EPSON

CARD-PCI/GX

Hardware Manual

SEIKO EPSON CORPORATION

NOTICE:

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from anther government agency.

©SEIKO EPSON CORPORATION 2000 All rights reserved.

CompactFlash is a trademark of Sandisk Corporation in U.S.A. CompactFlash is licensed to CFA (CompactFlash Association).

Windows and Windows NT are registered trademarks of Microsoft Corporation in U.S.A.

Geode is a trademark of National Semiconductor Corporation in U.S.A.

PC/AT is a registered trademark of International Business Machines in U.S.A.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

CONTENTS

1.	01	erview .		. 1
1	1.1	System	Overview	. 2
1	.2	Basic S	pecification	. 3
1	.3	BIOS		. 5
1	.4	Memory	y map	. 6
1	1.5	I/O map)	. 7
1	.6	DMA co	ontroller	13
1	.7	System	interrupts	14
1	.8	Timer c	ounter	15
1	.9	Real tin	ne clock and C-MOS RAM	16
2.	Me	echanica	l specifications	17
2	2.1	Dimens	ions and weight	17
	2.2		tion method	
0	T			
3.	In	terrace s	pecifications	19
	3.1		figuration	
	3.		-pin connector pin configuration	
	3.	-	pin connector pin configuration	
	3.2		characteristics	
	3.3	•	tions on signal functions	
			I bus	
			MITED ISA bus	
			D	
			T	
			rd disk (IDE)	
			·B	
			rial interfaces	
			rallel interfaces	
			yboard/mouse	
			97 interfaces	
			wer management	
			wer supply	
	3.	3.13 FD	D	57
4.	De	etailed d	escription of interfaces	38
Z	I .1	CRT, L	.CD	38
4	1.2	Hard d	lisk	40

	4.3	FDD	. 41
	4.4	Keyboard/mouse	. 42
	4.5	Parallel port	. 43
	4.6	Serial port	. 44
	4.7	USB	. 44
	4.8	Speaker	. 45
	4.9	PCI	45
	4.10	LIMITED ISA	. 46
	4.11	RTC	. 46
5.	Pov	ver management	. 47
	5.1	Power ON/OFF	
	5.2	Standby mode	
	5.2 5.3	Power supply	
	5.3 5.4	Power sequence	
	5.4 5.4	-	
	5.4 5.4		
	5.4	2 Power sequence (for power supply which is not turned ON/OFF from the software)	. 51
6.	Ele	ctrical characteristics	. 52
	6.1	Absolute maximum rating	. 52
	6.2	Recommended operating condition	. 52
	6.3	DC characteristics (under recommended operating condition)	. 53
	6.3	1 PCI bus	. 53
	6.3	2 LIMITED ISA bus	. 53
	6.3	3 LCD	. 54
	6.3	4 CRT	. 54
	6.3	.5 FDD	. 55
	6.3	.6 IDE	. 55
	6.3	7 Serial port	. 56
	6.3	8 Parallel port	. 56
	6.3	9 Keyboard/mouse	. 57
	6.3	10 USB	. 57
	6.3	11 Power management signal	. 57
	6.3	12 AC97	. 58
	6.3	13 Other signals	. 59
	6.4	Current consumption	. 60
	6.4	1 Maximum current value	. 60
	6.4	2 Typical current value 1	. 60
	6.4	.3 Typical current value 2	. 61

6.4.4	Standby current	61
7. AC cha	aracteristics	62
7.1 PC	CI timing	62
7.2 US	SB timing	62
7.3 LI	MITED ISA timing	62
7.3.1	Memory, I/O read cycle timing	62
7.3.2	Memory, I/O write cycle timing	64
7.4 AC	C97 timing	65
7.5 TF	T timing	65
8. Cautio	ns on use	66
Appendix .	A. Peripheral circuit design	67
••	extension of PCI bus	
A.1.1	Number of PCI devices	
A.1.2	PCI device No. and wiring method for interrupts	
A.1.3	Connection of 5V device to PCI bus	
A.2 IO	extension of LIMITED ISA bus	70
A.2.1	Address decoding	70
A.2.2	Pull-up of SD/SA[7:0]	70
A.2.3	SA[15:0] latch	71
A.2.4	Number of ISA slots	71
A.2.5	Pull-up resistance of IOCHRDY	71
A.2.6	SMEMR# and SMEMW# generation	72
A.2.7	MEMCS16# generation	72
A.3 Po	wer supply design: Power control circuit	73
A.3.1	Power not requiring ON/OFF by software	73
A.3.2	Power requiring ON/OFF by software	74
A.3.3	Cautions on compatibility of CARD-PCI	75
A.3.4	Wake on LAN signal	75
A.4 Ca	nutions on artwork design	76
A.4.1	Power supply line	76
A.4.2	Address bus and data bus	77
A.4.3	PCI signal	
A.4.4	Clock signal	77
A.4.5	CRT RGB signal	
A.4.6	Reset signal	78
Appendix 1	B. Timing examples of power management signals	79

1. Overview

SCE8720Cxx (CARD/PCI/GX) is the first product in SEIKO EPSON's CARD-PCI series equipped with the PCI bus. With the PCI bus, ability of enhancement, which enables various PCI devices to be connected, is realized.

By utilizing the Geode 200 MHz low voltage product, which comprises CPU core, and the companion chip manufactured by National Semiconductor, low power consumption, low cost and high quality display (CRT1280 \times 1024, 256-color) are all realized. Especially, this low power consumption capability is one of the most important aspects to realize fan-less, which is required in applications requiring high liability.

All these capabilities are provided within a compact size of $101.6 \pm 1.0 \times 63.5 \pm 0.3 \times 16.0 \pm 1.0$ (mm) with 280-pin and 20-pin interface connectors.

Because SCE8720C can easily enable the core capabilities of IBM PC/AT, including BIOS, users can drastically decrease system development manpower and period.

In addition, future CARD-PCI series will also be able to be used with the same main board only requiring consideration on the card's mounting area and power supply.

1.1 System Overview

SCE8720Cxx (CARD-PCI/GX) is provided with almost all the functions usually equipped on a mother board. These functions are accessed via the 280-pin main connector and 20pin connector.

As for 280-pin connector, manufacturer's genuine part is utilized. Functions accessed via the 280-pin connector are PCI extended bus, CRT or TFT LCD panel display, 2-channel USB, primary IDE, LIMITED ISA extended bus (*1), keyboard and mouse, 2-channel serial/parallel port and AC97 interface. FDD and a part of interrupt of ISA are accessed via the 20-pin connector.

SCE8720Cxx has Geode GX-LV 200MHz (CPU CHIP), Geode CS5530 (Companion chip), 97317 (Super IO) all built-in. As the main memory, SCE8720Cxx has a 32MB or 64MB of synchronous D-RAM and has utilized the unified memory method, in which a part of the synchronous D-RAM is used as the display memory. Generally, it is said that the unified memory method results in low-performance. However, with SCE8720Cxx, high performance is realized by compressing the data for display refreshing. In addition, SCE8720Cxx has a built-in CPU core power regulator (VRM) and a built-in CLOCK generator with built-in PLL. (*1: LIMITED ISA = ISA with limited capability)

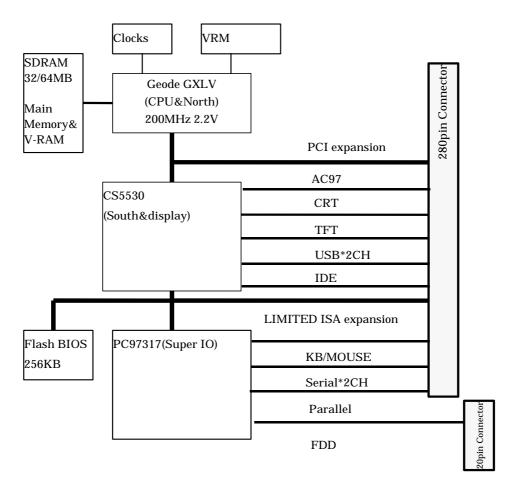
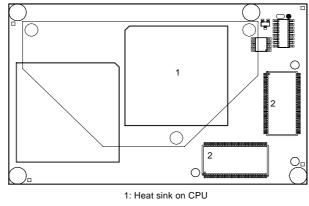
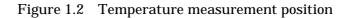


Figure1.1 Block diagram of SCE8720Cxx


1.2 Basic Specification

Item		Specific	ations				
CPU		Geode	GXLV	200MHz	(Manufactured	by	National
			Semiconductor)				
		(Cache memory 16KB built-in, FPU built-in)					
Main me	mory	Synchro	onous DRA	M 32MB/64N	MB		
System R	ROM	256KB					
		(System	(System BIOS + VGA BIOS + Power management BIOS)				
Compani	on chip	Geode C	CS5530 (Ma	nufactured	by National Semi	icondu	ictor)
		(Graphi	c control, I	DE AC97	etc.)		
Graphic f	function	RAM	Maximum	4MB (using	g a part of synchro	onous	DRAM)
		CRT 6	0Hz (Max.	XGA: 64K-c	olor or SXGA: 250	6-color	.)
		TFT 1	8/12/9-bit 7	TFT panel su	ipport (Max. XGA	64K-	color)
		STN car	nnot be use	ed.			
I/O interfa	ace						
	PCI	3.3V P	PCI Version	2.1 Complia	ance (33MHz)		
		PCI dev	vice 3 P	CI master 2			
	LIMITED ISA	No DMA	A or Master	r function pr	ovided. As for AB	80-15,	multiplex
		output t	to DB.				
		Some si	gnals have	been delete	d as well.		
	Parallel	1-port S	SPP, ECP, I	EPP (rev1.9/	1.7) supported.		
	Serial	2-port (2	16550 comp	oatible) Ma	ax.1.5Mbaud		
	HDD(IDE)	1 device	e (ANSI AT	A_4 Complia	ant)		
	FDD			AB 2mode, 3	5.5")		
	Keyboard	1PS/2-co	ompatible				
	Mouse		ompatible				
	USB	-		on 1.0 comp	liant		
	Speaker	PC beep					
	AC97	Version					
Super I/O		PC97317 (Manufactured by National Semiconductor)					
RTC		MC146818A-compatible, built in Super I/O.					
Clock buffer		MK1491-06 (Manufactured by ICS)					
	limensions	101.6±1.0×63.5±0.3×16.0±1.0 (mm)					
Weight		Approx.	82g				


Operation environment (temperature ranges)

Maximum temperature [Tc = 75° C right above the heat sink, and Ta = 70° C around the SDRAM]

Minimum temperature $Ta = 0^{\circ}C$

2: Ta around DRAM (peripheral temperature)

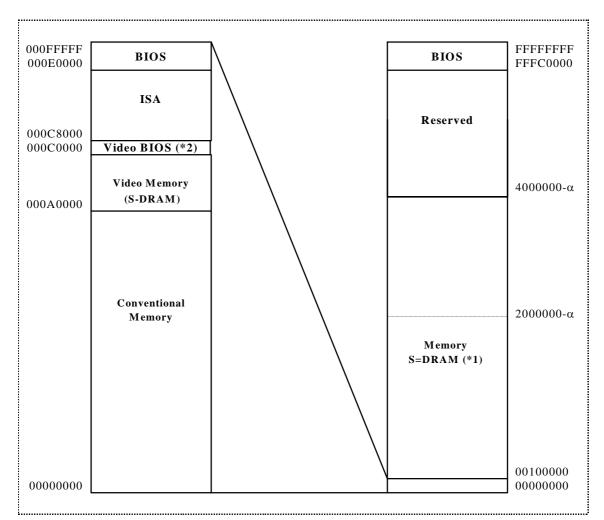
Storage environment	Temperature	-20 to 75° C (no condensation)
	Humidity	0 to 90% (no condensation)
Current consumption	Maximum rat	ing 7.1W

Power supply specifications (the following power supply is required.)

The following operational values are measured when Windows 98 is running and desktop is displayed.

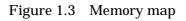
CPU_VRM power supply (V _{CCCORE}) 5	5V	
Current consumption Ty	rp. 408mA	
Standby current Ty	rp. 17.2 mA	
System power (V _{CC3V}) 3.3V		
Current consumption Ty	p. 620 mA	
Standby current Ty	rp. 230 mA	
ISA bus power supply (V_{CC5V}) 5V		
Current consumption Ty	rp. 17.1 mA	
Standby current Ty	rp. 11.5 mA	
5V standby power (V _{CCSTB}) $5V$		
(Power of 5V is always su	pplied regardless of the ON/OFF of the p	ower
supply.)		
Current consumption Ty	тр. 0.35 mA	
Backup power (V _{CCBAK}) 2.7 to 3.6V (vo	oltage supplied by battery)	
Current consumption Ty	rp. 1.2 μA	
(When holding the C-MOS	5 memory contents by the battery)	

•Power management


Power ON (PME0#, 1#, power SW) Power OFF (Soft OFF) Standby mode

1.3 BIOS

SCE8720C has adopted AWARD BIOS manufactured by Phoenix. It has the power management and plug-and-play functions. With the BIOS setup menu, many configuration parameters can be set.


The Video BIOS is also stored in the same ROM.

1.4 Memory map

*1: Memory size can be 32MB or 64MB, depending on the model.

*2: With some types of Video, C0000h to CBFFFh can be occupied as VIDEO BIOS. α : Area for the video memory: Max. 4MB

1.5 I/O map

The I/O addresses 000h to 0FFh are assigned to the basic I/O. Although the addresses from 100h to 3FFh are for the ISA bus, SCE8720C has pre-built-in I/O.

Table 1.1 I/O	map		
I/O Address	Register		Function
000h-01Fh	00h RW	DMA Channel 0 Base and Current Address	
	01h RW	DMA Channel 0 Base and Current Word	DMA Controller 1
	02h RW	DMA Channel 1 Base and Current Address	(82C37A equivalent)
	03h RW	DMA Channel 1 Base and Current Word	
	04h RW	DMA Channel 2 Base and Current Address	
	05h RW	DMA Channel 2 Base and Current Word	
	06h RW	DMA Channel 3 Base and Current Address	
	07h RW	DMA Channel 3 Base and Current Word	
	08h WO	Command Resister	
	08h RO	Status Register	
	09h WO	Request Register	
	0Ah WO	Single-Mask Register	
	0Bh WO	Mode Register	
	0Ch WO	Clear Byte Pointer	
	0Dh RO	Master Clear	_
	0Dh WO	Temporary Register	
	0Eh WO	Clear Mask Register	_
	0Fh WO	Write all Mask Register	
020h-021h	20h WO	Initialization Control Word ICW1	Interrupt
	20h WO	Operation Control Word OCW2	Controller 1
	20h WO	Operation Control Word OCW3	(82C59A
	20h RO	Interrupt Service Resister	equivalent)
	20h RO	Interrupt Request Resister	-
	21h WO	Initialization Control Word ICW2	-
	21h WO	Initialization Control Word ICW3	4
	21h WO	Initialization Control Word ICW4	-
	21h RW	Operation Control Word OCW1	4
	21h RW	Interrupt Mask Resister	

I/O Address	Register		Function
022h-2Dh	22h WO	Configuration Index Register	Geode GX-LV
-	23h RW	Configuration Data Register	
O2Eh-03Fh	2Eh RW	Plug&Play Index Register	Plug&Play
	2Fh RW	Plug&Play Data Register	
040h-04Fh	40h RW	Channel 0 Count	
	41h RW	Channel 1 Count	Timer Counter 1
	42h RW	Channel 2 Count	(8254 equivalent)
	43h RW	Command Register	
060h-06Fh	60h R	Keyboard controller Data Input Buffer	Keyboard
	60h W	Keyboard controller Data Output Buffer	Controller
	61h RW	Port B	
	62h RW	Keyboard controller mailbox Register	Keyboard
	64h WO	Keyboard controller Command Register	Controller
	64h RO	Keyboard Controller Status Register	
070h-07Fh	70h WO	RTC/CMOS RAM Address Port and NMI	RTC/CMOS RAM
		Mask	
	71h RW	RTC/CMOS RAM Data port	
080h-09Fh	80h RW	Reserved	DMA Memory
	81h RW	Channel 2	Address
	82h RW	Channel 3	Mapper Page
	83h RW	Channel 1	Register
	84h RW	Reserved	_
	85h RW	Reserved	_
	86h RW	Reserved	_
	87h RW	Channel 0	_
	88h RW	Reserved	_
	89h RW	Channel 6	_
	8Ah RW	Channel 7	_
	8Bh RW	Channel 5	_
	8Ch RW	Reserved	
	8Dh RW	Reserved	
	8Eh RW	Reserved	
	8Fh RW	Refresh	
	92h RW	Port 92	

I/O Address	Register		Function
0A0h-BFh	A0h WO	Initialization Control Word ICW1	Interrupt
	A0h WO	Operation Control Word OCW2	Controller 2
	A0h WO	Operation Control Word OCW3	(82C59A equivalent)
	A0h RO	Interrupt Service Resister	Interrupt
	A0h RO	Interrupt Request Resister	Controller 2
0A0h-BFh	A1h WO	Initialization Control Word ICW2	(82C59A
			equivalent)
	A1h WO	Initialization Control Word ICW3	
	A1h WO	Initialization Control Word ICW4	
	A1h RW	Operation Control Word OCW1	
	A1h RW	Interrupt Mask Resister	
0C0h-0DFh	C0h RW	DMA Channel 4 Base and Current	DMA
		Address	Controller 2
	C2h RW	DMA Channel 4 Base and Current Word	(82C37A
	C4h RW	DMA Channel 5 Base and Current	equivalent)
		Address	-
	C6h RW	DMA Channel 5 Base and Current Word	-
	C8h RW	DMA Channel 6 Base and Current	
		Address	-
	CAh RW	DMA Channel 6 Base and Current Word	-
	CCh RW	DMA Channel 7 Base and Current	
		Address	-
	CEh RW	DMA Channel 7 Base and Current Word	-
	D0h W0	Command Register	-
	D0h RO	Status Register	-
	D2h WO	Request Register	-
	D4h WO	Mask Register	-
	D6h WO	Mode Register	-
	D8h WO	Clear Byte Pointer	
	DAh RO	Master Clear	-
	DAh WO	Temporary Register	+
	DCh WO	Clear Mask Register	+
	DEh WO	Write all Mask Register	+
0F0h-0FFh	F0h,F1h WO	Mathematical Co-processor Resister	
100h-1EFh			Usable with ISA
			bus

I/O Address	Register		Function
170h-177h	170h RW	Data Register	
1701117711	170h RW	Error Register	Hard Disk
	172h RW	Sector Count	Controller
	172h RW	Sector Number	
	174h RW	Cylinder HIGH	-
	175h RW	Cylinder LOW	
	176h RW	SDH Register	
	170h RW	Status Register	
	177h WO	Command Register	-
1F0h-1F7h	1F0h RW	Data Register	Hard Disk
11.011-11.711	1F1h RO	Error Register	Controller
	1F2h RW	Sector Count	
	1F3h RW	Sector Number	
	1F4h RW	Cylinder HIGH	-
	1F5h RW	Cylinder LOW	-
	1F6h RW	SDH Register	-
	1F0h RO		
	1F7h WO	Status Register	-
1F8h-277h		Command Register	Usable with ISA bus
278h-27Fh	278h RW	LPT2 Data Port	USable with ISA bus
27011-271,11	279h RO	LPT2 Status Port	Parallel Port 2
	27911 RO 27Ah RW	LPT2 Control	
	27An RW 27Bh RW		-
	27Bl RW 27Ch RW	Automatic Address Strobe Register	-
	27Ch RW 27Dh RW	Automatic Data Strobe Register	-
		Automatic Data Strobe Register	-
	27Eh RW	Automatic Data Strobe Register	-
280h-2F7h	27Fh RW	Automatic Data Strobe Register	Usable with ISA bus
2801-2F711 2F8h-2FFh	2F8h RO	Receiver Buffer	USADIE WIUTISA DUS
۵۲٥۱۱-۵۲۲۱۱	2F8h KO 2F8h WO		Serial Port 2
		Transmit Holding Buffer	Serial Port 2
	2F8h RW	Divider Latch Least Significant Byte	
	2F9h RW	Divider Latch Most Significant Byte	
	2F9h RW	Interrupt Enable Register	
	2FAh RO	Interrupt Register	
	2FBh RW	Line Controller Register	
	2FCh RW	MODEM Control Register	
	2FDh RO	Status Register	
	2FEh RO	MODEM Status Register	
	2FFh RW	Scratch Register	

I/O Address	Register		Function
300h-377h			Usable with ISA bus
378h-37Fh	378h RW	LPT1 Data Port	
	379h RO	LPT1 Status Port	Parallel Port 1
	37Ah RW	LPT1 Control	
	37Bh RW	Automatic Address Strobe Register	
	37Ch RW	Automatic Data Strobe Register	
	37Dh RW	Automatic Data Strobe Register	
	37Eh RW	Automatic Data Strobe Register	
	37Fh RW	Automatic Data Strobe Register	
380h-3B3h			Usable with ISA bus
3B4h-3BAh	3B4h RW	CRT Controller Index	
	3B5h RW	CRT Controller Data	VGA Controller
	3BAh W	Feature Control	(monochrome)
	3BAh R	Input Status Register	
3BBh-3BFh			Usable with ISA bus
3C0h-3CFh	3C0h W	Attribute Controller Index/Data	
	3C1h R	Attribute Controller Index/Data	VGA Controller
	3C2h W	Miscellaneous Output	
	3C2h R	Input Status Register	
	3C3h RW	VGA Enable	
	3C4h RW	Sequencer Index	
	3C5h RW	Sequencer Data	
	3C6h RW	Video DAC Pixel Mask, Hidden DAC	
		Register	
3C0h-3CFh	3C7h W	Pixel Address Read Mode	
	3C7h R	DAC Status	VGA Controller
	3C8h RW	Pixel Mask Write Mode	
	3C9h RW	Pixel Data	
	3CAh R	Future Control Readback	
	3CCh R	Miscellaneous Output Readback	
	3CEh RW	Graphics Controller Index	
	3CFh RW	Graphics Controller Data	
3D0h-3DFh	3D4h RW	CRT Controller Index	
	3D5h RW	CRT Controller Data	VGA Controller
	3DAh W	Feature Control	(color)
	3DAh R	Input Status Register	
3E0h-3EFh			Usable with ISA bus

I/O Address	Register		Function
3F0h-3F7h	3F0h RW Status Register A		FDD Controller
	3F1h RW	Status Register B	
	3F2h WO	Digital Output Register	
	3F3h RW	Tape Drive Register	
	3F4h RW	Main Status Register	
	3F5h RW	Data Register	
	3F6h RW	Alternate Status, Device Control	IDE
	3F7h RO	Digital Input Resister	IDE 1 section
		(Shared with Hard Disk Controller)	FDD
3F8h-3FFh	3F7h WO	Diskette Control Register	FDD Controller
	3F8h RO	Receiver Buffer	
	3F8h WO	Transmit holding Buffer	Serial Port 1
	3F8h RW	Divider Latch Least Significant Byte	
	3F9h RW	Divider Latch Most Significant Byte	
	3F9h RW	Interrupt Enable Register	
	3FAh RO	Interrupt ID Register	
	3FBh RW	Line Control Register	
	3FCh RW	MODEM Control Register	
	3FDh RO	Status Register	
	3FEh RO	MODEM Status Register	
	3FFh RW	Scratch Register	

1.6 DMA controller

Table 1.2 DME controller 1

SCE8720C is provided with 2 DMA controllers (82C37A equivalent) used as follows. With SCE8720C, DMA is not available from users, as the ISA bus only has limited functions.

Channel No.	Device
СНО	Not available (cannot be used by user)
CH1	Not available (cannot be used by user)
CH2	Floppy disk
CH3	Not available (cannot be used by user)

|--|

Channel No.	Device
CH4	Cascade connection of controller 1.
CH5	Not available (cannot be used by user)
CH6	Not available (cannot be used by user)
CH7	Not available (cannot be used by user)

Controller 1, including CH0 to CH3, is used for 8-bit data transfer. Up to 64KB block transfer is possible between 8-bit I/O and 8-bit memory or 16-bit memory.

Controller 2, including CH4 to CH7, is mainly used for 16-bit data transfer, and among them CH4 is used for cascade connection of controller 1. CH5 to CH7 are not used.

Controller 2, including CH4 to CH7, is mainly used for 16-bit data transfer, and among them CH4 is used for cascade connection of controller 1. CH5 to CH7 are not used.

Table 1.4 Divin page register				
Page register	I/O address			
DMA channel 0	0087h			
DMA channel 1	0083h			
DMA channel 2	0081h			
DMA channel 3	0082h			
DMA channel 5	008Bh			
DMA channel 6	0089h			
DMA channel 7	008Ah			
REFRESH	008Fh			

Table 1.4 DMA page register

1.7 System interrupts

The causes of interrupts on SCE8720C are shown below:

Level	Functions
SMI	External system management interrupt
	Power management VSA
IRQ	Interrupts by interrupt controller

Table 1.5Causes of interrupts

IRQ interrupts are triggered by the 2 interrupt controllers (82C59 equivalent). The causes of interrupts by interrupt controllers are shown below:

Controller 1	Controller 2	Device
IRQ0		Timer out 0
IRQ1		Keyboard
IRQ2		Cascade connection from controller 2
	IRQ8	Real time clock
	IRQ9	Usable with ISA bus
	IRQ10	Serial port (*)
	IRQ11	Serial port (*)
	IRQ12	Mouse
	IRQ13	Co-Processor
	IRQ14	HDD
	IRQ15	Usable with ISA bus
IRQ3		Serial port 2 (*)
IRQ4		Serial port 1 (*)
IRQ5		Parallel port 2 (*)
IRQ6		FDD
IRQ7		Parallel port 1 (*)

Table 1.6Levels of interrupts by interrupt controller

*: SCE8720C has 2 serial ports and 1 parallel port built-in. Serial port interrupts are selected from IRQ3, 4, 10 or 11, and parallel port interrupts are selected from IRQ5 or 7. Interrupts not used by the built-in serial or parallel port can then be used with ISA bus.

Also, when not using HDD, IRQ14 can be used with ISA bus.

1

1.8 Timer counter

SCE8720C has a 8254-equivalent timer counter and 3 independent timers. Their usage and inputs are shown below:

Tuble 1.7 Timer T bettings		
Channel 0	GATE 0	Fixed to ON
System timer	CLK IN 0	1.19MHz
	CLK OUT 0	Connected to IRQ0 of interrupt controller 1.
Channel 1	GATE 1	Fixed to ON
Refresh request	CLK IN 1	1.19MHz
	CLK OUT 1	Refresh request
Channel 2	GATE 2	Controlled by I/O port 61h.
Speaker interface	CLK IN 2	1.19MHz
	CLK OUT 2	Used to drive the speaker interface.

Table 1.7 Timer 1 settings

1.9 Real time clock and C-MOS RAM

SCE8720C has a real time clock which provides clock and calendar functions and CMOS RAM used to hold system configuration information. The real time clock is compatible with 146818.

Power must be supplied constantly to the V_{CCBAK} in order to maintain the operation of the real time clock and the contents of CMOS RAM.

When V_{CCSTB} is supplied even while the system power is OFF, power from the V_{CCSTB} is used for backup. When both the system power and V_{CCSTB} is OFF, battery power from the V_{CCBAK} is used.

2. Mechanical specifications

2.1 Dimensions and weight

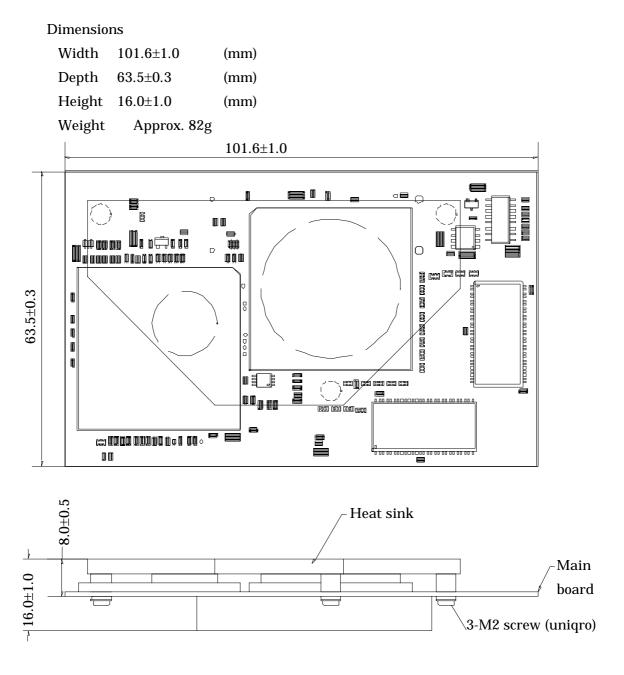
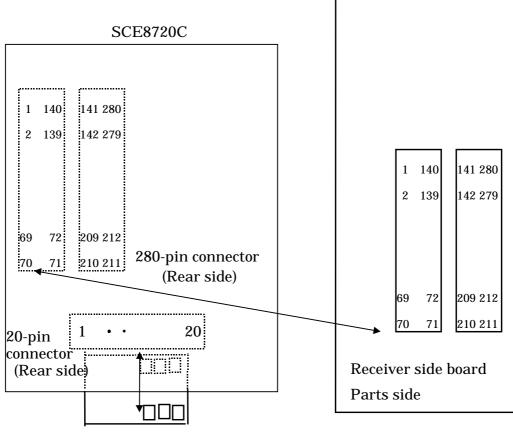


Figure 2.1 Dimensional Diagram

2.2 Installation method

CARD-PCI installation connector

280-pin connector product name 1-353906-0 Manufactured by AMP 20-pin connector product name52030-2010 (ZIF, DIP) Manufactured by Molex For more information about installation, refer to the application note.


3. Interface specifications

3.1 Pin configuration

Pin configurations for the 20-pin connector (mainly FDD signal) and 280-pin connector of SCE8720C are shown in the figure.

In the figure, 280-pin connector is viewed from the rear side. Connector pin configurations on the main board, on which SCE8720C is installed, are shown in the figure. (Note that the 1 pin mark on the connector is different.)

Since the 20-pin connector is connected using the flexible flat cable (FFC), pin configurations on the receiving side board vary depending on the connector's installation method.

Flexible flat cable

Figure 3.1 Connector pin configuration

* 280-pin connector

Most of the signals and powers of SCE8720C are connected via this connector. It consists of 2 140-pin connectors.

* 20-pin connector

Connector for the flexible flat cable.

Signals for FDD and ISA bus interrupt signals are connected to this connector. When not using such signals, this connector is unconnected.

3.1.1 280-pin connector pin configuration

No.	Signal Name	Block	No.	Signal Name	Block	No.	Signal Name	Block	No.	Signal Name	Block
	GND	PWR	140	U U	PWR	141	5	PWR		GND	PWR
	ADO	PCI		CRTR	CRT		FPDOTE	FP		FPDOTCLK	FP
	AD1	PCI		CRTG	CRT		FPVEEON	FP		FPVDDON	FP
	AD2	PCI			CRT	-	RESERVED	Video		IDEIOR#	IDE
				CRTB							
	VCC3V	PWR	136	VCC3V	PWR	145		PWR		IDEIOW#	IDE
	AD3	PCI	135	CRTHSYNC	CRT			FP		IDEACK#	IDE
	AD4	PCI	134		CRT		FPDATA0	FP		IDED7	IDE
8	AD5	PCI	133	RESERVED	AC97	148	FPHSYNC	FP	273	IDECS1FX#	IDE
9	AD6	PCI	132	AC97RESET#	AC97	149	FPDATA1	FP	272	IDED8	IDE
10	AD7	PCI	131	AC97SYNC	AC97	150	FPDATA2	FP	271	IDED6	IDE
11	GND	PWR	130	GND	PWR	151	GND	PWR	270	GND	PWR
	CBE0#	PCI		AC97BITCLK	AC97	152	FPDATA3	FP		IDED9	IDE
	AD8	PCI		AC97SDIN0	AC97		FPDISPEN	FP		IDERESET#	IDE
	AD9	PCI	127	AC97SDOUT	AC97		FPDATA4	FP		IDED5	IDE
	AD10	PCI		PCBEEP	MISC		FPDATA5	FP	-	IDECS3FX#	IDE
	VCCSTB	PWR		VCC3V	PWR		FPDATA6	FP		IDED10	IDE
	AD11	PCI		USBON	USB		FPDATA7	FP		IDED4	IDE
	AD12	PCI		USBCUR#	USB		FPDATA8	FP		IDED11	IDE
	AD13	PCI		USBDM0	USB		FPDATA9	FP		IDED3	IDE
	AD14	PCI		USBDP0	USB		FPDATA10	FP		IDED12	IDE
21	GND	PWR	120	GND	PWR	161	GND	PWR	260	GND	PWR
22	AD15	PCI	119	USBDM1	USB	162	FPDATA11	FP	259	IDED2	IDE
23	CBE1#	PCI		USBDP1	USB	163	FPDATA12	FP		IDED13	IDE
	PAR	PCI	117	STANDBY#	PM		FPDATA13	FP		IDED1	IDE
	VCC5V	PWR		VCC5V	PWR	-	FPDATA14	FP		IDED14	IDE
	SERR#	PCI		POFF	PM		FPDATA15	FP			IDE
	PERR#	PCI		PWSW#	PM		FPDATA16	FP		IDED15	IDE
	LOCK#	PCI		LPTD7			FPDATA16	FP		IDEA2	IDE
	STOP#	PCI		LPTD6	LPT		RESERVED	MISC		IDEA1	IDE
	DEVSEL#	PCI		LPTD5	LPT		RESERVED	MISC		IDEA0	IDE
31	GND	PWR	110	GND	PWR	171	GND	PWR	250	GND	PWR
	TRDY#	PCI	109	LPTD4	LPT	172	RESERVED	MISC	249	IDEDRQ	IDE
33	RESERVED	MISC	108	LPTD3	LPT	173	RESERVED	MISC	248	IDERDY	IDE
34	IRDY#	PCI	107	LPTD2	LPT	174	RESERVED	MISC	247	IDEINT	IDE
35	VCC3V	PWR	106	VCC3V	PWR	175	VCCCORE	PWR	246	POWERGOO	РМ
	FRAME#	PCI		LPTD1	LPT		VCCCORE	PWR		IOCS16#	ISA
	PME0#	PM		LPTD0	LPT	177	VCCCORE	PWR		IOCHRDY	ISA
	CBE2#	PCI		LPTAFD#	LPT		VCCCORE	PWR		VCCCORE	PWR
	AD16	PCI		LPTSLCTIN#	LPT		RESERVED	MISC		IOW#	ISA
	GND	PWR		GND	PWR	180		PWR	241	GND	PWR
	AD17	PCI		LPTINIT#	LPT	181	MEMCS16#	ISA		IOR#	ISA
	AD18	PCI		LPTERROR#	LPT		RESERVED	MISC		SD15/SA15	ISA
43	AD19	PCI	98	LPTPE	LPT		VCCCORE	PWR	238	SD14/SA14	ISA
44	AD20	PCI	97	LPTSLCT	LPT	184	VCCCORE	PWR	237	SD13/SA13	ISA
45	VCC3V	PWR	96	VCC3V	PWR	185	VCCCORE	PWR	236	SD12/SA12	ISA
46	AD21	PCI	95	LPTACK#	LPT	186	VCCCORE	PWR	235	SD11/SA11	ISA
	AD22	PCI		LPTSTROBE#			RESERVED	MISC		SD10/SA10	ISA
	AD23	PCI		LPTBUSY	LPT		ROMCS#	ISA		VCCCORE	PWR
	CBE3#	PCI		IRQ5	ISA		MEMW#	ISA		SD9/SA9	ISA
	GND	PWR		GND	PWR			PWR			PWR
	AD24			PORT3				ISA			ISA
							MEMR#			SD8/SA8	
	AD25	PCI		PORT4	GPIO			ISA		SD0/SA0	ISA
	AD26	PCI		PME1#	PM		SA17	ISA		SD1/SA1	ISA
	AD27	PCI		MSDATA	KB/MS		SA18	ISA		SD2/SA2	ISA
	VCC3V	PWR		MSCLK	KB/MS			ISA		SD3/SA3	ISA
56	AD28	PCI	85	VCCBAK	PWR	196	AEN	ISA	225	SD4/SA4	ISA
57	AD29	PCI	84	KBDATA	KB/MS	197	SBHE#	ISA	224	SD5/SA5	ISA
	AD30	PCI		KBCLK	KB/MS			ISA		SD6/SA6	ISA
	AD31	PCI		RESERVED	MISC			ISA		SD7/SA7	ISA
	GND	PWR		GND			GND	PWR		GND	PWR
	RST#		-	RESERVED	MISC			ISA		SALATCH	
											ISA COM1
	INTD#	PCI		RESERVED	MISC		COM2CTS#	COM2		COM1CTS#	COM1
	INTC#	PCI		REQ1#	PCI		COM2CD#	COM2		COM1CD#	COM1
	INTB#	PCI		GNT1#	PCI		COM2DSR#	COM2		COM1DSR#	COM1
65	INTA#	PCI	76	REQ0#	PCI	205	COM2DTR#	COM2		COM1DTR#	COM1
	VCC3V	PWR		VCC3V	PWR		COM2RI#	COM2		COM1RI#	COM1
	PCLK2	PCI		GNT0#	PCI		COM2RTS#	COM2		COM1RTS#	COM1
	CPUFRQ	MISC		ROMDIS	MISC		COM2RXD	COM2		COM1RXD	COM1
00		PCI		PCLK1	PCI		COM2TXD	COM2		COM1TXD	
60					IT UI	1209					COM1
	PCLK0 GND	PWR		GND			GND	PWR	011	GND	PWR

Table 3.1	280-pin	connector	pin	configuration
-----------	---------	-----------	-----	---------------

CARD-PCI/GX Hardware Manual

3.1.2 20-pin connector pin configuration

Table 3.2	able 3.2 20-pin connector pin configuration			
Pin No.	Signal name	Block		
1	DSKCHG#	FDD		
2	WP#	FDD		
3	INDEX#	FDD		
4	TRK0#	FDD		
5	RDATA#	FDD		
6	DENSEL	FDD		
7	WGATE#	FDD		
8	HDSEL#	FDD		
9	STEP#	FDD		
10	DIR#	FDD		
11	WDATA#	FDD		
12	DR0#	FDD		
13	MTR0#	FDD		
14	GND	PWR		
15	IRQ15	ISA		
16	IRQ 7	ISA		
17	GND	PWR		
18	IRQ4	ISA		
19	GND	PWR		
20	IRQ3	ISA		

Table 3.220-pin connector pin configuration

3.2 Signal characteristics

This section describes characteristics of each signal. Characteristic factors are as follows:

- I/O Type of signal input/output.
- Voltage Input: Indicates the voltage level that can be input.

Output: Indicates the voltage level that can be output.

• pull-up /down

Indicates whether or not the signal is pulled-up or pulled-down inside SCE8720C.

- IoL/IOH Indicates drive ability of the output buffer sink current and source current.
- Reference PU/PD Reference value of required pull-up or pull-down resistance.

(When using all the IO port.)

• pull-up /down when not used

Indicates whether or not pull-up or pull-down is required when not using signals.

CARD-PCI/GX Hardware Manual

Descriptions on symbols indicating these factors are shown below:

Symbol description

2911201 4	escription	
Item	Symbol	Description
I/O	I/O	Input/output
	s/t/s	Sustained tri-state (reference PCI v2.1))
	I/OD	Input and open drain output
	Ι	Input only
	0	Output only
	OD	Open drain output
	programmable	Input/output is set by software.
Voltage	3.3V	Output is 0 to 3.3V. Input must be 0 to 3.3V.
	3.3V ,5VT	Output is 0 to 3.3V. Input can be 0 to 5V. (5V input is TTL level.)
	5VSTB	V _{CCSTB} is supplied to the input/output element power supply.
	5V	Both input and output is 0 to 5.0V (5V input is TTL level.)
pull-up	XpU(5V)	Pulled-up to 5V by resistance of $x\Omega$ inside SCE8720C.
/down	xPU(3.3V)	Pulled-up to 3.3V by resistance of x Ω inside SCE8720C.
	xPU(5VSTB)	Pulled-up to V _{CCSTB} by resistance of x Ω inside SCE8720C.
	xPD	Pulled-down by resistance of x Ω inside SCE8720C.
	weak-PU	Pulled-up to 5V by Approx. $40k\Omega$ resistance.
	Weak-PD	Pulled-down by Approx. 40kΩ resistance.
Iol/Ioh	х/-у	Output drivability: sink current x, source current y
Refe-	xPU(5V)	Pulled-up to 5V by x Ω resistance.
rence	XPU(5VSTB)	Pulled-up to V_{CCSTB} by x Ω resistance.
PU/PD	XPU(3.3V)	Pulled-up to 3.3V by x Ω resistance.
pull-up	PU	Even when not using the signal in the system, some kind of pull-
/down when		up is necessary. NC is not available.
not used		

Rev.A

EPSON

Signal characteristics

Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	Іон	Reference	When not used
0		DIOCK	1/0			TOL	TOH		
280-pin connector	pins			tage	down			PU/PD	PU/PD
AD[31:0],CBE[3:0]#,PAR	37	PCI	I/O	3.3V		5mA	-2mA		
FRAME#,IRDY#,TRDY#,	7	PCI	s/t/s	3.3V	20kPU	5mA	-2mA	8.2kPU	
STOP# ,DEVSEL#,LOCK#					(3.3V)			(3.3V)	
,PERR#									
SERR#	1	PCI	I/OD	3.3V	20kPU	5mA		8.2kPU	
					(3.3V)			(3.3V)	
RST#	1	PCI	0	3.3V		16mA	-16mA		
REQ[1:0]#	2	PCI	Ι	3.3V	20kPU				
					(3.3V)				
GNT[1:0]#	2	PCI	0	3.3V		5mA	-2mA		
PCLK[2:0]	3	PCI	0	3.3V		8mA	-8mA		
INTA#,INTB#,	4	PCI	Ι	3.3V				2.7kPU	PU
INTC#,INTD#								(3.3V)	

Table 3.3 PCI signal characteristics

Table 3.4	ISA s	ional	characteristics
1 abie 5.4	IDU 3	ngnai	character istics

Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	Іон	Reference	When not used
280-pin connector	pins			tage	down			PU/PD	PU/PD
SD/SA[15:8]	8	ISA	I/O	3.3V,	20kPU	8mA	-8mA		
				5VT	(3.3V)				
SD/SA[7:0]	8	ISA	I/O	3.3V,	20kPU	8mA	-8mA	4.7kPU	
				5VT	(3.3V)			(5V)	
SA[19:16],SBHE#	5	ISA	0	3.3V	20kPU	8mA	-8mA		
					(3.3V)				
MEMR#,MEMW#,IOR#,	4	ISA	0	3.3V,	4.7kPU	8mA	-8mA		
IOW#				5VT	(5V)				
SALATCH	1	ISA	0	3.3V		4mA	-4mA		
AEN	1	ISA	0	3.3V		8mA	-8mA		
ROMCS#	1	ISA	0	3.3V		4mA	-4mA		
MEMCS16#,IOCS16#	2	ISA	Ι	3.3V,	1kPU				
				5VT	(5V)				
IOCHRDY	1	ISA	Ι	3.3V,	1kPU				
				5VT	(5V)				
IRQ[5,9,10,11]	4	ISA	Ι	3.3V,	10kPU				
				5VT	(5V)				

				V /1		т	т	DC	
Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	Іон	Reference	When not used
280-pin connector	pins			tage	down			PU/PD	PU/PD
CRTHSYNC,CRTVSYNC	2	CRT	0	3.3V		16mA	-16mA		
FPHSYNC,FPVSYNC	25	FP	0	3.3V		8mA	-8mA		
FPDATA[17:0]									
FPDOTCLK,FPDOTE,									
FPDISPEN,									
FPVEEON, FPVDDON									
CRTR,CRTG,CRTB	3	CRT	0	Ana	75PD				
				-log					

Table 3.5 CRT, LCD signal characteristics

Table 3.6 IDE signal characteristics

Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	I _{OH}	Reference	When not used
280-pin connector	pins			tage	down			PU/PD	PU/PD
IDED[15:8]	15	IDE	I/O	3.3V,		8mA	-8mA		
IDED[6:0]				5VT					
IDED7	1	IDE	I/O	3.3V,	10kPD	8mA	-8mA		
				5VT					
IDEA[2:0],IDEIOR#,IDEI	9	IDE	0	3.3V		8mA	-8mA		
OW#,IDEACK#,									
IDECS1FX#,IDECS3FX#,									
IDERESET#									
IDERDY	1	IDE	Ι	3.3V,	1kPU				
				5VT	(5V)				
IDEINT(IRQ14)	1	IDE	Ι	3.3V,	10kPU				
				5VT	(5V)				
IDEDRQ	1	IDE	Ι	3.3V,	10kPD				
				5VT					

Table 3.7USB signal characteristics

Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	Іон	Reference	When not used
280-pin connector	pins			tage	down			PU/PD	PU/PD
USBDM1, USBDP1	4	USB	I/O	3.3V	15kPD				
USBDM0, USBDP0									
USBON	1	USB	0	3.3V		4mA	-4mA		
USBCUR#	1	USB	Ι	3.3V,				10kPU	PU
				5VT				(5V)	

Table 3.8	Serial port signal	l characteristics
-----------	--------------------	-------------------

Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	Іон	Reference	When not used
280-pin connector	pins			tage	down			PU/PD	PU/PD
COM1RXD,COM1CTS#,	10	COM1,2	Ι	5V				(*6)	PU
COM1DSR#,COM1CD#,									
COM2RXD,COM2CTS#,									
COM2DSR#,COM2CD#,									
COM1RI#,COM2RI#									
COM1TXD, COM2TXD,	3	COM1,2	0	5V		12mA	-6mA	(*6)	
COM2RTS#									
COM1RTS#, COM1DTR#,	3	COM1,2	0	5V	10kPU	12mA	-6mA	(*6)	
COM2DTR#					(5V)				

Table 3.9 Parallel por	1 0		1	1		Ŧ	-	DC	
Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	Іон	Reference	
280-pin connector	pins			tage	down			PU/PD	PU/PD
LPTD[7:0]	8	LPT	IOD	5V		14mA		4.7kPU	
								(5V)	
LPTBUSY,LPTSLCT	2	LPT	Ι	5V	weak-			4.7kPU	
					PD			(5V)	
LPTPE	1	LPT	Ι	5V	weak-			4.7kPU	
					PD/PU			(5V)	
LPTACK#,LPTERROR#	2	LPT	Ι	5V	weak-			4.7kPU	
					PU			(5V)	
LPTINIT#,LPTSTROBE#,	4	LPT	I/OD	5V		14mA		4.7kPU	PU
LPTAFD#,LPTSLCTIN#								(5V)	
Table 3.10 KB signal	charact	eristics							
Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	I _{OH}	Reference	When not used
280-pin connector	pins	Bioon	1,0	tage	down	TOL	-011	PU/PD	PU/PD
KBDATA,KBCLK,MSDAT	4	KB/MS	I/OD	5V		16mA		2kPU	PU
A,MSCLK	-	IXD/IVIS	I OD	51		1011121		(5V)	10
								$(0\mathbf{v})$	
Table 3.11 AC97 signa		acteristic	s	1	I	r	1	1	ſ
Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	Іон	Reference	When not used
280-pin connector	pins			tage	down			PU/PD	PU/PD
AC97SDIN0,AC97BITCLK	2	AC97	Ι	3.3V	15kPD				
				5VT					
AC97SDOUT,AC97SYNC,	3	AC97	0	3.3V		4mA	-4mA		
PCBEEP									
AC97RESET#	1	AC97	0	3.3V		16mA	-16mA		
Table 2.19 DM signal	aharaa	oniction							
Table 3.12 PM signal			T/O	37.1		Ŧ	Ŧ	DC	
Signal name	No. of	Block	I/O	Vol-	pull-up/ down	Iol	Іон	Reference	
280-pin connector	pins	D1 (0.0	tage				PU/PD	PU/PD
POFF	1	PM	OD	5VS		14mA		10kPU	(*1)
				TB				(5VSTB)	
			<u> </u>	(*5)		-			
PWSW#	1	PM	I	5VS	1MPU				
				TB	(5VSTB)				
				(*5)					
STANDBY#	1	PM	OD	5V		16mA		4.7kPU	
								(3.3V)	
POWERGOOD	1	PM	I	3.3V					(*1)
PME0#	1	PM	Ι	5VS	4.7kPU				
				TB	(5VSTB)				
				(*5)					
PME1#	1	PM	Ι	5VS	4.7kPU				
				TB	(5VSTB)				
				(*5)					
PORT[4:3]	2	GPIO	Progr	5V	Progra	2mA	-2mA		- or PU
			amm		-mmable				(*2)
			1	1	1	1	1		
			able						
CPUFRQ	1	MISC	able I	3.3V	10kPU				
CPUFRQ ROMDIS	1 1	MISC MISC		3.3V 5V	10kPU 10kPD				(*3)

Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	Іон	Reference	When not used
280-pin connector	pins			tage	down			PU/PD	PU/PD
VCCCORE	10	Power		5.0V					
		supply		$\pm 5\%$					
Vcc3v	10	Power		3.3V					
		supply		±					
				0.15V					
Vcc5v	2	Power		5.0V					
		supply		±5%					
VCCSTB	1	Power		5.0V					
		supply		$\pm 5\%$					
VCCBAK	1	Power		2.7~					
		supply		3.6V					

Table 3.13Power supply characteristics

♦ 20-pin connector

Table 3.14 FDD signal characteristics

Signal name	No. of	Block	I/O	Vol-	pull-up/	IoL	I _{OH}	Reference	When not used
20-pin connector	pins			tage	down			PU/PD	PU/PD
INDEX#,TRK0#,RDATA#,	5	FDD	Ι	5V	1kPU				
WP#,DSKCHG#									
DENSEL,WDATA#,	8	FDD	0	5V		40mA	-4mA		
WGATE#,DIR#,									
STEP#,HDSEL#,DR0#,									
MTR0#									

Table 3.15 ISA interrupt signal characteristics

		indi omdi e							
Signal name	No. of	Block	I/O	Vol-	pull-up/	Iol	Іон	Reference	When not used
20-pin connector	pins			tage	down			PU/PD	PU/PD
IRQ[3,4,7,15]	4	ISA	Ι	3.3V,	10kPU				
				5VT					

Signal name 20-pin connector	No. of pins	Block	I/O	Vol- tage	pull-up/ down	Iol	Іон	Reference PU/PD	When not used PU/PD
GND	3	Power supply		0V					

20 total

- *1: Circuits corresponding these signals are essential and therefore cannot be unused.
- *2: If the ports corresponding to these signals in SCE8720C are set to output, pull-up resistance is not necessary. If the ports are set to input, pull-up resistance is necessary.
- *3: When set to NC, the ROM in the card (SCE8720C) is selected.

*4: Keep all the RESERVED pins unconnected.

- *5: Signals of POFF, PWSW#, PME0# (Wake On LAN), PME1# (Wake On Ring) operates with V_{CCSTB} controlling ON/OFF of the power supply. It is recommended that signal inputs of PWSW#, PME0# and PME1# are set to low or high impedance for compatibility with other cards (so that other cards can also use the same main circuit).
- *6: For RS232C driver receiver on the evaluation board to be connected to the COM1 and COM2 interfaces, use one that operates at 5V, or that operates at 3.3V and is 5V-tolerant.

3.3 Descriptions on signal functions

3.3.1 PCI bus

PCI bus of SCE8720C complies with the PCI2.1..

Signal name	I/O	Function description
(57 pins in total)		
AD[31:0]	I/O	Address and data bus signals. Transfers addresses
		and data by time division.
CBE[3:0]#	I/O	Bus command and byte enable. Transfers by time
		division.
PAR	I/O	parity data of 36-bit of AD[31:0] and CBE[3:0]#.
FRAME#	S/T/S	Signal indicating the cycle frame.
IRDY#	S/T/S	Ready signal of the initiator.
TRDY#	S/T/S	Ready signal of the target.
STOP#	S/T/S	Signal from target requesting transaction
		canceleration.
DEVSEL#	S/T/S	Signal from the PCI slave indicating that it is selected.
LOCK#	S/T/S	Signal used when exclusively accessing the target.
SERR#	I/OD	Signal indicating that a fatal error has occurred.
PERR#	S/T/S	Parity error signal.
RST#	0	PCI reset signal.
REQ[1:0]#	Ι	Bus request signal.
GNT[1:0]#	0	Permission signal to use bus.
PCLK[2:0]	0	PCI clock
INT[A,B,C,D]#	Ι	PCI interrupt signal.

3.3.2 LIMITED ISA bus

SCE8720C's LIMITED ISA bus is different from standard ISA and its capability is limited. For details, refer to section 4.10.

For interrupt signals, IRQ5, 9, 10, 11 and 14(IDEINT) for the 280-pin connector, and IRQ3, 4, 7 and 15 for the 20-pin connector are assigned.

		280-pin connector
Signal name (35 pins in total)	I/O	Function description
SD/SA[15:0]	I/O	Address/data bus. Address and data are multiplexed. Address can be latched by SALATCH signal.
SA[19:16]	Ο	Standard ISA signal. The upper 4 bits of the 20-bit address. The lower 16 bits latch and generate SD/SA[15:0].
SALATCH	0	Signal to latch address from SD/SA[15:0].
AEN	0	Address enable. Signal which indicates that the current cycle is DMA or refresh cycle.
SBHE#	Ο	System byte enableActive lowSignal which indicates that SD[15:8] is enabled.
ROMCS#	Ο	Signal which becomes active at ROM access. Active low
MEMR#	0	Memory read Active low Signals which request the memory device on the ISA bus to output data to SD[15:8] or SD[7:0]. This gets active when the memory address area on the ISA bus, 000000H to FFFFFFH (all of the 16-MB area) is accessed. This command applies only if ROMCS#=H when connecting to the memory device on the ISA bus.
MEMW#	0	Memory writeActive lowSignals which request the memory device on the ISA busto accept data from SD[15:8] or SD[7:0]. This gets activewhen the memory address area on the ISA bus, 000000Hto FFFFFFH (all of the 16-MB area) is accessed. Thiscommand applies only if ROMCS#=H when connecting tothe memory device on the ISA bus.

Signal name	I/O	Function description
(35 pins in total)		
IOR#	0	I/O read Active low
		Signal which requests the I/O device on the ISA bus to
		output data to SD[15:8] or SD[7:0].
IOW#	0	I/O write Active low
		Signal which requests the I/O device on the ISA bus to
		accept data from SD[15:8] or SD[7:0].
MEMCS16#	Ι	Memory chip select 16 Active low
		Signal which lets the memory device on the ISA bus
		indicate the SCE8720C that 16-bit transfer is possible by
		the current memory cycle.
IOCS16#	Ι	I/O chip select 16 Active low
		Signal which lets the I/O device on the ISA bus indicate
		the SCE8720C that 16-bit transfer is possible by the
		current I/O cycle.
IOCHRDY	Ι	I/O channel ready Active high
		Signal which terminates the ISA bus cycle.
		When the memory or the I/O device on the ISA bus wants
		to extend the bus cycle, it can extend the cycle by setting
		this signal to low immediately after detecting an effective
		address and command. SCE8720C continues the bus
		cycle until this signal becomes high.
IRQ[5,9,10,11]	Ι	Interrupt request Active high
	or	Signals which request SCE8720C for interruption.
	Ο	When being used by the serial interface inside
		SCE8720C, IRQ11 and 10 become outputs. When being
		not used, they become inputs and can be used on the ISA
		bus.
		When being used by the parallel interface inside
		SCE8720C, IRQ5 becomes output. When being not used,
		they become inputs and can be used on the ISA bus.

	20-pin connector				
Signal name (4 pins in total)	I/O	Function description			
IRQ[3,4,7,15]	I or O	Interrupt requestActive highSignals which request SCE8720C for interruption.When being used by the serial interface insideSCE8720C, IRQ4 and 3 become outputs. When being notused, they become inputs and can be used on the ISA bus.When being used by the parallel interface insideSCE8720C, IRQ7 becomes output. When being not used,they become inputs and can be used on the ISA bus.			

3.3.3 LCD

With SCE8720C, only TFT panel can be used as LCD panel. STN panel cannot be used. LCD data is 18-bit (FPDATA17~0).

Signal name (25 pins in total)	I/O	Function description
FPHSYNC, FPVSYNC	Ο	Horizontal and vertical synchronous signals for flat panel (TFT).
FPDATA[17:0]	Ο	Dot data for flat panel (TFT). 6 bits for R, G and B each.
FPDISPEN	0	Display enable
FPDOTCLK	0	Dot clock
FPDOTE	Ο	Extended signal for flat panel. Even clock for LVDS is output.
FPVEEON	0	Enable signal for back light power supply.
FPVDDON	0	Enable signal for V_{DD} power supply (logic system).

3.3.4 CRT

Signal name	I/O	Function description
(6 pins in total)		
CRTR,CRTG,CRTB	0	R, G and B signals for CRT.
CRTHSYNC,	0	Horizontal and vertical synchronous signals for CRT.
CRTVSYNC		

3.3.5 Hard disk (IDE)

Signal name	I/O	Function description
(28 pins in total)		
IDED[15:0]	I/O	IDE data bus (*)
IDEA[2:0]	0	IDE address bus
IDEIOR#,IDEIOW#	0	IO read or write signal for IDE.
IDECS1FX#,IDECS3FX#	0	Chip select signal for IDE.
IDERDY	Ι	IO ready signal for IDE.
IDEINT(IRQ14)	Ι	IDE interrupt signal.
IDEDRQ	Ι	DMA transfer request signal for IDE.
IDEACK#	0	DMA acknowledge signal for IDE.
IDERESET#	0	Reset signal for IDE.

*: No pull-up resistance is required for IDE[15:0].

3.3.6 USB

SCE8720C supports 2 ports of USB complying with the Open HCI.

Signal name	I/O	Function description
(6 pins in total)		
USB DP1, USBDM1	I/O	Plus and minus data of USB port 1.
USB DP0, USBDM0	I/O	Plus and minus data of USB port 0.
USBON	0	Power supply control signal of USB (Power-ON)
USBCUR#	Ι	Over-current detection signal of USB.

3.3.7 Serial interfaces

SCE8720C supports 2 ports of serial interfaces by 16550-compatible UART.

Signal name	I/O	Function description	Π			
(16 pins in total)						
COM1CD#	I	Data carrier detect Active low				
COM2CD#		Signal which indicates that the modem or data terminal has				
		detected the carrier.				
COM1DTR#	0	Data terminal ready Active low				
COM2DTR#		Signal which indicates that SCE8720 is ready for da	ta			
		transmission with respect to the modem or data terminal.				
COM1DSR#	Ι	Data set ready Active low				
COM2DSR#		Signal which indicates that the modem or data terminal	is			
		ready for data transmission with respect to SCE8720C				
COM1RTS#	0	Request to send Active low				
COM2RTS#		Signal which indicates that SCE8720 has transmission da	Signal which indicates that SCE8720 has transmission data			
		ready, and indicates a request to transmit data with respect				
		to the modem or data terminal.				
COM1CTS#	Ι	Clear to send Active low				
COM2CTS#		Signal which indicates that the modem or data terminal has				
		become ready to receive for the SCE8720C's request to send	ł.			
COM1RI#	Ι	Ring indicator Active low				
COM2RI#		Signal which indicates that the modem or data terminal h	as			
		detected a telephone ringing signal.				
		Alternatively, this signal can be used in SCE8720C as	а			
		wake-up signal from the suspend state.				
COM1TXD	0	Serial data transmission				
COM2TXD		Output pin for the asynchronous serial data.				
COM1RXD	Ι	Serial data receive				
COM2RXD		Input pin for the asynchronous serial data.				

3.3.8 Parallel interfaces

SCE8720C supports 1 parallel port complying with IEE1284.

ECP, EPP and SPP modes are supported.

Signal name	I/O	Function description				
(17 pins in total)						
LPTSTROBE#	I/OD	Line printer strobe Active low				
		Signals used as a strobe for a peripheral on the parallel				
		interface to read the data.				
LPTAFD#	I/OD	Line printer auto feed Active low				
		When this signal is active, a parallel printer inserts a line				
		feed after every line.				
LPTBUSY	Ι	Line printer busy Active high				
		Signal which indicates that the printer is not able to accept				
		data from SCE8720C.				
LPTACK#	Ι	Line printer acknowledge Active low				
		Signal which indicates that data transfer has been				
		completed and also prepared for the next transfer.				
LPTERROR#	Ι	Line printer error Active low				
		Input signal which notifies SCE8720C of errors in				
		peripheral devices.				
LPTPE	Ι	Line printer paper end Active high				
		Input signal which notifies SCE8720C that the printer is				
		out of paper.				
LPTINIT#	I/OD	Line printer initialize Active low				
		Initialization signal for the printer.				
LPTSLCTIN#	I/OD	Line printer select in Active low				
		Signal used to select the peripheral device currently				
		connected to the parallel port.				
LPTSLCT	I/OD	Line printer selected Active high				
		Status signal sent to SCE8720C by a peripheral device in				
		order to confirm that SCE8720C has selected the device.				
LPTD[7:0]	IOD	Line printer data bus				
		A data bus between SCE8720C and the printer.				

CARD-PCI/GX Hardware Manual

Pin No.	Signal name	SPP	ECP	EPP
1	LPTSTROBE#	LPTSTROBE#	LPTSTROBE#	WRITE#
2-9	LPTD[7:0]	LPTD[7:0]	LPTD[7:0]	LPTD[7:0]
10	LPTACK#	LPTACK#	LPTACK#	LPTACK#
11	LPTBUSY	LPTBUSY	LPTBUSY	WAIT#
12	LPTPE	LPTPE	LPTPE	LPTPE
13	LPTSLCT	LPTSLCT	LPTSLCT	LPTSLCT
14	LPTAFD#	LPTAFD#	LPTAFD#	DSTRB#
15	LPTERROR#	LPTERROR#	LPTERROR#	LPTERROR#
16	LPTINIT#	LPTINIT#	LPTINIT#	LPTINIT#
17	LPTSLCTIN#	LPTSLCTIN#	LPTSLCTIN#	ASTRB#

Parallel ports support SPP, ECP and EPP modes. In each mode, signal definition varies as follows. The pin Nos. are the ones on the D-TYPE connector.

Signal name	ΙΟ	Function description	
(4 pins in total)			
KBCLK		Keyboard clock. Clock signal for a PS/2-style keyboard interface.	
KBDATA		Keyboard data. Data signal for a PS/2-style keyboard interface.	
MSCLK	IOD	Mouse clock. Clock signal for a PS/2-style mouse interface.	
MSDATA	IOD	Mouse data. Data signal for a PS/2-style mouse interface.	

3.3.9 Keyboard/mouse

3.3.10 AC97 interfaces

SCE8720C provides audio CODEC interface complying AC97 Version 2.0.

By adding CODEC and using the dedicated driver, high-quality audio is easily achieved. There's only 1 channel for AC97 serial data.

Signal name	I/O	Function description	
(6 pins in total)			
AC97SDIN0	Ι	Audio serial data input (from CODEC)	
AC97SDOUT	0	Audio serial data output (to CODEC)	
AC97SYNC	0	Serial bus synchronous signal	
AC97RESET#	0	Reset signal for AC97.	
AC97BITCLK	Ι	Audio bit clock input	
PCBEEP	0	Legacy PC/AT speaker output	

3.3.11 Power management

SCE8720C provides the following signals in order to achieve power supply control complying ACPI.

Other than these signals, SCE8720C also provides signals to use BIOS ROM (ROMDIS).

Signal name (22 pins in total)	I/O	Function description	
POFF	OD	Output signal which controls ON/OFF of the power supply. Power OFF at HIGH, and ON at LOW.	
PWSW#	Ι	Input signal of the power ON/OFF switch.	
STANDBY#	OD	Output signal which represents standby status. Standby at LOW.	
POWERGOOD	Ι	Input power good signal which indicates that the power is properly supplied. When this signal is LOW, the card is initialized.	
PME1#	Ι	Wake on RING input	
PME0#	Ι	Power management input signal usually assigned to Wake on LAN signal.	
PORT4	programmable	General-purpose input/output signal. (GPIO13 of PC97317)	
PORT3	programmable	General-purpose input/output signal. (GPIO12 of PC97317)	
CPUFRQ	Ι	Input signal. Set it to NC with SCE8720Cxx.	
ROMDIS	I	Input signal. Disable signal of ROM inside SCE8720C. CPU accesses the external ROM when the signal is HIGH, and internal ROM when LOW.	
RESERVED		RESERVED pin. Set it to NC.	

36

3.3.12 Power supply

Signal name (57 pins in total)	Function description
GND	Ground.
Vcccore	Power to the regulator for CPU core power supply. Power of 5V should be supplied. This is not connected to V _{CC5V} inside the card.
Vcc3v	3.3V power supply.
Vcc5v	5V power supply, for ISA bus.
Vccstb	5V standby power supply signal supplied to the power supply control circuit inside the card. Power of 5V is always supplied when AC line of the power supply is connected.
Vccbak	power supply for RTC backup.

3.3.13 FDD

SCE8720C supports 1 unit of 3.5" floppy disk drive. 2 modes, 720KB and 1.44MB, are available.

Signal name	I/O	Function description	
DSKCHG#	Ι	Disk Change	
WP#	Ι	Write Protect	
INDEX#	Ι	Index	
TRK0#	Ι	Track 0	
RDATA#	Ι	Read Data	
DENSEL	0	Density Select	
WGATE#	0	rite Gate	
HDSEL#	0	ead Select	
STEP#	0	Step	
DIR#	0	Direction	
WDATA#	0	Write Data	
DR0#	0	Drive Select 0	
MTR0#	0	Motor Select 0	

4. Detailed description of interfaces

4.1 CRT, LCD

With SCE8720C, display is controlled by Geode CPU and companion chip (Geode CS5530). It supports CRT and TFT panel display, but not STN panel.

The display controller supports standard VGA and high resolution display.

For driver, use Windows 95-98 driver or Windows NT 4.0 driver by National Semiconductor Corporation.

Display resolution and No. of colors of CRT and TFT are as follows. (Adjustment of display frequency and position to suit the panel must be done from the utility software.):

Resolution	No. of colors	Panel type
640×480	8BPP	9 bits
	256 colors from palette.	12 bits
		18 bits
	16BPP	9 bits
	64K colors	12 bits
	R = 5 bits, $G = 6$ bits and $B = 5$ bits	18 bits
800×600	8BPP	9 bits
	256 colors from palette.	12 bits
		18 bits
	16BPP	9 bits
	64K colors	12 bits
	R = 5 bits, $G = 6$ bits and $B = 5$ bits	18 bits
1024×768	8BPP	9 bits
	256 colors from palette.	12 bits
		18 bits
	16BPP	9 bits
	64K colors	12 bits
	R = 5 bits, $G = 6$ bits and $B = 5$ bits	18 bits

Table 3.16 TFT display mode

In 640×480 and 800×600 modes, simultaneous display with CRT is available.

Resolution	No. of colors			
640×480	8BPP, 256 colors from palette.			
	16BPP, 64K colors			
	R = 5 bits, $G = 6$ bits and $B = 5$ bits			
800×600	8BPP, 256 colors from palette.			
	16BPP, 64K colors			
	R = 5 bits, $G = 6$ bits and $B = 5$ bits			
1024×768	8BPP, 256 colors from palette.			
	16BPP, 64K colors			
	R = 5 bits, $G = 6$ bits and $B = 5$ bits			
1280×1024	8BPP, 256 colors from palette.			

Table 3.17 CRT display mode

Connection method of TFT signal and panel is shown below.

(R5: Red MSB, G5: Green MSB, B5: Blue MSB):

Signal name	18-bit TFT	12-bit TFT	9-bit TFT	9-bit TFT		
			640×480	1024×7	68	
FPDATA17	R5	R5	R5	R5	Even	
FPDATA16	R4	R4	R4	R4	pixel	
FPDATA15	R3	R3	R3	R3		
FPDATA14	R2	R2		R5	Odd	
FPDATA13	R1			R4	pixel	
FPDATA12	R0			R3		
FPDATA11	G5	G5	G5	G5	Even	
FPDATA10	G4	G4	G4	G4	pixel	
FPDATA9	G3	G3	G3	G3		
FPDATA8	G2	G2		G5	Odd	
FPDATA7	G1			G4	pixel	
FPDATA6	G0			G3		
FPDATA5	B5	B5	B5	B5	Even	
FPDATA4	B4	B4	B4	B4	pixel	
FPDATA3	B3	B3	B3	B3		
FPDATA2	B2	B2		B5	Odd	
FPDATA1	B1			B4	pixel	
FPDATA0	B0			B3		

Table 3.18TFT display data assignment

4.2 Hard disk

SCE8720C only supports primary IDE. Up to 2 hard disks, master and slave, can be controlled. IDE interface complies with ANSI ATA-4 (ultra DMA/33), (Refer to ANSI ATA-4 for detailed specifications of I.F) Therefore, it can operate in PIO mode 1, 2, 3 or 4, or Ultra DMA/33. Connection method of HDD is shown below. If secondary IDE is needed, extend to the ISA bus:

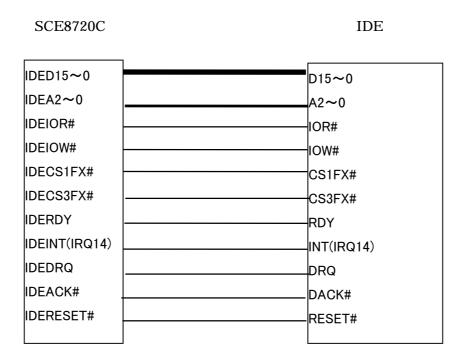
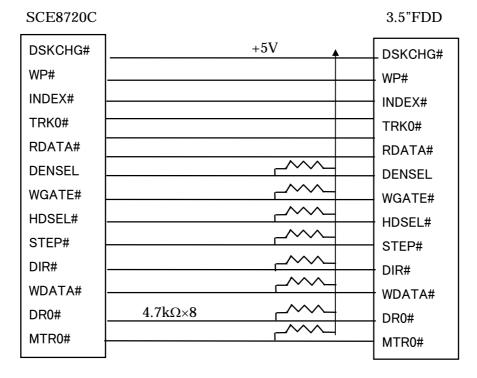


Figure 4.1 IDE interface connection


Each signal of IDE can be directly connected to IDE with no problem. However, it is sometimes better to add serial dumping resistances of 33Ω or so in order for countermeasure against noises.

Output level of each IDE signal is 3.3V, and input level is 5V-tolerant. No pull-up or pulldown is required.

4.3 FDD

1 unit of 3.5" FDD can be connected. 2 modes, 720KB and 1.44MB, are available.

Connection method of FDD is shown below.

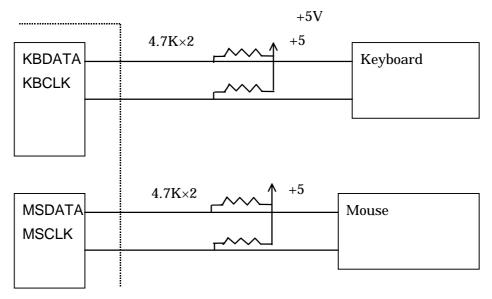
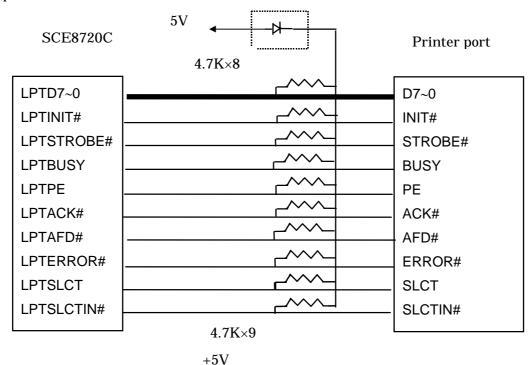
Resistance of $4.7k\Omega \times 8$ is not necessary when built into FDD.

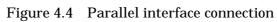
Figure 4.2 FDD interface connection

4.4 Keyboard/mouse

The keyboard/mouse interfaces can be connected to IBM/PS2 type keyboard and mouse. Connection method is shown below.

SCE8720C


Figure 4.3 Keyboard/mouse interface connection

All the keyboard and mouse signals require pull-up resistance of $4.7k\Omega$ or so. Pull-up resistance of $100k\Omega$ or so is required even when not in use.

4.5 Parallel port

SCE8720C supports 1 parallel port complying with IEE1284. This port can be used in ECP, EPP or SPP mode.

All the parallel port signals require pull-up resistance of $4.7 k\Omega$ or so.

Even when the parallel port is not in use, the LPTD[7:0],LPTINIT#,LPTSTROBE#, PTAFD#,LPTSLCTIN# signals require pull-up resistance of $100k\Omega$ or so. The diode in the dotted rectangular is for preventing troubles from happening due to current flowing from the printer signal to the 5V of the system when the power of the system including SCE8720C is OFF and the power of the printer is ON. This is essential for such system which mis-operates when +5V becomes 1 to 2V. Place it as necessary.

4.6 Serial port

SCE8720C supports 2 ports of serial interfaces by 16550-compatible UART. When sending/receiving data at a high speed, use sufficient RS232C driver.

4.7 USB

By connecting the USB signal of SCE8720C directly to the USB connector, 2-channel USB port becomes available.

When the overcurrent detector of the USB detects an overcurrent, USB port can be disabled in order to protect the circuit. In this case, even if only one port is detected as an overcurrent, both USBs are disabled. Connection example is shown below.

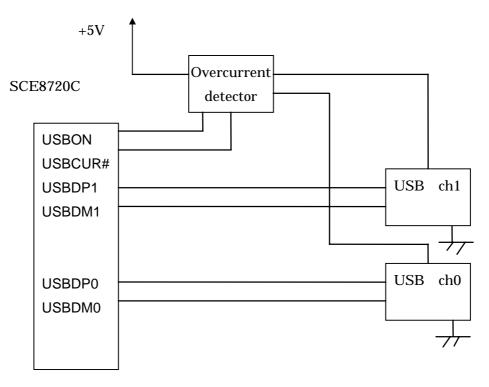


Figure 4.5 USB interface connection

4.8 Speaker

PCBEEP signal is used to drive the piezoelectric loudspeaker by logical pulse signal. Circuit example is shown below.

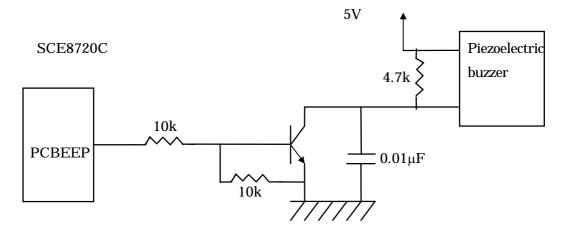


Figure 4.6 Piezoelectric buzzer connection

4.9 PCI

PCI bus of SCE8720C complies with the PCI2.1, but the power voltage is limited to 3.3V. Up to 3 PCI devices can be connected. (also limited by the number of PCICLKs.) Among these, up to 2 PCI devices can be connected as master. (limited by the numbers of REQ and GNT.)

If you wish to connect a 5V PCI device, or PCI devices of more than 3, refer to the reference circuit in Appendix A.

4.10 LIMITED ISA

SCE8720C's LIMITED ISA bus is different from standard ISA as follows.

- 1) No master function provided.
- 2) Memory area is only 1MB, from 0000h to FFFFFh.
- 3) No DMA function provided. (However, for FDD access, DMA is used.)
- 4) The lower 16-bit address (SA0-15) is multiplexed to the data bus SD/SA[15:0] to be output. Therefore, in order to obtain SA[15:0], SD/SA[15:0] must be latched by the latch signal (SALATCH).
- 5) The following signals are not supported.BALE, SCLK, OSC, REFRESH#, IOCHK#, 0WS# (SMEMW# can be generated from other signals.)
- 6) SCE8720C's ISA output is 3.3V max. Since the IC power supply, which drives the ISA bus, is 3.3V, SCE8720C's ISA output level is 3.3V maximum. Input signal level is 5V-tolerant.
- 7) IRQ5, 9, 10 and 11 for the 280-pin connector, and IRQ3, 4, 7 and 15 for the 20-pin connector are supported.

Reference 8.2 IO extension of ISA bus

4.11 RTC

MC146818A-compatible RTC function is built in the Super IO inside SCE8720C.

When V_{CCSTB} is supplied, it is supplied to the RTC power supply, and when V_{CCSTB} is OFF, the power supply is switched to the battery power supply, V_{CCBAK}. Since this switching circuit is inside SCE8720C, connect V_{CCBAK} and V_{CCSTB} directly to SCE8720. Protection resistance applying to UL is also built-in.

5. Power management

This chapter describes SCE8720C's power-saving functions and power-related matters. The power-saving function is precisely specified in the BIOS setup menu. SCE8720C's power-saving function not only minimizes the system power consumption, but also minimizes the CPU heat-up to control and protect the temperature.

5.1 Power ON/OFF

The system can select whether or not to control the power supply by software or external control signals PM0# and PM1#.

When controlling by software or PM0# and PM1# signals, power can be turned ON by signal from LAN, RING signal or PWSW# signal, and be turned OFF from the software. For each reference circuit, refer to Appendix A.

5.2 Standby mode

In case of no input from Windows' keyboard or mouse for a certain period of time, or PWSW# signal (pulse) input within 4 seconds, the system gets into the standby mode. In standby mode, the display is turned OFF and the peripheral devices also get into the power-saving mode. (motors of HDD and FDD are turned OFF.) To return to the standard operation mode from the standby mode, the power switch input within 4 seconds or keyboard/mouse input is effective. However, whether or not the operation mode is resumed is determined by the BIOS settings.

5.3 Power supply

• V_{CC3V} (3.3V)

Supplied to the IO power supply of the CPU chip (Geode GX-LV), companion chip (Geode CS5530) and S-DRAM.

• V_{CCCORE} (5V)

Power supply for the DC-DC converter, which generates the CPU's core power supply. Input the same power supply as V_{CC5V} . Power consumption is highest of all.

• V_{CC5V} (5V)

Mainly supplied to the Super IO (PC97317).

• V_{CCSTB}

Supplied to the circuit which controls ON/OFF of the power supply. In SCE8720C, it is supplied to the power supply control circuit of the Super I/O (PC97317). When ATX power supply is used, it is always supplied from the power supply unit when the AC cord is connected.

When V_{CCSTB} -equivalent power cannot be obtained due to the power supply unit not capable of ON/OFF control of the power supply, connect V_{CC5V} instead.

• VCCBAK

Supplied in order to maintain the RTC and C-MOS RAM when no V_{CCSTB} is supplied as the power is OFF.

5.4 Power sequence

5.4.1 Power sequence (for power supply which is turned ON/OFF from the software) Follow the power ON/OFF sequence shown below.

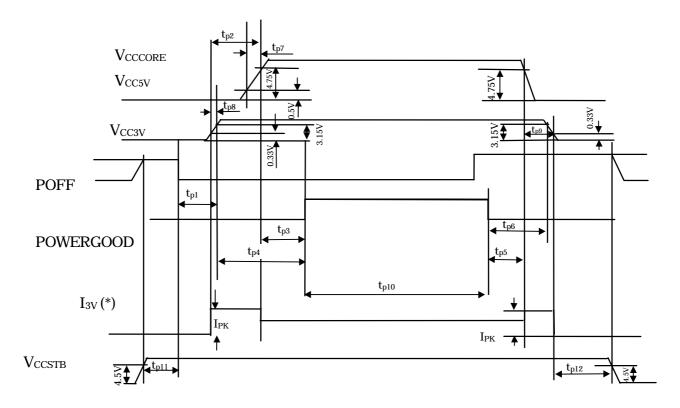
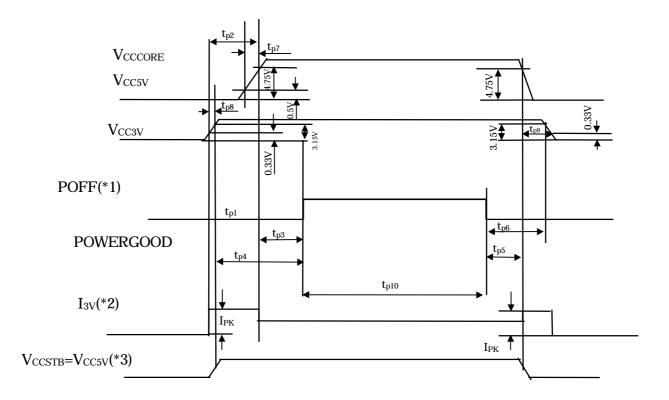


Figure 5.1 Power sequence (for power supply which is turned ON/OFF from the software)

*: $I_{\rm 3V}$ is the current of $V_{\rm CC3V}$ supplied to SCE8720Cxx.


If V_{CCORE} starts up after V_{CC3V}, or if V_{CCORE} shuts down before V_{CC3V}, peak current such as I_{PK} is supplied to V_{CC3V}. (typical I_{PK} =1.8A)

As a system power supply, it must be designed so that it is not damaged if a peak current is supplied. For that, the following measures are available.

- 1) Suppress the peak current from the current control circuit. Voltage drop due to this measure is acceptable.
- 2) Increase the current capacity.

Symbol	Parameter	Min.	Max.	Unit
t _{p1}	POFF inactive to $V_{CC3V}=3.15V$	0		ms
t _{p2}	$V_{CC3V}=0.33V$ to	-100	80	ms
	VCCCORE & VCC5V = $4.75V$			
t _{p3}	V_{CCCORE} & $V_{CC5V} = 4.75V$	10		ms
	to POWERGOOD active			
t _{p4}	V _{CC3V} =3.15V to POWERGOOD active	10		ms
t _{p5}	POWERGOOD inactive to	0		ms
	$V_{CCCORE} \& V_{CC5V} = 4.75V$			
t _{p6}	POWERGOOD inactive to Vcc3v=3.15V	0		ms
t _{p7}	VCCCORE & VCC5V rise time		20	ms
t _{p8}	V _{CC3V} rise time		20	ms
t _p 9	VCCCORE & VCC5V = 4.75 V to	-100	80	ms
	Vcc3v=0.33V			
t _{p10}	Width of POWERGOOD	10		
t _{p11}	V _{CCSTB} =4.5V to POFF inactive	500		
t _{p12}	POFF active to V _{CCSTB} =4.5V	500		ms

5.4.2 Power sequence (for power supply which is not turned ON/OFF from the software)

Follow the power ON/OFF sequence shown below.

Figure 5.2 Power sequence (for power supply which is not turned ON/OFF from the software)

- *1: POFF is not used. (Set it to NC.)
- *2: I_{3V} is the current of V_{CC3V} supplied to SCE8720Cxx.

If V_{CCORE} starts up after V_{CC3V} , or if V_{CCORE} shuts down before V_{CC3V} , peak current such as I_{PK} is supplied to V_{CC3V} . (typical $I_{PK}=1.8A$)

As a system power supply, it must be designed so that it is not damaged if a peak current is supplied. For that, the following measures are available.

- 1) Suppress the peak current from the current control circuit. Voltage drop due to this measure is acceptable.
- 2) Increase the current capacity.
- *3: Connect V_{CC5TB} to V_{CC5V} .

6. Electrical characteristics

6.1 Absolute maximum rating

Item	Symbol	Min.	Max.	Unit
Supply Voltage	Vcc3v	0	4.0	V
	Vcc5v	-0.5	6.5	V
	VCCSTB	-0.5	6.5	V
	Vccbak	-0.5	6.5	V
Votage on pin	CPUFRQ	-0.5	V _{CC3V} +0.5	V
	PCLK[2:0]	-0.5	V _{CC3V} +0.5	V
	Other pins	-0.5	(*1)	V

*1: Lower voltage between 5.5V and V_{CC5V} + 0.5V.

6.2 Recommended operating condition

Symbol	Min.	Max.	Unit	Current Limit (*2)
VCCCORE	4.75	5.25	V	2.5A
Vcc5v	4.75	5.25	V	
Vcc3v	3.15	3.45	V	3A
VCCSTB	4.5	5.5	V	
Vccbak	2.7	3.6	V	

*2: Even if any part defect occurred in SCE8720Cxx, do not supply current over the current limit in order to suppress abnormal heating of SCE8720Cxx.

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.5	0.3*Vcc3v	V	
VIH	Input high voltage		2.0	Vcc3v+0.5	V	
Vol	Output low voltage	IoL=5mA		0.4	V	
Vон	Output high voltage	Iон=-2mA	2.4		V	
I _{LL1}	Input leakage current	VIN=0.35V	-400		μΑ	(*1)
I _{LL2}	Input leakage current	V _{IN} =0.35V	-20	+20	μΑ	(*2)
I _{LL3}	Input leakage current	$V_{IH}=2.4V$	-20	+20	μΑ	

6.3 DC characteristics (under recommended operating condition)

6.3.1 PCI bus

- *1: Input leak current of FRAME#, IRDY#, TRDY#, STOP#, LOCK#, DEVSEL#, PERR#, SERR# and REQ[2:0]# signals.
- *2: Input leak current of signals other than FRAME#, IRDY#, TRDY#, STOP#, LOCK#, DEVSEL#, PERR#, SERR# and REQ[2:0]# signals.

6.3.2 LIMITED ISA bus

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.3	0.8	V	
V _{IH}	Input high voltage		2.0	V _{CC5V}	V	
V _{OL1}	Output low voltage	I _{OL} =8mA		0.4	V	(*1)
Vol2	Output low voltage	IoL=4mA		0.4	V	(*2)
Voh1	Output high voltage	IoL=8mA	2.4		V	(*1)
VOH2	Output high voltage	IoL=4mA	2.4		V	(*2)
I _{LL1}	Input leakage current	VIN=0.35V	-400		μA	(*3)
I _{LL2}	Input leakage current	VIN=0.35V	-1.1		mA	(*4)
ILL3	Input leakage current	VIN=0.35V	-5.5		mA	(*5)
ILL4	Input leakage current	VIN=0.35V	-550		μΑ	(*6)
ILL5	Input leakage current	V _{IN} =0.35V	-20		μA	(*6)
ILL6	Input leakage current	VIN=VCC5V		+20	μΑ	

- *1: ISA output signals other than SALATCH and ROMCS# signals (including bidirectional bus)
- *2: SALATCH and ROMCS# signals.
- *3: SBHE#, SA[19:16] and SD/SA[15:0] signals. (20k Ω pull-up)

*4: IOR#, IOW#, MEMR# and MEMW# signals. $(4.7k\Omega \text{ pull-up})$

*5: MEMCS16#, IOCS16# and IOCHRDY $(1k\Omega \text{ pull-up})$ (10kΩ pull-up)

*6: IRQ[3,4,5,7,9,10,11 and 15]

*7: SALATCH, AEN and ROMCS#

6.3.3 LCD

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
Vol	Output low voltage	IoL=8mA		0.4	V	
Vон	Output high voltage	IOH=-8mA		0.4	V	

6.3.4 CRT

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
Vol1	Output low voltage	IoL=16mA		0.4	V	(*1)
V _{OH1}	Output high voltage	Iон=-16mA	2.4		V	(*1)
Vol2	Output low voltage				V	(*2)
V _{OH2}	Output high voltage				V	(*2)

*1: CRTHSYNC, CRTVSYNC

*2: CRTR,CRTG,CRTB

6.3.5 FDD

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.5	0.8	V	(*1)
VIH	Input high voltage		2.0	Vcc5v	V	(*1)
Vol	Output low voltage	IoL=40mA		0.4	V	(*2)
Vон	Output low voltage	Iон=-4mA	2.4		V	(*2)
I _{LL1}	Input leakage current	VIN=VCC5V		+10	μΑ	
I _{LL2}	Input leakage current	V _{IN} =V _{SS}	-10		μA	

*1: INDEX#,TRK0#,RDATA#,WP#,DSKCHG#

*2: DENSEL,WDATA#,WGATE#,DIR#, STEP#,HDSEL#,DR0#,MTR0#

6.3.6 IDE

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.3	0.8	V	(*1)
V _{IH}	Input high voltage		2.0	V _{CC5V}	V	(*1)
Vol	Output low voltage	I _{OL} =8mA		0.4	V	(*2)
Vон	Output high voltage	Iон=-8mA	2.4		V	(*2)
I _{LL1}	Input leakage current	VIN=VCC5V		5.5	mA	(*3)
I _{LL2}	Input leakage current	VIN=VCC5V		5.5	mA	(*4)
I _{LL3}	Input leakage current	VIN=VSS	-5.5		mA	(*5)
I _{LL4}	Input leakage current	VIN=VSS	-550		μΑ	(*6)
ILL5	Input leakage current	VIN=VCC5V		+10	μΑ	(*7)
I _{lL6}	Input leakage current	VIN=VSS	-10		μΑ	(*7)

*1: IDED[15:0], IDERDY, IDEINT(IRQ14), IDEDRQ

*2: IDED[15:0], IDEA[2:0], IDEIOR#, IDEIOW#, IDEACK#, IDECS1FX#, IDECS3FX#, IDERESET#

*3: IDED7

*4: IDEDRQ

*5: IDERDY

*6: IDEINT(IRQ14)

*7: IDED[15:0](other than IDED7)

CARD-PCI/GX Hardware Manual

6.3.7 Serial port

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.3	0.8	V	(*1)
VIH	Input high voltage		2.0	Vcc5v	V	(*1)
Vol	Output low voltage	IoL=12mA		0.4	V	(*2)
Vон	Output low voltage	I _{OH} =-6mA	2.4		V	(*2)
I _{LL1}	Input leakage current	V _{IN} =V _{CC5V}		+10	μΑ	
I _{LL2}	Input leakage current	V _{IN} =V _{SS}	-10		μΑ	

*1: COM1RXD,COM1CTS#,COM1DSR#,COM1CD#, COM2RXD,COM2CTS#, COM2DSR#,COM2CD#, COM1RI#,COM2RI#

*2: COM1TXD,COM1RTS#,COM1DTR#, COM2TXD,COM2RTS#,COM2DTR#

6.3.8 Parallel port

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.5	0.8	V	(*1)
V _{IH}	Input high voltage		2.0	V _{CC5V}	V	(*1)
Vol	Output low voltage	I _{OL} =14mA		0.4	V	(*2)
Vон	Output high voltage	IoH=-14mA	2.4		V	(*2)
I _{LL1}	Input leakage current	V _{IN} =V _{SS}	-10		μA	(*3)
ILL2	Input leakage current	VIN=VSS	-120		μΑ	(*4)
ILL3	Input leakage current	VIN=VCC5V		120	μΑ	(*3)
ILL4	Input leakage current	VIN=VCC5V		10	μA	(*4)

*1: All the parallel port signals.

(LPTD[7:0], LPTINIT#,LPTSTROBE#, LPTAFD#,LPTSLCTIN#

LPTBUSY,LPTSLCT, LPTPE, LPTACK#,LPTERROR#)

*2: LPTD[7:0],LPTINIT#,LPTSTROBE#, LPTAFD#,LPTSLCTIN#

*3: LPTBUSY, LPTSLCT, LPTPE (*3 or *4 depending on the software settings)

*4: LPTACK#, LPTERROR#, LPTPE (*3 or *4 depending on the software settings)

6.3.9 Keyboard/mouse

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.5	0.8	V	(*1)
VIH	Input high voltage		2.0	Vcc5v	V	(*1)
Vol	Output low voltage	IoL=16mA		0.4	V	(*1)

*1: KBDATA, KBCLK, MSDATA and MSCLK are all open-collector output.

6.3.10 USB

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.3	0.8	V	(*1)
VIH	Input high voltage		2.0	Vcc5v	V	(*1)
Vol1	Output low voltage	IoL=4mA		0.4	V	(*2)
Vol2	Output low voltage			0.3	V	(*3)
Voh1	Output high voltage	I _{OH} =-4mA	2.4		V	(*2)
Voh2	Output high voltage		2.8	3.6	V	(*4)

*1: USBCUR#

*2: USBON

*3 :USBDM1, USBDP1, USBDM0, USBDP0

 $(1.5k\Omega \text{ of pull-up resistance is added outside SCE8720C.})$

*4: USBDM1, USBDP1, USBDM0, USBDP0

 $(15k\Omega \text{ of pull-up resistance is added outside SCE8720C.})$

6.3.11 Power management signal

PME0# signal (For compatibility with other cards, input should be set to low or high impedance.)

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.5	0.8	V	
VIH	Input high voltage		2		V	
I _{LL1}	Input leakage current	VIN=VCC5V		+10	μA	
I _{LL2}	Input leakage current	V _{IN} =V _{SS}	-1.2		mA	

PME1# signal (For compatibility with other cards, input should be set to low or high impedance.)

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.5	0.8	V	
VIH	Input high voltage		2	Vccstb	V	
I _{LL1}	Input leakage current	VIN=VCC5V		+10	μΑ	
I _{LL2}	Input leakage current	VIN=VSS	-1.2		mA	

CARD-PCI/GX Hardware Manual

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.3	0.8	V	
VIH	Input high voltage		2	1.1* Vcc3v	V	
I _{LL1}	Input leakage current	VIN=VCC5V	-10	+10	μΑ	
ILL2	Input leakage current	V _{IN} =V _{SS}	-10	+10	μA	

POWERGOOD# signal (this signal is not 5V-tolerant.)

 I_{LL2} Input leakage current
 $V_{IN}=V_{SS}$ -10 +10 μA ---

 PWSW1# signal (For compatibility with other cards, input should be set to low or high impedance.)
 -10
 +10
 μA --

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.5	0.8	V	
VIH	Input high voltage		2		V	
			2			
I _{LL1}	Input leakage current	VIN=VCC5V		+10	μΑ	
I _{LL2}	Input leakage current	VIN=VSS	-1.2		mA	

POFF signal (open-collector)

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
Vol1	Output low voltage	IoL=14mA		0.4	V	

STANDBY# signal

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
Vol1	Output low voltage	IoL=16mA		0.4	V	

6.3.12 AC97

Symbol	Parameter	Condition	Min.	Max.	Unit	Note
VIL	Input low voltage		-0.3	0.8	V	(*1)
VIH	Input high voltage		2.0	5.5	V	(*1)
Vol1	Output low voltage	IoL=4mA		0.4	V	(*2)
V _{OL2}	Output low voltage	I _{OL} =16mA		0.4	V	(*3)
V _{OH1}	Output high voltage	I _{OH} =-4mA	2.4		V	(*2)
V _{OH2}	Output high voltage	I _{OL} =-16mA	2.4		V	(*3)

*1: AC97SDIN0,AC97BITCLK

*2: AC97SDOUT, AC97SYNC, PCBEEP

*3: AC97RESET#

6.3.13 Other signals

Symbol	Parameter	Condition	Min.	Max.	Unit
VIL	Input low voltage		-0.5	0.8	V
VIH	Input high voltage		2.0	Vcc5v	V
Vol	Output low voltage	IoL=2mA		0.4	v
Vон	Output high voltage	Iон=-2mA	2.4		v
I _{LL1}	Input leakage current	VIN=VCC5V		+10	μΑ
I _{LL2}	Input leakage current	V _{IN} =V _{SS}	-100		μA

PORT3 signal

PORT4 signal

Symbol	Parameter	Condition	Min.	Max.	Unit
VIL	Input low voltage		-0.5	0.8	V
VIL	Input high voltage		2.0	Vcc5v	V
Vol	Output low voltage	IoL=14mA		0.4	V
Vон	Output high voltage	Iон=-2mA	2.4		V
I _{LL1}	Input leakage current	VIN=VCC5V		+10	μΑ
I _{LL2}	Input leakage current	VIN=VSS	-550		μΑ

CPUFRQ signal (this signal is not 5V-tolerant.)

Symbol	Parameter	Condition	Min.	Max.	Unit
VIL	Input low voltage			0.3*Vcc3v	V
VIH	Input high voltage		0.7*Vcc3v		V
I _{LL1}	Input leakage current	VIN=VCC3V		3.6	mA
I _{LL2}	Input leakage current	VIN=VSS	-10		μΑ

ROMDIS signal

Symbol	Parameter	Condition	Min.	Max.	Unit
VIL	Input low voltage			0.3*V _{CC5V}	V
V _{IH}	Input high voltage		0.7*V _{CC5V}		V
I _{LL1}	Input leakage current	V _{IN} =V _{CC5V}		5.5	mA
ILL2	Input leakage current	VIN=VSS	-10		μΑ

6.4 Current consumption

6.4.1 Maximum current value

Measurement method: Startup Windows 98, and measure each maximum current in the process of operating the screen saver (pipe). Each maximum current cannot be measured simultaneously, these values must be taken into account when designing the power supply.

Item	Symbol	Тур.	Max.	Unit	Note
Current	VCCCORE (*1)	500	750	mA	VCCCORE=5V
	Vcc5v (*1)	20	30	mA	V _{CC5V} =5V
	Vcc3v (*2)	640	960	mA	Vcc3v=3.3V
	VCCSTB	1	1.5	mA	V _{CCSTB} =5V
	VCCBAK	1.2		μA	VCCBAK=3V
Power(total)		4717	7075.5	mW	

(Memory side: 64MB Display 1280 × 1024, 256-color CRT)

*1: At Windows 98 startup. *2: Screen saver (pipe)

6.4.2 Typical current value 1

Measurement method: Startup Windows 98 and measure while nothing is being executed by the application.APM(Advanced Power Management)=OFF

$\underline{\qquad}$					
Item	Symbol	Тур.	Unit	Note	
Current	VCCCORE	408	Ma	V _{CCCORE} =5V	
	V _{CC5V}	17.1	mA	V _{CC5V} =5V	
	V _{CC3V}	621	mA	V _{CC3V} =3.3V	
	V _{CCSTB}	0.35	mA	V _{CCSTB} =5V	
	V _{CCBAK}	0	μΑ	V _{CCBAK} =3V	
Power(total)		4176.6	mW		

(Memory side: 64MB Display 1280 × 1024, 256-color CRT)

6.4.3 Typical current value 2

Measurement method: Startup Windows 98 and measure while nothing is being

executed by the application. APM(Advanced Power Management)=ON There

APM(Advanced Power Management)=ON Therefore, Windows 98's power management is activated.

Item	Symbol	Тур.	Unit	Note
Current	VCCCORE	110	mA	VCCCORE=5V
	Vcc5v	17.1	mA	V _{CC5V} =5V
	Vcc3v	530	mA	Vcc3v=3.3V
	VCCSTB	0.35	mA	V _{CCSTB} =5V
	Vссвак	0	μΑ	VCCBAK=3V
Power(total)		2386.3	Mw	

(Memory side: 64MB Display 1280 × 1024, 256-color CRT)

6.4.4 Standby current

Measurement method: Measure in the standby mode.

(Memory size: 64MB)

Item	Voltage	Тур.	Unit	Note
Current	VCCCORE	17.2	mA	V _{CCCORE} =5V
	V _{CC5V}	11.5	mA	V _{CC5V} =5V
	V _{CC3V}	230	mA	V _{CC3V} =3.3V
	V _{CCSTB}	0.35	mA	V _{CCSTB} =5V
	Vссвак	0	μΑ	V _{CCBAK} =3V
Power(total)		904.25	mW	

7. AC characteristics

7.1 PCI timing

Since the PCI timing is based on the PCI BUS Specification rev2.1, refer to the PCI BUS Specification 2.1 for details.

7.2 USB timing

Since the PCI timing is based on the PCI BUS Specification rev2.1, refer to the PCI BUS Specification 2.1 for details.

7.3 LIMITED ISA timing

ISA signals comply with the ISA specifications.

7.3.1 Memory, I/O read cycle timing

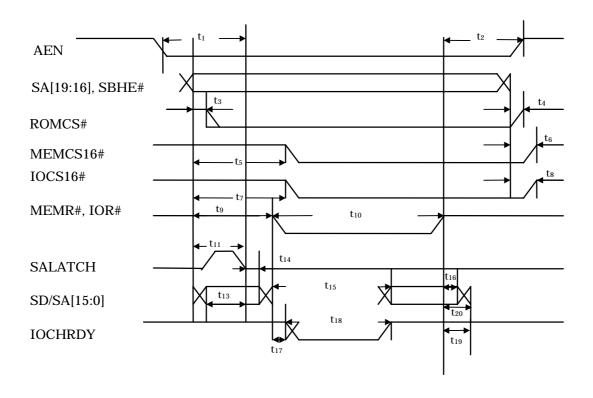
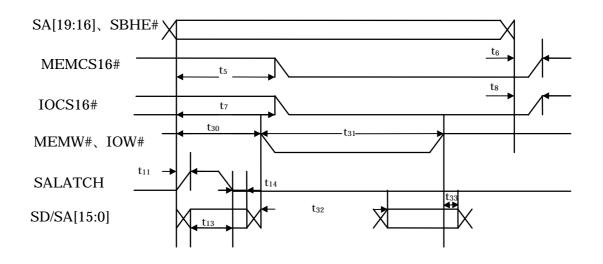



Figure 7.1 Memory, I/O read cycle timing

Symbol	Parameter	Min.	Max.	Unit	Note
t1	AEN active to falling edge of SALATCH	56		ns	
t2	AEN inactive from command	30		ns	
t3	ROMCS# active from SA[19:16]		24	ns	
t4	ROMCS# inactive from SA[19:16]		10	ns	
t5	MEMCS16# active from SA[19:16]		72		
t ₆	MEMCS16# inactive from SA[19:16]		58		
t7	IOCS16# active from SA[19:16]		95		
t8	IOCS16# inactive from SA[19:16]		69		
t9	Read command active from SA[19:16]	162		ns	8 bits
		102		ns	16 bits
t10	Memory read command pulse width	509		ns	8 bits
		209		ns	16 bits
t10	IO read command pulse width	509		ns	8 bits
		147		ns	16 bits
t11	SA[19:16] to falling edge of SALATCH	28		ns	
t13	SA(onSD/SA) active to SALATCH inactive	13		ns	
t14	SA(onSD/SA) inactive to SALATCH inactive	5		ns	
t15	Valid read DATA from M-read command		460	ns	8 bits
C 15			161	ns	16 bits
t ₁₅	Valid read DATA from I-read command		462	ns	8 bits
-10			103	ns	16 bits
t ₁₆	Read data valid hold to read Command inactive	0		ns	
t17	IOCHRDY inactive from active command		344	ns	8 bits
			54	ns	16 bits
t18	IOCHRDY inactive pulse width	0.120	15.6	μS	
t19	IOCHRDY active hold from inactive	0		ns	
t20	command Read command inactive to SD tristate		30	ns	

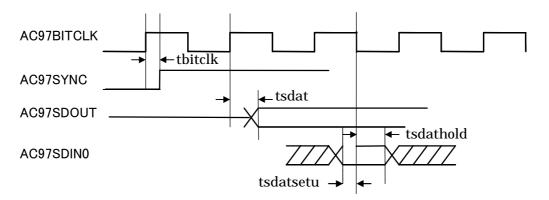

7.3.2 Memory, I/O write cycle timing

Figure 7.2	Memory, I/O write	cycle timing
rigule 1.2	Memory, 1/O write	cycle tilling

Symbol	Parameter	Min.	Max.	Unit	Note
t30	Write Command active from SA[19:16]	162		ns	8 bits
		102		ns	16 bits
t31	Memory write command pulse width	509		ns	8 bits
		209		ns	16 bits
t31	IO write command pulse width	509		ns	8 bits
		147		ns	16 bits
t32	Write data valid from write command		61	ns	8 bits
			47	ns	16 bits
t33	Valid data from write command	25		ns	

7.4 AC97 timing

Figure 7.3 AC97 timing

Symbol	Parameter	Min.	Max.	Unit	Note
tbitclk	Rising BITCLK to SYNC	5	16	ns	
tsdat	Rising BITCLK to SDOUT	5	17	ns	
tsdatsetup	SDIN0 setup to falling	15		ns	
	BITCLK				
tsdathold	SDIN0 hold from falling	5		ns	
	BITCLK				

7.5 TFT timing

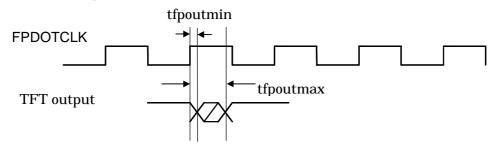


Figure 7.4 TFT timing

Symbol	Parameter	Min.	Max.	Unit	Note
tfpoutmin	TFT output Delay from	0.1		ns	
(Min Delay)	FPDOTCLK				
	FPDATA[17:0]				
tfpoutmax	FPHSYNC,FPVSYNC				
(Max Delay)	FPDISPEN, FPDOTE		5.2		
	FPVEEON, FPVDDON				

8. Cautions on use

- 1) Touching SCE8720Cxx (CARD-PCI/GX) while it is in operation or right after it is turned off may result in a burn because its surface temperature is high. Take the following countermeasures.
 - Notify those who might contact SCE8720Cxx while it is in operation or right after it is turned off, such as service personnel, of the heat on the surface.
 - If necessary, indicate a caution regarding surface temperature somewhere on SCE8720Cxx after it is installed on device.
- Also if necessary, put a cover so that SCE8720Cxx cannot be touched.
- 2) If any part defect occurred in SCE8720Cxx, do not supply current over the current limit (6.1.1) in order to suppress abnormal heating of SCE8720Cxx. If current over the current limit is supplied to SCE8720Cxx while it is in the error mode, safety of SCE8720Cxx cannot be guaranteed.
- 3) Because of its structural limitation, SCE8720Cxx requires countermeasure against electrostatic noise in customer's system.
- 4) Do not touch the pin section of SCE8720Cxx with hand or metal.
- 5) Do not bend, drop or give shock to SCE8720Cxx.
- 6) Avoid heat, humidity and direct sunlight.
- 7) Do not insert or remove SCE8720Cxx while its power is turned on.
- 8) Do not copy or modify BIOS without permission.
- 9) When designing any product using SCE8720Cxx, refer to the application note as well.

Appendix A. Peripheral circuit design

- A.1 IO extension of PCI bus
- A.1.1 Number of PCI devices

Up to 3 devices can be connected to the PCI bus of SCE8720C (excluding Geode CS5530). Among them, up to 2 devices can be used as masters.

To connect more devices, PCICLK can be divided as shown below. In this case, it is necessary to confirm the waveform of PCICLK using an actual circuit. Also, determine whether or not a terminal circuit of PCICLK is needed. Since loads of other signals are also increased, these signals must be checked as well. When using divided PCICLK, do not use PCICLK for the extended slot. More than 1 device might be connected in a board Connected to extended slot.

Note that customization of BIOS is needed in order to increase the number of PCI Devices.

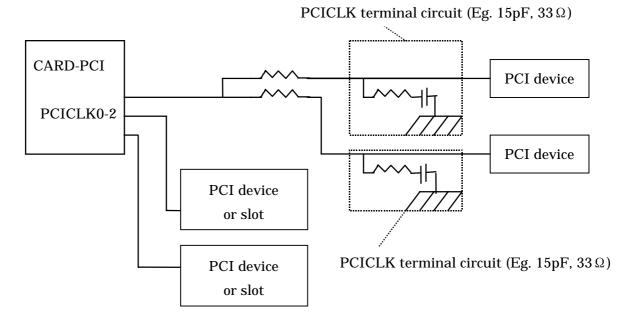


Figure A.1 PCICLK division

A.1.2 PCI device No. and wiring method for interrupts

Each device on the PCI bus must have a unique device No. The device No. is determined by which AD[11:31] signal is connected to IDSEL signals. There are 21 device Nos. in total, but among them AD28 and 29 are used inside SCE8720C.

How IDSELs are connected is shown in the table below. Connection of the PCI devices 1 to 3 cannot be changed. Customization of BIOS is needed in order to change them. (A wiring example of interrupt and IDSEL is shown in the figure below.)

PCI device	IDSEL	Device No.		
Chipset (inside Geode CS5530)	AD28	18 (12h)		
USB (inside Geode CS5530)	AD29	19 (13h)		
PCI device 1	AD24	14 (Eh)		
PCI device 2	AD25	15 (Fh)		
PCI device 3	AD26	16 (10h)		

Table A.1 PCI device No. assignmen	Table A.1
------------------------------------	-----------

Wire the interrupt cables for each slot, so that load is put equally on each of INTA# to INTD# on the PCI device. Customization of BIOS is needed in order to change them as well.

(Note that sharing of interrupts is not available with Windows-CE.)

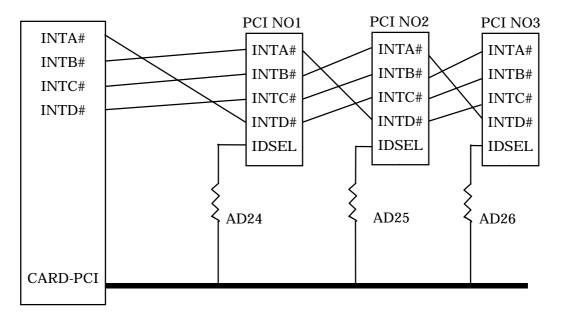


Figure A.2 Wiring of interrupts

A.1.3 Connection of 5V device to PCI bus

SCE8720C only supports the 3.3V PCI bus. Therefore, 5V PCI bus cannot be connected to the PCI bus. To connect a 5V PCI device, use the level converter which converts signals from 5V device to 3.3V, as shown in the circuit below.

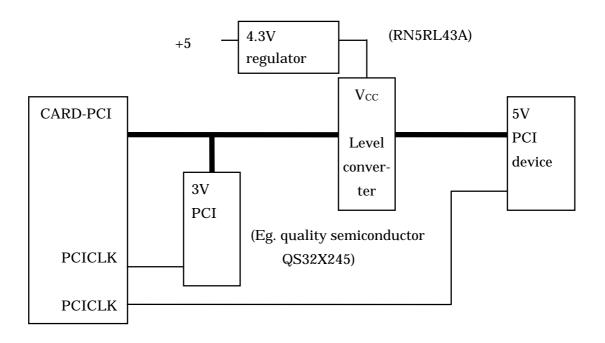
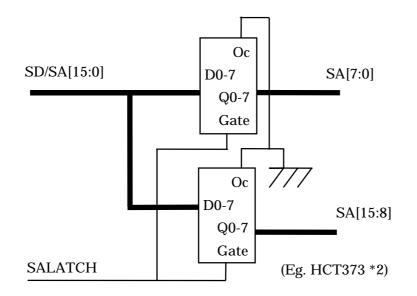
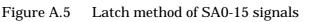


Figure A.3 Connection method of 5V PCI device

A.2 IO extension of LIMITED ISA bus

A.2.1 Address decoding


The IO addresses that can be used outside SCE8720C are the ones not used by the system, within the range from 100h to 3FFh. (refer to the IO map in the section 1.6.) When decoding, the conditions SA0-9 and AEN=0 must be set to input.


A.2.2 Pull-up of SD/SA[7:0]

Pull-up SD/SA[7:0] by a resistance of $4.7k\Omega$ or so. Otherwise, the software cannot detect empty space in the memory area.

A.2.3 SA[15:0] latch

Since SA[15:0] are multiplexed by SD/SA[15:0] to be output, they must be externally latched by SALATCH signal. Circuit example is shown below.

A.2.4 Number of ISA slots

2 slots are assumed. However, condition varies depending on the type of load (CMOS, TTL, LSTTL) and wiring length. Therefore, design must be done by calculating the load, wiring length, fine-in and fine-out (refer to 6.3).

A.2.5 Pull-up resistance of IOCHRDY

Since IOCHRDY sample timing is fixed, devices on the ISA must change the signal within the fixed timing. This signal might be delayed due to increased load capacity, so externally add a pull-up resistance when load is heavy. Of course, this resistance must be within the range that can be driven by the device on the ISA.

A.2.6 SMEMR# and SMEMW# generation

As described in 4.10, SCE8720C's LIMITED ISA bus does not have SMEMR# or SMEMW# signal. However, they can easily be generated in the circuit as shown below.

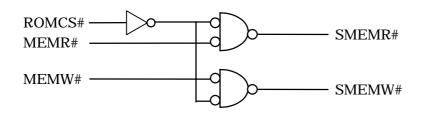


Figure A.6 Circuit to generate SMEMR# and SMEMW#

A.2.7 MEMCS16# generation

To generate MEMCS16#, the condition ROMCS#=1 (BIOS ROM is not selected) is necessary. If this condition is absent, error such as improper overwrite on BIOS ROM might occur. Circuit example is shown below.

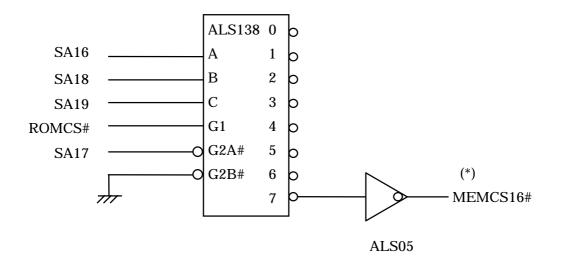
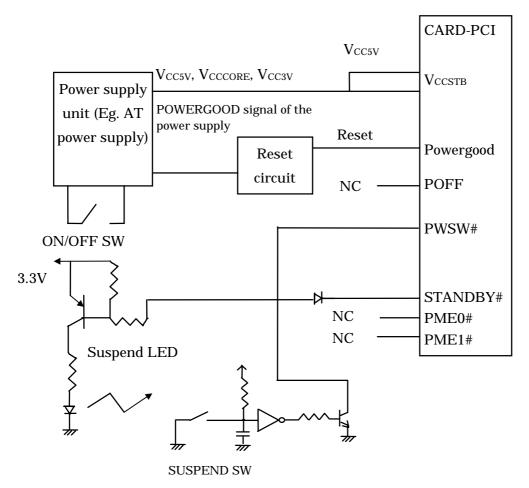


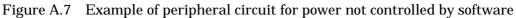
Figure A.7 Circuit to generate ROMCS16#

*: MEMCS16# is active at D0000 to DFFFF.

A.3 Power supply design: Power control circuit

Standard power voltage specifications


To guarantee liability of SCE8720C, $V_{\rm CC5V},\,V_{\rm CCC0RE}$ and $V_{\rm CC3V}$ requires power quality shown below.


Ripple : 100mVp-p Spike noise : 200mVp-p

A.3.1 Power not requiring ON/OFF by software

With systems not requiring powering-off by OS shutting down, Wake on LAN nor Wake on RING, power control is much easier not requiring V_{CCSTB} .

Block diagram is shown below. If the power ON/OFF switch cannot be used as the switch to suspend, the switch to suspend is separately required.

Note) Connect V_{CC5V} to $V_{\text{CCSTB}}.$

A.3.2 Power requiring ON/OFF by software

Block diagram of power control circuit, which can realize powering-off by OS shutting down, Wake on LAN or Wake on RING, is shown below. The PON/OFF SW, Wake on LAN and Wake on RING circuits must be operated by V_{CCSTB}.

When the PON/OFF switch (power switch) is held down for less than 4 seconds while the power is on, it transits to the suspend status. Holding down the switch for more than 4 seconds, the power is turned off.

In this case, a separate suspend switch is not necessary.

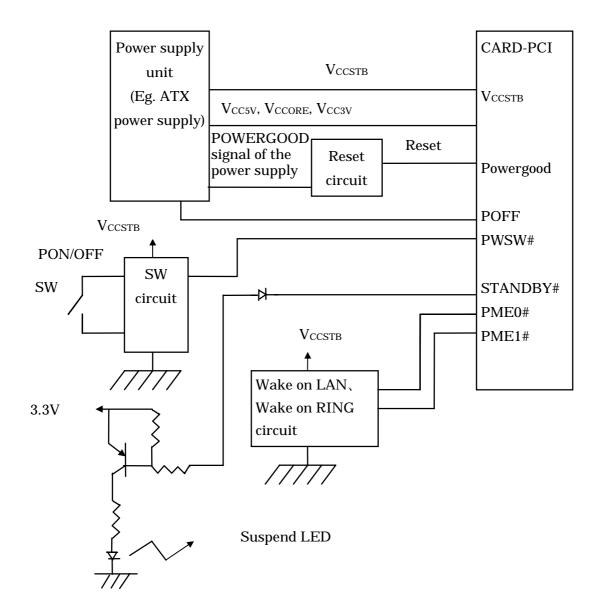


Figure A.8 Example of peripheral circuit for power controlled by software

A.3.3 Cautions on compatibility of CARD-PCI

It is recommended that signal inputs of PWSW#, PME0# and PME1# are set to low or high impedance for compatibility with other CARD-PCIs (so that other cards can also use the same main circuit). Also, STANDBY# signal is driven with open drain with SCE8720C, but with other cards, it is driven HIGH/LOW at 3.3V. Therefore design the circuit to support both, as shown in Figure A.7 and A.8.

A.3.4 Wake on LAN signal

PME0# signal is used for Wake on LAN. With PCI version 2.2, this signal is assigned to A19 pin of the PCI option connector. However, SCE8720C's PCI is version 2.1, so do not connect PME0# signal to the PCI connector. For Wake on LAN using PME0# signal, use another connector. (There are connectors specified as "semi-standard".)

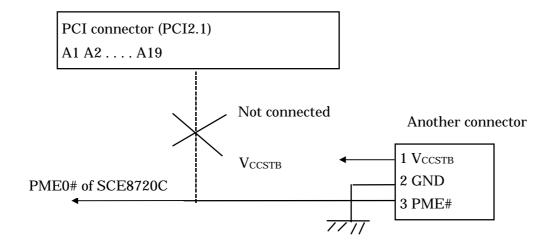
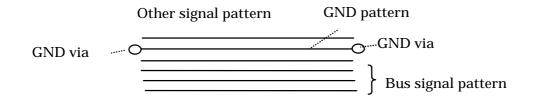


Figure A.9 Wiring example of PME0#

A.4 Cautions on artwork design

A.4.1 Power supply line

To stabilize voltages supplied to SCE8720C, place an appropriate decoupling capacitor at each power supply line close to SCE8720C connector. Recommended values are shown below.

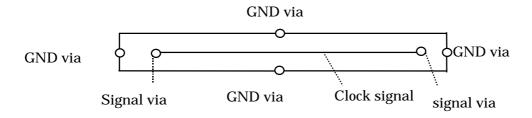

Power supply line	Type of capacitor	Quantity
VCCCORE-GND	$220\mu F$ - 10V electrolytic capacitor	1 (*1)
	0.01µF ceramic capacitor	2
Vcc5v-GND	$220\mu F$ - 10V electrolytic capacitor	1 (*2)
	0.01µF ceramic capacitor	Large quantity (*3)
Vcc3v-GND	$100\mu F$ - $10V$ electrolytic capacitor	1
	0.01µF ceramic capacitor	Large quantity (*3)
VCCSTB-GND	10µF - 10V electrolytic capacitor	1
	0.01µF ceramic capacitor	2~ (*3)
Vссвак	1µF laminated ceramic	1

- *1: V_{CCORE} is input voltage of DC-DC converter which generates the core voltage (2.2V) of CPU. Although SCE8720C has a built-in capacitor, another capacitor is needed on the system side as peak current flows anyway. Since the voltage is 5V, it is possible to use the common power supply with V_{CC5V}. However, as peak current flows as mentioned above, countermeasure such as use of separate power supply line on the board is needed.
- *2: In order to avoid variation of voltage when accessing HDD or CompactFlash, put a capacitor of required value to $V_{\rm CC5V.}$
- *3: 0.5 to 1 ceramic capacitor per IC is recommended.

76

A.4.2 Address bus and data bus

The address and data busses, such as AD0-31 of PCI, SD0-15 and SA0-19 of ISA, should be grouped by bus type for wiring. (Do not mix with other signals.) To avoid crosstalk, do not wire these busses and other signals in parallel. If wiring in parallel, put GND between the signals and busses.



A.4.3 PCI signal

Avoid making the PCI signal wiring too long since the PCI signal speed is higher than those of ISA. If long wiring cannot be avoided or load is heavy, be sure to confirm the waveform.

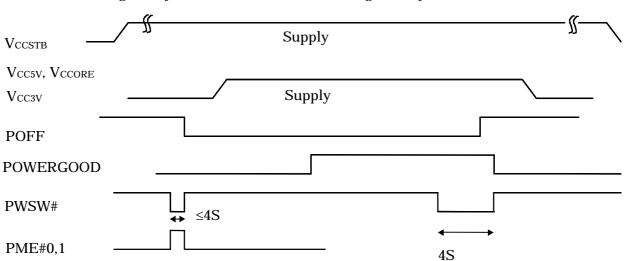
A.4.4 Clock signal

High speed clock signal are likely to negatively affect other signals by crosstalk or be affected by other signals, resulting in trouble. To avoid such troubles, guard it using GND patter as shown below.

Clock signals requiring attention is shown below.

Clock signal name	Frequency
PCICLK0-2	33MHz
FPDOTCLK	25MHz~65MHz
FPDOTE	12.5MHz~32.5MHz
AC97BITCLK	12.288MHz (varies depending on Codec specifications)

A.4.5 CRT RGB signal


When noise is present on CRTR, CRTG or CRTB signal, display quality drops. To avoid this make the wiring as short and far from other signals as possible so that no crosstalk occurs.

A.4.6 Reset signal

Use the RST# signal for resetting the system (other than SCE8720C).

Do not make the signal wiring too long. If long wiring cannot be avoided, add a buffer or a capacitor to remove noise.

Also, POWERGOOD signal should not be used to reset the system circuit (other than SCE8720C). This is fine from the logical viewpoint, but it does raise the possibility to extract noise, resulting in decreased liability.

Appendix B. Timing examples of power management signals

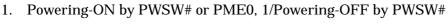


Figure B.1 PM signal operation timing example 1

2. Transit to/from the standby mode by PWSW#

Vccstb		Supply	
VCC5V, VCCORE, VCC3V	7	Supply	inactive=LOW
POFF			
POWERGOOD		HIGH	
PWSW#	↔ ≤4S		←→ ≤4S
STANDBY#			

Note) Do not supply $V_{\rm CC5V}$ when $V_{\rm CCSTB}$ is OFF.

Figure B.2 PM signal operation timing example 2

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC. HEADQUARTERS

 Image: Provide the second state
 Phone:
 +1-310-955-5300
 FAX:
 +1-310-955-5400

SALES OFFICES West

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 FAX: +1-408-922-0238

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A. Phone: +1-815-455-7630 FAX: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-781-246-3600 FAX: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A. Phone: +1-877-EEA-0020 FAX: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS Riesstrasse 15

80992 Munich, GERMANY Phone: +49-(0)89-14005-0 FAX: +49-(0)89-14005-110

- GERMANY -

 SALES OFFICE

 Altstadtstrasse 176

 51379 Leverkusen, GERMANY

 Phone: +49-(0)2171-5045-0

 FAX: +49-(0)2171-5045-10

- UNITED KINGDOM-UK BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone: +44-(0)1344-381700 FAX: +44-(0)1344-381701

- FRANCE-

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 FAX: +33-(0)1-64862355

ASIA

- CHINA -EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuanChaoYang District, Beijing, CHINAPhone: 64106655FAX: 64107319

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone: 21-6485-5552 FAX: 21-6485-0775

- HONG KONG, CHINA -

EPSON HONG KONG LTD. 20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone: +852-2585-4600 FAX: +852-2827-4346 Telex: 65542 EPSCO HX

- TAIWAN -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

10F, No. 287, Nanking East Road, Sec. 3 Taipei, TAIWAN Phone: 02-2717-7360 FAX: 02-2712-9164 Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2 HsinChu 300, TAIWAN Phone: 03-573-9900 FAX: 03-573-9169

- SINGAPORE -

 EPSON SINGAPORE PTE., LTD.

 No. 1 Temasek Avenue, #36-00

 Millenia Tower, SINGAPORE 039192

 Phone: +65-337-7911

 FAX: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 FAX: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department

 System Products Marketing Group

 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

 Phone: +81-(0)42-587-7503

 FAX: +81-(0)42-587-8423

ED International Marketing Department Europe & U.S.A.

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5812 FAX: +81-(0)42-587-5564

ED International Marketing Department Asia

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 FAX: +81-(0)42-587-5110

FAX: +1-310-955-540

In pursuit of **"Saving" Technology**, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings.**

CARD-PCI/GX Hardware Manual

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Devices Information On Epson WWW server http://www.epson.co.jp/device/

Printed July, 2000 in Japan (H) A