EPSON

Vs

-

-

EPSON ROBOT

User's manual
for SRC-300/320

J
Rev. 2 EM971R502F)

g3

EPSON ROBOT User's manual for SRC-300/320 EPSON

EPSON ROBOT

Usar's manual for SRC-300/320

Rev. 2

WARRANTY

SERVICE CENTER

MANUFACTURER

NOTICE

The robots and their options are shipped to our customers only after being subjected to the
strictest quality controls, tests and inspections to certify their compliance with our high
performance standards.

Product's malfunction(s) resulting from normal handling operation will be repaired free of
charge up to 12 months after delivery.

However, customers will be charged for repairsin the following cases:

1. Damage or malfunction caused by improper use which is not described in the manual,
or careless use.

2. Malfunctions caused by customers' unauthorized disassembly.
3. Damage due to improper adjustments or unauthorized repair attempts.

4. Damage caused by natural disasters such as earthquake, flood, etc.

Contact the following service center for robot repairs, inspections or adjustments.
Please have the model name, M. CODE, software version and a description of the problem
ready when you call.

SEIKO EPSON CORPORATION

Okaya Plant No. 2

1-16-15, Daiei-cho

Okayarshi, Nagano-ken, 394

Japan

TEL: 81-266-23-0020 (switchboard)
81-266-24-2004 (direct)

FAX: 81-266-24-2017

m No part of this manual may be copied or reproduced without authorization.
m The content of this manual is subject to change without notice.

m Seiko Epson asksthat you please notify it if you should find any errorsin this manual
or if you have any comments regarding its content.

C Safety Precautions)

Before using these products, be sure to read the following safety precautions aswell asthe product
manual and other relevant manuals.

The safety section of this manual explains minimum safety requirements that users must follow
when building and using the robot system. Please read the manual carefully before commencing
system design work and implement the appropriate safeguards.

After reading these materials, keep them in a place where they can be easily retrieved or reference
if questions or problems arise.

! WARNING

m Therobot system manufacturer/supplier shall design and construct robot systems
in accordance with the principles described in " Safety section" of this manual.
Please read this manual first.

m Thisrobot has been designed and manufactured strictly for use in anormal indoor
environment. Do not use the robot in an environment that exceeds the conditions
set forth in the manuals for the manipulator and controller.

m Do not use the robot in excess of the usage conditions and product specifications
described in the manuals. Doing so will not only adversely affect the life of the
product but may also present a serious safety problem.

m Only trained personnel should be allowed to design, install, operate, perform func-
tion test, and maintain this robot and the robot system.
Trained personnel are those who have taken a robot training course held by the
dealer or those who have carefully read the manuals and have equivalent knowl-
edge or skill.

FOREWORD

MANUALS

. User'smanual

A manual that gives ageneral description of robots. It describes such things as safety precau-
tion, operating methods, teaching methods, programming methods, and file management.

. Manipulator manual

A manual for the manipulator itself. It describes such things as robot installation, motion
range, safety, and hands.

. Robot controller manual

A manual for the robot controller. It describes such things asinstallation, switch settings, and
connection with peripheral equipment.

. Reference manual

A manual that describes the commands for the SPEL 111 robot language.

. Maintenance manual

A manual that describes the maintenance procedure of the robot. It describes such things as
check points, troubleshooting, how to repair and so on.

. Operating unit manual (option)

A manual for the operating unit that describes such things as operating methods.

. Programming support software manual (option)

A manual for the program development support software. 1t describes such things as operating
environment and operating methods of SPEL Editor or SPEL for Windows.

We provide two kinds of software, SPEL Editor (for MS-DOS) and SPEL for Windows (for
Microsoft Windows). We also provide Vision Guide, the integrated robot vision system, asan
option of SPEL for Windows.

. Teaching pendant manual (option)

A manual for the teaching pendant. It describes such things as how to operate the teaching
pendant.

Command entry format

Enter commands according to the following format rules.

Simple character string :Enter the string asit is shown.

Example: MOTOR ON

[] (sguare brackets) :Use these to indicate a type of data.

Example: ON [output bit number]

| | (vertical lines) :Use these to indicate options.

Example MOTOR |ON |

|OFF|
{ } (brackets) :Use these to indicate omittable settings (switches, etc.). The
function differs depending on whether or not the setting is
omitted.
Example: DIR {/W}
{ In (brackets + n) :Use these to indicate that the setting in brackets will be re-

peated "n" times (enter anumber as"n"). Simply entering an
"n" (not a number) indicates that the setting can be repeated.

~ (tilde) : Use thisto indicate that the command format continues onto
the next line or from the previousline.

For SPEL for Windows users

We don't recommend using SPEL for Windows with SPEL Editor. If using the SPEL for Win-
dowswith SPEL Editor, see"7. How to Use the Teaching Pendant and SPEL Editor" of SPEL for
Windows manual.

TABLE OF CONTENTS

vi

CHAPTER 1
1.1
1.2
1.3
1.4

CHAPTER 2

NN NN NN
N~ o b weE R

SAFETY SECTION

Basic Function for Safety

Low Power and High Power

Safeguard

Emergency Stop

Enable Switch (Dead Man Switch) for SRC-320 only

Recommendation for safety

General

General design requirements

Design and safeguarding of the robot system
Use and Care

Installation, commissioning and functional testing
Documentation

Training

INTRODUCTORY SECTION

CHAPTER 1
1.1

1.2

1.3

1.4

1.5

CHAPTER 2
2.1
2.2
2.3

Preparation for Operation

Robot Components

Options

Installation Precautions

Check M.CODE and cable length
Arm fastener

Programing Unit

Preparation for using programing unit
Mode

TEACH mode

AUTO mode

Error Message

LED of controller indication panel
Output to OPU-300 and REMOTEL1 connector
Output to programing unit

Basic Operation

Basic Operation Flow

Checking the Start-up Status

Setting Data Backup

About Initializing of the Motion Range

A M W N

10
12
13
14

16
16
17
17
17
18
18
19
19
21
22
22
23
23

24
25
26
26

2.

3.

Motor Power On

The motor engagement/disengagement status
Machine Calibration

Home (Standby) Position Setup

Defining the home position

Arm moving order in homing

Teaching and Programing

Teaching

Example of the teaching method

Example of the programming

Executing a Program

Compiling

Execute the programing from PC

Execute the program from operating unit
Execute the program from REMOTE3
Selecting Program for Changing Lines and Products
Selecting program from REMOTE input
Utilization of CHAIN command

10 File Handling
CHAPTER 3 Teaching

1

CHAPTER 1

CHAPTER 2

2.

1

Coordinate System Used in Jog Feeding

Jog feeding using the "BASE" coordinate system
Jog feeding using the "TOOL" coordinate system
Jog feeding using the "JOINT" system

About Jog Movement

ELEMENTARY SECTION

Motion Speed
Acceleration/Deceleration Speed
High-speed Operation in TEACH mode
Safeguard constraint

POWER (LP) command constraint
TSPEED (TSPEEDS) command constraint

Axis #3 Speed/Acceleration Control for JUMP command

Transporting Objects Heavier than the Rated Weight

Programming

Basic Constituents of Program
Function name

Comments

Multi-statement

Labels

27
27
28
29
29
29
30
30
31
33
34
34
34
35
35
36
36
37
38

39
40
41
41
42

44
45
45
45
46
47
48

49
50
50
50
51

vii

viii

2.2

2.3

2.4

2.5

2.6

CHAPTER 3
3.1

3.2

3.3

Constants

Numeric constants

Character constants

Variables

Specifiable number of variables
Numeric variables

String variables

Array variables

Listing of variable names
Backup variables

Caution on using variables
Operations

Arithmetic operations

Logical operators

Relational operators

String operators

Order of operators precedence

Integer operation and real number operation

Returned value from the function

Case where operation and function can be used

Program Control Statements
FOR...NEXT

GOTO

IF...THEN...ELSE
GOSUB...RETURN

GOTO, FOR..NEXT, GOSUB...RETURN, IF..THEN...ELSE

CALL
SELECT...CASE...SEND
WHILE [condition]... WEND
TRAP

Nesting

Pseudo Command

Files

Main Memory and File Memory
Memory area in the main memory
Program execution area

File memory

File names

The constituents of a file name
How to make a file name
Extension

Special file names

Files Loaded when Execution

52
52
52
53
53
53
54
55
55
56
57
59
59
59
60
60
60
60
61
61
62
62
62
62
63
63
64
64
65
65
66
67

68
68
69
69
70
70
70
70
71
72

CHAPTER 4
4.1

CHAPTER 1
1.1

1.2

CHAPTER 2
2.1

2.2

2.3

2.4

Directory

Directory

Root directory

Sub directory

Creating the sub directory
Deleting a sub directory
Tree-structured directories
Parent directory, child directory
Current directory

Specifying path

Environment variable

APPLIED SECTION

Multi-tasking

What is Multi-tasking
Advantages of multi-tasking
Multi-tasking in SPEL Il

Tasks during execution of WAIT command, INPUT command

and movement commands

WAIT command and IF sentence
Timing to switch tasks

Interlock among Tasks

Interference of controller

Only one device used by multiple tasks

Program Techniques

How to Write Large-scale Programs (Efficient Use of
CHAIN/LINK)

Case in which the CHAIN command can be used:
Case in which the LINK command can be:
Movement to Multiple Points Spaced Equidistantly
Definition of pallet

Positional designation inside pallet:

Techniques for Shortening Cycle Time

Using arch motion

Free setting of the timing of position completion
Parallel processing

Conditional stop during motion

Assembly operations at low speed

Associated commands

Using Position Data

73
73
73
74
74
75
75
75
76
77

80
80
81

82
82
83
84
84
85

87
87

90
90
91
92
92
92
92
93
93
93
94

CHAPTER 3
3.1

CHAPTER 4

4.1
4.2

CHAPTER 5

5.1
5.2

CHAPTER 6

6.1
6.2

CHAPTER 7
7.1

7.2

7.3

7.4

7.5

7.6

Debugging

Multi-tasking Debugging 95
Convenient debugging commands 95
XQT command 95
TSTAT command 95
TON/TOFF command 96
PRINT command 96
Batch Processing

Batch Processing Command 97
Batch File 99
Creating the batch file 99
Automatic Program Execution at Power On
AUTO.BAT File 100
IPL Program 100
System Configuration File

CNFG.SYS File 101
Editing files 102
RS-232C

Overview of RS-232C 104
Configuration 104
Configuration for SPEL Il 104
Computer configuration 107
TTY protocol and XON/XOFF control 108
Basic protocol 109
Transmission control via the CS pin 111
RS-232C interface 112
Communications between Robots 115
Configuration settings 115
Communication-related commands 115
Specific use methods for communication-related commands 115
Communication between Robot and User Equipment 120
Data format 120
Program for communicating with user equipment 122
Robot control program 126
Communication between Host Computer and Robot 125
Console 125
Robot control program 126
Extended Functions 137
SPEL Il : Extended function calls 137
ASCII code chart 139
Transmission Errors 140

Transmission error codes 140

SAFETY Section Chap. 1: Basic Function for Safety

CHAPTER 1. BASIC FUNCTIONS FOR SAFETY

The major safety functions of our robots are explained in this chapter. These explanations repre-
sent the minimum knowledge necessary for designing a system.

The explanationsin this chapter are purposely kept simple and brief in order to give you agenera
understanding of safety. Please refer to the controller manuals and other relevant manuals for
details and build a safe system based on a solid understanding of the characteristics of our robots.

1.1 Low Power and High Power

The robot has two motor power modes: low power and high power. In low power mode the
robot’ s speed of motion and torque are reduced. Conversely, in high power mode, the robot can
be operated at the programmed speed and specified torque.

Reduced speed is designed to give operators time to avoid danger if the robot should unexpect-
edly malfunction for some reason. Reduced torqueis designed to prevent operators from sustain-
ing serious or fatal injuriesif they should be struck by the robot. Each robot model hasits own
predetermined maximum values for reduced speed and reduced torque. Users cannot change
these.

For safety reasonstheinitial state of robotsis alwaysthe low power mode. The robot will not shift
to high power mode unless the specified command is executed.

These motor power modes are committed to memory. Nevertheless, even in high power mode,
the motor control isforced into alow power state that isidentical to low power mode when the
safeguard opens. (The motor power of the robot revertsto the high power state after the safeguard
isclosed.) Therabot isalso automatically reset to low power mode whenever the operation mode
(TEACH/AUTO) is switched or the controller is reset.

Low power mode High power mode
Safeguard open low power low power
Safeguard closed low power high power

Multiple protect circuits and mutual monitoring circuits in the controller prevent the robot from
running out of control and exceeding the specified reduced speed and reduced torque even if a
single failure occursin the low power mode.

SAFETY Section Chap. 1: Basic Function for Safety

1.2 Safeguard

For SRC-320 only

REMOTEL connector of controller has aninput circuit that is connected to the safeguard’ sinter-
lock switch.
This safeguard input operates as follows:

When AUTO is the operation mode
Safeguard closed: Automatic operation is possible

Safeguard open: Robot stops immediately and enters the low power mode. Robot cannot be
restarted until the safeguard is closed and a START signal isinput.

When TEACH is the operation mode
Safeguard closed: Robot can operate even at the high power for program verification

Safeguard open: Robot stops immediately but can only operate at the low power thereafter for
teach operations.

Refer to (6) - €) in section 2. 3 of this manual and "4. REMOTE 1" of controller manual.

The safeguard input circuit is dual-redundant. An open safeguard is aways detected even if one
of thecircuitsfails. Anerrorisdisplayedinthe event of afailure. Therefore, we strongly recom-
mend dual-redundant wiring for the safeguard interlock switch.

In case of SRC-320, once an open safeguard is detected by the safeguard input circuit, the signal
will be latched, and even after the door is closed, it will not be recognized as such until the latch
release signal isinput.

This has been provided as ameans of preventing the kind of confusion that can easily arise during
the construction of arobot system when operator and the robot system itself perceive the state of
the safeguard differently; that is, when one believes the door is open, while the other perceivesit
asheing closed. (For example, when faulty adjustment causes a differencein the state of the door
and the state of the interlock switch; or when the door closes without the operator intending for it
to be closed; etc.)

SAFETY Section Chap. 1: Basic Function for Safety

1.3 Emergency stop

Therobot controller is equipped with emergency stop input terminals. When the normally-closed
emergency stop switch is pressed, the power that is supplied to the motor is shut off and the robot
is stopped by means of dynamic brake.

The trajectory of robot motion before stopping and the exact point at which it will stop after the
emergency stop switch is pressed cannot be specified. In most cases the robot will not travel
beyond the taking point that was specified prior to execution of the emergency stop; however,
overrun may occur depending on the robot’ s load and speed of motion. Therefore, associated
equipment needs to be installed an adequate distance away from the robot.

An emergency stop output terminal that is interlocked with the robot’s emergency stop is pro-
vided. User can useit to control associated equipment.

1.4 Enable Switch (Dead Man Switch) for SRC-320 only

An enable switchisprovided for persons working within the safeguarded space. In TEACH mode
the robot only operates when the switch is being pressed and it stops when the switch isreleased.
Robot operation cannot be reinitiated simply by pressing the enable switch.

The enable switch islocated on the side of the teach pendant, TP-320. To operate the robot using
the pendant, the enable switch must be pressed continuously, regardless of whether the safeguard
is open or closed.

A personal computer is used to perform operations from outside the safeguarded space for pro-
gram development. Program devel opment support software for PC (SPEL Editor, SPEL for Win-
dows) has ateaching function. Please connect a PC cable that is equipped with an enable switch
(available as an option) when using this function. When a PC cable that is not equipped with an
enable switch is connected, please never use the PC in the safeguarded space.

SAFETY Section Chap. 2: Recommendation for Safety

CHAPTER 2. RECOMMENDATION FOR SAFETY

2.1 General

This chapter describes the basic precautions that must be taken to ensure safe use of the robot and
robot system.

Please carefully read this chapter and keep safety foremost in mind when using this robot equip-
ment. Specific tolerance values, usage conditions and such matters necessary for ensuring saf ety
are explained in the controller and manipulator manuals.

Matters covered here are based on | SO 10218 (Manipulating industrial robots - Safety), but safety
measures have been made more concrete and some new items have been added.

Some safety standards related to robots and robot systems are listed below. Please implement full
safety measures after referring not only to this chapter but to each standard. (Note: Thefollowing
isonly apartial list of necessary safety standards.)

EN775 European Standard; Manipulating industrial robots - Safety

ANSI/RIA R15.06 American National Standard; Industrial Robots and Robot Sys-
tems - Safety Requirements

IEC204-1 (EN60204-1) Safety of machinery - Electrical equipment of machines
Part 1. Specification for general requirements

EN292-1,-2 Safety of machinery - Basic concepts, general principlesfor de-
sign
Part 1. Basic terminology, methodology
Part 2. Technical principles and specifications

EN418 Emergency stop equipment, functional aspects - principles for
design
prEN953 General requirements for design and construction of guards

SAFETY Section Chap. 2: Recommendation for Safety

2.2 General design requirements

The robot system manufacturer/supplier shall design and construct robot systems in accordance
with the principles described in this clause and the next clause.

(1) Failure to safety

The robot system shall be designed, constructed, and implemented so that in case of foreseeable
failure of any single component safety functions are not affected or when they are, the robot
system isleft in a safe condition.

(2) Electrical equipment

The application of the electrical equipment of the robot and robot system shall be in accordance
with I[EC204-1.

(3) Power supply

The power supply and grounding (protective earth) requirements shall be in accordance with the
specifications described in the controller manual.

(4) Isolation of power sources

Each robot system shall have means to isolate each of its power sources. These means shall be
located in such away that no person will be exposed to hazards and they shall have a lockout/

tagout capability.

(5) Environmental requirements

The environmental requirements shall be in accordance with the specifications described in the
manipulator and controller manuals.

SAFETY Section Chap. 2: Recommendation for Safety

2.3 Design and safeguarding of the robot system

(1) Physical arrangement of the robot system

(2) Shut down

(3) Emergency stop

a)

b)

©)

d)

f)

When designing the layout of arobot system, please take adequate care to secure enough
space between the robot and the various pieces of associated equipment so that they do not
interfere with one another. When an emergency stop switch is pushed, the robot may travel a
path that differs from the normal path of operation before stopping, thus alayout design that
takes thisinto account is necessary. Designers also need to refer to the manipulator manuals
and lay out the system so that there is enough room to perform maintenance and inspections.

When designing arobot system having arestricted range of motion, please restrict the range of
motion in the manner described in the manuals for the manipulator. Please be certain to take
steps to restrict the range of motion by means of both software and mechanical stops.

Please design the wires and lines (hoses) of the robot end effector, in such away that work-
piecesinits grasp are not thrown even when the robot system’ s power is suddenly shut down
or system failureis occurred.

Please design the weight and moment of inertia of the robot end-effector within the tolerance
limits. Using the robot beyond the tolerance limits puts an enormous load on the robot. This
not only shortens product life but also may invite an unpredictable, dangerous situation due to
the external force applied to the end-effector and work-piece.

Please design the loading and unloading of parts and materials to the robot system so that
operator safety can be fully ensured. When it is necessary to load and unload parts without
stopping the robot, a shuttle device needs to be installed or some other means needs to be
designed so that operators do not have to enter the hazardous zone.

In casesin which amultiplicity of robots are used in one system, the layout must be designed
so that their maximum operating areas will not interfere with each other.

Shutting down (removing power to) the robot system or any associated equipment shall not result
in a hazardous situation.

Not only isit necessary to prevent the danger presented by the throwing of work-pieces as men-
tioned above in (1); it is also necessary to verify the safety of the robot’s associated equipment.
Does the equipment stop safely? Does the removal of motive power conversely result in a dan-
gerous situation? These and other questions need to be answered.

Each robot system work station shall have areadily accessible emergency stop device. Any
emergency stop push-button switch that is employed shall conform to relevant safety standards,
e.g. EN418, IEC204-1, 1S010218.

SAFETY Section Chap. 2: Recommendation for Safety

(4) Control from remote locations

(5) Safeguards

Therobot controller is designed based on the idea of "asingle point of control" in order to prevent
danger by operating the robot from aremote location. Similarly, safety measures for the robot
system asawhole are necessary to prevent hazards by allowing associated equipment to be started
and stopped from a remote location.

The robot system needs to be equipped with safeguards to ensure safety. Please perform arisk
assessment to determine the additional space required beyond the restricted space to define the
safeguarded space. (References: prEN953 6. Guard Design)

Safeguards shall

a) be constructed to withstand foreseeable operational and environmental forces,

b) prevent access to the safeguarded space except through openings equipped with interlocks or
presence sensing devices,

c) be permanently fixed in position and only be removable with the aid of atool; and

d) befree of sharp edges and projections and shall not themselves be a hazard.

(6) Designing, installing and adjusting interlocking guards

a) Please be sureto use a switch that conforms with safety standards (EN1088, EN60947-5-1,
etc.) for the safeguard interlock. (The major requirements for the switch are that it be atwo
contact point type having a forced opening mechanism and that it have a protection level
suitable for the surrounding environment.)

b) Asaprecaution against switch failure and other unforeseeable events, the interlock switch
should be arranged so that the switch isforced to be pressed (the contact point is opened) when
the gate is opened. Interlock switches that simply open the contact point by means of the
spring action of the switch itself when the gate is opened are not suitable.

c) Where whole-body access to the safeguarded space can be gained through an interlocking
door, adevice which preventsinadvertent closing of the door should be provided.

d) Please connect theinterlock switch to therobot controller’ s safeguard inputs. We recommend
dual-redundant wiring as a precaution against failure.

e) Pleaseinstall a switch to cancel the latch of the "safeguard open™ outside the safeguarded
space and in close proximity to the door.

SAFETY Section Chap. 2: Recommendation for Safety

(7) Presence sensing device

(8) awareness means

The safeguard interlock described above can be thought of as a presence sensing devicein that it
indicates the possibility that a personnel is present in the safeguarded space. Before a different
presence detecting device is to be installed, please perform afull risk assessment and take the
utmost care to ensureitsreliability.

Whenever presence sensing devices are used for safety purposes, they shall comply with the fol-
lowing.

a) A presence sensing device shall be installed and arranged so that persons cannot enter and
reach into a hazardous area without activating the device or cannot reach the restricted space
before the hazardous conditions have ceased.

b) Their operation shall not be adversely affected by any of the environmental conditions for
which the system was intended.

¢) Resumption of robot motion shall require the removal of the sensing field interruption. This
shall not be the control to restart automatic operation.

Awareness barrier or awareness signal may be used in addition to but not as a substitute for the
safeguards.

(9) Safe working procedures

(10) Reset of safeguards

It is recognized that for certain phases of the robot system life (e.g. commissioning, process
changeover, cleaning, and maintenance) it may not be possible to design completely adequate
safeguards to protect against every hazard or that certain safeguards may be suspended. Under
these conditions, appropriate safe working procedures shall be used.

Restarting the system shall require a deliberate action from outside the safeguard space. Reestab-
lishing the interlocked door shall not in itself restart automatic operation of the robot system.
(Robot itself isdesigned asso.) Therestarting device shall be located so that it cannot be reached
from inside the safeguarded space and should be located in a manner to afford a view of the
safeguarded space.

SAFETY Section Chap. 2: Recommendation for Safety

2.4 Use and care

(1) General

Please store pendants that are not in use out of reach to prevent an operator from mistakenly
pressing the emergency stop switch on a pendant that is not connected to the controller during an
emergency.

(2) Automatic (normal) operation
Automatic operation shall only be permissible when
a) theintended safeguardsarein place and functioning.

b) no personnel are present within the safeguarded space, and

c) proper safe working procedures are followed.

Please equip the pendant key holder with an operating mode selection key and take steps so that
only the personnel holding the pendant can change the mode. The mode selection key must not
be left on the operating unit outside the safeguarded space when a personnel is inside the safe-
guarded space.

(3) Teaching
(Prior to teaching)

a) Theteacher shall be trained on the type of robot used in the actual robot system and shall be
familiar with the recommended teaching procedures including all of the safeguarding meth-
ods.

b) The pendant shall be tested to ensure proper operation. Any faults or failures shall be cor-
rected prior to teaching.

c) Before entering the safeguarded space, the teacher shall ensure that al necessary safeguards
arein place and functioning.

(During teaching)

a) Therobot system shall be under the sole control of the teacher within the safeguarded space.
(Astherobot is designed with single point of control, so the robot system shall be designed.)

b) Movement of other equipment in the safeguarded space which can present a hazard shall
either be prevented or under the sole control of the teacher. When under the control of the
teacher, it shall require deliberate action on the part of the teacher separate from the action to
initiate robot motion.

¢) All robot system emergency stop devices shall remain functional.

(Returning to automatic operation)

The teacher shall return the suspended safeguardsto their original effectiveness prior to initiating
automatic operation of the robot system.

10

SAFETY Section Chap. 2: Recommendation for Safety

(4) Programming data

(5) Program verification

(6) Trouble shooting

(7) Maintenance

Programmed data shall be stored in a suitably protected environment when not in use.

When the program verification with High Power Mode is necessary, it shall be made with all
persons outside the safeguarded space.

When it is necessary to perform program verification with personnel inside the safeguarded space,
the same precaution and procedure as teaching shall apply.

Trouble shooting shall be performed from outside the safeguarded space. When thisis not prac-
ticable, the following requirements shall apply.

a)

b)

b)

personnel responsible for trouble shooting are specifically authorized and trained for these
activities;

personnel entering the safeguarded space shall use the teaching pendant equipped with an
enabling device to allow motion of the robot;

safe working procedures are established to minimize the exposure of personnel to hazards
within the safeguarded space.

The maintenance manua is attached to the robot. Additionally the robot system shall have an
inspection and maintenance program to ensure continued saf e operation of the robot system.
Maintenance of the robot or robot system shall be performed in accordance with the mainte-
nance manuals.

Personnel who perform maintenance or repairs on robot or robot systems shall be trained in
the procedures necessary to perform safely the required tasks.

When it is necessary to perform maintenance within the safeguarded space, the followings
shall be taken.

(1) The robot system shall be shut off using alockout/tagout procedure.

(2) Alternatively, intervention within safeguarded space while power is available to the robot
shall reguire the followings.
Prior to entering the safeguarded space, a visual inspection of the robot system shall be
made to determine if any conditions exist that are likely to cause malfunctions. If pendant
controls are to be used, they shall be functionally tested prior to such use to ensure their
proper operation. If any damage or malfunction is found, required corrections shall be
completed and retesting shall be performed before personnel enter the safeguarded space.
Personnel performing maintenance or repair tasks within the safeguarded space shall have
total control of the robot or robot system. All robot system emergency stop devices shall
remain functional.
The suspended safeguards shall be returned to their original effectiveness prior to initiat-
ing automatic operation of the robot system.

11

SAFETY Section Chap. 2: Recommendation for Safety

2.5 Installation, commissioning and functional testing

(2) Installation

The robot or robot system shall be installed in accordance with the manufacturer's manual.
1S09946 shall be consulted for additional guidance during installation.

(2) Commissioning and functional testing

When the safeguarding methods are not in place prior to commissioning and functional testing,
interim means of designating the restricted space shall be in place before proceeding.

During the commissioning and functional testing, personnel shall not be alowed in the safe-
guarded space until the safeguards are functional.

Aninitial start-up procedure shall include, but is not necessarily limited to, the following.

a) Before applying power, verify that

- therobot has been properly mechanically mounted and is stable,

- the electrical connections are correct and that the power (i.e. voltage, frequency, interfer-
ence levels) iswithin specified limits,

- the compressed/vacuum air is properly connected and within specified limits,

- the peripheral equipment is properly connected,

- theinterlocking switches are applied on the safeguard and they are correctly functional, and

- the physical environment is as specified in the manipulator and controller manuals.

b) After applying power, verify that

- the start, stop, and mode selection control devices function as intended,

- each axismoves and isrestricted as intended,

- emergency stop circuits and devices are functiona,

- itispossible to disconnect and isolate the external power sources,

- the teach and auto facilities function correctly,

- the safeguards and interlocks function as intended,

- other safeguarding isin place

- in reduced speed, the robot operates properly, and

- therobot has the capability to perform the intended task at the rated speed and load.

(3) Restart of the robot system after modification

A procedure for the restart of the robot system after hardware, software or task program modifica-
tion, repair, or maintenance shall include but not necessarily be limited to the following:

a) check any changes or additions to the hardware prior to applying power;

b) functionally test the robot system for proper operation.

12

SAFETY Section Chap. 2: Recommendation for Safety

2.6 Documentation

The robot system documentation shall contain the documents of all the componentsincluded in
the system with their identification (e.g. robot, associated equipment, safeguards).

It shall also as aminimum include the following:

a) aclear, comprehensive description of the robot system and itsinstallation including mounting
and connection to external power sources,

b) adescription of foreseeable hazardous conditions and how to avoid them;
c) adescription (including interconnecting diagrams) of the safeguards, interacting functions,
and interlocking of guards with hazardous conditions particularly with interacting installa-

tions;

d) any further instructions for use specific to the system.

13

SAFETY Section Chap. 2: Recommendation for Safety

2.7 Training

14

The user shall ensure that personnel who program, operate, maintain, or repair robots or robot
systems are adequately trained and demonstrate competence to perform their jobs safely. Training
shall include, but is not limited to, the following:

a) aview of applicable standard safety procedures and the safety recommendations of the robot
manufacturer and robot system designers;

b) aclear definition of assigned tasks;

C) identification and explanation of all control devicesand their functions used in performing the
assigned task;

d) identification of the hazards associated with the assigned task;

€) the designated method(s) of safeguarding including the safe working procedures from the
identified hazards;

f) the method for testing or otherwise ensuring the proper functioning of the safeguards and
interlocks.

INTRODUCTORY SECTION

INTRODUCTORY Section Chap. 1: Preparation for Operation

CHAPTER 1. PREPARATION FOR OPERATION

1. 1 Robot Components

The basic components of our robot is shown in the following diagram.

Robot Controller

T
Peco compr (| S

IR
] [T

-] LI

Supporting Software [T
SPEL Editor || ||

or
SPEL for Windows [-=C e
Jj Operating Unit
OPU-300
Teaching Pendant
TP-320/TP-320J

NOTE . .
e Components other than the manipulator and robot controller are optional.

Options
SPEL Editor
The program development support software for MS-DOS.

SPEL for Windows
The program development support software for Microsoft Windows.

Operating unit (OPU-300)
A multifunction robot operating unit with alarge, backlighted LCD display.

Teaching pendant (TP-320/TP-320J)
Small operating unit for teaching jobs.

16

INTRODUCTORY Section Chap. 1: Preparation for Operation

1.2 Installation Precautions

First, read the precautions in the manipulator and controller manuals. Below are some additional
precautions to be noted.

Check M. CODE and cable length

Each controller is set and adjusted for a particular manipulator, and breakdowns or other prob-
lems may occur if adifferent type of controller is connected. Therefore, an"M. CODE" |abel is
attached to each manipulator and controller to indicate correct matches between manipulators and
controllers. On most models, thislabel is attached on the rear of the unit.

When connecting the manipulator and controller, be used that the two devices havethe
ﬁ'\.CAUT'ON same M. CODE.

M. CODE label

M.CODE: H554BN 01234

A CAUTION
CONNECT MANIPULATOR AND CONTROLLER
WHICH HAS THE SAME M.CODE WITH
3 m CABLE.

Arm fastener
When shipped, the robot arm is held in place by a special arm fastener. Do not remove thisarm
fastener until the manipulator has been secured on its base table. Be sure to remove the arm
fastener before turning on the power.
See the manipulator manual for further description of the arm fastener.

17

INTRODUCTORY Section Chap. 1: Preparation for Operation

1.3 Programing Unit
The equipment, called the programming unit, is used to teach the points and to create programsin
order to operate the robot. Generally, apersonal computer is used with the programing software,
SPEL Editor or SPEL for Windows.

Preparation for using programing unit

The preparation for utilization of the programing unit isdescribed in"1.3 Preparations" of SPEL
Editor manual or "Setup” of SPEL for Windows manual. Refer to each manual for details.

18

INTRODUCTORY Section Chap. 1: Preparation for Operation

1.4 Mode

Mode on controller

TEACH mode

NOTE

&

The controller hastwo modes: TEACH and AUTO. When operating the robot, you need to select
the mode corresponding to the operating equipment. Note that the method of operation differs
with the mode selection. There are two ways to switch between these modes.

(a) Key switch on operating unit
Turn the operating unit’ s key switch to change the mode.

(b) Send mode signal to REMOTEZ2 connector (when operating unit is not used)
Send a mode signal to the pin on the REMOTEZ2 connector that corresponds to the desired
mode. For further description, seethe section entitled "If OPU-300 is not used” in the control-
ler manual.

The functions of the two controller modes are described below.

Thismode is used for teaching, programming, and debugging robots when the controller is con-
nected to a programming device (PC) or teaching pendant. No matter which device is connected,
this mode operates by sending instructions to the robot via the controller’s TEACH connector.
Connection to a computer is made via the computer’ s RS-232C connector.

The following configuration is used to enable communications viathe TEACH connector. The
same communication settings must also be made on the computer.

9600 bps, 8 hits, even parity, 2 stop bits

The console in TEACH mode

The device that sends commandsto the robot is called the console. In TEACH mode, the console
isassigned to the device connected to TEACH port on front panel of the controller. Alsoyou can
connect the PC to RS-232C (#20) port on back of the controller by setting the software switch.
(for SPEL for Windows only)

The #21 port of RS-232C can not be the console.

,-"?'\ C AU T | O N 232C port. If the PCis connected to TEACH port, the <Pendant> button on SPEL for

In case the SSW3-1 of software switch is on, the PC must be connected #20 of RS-

Windows doesn't work.

19

INTRODUCTORY Section Chap. 1: Preparation for Operation

20

* TEACH port
It isstandard setting. The teaching pendant or PC is connected to the TEACH port on front panel
of the controller.

* RS-232C port #20

Y ou can connect the teaching pendant to the TEACH port on the front panel of the controller and
simultaneously you can connect the PC with SPEL for Windows to the RS-232C port #20 on the
rear panel of the controller. By changing the console, you can do the teaching work and making
programs or debugging in parallel without changing the cable. Thisfunction is supported only by
SPEL for Windows and teaching pendant TP-320/TP-320J.

When using RS-232C port #20, turn the software switch SSW3-1 on beforehand. By turning on
the controller power after changing the software switch, RS-232C port #20 will be console. How
to change the consoleis asfollows.

1). In the case of changing the console from teaching pendant to PC, push the REL EASE key on
teaching pendant.

2). Inthe case of changing the console from PC to teaching pendant, use the <Pendant> button on
[Robot Control Panel] dialog box of SPEL for Windows.

A WARNING While debugging a program with PC which is connected to RS-232C port #20, when

Don't carry out teaching operation from PC connected #20 port of RS-232C. Because
emergency stop switch with PC cable connected to #20 port does not function as emer-
gency stop. Therefore, to move the robot is very dangerous.

you move the robot, it is required to have the teaching pendant (TP-320/TP-320J) or
OPU-300 which is connected to TEACH port in hand, in order to press the emergency
stop switch in case of an emergency.

The motor power statusin TEACH mode

In TEACH mode, there is possibility that the worker is near the robot. Therefore the robot is
usually in low power state in TEACH mode because of keeping the worker safe. In order to
operate the robot in high power state (programmed speed) in TEACH mode, it is necessary to
close the safeguard and cancel the low power state by POWER HIGH (LP OFF) command. Even
if POWER HIGH (LP OFF) command is executed when the safeguard is opened, the motor power
status doesn't change into high power state. In similar ways, even if the safeguard is closed, the
robot keeps low power mode unless executing POWER HIGH (LP OFF) command.

When in TEACH mode, the robot is able to be operated at low speed even when the safeguard is
open to enable teaching.

INTRODUCTORY Section Chap. 1: Preparation for Operation

AUTO mode

Thisisthe mode used for robots when they operate in the factory. The commandswhich are sent
to the robot to start or pause a program can be sent via the OPU-300 operating unit, the RE-
MOTES3 connector, or the RS-232C port on rear panel of controller.

The consolein AUTO mode
The device that sends commands to the robot is called the console, and it is specified using the
CONSOLE command. There are three ways to specify the consolein AUTO mode.

« If using the OPU-300 (REMOTE?2) as the console:

This device is equipped with push-button switches for starting and pausing programs. It also
includes adisplay for the I/O monitoring function and error messages.

* If using REMOTES3 as the console;

Robot can be controlled using REMOTES (it can start, pause or stop a program and calibrate
robot) via a sequencer or commercial control panel.

« If using the S. NET (RS-232C port #20, #21)

The RS-232C port provides a communications port for sending commands to the robot from a
computer. It also enables various kinds of data (production control data, etc.) to be sent to the
computer from the robot so that the computer can processthe data. Refer to"7.4 Communica
tion between Host Computer and Robot" in applied section.

The motor power statusin AUTO mode

In AUTO mode, the robot is never able to operate when the safeguard is open because it means
that there is someone near the robot. If you attempt to operate the robot when the safeguard is
open, the robot immediately enters "quick pause" mode and cannot be operated. To cancel quick
pause mode and enable operation, you must shut the safeguard and send a start signal.
Regarding motor power statein AUTO mode, refer to the transition diagram of controller manual.
It isdifferent between SRC-300 and SRC-320 controller.

21

INTRODUCTORY Section Chap. 1: Preparation for Operation

1.5 Error Message

When an error occurs in the robot controller an error message will appear asfollows. At the same
time, an error message will appear on the operating unit OPU-300 and the programming unit (PC).

LED of controller indication panel
O 7-segment LED

PRG. NO. LINE NO./ STATUS

0g g ogjg

Error number

AXis number of cause of error

PRG. NO. LINE NO. / STATUS

0oy ojgpogig

Line number where error occurred

Task number where error occurred

The above mentioned contents are expressed alternatively.
The error number and the axis number is expressed with ahyphen (-).

O Other LEDs

Lit up when emergency stop isinput.
E. STOP The LED keeps lighting until the robot is reset even if getting rid of
cause of emergency stop.

Lit up when error has occurred.

ERROR o

Does not light in the case of an emergency stop or system error.

Lit up when the main CPU cannot function because of troublein the
S.ERR hardware. In this case proper display will not appear on the seven

LEDs.

Lit up when safeguard is open. (when the status of theinterlock switch
SAFE GUARD | that is connected to safeguard input terminals of REMOTE1 connec-
tor is open.)

22

INTRODUCTORY Section Chap. 1: Preparation for Operation

Output to OPU-300 and REMOTEL connector

O Liquid crystal display (OPU-300)
When an error occurs, an error number, line number, task number and error content will ap-
pear on OPU-300 as follows.

1Error 125,line 160,task 1
Arm reached the limit of motion range.

0 Output to OPU-300 LED and REMOTE1 connector

E. STOP Lit up (output) when there is an emergency stop input.
Lit up (output) when error has occurred.
ERROR S
Does not light in the case of an emergency stop or system error.
s ERR Lit up (output) when the main CPU cannot function because of
' troublein the hardware. In this case proper display will not appear on
the seven LEDs.
Lit up (output) when safeguard is open. (when REMOTEL's safe-
SAFE GUARD o .
guard switch input isreleased.)

Output to programming unit

If the error is caused by inputting a command then it is shown as:

MError 125 axis 3 : Arm reached the limit of motion range.

Error content
AXxis number of cause of error
Error number

If itisan error while running a program then it is shown as:

HError 125 axis 3,line 160,task 1 : Arm reached the limit of motion range.
1 1 T 1T

— Error content

Task number of cause of error
Line number where error occurred
Axis number where error occurred
Error number

23

INTRODUCTORY Section Chap. 2: Basic Operation

CHAPTER 2. BASIC OPERATION

In this chapter we will show the methods of basic operation and give examples of teaching and
programming. An outline of how to use our robot is given in this chapter.

2.1 Basic Operation Flow

The basic operation is shown in the following flowchart.

Power on

Start-up status check

|

(Setting data backup: only for the first time)

|

Motor power on

Calibration | Except for BNA, BNA-CL type

i) Programming
Automatic operation?
Automatic Teaching
operation
Programming
Debugging
Saving files

Automatic operation

End of operation

Power off

Each content is described in the following page.

24

INTRODUCTORY Section Chap. 2: Basic Operation

2.2 Checking the Start-up Status

NOTE

@® Make surethat the arm fixture of manipulator is removed.
@ Turn on the POWER switch on front panel of controller.

® Thereisthe display equipment such asthe LED on front panel of controller and operating unit
OPU-300, check to see that there are no abnormalities. The proper start-up statusis as fol-
lows:

» The LINE NO./STATUS on indicator panel of controller is shown as"0".

PRG. NO. LINE NO. / STATUS

O g ||g o b|gig

The numbers on the PRG.NO. do not haveto read "00".

In case of BNA or BNA-CL type manipulator, an error 119 may occur when the power is
turned on. This means that position data when the power was cut off and when turned on
differ.

If you moved the arm manually after the power is off, or cut off the power during operation,
thereis no problem. Execute RESET command to recover.

However in case the arm collide with something like peripheral system or after exchanging
the motor or reduction gear, there are dangers like crashing into something. In case of that
calibrate each axis asreferring "3.12 Calibration" of maintenance manual.

« LEDs on controller and OPU-300 should be lit up asfollows:

LEDs on/off status
E. STOP)
Light off

S.ERR

Controller]
SAFE GUARD Light on or off
MODE Light (TEACH/AUTO) Onelightison
RESET Light on
MOTOR POWER
EMG. STOP
ERROR i

OPU-300 Light off
SYSTEM ERROR
PAUSE
START
SAFE GUARD Light on or off
HOME

@ When you turn the power on and the start-up status differs from the above, remove apossible
cause of error.

25

INTRODUCTORY Section Chap. 2: Basic Operation

2.3 Setting Data Backup

NOTE

&

There are important system setting data in the controller. Make sure to back up the original
system data.

How to backup various kinds of setting data
* SPEL Editor : Execute MKV ER command in command mode.

« SPEL for Windows : Execute [Tools]-[Maintenance] command and click the <MKVER>
button on [Maintenance] dialog box.

The various setting data have been stored to the controller'sinternal file memory asafile by above
step. The SETVER command can be used to reset setting data that has been stored to file
memory. Refer to the pagesin reference manual that describe MKVER and SETVER commands.

In addition, you can backup the files stored in file memory on the PC's floppy disk. For further
description, see "Backing up and Restoring aFile" in chapter 3 of SPEL Editor manual or "[File]
menu" of SPEL for Windows manual.

The equipment, called the programming unit, is used to teach the points and to create programsin
order to operate the robot. Generally, apersonal computer is used with the programing software,

About initializing of the motion range

26

The motion range is set by using the RANGE command. Neither power off nor executing
VERINIT command changes RANGE motion ranges. When restoring setting value of RANGE
into the default value, reset the data as referring the backup data you got by above.

The RANGE is important command to move the manipulator safety. Read "8.3 Changing the
motion range" of manipulator manual carefully when using the RANGE command.

INTRODUCTORY Section Chap. 2: Basic Operation

2.4 Motor Power On

The motor will not engage by only turning the controller power on. To operate, it is necessary that
the motor isengaged. To engage the motor, follow any of the methods below:

(a) From the programming unit.

 SPEL Editor : Execute MOTOR ON command in command mode. (Refer to SPEL
Editor manual.)

» SPEL for Windows : Execute [Tools]-[Robot Control Panel] command and click the
<MOTOR ON> button on [Robot Control Panel] dialog box. (Refer
to SPEL for Windows manual.)

(b) From the operating unit OPU-300. (Refer to OPU-300 manual for detail.)
(c) From the teaching pendant TP-320/TP-320J. (Refer to TP-320/TP-320J manual for detail.)
(d) Input the motor power on signal to the REMOTES3. (Refer to controller manual.)

(e) Enter the MOTOR ON command in program.

The motor engagement/disengagement status

The motor engagement/disengagement status will switch as shown below:

Power on

Disengagement

MOTOR OFF
E. STOP
Servo error
MOTOR ON MOTOR OFF S. ERROR
E. STOP . i
Servo error Disengaging by servo-free
S. ERROR nominal axisor al axes
SLOCK
MOTOR ON SFREE
Engagement

27

INTRODUCTORY Section Chap. 2: Basic Operation

2.5 Machine Calibration

28

Machine calibration must be executed after the motors are turned on, unless the manipulator is
BNA or BNA-CL type. Useany of the following methods for machine calibration.

(a) From the programming unit.

» SPEL Editor : Execute MCAL command in command mode. (Refer to SPEL Editor
manual.)

» SPEL for Windows : Execute [Tools]-[Robot Control Panel] command and click the

<MCAL> button on [Robot Control Panel] dialog box. (Refer to
SPEL for Windows manual.)

(b) From the operating unit OPU-300. (Refer to OPU-300 manual for detail.)

(c) From the teaching pendant TP-320/TP-320J. (Refer to TP-320/TP-320J manual for detail.)

(d) Input MCAL tothe REMOTE3 as1/O-1. (Refer to controller manual.)

(e) Enter the MCAL command in program.

When you execute the MCAL when the arm is near the limit of motion range, the arm may go

beyond the motion range and calibration becomes impossible. |If this happens, execute the MO-

TOR OFF command, or turn off the controller, and manually return the arm to the center of the
motion range before starting over. (Refer to "9.1 Calibration" of manipulator manual.)

INTRODUCTORY Section Chap. 2: Basic Operation

2.6 Home (Standby) Position Setup

The home position can be set in an optional position. The arm is moved to the position using the
HOME command. Set the home position if necessary.

The HOME command moves the robot to a home (standby) positionin SPEL 111 Ver. 3. It cali-
brated robot in previous version.

Upon shipping, the home position is not defined. If the HOME command is executed before
defining it, it will come up as an error 143.

The HOME LED on the OPU-300 and the HOME output to the REMOTE2 will be on while the
homing operation is executed.

Defining the home position

The definition of the home position is executed by inputting the pulse value of the position you
want as home position using the HOMESET command.

If you want to know the relation between motion range and pulse value, refer to "8. The Mation
Range and Robot Coordinate” in manipul ator manual.

» SPEL Editor:

a) When you know the pulse value of the position you want as HOME, then input that pulse
value in command mode.
<Example> HOMESET 0,0,0,0

b) When the pulse value is unknown, you can easily define it using the PLS function. The
procedure is asfollows:
@® Execute SFREE command.
@ Move the arms manually to the position you want as HOME.
® Enter HOVESET PLS(1), PLS(2), PLS(3), PLS(4)

» SPEL for Windows:
Execute [Project]-[Robot Parameters] command and set the pulse value of home (standby)
position on [HOMESET] panel in [Robot Parameters] dialog box.

Arm moving order in homing

When homing, each axisis activated according to the order of the HORDR command setup.
Upon shipping, the default setup of HORDR is as follows. After the axis #3 is repositioned at
HOME, therest of the axes are repositioned at the same time.

<default value> HORDR &B0010, &B1101, 0, 0

If the repositioning order of the default setup is inconvenient for your application, change the
setup values using HORDR.

» SPEL Editor:
Set the values with HORDR command in command mode.

 SPEL for Windows:
Set the value on [HORDR] panel in [Robot Parameters] dialog box of [Project] menu.
29

INTRODUCTORY Section Chap. 2: Basic Operation

2.7 Teaching and Programming

Teaching

30

In order to drive the robot, it is necessary to teach the robot a target position. Thisis called
"teaching". There are threetypes of teaching methods but in actual operation, they are combined.

Remote teaching : In remote teaching the manipulator is moved to the desired position using the
jog keys of PC or teaching pendant and the position is taught.
The details for jog operation are explained in next chapter 3.

Direct teaching : Indirect teaching the manipulator, gets the disengagement of motors using the
SFREE command, is manually (directly) moved to the desired position and
the positionistaught. The detailsfor direct teaching areexplained in "L et'stry
the teaching" of next page.

MDI teaching : InMDI (Manua Datalnput) teaching you directly enter the datafor adesired
position when you know the coordinate values of the target position. Refer to
"Pn=Position Specification" of SPEL Il reference manua when you want to
know how to enter the position data.

In teaching PC (programming unit) or TP-320/TP-320J (teaching pendant) is used.

If you use the teaching pendant TP-320/TP-320J,
Refer to teaching pendant manual.

If you use a PC running SPEL Editor,
Refer to "6. Teach Key Mode" of SPEL Editor manual.

If you use a PC running SPEL for Windows,
Refer to [Jog and Teach] dialog box in [Tools] menu of SPEL for Windows manual.

INTRODUCTORY Section Chap. 2: Basic Operation

Example of the teaching method

Let'stry the direct teaching method. With SFREE command, the motors are turned off and the
manipulator arms can be moved manually. Move the armsto atarget position and register the
position. Then turn on the motor power with SLOCK command.

» When the SPEL Editor is used:

@® Turn on the controller and execute the MOTOR ON command in command mode of SPEL
Editor.

>MOTOR ON

@ Execute MCAL in command mode. (In case of BNA and BNA-CL, skip this step.)
>MCAL

® Execute SFREE command. All axeswill be freed.
>SFREE

@ Move the manipulator armsto adesired position manually. If the axis#3 has an electromag-
netic brake, disengaging the motor will apply the brake to lock the axis#3. To movethe axis
#3, move the shaft with the brake rel ease button held pressed. Refer toitem 5.1 of manipulator
manual.

® Registering (teaching) the current position as P1.
>P1=Px

® Move the manipulator arms manually to next target position.

@ Teaching the current position as P2.

>P2=Px

Y ou have taught the positions by performing the above steps. Execute SLOCK command to
engage motors.

>SLOCK

® To check for sure, use the JUM P command to move the robot to the position that wastaught as
P1. Make sure there is no obstacle near the taught target positions and be out of safeguard.

>JUWP P1

® Move the robot to P2 using the JUM P command.
>JUWP P2

31

INTRODUCTORY Section Chap. 2: Basic Operation

32

* When the SPEL for Windows is used:

@ Turn on the controller and engage the motors. When you execute the [Tools]-[Robot control
Panel] command, the [Robot Control Panel] dialog box is displayed. Select manipulator as
the point device. Click the <MOTOR ON> button. A confirmation message appears. Follow
the instructions provided by this message.

@ Click the<MCAL> button on [Robot Control Panel]. When cadibration is complete, click the
<Close> button. (In case of BNA and BNA-CL, skip this step.)

® When you execute the [Tools]-[Jog and Teach] command, the [Jog and Teach] window ap-
pears. Disengage the motor of all axes using the [Free Axes] group box.

@ Move the manipulator armsto adesired position manually. If the axis#3 has an electromag-
netic brake, disengaging the motor will apply the brake to lock the axis#3. To movethe axis
#3, move the shaft with the brake rel ease button held pressed. Refer toitem 5.1 of manipulator

manual.

® Register the current position at P1. Click the <Point Slider Right> button and change the
current point to P1. Click the <Teach P1> button.

® Move the manipulator arms manually to next target position.

@ Register the current position at P2. Click the <Point Slider Right> button and change the
current point to P2. Click the <Teach P2> button.

Y ou have taught the positions by performing the above steps. Engage the motors of all axes
using the [Free Axes] group box.

® To check for sure, use the JUM P command to move the robot to the position that wastaught as
P1. Make sure there is no obstacle near the taught target positions and be out of safeguard.
Register 1 in the [Point #:] text box and click <JUMP P1> button.

Register 2 in the [Point #:] text box and click <JUMP P2> button.

Click the <Close> button and quit the [Jog and Teach] window.

INTRODUCTORY Section Chap. 2: Basic Operation

Example of the programming

Let's make a simple program using the position data that we taught the robot. Thisis a short
program but it enables the robot to go back and forth from point 1 (P1) to point 2 (P2). If you have
taught more points then you may use them after line 30 in the same way.

Now input the following:

10 FUNCTI ON MAI N
20 Juwr P1

30 JUMP P2

40 GOTO 20

50 FEND

» When the SPEL Editor is used:

@ Input the program shown above in command mode. Type [Return] (Enter) key at the end of
thelineto register.

@ To make certain that each line has been inputted, you may list the program by entering the
LIST command.

>LI ST

10 FUNCTI ON MAI N
20 JuwP P1

30 JUWP P2

40 GOTO 20

50 FEND

» When the SPEL for Windows is used:

@® Create anew project.
Execute the [Project]-[New] command. Input the name of the project in the [New Project
Name] dialog box. For example, FIRSTAPP, etc. Click <OK> button.

@ Register the program line shown above into the [MAIN.PRG] window.

33

INTRODUCTORY Section Chap. 2: Basic Operation

2.8 Executing a Program

Compiling
The program we just made is called the " source program". The program executed by the control-
ler is called the "object program”, it differs from the source program. Therefore, the source
program must be changed to the object program. This converting operation is called compiling.
When the compiling isfinished, the program can be executed from the PC and the operating unit.

Source program

Compile

Object program

Execute

Run

¢ Compiling with SPEL Editor:

Execute the COM command in command mode.
>COM
COMPILE END

e Compiling with SPEL for Windows:

Execute the [Project]-[Build] command. The [Project Build Status] window opens and the
build procedures are displayed. (The program created is transmitted to the robot controller and
compiled.)

Execute the program from PC
L et's execute the program.

» Execute the program from SPEL Editor:

Execute the XQT command in command mode.
>XQT

To abort, pressthe [STOP] key or [CTRL]+[C] key on PC's keyboard.

« Execute the program from SPEL for Windows:

When you execute the [Run]-[Start] command, the [Run] window is displayed. When you click
the <Start maingrp : MAIN> button, the program executed.

To end execution, click the <Stop all> button on [Run] window.

INTRODUCTORY Section Chap. 2: Basic Operation

Execute the program from operating unit

@ Set the operation mode of the controller into AUTO by selecting the AUTO position of mode
selector switch on OPU-300.

@ Closethe safeguard.
® Pressthe START switch on OPU-300.

@ When stopping the program, make the program temporary halt by pressing the PAUSE switch
of OPU-300 and press the RESET switch to stop it.

The LED light on top of each switch shows following condition.

LED Condition

RESET Stopping (reset) status of program

START Executing status of program

PAUSE Pause status of program

Execute the program from REMOTES

In case of executing the program from PLC (programmable logic controller) or available other
operating unit, use REMOTE3. When using I/0O-1 of back of controller as REMOTES3, following
steps must be executed.

@ Turn on bit 1 of the software switch SS1.
@ Set the necessary bit as REMOTES3 from input/output of 1/O-1.

* The setting of software switch and setting of REMOTES are executed by SPEL Editor or SPEL
for Windows. Refer to each manual regarding how to set.

® Turn off the power of controller once, and turn on.

@ Input aSTART signal via REMOTES3, execute the program.
When stopping the program, make the program temporary halt by PAUSE signal and input the
RESET signal to stop it.

* The pin assignment of REMOTE3 and the timing charts of input signalsare described in"7. 1/0
Remote Set Up (REMOTE3)" of controller manual.

35

INTRODUCTORY Section Chap. 2: Basic Operation

2.9 Selecting Program for Changing Lines and Products

Program must be changed when changing lines or products. In other words, the appropriate
executable file (object file and symbol file) must be selected.
The method of selecting program for changing lines and products is described below.

Selecting program from REMOTE input

36

The appropriate executable file must be in the file memory when selecting and executing the
program.

1)

2)

Make a executablefilein file memory

Save a source program and point file by using DSAVE command in file memory, and execute

COMPILE command to create an object file and symbol file.

<Example>

>DSAVE" O1TEST"

>COWP| LE" O1TEST"

COWPI LE END

>

* When first two characters of file nameis specified with numeral, the number isthe "program
number". The program number is used when selecting file with AW key of OPU-300 or
program number input of REMOTE 3.

Transfer the executable file to main memory
Next, transfer the created executable file to main memory. The method of transferring file
using OPU-300 or REMOTE 3isasfollows.

* If using OPU-300

The executable files are selected on file selection screen 1 or 2 of OPU-300.
Itispossibleto send all executablefileswhich are selected on file selection screen into main
memory.

How to operate the OPU-300 is described in OPU-300 manual.

* If using REMOTE3

The executable files are selected by specifying the program numbers.

There are two ways to specify program number; binary method and up/down method.
PRGNO command determines whether to apply the binary method or the up/down count
method. The binary method is easier to control but only 15 files (program number 01 to 15)
can be selected with thismethod. If it isnecessary to select morethan 15 files, please use the
up/down method.

After establish the program number input signal, when START isinput, executable files are
transferred to main memory and start the program. Refer to "Program execution timing chart”
in"7.4 Timing chart" of controller manual.

INTRODUCTORY Section Chap. 2: Basic Operation

Utilization of CHAIN command

Except for specifying program number by REMOTE input, CHAIN command is also the method
of changing execution program. When creating the program in which changing lines or products
is necessary, CHAIN command sometimes makes it effective.

CHAIN command is designed for changing products while executing program. CHAIN com-
mand can replace the running program by specified program on file memory.

Refer to “2.1 How to write large-scale programs” in chapter 2 in applied section of this manual
regarding how to use the CHAIN command.

37

INTRODUCTORY Section Chap. 2: Basic Operation

2.10 File Handling

38

« File handling with SPEL Editor:

The created program and position datawith SPEL Editor in "2.7 Teaching and Programming"
arestoredin "main memory" of controller. The number of program in main memory isonly one
and the number of position data group in main memory is also only one. Therefore, when
creating new program and position data, the program and position data in the main memory
must be saved asfilesinto "file memory."

See the stepsin "3.4 Handling (saving and loading) files' of SPEL Editor manual.

If you use the SPEL Editor, read the SPEL I11 reference manual regarding following commands
related to file handling.

Commands related to file handling
DSAVE : Saves main memory source program and position datafilesin file memory.

DLOAD : Loads specified filesinto main memory.
DIR, FILES : Displaysthefileinformation in file memory.
COPY : Copiesfileto another location.

KILL, DEL : Deletesfile(s)

« File handling with SPEL for Windows:

In SPEL for Windows, the files of programs and position data are stored in the PC. Refer to
SPEL for Windows manual for details.

INTRODUCTORY Section Chap. 3: Jog Operation

CHAPTER 3. JOG OPERATION

In remote teaching the manipulator is driven to the desired position using the jog key of PC and
teaching pendant, then the position istaught. The driving of the various axes of the manipulator
using the jog keysiscalled "jog feeding".

In jog feeding you can change the direction in which the manipulator moves and the method by
which it moves when the jog key is pressed by setting "coordinates used in jog feeding" and "jog
feed operating mode". Select the best setting for the application to ensure efficient teaching.

In case of using TP-320/TP-320J, refer to "4. Teaching” of TP-320 or TP-320J manual which
describes the contents of this chapter.

3.1 Coordinate System Used in Jog Feeding

Decide which of the coordinate systems you wish to use to performjog feeding. Thedirection that
the axes move when the jog keys are pressed depends on which coordinate system is selected.

Coordinate
system Content
BASE Base coordinate system. Jog feeding is performed in accordance with the

manipulator's base coordinates (BASEQ). Because the coordinate system is
fixed in the manipulator, you can tell at a glance the direction of each of the
coordinate axes.

TOOL Tool coordinate system. Choose a coordinate system for jog feeding that isin
linewith atool coordinate system, assuming that the tool is mounted to the end
of themanipulator'shand. Thedirection of coordinate axes changes depending
on the rotation of the hand.

JOINT Joint system. Perform jog feeding for each of the manipulator'sjoints.

Refer to the below each manual s regarding how to select coordinate system.
» SPEL Editor : Refer to "6. Teach Key Mode" of SPEL Editor manual .

» SPEL for Windows : Refer to "Inputting and Executing Simple Program" in chapter 3 and
"[Tools] menu" in chapter 8 of SPEL for Windows manual.

The explanation of each coordinate systems are as follows.

39

INTRODUCTORY Section Chap. 3: Jog Operation

Jog feeding using the "BASE” coordinate system

40

When the base coordinate system (BASE) is sel ected, the direction that each axis moveswhen the
jog key is pressed matches the base coordinate system (BASEOQ) of the robot.

In the BASE coordinate system the manipulator moves in accordance with the coordinate system
fixed in the robot, so afixed relationship is always maintained between the jogging direction of
each axis and the orientation of the body of the manipulator. Because this makesit easy to tell the
jog direction at a glance, this is the most frequently used coordinate system. Most rectangular
coordinate robots can be taught using this coordinate system.

Different types of manipulators have different base coordinate systems. Please see the manual
that came with your manipulator for information in its base coordinate system.

In general, the coordinate system is asfollows:

X

/‘ Base coordinate system of the robot

Jog feeding using the "BASE" coordinate system

N

NOTE Please check the coordinate system if the base coordinate system has been changed by execution
@ of the BASEO command or LOCAL 0 command.

INTRODUCTORY Section Chap. 3: Jog Operation

Jog feeding using the "TOOL" coordinate system

NOTE When the tool coordinate system has been selected, the direction of movement executed by each

& jog key is determined by the orientation of the hand. Even if the hand rotates, jog feeding is
performed by fixed coordinates for the orientation of the hand. It can, therefore, be used for
nozzles and other hands that have directionality.

The origin point of thetool coordinate system can also be set in alocation away from the center of
the axis #4 (rotating axis) of the manipulator. The origin point of the tool coordinate system is
centered on the tool defined by the TLSET command.

PR

SN
S

Tool coordinate
system

Tool coordinate

system /
\

X

//‘ Base coordinate system of the robot

Jog feeding using the "TOOL" coordinate system

NOTE For details about the tool coordinate systems, please see the items regarding the TOOL command
& and TLSET command in the SPEL |11 reference manual.

Jog feeding using the "JOINT" system

When the JOINT system is selected, the jog keys correspond to each joint. This system is good
for jog feeding when you want to drive a particular axis of ajointed manipulator.

Y

@ |\

/
\

X
/‘ / Base coordinate system of the robot

Jog feeding using the "JOINT" system

41

INTRODUCTORY Section Chap. 3: Jog Operation

3.2 About Jog Movement

42

NOTE

Thetrave distance of thejog movement can be change. We recommend that you set the big value
firstly and move the arm to the target position roughly, after that move the arm asyou set the small
value gradually and get the fine position.

The unit for the travel distance of the jog movement may differ as follows depending on the

coordinate system used for jog feeding or the manipulator mechanism.

axis#1 (X/21)| axis#2 (Y/J2) | axis#3 (Z/33) | axis#4 (U/J4)
BASE coordinate system unit mm mm mm degree
TOOL coordinate system unit mm mm mm degree
(iret sing 49 mm o o :
?gg;?;i;] unit degree degree degree degree

Refer to the below each manuals regarding how to select the travel distance and other details.

e SPEL Editor . Refer to "6. Teach Key Mode" of SPEL Editor manual and SEL, SET

command of SPEL Il reference manual.

e SPEL for Windows : Refer to "Inputting and Executing Simple Program" in chapter 3 and
"[Tools] menu" in chapter 8 of SPEL for Windows manual .

In case SPEL Editor and teaching pendant TP-320/TP-320J are use together, make sure to read
"4, Teaching" of TP-320/TP-320J manual. Note that jog movement distance which is set by
SPEL Editor is changed into the setting value of TP-320/TP-320J when TP-320/TP-320Jis used.
In case SPEL for Windows and teaching pendant TP-320/TP-320J are use together, refer to chap-
ter 7 of SPEL for Windows manual.

If you continue to hold down ajog key, the arm may move beyond the moveable range, initiating
an error stop and disengaging the motor. If this happens take the following steps:

@® Manually return the arm to alocation within the moveable range.

@ Pressthe RESET key to cancel the error.

® Execute MOTOR ON. This engage the motor and resets the robot.

ELEMENTARY SECTION

43

ELEMENTARY Section Chap. 1: Motion Speed

CHAPTER 1. MOTION SPEED

1. 1 Acceleration/Deceleration Speed

When executing the robot motion command, the motion changes as shown below:

Acceleration | - | Constant speed | - | Deceleration | - | Stop

The speed curve will be decided by the speed and accel eration/decel eration setting.

Speed
Constant speed
(Speed specification)
Time
Acceleration Deceleration

Commands related to the speed are divided into two categories depend on the motion command.

Speed Accel./Decel. | Corresponding motion commands
SPEED ACCEL JUMP

GO PTP motion
0, 0,
(%)) PASS
SPEEDS ACCELS MOVE

ARC CP motion
(mm/s) (mm/s?) CVMOVE

* The unit of speed and acceleration/decelerationin ().

PTP (Point To Point) motion commands will be often used for pick-and-place operations. Inthis
kind of operation, possible fastest motion to the target position is required, so the speed setting by
mmV/s does not have important meanings. Inthe case of the horizontal articulated (SCARA) robot,
allowable maximum speed and accel eration/decel eration differ according to the moving position
inthemotion range. Therefore, SPEED and ACCEL values are specified by the percentage while
the maximum speed that is allowed mechanically is regarded as 100.

CP (Continuous Path) motion commands will be often used for sealing operations. Sealing opera-
tion requires a constant speed motion without concerning the current position and target position
relations. Therefore, SPEEDS and ACCEL S valued should be specified by the unit of mm/sand
mm/s2.

Regarding the details of SPEED, SPEEDS, ACCEL, and ACCEL S command, refer to SPEL 1|
reference manual.

ELEMENTARY Section Chap. 1: Motion Speed

1.2 High-speed Operation in TEACH mode

Safeguard constraint

When the controller is set to TEACH mode for programming or teaching, as arule the robot is
always set to low power mode and cannot operate at high speeds since there isarisk of someone
entering the robot's operation area.

The following three constraints are applied for this reason, and all of these constraints must be
canceled to enable operation at programmed (faster) speed.

- Safeguard constraint
- POWER (LP) command constraint
- TSPEED command constraint

When the safeguard is open (in order words, when REMOTEL's safeguard switch input is re-
leased), the robot staysin low power mode.

Aslong as the safeguard remains open, the robot operates only at the speed set by either the fixed
setting or the TSPEED (TSPEEDS) setting indicated in below, whichever is dower, even when a
higher speed has been programmed.

The safeguard must be closed before the robot can operate at the programmed speed.
Refer to "1.4 Mode" in introductory section of this manual and "4. REMOTEL" of controller
manual for detail.

POWER (LP) command constraint

When the POWER LOW (LP ON) command is execute, the robot staysin low power mode. The
POWER HIGH (LP OFF) command must be executed before the robot can operate at the pro-
grammed speed.

The robot's power mode is normally set to low power mode when the controller is turned on or
when switching from AUTO mode to TEACH mode. Oncein low power mode, even when the
safeguard is closed, the speed of the robot is constrained to the fixed speed that is set for the
particular robot model.

Since low power mode is the fixed power mode when in TEACH mode, and attempt to enter the
POWER HIGH command while in TEACH mode results in an automatic return to low power
mode, asillustrated below.

POWER HIGH (LP OFF) command

L ow power mode High power mode
POWER LOW (LP ON) command
Power on

TEACH/AUTO mode switching
RESET command

[STOP] key ([CTRL]+[C] key)
MOTOR ON command

45

ELEMENTARY Section Chap. 1: Motion Speed

Specifically, areturn to low power mode occurs under the following conditions.
- When an error requiring areset or turning off the power once and on again occurs
- When TEACH/AUTO mode switching

- When the [STOP] key ([CTRL]+[C] key) combination is pressed to stop program execution via
the XQT command

- When executing the MOTOR ON command

Although robot operation speed is constrained during low power mode, any speed settings or
accel eration/decel eration rate settings made during low power mode are still saved to the
controller'sinternal memory.

TSPEED (TSPEEDS) command constraint

46

Asmentioned earlier, whenin TEACH modeit is possible for peopleto enter the robot's operation
areawhile the robot is operating, so constraints are automatically set on the controller's control
(viathe safeguard and POWER command) of the robot's operation speed and power mode. These
congtraints are generally sufficient to ensure safety. However, as a further safety assurance, the
robot handler is able to set an absolute maximum operation speed for TEACH mode.

The TSPEED (TSPEEDS) command is used to set an upper limit on robot operation speed set via
the SPEED (SPEEDS) command whilein TEACH mode. This maximum speed setting is re-
tained in nonvolatile memory when the controller's power is switched off.

The speed set via TSPEED (TSPEEDS) a so works as the absol ute maximum speed when setting
speed viathe SPEED (SPEEDS) command.

ELEMENTARY Section Chap. 1: Motion Speed

1.3 Axis #3 Speed/Acceleration Control for JUMP command

The basic movement figure of the JUMP command is shown below:

Horizontal motion

AXxis#3 AXxis#3
ascending descending
Current position Terget position

The speed and accel eration/decel eration is effective to all the motion in the above. However, axis
#3 ascending/descending motion speed is especially important for pulling out or inserting appli-
cation, so you need to specify the most suitable speed. For example, if the robot picks up adevice
at the current position, and inserts it into the target position, you want to move fast the axis #3
ascending and horizontal motion, however, to move slowly when the axis #3 descends.

In order to satisfy this kind of purpose, axis #3 speed and accel eration/decel eration can be set
separately from the horizontal motion speed.

Axis#3 motion speed can be specified with three parameters using the SPEED command.
Format: SPEED [A],[B].[C]

A : Speed specification value
B : Axis#3 upward speed specification value
C : Axis#3 downward speed specification value

AXxis #3 acceleration/decel eration speed can be specified with six parameters using the ACCEL
command.

Format: ACCEL [A],[B],[C],[D],[E][F]

. Acceleration specification value

: Deceleration specification value

. Axis#3 ascending accel eration specification value

: Axis#3 ascending decel eration specification value

: Axis#3 descending accel eration specification value
. Axis#3 descending decel eration specification value

Mmoo W >

<> 1000 FUNCTI ON MAI N
1010 SPEED 100, 80, 20
1020 ACCEL 100, 100, 100, 100, 80, 20

-

2000 JuwP P1

-

3000 FEND

47

ELEMENTARY Section Chap. 1: Motion Speed

1.4 Transporting Objects Heavier than the Rated Weight

48

NOTE

Therobot's speed and rates of acceleration and decel eration varies depending on the load attached
to the end of the robot arm.

Therefore, to set an appropriate speed or accel eration/decel eration rates, you should first measure
the weight load and make the following setting viathe WEIGHT command.

Thisload is the combined weight of the robot hand and the object it is holding.

Format: WEIGHT [Hand weight],[Arm length]

The arm length is the distance from the rotational center of axis#2 in a horizontally articulated
robot to the center of gravity of the robot hand as the transported object combined. If this center
of gravity isthe center of axis #3, it does not need to be specified. Neither isthere aneed to
specify it if the robot is not a horizontally articulated robot.

When the WEIGHT command is executed, the controller calculates the maximum speed and
accel eration/decel eration rates possible for the mechanisms given the specified transportation
weight. If avalue of 100 has been specified viathe SPEED or ACCEL command, this speed may
be set if the controller's calculation shows that there is no mechanical hindrance.

Regarding how to decide the value of WEIGHT command parameters depending on hand weight,
refer to"5. Hand" of manipulator manual. Also, the usage of WEIGHT command is described in
SPEL 11 reference manual.

I,.-'"f'\.,l CAUTION eration/decel eration rate settings can not only cause an error due to overloading but

Robot transportation of an object that greatly exceedsthe rated weight while using the
rated-weight setting (default setting), maximum speed setting, and maximum accel-

may cause an accident. Use the WEIGHT command to ensure appropriate weight
Settings.

ELEMENTAEY Section Chap. 2: Programming

CHAPTER 2. PROGRAMMING

2.1 Basic Constituents of Program

Thebasic unit of programiscalled a"line" and a series of lines congtitutes aprogram. Theselines
are made using "line numbers' and "statements”.

100 JuwP P7 CO LI MZ-50

Statements

] > Charactersin oneline: within 79 characters
—— Line number (Integer from 1 to 32767)

The basic program from starts with the 1st line as FUNCTION and ends with the last line as
FEND.

10 FUNCTI ON MAI N

:

1000 FEND

From FUNCTION to FEND we call "Function". After the FUNCTION, afunction nameis nec-
essary. Inthe above example the function nameis"MAIN".

SPEL 111 has 16 multi-tasking capabilities. "Multi-tasking" refersto atype of processing in which
multiple tasks are executed simultaneously or in turns. The multi-tasking program is described as
acontinuation of the Function. The placeswhere various functions are executed are called "tasks"
and the controller has 16 tasks (Task number 1 to 16). The number of function can be made up to
69 in aprogram. The task can be executed, stopped when it is necessary.

See theitem "Multi-tasking" in applied section for further description of multi-tasking.

The Function at the very beginning of the program is called the "Main Function" and is aways
executed as Task 1. Thetasks other than the main function must be specified task numbers using
the XQT command within the main function.

10 FUNCTI ON Function 1

| i 0
20 XQr !'2, Function 2 OMain Function

30 XQT !5, Function 3 O

H :

980 FEND

1000 FUNCTI ON Function 2

-

1980 FEND

2000 FUNCTI ON Function 3

-

3000 FEND

49

ELEMENTAEY Section Chap. 2: Programming

Function name

Comments

Multi-statement

50

The following cites the restrictions on the function names, but other than what is mentioned, the
function names may be freely named.

Function name

- The usable characters are alphanumerics and underscores (). Thereis no distinction
between capital and small case |etters.

- Within eight characters.
- Thefirst character must be an a phabet other than "P".

- Reserved words (i.e. command, statement, and function) cannot be used. Reserved words
with following underscore or numerics are also read as reserved words.

To make a program easier, you may add comments if necessary.

The symbol used to indicate acomment isthe" ' " (apostrophe) and whatever characters entered
after it are considered comments. During execution of a program, the content entered after the
apostrophe is disregarded.

You may use any characters in the comment. However, the number of charactersin one line,
including the line no., statement, and comment may not exceed 79 characters.

<Example>

10 FUNCTI ON MAI N

20 ' ER I R I S R I S I I I I b I I b b I ;

30 ' * HANDLER -1 * N

40 ' * PROGRAMMVED BY SATO * [.

50 ' ER IR I I I S I I R I S I I 3 O zcomment“ne

60 [

70 ' @GOSUB 1000 0 « GOSUB 1000 will not be executed.

80 SPEED 100 ; ACCEL 50, 100
90 JUWP P10 ;ON 1 ;WAIT 0.2 'Picks up device at Feeder 1 ~ Comment

Whenthe" ;" (semicolon) is used, more than one command may be described on oneline. This
is called multi-statement.

With multi-statement the program becomes easier to read and the size of the program is also
decreased. And the execution timeis shortened. However, if unnecessary multi-statements are
entered, the program can become clustered and hard to understand.

<Example>
100 JUMP P7 ; ON 1 ; WAIT 0.2
110 JUWP P17 ; OFF 1 ; WAIT 0.2

ELEMENTAEY Section Chap. 2: Programming

Labels

When you change the program execution order by using GOTO, GOSUB, or IF..THEN...EL SE,
it will run according to the specified line number. However, the line number isjust number and
doesn't have other meanings. If you can use aword to indicate the movement, it would be much
more convenient for the programmer as well as the user.

In SPEL Il you may use a"label" (specify after statement line number) instead of using only a
statement line number for the GOTO, GOSUB, or IF...THEN...EL SE statements.

<Example>

10 FUNCTI ON MAIN

20 LOOP: ~ Label

30 JUWP P1

40 JUWP P2

50 GOTO LOOP ~ Uselabel to branch program execution.
60 FEND

In the example above, line 20 is labelled with "LOOP". When labelling, aplacea"” : " (colon)
after the label and that indicates alabel.
Other than the restrictions given below, the labels may be freely maned.

Labels

- The usable characters are a phanumerics and underscores () except for colon (:). There
is no distinction between capital and small case |etters.

- Within eight characters.

- Thefirst character must be an aphabet other than "P".

When you revise the program, there isafunction which will correct the line numbers (renumber),
so the specified line numbers by GOTO, GOSUB, or IF...THEN...EL SE will be automatically
changed. It iseasier to understand the program if the labels are used in such case.

51

ELEMENTAEY Section Chap. 2: Programming

2.2 Constants

Numeric constants

Character constants

52

Constants are actual values SPEL 111 uses during execution. There are two types of constants:
string (or character) constants, and numeric constants.

Numeric constants are integers and real numbers. It is necessary to place aminussign (-) for
negative numbers, but for positive numbers a plus sign (+) may be omitted.

* Integer constants
Integer constants do not have decimal points. The following range expresses the boundaries of
theintegers.
- 32768 to 32767

There are following description methods for integers.

@ Decimal format
Thevaueisexpressed in decimals (0to 9).

@ Hexadecimal format
The valueis expressed in hexadecimal (0 to F), and it is described with a prefix of "&H".
The corresponding values of hexadecimal numbers and decimal numbers are shown in the

following table.
Hexadecimal O0to9 A B C D E F
Decimal 0to9 10 11 12 13 14 15
<Example>

&H25 :ltis37(2x16+5) in decimal format.
&H3F :1tis63(3x16+15) in decimal format.

® Binary format
Thevalueisexpressed in binary numbers (Oand 1), and it is described with a prefix of "&B".

<Example>
&B1111 : Itis 15(25+22+2'+2° in decimal format.
&B101 : Itis5(22+2° in decimal format.

* Real constants
The vaues which are expressed with decimal points, which are beyond integral boundaries, and
which are represented in exponential form are called real numbers.

Character constants are enclosed in quotation marks (").

Y ou can use numerals as character constants by enclosing the numeralsin quotation marks. If the
character string has zero length, entering only quotation marks (") will set an empty character
constant (also called a"null string").

<Example>

>PRI NT "HELLO'

HELLO

>PRI NT HELLO

123 ~ Indicates avaueto replace the variable HELL O.

ELEMENTAEY Section Chap. 2: Programming

2.3 Variables

Variables are used as temporary substitutes for data. There are various types of variables, so
before using avariable, a"type statement” must be entered. The data substituted to variable must
be same with variable type.

The variable values are retained as long as the object areais not overwritten (they are retained
when exiting from a program or when shutting off the power). However, they are deleted when
the COM command or another executablefileis executed. To save variable values even in these
cases, use backup variables, as described below.

Specifiable number of variables

Numeric variables

The specifiable number of variables can basically be determined via the following equation.
Specifiable number of variables = 448- (number of functions)

Thisis because the variable name and function name are handled in the same area (symbol table).
For example, in asingle task program, you are able to specify up to 447 variables. However, the
number of specifiable array variables differs depending on their size (when large arrays are de-
clared, fewer variables can be used).

For variables other than array variables (such asnumerical variables or character string variables),
the variable size does not affect the number of specifiable variables.

However, the number of these other variablesthat can be specified is constrained by other factors.
The areato which variable values are saved is al so alocated as the object areafor storing execut-
able programs. Accordingly, when a particularly large program is being used, the object area
available for storing variables may be used up by the program. In such cases, an error occurs
when compiling. To fix this problem, you must either reduce the size of the program or reduce the
number of variables being used.

@ Typesof numeric variables
The types of numeric variables are given in the following table:

Type declaration Bytes Availablevaue/Valid digit
BYTE 1 - 12810 127
Integer type INTEGER 2 - 32768 to 32767
LONG 4 - 2147483648 to 2147483647 *
Real number type REAL 4 7 digits
DOUBLE 8 14 digits

When declaring avariable, type declaration comesfirst and variable name follows. If several
sametype variables are declared, usea" , " (comma) and describe several variable names.

The type declaration must be in the beginning of the line. When declaring adifferent type of
variable, create another line. If the variable type is not declared, it will be treated as REAL.

Format: [type declaration] [variable name]{,[variable name]}n

53

ELEMENTAEY Section Chap. 2: Programming

String variables

* On PRINT command the available value of LONG type datais restricted as follows.
- 9999999 to 9999999
Thedisplaying valueisrestricted, but internal valueis calculated within above values and it
isvalid data.

® Variable names

The following cites the restrictions on the variable names. Other than these restriction, the
variable names may be freely named.

Variable names

- The usable characters are alphanumerics and underscores (). Thereisno distinction
between capital and small case letters.

- Within eight characters.
- Thefirst character must be an alphabet other than "P".

- Reserved words (i.e. command, statement, and function) cannot be used. Reserved
words with following underscore or numerics are also read as reserved words.

® Inthe case of real type variable, the value of many digits will be expressed as follows:
(normalized data expression)

+0.000000Ex 00O
l73digits;

7 or 14 digits

String variables are declared using STRING statement.

Function: STRING [string variable name]{,[string variable name]}n

String variable names are writtenwitha" $" (dollar sign) at the last character to separate from the
numeric variable. Again, comply with the following rules.

String variable names

- The usable characters are al phanumerics and underscores (_). Thereis no distinction
between capital and small case |etters.

- Within eight characters (including the $).
- Thefirst character must be an alphabet other than "P".

- Reserved words (i.e. command, statement, and function) cannot be used. Reserved words
with following underscore or numerics are also read as reserved words.

ELEMENTAEY Section Chap. 2: Programming

Array variables

Listing of variable names

Array variableis agroup or table of valuesthat are referred to with one name. Either numeric
variables and string variables may be used as array variables. When defining an array variable,
declare the name and its size enclosed with (). The size can be defined up to 3 dimension.

If the variable type is same, more than one variable name may be defined using the™ , " (comma).

Format: [type declaration] [variable name](a,b,c)

a,b,c: Array size of each dimension
Integer from O to 254
axbxcl] 32767

<Example>
| NTEGER A(10) One dimensional array
BYTE B(8, 5) Two-dimensional array

LONG C(10, 10, 5) Three-dimensional array

A variable table of array variable B(8,5) is created as below. The numbersinthe () are called
subscriptions. It isnecessary to specify each subscription when using each individual variable.

B(0,0) | B(10) | B(20) | B(30) | B(40) | B(50) @ B(60) | B(7.0) | B(80)
B(0,1) | B(L1) | B1) | BB | B@1 | BG1) | B6L | B(7) | B8

B(02) | B(L2) | B2 | B2 | B42 | B52 | B(62) | B(72) @ B(82)

B(0,3) | B(1,3) | B(23) | B(33) | B@3) | B(53) | B(63) | B(7.3) | B®3)

B(04) | B(14) | B(24) | B(34) | B@44) | BG4 | B(64) | B(74) | B(84)
B(05) | B(L5) | B(25) | B(35) | B@5) | B(55) | B(65) | B(75 | B(85)

When declaring a variable name, you may need to know the variable namesthat are already used.
Variable names and types will be listed (not including backup variable names) by executing
VARIABLE command.

Format: VARIABLE{- A}

When a - A is added, the function name will also be listed. This function will only show the
variable names registered on the symbol table, so the source program must be compiled first.

55

ELEMENTAEY Section Chap. 2: Programming

Backup variables

56

Usually when the program has been compiled, asymbol tableis created and when that programis
run, value of the variableis stored in the table. However, if that program is compiled again or if
adifferent program isrun, then it will be erased. And when the power is turned off, thereisno
guarantee that it can be restored.

When you want to store value of avariable, use SY S statement to register the variable as abackup
variable before using. Asabackup variable, it will not be registered in the symbol table but in the
main memory backup variable area. This memory areais a battery backup and is not influenced
by compiling or executing program.

Backup variable is useful to continue the operation which is stopped the day before, or to use
variables commonly in different programs.

@® Number of specifiable backup variables

The default value for the number of specifiable backup variablesis 10. You can use the
LIBSIZE command to set a maximum value of up to 1,000 backup variables. However, set-
ting a high maximum value takes up space in the object area and proportionately reduces the
space available for storing programs, so that large programs may no longer be executable.
Therefore, it is best to increase the backup variable area as little as possible.

For further details, see the SPEL |11 reference manual.

@ Registration program for backup variables

The symbol table, in which the normal variables are registered, are belonged to the object
program. Contrarily, the backup variable registration table is separated from the individual
programs. So generally, the backup variable registration programs are created separately
from the other programs.

<Example>

10 FUNCTION B_UP

20 ' SYS BYTE HELLO ; HELLO=0 " Already registered backup variable
30 SYS | NTEGER V(50)

40 SYS STRI NG ERR_M5(10)

50 FEND

If an attempt is made to register a variable name which has already been registered, an error
(double definition of variable) will be issued. Use acomment mark similar line 20 if the
variable has been aready registered.

® Registration of backup variables

With ageneral compiler, theregistration of variablesis completed by compiling the program,
but with SPEL 111 the program must be run to register.

When using the variable, it is necessary to have the variable name and the memory to storeits
value. After being compiled, the variable name only is registered but the memory to store the
valueis not secured yet. Upon running the program, that memory is secured.

If avariableisattempted to use after only compiling the program, an error will occur. Be sure
to run the program before using backup variables.

ELEMENTAEY Section Chap. 2: Programming

Caution on using variables

<Example>

10 FUNCTI ON V_EX

20 SYS INTEGER A ; A=1

30 SYS I NTEGER B ; B=10 ' Register A and B as backup variables
40 PRINT A B

50 FEND

Compile and execute this program.

Listing of backup variable names

All of the backup variable names and types which are being registered will be listed by execut-
ing LIBRARY command.

Format: LIBRARY

Deleting backup variables
To delete al of the backup variables which are being registered, execute CLRLIB command.
Format: CLRLIB

It isimpossible to delete some specified backup variables. 1f some backup variables areto be
deleted, delete everything once and reregister the necessary backup variable.

@ Defining avariables (Type declaration)

- Generdly, the description of the variable definition is done at the beginning of the program.
If avariableis used before registration, it will be registered as areal variable (REAL) and
when the variable definition comes up, it will cause an error (double definition of a vari-
able).

Alsoif avariableis not registered beforehand, the variable may not be ableto be used. So
evenif itisarea type variable, it should be declared.

- When you want to check if thereis an undefined variable being used in a program, compile
it by adding "-V" to COM command. If thereisan undefined variable, error 2 will occur.

Cow Vv

- Type declaration statement must be at the beginning of the line. When a different type of
variableisdeclared, make another line. Theinitial value must be specified by following the
type declaration.

<Example>
50 BYTE S 1,S 2 ;S 1=0 ;S 2=0 ; INTEGER E_1 ;E 1=1 'ltisnot alowed.

!
50 BYTE S 1,S 2 ;S 1=0 ;S 2=0

60 I NTEGER E 1 ;E 1=1

57

ELEMENTAEY Section Chap. 2: Programming

@ Casesthat the variable must be defined beforehand
- When avariableis used for the parameter of position data.
- When avariableisused in aparallel processing.

<Example>
50 REAL OFSET ; OFSET=1.573 D

60 | NTEGER HAND_UD ; HAND UD=1
100 PO=P1+XOFSET Define the variable OFSET,
E HAND_UD beforehand.
200 JUMP P2 ! D30; ON HAND UD!

—

® Casesthat the variable cannot be used
- For thelocal coordinate number of position data.
- For the RS-232C port number and task number.

<Incorrect example>
PO=P1/ LNO HALT ! TK
PRI NT #RS, 5 RESET #RAI OC

@ Casethat an array string variable cannot be used

- For file name of CURVE, CVMQOV commands.

58

ELEMENTAEY Section Chap. 2: Programming

2.4 Operations

Arithmetic operations
The arithmetic is used for operation of numeric values. Arithmetic operators are as follows:

Operator Operation Sample expression | Arithmetic sign
+ Addition A+B +
- Subtraction A-B -
* Multiplication A*B x
/ Division A/B +
MOD | Modulo arithmetic A MOD B

(The MOD can be used only for an integer.)

Logical operators
The logical operators can be used for the integer operation and aresult is also returned as an
integer. The numeric value is expressed in binary digit inside the controller. The operationis
performed on these sequences. That is, each bit of the result is determined by the corresponding
bits in the two operands. Each operation are listed below by using the numeric value A and B.

@® AND (Conjunction) Bit of A Bit of B Result
Format: A AND B
0 0 0
0 1 0
1 0 0
1 1 1
@ OR (Disjunction) Bit of A Bit of B Result
Format: A OR B
0 0 0
0 1 1
1 0 1
1 1 1
® XOR (Exclusive or) Bit of A Bit of B Result
Format: A XOR B
0 0 0
0 1 1
1 0 1
1 1 0
@ NOT (Logical complement) Bit of A Result
Format: NOT A
0 1
1 0

® Example: In case of A=1, B=0, C=1
AANDBORC=1
AANDB XORC=1
NOTA)ANDC=0

59

ELEMENTAEY Section Chap. 2: Programming

Relational operators

Operator | Sample expressions Content
= A=B A and B areequal.
<>or>< A<>B A and B are not equal.
> A>B A isgreater than B.
< A<B A islessthan B.
>= or => A>=B A isgreater than or equal to B.
<=or =< A<=B A islessthan or equal to B.
String operators Operator Content
+ Concatenation of the string.
= True when all the characters of the string are the same.
<> True when thereis at least one character is different.
<Example>
>PRI NT "HE"+"LLO'
HELLO

Order of operators precedence

There is the order of precedence of operators. When more than one operators are used, the
operation is carried out from the higher order of precedence. However, operations within paren-
theses are performed first. Operations at the same level are performed in left-to-right order.

The order of precedence of operators are as follows:
® ()

@ «,/,MOD

® +,-

@ AND, OR, XOR, NOT

® =, >, <, >3, <=, <>

Operations are performed according to the above order, but the use of parentheses will make the

program easier to read.

Integer operation and real number operation

SPEL 111 distinguishes integer operation from real number operation in order to make operation
faster. According to the type of operand, operation method and result will differ asfollows.

Operand type Result

All integers Integer
All real numbers

Real number
Integers and real numbers

In the operations above, note the following points.

@ For integer division, the result will be rounded to an integer.

60

ELEMENTAEY Section Chap. 2: Programming

@ When theresult of integer operation exceeds theinteger range (- 32768 to 32767), it will come

up as an error.

® When area number is set to an integer variable, the number of the tenth's place is round.

Ex. Integer operation Real number operation
>PRINT 3/2 >PRINT 3.0/2

0 1 1.5
>PRI NT TAN(1/ 2) >PRI NT TAN(1. 0/ 2)
0 . 5463025

® >PRI NT 1000%1000
I'TError 21

>PRI NT 1000. 0+x1000
1000000

20 | NTEGER A

@ | 30 ASTAN(1.0/2)
>PRINT A

1

Return value from the Function

The types of the value returned from the Function as follows.

Type Function name
SIN() ATAN() CX() AGL()
medt number | COS() ATAN2() cY() SQA()
TAN() cz() TMR()
cu() VAL()
SW() OPORT() MYTASK(0) CTR()
IN() ZEROFLG(0) LOF() TIME()
Integer INBCD() NOT() DSW() JS(0)
(2byte) SW() LSHIFT() STAT() LEN()
ING$) RSHIFT() ASC()
Integer
(4 byte) PLS()
Argument SGN() INT() ABS()

Case where operation and function can be used

Basically it isimpossible to use operation and function in the parameter portion of each command.
In such case, set the result of operation or function to avariable, and use the variable namefor the
parameter.

But the following condition command can operate the logical operation.
IF...THEN...ELSE, SELECT...SEND, WHILE... WEND, SENSE, TILL, WAIT, PRINT

<Example>

PO=P1: ZCZ(PO) - A=CZ(PO); PO=P1: ZA

61

ELEMENTAEY Section Chap. 2: Programming

2.5 Program Control Statements

FOR...NEXT

GOTO

SPEL |11 has following program control statements. Refer to SPEL |11 reference manual for de-
tails.

FOR...NEXT (Executes a series of statements a specified number of times)

GOTO (Branches unconditionally to adesired unconditional statement)

IF...THEN...ELSE (Executes instructions based on a specified condition)

GOSUB...RETURN (Branches to, executes, and returns from subroutine)

CALL (Callsasubroutine)

SELECT...CASE...SEND (Specifies branching formula and corresponding branch instruction
sequence)

WHILE...WEND (Executes a series of statements while the specified condition is sat-
isfied)

TRAP (Defines an interrupt process)

Executes a series of statements from FOR to NEXT for a specified number of times.

GOTO branches unconditionally to the specified line number or label.

<Example>

AL

10 FUNCTI ON MAI N

20 LOOP: ' Labelsline 20 as"LOOP"

30 FOR I=1 TO 4

40 JUWP PI

50 NEXT |

60 GOTO LOCP ' Branch to line 20 labeled LOOP
70 FEND

IF [conditional expression] THEN [statement 1] ELSE [statement 2]

62

When [conditional expression] istrue, [statement 1] isexecuted, and it isnot true, [statement 2] is
executed.

<Example>
P2 | P3|
Repeats the jump motion between P1 and P2, and between P1
and P3inturn.
10 FUNCTI ON MAI N
20 1=1
30 IF 1=1 THEN JUMP P2 ELSE JUWP P3
40 JUWP P1
50 | =0-1
60 GOTO 30
70 FEND

ELEMENTAEY Section Chap. 2: Programming

GOSUB...RETURN
When GOSUB command is found, it branches to specified line number or label.
When RETURN command is executed, it directs program execution to return to theline following
GOSUB.

<Example>

3times 3times 3times
P1 > P2 > P3 P4
3times

Repeat the motion three times each between P1 and P2, P2 and P3, P3 and P4, P4 and P1.
Repeated motion between two positionsis made as subroutine.

10 FUNCTI ON MAIN

20 1=1;3=2

30 GosuB | _J

40 1=2;J3=3

50 GosuB | _J

60 1=3;J=4

70 GosuB | _J

80 1=4;J=1

90 GosuB | _J

100 END

1000 | _J: ' Subroutine label
1010 FOR LOOP=1 TO 3
1020 JUWP PI; JUMP PJ
1030 NEXT

1040 RETURN

1050 FEND

GOTO, FOR...NEXT, GOSUB...RETURN, IF...THEN...ELSE

<Example>

%1MP2M%MP4

Motion speed is increased each time by moving to the next position. If speed becomes
SPEED 100, it turnsto SPEED 10. Axis#3 moves up and down threetimes at each position.

10 FUNCTI ON MAI N
20 SPEED 10; A=10
30 FOR 1=1 TO 4

40 JUWP PI
50 GOSUB H L

60 A=A+10

70 | F A>100 THEN A=10
80 SPEED A

90 NEXT |

100 GOTO 30

200

210 H L:

220 FOR J=1 TO 3

230 JUWP P

240 NEXT J

250 RETURN

300

310 FEND

63

ELEMENTAEY Section Chap. 2: Programming

CALL
CALL callsafunction (defined in FUNCTION...FEND) as a subroutine.

<Example>

100 FUNCTI ON MAI N

110 OFF $0 'Memory 1/0 for exclusive control
120 XQr !'2 suB

200 CALL ERRCR
300 FEND
305

310 FUNCTI ON SUB

:

350 CALL ERROR

-

400 FEND
405

410 FUNCTI ON ERROR

420 ON $0; |F ZEROFLG(0)=1 THEN WAI T SW $0)=0; GOTO 420

:

490 OFF $0
500 FEND

* ZEROFLG(0)
It returns value of memory /O previousto it last being switched on or off.

SELECT...CASE...SEND

SELECT [formula]
CASE [item 1] ; [statement 1]
CASE [item 2] ; [statement 2]
SEND

If any one CASE item is equivalent to SELECT formularesult, that CASE item statement is
executed.

<Example>

110 FUNCTI ON MAI N

120 | NTEGER |

130 FOR 1=0 TO 10

140 SELECT |

150 CASE 0; OFF1; ON2; JUWP P1
160 CASE 3; ON1; OFF2

170 JUWP P2; MOVE P3; ON3
180 CASE 7; ON4

190 DEFAULT; ON7

200 SEND

210 NEXT

220 FEND

ELEMENTAEY Section Chap. 2: Programming

WHILE [condition] ...WEND

TRAP

If WHILE condition is true, executes statements between WHILE and WEND, then once again
checks WHILE condition.

<Example>
110 1 =1
120 WHI LE 1<60

-

300 I=I+2
310 VEND

When input condition is satisfied, executes interrupt process which is specified by GOTO,
GOSUB, or CALL command.

<Example 1>: Error process defined by customers
100 FUNCTI ON MAI N
110 TRAP 1 SWO0)=1 GOTO ERROR ' Defines TRAP

-

500 ERROR:

510 ON 3 ' Signal tower lights
520 PRINT #20,"Error is issued."

530 FEND

<Example 2>: Usage like multi-tasking
100 FUNCTI ON MAI N
110 TRAP ERROR CALL MsGOUT

-

500 FEND
700 FUNCTI ON MSGOUT

710 PRI NT #20, ERRVSGS(ERR(0))
720 FEND

65

ELEMENTAEY Section Chap. 2: Programming

Nesting

66

A function called nesting can be used for some statements. It is explained using GOSUB as an
examplein thisitem.

GOSUB branches the program control to the specified line number (or the l1abelled line), executes
the subroutine, and returns to the next command after GOSUB using RETURN.

By using another GOSUB...RETURN within the subroutine, you can execute another separate
subroutine. Thisiswhat is called nesting.

Main routine
Subroutine
GOsUB 1000 1000 - - -

$ Subroutine

GOsUB 2000 2000 - - -
f |

—LRETURN
RETURN

® Subsets of nesting

The subsets of nesting is described as "steps' and the above example has "2 steps'. There are
restrictions as to the number of subsets but it differs according to the statement. This manual
will describeit asfollows.

Nesting : Upto 10

® Below are the commands which allow nesting.

#include

CALL

FOR...NEXT
GOSUB...RETURN
SELECT...SEND
WHILE...WEND

ELEMENTAEY Section Chap. 2: Programming

2.6 Pseudo Command

The pseudo command is used to make program editing and compiling easier in the first step of
compiling. Using the pseudo command makes it possible to replace identifiers in the program,
install other files, or compile apart of programs.

You must use the"#" asthefirst letter of pseudo command and use small case letters.

SPEL 11 provide the following pseudo commands:

#define
#include
#ifdef
#ifndef
#endif

The pseudo command must be described right after the line number. Also, after the pseudo
command, there must be at |east one space between the following letters.

The position of the pseudo command in the program may be placed anywhere. Even when pseudo
command isinserted in the middle of the program, it will be valid for the whole program.

1000 FUNCTI ON MAIN

1010 #define LEDL 8
1020 #define LED2 9
1030 #define LED3 10

-

2000 ON LED1; WAIT 1; OFF LED1
2010 ON LED2; ON LED3

-

3000 FEND

The usage and examples of pseudo commands are described in SPEL 111 reference manual.

67

ELEMENTARY Section Chap. 3: Files

CHAPTER 3. FILES

Files are collections of data. Programs that have been created or teaching-related position data

are all handled asfiles.

The controller includes a main memory area as the work area for performing the creation and
execution of programs, plus afile memory areafor storing files.
This chapter describes how files are handled between these two memory areas.

3.1 Main Memory and File Memory

The sizes of the main memory's source program area, position data area, and backup variable area

can by changed viacommandsthat set area sizes.

The default sizes of main memory and file memory are listed below.

No. 1: Standard setting

Main memory No. 1 No. 2 No. 3 Command to set areasize
Source program area | 64 KB 64 KB 128 KB PRGSIZE
Position data area 200 points, 5.5KB PNTSIZE
Backup variable area 10 variables, 0.5 KB LIBSIZE
Symbol area 7KB
Object area O7KB | 97KB | 233KB | Conbeincremsedorredicedviazbove
File memory 100 KB | 1100KB | 900 KB

No. 2: With additional RAM, and dip switch SD2-1 set to ON (on controller's MPU board)

No. 3: With additional RAM, and dip switches SD2-1 and SD2-2 set to ON (on controller's MPU

board)

Memory area in the main memory

The main memory is an area which operates the movement of the robot and is divided into the

following five areas.

@ Source program area

Theinput program is called the source program and is memorized here.
To execute the program, compile it to an "object program".

@ Position data area

The position data created by teaching has been memorized here.
The existing position datais used as the necessary position data for program execution.

® Backup variable area

Thisisthe backup variable registration table area.

68

ELEMENTARY Section Chap. 3: Files

@ Symbol area

Thisisthe registration table area for function names and variable names. When the source
program in the main memory is compiled, it is automatically registered here.

® Object area

Thisisthe areawhere the actual executable object program is kept.

Program execution area

When running a program, datais used from each area of the main memory excluding the source
program area. This data must be combined to conform with the robot operation. After file han-
dling, the filesin the main memory may not be related each other. Be sureto confirm that the data
isrelated each other before executing a program.

Main memory

Source program area

Position data area

Backup variable area

Symbol area

File memory

Object area

g
OExecutable data

o

Thefilememory isamemory that stores each type of file. The number of fileswhich can be stored
inthe file memory is asfollows.

File memory Capacity Number of file
No. 1 100 KB 64
No. 2 1.1 MB 192
No. 3 900 KB 192

No. 1: Standard setting

No. 2: With additional RAM, and dip switch SD2-1 set to ON (on controller's MPU board)

No. 3: With additional RAM, and dip switches SD2-1 and SD2-2 set to ON (on controller's MPU

board)

69

ELEMENTARY Section Chap. 3: Files

3.2 File names

In each file, afile name must be given. When handling afile, the file name must be specified.

The constituents of a file name

How to make a file name

Extension

70

Thefile nameis comprised of file name, extensionand " . " (period).

oooooogon .ogg

; Extension

Period

File name

Thefile name and extension is separated by the period.
Even if the file name isthe same, aslong as the extension differ, it is considered a different file.

When saving a source program and position data which was made in the main memory, afile
name must be put.

Make file name according to the following rules.

File name

@® Within eight characters.

@ Usable characters:
- Alphabet (A to Z, ato z). Thereis no distinction between capital and small case

letters.

- Numbers (0to 9)
- Symbols(! #$% & ()-"@~{} _)

The extension indicates the file type.

Generally, the user doesn't have to put the extension but the controller automatically doesit.
If the file name is the same but the extension is different, it istreated as a different file.

Thefile type of the following extensions have been decided beforehand, the controller automati-

caly putsit and recognizeits type.

Extension File

Filetype

PRG

Source program file

Created program

OBJ Object file Executable intermediate code program

SYM Symbol file Variable and function name registration file

PNT Position datafile Position datafile

CRV Free curvefile Free curve data using CURVE command

BAT Batchfile File that registers commands to be executed continuously
SYS 3?%? fﬁ;\/i ronment File that establishes the system constituents

ELEMENTARY Section Chap. 3: Files

When editing the text file with the programming unit (PC) or when using WOPEN and VSAVE

command, a user specifies an extension. In those cases, the above-mentioned extensions should
not be used for any other purposes.

Make extension according to the following rules.

Extension

® Within three characters.

@ Usable characters:
- Alphabet (A to Z, ato z). Thereis no distinction between capital and small case
letters.
- Numbers (0to 9)
- Symbols(' #$% & ()-"@~{1}_)

® File names must be always named but extensions may be omitted. When omitting an
extension, omit the period also.

Special file names

Thefileswith thefile names|isted below are automatically executed when the power isturned on.
Do not use those file names other than this purpose.

AUTO.BAT
IPL.OBJ
CNFG.SYS

71

ELEMENTARY Section Chap. 3: Files

3.3 Files Loaded when Execution

When running a program with specifying thefile, the following threefileswill be loaded from the
main memory into the filememory. However, if even one of those programs does not exist, it will
cause an error.

Note that the source program will not be loaded.

Main memory File memory
Source program TEST.PRG
(TEST.PNT) d g TEST.PNT
(TEST.SYM) M TEST.SYM
(TEST.OBJ) E E TEST.OBJ

Once the necessary files for execution are loaded into the main memory, the program can be
started by just inputting XQT command (do not specify the file name) or pressing the start switch
on the operating unit without selecting the file.

72

ELEMENTARY Section Chap. 4: Directory

CHAPTER 4. DIRECTORY

4.1 Directory

Root directory

Sub directory

When afileissaved infile memory, in addition to the file name and its extension, the file size and
the date created will be saved in the "directory".

To manage the files, the directory sorts out and registers the filesinto various groups.
Note that the directory is a place to store files and file and directory are different.

There are two kinds of directory, which are "root directory” and "sub directory".

Thebasic directory, which isautomatically processed in the file memory when the file memory is
formatted, is called "root directory”. All of the files and directories are made in this root direc-
tory.

Theroot directory is expressed by back slash "\", and this symbol cannot be changed.
In addition, it isimpossible to delete the root directory.

If many types and a large number of files are registered in the root directory, file management
becomes inconvenient and might induce incorrect file use. The capacity of the root directory is
previously decided, thereisalimit of the number of files that can be registered.

In order to manage files as agroup of files, directories can be created or deleted by users accord-
ing to their necessities. These directories are called "sub directories”.

The number of filesthat can be registered in the sub directory, depend on the size of file memory.

73

ELEMENTARY Section Chap. 4: Directory

Creating the sub directory

Deleting a sub directory

74

The sub directory is created with a name, in the same way as afile. The sub directory iscreated
using MKDIR or MD (make directory) command.

The characters and the number of characters which can be used for directory nameis as same as
file names.

Directory name

@ Within eight characters.

@ Usable characters:
- Alphabet (A to Z, ato z). Thereis no distinction between capital and small case
letters.
- Numbers (0to 9)
- Symbols(!' #$ % & ()-"@~{} _)

<Example> When creating a sub directory called DATA in the root directory
>MKDIR DATA

When creating a sub directory called TEXT within aDATA directory in the root
directory (The DATA directory is already in existence):

>MKDIR\DATA\TEXT

Y ou can do the same work by changing the current directory from root directory to
DATA directory.

>CHDI R DATA 'Changing directory

>MD TEXT

It isimpossible to create more than two directories at onetime. Create one at atime.

Deleting a sub directory is done using RMDIR or RD(remove directory) command. It isimpos-
sible to delete the directories which include files or sub directories.

<Example> When deleting the DATA directory in the root directory, make sure that the contents
of the DATA directory are empty and execute the following command.
>RD DATA

<Example> When deleting the TEXT directory within the DATA directory in the root directory,
confirm that the TEXT directory is empty and execute the following command.
>RD \ DATA\ TEXT

Y ou can do the same work by changing the current directory from root directory to
DATA directory.

>CD DATA 'Changing directory
>RD TEXT

ELEMENTARY Section Chap. 4: Directory

Tree-structured directories

When creating several sub directories, they are madein hierarchy. It iscalled the directory hier-
archy. When the directory is laid-out, it looks like the branches of atree, so can be also called
tree-structured directories.

[\ ——— AUTO.BAT
—— CNFG.SYS
—— [PRG] —— A.PRG
- B.PRG
- [BAK] —EA_BAK.PRG

B_BAK.PRG

- [SUB] — 1 C.PRG

D.PRG

[] represents directory name in the figure above.

Parent directory, child directory

Current directory

In directory hierarchy the directory which is one level higher than currently existing directory is
called parent directory, and which isone level lower is called child directory.

In the directory hierarchy shown above, root directory isregarded as the parent directory of the
TEXT directory, and the DATA directory is regarded as the child directory.

Thisrelationship isrelative. The TEXT directory is considered the parent directory of DATA,
but is also considered the child directory of the root directory.

One period [.] indicates currently existing directory, and two periods| . .] indicates its parent

directory. They are used when typing pass name or when file names are displayed by DIR com-
mand.

The current directory isthe presently selected directory.
If adirectory isnot specified, SPEL Il starts searching from the current directory. When starting
SPEL 111, the root directory of the file memory is automatically selected as current directory.

When changing the current directory, use CHDIR or CD (change directory) command.

When turning the power on, the root directory will always be the current directory.

75

ELEMENTARY Section Chap. 4: Directory

Specifying path

76

When changing a directory or specifying a directory by a parameter of command, proper opera-
tion will not take place by only specifying the directory. The specified directory must be ex-
pressed based on the root and current directories according to the directory hierarchy. Thedirec-
torieswhich are arranged and separated by the back slash " \ " is called "path name".

There are two types of path names: absolute and relative. An absolute path name specifies the
directory from theroot directory and arelative path name specifiesthe directory from the current
directory.

¢ Absolute path name

An absolute path name tells how to find its way to the desired directory from the root directory.
The back slash must be described at the beginning of the path name. The start point of an absolute
path name is always the root directory, so when specifying a specific directory or afilein that
directory, the path name is always the same no matter where the current directory is.

<Example> [\] —[[TEXT]—[[DATAl]

[TEST] T [DATAZ]

When the current directory is DATAL, you specify the DATA2 directory.

\ TEST\ DATA2
W . Separation of directories

Root directory

The back slash is used as both root directory and separation of directories, so be
careful not to mix thetwo up. In the case of an absolute path name, the back slash
at the beginning indicates the root directory, and others indicate the separation of
directories.

Theroute for finding the directory of this absolute path name is asfollows:

Root directory (start point) — Sub directory (TEST) - Sub directory (DATA2)

 Relative path name

A relative path name tells how to find its way to the directory from the current directory. Inthe
case of relative path name, the start point isthe current directory, so apath name differs according
to wherethe current directory is. If you usethesymbol " . . " (two periods) in apath name, it tells
to move upward one level in the tree.

<Example> The expression in absolute path name in the example above corresponds to the
following expression in relative path name.
..\. .\ TEST\ DATA2
T T T In the case of arelative path name, all back slashes
indicate the distinction of directories.

The. . (two periods) heading indicates the parent directory. In other words, the
TEST isthe parent directory of the DATAZ2 directory. The following two periods
indicate the parent directory, or the root directory.

Theroute for finding the directory of thisrelative path nameis asfollows:
Current directoryl (DATAL as start point) — Parent directory (TEXT) — Parent
directory (root) — Sub directory (TEST) - Sub directory (DATA2)

ELEMENTARY Section Chap. 4: Directory

Environment variable

NOTE

Itis possible to specify the optional parameter in COM and PLI command. The optional param-
eter can be specified automatically without specifying them whenever executing the command.

When you have many sub directories, you must specify the path name of the file you want to call
upif itisnot in the current directory. Y ou many specify the environment of the directory before-
hand for executing the file used frequently, so you don't have to keep specifying the path name.

To specify such executing environment, use SETENV command to specify the environment vari-
able. The environment variables below are valid.

COM Set the optional parameter (- V, - L) of COM command.
PLI Set the optional parameter (/W) of PLI command.

Specify the path name of the filewhich is executed by XQT "file name".
When not specified, the file will be searched out from the current directory.
Specify the path name (directory) used for batch file.

When not specified, the batch file cannot be executed.

XQT

PATH

The [path name] on theright of the XQT and PATH can be written several times on the sameline.
Separatethem using the" ; " (semicolon). Make surethat the character limit per lineis 79 charac-
ters.

Y ou can aso specify the PATH without using SETENV command.

Refer to SPEL 11 reference manual for derails of each command.

<Example of environment variables>

>SETENV COME-V ' Specifies the compiling condition.
>SETENV PLI =/ W ' Specifies display format for PLIST.
>SETENV PATH=\;\ BI N ' Specifies path for executing of batch file.
>SETENV XQT=\ ' Specifies the path for executing files.
>SETENV ' Displays current setting.

COVE- V

PLI =/ W

PATH=\; \ BI N

XQr=\

>PATH ' Displays current path for executing a batch file.
PATH=\; \ BI N

>PATH=\ ' Specifies path for executing a batch file.
>PATH ' Displays current path.

PATH=\

Even when the PATH and XQT environment variable has been established, if adirectory is speci-
fied with the file name, it will not search using the environment variable.

<Example> XQT=\BI N; \ TEST

O When executing XQT " TMP" (TMP isfile name), it will search "TMP" first,
and "\BIN\TMP", then \TEST\TMP".

O When executing XQT " ¥TMP", it will search "\TMP" file only.
77

ELEMENTARY Section Chap. 4: Directory

78

79

APPLIED Section Chap. 1: Multi-tasking

CHAPTER 1. MULTI-TASKING

1.1 What is Multi-tasking

When a series of commands to be executed are divided up into smaller units by processing func-
tion, each of those processing functions is called a "task". "Multi-tasking" refers to a type of
processing in which multiple tasks are executed simultaneously or in turns.

There are two ways to achieve multi-tasking. Oneiscalled "multiprocessing”, amode of opera-
tion in which two or more connected processing units each carry out one or more processes con-
currently. The other is"timesharing", amode of operation in which a single processing unit allots
time to the execution of two or more tasks so that operations seem to be executed simultaneously.
Our robot controllers realize multi-tasking by means of timesharing.

Advantages of multi-tasking
A multi-tasking system has the following advantages:

- Shortened tact time Single tasking carry out one task only, multi-tasking carry out plural
tasks simultaneously. This means plural works are done simultaneously
and shorten the tact time (working time) substantially.

- Productivity In addition to shorten the tact time, multi-tasking can control peripheral
equipments simultaneously, this means that all system work efficiently
and the productivity isimproved.

- Ease of maintenance By dividing the program into each task, it is easy to check the program
and it is convenient to maintain the program by checking out each task.

- Expendability In order to add new work to the program, modification of the program
can be done easily by adding new task.

80

APPLIED Section Chap. 1. Multi-tasking

Multi-tasking in SPEL Il

The SRC-300/310A/320 controllers can concurrently execute aminimum of 16 tasks by means of
timesharing.
Each task isallowed 2 msec. for execution, and tasks are switched every 2 msec under the control
of the system.
Taskl Task2 Task3 Task4 Taskl Task2 Task3 Task4
execution execution execution execution execution execution execution execution
Taskl | — I—
Task 2 — —
Task 3 I— —

Task 4 — >

time

2MSEC. | 2MSEC. | 2MSEC. | 2MSEC. | 2MSeC. | 2mSeC. | 2 mSec.

SPEL 111 makes FEND from the FUNCTION of the program one task.

The XQT command of TEACH mode and the START switch of AUTO mode execute FUNC-
TION...FEND at thetop of the program astask 1, and thereafter tasks are launched in accordance
with the XQT command in the program.

<Example>

1000 FUNCTI ON MAI N "task 1

1010 XQr !2, TASK2 ' start of task 2

1020 XQr ! 3, TASK3 ' start of task 3

1030 XQr !4, TASK4 ' start of task 4

1040 XQr !5, TASK5 ' start of task 5
i

1500 FEND

2000 FUNCTI ON TASK2 'task2

-

2500 FEND
3000 FUNCTI ON TASK3 'task3

3500 FEND
4000 FUNCTI ON TASK4 ‘'task4

-

4500 FEND
5000 FUNCTI ON TASK5 'task5

-

5500 FEND

81

APPLIED Section Chap. 1: Multi-tasking

Tasks during execution of WAIT command, INPUT command and movement commands

The tasks that execute such commands as the WAIT t command, wait WAIT SW () command,
INPUT command, operation commands (JUMP, and so on) are switched by time, and separated
from the group of immediately executable tasks. This arrangement is used because assigning an
execution time to tasks whose only job isto wait would only contribute to decreasing the process-
ing efficiency of the CPU.

For these tasks, the system supervises the satisfaction of the input condition, entry of data, or the
completion of movement, and when the required condition is met, the system executes them with
priority over other tasks. Thereafter, they will again be handled astasksto be switched by timefor

execution.

<Example> Task 3 executes the WAIT command.

Task 1
Task 2
Task 3
Task 4

time

Taskl Task2 Task3 Taskl Task2 Task4 Taskl Task2
execution execution waiting — execution execution execution execution execution
Task4 | 0
1 execution —
T WAIT
| 7
2MSEC. | 2MSEC. | 2mMSeC. | 2MSEC. | 2MSEC. | 2mSec. | 2 mMSeC.
<Example> Task 2 input port changes.
Taskl Task2 Task4 Taskl Task2 Task3 Task4 Taskl
execution execution execution execution execution execution execution execution
Task3
> execution — —>

Task 1
Task 2
Task 3
Task 4

time

WAIT command and IF sentence

82

Based on the above, the following two programs have different meanings:

I

1 Input port changes

2 mSec.

2 mSec.

2 mSec.

2 msec.

2 msec.

2 msec.

2 mSec.

List1

List2

:
:

1300

FEND

1200 WAI T SW1) =

1000 FUNCTI ON TASK

1

1000 FUNCTI ON TASK

:

1200 |1 F SW1)

:

1300 FEND

= 0 THEN GOTO 1200

APPLIED Section Chap. 1. Multi-tasking

Timing to switch tasks

Both of them wait for input 1 to change. List 1isexcluded from the time switching of tasks, and
List 2 repeats the evaluation of equation SW (1) = 0 for aperiod of 2 sec., after acertain time
has elapsed. If there are multipletaskslike List 2, the majority of the CPU processing time will be
spent in evaluating conditional expressions.

Moreover, if, for example, there are 16 tasks, they will be executed one every 32 msec. |n some
cases, List 2 may not be able to respond to signalsthat are less than 30 msec. wide.

The switching of tasks takes place in acompletely arbitrary position after 2 msec. have elapsed.
The values of variables are not guaranteed in the following program:

<Example>
1000 FUNCTI ON MAI N

-

1200 IF A =1 THEN 00000 " A may not be 1 or 2 either.
1210 IF A = 2 THEN 00000
1400 FEND

2000 FUNCTI ON TASK2

-

2100 A =1

-

2200 FEND
3000 FUNCTI ON TASK3

-

3100 A = 2
3200 FEND

When datais written from multiple tasks to one variable in an asynchronous fashion, the tasks are
switched while 2100 A = 1 isbeing executed (for example, immediately after data has been
written to one byte out of four), andthen3100 A = 2 isexecuted. Moreover, when thetasksare
switched again and the continuation of 2100 A = 1 isexecuted, variable A assumesavaluethat
is utterly unpredictable.

Moreover, the value of A is rewritten during execution of the part subsequent to THEN, which
makes the conditional expression of |F meaningless.

83

APPLIED Section Chap. 1: Multi-tasking

1.2 Interlock among Tasks

Interference of controller

In multi-tasking, processing is usually carried out while mutual interference among the tasksis
being avoided and the progress state of the other task ismutually checked. Thisiscalled interlock
among tasks.

To secure interlock, the SPEL 111 makes use of memory 1/0. Memory 1/Oisagroup of 512 flags
(2-bit variables), which are numbered from 0 to 511. It is operated using the On $n/OFF $n, IN
($mM)/OUT $m, and d commands.

<Example>

1000

-

1100
1110

-

1200

1300
1310
2000

2100
2110

2300

2400
2410

FUNCTI ON TASK1

LOCPL:
ON $0

WAI T SW$1) = 1; OFF $1

GOTo LOCP1
FEND
FUNCTI ON TASK2

LOOP2:
WAI T SW$0) = 1; OFF $0

ON $1

GOT0O LOOP2
FEND

‘Command for Task 2 to initiate processing.

"Wait for a processing-complete indication from
Task 2.

"From here on, interference with the device is con-
trolled by Task 2.

'Wait for an command to initiate processing.
'From here on, interference with the device is con-
trolled by Task 1.

' Processing-compl ete indication.

APPLIED Section Chap. 1. Multi-tasking

Only one device used by multiple tasks

The output of data to the single device available (Display to OPU-300, RS-232C, etc.) should
essentially be assigned to the dedicated tasks. If that isnot viable, someingenious scheme must be
devised to prevent simultaneous outputsto asingle device. Such aschemeisknown as“exclusive
control.”

<Example 1> No. 0 (zero) of memory |/O is assigned to use/nonuse of the output device.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
2000
2010
2020
2030
2040
2050
2060
2070
2080
>

FUNCTI ON TASK1
XQr ! 2, TASK2

VAIT SW$0) =0
ON $0

PRI NT "1234567890"
PRI NT "1234567890"
PRI NT "1234567890"
OFF $0

GOTO 1020

FEND

FUNCTI ON TASK2
VWAIT SW$0) =0
ON $0

PRI NT "abcdef g"
PRI NT "abcdef g"
PRI NT "abcdef g"
OFF $0

GOTO 2010

FEND

abcdef g
1234567890
abcdef g
abcdef g
1234567890

85

APPLIED Section Chap. 1: Multi-tasking

In <Example 1> program, if atask is switched immediately after WAI T SW($0) = 0, acharacter
string from the other task will be delivered through interruption in the middle of the output of the
three-character strings. To prevent this, the SPEL 11 providesthe ZEROFLG (0) function.

<Example 2>

1000 FUNCTI ON TASK1
1010 XQr !2, TASK2

1020 ON $0

1030 | F ZEROFLG(0) = 1 THEN WAIT SW$0) = 0; GOTO 1020
1040 PRI NT "1234567890"
1050 PRI NT "1234567890"
1060 PRI NT "1234567890"
1070 OFF $0

1080 GOTO 1020

1090 FEND

2000 FUNCTI ON TASK2
2010 ON $0

2020 | F ZEROFLG0) = 1 THEN WAIT SW$0) = 0; GOTo 2010
2030 PRI NT "abcdefg"
2040 PRI NT "abcdef g"
2050 PRI NT "abcdefg"
2060 OFF $0

2070 GOTO 2010

2080 FEND

>

1234567890

1234567890

1234567890

abcdef g

abcdef g

abcdef g

1234567890

1234567890

1234567890

The ZEROFL G (0) function returnsthe n-th status of the memory 1/O that exists before theimme-
diately preceding ON (OFF) $n is executed.

86

APPLIED Section Chap. 2: Program Techniques

CHAPTER 2. PROGRAM TECHNIQUES

2.1 How to Write Large-scale Programs (Efficient use of CHAIN/LINK)

A small-scale program normally consists of asingle file. As programs become larger, however,
the following problems appear:

* Cannot fit in program areas.

Cannot be edited by the editor.
» Require along timeto compile.

» Require along timeto output LIST.

All variables and labels need to be assigned different names (it is troublesome to create appro-
priate names).

To be able to cope with such problems, the CHAIN command and LINK command are provided.

Theformer isused for switching an equipment type, and the latter isused in al other cases. There
is no clear-cut criteriafor using the CHAIN and LINK commands. Instead, it isall left to the
discretion of the programmer, except when some special circumstances requiring the use of those
commands arise, such as when a program does not completely fitin aprogram area. Asagenera
rule of thumb, it is advisable to consider using the LINK and CHAIN commands in writing pro-
gramsthat exceed 3,000 lines (if aline number is assigned to every 10 lines starting from 10, the
line numbers go up to 32,767 and, therefore, the limit is 3,276 lines).

Case in which the CHAIN command can be used:

Suppose a program in which different types of IC are to be specified by DIP switches, which
represents a case in which routines to be executed are clearly separated.

DIP switch

Work (IC) to be handled is selected by input IN(0), and branched to each
[] processing routine. Each routineisindependent of the others, and does not

share any subroutine with them.
9
IN(0)=1 : PLCC
2 :DIP
[3 :S0P
IN(0)

87

APPLIED Section Chap. 2: Program Techniques

<Example 1> When CHAIN is not used:

100 I F IN(O)=1 THEN GOTO PLCC "PLCC selection
110 IF IN(0)=2 THEN GOTO DI P ' DIP selection
120 I F IN(0)=3 THEN GOTO SOP ' SOP selection
3000 PLCC:

3900 GOTO PLCC
4000 Dl P:

-

4900 GOTO DI P
5000 SOFP:

5900 GOTO SCP

<Example 2> When CHAIN is used:
File: MENU.PRG

100 IF IN(O)=1 THEN CHAIN "PLCC'" 'PLCC selection

110 | F IN(O)=2 THEN CHAIN "DI P" ' DIP selection
120 | F IN(O)=3 THEN CHAI N " SOP" ' SOP selection
File: PLCC.PRG

1000 FUNCTI ON MAIN
1010 PLCC:

1900 GOTO PLCC
2000 FEND

File: DIP.PRG

1000 FUNCTI ON MAI N
1010 DI P:

1900 GOTO DI P

2000 FEND

File: SOP.PRG

1000 FUNCTI ON MAI N
1010 SCP:

1900 GOTO SCP

2000 FEND

In a case such as the one given in this example, programs can be developed separately for each
individual equipment type. This offers good debugging efficiency and, therefore, serves to
shorten the devel opment time.

Moreover, in other cases, such aswhen a program to be activated is selected by REMOTES3 (LCD
touch panel, sequencer, etc.), and not through the OPU-300, the CHAIN can also be used.

88

APPLIED Section Chap. 2: Program Techniques

Case in which the LINK command can be:
The LINK command is used under the following circumstances, among others:
» A program istoo largeto fit in the program area.

» A program istoo large to be edited by the editor.

Itisdesirableto use local variables.

 Programming work needs to be shared among several persons.

* A program should be made up of modules so that it can be reused.
« Shortening compiling time to correct the programs.

» The same names can be used for variables or labels, if the files are different.

If any of the above cases, use of the LINK command’ s recommended. However, you should also
bear in mind that using the LINK command necessarily involves by the following disadvantages:

* To sharevariables, extra procedures, such as ENTRY/EXTERN, are necessary.

» The number of procedures as awhole increases. (In addition to compiling, the LINK command
must be executed, and if there is any mismatch (non-correspondence between ENTRY and
EXTERN), the procedures need to be repeated starting with the compiling.)

» Variousfiles need to be handled at the same time.

89

APPLIED Section Chap. 2: Program Techniques

2.2 Movement to Multiple Points Spaced Equidistantly

Definition of pallet

90

The PALET command is effective for moving to multiple points arranged equidistantly, asillus-
trated below:

Format: PALETn Pa,Pb,Pc, [No. of divisions 1], [No. of divisions 2]

n: Pallet No. (0 to 15)

a, b, c: Point No. (0to 199)

[No. of Divisions 1]: Number of divisions between Paand Pb
[No. of Divisions 2]: Number of divisions between Paand Pc

<Example>
PALET1, P1,P2,P3,5,3

When input is done as shown in the example, the pallet illustrated at right is set, and numbers are
assigned as shown there.

7% % 0 %
10539
73|39 @

* The corner of the pallet formed by the three points must be situated at "Pa'".
* |f the standard three points do not form aright angle, the pallet will be deformed.
* Z-coordinates are distributed equidistantly on a plane formed by three points.

One-string pallet:

For a one-string pallet, teaching is done on the two points on both sides, and is therefore defined
asfollows:

Format: PALETn P1,P2,P1,[No. of divisions],1

<Example>
PALET1 P1,P2,P1,5,1

q g g9 &

APPLIED Section Chap. 2: Program Techniques

Positional designation inside pallet:

NOTE

Prior to executing the program, directly input the JUMP command and move the robot to each
point inside the pallet and make sure it is the right position. 1f you have a pallet image drawn
beforehand, it will facilitate checking the movement to each point.

Specify the position inside the pallet as follows.

Format: PALETN (C)

n=0to 15 (Pallet No.)
C = Grid No. on the pallet

An error occurswhen the pallet is not defined. Prior to executing the program, set the three points.

<Example> Thework isswitched from Pallet 1 to Pallet 2.

10 FUNCTI ON MAI' N

20 PALET1 P1, P2, P3, 3,5

30 PALET2 P11, P12, P13, 5, 3
40 FOR I=1 TO 15

50 JUMP PALET1(1)
60 ON1; WATO.5
70 JUMP PALET2(1)
80 OFF 1; WAIT 0.5
920 NEXT |

100 FEND

The /O output port numbers for operating the hand and the numbers of pallet divisions should be
setindividualy.

91

APPLIED Section Chap. 2: Program Techniques

2.3 Techniques for Shortening Cycle Time

Using arch motion

SPEL I11 has various commands for shortening cycletime. There are four approachesto reducing
cycletime:

« move at the highest speed possible
 perform concurrent operations
« eliminate wasteful movements
« eliminate wasteful positioning

Horizontal motion isinitiated during vertical movement by operation of the JUMP command.

The shape of movement can be selected freely.

Vertical rising distance (a: mm)
Vertical lowering distance (b: mm)) 7=0
Horizontal movement height (z: mm) z

Commands: JUMP, ARCH, LIMZ

Target position

Current position

Free setting of the timing of position completion

Parallel processing

92

Set the value for completing the positioning of a motion, and execute the following command in
front of the target position. For example, if the following command is ON/OFF, delay in such
things as compressed air operation can be absorbed.

The final position of the movement destination does not change even if the FINE command is
used. Thetiming for executing the next command is merely speeded up.

Select the best value for your system, somewhere around 500 to 1000 pulses for normal opera-
tions and 100 pulses for assembly operations.

Command: FINE

During operations, input and output of the I/O and RS-232C, etc. can by performed in the place of
your choice (horizontal direction).

<Example> « Opening and closing hand during pick-and-place operations (see following figure).
« Turning the nozzle in painting operations on and off

Command: ! ...!
100 %

Hand open

Switching the hand

APPLIED Section Chap. 2: Program Techniques

Conditional stop during motion

When input conditions are established during motion, the robot immediately slows and stops.
Hereisthe example that stop occurs when the condition *no work-piece” is satisfied during pick-
and-place operation. When the stop occurred in the absence of a work-piece, wasted motion in
retrying is eliminated.

Commands; JUMP, SENSE, TILL

<Example> JUMPwith TILL modifier

Stop position of %osjtion where condition satisfied

Stop position of @/v

Position where condition Target position
satisfied

Current position

Assembly operations at low speed

Associated commands

When it is necessary to slow down during assembly, one often sees instances of programming
with the JUMP command and GO command, as shown in <Example 1>. However, since position-
ing is performed once, it cannot match a single movement command, even if FINE is roughened.

<Example1l> JUMP Pn
GO Pm

Inthiscase, it isbetter to shorten cycle time by skillfully using the ACCEL command, making it a
JUMP command.

<Example 2>
ACCEL 100, 100, 100, 100, 100, 10 ; JUMP Pm

\7 Accel eration/decel eration during descending.
Acceleration/decel eration during rising
Accel eration/decel eration during horizontal movement

Five examples were given above. The associated commands are listed below. Seethe SPEL I
reference manua for detail s about commands.

» move at the highest speed possible: SPEED, SPEEDS, ACCEL, ACCELS, WEIGHT

« perform concurrent operations: I...! (parallel processing), multi-tasking
* eliminate wasteful movements: ARCH, LIMZ, SENSE, TILL
* eliminate wasteful positioning: PASS, FINE, CMOVE, CARC

93

APPLIED Section Chap. 2: Program Techniques

2.4 Using Position Data

94

When you have to switch position data because a single program handles two or more work-
pieces, it is convenient to store work-piece specific datain the position data.

For example, it is convenient to do this when there are two kinds of work-pieces that differ in the
number of work-pieces that can be lined up on a single pallet; or when the operating speed is
changed depending on the work-piece to be handled.

To obtain coordinate values from the point data, use functions CX (Pn), CY (Pn), CZ (Pn), and
CU (Pn).

<Example>
Enter the number of work-pieces in X of point No. 190 of the work-piece 1 point file (e.g.
01WORK.PNT) and the operating speed in X, Y, Z, and U of No. 191.

P190=10,0,0,0
P191=100, 100, 20, 50

Just asfor work-piece 1, enter the number of work-piecesin X of point No. 190 of the work-piece
2 point file (e.g. 02WORK.PNT) and the operating speed in X, Y, Z, and U of No. 191.

P190=12,0,0,0
P191=80, 80, 20, 50

Obtain datain the program as follows.

1100 COUNT = CX(P190) 'Obtain the number of work-pieces
to be loaded on one pallet from
P190

1110 SPD1 = CX(P191); ACL1 = CY(P191) 'Obtain speed and acceleration/de-

celeration values from P191.
1120 SPD2

CZ(P191) ; SPD3 = CU(P191)

1200 SPEED SPD1; ACCEL ACL1, ACL1

1500 FOR | = 1 TO COUNT
1510 JUWMP PALET1(!)

1590 NEXT

1700 SPEED SPD2
1710 GO P10
1720 SPEED SPD1

1900 SPEED SPD3
1910 GO P11
1920 SPEED SPD1

APPLIED Section Chap. 3: Debugging

CHAPTER 3. DEBUGGING

3.1 Multi-tasking Debugging

Convenient debugging commands

XQT command

TSTAT command

SPEL |11 has anumber of commands that help debug multi-tasking programs. These commands
are executed in command mode of SPEL Editor or monitor window of SPEL for Windows.

* XQT: Task execution

e TSTAT: Display of task status

» TON/TOFF: Display of execution line No. to indicator panel of controller and programming
unit (PC)

* PRINT: Display of text strings, variables, 1/0, memory 1/0

The XQT command executes a program.

When this command isinput from a programming unit (PC), the FUNCTION...FEND at the start
of the program is executed astask 1, and the XQT command is complete when task 1 isfinished.
Therefore, the next command cannot be input from the programming unit until task 1 isfinished.

With the XQT command, you can specify the task number of the program to be executed, specify
the FUNCTION, and specify the line number. Y ou can execute a part of aprogram by specifying
the line number, thus enabling you to check particulars.

You can aso usethe TSTAT command, explained in "TSTAT command" below, if you specify
the task.

<Example 1>

>XQr ! 2, MAIN ' Start FUNCTION MAIN astask 2

> ' Possible to input commands when program is running
<Example 2>

>XQr 2, MAIN, 2100- 2200 " Execute FUNCTION MAIN lines 2100 to 2200
>

Displays the status of tasks 1 to 16 when TSTAT command is executed.
Y ou can check the execution status of all tasks using this command.

From SPEL Editor’s command mode, specify any task number from 2 to 16 using the above-
mentioned XQT command and execute the program.

95

APPLIED Section Chap. 3: Debugging

TON/TOFF command

PRINT command

96

<Example>
>XQT !'2, MAIN
>TSTAT
Task 1 2 3 4 5 6 7 8
St at us QT RUN RUN QUIT QT QUT QT QT
Li ne 0 100 250 0 0 0 0 0

Task 9 10 11 12 13 14 15 16

Status QUT QT QUIT QT QUT QUT QUIT QIT
Li ne 0 0 0 0 0 0 0 0

Displays the last line number to have been executed prior to status of each task, QUITE, RUN,
HALT, and TSTAT execution.

In SPEL for Windows, you can check the status of tasks in the [Task Manager] window. Please
see “Task Manager” in the SPEL for Windows manual for details.

Y ou can find out the program sequence from the line number currently being executed.

Thereisan LED on the front panel of the controller that displays the line number. Normally the
task 1 line number being executed is displayed here. If you use the TON command you can view
the line numbers of tasks other than task 1 that are being executed.

<Example>

>XQr 2, MAIN

[1010] ' Display the line number being executed
[1020]

The simplest debugging technique is to display the text string midway through the program and
check itsoperation. PRINT isacommand that displays on the programming device such things as
the text string, variable value, and function value.

<Example>

1000 FUNCTI ON MAI N

1010 XQr !2, TASK2

1020 PRINT "Start Task2"

1200 A= A+B+ C
1210 PRINT "A =", A

-

They are displayed as follows on the screen when you execute this program.

Start Task?2
A = 100

APPLIED Section Chap. 4: Batch Processing

CHAPTER 4. BATCH PROCESSING

In MS-DOS, thereis a processing called "batch processing” which automatically executes com-
mands and statements in series. The file that registers the continually executed commands is
called the "batch file".

SPEL |11 offersthe usage of batch file asMS-DOS does.
The SPEL Il commands and statements can be described in the batch file.

The file extension of the batch file must be BAT. By naming the extension BAT, thefileis
recognized as batch file, and the commands and statements registered in the file will be executed
automatically.

When executing the batch processing, input the batch file name as command. However, the
extension (.BAT) is not necessary to beinput.

EDIT command can be used for editing the batch processing file. Regarding the EDIT command,
refer to SPEL 111 reference manual, and "6.2 Editing Files" in this section of this manual.

4.1 Batch Processing Command

In SPEL Il1, thereisan "ECHO" command to control the display of commands and messages
during batch processing.
Theformat isasfollows:

Format: ECHO ON
ECHO OFF
ECHO [message]

Usually the specified command in the batch file will be displayed to the console. The ECHO
command controls this display. When displaying the command which is executed (echo back),
specify "ECHO ON", and when not displaying the command, specify "ECHO OFF". Usudly itis
inthe "ECHO ON" status. In other words, even if you input ECHO OFF, after the batch fileis
completed, it will automatically return to ECHO ON status.

If the"ECHO [message]” isinput, that message will be displayed to the console. Even when
ECHO OFF is specified, the message can be displayed, so it is useful to output the message as a
record of the command executed. In[message], excepting the control codes (character codes 00H
to 1FH), all of the characters may be used.

In the case of MS-DOS, when ECHO command without ON, OFF, nor [message] is input, the
current ECHO statuswill be referred. However, SPEL 111 does not offer thisfunction. Therefore,
when inputting ECHO only, the space characters are regarded as message, and aline is changed.

97

APPLIED Section Chap. 4: Batch Processing

98

<Example> Filename"ECHO.BAT".
10 ECHO OFF

20 ECHO MESSACElL

30 ECHO

40 ECHO ON

50 ECHO MESSAGE2

When execute the example program above, the execution result will be as shown below:

>ECHO
VESSAGEL ' Displays message

' Changing line by ECHO
VESSAGE2 ' Displays message

The point which differentiates the SPEL 111 "ECHO" command from the one of the MS-DOS is
that even in the ECHO ON status, the ECHO command display will not appear. For instance, in
the above example, if the same batch fileis run in MS-DOS, the execution results will appear as
shown below:

>ECHO
ECHO OFF '1)
MESSAGEL
ECHO <OFF> '2)
ECHO MESSAGE2 '3
MESSAGE2

1) Before executing ECHO OFF, it wasin the ECHO ON status, so that statusis displayed.
2) Thisshowsthe current set up status of ECHO.

3) Display dueto ECHO ON status. (The string of ECHO ON will not be displayed sinceitisin
the ECHO OFF status.

Regarding the batch processing and the display of batch file, refer to the MS-DOS manual.

APPLIED Section Chap. 4: Batch Processing

4.2 Batch File

Creating the batch file

There are many commands like COMPILE command which cannot be executed in SPEL 111 pro-
gram. However, if it is described in abatch file, these commands can be executed.

When editing batch files, you must first enter the EDIT mode by specifying the EDIT command.
Refer to "6.2 Editing Files" in this section of this manual.

The batch fileis named with the BAT extension. A file cannot be named with the same word asa
SPEL command. It is because the command has priority to be executed.

The commands which are effective as direct commands can be described in a batch file. Those

commands are executed in order when running. Y ou cannot call up another batch file from a
batch file.

99

APPLIED Section Chap. 5: Automatic Program Execution at Power On

CHAPTER 5. Automatic Program Execution at Power On

Itis possibleto start program execution automatically when turning the power on.

This automatic execution can be done by creating an "AUTO.BAT" file or "IPL.OBJ" filein the
root directory of the current drive.

5.1 AUTO.BAT File

Create thisfilein the same way as an usual batch file with EDIT command. By naming thisfile
"AUTO.BAT", you are able to automatically execute the commands registered in thisfile. (See
"6.2 Editing Files" for details of EDIT command.)

<Example> Anexampleto executethe executablefile"MAINGRP' automatically after turning
on the controller.
>EDI T AUTO. BAT

New file

>10 XQT " MAI NGRP"
>END

Edit End...file save
>

This batch file can be executed regardless of what the starting modeis.

5.2 IPL Program

By creating the file with "IPL" file name, XQT"IPL" can be executed when the power is turned
on. However, the start up mode must bein AUTO mode.

100

APPLIED Section Chap. 6: System Configuration File

CHAPTER 6.

6.1 CNFG.SYS File

SYSTEM CONFIGURATION FILE

In order to use the computer efficiently, you may need to define the system information according
to the hardware and program used. Thiskind of information isdescribed inthe"CNFG.SY S' file,
and specifies the system environment.

The requirements which can be defined in SPEL 111 are the capacity of error history buffer, the
capacity of line history of each task, and the maximum number of user tasks.

When the "CNFG.SY S" file does not exist, default values are used for the system configuration.

The "CNFG.SYS" file must be registered in the root directory. Even if the "CNFG.SYS" file
exists somewhere other than the root directory, it will be disregarded.

TASK=k Specifies the available number of user tasksin k.
k: Integer from 1to 16 [Default value :16]

ERRBUF=mM Memorizes the error history up to m.
m: Integer from 1to 20 [Default value :20]

LINBUF=n Memorizes line number history of each task up to n.
n: Integer from1to512 [Default value:10]

Asto the requirements above, system memory areais assigned to the memory capacity in byte as
shown below.

Necessary memory [unit: byte]
User task (Specified number) x (approx. 1600)
ERRBUF (Specified number) x 8
LINBUF (Specified number) x 6 x (Number of tasks specified by TASK)

The system memory areais used to secure the necessary RAM for running tasks. Therefore, if too
large amount is set for "ERRBUF" or "LINBUF", task may not berun. Be careful not to specify
more space than is necessary.

Also make sure to define the "TASK=k" in the CNFG.SY Sfile before the "LINBUF=n". If it
isn't, the area secured for LINBUF will be the one for 16 tasks.

101

APPLIED Section Chap. 6: System Configuration File

6.2 Editing Files

102

SPEL |1l offersthe EDIT command which isfor editing the text file (excepting program). The
format of EDIT command is as follows:

Format: EDIT [path name][file name]

By using the EDIT command, it switchesto the edit mode, and the files can be edited. To edit a
file, create lines with line numbersin the same way that a program is created. However, itis not
necessary to describe "FUNCTION [Function name]" and "FEND".

In the edit mode it is possible to use the commands as listed bel ow.

LIST, RENUM, DELETE(DEL), NEW, FREE, COPY, RENAME(REN), CHDIR(CD),
RMDIR(RD), MKDIR(MD), RENDIR, DIR, QUIT, END

When entering the edit mode, you specify the path name and file name. Then if thisfile name
existsin the directory, the file will be read.

End of input file

And the above message will be displayed. When the specified file name does not exist,

New file

the above message will be displayed. Then file editing becomes possible.

To get out of the edit mode, you may use QUIT command (end without saving) or END command
(savethen end). Thefollowing messageswill appear in each case.

SQUI T
Edit End. ..

>END
Edit End...file save
>

The program editing areafor the edit mode and for the robot program is different. Therefore, the
program in the robot program areawill not be obstructed by editing afile in the edit mode.

EDIT command deletes line numbers when saving files, and when reading the file, the line num-
berswill be added as 10, 20, 30.... Therefore, the line numbers before and after saving will differ.

APPLIED Section Chap. 6: System Configuration File

<Example>

>EDI T CNFG SYS
New file

>10 TASK=8

>20 ERRBUF=20
>30 LI NBUF=256

>END
Edit End...file save
>
NOTE The number of charactersin onelineisupto 79 including line numbers. Be awarethat the number
& of charactersthat will beread (not including the line numbers) is 74, and anything over that will be
cut.

Thefile size that can be edited is at the most 6 Kbyte.

103

APPLIED Section Chap. 7: RS-232C (Overview)

CHAPTER 7. RS-232C

7.1 Overview of RS-232C

Configuration

Configuration for SPEL I

104

The robot controller SRC-300/310A/320 has an RS-232C interface asits standard interface, and
its communication is supported by the SPEL 111 robot programming language.
The RS-232C interface can be used for the following type of communications.

« Communication port for the SPEL Editor or the SPEL for Windows
« Communications between robots

« Communications with user equipment

« Communications with a host computer

Because SPEL |11 uses asynchronous communications, the various communi cation settings (such
as the communication mode, protocol, and baud rate) must be the same among all communicating
devices. Thisgroup of settingsis called the "configuration.”

Communication mode
The communication mode includes the data bit, parity, and stop bit settings which are made for
datatransferred viathe RS-232C interface.

Protocol

The protocol isthe sequence in which datais transferred between communicating stations.
SPEL 111 supports "BASIC protocol” and "TTY protocol” settings. The "BASIC protocol” is
recommended to ensure the reliability of communication data.

The SPEL I11 configuration can be set via the following command.
Format: CONFIG #[port no.],[mode no.],[protocol no.],[timeout period],[baud rate no.]

Port No. : 20 or 21 (an integer from 20 to 23 for extended ports)
Mode No. : Integer from O to 47

Protocol No. : Integer from O to 19

Baud rate No.: Integer from0to 7

The following values are set asinitial values for the controller’s RS-232C port. These same
values are aso set when the VERINIT command is executed.

Mode No. : 2 (7 bits, even parity, 1 stop bit)
Protocol No. : 1 (BASIC protocol, secondary station)
Time-out period: 3 (3-second timeout period)

Baud rate No. : O (9,600 bps)

APPLIED Section Chap. 7: RS-232C (Overview)

Port No.

Thisisthe RS-232C connector number that is shown on the back of the controller.

Mode No.
Mode No.| Character bits| Parity | Stop bits || Mode No.| Character bits| Parity | Stop bits
0 7 EVEN 2 24 6 EVEN 2
1 7 OoDD 2 25 6 EVEN 15
2 7 EVEN 1 26 6 EVEN 1
3 7 ODD 1 27 - - -
4 8 NONE 2 28 6 OoDbD 2
5 8 NONE 1 29 6 ODD 15
6 8 EVEN 1 30 6 OoDD 1
7 8 ODD 1 31 - - -
8 7 EVEN 15 32 6 NONE 2
9 - - - 33 6 NONE 15
10 7 ODbD 15 34 6 NONE
11 - - - 35 - - -
12 7 NONE 2 36 5 EVEN 2
13 7 NONE 1 37 5 EVEN 15
14 7 NONE 15 38 5 EVEN 1
15 - - - 39 - - -
16 8 EVEN 2 40 5 OoDD 2
17 8 EVEN 15 41 5 ODD 15
18 - - - 42 5 OoDbD 1
19 8 ODD 2 43 - - -
20 8 ODbD 15 44 5 NONE 2
21 - - - 45 5 NONE 15
22 8 NONE 15 46 5 NONE
23 - - - 47 - - -
Character bits

Thisisthe number of bits used to represent text characters during data transmission.

Parity

The parity bit isabit that is used to ensure the reliability of data communications.
EVEN : A parity bit is added so that the total number of 1 in the bit string becomes an even

number.

ODD : A parity bit isadded so that the total number of 1 in the bit string becomes an odd number.

NONE: No parity bit is added.

Stop bits

The stop bit indicates the end of transmitted data. Actually, it indicates a bit time value, so that
“1.5 stop bits” means the amount of time required for 1.5 bitsis necessary as the stop bit.

105

APPLIED Section Chap. 7: RS-232C (Overview)

Protocol No.
Protocol No.| Protocol Station | Buffer busy control Terminator
0 TTY - None CR
1 BASIC 2 - -
2 BASIC 1 - -
3 TTY - XON/XOFF CR
4 TTY - XON/XOFF CR-LF
5 TTY - XON/XOFF LF
6 TTY - None CR-LF
7 TTY - None LF
8 BASIC2 2 - -
9 BASIC2 1 - -
10 TTY - CSs CR
11 BASIC 2 Cs -
12 BASIC 1 Cs -
13 TTY - CS & XON/XOFF CR
14 TTY - CS & XON/XOFF CR-LF
15 TTY - CS & XON/XOFF LF
16 TTY - Cs CR-LF
17 TTY - Cs LF
18 BASIC2 2 Cs -
19 BASIC2 1 Cs -

NOTE
@ Protocol Nos. 10 to 19 are disabled for SPEL 111 Version 3.2 and earlier versions.

Timeout period
When using the BASIC protocoal, if datais not received within the specified period, acommunica-
tion error (error code 31) occurs. This specified period is called the “timeout period.”

Baud rate No.

Baud rate No. | Baud rate (bps)

0 9600
4800
2400
1200
600
300
19200

38400

~No o b~ wWwWN PR

106

APPLIED Section Chap. 7: RS-232C (Overview)

Computer configuration

The computer that is connected to an RS-232C port must have the same communications configu-
ration as the robot controller.

The method for setting the configuration differs according to the computer. Check the manuals
for the connected computer and its operating system such as MS-DOS ¢, then make the same
configuration settings on the computer and controller.

<Example>

Computer: IBM PC Series (or compatible)
Operating system: MS-DOS

The device driver provided by MS-DOS may have to be installed to enable RS-232C com-
munications. Install the device driver by adding the following line to the computer’s
CONFIG.SY Sfile.

DEVI CE = ANSI. SYS

RS-232C communications is now enabled using the computer’ s disk on which the device has
been installed as shown above. However, you must still set up the communication configu-
ration before you can execute RS-232C communications.

Make sure the configuration settings are the same for the computer and the controller. For
example, if using the initial controller settings, set up the following configuration at the
computer’s DOS prompt (A>).

A>MODE COML : 9600, E, 8, 2

) MS-DOSisaregistered trademark of Microsoft Corporation.

107

APPLIED Section Chap. 7: RS-232C (Overview)

TTY protocol and XON/XOFF control

108

TTY protocol
The TTY protocol is referred to as “no protocol” since it is a protocol that simply sends data
without checking whether or not the receiving side is ready.

TTY adds CR (&HOD) to dataas aterminator. If transmission errors or other problems occur, it
isimpossible to recover transmitted data, so one must be extra cautiouswhenusing TTY .

Instead, we recommend using the BASIC protocol since it provides ready-status checking and
error detection such as parity checking, which help ensure more reliable communications.
The detail of BASIC protocol is described in next page.

Sending side

Data(text) + CR —— Receiving side

XON/XOFF control
Under the TTY protocol, when data processing at the receiving side does not go smoothly, the
received data overflows the reception buffer. XON/XOFF control isa control function that pre-
vents such overflows.

Flowchart of XON/XOFF Control

Sending side Receiving side

Datatransmission Datareception

XOFF code (& H13) is sent to request
stop of transmission when the recep-
tion buffer becomes two-thirds full.

Transmission stops when the X OFF
code (&H13) is received.

As processing continues, when the re-
ception buffer is reduced to one-third
full, the XON code (&H11) is sent to

request restart of transmission.

Transmission restart when the XON
codeisreceived.

Datatransmission Datareception

APPLIED Section Chap. 7: RS-232C (Overview)

BASIC protocol

BASIC protocol

The following rules have been established for the BASIC protocol to make for higher reliability.

« Before the sending side can send any data, it must confirm that the receiving side is ready to

receive the data.

e A parity bit is added to transmitted data. The receiving side uses the parity bit to check for

transmission errors and notifies the sending side when an error is detected.

These basic rules are collectively called "transmission control." The BASIC protocol usesthe

following codes to implement transmission control.

Notation Code Name
STX &HO02 | Startof Text
ETX &HO03 End of Text
EOT &HO04 End of Transmission
ENQ &HO05 Enquiry
ACK &HO06 Acknowledge
NAK &H15 Negative Acknowledge

Flowchart of BASIC Protocol

Sending side Receiving side

Send ENQ

ENQ After receiving the ENQ code, send the

After receiving the ACK code, ‘ACK
attach the STX, ETX, and BCC

(1 codes to data and send.

If an error isfound, send the NAK code
and prepare to receive a retransmission
of the data.

ACK code if ready to receive data or NAK
send the NAK code if not ready.
Use the BCC codeto check for errors. If

STX +data+ETX +BCC | no errorsarefound, send the ACK code. | NAK

After receiving the ACK code, ACK
end the data transmission.

) BCC : Standsfor “Block Check Character.” Thiscodeis used to detect transmission errors, as
determined by the horizontal parity value of the text and ETX code (avalue that in-

cludesthetext and ETX code as that is calculated as an exclusive OR).

109

APPLIED Section Chap. 7: RS-232C (Overview)

<Example> When sending the text "RUN" (& H52,& H55,& H4E)
BCC = (R) XOR (U) XOR (N) XOR (ETX)
= (&H52) XOR (&H55) XOR (& H4E) XOR (&H03) = & H4A
R 0101 0010
U 0101 0101

N 0100 1110
XOR)ETX 0000 0011

BCC =0100 1010 = &H4A

BASIC2 protocol
The only difference in the BASIC2 protocol is that after the sending side receives an ACK code
from the receiving side to acknowledge normal reception, the sending side sends an EOT code.

Flowchart of BASIC2 Protocol

Sending side Receiving side
Send ENQ
After receiving the ENQ code, send the
ENQ - : NAK
ACK code if ready to receive data or
send the NAK code if not ready.
After receiving the ACK code, ACK
attach the STX, ETX, and BCC
(D codes to data and send.
STX + data+ ETX + BCC Use the BCC code to check for errors. If
a no errors are found, send the ACK code. NAK
If an error is found, send the NAK code
and prepare to receive a retransmission
of the data.
After receiving the ACK code, ACK
send the EOT code.
| EOT

End

Station (send data collision)

When two people begin a conversation at the same time, it is not possible for either to convey a
message. One person must stop talking and allow the other to speak. Similarly, when using the
BASIC protocol, it may happen that both sides begin a data transmission at the same time, in
which case the two sets of transmission data "collide”" with each other. To be precise, two ENQ
codes are sent at the same time and they collide.

To avoid such callisions, the two stations are assigned a " primary station" or "secondary station"
status. When a collision occurs, the primary station takes priority in resending the data. The
secondary station puts its attempted data transmission on pause until it has received the transmis-
sion from the primary station, after which it resends the data.

110

APPLIED Section Chap. 7: RS-232C (Overview)

Transmission control via the CS pin

NOTE

NOTE

As mentioned earlier, when data processing at the receiving side does not go smoothly, the re-
ceived data overflows the reception buffer. The TTY protocol’s XON/XOFF control is one
method for preventing such overflows by controlling "buffer busy” conditions. It doesthisviathe
transmission and reception of software codes (DC1 and DC3). The CS pin provides a hardware
method for controlling buffer busy conditions.

The CS pin refers to the RS-232C interface pin number 5, which controls the input signal for
confirming “ clear to send” status. Whenthe CSinputissetto"L," datafor which transmission has
been cleared (enabled) can be output. When thisinput is set to "H," transmission is suppressed
(disabled).

Usually, when not using CS control, both the controller and the other connected equipment feed
their RS output (pin number 4, which is aways set to "L") directly to their CS pin, so that trans-
mission is set as permanently enabled (see the description below). However, when using CS
control, the connected equipment’s CS output is connected to the controller’ s CS pin. This output
isset to"L" to enable transmission and "H" to disable transmission.

For protocol numbers0to 9, the CS pin cannot be used to control transmission: even when the CS
input is set to "H" it cannot control transmission.

Transmission control viathe CS (Clear to Send) pinisnot enabled in SPELL 11l Ver 3.2 or earlier
versions.

RS control

RS output is always set to "L" regardless of whether or not RS control isbeing used. Therefore,
it is not possible to have the controller control transmission to the connected equipment at the
receiving side. Whenusingthe TTY protocol without X ON/X OFF control, note that data conges-
tion may occur when sending large amounts of data from the connected equipment to the control-
ler.

Remark: CStransmission control when using the BASIC protocol

The robot controller uses a specia-purpose seria chip for controlling RS-232C communica-
tions. This chip receivesinstructions from the CPU and sends data to connected equipment
according to acommunication protocol, receives data from connected equipment according
to acommunication protocol, and transfers datato the CPU. Assuch, thisserial chip reduces
the CPU’ sworkload during communication control operations.

Transmission control using the CS signal can be done viathis seria chip, but in this case the
BASIC protocol sends two ENQ codes, as described below.

If the CPU sends an ENQ code when the CS signal goes high (is set to "H"), the ENQ code
isreceived by the serial chip but it cannot be sent to the connected equipment and is instead
held internally. The CPU then determines that no answer was received from the connected
equipment, and after the specified timeout period has elapsed it sends another ENQ code.
Once the serial chip receives an ENQ code (which it cannot send), it remains in standby
status until the ENQ can be sent. When the CS signal goes low (isset to "L"), two ENQ
codes sent from the CPU are sent from the serial chip to the connected equipment.

111

APPLIED Section Chap. 7: RS-232C (Overview)

RS-232C interface

112

The RS-232C signd lines are listed below.

Pin No. (D-sub 9) | Pin No. (D-sub 25) | Notation /0 Signal name
1 8 CD Input Carrier Detect
2 3 RD Input Receive Data
3 2 SD Output | Send Data
4 20 ER Output | Equipment Ready
5 7 SG - Signal Ground
6 - - - -

7 4 RS Output | Request to Send
8 5 Cs Input Clear to Send

9 - - - -

- 6 DR Input Dataset Ready

- FG - Frame Ground

FG (Frame ground)

Thisisaground connection for maintenance and safety.

SD (Send Data)

Thisisthe serial datasignal line for sending data to the receiving side.

RD (Receive Data)

Thisisthe serial datasignal line for receiving data from the sending side.

RS (Request to Send)
Whenever output islow (set to L"), RS control isdisabled. When the CSsignal isnot being used

for transmission control, the RS output isinput to the CS pin.

CS (Clear to Send)

This signal provides notification that transmission is enabled. When the CS signal is being used
for transmission control, transmission is enabled when this signal goeslow (L) and is suppressed

it goes high (H).

ER (Equipment Ready)

Thissignal informs the connected equipment that data transmission isenabled; it isset to ON (L)
when therobot controller is powered up. When using MS-DOS; it is set to ON when the RS-232C

devicedriver isinstalled.

DR (Dataset Ready)

Thissignal is set to ON when the connected equipment is ready for data transmission.

CD (Carrier Detect)

Thissignal is set to ON when the remote side’ s carrier is being received normally.

APPLIED Section Chap. 7: RS-232C (Overview)

» Manufacture of cross cable

The RS-232C interface is a standard that was developed for connecting DTEs and DCEs 9.
However, the RS-232C interface is used for serial communications between various kinds of
equipment. Naturally, different types of equipment use the signal lines differently and therefore
require different cross cable routing.

¢9 DTE stands for “ Data Terminal Equipment” such as computers.
DCE standsfor “Data Circuit Terminating Equipment” such as modems.

Cross cables should be made according to the following cable routing diagram.

<Routing diagram 1: Routing when CS control is not used>

User equipment 2 Controller
Pin No. Signal Signal Pin No.
1 FG _ Cable clamp
SD SD
RD >< RD
SG _ SG

0 N O || W

RS RS

(O ;| |; (O
DR - -
CD §| CD

20 ER E ER 4

[D-Sub 25] [D-Sub 9]

o0 |~ NW|DN

=

2 The "user equipment” in this above diagram refers to equipment (such as PCs or vision sys-
tems) that uses the RS-232C interface.

<Routing diagram 2: Routing when CS control is used>

User equipment 2 Controller
Pin No. Signa Signal Pin No.
1 FG _— Cable clamp
2 SD SsD 3
3 RD >< RD 2
7 SG —_— SG 5
4 RS RS 7
5 Cs >< CSs 8
6 DR O
8 CD :| E CD
20 ER — ER 4
[D-Sub 25] [D-Sub 9]

In routing diagram 2, the CSinput on the controller side usesthe RS output on the user equipment,
but this routing can be changed to suit the user equipment’s control method.
Since the controller does not perform RS control, the controller cannot be used to control trans-

missions from the user equipment.
113

APPLIED Section Chap. 7: RS-232C (Overview)

114

* Manufacture of connectors on cable
The shield should be handled as follows.
1). After turning back the shield, fasten the cable clamp onto the cable.

2). Fasten the hood onto the connector.

Shield (to FG) Twisted pair

Ol=0

Cable clamp

APPLIED Section Chap. 7: RS-232C (Communications between robots)

7.2 Communications between Robots

Configuration settings

NOTE

&

When designing a system that includes several robots, some sort of interlocking mechanismis
needed to prevent interference in data transfer between robots or other operations among two or
more robots. Connecting the robots via the RS-232C interface enables robot operations to be
specified and implemented via user programs.

When using the RS-232C interface for communications, the same configuration must be set at
both communicating stations. Use the CONFIG command (described in "7.1 Overview of RS-
232C") to set the configuration.

When using the BASIC protocol, be sure to set one station as the primary station and the other
station as the secondary station in order to avoid collisions during data transmission.

Communication-related commands

Use communi cation-related commands that are supported by SPEL 111 to set up and execute com-
muni cations between robots. These SPEL Il1-supported commands are as follows.

PRINT # : Data output to com port

INPUT # : Datainput from com port

LINE INPUT # : Insert one line of input data from the com port as a character string variable

CONFIG . Set configuration of RS-232C port

LOF() : Function for returning the number of lines of received data in the RS-232C
buffer

CONSOLE : Console specification when in SNET mode

STAT() : Function for returning the status of the controller that is connected viaan RS-

232C connection.

Specific use methods for communication-related commands

This section describes four typical examples of communication-related commands.

» Datatransfer

Datainput check

» Read status

Interlock between robots

All four operate in the following environment.

Robot A Robot B

RS-232C Port #20 RS-232C Port #20

115

APPLIED Section Chap. 7: RS-232C (Communications between robots)

116

* Datatransfer

Usethe PRINT and INPUT commands for transfer of numerical data between robots.

<Example 1>
Raobot A’soutput bit (1 or 2) is set to ON according to the numerical value (1 or 2) sent from robot
B.

Robot A Robot B

100 I NPUT #20, A 100 PRI NT #20, A
110 I F A=1 THEN ON1
120 I F A=2 THEN ON2

<Description>

Robot A receives datafrom robot B and robot A’ s output bit is set to ON according to the received
datavalue. If robot A executesthe INPUT command before it receives data from robot B, robot
A will wait at the INPUT command execution step until it receives the data from robot B.
Alternatively, robot B can use the PRINT command to send data in advance, before robot A
beginsits datainput operation.

- When using the BASIC protocol, up to 20 messages of data can be sent in advance. If robot B
sends more than 20 messagesin advance, it waits at the PRINT command step until robot A has
taken in the messages viathe INPUT command.

- When using XON/XOFF control with TTY protocol, up to 20 messages plus 80 bytes of data
can be sent in advance. However, when this amount is exceeded, robot B waits at the PRINT
command step until robot A has taken in the messages viathe INPUT command.

- When not using XON/XOFF control with TTY protocol, an overflow error occurs when more
than 20 messages plus 120 bytes of dataisreceived.

- When using the PRINT or INPUT commands, the number of PRINT command executions must
be the same as the number of INPUT command executions. Likewise, the number of numerical
data strings processed by the PRINT command must be the same as the number processed by
the INPUT command. When the number of data strings do not match, it is handled as an error
(error 30).

APPLIED Section Chap. 7: RS-232C (Communications between robots)

 Datainput check

When the INPUT command is executed, the robot waits at the INPUT execution step until datais
received. However, thisisnot avery efficient way to implement the program. A more efficient
method isto use the LOF() function to return the amount of received data.

<Example 2>

Use the LOF() function to check whether or not data was sent from robot B to robot A. If data
was sent, the robot executes the INPUT command to input the data. |f no data was sent, it ex-
ecutes other tasks.

Robot A Robot B
100 I F LOF(20)=0 THEN GOSUB 200 100 PRI NT #20, A
ELSE GOSUB 1000

110 GOTO 100
200 ' PROGRAML

900 RETURN

-

1000 I NPUT #20, A

-

1100 RETURN

<Description>

Before executing the INPUT command, robot A uses the LOF() function to check for received
data.

If datawasreceived, it executesthe INPUT command at line 1000 to insert the dataasvariable A,
then executes the program after line 1000.

If data was not received, robot A executes the subroutine after line 200 and then returnsto line
100.

117

APPLIED Section Chap. 7: RS-232C (Communications between robots)

» Read status

When performing operations that use two or more robots, programming one robot’ s actions may
require being able to control the other robot(s)’s actions. In this case, we can use the STAT()
function to check the status of other robots connected via an RS-232C interface.

Whenthe STAT() function is executed, the status information from the target robot is received as
3-bytedata. Usethe AND command to mask the status bitsin the data and extract the informa-

tion.
Bit Controller status when bit statusis ON
0 Memory 1/0 bit 0's statusis ON
to to
15 Memory 1/0 bit 15’ s statusis ON
16 Status of REMOTEZ2' s start output is ACTIVE
17 Status of REMOTEZ2' s pause output isACTIVE
18 Status of REMOTEZ2' s error output isACTIVE
19to0 23 Undefined

<Example 3-1>
Set a conditional branch based on the other robot’ s status bit (memory 1/0 bit 7) information.

Robot A Robot B
100 A=STAT(20) AND &H30 100 I F SW3)=1 THEN ON $7
110 I F A<>0 THEN GOTO 1000 ELSE OFF $7

1000 ' PROGRAML

<Description>

After robot A receives the status information from robot B, use the AND command to mask the
status bits and check the status of memory /O bit 7. If robot B's memory |/O bit 7 is set to ON,
execute the program beginning at line 1000. Alternatively, the status of robot B’ sinput bit num-
ber 3 can be used to set robot B’s memory 1/0 statusto ON or OFF.

<Example 3-2>
Set a conditional branch based on the other robot’ s status bit (error output) information.

Robot A Robot B

100 A=STAT(20) AND &H40000
110 I F A<>0 THEN GOTO 1000

1000 ' ERR1

<Description>
Robot A checks robot B’s error output. If an error has occurred at robot B, execute the error
processing program described after line 1000.

118

APPLIED Section Chap. 7: RS-232C (Communications between robots)

* Interlock between robots
When two or more robots share the same operation point data, an interlock is needed to prevent
robot arm collisions. The memory 1/O can be used to establish such an interlock.

<Example 4>
Raobot A and robot B, which share operation point P1, can both operate using the following inter-
lock.

Robot A Robot B
100 FUNCTI ON ROBOT1 100 FUNCTI ON ROBOT2
110 HOVE 110 HOVE
120 ON #20, $2 120 WAI T SW$2)=1
130 WAIT SW$1)=1 130 OFF $2
140 OFF $1 140 JuUwP P1; JUWP P3
150 JUWP P1; JUWMP P2 150 ON #20, $1
160 GOTO 120 160 GOTO 120
170 FEND 170 FEND

Note: P1 isthe operation point shared by robot A and robot B. P2 and P3 are operation points
within the safety zone for preventing robot arm collisions.

<Description>
Robot A’s memory 1/0 bit 1 and robot B’s memory 1/0O bit 2 are used as flags for interlocking.

When robot A reaches line 120 and after robot B’s memory /O is set to ON (enabling operation
of robot B), robot A waits at line 130 until its own memory I/O is set to ON. After robot B
completesits operation at the shared operation point (P1), it jumpsto the operation point (P3) that
iswithin the safety zone, then robot A’smemory I/O isset to ON (enabling operation of robot A).

Thus, an interlock can be established by using "ON #m, $n" or "OFF #m, $n" to change the other
robot’s memory /0.

119

APPLIED Section Chap. 7: RS-232C (Communication with user equipment)

7.3 Communication between Robot and User Equipment

Data format

120

NOTE

Any system that uses arobot may require transfer of numerical data and/or text data between the
user equipment (such as computers or vision systems that use an RS-232C interface) and the
robot. Thisitem describes the sending and receiving of numerical data and/or text data between
the user equipment and the robot.

ASCII codeis the data format used for each numerical value and character that is transmitted
between the user equipment and the robot.

<Examples 1> The ASCII code for "8" is"&H38" and the one for "+" is"&H2B".

The received ASCII code is taken directly as the character data, so no particular attention is
needed concerning the dataformat. However, when sending or receiving numerical data, itis
important to note the expression format and significant digits. Furthermore, the sending side must
send numerical datathat iswithin the range that can be verified by thereceiving side. Therobot's
output format for sending data and its input format for receiving data are both predetermined, so
numerical data sent to or received from the user equipment must be within the range provided by
these formats.

<Example 2> Sending side Receiving side
Character datatransfer: A - &H41 &H41 L A
Numerica datatransfer: - 12.345E- 1 - ASCII data ASClldata - ?

During transfer of numerical data, the sending side converts the numerical datato ASCII dataand
then sends the data to the receiving side. The receiving side must then convert the ASCII data
back into numerical data. However, if the receiving side hasreceived the ASCI| datain aformat
that does not enable accurate conversion to numerical data, the resulting numerical data may
differ from the numerical data at the sending side.

Therobot’ sinput format and output format are described below.

 Input format : Refer to the input format when sending data from the user equipment to the
robot

« Output format : refer to the output format when sending data from the robot to the user equip-
ment.

APPLIED Section Chap. 7: RS-232C (Communication with user equipment)

e Input format

Numerical expressions

The following ranges of numbers can be handled.
Formal numbers: 7 digits
Significant digits: 6 digits

The following expression formats are supported.

<Example>
Input format Input data
+123. 12 123.12
0. 12345E1 1.2345
-97. 156E-1 - 9.7156
-97 -97
. 1267 0.1267
Data expressions

The numerals contained in one line of input data are handled as variables according to the follow-
ing rules.

Except for "+", any character or space that precedes a numeral isignored.

When there are two or more numerical values, at least one delimiter 9 must be inserted
between each pair of numerical values.

If anumeral isfollowed by acharacter such asaletter, al datauntil the next delimiter will be
ignored. When "E" is used to represent an exponent, it is regarded as a numeral.

D Spaces or commas can be used as delimiters.

<Example 2>
Input data Recognized numerical value
DV- 123.56E- 3 - 12356 x 10°3
+123.45E- 3 - 97.45 123.45 x 10 2 and - 97.45
A0=95.62 A1=87.654 Oand 1

* Output format
The robot controller expresses output numerical data according to the following rules.

Integer-type numerical values are output asintegers. A spaceisinserted for positive values.

Real-type numerical values are output as real numbers, but if the number of digitsistoo
large, the output data expression is normalized as follows (assuming that the formal number
part exceeds seven digits).

O ooooooEtooo

A spaceisinserted between each set of numerical valueswhen several setsof numerical data
are output.

121

APPLIED Section Chap. 7: RS-232C (Communication with user equipment)

Program for communicating with user equipment

122

NOTE

e Communicationswith TTY protocol

Aswasdescribed initem 7.1, communicationswith TTY protocol isamethod in which aCR code
(&HOD) is added to data as aterminator.

Sending side Data (text) + CR ———> Receiving side

<Example>

Content of transmission | Representation of sent data

Send "8" and " 7" (&H38) (&H20) (&H37) (&HOD)
Send "12" (&H31) (&H32) (&HOD)
Send "- 1.3" (&H2D) (&H31) (& H2E) (&H33) (&HOD)

In communication with TTY protocol, there is no error correction method available for when
problems such as transmission errors occur, so the BASIC protocol should instead be used when-
ever possible.

¢ Communications using BASIC protocol

Communications using BASIC protocol is amore reliable communication method that adds an
enquiry code (ENQ) and control characters (STX, ETX, and BCC) to transmission data (seeitem
7.1).

Thetwo flowcharts shown below describe arobot communications program that use this protocol .
When transferring numerical data between robots, create a program based on these flowcharts.

Flowchart 1: for sending data viathe BASIC protocol

START

Received? L
time out
YES
NO_—" ck2 ERR31
NO YES
Send
STX+data+ETX+BCC

APPLIED Section Chap. 7: RS-232C (Communication with user equipment)

After sending an ENQ code, the sending side waitsfor an ACK codeto bereturned. If an ACK is
not returned within aspecified time period, atimeout error occurs. When the ACK isreturned, the
sending side sends a string of data surrounded by STX and ETX codes and followed by aBCC
code. Finally, the sending side accepts the ACK and ends the transmission (normal end). When
the ACK isnot returned, the sending side tries three times to send the string of data surrounded by
STX and ETX codes.

If, after sending an ENQ, an ENQ isreturned instead of an ACK, atransmission data collision has
occurred. Inthis case, the sending side sendsaNAK and then, if it isthe primary station, it sends
another ENQ after the NAK isreceived. If it isthe secondary station, it executes receive process-
ing once, receives all of the transmission data from the primary station, and then sends another
ENQ.

Flowchart 2: for receiving data viathe BASIC protocol

‘ Receive one character ‘

<TBCC OK?

YES

First, thereceiving side waits for the ENQ code, and when it receives the ENQ, it sendsan ACK.
Next, the receiving side receives data surrounded by STX and ETX codes and uses the BCC
checksum code to check for errors. If no errors are detected, it sends an ACK and ends the
operation. If the BCC checksum code indicates an error, it sendsa NAK and waits for another
string of data surrounded by STX and ETX codes to be sent.

If no datais sent within a specified period of time, atimeout error occurs. If the ETX codeis not
received, the timeout error or the buffer overflow error occurs.

123

APPLIED Section Chap. 7: RS-232C (Communication with user equipment)

« Example of BASIC program

The following is a communications program that was written in the BASIC programming lan-
guage and uses the BASIC protocol. To send data, this program sets the transmission data to the
character string "SEND$" and calls a transmission subroutine that starts at line 2000.

Toreceive data, it calls areception subroutine that starts at line 3000 and sets the received datato
the character string "RCVCHR$".

<Example of communications program (written in BASIC)>

5 Q010 5000

O Rk R R K KKK KKKk Rk ko ko kR kK

20 ' Basic Data Transm ssion Procedure

/AR AR AR R EEEE R EEEEEEEE Y

1000 ' <Subroutine #1> Initialize Procedure

ASA | control character definition

1020 SOHE=CHRS$(1) : DC3$=CHRS(&HL3) : ENQB=CHRS$(5) : STX$=CHR$(2) : ETX$=CHR$(3)

1030 ACK$=CHR$(6) : NAK$S=CHR$(&HL5) : ESC$=CHR$(&H1B) : CR$=CHR$(&HD) : LF$=CHR$(&HA)

=
(=
P
o

1040

1050 OPEN "0, #1, " COWD: (ETELF)" ' Open RS-232C 9600 bps, 7 bit
1060 CPEN "1", #2," COMD" o even parity, 1 stop bit
1070 RETURN

1080 '

1090 '

2000 ' <Subroutine #2>: Transmt 1 flame subroutine

2010 ' Input SEND$...1 flane data

2020 * Qut put none

2030

2040 PRINT #1, ENGB; : ANS$=I NPUTS$(1, #2)

2050 RETRY=0

2060 | F ANS$=ENQS THEN PRI NT #1, NAK$; : @GOSUB 3000 : GOTO 2040
2070 | F ANS$<>ACK$ THEN PRINT "Transnit Error !":END
2080 BCC=0
2090 FOR 1=1 TO LEN(SENDS)
2100 BOC=BOC XCR (ASC{M DB(SENDS, I, 1)))
NEXT |

2120 BOC=BCC XOR ASQ(ETX$) : BOC$=CHR$(BCCO)

2130 PRINT #1, STX$+SENDS+ETX$+BCCS;

2140 ANS$=I NPUT$(1, #2)

2150 | F ANS$=ACK$ THEN RETURN

2160 RETRY=RETRY+1 : |F RETRY <=3 THEN GOTO 2080

2170 PRINT "Transnit error!" : END

2180 '

2190 '

3000 ' <Subroutine #3>: Receive 1 flanme from RS232C
3010 * I nput none

3020 ' Qutput RCV$...1 flane data received

3030 '

3040 ROVCHRS=I NPUTS(1, #2)

3050 | F RCVCHRS<>ENQS THEN QOTO 3040

3060 PRINT #1, ACKS$;

3070 ROVCHRS=I NPUTS(1, #2)

3080 | F RCVCHRS=ENQ THEN GOTO 3060

3090 | F RCVCHR$<>STX$ THEN PRINT "Recieve error !": END

3100 BOC=0: RCV$=""

3110 ROVCHRS=I NPUT$(1, #2) : BOC=BCC XOR ASC(ROVCHRS)

3120 | F RCVOHRS<>ETX$ THEN RCV$=RCV$+RCVCHRS$: GQOTO 3110

3130 ROVCHR$=I NPUT$(1, #2) : | F ASC{ ROVCHR$) =BOC THEN PRI NT #1, ACK$; : RETURN ELSE GOTO 3070

5000 IR EEEEEEE SRS SRR RS EEEEEEEEEEEEEEEEEEE]

5010 ' Test Program for Conmunication
5020 IR EEEEEEE SRS SRR RS EEEEEEEEEEEEEEEEEEE]

5030 << Initialize >

5040 GOSUB 1000 : SENDS=""

5050 ' << |f data arrived, read 1 line and print out. >>

5060 | F LOC(2)<>0 THEN GOSUB 3000: PRI NT RCV$: GOTO 5060

5070 ' << Scan keyboard and if key in data exists, send 1 line. >>

5080 A$=I NKEY$: | F A$="" THEN GOTO 5060

5090 PRINT A$; : SEND=SENDS+A$

5100 A$=I NKEY$: | F A$="" THEN GOTO 5100 ELSE PRI NT A$;

5110 | F A$=CR$ THEN PRI NT LF$;: GOSUB 2000: SEND$=""": GOTO 5060

124

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

7.4 Communication between Host Computer and Robot

Console

NOTE

When configuring a system that includes one or more robots, the robot may need to communicate
(i.e., transfer numerical data) not only with user equipment as described in the previousitem, but
also with acomputer in the system that functions as a host computer controlling robot operations
such asthe following.

* Activating and shutting down the robot
 Transferring programs
 Reading the robot’ s status, etc.

This item describes how to create a program that enables a computer to function as a host com-
puter controlling arobot.

To enable a computer to function as a host computer controlling a robot, the computer must be
specified asaconsole (amain device for input and output) in AUTO mode. Inthiscase, "console’
simply means a device for controlling arobot. Refer to "1.4 Mode" in introductory section for
outline of console.

The host computer should be connected to the RS-232C port #20 or #21 of controller, you must
assign the port connected to the PC as a console.

The optiona expansion RS-232C ports (port Nos. 22 and 23) cannot be used for a console.

The following is a sample procedure in order to assign the RS-232C port (#20 or #21) as a con-
sole.

<Example> RS-232C port #20 console assignment procedure

@ Usethe SPEL Editor or SPEL for Windows to set the configuration of RS-232C portsfor the
console.
>CONFI G #20, 2,1, 3,0 'Thevaues after #20 depend on PC.

@ Specify the console for AUTO mode.
>CONSOLE #20

® Connect the host computer to #20 port of RS-232C, set the operation mode of the controller
into AUTO, the consoleisassigned to #20 port of RS-232C. In this case, the modeiscalled
as S. NET.

AWARNING %=

Don't carry out teaching operation from PC connected #20 or #21 port of RS-232C.
Because emergency stop switch with PC cable connected to #20 or #21 port of RS-
232C does not function as emergency stop. Therefore, to move the robot is very dan-

While debugging a program with PC which is connected to RS-232C port #20 or #21,
when you move the robot, it is required to have the teaching pendant (TP-320/TP-
320J) or OPU-300 which is connected to TEACH port in hand, in order to press the
emergency stop switch in case of an emergency.

125

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

Robot control program

126

Difference between S. NET and TEACH mode

Asfar as controlling robot by sending commands from PC, thereis no difference between S. NET
mode and TEACH mode.

However, since S. NET mode is designed for AUTO mode, features regarding with safety, for
example, power state, pause state and safeguard are different. In'S. NET mode, program can not
be executed with safeguard open. PAUSE input from REMOTE isvalid. Refer to the following
table.

TEACH mode S. NET
Safeguard input Can operate robot in low power mode | PAUSE state
Emergency stop switch of PC cable enable disenable
PAUSE input from OPU-300 disenable enable
PAUSE input from REMOTE disenable enable

When controlling a robot via a host computer, a communications program must be created to
enable transfer of data between the host computer and the robot. The following eight items de-
scribe this type of robot control program.

* Reset

» Basic procedure

* Control codes

* Procedure of LIST, PLIST, and DIR commands
* Procedure of SAVE and MERGE commands

* High-speed SAVE procedure

¢ LOAD procedure

 Jog Feeding Procedure

* Reset
Send the following reset code to reset the controller.

(SOH) (DC3) = (&HO1) (&H13)

This method worksregardless of the controller’s current status. The controller returnsthe follow-
ing code after it isreset.

(>)=(&H3E)

When the reset code is sent, it is sent by itself, without any other control characters such as CR,
ENQ, STX, or ETX. Thereset codeis effective only when it is sent from the console.

This reset operation can be used to halt program executions, set output ports and memory /O to
OFF, and initialize SPEED and ACCEL settings, but it cannot be used for error recovery or for
clearing emergency stop status. Execute the RESET command if error recovery and/or clearing
of emergency stop statusis needed. (Refer to "Basic procedure” in next page.)

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

* Basic procedure

To execute the controller’s functions (SPEL Il commands), each command must be sent to the
controller in ASCII code. The controller translates the ASCII code it receives and executes the
corresponding command.

Either TTY (no protocol) or the BASIC protocol can be used, but the latter is recommended
because of its higher reliability.

The flowchart 3 shows the basic procedure for communicating control messages.

First, acommand is entered via the computer and sent as ASCII code to the controller. The
computer then waits for a message from the controller. If the message is">", the controller
returns to waiting for input from the computer. If itisnot ">", the computer accepts the message
and then waits for further input from the controller.

With regard to "Transfer command to controller" in the flowchart, use the sending program de-
scribed initem 7.3 and use the receiving program from 7.3 for "Input message from controller".

Flowchart 3: The basic procedure for communicating control messages

START

Transfer command
to controller

Input message

from controller

~9 NO

YES

Store message

oo

127

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

128

<Example> Sending RUN Command to Robot

TTY protocol (No protocol)

Host computer Controller
Send RUN
RUN
%r]d II>II
> |
BASIC protocol
Host computer Controller
Send ENQ
After receiving the ENQ code,
ENQ | send the ACK code if ready to | NAK
receive RUN or send the NAK
code if not ready.
After receiving the ACK code, | ACK ‘
attach the STX, ETX, and BCC
codes to RUN and send.
Use the BCC code to check for
(STX)RUN(ETX)(BCC) errors. If no errors are found, NAK
send the ACK code. If an error
isfound, send the NAK code and
prepare to receive a retransmis-
sion of the RUN.
After receiving the ACK code, | ACK
end the RUN transmission.
Send ENQ
After receiving the ENQ code,
NAK | sendthe ACK codeif ready to | ENQ
receive data or send the NAK
codeif not ready.

‘ ACK | After receiving the ACK code,
attach the STX, ETX, and BCC
codesto ">" and send.

Use the BCC code to check for
NAK | €rors. If no errors are found, (STX) > (ETX)(BCC)

send the ACK code. If an error
isfound, send the NAK codeand
prepare to receive a retransmis-
sion of the">".

ACK

After receiving the ACK code,
end the">" transmission.

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

NOTE

* Control codes
Control codes are sent to stop and restart execution of programs. The following control codes
must be sent when using either the"TTY protocol” method or the "BASIC protocol" method.

Pause, continue, execute one step, or stop
When controlling a program that is being executed, send any of the following control codes.

Control code Description

(DC3) (ESC) Pause program

(DC3) (A) Continue program execution after pause
(DC3) (space) Execute one step after pause

(DC3) (Q) Stop program execution after pause

Statustransmission request and response
Status transmission request and response corresponds to SPEL 111I's STAT() function. Usethe
following procedure to request sending of the status to the controller.

@® The host computer sends DC1 to the controller.
@ When the controller receivesthe DC1, it sends DC2 followed by a 6-byte hexadecimal version
of the 3-byte status data to the host computer.

Host computer Controller

Send (DC1)

Send (DC2),'0','0",'0",'1",'2","3"
- Statusinformation is:
Least significant byte: 23H
Middle byte : 01H
Most significant byte : O0OH

(DCZ),'O','Ol,.0|,'1|,I2|,‘3‘ ‘

(DC1)

End

Change memory I/O
Change memory 1/O corresponds to SPEL I11's ON #m, $n and OFF #m, $n. Use the following
procedure to change the controller’s memory 1/0.

The host computer sends DC4 (data) to the controller. The data consists of one byte, whose bits
have the following meanings.
(data) = (OA1BBBBB)
A : Flag for distinguishing between ON and OFF
ON :A=1
OFF:A=0
B : B corresponds to the memory 1/0’s bit number. The five "B" bits express a numerical
value from 0 to 31.

<Example> ON #20, $15 — (DC4)(6FH)
OFF #20,$3 - (DC4)(23H)

Y ou can not use the control code except the control code (O0OH to 1FH) described in manual and
its combination.

129

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

130

 Procedure of LIST, PLIST, and DIR commands

The flowchart 4 shows the procedure of LIST, PLIST, and DIR commands. Execution of these
commands can be temporarily paused and restarted or stopped completely. The datato be trans-
mitted must be managed onelineat atime. In other words, the host computer uses a handshaking
procedure while communicating with the controller.

Send the following codes to enter handshaking mode.
(DC3) (ESC)

After sending the above codes, send a command (such as LIST).

Then send a space code, after which you will receive one line of the program (or other data) from
the robot.

End if the received datais ">". If itisnot ">", the received data will be shown on the host
computer’ s monitor.

Before the space code is sent, the program checks for key input. Thiskey input check isfor the
LIST processing control functions (pause, continue, forced end, etc.).

Flowchart 4: Procedure of LIST, PLIST, and FILES commands

START

‘ Send (DC3)(ESC) to robot ‘

]

‘ Send command to robot ‘

l

‘ Send (DC3)(Space) to robot

One line of data input
from robot

‘ Send (DC3)(Q) to robot ‘
I YES
>9?
One line of data input
from robot NO
END ‘ Display data on monitor ‘
‘ Send (DC3)(Space) to robot ‘
One line of data input
from robot

>9 NO i

YES ‘ Display data on monitor ‘
END \—

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

* Procedure of SAVE and MERGE commands (program downloading)
The flowchart 5 shows the procedure of the SAVE and MERGE commands.

In thisflowchart, the NEW command is sent first. After the controller’s program areais cleared,
the program is sent to the controller one line at atime. When the program transfer is compl eted,
the position data transfer is executed.

If transfer of the NEW and CLEAR commands is omitted, MERGE command processing will be
executed.

These transfers can use either the TTY -protocol or BASIC protocol method.

Flowchart 5: Procedure of SAVE command

START

‘ Send NEW command

I}

‘ Wait for ">" (prompt) ‘

——

Send one line of program

‘ Wait for ">" (prompt) ‘

—_—

YES

‘ Send CLEAR command

l

‘ Wait for ">" (prompt) ‘

_—

Send one line of position data
"DT= ... "

l

‘ Wait for ">" (prompt) ‘

131

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

132

* High-speed SAVE procedure

During SAVE command processing, when one line of the program is sent to the controller, the
controller checks the program line number and then must search the program storage areafor a
storage location for that line, which is a time-consuming operation.

High-speed SAVE processing speeds up program downloading by ensuring that programs are
sent in the order of their program line numbers.

The flowchart 6 shows the procedure of high-speed SAVE command.

First, the"SSV_" command is sent, followed by one line of the program.

The underscored part () corresponds to ASCII code " & H5F".

When the entire program has been transferred, the”_END" command is sent and the position data
is sent line by line, similar to the program data.

Flowchart 6: Procedure of high-speed SAVE command

START

‘ Send SSV_ command

——

Send one line of program

—_—

YES

Send END command

—

Send one line of position data
"DT= ... "

—_—

YES

Send END command

l

‘ Wait for ">" (prompt) ‘

END

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

» LOAD procedure (program uploading)
The flowchart 7 shows the procedure for the LOAD command.

The LIST command is sent to the controller, after which the controller receives oneline at atime
of aprogram that is stored in the program storage area. The received program is stored in the host
computer’s program storage area.

Next, the PLIST command is sent to the robot and the position datais processed in the same way
asthe program data.

Flowchart 7: Procedure of LOAD command

START

‘ Send LIST command ‘

\
h

Send one line of program

> 9 NO
YES Store data in file

Send PLIST command

\
h

Send one line of position data
"DT= ... "

> 9 NO
YES Store data in file

133

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

134

« Jog feeding procedure

The host computer can be used to program the robot to perform "jog feeding" motions.

Jog feeding motions are motions to a position specified viaremote control, such as viaa computer
keyboard. Assuch, itisan essential teaching function.

The method of jogging the robot isasfollows. It isthe same method as SPEL Editor is using.

There are two modes for jog feeding motions: motion mode and coordinate system mode. Use
both modesin combination.

Motion mode

StpJog (Step Jog) Step jog feeding

CntJog (ContinuousJog) | Continuousjog feeding

Coordinate system mode

Base Motion according to robot’ s base coordinates
Joint Motion defined for each joint
Tool Motion according to tool coordinates

For further description of jog feeding motion, see"6. Teach Key Mode" of SPEL Editor manual.

Step jog feeding (StpJog mode)

Either BASIC protocol or TTY protocol can be used for communications related to step jog
feeding processing.

The step distance can be determined by executing the SEL command to select a step size. How-
ever, note that the step direction and distance may vary depending on the selected coordinate
system.

Base coor dinate system mode

Code Description Previous code?
P1J 0 | Positivedirection along X axis of robot coordinate system PSX

N1J O | Negativedirection along X axis of robot coordinate system NGX

P2J 0 | Positivedirectionalong Y axis of robot coordinate system PSY

N2J 0 | Negativedirectionalong Y axis of robot coordinate system NGY

P3J 0 | Positivedirection along axis#3 PSz

N3J 0 | Negativedirection along axis#3 NGZ

P4J 0 | Positivedirection along axis#4 PSU

N4J 0 | Negativedirection along axis#4 NGU

D:The previous code is the code used with 42-series controllers. This previous code can also be
used for step jog feeding programming according to the base coordinate system.

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

Joint coordinate system

Code Description
P1J 1 | Positivedirection along axis#1

N1J 1 | Negativedirection along axis#1
P2J 1 | Positive direction along axis#2

N2J 1 | Negativedirection along axis#2
P3J 1 | Positivedirection along axis#3

N3J 1 | Negativedirection along axis#3
P4J 1 | Positivedirection along axis#4

N4J 1 | Negative direction along axis#4

Tool coordinate system

Code Description

P1J 2 | Positivedirection along x axisin tool coordinate system

N1J 2 | Negativedirection along x axisin tool coordinate system

P2J 2 | Positivedirection alongy axisintool coordinate system

N2J Negative direction along y axisin tool coordinate system

2
P3J 2 | Positivedirection along axis#3
2

N3J Negative direction along axis #3

Rotation in positive direction along the u axis and centered on the

P4J 2 -)
origin of thetool coordinate system

Rotation in negative direction along the u axis and centered on the

N4J 2 origin of thetool coordinate system

Continuousjog feeding (CntJog mode)

For continuous jog feeding processing, send processing codes directly without using a protocol
(BASIC or TTY).

Continuous jog feeding processing uses the following two kinds of codes.

Code Description

Continuous jog start code | Code that is sent to start continuous jog

Jog direction code Code that determines the direction of jog feeding

The continuous jog start code includestwo bytes of data. The send data differs asfollows depend-
ing on the jog feeding coordinate system.

Jog feeding coordinate system Code
Base DC3+'0
Joint DC3+' 71
Tool DC3+'2

135

APPLIED Section Chap. 7: RS-232C (Communication between host computer and robot)

136

Thejog direction codes are shown below.

bit 7 bit 0
X/Y jogdirections | 0 | O | 1 |SP|-Y |+Y |- X |+X
bit 7 bit 0
Z/Ujogdirections | 0 | 1 | O |SP|-U +U |-Z |+Z

- Set 1 for the bit that you need to specify the jog direction

- SPstandsfor "speed”. A bit value of 1 for this sets high speed. Usually, pressing the [Shift]

key setsthisbit to 1.

<Example> Pressing"+X" and"- Y" sends the code "&H29".

When executing continuous jog feeding processing, first send the continuous jog start code, fol-
lowed immediately by the jog direction code. Keep sending jog direction codes to maintain
continuousjog processing. Jog feeding processing endsif the subsequent jog direction codeis not
sent within 20 ms. Once jog feeding processing ends, another continuous jog start code must be

sent to restart it.

Key status —I

Max. 20 msec.

—

Command A

A : Continuous jog start code

B : Jog direction code

[L]
B BBBBDBDBB

APPLIED Section Chap. 7: RS-232C (Extended functions)

7.5 Extended Functions

SPEL Ill: Extended function calls

NOTE

NOTE

In addition to the RS-232C related functions explained so far, there are also several extended

functions.

» Format of extended functions

Format: EX_CALL (I,m,n)

| : Function code
m: Parameter 1
n : Parameter 2

Function code 2 : Terminator output ON/OFF
This control the terminator output when the RS-232C communication protocol is"TTY proto-
col."

Input parameters
| (functioncode) : 2
m(port No.) : 20t0 23
n (control flags) : When nisO0, output terminator
When nis 1, do not output terminator

Return value
error code (normally 0)

This setting is not backed up. A reset will restore the default val ue (output terminator), so be sure
to include this command in your program.

100 B=EX_CALL(2, 20, 11) ' Do not output terminator (#20)
110 PRI NT #20, 123
120 | NPUT #20, A " Input numerical value from #20

Format: INKEY$(n)

n : 20 or 21(port No.)

This function returns one character of the data input to the RS-232C port.
A value of CHR$ (0) isreturned if atime-out occurs (the time-out period is about two seconds).

This function will not operate correctly unless the specified port isin RAW mode.

137

APPLIED Section Chap. 7: RS-232C (Extended functions)

138

NOTE

» Extended function commands

Format: SETRAW #n

n : 20 or 21(port No.)

This sets the specified RS-232C port to RAW mode.

RAW mode

When usingthe TTY protocol, terminators are not added to data output viathe PRINT command.
Also, the INPUT command cannot be used for data input, so the INKEY $() function isinstead
used to return one character.

Format: COOKED #n

n : 20 or 21(port No.)

This sets the specified RS-232C port to COOKED mode.

COOKED mode
When using the TTY protocol, terminators are added to data output viathe PRINT command.
The INPUT command can be used for datainput. Thisisthe default setting.

APPLIED Section Chap. 7: RS-232C (Extended functions)

ASCII code chart

00 | 10 | 20 | 30 | 40 | 50 | 60 | 70
00 |[NUL |DLE| SP | © @ P p
01 |SOH | DC1| ! 1 A P a q
02 |STX |DC2| " 2 B R b r
03 |ETX | DC3| # 3 C S c s
04 |[EOT DC4| $ 4 D T d t
05 |[ENQ | NAK| % 5 E U E u
06 |ACK | SYN| & 6 F \Y, f v
07 |BEL | ETB | ' 7 G w g w
08 |BS | CAN| (8 H X h X
09 |HT | EM) 9 I Y [y
OA |LF | SuB| * J z j z
0B |VT |ESC| + ; K [k {
0C | FF FS < L \ I [
OD|CR | GS - = M] m
OE | SO RS > N n n g
OF | Sl us / ? @] o | DEL

139

APPLIED Section Chap. 7: RS-232C (Transmission errors)

7.6 Transmission Errors

Transmission error codes

The error numbers bel ow indicate the following transmission errors.

Error No. Description
30 Number of received data and that of variable for INPUT is not equal
31 Unable to establish communications with device connected via RS-232C
interface or TEACH connector
33 Datawithout terminator received via RS-232C and buffer overflow
34 Parity, overrun, or framing error in RS-232C communications
36 Input from RS-232C exceeds 80 characters

Causes and counter measur es

Error 31 This occurs when the power is off or when the configuration isincorrect.

Error 30 or 36 | Thisisusually caused by a program input error.

Error 33 This error occurs when large amounts of data are being transmitted.

Error 34 This error occurs when the transmission is affected by line noise or other
interference. Determinethe cause of the interference (such as an extra-long
cable or acrimped cable, or anearby noise-generating device) then retry the
transmission.

When a transmission error occurs, use the communications checking flowchart shown in next
page to determine the cause.

140

APPLIED Section Chap. 7: RS-232C (Transmission errors)

Flowchart: Communications error checking

o)

START

Start transmission

Same
configuration on NO

both sides?

YES

Same protocol NO

l

Set configuration

N

on both sides?

YES

RS-232C NO

l

Reset protocol

N

connections OK?

YES

Contact service
representative

l

Fix connection

I

141

142

	EPSON ROBOT User's manual for SRC-300/320
	Preface
	WARRANTY
	SERVICE CENTER
	MANUFACTURER
	NOTICE
	Safety Precautions
	FOREWORD
	MANUALS
	Command entry format
	For SPEL for Windows users

	TABLE OF CONTENTS
	SAFETY SECTION
	CHAPTER 1. BASIC FUNCTIONS FOR SAFETY
	1. 1 Low Power and High Power
	1.2 Safeguard
	1.3 Emergency stop
	1.4 Enable Switch (Dead Man Switch) for SRC-320 only

	CHAPTER 2. RECOMMENDATION FOR SAFETY
	2.1 General
	2.2 General design requirements
	2.3 Design and safeguarding of the robot system
	2.4 Use and care
	2.5 Installation, commissioning and functional testing
	2.6 Documentation
	2.7 Training

	INTRODUCTORY SECTION
	CHAPTER 1. PREPARATION FOR OPERATION
	1. 1 Robot Components
	Options

	1.2 Installation Precautions
	Check M. CODE and cable length
	Arm fastener

	1.3 Programing Unit
	Preparation for using programing unit

	1.4 Mode
	TEACH mode
	AUTO mode

	1.5 Error Message
	LED of controller indication panel
	Output to OPU-300 and REMOTE1 connector
	Output to programming unit

	CHAPTER 2. BASIC OPERATION
	2.1 Basic Operation Flow
	2.2 Checking the Start-up Status
	2.3 Setting Data Backup
	About initializing of the motion range

	2.4 Motor Power On
	The motor engagement/disengagement status

	2.5 Machine Calibration
	2.6 Home (Standby) Position Setup
	Defining the home position
	Arm moving order in homing

	2.7 Teaching and Programming
	Teaching
	Example of the teaching method
	Example of the programming

	2.8 Executing a Program
	Compiling
	Execute the program from PC
	Execute the program from operating unit
	Execute the program from REMOTE3

	2.9 Selecting Program for Changing Lines and Products
	Selecting program from REMOTE input
	Utilization of CHAIN command

	2.10 File Handling

	CHAPTER 3. JOG OPERATION
	3.1 Coordinate System Used in Jog Feeding
	Jog feeding using the "BASE” coordinate system
	Jog feeding using the "TOOL" coordinate system
	Jog feeding using the "JOINT" system

	3.2 About Jog Movement

	ELEMENTARY SECTION
	CHAPTER 1. MOTION SPEED
	1. 1 Acceleration/Deceleration Speed
	1.2 High-speed Operation in TEACH mode
	Safeguard constraint
	POWER (LP) command constraint
	TSPEED (TSPEEDS) command constraint

	1.3 Axis #3 Speed/Acceleration Control for JUMP command
	1.4 Transporting Objects Heavier than the Rated Weight

	CHAPTER 2. PROGRAMMING
	2.1 Basic Constituents of Program
	Function name
	Comments
	Multi-statement
	Labels

	2.2 Constants
	Numeric constants
	Character constants

	2.3 Variables
	Specifiable number of variables
	Numeric variables
	String variables
	Array variables
	Listing of variable names
	Backup variables
	Caution on using variables

	2.4 Operations
	Arithmetic operations
	Logical operators
	Relational operators
	String operators
	Order of operators precedence
	Integer operation and real number operation
	Return value from the Function
	Case where operation and function can be used

	2.5 Program Control Statements
	FOR...NEXT
	GOTO
	IF...THEN...ELSE
	GOSUB...RETURN
	GOTO, FOR...NEXT, GOSUB...RETURN, IF...THEN...ELSE
	CALL
	SELECT...CASE...SEND
	WHILE [condition] ...WEND
	TRAP
	Nesting

	2.6 Pseudo Command

	CHAPTER 3. FILES
	3.1 Main Memory and File Memory
	Memory area in the main memory
	Program execution area
	File memory

	3.2 File names
	The constituents of a file name
	How to make a file name
	Extension
	Special file names

	3.3 Files Loaded when Execution

	CHAPTER 4. DIRECTORY
	4.1 Directory
	Root directory
	Sub directory
	Creating the sub directory
	Deleting a sub directory
	Tree-structured directories
	Parent directory, child directory
	Current directory
	Specifying path
	Environment variable

	APPLIED SECTION
	CHAPTER 1. MULTI-TASKING
	1.1 What is Multi-tasking
	Advantages of multi-tasking
	Multi-tasking in SPEL III
	Tasks during execution of WAIT command, INPUT command and movement commands
	WAIT command and IF sentence
	Timing to switch tasks

	1.2 Interlock among Tasks
	Interference of controller
	Only one device used by multiple tasks

	CHAPTER 2. PROGRAM TECHNIQUES
	2.1 How to Write Large-scale Programs (Efficient use of CHAIN/LINK)
	Case in which the CHAIN command can be used:
	Case in which the LINK command can be:

	2.2 Movement to Multiple Points Spaced Equidistantly
	Definition of pallet
	Positional designation inside pallet:

	2.3 Techniques for Shortening Cycle Time
	Using arch motion
	Free setting of the timing of position completion
	Parallel processing
	Conditional stop during motion
	Assembly operations at low speed
	Associated commands

	2.4 Using Position Data

	CHAPTER 3. DEBUGGING
	3.1 Multi-tasking Debugging
	Convenient debugging commands
	XQT command
	TSTAT command
	TON/TOFF command
	PRINT command

	CHAPTER 4. BATCH PROCESSING
	4.1 Batch Processing Command
	4.2 Batch File
	Creating the batch file

	CHAPTER 5. Automatic Program Execution at Power On
	5.1 AUTO.BAT File
	5.2 IPL Program

	CHAPTER 6. SYSTEM CONFIGURATION FILE
	6.1 CNFG.SYS File
	6.2 Editing Files

	CHAPTER 7. RS-232C
	7.1 Overview of RS-232C
	Configuration
	Configuration for SPEL III
	Computer configuration
	TTY protocol and XON/XOFF control
	BASIC protocol
	Transmission control via the CS pin
	RS-232C interface

	7.2 Communications between Robots
	Configuration settings
	Communication-related commands
	Specific use methods for communication-related commands

	7.3 Communication between Robot and User Equipment
	Data format
	Program for communicating with user equipment

	7.4 Communication between Host Computer and Robot
	Console
	Robot control program

	7.5 Extended Functions
	SPEL III : Extended function calls
	ASCII code chart

	7.6 Transmission Errors
	Transmission error codes

