD	Drive select 2	Active low
		Used as a select signal for drive 2.	
FDMT1#	OD	Motor on 1	Active low
		Used as a motor on signal for drive 1.	
FDMT2#	OD	Motor on 2	Active low
		Used as a motor on signal for drive 2.	
FDSTEP#	OD	Step	Active low
		Stepping pulse signal indicating the number of steps the head 1	must move.
FDDIR	OD	Direction	
		This signal indicates the seek direction. When low it indicates	inward movement, and when high
		outward movement.	
FDSIDE	OD	Side	
		Head selection signal. When low it selects head 1, and when h	high head 2.
FDRD#	Ι	Read data	
		Data input read from drive.	
FDWD#	OD	Write data	
		Data input written to drive.	
FDWE#	OD	Write enable	Active low
		This signal controls writing to the drive.	
FDWP#	Ι	Write protect	Active low
		This signal from the drive indicates that the disk in the drive is	write-protected.
FDDCHG#	Ι	Disk change	Active low
		This signal from the drive indicates that the disk has been remo	oved from the drive.
FDINDEX#	Ι	Index	Active low
		This is the index detection signal from the drive.	
FDTRK0#	Ι	Track 0	Active low
		This signal is used to notify the system that the head has detect	ted track 0.
FDHIDEN	OD	High density select	Active high
		When high, this signal indicates high density.	

4.6 Keyboard Interfaces

	,	
Pin Name	Туре	Functions
KBCLK	IO OD	Keyboard clock
		Clock signal for a PS/2-style keyboard interface
KBDATA	IO OD	Keyboard data
		Data signal for a PS/2-style keyboard interface

4.7 Mouse Interfaces

Pin Name	Туре	Functions
MSCLK	IO OD	Mouse clock
		Clock signal for a PS/2-style mouse interface
MSDATA	IO OD	Mouse data
		Data signal for a PS/2-style mouse interface

4.8 Parallel Interfaces

Pin Name	Туре	Functions
LPTSTROBE#	IO OD	Line printer strobe Active low
		This signal is used as a strobe for a peripheral on the parallel interface to read the data. In the
		high-speed parallel port mode this signal is used to indicate a write cycle.
LPTAFD#	IO OD	Line printer auto feed Active low
		When this signal is active, a parallel printer inserts a line feed after every line. In high-speed
		parallel port mode, this signal is used as a data strobe. This signal can be used as a data latch
		signal during write cycles and as a buffer enable signal during read cycle.
LPTBUSY#	Ι	Line printer busy Active high
		This signal indicates that the printer is not able to accept data from the CARD-586.
LPTACK#	Ι	Line printer acknowledge Active low
		This signal indicates that data transfer has been completed and also to prepare for the next
		transfer.
LPTERROR#	Ι	Line printer error Active low
		This signal notifies the system of errors in peripheral devices.
LPTPE	Ι	Line printer paper end Active high
		This signal notifies the system taht the printer is out of paper.
LPTINIT#	IO OD	Line printer initialize Active low
		Initialization signal for the printer.
LPTSLCTIN#	IO OD	Line printer select in Active low
		Used to select the perip heral device currently connected to the port. In high-speed parallel port
		mode, this signal is used as an address strobe.
LPTSLCT	Ι	Line printer selected Active high
		Status signal sent to the CARD-586 by a peripheral device in order to confirm that the system has
		selected the device.
LPTDIR	0	Line printer direction
		This signal controls the buffer direction of LPTD[7:0]. When being set to low, this signal
		indicates an output, and when set to high, it indicates an input. The signal outputs "low" at all
		times in the ISA mode.
LPTD[7:0]	IO	Line printer data bus
		A data bus between the CARD-586 and a printer. This signal becomes output only in the ISA
		mode and becomes a bi-directional signal in the PS/2 mode.

4.9 Serial Interfaces

Pin Name	Туре	Functions
COMADCD#	Ι	Data carrier detect Active low
COMBDCD#		This signal indicates that the modem or data terminal has detected the carrier.
COMADTR#	0	Data terminal ready Active low
COMBDTR#		This signal indicates that the controller is ready for data transmission with respect to the modem
		or data terminal.
COMADSR#	Ι	Data set ready Active low
COMBDSR#		This signal indicates that the modem or data terminal is ready for data transmission with respect to the controller.
COMARTS#	0	Request to send Active low
COMBRTS#		This signal indicates that the controller has transmission data ready, and indicates a request to
		transmit data with respect to the modem or data terminal.
COMACTS#	Ι	Clear to send Active low
COMBCTS#		The input signal indicates that the modem or the data terminal has become ready to receive for
		the CARD-586's request to send.
COMARI#	Ι	Ring indicator Active low
COMBRI#		This signal indicates that the modem or data terminal has detected a telephone ringing signal.
		Alternatively, this signal can be used in the CARD-586 as a wake-up signal from the suspend
		state.
COMATXD	0	Serial data transmission
COMBTXD		This output is the asynchronous serial data.
COMARXD	Ι	Serial data receive
COMBRXD		This input is the asynchronous serial data.
IRTX	0	Ir data transmission
		Transmission data for infrared communications

CARD-586 Hardware Manual

Pin Name	Туре	Functions
IRRX	Ι	IrDA-SIR format data receive
		An input terminal of IrDA-SIR format receive data
DARX	Ι	Digital ASK data receive
		An input terminal of Digital ASK format receive data

4.10 Power Management

Pin Name	Туре	Functions	
BATLOW#	Ι	Battery low Active low	
		This input signal indicates the CARD-586 that the battery is dead. When this signal becom	nes
		active, a system management interrupt (SMI) is executed.	
BATWRN#	Ι	Battery warning Active low	
		This signal is used to indicate a battery capacity warning to the system.	
SUSSTAT#	0	Suspend status Active low	
		This signal indicates that the system is in the suspended state.	
SRBTN#	Ι	Suspend resume button Active low	
		This signal is a suspend and resume request signal with respect to the system.	
EXTSMI#	Ι	External system management interrupt Active low	
		A system management interrupt is input from an external device.	
SMOUT[3:0]	0	System management out	
		These signals can be used for standby control of local devices (hard disk, serial driver/rece	iver)
		on the output terminals for local standby control.	
POWERGOOD	Ι	Power good Active high	
		This signal indicates that the power supply is normal. When this signal becomes low, the C	CARD-
		586 is reset.	

4.11 ROM Update Interfaces

Pin Name	Туре	Functions
FLOAT#		Signal to write FLASH ROM (BIOS)
PGM		Power supply to write FLASH ROM (BIOS)
ROMCE0#		Signal to write FLASH ROM (BIOS)

4.12 Speaker Interfaces

···· ·································			
Pin Name	Туре	Functions	
SPKOUT	0	Speaker out	
		This can be used as a digital output for a speaker.	
WDTIM#	0	Watchdog timer out	Active low
		Watchdog timer output	

4.13 **Power Supply**

Pin Name	Туре	Functions	
VCC3		System power	
		$3.15 \text{ V} \pm 3.6 \text{ V}$	
		Power supply for internal circuits	
VCC5		System power	
		$5.0 \text{ V} \pm 5\%$	
		Power supply for external interfaces	
VBK		Backup power supply for real time clock	
		When VCC5 is supplied, the same voltage as VCC5 should be supplied.	
		When VCC5 is not supplied, a backup voltage should be supplied.	
GND		System ground	

5. DETAILED DESCRIPTION OF FUNCTIONS

5.1 System Overview

CARD-586 has a system configuration based on the ISA architecture. This section provides an overview of the system memory configuration and basic I/O.

5.1.1 Memory map

The memory map of the CARD-586 (DRAM 16Mbyte) becomes as shown in Figure 5-1. The CARD-586 retains the memory area of 4Gbyte, and the lower 16MB is released for the ISA bus. When a memory in the CARD-586 is accessed even in this range, the

address is not output to the ISA bus.

Figures 5-1 and 5-2 show the memory maps of DRAM 16Mbyte and 32Mbyte respectively. These memory maps are available when the standard BIOS of the CARD-586 is used. When the BIOS is changed, the memory maps change.

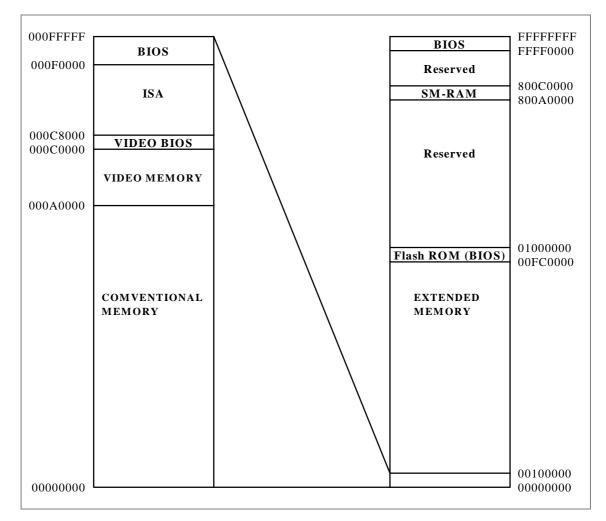


Fig. 5-1 System Memory Map

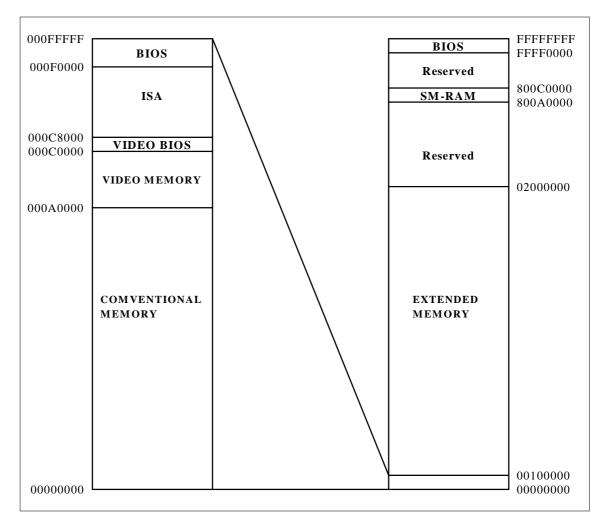


Fig. 5-2 System Memory Map (DRAM 32M byte)

In the CARD-586 (DRAM 48Mbyte), extended memory is from 0010000h to 02FFFFFFh.

5.1.2 DMA controllers

CARD-586 has two DMA controllers (equivalent to the 82C37A). The DMA channels in this system are shown in Table 5-1.

Table 5-1, 5-2	DMA Channels
----------------	---------------------

Controller 1

IL			
	Channel number	Device allocated	
	CH0	Devices on the ISA bus are usable.	
	CH1	Devices on the ISA bus are usable.	
	CH2	Floppy disk	
	CH3	Devices on the ISA bus are usable.	

Controller 2

Channel number	Device allocated
CH4	Cascade connection to controller 1
CH5	Devices on the ISA bus are usable.
CH6	Devices on the ISA bus are usable.
CH7	Devices on the ISA bus are usable.

Controller 1, which includes channels 0 to 3, is used for 8-bit data transfers. Between 8-bit I/O and 8-bit memory or 16-bit memory, transfer is possible in 8-bit units up to a block of 64K bytes.

Controller 2, which includes channels 4 to 7, is used principally for 16-bit data transfers, and since channel 4 is connected in cascade to controller 1 it is not available to the ISA bus. Channels 5 to 7 are available to the ISA bus, and can be used for 16-bit data transfers. In this case, between 16-bit I/O and 16-bit memory, transfer is possible in 16-bit units up to a block of 128K bytes.

The I/O addresses for the page registers used to support each DMA channel during DMA transfers are shown in Table 5-3. The DMA controllers have only 16-bit addressing capability, and these page registers are used to make up for this.

Page Registers	I/O Address	
DMA channel0	0087h	
DMA channel1	0083h	
DMA channel2	0081h	
DMA channel3	0082h	
DMA channel5	008Bh	
DMA channel6	0089h	
DMA channel7	008Ah	
Refresh	008Fh	

Table 5-3 Page Register Address

Information relating to transfer timing is contained in the chapter on the ISA bus interface.

5.1.3 System interrputs and interrupt controller

The allocation of interrupts to causes in CARD-586 is as shown in the following table.

Level	Function	
SMI	External system management interrupt	
	Power management functions, keyboard emulation	
NMI	Parity error or IOCHCK#	
IRQ	Interrupts from the interrupt controller	

Cause of Interrupt on CARD-586

IRQ interrupts are caused by the two interrupt controllers (equivalent to 82C59) mounted on the CARD-586. Causes of interrupt on the interrupt controller are as follows:

Interrupt Controller				
Controller 1	Controller 2	Devices		
IRQ0		Timer out 0		
IRQ1		Keyboard		
IRQ2		Cascade connection to controller 2		
	IRQ8	Real time clock		
	IRQ9	Usable on ISA bus		
	IRQ10	Serial port (Note)		
	IRQ11	Serial port (Note)		
	IRQ12	Mouse		
	IRQ13	Co-Processor		
	IRQ14	HDD		
	IRQ15	Usable on ISA bus		
IRQ3		Serial port 2		
IRQ4		Serial port 1		
IRQ5		Parallel port 2		
IRQ6		FDD		
IRQ7		Parallel port 1		

(Note)

The CARD-586 has two built-in serial ports and one built-in parallel port. Interrupt of these serial ports is selected from IRQ3,4,10,11, and the one of the parallel port is selected from IRQ5,7. Interrupts for which the built-in serial ports and parallel port are not used can be used on the ISA bus. When the FDD or the HDD is not used, IRQ6,14 can be used on the ISA bus.

5.1.4 Timer counter

The CARD-586 incorporates two 8254 equivalent timer-counters. Each has three independent timers. The following describes the applications of each and the inputs.

Channel 0	GATE 0	Fixed at "On."
System timer	CLK IN 0 1.19MHz	
	CLK OUT 0	Connected to IRQ0 of Interrupt Controller 1
Channel 1	GATE 1	Fixed at "On."
Refresh request	CLK IN 1	1.19MHz
	CLK OUT 1	Refresh request
Channel 2	GATE 2	Controlled by I/O port 61h
Speaker interface	CLK IN 2	1.19MHz
	CLK OUT 2	Used to drive the speaker interface.

Channel 0	GATE 0	Fixed at "On."
SMI request	CLK IN 0	32KHz
	CLK OUT 0	SMI request
Channel 1	GATE 1	Fixed at "On."
General purpose timer output	CLK IN 1	4KHz
(Watchdog timer)	CLK OUT 1	Watchdog timer output
Channel 2	GATE 2	Controlled by the configuration resister
Power management alarm	CLK IN 2	1.19MHz
	CLK OUT 2	Used to drive the speaker interface.

Table 5-7, Setting of Timer 2

For the detail of the timer counter, refer to the Seiko Epson's Technical Manual for Falconer Chip Set.

5.1.5 Real-time clock and CMOS RAM

CARD-586 has a real time clock which provides clock and calendar functions and CMOS RAM used to hold system configuration information. The real time clock is compatible with a 146818.

Power must be supplied constantly to the VBK pin in order to maintain the operation of the real time clock and the contents of CMOS RAM. When switching between the system power supply and the backup power supply, care is required to ensure that data is not lost. Care must be paid to the power supply sequence for the CARD-586.

5.1.6 I/O MAP

The I/O addresses from 00H to 0FFH are assigned to the system board (basic I/O). Although the addresses from 100h to 3FFh are available for the I/O channels, because CARD-586 already has built in I/O, use the following table as a reference when expanding I/O.

Address	Port	Register Name	Function
00h	00h RW	DMA Channel 0 base and current address	
	01h RW	DMA Channel 0 base and current word	
	02h RW	DMA Channel 1 base and current address	
	03h RW	DMA Channel 1 base and current word	
	04h RW	DMA Channel 2 base and current address	
	05h RW	DMA Channel 2 base and current word	
	06h RW	DMA Channel 3 base and current address	DMA Controller 1
	07h RW	DMA Channel 3 base and current word	82C37A Compatible
	08h WO	Command Resister	
	08h RO	Status Register	
	09h WO	Request Register	
	0Ah WO	Single-Mask register	
	0Bh WO	Mode register	
	0Ch WO	Clear Byte Pointer	
	0Dh RO	Master Clear	
	0Dh WO	Temporary Register	
	0Eh WO	Clear Mask Register	
0Fh	0Fh WO	Write all Mask Register	
10-1Fh		DMAC 1 Duplicated	
20h	20h WO	Initialization Control Word ICW1	
	20h WO	Operation Control Word OCW2	
	20h WO	Operation Control Word OCW3	
	20h RO	Interrupt Service Resister	
	20h RO	Interrupt Request Resister	Interrupt Controller 1
21h	21h WO	Initialization Control Word ICW2	82C59ACompatible
	21h WO	Initialization Control Word ICW3	
	21h WO	Initialization Control Word ICW4	
	21h RW	Operation Control Word OCW1	
	21h RW	Interrupt Mask Resister	
22-3Fh		Interrupt Controller 1 Duplicated	
40h	40h RW	Channel 0 Count	
	41h RW	Channel 1 Count	Timer Counter 1
	42h RW	Channel 2 Count	(8254 Compatibel)
43h	43h RW	Command Register	
44-47h		Timer Counter 1 Duplicated	
48h	48h RW	Channel 0 Count	Timer Counter 2
	4Ah RW	Channel 2 Count	(8254 Compatible)
4Bh	4Bh RW	Command Register	
4C-4Fh		Timer Counter 2 Duplicated	
50-53h		Timer Counter 1 Duplicated	
54-57h		Timer Counter 1 Duplicated	
58-5Bh		Timer Counter 2 Duplicated	
5C-5Fh		Timer Counter 2 Duplicated	

Address	Port	Register Name	Function
60h	60h R	Keyboard controller data input buffer	Keyboard Controller
	60h W	Keyboard controller data output buffer	
61h	61h RW	Port B	
62h		Keyboard Contoller data Duplicated/ Output Bufferduplicated	
63h		Port B Duplicated	
64h	64h WO	Keyboard controller command	Keyboard Controller
	64h RO	Keyboard Controller Status	
65h		Port B Duplicated	
66h		Keyboard controller command/ Status Duplicated	
67h		Port B Duplicated	
68h		Keyboard Contoller data Duplicated/ Output Bufferduplicated	
69h		Port B Duplicated	
6Ah		Keyboard Contoller data Input/Output Bufferduplicated	
6Bh		Port B Duplicated	
6Ch		Keyboard controller command/ Status Duplicated	
6Dh		Port B Duplicated	
6Eh		Keyboard controller command/ Status Duplicated	
6Fh		Port B Duplicated	
70h	70h WO	RTC/ CMOS RAM Address port and NMI Mask	RTC/ CMOS RAM
71h	71h RW	RTC/ CMOS RAM data port	
72-7Fh		RTC/ CMOS RAM duplicated	
80h	80h RW	Reserve	
	81h RW	Channel 2	
	82h RW	Channel 3	
	83h RW	Channel 1	
	84h RW	Reserved	
	85h RW	Reserved	
	86h RW	Reserved	DMA Memory Address
	87h RW	Channel 0	Mapper Page
	88h RW	Reserved	Register
	89h RW	Channel 6	
	8Ah RW	Channel 7	
	8Bh RW	Channel 5	
	8Ch RW	Reserved	
	8Dh RW	Reserved	
	8Eh RW	Reserved	
8Fh	8Fh RW	Refresh	
90-9Fh		Page Resister Duplicated	
0A0h	A0h WO	Initialization Control Word ICW1	
	A0h WO	Operation Control Word OCW2	
	A0h WO	Operation Control Word OCW3	
	A0h RO	Interrupt Service Resister	Interrupt Controller 2
	A0h RO	Interrupt Request Resister	82C59A Compatible
0A1h	A1h WO	Initialization Control Word ICW2	
	A1h WO	Initialization Control Word ICW3	
	A1h WO	Initialization Control Word ICW4	
	A1h RW	Operation Control Word OCW1	
	A1h RW	Interrupt Mask Resister	

Address	Port	Register Name	Function
0A2-0BFh		Interrupt Contoroller 2 Duplicated	
0C0h	C0h RW	DMA Channel 4 base and current address	
0C1h		0C0h Duplicated	
0C2h	C2h RW	DMA Channel 4 base and current word	
0C3h		0C2h Duplicated	
0C4h	C4h RW	DMA Channel 5 base and current address	
0C5h		0C4h Duplicated	
0C6h	C6h RW	DMA Channel 5 base and current word	DMA Controller 2
0C7h		0C6h Duplicated	82C37A Compatible
0C8h	C8h RW	DMA Channel 6 base and current address	
0C9h		0C8h Duplicated	
0CAh	CAh RW	DMA Channel 6 base and current word	
0CBh		0CAh Duplicated	
0CCh	CCh RW	DMA Channel 7 base and current address	
0CDh		0CCh Duplicated	
0CEh	CEh RW	DMA Channel 7 base and current word	
0CFh		0CEh Duplicated	
0Dh	D0h W0	Command Register	
	D0h RO	Status Register	
0D1h		0D0h Duplicated	
0D2h	D2h WO	Request Register	
0D3h		0D0h Duplicated	DMA Controller 2
0D4h	D4h WO	Mask register	82C37A Compatible
0D5h		0D4h Duplicated	
0D6h	D6h WO	Mode register	
0D7h		0D6h Duplicated	
0D8h	D8h WO	Clear Byte Pointer	
0D9h		0D8h Duplicated	
0DAh	DAh RO	Master Clear	
	DAh WO	Temporary Register	
0DBh		0DAh Duplicated	
0DCh	DCh WO	Clear Mask Register	
0DDh		0DCh Duplicated	
0DEh	DEh WO	Write all Mask Register	
0DFh		0DEh Duplicated	
0E0-0E4h			Can be used on the ISA bus.
0E5h	E5h RW	CARD-586 Configuration Register (Index)	
0E6h			Can be used on the ISA bus.
0E7h	E7h RW	CARD-586 Configuration Register (Data)	
0E8-0EFh			Can be used on the ISA bus.
0F0h	F0h WO	Mathematical Co-processor Register 0	
0F1h-0FFh			Can be used on the ISA bus.
100h-1EFh			Can be used on the ISA bus.

Port	Register Name	Function
1F0h RW	-	
1F1h RO		
1F2h RW	Sector Count	Hard Disk Controller
1F3h RW	Sector Number	
1F4h RW	Cylinder High	
1F6h RW		
1F7h RO		
-		
278h RW	LPT2 Data Port	
		Printer PORT 2
	-	
27111 K W		Can be used on the ISA bus.
2E86 P.O	Pacaivar Buffar	Can be used on the ISA bus.
		Serial PORT 2
2FFh RW	Scratch Register	
		Can be used on the ISA bus.
		Printer PORT 1
37Fh RW	Automatic data strobe register	
		Can be used on the ISA bus.
3B4h RW		
1 m m m m m m m m m m m m m m m m m m m	CRT Controller Data	VGA Controller
3B5h RW		VON Controller
3B5h RW 3BAh W	Feature Control	(mono)
	1F0h RW 1F1h RO 1F2h RW 1F3h RW 1F3h RW 1F3h RW 1F3h RW 1F5h RW 1F7h RO 1F7h RO 1F7h RO 278h RW 279h RO 27Ah RW 27Dh RW 27Ch RW 27Dh RW 27Fh RW 27Fh RW 2F8h RO 2F8h RW 2F9h RW 2F0h RO 2F8h RO 2F9h RW 2F0h RO 2F9h RW 2F0h RO 2F0h RO 2F1 RW 378h RW 379h RO 37Ah RW 370h RW	IPOIF0h RWData RegisterIF1h ROError RegisterIF2h RWSector CountIF3h RWSector NumberIF4h RWCylinder HighIF5h RWCylinder LowIF6h RWSDH RegisterIF7h ROStatus RegisterIF7h ROStatus RegisterIF7h ROCommand register278h RWLPT2 Data Port279h ROLPT2 Status Port277h RWLPT2 Control278h RWLPT2 Control278h RWLPT2 Control278h RWAutomatic data strobe register27Ch RWAutomatic data strobe register27Dh RWAutomatic data strobe register27Eh RWAutomatic data strobe register27Fh RWAutomatic data strobe register27Fh RWAutomatic data strobe register27Fh RWDivider Latch Least Significant Byte2F8h ROReceiver Buffer2F8h RWDivider Latch Most Significant Byte2F9h RWInterrupt Enable Register2FAh ROInterrupt Register2FAh ROInterrupt Register2FAh ROInterrupt Register2F4h ROMODEM Control Register2F4h RWLPT1 Data Port378h RWLPT1 Data Port379h ROLPT1 Status Port378h RWLPT1 Control378h RWLPT1 Control378h RWLPT1 Control378h RWAutomatic data strobe register370h RWAutomatic data strobe register370h RWAutomatic data strobe regis

Address	Port	Register Name	Function
3C0h	3C0h W	Attribute Controller Index/Data	
	3C1h R	Attribute Controller Index/Data	
	3C2h W	Miscellaneous Output	
	3C2h R	Input Status Register	
	3C3h RW	VGA Enable	
	3C4h RW	Sequencer Index	
	3C5h RW	Sequencer Data	
	3C6h RW	Video DAC Pixel Mask,Hidden DAC Register	
	3C7h W	Pixel Address Read Mode	VGA Controller
	3C7h R	DAC Status	
	3C8h RW	Pixel Mask Write Mode	
	3C9h RW	Pixel Data	
	3CAh R	Future Control Readback	
	3CCh R	Miscellaneous Output Readback	
	3CEh RW	Graphics Controller Index	
3CFh	3CFh RW	Graphics Controller Data	
3D4h	3D4h RW	CRT Controller Index	
3D5h	3D5h RW	CRT Controller Data	VGA Controller
	3DAh W	Feature Control	(color)
3DAh	3DAh R	Input status register	
3E0-3F1h			Can be used on the ISA bus.
3F2h	3F2h WO	Digital Output Register	Floppy Disk Controller
3F3h			Can be used on the ISA bus.
3F4h	3F4h RW	Main Status register	Floppy Disk Controller
	3F5h RW	Data Register	
	3F6h RO	Reserved for IDE	
3F7h	3F7h RO	Digital Input Resister	
	3F7h WO	diskette control register	Shared with IDE hard disk controller
3F8h	3F8h RO	Receiver Buffer	
	3F8h WO	Transmit holding Buffer	
	3F8h RW	Divider Latch Least Significant Byte	
	3F9h RW	Divider Latch Most Significant Byte	
	3F9h RW	Interrupt Enable Register	
	3FAh RO	Interrupt ID Register	Serial PORT 1
	3FBh RW	Line Control Register	
	3FCh RW	MODEM Control Register	
	3FDh RO	Status Register	
	3FEh RO	MODEM Status Register	
3FFh	3FFh RW	Scratch Register	

5.2 ISA Bus Interface

CARD-586 is equipped with the Industry Standard Architecture (ISA) bus structure, a worldwide standard architecture for personal computer systems.

5.2.1 ISA Bus signals

Adrress bus signals

System Address bus (SA[19:0])

These signals are used to indicate memory and I/O device address on the bus. These addresses are latched and held, and are effective for the duration of the bus cycle. When master function is used, it is driven by the device on I/O channel.

Latchable Address bus (LA[23:17])

These signals are used to indicate memory device addresses on the bus. They are used together with the system address signals, and make it possible to access up to 16MB of memory on the bus.

System Byte High Enable (SBHE#)

When active, this signal (which is active low) indicates transmission of the most significant 8 bits (SD[15:8]) on the system data bus.

Data bus

System data bus(SD[15:0])

This 16-bit data bus is used in the transmission of data between memory on the bus and the CPU and I/O devices.

I/O control signals

I/O Read(IOR#)

This signal gives an I/O device permission to drive data on the bus.

I/O Write(IOW#)

This signal instructs an I/O device to accept data from the bus.

I/O Chip Select 16(IOCS16#)

This input is a signal that indicates to the CARD-586 that the data transfer on the bus is a 16-bit I/O transfer. The default for 16-bit I/O transfer is one wait cycle. When not driven low, the default transfers a 4-wait 8-bit I/O cycle.

Memory control signals

MEMory Read(MEMR#)

This signal gives a memory device permission to drive data on the bus.

MEMory Write(MEMW#)

This signal instructs an I/O device to accept data from the bus.

Sytem MEMory Write(SMEMW#)

This signal is active when a memory write cycle is started for the 0-1MB memory space on the bus.

System MEMory Read(SMEMR#)

This signal is active when a memory read cycle is started for the 0-1MB memory space on the bus.

MEMory Chip Select 16(MEMCS16#)

This signal indicates a 16-bit memory transfer to the CARD-586. When this signal is not active, the default memory bus cycle, a 4-wait 8-bit cycle, is used.

DMA Control Signals

Address ENable(AEN)

When this signal is active, it indicates that the cycle is the DMA cycle or the refresh cycle.

DMA ReQuest(DRQ[7:5,3:0])

DMA data transfer request signal sent to the CARD-586.

DMA ACKnowledge (DACK[7:5,3:0])

This signal indicates that control of the bus was released to the DMA channel on which DMA transfer was requested.

Terminal Count (TC)

In the DMA transfer cycle, this signal indicates completion of the DMA channel transfer.

Refresh control signal

REFRESH(REF#)

When this signal is active, it indicates that the bus refresh cycle has either been requested or is in progress.

External master control signal

MASTER(MASTER#)

The external bus master makes this signal active in order to acquire the control authority of the bus. Before the external bus master makes this signal active, however, it must first make DRQn# active and then receive DACKn#.

Clock signals

System CLocK (SCLK)

This is the basic bus clock signal.	
CPU Clock	SCLK
133MHz	8MHz
66MHz	8MHz

SCLK Frequency

The SCLK frequency varies with the CPU and CPU clock of the CARD-PC.

Oscillator (OSC)

This is a 14.31818 MHz clock output. This signal is not synchronized to the system clock.

Other ISA bus signals

I/O CHannel ChcK(IOCHCK#)

This signal alerts the CARD-586 when a parity error occurs in memory or an I/O device on the bus, or when an unrecoverble error occours. THis signal generates an NMI for the system.

I/O CHannel ReaDY(IOCHRDY)

This signal terminates the bus cycle. If memory on ISA bus or an I/O device on the bus wants to extend the bus cycle, it can extend the cycle by searching for an effective address and command and then setting this signal low. Until this signal goes high, the CARD-586 will continue to insert waits in the cycle.

ZERO Wait State(WS0#)

Make this signal initializes the system when the power is turned on. Initialize devices on the bus by using this signal. This signal is active for 50ms.

RESET DRiVe (RESETDRV)

When the power is turned on, devices on the ISA bus are initialized using this signal.

Buffered Address Latch Enable (BALE)

This signal indicates that SA[19:0] and LA[23:17] are enabled and the CPU cycle or DMA cycle has started. In the DMA cycle, this signal remains high throughout the cycle.

Interrupt ReQuest(IRQ[15,14,12:9,7:3]

These signals are active high and are used as interrupt request signals. These signals are input asynchronously.

5.2.2 ISA bus cycles

The ISA bus supports the following types of cycles:

- *Memory read
- *Memory write
- *I/O read
- *I/O write
- *DMA
- *Refresh
- *External bus master

THese cycles are explained in the following sections.

5.2.3 Memory read cycles

Fig. 5-3 shows the basic timing of the 16-bit memory read/write cycle in the ISA bus cycle. Fig. 5-4 shows the 8-bit memory read/write cycle. In both the 8- and 16-bit cycles, the system address lines SA[19:0] become valid within one system clock cycle previous to MEMR# becoming active. In the first bus cycle Ts, the system address becomes the valid address, and when the SCLK signal falls BALE becomes active. SA[19:2] are latched by the time of the Ts cycle within the CARD-586, and output.

The CARD-586 latches read data at the end of the last Tc cycle of the memory read cycle. Also, the CARD-586 outputs valid write data from the fall of the Ts cycle to the next fall of the last Tc cycle of the memory write cycle.

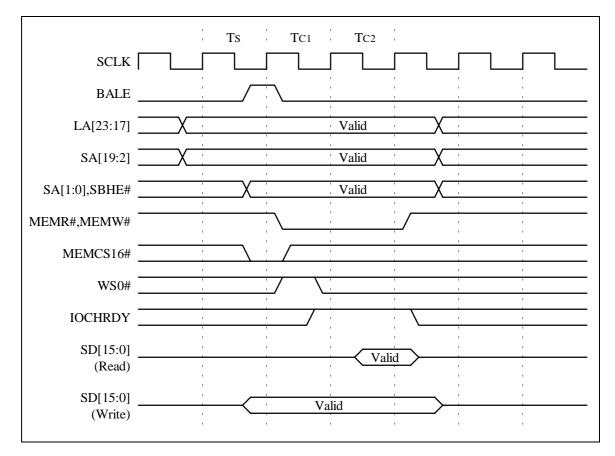


Figure 5-3 16-BIT ISA-Bus Memory Read/Write Cycle

16-bit memory transfers are carried out by an external device making MEMCS16# active. LA[23:17] become valid not later than the Tx cycle. MEMR# becomes valid following the SCLK falling edge in Tc1. In the 16-bit memory cycle, MEMR# becomes active in the first half of Tc1, and in the 8-bit memory cycle, MEMR# becomes active in the second half. In a 16-bit memory transfer, IOCHRDY is sampled for the last time 1 SYSCLK pulse before the end of the cycle. If at this time it is low, a 1 SYSCLK pulse wait is inserted. Thereafter, at the end of each of the Tc [cycles], it is sampled, and a 1 SYSCLK pulse wait is inserted. When IOCHRDY has become inactive, the cycle ends at the end of the next SYSCLK pulse.

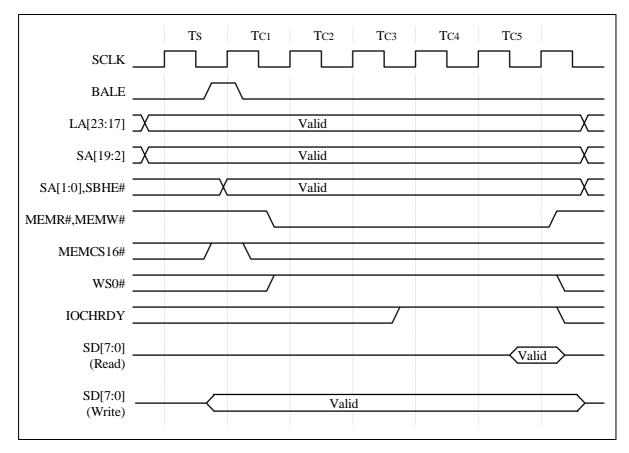


Figure 5-4 8-BIT ISA-Bus Memory Read/Write Cycle

In an 8-bit memory transfer, MEMCS16# is inactive. The CARD-586 samples this signal at the end of the Ts cycle, and if this signal is high, before sampling IOCHRDY, a 3-SCLK wait state is inserted. IOCHRDY is sampled at the end of Tc5, and if low, a 1 SCLK wait state is inserted. Thereafter, at the end of each of the Tc cycles, it is checked, and after IOCHRDY high is detected, after 1 SCLK cycle termination occurs. Fig. 5-6 is a timing chart showing the 8-bit ISA memory cycle when IOCHRDY is inactive.

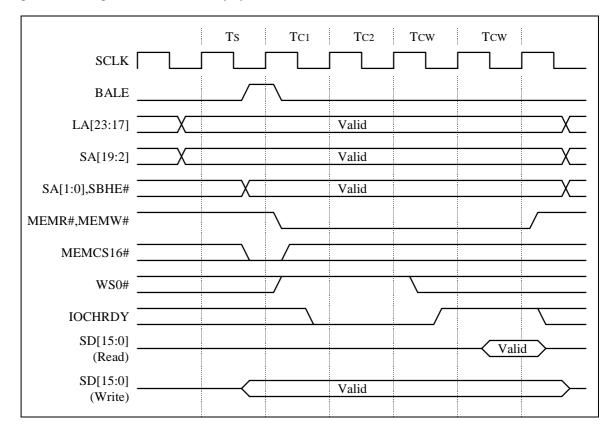


Figure 5-5 16-BIT ISA-Bus Memory Read/Write Cycle with IOCHRDY Deasserted

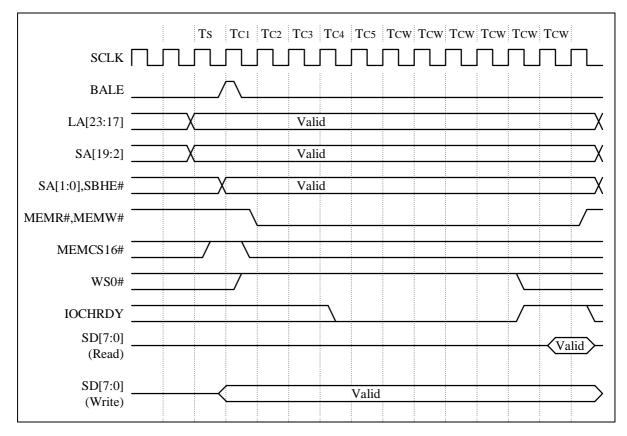


Fig. 5-6 8-BIT ISA-Bus Memory Read/Write Cycle with IOCHDRY Deasserted

In a 16-bit memory transfer, WS0# is sampled at the falling edge of Tc1, and if it is found to be low, this cycle ends here.

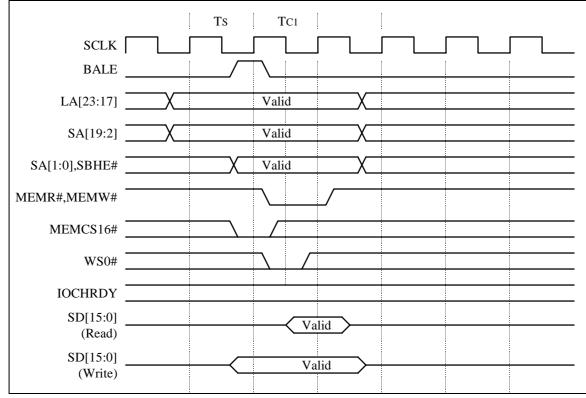
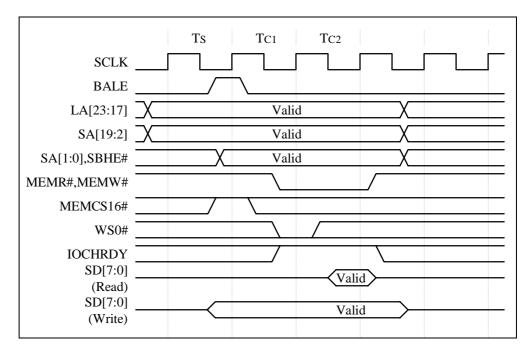



Fig. 5-7 16-BIT ISA-Bus Memory Read/Write Cycle with WS0# Asserted

In a 8-bit memory transfer, WS0# is sampled at the end of Tc1. At this time, if WS0# is active, the bus cycle ends with this cycle (Tc2). Fig. 5.2.6 is a timing chart showing the case where WS0# is used.

Fig. 5-8 ISA-Bus Memory Read/Write Cycle with WS0# Asserted

5.2.4 I/O read cycles

Fig. 5-9 shows the basic timing for the ISA 16-bit I/O read/write cycle. Fig. 5-10 shows the basic timing for the ISA 8-bit I/O read/write cycle. IOCS16#, which corresponds to MEMCS16# in the memory cycle, distinguishes between 16-bit I/O transfers and 8-bit I/O transfers. MEMCS16# is latched at the end of Ts, but IOCS16# is not latched. As a result, assurance from Tc1 to the end of the cycle is required.

In the 16-bit memory cycle MEMR# and MEMW# become active from the beginning of Tc1, but in the 16-bit I/O cycle IOR# and IOW# become active in the second half of Tc1.

In the 16-bit I/O cycle WS0# is ignored. As a result, the 16-bit I/O cycle cannot be shorter than 3 SYSCLK cycles.

Just like in the memory cycle, the CARD-586 latches read data at the end of the last Tc cycle of the I/O read cycle and outputs valid write data from the fall of the Ts cycle to the next fall of the last Tc cycle of the I/O write cycle.

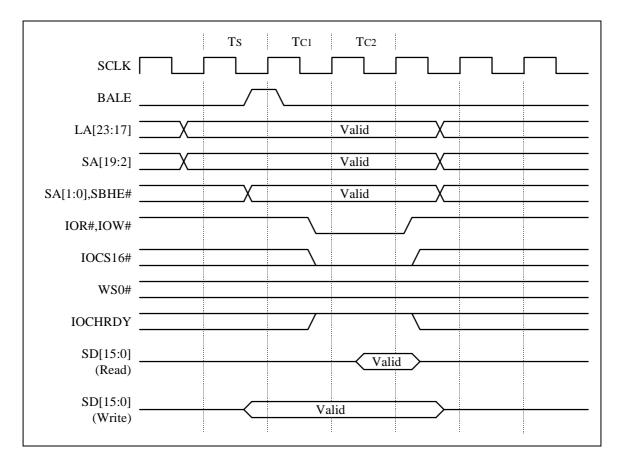
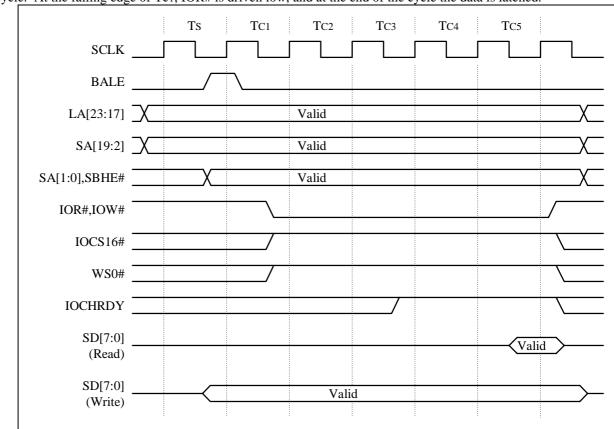



Figure 5-9 16-BIT ISA-Bus I/O Read/Write Cycle

In a 16-bit transfer, IOCS16# must be driven low by an external device on the ISA bus. IOCS16# is sampled at the end of Tc1. Moreover, LA[23:17] are, according to the CPU specification, always low in an I/O read/write cycle. At the falling edge of Tc1, IOR# is driven low, and at the end of the cycle the data is latched.

In a 16-bit I/O transfer, IOCHRDY is sampled at the end of Tc1. If at this time IOCHRDY is found to be low, a 1 SCLK wait state is inserted, and it is sampled again at the beginning of the next cycle. If IOCHRDY is found to be high, this bus cycle ends after 1 SCLK cycle.

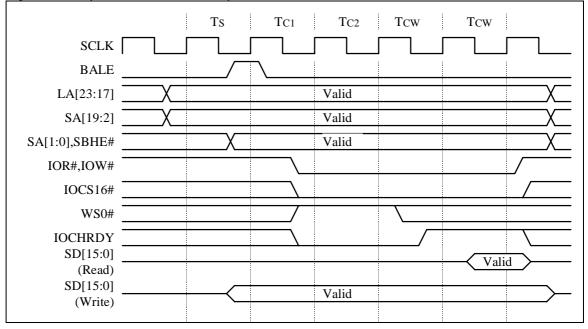


Figure 5-11 16-BIT ISA-Bus I/O Read/Write Cycle with IOCHRDY Deasserted

An 8-bit I/O device data transfer is carried out when IOCS16# is inactive. The CARD-586 samples this signal at the end of the Ts cycle, and if this signal is high, before sampling IOCHRDY, a 3-SCLK wait state is inserted. IOCHRDY is sampled at the end of Tc4, and until it is detected to be high, is sampled repetitively at the end of [each] Tc cycle. The bus cycle ends 1 SCLK cycle after IOCHRDY high is detected.

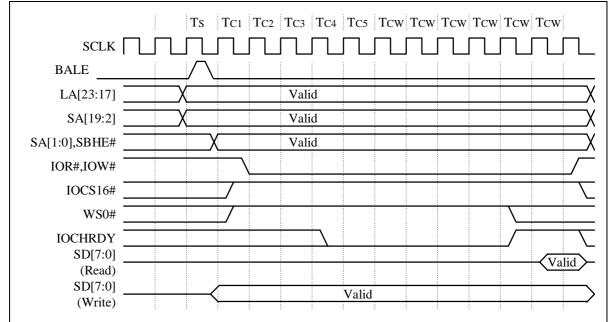


Figure 5-12 8-BIT ISA-Bus Read/Write Cycle with IOCHRDY Deasserted

In an 8-bit I/O transfer, the CARD-586 samples WS0# at the end of Tc1. At this time, if WS0# is low, the bus cycle ends with this cycle. SD[7:0] are only valid during this cycle. Fig. 5.2.11 is a timing chart showing the case where WS0# is active in an 8-bit I/O cycle. In a 16-bit I/O cycle, WS0# has no significance.

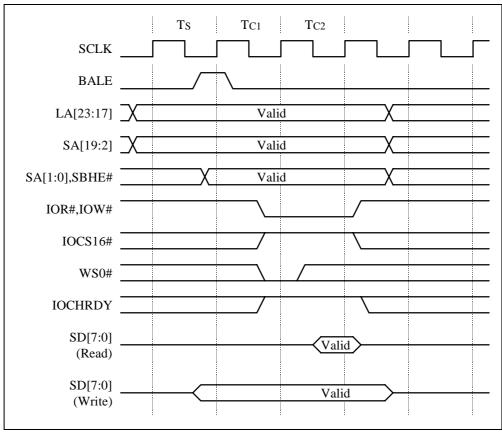


Figure 5-13 8-BIT ISA-Bus I/O Read/Write WS0# Asserted

5.2.5 DMA cycles

CARD-586 includes two 8237A equivalent DMA controllers (DMACs) that support seven standard ISA DMA channels. These DMACs are connected in cascade fashion in a standard ISA master-slave configuration.

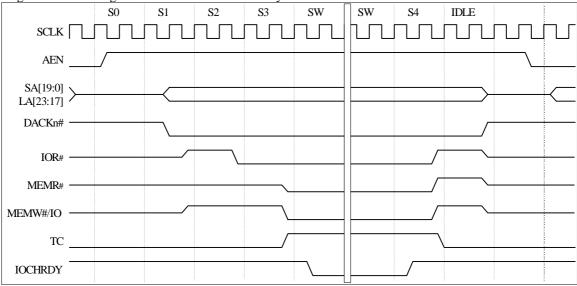


Fig. 5-14 is a timing chart of the standard DMA cycle.

Figure 5-14 DMA Cycle with Wait State

DRQ[3:0] are used to request an 8-bit transfer between an 8-bit I/O device and an 8- or 16-bit memory device. Each channel transfers data in blocks of up to 64K to a memory area ranging from 0 to 16MB.

DRQ[7:5] are used for 16-bit data transfer. These signals can only be used for data transfers involving 16-bit I/O devices and 16-bit memory devices. Each channel can transfer data up to 128K in size to a system address space of 0 to 16MB.

The signals AEN and BALE become active (HIGH) during the DMA cycle. Memory addresses are output as follows from the memory mapper (by setting the DMA Memory Address Mapper Page Resister) and the DMAC:

Table :	5-9	DMA	address	generation

	DMA Memory Address	DMAC				
	Mapper Page Resister					
8 bits transfer	LA23LA17, SA16	SA15SA0	Reversed signal of SA0 is generated to SBHE#.			
16 bits transfer	LA23LA17	SA16SA1	LOW is generated to SA0 and SBHE#.			

5.2.6 External bus master cycles

Fig. 5-15 shows the timing chart for the external bus master cycle for the ISA bus. In order to enter this cycle, the bus master makes the DRQn signal active. The external bus master then waits until DACKn# becomes active; finally, in order to establish the external bus master cycle, the external bus master must make MASTER# active.

After having made MASTER# active, the external bus master must output addresses (LA[23:17], SA[16:0], SBHE#) and data when one SCLK cycle comes. Also, read and write commands have to wait for another one SCLK cycle or more. The external bus master has not to output addresses to SA[19:17]. The LA[19:17] value is output to SA[19:17] from the CARD-586.

If MASTER# is held low for more than 15sec., the memory on the ISA is not refreshed and the memory contents may be lost. To avoid this, it is necessary for the external bus master to make REF# active for the CARD-586 and to execute a refresh cycle.

When the external bus master accesses the memory or the I/O as well, the byte-swapping logic inside the CARD-586 works. So, when writing odd addresses, the external bus master outputs the data to SD[15:8], and

when writing even addresses, it outputs the data to SD[7:0]. When reading odd addresses, the external bus master receives the data from SD[15:8], and when reading even addresses, it receives the data from SD[7:0]. Figure 5-15 shows the access timing from the external bus master to the internal DRAM of the CARD-586.

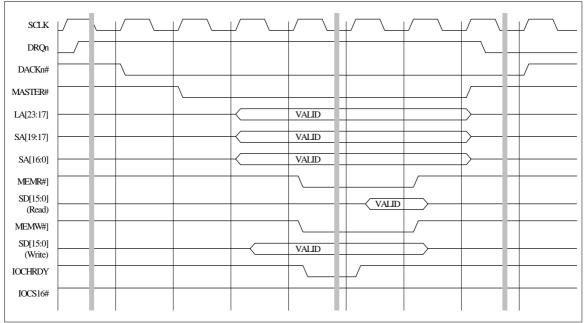


Figure 5-15 External Bus Master Cycle to Local Memory

When the external bus master accesses the internal DRAM, MEMCS16# does not become active as shown in Figure 5-15. Each time accessing the internal DRAM, the external bus master has to access the 16-bit memory.

5.2.7 Precautions on External Bus Master

The CARD-586 has a built-in write-back cache of 16Kbyte. When the DMA or the external bus master accesses the DRAM, the bus controller, ISP0015, of the CARD-586 operates as follows:

<1> ISP0015 checks from the address from the DMAC or the external bus master if it has hit the cache modified line.

<2> When ISP0015 has hit it, ISP0015 makes the CPU execute a write-back cycle and writes the cache data in the DRAM.

<3> When ISP0015 has not hit it or after the end of the write-back cycle, ISP0015 reads and writes the DRAM data.

In the meantime, ISP0015 makes IOCHRDY inactive and inserts a wait to the DMAC or the external bus master. (Even when the controller has not hit the modified line, it is necessary to check if it has hit, and a wait is inserted.) Therefore, such

external bus master to which IOCHRDY cannot insert a wait does not work normally on the CARD-586.

Since the CARD-486D4 cache is of a write-through type, a wait cannot be inserted like to the CARD-586 when the DMA or the external bus master accesses the DRAM.

5.2.8 Refresh cycles

When the built-in 8254 (Programmable interval timer) shows refresh time-out values, the CARD-586 makes REF# active and execute the memory refresh cycle. In the refresh cycle, the CARD-586 outputs refresh addresses (12 bits) the MEMR# signal on the ISA bus. Figures 5-16 and 5-17 generally show the timing charts of the refresh cycle and the extended refresh cycle. To refresh slow memory devices, make IOCHRDY low to extend the cycle.

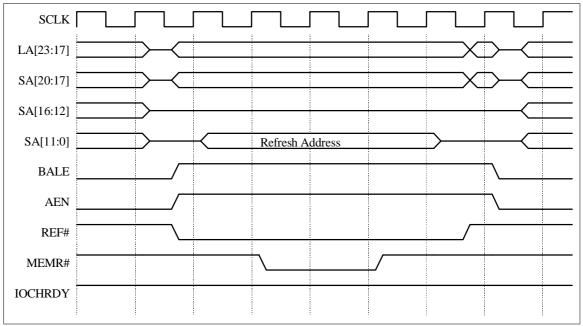


Figure 5-16 CARD-586 Initialed Default Refresh Cycle

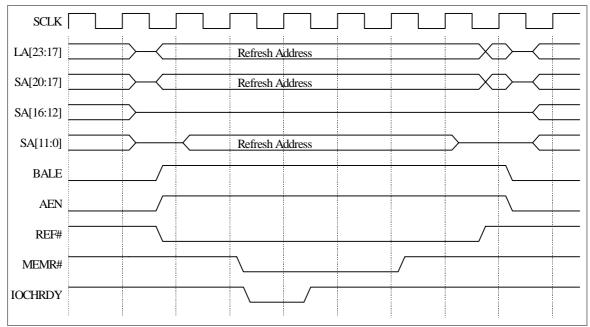
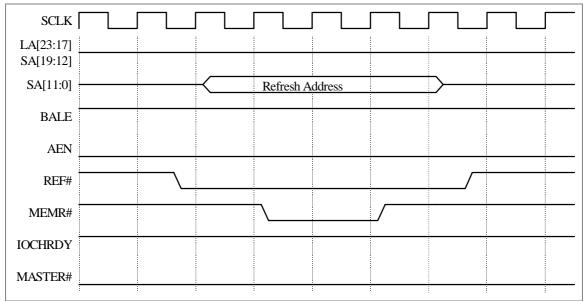



Figure 5-17 CARD-586 Initiated Extend Refresh Cycle

When the bus master has the bus control authority, the CARD-586 does not execute the refresh cycle even when 8254 shows refresh time-out values. If REF# is made active, the bus master can execute the refresh cycle. At the time, the CARD-586 generates refresh addresses and MEMR#.

Figures 5-18 and 5-19 show refresh cycles which are generated by the bus master with or without wait state.

Figure 5-18 Bus Master Initiated Default Refresh Cycle

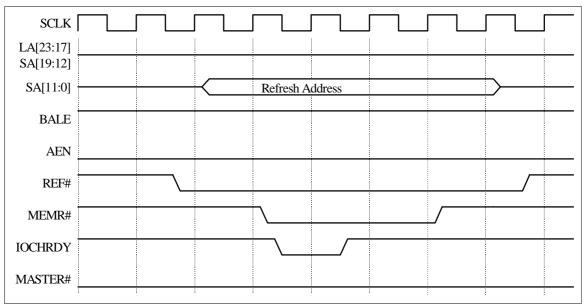


Figure 5-19 Bus Master Initiated Extended Refresh Cycle

5.3 Hard Disk Bus Interface

The CARD-586 is provided with the necessary chip select control signals for supporting IDE (Integrated Drive Electronics) type hard disk drives. It also supports the control circuits for I/O port 3F7h for shared floppy disk and hard disk drives.

This section describes the hard disk interface and its interface signals, timing, and reference circuits.

5.3.1 Features of the hard disk interface

*ISA-compatible hard disk controller chip select signal generation

*Support for control logic for port 3F7h shared by the hard disk controller and the floppy disk controller *Permits hard disk interface signals to be disabled

The PC AT-compatible hard disk interface addresses are located in the I/O addresses at 1F0h to 1F7h and 3F6h to 3F7h. CARD-586 supports HDCS0# and HDCS1# as chip select signals for these interface addresses.

In the PC/AT compatible system, I/O address 3F7h is shared by the floppy disk and hard disk controllers. Reading 3F7h results in reading 7 bits data (bits 0 to 6) from the hard disk controller and 1 bit data (bit 7) from the floppy disk controller. HD7 is prepared on the CARD-586 as a special bus for the hard disk.

In addition to the control logic for HD7, CARD-586 supports HDENH# and HDENL# for the control of two buffers for hard disks,. These buffer control signals simplify buffer control for a hard disk making 8-bit nad 16-bit data transfers. HDENL# is active when making an 8-bit access to a hard disk, and both HDENH# and HDENL# are active for 16-bit accesses.

5.3.2 Hard disk interface signals

Hard disk address signals

System Address(SA[2:0]).

Right most 3 bits of the ISA address bus. While the hard disk is being accessed, the signal is driven by the CARD-586 or external bus master. It is used for selecting the address resister on the hard disk.

Hard disk data signals

System Data(SD[15:8],SD[6:0]).

These signals are ISA bus system data signals.

Hard disk Data bit(HD7).

This signal is multiplexed with system data bit 7. The reason is I/O address 3F7h is shared by the floppy disk and the hard disk; as a result, hard disk data bit 7 must be multiplexed with internal bus data bit 7. In this system, the fact that I/O address 3F7h is currently being read is output to SD7 from the internal data bus. HD7 and SD7 are connected in this system in regards to accesses of I/O addresses for other hard disks.

Hard disk control signals

Hard Disk Chip Select 0(HDCS0#)

This active low output signal is active when accessing I/O addresses 01F0h to 01F7h.

Hard Disk Chip Select 1(HDCS1#)

This active low output signal is active when accessing I/O addresses 3F6h to 3F7h.

Hard Disk buffer Enable High (HDENH#)

This active low output signal is active during 16-bit hard disk accesses.

Hard Disk buffer Enable Low (HDENL#)

This active low output signal is active during all hard disk accesses.

Hard disk data bus DIRction(HDIR)

This is the directional control signal fot he hard disk bus transceiver. Normally, this signal is driven low, but goes high during the read cycle.

I/O Chip Select 16(IOCS16#)

This active low signal is used by disks or other devices on the ISA bus to make 16-bit I/O transfer requests.

Intrrupt ReQuest 14(IRQ14)

This signal is used to request interrupt servicing for the hard disk.

I/O Read(IOR#)

This is the ISA bus I/O read signal. This signal is output during the disk read cycle by the CARD-586 or by an external master device.

I/O Write(IOW#)

This is the ISA bus I/O write signal. This signal is output during the hard disk write cycle by the CARD-586 or by an external master device.

RESET DRiVe(RESETDRV)

This active high output signal is the reset signal used on the ISA bus. For use with IDE-type devices, this signal must be inverted.

5.3.3 Hard disk bus cycles

Hard disks are accesses through the I/O read and I/O write cycles.

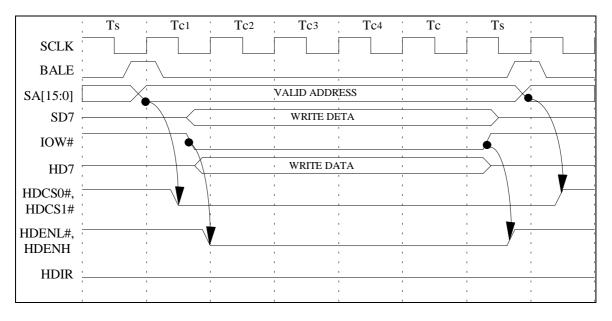
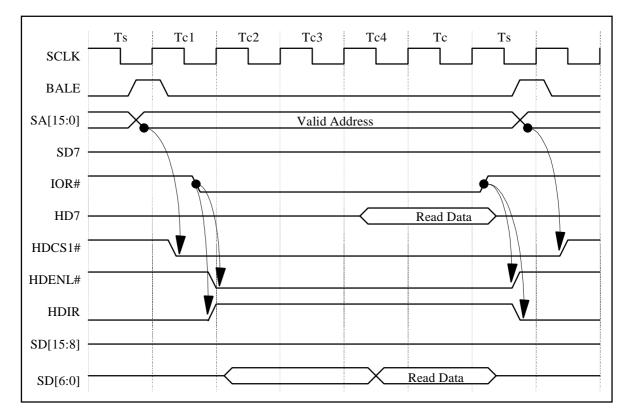



Figure 5-20 Hard Disk I/O Write Cycle

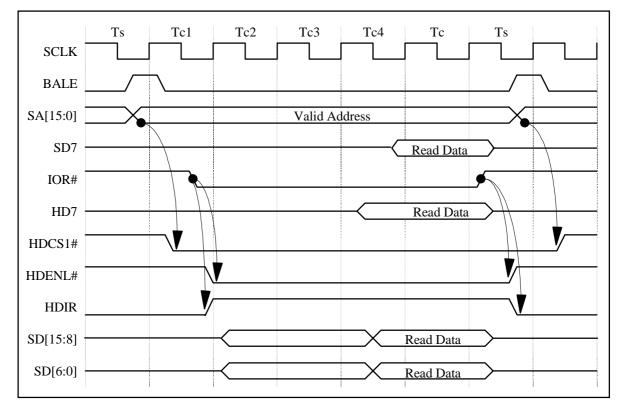


Figure 5-22 Hard Disk Read From I/O address 01F0h-01F7h or 03F6h

5.3.4 Hard disk hardware options

Buffered Hard Disk Interface

Figure 5-23 shows an example of connection of the CARD-586 and an IDE hard disk. The data buffer 74HCT245 is connected between the data SD[15:8, 6:0] and HD7 on the ISA bus and a had disk data bus. These buffers are controlled by HDENL#, HDENH# and HDDIR. SA[2:0], IOR# and IOW# are connected to the hard disk through 74HCT244. Since being connected to other devices on the ISA bus, it is recommended that the ISA data bus, SA[2:0], IOR# and IOW# are connected to the hard disk through the buffer. The RESET signal is connected to the hard disk through the inverter because the reset signal of the IDE hard disk is low active. The LDE which indicates that the disk is active is installed outside if necessary.

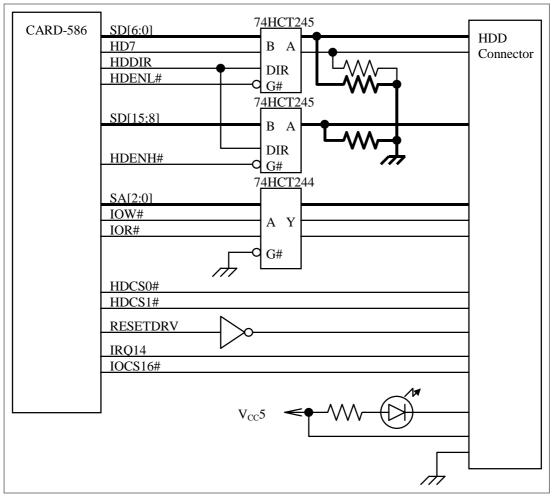


Figure 5-23 Buffered IDE HardDisk Interface Examples

Hard Disk Power Shutdown

The hard disk is not used all the times and is idle in most cases and is accessed sometimes for reading and writing files. The hard disk consumes considerable power even in the idle state The power consumption of even a hard disk which saves power as controlled by a software is not 0. The CARD-586 can cut off the power to the hard disk completely as shown in Figure 5-24. To cut off the power, the output signal SMOUT2 for power management is used. In this case, the power to the hard disk is controlled in the power management routine of the BIOS. The CARD-586 contains a hardware to detect idle states of devices, and the hardware is initialized and controlled in the power management routine of the BIOS.

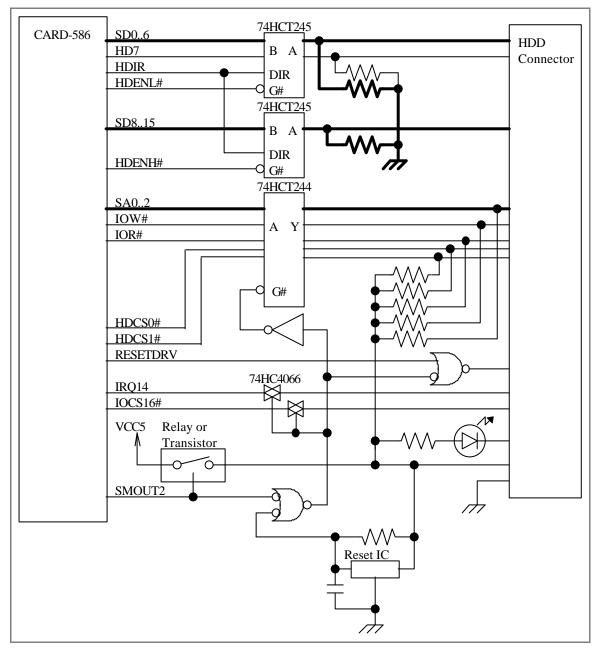


Figure 5-24 Buffered IDE Hard Disk Interface Examples

Direct IDE Hard Disk Interface

The CARD-586 can directly be connected to the IDE hard disk. (Figure 5-25) But this method is applicable only when the ISA bus is lightly loaded. This method can reduce the number of parts installed outside.

CARD-586	SD06	IDE HDD
	HD7 SD815	
	50815	
	SA02	
	IOW#	
	IOR#	
	HDCS0#	
	HDCS1#	
	RESETDRV	
	IRQ14	
	IOCS16#	
	$V_{cc}5 \iff W_{(D)}$	
	/17	

Figure 5-25 Direct IDE Hard Disk Interface Examples

5.4 Serial Port Interface

Features of the serial port interface

*Support for two NS16C550-compatible serial port controllers *Transfer rate can be set from 50 to 115,000bps *Base address can be set *Infrared communications support

5.4.1 Serial port interface signals

The serial port control and data signals are shown below.

Control signals

Data Carrier Detect (COMADCD#,COMBDCD#)

This signal indicates that a modem or data terminal detected a carrier signal.

Data Terminal Ready (COMADTR#,COMBDTR#)

This signal indicates that the main controller has completed preparations for communications with the main controller.

Data Set Ready (COMADSR#,COMBDSR#)

This signal indicates that a modem or data terminal has completed preparations for communications with the main controller.

Request to Send (COMARTS#,COMBRTS#)

This signal indicates that the controller has prepared the data to be sent and is requesting to send the data to the modem or data terminal.

Clear To Send (COMACTS#,COMBCTS#)

This signal indicates that the modem or data terminal has completed preparations to receive in response to a request to send.

Ring Indicator (COMARI#,COMBRI#)

This signal indicates that the modem or data terminal detected a telephone ring signal. In additon, in CARD-586 this signal is also used as a wake-up signal when in the suspended state.

Data

Sriral data transmission (COMATXD,COMBTXD)

This output sends asynchronous serial data.

Serial data Receive (COMARXD,COMBRXD)

Asynchronous serial data input signal.

IrDA SIR data Receive (IRTX)

This is an IrDA SIR-1.0/Digital ASK data output signal for infrared communications.

IrDA SIR data Transmission (IRRX)

This is an IrDA SIR-1.0 data input signal for infrared communications.

Digital ASK data Receive (DARX)

This is a digital ASK data input signal for infrared communications.

REV.B

5.4.2 Serial port functions

This serial port support full-duplex asynchronous serial transmissions. This controller's control signals are used in a protocol designed to ensure the accuracy of data transfers. Several signals are provided specifically for modem control. However, as long as certain rules are observed, those signals can also be used for communications with other devices.

"x" of I/O addresses is 3 for COMA and 2 for COMB

1/0 A 11	Table 5.4.1 Serial Port Resister
I/O Address	Description
xF8h WO	TX buffer when DLAB=0
xF8h RO	RX buffer when DLAB=0
xF8h RW	Divisor latch LSB when DLAB=1
xF9h RW	Divisor latch MSB when DLAB=1
xF9h RW	Interrupt enable register when DLAB=0
	Bit[4-7] = 0
	Bit3 : Modem status interrupt enable
	Bit2 : Receiver line status interrupt enable
	Bit1 : Transmitter holding register
	Bit0 : Received data available interrupt enable
	1-enable, 0-disable
xFAh RO	Interrupt ID register
	Bit[3-7] = 0
	Bit[2,1] Interrupt ID
	0,0 Modem status
	0,1 Transmitter holding register
	1,0 Received data available
	1,1 Receiver line status
	Bit0 : 0-interrupt pending
xFBh	Line control register
	Bit7 : DLAB
	0-Receiver buffer, transmitter holding, or interrupt
	enable access
	1-Divisor latch access
	Bit6 : Set Break, 1-enable
	Bit5 : Stick parity
	Bit4 : Even parity select
	Bit3 : Parity enable, 1-even, 0-odd
	Bit2 : Number of stop bit
	0:1 stop bit,
	1 : if word length is 5 bits stop bit length is 1.5 bit if word length is 6.7 or 8, then stop bit
	if word length is 6, 7 or 8, then stop bit
	length is 2 bit Bit[1-0] Bits per character (word length)
	0,0:5 0,1:6
	1,0:7
	1,0:7
vECh	MODEM control register
xFCh	
	Bit[5-7] : reserved
	Bit4 : 1-Loop back mode
	Bit3 : Out2 interrupt enable, 1-enable
	Bit2 : Out1 Active, 1-active
	Bit1 : Request to send active, 1-active
	Bit0 : Data terminal ready, 1-active
	Bito . Data terminar ready, 1-active

xFDh	Line status register
	Bit7:0
	Bit6 : Transmitter empty
	Bit5 : Transmitter holding register empty
	Bit4 : Break interrupt
	Bit3 : Framing error
	Bit2 : Parity error
	Bit1 : Overrun error
	Bit0 : Data ready
xFEh	MODEM status register
	BIt7 : Data carrier detect
	Bit6 : Ring indicator
	Bit5 : Data set ready
	Bit4 : Clear to send
	Bit3 : Delta data carrier detect
	Bit2 : Trailing edge ring indicator
	Bit1 : Delta data set ready
	Bit0 : Delta clear to send
xFFh	Scratch register
	Independent data for General Data

Configuration Register settings are carried out by the BIOS, but the settings are listed here for reference. Settings can also be made for the infrared communications protocol. Read/Write operations on the Configuration Registers use I/O ports E5h and E7h. For the detail, refer to the Seiko Epson's manual of Falconer Chip Set.

For UART1, the I/O address and interrupt numbers can be changed by setting UART1 Configuration [UART1CFG] in the Configuration Registers.

bit	Function		Desc	ription	
1,0	UART1 I/O Address bit 1 and 0	bit1	bit1	bit0	
			0	0	: I/O 3F8h-3FFh
			0	1	: I/O 2F8h-2FFh
			1	0	: I/O 3E8h-3EFh
			1	1	: I/O 2E8h-2EFh
3,2	UART1 IRQ bit 1 and 0	bit3	bit3	bit2	
			0	0	: IRQ4
			0	1	: IRQ3
			1	0	: IRQ11
			1	1	: IRQ10
4	UART1 Enable		0	: Disa	able
			1	: Ena	ble

Table 5-11 UART1 Configuration

For UART2, the I/O address and interrupt numbers can be changed by setting UART2 Configuration [UART2CFG] in the Configuration Registers. It is also possible to select the infrared communications protocol for UART2.

bit	Function	Description
1,0	UART2 I/O Address bit 1 and 0	bit 1 bit 0
		0 0 : I/O 3F8h - 3FFh
		0 1 : I/O 2F8h - 2FFh
		1 0 : I/O 3E8h - 3EFh
		1 1 : I/O 2E8h - 2EFh
3, 2	UART2 IRQ bit 1 and 0	bit 3 bit 2
		0 0 : IRQ4
		0 1 : IRQ3
		1 0 : IRQ11
		1 1 : IRQ10
4	UART2 Enable	0 : Disable
		1 : Enable
5	UART2 IR Enable	0 : Serial Port
		1 : IR Port
6	UART2 IR Polarity	Polarity of IRTX pin
		0 : Active high
		1 : Active low
7	UART2 IrDA-SIR/Digital -ASK Infrared communications protocol	
		0 : IrDA-SIR protocol
		1 : Digital ASK protocol

Table	5-12	UART2	Configuration
-------	------	-------	---------------

5.4.3 Serial port buffers

These serial port signals have the capability to directly drive TTL loads such as those used for modem signals. However, for long-distance transmissions such as those made via RS-232C or RS-422 interfaces, external buffers that satisfy the corresponding standards are necessary.

5.4.4 Infrared Communications

The CARD-586 incorporates an infrared communications function. Simply by connecting an external photoemitter/receiver module, infrared communications become possible. There are two communications protocols: IrDA-SIR-1.0 and Digital ASK. These are selected in the BIOS setup, and for COM B, either of IrDA-SIR-1.0 and Digital ASK can be selected. Fig. 5-26 shows the UART configuration.

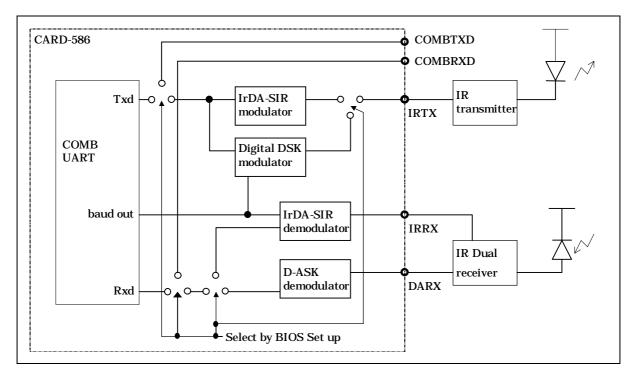
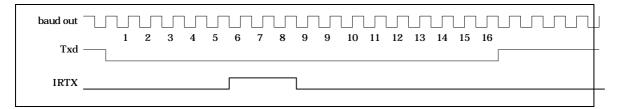



Figure 5-26 COMB URAT Diagram

IrDA-SIR-1.0 protocol

Modulation and demodulation in the IrDA-SIR-1.0 standard are as follows.

IRRX -₩-3/16T Rxd Т baud out ſ Γ ſ Γ 」 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 1 Rxd

Figure 5-27 IrDA-SIR-1.0 protocol modulation

Figure 5-28 IrDA-SIR-1.0 protocol demodulation

Digital ASK protocol

Modulation and demodulation in the Digital ASK protocol are as follows.

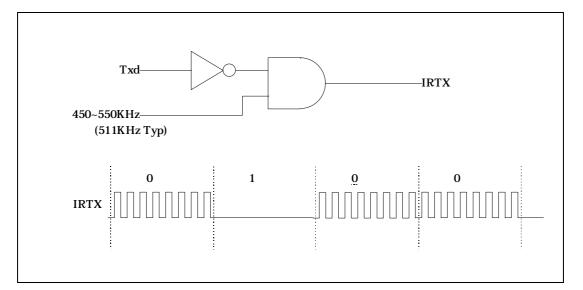


Figure 5-29 Digital ASK protocol modulation

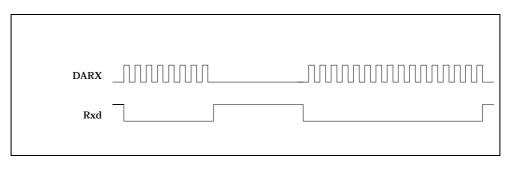


Figure 5-30 Digital ASK protocol demodulation

5.5 Parallel Port Interface

The following are the features of CARD-586's parallel port interface.

*Compatible with ISA-style unidirectional parallel ports *Supports two ports, LPT1 and LPT2. *PS/2-style bidirectional parallel port *High-speed parallel port support

5.5.1 Parallel port signals

Parallel port control and data signals are shown below.

Control signals

Line PrinTer STROBE(LPTSTROBE#)

Used as a data read signal for parallel peripheral devices. In high-speed parallel port mode, this signal is used to indicate the write cycle.

Line PrinTer Auto Line FeeD(LPTAFD#)

When this signal is active, the parallel printer inserts a line feed after every line. In high-speed parallel mode, this signal is used as a data strobe (DS TB#). This signal can also be used as a data latch signal in write cycles and as a buffer enable signal in read cycles.

Line PrinTer BUSY (LPTBUSY)

This signal indicates that the printer is not ready to accept data from the CARD-586. In high-speed parallel mode, this is used as a wait signal (WAIT#).

Line PrinTer ACKnowledge (LPTACK#)

This signal indicates that the data transmission is completed and there is a state of readiness for the next transmission. In high-speed parallel mode, this is used as an interrupt signal (INTR#). This input is connected to the interrupt controller.

Line PrinTer ERROR(LPTERROR#)

This signal is used by peripheral devices to teport errors.

Line PrinTER Paper End(LPTPE#)

This signal is used to indicate that the printer has run out of paper.

Line PrinTer INITialize(LPTINIT#)

Printer initialization signal.

Line PrinTer SeLeCT IN(LPTSLCTIN#)

This signal is used to select the peripheral device currently connected to the port. In high-speed parallel port mode, this signal is used as an address strobe.

Line PrinTer SeLeCTed(LPSLCT)

This signal is used to select the peripheral device currently connected to the port. In high-speed parallel port mode, this signal is used as an address strobe.

Line PrinTer DIRection(LPTDIR)

This signal is used for directional control for external buffers.

Data Signal

Line Printer Data (LPTD[7:0])

This is a data bus between the CARD-586 and a printer. This signal is only output in the ISA mode and becomes a bi-directional one in the PS/2 mode.

5.5.2 Parallel port functions

The parallel port signal timing is controlled by software.

The parallel port registers are as follows. In the I/O Address, "x" is 3 for LPT1, and 2 for LPT2.

I/O Address	Description	
X78h	Parallel port data register	
X79h	Parallel port status register	
	Bit 7 : 0-Printer Busy	
	Bit 6 : 0-Acknowledge	
	Bit 5 : 1-Out of paper	
	Bit 4 : 1-Printer is selected	
	Bit 3 : 0-Error	
	Bits [0-2] : Not Used	
X7Ah	Parallel port control register	
	Bits [6-7] : Reserved	
	Bit 5 : direction, PS/2 mode only, 1-Read, 0-write	
	Bit 4 : Interrupt enable, 1-enable, 0-disable	
	Bit 3 : Select printer, 1-select	
	Bit 2 : Initialize printer, 0-initialize	
	Bit 1 : Automatic line feed, 1-automatic	
	Bit 0 : Data Strobe	
X7Bh	Auto address strobe register	
X7Ch	Auto data strobe register	
X7Dh	Auto data strobe register	
X7Eh	Auto data strobe register	
X7Fh	Auto data strobe register	

 Table 5-13
 Parallel port registers

5.5.3 High-speed parallel mode functions

In the high-speed parallel (EPP) mode, printer initialization and selection and error signals are the same as in the normal parallel mode. LPTSLCTIN# and LPTAFD# are automatically generated as data strobe and address strobe signals to the parallel device. LPTSTROBE# is used as a signal indicating the write cycle. For details refer to the BIOS Manual.

5.5.4 Parallel port buffring

The CARD-586 parallel port can drive a low load device without buffering, but basically it is recommended for use with an external buffer connected.

The standard setting of the CARD-586 is for a uni-directional parallel port. Fig. 5-31 is an example connection diagram.

	7	
CARD-586	LPTSTROBE#	Parallel Port
	LPTAFD#	Connector
	LPTINIT#	
	LPTSLCTIN#	
	LPTSCLT	
	LPTPE	
	LPTERROR#	
	LPTACK#	
	LPTBUSY	
	74LS244	
	LPTD0 A Y	
	LPTD2 A V	
	LPTD3 A Y	
	LPTD4 A Y	
	LPTD5 A Y	
	LPTD6 A Y	
	LPTD7 A Y	
	LPTDIR • G#	
L		

Figure 5-31 ISA style uni-directional parallel port interface (with buffer)

One problem with using an external buffer is that applications that require a key device for the parallel port may not operate.

When operating in PS/2-compatible mode, the port is bidirectional. The connections are illustrated in Fig.5-32. When using an external buffer, use an 74LS245-equivalent, and use LPTDIR# for directional control for the buffer.

CARD-586	LPTSTROBE#	Parallel Port
	LPTAFD#	Connector
	LPTINIT#	
	LPTSLCTIN#	
	LPTSCLT	
	LPTPE	
	LPTERROR#	
	LPTACK#	
	LPTBUSY	
	<u>74LS245</u>	
	LPTD0 B1 A1	
	LPTD1 B2 A2	
	LPTD2 B3 A3	
	LPTD3 B4 A4	
	LPTD4 B5 A5	
	LPTD5 B5 A5 B6 A6	
	G G#	
	DIR	
	LPTD6 B7 A7 LPTD7 B8 A8 LPTDIR G#	

Figure 5-32 PS/2 style bi-directional parallel port interface

Figure 5-33 shows a sample of the circuit without employing the buffer.

CARD-586	LPTSTROBE#	Parallel Port
	LPTAFD#	Connector
	LPTINIT#	Connector
	LPTSLCTIN#	
	LPTSCLT	
	LPTPE	
	LPTERROR#	
	LPTACK#	
	LPTBUSY	
	LPTD0	
	LPTD1	
	LPTD2	
	LPTD3	
	LPTD4	
	LPTD5	
	LPTD6	
	LPTD7	
	LPTDIR	
	1	

Figure 5-33 ISA Style Simplex Parallel Port Interface

5.5.5 Pin configuration

Table 5-14 shows the pin assignments for ISA parallel port (Standard Mode) and high-speed parallel port mode (EPP Mode).

Pin	Standard Mode	EPP Mode	CARD-586
1	STROBE#	WRITE#	LPTSTROBE#
2	PPD0	PPD0	LPTD0
3	PPD1	PPD1	LPTD1
4	PPD2	PPD2	LPTD2
5	PPD3	PPD3	LPTD3
6	PPD4	PPD4	LPTD4
7	PPD5	PPD5	LPTD5
8	PPD6	PPD6	LPTD6
9	PPD7	PPD7	LPTD7
10	ACK#	INTR#	LPTACK#
11	BUSY	WAIT#	LPTBUSY
12	PE	PE	LPTPE
13	SLCT	SLCT	LPTSLCT
14	AFDXT#	DSTRB#	LPTAFD#
15	ERROR#	ERROR#	LPTERROR#
16	INIT#	INIT#	LPTINIT#
17	SLCTIN#	ADSTB#	LPTSLCTIN#
18	GND	GND	
19	GND	GND	
20	GND	GND	
21	GND	GND	
22	GND	GND	
23	GND	GND	
24	GND	GND	
25	GND	GND	

 Table 5-14
 25-pin Connector Pin Assingment

5.6 **Power Management**

CARD-586 supports power management functions. The features of this system are:

*Suspend, resume function

Support for suspend/resume button
Suspend timer possible

*Support for output pins for programmable system power management

*Support for battery monitor pin

5.6.1 Power management signals

System Management OUTput (SMOUT [3:0])

These signals activate the idle state of various devices for power control.

SUSpend STATus (SUSSTAT#)

This signal indicates that CARD-586 is in the suspended state. This signal can also be used as a power supply control signal.

EXTernal System Management Interrupt (EXTSMI#)

This signal is used to request a system management interrupt from CARD-586.

Suspend Resume BuTtoN (SRBTN#)

This input signal is used to enter the suspended state and to wake up from the suspended state.

BATTery WARNing (BATTWARN#)

This input signal is used to warn when the battery's remaining capacity is low. When this warning is issued, a warning beep is sounded by the speaker interface.

BATTery LOW (BATTLOW#)

When this signal goes active (when the battery capacity has dropped), CARD-586 either issues a warning or enters the suspended state.

BATTery DEAD (BATTDEAD#)

This signal indicates to the system that there is insufficient battery power to operate the system.

POWERGOOD (POWERGOOD)

This signal indicates that the system power supply is normal. It is necessary to make this signal active when the system supply voltage is within the specified range. For the timing rule, see the Chapter of "AC Characteristic."

For further details on power management, refer to the BIOS Manual.

5.6.2 Suspend and Resume Control

The CARD-586 supports functions to suspend the system, and thereafter to resume, that is, to return to the state immediately before the suspension. The suspend function puts all the CARD-586 devices in the power save mode, and maintains the system in a low power consumption state.

When detecting a fall edge of the terminal SRBTN#, the CARD-586 gets into the suspended state. Also, it gets into the suspended state when detecting a low battery (when BATLOW# becomes active) or according to suspend request of a software.

If resumed, the CARD-586 will return to the state just before the suspension. The following three resuming methods are available:

1. When a fall edge of the terminal SRBTN# is detected,

2. When a fall edge of the terminal COMARI# or COMBRI# is detected,

3. When a set time has come,

When BATLOW# is active even after the CARD-586 gets into any of the above states, however, the CARD-586 does not resume. For the details of suspend/resume, refer to the BIOS Manual.

Figure 5-34 shows the block diagram of the suspend/resume circuit.

The MAIN-BATTERY supplies power to the CARD-586. When the system gets into the suspended state, the system stops supplying power to other than the CARD-586. At the time, the CARD-586 gets into the suspended state and the contents of the DRAM, the video memory and the registers are maintained by little power. The signal POWERGOOD indicates the states of the power supplies (VCC5 and VCC3) and is input to the CARD-586. Also, the signal BATWARN# and BATLOW# are input to the CARD-586 for monitoring the system power supply. When BATLOW# becomes active while the system is operating, the system warns through the speaker that the battery capacity has become low. When this signal is inactive, the CARD-586 does not resume. It starts resuming when the RTC alarm, modem ring and SRBTN# signals are input. When the CARD-586 resumes, SUSSTAT# returns to HIGH.

Fig. 5-34 is a block diagram of the suspend/resume circuit.

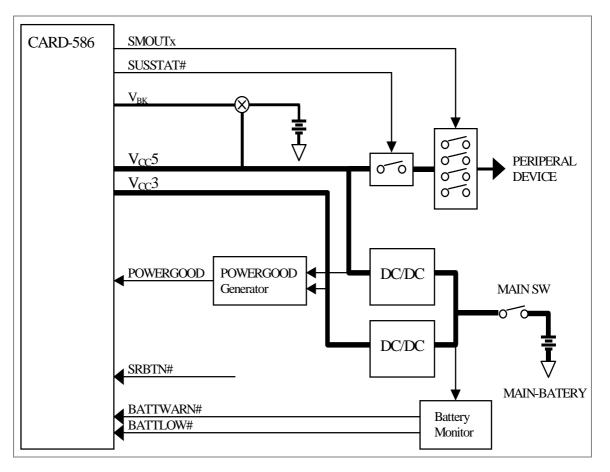


Figure 5-34 Suspend/Resume Block Diagram

5.6.3 SMOUT

The CARD-586 controls devices as follows using signals SMOUT0 to 3: SMOUT0 controls COMA.

Since SMOUT0 becomes low when COMA is in the standby state or when the CARD-586 is in the suspended state, it can bring the Driver/Receiver IC of the RS-232C to the standby state.

SMOUT1 controls COMB.

Since SMOUT1 becomes low when COMB is in the standby state or when the CARD-586 is in the suspended state, it can bring the Driver/Receiver IC of the RS-232C to the standby state.

SMOUT2 controls the HDD.

When the CARD-586 brings the HDD to the standby state or is suspended, SMOUT2 becomes Low. The CARD-586 can turn off the power of the HDD using SMOUT2. Lots of signals are commonly used for the HDD and the ISA bus. Keep it in mind that, if these signals are not isolated when the power supply of the HDD is turned off, the CARD-586 will malfunction.

SMOUT3 is used to change the voltage of the power supply (PGM) for updating the Flash ROM (BIOS).

These signals are for the standard BIOS of the CARD-586. If the BIOS is changed, the CARD-586 can also control other devices. These SMOUTs can be used as general purpose output ports instead of for power control.

5.7 Keyboard Controller

The CARD-586 keyboard controller is emulated in software, to be function-compatible with an 8042. Its principal functions are as follows:

*AT-and PS/2-compatible standard command support *Standard AT and PS/2 keyboard support *PS/2-compatible mouse support

5.7.1 Signals concerning the keyboard controller

KeyBoard CLocK (KBCLK)

Clock signal for the keyboard interface

KeyBoard DATA (KBDATA)

Data signals for the keyboard interface

MouSe CLocK (MSCLK)

Clock signal for the mouse interface

MouSe DATA (MSDATA)

Data signals for the mouse interface

5.7.2 Explanation of registers and commands

The register and commands are briefly described below.

Status register 064h read only

BIT	PS/2 Compatible Mode
7	Parity Error Flag
6	General Time Out
5	Aux. Data Flag
4	Keyboard Password Unlocked
3	Command Flag
2	System Flag
1	Input Buffer Full
0	Output Buffer Full

Output buffer 060h read only

Port for outputting scan codes received by this controller from the keyboard.

Input buffer 060h write only

Port for data input to this controller.

Command register 064h write only

Port for command output to this controller. The following commands are supported:

Standard Keyboard Commands	
Set/Reset Status Indicators Command	(EDh)
Echo Command	(EEh)
Select Alternate Scan Code Command	(F0h)
Read ID Command	(F2h)
Set Typematic Rate/Delay Command	(F3h)
Enable Command	(F4h)
Default Disable Command	(F5h)
Set Default Command	(F6h)
Set Keys Command (F7h	-FDh)
Reset Command	(FFh)
Standard Controller Command	

Write Controller Command Byte	(60h)
Read Controller Command Byte	(20h)
Test Password Installed	(A4h)
Load Password	(A5h)
Enable Password	(A6h)
Disable Auxiliary Device Interface	(A7h)
Enable Auxiliary Device Interface	(A8h)
Test Auxiliary Device Interface	(A9h)
Self Test	(AAh)
Keyboard Interface Test	(ABh)
Disable Keyboard Interface	(ADh)
Enable Keyboard Interface	(AEh)
* Read Input Port	(C0h)
* Read Output Port	(D0h)
* Write Output Port	(D1h)
Write Keyboard Output Buffer	(D2h)
Write Auxiliary Output Buffer	(D3h)
Write Auxiliary Device Command	(D4h)
* Read Test Input Command	(E0h)
Pulse System Reset	(FEh)

* In the Read Input Port (0C0h) command, the value returned is not a physical input port value, but an emulated value.

The Read Output Port (0D0h) command also returns not a physical input port value, but an emulated value. All that can be changed by Write Output Port (0D1h) is bit 1, Gate A20 control, and other bits are ignored.

In the Read Test Input Command (0E0h) command, the value returned is not a physical Test Input Port value, but an emulated value.

5.7.3 Keyboard and mouse interfaces

Fig.5-35 illustrates the keyboard and mouse interfaces.

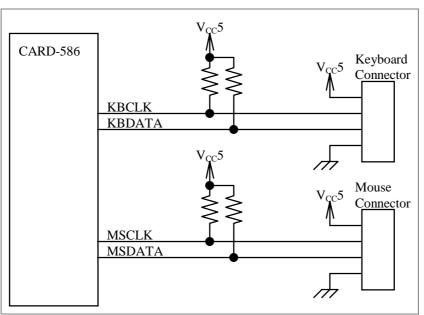


Figure 5-35 Mouse/Keyboard Connection Sample

Check the keyboard and mouse specifications before determining the external resistance value.

5.8 VGA Controller

The CARD-586 is equipped with an Seiko Epson SPC8110 as display controller. The following are some of its features:

- Standard VGA mode support
- Simultaneous CRT and LCD display
- Suspend function support
- 256/256K color display
- Monochrome STN-LCD 64 gray level display
- Color STN-LCD support
- 256K-color TFT color LCD support
- Direct CRT and LCD connection possible

For the video mode supported by the CARD-586, refer to the BIOS Manual.

5.8.1 CRT and LCD interface signals

CARD-586 is equipped with a CRT interface and an LCD interface. The signals used in these interfaces are described below.

CRT interface signals

Horizontal SYNC (HSYNC) Horizontal snchronization signal for the monitor

Vertical SYNC (VSYNC)

Vertical synchronization signal for the monitor

RED video (RED)

This analog output supplies current corresponding to the red pixels to be displayed.

GREEN video (GREEN)

This analog output supplies current corresponding to the green pixels to be displayed.

BLUE video (BLU)

This analog output supplies current corresponding to the blue pixels to be displayed.

LCD interface signals

Flat Panel Vertical Timing (FPVTIM)

Indicates the start of a new frame for a flat panel display.

Flat Panel Horizontal Timing (FPHTIM)

This signal advances the row shift register for an LCD panel display.

Flat Panel Blank (FPBLANK#)

This signal indicates the blanking interval in which data should not be displayed on a TFT LCD panel. This controls the display enable signal for a TFT LCD panel.

Flat Panel Dot Clock (FPDOTCLK)

Dot shift clock for a flat panel display.

Extended Panel Dot Clock (EXDOTCLK)

This is a special LCD panel dot clock, which is normally not used.

Flat Panel Data (LD [17:0])

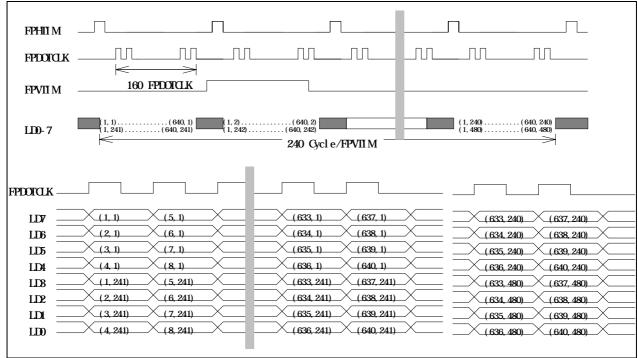
Display data for a flat panel display.

Flat Panel VCC On (FPVCCON)

This signal controls the LCD panel logic power supply, and is used together with FPVEEON. This is used to power the panel on and off.

Flat Panel VEE On (FPVEEON)

This signal controls the LCD panel drive power supply, and is used together with FPVCCON. This is used to power the panel on and off.


5.8.2 Panel interface

A representative example of the connections between CARD-586 and a dual-scan monochrome monitor is shown below.

d CARD-586	ual-scan monochrome panel
FPVTIM FPHTIM FPDOTCLK LD7 LD6 LD5 LD4 LD2 LD1 LD0 FPAC	LFS LLCLK DOTCLK UD3 UD2 UD1 UD0 LD3 LD2 LD1 LD0 AC
FPVCCON +5V FPVEEON	
LCD Driving Power	V _{EE}

Figure 5-36 Dual-scan Monochrome Panel Connection Sample

The following description covers the principal panel interfaces supported by CARD-586.

• 640 × 480 Monochrome Dual Panel (8 bit)

Figure 5-37 8 bit Monochrome Dual Panel Interface

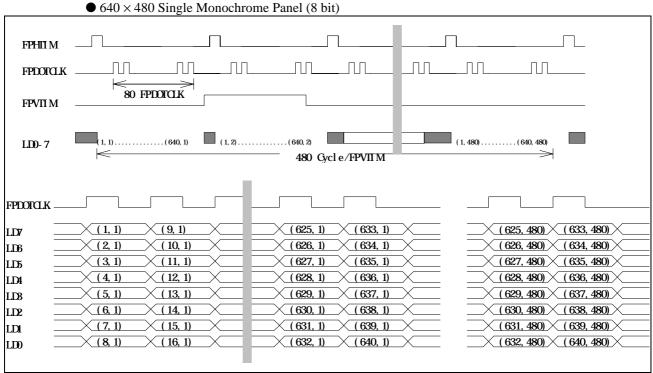


Figure 5-38 8 bit Monochrome Single Panel Interface

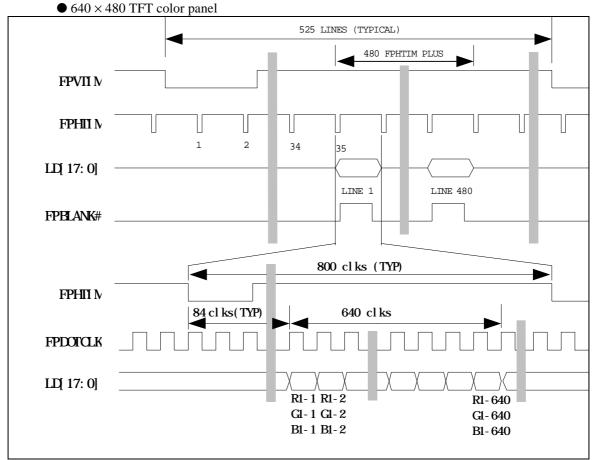


Figure 5-39 TFT Color Panel Interface

The LCD panel requires special control with respect to the logic power supply, liquid crystal drive power supply, and control signals. The CARD-586 to meet these requirements controls these signals as shown in Fig. 5-40.

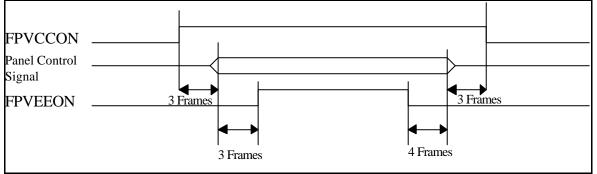


Figure 5-40 Panel Power Supply Control Timing

The panel connections differ according to the manufacturer of the panel and according to the panel settings. Therefore, it is necessary to check the specific connection requirements of the panel to be used.

5.9 Floppy Disk Controller

CARD-586 is equipped with an IBM PC/AT-compatible floppy disk controller. The features of the FDD interface are:

*Permits connection with up to two drives *Supports both 5-inch and 3.5-inch FDDs

*Supports transfer rates of 250Kbps, 300Kbps, and 500Kbps

*Built-in driver/receiver for the drives (drive current IoL=38mA)

5.9.1 Floppy disk control signals

DRIVE SELECT 1 (FDDS1#)

Drive 1 select signal.

DRIVE SELECT 2 (FDDS2#)

Drive 2 select signal.

MOTOR ON 1 (FDMT1#)

"Motor on" signal for drive 1.

MOTOR ON 2 (FDMT2#)

"Motor on" signal for drive 2.

STEP (FDSTEP#)

Step pulse signal that indicates the number of steps the head is to move.

DIRECTION (FDDIR)

This signal indicates the direction of a seek operation. LOW indicates the seek is towards the inner track, and HIGH indicates that the seek is towards the outer track.

SIDE (FDSIDE)

This signal selects head 0 or head 1. LOW selects head 1, HIGH selects head 0.

READ DATA (FDRD#)

Input for data read from the drive.

WRITE DATA (FDWD#)

Output for data to be written to the drive.

WRITE ENABLE (FDWE#)

This signal instructs the drive to write

WRITE PROTECT (FDWP#)

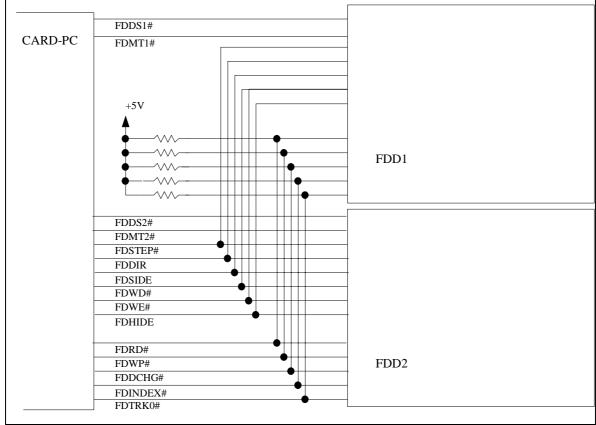
This signal from the drive indicates that the media is write-protected.

DISK CHANGE (FDDCHG#)

Disk change signal from the drive.

INDEX (FDINDEX#) Drive index detection signal.

TRACK 0 (FDTRK0#) This signal indicates that the head is positioned at track 0.


HIGH DENSITY SELECT (FDHIDEN)

When this signal is high it indicates high density.

5.9.2 Floppy disk interface Floppy Disk Interface I/O Ports

I/O Address	Description		
3F2H WO	Digital output register		
51211 00	Bit7 : Reserved		
	Bit6 : Reserved		
	Bit5 : Drive 2 Motor Enable		
	Bit4 : Drive 1 Motor Enable		
	Bit3 : Enable Diskette Interrupt and DMA		
	Bit2 : Diskette Function Reset		
	Bit1 : Reserved		
	Bit0 : Drive Select 0-Drive1, 1-Drive2		
3F4H	FDC Main Status register		
3F5H	FDC Data register		
3F7H WO	FDD Control Resister		
	Bit 1 Bit 0		
	0 0 500 Kbps		
	0 1 300 Kbps		
	1 0 250 Kbps		
	1 1 reserved		
3F7H RO	Digital Input Register		
	Bit7 : Diskette Change		
	Bits [0-6] : Hard DISK Controller		

Table 5-16 FDC I/O Port

A typical connection example for a floppy disk drive is shown in Fig.5-41.

Figure 5-41 Floppy Disk Drive Connection Sample

Set the external resistance according to the characteristics of the floppy disk drive.

5.10 RTC and CMOS RAM Interface

CARD-586 has a built-in RTC (for clock and calendar functions) and CMOS RAM that can be backed up. Because this interface (VBK) is provided with pins for backing up the RTC and CMOS RAM, it is necessary to supply power form a battery or other source when providing backup. When this is not used, the BIOS is used to save the contents of CMOS memory. For details, refer to the BIOS Manual.

5.10.1 Description of Registers

CARD-586 is equipped with an ISA standard RTC (MC146818). The contents of the RTC can be preserved even when power is not supplied to the system, as long as power is supplied to the V_{BK} pin.

The CMOS RAM built into the CARD-586 stores information required for booting the CARD-586. When the CARD-586 is booted, expansion devices and system settings are set based on this information. Since with the standard BIOS vBK is not backed up, standard information is always used for booting. As a result, when used in a system configuration other than the standard system configuration, unless a backup power supply is connected to vBK, each time the system is booted it will be necessary to make the configuration settings. If, however, the ROM Adaptation Kit is used to change the standard BIOS settings, a backup is not required, but it will be necessary to reset the real time clock each time.

The CMOS RAM includes 128 bytes of information, including 10 bytes for second, minute, hour, day-of-theweek, day, month, and year, and 4 bytes of control data.

The address map for standard CMOS RAM is shown in the following table.

Index	Register			
00H	Second			
01H	Second (Alarm)			
02H	Minute			
03H	Minute (Alarm)			
04H	Time			
05H	Time (Alarm)			
06H	Day of the week			
07H	Day			
08H	Month			
09H	Year			
0AH	Control Register A			
0BH	Control Register B			
0CH	Control Register C			
0DH	Control Register D			
0EH~7FH	Data Area			

Table 5-17 RTC/CMOS RAM Register

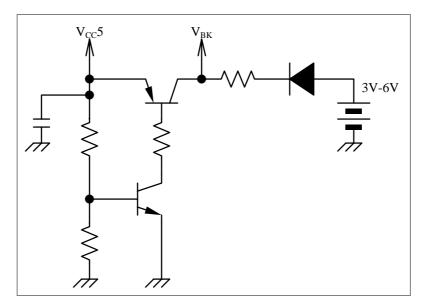

The RTC and the CMOS RAM are accessed through the Index port (I/O Address 70h) and the Data port (I/O Address 71h).

Table 5-18	RTC/CMOS RAM I/O Port	

I/O Address	R/W	Description
0070H	RO	RTC/CMOS RAM address port
		Bit 7 = NMI Mask
		1- NMI disable, 0- NMI enable
		Bit 0-6 = RTC/CMOS RAM INDEX
0071H	R/W	RTC/CMOS RAM data port

5.10.2 VBK

This pin is provided for backup for the real time clock, CMOS RAM. When power is supplied to the CARD-586 (in operation), the same power supply as VCC5 is supplied. For CMOS RAM backup, it is necessary to switch to a backup power supply (lithium battery etc.) in coordination with the CARD-586 power off timing.

An example circuit for switching the power supply is shown in Fig.5-42.

Figure 5-42 Example VBK Power Supply Switching Circuit

5.10.3 POWERGOOD

POWERGOOD is also used to separate the RTC and the CMOS RAM electrically from other circuits. So, if POWERGOOD becomes "HIGH" before VBK is switched from the backup power supply to VCC5, the contents of the RTC and the CMOS RAM may be destroyed. When VBK is powered from the backup power supply, keep POWERGOOD below 0.8V.

5.11 Output of General Purpose Timer (Watchdog Timer)

A general purpose timer which can be used as watchdog timer is readily available for the CARD-586. This timer used Channel 1 of the extension timer 8254 with the standard clock of 4KHz, and OUT1 is output to the WDTIM# terminal of the CARD-586.

The watchdog timer is used as follows on the CARD-586:

- 1. For setting timers.
- 2. For resetting timers before time-out of an application software and for re-starting them.

3. If timers are not reset and come to time-out due to runaway of software, WDTIM# will become active.

Since using the watchdog time in this way, the CARD-586 has the following BIOS functions:

- . To get into the watchdog timer state.
- . To acquire protect mode interface routine address.
- . To set and start or reset timers.
- (For the details, refer to the BIOS Manual.)

The WDTIM# state is "HIGH" in general and become "low" at a time-out. The measures to be taken in case of time-out depend on the external circuit of the CARD-586.

6. ENVIRONMENTAL REQUIREMENTS

6.1 Temperature

Operating (during use)133MHz : Tc = 0 to $70^{\circ}C$ 66MHz : Tc = 0 to $75^{\circ}C$ StorageTa = -20 to $75^{\circ}C$ (non-condensating)

Tc: Case temperature (See Fig.6.1) Ta: Ambient temperature

6.2 Humidity

6.3

Storage 0 to 90% (non-condensating)

Electrostatic Breakdown Immunity

15 kV at 100 pF, 1.5 kΩ

(sustainable without damage)

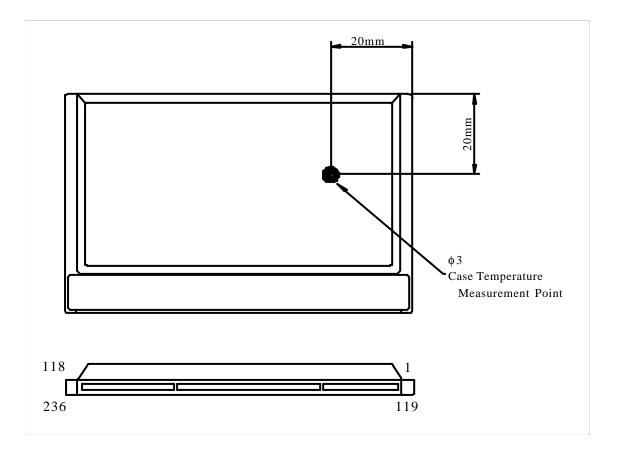


Figure 6.1 Operating Case Temperature Measurement Point

7. MECHANICAL CHARACTERISTICS

7.1 Insertion and Removal Force

Insertion Force	98.0 N or less	(10 kg or less)
Removal Force	9.8 N or more	(1 kg or more)

7.2 Bending

19.6 N (2kg-f) kg pressure, once on both the top and bottom.

7.3 Dropping

from 75-cm height onto vinyl tile, twice on each of three sides

7.4 Twisting

1.23 Nm, maintained for 5 min., 5 times both ways

7.5 Insertions and Removals

1000 operations (using dedicated connector)

7.6 Weight

98 N (10 kgf)

8. DC CHARACTERISTICS (Recommended and Nominal)

Power Source

10001	3 3 4 1 6 6				
Symbol	Parameter	Min	Max	Unit	Note
Vcc5	Supply Voltage	4.75	5.25	V	Indicated in the pin assignment diagram as VCC5
Vcc3	Supply Voltage	3.15	3.6	V	Indicated in the pin assignment diagram as VCC3
VBK	Supply Voltage	2.5		V	When the RTC is backed up.
					In normal operation the same as VCC5
VPGM	Supply Voltage	0	6.5	V	When FLASH ROM (BIOS) is read
		11.4	12.6	V	When FLASH ROM (BIOS) is written.
					Supply power to VPGM after VCC5 and VCC3 is fixed.
					I=30mA (Max)

PWRGOOD signal

Symbol	Parameter	Min	Max	Unit	Note
VIL	Input Low Voltage		0.8	V	When the RTC is backed up, the voltage shall not exceed
					0.8V.
VIH	Input High Voltage	4.0	Vcc5+0.3	V	

ISA Bus Interface Section

Symbol	Parameter	Min	Max	Unit	Note
VIL	Input Low Voltage	-0.3	0.8	V	
Vih	Input High Voltage	2.0	Vcc5+0.3	V	
Vol	Output Low Voltage IOL=12mA		0.4	V	Applied to IRQ 6, DRQ 2
Vон	Output High Voltage IOH=-2mA	4.0		V	Applied to IRQ 6, DRQ 2
Vol	Output Low Voltage		0.4	V	Applied to DACK0.1.3 and 5.6.7, and IRQ 3.4.5.7.10.11.12.
Voh	Output High Voltage Iон=-8mA	2.4		V	Applied to DACK0.1.3 and 5.6.7, and IRQ 3.4.5.7.10.11.12.
Vol	Output Low Voltage IOL=12mA		0.4	V	
Voh	Output High Voltage IOH=-12mA	2.4		V	
VIL	Output High Voltage I _{OL} =12mA Open Draw Output		0.4	V	Applied to IOCHRDY pin and REF#.

Serial Interface

Symbol	Parameter	Min	Max	Unit	Note
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.0	Vcc5+0.3	V	
Vol	Output Low Voltage			V	
	IOL=8mA				
Voh	Output Low Voltage	2.4		V	
	Iон=-8mA				
Vol	Output Low Voltage		0.4	V	Applied to IRTXD pin
	IOL=24mA				
Voh	Output Low Voltage	2.4		V	Applied to IRTXD pin
	IOH=-12mA				

Parallel Interface

Symbol	Parameter	Min.	Max.	Unit	Note
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.0	Vcc5+0.3	V	
VIL	Input Low Voltage	-0.3	0.6	v	Applied to LPTACK#, LPTAFD#, LPTBUSY, LPTERROR#, LPTINIT#, LPTPE, LPTSLCT, LPTSLCTIN#, LPTSTROBE#
VIH	Input High Voltage	2.4	V _{CC5} +0.3	V	Applied to LPTACK#, LPTAFD#, LPTBUSY, LPTERROR#, LPTINIT#, LPTPE, LPTSLCT, LPTSLCTIN#, LPTSTROBE#
Vol	Output Low Voltage IoL=8mA		0.4	V	
Voh	Output Low Voltage Іон=-8mА	2.4		V	
Vol	Output Low Voltage IoL=12mA Open drain Output		0.4	V	Applied to LPTSTROBE#, LPTAFD#, LPTINIT# and LPTSLCTIN#

Floppy Disk Drive Interface

Symbol	Parameter	Min	Max	Unit	Note
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.0	Vcc5+0.3	V	
Vol	Output Low Voltage		0.4	V	
	Open Drain Output				
	IOL=38mA				

LCD Interface

Symbol	Parameter	Min.	Max.	Unit	Note
Vol	Output Low Voltage IoL=24mA		0.4	V	
Voh	Output High Voltage IoH=-8mA	4.0		V	
Vol	Output Low Voltage IoL=6mA		0.4	V	Applied to FPVCCON and FPVEEON
Voh	Output High Voltage Іон=-2mА	4.0		V	Applied to FPVCCON and FPVEEON

Mouse/Keyboard Interface

Symbol	Parameter	Min	Max	Unit	Note
VIL	Input Low Voltage	-0.3	0.6	V	
VIH	Input High Voltage	2.4	Vcc5+0.3	V	
Vol	Output Low Voltage Open Drain Output IoL=		0.4	V	

IDE Interface

Symbol	Parameter	Min.	Max.	Unit	Note
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.0	Vcc5+0.3	V	
Vol	Output Low Voltage		0.4	V	Applied to HD 7, HDCSO# and HDCSI#
	IOL=12mA				
Voh	Output High Voltage	2.4		V	Applied to HD 7, HDCSO# and HDCSI#
	IOH=-12mA				
Vol	Output Low Voltage		0.4	V	Applied to HDIR, HDENL# and HDENH#
	IOL=4mA				
Voh	Output High Voltage	2.4		V	Applied to HDIR, HDENL# and HDENH#
	IOH=-4mA				

Power Management Interface

Symbol	Parameter	Min.	Max.	Unit	Note
VIL	Input Low Voltage	-0.3	0.6	V	
VIH	Input High Voltage	2.4	Vcc5+0.3	V	
Vol	Output Low Voltage IOL=8mA		0.4	V	
Voh	Output High Voltage IOH=-8mA	2.4		V	

Speaker Interface ROM Update Interface Watchdog Interface

Symbol	Parameter	Min.	Max.	Unit	Note
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.0	Vcc5+0.3	V	
Vol	Output Low Voltage		0.4	V	
	IOL=4mA				
Voh	Output High Voltage	2.4		V	
	IOH=-4mA				

Current Consumption

SCE8653702 (66 MHz, 16	SCE8653702 (66 MHz, 16 Mbyte DRAM)			$Tc = 0 - Tc \max C$		
Item	Conditions		Standard			
		Min.	Typ.	Max.		
Operating current consumption ICC3	When operating (MS-DOS prompt) VCC3 = 3.15 V to 3.6 V		700	1070	mA	
Operating current consumption ICC5	When operating (MS-DOS prompt) VCC5 = 5 V \pm 5%		45	80	mA	
Current in suspended state ICC3	In suspended state VCC3 = 3.15 V to 3.6 V		1.1	3.3	mA	
Current in suspended state ICC5	In suspended state VCC5 = 5 V \pm 5%		0.2	0.6	mA	
Backup current IBK	During backup VBK = 3.0 V		3	15	μΑ	

SCE8653703 (66 MHz, 32 Mbyte RAM)			Tc =0- Tc max°C			
Item Conditions			Standard		Unit	
		Min.	Тур.	Max.		
Operating current consumption ICC3	When operating (MS-DOS prompt) VCC3 = 3.15 V to 3.6 V		700	1070	mA	
Operating current consumption ICC5	When operating (MS-DOS prompt) VCC5 = 5 V \pm 5%		45	80	mA	
Current in suspended state ICC3	In suspended state VCC3 = 3.15 V to 3.6 V		1.6	4.8	mA	
Current in suspended state ICC5	In suspended state VCC5 = 5 V \pm 5%		0.2	0.6	mA	
Backup current IBK	During backup VBK = 3.0 V		3	15	μΑ	

SCE8653710 (133 MHz, 1		Tc =0- Tc °C			
Item	Conditions		Standard		Unit
		Min.	Typ.	Max.	
Operating current consumption ICC3	When operating (MS-DOS prompt) VCC3 = 3.15 V to3.6 V		1200	2000	mA
Operating current consumption ICC5	When operating (MS-DOS prompt) VCC5 = 5 V \pm 5%		55	85	mA
Current in suspended state ICC3	In suspended state VCC3 = 3.15 V to 3.6 V		1.1	3.3	mA
Current in suspended state ICC5	In suspended state VCC5 = 5 V \pm 5%		0.2	0.6	mA
Backup current IBK	During backup VBK = 3.0 V		3	15	μΑ

SCE8653711 (133 MHz, 3	2 Mbyte RAM)		Tc =0- Tc °C			
Item	Conditions		Standard			
		Min.	Тур.	Max.		
Operating current consumption ICC3	When operating (MS-DOS prompt) VCC3 = 3.15 V to 3.6 V		1200	2000	mA	
Operating current consumption ICC5	When operating (MS-DOS prompt) VCC5 = 5 V \pm 5%		55	85	mA	
Current in suspended state ICC3	In suspended state VCC3 = 3.15 V to 3.6 V		1.6	4.8	mA	
Current in suspended state ICC5	In suspended state VCC5 = 5 V \pm 5%		0.2	0.6	mA	
Backup current Iвк	During backup VBK = 3.0 V		3	15	μΑ	

SCE8653712 (133 MHz, 4	SCE8653712 (133 MHz, 48 Mbyte RAM)			Tc =0- Tc °C			
Item	Conditions		Standard				
		Min.	Тур.	Max.			
Operating current consumption ICC3	When operating (MS-DOS prompt) VCC3 = 3.15 V to 3.6 V		1200	2000	mA		
Operating current consumption ICC5	When operating (MS-DOS prompt) VCC5 = 5 V \pm 5%		55	85	mA		
Current in suspended state ICC3	In suspended state VCC3 = 3.15 V to 3.6 V		2.1	6.3	mA		
Current in suspended state ICC5	In suspended state $VCC5 = 5 V \pm 5\%$		0.2	0.6	mA		
Backup current IBK	During backup VBK = 3.0 V		3	15	μΑ		

9. PIN ELECTRICAL CHARACTERISTICS

This section describes the characteristics of each pin in CARD-586. The following table describes the meanings of the entries in the columns under the various legends.

Characteristic	Identifier of signal					
Туре	Indicates the pin type					
	I:	Input pin				
	O:	Output pin				
	O OD:	Open drain output				
	IO:	Bi-directional				
	IO OD:	Input/output; open drain output				
	POWER:	Power Supply				
Termination	Internal ter	mination resistance and termination method:				
	HOLD	: With bus holder				
	??PU	: ??-Ω pull-up resistance				
	??PD	: Through ??Q damping resistance				
	??ST	: ??- Ω damping resistance				
	External	: External termination is required				
drive	Drive curre	ent (mA) for output and bi-directional termination. Denoted IoL				
	and IOH.					
susp	State of thi	s pin during the Suspend mode of Power Management				
	This is vali	d in the system power management functions.				
	Drive	: "HIGH" or "LOW" is output.				
	Drv(0)	: "LOW" is output.				
	Drv(1)	: "HIGH" is output.				
	High-Z	: High impedance				
	Active	: Input status. These terminals affect operations of the CARD-				
		586.				
	Input	: Enter "HIGH" or "LOW" external to the CARD-586 to				
		determine the input level. However, this operation is not				
		necessary when the bus holder, pull-up resistor or pull-down				
		resistor is provided				
	Input(1)	: "HIGH" need be input				

Signal Characteristics

Pin	Group (EASI)	Signal name	Туре	Termination	drive (mA) IOL,IOH	susp
1	POWER Supply	GND	POWER			
2	11.2	GND	POWER			
3		EXDOTCLK	0		24,-8	Drv(0)
4		LD6	0		24,-8	Drv(0)
5		LD4	0		24,-8	Drv(0)
6		LD2	0		24,-8	Drv(0)
7		LD0	0		24,-8	Drv(0)
8		FPVTIM	0		24,-8	Drv(0)
9	LCD I/F	FPAC	0		24,-8	Drv(0)
10		FPVCCON	0		6,-2	Drv(0)
11		LD9	0		24,-8	Drv(0)
12		LD11	0		24,-8	Drv(0)
13		LD13	0		24,-8	Drv(0)
14		LD15	0		24,-8	Drv(0)
15		BLUE	0	150PD		
16	CRT I/F	GREEN	0	150PD		
17		RED	0	150PD		
18		VSYNC	0		12,-4	Drv(0)
19	LCD I/F	LD17	0		24,-8	Drv(0)
20		RESERVE				
21	MOUSE I/F	MSDATA	IO OD	External	24,-	Input
22	KEYBOARD I/F	KBDATA	IO OD	External	24,-	Input
23		FDWP#	Ι	External		Input
24	FDD I/F	FDINDEX#	Ι	External		Input
25		FDTRK0#	Ι	External		Input
26		FDWD#	O OD	External	38,-	High-Z
27		VCC5	POWER			
28	POWER Supply	VCC5	POWER			
29		VCC3	POWER			
30		VCC3	POWER			
31		FDDS2#	O OD	External	38,-	High-Z
32	FDD I/F	FDMT2#	O OD	External	38,-	High-Z
33		FDSIDE	O OD	External	38,-	High-Z
34		FDDIR	O OD	External	38,-	High-Z
35		RESERVE				
36	SERIAL I/F	COMBDTR#	0		8,-8	High-Z
37		COMBCTS#	Ι	50KPU		Input
38		COMBRTS#	0		8,-8	High-Z

Pin	Group (EASI)	Signal name	Туре	Termination	drive (mA) IOL,IOH	susp
39		COMBDSR#	Ι	50KPU		Input
40		COMADTR#	0		8,-8	High-Z
41	SERIAL I/F	COMACTS#	I	50KPU		Input
42		COMARTS#	0		8,-8	High-Z
43		COMADSR#	I	50KPU		Input
44		IRRXD	I	50KPU		Input
45		LPTSTROBE#	IO OD	4.7KPU	12,-	Input
46		LPTD0	IO	50KPD	8,-8	Input or Drive
47		LPTACK#	Ι	60KPU		Input
48	PARALLEL I/F	LPTPE	I	20KPD		Input
49		LPTD1	IO	50KPD	8,-8	Input or Drive
50		LPTD2	IO	50KPD	8,-8	Input or Drive
51		LPTD3	IO	50KPD	8,-8	Input or Drive
52		LPTD5	IO	50KPD	8,-8	Input or Drive
53		LPTD7	IO	50KPD	8,-8	Input or Drive
54		HDIR	0		8,-8	Drv(0)
55	IDE I/F	HDENL#	0		8,-8	Drv(1)
56		HDCS0#	0		12,-12	High-Z
57	POWER MANAGEMENT I/F	SUSSTAT#	0		8,-8	Drv(0)
58		BATTLOW#	I	50KPU		Active
59	POWER Supply	GND	POWER			
60	· · - · · · · · · · · · · · · · · ·	GND	POWER			
61	POWER MANAGEMENT I/F	BATWRN#	I	50KPU		Input
62		PWRGOOD	I			Input(1)
63	SPEAKER I/F	SPKOUT	0		8,-8	Drv(0)
64		FLOAT#	I	25KPU		Input(1)
65	BIOS ROM UPDATE I/F	ROMCE0#	0	IO	8,-8	Drive
66		RESERVE	~			
67		SD7	IO	50KPU	12,-12	Input
68		SD6	IO	50KPU	12,-12	Input
69		SD5	IO	50KPU	12,-12	Input
70		SD4	IO	50KPU	12,-12	Input
71		SD3	IO	50KPU	12,-12	Input
72	ISA Bus	SD2	IO	50KPU	12,-12	Input
73		SD1	IO	50KPU	12,-12	Input
74		SD0	IO	50KPU	12,-12	Input
75		IOCHRDY	IO OD	1KPU	12,-	Input
76		AEN	0		12,-12	Drv(0)
77		SA19	0	HOLD	12,-12	Drive
78		SA18	0	HOLD	12,-12	Drive

Pin	Group	Signal name	Туре	Termination	drive (mA)	susp
70	(EASI)	SA 17		HOLD	IOL,IOH	D.:
79		SA17	0	HOLD	12,-12	Drive
80	ISA Bus	SA16	IO	HOLD	12,-12	Drive
81		SA15	IO	HOLD	12,-12	Drive
82		VCC3	POWER			
83	POWER Supply	VCC3	POWER			
84		VCC5	POWER			
85		VCC5	POWER			
86		SA14	IO	HOLD	12,-12	Drive
87		SA13	IO	HOLD	12,-12	Drive
88		SA12	IO	HOLD	12,-12	Drive
- 89		SA11	IO	HOLD	12,-12	Drive
90		SA10	IO	HOLD	12,-12	Drive
91		SA9	IO	HOLD	12,-12	Drive
92		SA8	IO	HOLD	12,-12	Drive
93		SA7	IO	HOLD	12,-12	Drive
94		SA6	IO	HOLD	12,-12	Drive
95		SA5	IO	HOLD	12,-12	Drive
96		SA4	IO	HOLD	12,-12	Drive
97		SA3	IO	HOLD	12,-12	Drive
98		SA2	IO	HOLD	12,-12	Drive
99	ISA Bus	SA1	IO	HOLD	12,-12	Drive
100		SA0	IO	HOLD	12,-12	Drive
101		SBHE#	IO	HOLD	12,-12	Drive
102		LA23	IO	HOLD	12,-12	Drive
103		LA22	IO	HOLD	12,-12	Drive
104		LA21	IO	HOLD	12,-12	Drive
105		LA20	IO	HOLD	12,-12	Drive
106		LA19	IO	HOLD	12,-12	Drive
107		LA18	IO	HOLD	12,-12	Drive
108		LA17	IO	HOLD	12,-12	Drive
109		MEMR#	IO	50KPU	12,-12	Drv(1)
110		MEMW#	IO	50KPU	12,-12	Drv(1)
111		SD8	IO	50KPU	12,-12	Input
112		SD9	IO	50KPU	12, 12	Input
113		SD10	IO	50KPU	12,-12	Input
113		SD10 SD11	IO	50KPU	12, 12	Input
114	POWER MANAGEMENT I/F	SMOUT3	0		8,-8	Drive
115		SMOUT1	0		8,-8	Drive
117	POWER Supply	GND	POWER			
117	I O WER Suppry	GND	POWER			
110		UND	FUWER			

Pin	Group (EASI)	Signal name	Туре	Termination	drive (mA) IOL,IOH	susp
119	POWER Supply	GND	POWER			
120	10 WER Supply	GND	POWER			
120		FPDOTCLK	0		24,-8	Drv(0)
122		LD7	0		24,-8	Drv(0)
123		LD5	0		24,-8	Drv(0)
124		LD3	0		24,-8	Drv(0)
125	LCD I/F	LD1	0		24,-8	Drv(0)
126		FPHTIM	0		24,-8	Drv(0)
127		LD8	0		24,-8	Drv(0)
128		FPVEEON	0		6,-2	Drv(0)
129		FPBLANK#	0		24,-8	Drv(0)
130		LD10	0		24,-8	Drv(0)
131		LD12	0		24,-8	Drv(0)
132		LD14	0		24,-8	Drv(0)
133		BRTN	-		7 -	
134	CRT I/F	GRTN				
135		RRTN				
136		HSYNC	0		12,-4	Drv(0)
137	LCD I/F	LD16	0		24,-8	Drv(0)
138		RESERVE				
139	MOUSE I/F	MSCLK	IO OD	External	24,-	Drv(0)
140	KEYBOARD I/F	KBCLK	IO OD	External	24,-	Drv(0)
141		FDRD#	Ι	External		Input
142	FDD I/F	FDDCHG#	Ι	External		Input
143		FDWE#	O OD	External	38,-	High-Z
144		FDHIDEN	O OD	External	38,-	High-Z
145		VCC5	POWER			
146	POWER Supply	VCC5	POWER			
147		VCC3	POWER			
148		VCC3	POWER			
149		FDDS1#	O OD	External	38,-	High-Z
150	FDD I/F	FDMT1#	O OD	External	38,-	High-Z
151		FDSTEP#	O OD	External	38,-	High-Z
152		RESERVE				
153		DARXD	Ι	50KPU		Input
154		COMBRI#	Ι	50KPU		Active or Input
155	SERIAL I/F	COMBRXD	Ι	50KPD		Input
156		COMBTXD	0		8,-8	High-Z
157		COMBDCD#	Ι	50KPU		Input
158		COMARI#	Ι	50KPU		Active or Input

Pin	Group	Signal name	Туре	Termination	drive (mA)	susp
	(EASI)				IOL,IOH	
159		COMARXD	Ι	50KPD		Input
160	SERIAL I/F	COMATXD	0		8,-8	High-Z
161		COMADCD#	Ι	50KPU		Input
162		IRTXD	0		16,-16	High-Z
163		LPTAFD#	IO OD	4.7KPU	12,-	Input
164		LPTERROR#	Ι	60KPU		Input
165		LPTBUSY	Ι	20KPU		Input
166	PARALLEL I/F	LPTSLCT	Ι	20KPD		Input
167		LPTINIT#	IO OD	4.7KPU	12,-	Input
168		LPTSLCTIN#	IO OD	4.7KPU	12,-	Input
169		LPTD4	IO	50KPD	8,-8	Input or Drive
170		LPTD6	IO	50KPD	8,-8	Input or Drive
171		LPTDIR	0		8,-8	Drive
172		HD7	IO	50KPU	12,-12	Input
173	IDE I/F	HDENH#	0		8,-8	Drv(1)
174		HDCS1#	0		12,-12	High-Z
175	POWER MANAGEMENT I/F	V _{BK}	POWER			
176		EXTSMI#	Ι	50KPU		Input
177	POWER Supply	GND	POWER			
178		GND	POWER			
179	POWER MANAGEMENT	RESERVE				
180		SRBTN#	Ι	50KPU		Active
181	WATCHDOG I/F	WDTIM#	0		4,-4	Drive
182		PGM	POWER			
183	BIOS ROM UPDATE I/F	RESERVE				
184		RESERVE				
185		RESETDRV	0		12,-12	Drv(0)
186		IOCHCK#	Ι	4.7KPU		Input
187		IRQ9	Ι	50KPU		Input
188		DRQ2	IO	50KPD	12,-2	Input or Drive
189		WS0#	Ι	1KPU		Input
190	ISA Bus	SMEMW#	0		12,-12	Drv(1)
191		SMEMR#	0		12,-12	Drv(1)
192		IOW#	IO	50KPU	12,-12	Drv(1)
193		IOR#	IO	50KPU	12,-12	Drv(1)
194		DACK3#	0		8,-8	Drv(1)
195		DRQ3	Ι	50KPD		Input
196		DACK1#	0		8,-8	Drv(1)
197		DRQ1	Ι	50KPD		Input
198		REF#	IO OD	1.2KPU	12,-	Input
199		SCLK	0	33ST	12,-12	Drv(0)

	Group	Signal name	Туре	Termination	drive (mA)	susp
200	(EASI)		DOWED		IOL,IOH	
200		VCC3	POWER			
201	POWER Supply	VCC3	POWER			
202		VCC5	POWER			
203		VCC5	POWER			
204		IRQ7	IO	50KPU	8,-8	Input or Drive
205		IRQ6	IO	50KPU	12,-2	Input or Drive
206		IRQ5	IO	50KPU	8,-8	Input or Drive
207		IRQ4	IO	50KPU	8,-8	Input or Drive
208		IRQ3	IO	50KPU	8,-8	Input or Drive
209		DACK2#	0		8,-8	Drv(1)
210		TC	0		12,-12	Drv(0)
211		BALE	0		12,-12	Drv(0)
212		OSC	0	33ST	8,-8	Drv(0)
213		MEMCS16#	Ι	1KPU		Input
214		IOCS16#	Ι	1KPU		Input
215		IRQ10	IO	50KPU	8,-8	Input or Drive
216		IRQ11	IO	50KPU	8,-8	Input or Drive
217	ISA Bus	IRQ12	0	50KPU	8,-8	Drive
218		IRQ15	Ι	50KPU		Input
219		IRQ14	Ι	50KPU		Input
220		DACK0#	0		8,-8	Drv(1)
221		DRQ0	Ι	50KPD		Input
222		DACK5#	0		8,-8	Drv(1)
223		DRQ5	Ι	50KPD		Input
224		DACK6#	0		8,-8	Drv(1)
225		DRQ6	Ι	50KPD		Input
226		DACK7#	0		8,-8	Drv(1)
227		DRQ7	Ι	50KPD		Input
228		MASTER#	Ι	1KPU		Input
229		SD12	IO	50KPU	12,-12	Input
230		SD13	IO	50KPU	12,-12	Input
231		SD14	IO	50KPU	12,-12	Input
232		SD15	IO	50KPU	12,-12	Input
233	POWER MANAGEMENT I/F	SMOUT2	0		8,-8	Drive
234		SMOUT0	0		8,-8	Drive
235	POWER Supply	GND	POWER			
236		GND	POWER			

10. AC CHARACTERISTICS (recommended and reference values)

ISA Bus Clock Timing

8				
Symbol Parameter	Min	Тур	Max	Unit
SCLK Period	-	125	-	ns

ISA Bus Timing

Symbol	Parameter	Min	Max	Unit	Note
t301	BALE Active Delay from SCLK	-	25	ns	Fig.10.1
t302	BALE Inactive Delay From SCLK		25	ns	Fig.10.1
t303	LA[23:17], SA[16:2] Valid Delay from SCLK	-	25	ns	Fig.10.1
t304	LA[23:17], SA[16:2] Invalid Delay from SCLK	0	-	ns	Fig.10.1
t305	SA[1:0], SBHE# Valid Delay from SCLK	-	30	ns	Fig.10.1
t306	SA[1:0], SBHE# Invalid Delay from SCLK	0	-	ns	Fig.10.1
t307	Command Active Delay from SCLK	-	25	ns	Fig.10.1
	(8bit Memory Read/Write, I/O Read/Write Cycle)				
t308	Command Inactive Delay from SCLK	5	30	ns	Fig.10.1
t309	MEMCS16# Setup to SCLK	15	-	ns	Fig.10.1
t310	MEMCS16# Hold from SCLK	15	-	ns	Fig.10.1
t311	IOCHRDY Setup to SCLK	15	-	ns	Fig.10.1
t312	IOCHRDY Hold from SCLK	15	-	ns	Fig.10.1
t313	SD[15:0] Setup to SCLK	15		ns	Fig.10.1
	(Read Cycle)				
t314	SD[15:0] Hold from SCLK	5		ns	Fig.10.1
	(Read Cycle)				
t315	SD[15:0] Valid Delay from SCLK	-	65	ns	Fig.10.1
	(Write Cycle)				
t316	SD[15:0] Invalid Delay from SCLK	0	20	ns	Fig.10.1
	(Write Cycle)				
t317	Command Active Delay from SCLK	-	30	ns	Fig.10.7
	(16bit Memory Read/Write Cycle)				
t318	WS0# Setup to SCLK	15	-	ns	Fig.10.2
t319	WS0# Hold from SCLK	15	-	ns	Fig.10.2
t320	IOCS16# Setup to SCLK	15	-	ns	Fig.10.4
t321	IOCS16# Hold from SCLK	15	-	ns	Fig.10.4
t322	Command Active Delay from SCLK	-	45	ns	Fig.10.2
	(SMEMR#/SMEMW#)				
t323	Command Inactive Delay from SCLK	5	50	ns	Fig.10.2
	(SMEMR#/SMEMW#)				

DMA Timing

Symbol	Parameter	Min	Max	Unit	Note
t35	DACKx# Active Delay from SCLK	-	75	ns	Fig.10.12
t36	DACKx# Inactive Delay from SCLK	-	75	ns	Fig.10.12
t37	SA[7:0] Valid Delay from SCLK	-	50	ns	Fig.10.12
t38	LA[23:17] Valid Delay from DACKx#	-	90	ns	Fig.10.12
t39	IOR#/IOW#/MEMW# Active from SCLK	-	70	ns	Fig.10.12
t40	IOR# Active Delay from SCLK	-	45	ns	Fig.10.12
t41	MEMW# Active Delay from SCLK	-	35	ns	Fig.10.12
t43	IOCHRDY Setup to SCLK	20	-	ns	Fig.10.12
t44	IOR# Inactive Delay from SCLK	-	60	ns	Fig.10.12
t45	MEMR# Inactive Delay from SCLK	-	60	ns	Fig.10.12
t46	IOW#/MEMW# Inactive Delay from SCLK	-	60	ns	Fig.10.12
t48	DMA address invalid from SCLK	125	-	ns	Fig.10.12
t49	IOR# Float Delay from SCLK	-	80	ns	Fig.10.12
t50	MEMR# Float Delay from SCLK	-	80	ns	Fig.10.12
t51	IOW#/MEMW# Float Delay from SCLK	-	80	ns	Fig.10.12

IDE Interface Timing

Symbol	Parameter	Min	Max	Unit	Note
t67	HDCS0#/HDCS1# Active Delay from Address	-	30	ns	Fig.10.13
t68	HDENL#/HDENH# Output Active Delay IOR# Active	-	30	ns	Fig.10.13
t69	HDENL#/HDENH# Output Inactive Delay IOR# Inactive		45	ns	Fig.10.13
t70	SD7 Read Data Valid Delay from HD7	-	30	ns	Fig.10.13
t71	Address Input Hold from Command Inactive	40	-	ns	Fig.10.13
t72	SD7 Read Data Output Float from IOR# Inactive	-	45	ns	Fig.10.13
t73	IOCS16# Setup to Command	10	-	ns	Fig.10.13
t74	IOCS16# Hold from Command	10	-	ns	Fig.10.13
t75	HD7 Write Data Valid from IOW# Active	-	50	ns	Fig.10.14
t76	SD7 Write Data Hold from IOW# Inactive	30	-	ns	Fig.10.14
t77	HD7 Write Data Float from IOW# Inactive	-	45	ns	Fig.10.14
t78	HD7 Write Data Hold from IOW# Inactive	20	-	ns	Fig.10.14

Symbol	Parameter	Min	Max	Unit	Note
t11g	$VCC_3 = 3.0v Lag$	0	-	μs	Fig.10.15
	fromVCC5 = 4.5v				
t3	POWERGOOD Turn on Delay	50	-	ms	Fig.10.15
	from 3.0v of VCC3 and 4.5v of VCC5				
	when both VCCs are Ramping Up				
t3a	POWERGOOD Turn on Delay	0	-	ms	Fig.10.15
	from 4.75v of VCC5 when VCC5 are Ramping Up				
t5	POWERGOOD Inactive Setup Time	0	-	μs	Fig.10.15
	to 3.0v of VCC3 and 4.5v of VCC5				
	when Both VCCs are Removed				
t9	RESETDRV Active Hold	1	-	ms	Fig.10.15
	from POWERGOOD Active				

Power Supply Sequence

Monochrome Single STN 8bit LCD Interface

Symbol	Parameter	Min	Тур	Unit	Note
Pt1	FPVTIM Setup to FPHTIM Falling edge	HDP+	-	Ts	Fig.10.10
		HDNP-10			-
Pt2	FPVTIM Hold from FPHTIM Falling edge	6	-	Ts	Fig.10.1
Pt3	FPHTIM Period	-	HDP+	Ts	Fig.10.1
			HNDP		
Pt4	FPHTIM Pulse Width	LP_SEL	-	Ts	Fig.10.1
		+1			
Pt5	FPAC Delay from FPHTIM Falling edge	0	-	Ts	Fig.10.1
Pt6	FPDOTCLK Falling edge to FPHTIM Rising edge	HNDP-10	-	Ts	Fig.10.1
Pt7	FPDOTCLK Falling edge to FPHTIM Falling edge	HNDP-	-	Ts	Fig.10.1
		7+			
		LP_SEL			
Pt8	FPHTIM Falling edge to FPDOTCLK Falling edge	15-	-	Ts	Fig.10.1
		LP_SEL			
Pt9	FPDOTCLK Period	8	-	Ts	Fig.10.1
Pt10	FPDOTCLK Pulse Width Low	4	-	Ts	Fig.10.1
Pt11	FPDOTCLK Pulse Width High	4		Ts	Fig.10.1
Pt12	LD[7:0] Setup to FPDOTCLK Falling edge	4		Ts	Fig.10.1
Pt13	LD[7:0] Hold to FPDOTCLK Falling edge	4		Ts	Fig.10.1
Pt14	FPHTIM Falling edge to FPDOTCLK Rising edge	11-	-	Ts	Fig.10.1
		LP_SEL			

note: Ts = pixel clock period = 35ns typical

HDP = horizontal display period in units of Ts = 640 typical

HNDP = horizontal non-display period in units of Ts = 112 typical

 $LP_SEL=7$ typical

Refer to the BIOS Manual and SPC8110 Manual for details.

WIOHOCHFOI	ie Dual STN 8bit LCD Interface				
Symbol	Parameter	Min	Тур	Unit	Note
Pt1	FPVTIM Setup to FPHTIM Falling edge	HDP+	-	Ts	Fig.10.17
		HDNP-10			
Pt2	FPVTIM Hold from FPHTIM Falling edge	6	-	Ts	Fig.10.17
Pt3	FPHTIM Period	-	HDP+	Ts	Fig.10.17
			HNDP		
Pt4	FPHTIM Pulse Width	LP_SEL+	-	Ts	Fig.10.17
		1			
Pt5	FPAC Delay from FPHTIM Falling edge	0	-	Ts	Fig.10.17
Pt6	FPDOTCLK Falling edge to FPHTIM Rising edge	HNDP-10	-	Ts	Fig.10.17
Pt7	FPDOTCLK Falling edge to FPHTIM Falling edge	HNDP-	-	Ts	Fig.10.17
		9+			
		LP_SEL			
Pt8	FPHTIM Falling edge to FPDOTCLK Falling edge	13-	-	Ts	Fig.10.17
		LP_SEL			
Pt9	FPDOTCLK Period	4	-	Ts	Fig.10.17
Pt10	FPDOTCLK Pulse Width Low	2	-	Ts	Fig.10.17
Pt11	FPDOTCLK Pulse Width High	2		Ts	Fig.10.17
Pt12	LD[7:0] Setup to FPDOTCLK Falling edge	2		Ts	Fig.10.17
Pt13	LD[7:0] Hold to FPDOTCLK Falling edge	2		Ts	Fig.10.17
Pt14	FPHTIM Falling edge to FPDOTCLK Rising edge	11-	-	Ts	Fig.10.17
		LP_SEL			

Monochrome Dual STN 8bit LCD Interface

note: Ts = pixel clock period = 52ns typical

HDP = horizontal display period in units of Ts = 640 typical

HNDP = horizontal non-display period in units of Ts = 112 typical

LP_SEL= 7 typical

Refer to the BIOS Manual and SPC8110 Manual for details.

Color Dual STN 16bit LCD Interface

Symbol	Parameter	Min	Тур	Unit	Note
Pt1	FPVTIM Setup to FPHTIM Falling edge	HDP+	-	Ts	Fig.10.18
		HDNP-10			
Pt2	FPVTIM Hold from FPHTIM Falling edge	6	-	Ts	Fig.10.18
Pt3	FPHTIM Period	-	HDP+	Ts	Fig.10.18
			HNDP		
Pt4	FPHTIM Pulse Width	LP_SEL+	-	Ts	Fig.10.18
		1			
Pt5	FPAC Delay from FPHTIM Falling edge	0	-	Ts	Fig.10.18
Pt6	FPDOTCLK Falling edge to FPHTIM Rising edge	HNDP-9	-	Ts	Fig.10.18
Pt7	FPDOTCLK Falling edge to FPHTIM Falling edge	HNDP-	-	Ts	Fig.10.18
		8+			
		LP_SEL			
Pt8	FPHTIM Falling edge to FPDOTCLK Falling edge	12-	-	Ts	Fig.10.18
		LP_SEL			
Pt9	FPDOTCLK Period	2	-	Ts	Fig.10.18
Pt10	FPDOTCLK Pulse Width Low	1	-	Ts	Fig.10.18
Pt11	FPDOTCLK Pulse Width High	1		Ts	Fig.10.18
Pt12	LD[15:0] Setup to FPDOTCLK Falling edge	1		Ts	Fig.10.18
Pt13	LD[15:0] Hold to FPDOTCLK Falling edge	1		Ts	Fig.10.18
Pt14	FPHTIM Falling edge to FPDOTCLK Rising edge	11-	-	Ts	Fig.10.18
		LP_SEL			-

note: Ts = pixel clock period = 52ns typical

HDP = horizontal display period in units of Ts = 640 typical

HNDP = horizontal non-display period in units of Ts = 112 typical

LP_SEL= 7 typical

Refer to the BIOS Manual and SPC8110 Manual for details.

Symbol	Parameter	Min	Тур	Unit	Note
Pt1	FPDOTCLK Period	1	-	Ts	Fig.10.19
Pt2	FPDOTCLK Pulse Width High	0.5	-	Ts	Fig.10.19
Pt3	FPDOTCLK Pulse Width Low	0.5	-	Ts	Fig.10.19
Pt4	DATA Setup to FPDOTCLK Falling edge	0.5	-	Ts	Fig.10.19
Pt5	DATA Hold from FPDOTCLK Falling edge	0.5	-	Ts	Fig.10.19
Pt6	FPHTIM Cycle time	-	805	Ts	Fig.10.19
Pt7	FPHTIM Pulse Width Low	-	96	Ts	Fig.10.19
Pt8	FPVTIM Cycle time	-	525	lines	Fig.10.19
Pt9	FPVTIM Pulse Width Low	-	2	lines	Fig.10.19
Pt10	Horizontal Display Period	-	640	Ts	Fig.10.19
Pt11	FPHTIM Setup to FPDOTCLK Falling edge	0.5	-	Ts	Fig.10.19
Pt12	FPVTIM Falling edge to FPHTIM Falling edge Phase	1	-	Ts	Fig.10.19
	Difference				
Pt13	FPBLANK# to FPDOTCLK Falling edge Setup time	0.5	-	Ts	Fig.10.19
Pt14	FPBLANK# Width	-	640	Ts	Fig.10.19
Pt15	FPHTIM Sampled Low (by FPDOTCLK) to FPBLANK#	-	144	Ts	Fig.10.19
	Rising edge				
Pt16	FPBLANK# Falling edge to FPHTIM Falling edge	-	16	Ts	Fig.10.19
Pt17	FPBLANK# Hold from FPDOTCLK Falling edge	0.5	-	Ts	Fig.10.19

Color TFT LCD Interface

note: Ts = pixel clock period = 40ns typical

Refer to the BIOS Manual and SPC8110 Manual for details.

10.1 Timing Chart

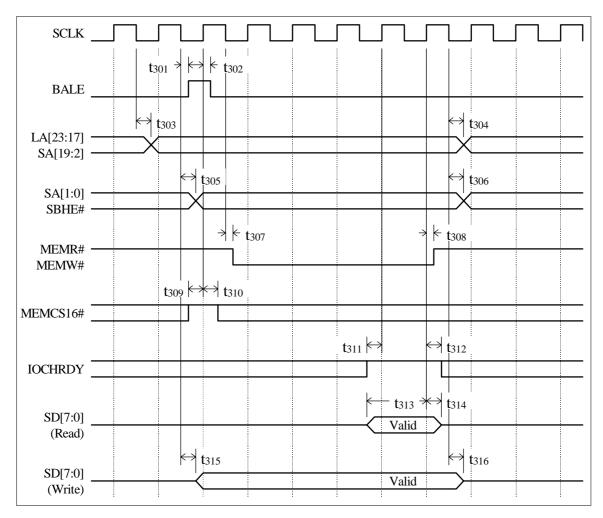


Figure 10.1 ISA Bus 8-Bit Memory Read/Write Standard ISA Bus Cycle (6 SCLKs)

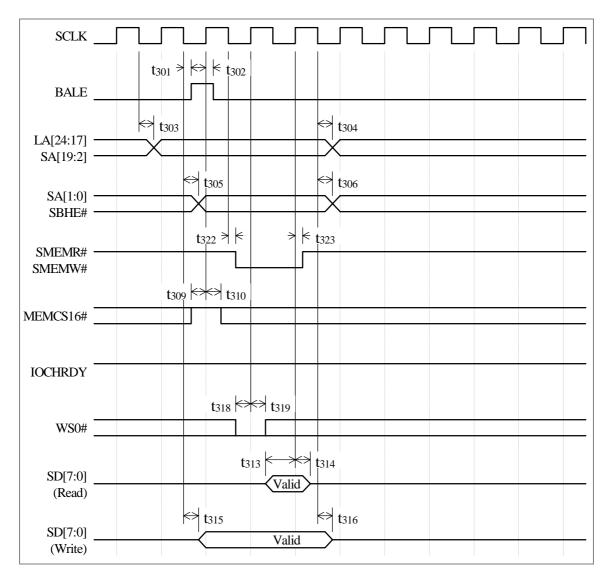


Figure 10.2 ISA Bus 8-Bit Memory Read/Write with ZEROWS# Asserted (3 SCLKs)

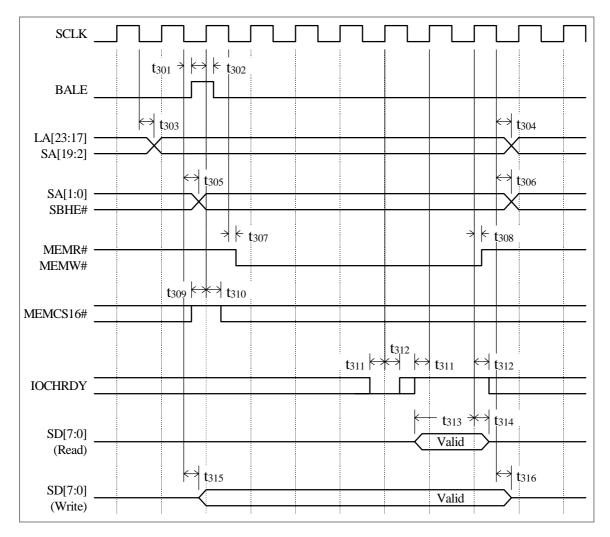


Figure 10.3 ISA Bus 8-Bit Memory Read/Write with IOCHRDY De-Asserted (Added Wait State)

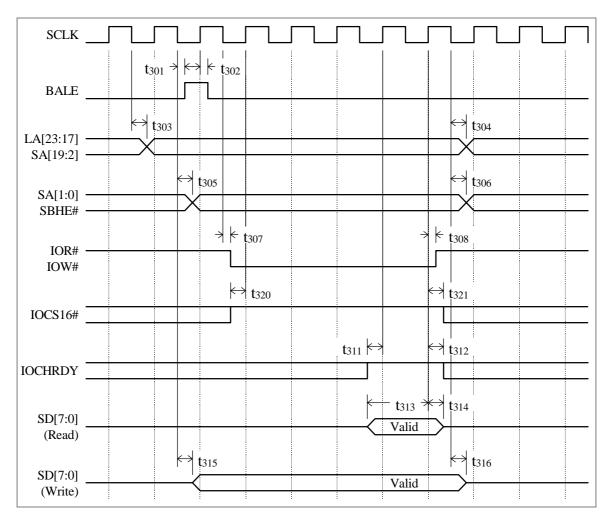


Figure 10.4 ISA Bus 8-Bit I/O Read/Write Standard ISA Bus Cycle (6 SCLKs)

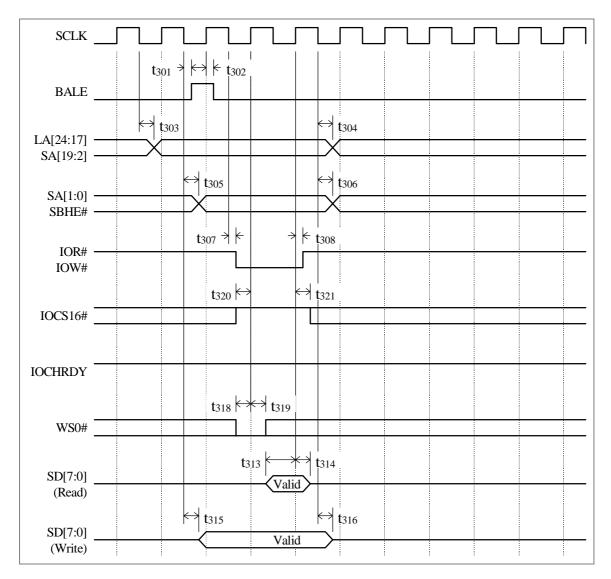


Figure 10.5 ISA Bus 8-Bit I/O Read/Write with ZEROWS# Asserted (3 SCLKs)

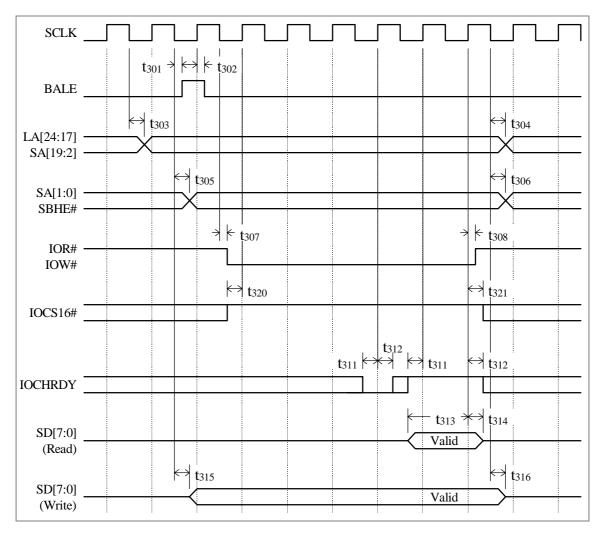


Figure 10.6 ISA Bus 8-Bit I/O Read/Write with IOCHRDY De-Asserted (Added Wait States)

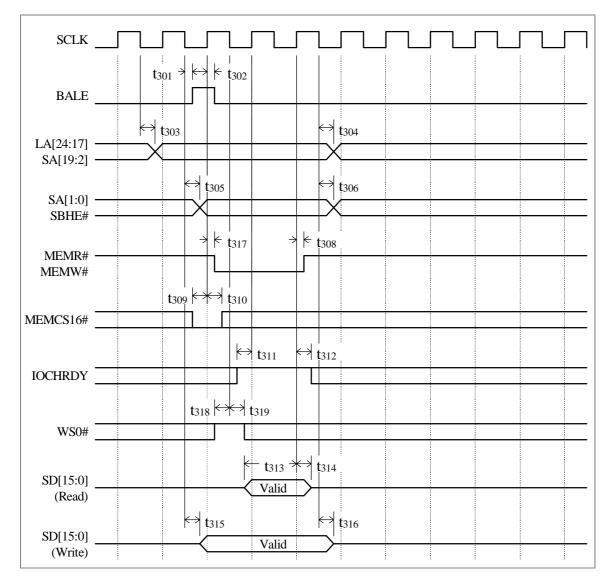


Figure 10.7 ISA Bus 16-Bit Memory Read/Write Standard Bus Cycles (3 SCLKs)

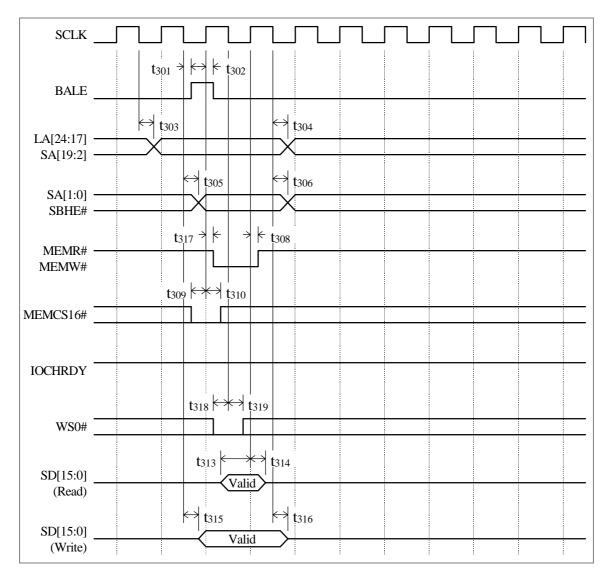


Figure 10.8 ISA Bus 16-Bit Memory Read/Write with ZEROWS# Asserted

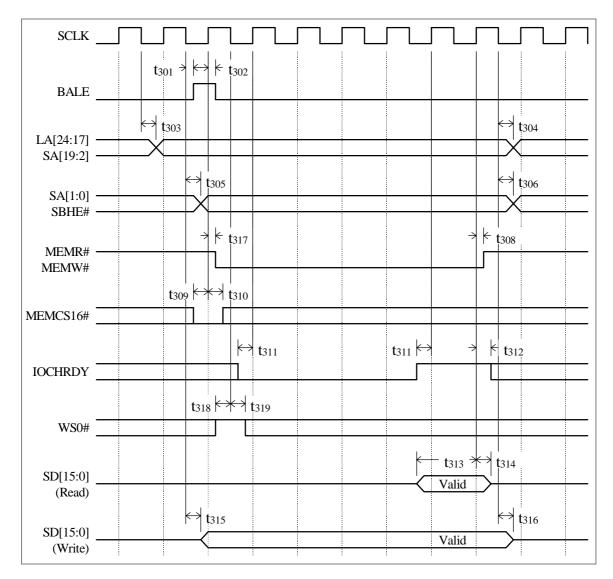


Figure 10.9 ISA Bus 16-Bit Memory Read/Write with IOCHRDY De-Asserted (Added Wait States)

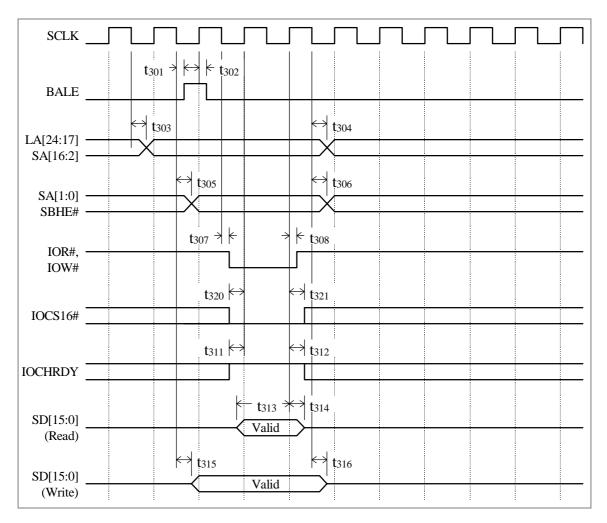


Figure 10.10 ISA Bus 16-Bit I/O Read/Write Standard ISA Bus Cycle (3 SCLKs)

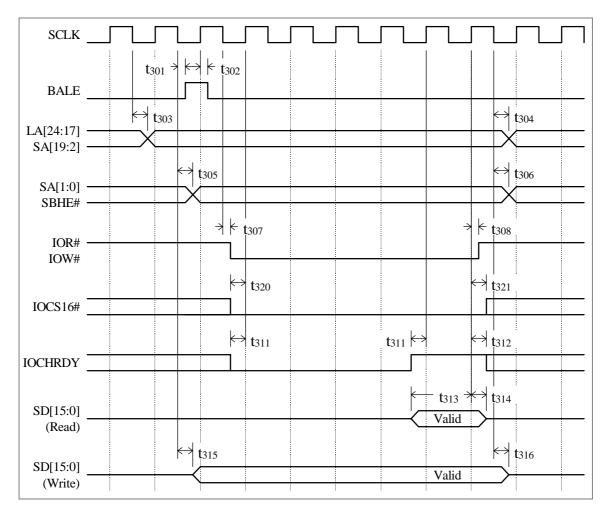


Figure 10.11 ISA Bus 16-Bit I/O Read/Write with IOCHRDY De-Asserted (Added Wait States)

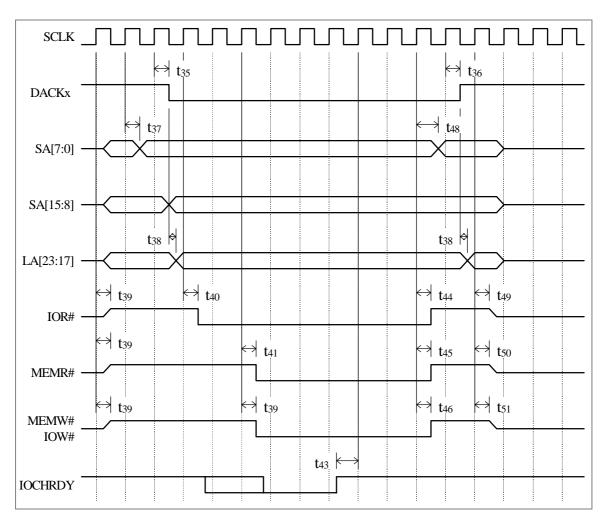


Figure 10.12 DMA Timings

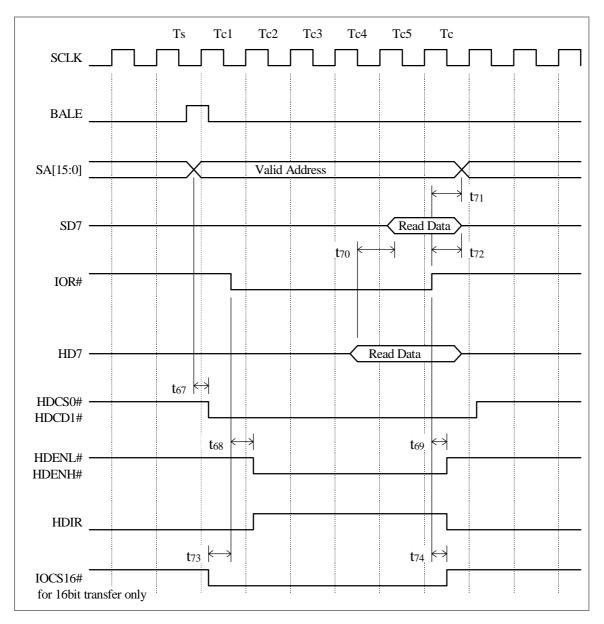


Figure 10.13 IDE Hard Disk Control Signal (I/O Read Timing)

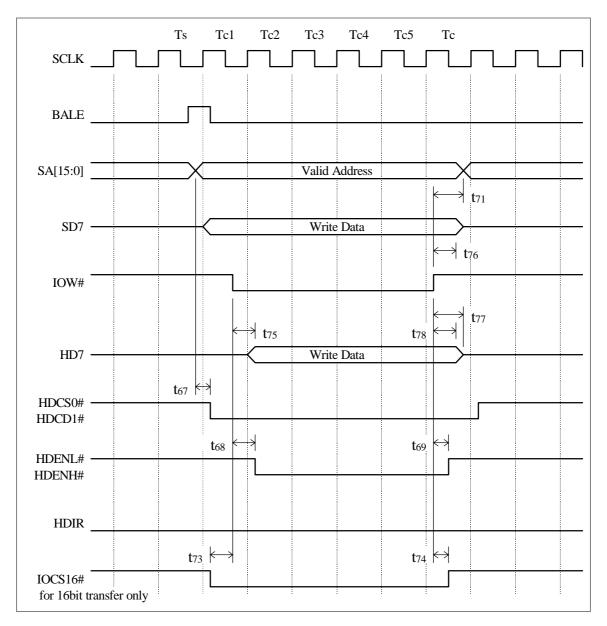


Figure 10.14 IDE Hard Disk Control Signals (I/O Write Timings)

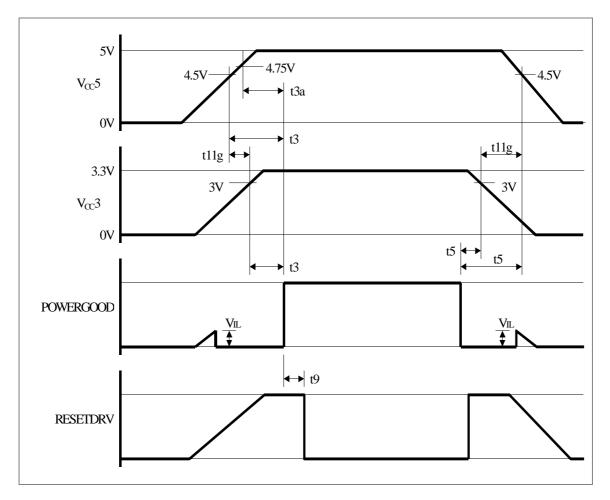


Figure 10.15 Power-Up Sequence

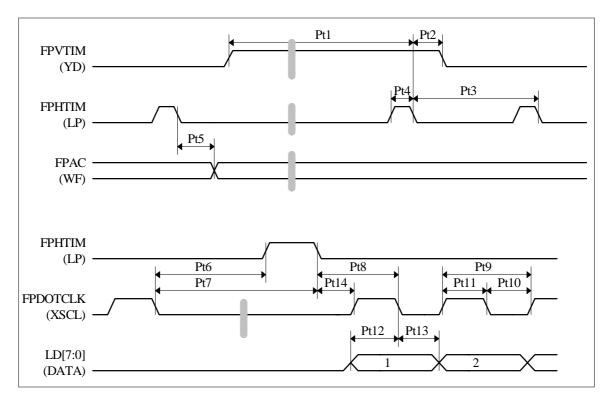


Figure 10.16 Monochrome Single STN 8bit LCD Interface

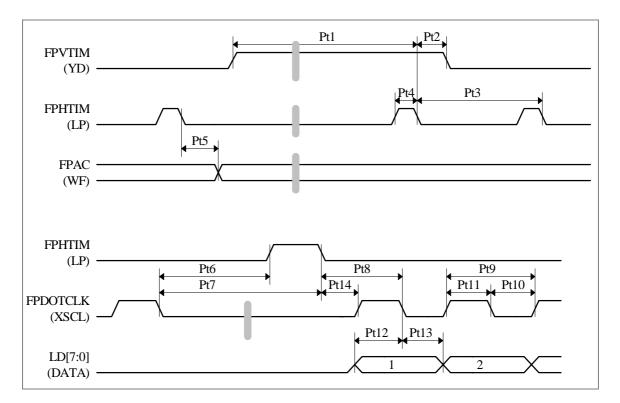


Figure 10.17 Monochrome Dual STN 8bit LCD Interface

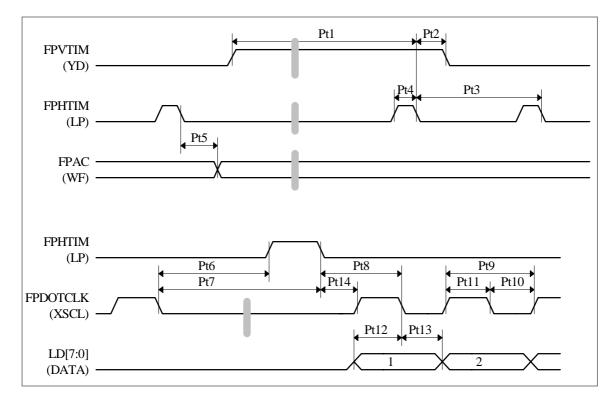


Figure 10.18 Color Dual STN 16-bit LCD Interface

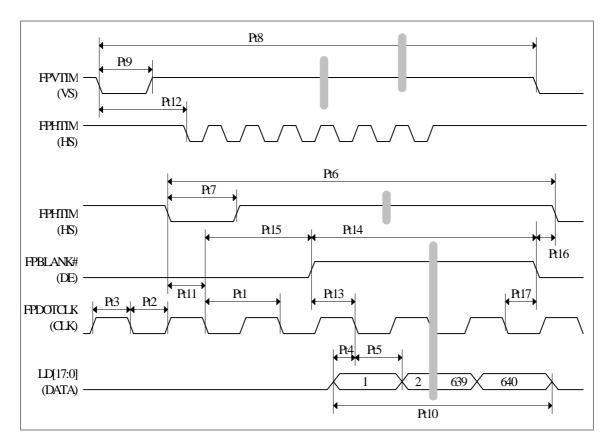


Figure 10.19 Color TFT LCD Interface

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC. HEADQUARTERS

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A. Phone: +1-310-955-5300 Fax: +1-310-955-5400

SALES OFFICES

West 150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone : +1-408-922-0200 Fax: +1-408-922-0238

Central

1450 East American Lane, Suite 1550 Schaumburg, IL 60173, U.S.A. Phone : +1-847-517-7667 Fax : +1-847-517-7601

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Roval Blvd. South. Suite 170 Alpharetta, Georgia 3005, U.S.A. Phone : +1-877-EEA-0020 Fax : +1-770-777-2637

1700 Spinnaker Drive Alptaretta, GA 30005, U.S.A. Phone: +1-770-754-4872 Fax: +1-770-753-0601

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS

Riesstrasse 15 80992 Muenchen, GERMANY Phone : +49- (0) 89-14005-0 Fax : +49- (0) 89-14005-110

- GERMANY -SALES OFFICE Altstadtstrasse 176 51379 Leverkusen, GERMANY

Phone : +49- (0) 217-15045-0 Fax : +49- (0) 217-15045-10

- UNITED KINGDOM -

UK BRANCH OFFICE 2.4 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44- (0) 1344-381700 Fax: +44- (0) 1344-381701

- FRANCE -FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone : +33- (0) 1-64862350 Fax : +33- (0) 1-64862355

ASIA

- HONG KONG, CHINA -EPSON HONG KONG LTD. 20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone: +852-2585-4600 Fax: +852-2827-4346 Telex : 65542 EPSCO HX

- CHINA -SHANGHAI EPSON ELECTRONICS CO., LTD. 4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone : 21-6485-5552 Fax: 21-6485-0775

- TAIWAN, R.O.C. -**EPSON TAIWAN TECHNOLOGY & TRADING LTD.** 10F, No. 287, Nanking East Road, Sec. 3 Taipei, TAIWAN, R.O.C. Phone: 02-2717-7360 Fax: 02-2712-9164 Telex : 24444 EPSONTB

HSINCHU OFFICE

13F-3, No.295, Kuang-Fu Road, Sec. 2 HsinChu 300, TAIWAN, R.O.C. Phone : 03-573-9900 Fax: 03-573-9169

- SINGAPORE -**EPSON SINGAPORE PTE., LTD.** No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192 Fax : +65-334-2716 Phone: +65-337-7911

- KOREA -SEIKO EPSON CORPORATION **KOREA OFFICE**

50F, KLI 63 Bldg., 60 Yoido-Dong Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone : 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department Card Products & Marketing Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-7503 Fax: +81-(0)42-587-8423

ED International Marketing Department I

(Europe & U.S.A.) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of **"Saving"** Technology, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings**.

CARD-586 Hardware Manual

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Devices Information on Epson WWW server